
Part of the five-volume
MlcrosoftC WIn32t) Developer's Reference Ubrary

WIndCIIWS

The essential reference to Win32®
technologies -and APls

David Iseminger
Series Editor

orww-/seminger.com

GDI

t®

Indows®
GDI

The essential reference to Win32®
technologies and APls

David Iseminger
Series Editor

t®

Indows
GDI

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Microsoft Win32 Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) I. Title.

QA76.76.063 174 1999
005.26'8--dc21 99-045609

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 4 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended Of should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002308

Acknowledgements
Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You'd think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman-thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies ... thanks to Julie for the help on that. Guy
Smith pOinted me to the information I needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional "circled i" logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

v

Contents

Chapter 1: Introduction .. 1

How the Win32 Library Is Structured .. 1
How the Win32 Library Is Designed ... 3

Chapter 2: What's in This Volume? ... 5

Chapter 3: Using Microsoft Reference Resources .. 9

The Microsoft Developer Network (MSDN) .. 10
Comparing MSDN and MSDN Online .. 10
MSDN Subscriptions ... 12

MSDN Library Subscription ... 13
MSDN Professional Subscription ... 13

MSDN Universal Subscription ... 13
Purchasing an MSDN Subscription .. 14

Using MSDN ... 15
Navigating MSDN .. 16

Quick Tips .. 19
Using MSDN Online .. 19

Navigating MSDN Online .. 21
MSDN Online Features .. 22
MSDN Online Registered Users ... 25

The Windows Programming Reference Series .. 27

Chapter 4: Finding the Developer Resources You Need ... 29

Developer Support .. 29
Online Resources .. 31
Learning Products ... 32

Conferences ... 34
Other Resources .. 35

Chapter 5: Getting the Most Out of Win32 Technologies: Part 3 37

RPC Errors .. 37
Using pointecdefault(unique) and embedded pointers 38
A valid switch_is value in an RPC-capable structure
doesn't ensure a non-NULL pointer ... 38

A NULL DACL affords no protection ... 39
Call RpcImpersonateClientO before any security-relevant operation 40

vi Contents

Starting and stopping impersonation .. 40
Always check the result of RpcImpersonateClientO
before a security-relevant operation ... 41
Call RpcRevertToSelfO after security-relevant operations 41
Strings are zero-terminated only when declared with strings in the jdl 42
Don't copy arbitrary length data into independently-sized buffers 43

Using size_is may result in a zero-length structure;
it is not safe to dereference this without first checking its length 43
Calculations in a size_is· or length_is specification are
susceptible to overflow ... 44
Strict context handles .. 44

Kernel-Mode Specifiers .. 45
Don't access user-provided memory without probing 45
Don't do multiple user-mode reads without captures 46
Don't trust the TEB .. 47
Avoid race conditions when modifying kernel data on user request 47

Dealing with common interfaces for user mode and kernel mode 48
Validating buffered I/O in device drivers ... 48
METHOD_NEITHER requires full probe and capture 48

Solution Summary ... 49

Chapter 6: Bitmaps .. 51

About Bitmaps .. 51
Bitmap Classifications ... 53

Device-Independent Bitmaps .. 53
Device-Dependent Bitmaps .. 55

Bitmap Header Types .. 56
JPEG and PNG Extensions for Specific Bitmap Functions and Structures 58
Bitmaps, Device Contexts, and Drawing Surfaces .. 59
Bitmap Creation ... 59

Bitmap Rotation ... 60
Bitmap Scaling ... 60
Bitmaps as Brushes .. 60
Bitmap Storage .. 61
Bitmap Compression .. 63

Alpha Blending .. 64
Alpha Values per Pixel ... 65
Global Alpha Blending Settings ... 65

Smooth Shading ... 65

ICM-Enabled Bitmap Functions .. 66

Contents vii

Bitmap Reference .. 66
Bitmap Functions ... 66

Bitmap Structures ... 116
Bitmap Macros ... 152

Chapter 7: Brushes ... 153

About Brushes ... 153
Brush Origin .. 153
Logical Brush Types .. 154

Solid Brush ... 155

Stock Brush .. 155
Hatch Brush .. 155

Pattern Brush .. 156
Pattern Block Transfer ... 156

ICM-Enabled Brush Functions .. 157
Brush Reference .. 157

Brush Functions ... 157
Brush Structures ... 169

Chapter 8: Clipping ... 175

About Clipping .. 175
Clipping Regions ... 175

Clip Paths ... 176
Clipping Reference .. 177

.Clipping Functions ... 177

Chapter 9: Colors .. 193

About Colors ... 193
Color Basics ... , ... 193

Color Values .. , 194
Color Approximations and Dithering ... 194

Color in Bitmaps ... 195
Color Mixing .. 195

Color Palettes ... 196
Default Palette .. 196
Logical Palette .. 197
Palette Animation ... 198

System Palette ... 198
System Palette and Static Colors .. 200
Palette Messages ... 200

viii Contents

Halftone Palette and Color Adjustment.. .. 201
Color Reference .. 202

Color Functions .. 202
Color Structures ... 223

Color Macros ... 226
Color Messages .. 231

Chapter 10: Coordinate Spaces and Transformations ... 235

About Coordinate Spaces and Transformations .. 235

Transformation of Coordinate Spaces .. 235
World-Space to Page-Space Transformations ... 240

Translation .. 240
Scaling .. 242
Rotation .. 243

Shear ... 245
Reflection ... 246

Combined World-to-Page Space Transformations 247
Page-Space to Device-Space Transformations .. 247

Mapping Modes and Translations .. 247
Predefined Mapping Modes .. 250

Application-Defined Mapping Modes .. 250
Device-Space to Physical-Device Transformation .. 251
Default Transformations .. 251

Coordinate Space and Transformation Reference ... 252
Coordinate Space and Transformation Functions .. 252

Coordinate Space and Transformation Structures .. 284

Chapter 11: Device Contexts .. 287

About Device Contexts ... 287
Graphic Objects ... 287
Graphic Modes ... 288

Device Context Types .. 289
Display Device Contexts .. 289
Printer Device Contexts .. 291

Memory Device Contexts ... 291
Information Device Contexts .. 292

Device Context Operations .. 292
Operations on Graphic Objects ... 292

Cancellation of Drawing Operations .. 293
Retrieving Device Data .. 293

Contents ix

Saving, Restoring, and Resetting a Device Context 294

ICM-Enabled Device Context Functions ... 294
Device Context Reference ... 295

Device Context Functions .. 295
Device Context Structures ... 344
Device Context Messages .. 350

Chapter 12: Filled Shapes ... 351

About Filled Shapes .. 351

About Ellipses .. 351
About Chords ... 352
About Pies .. 352
About Polygons .. 353
.Drawing Rectangles ... 353

Filled Shape Reference .. 354
Filled Shape Functions ... 354

Chapter 13: Lines and Curves ... 367

About Lines and Curves .. 367
Lines ... 367
Curves ... ; 369
Combined Lines and Curves .. 370

Line and Curve Attributes .. ; 370
Line and Curve Reference ... 371

Line and Curve Functions .. 371

Chapter 14: Metafiles .. 391

About Metafiles ... 391
Enhanced-Format Metafiles ... 392

Enhanced Metafile Records .. 392
Enhanced Metafile Creation ... 393
Enhanced Metafile Operations ... 394

Windows-Format Metafiles ... 395
Metafile Reference .. 397

Metafile Functions ... 397
Metafile Structures ... 421
Enhanced Metafile Structures .. 421

Chapter 15: Painting and Drawing .. 495

About Painting and Drawing .. ; 495
When to Draw in a Window .. 495

x Contents

The WM_P AINT Message .. 496

The Update Region ... 497
Invalidating and Validating the Update Region 497
Retrieving the Update Region .. 498
Excluding the Update Region ... 498
Synchronous and Asynchronous Drawing , 498

Drawing Without the WM_P AINT Message ... 499
Window Coordinate System .. 500
Window Regions .. 500
Window Background ... 501

Minimized Windows .. 502
Resized Windows .. 503

Nonclient Area ... 503
Child Windows .. 504
About Display Device Contexts ... 505

Display Device Context Cache ... 506
Display Device Context Defaults ... 506

Comtnon Display Device Contexts .. 507
Private Display Device Contexts .. 508
Class Display Device Contexts ... 509
Window Display Device Contexts .. 510

Parent Display Device Contexts ... 510
Window Update Lock .. 511
Accumulated Bounding Rectangle ... 512

Painting and Drawing Reference ... 512
Painting and Drawing Functions .. 512

Painting and Drawing Structures ... 561
Painting and Drawing Messages .. 562
Raster-Operation Codes ... 570

Binary Raster Operations .. 570

Ternary Raster Operations .. 573

Chapter 16: Paths ... 583

About Paths ... 583
Outlined and Filled Paths ... 584
Transformations of Paths ... 584
Clip Paths and Graphic Effects .. 585
Conversion of Paths to Regions ... 586

Curved Paths .. 586

Contents xi

Path Reference .. '" 586
Path Functions .. 586

Chapter 17: Pens .. 601

About Pens .. 601
Cosmetic Pens .. 601
Geometric Pens .. 601
Pen Attributes .. 602

Pen Width ... 602
Pen Style ... 602
Pen Color .. 603
Pen Pattern .. 603
Pen Hatch .. 603

Pen End Cap ... '" 604
Pen Join .. 604

rCM-Enabled Pen Functions .. 605
Pen Reference .. 605

Pen Functions ... 605

Pen Structures .. 611

Chapter 18: Rectangles .. 617

About Rectangles .. 617
Rectangle Coordinates ... 617
Rectangle Operations ... 617

Rectangle Reference .. 619

Rectangle Functions ... 619
Rectangle Structures .. 629
Rectangle Macros ... 631

Chapter 19: Regions ... 633

About Regions ... 633

Region Creation and Selection ... 633
Region Operations ... 633

Combining Regions .. 634
Comparing Regions .. 634
Filling Regions ... 635
Painting Regions ... 636
Inverting Regions ... 636

Framing Regions ... 636
Retrieving a Bounding Rectangle ... 636

xii Contents

Moving Regions ... 636
Hit Testing Regions 636

Region Reference 637
Region Functions ... 637

Region Structures 659

Appendix A ... 661

Appendix B ... 667

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer's Reference Library, your comprehensive
reference guide to the Win32 development environment. This library, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming-without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you-the time-pressed and information-overloaded applications
developer-to find the information you need quickly, efficiently, and intuitively.

1

In addition to its focus on Win32 reference material, the Win32 Library contains hard
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN Subscription. Don't have
an MSDN subscription, or don't know why you should? I've included information about
that too, including the differences among the three levels of MSDN subscriptions, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

Microsoft is fairly well known for its programming, so doesn't it make sense to share
some of that knowledge? I thought it made sense, so that's why this-the Windows
Programming Reference Series-is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don't get lost in all the information provided in the Win32 Library,
each volume's appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you're looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

How the Win32 Library Is Structured
The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided and include the following:

2 Volume 3 Microsoft Windows GOI

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphics Device Interface)

Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library-and therefore, dividing Win32-into these functional
categories enables a software developer who's focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,OOO-page Win32 tome),
and without having to shuffle among multiple, less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer friendly
manner and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview

Part 2: Reference

Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN and MSDN Online, including a collection of insider
tips and tricks. Just as each volume's Reference section (Part 2) contains different
reference material, each volume's Part 1 contains different tips and tricks. To ensure that
you don't miss out on some of them, make sure you take a look at Part 1 in each Win32
Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information. in Part 2 combines
complete programming element definitions as well as instructional and explanatory
material for each programming area.

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

Chapter 1 Introduction 3

How the Win32 Library Is Designed
The Win32 Library, and all libraries in the Windows Programming Reference Series, is
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look-and-feel that is consistent with their electronic counterparts. In
other words, the way that a given function reference appears on the pages of this book
has been designed specifically to emulate the way that MSDN and MSDN Online
present their function reference pages.

The reason for maintaining such integration is simple: make it easy for you-the
developer of Windows applications-to use the tools and get the ongoing information
you need create quality programs. By providing a "common interface" among reference
resources, your familiarity with the Win32 Library reference material can be immediately
applied to MSDN or MSDN Online, and vice versa. In a word, it means consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and-in the absence of keyboards
and e-mail and upright chairs-get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

5

CHAPTER 2

What's in This Volume?

Similar to the first two volumes, this third volume of the Win32 Library-Volume 3: GDI
(Graphical Device Interface)-focuses on one of the areas of Windows development that
most applications programmers must work with throughout the process of creating their
applications. Graphical Device Interface, commonly referred to as GDI, provides a
comprehensive set of functions, structures, and other programmatic elements that
developers can use in their applications to generate graphical output for displays,
printers, and other devices or objects.

The things that applications can do with GDI programming elements includes drawing lines
or shaped objects, specifying the colors or fills of such drawn objects, and applying the
objects used to create them, such as brushes and pens. The categories of GDI elements in
this volume of the Win32 Library include:

Bitmaps

Brushes

Clipping

Colors

Coordinate Spaces and Transformations

Device Contexts

Filled Shapes

Fonts and Text

Lines and Curves

Metafiles

Painting and Drawing

Paths

Pens

Printing and Print Spooler

Rectangles

Regions

6 Volume 3 Microsoft Windows GOI

Bitmaps enable application developers to manipulate graphical images that are stored
on disk. Bitmaps are collections of structures that are stored on disk and that specify or
contain information about the bitmap. Such information includes the header (which
stores data about the bitmap, such as resolution and dimensions), a palette, and an
array of bits that define the relationship between the pixels in the image.

A Brush is a tool used to paint the interior of shapes (such as squares or circles).
Brushes can be used by all sorts of applications, such as drawing programs (filling
shapes) and information managers (coloring a task box red for "overdue" indication).

Clipping is used to limit a given object's output to a specified region or path. For
example, an application developer might use the clipping function to keep text from
spilling over into areas or regions in which the text would clutter the graphical
appearance, or would otherwise be inappropriate.

The reference section that covers Colors provides developers with the programmatic
interfaces they need to enrich their applications with the various colors that Windows
applications are capable of displaying.

You can use Coordinate Spaces and Transformations in a Windows application to do
such things as rotate, skew, or to zoom in or out of a particular graphical area within a
Windows application's graphical space.

By using a Device Context, Windows applications enable continued device
independence. A device context, through the use of a pre-defined structure, defines a
set of graphics objects and the attributes associated with them, as well as the graphics
modes that affect their output.

Filled Shapes come in five forms-ellipse, chord, pie, polygon, and rectangle-and are
outlined and filled by the current pen and brush. The filled shape reference provides
functions that enable developers to use filled shapes in their applications.

Using Fonts and Text provides developers with the means to display text on output
devices, as well as the capability to install, query, and select different fonts.

Lines and Curves are used by applications to draw graphical output onto raster
devices. The lines and curves section provides reference for developers to ... well ... use
lines and curves in their applications.

Chapter 2 What's in This Volume? 7

A Metafile stores pictures in a device-independent format. Metafiles guarantee device
independence, whereas bitmaps do not. However, metafiles draw slowly, so keep that in
mind when determining which format is most appropriate for your application.

The reference section titled Painting and Drawing provides an explanation of how
Windows manages output to the display, and explains what applications must do to draw
in a window.

A Path is one or more shapes that is outlined, filled, or both.

Pens are graphic tools that applications can use to draw lines and curves.

In order to print to any given printer device, applications use the functions, structures,
messages, and escape functions in the Printing and Print Spooler reference chapter.

Windows applications specify rectangular areas and manipulate those areas through the
functional reference found in the chapter titled Rectangles.

Regions are various-shaped areas that can be used for various programming reasons,
such as filling or cursor-location testing.

Each of these GDI element categories is thoroughly explained, and its programmatic
reference information detailed, in individual chapters in Part 2 of this volume. In general,
each chapter begins with explanatory information on the given category, with the
associated programming elements-functions, structures, enumerations, and other
programming elements-detailed thereafter. For more information on any of these
categories, check out the table of contents at the beginning of the book, and then jump
to the appropriate chapter.

CHAPTER 3

Using Microsoft Reference
Resources

These days it isn't the availability of information that's the problem, it's the availability of
information. You read that right...but I'll clarify.

Not long ago, getting the information you needed was a challenge because there wasn't
enough of it; to find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn't at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

9

Today, information surrounds us and sometimes stifles us; we're overloaded with too
much information, and if we don't take measures to filter out what we don't need to meet
our goals, soon we become inundated and unable to discern what's "junk information"
and what's information that we need to stay current, and therefore competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft's own reference material as well; not because there is
information that isn't needed, but rather because there is so much information that
finding what you need can be as challenging as figuring out what to do with it once you
have it. Developers need a way to cut through the information that isn't pertinent to
them, and to get what they're looking for. One way to ensure you can get to the
information you need is to know the tools you use; carpenters know how to use nail
guns, and it makes them more efficient. Bankers know how to use ten-key machines,
and it makes them more adept. If you're a developer of Windows applications, two tools
you should know are MSDN and MSDN Online. The third tool for developer~eference
books from the Windows Programming Reference Series-can help you get the most
out of the first two.

Books in the Windows Programming Reference Series, such as those found in the
Microsoft Win32 Developer's Reference Library, provide reference material that focuses
on a given area of Windows programming. MSDN and MSDN Online, in comparison,
contain all of the reference material that all Microsoft programming technologies has
amassed over the past few years, and create one large repository of information.
Regardless of how well such information is organized, there's a lot of it, and if you don't
know your way around, finding what you need (even though it's in there, somewhere)
can be frustrating and time-consuming and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,

10 Volume 3 Microsoft Windows GOI

other Microsoft reference resources are investigated, and by the end of the chapter,
you'll know where to go for the Microsoft reference information you need (and how to
quickly and efficiently get there).

The Microsoft Developer Network (MSDN)
MSDN stands for Microsoft Developer Network, and its intent is to provide developers with
a network of information to enable the development of Windows applications. Many people
have either worked with MSDN or have heard of it, and quite a few have one of the three
available subscription levels to MSDN, but there are many, many more who don't have
subscriptions and could use some concise direction on what MSDN can do for a developer
or development group. If you fall into any of these categories, this section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What are the differences among the three levels of MSDN subscriptions?

• What happened to Site Builder Network ... or, What is this Web Library?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren't getting as much out of
MSDN as you could. Or, maybe you're wondering whether you're paying too much for
too little, or not enough to get the resources you need. Regardless, you want to be in the
know, not in the dark.

By the end of this chapter, you will know the answers to all these questions and more,
along with some effective tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their differences be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or in some cases, on DVD).

Chapter 3 Using Microsoft Reference Resources 11

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best presentation of material possible. These
strengths and media considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online because it gets to its subscribers
in the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn't subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content, over the Internet, as soon as it comes available without having to wait for
the update CD to come in the mail. The interface with which MSDN displays its
material-which looks a whole lot like a specialized browser window-is also linked to
the Internet as a browser-like window. To further coordinate MSDN with the immediacy
of the Internet, MSDN Online has a section of the site dedicated to MSDN subscribers
that enables subscription material to be updated (on their local machines) as soon as it's
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based web sites. MSDN Online also
has a customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn't come
with Microsoft product software, and doesn't reside on your local machine.

Since it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identity how and where they depart.
Figure 3-1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

One feature that you will notice is shared between MSDN and MSDN Online is the
interface-they are very similar. That's almost certainly a result of attempting to ensure
that developers' user experience with MSDN is easily associated with the experience
found on MSDN Online, and vice-versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So it isn't an "efther/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online along with the additional
features provided with your MSDN subscription.

12 Volume 3 Microsoft Windows GOI

N,fSDN

"icroeoft S~nN'
~ Op~ratirig $ystEimS
-(BackOlfice Products
./ ,Developer TI>Ols
« , Beta Reieaees ,
J Complete SOK!I'arid DDKs . '
~ All Contentoo CD" .'

Real-Time Updatn '.
Priority Suppc)rt Incidents
MSON 9n1lne ExcIultlve$
,MSDNM ne

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

MSDN Subscriptions
If you're wonqering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what thE! differences between its subscription levels are, you aren't
alone. This sectiohaims to provide a quick guide to the differences in subscription levels,
and an approximation what each subscription level costs.

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional

Chapter 3 Using Microsoft Reference Resources 13

subscription, you get everything provided in the Library subscription, plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription, plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut and paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Visual Studio, Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription
The Professional subscription is a superset of the Library subscription. In addition to the
features outlined in the previous section, MSDN Professional subscribers get th~
following:

• Complete set of Windows operating systems, including release versions of VYin<;lows
95, Windows 98, and Windows NT 4 Server and Workstation

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating Systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The Universal subscription is the all-encompassing version of the MSDN subscription. In
addition to everything provided in the Professional subscription, Universal subs<;:ribers
get the following:

14 Volume 3 Microsoft Windows GOI

• The latest version of Visual Studio, Enterprise Edition

• The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

• Additional development tools, such as Office Developer, Front Page, and Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all of the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library Subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional Subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal Subscription takes a big jump in price, at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level there's an in-the-box rebate for $200.

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal---and in most cases, the
deal is much better. Also, if your organization is using lots of Microsoft products, whether
MSDN is a part of that group or not, whomever's in charge of purchasing should look into
Microsoft Open License program; the Open License program gives purchasing breaks
for customers that buy lots of products. Check out www.microsoft.com//icensing for more
details. Who knows, if your organization qualifies you could end up getting an engraved
pen from your purchasing department, or if you're really lucky maybe even a plaque of
some sort, for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions, too.

Chapter 3 Using Microsoft Reference Resources 15

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

Windows Resource Kits
Tools and T echnolOQies
Knowledge Base
Technical Articles

Figure 3-2: The MSDN interface.

MSDN Library
April 1999 release

Welcome to the April 1999
release of the MSDN Library. To
begin your exploration of whatls
new in this release, click any of
the links on the right.

The MSDN Library is the
essential reference for
developers, with more than a
gigabyte of technical
programming information}
including sample code,
documentation l technical
articles, the Microsoft
Developer Knowledge Base, and
anything else you might need
to develop solutions that
implement Microsoft
technology.

Dr. GUI's Espresso Stand
Dr, GUI introduces the April
1999 release of the MSDN
Library.

What's Ne.". on the Library
click here for a
comprehensive hotlinked list
of new content In this release.

MSDN Fearures
Check out these packages of
articles about our latest
technologiles.

MSDN Online
Find out what's new for MSDN
Online members and read
selected columns from our
Web site.

16 Volume 3 Microsoft Windows GOI

The interface is familiar and straightforward enough, but if you don't have a grasp of its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains, over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Basic navigation through MSDN is simple, and a lot like navigating through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics; expand a book by clicking the + box to its left, and its contents are
displayed with its nested books or reference pages, as shown in Figure 3-3. If you don't
see the left pane in your MSDN viewer, go to the View menu and select Navigation
Tabs and they'll appear.

MSDN Library • April 1999
ttl. Welcome to the MSDN Lbory
f£j • Visual Studio 6.0 Documentation
1t1 • Office Developer Documentation
It1 • Windows CE Documentation
EJ (l;!) Platfam SDK

[fJ • What', New?
ltl • BackOifice
13 tl2I B ••• Service>

8:1 • Microsoft Clustering Service
1±1 • Debuggirg and Error Hondlu,g
ttl • DLL., Proce , and Thread.
If I • Files and 110
13 (l;!) Memory

B Q2I Memory Management
EI till About Memory Management

ff.l • Virtual Address Space
ifJ • Virtual Memory Functiol"l$

[!] Heap Functions 1- ••••
I±i Very Large Memory lVLMJ

Ii GI~I and Local Functions
;; Sta"ldard C Library Functions

[fJ • U'''g the Vitual Memory Functions
[£I • Memory Management Reference

I±l File Mapping

Access Validation Functions
The Win32 API provides a set of functions that a process: can
use to verify whether it has a specified type of access to a
gi en memory address or range of addresses, The following
access validation functions are available,

Determines whether the calling
process has read access to the
memory at a specified range of
addresses,

IsBadstringPtr Determines whether the calling
process has read access to the
memory pointed to by a null
termin~ted string pointer, The
function validates: access for a
specified number of characters or
until it encounters the string's
terminating null character,

IsBadWritePtr Determines whether the calling
process has write access to the
memory at a specified range of
addresses.

Figure 3-3: Basic navigation through MSDN.

Chapter 3 Using Microsoft Reference Resources 17

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four navigation tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, thereby enabling you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Books and Periodicals

MSDN, Content on Disk 2 only

MSDN, Content on Disk 3 only

MSDN, Knowledge Base

MSDN, Office Development

MSDN, Technical Articles and Backgrounders

Platform SDK, BackOffice

Platform SDK, Base Services

Platform SDK, Component Services

Platform SDK, Data Access Services

Platform SDK, Graphics and Multimedia
Services

Platform SDK, Management Services

Platform SDK, Messaging and Collaboration
Services

Platform SDK, Networking Services

Platform SDK, Security

Platform SDK, Tools and Languages

Platform SDK, User Interface Services

Platform SDK, Web Services

Platform SDK, What's New?

Platform SDK, Win32 API

Repository 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Docs

Visual C++, Platform SDK, and Enterprise Docs

Visual FoxPro Documentation

Visual InterDev Documentation

Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product Documentation

18 Volume 3 Microsoft Windows GOI

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's Security, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subsets
menu item. You're presented with the window shown in Figure 3-4.

Figure 3-4: The Define Subsets window.

Service~

Memory: Platform SDK
Management S ervice~
Networking Services
Security

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

Chapter 3 Using Microsoft Reference Resources 19

You can also delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the nearby Remove button.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets and filters the information available in the four navigation tabs just like the pre
defined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure. This
is easy to fix: simply click the Locate button in the navigation tool bar, and all will be
synchronized.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get our work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, I
think). Underscores come before letters in alphabetical order, so if you use an
underscore on all of your defined subsets, you get them placed at the front of the Active
Subset listing of available subsets. Also, by using an underscore, you can immediately
see which subsets you've defined, and which ones come with MSDN--it saves a few
seconds at most, but those seconds can add up.

Using MSDN Online
MSDN Online shares a lot of similarities with MSDN, and that probably isn't by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it rnerits explaining in its own righLand it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

20 Volume 3 Microsoft Windows GOI

If you've used Microsoft's home page before (www.msn.comorhome.microsoft.com).
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news and weather, stock
quotes, and other collections of information or news that suit your tastes or interests.
You can even insert a few Web links and have them readily accessible when you visit
the site. The MSDN Online home page can be customized in a similar way, but its
collection of headlines, information, and news sources are all about development. The
information you choose determines what information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn. microsoft. com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

Select Of clear the
check bOHes above to

turn the categories on
Of off. To change the
order in which the
categories appear on
the homE! page, click a
category name, and

then click the up Of

down arrow,,~ to the

right

Roaming

Customize the information that appears on your MSDN Online home page, Select your preferences
from the sections below) then return here and choose Save. (Ye's) we know it's a lot of choices.
There's a lot 'of information on this site.) You can update your choices at any time by visiting this
Customize 'page,

You can customize the headlines you see" on the MSDN Online home page by selecting from the list of
technologies below! or you can choose a template we've preselected just for Web developers. Either,
way! your selections will customize what you see under Developer News, Libraries, and Support.

('. Web Development r. None (clears all)
We'll soon offer more preselected technology templates for other developer specialtiesj write us and
let us know what you'd prefer.

If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
headlines! each tagged for a different technology;

r Allow Duplicate Headlines

Figure 3-5: The MSDN Online configuration page.

As you can see from Figure 3-5, there are lots of technologies to choose from. If you're
interested in Web development, you can choose the option button near the top of the
Technologies section for Web Development, and a pre-defined subset of Web-centric
technologies is selected. For more Win32-centric technologies, you can choose the
appropriate technologies. If you want to choose all the technologies in a given
technology group, check the Include All box in the technology's shaded title area.

Chapter 3 Using Microsoft Reference Resources 21

You can also choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News

Voices

Member Community

Events & Training

Support

Personal Links

Search

Libraries

Once you've defined your profile-that is, customized the MSDN Online content you
want to see-MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online's home page, with the categories you've chosen
included in the order you specify. Note that clearing a given category-such as
Libraries--clears that category from the body of your MSDN Online home page (and
excludes headlines for that category), but does not remove that category from the MSDN
Online site navigation bar. In other words, if you clear the category it won't be part of
your customized MSDN Online page's headlines, but it'll still be available as a site
feature.

Finally, if you want your profile to be available to you regardless of which computer
you're using, you can direct MSDN Online to create a roaming profile. Creating a
roaming profile for MSDN Online results in your profile being stored on MSDN Online's
server, much like roaming profiles in Windows 2000, and thereby makes your profile
available to you regardless of the computer you're using. The option of creating a
roaming profile is available when you customize your MSDN Online home page (and can
be done any time thereafter). The creation of a roaming profile, however, requires that
you become a registered member of MSDN Online. More information about becoming a
registered MSDN Online user is provided in the section titled MSDN Online Registered
Users.

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, moving through MSDN Online is really easy. A banner that
sits just below the MSDN Online logo functions as a navigation bar, with drop-down
menus that can take you to the available areas on MSDN Online, as Figure 3-6
illustrates.

22 Volume 3 Microsoft Windows GOI

e

MSDN (online resource for developers, Here's some information to guide you through the site:

• Our '~'a...~. "';·ns a chronological list all the latest information posted to the MSDN Online site.

•• wu,a"nn',' ,;;;t~!~N' ~,;~:~ . " : Site Map can give you the view from above,
.... ~ 1M "4'" ~s for navigating the site. · ~~~=:r,,,~,,~r ;. /i!~h ~:~~I~~~~ ~:~N ~~~:~rn about the MSDN SUbscription program, the MSDN ISV program,

• Use . A~ '~.';:',:,"> '3~}OU decode the latest term or acronym that has you stumped.
• Wan' . ,"'", "~, ·tell us how we can make the site easier to use and what kinds of information you'd like to see

'dd\~eI>~~"!'
Photo Credits: PhotoDisc

Did you find this meteriel useful? Gripes? Compliments? Suggestions for other I!1rtlcles? Write us.!

© 1999 Microsoft Corporation. All rights reserIJed. Terms of use,

Figure 3-6: The MSDN Online navigation bar with its drop-down menus.

The list of available menu categories-which group the available sites and features
within MSDN Online-includes:

Home

Voices

Voices

Libraries

Community
Downloads

Site Guide
Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to explore the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Chapter 3 Using Microsoft Reference Resources 23

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
headlines for technologies that you've indicated you're interested in reading about.

Voices is a collection of columns and articles that comprise MSDN Online's magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

Extreme >:ML.. ':.
DHTML Dude: •. :~

More or Heu .. ,'.

Stone's Way.' ,
Servin' It Up ..

Code Corne,_

Geek Speak ..

Office Talk.
Deep C++_
Ask Jane f

Or. GUt ~

'1"" •

tJiI Voices Archive

NNIJ ff".om M~ON Online
t:ohJnHJ~'ltts and featul"'t::: wt'it~t'~

Parsing and Sharing
XML is all about sharing, Columnist Charlie Heinemann talks about the Microsoft XML
parser) and how XML can make your data available,

Incorporating Digital Media Acquisition into Site Design
Nadja Vol ochs details how to implement digital rights management on Web sites,

Handling EHceptlons in C and C++, Pan: 3
In his third installment on exception handling, columnist Robert Schmidt addresses
the syntax and semantics of Standard c++ exception handling.

Figure 3-7: The Voices home page.

by Charlie
Heinemann

by Nadja
Volochs

Each of thet "voices" in the Voices site, adds its own particular twist on the issues that
face developers. Both application and Web developers can get their fill of magazine-like
articles from the sizable list of different articles available (and frequently refreshed) in the
Voices site.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides
the reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can explore in traditional MSDN fashion and

24 Volume 3 Microsoft Windows GOI

gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to explore the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

~.

Component Deyelopment •

Content & Component Delivery.

Data Access & Databases.

Design ..

DHTML, HTML & CSS •

Languages & Development Tools.

Messaging & Collaboration.

Networking, Protocols.
& Data Formats

Reusing Browser Technology.

Security & Cryptographv •

Serlo'er Technologies: •

Streaming 8t InteractiYe Media.

Web Content Management.

XML (E:ctensible Markup Language) •

ESSENTIALS

This section contains core
information and references J

including information on
authoring for different
browsers and platforms, end
to-end examples of working
Web sites, slides from
conferences, specs, and
comprehensive links to
references and standards,

Welcome

The MSDN Online Web
Workshop provides the latest
inform~tion about Internet
technologies J including
reference material and in~
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords J and the search
page for specific queries.
Check our What's New page
for updates.

The MSDN Online team

© 1999 Microsoft Corporation. All rights reserlJed. Terms of use.

Figure 3-8: The Web Workshop home page, with its bulleted list of navigation start
points.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

The Downloads site is where developers can find all sorts of useful items fit to
be downloaded, such as tools, samples, images, and sounds. The Downloads site is
also where MSDN subscribers go to get their subscription content updated over the
Internet to the latest and greatest releases, as described previously in this chapter in
the Using MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-10.

~.

Your Membership.

OSIGs.

Member Gazette.

Case Studies.

Downloads.

Members Helping.
Members

Offers.

Training.

MSDN Storms.

Chapter 3 Using Microsoft Reference Resources 25

Welcome to the MSDN Online Member Community .Jji
Updated June 4~ 1999

With an MSDN Online membershiPI developers can easily access technical
information l toois l and a community of developers ready to help solve the
toughest challenges, J01n now and take !ldvantage of member benefits.

Online Special-Interest Groups

Access the information you need, when you need it, with Online $pt:::t:ial-Iflhm:st

Gn,'up:; (OSIGs). Web-based access to relevant newsgroupsJ sorted by product,
make it easy for you to get information you need to do your job. Take advantage
of special offers, find useful links, and stay up to date with the latest product and
technoloQY news.

Members Helping Members

Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the
developer community. Get answers quickly by searching the MHM database for
people who can answer your technical questions. OrJ register as a volunteer and
help other developers when they need it. Sign up now!

MSDN Online Certified Membership

Microsoft

Commerce

Embedd
DtweIopmant

Excha /Outlook -InformatIOh

toISONSuboa1pUoo -" tQLs....

_Baok:

_t++ _ -
Windows! •• '

Figure 3-9: The Community home page.

The Site Guide is just what its name suggests; a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn.microsoft.com/siteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other finely-tuned search capabilities. The Search MSDN home
page can be linked to directly at msdnmicrosoft.com/search. The Search MSDN home
page is shown in Figure 3-11.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a roaming profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more than a few minutes of registration time.

26 Volume 3 Microsoft Windows GOI

Tools.

Samples.

Images.

Sounds •

Subscriber •
DO'Rnloads

Welcome to the MSDN Online Downloads Area

Tools

Want to tryout some great new products? Check out our tools area, where MSDN Online members and
guests can download over 40 trial, beta and full versions of the latest developer products.

Samples

In this section, you will find a great variety of samples which demonstrate ways to use the latest and
greatest Microsoft technologies to make your applications the best they can be. All samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particul.e'Jr product or technology.
Entries prefixed with Gt are for users registered with Visual Studio only -- to get access to these,
register your product today.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Images

Download Web-ready images for free from our Images Downloads area. Currently, we have a great
collection created by Little Men's Studio, Inc. Little Men's Studio provides original clip art collections,
icons, and free quotes on affordable custom graphics. Our image categories include rules, clip art,
buttons, bullets, photographs, and more. We will be updating this collection with more imaQes so be
sure to check back frequently,

Figure 3-10: The Downloads home page.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an Online Special Interest Group
(OSIG) requires registration. That feature alone is reason enough to register. Rather
than attempting to call your developer buddy for an answer to a question (only to find out
that she's on vacation for two days, and your deadline is in a few hours), you can go to
MSDN Online's Community site and ferret through your OSIG to find the answer in a
handful of clicks. Who knows; maybe your developer buddy will begin calling you with
questions-you don't have to tell her where you're getting all your answers.

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox-if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs-again, only if

you want to. It's easy for me to suggest that you become a registered user for MSDN
Online-I'm a registered user, and it's a great resource.

Chapter 3 Using Microsoft Reference Resources 27

1. Enter your search word(s) or phrase, or select a saved phrase from the drop-down list:

2. Select your search criteria:

texact phra.e ... 1l
3. Specify your search scope:

r.: All sections of MSDN Library

r Selected sections of MSDN Library

~ Visual Studio Documentation

P: Visual Basic Documentation

(:7 Visual c++ Documentation

R' Visual Fox Pro Documentation

w: Visual InterDev Documentation

P' Visual J++ Documentation

p. Visual SourceSafe Documentation

~ Tools &. Technologies (including Win eE)

P' Other SDK Documentation

po DDK Documentation

P: Windows Resource Kits

rv: Specifications

p'Technical Articles

rv: Backgrounders

R' Books and Partial Books

P: Periodicals

Figure 3-11: The Search MSDN home page.

Search Tips:
Quick

Advanced

The Window$ Programming Reference Series
The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling developers to get their work done as
efficiently as possible. In addition to providing reference material for Microsoft
technologies, each Library in the Windows Programming Reference Series also includes
material that helps developers get the most out of its technologies, and provides insights
that might otherwise be difficult to find.

The Windows Programming Reference Series is currently planned to include the
following libraries:

Win32 Library

Active Directory Library

Networking Services Library

CHAPTER 4

Finding the Developer
Resources You Need

29

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a lot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,.
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.comlsupport/customer/develop.htm.

30 Volume 3 Microsoft Windows GOI

lI'iPl;iofot.Opt: •• ii»t .. ,C".,;.. C\~ I C"",i,,'CCiC
Developers

Microsoft offers a ide variety of support for Developers. The Microsoft
De ... eloper Net ork (MSDN) is packed with ne s, resources and technical

;:;:"~~~~~_.,..I ~:~!~~~~~~a!~~ ~~~:~~~I~~~rs~:~:~Ot~:r~nli~i:~~;:oe~s~r;~~: :~~~gn~:gpe f~~

!±I Business Solutions
i±l Parblers &: Resellers

Developers
Home User

Education

our regular e-mail ne s watch.

Microsoft offers developers with Premier Support for De ... eloper~ Pay-per
Incident Support. Priority Annual Support and special consulting ser ... ices, If
~ou need more than occasional developer support, onE! of these options is
sure to be right for you.

Do you need help now?

Go to the Microsoft Developer Net ork (MSDN) Support ServiceDesk.

Support Options

Premier Support for Developers
Priority Annual Support
Pav-Per-Inddent Support
Consult Line

For additional information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 64K)

Figure 4-1: The Product Services Support page for developers.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting. point from which you can find out
more information about Microsoft's support services.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out more
information about Microsoft's Premier Support, get in contact with them at 1-800-936-
2000.

Chapter 4 Finding the Developer Resources You Need 31

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

As a developer, the best support option for you is the Priority Developer Support. To get
more information about Priority Developer Support, you can reach Microsoft at 1-800-
936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there's
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can't be broken down into sub-issues or sub-problems (that
is, it can't be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support. microsoft. com/supportlwebresponse.asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.com/supportlnews.

32 Volume 3 Microsoft Windows GOI

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer's Reference Library, and they are the following:

microsoft. public. win32.programmer. *
microsoft. public. vc. *

microsoft. public. vb. *
microsoft.public.platformsdk. *

microsoft.public.cert. *
microsoft.public.certification. *

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products
Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as
Visual C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a
particular product (such as Sal Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do--there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don't have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually

Chapter 4 Finding the Developer Resources You Need 33

didn't know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are "tracks"
that candidates generally choose and that point their certification in a given direction,
such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

• DeSigning and Implementing Desktop Applications with Microsoft Visual C++ 6.0 (70-
016)

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

• DeSigning and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft SQl Server 7.0 and
Microsoft Decision Support Services 1.0

• Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

• Implementing OLE in Microsoft Foundation Class Library 4.0 Applications

34 Volume 3 Microsoft Windows GOI

• Implementing a Database Design on Microsoft SQl Server 6.5

• Designing and Implementing Databases with Microsoft SQl Server 7.0

• Designing and Implementing Web Sites with Microsoft FrontPage 98

• Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

• Microsoft Access for Windows 95 and the Microsoft Access Developer's Toolkit

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

• Designing and Implementing Database Applications with Microsoft Access 2000

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

• Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

• Developing Applications with Microsoft Visual Basic 5.0

• DeSigning and Implementing Distributed Applications with Microsoft Visual Basic 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn't that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you-regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams-and don't be fooled by believing that if the book is bigger it must be better,
because that certainly isn't always the case-and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.comltrain_cert/dev.

Conferences
As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year-occurring throughout the country and around the
world-on various topics. There are probably more conferences available than any

Chapter 4 Finding the Developer Resources You Need 35

brhuman being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events. microsoft. com.

Other Resources
There are other resources available for developers of Windows applications, some of
which might be mainstays for one developer and unheard of for another. The listing of
developer resources in this chapter has been geared toward getting you more than
started with finding the developer resources you need: it's geared toward getting you
100 percent of the way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSDN Online or MCSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and-who
knows?-maybe someone else will benefit from your knowledge:

wprs@microsoft.com

If you're sending e-mail about a particularly useful resource, type "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the e
mail and do what I can to ensure your resource idea gets considered.

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 3

37

This chapter is the third of the five-part collection of common programming
errors included in the Win32 Library to help you avoid these simple
programming pitfalls. This collection of common programming errors is
distributed in each Win32 Library volume's Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

As you'll notice, not all of these pitfalls are necessarily confined to Win32
programming (some are networking services based, for example). However,
since these common coding errors must be avoided in any Windows
application, they're provided here in their entirety to round out the benefits of
owning the Win32 Library.

This, of course, is Volume 3, and the errors and examples found in this
chapter provide insights that can help you avoid problems with RPC errors and
kernel-mode specifiers in your programming projects. So, without further ado,
here they are!

RPe Errors
The use of RPC requires that programmers be aware of a number of issues
that can cause errors or expose their applications to various attacks:

• Check unique pOinters for NULL before dereferencing.

• When using a switch_is construct that has a default clause:

• verify that the value switch is within expected range.

• verify that pOinters within the switched object are not null before
dereferencing them.

• Don't use NULL DACLs; they don't protect anything .

• Impersonate before acting on behalf of the caller, and check the result.

• Stop impersonating when finished acting on behalf of the caller, and check

38 Volume 3 Microsoft Windows GOI

the result.

• Don't expect strings to be zero terminated unless string is specified in
the .idl file.

• Don't copy arbitrary length data into independently-sized buffers.

• Check length of size_is specified data before dereferencing corresponding
pointers.

• Be aware that calculations in midi definitions using size_is and length_is
can overflow, and that it may be impossible for the server to detect this.

• Use strict context handles.

Using pointer_default(unique) and embedded pointers
When an RPC structure contains pOinters, its pointers default to the default
pointer type (typically set by pointer_default(unique». Under such
circumstances, unique pointers can be NULL and must be verified to be
non-NULL before being dereferenced.

Example

("potntJr~defalll~(:~n~~~~) :,',
' ' ,

". :.:;-t.~~ ':'h~' ': : ~ ~',

ty,P~i:::T;i~~:!A~1~;i~:~:~!~:;E'" '
} 'RPt:~StR~CTURE;:/' "',

.... ,.:,:

r: '~. . ::.~:: .
:~::" .~:.:~ -::.---j:.~

{'\It4iS+~~,EE...Ol\tA '

"r='s,L)!Instal1Ce,; j!'
j'~ ; '. : : ::.; : :' ,~

",if ;(*'1 J::L'jt'iirA~h":f:ni~yrb~:NU:lLF .'
'C-};,: ,,' "i" • " ": '.'

A valid switchjs value in an RPC-capable structure
doesn't ensure a non-NULL pointer
A valid value for the switch field does not change the default of embedded
pointers from unique. Thus, even when it's valid, the pointer must still be
verified to be non-NULL before being dereferenced.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 39

Example
typ,~d~f'$tru,<:t '~rpc_s:tructure {
"lYI,JmGi:t'.ype.· '. .

, '(~~i~h;~~i('~;r.pe)i.;~ni~n,~, '
,;::,~ ",(oa$'e,6f)f 'UStANtLDAtA "'Instance:

A NULL DACL affords no protection
A NULL DACL grants access to everyone and protects nothing; it doesn't even
protect an object from having its DACL changed to deny access to everyone.
In general, an untrusted user should not be granted access to change a
security-descriptor's Owner or DACL fields (unless they own the object, in
which case no one else should be granted such access).

Example

!~~lf:11arf!~~~~c'~rif~~)sctit~ot;~:f::~r;~t~~:~;;~~~EV I s~ ON') ;'., ,
:,;':~,:::='.' ".' .".!"J .i ' .. '.; ";,; of-: .. " ", ~ ,~. . .,; .. " .

'~a~JiF~; ~et$~~lirhY~~s,cr.tPt~~Ol~l (p!i~cur1ty6esc~1PtOr:. '.
:~ ',: ,: ' ,'{ ';; , . .. ··;TR,IiE.IIOacLpr~$'ent

c': "j" <; \>d . MULL' jr NULL OaCl'
'<;}"Lt,):;': ;,'; :'\A4i~):. Jl~()tdefaulted"

~~;i!:t;!~·;tci~t~'rUs·,.,~ .. q'i;:E~;~~d~:;;~;t ." 11.,

ij: ;:,:f:: . y, '.~~!~~~::~~l~~~Ptpr);' .

40 Volume 3 Microsoft Windows GOI

Remarks
This example exposes this error for RPC, but the error's scope goes beyond
RPC. If you create a publicly accessible securable object and don't secure it
against unauthorized users changing the DACL, anyone can lock the object
such that no one can access it.

Allowing "all" access-for example, applying a DACL granting
EVENT _ALL_ACCESS to everyone who accesses an event object-is an
equally bad idea, because "all" access typically grants WRITE_DAC and
WRITE_OWNER permissions. Granting either of these permissions explicitly
also enables objects to be locked up. Use (GENERIC_READ I
GENERIC_WRITE I GENERIC_EXECUTE) when it's necessary to grant
broad access to an object to any non-administrative-Ievel user.

Call RpclmpersonateClient() before any security-relevant
operation
The purpose of many RPC servers is to act on behalf of a client, but they must
protect system integrity while doing so. Many RPC servers run in the system
context; impersonating the caller enables the server to use the user's
credentials to access some objects, while otherwise being a part of the secure
side of the system.

Example

Remarks
Opening a process by pid without first impersonating can provide a caller with
access to the process that it normally wouldn't have. The server now has a
handle to a process-LSASS for example-allowing it to scribble in the
address of a process the user would not have been allowed on its own.

Starting and stopping impersonation
There are a handful of issues that programmers should be on the lookout for
when starting and/or stopping impersonation.

Chapter 5 Getting the Most Out of Wln32 Technologies: Part 3 41

Always check the result of RpclmpersonateClient() before a
security-relevant operation
The RpclmpersonateClient() function returns an indication of success or
failure; skip the check and you may as well have skipped the call (which, as
we saw previously in this chapter, can be dangerous).

Call RpcRevertToSelf() after security-relevant operations
Once a server has acted on behalf of the user by impersonating, it should
revert to its own security context by calling RpcRevertToSelf(). Although the
consequences of failing to undo impersonation are typically not as drastic as
failing to impersonate, it can result in failure to function correctly, and cause
spurious behavior such as extra audits.

Example (a correct example for once)

42 Volume 3 Microsoft Windows GOI

Remarks
This example shows how to avoid this programming error in RPC, the scope of
this error extends beyond RPC. Impersonation is possible over LPC, Named
Pipes, and when using Tokens. In all cases, a decision must be made as to
whose context (typically System versus untrusted user) should be used for
various operations, and impersonation used where appropriate.

Strings are zero-terminated only when declared with
strings in the .idl
Variably sized RPC buffers can be tricky to deal with. For the most part,
variably sized RPC buffers consist of either character strings (which should
contain NULL termination defining the size), or amorphous buffers for which
there is a corresponding size value passed to the function. The examples that
follow document some of the common errors involved in dealing with such
buffers.

A buffer that hasn't been explicitly declared as a string type cannot be
assumed to contain a NULL terminator, and thus must not be passed to C
runtime string functions prior to verification of zero termination. This cannot be
done by touching a byte outside the valid length of your buffer.

Example

Remarks
The NameSize parameter should be checked and used to bound any
operations, either by explicitly attaching a NULL-terminator (on the server
side), or by using bounded string operations with the size of the buffer
specified.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 43

Don't copy arbitrary length data into independently-sized
buffers
Data buffers should not be assumed to be bound by an arbitrary size limit. An
explicit check of the size of the indicated data must be made prior to copying
to local fixed-size buffers.

Example

Remarks
string guarantees that the pwszName parameter is zero terminated, not that
its length is less than MAX_PATH.

Using sizejs may result in a zero-length structure; it is not
safe to dereference this without first checking its length
A size_is specifier can result in a zero-length buffer but a non-NULL buffer
pointer (as reference pointers, such as passed parameters, cannot be NULL).
A unique pointer can always be NULL. The best practice is to verify both the
pointer as non-NULL and the buffer size as non-zero to avoid problems.

Example 1
ULOIt.~, • '. "." . ". , " "
Rpc~~fver~ii~eR!lutiT1~(, '.' '" ." . '
,:,tinlU~ONGStructureSiz,e.. ',,' "", .
,'" Din:. ~{fe;:.i~,(StruCi~r~Stzen PST~UCTlJREstructure
},.' ..

{ <:Jtb$~' 'N~~L~ri9th 0; ,

·lft's~r~6t~~e).r
• ., i,' NaiQ~Llmgt~ =,Struci:li~e':~>~ameL~Mtni
[l]~·!

! '

!
I,

44 Volume 3 Microsoft WindOws GDI

Remarks
There is no guarantee in this example that the StructureSize parameter is
sufficient to cover the NameLength member, and in fact, the Structure pointer
may be non-NULL, while StructureSize, and thus the allocated buffer, indicate
a zero length.

Example 2

Remarks
This example presents a similar problem. In this case, the StructureSize
parameter could be non-zero, but Structure-being defined as unique-could
contain a NULL.) ~.

Calculations in a sizejs or lengthjs specification are
susceptible to overflow
Calculations in the midi definition for a size_is or length_is specification are
subject to overflow problems. If you perform a calculation in a size_is or
length_is specification, consider what difficulties overflow (or rounding) might
cause.

Strict context handles
Context handles enable RPC servers to associate information with calls. RPC
looks up context handles in a linked list associated with each binding handle. If
you have more than one interface accessible from a single binding handle,
then the code must be prepared to reject invalid handles or use strict context
handles. Interlaces end up being accessible from a single binding handle if
they share things like the same named pipe. Using the
[stricCcontext_handle] on the interface definition in the .acffilecauses RPC
to omy allow context handles to be used against interfaces that created them.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 45

Kernel-Mode Specifiers
The most common programming errors associated with working in kernel
mode are associated with improperly validating user-provided structures. The
practice of improperly validating user-provided structures can cause problems
either by the increased kernel-mode privilege, or by accessing memory that
could cause a system crash. The following is a list of rules that shoulq be
observed in kernel mode:

• Probe any user-provided pOinters within a try-except before reading or
writing.

• Read user-mode memory only once; capture it for subsequent uses.

• Don't trust any user mode contents. Never trust the Thread Environment
Block (TEB).

• Other threads may change kernel objects' states. Use locks .

• Never call kernel routines without access-checking objects passed to them.

• Validate buffer sizes for buffered 110.

• Validate parameters on METHOD_NEITHER.

Don't access user~provided memory without probing
All memory accesses using pointers provided by user mode must be validated
with a probe to stop user mode reading or writing of data for which the caller
has no access. Some memory addresses have side effects, such as a
bugcheck, or hardware effects as in the case of memory-mapped device
registers. It's not enough to simply use try-~xcept clauses. The obvious way
to avoid these problems is to always probe user-provided addresses.

46 Volume 3 Microsoft Windows GOI

;~~··:'~~:~;i,~~,~l~~t~~.r;etu~ning;;4~;~rp\,~b'·'

····,;;:r::·rhpt9G~)fllt~m)-~Jy~:e.=~;ROU~~dj:;·{ •• :: ..
, . <,til" .,'; ' .. ' '.. .

.... ,,'It,-;:> ;" " , :' ; .. ' :"':
.,l;~xcep:t:;, (EXCEfr~oN-,-,ExEP~TLHANDLERY
, .. 'J"~tli:rfl S~tExcepti onCode'o.: .

.L..,,' '., '. . ,_

,}, "

.::, ... :" . ',:

Don't do multiple user-mode reads without captures
Despite the probe and capture rules (that is, read once, and if you have to
read twice, capture first and then read again), many programmers commit the
common error of making kernel-mode reads of user-mode memory multiple
times without a capture. This isn't the best approach. Along those lines, user
mode memory shouldn't be used for temporary storage of a kernel-mode
algorithm; the data might have changed or become invalid during the interim.
Data read from user-mode memory should be read only once. Data once
written to user-mode memory shouldn't be reread without revalidation. To
avoid this type of problem, probe once and (if necessary) capture for multiple
reads.

Example
H!~T~TUS ,'. : .. ,.. .'......:',' :.:'; '.' .
'Ke~ne 1 RpuilneCal1 e.dSyUserHod&(PUNICODLSTRING UrricodeStJ'1ng)

"try (, . "'. '~

. ProneF'orRead< !in;!icod:eS~J'i~9, ' ·.i;
" .. ,'. 'SiZe'QffUfll!;OOLST!\iNS:J.

'$1teof(UGHAR»,: ,."

'p:09,eForRead~h~::::~;~~~j;t:~::tk~': "
" " ' isi zE!Of (J,JciWiJ); '; L

',"',' ':, ' <';~~~~~~;:!!:!;~ft~f;~~:C9des~rtng:~;:; ..
',y··-·:~;·:"-Capfiiiredsidn9:.l3uff~r/, ' •.

a~';,;, ' .. ' Cal>~ur~dstrl ng~L~,ri.9f~').: •... '

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 47

Remarks
There is a tricky problem in this code example: the values for the length and
buffer of the string have actually been read twice. The first time they were
used to probe the buffer for read, and the second they were captured into the
CapturedString UNICODE_STRING structure. The values might actually
have been changed in the meantime, invalidating the probe and potentially
causing mischief.

Don't trust the TEB
Accessing the current Thread Environment Block (TEB) from kernel mode is
just as dangerous as accessing any other user-mode memory. Although this is
generally a system construct, it could still be modified from user mode. In
general, validate any user-mode input into kernel mode, even if it's an implicit
"system" structure.

Avoid race conditions when modifying kernel data on user
request
Often kernel-mode routines manipulate kernel objects and move them from
one state to another. A kernel routine usually validates that the object is in the
correct state before advancing to the next step; such checks must be done
under locks if user mode can request the same transition from two threads at
once. If it's possible for the service to be reentered, avoid this potential
problem by always using locks to validate that an object is in the correct state
before advancing it to the next step. Possible reentry could include malicious
attacks, incorrect calls, and so forth, and is not limited to the path taken when
the function is used correctly.

Example

Remarks
Two threads running nearly simultaneously in this routine may both get returns
from IsValidHandle, implying that the handle is valid. Both threads would then
call the free routine, probably causing something nasty to happen.

48 Volume 3 Microsoft Windows GOI

Dealing with common interfaces for user mode and
kernel mode
Many kernel-mode interfaces have the same interface to manipulate objects
from user mode. The object is often used without access checking, although it
should not be accessible to user mode even for a short time. To avoid this
problem, mark objects with the correct access mode.

Validating buffered 1/0 in device drivers
Device drivers using buffered I/O paths must validate input and output buffer
sizes before writing or reading data. Validate that input buffers are large
enough to contain request packets, and that output buffers are large enough
to contain results.

Example

Remarks
The lack of a size check on OutputBuffer could cause an access violation if
ResultsLength > OutputBufferLength.

METHOD_NEITHER requires full probe and capture
Buffers sent to 10CTLs of type METHOD_NEITHER are simply pointers
supplied by the user; they are neither probed nor captured before being
passed to the intended driver. One way to avoid problems is to properly probe
and capture data passed using METHOD_NEITHER 10CTLs. When creating
new 10CTLs, a better solution is to use METHOD_BUFFERED if the data
does not require a pointer to be completely expressed.

Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 49

Remarks
The reference to Type31nputBufferon a METHOD_NEITHER 10CTL
dereferences a buffer pOinter directly passed by the caller, and not a pOinter
buffered by the I/O subsystem. This situation can cause a bugcheck or direct
access to kernel-mode memory by a user-mode process.

Solution Summary
It's nice to have a concise version of the solutions to these common
programming problems, so this section summarizes how to avoid the issues
discussed in this chapter.

RPC Errors

1. Using pointecdefault(unique) and embedded pointers: Check unique
pointers for NULL before dereferencing.

2. A valid switch_is value in an RPC-capable structure doesn't ensure a non
NULL pointer: When using a switch_is construct that has a default clause:

• Verify that the value switching on is within expected range.

• Verify that pOinters within the switched object are not NULL before
dereferencing them.

3. A NULL DACL affords no protection: Don't use NULL DACLs, they don't
protect anything.

4. Call RpclmpersonateClient() before any security-relevant operation:
Impersonate before acting on behalf of the caller, and check the result.

5. Starting and stopping impersonation: Stop impersonating when finished
acting on behalf of the caller, and check the result.

6. Strings are only zero-terminated when declared with string in the .idl.
Don't expect strings to be zero-terminated unless string is specified in
the *.idl file.

7. Don't copy arbitrary length data into independently-sized buffers: This
one's self-answering!

8. Using size_is may result in a zero-length structure; it's not safe to
dereference this without first checking its length. Check length of size_is
specified data before dereferencing corresponding pointers.

9. Calculations in a size_is or length_is specification are susceptible to
overflow. Be aware that calculations in midi definitions using size_is and
length_is can overflow, and that it might be impossible for the server to
detect this.

10. Strict context handles: Use strict context handles.

50 Volume 3 Microsoft Windows GOI

Kernel-Mode Specifiers

1. Don't access user-provided memory without probing. Probe any user
provided pointers within a try-except before reading or writing.

2. Don't do multiple user-mode reads without captures. Read user-mode
memory only once; capture it for subsequent uses.

3. Never trust the TEB. Don't trust any user mode contents.

4. Avoid race conditions when modifying kernel data on user request.
Use locks to protect objects that can be changed by multiple threads.

5. Dealing with common interfaces for user mode and kernel mode. Never call
kernel routines without access checking objects passed to them.

6. Validate buffered I/O in device drivers. Validate buffer sizes for buffered I/O.

7. METHOD_NEITHER requires full probe and capture. Validate parameters
on METHOD_NEITHER.

CHAPTER 6

Bitmaps

A bitmap is a graphical object used to create, manipulate (scale, scroll, rotate, and
paint), and store images as files on a disk. This overview describes the bitmap classes
and bitmap operations.

About Bitmaps
A bitmap is one of the GDI objects that can be selected into a device context (DC).
pevice contexts are structures that define a set of graphic objects and their associated
attributes, and graphic modes that affect output. The table below describes the GDI
objects that can be selected into a device context:

Graphic object

Bitmaps

Brushes

Fonts

Logical Palette

Paths

Pens

Regions

Use

Creates, manipulates (scale, scroll, rotate, and paint), and
stores images as files on a disk.

Paints the interior of polygons, ellipses, and paths.

Draws text on video displays and other output devices.

A color palette created by an application and associated with
a given device context.

One or more figures (or shapes) that are filled and/or outlined.

A graphics tool that a Win32-based application uses to draw
lines and curves.

A rectangle, polygon, or ellipse (or a combination of two or
more of these shapes) that can be filled, painted, inverted,
framed, and used to perform hit testing (testing for the cursor
location).

From a developer's perspective, a bitmap consists of a collection of structures that
specify or contain the following elements:

• A header that describes the resolution of the device on which the rectangle of pixels
was created, the dimensions of the rectangle, the size of the array of bits, and so on.

• A logical palette.

• An array of bits that defines the relationship between pixels in the bitmapped image
and entries in the logical palette.

A bitmap size is related to the type of image it contains. Bitmap images can be either
monochrome or color. In an image, each pixel corresponds to one or more bits in a

51

52 Volume 3 Microsoft Windows GOI

bitmap. Monochrome images have a ratio of 1 bit per pixel (bpp). Color imaging is more
complex. The number of colors that can be displayed by a bitmap is equal to two raised
to the number of bits per pixel. Thus, a 256-color bitmap requires 8 bpp (2A8 = 256).

Control Panel applications are examples of applications that use bitmaps. When you
select a wallpaper for your desktop, you actually select a bitmap, which the system uses
to paint the desktop background. The system creates the selected wallpaper pattern by
repeatedly drawing a 32-by-32 pixel pattern on the desktop.

Figure 6-1 presents the developer's perspective of the bitmap found in the file
Redbrick.bmp. It shows a palette array, a 32-by-32 pixel rectangle, and the index array
that maps colors from the palette to pixels in the rectangle.

Figure 6~1: Developer's perspective of the Redbrick bitmap.

In the preceding example, the rectangle of pixels was created on a video graphics
adaptor (VGA) display device using a palette of 16 colors. A 16-color palette requires
4-bit indexes; therefore, the array that maps palette colors to pixel colors is composed of
4-bit indexes, too. (For more information about logical color-palettes, see Colors.)

Chapter 6 Bitmaps 53

Note In the above bitmap, the system maps indexes to pixels, beginning with the
bottom scan line of the rectangular region and ending with the top scan line. A scan line
is a single row of adjacent pixels on a video display. For example, the first row of the
array (row 0) corresponds to the bottom row of pixels, scan line 31. This is because the
above bitmap is a bottom-up device-independent bitmap (DIB), a common type of
bitmap. In top-down DIBs and in device-dependent bitmaps (DDBs), the system maps
indexes to pixels beginning with the top scan line.

Bitmap Classifications
There are two classes of bitmaps:

• Device-independent bitmaps (DIBs). The DIB file format was designed to ensure that
bitmapped graphics created using one application can be loaded and displayed in
another application, retaining the same appearance as the original.

• Device-dependent bitmaps (DDBs) were the only bitmaps available in early versions
of 16-bit Microsoft Windows (prior to version 3.0). However, as display technology
improved and the variety of available display devices increased, certain inherent
problems surfaced which could only be solved using DIBs. For example, there was no
method of storing (or retrieving) the resolution of the display type on which a bitmap
was created, so a drawing application could not determine quickly whether a bitmap
was suitable for the type of video display device on which the application was running.

Device-Independent Bitmaps
Bitmaps that contain a color table are device-independent. A color table describes how
pixel values correspond to RGB color values. RGB is a model for describing colors that
are produced by emitting light. A DIB contains the following color and dimension
information:

• The color format of the device on which the rectangular image was created.

• The resolution of the device on which the rectangular image was created.

• The palette for the deviCe on which the image was created.

• An array of bits that maps red, green, blue (RGB) triplets to pixels in the rectangular
image.

• A data-compression identifier that indicates the data compression scheme (if any)
used to reduce the size of the array of bits.

The color and dimension information is stored in a BITMAPINFO structure.

The BITMAPINFO structure consists of a bitmap information header structure (see
Bitmap Header Types) followed by two or more RGBQUAD structures. The bitmap
information header structure specifies the dimensions of the pixel rectangle, describes
the device's color technology, and identifies the compression schemes used to reduce

54 Volume 3 Microsoft Windows GOI

the bitmap's size. The RGBQUAD structures identify the colors that appear in the pixel
rectangle.

There are two varieties of OIBs:

• A bottom-up OIB, in which the origin lies at the lower-left corner.

• A top-down OIB, in which the origin lies at the upper-left corner.

If the height of a OIB, as indicated by the Height member of the bitmap information
header structure, is a positive value, it is a bottom-up OIB; if the height is a negative
value, it is a top-down OIB. Top-down OIBs cannot be compressed.

The coror format is specified in terms of a count of color planes and color bits. The count
of color planes is always 1; the count of color bits is 1 for monochrome bitmaps, 4 for
VGA bitmaps, and 8, 16, 24, or 32 for bitmaps on other color devices. An application
retrieves the number of color bits that a particular display (or printer) uses by calling the
GetDeviceCaps function, specifying BITSPIXEL as the second argument.

The resolution of a display device is specified in pixels per meter. An application can
retrieve the horizontal resolution for a video display, or printer, by following this three
step process:

1. Call the GetDeviceCaps function, specifying HORZRES as the second argument.

2. Call GetDeviceCaps a second time, specifying HORZSIZE as the second argument.

3. Divide the first return value by the second return value.

The application can retrieve the vertical resolution by using the same three-step process
with different parameters: VERTRES in place of HORZRES, and VERTSIZE in place of
HORZSIZE.

The palette is represented by an array of RGBQUAD structures that specify the red,
green, and blue intensity components for each color in a display device's color palette.
Each color index in the palette array maps to a specific pixel in the rectangular region
associated with the bitmap. The size of this array, in bits, is equivalent to the width of the
rectangle, in pixels, multiplied by the height of the rectangle, in pixels, multiplied by the
count of color bits for the device. An application can retrieve the size of the device's
palette by calling the GetDeviceCaps function, specifying the NUMCOLORS constant
as the second argument.

The Microsoft Win32 API supports the compression of the palette array for 8-bpp and 4-
bpp bottom-up OIBs. These arrays can be compressed by using the run-length encoding
(RLE) scheme. The RLE scheme uses 2-byte values, the first byte specifying the
number of consecutive pixels that use a color index and the second byte specifying the
index. For more information about bitmap compression, see the description of the
BITMAPINFOHEADER, BITMAPCOREHEADER, BITMAPFILEHEADER,
BITMAPV4HEADER, and BITMAPV5HEADER structures.

Chapter 6 Bitmaps 55

An application can create a DIS from a DDS by initializing the required structures and
calling the GetDIBits function. To determine whether a device supports this function, call
the GetDeviceCaps function, specifying RC_DI_SITMAP as the RASTERCAPS flag.

An application that needs to copy a bitmap can use TransparentBlt to copy all pixels in
a source bitmap to a destination bitmap, except for those pixels that match the
transparent color.

An application can use a DIS to set pixels on the display device by calling the
SetDlBitsToDevice or the StretchDIBits function. To determine whether a device
supports the SetDIBitsToDevice function, call the GetDeviceCaps function, specifying
RC_DISTODEV as the RASTERCAPS flag. Specify RC_STRETCHDIS as the
RASTERCAPS flag to determine if the device supports StretchDIBits.

An application that needs to display a pre-existing DIS can use the SetDIBitsToDevice
function. For example, a spreadsheet application can open existing charts and display
them in a window by using the SetDIBitsToDevice function. To repeatedly redraw a
bitmap in a window, however, the application should use the BitBlt function. For
example, a multimedia application that combines animated graphics with sound would
benefit from calling the BitBlt function, because it executes faster than
SetDIBitsToDevice.

Device-Dependent Bitmaps
Note Device-dependent bitmaps are supported only for compatibility with applications
written for early versions of 16-bit Windows (prior to 3.0). If you are writing a
Win32-based application, or porting a 16-bit Windows-based application to the Win32
API, you should use DISs.

DOSs are described by using a single structure, the BITMAP structure. The members of
this structure specify the width and height of a rectangular region, in pixels; the width of
the array that maps entries from the device palette to pixels; and the device's color
format, in terms of color planes and bits per pixel. An application can retrieve the color
format of a device by calling the GetDeviceCaps function and specifying the appropriate
constants.

There are two types of DOSs: discardable and nondiscardable. A discardable DDS is a
bitmap that the system discards if the bitmap is not selected into a DC, and if system
memory is low. The CreateDiscardableBitmap function creates discardable bitmaps.
The CreateBitmap, CreateCompatibleBitmap, and CreateBitmaplndirect functions
create nondiscardable bitmaps.

An application can create a DDS from a DIS by initializing the required structures and
calling the CreateDIBitmap function. Specifying CSM_'N'T in the call to CreateDIBitmap
is equivalent to calling the CreateCompatibleBitmap function to create a DDS in the
format of the device, and then calling the SetDlBits function to translate the DIS bits to the
DDS. To determine whether a device supports the SetDIBits function, call the
GetDeviceCaps function, specifying RC_DLSITMAP as the RASTERCAPS flag.

56 Volume 3 Microsoft Windows GOI

Bitmap Header Types
The bitmap has four basic header types:

• BITMAPCOREHEADER

• BITMAPINFOHEADER

• BITMAPV4HEADER

• BITMAPV5HEADER

The four types of bitmap headers are differentiated by the Size member, which is the
first DWORD in each of the structures.

The BITMAPV5HEADER structure is an extended BITMAPV4HEADER structure, which
is an extended BITMAPINFOHEADER structure. However, the BITMAPINFOHEADER
and BITMAPCOREHEADER have only the Size member in common with other bitmap
header structures.

The BITMAPCOREHEADER and BITMAPV4HEADER formats have been superseded
by BITMAPINFOHEADER and BITMAPV5HEADER formats, respectively. The
BITMAPCOREHEADER and BITMAPV4HEADER formats are presented for
completeness and backward compatibility.

The BITMAPFILEHEADER structure contains information about the type, size, and
layout of a file that contains a DIB. A BITMAPINFO or BITMAPCOREINFO structure
immediately follows the BITMAPFILEHEADER structure in the DIB file.

There are two formats for reading and storing bitmap data in a file, the file format and the
Win32 API format. The file format and the format used by Win32 API are similar, but not
identical. Figure 6-2 shows the two types of formats. All segments are used for the file
format, while the Win32 API format excludes BITMAPFILEHEADER.

A color table describes how pixel values correspond to RGB color values. RGB is a
model for describing colors that are produced by emitting light.

Profile data refers to either the profile file name (linked profile) or the actual profile bits
(embedded profile). The file format places the profile data at the end of the file. The
Win32 API format usually places the profile data just after the color table (if present).
However, if the function receives a packed DIB, the profile data comes after the bitmap
bits, like in the file format.

Profile data will exist only for BITMAPV5HEADER structures where bV5CSType is
PROFILE_LINKED or PROFILE_EMBEDDED. For Win32 functions that receive packed
DIBs, the profile data comes after the bitmap data.

Chapter 6 Bitmaps 57

Figure 6-2: An example of the file format and the Win32 API format.

A palettized device is any device that uses palettes to assign colors. The classic
example of a palettized device is a display running in 8-bit color depth (that is, 256
colors). The display in this mode uses a small color table to assign colors to a bitmap.
The colors in a bitmap are assigned to the closest color in the palette that the device is
using. The palettized device does not create an optimal palette for displaying the bitmap;
it uses whatever is in the current palette. Applications are responsible for creating a
palette and selecting it into the system. In general, 16-bpp, 24-bpp, and 32-bpp bitmaps
do not contain color tables (a.k.a. optimal palettes for the bitmap); the application is
responsible for generating an optimal palette in this case. However, 16-bpp, 24-bpp, and
32-bpp bitmaps can contain such optimal color tables for displaying on palettized
devices; in this case, the application just needs to create a palette based on the color
table present in the bitmap file.

Bitmaps that are of 1, 4, or 8 bpp must have a color table with a maximum size based on
the bpp. The maximum size for 1-bpp, 4-bpp, and 8-bpp bitmaps is 2 to the power of the
bpp. Thus, a 1-bpp bitmap has a maximum of two colors, the 4-bpp bitmap has a
maximum of 16 colors, and the 8-bpp bitmap has a maximum of 256 colors.

58 Volume 3 Microsoft Windows GOI

Bitmaps that are 16 bpp, 24 bpp, or 32 bpp do not require color tables, but can have
them to specify colors for palettized devices. If a color table is present for 16-bpp, 24-
bpp, or 32-bpp bitmap, the ClrUsed field will specify the size of the color table, and the
color table must have that many colors in it. ClrUsed of zero indicates no color table.

The red, green, and blue bit field masks for BLBITFIELD bitmaps immediately follow the
BITMAPINFOHEADER, BITMAPV4HEADER, and BITMAPV5HEADER structures. The
BITMAPV4HEADER and BITMAPV5HEADER structures contain additional members
for red, green, and blue masks, as follows:

Member Meaning

RedMask

GreenMask

BlueMask

Color mask that specifies the red component of each pixel, valid
only if the Compression member is set to BI_BITFIELDS.

Color mask that specifies the green component of each pixel, valid
only if the Compression member is set to BI_BITFIELDS.

Color mask that specifies the blue component of each pixel, valid
only if the Compression member is set to BLBITFIELDS.

When the biCompression member of BITMAPINFOHEADER is set to BLBITFIELDS
and the function receives an argument of type LPBITMAPINFO, the color masks will
immediately follow the header. The color table, if present, will follow the color masks.
BITMAPCOREHEADER bitmaps do not support color masks.

By default, bitmap data is bottom-up in its format. Bottom-up means that the first scan
line in the bitmap data is the last scan line to be displayed. For example, the Olh rixel of
the Olh scan line of the bitmap data of a 1 0-pixel-by-1 O-pixel bitmap will be the 01 pixel of
the ninth scan line of the displayed or printed image. Run-length encoded (RLE) format
bitmaps and BITMAPCOREHEADER bitmaps can not be top-down bitmaps. The scan
lines are DWORD-aligned, except for RLE-compressed bitmaps. They must be padded
for scan-line widths, in bytes, that are not evenly divisible by four, except for RLE
compressed bitmaps. For example, a 1 0-pixel-by-1 O-pixel, 24-bpp bitmap will have two
padding bytes at the end of each scan line.

JPEG and PNG Extensions for Specific Bitmap
Functions and Structures

Starting with the Microsoft Windows 98 and Windows 2000 operating systems, the
StretchDIBits and SetDlBitsToDevice functions have been extended to allow JPEG
and PNG images to be passed as the source image to printer devices. This extension is
not intended as a means to supply general JPEG and PNG decompression to
applications, but, instead, to allow applications to send JPEG-compressed and PNG
compressed images directly to printers that have hardware support for JPEG and PNG
images, respectively. '

Chapter 6 Bitmaps 59

The BITMAPINFOHEADER, BITMAPV4HEADER, and BITMAPV5HEADER structures
are extended to allow specification of biCompression values indicating that the bitmap
data is a JPEG or PNG image. These compression values are only valid for
SetDIBitsToDevice and StretchDIBits when the hdc parameter specifies a printer
device. To support metafile spooling of the printer, the application should not rely on the
return value to determine whether the device supports the JPEG or PNG file. The
application must issue QUERYESCSUPPORT with the corresponding escape before
calling SetDIBitsToDevice and StretchDIBits. If the validation escape fails, then the
application must fall back on its own JPEG or PNG support to decompress the image
into a bitmap.

Bitmaps, Device Contexts, and Drawing Surfaces
A device context (DC) is a data structure defining the graphics objects, their associated
attributes, and the graphics modes affecting output on a device. To create a DC, call the
CreateDC function; to retrieve a DC, call the GetDC function.

Before returning a handle that identifies that DC, the system selects a drawing surface
into the DC. If the application called the CreateDC function to create a device context for
a VGA display, the dimensions of this drawing surface are 640 pixels by 480 pixels. If the
application called the GetDC function, the dimensions reflect the size of the client area.

Before an application can begin drawing, it must select a bitmap with the appropriate
width and height into the DC by calling the SelectObject function. When an application
passes the handle to the DC to one of the graphics device interface (GDI) drawing
functions, the requested output appears on the drawing surface selected into the DC.

For more information, see Memory Device Contexts.

Bitmap Creation
The Win32 API provides a number of functions to create bitmaps. To create a bitmap,
use the CreateBitmap, CreateBitmaplndirect, or CreateCompatibleBitmap function,
CreateDIBitmap, and CreateDiscardableBitmap.

These functions all you to specify the width and height, in pixels, of the bitmap. The
CreateBitmap and CreateBitmaplndirect function also allow you to specify the number
of color planes and the number of bits required to identify the color. On the other hand,
the CreateCompatibleBitmap and CreateDiscardableBitmap functions use a specified
device context to obtain the number of color planes and the number of bits required to
identify the color.

The CreateDIBitmap function creates a device-independent bitmap. It contains a color
table that describes how pixel values correspond to RGB color values. For more
information, see Device-Independent Bitmaps.

After the bitmap has been created, you cannot change its size, number of color planes,
or number of bits required to identify the color.

When you no longer need a bitmap, call the DeleteObject function to delete it.

60 Volume 3 Microsoft Windows GOI

Bitmap Rotation
The Win32 API provides a function to copy a bitmap into a parallelogram; this function,
PlgBlt, performs a bit-block transfer from a rectangle in a source device context into a
parallelogram in a destination device context. In order to rotate the bitmap, an
application must provide the coordinates, in world units, to be used for the corners of the
parallelogram. (For more information about rotation and world units, see Coordinate
Spaces and Transformations.)

Bitmap Scaling
The Win32 API also provides a function to scale a bitmap; this function, StretchBlt,
performs a bit-blqck transfer from a rectangle in a source device context into a rectangle
in a destination device context. However, unlike the BitBlt function, which duplicates the
source rectangle dimensions in the destination rectangle, Stretch Bit allows an
application to specify the dimensions of both the source and destination rectangles.
When the destination bitmap is smaller than the source bitmap, the system combines
rows or columns of color data (or both) in the bitmap before rendering the corresponding
image on the display device. The system combines the color data according to the
specified stretch mode, which the application defines by calling the SetStretchBltMode
function. When the destination bitmap is larger than the source bitmap, the system
scales or magnifies each pixel in the resultant image accordingly.

Bitmaps as Brushes
The Win32 API provides a number of functions that use the brush currently selected into
a device context to perform bitmap operations. For example, the PatBlt function
replicates the brush in a rectangular region within a window, and the FloodFiII function
replicates the brush inside an area in a window bounded by the specified color (unlike
PatBlt, FloodFili does fill nonrectangular shapes).

The FloodFili function replicates the brush within a region bounded by a specified color.
However, unlike the PatBlt function, FloodFiII does not combine the color data for the
brush with the color data for the pixels on the display; it sets the color of all pixels within
the enclosed region on thedisplay to the color of the brush that is currently selected into
the device context.

Chapter 6 Bitmaps 61

Bitmap Storage
Bitmaps should be saved in a file that uses the established bitmap file format, and
assigned a name with the three-character .bmp extension. The established bitmap file
format consists of a BITMAPFILEHEADER structure, followed by either a
BITMAPINFOHEADER, BITMAPV4HEADER, or BITMAPV5HEADER structure. An array
of RGBQUAD structures (also called a color table) follows the bitmap information header
structure. The color table is followed by a second array of indexes into the color table (the
actual bitmap data).

The bitmap file format is shown here:

BITMAPFILEHEADER

BITMAPINFOHEADER

RGBQUAD arra},

Color·index arr a}'

Windows 95 and Windows NT 4.0: Replace the BITMAPINFOHEADER structure with
the BITMAPV4HEADER structure.

Windows 98 and Windows 2000: Replace the BITMAPINFOHEADER structure with
the BITMAPV5HEADER structure.

The members of the BITMAPFILEHEADER structure identify the file; specify the size of
the file, in bytes; and specify the offset, from the first byte in the header to the first byte of
bitmap data. The members of the BITMAPINFOHEADER, BITMAPV4HEADER, or
BITMAPV5HEADER structure specify the width and height of the bitmap, in pixels; the
color format (count of color planes and color bits-per-pixel) of the display device on
which the bitmap was created; whether the bitmap data was compressed before storage,
and the type of compression used; the number of bytes of bitmap data; the resolution of
the display device on which the bitmap was created;

and the number of colors represented in the data. The RGBQUAD structures specify the
RGB intensity values for each of the colors in the device's palette. The color-index array
maps indexes values from the RGBQUAD array to pixels in a rectangular region on the
display.

The following hexadecimal output shows the contents of the file Redbrick.bmp:

@S~@ 4~:16@20@:0@'l:le@00e@0 760@M 00 00
00tul ~f?@,G0.e~ '00.2000 0@ Be @1@0@4' 0000 0~
002@ 00,e0.0~0S00.a000 00 0@ 0000@0~0 000000 '
~030 00,~@/~@~~;@~';00[l@ 00 @ff00 00.00,8@ 000@&0'
@04{l{l0~00080 800080 M@00080c00'800080Bf:f
e:0~a 0000.8080 8000c0 b0cd300 e000 ff.@0@0·f:f
~06\f 00000@-ffff00ff0@ 0000H~0ff'0tffffV
0070e@i0e.tfffi' ff00 00@0 000@'ee00JH1000000 .

(continued)

62 Volume 3 Microsoft Windows GOI

(continued)

0086 . 6000 0066 00 H3,'e 60 06 aa 'e6· 00
609~t, ee.:.'l:l.6.t10e6 01'1061111 ... el.HLll·
0.0a0 ·01.1'19 ·111101 90 1101 1909 1'19
00ba 6;~ . i~ 109@11i19 01,19 19 10
06ca 911091 09 16109.6 99
00d6 9161,al190e 991110 11 9199it~9
e0e0
@0f6
0100
0110.
0120
0r3a~

0140
01~.a
0llia
aH0
0180
0190
01a0.
01ba
01e0'
0Id6
elela
01f1l
020e
0210
0220
el230
0240.
6n6
el260
0276

aLIFllu91 10 @9 19
1199 II 01 11 11 9111.
al 1111 11 19 16 n09
111900 a1 10.19 10 11
11 91 1191 (inn 19 109900 01 1909

. H! 911101 Tl1:i:9f
6199 i9 6191 16 19 91
11 16 11 91 99 10 ge
66 19 10 11 0111 99 99

.99,J999i.99 9999660'0'

9119 11 a0 99
9109 11 ·9911
61 1111 19 11

60' a0 00' 01'1 a6 0a9a G6 0@00~a0i:l0.0~

00a0'e0 'e0 0.6 6099 11 11 11 19 Hf19
16 919191,91009119 19 89.t11. t9
91 111111 16 0091 11
90' n 11'11 91 0099 09 1910 ~190 e:996 91tH
19 091'1 110'106 96 1911 66111l~61611
01 10 11 1911 e6~e 10 91.6190 1lr99<aa 11

. 91al 11 ell 910el 99el9 !il9011a 11 9101i091
99'111090910'891 11 66la liu1619 e9
10 0a9ge10100.91011!r91 19 91 JI09 10n
~e 91ee 10 gee099~ 01 1110091010190'9:01
9190 11 0'9 11609:699
9101 al. 196ge0 9116 9199 ·09'09901191
0119111 910a 91 19 .e10.~.J10e 91 101~01

·11 11 HI 611166,99.99 99 99.9999 99999999
9999 999999 90

The following table shows the data bytes associated with the structures in a bitmap file:

Structure Corresponding bytes

BITMAPFILEHEADER

BITMAPINFOHEADER

RGBQUAD array

Color-index array

OxOO - OxOD

OxOE - Ox31

Ox32 - Ox75

Ox76 - Ox275

Chapter 6 Bitmaps 63

Bitmap Compression
The Win32 API supports formats for compressing bitmaps that define their colors with
8 bpp or 4 bpp. Compression reduces the disk and memory storage required for the
bitmap.

Compression forms part of the following member names in the bitmap information
header structures for different platforms. In the discussion that follows, compression is
used to mean all of these variants:

Operating system Compression

Windows NT 3.51 and earlier

Windows NT 4.0 and Windows 95

Windows 2000 and Windows 98

biCompression

bV4Compression

bV5Compression

When the Compression member of the bitmap information header structure is BI_RLE8,
a run-length encoding (RLE) format is used to compress an 8-bit bitmap. This format can
be compressed in encoded or absolute mode. Both modes can occur anywhere in the
same bitmap:

• Encoded mode consists of two bytes: the first byte specifies the number of
consecutive pixels to be drawn using the color index contained in the second byte. In
addition, the first byte of the pair can be set to zero to indicate an escape character
that denotes the end of a line, the end of a bitmap, or a delta, depending on the value
of the second byte. The interpretation of the escape depends on the value of the
second byte of the pair, which can be one of the following values:

Value Meaning

o
1

2

End of line.

End of bitmap.

Delta. The 2 bytes following the escape contain unsigned
values indicating the horizontal and vertical offsets of the next
pixel from the current position.

• In absolute mode, the first byte is zero and the second byte is a value in the range
03H through FFH. The second byte represents the number of bytes that follow, each
of which contains the color index of a single pixel. When the second byte is two or
less, the escape has the same meaning as encoded mode. In absolute mode, each
run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bitmap:

04 .. 0'1:·0p08'000s4556' 670002 NF00 02 0.5 01
0Z7$0000.091E'0001'· '

The bitmap expands as follows (two-digit values represent a color index for a single
pixel):

64 Volume 3 Microsoft Windows GOI

When the Compression member is BI_RLE4, the bitmap is compressed by using a run
length encoding format for a 4-bit bitmap, which also uses encoded and absolute modes:

• In encoded mode, the first byte of the pair contains the number of pixels to be drawn
using the color indexes in the second byte. The second byte contains two color
indexes, one in its high-order 4 bits and one in its low-order 4 bits. The first of the
pixels is drawn using the color specified by the high-order 4 bits, the second is drawn
using the color in the low-order 4 bits, the third is drawn using the color in the high
order 4 bits, and so on, until all the pixels specified by the first byte have been drawn.

• In absolute mode, the first byte is zero. The second byte contains the number of color
indexes that follow. Subsequent bytes contain color indexes in their high-order and
low-order 4 bits, one color index for each pixel. In absolute mode, each run must be
aligned on a word boundary. The end-of-line, end-of-bitmap, and delta escapes
described for BI_RLE8 also apply to BI_RLE4 compression.

The following example shows the hexadecimal values of a 4-bit compressed bitmap:

0,3: B4:05;.itt~006: 45,5667.00,
04>78''00 ~009 in ," 00'0F":'

The bitmap expands as follows (single-digit values represent a color index for a single
pixel):

Alpha Blending
Alpha blending is used to display an alpha bitmap, which is a bitmap that has
transparent or semitransparent pixels. In addition to a red, green, and blue color
channel, each pixel in an alpha bitmap has a transparency component known as its

Chapter 6 Bitmaps 65

alpha channel. The alpha channel typically contains as many bits as a color channel. For
example, an 8-bit alpha channel can represent 256 levels of transparency, from 0 (the
entire bitmap is transparent) to 255 (the entire bitmap is opaque).

Alpha blending mechanisms are invoked by calling AlphaBlend, which references the
BLENDFUNCTION structure.

Alpha Values per Pixel
Alpha values per pixel are only supported for 32-bpp BI_RGB. This formula is defined
as:

This is represented in memory, as shown in the following table:

31:24

Alpha

23:16

Red

Global Alpha Blending Settings

15:08

Green

07:00

Blue

Bitmaps can also be displayed with a transparency factor applied to the entire bitmap.
Any bitmap format can be displayed with a global constant alpha value by setting
SourceConstantAlpha in the BLENDFUNCTION structure. The global constant alpha
value has 256 levels of transparency, from 0 (entire bitmap is completely transparent) to
255 (entire bitmap is completely opaque). The global constant alpha value is combined
with the per-pixel alpha value.

Smooth Shading
Smooth shading is a method of shading a region with a color gradient. Including color
information, along with the bounds of drawing primitive, specifies the color gradient. GDI
linearly interpolates the color of the inside of the primitive passed on the color endpoints.
Color and vertex information is included with position information in the TRIVERTEX
structure.

Use the GradientFili function to fill a triangle or rectangle structure. To fill a triangle with
smooth shading, call GradientFiII with the three triangle endpoints. To fill a rectangle
with smooth shading, call GradientFili with the upper-left and lower-right rectangle
coordinates. GradientFili references the TRIVERTEX, GRADIENT _RECT, and
GRADIENT_TRIANGLE structures.

For an example, see Drawing a Shaded Triangle.

66 Volume 3 Microsoft Windows GDI

ICM-Enabled Bitmap Functions
Windows 98 and Windows 2000 have been designed to work with Microsoft Image Color
Management (ICM). ICM technology ensures that a color image, graphic object, or text
object is rendered as closely as possible to its original intent on any device, despite
differences in imaging technologies and color capabilities between devices. Whether you
are scanning an image or other graphic on a color scanner, downloading it over the
Internet, viewing or editing it onscreen, or printing it on paper, film, or other media,
ICM 2.0 helps you keep colors consistent and accurate. For more information on ICM,
see About Image Color-Management Version 2.0.

There are various functions in the GDI that use or operate on color data. The following
bitmap functions are enabled for use with ICM:

• BitBlt

• CreateDIBitmap

• CreateDIBSection

• MaskBlt
• SetDIBColorTable

Bitmap Reference

Bitmap Functions

AlphaBlend

• SetDlBits

• SetDlBitsToDevice

• Stretch Bit

• StretchDIBits

The AlphaBlend function displays bitmaps that have transparent or semitransparent
pixels.

Parameter
hdcDest

[in] Handle to the destination device context.

nXOriginDest

Chapter 6 Bitmaps 67

[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nYOriginDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nWidthDest
[in] Specifies the width, in logical units, of the destination rectangle.

nHeightDest
[in] Specifies the height, in logical units, of the destination rectangle.

hdcSrc
[in] Handle to the source device context.

nXOriginSrc
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the source
rectangle.

n YOriginSrc
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nWidthSrc
[in] Specifies the width, in logical units, of the source rectangle.

nHeightSrc
[in] Specifies the height, in logical units, of the source rectangle.

blendFunction
[in] Specifies the alpha-blending function for source and destination bitmaps, a global
alpha value to be applied to the entire source bitmap, and format information for the
source bitmap. The source and destination blend functions are currently limited to
AC_SRC_OVER. See the BLENDFUNCTION and EMRALPHABLEND structures.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
If the source rectangle and destination rectangle are not the same size, the source
bitmap is stretched to match the destination rectangle. If the SetStretchBltMode
function is used, the iStretchMode value is automatically converted to
COLORONCOLOR for this function (that is, BLACKONWHITE, WHITEONBLACK, and
HALFTONE are changed to COLORONCOLOR).

68 Volume 3 Microsoft Windows GOI

The destination coordinates are transformed by using the transformation currently
specified for the destination device context. The source coordinates are transformed by
using the transformation currently specified for the source device context.

An error occurs (and the function returns FALSE) if the source device context identifies
an enhanced metafile device context.

If destination and source bitmaps do not have the same color format, AlphaBlend
converts the source bitmap to match the destination bitmap.

AlphaBlend does not support mirroring. If either the width or height of the source or
destination is negative, this call will fail.

If the source and destination are the same surface-that is, they are both the screen or
the same memory bitmap-and the source and destination rectangles overlap, an error
occurs and the function returns FALSE.

The source rectangle must lie completely within the source surface; otherwise, an error
occurs and the function returns FALSE.

AlphaBlend fails if the width or height of the source or destination is negative.

Note The SourceConstantaAlpha member of BLENDFUNCTION specifies an alpha
transparency value to be used on the entire source bitmap. The SourceConstantAlpha
value is combined with any per-pixel alpha values. If SourceConstantAlpha is 0, it is
assumed that the image is transparent. Set the SourceConstantAlpha value to 255
(which indicates that the image is opaque) when you want to use only per-pixel alpha
values.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in msimg32.dll.

Bitmaps Overview, Bitmap Functions

BitBlt

Chapter 6 Bitmaps 69

The BitBlt function performs a bit-block transfer of the color data corresponding to a
rectangle of pixels from the specified source device context into a destination device
context.

Parameters
hdcDest

[in] Handle to the destination device context.

nXDest
[in] Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

nYDest
[in] Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

nWidth
[in] Specifies the logical width of the source and destination rectangles.

nHeight
[in] Specifies the logical height of the source and the destination rectangles.

hdcSrc
[in] Handle to the source device context.

nXSrc
[in] Specifies the logical x-coordinate of the upper-left corner of the source rectangle.

nYSrc
[in] Specifies the logical y-coordinate of the upper-left corner of the source rectangle.

dwRop
[in] Specifies a raster-operation code. These codes define how the color data for the
source rectangle is to be combined with the color data for the destination rectangle to
achieve the final color.

70 Volume 3 Microsoft Windows GOI

The following list shows some common raster operation codes:

Value Description

BLACKNESS

CAPTUREBLT

DSTINVERT

MERGECOPY

MERGEPAINT

NOMIRRORBITMAP

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

Fills the destination rectangle using the color associated with
index 0 in the physical palette. (This color is black for the default
physical palette.)

Windows 98, Windows 2000: Includes any windows that are
layered on top of your window in the resulting image. By default,
the image contains only your window.

Inverts the destination rectangle.

Merges the colors of the source rectangle with the specified
pattern by using the Boolean AND operator.

Merges the colors of the inverted source rectangle with the
colors of the destination rectangle by using the Boolean OR
operator.

Windows 98, Windows 2000: Prevents the bitmap from being
mirrored.

Copies the inverted source rectangle to the destination.

Combines the colors of the source and destination rectangles
by using the Boolean OR operator, and then inverts the
resultant color.

Copies the specified pattern into the destination bitmap.

Combines the colors of the specified pattern with the colors of
the destination rectangle by using the Boolean XOR operator.

Combines the colors of the pattern with the colors of the
inverted source rectangle by using the Boolean OR operator.
The result of this operation is combined with the colors of the
destination rectangle by using the Boolean OR operator.

Combines the colors of the source and destination rectangles
by using the Boolean AND operator.

Copies the source rectangle directly to the destination
rectangle.

Combines the inverted colors of the destination rectangle with
the colors of the source rectangle by using the Boo!ean AND
operator.

Combines the colors of the source and destination rectangles
by using the Boolean XOR operator.

Combines the colors of the source and destination rectangles
by using the Boolean OR operator.

Fills the destination rectangle using the color associated with
index 1 in the physical palette. (This color is white for the default
physical palette.)

Chapter 6 Bitmaps 71

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
If a rotation or shear transformation is in effect in the source device context, BitBlt
returns an error. If other transformations exist in the source device context (and a
matching transformation is not in effect in the destination device context), the rectangle
in the destination device context is stretched, compressed, or rotated, as necessary.

If the color formats of the source and destination device contexts do not match, the
BitBlt function converts the source color format to match the destination format.

When an enhanced metafile is being recorded, an error occurs if the source device
context identifies an enhanced-metafile device context.

Not all devices support the BitBlt function. For more information, see the RC_BITBL T
raster capability entry in the GetDeviceCaps function, as well as the following functions:
MaskBlt, Pig Bit, and StretchBIt.

BitBlt returns an error if the source and destination device contexts represent different
devices.

ICM: No color management is performed when blits occur.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions

CreateBitmap
The CreateBitmap function creates a bitmap with the specified width, height, and color
format (color planes and bits-per-pixel).

72 Volume 3 Microsoft Windows GOI

.1!jAAlfcrt~&Bi thiapf . '
)f·~J~·~WiJith:;. : ,; ll.bitmap ~~dth.;1!Vj)ixe]~
. 'riH~1gfit·, : JI1H1;.·11l1l~'he·i~f\.··.t;lt{Ptx.e.l s' ...•

" .. ;~~:rJ&e;;, .. ~i ~u,:nber'~af;~olp'(!}l~nes'
;;~~lr·~8{t~1ierPH. . ilnUfflPet' Cifbits to nt~ntify
<'jt:iotlj):'rV91~ .:1 p'vStt;$ il cI>;16f"d~ta arr~J "
){" ,""

Parameters
nWidth

[in] Specifies the bitmap width, in pixels.

nHeight
[in] Specifies the bitmap height, in pixels.

cPlanes
[in] Specifies the number of color planes used by the device.

cBitsPerPel
[in] Specifies the number of bits required to identify the color of a single pixel.

IpvBits
[in] Pointer to an array of color data used to set the colors in a rectangle of pixels.
Each scan line in the rectangle must be word aligned (scan lines that are not word
aligned must be padded with zeros). If this parameter is NULL, the new bitmap is
undefined.

Return Values
If the function succeeds, the return value is a handle to a bitmap.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
After a bitmap is created, it can be selected into a device context by calling the
SelectObject function.

While the CreateBitmap function can be used to create color bitmaps. For performance
reasons applications should use CreateBitmap to create monochrome bitmaps and
CreateCompatibleBitmap to create color bitmaps. When a color bitmap returned from
CreateBitmap is selected into a device context, the system must ensure that the bitmap
matches the format of the device context into which it is being selected. Since
CreateCompatibleBitmap takes a device context, it returns a bitmap that has the same
format as the specified device context. Because of this, subsequent calls to
SelectObject are faster than with a color bitmap returned from CreateBitmap.

If the bitmap is monochrome, zeros represent the foreground color, and ones represent
the background color for the destination device context.

Chapter 6 Bitmaps 73

If an application sets the nWidth or nHeight parameter to zero, CreateBitmap returns
the handle to a 1-pixel-by-1-pixel, monochrome bitmap.

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16 MB in size.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, CreateBitmaplndirect,
CreateCompatibleBitmap, CreateDIBitmap, DeleteObject, GetBitmapBits,
SelectObject, SetBitmapBits

CreateBitmaplndirect
The CreateBitmaplndirect function creates a bitmap with the specified width, height,
and color format (color planes and bits-per-pixel).

Parameters
Ipbm

[in] Pointer to a BITMAP structure that contains information about the bitmap. If an
application sets the bmWidth or bmHeight members to zero, CreateBitmaplndirect
returns the handle to a 1-pixel-by-1-pixel, monochrome bitmap.

Return Values
If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
After a bitmap is created, it can be selected into a device context by calling the
SelectObject function.

74 Volume 3 Microsoft Windows GOI

While the CreateBitmaplndirect function can be used to create color bitmaps, for
performance reasons applications should use CreateBitmaplndirect to create
monochrome bitmaps and CreateCompatibleBitmap to create color bitmaps. When a
color bitmap returned from CreateBitmaplndirect is selected into a device context, the
system must ensure that the bitmap matches the format of the device context into which
it is being selected. Since CreateCompatibleBitmap takes a device context, it returns a
bitmap that has the same format as the specified device context. Because of this,
subsequent calls to SelectObject are faster than with a color bitmap returned from
CreateBitmaplndirect.

If the bitmap is monochrome, zeros represent the foreground color, and ones represent
the background color for the destination device context.

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16 MB in size.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BitBlt, BITMAP, CreateBitmap,
CreateCompatibleBitmap, CreateDIBitmap, DeleteObject, SelectObject

CreateCompatibleBitmap
The CreateCompatibleBitmap function creates a bitmap that is compatible with the
device that is associated with the specified device context.

Parameters
hdc

[in] Handle to a device context.

Chapter 6 Bitmaps 75

nWidth
[in] Specifies the bitmap width, in pixels.

nHeight
[in] Specifies the bitmap height, in pixels.

Return Values
If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The color format of the bitmap created by the CreateCompatibleBitmap function
matches the color format of the device identified by the hdc parameter. This bitmap can
be selected into any memory device context that is compatible with the original device.

Because memory device contexts allow both color and monochrome bitmaps, the format
of the bitmap returned by the CreateCompatibleBitmap function differs when the
specified device context is a memory device context. However, a compatible bitmap that
was created for a non memory device context always possesses the same color format
and uses the same color palette as the specified device context.

Note When a memory device context is created, it initially has a 1-pixel-by-1-pixel,
monochrome bitmap selected into it. If this memory device context is used in
CreateCompatibleBitmap, the bitmap that is created is a monochrome bitmap.

To create a color bitmap, use the hOC that was used to create the memory device
context, as shown in the following code:

• '··HDC~~Ii!p<')~ ic~eateC01llpattP I ~QC '. (hOC);
H.~IT~A;,meIJ1EiM+1?~l':el!:t€lcqmpatibleBJtl!1all. (
$.ell?ctOMecl·~·mel!1~t.me.mBM);

If an application sets the nWidth or nHeight parameters to zero,
CreateCompatibleBitmap returns the handle to a 1-pixel-by-1-pixel, monochrome
bitmap.

If a DIB section, which is a bitmap created by the CreateDIBSection function, is
selected into the device context identified by the hdc parameter,
CreateCompatlbleBitmap creates a DIB section.

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16 MB in size.

76 Volume 3 Microsoft Windows GO.I

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, CreateDIBSection, DeleteObject, SelectObject

CreateDI Bitmap
The CreateDiBitmap function creates a DDB from a DIB and, optionally, sets the bitmap
bits.

Hrht"AR;.crea~Ot8itmap ('apci l1dc' ,> .'

COH~T·B:iTMAPftff(nIEA6EIt./* J~b~ j 11.:
i .OWORO •. fdWJ~ttl ... , .•....•.•;
,J¥oJiS1..~OI~~ lppJni t.'·f • r .' .
.• . ·C()ti~-r\tHI~AP~Hf~~;}Pbmf~
'~},!l~rlyT' ~4/) ~ ~ge' . '; .'. .

Parameters
hdc

[in] Handle to a device context.

Ipbmih
[in] Pointer to a bitmap information header structure, which may be one of those
shown in the following table:

Operating system Bitmap information header

Windows NT 3.51 and earlier

'vVindows NT 4.0 and Windows 95

Windows 2000 and Windows 98

BITMAPiNFOHEADER

BiTMAPV4HEADER

BITMAPV5HEADER

If fdwlnit is CBM_INIT, the function uses the bitmap information header structure to
obtain the desired width and height of the bitmap, as well as other information. Note
that a positive value for the height indicates a bottom-up DIB while a negative value
for the height indicates a top-down DIB. Calling CreateDIBitmap with fdwlnit as
CBM_INIT is equivalent to calling the CreateCompatibleBitmap function to create a
DDB in the format of the device, and then calling the SetDlBits function to translate
the DIB bits to the DDB.

Chapter 6 Bitmaps 77

fdwlnit
[in] Specifies how the system initializes the bitmap bits. The following value is defined:

Value Meaning

If this flag is set, the system uses the data pointed to by the
Ipblnit and Ipbmi parameters to initialize the bitmap's bits.

If this flag is clear, the data pointed to by those parameters
is not used.

If fdwlnit is zero, the system does not initialize the bitmap's bits.

Ipblnit
[in] Pointer to an array of bytes containing the initial bitmap data. The format of the
data depends on the biBitCount member of the BITMAPINFO structure to which the
Ipbmi parameter points.

Ipbmi
[in] Pointer to a BITMAPINFO structure that describes the dimensions and color
format of the array pointed to by the Ipblnit parameter.

fuUsage
[in] Specifies whether the bmiColors member of the BITMAPINFO structure was
initialized and, if so, whether bmiColors contains explicit red, green, blue (RGB)
values or palette indexes. The fuUsage parameter must be one of the following
values:

Value Meaning

Return Values

A color table is providep and c:;onsists of an array of 16-bit
indexes into the logical palette of the device context into
which the bitmap is to be selected.

A color table is provided and contains literal RGB values.

If the function succeeds, the return value is a handle to the bitmap.

If the functi?n fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
For a device 'to reach optimal bitmap-drawing speed, specify fdwlnit as CBM_INIT. Then,
use the Slame color depth DIB as the video mode. When the video is running 4 bpp or 8
bpp, use DIB~PAL_COLORS.

The CBM_CREATDIB flag for the fdwlnit parameter is no longer supported.

When you no longer need the bitmap, call the DeleteObject function to delete it.

78 Volume 3 Microsoft Windows GOI

ICM: The fuUsage parameter specifies whether or not the bmiColors member of
BITMAPINFO pointed at by the Ipbmi parameter contains color information. If
bmiColors does not contain color information, no color management is performed for
the bitmap. The bmiHeader member of BITMAPINFO must contain either
BITMAPV4HEADER or BITMAPV5HEADER for color management to be enabled. The
contents of the resulting bitmap are not color matched after the bitmap has been
created.

Windows 95/98: The created bitmap cannot exceed 16 MB in size.

Windows NT/2QOO: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BITMAPINFO, BITMAPINFOHEADER,
CreateCo!TIpatibleBitmap, DeleteObject, GetDeviceCaps, GetSystemPaletteEntries,
SelectObject, S~tDIBits

CreateDIBSection
The CreateDIBSection function creates·a DIB to which applications can write directly.
The function gives you a pOinter to the location of the bitmap's bit values. You can
supply a handle to a file-mapping object that the function will use to create the bitmap, or
you can let the system allocate the memory for the bitmap.

Parameters
hdc

[in] Handle to a device context. If the value of iUsage is DIB_PAl_COlORS, the
function uses this device context's logical palette to initialize the D16's colors.

Chapter 6 Bitmaps 79

pbmi
[in] Pointer to a BITMAPINFO structure that specifies various attributes of the DIB,
including the bitmap's dimensions and colors.

iUsage
[in] Specifies the type of data contained in the bmiColors array member of the
BITMAPINFO structure pointed to by pbmi (either logical palette indexes or literal
RGB values). The following values are defined:

Value

ppvBits

Meaning

The bmiColors member is an array of 16-bit indexes into
the logical palette of the device context specified by hdc.

The BITMAPINFO structure contains an array of literal
RGBvalues.

[out] Pointer to a variable that receives a pOinter to the location of the DIB's bit values.

hSection
[in] Handle to a file-mapping object that the function will use to create the DIB. This
parameter can be NULL.

If hSection is not NULL, it must be a handle to a file-mapping object created by calling
the CreateFileMapping function with the PAGE_READWRITE or
PAGE_WRITECOPY flag. Read-only DIB sections are not supported. Handles
created by other means will cause CreateDIBSection to fail.

If hSection is not NULL, the CreateDIBSection function locates the bitmap's bit
values at offset dwOffset in the file-mapping object referred to by hSection. An
application can later retrieve the hSection handle by calling the GetObject function
with the HBITMAP returned by CreateDIBSection.

If hSection is NULL, the system allocates memory for the DIB. In this case, the
CreateDIBSection function ignores the dwOffset parameter. An application cannot
later obtain a handle to this memory. The dshSection member of the DIBSECTION
structure filled in by calling the GetObject function will be NULL.

dwOffset
[in] Specifies the offset from the beginning of the file-mapping object referenced by
hSection where storage for the bitmap's bit values is to begin. This value is ignored if
hSection is NULL. The bitmap's bit values are aligned on doubleword boundaries, so
dwOffset must be a multiple of the size of a DWORD.

Return Values
If the function succeeds, the return value is a handle to the newly created DIB, and
*ppvBits points to the bitmap's bit values.

If the function fails, the return value is NULL, and *ppvBits is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

80 Volume 3 Microsoft Windows GOI

Remarks
As noted above, if hSection is NULL,the system allocates memory for the DIB. The
system closes the handle to that memory when you later delete the DIB by calling the
DeleteObject function. If hSection is not NULL, you must close the hSection memory
handle yourself after calling DeleteObject to delete the bitmap.

Windows NT/2000: You need to guarantee that the GDI subsystem has completed any
drawing to a bitmap created by CreateDIBSection before you draw to the bitmap
yourself. Access to the bitmap must be synchronized. Do this by calling the GdiFlush
function. This applies to any use of the pointer to the bitmap's bit values, including
passing the pointer in calls to functions such as SetDIBits.

ICM: If the bmiHeader member of BITMAPINFO (pointed to by pbm/) does not contain
BITMAPV4HEADER or BITMAPV5HEADER, no color management is done. Otherwise,
color management is enabled, and the specified color space is associated with the
bitmap.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.1ib.

Bitmaps Overview, Bitmap Functions, BITMAPINFO, CreateFileMapping,
DeleteObject, DIBSECTION, GdiFlush, GetDIBColorTable, GetObject, SetDIBits,
SetDIBColorTable

ExtFloodFill
The ExtFloodFili function fills an area of the display surface with the current brush.

Parameters
hdc

[in] Handle to a device context.

Chapter 6 Bitmaps 81

nXStart
[in] Specifies the logical x-coordinate of the pOint where filling is to start.

nYStart
[in] Specifies the logical y-coordinate of the point where filling is to start.

erGolor
[in] Specifies the color of the boundary or of the area to be filled. The interpretation of
erGolordepends on the value of the fuFiIIType parameter. To create a COLORREF
color value, use the RGB macro.

fuFiIIType
[in] Specifies the type of fill operation to be performed. This parameter must be one of
the following values:

Value Meaning

FLOODFILLBORDER

FLOODFILLSURFACE

Return Values

The fill area is bounded by the color specified by the
erGolor parameter. This style is identical to the filling
performed by the FloodFili function.

The fill area is defined by the color that is specified by
erGolor. Filling continues outward in all directions as
long as the color is encountered. This style is useful for
filling areas with multicolored boundaries.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Wind!lws NT/2000: To get extended error information, call GetLastError.

Remarks
The following are some of the reasons this function might fail:

• The filling could not be completed.

• The specified point has the boundary color specified by the erGolor parameter (if
FLOODFILLBORDER was requested).

• The specified pOint does not have the color specified by erGolor (if
FLOODFILLSURFACE was requested).

• The point is outside the clipping region-that is, it is not visible on the device.

If the fuFiIIType parameter is FLOODFILLBORDER, the system assumes that the area
to be filled is completely bounded by the color specified by the erGolor parameter. The
function begins filling at the point specified by the nXStart and n YStart parameters and
continues in all directions until it reaches the boundary.

If fuFillType is FLOODFILLSURFACE, the system assumes that the area to be filled is a
single color. The function begins to fill the area at the point specified by nXStart and

82 Volume 3 Microsoft Windows GOI

nYStart and continues in all directions, filling all adjacent regions containing the color
specified by erG%r.

Only memory device contexts and devices that support raster-display operations support
the ExtFloodFili function. To determine whether a device supports this technology, use
the GetDeviceCaps function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, COLORREF, FloodFiII, GetDeviceCaps, RGB

GetBitmapDimensionEx
The GetBitmapDimensionEx function retrieves the dimensions of a bitmap. The
retrieved dimensions must have been set by the SetBitmapDimensionEx function.

BOOlG~tBi,~apf)imensior1Ex(<, ',' " , "',

", ~~~!l;;~ !:;;:~;~:_~!. ~n ' "i~,":,~~:~:';!~:,sb~t~~<':' "
j:t

Parameters
hBitmap

[in] Handle to the bitmap.

IpDimension
[out] Pointer to a SIZE structure to receive the bitmap dimensi,ons.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function returns a data structure that contains fields for the height and width of the
bitmap. If those dimensions have not yet been set, the structure that is returned will have
zeros in those fields.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Chapter 6 Bitmaps 83

Bitmaps Overview, Bitmap Functions, SetBitmapDimensionEx, SIZE

GetDIBColorTable
The GetDIBColorTable function retrieves RGB (red, green, blue) color values from a
range of entries in the color table of the DIB section bitmap that is currently selected into
a specified device context.

Parameters
hdc

[in] Handle to a device context. A DIB section bitmap must be selected into this device
context.

uStart/ndex
[in] A zero-based color table index that specifies the first color table entry to retrieve.

cEntries
[in] Specifies the number of color table entries to retrieve.

pe%rs
[out] Pointer to a buffer that receives an array of RGBQUAD data structures
containing color information from the DIB's color table. The buffer must be large
enough to contain as many RGBQUAD data structures as the value of cEntries.

Return Values
If the function succeeds, the return value is the number of color table entries that the
function retrieves.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

84 Volume 3 Microsoft Windows GOI

Remarks
The GetDlBColorTable function should be called to retrieve the color table for DIB
section bitmaps that use 1, 4, or 8 bpp. The biBitCount member of a bitmap's
associated BITMAPINFOHEADER structure specifies the number of bits per pixel. DIB
section bitmaps with a biBitCount value gre~ter than eight do not have a color table, but
they do have associated color masks. Call the GetObject function to retrieve those color
masks.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BITMAPINFOHEADER, CreateDIBSection,
DIBSECTION, GetObject, RGBQUAD, SetDIBColorTable

GetDIBits
The GetDIBits function retrieves the bits of the specified bitmap and copies them into a
buffer using the specified format.

Parameters
hdc

[in] Handle to the device context.

hbmp
[in] Handle to the bitmap.

uStartScan
[in] Specifies the first scan line to retrieve.

~" ": .::. :~,; -. :

Chapter 6 Bitmaps 85

cScanLines
[in] Specifies the number of scan lines to retrieve.

/pvBits
[out] Pointer to a buffer to receive the bitmap data. If this parameter is NULL, the
function passes the dimensions and format of the bitmap to the BITMAPINFO
structure pointed to by the /pbi parameter.

/pbi
[in/out] Pointer to a BITMAPINFO structure that specifies the desired format for the
DIS data.

uUsage
[in] Specifies the format of the bmiColors member of the BITMAPINFO structure. It
must be one of the following values:

Value Meaning

Return Values

The color table should consist of an array of 16-bit indexes
into the current logical palette.

The color table should consist of literal red, green, blue
(RGS) values.

If the /pvBits parameter is non-NULL and the function succeeds, the return value is the
number of scan lines copied from the bitmap.

Windows 95/98: If the /pvBits parameter is NULL and GetDIBits successfully fills the
BITMAPINFO structure, the return value is the total number of scan lines in the bitmap.

Windows NT/2000: If the /pvBits parameter is NULL and GetDIBits successfully fills the
BITMAPINFO structure, the return value is non-zero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remar~s
If the requested format for the DIS matches its internal format, the RGS values for the
bitmap are copied. If the requested format does not match the internal format, a color
table is synthesized. The following table describes the color table synthesized for each
format:

Value Meaning

The color table consists of a black and a white entry.

The color table consists of a mix of colors identical to the
standard VGA palette.

The color table consists of a general mix of 256 colors
defined by GD!. (Included in these 256 colors are the 20
colors found in the default logical palette.)

No color table is returned.

86 Volume 3 Microsoft Windows GDI

If the /pvBits parameter is a valid pOinter, the first six members of the bitmap information
header structure must be initialized to specify the size and format of the DIB. The scan
lines must be aligned on a DWORD except for RLE compressed bitmaps.

A bitmap information header structure may be one of the following:

Operating system Bitmap information header

Windows NT 3.51 and earlier BITMAPINFOHEADER

Windows NT 4.0 and Windows 95 BITMAPV4HEADER

Windows 2000 and Windows 98 BITMAPV5HEADER

A bottom-up DIB is specified by setting the height to a positive number, while a top-down
DIB is specified by setting the height to a negative number. The bitmap's color table will
be appended to the BITMAPINFO structure.

If /pvBits is NULL, GetDIBits examines the first member of the first structure pOinted to
by /pbi. This member must specify the size, in bytes, of a BITMAPCOREHEADER or a
bitmap information header structure. The function uses the specified size to determine
how the remaining members should be initialized.

If /pvBits is NULL and the bit count member of BITMAPINFO is initialized to zero,
GetDIBits fills in a bitmap information header structure or BITMAPCOREHEADI;:R
without the color table. This technique can be used to query bitmap attributes.

The bitmap identified by the hbmp parameter must not be selected into a device context
when the application calls this function.

The origin for a bottom-up DIB is the lower-left corner of the bitmap; the origin for a top
down DIB is the upper-left corner.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, SetDlBits

Chapter 6 Bitmaps 87

GetPixel
The GetPixel function retrieves the red, green, blue (RGB) color value of the pixel at the
specified coordinates.

Parameters
hdc

[in] Handle to the device context.

nXPos
[in] Specifies the logical x-coordinate of the pixel to be examined.

nYPos
[in] Specifies the logical y-coordinate of the pixel to be examined.

Return Values
The return value is the RGB value of the pixel. If the pixel is outside of the current
clipping region, the return value is CLR_INVALID.

Remarks
The pixel must be within the boundaries of the current clipping region.

Not all devices support GetPixel. An application should call GetDeviceCaps to
determine whether a specified device supports this function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, COLORREF, GetDeviceCaps, SetPixel

88 Volume 3 Microsoft Windows GOI

GetStretchBltMode
The GetStretchBltMode function retrieves the current stretching mode. The stretching
mode defines how color data is added to or removed from bitmaps that are stretched or
compressed when the StretchBlt function is called.

Parameters
hdc

[in) Handle to the device context.

Return Values
If the function succeeds, the return value is the current stretching mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

, .
. ..;. ;"

f-'

Bitmaps Overview, Bitmap Functions

GradientFili
The GradientFiII function fills rectangle and triangle structures.

Parameters
hdc

Chapter 6 Bitmaps 89

[in] Handle to the destination device context.

pVertex
[in] Pointer to an array of TRIVERTEX structures that each define a triangle vertex.

dwNumVertex
[in] The number of vertices in pVertex.

pMesh
[in] Array of GRADIENT_TRIANGLE structures in triangle mode, or an array of
GRADIENT _RECT structures in rectangle mode.

dwNumMesh
[in] The number of elements (triangles or rectangles) in pMesh.

dwMode
[in] Specifies gradient fill mode. This parameter can be one of the following values:

Value Meaning

Return Values

In this mode, two endpoints describe a rectangle.
The rectangle is defined to have a constant color
(specified by the TRIVERTEX structure) for the
left and right edges. GDI interpolates the color
from the top to bottom edge and fills the interior.

In this mode, two endpoints describe a rectangle.
The rectangle is defined to have a constant color
(specified by the TRIVERTEX structure) for the
top and bottom edges. GDI interpolates the color
from the top to bottom edge and fills the interior.

In this mode, an array of TRIVERTEX structures
is passed to GDI along with a list of array indexes
that describe separate triangles. GDI performs
linear interpolation between triangle vertices and
fills the interior. Drawing is done directly in 24-bpp
and 32-bpp modes. Dithering is performed in 16-
bpp, 8-bpp, 4-bpp, and 1-bpp mode.

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
To add smooth shading to a triangle, call the GradientFili function with the three triangle
endpoints. GDI will linearly interpolate and fill the triangle.

90 Volume 3 Microsoft Windows GOI

To add smooth shading to a rectangle, call GradientFili with the upper-left and lower
right coordinates of the rectangle. There are two shading modes used when drawing a
rectangle. In horizontal mode, the rectangle is shaded from left to right. In vertical mode,
the rectangle is shaded from top to bottom.

The GradientFili function uses a mesh method to specify the endpoints of the object to
draw. All vertices are passed to Gradient.FiII in the pVertex array. The pMesh parameter
specifies how these vertices are connected to form an object. When filling a rectangle,
pMesh pOints to an array of GRADIENT _RECT structures. Each GRADIENT _RECT
structure specifies the index of two vertices in the pVertex array. These two vertices form
the upper-left and lower-right boundary of one rectangle.

In the case of filling a triangle, pMesh points to an array of GRADIENT_TRIANGLE
structures. Each GRADIENT_TRIANGLE structure specifies the index of three vertices
in the pVertex array. These three vertices form one triangle.

In order to simplify hardware acceleration, this routine is not required to be pixel-perfect
in the triangle interior.

For more information, see Smooth Shading, Drawing a Shaded Triangle, and Drawing a
Shaded Rectangle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in mSimg32.dll.

Bitmaps Overview, Bitmap Functions, EMRGRADIENTFILL, GRADIENT _RECT,
GRADIENT_TRIANGLE, TRIVERTEX

LoadBitmap
The loadBitmap function loads the specified bitmap resource from a module's
executable file. This function has been superseded by the Loadlmage function.

HBit"A~ io!uI.B:f tm.-p(.' .;.
HINStANCE"h1n.s:tl;'nclf.

) ;LPCTST~.;1PlJ1i1;~~fNlJfn~

Parameters
hlnstance

[in] Handle to the instance of the module whose executable file contains the bitmap to
be loaded.

Chapter 6 Bitmaps 91

IpBitmapName
[in] Pointer to a null-terminated string that contains the name of the bitmap resource to
be loaded. Alternatively, this parameter can consist of the resource identifier in the
low-order word and zero in the high-order word. The MAKEINTRESOURCE macro
can be used to create this value.

Return Values
If the function succeeds, the return value is the handle to the specified bitmap.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
If the bitmap pointed to by the IpBitmapName parameter does not exist or there is
insufficient memory to load the bitmap, the function fails.

An application can use the LoadBitmap function to access the predefined bitmaps used
by the Win32 API. To do so, the application must set the hlnstance parameter to NULL
and the IpBitmapName parameter to one of the following values:

OBM_BTNCORNERS OBM_OLD_RESTORE

OBM_BTSIZE OBM_OLD_RGARROW

OBM_CHECK OBM_OLD_UPARROW

OBM_CHECKBOXES OBM_OLD_ZOOM

OBM_CLOSE OBM_REDUCE

OBM_COMBO OBM_REDUCED

OBM_DNARROW OBM_RESTORE

OBM_DNARROWD OBM_RESTORED

OBM_DNARROWI OBM_RGARROW

OBM_LFARROW OBM_RGARROWD

OBM_LFARROWD OBM_RGARROWI

OBM_LFARROWI OBM_SIZE

OBM_MNARROW OBM_UPARROW

OBM_OLD_CLOSE OBM_UPARROWD

OBM_OLD_DNARROW OBM_UPARROWI

OBM_OLD_LFARROW OBM_ZOOM

OBM_OLD_REDUCE OBM_ZOOMD

Bitmap names that begin with OBM_OLD represent bitmaps used by 16-bit versions of
Windows earlier than 3.0.

For an application to use any of the OBM_ constants, the constant OEM RESOURCE
must be defined before the Windows.h header file is included.

92 Volume 3 Microsoft Windows GOI

The application must call the DeleteObject function to delete each bitmap handle
returned by the LoadBitmap function.

Windows 95 has a problem dealing with Win32 .exe or .dll files that contain resources
whose size is 64 KB or larger. To retain Win16 compatibility, Windows 95 converts the
32-bit size into a 16-bit size and a shift count. When it does this conversion it rounds
down instead of up, so some bytes can be lost. In addition, Win16 uses the same shift
count for all resources, thus the shift required for a large resource can cause a small
resource to be severely truncated, or even eliminated completely.

To avoid this problem, compute the scaling factor for the largest resource and pad all
resources with zeros so each is a multiple of the scaling factor. For example, a resource
of size Ox100065 is converted to Ox8003 * 32, which loses 5 bytes. To save the 5 bytes,
you must pad the resource with 27 zeros so that it becomes size Ox100080 and is then
converted to Ox8004 * 32. And any smaller resource must also be padded with zeros so
it is a multiple of the scaling factor, which in this case is 32.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Bitmaps Overview, Bitmap Functions, CreateBitmap, DeleteObject, LoadCursor,
Loadlcon, Loadlmage, MAKEINTRESOURCE .

MaskBlt
The MaskBlt function combines the color data for the source and destination bitmaps
using the specified mask and raster operation.

,,-~~~:~~~::~;,~, .'
,,:~n~' riY~es;~ '.:

.•• ~.~J~~;.

) :

1nt ,yMa$k.
DWOROdwRop

// vertical offset into mask bitmap
/1 raster operation code

Chapter 6 Bitmaps 93

Parameters
hdcDest

[in] Handle to the destination device context.

nXDest
[in] Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

nYDest
[in] Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

nWidth
[in] Specifies the width, in logical units, of the destination rectangle and source
bitmap.

nHeight
[in] Specifies the height, in logical units, of the destination rectangle and source
bitmap.

hdcSrc
[in] Handle to the device context from which the bitmap is to be copied. It must be
zero if the dwRop parameter specifies a raster operation that does not include a
source.

nXSrc
[in] Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

nYSrc
[in] Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

hbmMask
[in] Handle to the monochrome mask bitmap combined with the color bitmap in the
source device context.

xMask
[in] Specifies the horizontal pixel offset for the mask bitmap specified by the hbmMask
parameter.

yMask
[in] Specifies the vertical pixel offset for the mask bitmap specified by the hbmMask
parameter.

dwRop
[in] Specifies both foreground and background ternary raster operation codes that the
function uses to control the combination of source and destination data. The
background raster operation code is stored in the high-order byte of the high-order
word of this value; the foreground raster operation code is stored in the low-order byte
of the high-order word of this value; the low-order word of this value is ignored, and
should be zero. The macro MAKEROP4 creates such combinations of foreground
and background raster operation codes.

94 Volume 3 Microsoft Windows GDI

For a discussion of foreground and background in the context of this function, see the
following Remarks section.

For a list of common raster operation codes, see the BitBlt function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A value of 1 in the mask specified by hbmMask indicates that the foreground raster
operation code specified by dwRop should be applied at that location. A value of 0 in the
mask indicates that the background raster operation code specified by dwRop should be
applied at that location.

If the raster operations require a source, the mask rectangle must cover the source
rectangle. If it does not, the function will fail. If the raster operations do not require a
source, the mask rectangle must cover the destination rectangle. If it does not, the
function will fail.

If a rotation or shear transformation is in effect for the source device context when this
function is called, an error occurs. However, other types of transformation are allowed.

If the color formats of the source, pattern, and destination bitmaps differ, this function
converts the pattern or source format, or both, to match the destination format.

If the mask bitmap is not a monochrome bitmap, an error occurs.

When an enhanced metafile is being recorded, an error occurs (and the function returns
FALSE) if the source device context identifies an enhanced-metafile device context.

Not all devices support the MaskBlt function. An application should call the
GetDeviceCaps function to determine whether a device supports this function.

If no mask bitmap is supplied, this function behaves exactly like BitBlt, using the
foreground raster operation code.

ICM: No color management is performed vv'hen blits occur.

Windows 98, Windows 2000: When used in a multimonitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Requires version 1 .0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Chapter 6 Bitmaps 95

Bitmaps Overview, Bitmap Functions, BitBlt, GetDeviceCaps, PlgBlt, Stretch Bit

Pig Bit
The PlgBlt function performs a bit-block transfer of the bits of color data from the
specified rectangle in the source device context to the specified parallelogram in the
destination device context. If the given bitmask handle identifies a valid monochrome
bitmap, the function uses this bitmap to mask the bits of color data from the source
rectangle.

BoP}}eJ~Brt,f':' . , ","
'0':',: t{!~'Ch#ca~~t:.ij;~:;i:;;~;; " 1/ :ha h,d 1: e ,'to de ~ ti~ at 1 O'n ; 'DC
".itOi$;;f:fi0tNT",~:7pP6jfrt.,lldes:tina,fiorivertic.es
,.·H,()G~!;~d~~irlPA:':' ':'(lh~rdle ;tosouree DC

i.rit:rl~S;rc/;,.,;: ,X-'CQor;'d of .source upper-Hoff corner
1rlt i!nYSt<:.:."; I / ~!c6ordofsourte upper-.lei't corner
i.riti~""j.dt6:"· ,illwi.dth.~f,sourcerectahgl e'
.1rit :n.ftle.tght; ,Il(h.eig'ht of source recfangl.e
ttB.IT104J\P:fibfJiM~Sk, hhandle to bi:tma s k

i:ird;~M~$k.. ',' 'Ii XC coo rrl of bi:tmaskupper':l eft corner

Parameters
hdcDest

/ly:-coord of bHmask upper-l eft corner

[in] Handle to the destination device context.

IpPoint
[in] Pointer to an array of three points in logical space that identify three corners of the
destination parallelogram. The upper-left corner of the source rectangle is mapped to
the first point in this array, the upper-right corner to the second point in this array, and
the lower-left corner to the third point. The lower-right corner of the source rectangle is
mapped to the implicit fourth pOint in the parallelogram.

hdcSrc
[in] Handle to the source device context.

96 Volume 3 Microsoft Windows GOI

nXSrc
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nYSrc
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nWidth
[in] Specifies the width, in logical units, of the source rectangle.

nHeight
[in] Specifies the height, in logical units, of the source rectangle.

hbmMask
[in] Handle to an optional monochrome bitmap that is used to mask the colors of the
source rectangle.

xMask
[in] Specifies the x-coordinate of the upper-left corner of the monochrome bitmap.

yMask
[in] Specifies the y-coordinate of the upper-left corner of the monochrome bitmap.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The fourth vertex of the parallelogram (0) is defined by treating the first three pOints (A,
B, and C) as vectors and computing 0 = B + C - A.

If the bitmask exists, a value of one in the mask indicates that the source pixel color
should be copied to the destination. A value of zero in the mask indicates that the
destination pixel color is not to be changed. If the mask rectangle is smaller than the
source and destination rectangles, the function replicates the mask pattern.

Scaling, translation, and reflection transformations are allowed in the source device
context; however, rotation and shear transformations are not. If the mask bitmap is not a
monochrome bitmap, an error occurs. The stretching mode for the destination device
context is used to determine how to stretch or compress the pixels, if that is necessary.

When an enhanced metafile is being recorded, an error occurs if the source device
context identifies an enhanced-metafile device context.

The destination coordinates are transformed according to the destination device context;
the source coordinates are transformed according to the source device context. If the
source transformation has a rotation or shear, an error is returned.

If the destination and source rectangles do not have the same color format, PlgBlt
converts the source rectangle to match the destination rectangle.

Chapter 6 Bitmaps 97

Not all devices support the PlgBlt function. For more information, see the description of
the RC_BITBLT raster capability in the GetDeviceCaps function.

If the source and destination device contexts represent incompatible devices, PlgBlt
returns an error.

Windows 98, Windows 2000: When used in a multi monitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BitBlt, GetDeviceCaps, MaskBlt,
SetStretchBltMode, StretchBlt

SetBitmapDimensionEx
The SetBitmapDimensionEx function assigns preferred dimensions to a bitmap. These
dimensions can be used by applications; however, they are not used by the system.

BOOt: S~'%k\'~Di'~~f¥S1Qt1Ex~t;:, '
, '.IIU1:ttti~h~;it~qp,' It blifldlebttmll'p

t'ntn·~~JM.;·" 11 ~i~lllall>wilft~ in .01:~nimunits:,
,:fnl,irf{~lgJi:j;~~fifl>:ttmap"lie19flt ih "tH-in$&ntts, '
~,st~~;t~$1:Z~ 'j 1I.or,~gina1~h~en's1ofls; "
;j)'{.", .,'

Parameters
hBitmap

[in] Handle to the bitmap. The bitmap cannot be a DIS-section bitmap.

nWidth
[in] Specifies the width, in O.1-millimeter units, of the bitmap.

nHeight
[in] Specifies the height, in O.1-millimeter units, of the bitmap.

/pSize
[out] Pointer to a SIZE structure to receive the previous dimensions of the bitmap.
This pOinter can be NULL.

98 Volume 3 Microsoft Windows GOI

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
An application can retrieve the dimensions assigned to a bitmap with the
SetBitmapDimensionEx function by calling the GetBitmapDimensionEx function.

The bitmap identified by hBitmap cannot be a DIB section, which is a bitmap created by
the CreateDIBSection function. If the bitmap is a DIB section, the
SetBitmapDimensionEx function fails.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, CreateDIBSection, GetBitmapDimensionEx,
SIZE

SetDI BColorTable
The SetDlBColorTable function sets RGB (red, green, blue) color values in a range of
entries in the color table of the DIB that is currently selected into a specified device
context.

UIIiT SetDIRColorTabje(
HOC .tJdc, II h.qndl e.\o DC
oltn IJSt~f'tlndex. l! color table index of ffrstentl"Y
OiliTcEntries, II numher.of color hbl e entries
CONST RbSOUAO >l< pea loFsII a r'ny of co lor table entri

) ;

Parameters
hdc

[in] Specifies a device context. A DiS must be selected into this device context.

uStartlndex
[in] A zero-based color table index that specifies the first color table entry to set.

Chapter 6 Bitmaps 99

cEntries
[in] Specifies the number of color table entries to set.

peolors
[in] Pointer to an array of RGBQUAD structures containing new color information for
the DIS's color table.

Return Values
If the function succeeds, the return value is the number of color table entries that the
function sets.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
This function should be called to set the color table for DISs that use 1 bpp, 4 bpp, or
8 bpp. The BitCount member of a bitmap's associated bitmap information header
structure.

A bitmap information header structure may be one of the following:

Operating system Bitmap information header

Windows NT 3.51 and earlier

Windows NT 4.0 and Windows 95

Windows 2000 and Windows 98

BITMAPINFOHEADER

BITMAPV4HEADER

BITMAPV5HEADER

BITMAPINFOHEADER structure specifies the number of bits per pixel. Device
independent bitmaps with a biBitCount value greater than 8 do not have a color table.

Windows NT 4.0 and Windows 95:The bV4BitCount member of a bitmap's associated
BITMAPV4HEADER structure specifies the number of bits per pixel. Device
independent bitmaps with a bV4BitCount value greater than 8 do not have a color table.

Windows 2000 and Windows 98: The bV5BitCount member of a bitmap's associated
BITMAPV5HEADER structure specifies the number of bits per pixel. Device
independent bitmaps with a bV5BitCount value greater than 8 do not have a color table.

ICM: No color management is performed.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

100 Volume 3 Microsoft Windows GOI

Bitmaps Overview, Bitmap Functions, BITMAPINFOHEADER, CreateDIBSection,
DIBSECTION, GetDIBColorTable, GetObject, RGBQUAD

SetDIBits
The SetDlBits function sets the pixels in a bitmap using the color data found in the
specified DIB.

i nt' Set:nI 81 ts(
,HDC: h(1J;,:;,

<ijRI"!,gA~ ~bmp.,
UUiT' uStirtScan.

. JltHtcScantines •.
> , ,J\ ~ < • >, ,,>. '.: ~ c c.

CQJf$f V.a"IO;~ 1 pv81 ts;
tOltS."!' . BI"(MAPINFU;* 7pbmi •

'Unf"!' f(/Calpf'U$8"
) ~.

Parameters
hdc

11 ~andte toDG .'
" ' • '~ • <

t/·trandle totfit;I1HfjY;.
,/1 sta~tifl9 scan 1 ine •.

"11 numbe~of •. $canVlJes
IlarrayofbHma.p'bi ts
II. hitl1\ap data ';;; ;.
IItyp;,:.ofcolor indexes

[in] Handle to a device context.

hbmp
[in] Handle to the bitmap that is to be altered using the color data from the specified
DIB.

uStartScan
[in] Specifies the starting scan line for the device-independent color data in the array
pointed to by the /pvBits parameter.

cScanLines
[in] Specifies the number of scan lines found in the array containing device
independent color data.

/pvBits
[in] Pointer to the DIB color data, stored as an array of bytes. The format of the bitmap
values depends on the biBitCount member of the BITMAPINFO structure pointed to
by the /pbmi parameter.

/pbmi
[in] Pointer to a BITMAPINFO structure that contains information about the DIB.

fuC%rUse
[in] Specifies whether the bmiColors member of the BITMAPINFO structure was
provided and, if so, whether bmiColors contains explicit red, green, blue (RGB)
values or palette indexes. The fuC%rUse parameter must be one of the following
values:

Chapter 6 Bitmaps 101

Value Meaning

The color table consists of an array of 16-bit indexes into
the logical palette of the device context identified by the
hdc parameter.

Return Values

The color table is provided and contains literal RGB
values.

If the function succeeds, the return value is the number of scan lines copied.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetlastError.

Remarks
Optimal bitmap drawing speed is obtained when the bitmap bits are indexes into the
system palette.

Applications can retrieve the system palette colors and indexes by calling the
GetSystemPaletteEntries function. After the colors and indexes are retrieved, the
application can create the DIB. For more information, see System Palette.

The device context identified by the hdc parameter is used only if the
DIS_PAL_COLORS constant is set for the fuC%rUse parameter; otherwise it is ignored.

The bitmap identified by the hbmp parameter must not be selected into a device context
when the application calls this function.

The scan lines must be aligned on a DWORD except for RLE-compressed bitmaps.

The origin for bottom-up DIBs is the lower-left corner of the bitmap; the origin for top
down DIBs is the upper-left corner of the bitmap.

ICM: Color management is performed. If the specified BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the color profile of the current device
context is used as the source color space profile. If the BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the sRGB color space is used. If the
specified BITMAPINFO structure is BITMAPV4HEADER or BITMAPV5HEADER, the
color space profile associated with the bitmap is used as the source color space.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.1ib.

102 Volume 3 Microsoft Windows GOI

Bitmaps Overview, Bitmap Functions, BITMAPINFO, GetDlBits,
GetSystemPaletteEntries

SetDIBitsToDevice
The SetDlBitsToDevice function sets the pixels in the specified rectangle on the device
that is associated with the destination device context using color data from a DIB .

Windows 98 and Windows 2000: SetDlBitsToDevice has been extended to allow a
JPEG or PNG image to be passed as the source image.

iii$; :~~rti1t~1 .. tJ~iice\·'
.·.HI¢.:ntf¢I:·J •

.. >i",l!X~~~h.

·.~PSJ.II{)1D. * Ypva1f'Sh .
:~, tp~;i':" aitfllAllfll.fO· * 1~b1Jfj;.
, ":UfHT ,:·,ue:d16ruie ...

~:}:y';::: .~,:"; (l' J+:'

Parameters
hdc

[in] Handle to the device context.

XDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

YOest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

dwWidth
[in] Specifies the width, in logical units, of the DIB.

dwHeight
[in] Specifies the height, in logical units, of the DIB.

XSrc
[in] Specifies the x-coordinate, in logical units, of the lower-left corner of the DIB.

Chapter 6 Bitmaps 103

YSrc
[in] Specifies the y-coordinate, in logical units, of the lower-left corner of the DIS.

uStartScan
[in] Specifies the starting scan line in the DIS.

cScanLines
[in] Specifies the number of DIS scan lines contained in the array pOinted to by the
/pvBits parameter.

/pvBits
[in] Pointer to DIS color data stored as an array of bytes. For more information, see
the following Remarks section.

/pbmi
[in] Pointer to a BITMAPINFO structure that contains information about the DIS.

fuCa/arUse
[in] Specifies whether the bmiColors member of the BITMAPINFO structure contains
explicit red, green, blue (RGS) values or indexes into a palette. For more information,
see the following Remarks section.

The fuCa/arUse parameter must be one of the following values:

Value Meaning

Return Values

The color table consists of an array of 16-bit indexes into
the currently selected logical palette.

The color table contains literal RGS values.

If the function succeeds, the return value is the number of scan lines set.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows 98 and Windows 2000: If the driver cannot support the JPEG or PNG file
image passed to SetDlBitsToDevice, the function will fail and return GDI_ERROR. If
failure does occur, the application must fall back on its own JPEG or PNG support to
decompress the image into a bitmap, and then pass the bitmap to SetDIBitsToDevice.

Remarks
Optimal bitmap drawing speed is obtained when the bitmap bits are indexes into the
system palette.

Applications can retrieve the system palette colors and indexes by calling the
GetSystemPaletteEntries function. After the colors and indexes are retrieved, the
application can create the DIS. For more information about the system palette, see
Ca/ars.

104 Volume 3 Microsoft Windows GOI

The origin of a bottom-up DIB is the lower-left corner of the bitmap; the origin of a top
down DIB is the upper-left corner.

To reduce the amount of memory required to set bits from a large DIB on a device
surface, an application can band the output by repeatedly calling SetDlBitsToDevice,
placing a different portion of the bitmap into the /pvBits array each time. The values of
the uStartScan and cScanLines parameters identify the portion of the bitmap contained
in the /pvBits array.

The SetDIBitsToDevice function returns an error if it is called by a process that is
running in the background while a full-screen MS-DOS session runs in the foreground.

Windows 98, Windows 2000:

• If the biCompression member of BITMAPINFOHEADER is BLJPEG or BLPNG,
/pvBits points to a buffer containing a JPEG or PNG image. The biSizelmage
member of specifies the size of the buffer. The fuC%rUse parameter must be set to
DIB_RGB_COLORS.

• If the bV4Compression member of BITMAPV4HEADER is BLJPEG or BI_PNG,
/pvBits points to a buffer containing a JPEG or PNG image. The bV4Sizeimage
member of BITMAPV4HEADER specifies the size of the buffer. The fuC%rUse
parameter must be set to DIB_RGB_COLORS.

• If the bV5Compression member of BITMAPV5HEADER is BI_JPEG or BI_PNG,
/pvBits points to a buffer containing a JPEG or PNG image. The bV5Sizeimage
member of BITMAPV5HEADER specifies the size of the buffer. The fuC%rUse
parameter must be set to DIB_RGB_COLORS.

• To ensure proper metafile spooling while printing, applications must call the
CHECKJPEGFORMAT or CHECKPNGFORMAT escape to verify that the printer
recognizes the JPEG or PNG image, respectively, before calling SetDlBitsToDevice.

ICM: Color management is performed. If the specified BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the color profile of the current device
context is used as the source color space profile. If the BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the sRGB color space is used. If the
specified BITMAPINFO structure is BITMAPV4HEADER or BITMAPV5HEADER, the
color space profile associated with the bitmap is used as the source color space.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Chapter 6 Bitmaps 105

Bitmaps Overview, Bitmap Functions, BITMAPINFO, GetSystemPaletteEntries,
SetDIBits, StretchDIBits

SetPixel
The SetPixel function sets the pixel at the specified coordinates to the specified color.

Parameters
hde

[in] Handle to the device context.

X
[in] Specifies the x-coordinate, in logical units, of the point to be set.

y
[in] Specifies the y-coordinate, in logical units, of the pOint to be set.

erG%r
[in] Specifies the color to be used to paint the point. To create a COLORREF color
value, use the RGB macro.

Return Values
If the function succeeds, the return value is the RGB value that the function sets the
pixel to. This value may differ from the color specified by erG%r, that occurs when an
exact match for the specified color cannot be found.

If the function fails, the return value is -1.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function fails if the pixel coordinates lie outside of the current clipping region.

Not all devices support the SetPixel function. For more information, see
GetDeviceCaps.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

106 Volume 3 Microsoft Windows GOI

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, COLORREF, GetDeviceCaps, GetPixel, RGB,
SetPixelV

SetPixelV
The SetPixelV function sets the pixel at the specified coordinates to the closest
approximation of the specified color. The point must be in the clipping region and the
visible part of the device surface.

Parameters
hde

[in] Handle to the device context.

X
[in] Specifies the x-coordinate, in logical units, of the point to be set.

y

[in] Specifies the y-coordinate, in logical units, of the point to be set.

erGolor
[in] Specifies the color to be used to paint the point. To create a COLORREF color
value, use the RGB macro.

Return Values
if the function succeeds, the return vaiue is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Not all devices support the SetPixelV function. For more information, see the description
of the RC_BITBL T capability in the GetDeviceCaps function.

SetPixelV is faster than SetPixel because it does not need to return the color value of
the point actually painted.

Chapter 6 Bitmaps 107

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, COLORREF, GetDeviceCaps, RGB, SetPixel

SetStretchBltMode
The SetStretchBltMode function sets the bitmap stretching mode in the specified device
context.

Parameters
hdc

[in] Handle to the device context.

iStretchMode
[in] Specifies the stretching mode. This parameter can be one of the following values:

Value Description

BLACKONWHITE

COLORONCOLOR

Performs a Boolean AND operation using the color
values for the eliminated and existing pixels. If the
bitmap is a monochrome bitmap, this mode
preserves black pixels at the expense of white
pixels.

Deletes the pixels. This mode deletes all eliminated
lines of pixels without trying to preserve their
information.

(continued)

108 Volume 3 Microsoft Windows GOI

(continued)

Value Description

HALFTONE Maps pixels from the source rectangle into blocks of
pixels in the destination rectangle. The average
color over the destination block of pixels
approximates the color of the source pixels.

After setting the HALFTONE stretching mode, an
application must call the setBrushOrgEx function to
set the brush origin. If it fails to do so, brush
misalignment occurs.

This is not supported on Windows 95/98.

STRETCH_ANDSCANS Same as BLACKONWHITE.

STRETCH_DELETESCANS Same as COLORONCOLOR.

STRETCH_HALFTONE Same as HALFTONE.

STRETCH_ORSCANS Same as WHITEONBLACK.

WHITEONBLACK Performs a Boolean OR operation using the color
values for the eliminated and existing pixels. If the
bitmap is a monochrome bitmap, this mode
preserves white pixels at the expense of black
pixels.

Return Values
If the function succeeds, the return value is the previous stretching mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The stretching mode defines how the system combines rows or columns of a bitmap with
existing pixels on a display device when an application calls the Stretch Bit function.

The BLACKONWHITE (STRETCH_ANDSCANS) and WHITEONBLACK
(STRETCH_ORSCANS) modes are typically used to preserve foreground pixels in
monochrome bitmaps. The. COLORONCOLOR (STRETCH_DELETESCANS) mode is
typically used to preserve color in color bitmaps.

The HALFTONE mode is slower and requires more processing of the source image than
the other three modes; but produces higher quality images. Also note that
setBrushOrgEx must be called after setting the HALFTONE mode to avoid brush
misalignment.

Additional stretching modes might also be available depending on the capabilities of the
device driver.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Chapter 6 Bitmaps 109

Bitmaps Overview, Bitmap Functions, GetStretchBltMode, SetBrushOrgEx, StretchBlt

Stretch Bit
The Stretch Bit function copies a bitmap from a source rectangle into a destination
rectangle, stretching or compressing the bitmap to fit the dimensions of the destination
rectangle, if necessary. The system stretches or compresses the bitmap according to the
stretching mode currently set in the destination device context.

Parameters
hdcDest

[in] Handle to the destination device context.

nXOriginDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

n YOriginDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nWidthDest
[in] Specifies the width, in logical units, of the destination rectangle.

110 Volume 3 Microsoft Windows GOI

nHeightDest
[in] Specifies the height, in logical units, of the destination rectangle.

hdcSrc
[in] Handle to the source device context.

nXOriginSrc
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the source
rectangle.

n yC)riginSrc
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nWidthSrc
[in] Specifies the width, in logical units, of the source rectangle.

nHeightSrc
[in] Specifies the height, in logical units, of the source rectangle.

dwRop
[in] Specifies the raster operation to be performed. Raster operation codes define how
the system combines colors in output operations that involve a brush, a source
bitmap, and a destination bitmap.

See BitBlt for a list of common raster operation codes.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
StretchBlt stretches or compresses the source bitmap in memory and then copies the
result to the destination rectangle. The color data for pattern or destination pixels is
merged after the stretching or compression occurs.

When an enhanced metafile is being recorded, an error occurs (and the function returns
FALSE) if the source device context identifies an enhanced-metafile device context.

If the specified raster operation requires a brush, the system uses the brush currently
selected into the destination device context.

The destination coordinates are transformed by using the transformation currently
specified for the destination device context; the source coordinates are transformed by
using the transformation currently specified for the source device context.

If the source transformation has a rotation or shear, an error occurs.

If destination, source, and pattern bitmaps do not have the same color format,
Stretch Bit converts the source and pattern bitmaps to match the destination bitmap.

Chapter 6 Bitmaps 111

If StretchBlt must convert a monochrome bitmap to a color bitmap, it sets white bits (1)
to the background color and black bits (0) to the foreground color. To convert a color
bitmap to a monochrome bitmap, it sets pixels that match the background color to white
(1) and sets all other pixels to black (0). The foreground and background colors of the
device context with color are used.

Stretch Bit creates a mirror image of a bitmap if the signs of the nWidthSrc and
nWidthDest parameters or of the nHeightSrc and nHeightDest parameters differ. If
nWidthSrc and nWidthDest have different signs, the function creates a mirror image of
the bitmap along the x-axis. If nHeightSrc and nHeightDest have different signs, the
function creates a mirror image of the bitmap along the y-axis.

Not all devices support the Stretch Bit function. For more information, see
GetDeviceCaps.

ICM: No color management is performed when a blit operation occurs.

Windows 98, Windows 2000: When used in a multi monitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BitBlt, GetDeviceCaps, MaskBlt, PlgBlt,
SetStretchBltMode

StretchDIBits
The StretchDIBits function copies the color data for a rectangle of pixels in a DIB to the
specified destination rectangle. If the destination rectangle is larger than the source
rectangle, this function stretches the rows and columns of color data to fit the destination
rectangle. If the destination rectangle is smaller than the source rectangle, this function
compresses the rows and columns by using the specified raster operation.

Windows 98 and Windows 2000: StretchDIBits has been extended to allow a JPEG or
PNG image to be passed as the source image.

1nt'StretchDi'jts(

.;:;):;:~:::'.:~~!;~t·:j,; t·:',·,·······

~) ~:~:!:: .. , ..)~
(continued)

112 Volume 3 Microsoft Windows GOI

(continued)

Parameters
hdc

[in] Handle to the destination device context.

XDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

YDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nDestWidth
[in] Specifies the width, in logical units, of the destination rectangle.

nDestHeight
[in] Specifies the height, in logical units, of the destination rectangle.

XSrc
[in] Specifies the x-coordinate, in pixels, of the source rectangle in the DIB.

YSrc
[in] Specifies the y-coordinate, in pixels, of the source rectangle in the DIB.

nSrcWidth
[in] Specifies the width, in pixels, of the source rectangle in the DIB.

nSrcHeight
[in] Specifies the height, in pixels, of the source rectangle in the DIB.

/pBits
[in] Pointer to the DIB bits, which are stored as an array of bytes. For more
information, see the Remarks section.

/pBits/nfo
[in] Pointer to a BITMAPINFO structure that contains information about the DIB.

Chapter 6 Bitmaps 113

iUsage
[in] Specifies whether the bmiColors member of the BITMAPINFO structure was
provided and, if so, whether bmiColors contains explicit red, green, blue (RGB)
values or indexes. The iUsage parameter must be one of the following values:

Value Meaning

The array contains 16-bit indexes into the logical palette
of the source device context.

The color table contains literal RGB values.

For more information, see the Remarks section.

dwRop
[in] Specifies how the source pixels, the destination device context's current brush,
and the destination pixels are to be combined to form the new image. For more
information, see the following Remarks section.

Return Values
If the function succeeds, the return value is the number of scan lines copied.

If the function fails, the return value is GDI_ERROR.

Windows NT/2000: To get extended error information, call GetLastError.

Windows 98IWindows 2000: If the driver cannot support the JPEG or PNG file image
passed to StretchDIBits, the function will fail and return GDLERROR. If failure does
occur, the application must fall back on its own JPEG or PNG support to decompress the
image into a bitmap, and then pass the bitmap to StretchDIBits.

Remarks
The origin of a bottom-up DIB is the bottom-left corner; the origin of a top-down DIB is
the upper-left corner.

StretchDIBits creates a mirror image of a bitmap if the signs of the nSrcWidth and
nDestWidth parameters, or if the nSrcHeight and nDestHeight parameters differ. If
nSrcWidth and nDestWidth have different signs, the function creates a mirror image of
the bitmap along the x-axis. If nSrcHeight and nDestHeight have different signs, the
function creates a mirror image of the bitmap along the y-axis.

Windows 98IWindows 2000: This function allows a JPEG or PNG image to be passed
as the source image. How each parameter is used remains the same, except as follows:

• If the biCompression member of BITMAPINFOHEADER is BLJPEG or BI_PNG,
IpBits pOints to a buffer containing a JPEG or PNG image, respectively. The
biSizelmage member of BITMAPINFOHEADERspecifies the size of the buffer. The
iUsage parameter must be set to DIB_RGB_COLORS. The dwRop parameter must
be set to SRCCOPY.

114 Volume 3 Microsoft Windows GOI

• If the bV4Compression member of BITMAPV4HEADER is BI_JPEG or BLPNG,
/pBits points to a buffer containing a JPEG or PNG image, respectively. The
BITMAPV4HEADER's bV4Sizeimage member specifies the size of the buffer. The
iUsage parameter must be set to DIB_RGB_COLORS. The dwRop parameter must
be set to SRCCOPY.

• If the bV5Compression member of BITMAPV5HEADER is BLJPEG or BLPNG,
/pBits pOints to a buffer containing a JPEG or PNG image, respectively. The
BITMAPV5HEADER's bV5Sizeimage member specifies the size of the buffer. The
iUsage parameter must be set to DIB_RGB_COLORS. The dwRop parameter must
be set to SRCCOPY .

• To ensure proper metafile spooling while printing, applications must call the
CHECKJPEGFORMAT or CHECKPNGFORMAT escape to verify that the printer
recognizes the JPEG or PNG image, respectively, before calling StretchDIBits.

ICM: Color management is performed. If the specified BITMAPINFO's bmiHeader does
not contain BITMAPV4HEADER or BITMAPV5HEADER, the color profile of the current
device context is used as the source color space profile. If it does not have a color
profile, the sRGB space is used. If the specified BITMAPINFO's bmiHeader contains
BITMAPV4HEADER or BITMAPV5HEADER, the color space profile specified in the
bitmap header is used as the source of color space profile.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BITMAPINFO, SetMapMode,
SetStretchBltMode

TransparentBlt
The TransparentBlt function performs a bit-block transfer of the color data
corresponding to a rectangle of pixels from the specified source device context into a
destination device context.

:BOGL: Tr-anspirrelitp;H;(' , ' ,.,' " ';';,;, ,;,::,.:.",;:~;'"~,,,,-,~-

.. :2 .::~::::::::{.·~fiE~~;~:~!:~:~~~!~~t~1ti.'

Parameters
hdcDest

[in] Handle to the destination device context.

nXOriginDest.

Chapter 6 Bitmaps 115

[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

n YOriginDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nWidthDest
[in] Specifies the width, in logical units, of the destination rectangle.

hHeightDest
[in] Handle to the height, in logical units, of the destination rectangle.

hdcSrc
[in] Handle to the source device context.

nXOriginSrc
[in] Specifies the x-coordinate, in logical units, of the source rectangle.

n YOriginSrc
[in] Specifies the y-coordinate, in logical units, of the source rectangle.

nWidthSrc
[in] Specifies the width, in logical units, of the source rectangle.

nHeightSrc
[in] Specifies the height, in logical units, of the source rectangle.

crTransparent
[in] The RGB color in the source bitmap to treat as transparent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Windows NT/2000: To get extended error information, call GetLastError.

116 Volume 3 Microsoft Windows GOI

Remarks
The TransparentBlt function supports 1;1.11 formats of source bitmaps. However, for
32 bpp bitmaps, it just copies the alpha"value over. Use AlphaBlend to specify 32 bits
per-pixel bitmaps with transparency.

If the source and destination rectangles are not the same size, the source bitmap is
stretched to match the destination rectangle. When the SetStretchBltMode function is
used, the iStretchMode modes of BLACKONWHITE and WHITEONBLACK are
converted to COLORONCOLOR for the TransparentBlt function.

The destination device context specifies the transformation type for the destination
coordinates. The source device context specifies the transformation type for the source
coordinates.

TransparentBlt does not mirror a bitmap if either the width or height, of either the
source or destination, is negative.

Windows 98IWindows 2000: When used in a multimonitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Included as a resource in msimg32.dll.

Bitmaps Overview, Bitmap Functions, AlphaBlend, SetStretchBltMode

Bitmap Structures

BITMAP
The BITMAP structure defines the type, width, height, color format, and bit values of a
bitmap.

Chapter 6 Bitmaps 117

WORD ·bniBltsPiXel:
LP1(oi'PbmBHs;

1 BlTMAP • *PBlTMAP:.··

Members
bmType

Specifies the bitmap type. This member must be zero.

bmWidth
Specifies the width, in pixels, of the bitmap. The width must be greater than zero.

bmHeight
Specifies the height, in pixels, of the bitmap. The height must be greater than zero.

bmWidthBytes
Specifies the number of bytes in each scan line. This value must be divisible by two,
because the system assumes that the bit values of a bitmap form an array that is
word aligned.

bmPlanes
Specifies the count of color planes.

bmBitsPixel
Specifies the number of bits required to indicate the color of a pixel.

bmBits
Pointer to the location of the bit values for the bitmap. The bmBits member must be a
long pointer to an array of character (1-byte) values.

Remarks
The bitmap formats currently used are monochrome and color. The monochrome bitmap
uses a one-bit, one-plane format. Each scan is a multiple of 32 bits.

Scans are organized as follows for a monochrome bitmap of height n:

The pixels on a monochrome device are either black or white. If the corresponding bit in
the bitmap is 1, the pixel is set to the foreground color; if the corresponding bit in the
bitmap is zero, the pixel is set to the background color.

All devices that have the RC_BITBL T device capability support bitmaps. For more
information, see GetDeviceCaps.

Each device has a unique color format. To transfer a bitmap from one device to another,
use the GetDIBits and SetDIBits functions.

118 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, CreateBitmaplndirect, GetObject

BITMAPCOREHEADER
The BITMAPCOREHEADER structure contains information about the dimensions and
color format of a DIB.

t'y.pe~ef;sir:u¢t,t!lg8ITMAPOOR~HEAi}ER . L

'DWOR:O'.i.'~;:.wSi'·i.'.':.zdet· ' .. ·hl : .• ,,',:] : ,WORD'....... - " :' .. '

Y·~i~~~~i*tt;'lt~A;' .• ~HE~£R;;
Members
bcSize

Specifies the number of bytes required by the structure.

bcWidth
Specifies the width of the bitmap, in pixels.

bcHeight
Specifies the height of the bitmap, in pixels.

bcPlanes
Specifies the number of planes for the target device. This value must be 1.

bcBitCount
Specifies the number of bits-per-pixel. This value must be 1, 4, 8, or 24.

Remarks
The BITMAPCOREINFO structure combines the BITMAPCOREHEADER structure and
a color table to provide a complete definition of the dimensions and colors of a DIB. For
more information about specifying a DIB, see BITMAPCOREINFO.

Chapter 6 Bitmaps 119

An application should use the information stored in the bcSize member to locate the
color table in a BITMAPCOREINFO structure, using a method such as the following:

pC.olor = (LPBYTE)p~itniapCorelnfto +
. ..., (W9.RP) rpB{tmapC~reJ nfo~>6:csJ ze n

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREINFO

BITMAPCOREINFO
The BITMAPCOREINFO structure defines the dimensions and color information for
a DIB.

Members
bmciHeader

Specifies a 61TMAPCOREHEADER structure that contains information about the
dimensions and color format of a DIB.

bmciColors
Specifies an array of RGBTRIPLE structures that define the colors in the bitmap.

Remarks
A DIB consists of two parts: a BITMAPCOREINFO structure describing the dimensions
and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits
in the array are packed together, but each scan line must be padded with zeros to end
on a LONG boundary. The origin of the bitmap is the lower-left corner.

The bcBitCount member of the BITMAPCOREHEADER structure determines the
number of bits that define each pixel and the maximum number of colors in the bitmap.
This member can be one of the following values:

120 Volume 3 Microsoft Windows GOI

Value

1

4

8

24

Meaning

The bitmap is monochrome, and the bmciColors member contains two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the bmciColors table; if
the bit is set, the pixel has the color of the second entry in the table.

The bitmap has a maximum of 16 colors, and the bmciColors member
contains up to 16 entries. Each pixel in the bitmap is represented by a 4-bit
index into the color table. For example, if the first byte in the bitmap is Ox1 F,
the byte represents two pixels. The first pixel contains the color in the
second table entry, and the second pixel contains the color in the sixteenth
table entry.

The bitmap has a maximum of 256 colors, and the bmciColors member
contains up to 256 entries. In this case, each byte in the array represents a
single pixel.

The bitmap has a maximum of 224 colors, and the bmciColors member is
NULL. Each three-byte triplet in the bitmap array represents the relative
intensities of blue, green, and red, respectively, for a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an array of
16-bit unsigned integers that specify indexes into the currently realized logical palette,
instead of explicit RGB values. In this case, an application using the bitmap must call the
DIB functions (CreateDIBitmap, CreateDIBPatternBrush, and CreateDIBSection) with
the iUsage parameter set to DIB_PAl_COlORS.

Note The bmciColors member should not contain palette indexes if the bitmap is to be
stored in a file or transferred to another application. Unless the application has exclusive
use and control of the bitmap, the bitmap color table should contain explicit RGB values.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREHEADER, CreateDIBitmap,
CreateDIBPatternBrush, CreateDIBSection, RGBTRIPLE

Chapter 6 Bitmaps 121

BITMAPFILEHEADER
The BITMAPFILEHEADER structure contains information about the type, size, and
layout of a file that contains a DIB.

Members
bfType

Specifies the file type; must be BM.

bfSize
Specifies the size, in bytes, of the bitmap file.

bfReserved1
Reserved; must be zero.

bfReserved2
Reserved; must be zero.

bfOffBits
Specifies the offset, in bytes, from the BITMAPFILEHEADER structure to the bitmap
bits.

Remarks
A BITMAPINFO or BITMAPCOREINFO structure immediately follows the
BITMAPFILEHEADER structure in the DIB file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREINFO, BITMAPINFO

122 Volume 3 Microsoft Windows GOI

BITMAPINFO
The BITMAPINFO structure defines the dimensions and color information for a Win32
DIB.

~~i~!ml:5~ii~~1:~
Members
bmiHeader

Specifies a bitmap information header structure that contains information about the
dimensions of color format. The bitmap information header structure is version
related:

Windows NT 3.51 and earlier: Use the BITMAPINFOHEADER structure.

Windows 95 and Windows NT 4.0: Use the BITMAPV4HEADER structure.

Windows 98 and Windows 2000: Use the BITMAPV5HEADER structure.

bmiColors
The bmiColors member contains one of the following:

• An array of RGBQUAD. The elements of the array that make up the color table.

• An array of 16-bit unsigned integers that specifies indexes into the currently
realized logical palette. This use of bmiColors is allowed for functions that use
DIBs. When bmiColors elements contain indexes to a realized logical palette, they
must also call the following bitmap functions:

CreateDIBitmap

CreateDIBPatternBrush

CreateDIBSection

The iUsage parameter of CreateDIBSection must be set to DIB_PAL_COLORS.

Platform differences are listed in the following:

Windows NT 3.51 and earlier: Use of the number of entries in the array depends on the
values of the biBitCount and biClrUsed members of the BITMAPINFOHEADER
structure.

Windows 95 and Windows NT 4.0: Use of the number of entries in the array depends
on the values of the bV4BitCount and bV4ClrUsed members of the
BITMAPV4HEADER structure.

Windows 98 and Windows 2000: Use of the number of entries in the array depends on
the values of the bV5BitCount and bV5ClrUsed members of the BITMAPV5HEADER
structure.

The colors in the bmiColors table appear in order of importance. For more information,
see the Remarks section.

Chapter 6 Bitmaps 123

Remarks
A DIB consists of two distinct parts: a BITMAPINFO structure describing the dimensions
and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits
in the array are packed together, but each scan line must be padded with zeros to end
on a LONG data-type boundary. If the height of the bitmap is positive, the bitmap is a
bottom-up DIB and its origin is the lower-left corner. If the height is negative, the bitmap
is a top-down DIB and its origin is the upper left corner.

A bitmap is packed when the bitmap array immediately follows the BITMAPINFO
header. Packed bitmaps are referenced by a single pOinter. For packed bitmaps, the
ClrUsed member must be set to an even number when using the DIB_PAL_COLORS
mode so that the DIB bitmap array starts on a DWORD boundary.

Note The bmiColors member should not contain palette indexes if the bitmap is to be
stored in a file or transferred to another application.

Unless the application has exclusive use and control of the bitmap, the bitmap color
table should contain explicit RGB values.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, CreateDIBitmap, CreateDIBPatternBrush,
CreateDIBSection, RGBQUAD

BITMAPINFOHEADER
The BITMAPINFOHEADER structure contains information about the dimensions and
color format of a DIB.

Applications developed for Windows NT 4.0 and Windows 95 may use the
BITMAPV4HEADER structure. Applications developed for Windows 2000 and
Windows 98 may use the BITMAPV5HEADER structure for increased functionality.

(continued)

124 Volume 3 Microsoft Windows GOI

(continued)

Members
biSize

Specifies the number of bytes required by the structure.

biWidth
Specifies the width of the bitmap, in pixels.

Windows 98, Windows 2000: If biCompression is BLJPEG or BLPNG, the
biWidth member specifies the width of the decompressed JPEG or PNG image file,
respectively.

biHeight
Specifies the height of the bitmap, in pixels. If biHeight is positive, the bitmap is a
bottom-up DIB and its origin is the lower-left corner. If biHeight is negative, the
bitmap is a top-down DIB and its origin is the upper-left corner.

If biHeight is negative, indicating a top-down DIB, biCompression must be either
BI_RGB or BLBITFIELDS. Top-down DIBs cannot be compressed.

Windows 98, Windows 2000: If biCompression is BLJPEG or BLPNG, the
biHeight member specifies the height of the decompressed JPEG or PNG image file,
respectively.

biPlanes
Specifies the number of planes for the target device. This value must be set to 1.

biBitCount
Specifies the number of bits-per-pixel. The biBitCount member of the
BITMAPINFOHEADER structure determines the number of bits that define each pixel
and the maximum number of colors in the bitmap. This member must be one of the
following values:

Value

o

1

Meaning

Windows 98, Windows 2000: The number of bits per pixel is specified
or implied by the JPEG or PNG format.

The bitmap is monochrome, and the bmiColors member contains two
entries. Each bit in the bitmap array represents a pixel. If the bit is
clear, the pixel is displayed with the color of the first entry in the
bmiColorstable; if the bit is set, the pixel has the color of the second
entry in the table.

Value

4

8

16

Chapter 6 Bitmaps 125

Meaning

The bitmap has a maximum of 16 colors, and the bmiColors member
contains up to 16 entries. Each pixel in the bitmap is represented by a
4-bit index into the color table. For example, if the first byte in the
bitmap is Ox1 F, the byte represents two pixels. The first pixel contains
the color in the second table entry, and the second pixel contains the
color in the sixteenth table entry.

The bitmap has a maximum of 256 colors, and the bmiColors member
contains up to 256 entries. In this case, each byte in the array
represents a single pixel.

The bitmap has a maximum of 2A16 colors. If the biCompression
member of the BITMAPINFOHEADER is BLRGB, the bmiColors
member is NULL. Each WORD in the bitmap array represents a single
pixel. The relative intensities of red, green, and blue are represented
with five bits for each color component. The value for blue is in the least
significant five bits, followed by five bits each for green and red. The
most significant bit is not used. The bmiColors color table is used for
optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPINFOHEADER.

If the biCompression member of the BITMAPINFOHEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components, respectively,
of each pixel. Each WORD in the bitmap array represents a single
pixel.

Windows NTlWindows 2000: When the biCompression member is
BLBITFIELDS, bits set in each DWORD mask must be contiguous and
should not overlap the bits of another mask. All the bits in the pixel do
not have to be used.

Windows 95/98: When the biCompression member is BI_BITFIELDS,
the system supports only the following 16bpp color masks: A 5-5-5 16-
bit image, where the blue mask is Ox001 F, the green mask is Ox03EO,
and the red mask is Ox7COO; and a 5-6-5 16-bit image, where the blue
mask is Ox001 F, the green mask is Ox07EO, and the red mask is
OxF800.

24 The bitmap has a maximum of 2A24 colors, and the bmiColors
member is NULL. Each 3-byte triplet in the bitmap array represents the
relative intensities of blue, green, and red, respectively, for a pixel. The
bmiColors color table is used for optimizing colors used on palette
based devices, and must contain the number of entries specified by the
biClrUsed member of the BITMAPINFOHEADER.

(continued)

126 Volume 3 Microsoft Windows GOI

(continued)

Value

32

Meaning

The bitmap has a maximum of 2A32 colors. If the biCompression
member of the BITMAPINFOHEADER is BI_RGB, the bmiColors
member is NULL. Each DWORD in the bitmap array represents the
relative intensities of blue, green, and red, respectively, for a pixel. The
high byte in each DWORD is not used. The bmiColors color table is used
for optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPINFOHEADER.
If the biCompression member of the BITMAPINFOHEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components, respectively, of
each pixel. Each DWORD in the bitmap array represents a single pixel.
Windows NT/2000: When the biCompression member is
B,-BITFIELDS, bits set in each DWORD mask must be contiguous and
should not overlap the bits of another mask. A" the bits in the pixel do not
need to be used.

Windows 95/98: When the biCompression member is BI_BITFIELDS,
the system supports only the following 32-bpp color mask: The blue mask
is OxOOOOOOFF, the green mask is OxOOOOFFOO, and the red mask is
OxOOFFOOOO.

biCompression
Specifies the type of compression for a compressed bottom-up bitmap (top-down
DIBs cannot be compressed). This member can be one of the following values:
Value Description

B'-RGB An uncompressed format.
BI_RLE8 A run-length encoded (RLE) format for bitmaps with 8 bpp. The

compression format is a 2-byte format consisting of a count byte
followed by a byte containing a color index. For more information,
see Bitmap Compression.

B'-RLE4 An RLE format for bitmaps with 4 bpp. The compression format is
a 2-byte format consisting of a count byte followed by two word
length color indexes. For more information, see Bitmap
Compression.

BI_BITFIELDS Specifies that the bitmap is not compressed and that the color
table consists of three DWORD color masks that specify the red,
green, and blue components, respectively, of each pixel. This is
valid when used with 16-bpp and 32-bpp bitmaps.

BI_JPEG Windows 98, Windows 2000: Indicates that the image is a JPEG
image.

BI_PNG Windows 98, Windows 2000: Indicates that the image is a PNG
image.

Chapter 6 Bitmaps 127

biSizelmage
Specifies the size, in bytes, of the image. This may be set to zero for SLRGS
bitmaps.

Windows 98, Windows 2000: If biCompression is SLJPEG or SI_PNG,
biSizelmage indicates the size of the JPEG or PNG image buffer, respectively.

biXPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the
bitmap. An application can use this value to select a bitmap from a resource group
that best matches the characteristics of the current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

biClrUsed
Specifies the number of color indexes in the color table that are actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member for the compression mode
specified by biCompression.

If biClrUsed is nonzero and the biBitCount member is less than 16, the biClrUsed
member specifies the actual number of colors the graphics engine or device driver
accesses. If biBitCount is 16 or greater, the biClrUsed member specifies the size of
the color table used to optimize performance of the system color palettes. If biBitCount
equals 16 or 32, the optimal color palette starts immediately following the three
DWORD masks.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array immediately
follows the BITMAPINFO header and is referenced by a single pointer), the
biClrUsed member must be either zero or the actual size of the color table.

biClrlmportant
Specifies the number of color indexes that are required for displaying the bitmap. If
this value is zero, all colors are required.

Remarks
The BITMAPINFO structure combines the BITMAPINFOHEADER structure and a color
table to provide a complete definition of the dimensions and colors of a DIS. For more
information about DISs, see Device-Independent Bitmaps and BITMAPINFO.

An application should use the information stored in the biSize member to locate the
color table in a BITMAPINFO structure, as follows:

IitioJ:br.';:'{ttl?srnj~jH:tI111'Plrif6·+ ",' ..: , •
.,:' (WO~IJ) CPB1.a;pI~'f,o~·>~ln.i He.a'rlel'. biSi te)1; ,

Windows 98, Windows 2000: The BITMAPINFOHEADER structure is extended to
allow a JPEG or PNG image to be passed as the source image to StretchDIBits.

128 Volume 3 Microsoft Windows GDI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

BITMAPV4HEADER
The BITMAPV4HEADER structure is the Windows 95 and Windows NT 4.0 bitmap
information header file. Applications written for earlier versions of Windows NT should
continue to use BITMAPINFOHEADER. Applications written for Windows 2000 and
Windows 98 can use BITMAPV5HEADER.

tj.pef(€fstrUc.t { •
.. ,:~~OR:fJ::·· ." 'I1V;4S i ze;' '.'

~(},!1G. .bv4Wi9th;
,;t~~G' "·i/V4Mefght·;·.
;:~:~~'i, " .' 6V4Pl'\l1e~;'

'. ,'~bRIl;' ;;bV4B ttco.unt:;
,.:~Wd,Rq'· ,..bV4Compn~ssj.on ;',

JWPRO. . '" 'bY4~i2eIma{ie;
, L(ff:l~::.> ' bV4l(P:eJA,PerMetel'l
;LO~G bV4)'PelsPerMe'ter; "
SWORD bV4clrUsed; .. .' .
ftWORD . bV4Clr fmportant; .. '
'hW.olm bV4Red~as.k;;
. uw·Mo,' ,····bv"49r~eilMask:; ",
;i1wOR;p·b.V4in ueMask;

"(l.WORIl ,.'.' .. bv4Alptrilt<!ast<;·
" . &WORIJ MI4C$T' , . , , .; . YPe::

Clfl<YlTRIPLE; bV4Eh<jPoitit$~
11140RL1
DWDRDbV4Gal1)l!l<lGreen;
DWPRD bVlI-GammaBlue;

LBlTMAPv4HEA~R. '''''PSlTMAPV4HEAOER;'

Members
bV4Size

Chapter 6 Bitmaps 129

Specifies the number of bytes required by the structure. Applications should use this
member to determine which bitmap information header structure is being used.

bV4Width
Specifies the width of the bitmap, in pixels.

Windows 98, Windows 2000: If bV4Compression is BI_JPEG or BI_PNG,
bV4Width specifies the width of the JPEG or PNG image in pixels.

bV4Height
Specifies the height of the bitmap, in pixels. If bV4Height is positive, the bitmap is a
bottom-up DIB and its origin is the lower-left corner. If bV4Height is negative, the
bitmap is a top-down DIB and its origin is the upper-left corner.

If bV4Height is negative, indicating a top-down DIB, bV4Compression must be
either BLRGB or BLBITFIELDS. Top-down DIBs cannot be compressed.

Windows 98, Windows 2000: If bV4Compression is BI_JPEG or BI_PNG,
bV4Height specifies the height of the JPEG or PNG image in pixels.

bV4Planes
Specifies the number of planes for the target device. This value must be set to 1.

bV4BitCount
Specifies the number of bits per pixel. The bV4BitCount member of the
BITMAPV4HEADER structure determines the number of bits that define each pixel
and the maximum number of colors in the bitmap. This member must be one of the
following values:

Value Meaning

a

4

8

Windows 98, Windows 2000: The number of bits-per-pixel is
specified or is implied by the JPEG or PNG file format.

The bitmap is monochrome, and the bmiColors member contains
two entries. Each bit in the bitmap array represents a pixel. If the
bit is clear, the pixel is displayed with the color of the first entry in
the bmiColors table; if the bit is set, the pixel has the color of the
second entry in the table.

The bitmap has a maximum of 16 colors, and the bmiColors
member contains up to 16 entries. Each pixel in the bitmap is
represented by a 4-bit index into the color table. For example, if
the first byte in the bitmap is Ox1 F, the byte represents two pixels.
The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

The bitmap has a maximum of 256 colors, and the bmiColors
member contains up to 256 entries. In this case, each byte in the
array represents a single pixel.

(continued)

130 Volume 3 Microsoft Windows GOI

(continued)

Value

16

24

32

bV4Compression

Meaning

The bitmap has a maximum of 21\16 colors. If the
bV4Compression member of the BITMAPINFOHEADER is
BLRGB, the bmiColors member is NULL. Each WORD in the
bitmap array represents a single pixel. The relative intensities of
red, green, and blue are represented with five bits for each color
component. The value for blue is in the least significant five bits,
followed by five bits each for green and red, respectively. The
most significant bit is not used. The bmiColors color table is used
for optimizing colors used on palette-based devices, and must
contain the number of entries specified by the bV4ClrUsed
member of the BITMAPV4HEADER.

If the bV4Compression member of the BITMAPV4HEADER is
BLBITFIELDS, the bmiColors member contains three DWORD
color masks that specify the red, green, and blue components of
each pixel. Each WORD in the bitmap array represents a single
pixel.

The bitmap has a maximum of 21\24 colors, and the bmiColors
member is NULL. Each 3-byte triplet in the bitmap array
represents the relative intensities of blue, green, and red for a
pixel. The bmiColors color table is used for optimizing colors used
on palette-based devices, and must contain the number of entries
specified by the bV4ClrUsed member of the BITMAPV4HEADER.

The bitmap has a maximum of 21\32 colors. If the biCompression
member of the BITMAPV4HEADER is BLRGB, the bmiColors
member is NULL. Each DWORD in the bitmap array represents
the relative intensities of blue, green, and red for a pixel. The high
byte in each DWORD is not used. The bmiColors color table is
used for optimizing colors used on palette-based devices, and
must contain the number of entries specified by the biClrUsed
member of the BITMAPV4HEADER.

If the bV4Compression member of the BITMAPV4HEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD
color masks that specify the red, green, and blue components of
each pixel. Each DWORD in the bitmap array represents a single
pixel.

Specifies the type of compression for a compressed bottom-up bitmap (top-down
DIBs cannot be compressed). This member can be one of the following values:

Value

BLBITFIELDS

BLPNG

bV4Sizeimage

Chapter 6 Bitmaps 131

Description

An uncompressed format.

A run-length encoded (RLE) format for bitmaps with 8 bpp. The
compression format is a 2-byte format consisting of a count byte
followed by a byte containing a color index. For more information,
see Bitmap Compression.

An RLE format for bitmaps with 4 bpp. The compression format is a
2-byte format consisting of a count byte followed by two word-length
color indexes. For more information, see Bitmap Compression.

Specifies that the bitmap is not compressed. The members
bV4RedMask, bV4GreenMask, and bV4BlueMask specify the red,
green, and blue components for each pixel. This is valid when used
with 16-bpp and 32-bpp bitmaps.

Windows 98, Windows 2000: Specifies that the image is
compressed using the JPEG file interchange format. JPEG
compression trades off compression against loss; it can achieve a
compression ratio of 20:1 with little noticeable loss.

Windows 98, Windows 2000: Specifies that the image is
compressed using the PNG file interchange format.

Specifies the size, in bytes, of the image. This may be set to zero for BI_RGB
bitmaps.

Windows 98, Windows 2000: If biCompression is BI_JPEG or BLPNG,
bV4Sizeimage is the size of the JPEG or PNG image buffer.

bV4XPeisPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the
bitmap. An application can use this value to select a bitmap from a resource group
that best matches the characteristics of the current device.

bV4YPeisPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

bV4ClrUsed
Specifies the number of color indexes in the color table that are actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the bV4BitCount member for the compression mode
specified by bV4Compression.

If bV4ClrUsed is nonzero and the bV4BitCount member is less than 16, the
bV4ClrUsed member specifies the actual number of colors the graphics engine or
device driver accesses. If bV4BitCount is 16 or greater, the bV4ClrUsed member
specifies the size of the color table used to optimize performance of the system color
palettes. If bV4BitCount equals 16 or 32, the optimal color palette starts immediately
following the BITMAPV4 HEADER.

132 Volume 3 Microsoft Windows GOI

When the bitmap array immediately follows the BITMAPINFO header, it is a packed
bitmap. Packed bitmaps are referenced by a single pOinter. Packed bitmaps require
that the bV4ClrUsed member be either zero or the actual size of the color table.

bV4Clrimportant
Specifies the number of color indexes that are required for displaying the bitmap. If
this value is zero, all colors are important.

bV4RedMask
Color mask that specifies the red component of each pixel, valid only if
bV4Compression is set to BI_BITFIELDS.

bV4GreenMask
Color mask that specifies the green component of each pixel, valid only if
bV4Compression is set to BI_BITFIELDS.

bV4BlueMask
Color mask that specifies the blue component of each pixel, valid only if
bV4Compression is set to BI_BITFIELDS.

bV4AlphaMask
Color mask that specifies the alpha component of each pixel.

bV4CSType
Specifies the color space of the DIB. The following table lists the value for
bV4CSType:

Value Meaning

This value indicates that endpoints and gamma
values are given in the appropriate fields.

See the LOGCOLORSPACE structure for information that defines a logical color
space.

bV4EndPoints
A CIEXYZTRIPLE structure that specifies the x, y, and z coordinates of the three
colors that correspond to the red, green, and blue endpoints for the logical color
space associated with the bitmap. This member is ignored unless the bV4CSType
member specifies LCS_CALIBRATED_RGB.

Note A color space is a model for representing color numerically in terms of three or
more coordinates. For example, the RGB color space represents colors in terms of
the red, green, and blue coordinates.

bV4GammaRed
Toned response curve for red. This member is ignored unless color values are
calibrated RGB values and bV4CSType is set to LCS_CALIBRATED_RGB. Specified
in 1611.16 format.

bV4GammaGreen
Toned response curve for green. Used if bV4CSType is set to
LCS_CALIBRATED_RGB. Specified as 1611.16 format.

Chapter 6 Bitmaps 133

bV4GammaBlue
Toned response curve for blue. Used if bV4CSType is set to
LCS_CALIBRATED_RGB. Specified as 16"16 format.

Remarks
The BITMAPINFO structure combines the BITMAPV4HEADER structure and a color
table to provide a complete definition of the dimensions and colors of a DIB. For more
information about DIBs, see Device-Independent Bitmaps and BITMAPINFO.

An application should use the information stored in the bV4Size member to locate the
color table in a BITMAPINFO structure, as follows:

Windows 98, Windows 2000: The BITMAPV4HEADER structure is extended to allow a
JPEG or PNG image to be passed as the source image to StretchDIBits.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

BITMAPV5HEADER
The BITMAPV5HEADER structure is the Windows 2000 and Windows 98 bitmap
information header file. The Independent Color Management interface (ICM) 2.0 allows
International Color Consortium (ICC) color profiles to be linked or embedded in DIBs
(DIBs). See Using Structures in leM 2.0 for more information.

Applications written for Windows NT 4.0 and Windows 95 can use the
BITMAPV4HEADER structure. Applications written for earlier versions of Windows NT
should continue to use the BITMAPINFOHEADER structure.

The BITMAPV5HEADER is an extended version of BITMAPINFOHEADER and allows a
JPEG or PNG image to be passed as the source image to StretchDIBits.

(continued)

134 Volume 3 Microsoft Windows GOI

(continued)

Members
bV5Size

Specifies the number of bytes required by the structure. Applications should use this
member to determine which bitmap information header structure is being used.

bV5Width
Specifies the width of the bitmap, in pixels.
If bV5Compression is BI_JPEG or BI_PNG, the bV5Width member specifies the
width of the decompressed JPEG or PNG image in pixels.

bV5Height
Specifies the height of the bitmap, in pixels. If the value of bV5Height is positive, the
bitmap is a bottom-up D!S and its origin is the lower-left corner. !f bV5Height value is
negative, the bitmap is a top-down DIB and its origin is the upper-left corner.

If bV5Height is negative, indicating a top-down DIB, bV5Compression must be
either BI_RGB or BLBITFIELDS. Top-down DIBs cannot be compressed.
If bV5Compression is BI_JPEG or BLPNG, the bV5Height member specifies the
height of the decompressed JPEG or PNG image in pixels.

bV5Planes
Specifies the number of planes for the target device. This value must be set to 1.

bV5BitCount
Specifies the number of bits that define each pixel and the maximum number of colors
in the bitmap.

Chapter 6 Bitmaps 135

This member can be one of the following values:

Value Meaning

o

1

4

8

16

24

The number of bits per pixel is specified or is implied by the JPEG or
PNG file format.

The bitmap is monochrome, and the bmiColors member contains two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear,
the pixel is displayed with the color of the first entry in the bmiColors
color table. If the bit is set, the pixel has the color of the second entry in
the table.

The bitmap has a maximum of 16 colors, and the bmiColors member
contains up to 16 entries. Each pixel in the bitmap is represented by a 4-
bit index into the color table. For example, if the first byte in the bitmap is
Ox1 F, the byte represents two pixels. The first pixel contains the color in
the second table entry, and the second pixel contains the color in the
sixteenth table entry.

The bitmap has a maximum of 256 colors, and the bmiColors member
contains up to 256 entries. In this case, each byte in the array represents
a single pixel.

The bitmap has a maximum of 2"16 colors. If the biCompression
member of the BITMAPV5HEADER structure is BLRGB, the bmiColors
member is NULL. Each WORD in the bitmap array represents a single
pixel. The relative intensities of red, green, and blue are represented with
five bits for each color component. The value for blue is in the least
significant five bits, followed by five bits each for green and red. The most
significant bit is not used. The bmiColors color table is used for
optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPV5HEADER.

If the biCompression member of the BITMAPV5HEADER is
BLBITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components, respectively, of
each pixel. Each WORD in the bitmap array represents a single pixel.

When the biCompression member is BLBITFIELDS, bits set in each
DWORD mask must be contiguous and should not overlap the bits of
another mask. All the bits in the pixel do not need to be used.

The bitmap has a maximum of 2"24 colors, and the bmiColors member
is NULL. Each 3-byte triplet in the bitmap array represents the relative
intensities of blue, green, and red, respectively, for a pixel. The
bmiColors color table is used for optimizing colors used on palette
based devices, and must contain the number of entries specified by the
biClrUsed member of the BITMAPV5HEADER structure.

(continued)

136 Volume 3 Microsoft Windows GOI

(continued)

Value Meaning

32 The bitmap has a maximum of 2A32 colors. If the biCompression
member of the BITMAPV5HEADER is BLRGB, the bmiColors member
is NULL. Each DWORD in the bitmap array represents the relative
intensities of blue, green, and red, respectively, for a pixel. The high byte
in each DWORD is not used. The bmiColors color table is used for
optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPV5HEADER.
If the biCompression member of the BITMAPV5HEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components of each pixel.
Each DWORD in the bitmap array represents a single pixel.

bV5Compression
Specifies that the bitmap is not compressed. The bV5RedMask, bV5GreenMask,
and bV5BlueMask members specify the red, green, and blue components of each
pixel. This is valid when used with 16-bpp and 32-bpp bitmaps. This member can be
one of the following values:

Value Meaning

BLRGB

BLRLES

BLRLE4

BLBITFIELDS

BLJPEG

BLPNG

An uncompressed format.

A run-length encoded (RLE) format for bitmaps with S bpp. The
compression format is a two-byte format consisting of a count
byte followed by a byte containing a color index. If
bV5Compression is BLRGB and the bV5BitCount member is
16, 24, or 32, the bitmap array specifies the actual intensities of
blue, green, and red rather than using color table indexes. For
more information, see Bitmap Compression.

An RLE format for bitmaps with 4 bpp. The compression format
is a two-byte format consisting of a count byte followed by two
word-length color indexes. For more information, see Bitmap
Compression.

Specifies that the bitmap is not compressed and that the color
table consists of three DWORD color masks that specify the red,
green, and blue components of each pixel. Valid when used with
16-bpp and 32-bpp bitmaps.
Specifies that the image is compressed using the JPEG file
Interchange Format. JPEG compression trades off compression
against loss; it can achieve a compression ratio of 20:1 with little
noticeable loss.
Specifies that the image is compressed using the PNG file
Interchange Format.

Chapter 6 Bitmaps 137

bV5Sizeimage
Specifies the size, in bytes, of the image. This may be set to zero for BI_RGB
bitmaps.

If bV5Compression is BLJPEG or BLPNG, bVSizelmage is the size of the JPEG or
PNG image buffer.

bV5XPeisPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the
bitmap. An application can use this value to select a bitmap from a resource group
that best matches the characteristics of the current device.

bV5YPeisPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

bV5ClrUsed
Specifies the number of color indexes in the color table that are actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the bV5BitCount member for the compression mode
specified by bV5Compression.

If bV5ClrUsed is nonzero and bV5iBitCount is less than 16, the bV5ClrUsed
member specifies the actual number of colors the graphics engine or device driver
accesses. If bV5BitCount is 16 or greater, the bV5ClrUsed member specifies the
size of the color table used to optimize performance of the system color palettes. If
bV5BitCount equals 16 or 32, the optimal color palette starts immediately following
the BITMAPV5HEADER. If BV5ClrUsed is nonzero, the color table is used on
palettized devices, and bV5ClrUsed specifies the number of entries.

When the bitmap array immediately follows the BITMAPINFO header, it is a packed
bitmap. Packed bitmaps are referenced by a Single pOinter. Packed bitmaps require
that the bV5ClrUsed member must be either zero or the actual size of the color table.

bV5Clrimportant
Specifies the number of color indexes that are required for displaying the bitmap. If
this value is zero, all colors are required.

bV5RedMask
Color mask that specifies the red component of each pixel, valid only if
bV5Compression is set to BLBITFIELDS.

bV5GreenMask
Color mask that specifies the green component of each pixel, valid only if
bV5Compression is set to BLBITFIELDS.

bV5BlueMask
Color mask that specifies the blue component of each pixel, valid only if
bV5Compression is set to BI_BITFIELDS.

bV5AlphaMask
Color mask that specifies the alpha component of each pixel.

bV5CSType
Specifies the color space of the DIB.

138 Volume 3 Microsoft Windows GOI

The following table specifies the values for bV5CSType:

Value

PROFILE_LINKED

PROFILE_EMBEDDED

Meaning

This value implies that endpoints and
gamma values are given in the appropriate
fields.

Specifies that the bitmap is in sRGB color
space.

This value indicates that the bitmap is in the
system default color space, sRGB.

This value indicates that bV5ProfileData
points to the file name of the profile to use
(gamma and endpoints values are ignored).

This value indicates that bV5ProfileData
points to a memory buffer that contains the
profile to be used (gamma and endpoints
values are ignored).

See the LOGCOLORSPACE structure for information that defines a logical color
space.

bV5EndPoints
A CIEXYZTRIPLE structure that specifies the X-, y-, and z-coordinates of the three
colors that correspond to the red, green, and blue endpoints for the logical color
space associated with the bitmap. This member is ignored unless the bV5CSType
member specifies LCS_CALIBRATED_RGB.

bV5GammaRed
Toned response curve for red. Used if bV5CSType is set to
LCS_CALIBRATED_RGB. Specified in 16A16 format.

bV5GammaGreen
Toned response curve for green. Used if bV5CSType is set to
LCS_CALIBRATED_RGB. Specified in 16A 16 format.

bV5GammaBlue
Toned response curve for blue. Used if bV5CSType is set to
LCS_CALIBRATED_RGB. Specified in 16A16 format.

bV5ProfileSize
Size, in bytes, of embedded profile data.

bV51ntent
Rendering intent for bitmap. This can be one of the following values:

Value Intent ICC name

Absolute
Colorimetric

Graphic Saturation

Proof

Picture

bV5ProfileData

Relative
Colorimetric

Perceptual

Chapter 6 Bitmaps 139

Meaning

Maintains the white point.
Matches the colors to their
nearest color in the destination
gamut.
Maintains saturation. Used for
business charts and other
situations in which undithered
colors are required.
Maintains colorimetric match.
Used for graphic designs and
named colors.
Maintains contrast. Used for
photographs and natural images.

The offset, in bytes, from the beginning of the BITMAPV5HEADER structure to the
start of the profile data. If the profile is embedded, profile data is the actual profile, and
it is linked. (The profile data is the null-terminated file name of the profile.) This cannot
be a Unicode string. It must be composed exclusively of characters from the Windows
character set (code page 1252). These profile members are ignored unless the
bV5CSType member specifies PROFILE_LINKED or PROFILE_EMBEDDED.

bV5Reserved
This member has been reserved for future use. Its value should be set to zero.

Remarks
The BITMAPINFO structure combines the BITMAPV5HEADER structure and a color
table to provide a complete definition of the dimensions and colors of a DIB. For more
information about DIBs, see Device-Independent Bitmaps and BITMAPINFO.

An application should use the information stored in the bV5Size member to locate the
color table in a BITMAPINFO structure, as follows:

peo'! ()r''=,((:{ .. f'STR) pSi tlilacplnfo+
(\!fORO)(pB1tmaplnfo->bmiHeader.biS1ze»);

If bV5Height is negative, indicating a top-down DIB, bV5Compression must be either
BI_RGB or BI_BITFIELDS. Top-down DIBs cannot be compressed.

When a DIB is loaded into memory, the profile data (if present) should follow the color
table, and the bV5ProfileData should provide the offset of the profile data from the
beginning of the BITMAPV5HEADER structure. The value stored in bV5ProfileDate will
be different from the value returned by the sizeof operator given the
BITMAPV5HEADER argument, because bV5ProfileData is the offset in bytes from
thebeginning of the BITMAPV5HEADER structure to the start of the profile data. (Bitmap
bits do not follow the color table in memory). Applications should modify the
bV5ProfileData member after loading the DIB into memory.

140 Volume 3 Microsoft Windows GOI

For packed DIBs, the profile data should follow the bitmap bits similar to the file format.
The bV5ProfileData member should still give the offset of the profile data from the
beginning of the BITMAPV5HEADER.

Applications should access the profile data only when bV5Size equals the size of the
BITMAPB5HEADER and bV5CSType equals PROFILE_EMBEDDED or
PROFILE_LINKED.

If a profile is linked, the path of the profile can be any fully qualified name (including a
network path) that can be opened using the Create File function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

BLENDFUNCTION
The BLENDFUNCTION structure controls blending by specifying the blending functions
for source and destination bitmaps.

:t~~'eaef: •• s:tr:;u~t :.~Bh EN~FW~d:rIGt({ .'.
~ytt .<. . i!:1i:~Mppi;: . .

'·'·g\!TEI3T "dfl' ii; ,.. '

S~~Fe~~::t~n t~~~l1ai ;.:
.;,i.Alpl1.aFi(il"lJat: "

lB,tENiJ~VNtTiof.li '

Members
BlendOp

Specifies the source blend operation. Currently, the only source and destination blend
operation that has been defined is AC_SRC_OVER. For details, see the following
Remarks section.

BlendFlags
Must be zero.

SourceConstantAlpha
Specifies an alpha transparency value to be used on the entire source bitmap. The
SourceConstantAlpha value is combined with any per-pixel alpha values in the
source bitmap. If you set SourceConstantAlpha to 0, it is assumed that your image

Chapter 6 Bitmaps 141

is transparent. Set the SourceConstantAlpha value to 255 (opaque) when you only
want to use per-pixel alpha values.

AlphaFormat
This member controls the way the source and destination bitmaps are interpreted.
AlphaFormat has the following value:

Value

Remarks

Meaning

This flag is set when the bitmap has an Alpha channel (that is,
per-pixel alpha). Note that the APls use premultiplied alpha,
which means that the red, green and blue channel values in
the bitmap must be premultiplied with the alpha channel value.
For example, if the alpha channel value is x, the red, green
and blue channels must be multiplied by x and divided by Oxff
prior to the call.

When the AC_SRC_OVER operation is used, the source bitmap is placed over the
destination bitmap based on the alpha values of the source pixels.

If the source bitmap has no per-pixel alpha value, the blend is based on the
SourceConstantAlpha value, as shown in the following table:

Dst.Red = Src.Red * SourceConstantAlpha +
(1 - SourceConstantAlpha) * Dst.Red

Dst.Green = Src.Green * SourceConstantAlpha +
(1 - SourceConstantAlpha) * Dst.Green

Dst.Blue = Src.Blue * SourceConstantAlpha +
(1 - SourceConstantAlpha) * Dst.Blue

If the source bitmap has per-pixel alpha and the SourceConstantAlpha is not used (that
is, it equals Oxff), the blend is based on the per-pixel alpha, as shown in the following
table:

Dst.Red = Src.Red

Dst.Green = Src.Green

Dst.Blue = Src.Blue

+ (1 - Src.Alpha) * Dst.Red

+ (1 - Src.Alpha) * Dst.Green

+ (1 - Src.Alpha) * Dst.Blue

If the destination bitmap has an alpha channel, then:

Dst.alpha = Src.Alpha + (1 - SrcAlpha) * Dst.Alpha

If the source has per-pixel alpha and the SourceConstantAlpha is used (that is, it is not
Oxff), the source is pre-multiplied by the SourceConstantAlpha and then the blend is
based on the per-pixel alpha. The following tables show this:

142 Volume 3 Microsoft Windows GOI

Src.Red = Src.Red * SourceConstantAlpha;

Src.Green = Src.Green * SourceConstantAlpha;

Src.Blue = Src.Blue * SourceConstantAlpha;

Src.Alpha = Src.Alpha * SourceConstantAlpha;

Dst.Red = Src.Red + (1 - Src.Alpha) * Dst.Red

Dst.Green = Src.Green + (1 - Src.Alpha) * Dst.Green

Dst.Blue = Src.Blue + (1 - Src.Alpha) * Dst.Blue

Dst.Alpha = Src.Alpha + (1 - Src.Alpha) * Dst.Alpha

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures

COLORADJUSTMENT
The COLORADJUSTMENT structure defines the color adjustment values used by the
Stretch Bit and StretchDIBits functions when the stretch mode is HALFTONE. You can
set the color adjustment values by calling the SetColorAdjustment function.

:i;,agC~I1l~IhJU$r!l1_EN'f :{, .,:<.:~, ,

Members
caSize

Specifies the size, in bytes, of the structure.

caFlags

Chapter 6 Bitmaps 143

Specifies how the output image should be prepared. This member may be set to
NULL or any combination of the following values:

Value

calliuminantindex

Meaning

Specifies that a logarithmic function should
be applied to the final density of the output
colors. This will increase the color contrast
when the luminance is low.
Specifies that the negative of the original
image should be displayed.

Specifies the type of standard light source under which the image is viewed. This
member may be set to one of the following values:

Value Meaning

ILLUMINANT _DEVICE_DEFAULT Device's default. Standard used by output
devices.

ILLUMINANT _A Tungsten lamp.

ILLUMINANT _B Noon sunlight.

ILLUMINANT _C NTSC daylight.

ILLUMINANT _D50 Normal print.

ILLUMINANT _D55 Bond paper print.

ILLUMINANT _D65 Standard daylight. Standard for CRTs and
pictures.

ILLUMINANT _D75 Northern daylight.

ILLUMINANT_DAYLIGHT Same as ILLUMINANT_C.

ILLUMINANT _F2 Cool white lamp.

ILLUMINANT _FLUORESCENT Same as ILLUMINANT _F2.

ILLUMINANT _NTSC Same as ILLUMINANT _C.

ILLUMINANT _TUNGSTEN Same as ILLUMINANT_A.

caRedGamma
Specifies the nth power gamma-correction value for the red primary of the source
colors. The value must be in the range from 2500 to 65,000. A value of 10,000 means
no gamma correction.

caGreenGamma

144 Volume 3 Microsoft Windows GOI

Specifies the nth power gamma-correction value for the green primary of the source
colors. The value must be in the range from 2500 to 65,000. A value of 10,000 means
no gamma correction.

caBlueGamma
Specifies the nth power gamma-correction value for the blue primary of the source
colors. The value must be in the range from 2500 to 65,000. A value of 10,000 means
no gamma correction.

caReferenceBlack
Specifies the black reference for the source colors. Any colors that are darker than
this are treated as black. The value must be in the range from 0 to 4000.

caReferenceWhite
Specifies the white reference for the source colors. Any colors that are lighter than
this are treated as white. The value must be in the range from 6000 to 10,000.

caContrast
Specifies the amount of contrast to be applied to the source object. The value must be
in the range from -100 to 100. A value of 0 means no contrast adjustment.

caB rightness
Specifies the amount of brightness to be applied to the source object. The value must
be in the range from -100 to 100. A value of 0 means no brightness adjustment.

caColorfulness
Specifies the amount of colorfulness to be applied to the source object. The value
must be in the range from -100 to 100. A value of 0 means no colorfulness
adjustment.

caRedGreenTint
Specifies the amount of red or green tint adjustment to be applied to the source
object. The value must be in the range from -100 to 100. Positive numbers adjust
towards red and negative numbers adjust towards green. Zero means no tint
adjustment.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, GetColorAdjustment, SetColorAdjustment,
SetStretchBltMode, StretchBlt, StretchDIBits

Chapter 6 Bitmaps 145

DISSECTION
The DIBSECTION structure contains information about a DIB created by calling the
CreateDIBSection function. A DIBSECTION structure includes information about the
bitmap's dimensions, color format, color masks, optional file mapping object, and
optional bit values storage offset. An application can obtain a filled-in DIBSECTION
structure for a given DIB by calling the GetObject function.

Members
dsBm

A BITMAP data structure that contains information about the DIB: its type, its
dimensions, its color capacities, and a pOinter to its bit values.

dsBmih
A bitmap information header structure that contains information about the color format
of the DIB.

A bitmap information header structure may be one of the following:

Operating system Bitmap information header

Windows NT 3.51 and earlier

Windows NT 4.0 and Windows 95

Windows 2000 and Windows 98

dsBitfields

BITMAPINFOHEADER

BITMAPV4HEADER

BITMAPV5HEADER.

Specifies three DWORD color masks for the DIB. This field is only valid when the
BitCount member of the Bitmap Information Header structure has a value greater
than 8. Each color mask indicates the bits within a DWORD that are used to encode
one of the three color channels (red, green, and blue).

dshSection
Contains a handle to the file mapping object that the CreateDIBSection function used
to create the DIB. If CreateDIBSection was called with a NULL value for its hSection
parameter, causing the system to allocate memory for the bitmap, the dshSection
member will be NULL.

dsOffset
Specifies the offset to the bitmap's bit values within the file mapping object referenced
by dshSection. If dshSection is NULL, the dsOffset value has no meaning.

146 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAP, BITMAPINFOHEADER,
CreateDIBSection, GetDIBColorTable, GetObject

GRADIENT _REeT
The GRADIENT_RECT structure specifies the index of two vertices in the pVertex array.
These two vertices form the upper-left and lower-right boundaries of a rectangle.

:I~2:~~~~E21:.l~:i'~;·}';'1~r'lJ!i'~"~~;;~,;" ... ","<'y:,",,"'"'"

Members
UpperLeft

Specifies the upper-left corner of a rectangle.

LowerRight
Specifies the lower-right corner of a rectangle.

Remarks
The GRADIENT _RECT structure contains the values used in the dwMode parameter of
the GradientFili function. For related GradientFili structures, see
GRADIENT_TRIANGLE and TRIVERTEX.

For an example of the use of this structure, see Drawing a Shaded Rectangle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures

Chapter 6 Bitmaps 147

GRADIENT _ TRIANGLE
The GRADIENT_TRIANGLE structure specifies the index of three vertices in the
pVertex array. These three vertices form one triangle.

Members
Vertex1

First point of the triangle where sides intersect.

Vertex2
Second point of the triangle where sides intersect.

Vertex3
Third point of the triangle where sides intersect.

Remarks
The GRADIENT_TRIANGLE structure contains the values used in the dwMode
parameter of the GradientFili function. For related GradientFiII structures, see
GRADIENT _RECT and TRIVERTEX.

For an example of this function, see Drawing a Shaded Triangle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, GradientFiII, GRADIENT _RECT, TRIVERTEX

148 Volume 3 Microsoft Windows GOI

RGBQUAD
The RGBQUAD structure describes a color consisting of relative intensities of red,
green, and blue.

"~~!~;t~;r~·'

Members
rgbBlue

Specifies the intensity of blue in the color.

rgbGreen
Specifies the intensity of green in the color.

rgbRed
Specifies the intensity of red in the color.

rgbReserved
Reserved; must be zero.

Remarks
The bmiColors member of the BITMAPINFO structure consists of an array of
RGBQUAD structures.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPINFO, CreateDIBitmap,
CreateDIBSection, GetDIBits, SetDIBits, SetDIBitsToDevice, StretchDIBits

Chapter 6 Bitmaps 149

RGBTRIPLE
The RGBTRIPLE structure describes a color consisting of relative intensities of red,
green, and blue. The bmciColors member of the BITMAPCOREINFO structure consists
of an array of RGBTRIPLE structures.

Members
rgbtBlue

Specifies the intensity of blue in the color.

rgbtGreen
Specifies the intensity of green in the color.

rgbtRed
Specifies the intensity of red in the color.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREINFO

150 Volume 3 Microsoft Windows GOI

SIZE
The SIZE structure specifies the width and height of a rectangle.

type;deflitruct'tagSlzE { ,'. "
U,ONG'¢it (" '

~~~~~G: ~y; " , 
'i'S'iZE.*PstZE;:j' , 

Members 
ex 

Specifies the rectangle's width. 

ey 
Specifies the rectangle's height. 

Remarks 
The rectangle dimensions stored in this structure may correspond to viewport extents, 
window extents, text extents, bitmap dimensions, or the aspect-ratio filter for some 
extended functions. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in windef.h; include windows.h. 

Bitmaps Overview, Bitmap Structures, GetAspeetRatioFilterEx, 
GetBitmapDimensionEx, GetTextExtentPoint32, GetViewportExtEx, 
GetWindowExtEx, SealeViewportExtEx, SealeWindowExtEx, 
SetBitmapDimensionEx, SetViewportExtEx, SetWindowExtEx 



Chapter 6 Bitmaps 151 

TRIVERTEX 
The TRIVERTEX structure contains color information and position information. 

t:YD'edei"f.:·Sit~lmt;: ~f~LV~TlX:L 

Members 
x 

Specifies the x-coordinate, in logical units, of the upper-left corner of the rectangle. 

y 
Specifies the v-coordinate, in logical units, of the upper-left corner of the rectangle. 

Red 
Indicates color information at the point of x, y. 

Green 
Indicates color information at the point of x, y. 

Blue 
Indicates color information at the point of x, y. 

Alpha 
Indicates color information at the point of x, y. 

Remarks 
In the TRIVERTEX structure, x and y indicate position in the same manner as in the 
POINTL structure contained in the wtypes.h header file. Red, Green, Blue, and Alpha 
members indicate color information at the point x, y. The color information of each 
channel is specified as a value from OxOOOO to OxffOO. This allows higher color resolution 
for an object that has been split into small triangles for display. The TRIVERTEX structure 
contains information needed by the pVertex parameter of GradientFili. For an example 
of the use of this structure, see Drawing a Shaded Triangle and Drawing a Shaded 
Rectangle. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Bitmaps Overview, Bitmap Structures 



152 Volume 3 Microsoft Windows GOI 

Bitmap Macros 

MAKEROP4 
The MAKEROP4 macro creates a quaternary raster operation code for use with the 
MaskBlt function. The macro takes two ternary raster operation codes as input, one for 
the foreground and one for the background, and packs their Boolean operation indexes 
into the high-order word of a 32-bit value. The low-order word of this value will be 
ignored. 

Parameters 
fore 

Specifies a foreground ternary raster operation code. 

back 
Specifies a background ternary raster operation code 

Return Values 
The return value is a DWORD quaternary raster operation code for use with the MaskBlt 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Bitmaps Overview, Bitmap Macros, MaskBlt 



153 

CHAPTER 7 

Brushes 

A brush is a graphics tool that a Win32-based application uses to paint the interior of 
polygons, ellipses, and paths. Drawing applications use brushes to paint shapes; word 
processing applications use brushes to paint rules; computer-aided design (CAD) 
applications use brushes to paint the interiors of cross-section views; and spreadsheet 
applications use brushes to paint the sections of pie charts and the bars in bar graphs. 

About Brushes 
There are two types of brushes: logical and physical. A logical brush is a description of 
the ideal bitmap that an application uses to paint shapes. A physical brush is the actual 
bitmap that a device driver creates based on an application's logical-brush definition. For 
more information about bitmaps, see Bitmaps. 

When an application calls one of the functions that creates a brush, it retrieves a handle 
that identifies a logical brush. When the application passes this handle to the 
SelectObject function, the device driver for the corresponding display or printer creates 
the physical brush. 

Brush Origin 
When an application calls a drawing function to paint a shape, the system positions a 
brush at the start of the paint operation and maps a pixel in the brush bitmap to the client 
area at the window origin, which is the upper-left corner of the window. The coordinates 
of the pixel that the system maps are called the brush origin. The default brush origin is 
located in the upper-left corner of the brush bitmap, at the coordinates (0,0). The system 
then copies the brush across the client area, forming a pattern that is as tall as the 
bitmap. The copy operation continues, row by row, until the entire client area is filled. 
However, the brush pattern is visible only within the boundaries of the specified shape. 

There are instances when the default brush origin should not be used. For example, it 
may be necessary for an application to use the same brush to paint the backgrounds of 
its parent and child windows and blend a child window's background with that of the 
parent window. To do this, the application should reset the brush origin by calling the 
SetBrushOrgEx function and shifting the origin the required number of pixels. (An 
application can retrieve the current brush origin by calling the GetBrushOrgEx function.) 

Figure 7-1 shows a five-pointed star filled by using an application-defined brush. The 
illustration shows a zoomed image of the brush, as well as the location to which it was 
mapped at the beginning of the paint operation. 



154 Volume 3 Microsoft Windows GDI 

The brush origin is mapped 
to the window origin. 

Window origin 

Figure 7-1: Using an application-defined brush to fill a figure. 

Logical Brush Types 
There are four types of logical brushes: solid, stock, hatch, and pattern. These 
brushes are shown in the following illustration. 

Solid brush Hatch brush ~ 

Stock brush P altern brush 

The stock and hatch types each have several predefined brushes. 

The CreateBrushlndirect function creates a logical brush with a specified style, color, 
and pattern. 



Chapter 7 Brushes 155 

Solid Brush 
A solid brush is a logical brush that contains 64 pixels of the same color. An application 
can create a solid logical brush by calling the CreateSolidBrush function, specifying the 
color of the brush required. After creating the solid brush, the application can select it 
into its device context and use it to paint filled shapes. 

Stock Brush 
There are seven predefined logical stock brushes maintained by the graphics device 
interface (GOI). There are also 21 predefined logical stock brushes maintained by the 
window management interface (USER). 

The following rectangles were painted by using the seven predefined stock brushes. 

Black 

Dark gray NUllO 

Gray White 0 
Hollow 0 

An application can retrieve a handle identifying one of the seven stock brushes by calling 
the GetStockObject function, specifying the brush type. 

The 21 stock brushes maintained by the window management interface correspond to 
the colors of window elements such as menus, scroll bars, and buttons. An application 
can obtain a handle identifying one of these brushes by calling the GetSysColorBrush 
function and specifying a system-color value. An application can retrieve the color 
corresponding to a particular window element by calling the GetSysColor function. An 
application can set the color corresponding to a window element by calling the 
SetSysColors function. 

Hatch Brush 
There are six predefined logical hatch brushes maintained by GOI. The following 
rectangles were painted by using the six predefined hatch brushes. 



156 Volume 3 Microsoft Windows GDI 

Backward diagonal Forward diagonal III 
cross. Horizontal Ii 

Diagonal cross II Vertical. 

An application can create a hatch brush by calling the CreateHatchBrush function, 
specifying one of the six hatch styles. 

Pattern Brush 
A pattern (or custom) brush is created from an application-defined bitmap or device
independent bitmap (DIB). The following rectangles were painted by using different 
pattern brushes. 

Pattern 1 ~ 

Pattern 2 

Pattern 3 

To create a logical pattern brush, an application must first create a bitmap. After creating 
the bitmap, the application can create the logical pattern brush by calling the 
CreatePatternBrush or CreateDIBPatternBrushPt function, supplying a handle that 
identifies the bitmap (or DIB). The brushes that appear in the preceding illustration were 
created from monochrome bitmaps. For a description of bitmaps, DIBs, and the functions 
that create them, see Bitmaps. 

Pattern Block Transfer 
The name of the PatBlt function (an abbreviation for pattern block transfer) implies that 
this function simply replicates the brush (or pattern) until it fills a specified rectangle. 
However, the function is actually much more powerful. Before replicating the brush, it 
combines the color data for the pattern with the color data for the existing pix~ls on the 
video display by using a raster operation (ROP). An ROP is a bitwise operation that is 
applied to the bits of color data for the replicated brush and the bits of color data for the 
target rectangle on the display device. There are 256 ROPs; however, the PatBlt 
function recognizes only those that require a pattern and a destination (not those that 
require a source). The following table identifies the most common ROPs. 



Chapter 7 Brushes 157 

ROP Description 

PATCOPY 

PATINVERT 

Copies the pattern to the destination bitmap. 

DSTINVERT 

BLACKNESS 

WHITENESS 

Combines the destination bitmap with the pattern by using the 
Boolean XOR operator. 

Inverts the destination bitmap. 

Turns all output to binary zeroes. 

Turns all output to binary ones. 

For more information, see Raster Operation Codes. 

ICM-Enabled Brush Functions 
Microsoft Windows 98 and Microsoft Windows 2000 have been designed to work with 
Microsoft Image Color Management (ICM). ICM technology ensures that a color image, 
graphic, or text object is rendered as close as possible to its original intent on any 
device, despite differences in imaging technologies and color capabilities between 
devices. Whether you are scanning an image or other graphic on a color scanner, 
downloading it over the Internet, viewing or editing it on the screen, or outputting it to 
paper, film, or other media, ICM 2.0 helps you keep its colors consistent and accurate. 
For more information on ICM, see About Image Color Management Version 2.0. 

The following brush functions are enabled for use with ICM: 

• CreateBrushlndirect 

• CreateDIBPatternBrush 

• CreateDIBPatternBrushPt 

• CreateHatchBrush 

• CreatePatternBrush 

• CreateSolidBrush 

Brush Reference 
Brush Functions 

CreateBrushlndirect 
The CreateBrushlndirect function creates a logical brush that has the specified style, 
color, and pattern. 



158 Volume 3 Microsoft Windows GOI 

Parameters 
Iplb 

[in] Pointer to a LOGBRUSH structure that contains information about the brush. 

Return Values 
If the function succeeds, the return value identifies a logical brush. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A brush is a bitmap that the system uses to paint the interiors of filled shapes. 

After an application creates a brush by calling CreateBrushlndirect, it can select it into 
any device context by calling the SelectObject function. 

A brush created by using a monochrome bitmap (one color plane, one bit per pixel) is 
drawn using the current text and background colors. Pixels represented by a bit set to 0 
are drawn with the current text color; pixels represented by a bit set to 1 are drawn with 
the current background color. 

If the IbStyle member of the LOGBRUSH structure pointed to by Iplb is BS_PATTERN, 
the bitmap pointed to by the IbHatch member of that structure cannot be a DIB section. 
A DIB section is a bitmap created by the CreateDIBSection function. If IbStyle is 
BS_PATTERN and the bitmap is a DIB section, the CreateBrushlndirect function fails. 

When you no longer need the brush, call the DeleteObject function to delete it. 

leM: No color is done at brush creation. However, color management is performed when 
the brush is selected into an ICM-enabled device context. 

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not 
supported. If a larger bitmap is specified, only a portion of the bitmap is used. 

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs 
larger than 8 by 8 pixels. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



Chapter 7 Brushes 159 

Brushes Overview, Brush Functions, CreateDIBSection, DeleteObject, 
GetBrushOrgEx, LOGBRUSH, SelectObject, SetBrushOrgEx 

CreateDIBPatternBrushPt 
The CreateDIBPatternBrushPt function creates a logical brush that has the pattern 
specified by the device-independent bitmap (DIB). 

Parameters 
IpPackedOIB 

[in] Pointer to a packed DIB consisting of a BITMAPINFO structure immediately 
followed by an array of bytes defining the pixels of the bitmap. 

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not 
supported. If a larger bitmap is specified, only a portion of the bitmap is used. 

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs 
larger than 8 by 8 pixels. 

iUsage 
[in] Specifies whether the bmiColors member of the BITMAPINFO structure contains 
a valid color table and, if so, whether the entries in this color table contain explicit red, 
green, blue (RGB) values or palette indices. The iUsage parameter must be one of 
the following values. 

Value Meaning 

Return Values 

A color table is provided and consists of an array of 
16-bit indices into the logical palette of the device 
context into which the brush is to be selected. 

A color table is provided and contains literal RGB 
values. 

If the function succeeds, the return value identifies a logical brush. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 



160 Volume 3 Microsoft Windows GOI 

Remarks 
A brush is a bitmap that the system uses to paint the interiors of filled shapes. 

After an application creates a brush by calling CreateDIBPatternBrushPt, it can select 
that brush into any device context by calling the SelectObject function. 

When you no longer need the brush, call the DeleteObject function to delete it. 

ICM: No color is done at brush creation. However, color management is performed when 
the brush is selected into an ICM-enabled device context. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Brushes Overview, Brush Functions, BITMAPINFO, CreateDIBPatternBrush, 
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, DeleteObject, 
GetBrushOrgEx, SelectObject, SetBrushOrgEx 

CreateHatchBrush 
The CreateHatchBrush function creates a logical brush that has the specified hatch 
pattern and color. 

Parameters 
fnStyle 

[in] Specifies the hatch styie of the brush. This parameter can be one of the foiiowing 
values. 

Value Meaning 

HS_BDIAGONAL 

HS_CROSS 

HS_DIAGCROSS 

45-degree downward left-to-right hatch 

Horizontai and verticai crosshatch 

4S-degree crosshatch 



Chapter 7 Brushes 161 

Value Meaning 

HS_FDIAGONAL 

HS_HORIZONTAL 

HS_ VERTICAL 

45-degree upward left-to-right hatch 

Horizontal hatch 

Vertical hatch 

elrref 
[in] Specifies the foreground color of the brush that is used for the hatches. To create 
a COLORREF color value, use the RGB macro. 

Return Values 
If the function succeeds, the return value identifies a logical brush. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A brush is a bitmap that the system uses to paint the interiors of filled shapes. 

After an application creates a brush by calling CreateHatchBrush, it can select that 
brush into any device context by calling the SelectObject function. 

If an application uses a hatch brush to fill the backgrounds of both a parent and a child 
window with matching color, it may be necessary to set the brush origin before painting 
the background of the child window. You can do this by having your application call the 
SetBrushOrgEx function. Your application can retrieve the current brush origin by 
calling the GetBrushOrgEx function. 

When you no longer need the brush, call the DeleteObject function to delete it. 

ICM: No color is done at brush creation. However, color management is performed when 
the brush is selected into an ICM-enabled device context. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Brushes Overview, Brush Functions, CreateDIBPatternBrush, 
CreateDIBPatternBrushPt, CreatePatternBrush, CreateSolidBrush, DeleteObject, 
GetBrushOrgEx, SelectObject, SetBrushOrgEx, COLORREF, RGB 



162 Volume 3 Microsoft Windows GOI 

CreatePatternBrush 
The CreatePatternBrush function creates a logical brush with the specified bitmap 
pattern. The bitmap can be a DIB section bitmap, which is created by the 
CreateDIBSection function. 

Parameters 
hbmp 

[in] Handle to the bitmap to be used to create the logical brush. 

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not 
supported. If a larger bitmap is specified, only a portion of the bitmap is used. 

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs 
larger than 8 by 8 pixels. 

Return Values 
If the function succeeds, the return value identifies a logical brush. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A pattern brush is a bitmap that the system uses to paint the interiors of filled shapes. 

After an application creates a brush by calling CreatePatternBrush, it can select that 
brush into any device context by calling the SelectObject function. 

You can delete a pattern brush without affecting the associated bitmap by using the 
DeleteObject function. Therefore, you can then use this bitmap to create any number of 
pattern brushes. 

A brush created by using a monochrome (1 bit per pixel) bitmap has the text and 
background colors of the device context to vvhich it is drawn. Pixels represented by a 0 
bit are drawn with the current text color; pixels represented by a 1 bit are drawn with the 
current background color. 

ICM: No color is done at brush creation. However, color management is performed when 
the brush is selected into an ICM-enabled device context. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 



Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Chapter 7 Brushes 163 

Brushes Overview, Brush Functions, CreateBitmap, CreateBitmaplndirect, 
CreateCompatibleBitmap, CreateDIBPatternBrush, CreateDIBPatternBrushPt, 
CreateDIBSection, CreateHatchBrush, DeleteObject, GetBrushOrgEx, LoadBitmap, 
SelectObject, SetBrushOrg Ex 

CreateSolidBrush 
The CreateSolidBrush function creates a logical brush that has the specified solid color. 

$RpS~:e~ea.~~soHd&rusn( . 
"CD:!..oORREFerCo4or If brush color value 

};". .... . 

Parameters 
crC%r 

[in] Specifies the color of the brush. To create a COLORREF color value, use the 
RGB macro. 

Return Values 
If the function succeeds, the return value identifies a logical brush. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A solid brush is a bitmap that the system uses to paint the interiors of filled shapes. 

After an application creates a brush by calling CreateSolidBrush, it can select that 
brush into any device context by calling the SelectObject function. 

ICM: No color is done at brush creation. However, color management is performed when 
the brush is selected into an leM-enabled device context. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



164 Volume 3 Microsoft Windows GOI 

Brushes Overview, Brush Functions, CreateDIBPatternBrush, 
CreateDIBPatternBrushPt, CreateHatchBrush, CreatePatternBrush, DeleteObject, 
SelectObject, COLORREF, RGB 

GetBrushOrgEx 
The GetBrushOrgEx function retrieves the current brush origin for the specified device 
context. This function replaces the GetBrushOrg function. 

J300LiG~t&rjJsMfl:9t:X(\ 
::;H~~;Jritc. " .... 't~h'aridl~; tuoe", ,,' ' 
.;;i;PPIJ1NT't~pi' ;l{1;J)9r4i)n~!es'~fj}r'fgil1 
t~~~':;~fL + 'f r·, 

Parameters 
hdc 

[in] Handle to the device context. 
/ppt '. 

[out] Pointer to a POINT structure that receives the brush origin, in device 
coordinates. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A brush is a bitmap that the system uses to paint the interiors of filled shapes. 

The brush origin is a set of coordinates with values between ° and 7, specifying the 
location of one pixel in the bitmap. The default brush origin coordinates are (0,0). For 
horizontal coordinates, the value ° corresponds to the leftmost column of pixels; the 
vaiue 7 corresponds to the rightmost column. For vertical coordinates, the value ° 
corresponds to the uppermost row of pixels; the value 7 corresponds to the lowermost 
row. When the system positions the brush at the start of any painting operation, it maps 
the origin of the brush to the location in the window's client area specified by the brush 
origin. For example, if the origin is set to (2,3), the system maps the origin of the brush 
(0,0) to the iocation (2,3) on the window's client area. 



Chapter 7 Brushes 165 

If an application uses a brush to fill the backgrounds of both a parent and a child window 
with matching colors, it may be necessary to set the brush origin after painting the parent 
window but before painting the child window. 

Windows NT/2000: The system automatically tracks the origin of all window-managed 
device contexts and adjusts their brushes as necessary to maintain an alignment of 
patterns on the surface. 

Windows 95/98: Automatic tracking of the brush origin is not supported. Applications 
must use the UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align 
the brush before using it. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Brushes Overview, Brush Functions, POINT, SelectObject, SetBrushOrgEx, 
UnrealizeObject 

GetSysColorBrush 
The GetSysColorBrush function retrieves a handle identifying a logical brush that 
corresponds to the specified color index. 

1nt:l7'ihdex .. 

Parameters 
nlndex 

[in] Specifies a color index. This value corresponds to the color used to paint one of 
the 21 window elements. 

Return Values 
The return value identifies a logical brush. 



166 Volume 3 Microsoft Windows GOI 

Remarks 
A brush is a bitmap that the system uses to paint the interiors of filled shapes. An 
application can retrieve the current system colors by calling the GetSysColor function. 
An application can set the current system colors by calling the SetSysColors function. 

An application must not register a window class for a window using a system brush. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Brushes Overview, Brush Functions, GetSysColor, SetSysColors 

PatBlt 
The PatBlt function paints the specified rectangle using the brush that is currently 
selected into the specified device context. The brush color and the surface color or 
colors are combined by using the specified raster operation. 

800l·.··:Pata1.t·c 
·}f~~¥0.~·.· 
·l~tnX~fjft..* -Co(}rd oifupper -l~f1:· 
.tllt>nYLe{t., •. y -c()~H'dof."· blJype r-left 

··1"!t$···rtiJid~h~·. ./ [wi dtlii.ofi'ecta"ngJe 
·.i~t.f1ft~(dfJt/ /1·heightPf:r;edtangl~ 

•• f)Ifl)~D·d!ilRop."-II.rast.er: •.• ppehatl~~.~qde 
h 

Parameters 
hdc 

[in] Handle to the device context. 

nXLeft 
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the rectangle 
to be filled. 

nYLeft 
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the rectangle 
to be filled. 

nWidth 
[in] Specifies the width, in logical units, of the rectangle. 



Chapter 7 Brushes 167 

nHeight 
[in] Specifies the height, in logical units, of the rectangle. 

dwRop 
[in] Specifies the raster operation code. This code can be one of the following values. 
Value Meaning 

PATCOPY 

PATINVERT 

DSTINVERT 
BLACKNESS 

WHITENESS 

Return Values 

Copies the specified pattern into the destination bitmap. 
Combines the colors of the specified pattern with the colors 
of the destination rectangle by using the Boolean XOR 
operator. 
Inverts the destination rectangle. 
Fills the destination rectangle using the color associated with 
index 0 in the physical palette. (This color is black for the 
default physical palette.) 
Fills the destination rectangle using the color associated with 
index 1 in the physical palette. (This color is white for the 
default physical palette.) 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The values of the dwRop parameter for this function are a limited subset of the full 256 
ternary raster-operation codes; in particular, an operation code that refers to a source 
rectangle cannot be used. 

Not all devices support the PatBlt function. For more information, see the description of 
the RC_BITBL T capability in the GetDeviceCaps function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Brushes Overview, Brush Functions, GetDeviceCaps 



168 Volume 3 Microsoft Windows GOI 

SetBrushOrgEx 
The SetBrushOrgEx function sets the brush origin that GDI assigns to the next brush an 
application selects into the specified device context. 

Parameters 
hdc 

[in] Handle to the device context. 

nXOrg 
[in] Specifies the x-coordinate, in device units, of the new brush origin. If this value is 
greater than the brush width, its value is reduced using the modulus operator (nXOrg 
mod brush width). 

nYOrg 
[in] Specifies the y-coordinate, in device units, of the new brush origin. If this value is 
greater than the brush height, its value is reduced using the modulus operator (nYOrg 
mod brush height). 

Ippt 
[out] Pointer to a POINT structure that receives the previous brush origin. 

This parameter can be NULL if the previous brush origin is not required. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A brush is a bitmap that the system uses to paint the interiors of filled shapes. 

The brush origin is a pair of coordinates specifying the location of one pixel in the 
bitmap. The default brush origin coordinates are (0,0). For horizontal coordinates, the 
value 0 corresponds to the leftmost column of pixels; the width corresponds to the 
rightmost column. For vertical coordinates, the value 0 corresponds to the uppermost 
row of pixels; the height corresponds to the lowermost row. 



Chapter 7 Brushes 169 

The system automatically tracks the origin of all window-managed device contexts and 
adjusts their brushes as necessary to maintain an alignment of patterns on the surface. 
The brush origin that is set with this call is relative to the upper-left corner of the client 
area. 

An application should call SetBrushOrgEx after setting the bitmap stretching mode to 
HALFTONE by using SetStretchBltMode. This must be done to avoid brush 
misalignment. 

Windows NT/2000: The system automatically tracks the origin of all window-managed 
device contexts and adjusts their brushes as necessary to maintain an alignment of 
patterns on the surface. 

Windows 95/98: Automatic tracking of the brush origin is not supported. Applications 
must use the UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align 
the brush before using it. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Brushes Overview, Brush Functions, GetBrushOrgEx, POINT, SelectObject, 
SetStretchBltMode, UnrealizeObject 

Brush Structures 

LOGBRUSH 
The LOGBRUSH structure defines the style, color, and pattern of a physical brush. It is 
used by the CreateBrushlndirect and ExtCreatePen functions. 



170 Volume 3 Microsoft Windows GOI 

Members 
IbStyle 

Specifies the brush style. The IbStyle member must be one of the following styles. 

Value 

BS_DIBPATTERN 

BS_0IBPATTERN8X8 

BS_DIBPATTERNPT 

BS_HATCHED 

BS_HOLLOW 

BS_NULL 

BS_PATTERN 

BS_PATTERN8X8 

BS_SOLID 

IbColor 

Meaning 

A pattern brush defined by a device-independent bitmap 
(DIB) specification. If IbStyle is BS_DIBPATTERN, the 
IbHatch member contains a handle to a packed DIB. For 
more information, see discussion in IbHatch. 

Windows 95: Creating brushes from bitmaps or DIBs 
larger than 8 by 8 pixels is not supported. If a larger 
bitmap is specified, only a portion of the bitmap is used. 

Same as BS_OIBPATTERN. 

A pattern brush defined by a device-independent bitmap 
(OIB) specification. If IbStyle is BS_DIBPATTERNPT, 
the IbHatch member contains a pOinter to a packed OIB. 
For more information, see discussion in IbHatch. 

Hatched brush. 

Hollow brush. 

Same as BS_HOLLOW. 

Pattern brush defined by a memory bitmap. 

Same as BS_PATTERN. 

Solid brush. 

Specifies the color in which the brush is to be drawn. If IbStyle is the BS_HOLLOW or 
BS_PATTERN style, IbColor is ignored. 

If IbStyle is BS_DIBPATTERN or BS_DIBPATTERNPT, the low-order word of 
IbColor specifies whether the bmiColors members of the BITMAPINFO structure 
contain explicit red, green, blue (RGB) values or indices into the currently realized 
logical palette. The IbColor member must be one of the following values. 

Value Meaning 

The color table consists of an array of 16-bit indices into 
the currently realized logical palette. 

The color table contains literal RGB values. 

If IbStyle is BS_HATCHED or BS_SOLlD, Ibeolor is a COLORREF color value. To 
create a COLORREF color value, use the RGB macro. 



Chapter 7 Brushes 171 

IbHatch 
Specifies a hatch style. The meaning depends on the brush style defined by IbStyle. 

If IbStyle is BS_DIBPATTERN, the IbHatch member contains a handle to a packed 
DIB. To obtain this handle, an application calls the GlobalAlioc function with 
GMEM_MOVEABLE (or LocalAlioc with LMEM_MOVEABLE) to allocate a block of 
memory and then fills the memory with the packed DIB. A packed DIB consists of a 
BITMAPINFO structure immediately followed by the array of bytes that define the 
pixels of the bitmap. 

If IbStyle is BS_DIBPATTERNPT, the IbHatch member contains a pointer to a 
packed DIB. The pOinter derives from the memory block created by LocalAlioc with 
LMEM_FIXED set or by GlobalAlioc with GMEM_FIXED set, or it is the pOinter 
returned by a call like LocalLock (handle_to_the_dib). A packed DIB consists of a 
BITMAPINFO structure immediately followed by the array of bytes that define the 
pixels of the bitmap. 

If IbStyle is BS_HATCHED, the IbHatch member specifies the orientation of the lines 
used to create the hatch. It can be one of the following values. 

Value 

HS_BDIAGONAL 

HS_CROSS 

HS_DIAGCROSS 

HS_FDIAGONAL 

HS_HORIZONT AL 

HS_ VERTICAL 

Meaning 

A 45-degree upward, left-to-right hatch 

Horizontal and vertical cross-hatch 

45-degree crosshatch 

A 45-degree downward, left-to-right hatch 

Horizontal hatch 

Vertical hatch 

If IbStyle is BS_PATTERN, IbHatch is a handle to the bitmap that defines the 
pattern. The bitmap cannot be a DIB section bitmap, which is created by the 
CreateDIBSection function. 

If IbStyle is BS_SOLID or BS_HOLLOW, IbHatch is ignored. 

Remarks 
Although IbColor controls the foreground color of a hatch brush, the SetBkMode and 
SetBkColor functions control the background color. 

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not 
supported. If a larger bitmap is specified, only a portion of the bitmap is used. 

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs 
larger than 8 by 8 pixels. 



172 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 

Brushes Overview, Brush Structures, BITMAPINFO, CreateBrushlndirect, 
CreateDIBSection, ExtCreatePen, LOGBRUSH32, SetBkColor, SetBkMode, 
COLORREF, RGB 

LOGBRUSH32 
The LOGBRUSH32 structure defines the style, color, and pattern of a physical brush. It 
is similar to LOGBRUSH, but it is used to maintain compatibility between 32-bit 
platforms and 64-bit platforms when we record the metafile record on one platform and 
then play it on another. Thus, it is only used in EMRCREATEBRUSHINDIRECT. If the 
code will only be on one platform, LOG BRUSH is sufficient. 

Members 
IbStyle 

Specifies the brush style. The IbStyle member must be one of the following styles. 

Value 

BS_DIBPATTERN8X8 

Meaning 

A pattern brush defined by a device-independent 
bitmap (DIB) specification. If IbStyle is 
BS_DIBPATTERN, the IbHatch member contains a 
handle to a packed DIB. For more information, see 
discussion in IbHatch. 

Same as BS_DIBPATTERN. 



Value 

BS_OIBPATTERNPT 

BS_HATCHEO 

BS_HOLLOW 

BS_NULL 

BS_PATTERN 

BS_PATTERN8X8 

BS_SOLIO 

IbColor 

Chapter 7 Brushes 173 

Meaning 

A pattern brush defined by a device-independent 
bitmap (OIB) specification. If IbStyle is 
BS_OIBPATTERNPT, the IbHatch member contains a 
pOinter to a packed OIB. For more information, see 
discussion in IbHatch. 

Hatched brush. 

Hollow brush. 

Same as BS_HOLLOW. 

Pattern brush defined by a memory bitmap. 

Same as BS_PATTERN. 

Solid brush. 

Specifies the color in which the brush is to be drawn. If IbStyle is the BS_HOLLOW or 
BS_PATTERN style, IbColor is ignored. 

If IbStyle is BS_OIBPATTERN or BS_OIBPATTERNPT, the low-order word of 
IbColor specifies whether the bmiColors members of the BITMAPINFO structure 
contain explicit red, green, blue (RGB) values or indices into the currently realized 
logical palette. The IbColor member must be one of the following values. 

Value Meaning 

The color table consists of an array of 16-bit indices into 
the currently realized logical palette. 

The color table contains literal RGB values. 

If IbStyle is BS_HATCHEO or BS_SOLlO, IbColor is a COLORREF color value. To 
create a COLORREF color value, use the RGB macro. 

IbHatch 
Specifies a hatch style. The meaning depends on the brush style defined by IbStyle. 

If IbStyle is BS_OIBPATTERN, the IbHatch member contains a handle to a packed 
OIB. To obtain this handle, an application calls the GlobalAlloc function with 
GMEM_MOVEABLE (or LocalAllocwith LMEM_MOVEABLE) to allocate a block of 

brmemory and then fills the memory with the packed OIB. A packed OIB consists of a 
BITMAPINFO structure immediately followed by the array of bytes that define the 
pixels of the bitmap. 

If IbStyle is BS_OIBPATTERNPT, the IbHatch member contains a pOinter to a 
packed OIB. The pointer derives from the memory block created by LocalAlloc with 
LMEM_FIXEO set or by GlobalAlloc with GMEM_FIXEO set, or it is the pointer 
returned by a call like LocalLock (handle_to_the_dib). A packed O,B consists of a 
BITMAPINFO structure immediately followed by the array of bytes that define the 
pixels of the bitmap. 



174 Volume 3 Microsoft Windows GOI 

If IbStyle is BS_HATCHED, the IbHatch member specifies the orientation of the lines 
used to create the hatch. It can be one of the following values. 

Value 

HS_BDIAGONAL 

HS_CROSS 

HS_DIAGCROSS 

HS_FDIAGONAL 

HS_HORIZONTAL 

HS_ VERTICAL 

Meaning 

A 45-degree upward, left-to-right hatch 

Horizontal and vertical cross-hatch 

45-degree crosshatch 

A 45-degree downward, left-to-right hatch 

Horizontal hatch 

Vertical hatch 

If IbStyle is BS_PATTERN, IbHatch is a handle to the bitmap that defines the 
pattern. The bitmap cannot be a DIB section bitmap, which is created by the 
CreateDIBSection function. 

If IbStyle is BS_SOLID or BS_HOLLOW, IbHatch is ignored. 

Remarks 
Although Ibeolor controls the foreground color of a hatch brush, the SetBkMode and 
SetBkColor functions control the background color. 

Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels. 

Windows NT/2000: Requires Windows 2000 or later. 
Windows 95/98: Not supported. 
Windows CE: Not supported. 
Header: Declared in wingdLh; include windows.h. 

Brushes Overview, Brush Structures, BITMAPINFO, CreateDIBSection, 
EMRCREATEBRUSHINDIRECT, LOGBRUSH, SetBkColor, SetBkMode, 
COLORREF, RGB 



CHAPTER 8 

Clipping 

About Clipping 
Clipping is the process of limiting output to a region or path within the client area of an 
application's window. 

175 

Clipping is used by Win32-based applications in a variety of ways. Word processing and 
spreadsheet applications clip keyboard input to keep it from appearing in the margins of 
a page or spreadsheet. Computer-aided design (CAD) and drawing applications clip 
graphics output to keep it from overwriting the edges of a drawing or picture. 

A clipping region is a region with edges that are either straight lines or curves. A clip path 
is a region with edges that are straight lines, Bezier curves, or combinations of both. For 
more information about regions, see Regions. For more information about paths, see 
Paths. 

Clipping Regions 
A clipping region is one of the graphic objects that an application can select into a device 
context (DC). It is typically rectangular. Some device contexts provide a predefined or 
default clipping region while others do not. For example, if you obtain a device context 
handle from the BeginPaint function, the DC contains a predefined rectangular clipping 
region that corresponds to the invalid rectangle that requires repainting. However, when 
you obtain a device context handle by calling the GetDC function with a NULL hWnd 
parameter, or by calling the CreateDC function, the DC does not contain a default 
clipping region. For more information about device contexts returned by the BeginPaint 
function, see Painting and Drawing. For more information about device contexts 
returned by the CreateDC and GetDC functions, see Device Contexts. 

Applications can perform a variety of operations on clipping regions. Some of these 
operations require a handle identifying the region and some do not. For example, an 
application can perform the following operations directly on a device context's clipping 
region: 

• Determine whether graphics output appears within the region's borders by passing 
coordinates of the corresponding line, arc, bitmap, text, or filled shape to the 
PtVisible function. 

• Determine whether part of the client area intersects a region by calling the 
RectVisible function. 

• Move the existing region by a specified offset by calling the OffsetClipRgn function. 



176 Volume 3 Microsoft Windows GOI 

• Exclude a rectangular part of the client area from the current clipping region by calling 
the ExcludeClipRect function. 

• Combine a rectangular part of the client area with the current clipping region by calling 
the IntersectClipRect function. 

After obtaining a handle identifying the clipping region, an application can perform any 
operation that is common with regions, such as: 

• Combining a copy of the current clipping region with a second region by calling the 
CombineRgn function. 

• Compare a copy of the current clipping region to a second region by calling the 
EqualRgn function. 

• Determine whether a point lies within the interior of a copy of the current clipping 
region by calling the PtlnRegion function. 

Clip Paths 
Like a clipping region, a clip path is another graphics object that an application can 
select into a device context. Unlike a clipping region, a clip path is always created by an 
application and it is used for clipping to one or more irregular shapes. For example, an 
application can use the lines and curves that form the outlines of characters in a string of 
text to define a clip path. 

To create a clip path, it's first necessary to create a path that describes the required 
irregular shape. Paths are created by calling the appropriate graphical device interface 
(GDI) drawing functions after calling the BeginPath function and before calling the 
EndPath function. This collection of functions is called a path bracket. For more 
information about paths and path brackets, see Paths. 

After the path is created, it can be converted to a clip path by calling the SelectClipPath 
function, identifying a device context, and specifying a usage mode. The usage mode 
determines how the system combines the new clip path with the device context's original 
clipping region. The following table describes the usage modes: 

Mode Description 

RGN_COPY 

RGN_DIFF 

The clip path includes the intersection (overlapping areas) of the 
device context's clipping region and the current path. 

The clip path is the current path. 

The clip path includes the device context's clipping region with any 
intersecting parts of the current path excluded. 

The clip path includes the union (combined areas) of the device 
context's clipping region and the current path. 

The clip path includes the union of the device context's clipping 
region and the current path but excludes the intersection. 



Clipping Reference 

Clipping Functions 

ExcludeClipRect 

Chapter 8 Clipping 177 

The ExcludeClipRect function creates a new clipping region that consists of the existing 
clipping region minus the specified rectangle. 

Parameters 
hdc 

[in] Handle to the device context. 

nLeftRect 
[in] Specifies the logical x-coordinate of the upper-left corner of the rectangle. 

nTopRect 
[in] Specifies the logical y-coordinate of the upper-left corner of the rectangle. 

nRightRect 
[in] Specifies the logical x-coordinate of the lower-right corner of the rectangle. 

nBottomRect 
[in] Specifies the logical y-coordinate of the lower-right corner of the rectangle. 

Return Values 
The return value specifies the new clipping region's complexity; it can be one of the 
following values: 

Value 

NULLREGION 

SIMPLEREGION 

COMPLEXREGION 

ERROR 

Meaning 

Region is empty. 

Region is a single rectangle. 

Region is more than one rectangle. 

No region was created. 



178 Volume 3 Microsoft Windows GOI 

Remarks 
The lower and right edges of the specified rectangle are not excluded from the clipping 
region. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, IntersectClipRect 

ExtSelectClipRgn 
The ExtSelectClipRgn function combines the specified region with the current clipping 
region by using the specified mode. 

tnt:£xtSe:lectCUpRgn(-····~,--
.. ~'.'.' ;~~ .h.d.~,~ ., . ' ... ,-'.'. , .. ".k 

:HRG" Mgh;: 
;tnt;\ :fhHO,de' 

Parameters 
hdc 

[in) Handle to the device context. 

hrgn 
[in) Handle to the region to be selected. This handle can only be NULL when the 
RGN_COPY mode is specified. 

fnMode 
[in) Specifies the operation to be performed. It must be one of the following values: 



Value 

Return Values 

Chapter 8 Clipping 179 

Meaning 

The new clipping region combines the overlapping areas of 
the current clipping region and the region identified by hrgn. 
The new clipping region is a copy of the region identified by 
hrgn. This is identical to SelectClipRgn. If the region 
identified by hrgn is NULL, the new clipping region is the 
default clipping region (the default clipping region is a null 
region). 
The new clipping region combines the areas of the current 
clipping region with those areas excluded from the region 
identified by hrgn. 
The new clipping region combines the current clipping region 
and the region identified by hrgn. 
The new clipping region combines the current clipping region 
and the region identified by hrgn but excludes any 
overlapping areas. 

The return value specifies the new clipping region's complexity; it can be one of the 
following values: 

Value Meaning 

NULLREGION 
SIMPLEREGION 
COMPLEXREGION 

ERROR 

Remarks 

Region is empty. 
Region is a single rectangle. 
Region is more than one rectangle. 

An error occurred. 

If an error occurs when this function is called, the previous clipping region for the 
specified device context is not affected. 

The ExtSelectClipRgn function assumes that the coordinates for the specified region 
are specified in device units. 

Only a copy of the region identified by the hrgn parameter is used. The region itself can 
be reused after this call or it can be deleted. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, SelectClipRgn 



180 Volume 3 Microsoft Windows GOI 

GetClipBox 
The GetClipBox function retrieves the dimensions of the tightest bounding rectangle 
thatcan be drawn around the current visible area on the device. The visible area is 
defined by the current clipping region or clip path, as well as any overlapping windows. 

Parameters 
hde 

[in] Handle to the device context. 

/pre 
[out] Pointer to a RECT structure that is to receive the rectangle dimensions. 

Return Values 
If the function succeeds, the return value specifies the clipping box's complexity and can 
be one of the following values: 

Value Meaning 

NULLREGION 

SIMPLEREGION 

COMPLEXREGION 

ERROR 

Region is empty. 

Region is a single rectangle. 

Region is more than one rectangle. 

An error occurred. 

GetClipBox returns logical coordinates based on the given device context. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, RECT 



Chapter 8 Clipping 181 

GetClipRgn 
The GetClipRgn function retrieves a handle identifying the current application-defined 
clipping region for the specified device context. 

Parameters 
hdc 

[in] Handle to the device context. 

hrgn 
[in] Handle to an existing region before the function is called. After the function 
returns, this parameter is a handle to a copy of the current clipping region. 

Return Values 
If the function succeeds and there is no clipping region for the given device context, the 
return value is zero. If the function succeeds and there is a clipping region for the given 
device context, the return value is 1. If an error occurs, the return value is -1. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application-defined clipping region is a clipping region identified by 
the SelectClipRgn function. It is not a clipping region created when the application calls 
the BeginPaint function. 

If the function succeeds, the hrgn parameter is a handle to a copy of the current clipping 
region. Subsequent changes to this copy will not affect the current clipping region. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, BeginPaint, SelectClipRgn 



182 Volume 3 Microsoft Windows GOI 

GetMetaRgn 
The GetMetaRgn function retrieves the current metaregion for the specified device 
context. 

;[~j'II;tt~:t~"t~~;~l~~,~Jt . 
........ :....... ,;,;,,", /., . .. .. .:.: :.· .. 0.·;· .'. ,'.' ":.·.i., .. :.·,;·: 
.I.. :.~ , .{. :. ,,:".; > 

Parameters 
hdc 

[in] Handle to the device context. 

hrgn 
[in] Handle to an existing region before the function is called. After the function 
returns, this parameter is a handle to a copy of the current metaregion. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
If the function succeeds, hrgn is a handle to a copy of the current metaregion. 
Subsequent changes to this copy will not affect the current metaregion. 

The current clipping region of a device context is defined by the intersection of its 
clipping region and its metaregion. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, SetMetaRgn 



Chapter 8 Clipping 183 

GetRandomRgn 
The GetRandomRgn function copies the system clipping region of a specified device 
context to a specific region. 

Parameters 
hdc 

[in] Handle to the device context. 

hrgn 
[in] Handle to a region. Before the function is called, this identifies an existing region. 
After the function returns, this identifies a copy of the current system region. The old 
region identified by hrgn is overwritten. 

iNurn 
[in] This parameter must be SYSRGN. 

Return Values 
If the function succeeds, the return value is 1. If the function fails, the return value is -1. 
If the region to be retrieved is NULL, the return value is O. 

Remarks 
When using the SYSRGN flag, note that the system clipping region might not be current 
because of window movements. Nonetheless, it is safe to retrieve and use the system 
clipping region within the BeginPaintlEndPaint bracket during WM_PAINT processing. 
In this case, the system region is the intersection of the update region and the current 
visible area of the window. Any window movement following the return of 
GetRandomRgn and before EndPaint will result in a new WM_PAINT message. Any 
other use of the SYSRGN flag may result in painting errors in your application. 

In Windows NT/2000, the region returned is in screen coordinates. In Windows 95/98, 
the region returned is in window coordinates. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



184 Volume 3 Microsoft Windows GOI 

Regions Overview, Region Functions, BeginPaint, EndPaint, ExtSelectClipRgn, 
GetClipRgn, GetClipBox, GetRegionData, OffsetRgn 

IntersectClipRect 
The IntersectClipRect function creates a new clipping region from the intersection of 
the current clipping region and the specified rectangle. 

Parameters 
hdc 

[in] Handle to the device context. 

nLeftRect 
[in] Specifies the logical x-coordinate of the upper-left corner of the rectangle. 

nTopRect 
[in] Specifies the logical y-coordinate of the upper-left corner of the rectangle. 

nRightRect 
[in] Specifies the logical x-coordinate of the lower-right corner of the rectangle. 

nBottomRect 
[in] Specifies the logical y-coordinate of the lower-right corner of the rectangle. 

Return Values 
The return value specifies the new clipping region's type and can be one of the following 
values. 

Value 

NULLREGION 

SIMPLEREGION 

COMPLEXREGION 

ERROR 

Meaning 

Region is empty. 

Region is a single rectangle. 

Region is more than one rectangle. 

An error occurred. (The current clipping region is unaffected.) 



Chapter 8 Clipping 185 

Remarks 
The lower and rightmost edges of the given rectangle are excluded from the clipping 
region. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, ExcludeClipRect 

OffsetClipRgn 
The OffsetClipRgn function moves the clipping region of a device context by the 
specified offsets. 

,.:~::.;, 

Parameters 
hdc 

[in] Handle to the device context. 

nXOffset 
[in] Specifies the number of logical units to move left or right. 

nYOffset 
[in] Specifies the number of logical units to move up or down. 

Return Values 
The return value specifies the new region'S complexity and can be one of the following 
values. 

Value Meaning 

NULLREGION 

SIMPLEREGION 

COMPLEXREGION 

ERROR 

Region is empty. 

Region is a single rectangle. 

Region is more than one rectangle. 

An error occurred. (The current clipping region is unaffected.) 



186 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, SelectClipRgn 

PtVisible 
The PtVisible function indicates whether the specified point is within the clipping region 
of a device context. 

Parameters 
hdc 

[in] Handle to the device context. 

X 
[in] Specifies the logical x-coordinate of the point. 

y 
[in] Specifies the logical y-coordinate of the point. 

Return Values 
If the specified point is within the clipping region of the device context, the return value is 
nonzero. 

If the specified point is not within the clipping region of the device context, the return 
value is zero. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, RectVisible 

RectVisible 

Chapter 8 Clipping 187 

The RectVisible function determines whether any part of the specified rectangle lies 
within the clipping region of a device context. 

:~1TI1iJ:"j~l~~~~ 
:}::<"~ ;"}."::1<~·~'<~~.:::.'·'" ~ ~ .~~ ~~ .. ~"" .. \.>:: 

Parameters 
hde 

[in] Handle to the device context. 

Ipre 
[in] Pointer to a RECT structure that contains the logical coordinates of the specified 
rectangle. 

Return Values 
If some portion of the specified rectangle lies within the clipping region, the return value 
is nonzero. 

If no portion of the specified rectangle lies within the clipping region, the return value is 
zero. 



188 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, CreateRectRgn, PtVisible, RECT, 
SelectClipRgn . 

SelectCIi pPath 
The SelectClipPath function selects the current path as a clipping region for a device 
context, combining the new region with any existing clipping region by using the 
specified mode. 

Parameters 
hdc 

[in] Handle to the device context of the path. 

iMode 
[in] Specifies the way to use the path. This parameter can be one of the following 
values. 

Value Meaning 

RGN_AND The new clipping region includes the intersection (overlapping areas) 
of the current clipping region and the current path. . 

RGN_COPY The new clipping region is the current path. 

RGN_DIFF The new clipping region includes the areas of the current clipping 
region with those of the current path excluded. 

RGN_OR The new clipping region includes the union (combined areas) of the 
current clipping region and the current path. 

RGN_XOR The new clipping region includes the union of the current clipping 
region and the current path but without the overlapping areas. 



Chapter 8 Clipping 189 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NTIWindows 2000: To get extended error Information, call GetLastError. 
GetLastError may return one of the following error codes: 

ERROR_CAN_NOT _COMPLETE 
ERROR_INVALlD_PARAMETER 
ERROR_NOT_ENOUGH_MEMORY 

Remarks 
The device context identified by the hdc parameter must contain a closed path. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, BeginPath, EndPath 

SelectClipRgn 
The SelectClipRgn function selects a region as the current clipping region for the 
specified device context. 

:i'~t ~el;etCitpRgli:t·, ;::~:' • 

" ',j::~~'~~~~1,ljr~:~~~1::~:;~~10~' 
. .... :.:. ..... " .. : ..... 

Parameters 
hdc 

[in] Handle to the device context. 

hrgn 
[in] Handle to the region to be selected. 

"" "'. ':t:.' 



190 Volume 3 Microsoft Windows GOI 

Return Values 
The return value specifies the region's complexity and can be one of the following 
values. 

Value 

NULLREGION 

SIMPLEREGION 

COMPLEXREGION 

ERROR 

Meaning 

Region is empty. 

Region is a single rectangle. 

Region is more than one rectangle. 

An error occurred. (The previous clipping region is unaffected.) 

Windows NTlWindows 2000: To get extended error Information, call GetLastError. 

Remarks 
Only a copy of the selected region is used. The region itself can be selected for any 
number of other device contexts or it can be deleted. 

The SelectClipRgn function assumes that the coordinates for a region are specified in 
device units. 

To remove a device-context's clipping region, specify a NULL region handle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.1ib. 

Clipping Overview, Clipping Functions, ExtSelectClipRgn 



Chapter 8 Clipping 191 

SetMetaRgn 
The SetMetaRgn function intersects the current clipping region for the specified device 
context with the current metaregion and saves the combined region as the new 
metaregion for the specified device context. The clipping region is reset to a null region. 

Parameters 
hdc 

[in] Handle to the device context. 

Return Values 
The return value specifies the new clipping region's complexity and can be one of the 
following values. 

Value Meaning 

NULLREGION 

SIMPLEREGION 

COMPLEXREGION 

ERROR 

Remarks 

Region is empty. 

Region is a single rectangle. 

Region is more than one rectangle. 

An error occurred. (The previous clipping region is unaffected.) 

The current clipping region of a device context is defined by the intersection of its 
clipping region and its metaregion. 

The SetMetaRgn function should only be called after an application's original device 
context was saved by calling the SaveDC function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Clipping Overview, Clipping Functions, GetMetaRgn, SaveDC 





CHAPTER 9 

Colors 

Color is an important element in the pictures and images generated by Win32-based 
applications. This overview describes how Win32-based applications can manage and 
use colors with pens, brushes, text, or bitmaps. 

About Colors 

193 

Color can be used to communicate ideas, show relationships between items, and 
improve the appeal and quality of output. The Win32 API enables applications to 
discover the color capabilities of given devices and to choose from the available colors 
those that best suit their needs. 

Although not described in this overview, image color matching is an important feature of 
color management that helps ensure that color images look the same whether displayed 
on screen or printed on paper. For more information, see About Image Color 
Management Version 2.0. 

Color Basics 
The color capabilities of devices, such as displays and printers, can range from 
monochrome to thousands of colors. Because an application might need to generate 
output for devices throughout this range, it should be prepared to handle varying color 
capabilities. 

An application can discover the number of colors available for a given device by using 
the GetDeviceCaps function to retrieve the NUMCOLORS value. This value specifies 
the count of colors available for use by the application. Usually, this count corresponds 
to a physical property of the output device, such as the number of inks in the printer or 
the number of distinct color signals the display adapter can transmit to the monitor. 

Although the NUMCOLORS value specifies the count of colors, it does not identify what 
the available colors are. An application can discover what colors are available by 
enumerating all pens having the PS_SOLID type. Because the device driver that 
supports a given device usually has a full range of solid pens, and because the system 
requires that solid pens have only colors that the device can generate, enumerating 
these pens is often equivalent to enumerating the colors. An application can enumerate 
the pens by using the EnumObjects function. 



194 Volume 3 Microsoft Windows GOI 

Color Values 
Color is defined as a combination of three primary colors-red, green, and blue. The 
system identifies a color by giving it a color value (sometimes called an RGB triplet), 
which consists of three a-bit values specifying the intensities of its color components. 
Black has the minimum intensity for red, green, and blue, so the color value for black is 
(0, 0, 0). White has the maximum intensity for red, green, and blue, so its color value is 
(255, 255, 255). 

Note If image color matching is enabled, the definition of color and the meaning of a 
color value depends on the type of color space that is set currently for the device 
context. 

The system and applications use parameters and variables having the COLORREF type 
to pass and store color values. For example, the EnumObjects function identifies the 
color of each pen by setting the lopnColor member in a LOG PEN structure to a color 
value. Applications can extract the individual values of the red, green, and blue 
components from a color value by using the GetRValue, GetGValue, and GetBValue 
macros, respectively. Applications can create a color value from individual component 
values by using the RGB macro. When creating or examining a logical palette, an 
application uses the RGBQUAD structure to define color values and to examine 
individual component values. 

Color Approximations and Dithering 
Although an application can use color without regard to the color capabilities of the 
device, the resulting output might not be as informative and pleasing as output for which 
color is chosen carefully. Few, if any, devices guarantee an exact match for every 
possible color value; therefore, if an application requests a color that the device cannot 
generate, the system approximates that color by using a color that the device can 
generate. For example, if an application attempts to create a red pen for a black and 
white printer, it will receive a black pen instead--4he system uses black as the 
approximation for red. 

An application can discover whether the system will approximate a given color by using 
the GetNearestColor function. The function takes a color value and returns the color 
value of the closest matching color the device can generate. The method the system 
uses to determine this approximation depends on the device driver and its color 
capabilities. In most cases, the approximated color's overall intensity is closest to that of 
the requested color. 

When an application creates a pen or sets the color for text, the system always 
approximates a color if no exact match exists. When an application creates a solid 
brush, the system may attempt to simulate the requested color by dithering. Dithering 
simulates a color by alternating two or more colors in a pattern. For example, different 
shades of pink can be simulated by alternating different combinations of red and white. 
Depending on the colors and the pattern, dithering can produce reasonable simulations. 
It is most useful for monochrome devices, because it expands the number of available 
"colors" well beyond black and white. 



Chapter 9 Colors 195 

The method used to create dithered colors depends on the device driver. Most device 
drivers use a standard dithering algorithm, which generates a pattern based on the 
intensity values of the requested red, green, and blue colors. In general, any requested 
color that cannot be generated by the device is subject to simulation, but an application 
is not notified when the system simulates a color. Furthermore, an application cannot 
modify or change the dithering algorithm of the device driver. An application, however, 
can bypass the algorithm by creating and using pattern brushes. In this way, the 
application creates its own dithered colors by combining solid colors in the bitmap that it 
uses to create the brush. 

Color in Bitmaps 
The system handles colors in bitmaps differently than colors in pens, brushes, and text. 
Compatible bitmaps, created by using the CreateBitmap or CreateCompatibleBitmap 
function, are device-specific and retain color information in a device-dependent format. 
No color values are used, and the colors are not subject to approximations and dithering. 

Device-independent bitmaps (DIBs) retain color information either as color values or 
color palette indexes. If color values are used, the colors are subject to approximation, 
but not dithering. Color palette indexes can only be used with devices that support color 
palettes. Although the system does not approximate or dither colors identified by 
indexes, the resulting color may be different than that intended, because the indexes 
yield valid results only in the context of the color palette that was current at the time the 
bitmap was created. If the palette changes, so do the colors in the bitmap. 

Color Mixing 
Color mixing lets an application create new colors by combining the pen or brush color 
with colors in the existing image. The application can choose either to draw the pen or 
brush color as is (effectively drawing over any existing image) or to mix the color with the 
colors already present. 

The foreground mix mode, sometimes called the binary raster operation, determines how 
these colors are mixed. An application can merge colors, preserving all components of 
both colors; mask colors, removing or moderating components that are not common; or 
exclusively mask colors, removing or moderating components that are common. There 
are several variations on these basic mixing operations. 

Color mixing is subject to color approximation. If the result of color mixing is a color that 
the device cannot generate, the system approximates the result, using a color it can 
generate. If an application mixes dithered colors, the individual colors used to create the 
dithered color are mixed, and the results are subject to color approximation. 

An application sets the foreground mix mode by using the SetROP2 function and 
retrieves the current mode by using the GetROP2 function. 

Although there is a background mix mode, that mode does not control the mixing of 
colors. Instead, it specifies whether a background color is used when drawing styled 
lines, hatched brushes, and text. 



196 Volume 3 Microsoft Windows GOI 

Color Palettes 
A color palette is an array that contains color values identifying the colors that can 
currently be displayed or drawn on the output device. Color palettes are used by devices 
that are capable of generating many colors but that can only display or draw a subset of 
these at any given time. For such devices, the system maintains a system palette to 
track and manage the current colors of the device. Applications do not have direct 
access to the system palette. Instead, the system associates a default palette with each 
device context. Applications can use the colors in the default palette or define their own 
colors by creating logical palettes and associating them with individual device contexts. 

An application can determine whether a device supports color palettes by checking for 
the RC_PALETTE bit in the RASTERCAPS value returned by the GetDeviceCaps 
function. 

Default Palette 
The default palette is an array of color values identifying the colors that can be used with 
a device context by default. The system associates the default palette with a context 
whenever an application creates a context for a device that supports color palettes. The 
default palette ensures that colors are available for use by an application without any 
further action. 

the default palette typically has 20 entries (colors), but the exact number of entries may 
vary from device to device. This number is equal to the NUMCOLORS value returned by 
the GetDeviceCaps function. An application can retrieve the color values for colors in 
the default palette by enumerating solid pens, the same technique used to discover the 
colors available on non palette devices. The colors in the default palette depend on the 
device. Display devices, for example, often use the 16 standard colors of the VGA 
display and 4 other colors defined by the Win32 API. Print devices can use other default 
colors. 

When using the default palette, applications use color values to specify pen and text 
colors. If the requested color is not in the palette, the system approximates the color by 
using the closest color in the palette. If an application requests a solid brush color that is 
not in the palette, the system simulates the color by dithering with colors that are in the 
palette. 

To avoid approximations and dithering, applications can specify also pen, brush, and 
text colors by using color palette indexes rather than color values. A color palette index 
is an integer value that identifies a specific palette entry. Applications can use color 
palette indexes in place of color values but must use the PALETTEINDEX macro to 
create the indexes. 

Color palette indexes are only useful for devices that support color palettes. To avoid this 
device dependence, applications that use the same code to draw to both palette and 
nonpalette devices should use palette-relative color values to specify pen, brush, and 
text colors. These values are identical to color values except when creating solid 



Chapter 9 Colors 197 

brushes. (On palette devices, a solid brush color specified by a palette-relative color 
value is subject to color approximation instead of dithering.) Applications must use the 
PALETTERGB macro to create palette-relative color values. 

The system does not allow an application to change the entries in the default palette. To 
use colors other than those in the default palette, an application must create its own 
logical palette and select the palette into the device context. 

Logical Palette 
A logical palette is a color palette that an application creates and associates with a given 
device context. Logical palettes let applications define and use colors that meet their 
specific needs. Applications can create any number of logical palettes, using them for 
separate device contexts or switching between them for a single device context. The 
maximum number of palettes that an application can create depends on the resources of 
the system. 

An application creates a logical palette by using the CreatePalette function. The 
application fills a LOG PALETTE structure, which specifies the number of entries and the 
color values for each entry, and then the application passes the structure to 
CreatePalette. The function returns a palette handle that the application uses in all 
subsequent operations to identify the palette. To use colors in the logical palette, the 
application selects the palette into a device context by using the SelectPalette function 
and then realizes the palette by using the RealizePalette function. The colors in the 
palette are available as soon as the logical palette is realized. 

An application should limit the size of its logical palettes to just enough entries to 
represent the colors needed. Applications cannot create logical palettes larger than the 
maximum palette size, a device-dependent value. Applications can obtain the maximum 
size by using the GetDeviceCaps function to retrieve the SIZE PALETTE value. 

Although an application can specify any color value for a given entry in a logical palette, 
not all colors can be generated by the given device. The system does not provide a way 
to discover which colors are supported, but the application can discover the total number 
of these colors by retrieving the color resolution of the device. The color resolution, 
specified in color bits per pixel, is equal to the COLORRES value returned by the 
GetDeviceCaps function. A device that has a color resolution of 18 has 262,144 
possible colors. If an application requests a color that is not supported, the system 
chooses an appropriate approximation. 

Once a logical palette is created, an application can change colors in the palette by 
using the SetPaletteEntries function. If the logical palette has been selected and 
realized, changing the palette does not affect immediately the colors being displayed. 
The application must use the UnrealizeObject and RealizePalette functions to update 
the colors. In some cases, the application might need to deselect, unrealize, select, and 
realize the logical palette to ensure that the colors are updated exactly as requested. If 
an application selects a logical palette into more than one device context, changes to the 
logical palette affect all device contexts for which it is selected. 



198 Volume 3 Microsoft Windows GOI 

An application can change the number of entries in a logical palette by using the 
ResizePalette function. If the application reduces the size, the remaining entries are 
unchanged. If the application extends the size, the system sets the color for each new 
entry to black (0, 0, 0) and the flag to zero. 

An application can retrieve the color and flag values for entries in a given logical palette 
by using the GetPaletteEntries function. An application can retrieve the index for the 
entry in a given logical palette that most closely matches a specified color value by using 
the GetNearestPalettelndex function. 

When an application no longer needs a logical palette, it can delete it by using the 
DeleteObject function. The application must make sure the logical palette is no longer 
selected into a device context before deleting the palette. 

Palette Animation 
Palette animation is a technique to simulate motion by rapidly changing the colors of 
selected entries in a color palette. An application can carry out palette animation by 
creating a logical palette that contains "reserved" entries and then using the 
AnimatePalette function to change colors in those reserved entries. 

An application creates a reserved entry in a logical palette by setting the peFlags 
member of the PALETTEENTRY structure to the PC_RESERVED flag. Once this logical 
palette is selected and realized, the application can call the AnimatePalette function to 
change one or more reserved entries. If the given palette is associated with the active 
window, the system updates the colors on the screen immediately. 

System Palette 
The system maintains a system palette for each device that uses palettes. The system 
palette contains the color values for all colors that currently can be displayed or drawn by 
the device. Other than viewing the contents of the system palette, applications cannot 
access the system palette directly. Instead, the system has complete control of the 
system palette and permits access only through the use of logical palettes. 

An application can view the contents of the system palette by using the 
GetSystemPaletteEntries function. This function retrieves the contents of one or more 
entries, up to the total number of entries in the system palette. The total is always equal 
to the number returned for the SIZEPALETTE value by the GetDeviceCaps function, 
and is the same as tile maximum size for any given logical palette. 

Although applications cannot change colors in the system palette directly, they can 
cause changes when realizing logical palettes. To realize a palette, the system examines 
each requested color and attempts to find an entry in the system palette that contains an 
exact match. If the system finds a matching color, it maps the logical palette index to the 
corresponding system palette index. If the system does not find an exact match, it copies 
the requested color to an unused system palette entry before mapping the indexes. If all 



Chapter 9 Colors 199 

system palette entries are in use, the system maps the logical palette index to the 
system palette entry whose color most closely matches the requested color. Once this 
mapping is set, applications cannot override it. For example, applications cannot use 
system palette indexes to specify colors; only logical palette indexes are permitted. 

Applications can modify the way indexes are mapped by setting the peFlags member of 
the PALETTE ENTRY structure to selected values when creating the logical palette. For 
example, the PC_NOCOLLAPSE flag directs the system to immediately copy the 
requested color to an unused system palette entry regardless of whether a system 
palette entry already contains that color. Also, the PC_EXPLICIT flag directs the system 
to map the logical palette index to an explicitly given system palette index. (The 
application gives the system palette index in the low-order word of the PALETTEENTRY 
structure.) 

Palettes can be realized as either a background palette or a foreground palette by 
specifying TRUE or FALSE, respectively, for the bForceBackground parameter in the 
SelectPalette function. There can be only one foreground palette in the system at a 
time. If the window is the currently active window or a descendent of the currently active 
window, it can realize a foreground palette. Otherwise the palette is realized as a 
background palette regardless of the value of the bForceBackground parameter. The 
critical property of a foreground palette is that, when realized, it can overwrite all entries 
(except for the static entries) in the system palette. The system accomplishes this by 
marking all of the entries that are not static in the system palette as unused before the 
realization of a foreground palette, thereby eliminating all of the used entries. No 
preprocessing occurs on the system palette for a background palette realization. The 
foreground palette sets all of the possible nonstatic colors. Background palettes can set 
only what remains open, and are prioritized in a first-come, first-serve manner. Typically, 
applications use background palettes for child windows that realize their own individual 
palettes. This helps minimize the number of changes that occur to the system palette. 

An unused system palette entry is any entry that is not reserved and does not contain a 
static color. Reserved entries are marked explicitly with the PC_RESERVED value. 
These entries are created when an application realizes a logical palette for palette 
animation. Static-color entries are created by the system and correspond to the colors in 
the default palette. The GetDeviceCaps function can be used to retrieve the 
NUMRESERVED value, which specifies the number of system palette entries reserved 
for static colors. 

Because the system palette has a limited number of entries, selecting and realizing a 
logical palette for a given device might affect the colors associated with other logical 
palettes for the same device. These color changes are especially dramatic when they 
occur on the display. An application can make sure that reasonable colors are used for 
its currently selected logical palette by resetting the palette before each use. An 
application resets the palette by calling the UnrealizeObject and RealizePalette 
functions. Using these functions causes the system to remap the colors in the logical 
palette to reasonable colors in the system palette. 



200 Volume 3 Microsoft Windows GOI 

System Palette and Static Colors 
Ordinarily, the system palette entries that the system reserves for static colors cannot be 
changed. An application can override this default behavior by using the 
SetSystemPaletteUse function to reduce the number of static-color entries and, 
thereby, increase the number of unused system palette entries. However, because 
changing the static colors can have an immediate and dramatic effect on all windows on 
the display, an application should not call SetSystemPaletteUse, unless it has a 
maximized window and the input focus. 

When an application calls SetSystemPaletteUse with the SYSPAL_NOSTATIC value, 
the system frees all but two of the reserved entries, allowing those entries to receive new 
color values when the application subsequently realizes its logical palette. The two 
remaining static-color entries remain reserved and are set to white and black. An 
application can restore the reserved entries by calling SetSystemPaletteUse with the 
SYSPAL_STATIC value. It can discover the current system palette usage by using the 
GetSystemPaletteUse function. 

Furthermore, after setting the system palette usage to SYSPAL_NOSTATIC, the 
application must realize immediately its logical palette, call the GetSysColor function to 
save the current system color settings, call the SetSysColors function to set the system 
colors to reasonable values using black and white, and finally send the 
WM_SYSCOLORCHANGE message to other top-level windows to allow them to be 
redrawn with the new system colors. When setting system colors using black and white, 
the application should make sure adjacent or overlapping items, such as window frames 
and borders, are set to black and white, respectively. 

Before the application loses the input focus, closes its window, or terminates, it must 
immediately call SetSystemPaletteUse with the SYSPAL_STATIC value, realize its 
logical palette, restore the system colors to their previous values, and send the 
WM_SYSCOLORCHANGE message. The system sends a WM_PAINT message to any 
window that is affected by a system color change. Applications that have brushes using 
the existing system colors should delete those brushes and recreate them using the new 
system colors. 

Palette Messages 
Changes to the system palette fm the display device can have dramatic and sometimes 
undesirable effects on the colors used in windows on the desktop. To minimize the 
impact of these changes, the system provides a set of messages that help applications 
manage their logical palettes while ensuring that colors in the active window are as close 
as possible to the colors intended. 

The system sends a WM_QUERYNEWPALETTE message to a top-level or overlapped 
window just before activating the window. This message gives an application the 
opportunity to select and realize its logical palette so that it receives the best possible 
mapping of colors for its logical palette. When the application receives the message, it 



Chapter 9 Colors 201 

should use the SelectPalette, UnrealizeObject, and RealizePaleHe functions to select 
and realize the logical palette. Doing so directs the system to update colors in the 
system palette so that its colors match as many colors in the logical palette as possible. 

When an application causes changes to the system palette as a result of realizing its 
logical palette, the system sends a WM_PALETTECHANGED message to all top-level 
and overlapped windows. This message gives applications the opportunity to update the 
colors in the client areas of their windows, replacing colors that have changed with colors 
that more closely match the intended colors. An application that receives the 
WM_PALETTECHANGED message should use UnrealizeObject and RealizePalette to 
reset the logical palettes associated with all inactive windows, and then update the 
colors in the client area for each inactive window by using the UpdateColors function. 
This technique does not guarantee the greatest number of exact color matches; 
however, it does ensure that colors in the logical palette are mapped to reasonable 
colors in the system palette. 

Note To avoid creating an infinite loop, an application should neverrealize the palette 
for the window whose handle matches the handle passed in the wParam parameter of 
the WM_PALETTECHANGED message. 

The UpdateColors function typically updates a client area of an inactive window faster 
than redrawing the area. However, because UpdateColors performs color translation 
based on the color of each pixel before the system palette changed, each call to this 
function results in the loss of some color accuracy. This means UpdateColors cannot be 
used to update colors when the window becomes active. In such cases, the application 
should redraw the client area. 

The system can send the WM_QUERYNEWPALETTE message when changes to the 
logical palette are made. Also, the system can send the WM_PALETTEISCHANGING 
message to all top-level and overlapped windows when the system palette is about to 
change. 

Halftone Palette and Color Adjustment 
Halftone palettes are intended to be used whenever the stretching mode of a device 
context is set to HALFTONE. An application creates a halftone palette by using the 
Create Halftone Palette function. The application must select and realize this palette into 
the device context before calling the Stretch Bit or StretchDIBits function. 

The system automatically adjusts the input color of source bitmaps whenever 
applications call the Stretch Bit and StretchDIBits functions and the stretching mode of 
a device context is set to HALFTONE. These color adjustments affect certain attributes 
of the image, such as contrast and brightness. An application can set the color 
adjustment values by using the SetColorAdjustment function. The application can 
retrieve the color adjustment values for the specified device context by using the 
GetColorAdjustment function. The HTUI_ColorAdjustment function displays the 
default user interface for halftone color adjustment. 



202 Volume 3 Microsoft Windows GOI 

Color Reference 

Color Functions 

AnimatePalette 
The AnimatePalette function replaces entries in the specified logical palette. 

Parameters 
hpal 

[in] Handle to the logical palette. 

iStartlndex 
[in] Specifies the first logical palette entry to be replaced. 

cEntries 
[in] Specifies the number of entries to be replaced. 

ppe 
[in] Pointer to the first member in an array of PALETTE ENTRY structures used to 
replace the current entries. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
An application can determine whether a device supports palette opsiations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

The AnimatePalette function only changes entries with the PC_RESERVED flag set in 
the corresponding palPalEntry member of the LOG PALETTE structure. 

If the given palette is associated with the active window, the colors in the palette are 
replaced immediately. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Chapter 9 Colors 203 

Colors Overview, Color Functions, CreatePalette, GetDeviceCaps, LOGPALETTE, 
PALETTE ENTRY 

Create Half tone Palette 
The CreateHalftonePalette function creates a halftone palette for the specified device 
context (DC). 

~'}f.rEtrE' :¢reaU1Ha l1ftollePafette (\ ; 
'tWcbct¢" "itHi,iidle to nc,;> ' " 

:H;; 

Parameters 
hdc 

[in] Handle to the device context. 

Return Values 
If the function succeeds, the return value is a handle to a logical halftone palette. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application should create a halftone palette when the stretching mode of a device 
context is set to HALFTONE. The logical halftone palette returned by 
CreateHalftonePalette should then be selected and realized into the device context 
before the StretchBlt or StretchDIBits function is called. 

When you no longer need the palette, call the DeleteObject function to delete it. 



204 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, DeleteObject, RealizePalette, SelectPalette, 
SetStretchBltMode, StretchBlt, StretchDIBits 

CreatePalette 
The CreatePalette function creates a logical palette. 

cfll'~L ETJ~C~~'at~ea"~ettEi( 
c "~STLQGP!t:EttE.,,,,"piJ<j{J.r 
hi' 
Parameters 
/p/gp/ 

[in] Pointer to a lOG PALETTE structure that contains information about the colors in 
the logical palette. 

Return Values 
If the function succeeds, the return value is a handle to a logical palette. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetlastError. 

Remarks 
An application can determine whether a device supports palette operations by ca!ling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

Once an application creates a logical palette, it can select that palette into a device 
context by calling the Select Palette function. A palette selected into a device context 
can be realized by calling the RealizePalette function. 

When you no longer need the palette, call the DeleteObject function to delete it. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Chapter 9 Colors 205 

Colors Overview, Color Functions, DeleteObject, GetDeviceCaps, LOG PALETTE , 
RealizePalette, SelectPalette 

GetColor Adj ustment 
The GetColorAdjustment function retrieves the color adjustment values for the 
specified device context (DC). 

'~~';"" 

Parameters 
hde 

[in] Handle to the device context. 

/pea 
[out] Pointer to a COLORADJUSTMENT structure that receives the color adjustment 
values. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.1ib. 



206 Volume 3 Microsoft Windows GOI 

Colors Overview, Color Functions, COLORADJUSTMENT, SetColorAdjustment 

GetNearestColor 
The GetNearestColor function returns a color value identifying a color from the system 
palette that will be displayed when the specified color value is used. 

Parameters 
hde 

[in] Handle to the device context. 

erColor 
[in] Specifies a color value that identifies a requested color. To create a COLORREF 
color value, use the RGB macro. 

Return Values 
If the function succeeds, the return value identifies a color from the system palette that 
corresponds to the given color value. 

If the function fails, the return value is CLR_INVALID. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, COLORREF, GetDeviceCaps, 
GetNearestPalettelndex, RGB 



Chapter 9 Colors 207 

GetNearestPalettelndex 
The GetNearestPalettelndex function retrieves the index for the entry in the specified 
logical palette most closely matching a specified color value. 

Parameters 
hpal 

[in] Handle to a logical palette. 

erGolor 
[in] Specifies a color to be matched. To create a COLORREF color value, use the 
RGB macro. 

Return Values 
If the function succeeds, the return value is the index of an entry in a logical palette. 

If the function fails, the return value is CLR_INVALID. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

If the given logical palette contains entries with the PC_EXPLICIT flag set, the return 
value is undefined. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, COLORREF, GetDeviceCaps, GetNearestColor, 
GetPaletteEntries, GetSystemPaletteEntries, RGB 



208 Volume 3 Microsoft Windows GOI 

GetPaletteEntries 
The GetPaletteEntries function retrieves a specified range of palette entries from the 
given logical palette. 

Parameters 
hpal 

[in] Handle to the logical palette. 

iStartlndex 
[in] Specifies the first entry in the logical palette to be retrieved. 

nEntries 
[in] Specifies the number of entries in the logical palette to be retrieved. 

Ippe 
[out] Pointer to an array of PALETTE ENTRY structures to receive the palette entries. 
The array must contain at least as many structures as specified by the nEntries 
parameter. 

Return Values 
If the function succeeds and the handle to the logical palette is a valid pOinter (not 
NULL), the return value is the number of entries retrieved from the logical palette. If the 
function succeeds and handle to the logical palette is NULL, the return value is the 
number of entries in the given palette. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

If the nEntries parameter specifies more entries than exist in the palette, the remaining 
members of the PALETTE ENTRY structure are not altered. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Chapter 9 Colors 209 

Colors Overview, Color Functions, GetDeviceCaps, GetSystemPaletteEntries, 
PALETTE ENTRY, SetPaletteEntries 

GetSystemPaletteEntries 
The GetSystemPaletteEntries function retrieves a range of palette entries from the 
system palette that is associated with the specified device context (DC). 

Parameters 
hdc 

[in] Handle to the device context. 

iStartlndex 
[in] Specifies the first entry to be retrieved from the system palette. 

nEntries 
[in] Specifies the number of entries to be retrieved from the system palette. 

Ippe 
[out] Pointer to an array of PALETTE ENTRY structures to receive the palette entries. 
The array must contain at least as many structures as specified by the nEntries 
parameter. If this parameter is NULL, the function returns the total number of entries 
in the palette. 

Return Values 
If the function succeeds, the return value is the number of entries retrieved from the 
palette. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



210 Volume 3 Microsoft Windows GOI 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetOeviceCaps function and specifying the RASTERCAPS constant. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, GetDeviceCaps, GetPaletteEntries, 
PALETTEENTRY 

GetSystemPaletteUse 
The GetSystemPaletteUse function retrieves the current state of the system (physical) 
palette for the specified device context (DC). 

!~.:~~Gh~;Y;~;~j~:i:~~:~;h(.Q9······":·· 
)Jv" 

Parameters 
hdc 

[in] Handle to the device context. 

Return Values 
If the function succeeds, the return value is the current state of the system palette. This 
parameter can be one of the following values: 

Value Meaning 

SYSPAL_ERROR 

SYSPAL_NOSTATIC 

SYSPAL_STATIC 

The given device context is invalid or does not support 
a color palette. 

The system palette contains no static colors, except for 
black and white. 

The system palette contains static colors that will not 
change when an application realizes its logical palette. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 9 Colors 211 

Remarks 
By default, the system palette contains 20 static colors that are not changed when an 
application realizes its logical palette. An application can gain access to most of these 
colors by calling the SetSystemPaletteUse function. 

The device context identified by the hdc parameter must represent a device that 
supports color palettes. 

An application can determine whether or not a device supports color palettes by calling 
the GetDeviceCaps function and specifying the RASTERCAPS constant. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, GetDeviceCaps, SetSystemPaletteUse 

HTUI_ Color Adjustment 
The HTULCo!orAdjustment function displays the default user interface for halftone 
color adjustment. 

Parameters 
pCal/erTitle 

' .. ::' ,:,', 

, , 

'Jetj tl~,:of,'~lill1er' ;::,i "" ' 
t1hllndl elito ::bI6" 
II" DiBI>1d~llt~ r1,~!li~ 
I1colQr: a~justi!lent', " 

"';: " '. :,,~}: ~:~:~:Y:~:~:~$S'~O~' 
• : t "" • '. ":<'.,.;::':" .;.' V.~ '. :.' ~ 

'\ ",' 

[in] Pointer to the title of the calling application or device. The value of pCal/erTitle will 
be displayed in the Modify For dialog box. If the value of this parameter is NULL, no 
title is displayed. 



212 Volume 3 Microsoft Windows GOI 

hDefDIB 
[in] Handle to the device independent bitmap (DIB). If hDefDIB is not NULL, the 
function will use this DIB as the default picture for color adjustment testing. If hDefDIB 
is NULL, one of three standard pictures is displayed for the user to adjust 
preferences. The picture displayed can be: 

• RGB color chart 

• Reference color chart 

• NTSC color chart 

pDefDIBTitle 
[in] Pointer to a string that specifies the DIB picture name or a description of the 
hDefDIB passed. 

pColorAdjusfment. 
[in/out] Pointer to the COLORADJUSTMENT data structure. 

ShowMonochromeOnly 
[in] Limits the display to a monochrome version of the bitmap. This setting may be 
used if the output device is monochrome. 

UpdafePermission 
[in] Update permission for the COLORADJUSTMENT structure. The 
UpdafePermission values are as follows: 

Value Meaning 

True Color adjustment is not limited to the current user interface. Changes 
to the COLORADJUSTMENT structure settings will be saved when 
exiting the halftone color adjustment user interface. 

False Color adjustment is limited to the user's current session. The 
COLORADJUSTMENT structure is not changed. 

Return Values 
TheHTUI_ColorAdjustment function returns one of the following values: 

Value 

>0 
=0 

<0 

Remarks 

Meaning 

The user elected to update the COLORADJUSTMENT structure. 

The user elected to cancel the update to the COLORADJUSTMENT 
structure. 

An error occurred. The value given in the error message identifies a 
predefined error code. 

Applications can either link to htui.dll or use the LoadLibrary and GetProcAddress 
functions to obtain the location of htuLdl1. 



Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winddLh; include windows.h. 
Library: Included as a resource in htuLdli. 

Chapter 9 Colors 213 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

, '. ," 

Colors Overview, Color Functions, COLORADJUSTMENT 

RealizePalette 
The RealizePalette function maps palette entries from the current logical palette to the 
system palette. 

,Ullr, >Re:'aHt.'Palette(: " .. , .,. , .... 

~/~:~>,~~{ ·.·.:/l.h~Mfe+~~s/:"',·.·,·, 

Parameters 
hdc 

[in] Handle to the device context into which a logical palette has been selected. 

Return Values 
If the function succeeds, the return value is the number of entries in the logical palette 
mapped to the system palette. 

If the function fails, the return value is GD,-ERROR. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

The RealizePalette function modifies the palette for the device associated with the 
specified device context. If the device context is a memory DC, the color table for the 
bitmap selected into the DC is modified. If the device context is a display DC, the 
physical palette for that device is modified. 

A logical palette is a buffer between color-intensive applications and the system, allowing 
these applications to use as many colors as needed without interfering with colors 
displayed by other windows. 



214 Volume 3 Microsoft Windows GOI 

When an application's window has the focus and it calls the RealizePalette function, the 
system attempts to realize as many of the requested colors as possible. The same is 
true also for applications with inactive windows. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, CreatePalette, GetDeviceCaps, Select Palette 

ResizePalette 
The ResizePalette function increases or decreases the size of a logical palette based 
on the specified value. 

~~Jrii;:;l,·~~~.':t~~!~~:'~}~;~r';~:.~~ 
f: .. : .. ::">:: . , 

Parameters 
hpa/ 

[in] Handle to the palette to be changed. 

nEntries 
[in] Specifies the number of entries in the palette after it has been resized. Windows 
NT/2000: The number of entries is limited to 1024. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by cqlling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 



Chapter 9 Colors 215 

If an application calls ResizePalette to reduce the size of the palette, the entries 
remaining in the resized palette are unchanged. If the application calls ResizePalette to 
enlarge the palette, the additional palette entries are set to black (the red, green, and 
blue values are all 0) and their flags are set to zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, GetDeviceCaps 

SelectPalette 
The SelectPalette function selects the specified logical palette into a device context. 

Parameters 
hdc 

[in] Handle to the device context. 

hpal 
[in] Handle to the logical palette to be selected. 

bForceBackground 
[in] Specifies whether the logical palette is forced to be a background palette. If this 
value is TRUE, the RealizePalette function causes the logical palette to be mapped 
to the colors already in the physical palette in the best possible way. This is always 
done, even if the window for which the palette is realized belongs to a thread without 
active focus. 

If this value is FALSE, RealizePalette causes the logical palette to be copied into the 
device palette when the application is in the foreground. (If the hdc parameter is a 
memory device context, this parameter is ignored.) 



216 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is a handle to the device context's previous 
logical palette. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

An application can select a logical palette into more than one device context only if 
device contexts are compatible. Otherwise SelectPalette fails. To create a device 
context that is compatible with another device context, call CreateCompatibleDC with 
the first device context as the parameter. If a logical palette is selected into more than 

brone device context, changes to the logical palette will affect all device contexts for 
which it is selected. 

An application might call the SelectPalette function with the bForceBackground 
parameter set to TRUE if the child windows of a top-level window each realize their own 
palettes. However, only the child window that needs to realize its palette must set 
bForceBackgroundto TRUE; other child windows must set this value to FALSE. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, CreateCompatibleDC, CreatePalette, 
GetDeviceCaps, RealizePalette 

SetColorAdjustment 
The SetColorAdjustment function sets the color adjustment values for a device context 
(DC) using the specified values. 



Parameters 
hdc 

[in] Handle to the device context. 

/pca 

Chapter 9 Colors 217 

[in] Pointer to a COLORADJUSTMENT structure containing the color adjustment 
values. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The color adjustment values are used to adjust the input color of the source bitmap for 
calls to the StretchBlt and StretchDIBits functions when HALFTONE mode is set. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Colors Overview, Color Functions, COLORADJUSTMENT, GetColorAdjustment, 
SetStretchBltMode, StretchBlt, StretchDIBits 

SetPaletteEntries 
The SetPaletteEntries function sets RGB (red, green, blue) color values and flags in a 
range of entries in a logical palette. 

I~j~~~l~~" 
•••••• " v ," 

... j '. ..{/ ·:<.~::·l·:'·:··<! 



218 Volume 3 Microsoft Windows GDI 

Parameters 
hpa/ 

[in] Handle to the logical palette. 

iStart 
[in] Specifies the first logical-palette entry to be set. 

cEntries 
[in] Specifies the number of logical-palette entries to be set. 

/ppe 
[in] Pointer to the first member of an array of PALETTEENTRY structures containing 
the RGB values and flags. 

Return Values 
If the function succeeds, the return value is the number of entries that were set in the 
logical palette. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether or not a device supports palette operations by 
calling the GetDeviceCaps function and specifying the RASTERCAPS constant. 

Even if a logical palette has been selected and realized, changes to the palette do not 
affect the physical palette in the surface. RealizePalette must be called again to set the 
new logical palette into the surface. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.1ib. 

Colors Overview, Color Functions, GetDeviceCaps, GetPaletteEntries, 
PALETTE ENTRY , RealizePalette 



Chapter 9 Colors 219 

SetSystemPaletteUse 
The SetSystemPaletteUse function allows an application to specify whether the system 
palette contains 2 or 20 static colors. The default system palette contains 20 static 
colors. (Static colors cannot be changed when an application realizes a logical palette.) 

1!::::1~~~:'t~;;,: 
Parameters 
hdc 

[in] Handle to the device context. This device context must refer to a device that 
supports color palettes. 

uUsage 
[in] Specifies the new use of the system palette. This parameter can be one of the 
following values: 

Value Meaning 

SYSPAL_NOSTATIC 

SYSPAL_NOST ATIC256 

SYSPAL_STATIC 

Return Values 

The system palette contains two static colors (black 
and white). 

Windows 2000: The system palette contains no 
static colors. 

The system palette contains static colors that will not 
change when an application realizes its logical 
palette. 

If the function succeeds, the return value is the previous system palette. It can be either 
SYSPAL_NOSTATIC, SYSPAL_NOSTATIC256, or SYSPAL_STATIC. 

If the function fails, the return value is SYSPAL_ERROR. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

When an application window moves to the foreground and the SYSPAL_NOSTATIC 
value is set, the application must call the GetSysColor function to save the current 
system colors setting. It must also call SetSysColors to set reasonable values using 
only black and white. When the application returns to the background or terminates, the 
previous system colors must be restored. 



220 Volume 3 Microsoft Windows GOI 

If the function returns SYSPAL_ERROR, the specified device context is invalid or does 
not support color palettes. 

An application must call this function only when its window is maximized and has the 
input focus. 

If an application calls SetSystemPaletteUse with uUsage set to SYSPAL_NOSTATIC, 
the system continues to set aside two entries in the system palette for pure white and 
pure black, respectively. 

After calling this function with uUsage set to SYSPAL_NOSTATIC, an application must 
take the following steps: 

1. Realize the logical palette. 

2. Call the GetSysColor function to save the current system-color settings. 

3. Call the SetSysColors function to set the system colors to reasonable values using 
black and white. For example, adjacent or overlapping items (such as window frames 
and borders) should be set to black and white, respectively. 

4. Send the WM_SYSCOLORCHANGE message to other top-level windows to allow 
them to be redrawn with the new system colors. 

When the application's window loses focus or closes, the application must take the 
following steps: 

1. Call SetSystemPaletteUse with the uUsage parameter set to SYSPAL_STATIC. 

2. Realize the logical palette. 

3. Restore the system colors to their previous values. 

4. Send the WM_SYSCOLORCHANGE message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32:lib. 

Colors Overview, Color Functions, GetDeviceCaps, GetSysColor, 
GetSystemPaletteUse, SetSysColors 



Chapter 9 Colors 221 

UnrealizeObject 
The UnrealizeObject function resets the origin of a brush or resets a logical palette. If 
the hgdiobj parameter is a handle to a brush, UnrealizeObject directs the system to 
reset the origin of the brush the next time it is selected. If the hgdiobj parameter is a 
handle to a logical palette, UnrealizeObject directs the system to realize the palette as 
though it had not previously been realized. The next time the application calls the 
RealizePalette function for the specified palette, the system completely remaps the 
logical palette to the system palette. 

Parameters 
hgdiobj 

[in] Handle to the logical palette to be reset. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetlastError. 

Remarks 
The UnrealizeObject function should not be used with stock objects. For example, the 
default palette, obtained by calling GetStockObject(DEFAUL T _PALETTE), is a stock 
object. 

A palette identified by hgdiobj can be the currently selected palette of a device context. 

Windows 95/98: Automatic tracking of the brush origin is not supported. Applications 
must use the UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align 
the brush before using it. 

Windows 2000: If hgdiobj is a brush, UnrealizeObject does nothing, and the function 
returns TRUE. Use SetBrushOrgEx to set the origin of a brush. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
library: Use gdi32.lib. 



222 Volume 3 Microsoft Windows GOI 

Colors Overview, Color Functions, GetStockObject, RealizePalette, SetBrushOrgEx 

UpdateColors 
The UpdateColors function updates the client area of the specified device context by 
remapping the current colors in the client area to the currently realized logical palette. 

BqOl •.• OJ)dat~CQior'$~ 
... H~e hdc.I(h~.l1diet6 
)'~ 

Parameters 
hdc 

[in] Handle to the device context. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can determine whether a device supports palette operations by calling the 
GetDeviceCaps function and specifying the RASTERCAPS constant. 

An inactive window with a realized logical palette may call UpdateColors as an 
alternative to redrawing its client area when the system palette changes. 

The UpdateColors function typically updates a client area faster than redrawing the 
area. However, because UpdateColors performs the color translation based on the 
color of each pixel before the system palette changed, each call to this function results in 
the loss of some color accuracy. 

This function must be called soon after a WM_PALETTECHANGED message is 
received. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 



Chapter 9 Colors 223 

Colors Overview, Color Functions, GetDeviceCaps, RealizePalette 

Color Structures 

COLORREF 
The COLORREF value is used to specify an RGB color. 

Remarks 
When specifying an explicit RGB color, the COLORREF value has the following 
hexadecimal form: 

The low-order byte contains a value for the relative intensity of red, the second byte 
contains a value for green, and the third byte contains a value for blue. The high-order 
byte must be zero. The maximum value for a single byte is OxFF. 

To create a COLORREF color value, use the RGB macro. To extract the individual 
values for the red, green, and blue components of a color value, use the GetRValue, 
GetGValue, and GetBValue macros, respectively. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in windef.h; include windows.h. 

Colors Overview, Color Structures, GetBValue, GetGValue, GetRValue, RGB 



224 Volume 3 Microsoft Windows GOI 

LOGPALETTE 
The LOGPALETTE structure defines a logical palette. 

Members 
palVersion 

Specifies the version number of the system. 

palNumEntries 
Specifies the number of entries in the logical palette. 

palPalEntry 
Specifies an array of PALETTEENTRY structures that define the color and usage of 
each entry in the logical palette. 

Remarks 
The colors in the palette-entry table should appear in order of importance because 
entries earlier in the logical palette are most likely to be placed in the system palette. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Colors Overview, Color Structures, CreatePalette, PALETTEENTRY 

PALETTEENTRV 
The PALETTEENTRY structure specifies the color and usage of an entry in a logical 
palette. A logical palette is defined by a LOG PALETTE structure. 



Members 
peRed 

Chapter 9 Colors 225 

Specifies a red intensity value for the palette entry. 

peGreen 
Specifies a green intensity value for the palette entry. 

peBlue 
Specifies a blue intensity value for the palette entry. 

peFlags 
Specifies how the palette entry is to be used. The peFlags member may be set to 
NULL or one of the following values: 

Value 

PC_NOCOLLAPSE 

Meaning 

Specifies that the low-order word of the logical palette entry 
designates a hardware palette index. This flag allows the 
application to show the contents of the display device 
palette. 

Specifies that the color be placed in an unused entry in the 
system palette instead of being matched to an existing 
color in the system palette. If there are no unused entries in 
the system palette, the color is matched normally. Once 
this color is in the system palette, colors in other logical 
palettes can be matched to this color. 

Specifies that the logical palette entry be used for palette 
animation. This flag prevents other windows from matching 
colors to the palette entry since the color frequently 
changes. If an unused system-palette entry is available, the 
color is placed in that entry. Otherwise, the color is not 
available for animation. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Colors Overview, Color Structures, LOG PALETTE 



226 Volume 3 Microsoft Windows GOI 

Color Macros 

GetBValue 
The GetBValue macro retrieves an intensity value for the blue component of a red, 
green, blue (RGB) value. 

Bn,6getBJa 1 ue(, 
>,mroRDr~b ",:IIRGtf '1alu~. 
l;;t<' 

Parameters 
rgb 

Specifies an RGB color value. 

Return Values 
The return value is the intensity of the blue component of the specified RGB color. 

Remarks 
The intensity value is in the range 0 through 255. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 

Colors Overview, Color Macros, GetGValue, GetRValue, PALETTEINDEX, 
PALETTERGB, RGB 

GetGValue 
The GetGValue macro retrieves an intensity value for the green component of a red, 
green, blue (RGB) value. 

Bn~~etGV~ lue ( '. . 
',' D~ORDf':gb J/RGB' V1(il~e 

':"~;">~:~--:..'c~ 

Parameters 
rgb 

Specifies an RGB color value. 



Chapter 9 Colors 227 

Return Values 
The return value is the intensity of the green component of the specified RGB color. 

Remarks 
The intensity value is in the range 0 through 255. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 

Colors Overview, Color Macros, GetBValue, GetRValue, PALETTEINDEX, 
PALETTERGB, RGB 

GetRValue 
The GetRValue macro retrieves an intensity value for the red component of a red, 
green, blue (RGB) value. 

BYrE'«~tRVill ue( 
,DWORDtgb II RGB value 
h 

Parameters 
rgb 

Specifies an RGB color value. 

Return Values 
The return value is the intensity of the red component of the specified RGB color. 

Remarks 
The intensity value is in the range 0 through 255. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 



228 Volume 3 Microsoft Windows GDI 

Colors Overview, Color Macros, GetBValue, GetGValue, PALETTEINDEX, 
PALETTERGB, RGB 

PALETTEINDEX 
The PALETTEINDEX macro accepts an index to a logical-color palette entry and returns 
a palette-entry specifier consisting of a COLORREF value that specifies the color 
associated with the given index. An application using a logical palette can pass this 
specifier, instead of an explicit red, green, blue (RGB) value, to GDI functions that expect 
a color. This allows the function to use the color in the specified palette entry . 

. CQiak~tF'~~k.£TtfINmzx(:. , 
:j5~~~~~(~.f~~!~TndeX; ·1:1 

Parameters 
wPalettelndex 

Specifies an index to the palette entry containing the color to be used for a graphics 
operation. 

Return Values 
The return value is a logical-palette index specifier. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 

Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Colors Overview, Color Macros, COLORREF, PALETTERGB, RGB 



Chapter 9 Colors 229 

PALETTERGB 
The PALETTERGB macro accepts three values that represent the relative intensities of 
red, green, and blue and returns a palette-relative red, green, blue (RGB) specifier 
consisting of 2 in the high-order byte and an RGB value in the three low-order bytes. An 
application using a color palette can pass this specifier, instead of an explicit RGB value, 
to functions that expect a color. 

Parameters 
bRed 

Specifies the intensity of the red color field. 

bGreen 
Specifies the intensity of the green color field. 

bBlue 
Specifies the intensity of the blue color field. 

Return Values 
The return value is a palette-relative RGB specifier. For output devices that support 
logical palettes, the system matches a palette-relative RGB value to the nearest color in 
the logical palette of the device context as though the application had specified an index 
to that palette entry. If an output device does not support a system palette, the system 
uses the palette-relative RGB as though it were a conventional RGB value returned by 
the RGB macro. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 

Colors Overview, Color Macros, COLORREF, PALETTEINDEX, RGB 



230 Volume 3 Microsoft Windows GOI 

RGB 
The RGB macro selects a red, green, blue (RGB) color based on the arguments 
supplied and the color capabilities of the output device. 

Parameters 
byRed 

Specifies the intensity of the red color. 

byGreen 
Specifies the intensity of the green color. 

byBlue 
Specifies the intensity of the blue color. 

Return Values 
The return value is the resultant RGB color as a COLORREF value. 

Remarks 
The intensity for each argument is in the range 0 through 255. If all three intensities are 
zero, the result is black. If all three intensities are 255, the result is white. 

To extract the individual values for the red, green, and blue components of 
a COLORREF color value, use the GetRValue, GetGValue, and GetBValue macros, 
respectively. 

When creating or examining a logical palette, use the RGBQUAD structure to define 
color values and examine individual component values. For more information about 
using color values in a color palette, see the descriptions of the PALETTEINDEX and 
PALETTERGB macros. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 

Colors Overview, Color Macros, COLORREF, GetBValue, GetGValue, GetRValue, 
PALETTEINDEX, PALETTERGB, RGBQUAD 



Chapter 9 Colors 231 

Color Messages 

WM_PALETTECHANGED 
The WM_PALETTECHANGED message is sent to all top-level and overlapped windows 
after the window with the keyboard focus has realized its logical palette, thereby 
changing the system palette. This message enables a window that uses a color palette 
but does not have the keyboard focus to realize its logical palette and update its client 
area. 

A window receives this message through its WindowProc function. 

UESIJL1:tAt;L~ACI(W1hd'Owproc( 
IitlNlf fiwfl,d. <' "; /ha~dia to.wlndow 

'UUT. aMsg', ',",' , )rW~~~ALE.TTEC:HA·NGEO 
WPAIU.Mklparam.. n JlaMdl e'toWl ndow (HWHO) 
,LPAAAt+1Parcamnot used. 

) ; 

Parameters 
wParam 

Handle to the window that caused the system palette to change. 

IParam 
This parameter is not used. 

Remarks 
This message must be sent to all top-level and overlapped windows, including the one 
that changed the system palette. If any child windows use a color palette, this message 
must be passed on to them as well. 

To avoid creating an infinite loop, a window that receives this message must not realize 
its palette, unless it determines that wParam does not contain its own window handle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Colors Overview, Color Messages, WM_PALETTEISCHANGING, 
WM_QUERYNEWPALETTE 



232 Volume 3 Microsoft Windows GOI 

WM_PALETTEISCHANGING 
The WM_PALETTEISCHANGING message informs applications that an application is 
going to realize its logical palette. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the window that is going to realize its logical palette. 

IParam 
This parameter is not used. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
The application changing its palette does not wait for acknowledgment of this message 
before changing the palette and sending the WM_PALETTECHANGED message. As a 
result, the palette might already be changed by the time an application receives this 
message. 

If the application either ignores or fails to process this message and a second application 
realizes its palette while the first is using palette indexes, there is a strong possibility that 
the user will see unexpected colors during subsequent drawing operations. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Colors Overview, Color Messages, WM_PALETTECHANGED, 
WM_QUERYNEWPALETTE 



Chapter 9 Colors 233 

WM_QUERYNEWPALETTE 
The WM_QUERVNEWPALETTE message informs a window that it is about to receive 
the keyboard focus, giving the window the opportunity to realize its logical palette when it 
receives the focus. 

A window receives this message through its WindowProc function. 

Parameters 
This message has no parameters. 

Return Values 
If the window realizes its logical palette, it must return TRUE; otherwise, it must return 
FALSE. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Colors Overview, Color Messages, WM_PALETTECHANGED, 
WM_PALETTEISCHANGING 



234 Volume 3 Microsoft Windows GOI 

WM_SYSCOLORCHANGE 
The WM_SYSCOLORCHANGE message is sent to all top-level windows when a 
change is made to a system color setting. 

A window receives this message through its WindowProc function. 

liff£ "'C~G~a~~J~\il'tha' 

.'J~~iN'f ,.",">'i",y" 

tp~~j';' 
,~1:}~~;;;;,<i~~~;;{~,~<~ '~ 

Parameters 
This message has no parameters. 

Remarks 
The system sends a WM_PAINT message to any window that is affected by a system 
color change. 

Applications that have brushes using the existing system colors should delete those 
brushes and recreate them using the new system colors. 

Top level windows that use common controls must forward the 
WM_SYSCOLORCHANGE message to the controls; otherwise, the controls will not be 
notified of the color change. This ensures that the colors used by your common controls 
are consistent with those used by other user interface objects. For example, a toolbar 
control uses the "3D Objects" color to draw its buttons. If the user changes the 3D 
Objects color, but the WM_SYSCOLORCHANGE message is not forwarded to the 
toolbar, the toolbar buttons will remain in their original color while the color of other 
buttons in the system changes. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
,r/indows 95/98: Requires 'vVindows 95 or iaier. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Colors Overview, Color Messages, WM_PAINT 



CHAPTER 10 

Coordinate Spaces and 
Transformations 

235 

Win32-based applications use coordinate spaces and transformations to scale, rotate, 
translate, shear, and reflect graphics output. A coordinate space is a planar space that 
locates two-dimensional objects by using two reference axes that are perpendicular to 
each other. There are four coordinate spaces: world, page, device, and physical device 
(client area, desktop, or page of printer paper). 

A transformation is an algorithm that alters ("transforms") the size, orientation, and shape 
of objects. Transformations also transfer a graphics object from one coordinate space to 
another. Ultimately, the object appears on the physical device, which is usually a screen 
or printer. 

About Coordinate Spaces and Transformations 
Coordinate spaces and transformations are used by the following types of applications: 

• Desktop publishing applications (to "zoom" parts of a page or to display adjacent 
pages in a window). 

• Computer-aided design (CAD) applications (to rotate objects, scale drawings, or 
create perspective views). 

• Spreadsheet applications (to move and size graphs). 

The following illustrations show successive views of an object created in a drawing 
application. Figure 10-1 shows the object as it appears in the original drawing; Figures 
10-2 through 10-6 show the effects of applying various transformations. 

Transformation of Coordinate Spaces 
A coordinate space is a planar space based on the Cartesian coordinate system. This 
system provides a means of specifying the location of each point on a plane. It requires 
two axes that are perpendicular and equal in length. Figure 10-7 shows a coordinate 
space. 



236 Volume 3 Microsoft Windows GOI 

Figure 10-1: The object as it appears in the original drawing. 

---++----+ ---++---

Figure 10-2. 



Chapter 10 Coordinate Spaces and Transformations 237 

Figure 10-3. 

I . 

Figure 10-4. 



238 Volume 3 Microsoft Windows GDI 

Figure 10-5. 

Figure 10-6. 



Chapter 10 Coordinate Spaces and Transformations 239 

Yma)( 

Xmin [0,0) 

Ymin 

Figure 10-7: A coordinate space. 

The system supports four coordinate spaces, as described in the following table: 

Coordinate space Description 

world Used optionally as the starting coordinate space for graphics 
transformations. It allows scaling, translation, rotation, shearing, 
and reflection. World space measures 2A32 units high by 2A32 
units wide. 

page Used either as the next space after world space or as the starting 
space for graphics transformations. It sets the mapping mode. 
Page space (referred to as logical space in 16-bit versions of 
Windows) also measures 2A32 units high by 2A32 units wide. 

device Used as the next space after page space. It only allows 
translation, which ensures the origin of the device space maps to 
the proper location in physical device space. Device space 
measures 2A27 units high by 2A27 units wide. 

physical device The final (output) space for graphics transformations. It usually 
refers to the client area of the application window; however, it 
can also include the entire desktop, a complete window 
(including the frame, title bar, and menu bar), or a page of printer 
or plotter paper, depending on the function that obtained the 
handle for the device context. Physical device dimensions vary 
according to the dimensions set by the display, printer, or plotter 
technology. 

Page space works with device space to provide applications with device-independent 
units, such as millimeters and inches. This overview refers to both world space and page 
space as logical space. 

To depict output on a physical device, the system copies (or maps) a rectangular region 
from one coordinate space into the next using a transformation until the output appears 
in its entirety on the physical device. Mapping begins in the application's world space if 



240 Volume 3 Microsoft Windows GOI 

the application has called the SetWorldTransform function; otherwise, mapping occurs 
in page space. As the system copies each point within the rectangular region from one 
space into another, it applies an algorithm called a transformation. A transformation 
alters (or transforms) the size, orientation, and shape of objects that are copied from one 
coordinate space into another. Although a transformation affects an object as a whole, it 
is applied to each point, or to each line, in the object. 

Figure 10-8 shows a typical transformation performed by using the SetWorldTransform 
function. 

-ti" ~i +.ymin 

~ ~ II 
Ymin Ymin Ym~: 

World space Page space Deyice space Deyice 

Figure 10~8: A typical transformation occurring in the application's world space. 

World-Space to Page-Space Transformations 
World-space to page-space transformations support translation and scaling. In addition, 
they support rotation, shear, and reflection capabilities. The following sections describe 
these transformations, illustrate their effects, and provide the algorithms used to achieve 
them: 

• Translation 

• Scaling 

• Rotation 
• Shear 

• Reflection 

• Combined World-to-Page Space Transformations 

Translation 
• 

Some applications translate (or shift) objects drawn in the client area. by calling the 
SetWorldTransform function to set the appropriate world-space to page-space 
transformation. The SetWorldTransform function receives a pOinter to an XFORM 
structure containing the appropriate values. The eDx and eDy members of XFORM 
specify the horizontal and vertical translation components, respectively. 

When translation occurs, each point in an object is shifted vertically, horizontally, or both, 
by a specified amount. Figure 10-9 shows a 20-unit-by-20-unit rectangle that was 
translated to the right by 10 units when copied from world-coordinate space to page
coordinate space. 



Chapter 10 Coordinate Spaces and Transformations 

World space Page space 

50 50 

40 40 

30 30 

20 20 

10 10 

20 40 60 80 100 20 40 60 80 100 

Figure 10-9: An object translated to the right of its origin. 

In the preceding illustration, the x-coordinate of each point in the rectangle is 10 units 
greater than the original x-coordinate. 

Horizontal translation can be represented by the following algorithm: 

241 

Where x' is the new x-coordinate, x is the original x-coordinate, and Ox is the horizontal 
distance moved. 

Vertical translation can be represented by the following algorithm: 
":'." ". ," 

, ;' : .. ;. :.~ .:.' 

Where y'is the new y-coordinate, y is the original y-coordinate, and Oy is the vertical 
distance moved. 

The horizontal and vertical translation transformations can be combined into a single 
operation by using a 3-by-3 matrix. 

",'i~J~~l~'~~ .• ,'~.: .. ,,:",:,.,::', .. >;'.' 

:f oY:'~r <: 

(The rules of matrix multiplication state that the number of rows in one matrix must equal 
the number of columns in the other. The integer 1 in the matrix Ix y 11 is a placeholder 
that was added to meet this requirement.) 

The 3-by-3 matrix that produced the illustrated translation transformation contains the 
following values: 



242 Volume 3 Microsoft Windows GOI 

Scaling 
Most CAD and drawing applications provide features that scale output created by the 
user. Applications that include scaling (or zoom) capabilities call the 
SetWorldTransform function to set the appropriate world-space to page-space 
transformation. This function receives a pointer to an XFORM structure containing the 
appropriate values. The eM11 and eM22 members of XFORM specify the horizontal and 
vertical scaling components, respectively. 

When scaling occurs, the vertical and horizontal lines (or vectors), that constitute an 
object, are stretched or compressed with respect to the x-axis or y-axis. Figure 10-10 
shows a 20-by-20-unit rectangle scaled vertically to twice its original height when copied 
from world-coordinate space to page-coordinate space. 

50 

40 

30 

20 

10 

World space 

20 40 60 80 100 

50 

40 

30 

20 

10 

Page space 

20 40 60 80 100 

Figure 10-10: An object scaled vertically to twice its original height. 

In the preceding illustration, the vertical lines that define the original rectangle's side 
measure 20 units, while the vertical lines that define the scaled rectangle's sides 
measure 40 units. 

Vertical scaling can be represented by the following algorithm: 

Where y' is the new length, y is the original length, and Oy is the vertical scaling factor. 

Horizontal scaling can be represented by the following algorithm: 
.. ' .:~ .' .", l 

Where x' is the new length, x is the original length, and Ox is the horizontal scaling 
factor. 

The vertical and horizontal scaling transformations can be combined into a single 
operation by using a 2-by-2 matrix. 

IX,i'Y'1 ;;, IDx ,~I ;.:I.x:11 i' 

10; ::njl: 



Chapter 10 Coordinate Spaces and Transformations 243 

The 2-by-2 matrix that produced the scaling transformation contains the following values: 

"11_ ·'~:~L········· 
H~' 2j:,. 

Rotation 
Many CAD applications provide features that rotate objects drawn in the client area. 
Applications that include rotation capabilities use the SetWorldTransform function to set 
the appropriate world-space to page-space transformation. This function receives a 
pOinter to an XFORM structure containing the appropriate values. The eM11, eM12, 
eM21 , and eM22 members of XFORM specify respectively, the cosine, sine, negative 
sine, and cosine of the angle of rotation. 

When rotation occurs, the pOints that constitute an object are rotated with respect to the 
coordinate-space origin. Figure 10-11 shows a 20-unit-by-20-unit rectangle rotated 30 
degrees when copied from world-coordinate space to page-coordinate space. 

World space Page space 

50 50 

40 40 

30 30 

20 20 

10 10 

20 40 60 80 100 20 40 60 80 100 

Figure 10-11: An object rotated 30 degrees from its origin. 

In the preceding illustration, each point in the rectangle was rotated 30 degrees with 
respect to the coordinate-space origin. 

The following algorithm computes the new x-coordinate (x') for a point (x,y) that is 
rotated by angle A with respect to the coordinate-space origin: 

The following algorithm computes the y-coordinate (y') for a point (x,y) that is rotated by 
the angle A with respect to the origin: 

y(~'~~.* ,5th A) .+(y *.:<:95 A). 
" .. " 

The two rotation transformations can be combined in a 2-by-2 matrix as follows: 

t .' 'j'(YI.'*/ r;:os",k .' . ~i IT ,AI'" 
,/-sln').~os~1 



244 Volume 3 Microsoft Windows GOI 

The 2-by-2 matrix that produced the rotation contains the following values: 

Rotation Algorithm Derivation 
Rotation algorithms are based on trigonometry's addition theorem stating that the 
trigonometric function of a sum of two angles (A 1 and A2) can be expressed in terms of 
the trigonometric functions of the two angles. 

·~l~!~~:'$~·:~~'i~~!f·I'~:!:':.~f;;:··· ·:~::~l!;;··:·!.:~l~~~j:;!f :,~.;;~ •. ::~~ ••. ~~i~ .• ;i!.". 
Figure 10-12 shows a point p rotated counterclockwise to a new position p'. In addition, it 
shows two triangles formed by a line drawn from the coordinate-space origin to each 
point and a line drawn from each point through the x-axis. 

p' 

p 

It---)l' ---J I 
14-----)1 --~I 

Figure 10-12: An object rotated by algorithmic derivation. 

Using trigonometry, the x-coordinate of point p can be obtained by multiplying the length 
of the hypotenuse h by the cosine of A 1. 

',,' " "', .. 

The y-coordjnate of point p can be obtained by multiplying the length of the hypotenuse 
h by the sine of A 1. 

Likewise, the x-coordinate of point p' can be obtained by multiplying the length of the 
hypotenuse h by the cosine of (A 1 + A2). 

Finally, the y-coordinate of point p' can be obtained by multiplying the length of the 
hypotenuse h by the sine of (A 1 + A2). 

:.". :~. ' 



Chapter 10 Coordinate Spaces and Transformations 245 

Y">.~ h*,s 1'n(Al + A2)· 

Using the addition theorem, the preceding algorithms become the following: 

~.;'::~~t~;~~·'[:l:;~;~!:':~:;!;.~:~,;,:~~,,;i:~i~i~~~.; "~!i~~~.}>;':'):,:;::L, 
The rotation algorithms for a given point rotated by angle A2 can be obtained by 
substituting x for each occurrence of (h * cos A 1) and by substituting y for each 
occurrence o! (h * sin A 1). 

Shear 
Some applications provide features that shear objects drawn in the client area. 
Applications that use shear capabilities use the SetWorldTransform function to set 
appropriate values in the world-space to page-space transformation. This function 
receives a pointer to an XFORM structure containing the appropriate values. The eM12 
and eM21 members of XFORM specify the horizontal and vertical proportionality 
constants, respectively. 

There are two components of the shear transformation. The first alters the vertical lines 
in an object; the second alters the horizontal lines. Figure 10-13 shows a 20-unit-by-20-
unit rectangle sheared horizontally when copied from world space to page space. 

World space Page space 
50 50 

40 40 

30 30 

20 20 

10 10 

20 40 60 80 100 20 40 60 80 100 

Figure 10-13: An object sheared horizontally. 

A horizontal shear can be represented by the following algorithm: 

where x is the original x-coordinate, Sx is the proportionality constant, and x'is the result 
of the shear transformation. 

A vertical shear can be represented by the following algorithm: 



246 Volume 3 Microsoft Windows GOI 

where y is the original y-coordinate, Sy is the proportionality constant, and y' is the result 
of the shear transformation. 

The horizontal-shear and vertical-shear transformations can be combined into a single 
operation using a 2-by-2 matrix. 

f:)~i:~~~ ,:iJ\'. " " 
The 2-by-2 matrix that produced the shear contains the following values: 

;J~'c:;;);,'·f}·',.'·,,::'" 
Reflection 
Some applications provide features that reflect (or mirror) objects drawn in the client 
area. Applications that contain reflection capabilities use the SetWorldTransform 
function to set the appropriate values in the world-space to page-space transformation. 
This function receives a pointer to an XFORM structure containing the appropriate 
values. The eM11 and eM22 members of XFORM specify the horizontal and vertical 
reflection components, respectively. 

The reflection transformation creates a mirror image of an object with respect to either 
the x-axis or y-axis. In short, reflection is just negative scaling. To produce a horizontal 
reflection, x-coordinates are multiplied by -1. To produce a vertical reflection, y
coordinates are multiplied by -1 . 

Horizontal reflection can be represented by the following algorithm: 

• '. > ; ' .. " :-~ 

where x is the x-coordinate and x'is the result of the reflection. 

The 2-by-2 matrix that produced horizontal reflection contains the following values: 
. ", ~~ , ~ 

. ~1 

Vertical reflection can be represented by the following algorithm: 
. '-:". -': 

;" .' ~: 

where y is the y-coordinate and y'is the result of the reflection. 

The 2-by-2 matrix that produced vertical reflection contains the following values: 

J1:" 
10'::: 



Chapter 10 Coordinate Spaces and Transformations 247 

The horizontal-reflection and vertical-reflection operations can be combined into a single 
operation by using the following 2-by-2 matrix: 

l-i~r' '" 
to.,·-;:Alt; . 

Combined World-to-Page Space Transformations 
The five world-to-page transformations can be combined into a single 3-by-3 matrix. The 
CombineTransform function can be used to combine two world-space to page-space 
transformations. The combined transformations can be used to alter output associated 
with a particular device context (DC) by calling the SetWorldTransform function and 
supplying the elements for this matrix. When an application calls SetWorldTransform, it 
stores the elements of the 3-by-3 matrix in an XFORM structure. The members of this 
structure correspond to the first two columns of a 3-by-3 matrix; the last column of the 
matrix is not required because its values are constant. 

The elements of the current world transformation matrix can be revived by calling the 
GetWorldTransform function and supplying a pointer to an XFORM structure. 

Page-Space to Device-Space Transformations 
The page-space to device-space transformation determines the mapping mode for all 
graphics output associated with a particular DC. A mapping mode is a scaling 
transformation that specifies the size of the units used for drawing operations. The 
mapping mode may also perform translation. In some cases, the mapping mode alters 
the orientation of the x-axis and y-axis in device space. 

Mapping Modes and Translations 
The mapping modes are described in the following table: 

Mapping mode Description 

MM_ANISOTROPIC Each unit in page space is mapped to an application-specified 
unit in device space. The axis mayor may not be equally scaled 
(for example, a circle drawn in world space may appear to be 
an ellipse when depicted on a given device). The orientation of 
the axis is also specified by the application. 

MM_HIENGLISH Each unit in page space is mapped to 0.001 inch in device 
space. The value of x increases from left to right. The value of y 
increases from bottom to top. 

MM_HIMETRIC Each unit in page space is mapped to 0.01 millimeter in device 
space. The value of x increases from left to right. The value of y 
increases from bottom to top. 

(continued) 



248 Volume 3 Microsoft Windows GOI 

(continued) 

Mapping mode Description 

Each unit in page space is mapped to an application-defined 
unit in device space. The axes are always equally scaled. The 
orientation of the axes may be specified by the application. 

Each unit in page space is mapped to 0.01 inch in device 
space. The value of x increases from left to right. The value of y 
increases from bottom to top. 

Each unit in page space is mapped to 0.1 millimeter in device 
space. The value of x increases from left to right. The value of y 
increases from bottom to top. 

Each unit in page space is mapped to one pixel; that is, no 
scaling is performed at all. When no translation is in effect (this 
is the default), page space in the MM_ TEXT mapping mode is 
equivalent to physical device space. The value of x increases 
from left to right. The value of y increases from top to bottom. 

Each unit in page space is mapped to one twentieth of a 
printer's point (1/1440 inch). The value of x increases from left 
to right. The value of y increases from bottom to top. 

To set a mapping mode, call the SetMapMode function. Retrieve the current mapping 
mode for a DC by calling the GetMapMode function. 

The page-space to device-space transformations consist of values calculated from the 
pOints given by the window and viewport. In this context, the window refers to the logical 
coordinate system of the page space, while the viewport refers to the device coordinate 
system of the device space. The window and viewport each consist of an origin, a 
horizontal (x) extent, and a vertical (y) extent. The window parameters are in logical 
coordinates; the viewport in device coordinates (pixels). The system combines the 
origins and extents from both the window and viewport to create the transformation. This 
means that the window and viewport each specify half of the factors needed to define 
the transformation used to map pOints in page space to device space. Thus, the system 
maps the window origin to the viewport origin and the window extents to the viewport 
extents, as shown in Figure 10-14. 



Chapter 10 Coordinate Spaces and Transformations 249 

Page space 

Window 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

Deyice space 

Viewport 

\.t--+-~F'l 

v~","'t orig;nJ L-__ --L ___ _ 

Figure 10-14: Origin and viewpoint mapping. 

The window and viewport extents establish a ratio or scaling factor used in the page
space to device-space transformations. For the six predefined mapping modes 
(MM_HIENGLlSH, MM_LOENGLlSH, MM_HIMETRIC, MM_LOMETRIC, MM_ TEXT, 
and MM_ TWIPS), the extents are set by the system when SetMapMode is called. They 
cannot be changed. The other two mapping modes (MM_ISOTROPIC and 
MM_ANISOTROPIC) require that the extents are specified. This is done by calling 
SetMapMode to set the appropriate mode and then calling the SetWindowExtEx and 
SetViewportExtEx functions to specify the extents. In the MM_ISOTROPIC mapping 
mode, it is important to call SetWindowExtEx before calling SetViewportExtEx. 

The window and viewport origins establish the translation used in the page-space to 
device-space transformations. Set the window and viewport origins by using the 
SetWindowOrgEx and SetViewportOrgEx functions. The origins are independent of 
the extents, and an application can set them regardless of the current mapping mode. 
Changing a mapping mode does not affect the currently set origins (although it can 
affect the extents). Origins are specified in absolute units that the current mapping mode 
does not affect. To alter the origins, use the OffsetWindowOrgEx and 
OffsetViewportOrgEx functions. 

The following formula shows the math involved in converting a point from page space to 
device space: 

'irI'i:~~§,<t'~il~iW~>tS::~ ~~E~'I'WE"xi +:V()x':';,' , ,,:~: ,',,' 



250 Volume 3 Microsoft Windows GOI 

The following variables are involved: 

The same equation with y replacing x transforms the y component of a point. 

The formula first offsets the point from its coordinate origin. This value, no longer biased 
by the origin, is then scaled into the destination coordinate system by the ratio of the 
extents. Finally, the scaled value is offset by the destination origin to its final mapping. 

The LPtoDP and DPtoLP functions may be used to convert from logical points to device 
pOints and from device pOints to logical pOints, respectively. 

Predefined Mapping Modes 
Of the six predefined mapping modes, one is device dependent (MM_ TEXT)-the 
remaining five (MM_HIENGLlSH, MM_LOENGLlSH, MM_HIMETRIC, MM_LOMETRIC, 
and MM_ TWIPS) are device independent. 

The default mapping mode is MM_ TEXT. One logical unit equals one pixel. Positive x is 
to the right, and positive y is down. This mode maps directly to the device's coordinate 
system. The logical-to-physical mapping involves only an offset in x and ythat is defined 
by the application-controlled window and viewport origins. The viewport and window 
extents are all set to 1, creating a one-to-one mapping. 

Applications that display geometric shapes (circles, squares, polygons, and so on, make 
use of one of the device-independent mapping modes. For example, if you are writing an 
application to provide charting capabilities for a spreadsheet program and want to 
guarantee that the diameter of each pie chart is 2 inches, use the MM_LOENGLISH 
mapping mode and call the appropriate functions to draw and fill the chart. Specifying 
MM_LOENGLlSH, guarantees that the diameter of the chart is consistent on any display 
or printer. If MM_ TEXT is used instead of MM_LOENGLlSH, a chart that appears 
circular on a VGA display would appear elliptical on an EGA display and would appear 
very small on a 300-dpi laser printer. 

Application-Defined Mapping Modes 
The two application-defined mapping modes (MM_ISOTROPIC and 
MM_ANISOTROPIC) are provided for application-specific mapping modes. The 
MM_ISOTROPIC mode guarantees that logical units in the x-direction and in the y
direction are equal, while the MM_ANISOTROPIC mode allows the units to differ. A CAD 
or drawing application can benefit from the MM_ISOTROPIC mapping mode but may 
need to specify logical units that correspond to the increments on an engineer's scale 
(1/64 inch). These units would be difficult to obtain with the predefined mapping modes 



Chapter 10 Coordinate Spaces and Transformations 251 

(MM_HIENGLISH or MM_HIMETRIC); however, they can easily be obtained by 
selecting the MM_ISOTROPIC (or MM_ANISOTROPIC) mode. The following example 
shows how to set logical units to 1/64 inch: 

,~.et:~a~lI!ode(hDC. JilM~IS{)TROP.ICn .. : 
Se~\'ltn~<rtfE!<tEX( hlle; 64. 64 ,NUL~): .' ... 
Sl!tlJ:f~wp~'J!tExtEx(~DC~GetDe\l1 c~~ap$(hpt;;~ . LgGP:1XE'LS~);' 
,. ';2' .;. ... . .... ..(;eweyi~Cal>s:(hDC" LOGPIX,tL:SY·); .. ' .. . 

. KUi , (' . . .;: .,'. :,." .. ·.;~,li, , .:, '" ,,". ' 

Device-Space to Physical-Device Transformation 
The device-space to physical-device transformation is unique in several respects. For 
example, it is limited to translation and is controlled by the system. The sole purpose of 
this transformation is to ensure that the origin of device space is mapped to the proper 
point on the physical device. There are no functions to set this transformation, nor are 
there any functions to retrieve related data. 

Default Transformations 
Whenever an application creates a DC and immediately begins calling GDI drawing or 
output functions, it takes advantage of the default page-space to device-space, and 
device-space to client-area transformations. A world-to-page space transformation 
cannot happen until the application first calls the SetGraphicsMode function to set the 
mode to GM_ADVANCED and then calls the SetWorldTransform function. 

Use of MM_ TEXT (the default page-space to device-space transformation) results in a 
one-to-one mapping; that is, a given point in page space maps to the same point in 
device space. As previously mentioned, this transformation is not specified by a matrix. 
Instead, it is obtained by dividing the width of the viewport by the width of the window 
and the height of the viewport by the height of the window. In the default case, the 
viewport dimensions are 1 pixel by 1 pixel, and the window dimensions are 1 page unit 
by 1 page unit. 

The device-space to physical-device (client area, desktop, or printer paper) 
transformation a/ways results in a one-to-one mapping; that is, one unit in device space 
is always equivalent to one unit in the client area, on the desktop, or on a page. The sole 
purpose of this transformation is translation; it ensures that output appears correctly in 
an application's window no matter where that window is moved on the desktop. 

The one unique aspect of MM_ TEXT is the orientation of the y-axis in page space. In 
MM_ TEXT, the positive y-axis extends downward and the negative y-axis extends 
upward. 



252 Volume 3 Microsoft Windows GOI 

Coordinate Space and Transformation Reference 

Coordinate Space and Transformation Functions 

ClientToScreen 
The ClientToScreen function converts the client-area coordinates of a specified point to 
screen coordinates. 

Parameters 
hWnd 

[in] Handle to the window whose client area is used for the conversion. 

IpPoint 
[in/out] Pointer to a POINT structure that contains the client coordinates to be 
converted. The new screen coordinates are copied into this structure if the function 
succeeds. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The ClientToScreen function replaces the client-area coordinates in the POINT 
structure with the screen coordinates. The screen coordinates are relative to the upper
left corner of the screen. Note, a screen-coordinate point that is above the window's 
client area has a negative y-coordinate. Similarly, a screen coordinate to the left of a 
client area has a negative x-coordinate. 

All coordinates are device coordinates. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 10 Coordinate Spaces and Transformations 253 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, MapWindowPoints, POINT, ScreenToClient 

CombineTransform 
The CombineTransform function concatenates two world-space to page-space 
transformations. 

Parameters 
IpxformResult 

[out] Pointer to an XFORM structure that receives the combined transformation. 

Ipxform1 
[in] Pointer to an XFORM structure that specifies the first transformation. 

Ipxform2 
[in] Pointer to an XFORM structure that specifies the second transformation. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
Applying the combined transformation has the same effect as applying the 
first transformation and then applying the second transformation. 

The three transformations need not be distinct. For example, Ipxform 1 can point to the 
same XFORM structure as IpxformResult. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



254 Volume 3 Microsoft Windows GOI 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetWorldTransform, Mod ifyWorldTransform , 
SetWorldTransform, XFORM 

DPtoLP 
The DPtoLP function converts device coordinates into logical coordinates. 
The conversion depends on the mapping mode of the device context, the settings of the 
origins and extents for the window and viewport, and the world transformation. 

;Q.;~, .• ".~,O,L1,,·., •.. ~n~,·.,t':,· •.•.•. ~c:t.·()r.' .•.• ~t, .•.•• ,p,;·, •. ~!,~Jf;1~:f;:!r~~·;;:i~~t ""t~~ . 
",m . ':/1 c,-,!un~(jf. ;p(l1liti,in:at'r~.Y '. 

:: ,:: -:: .. ~ , 

Parameters 
hdc 

. ".,.0,·· 

[in] Handle to the device context. 

IpPoints 
[in/out] Pointer to an array of POINT structures. The x-coordinates and y-coordinates 
contained in each POINT structure will be transformed. 

nCount 
[in] Specifies the number of pOints in the array. 

Return Values 
If the fUhction succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The DPtoLP function faiis if the device coordinates exceed 27 bits, or if the converted 
logical coordinates exceed 32 bits. In the case of such an overflow, the results for all the 
pOints are undefined. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



Chapter 10 Coordinate Spaces and Transformations 255 

Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, LPtoDP, POINT 

GetCurrentPosition Ex 
The GetCurrentPositionEx function retrieves the current position in logical coordinates. 

Parameters 
hdc 

[in] Handle to the device context. 

IpPoint 
[out] Pointer to a POINT structure that receives the coordinates of the current position. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, MoveToEx, POINT 



256 Volume 3 Microsoft Windows GOI 

GetGraphicsMode 
The GetGraphicsMode function retrieves the current graphics mode for the specified 
device context. 

Parameters 
hdc 

[in] Handle to the device context. 

Return Values 
If the function succeeds, the return value is the current graphics mode. It can be one of 
the following values: 

Value 

GM_COMPATIBLE 

Meaning 

Windows NT/2000: The current graphics mode is the 
advanced graphics mode, a mode that allows world 
transformations. In this graphics mode, an application can set 
or modify the world transformation for the specified device 
context. 

Windows 95/98: The GM_ADVANCED value is not 
supported. 

The current graphics mode is the compatible graphics mode, 
a mode that is compatible with 16-bit Windows. In this 
graphics mode, an application cannot set or modify the world 
transformation for the specified device context. The 
compatible graphics mode is the default graphics mode. 

Otherwise, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can set the graphics mode for a device context by calling the 
SetGraphicsMode function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



Chapter 10 Coordinate Spaces and Transformations 257 

Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, SetGraphicsMode 

GetMapMode 
The GetMapMode function retrieves the current mapping mode. 

in,t.'Gett4ap.MQiIe( 
;ifi~lt};hdc;'l( t1andle;ti:> device context 

J:,.. :'r' 

Parameters 
hdc 

[in] Handle to the device context. 

Return Values 
If the function succeeds, the return value specifies the mapping mode. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The following are the various mapping modes: 

Mode Description 

MM_ANISOTROPIC Logical units are mapped to arbitrary units with arbitrarily 
scaled axes. Use the SetWindowExtEx and 
SetViewportExtEx functions to specify the units, orientation, 
and scaling required. 

Each logical unit is mapped to 0.001 inch. Positive x is to the 
right; positive y is up. 

Each logical unit is mapped to 0.01 millimeter. Positive x is to 
the right; positive y is up. 

(continued) 



258 Volume 3 Microsoft Windows GOI 

(continued) 

Mode Description 

Logical units are mapped to arbitrary units with equally 
scaled axes; that is, one unit along the x-axis is equal to one 
unit along the y-axis. Use the SetWindowExtEx and 
SetViewportExtEx functions to specify the units and the 
orientation of the axes. Graphics device interface makes 
adjustments as necessary to ensure the x and y units remain 
the same size. (When the windows extent is set, the viewport 
will be adjusted to keep the units isotropic). 

Each logical unit is mapped to 0.01 inch. Positive x is to the 
right; positive y is up. 

Each logical unit is mapped to 0.1 millimeter. Positive x is to 
the right; positive y is up. 

Each logical unit is mapped to one device pixel. Positive x is 
to the right; positive y is down. 

Each logical unit is mapped to one-twentieth of a printer's 
pOint (1/1440 inch, also called a "twip"). Positive xis to the 
right; positive y is up. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space 
and Transformation Functions, SetMapMode, SetWindowExtEx, SetViewportExtEx 

GetViewportExtEx 
The GetViewportExtEx function retrieves the x-extent and y-extent of the current 
viewport for the specified device context. 

iRe or "GetVi eW:port~~tEx( 
, HDC :hdc. ,,' 'II hand]Eltot\eYic~ context 

LPst?E 7.pSltel Iy;tewport ~i]ilens:f9ns 
}; . , . ~ , , '. '. " 



Parameters 
hdc 

Chapter 10 Coordinate Spaces and Transformations 259 

[in] Handle to the device context. 

IpSize 
[out] Pointer to a SIZE structure that receives the x-extent and y-extent, in device 
units. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetWindowExtEx, SetViewportExtEx, SetWindowExtEx 

GetViewportOrgEx 
The GetViewportOrgEx function retrieves the x-coordinates and y-coordinates of the 
viewport origin for the specified device context. 

1300lGet'Vi ewportOrg Ex( 

); 

HQC .. hdc. 
lPPOnn 

Parameters 
hdc 

[in] Handle to the device context. 

IpPoint 
[out] Pointer to a POINT structure that receives the coordinates of the origin, in device 
units. 



260 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h .. 
Library: Use gdi32.1ib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetWindowOrgEx, POINT, SetViewportOrgEx, 
SetWindowOrgEx 

GetWindowExtEx 
This function retrieves the x-extent and v-extent of the window for the specified device 
context. 

[~~~~~riit#!:~~~~<~:,ir~l:, 
Parameters 
hdc 

[in] Handle to the device context. 

JpSize 
[out] Pointer to a SIZE structure that receives the x-extent and v-extent in page-space 
units; that is, in logicai units. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 10 Coordinate Spaces and Transformations 261 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetViewportExtEx, SetViewportExtEx, SetWindowExtEx 

GetWindowOrgEx 
The GetWindowOrgEx function retrieves the x-coordinates and y-coordinates of the 
window origin for the specified device context. 

Parameters 
hdc 

[in] Handle to the device context. 

IpPoint 
[out] Pointer to a POINT structure that receives the coordinates, in logical units, of the 
window origin. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 



262 Volume 3 Microsoft Windows GOI 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetViewportOrgEx, SetViewportOrgEx, SetWindowOrgEx 

GetWorldTransform 
The GetWorldTransform function retrieves the current world-space to page-space 
transformation. 

~O~G~tWQr'ldTrJri$ t~rlll( 
··..HIl&,ti~c..> . '. 

t~XfO~l1".tPXforffl """"'~~A'" 

Parameters 
hdc 

[in] Handle to the device context. 

IpXform 
[out] Pointer to an XFORM structure that receives the current world-space to page
space transformation. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The precision of the transformation may be altered if an application calls the 
ModifyWorldTransform function prior to calling GetWorldTransform. (This is because 
the internal format for storing transformation values uses a higher precision than a 
FLOAT value.) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



Chapter 10 Coordinate Spaces and Transformations 263 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, ModifyWorldTransform, SetWorldTransform 

LPtoDP 
The LPtoDP function converts logical coordinates into device coordinates. 
The conversion depends on the mapping mode of the device context, the settings of the 
origins and extents for the window and viewport, and the world transformation. 

:B:()~+lCj)t~~~ (:f:;:: 
.. 'MoC··a'dl:(: ......... ' " 
il:~"O,I;Nt· JP~~ 1,~ ts~; 
i.n1(':nf::d6¢if' . 

';) 

Parameters 
hdc 

, Gia:Vlcectfnhkt 
ppi:~t$.· . 

O+';P01f)t<$' :in ';;If' ra:y ., 

[in] Handle to the device context. 

IpPoints 
[in/out] Pointer to an array of POINT structures. The x-coordinates and y-coordinates 
contained in each of the POINT structures will be transformed. 

nCount 
[in] Specifies the number of points in the array. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
This function fails if the logical coordinates exceed 32 bits, or if the converted device 
coordinates exceed 27 bits. In the case of suchan overflow, the results for all the points 
are undefined. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



264 Volume 3 Microsoft Windows GDI 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, DPtoLP, POINT 

MapWindowPoints 
The MapWindowPoints function converts (maps) a set of pOints from a coordinate 
space relative to one window to a coordinate space relative to another window. 

Parameters 
hWndFrom 

[in] Handle to the window from which pOints are converted. If this parameter is NULL 
or HWND_DESKTOP, the points are presumed to be in screen coordinates. 

hWndTo 
[in] Handle to the window to which pOints are converted. If this parameter is NULL or 
HWND_DESKTOP, the pOints are converted to screen coordinates. 

IpPoints 
[in/out] Pointer to an array of POINT structures that contain the set of points to be 
converted. The points are in device units. This parameter can also point to a RECT 
structure, in which case the cPoints parameter should be set to 2. 

cPoints 
[in] Specifies the number of POINT structures in the array pointed to by the IpPoints 
parameter. 

Return Values 
if the function succeeds, the iow-order word of the return value is the number of pixels 
added to the horizontal coordinate of each source point in order to compute the 
horizontal coordinate of each destination point; the high-order word is the number of 
pixels added to the vertical coordinate of each source point in order to compute the 
vertical coordinate of each destination point. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 10 Coordinate Spaces and Transformations 265 

Remarks 
If hWndFrom or hWndTo (or both) are mirrored windows (that is, have 
WS_EX_LAYOUTRTL extended style), MapWindowPoints will automatically adjust 
mirrored coordinates if you pass two or less pOints in IpPoints. If you pass more than two 
points, the function will not fail but it will return erroneous positions. Thus, to guarantee 
the correct transformation of rectangle coordinates, you must call MapWindowPoints 
with two or less points at a time, as shown in the following example: 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95198: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, ClientToScreen, POINT, RECT, ScreenToClient 

ModifyWorldTransform 
The ModifyWorldTransform function changes the world transformation for a device 
context using the specified mode. 

hdc 
[in] Handle to the device context. 

IpXform 
[in] Pointer to an XFORM structure used to modify the world transformation for the 
given device context. 



266 Volume 3 Microsoft Windows GOI 

iMode 
[in] Specifies how the transformation data modifies the current world transformation. 
This parameter must be one of the following values: 

Value 

MWT _LEFTMUL TIPL Y 

MWT _RIGHTMUL TIPL Y 

Return Values 

Description 

Resets the current world transformation by using the 
identity matrix. If this mode is specified, the XFORM 
structure pointed to by IpXform is ignored. 

Multiplies the current transformation by the data in the 
XFORM structure. (The data in the XFORM structure 
becomes the left multiplicand, and the data for the 
current transformation becomes the right multiplicand.) 

Multiplies the current transformation by the data in the 
XFORM structure. (The data in the XFORM structure 
becomes the right multiplicand, and the data for the 
current transformation becomes the left multiplicand.) 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The ModifyWorldTransform function will fail unless graphics mode for the specified 
device context has been set to GM_ADVANCED by previously calling the 
SetGraphicsMode function. Likewise, it will not be possible to reset the graphics mode 
for the device context to the default GM_COMPATIBLE mode, unless world transform 
has first been reset to the default identity transform by calling SetWorldTransform or 
ModifyWorldTransform. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetWorldTransform, SetGraphicsMode, 
SetWorldTransform, XFORM 



Chapter 10 Coordinate Spaces and Transformations 267 

OffsetViewportOrgEx 
The OffsetViewportOrgEx function modifies the viewport origin for a device context 
using the specified horizontal and vertical offsets. 

Parameters 
hdc 

[in] Handle to the device context. 

nXOffset 
[in] Specifies the horizontal offset, in device units. 

nYOffset 
[in] Specifies the vertical offset, in device units. 

IpPoint 
[out] Pointer to a POINT structure. The previous viewport origin, in device units, is 
placed in this structure. If IpPoint is NULL, the previous viewport origin is not returned. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Remarks 
The new origin is the sum of the current origin and the horizontal and vertical offsets. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetViewportOrgEx, OffsetWindowOrgEx, 
SetViewportOrgEx 



268 Volume 3 Microsoft Windows GOI 

OffsetWindowOrgEx 
The OffsetWindowOrgEx function modifies the window origin for a device context using 
the specified horizontal and vertical offsets. 

Parameters 
hdc 

[in] H.andle to the device context. 

nXOffsef 
[in] Specifies the horizontal offset, In logical units. 

nYOffset 
[in] Specifies the vertical offset, in logical units. 

IpPoint 
[out] Pointer to a POINT structure. The logical coordinates of the previous window 
origin are placed in this structure. If IpPoint is NULL, the previous origin is not 
returned. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later.Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetViewportOrgEx, OffsetViewportOrgEx, POINT 



Chapter 10 Coordinate Spaces and Transformations 269 

Scale ViewportExtEx 
The ScaleViewportExtEx function modifies the viewport for a device context (DC) by 
using the ratios formed by the specified multiplicands and divisors. 

Parameters 
hdc 

[in] Handle to the device context. 

Xnum 
[in] Specifies the amount by which to multiply the current horizontal extent. 

Xdenom 
[in] Specifies the amount by which to divide the current horizontal extent. 

Ynum 
[in] Specifies the amount by which to multiply the current vertical extent. 

Ydenom 
[in] Specifies the amount by which to divide the current vertical extent. 

IpSize 
[out] Pointer to a SIZE structure that receives the previous viewport extents, in device 
units. If IpSize is NULL, this parameter is not used. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The viewport extents are modified as follows: 

;:~:i;;,::";;t~~;~;[":'I~:~:~~~{,~:;;",~~;:~::%:;;,:' " " 

. ,'.' " 

... ,"',.' 



270 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Coordinate Spaces and Transformations Overview, Coordinate Space and 
Transformation Functions, GetViewportExtEx, SIZE 

ScaleWindowExtEx 
The ScaleWindowExtEx function modifies the window for a device context using the 
ratios formed by the specified multiplicands and divisors. 

~~~~:~!~1~:~~r;~~~~Jl~,;tQ· deViGe¢~nt~x~;' •.••. 

jll;l~i}~:~,~tt~~~~;!i:~{·
Parameters
hdc

[in] Handle to the device context.

Xnum
[in] Specifies the a~ount by which to multiply the current horizontal extent.

Xdenom
[in] Specifies the amount by which to divide the current horizontal extent.

Ynum
[in] Specifies the amount by which to multiply the current vertical extent.

Ydenom
[in] Specifies the amount by which to divide the current vertical extent.

JpSize
[out] Pointer to a SIZE structure that receives the previous window extents, in logical
units. If JpSize is NULL, this parameter is not used.

Chapter 10 Coordinate Spaces and Transformations 271

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The window extents are modified as follows:

'·:~~r?,f:~I~~i'lil·t~'i?t·IM~+:.'Ii'!v.«'e.~I'f.:',it'¥'j~,;'";':;:i'ii~":.~iii; .. ifi~:~N(:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetWindowExtEx, SIZE

ScreenToClient
The ScreenToClient function converts the screen coordinates of a specified point on the
screen to client coordinates.

Parameters
hWnd

[in] Handle to the window whose client area will be used for the conversion.

IpPoint
[in] Pointer to a POINT structure that specifies the screen coordinates to be
converted.

272 Volume 3 Microsoft Windows GOI

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function uses the window identified by the hWnd parameter and the screen
coordinates given in the POINT structure to compute client coordinates. It then replaces
the screen coordinates with the client coordinates. The new coordinates are relative to
the upper-left corner of the specified window's client area.

The ScreenToClient function assumes the specified point is in screen coordinates.

All coordinates are in device units.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

;0 •

. '

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, ClientToScreen, MapWindowPoints, POINT

SetGraphicsMode
The SetGraphicsMode function sets the graphics mode for the specified device context.

Parameters
hdc

[in] Handle to the device context.

iMode
[in] Specifies the graphics mode. This parameter can be one of the following values:

Value

GM_COMPATIBLE

Return Values

Chapter 10 Coordinate Spaces and Transformations 273

Meaning

Windows NT/2000: Sets the advanced graphics mode that
allows world transformations. This value must be specified if
the application will set or modify the world transformation for
the specified device context. In this mode all graphics,
including text output, fully conform to the world-to-device
transformation specified in the device context.

Windows 95/98: The GM_ADVANCED value is not
supported. When playing enhanced metafiles, Windows
95/98 attempts to make enhanced metafiles on Windows
95/98 look the same as they do on Windows NTIWindows
2000. To accomplish this, Windows 95/98 may simulate
GM_ADVANCED mode when playing specific enhanced
metafile records.

Sets the graphics mode that is compatible with 16-bit
Windows. This is the default mode. If this value is specified,
the application can only modify the world-to-device
transform by calling functions that set window and viewport
extents and origins, but not by using SetWorldTransform
or ModifyWorldTransform; calls to those functions will fail.
Examples of functions that set window and viewport extents
and origins are SetViewportExtEx and SetWindowExtEx.

If the function succeeds, the return value is the old graphics mode.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
There are three areas in which graphics output differs according to the graphics mode:

• Text Output: In the GM_COMPATIBLE mode, TrueType (or vector font) text output
behaves much the same way as raster font text output with respect to the world-to
device transformations in the DC. The TrueType text is always written from left to right
and right side up, even if the rest of the graphics will be flipped on the x-axis or y-axis.
Only the height of the TrueType (or vector font) text is scaled. The only way to write
text that is not horizontal in the GM_COMPATIBLE mode is to specify nonzero
escapement and orientation for the logical font selected in this device context.

In the GM_ADVANCED mode, TrueType (or vector font) text output fully conforms to
the world-to-device transformation in the device context. The raster fonts only have
very limited transformation capabilities (stretching by some integer factors). Graphics
device interface (GDI) tries to produce the best output it can with raster fonts for
nontrivial transformations.

274 Volume 3 Microsoft Windows GOI

• Rectangle Exclusion: If the default GM_COMPATIBLE graphics mode is set, the
system excludes bottom and rightmost edges when it draws rectangles.

The GM_ADVANCED graphics mode is required if applications want to draw
rectangles that are bottom-right inclusive .

• Arc Drawing: If the default GM_COMPATIBLE graphics mode is set, GDI draws arcs
using the current arc direction in the device space. With this convention, arcs do not
respect page-to-device transforms that require a flip along the x-axis or y-axis.

If the GM_ADVANCED graphics mode is set, GDI always draws arcs in
the counterclockwise direction in logical space. This is equivalent to the statement
that, in the GM_ADVANCED graphics mode, both arc control pOints and arcs
themselves fully respect the device context's world-to-device transformation.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, C reate DC , GetArcDirection, GetDC, GetGraphicsMode,
ModifyWorldTransform, SetArcDirection, SetViewportExtent, SetViewportExtEx,
SetWindowExtent, SetWindowExtEx, SetWorldTransform

SetMapMode
The SetMapMode function sets the mapping mode of the specified device context. The
mapping mode defines the unit of measure used to transform page-space units into
device-space units, and also defines the orientation of the device's x-axisand y-axis.

't~t,'SetM.·p~(,

;,r~~·jhP~.
Parameters
hdc

[in] Handle to the device context.

fnMapMode
[in] Specifies the new mapping mode. This parameter can be one of the following
values:

Value

MM_ANISOTROPIC

MM_ISOTROPIC

Return Values

Chapter 10 Coordinate Spaces and Transformations 275

Description

Logical units are mapped to arbitrary units with
arbitrarily scaled axes. Use the SetWindowExtEx and
SetViewportExtEx functions to specify the units,
orientation, and scaling.

Each logical unit is mapped to 0.001 inch. Positive x is
to the right; positive y is up.

Each logical unit is mapped to 0.01 millimeter. Positive x
is to the right; positive y is up.

Logical units are mapped to arbitrary units with equally
scaled axes; that is, one unit along the x-axis is equal to
one unit along the y-axis. Use the SetWindowExtEx
and SetViewportExtEx functions to specify the units
and the orientation of the axes. Graphics device
interface (GDI) makes adjustments as necessary to
ensure the x and y units remain the same size (when
the window extent is set, the viewport will be adjusted to
keep the units isotropic).

Each logical unit is mapped to 0.01 inch. Positive x is to
the right; positive y is up.

Each logical unit is mapped to 0.1 millimeter. Positive x
is to the right; positive y is up.

Each logical unit is mapped to one device pixel. Positive
x is to the right; positive y is down.

Each logical unit is mapped to one twentieth of a
printer's point (1/1440 inch, also called a twip). Positive
x is to the right; positive y is up.

If the function succeeds, the return value identifies the previous mapping mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The MM_ TEXT mode allows applications to work in device pixels, whose size varies
from device to device.

The MM_HIENGLlSH, MM_HIMETRIC, MM_LOENGLlSH, MM_LOMETRIC, and
MM_ TWIPS modes are useful for applications drawing in physically meaningful units
(such as inches or millimeters).

276 Volume 3 Microsoft Windows GOI

The MM_ISOTROPIC mode ensures a 1:1 aspect ratio.

The MM_ANISOTROPIC mode allows the x-coordinates and y-coordinates to be
adjusted independently.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetMapMode, SetviewportExtEx, SetViewportOrgEx,
SetWindovvExtEx, SetWindowOrgEx

SetViewportExtEx
The SetViewportExtEx function sets the horizontal and vertical extents of the viewport
for a device context by using the specified values.

~~t;'&~l~l~·;. d~~i~.' ~n'Rt .· •. ·iiicF~r':~"~f~~i:~'i~t~f~,;i,'
~r~~~~~J;'~~~?:;~1j~~~~~~I~"'··'·', .. ".;:i,.rti{;,\fii~'
Parameters
hdc

[in] Handle to the device context.

nXExtent
[in] Specifies the horizontal extent, in device units, of the viewport.

nYExtent
[in] Specifies the vertical extent, in device units, of the viewport.

/pSize
[out] Pointer to a SIZE structure that receives the previous viewport extents, in device
units. If /pSize is NULL, this parameter is not used.

Chapter 10 Coordinate Spaces and Transformations 2n

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The extent is the maximum value of an axis. This function sets the maximum values for
the horizontal and vertical axes of the viewport (in device coordinates or pixels). In
combination with SetWindowExtEx, SetViewportExtEx determines the scaling factor
between the window and the viewport.

When the following mapping modes are set, calls to the SetWindowExtEx and
SetViewportExtEx functions are ignored:

• MM_HIENGLISH

• MM_HIMETRIC

• MM_LOENGLISH

• MM_LOMETRIC

• MM_TEXT

• MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx
function before it calls SetViewportExtEx. Note that for the MM_ISOTROPIC mode
certain portions of a nonsquare screen may not be available for display because the
logical units on both axes represent equal physical distances.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetViewportExtEx, SetWindowExtEx, SIZE

278 Volume 3 Microsoft Windows GOI

SetViewportOrgEx
The SetViewportOrgEx function specifies which device point maps to the window origin
(0,0).

~,(},~~"'~~VfeWplsr't(}rg£X(, ' " ",
Ji$¢:hdc.'" "11 handle d~v. ~~':~d~fe~t .',

"'~ilt:~:"" ""::': ... ,,,,:{/fleW':X·CQOrdinat~;oi::~'i~~~rr'
c:':~:~t~;',';~~po;~t',"k;',".~;V~;:~:~?:~.::!'~tg~~~;~:p'()r,t. ""'1i'"",",,',:

); ''i,' ',' ", :: 'x,

Parameters
hdc

[in] Handle to the device context.

X
[in] Specifies the x-coordinate, in device units, of the new viewport origin.

y
[in] Specifies the y-coordinate, in device units, of the new viewport origin.

IpPoint
[out] Pointer to a POINT structure that receives the previous viewport origin, in device
coordinates. If IpPoint is NULL, this parameter is not used.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
This helps define the mapping from the logical coordinate space (also known as a
window) to the device coordinate space (the viewport). SetViewportOrgEx specifies
which device point maps to the logical point (0,0). It has the effect of shifting the axes so
that the logical point (0,0) no longer refers to the upper-left corner.

ii=;~!~1i~a:~!:~ ::::g;:\[~, ~~::~C:: ,
This is related to the SetViewportOrgEx function. Generally, you will use one function or
the other, but not both. Regardless of your use of SetWindowOrgEx and
SetViewportOrgEx, the device point (0,0) is always the upper-left corner.

Chapter 10 Coordinate Spaces and Transformations 279

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetViewportOrgEx, POINT, SetWindowOrgEx

SetWi ndowExtEx
The SetWindowExtEx function sets the horizontal and vertical extents of the window for
a device context by using the specified values.

Parameters
hdc

[in] Handle to the device context.

nXExtent
[in] Specifies the window's horizontal extent in logical units.

nYExtent
[in] Specifies the window's vertical extent in logical units.

IpSize
[out] Pointer to a SIZE structure that receives the previous window extents, in logical
units. If IpSize is NULL, this parameter is not used.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

280 Volume 3 Microsoft Windows GOI

Remarks
The extent is the maximum value of an axis. This function sets the maximum values for
the horizontal and vertical axes of the window (in logical coordinates). In combination
with SetViewportExtEx, SetWindowExtEx determines the scaling factor between the
window and the viewport.

When the following mapping modes are set, calls to the SetWindowExtEx and
SetViewportExtEx functions are ignored:

• MM_HIENGLISH

• MM_HIMETRIC

• MM_LOENGLISH

• MM_LOMETRIC

• MM_TEXT

• MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx
function before calling SetViewportExtEx. Note that for the MM_ISOTROPIC mode,
certain portions of a nonsquare screen may not be available for display because the
logical units on both axes represent equal physical distances.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetWindowExtEx, SetViewportExtEx, SIZE

SetWindowOrgEx
The SetWindowOrgEx function specifies which window point maps to the viewport
origin (0,0).

·QP~$e:tliin~QWP;~9q~ ..•. .

;l.'~J;~!~i~t

Parameters
hdc

Chapter 10 Coordinate Spaces and Transformations 281

[in] Handle to the device context.

X
[in] Specifies the logical x-coordinate of the new window origin.

y
[in] Specifies the logical y-coordinate of the new window origin.

IpPoint
[out] Pointer to a POINT structure that receives the previous origin of the window. If
IpPoint is NULL, this parameter is not used.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
This helps define the mapping from the logical coordinate space (also known as a
window) to the device coordinate space (the viewport). SetWindowOrgEx specifies
which logical point maps to the device point (0,0). It has the effect of shifting the axes so
that the logical point (0,0) no longer refers to the upper-left corner.

l:i~~lj!t~:J~:~l::l:T~iO:;~::[~:::l:oth:~~I~"~ •..
This is related to the SetViewportOrgEx function. Generally, you will use one function or
the other, but not both. Regardless of your use of SetWindowOrgEx and
SetViewportOrgEx, the device point (0,0) is always the upper-left corner.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

, '. . ~. ~ .

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetViewportOrgEx, GetWindowOrgEx, POINT,
SetViewportOrgEx

282 Volume 3 Microsoft Windows GOI

SetWorldTransform
The SetWorldTransform function sets a two-dimensional linear transformation between
world space and page space for the specified device context. This transformation can be
used to scale, rotate, shear, or translate graphics output.

Parameters
hdc

[in] Handle to the device context.

IpXform
[in] Pointer to an XFORM structure that contains the transformation data.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
For any coordinates (x, y) in world space, the transformed coordinates in page space (x',
y') can be determined by the following algorithm:

where the transformation matrix is represented by the following:

t~~,r:§~l}~:'·····
This function uses logical units.

Chapter 10 Coordinate Spaces and Transformations 283

The world transformation is usually used to scale or rotate logical images in a device
independent way.

The default world transformation is the identity matrix with zero offset.

The SetWorldTransform function will fail unless the graphics mode for the given device
context has been set to GM_ADVANCED by previously calling the SetGraphicsMode
function. Likewise, it will not be possible to reset the graphics mode for the device
context to the default GM_COMPATIBLE mode, unless the world transformation has first
been reset to the default identity transformation by calling SetWorldTransform or
ModifyWorldTransform.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Functions, GetWorldTransform, ModifyWorldTransform,
SetGraphicsMode, SetMapMode, SetViewportExtEx, SetViewportOrgEx,
SetWindowExtEx, SetWindowOrgEx, XFORM

284 Volume 3 Microsoft Windows GOI

Coordinate Space and Transformation Structures

XFORM
The XFORM structure specifies a world-space to page-space transformation.

Members
eM11

Specifies the following:

Operation

Scaling

Rotation

Reflection

eM12
Specifies the following:

Operation

Shear

Rotation

eM21
Specifies the following:

Operation

Shear

Rotation

Meaning

Horizontal scaling component

Cosine of rotation angle

Horizontal component

Meaning

Horizontal proportionality constant

Sine of the rotation angle

Meaning

Vertical proportionality constant

Negative sine of the rotation angle

Chapter 10 Coordinate Spaces and Transformations 285

eM22
Specifies the following:

Operation

Scaling

Rotation

Reflection

eDx

Meaning

Vertical scaling component

Cosine of rotation angle

Vertical reflection component

Specifies the horizontal translation component, in logical units.

eDy
Specifies the vertical translation component, in logical units.

Remarks
The following list describes how the members are used for each operation:

Operation eM11 eM12 eM21 eM22

Rotation

Scaling

Shear

Reflection

Cosine

Horizontal
scaling
component

Not used

Horizontal
reflection
component

Sine

Not used

Horizontal
proportionality
constant

Not used

Negative sine

Not used

Vertical
proportionality
constant

Not used

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Cosine

Vertical scaling
component

Not used

Vertical reflection
component

Coordinate Spaces and Transformations Overview, Coordinate Space and
Transformation Structures, ExtCreateRegion, GetWorldTransform,
ModifyWorldTransform, PlayEnhMetaFile, SetWorldTransform

287

CHAPTER 11

Device Contexts

A device context is a structure that defines a set of graphic objects and their associated
attributes, and the graphic modes that affect output. The graphic objects include a pen
for line drawing, a brush for painting and filling, a bitmap for copying or scrolling parts of
the screen, a palette for defining the set of available colors, a region for clipping and
other operations, and a path for painting and drawing operations.

About Device Contexts
Device independence is one of the chief features of Windows. Win32-based applications
can draw and print output on a variety of devices. The software that supports this device
independence is contained in two dynamic-link libraries. The first, GdLdll, is referred to
as the graphical device interface (GDI); the second is referred to as a device driver. The
name of the second depends on the device where the application draws output. For
example, if the application draws output in the client area of its window on a VGA
display, this library is Vga.dll; if the application prints output on an Epson FX-80 printer,
this library is Epson9.dll.

An application must instruct GDI to load a particular device driver and, once the driver is
loaded, to prepare the device for drawing operations (such as selecting a line color and
width, a brush pattern and color, a font typeface, a clipping region, and so on). These
tasks are accomplished by creating and maintaining a device context (DC). A DC is a
structure that defines a set of graphic objects and their associated attributes, and the
graphic modes that affect output. The graphic objects include a pen for line drawing, a
brush for painting and filling, a bitmap for copying or scrolling parts of the screen, a
palette for defining the set of available colors, a region for clipping and other operations,
and a path for painting and drawing operations. Unlike most of the structures, an
application never has direct access to the DC; instead, it operates on the structure
indirectly by calling various functions.

Graphic Objects
The pen, brush, bitmap, palette, region, and path associated with a DC are referred to as
its graphic objects. The following attributes are associated with each of these objects:

288 Volume 3 Microsoft Windows GDI

Graphic object

Bitmap

Brush

Palette

Font

Path

Pen

Region

Associated attributes

Size, in bytes; dimensions, in pixels; color-format; compression
scheme; and so on.

Style, color, pattern, and origin.

Colors and size (or number of colors).

Typeface name, width, height, weight, character set, and so on.

Shape.

Style, width, and color.

Location and dimensions.

When an application creates a DC, the system automatically stores a set of default
objects in it. (There is no default bitmap or path.) An application can examine the
attributes of the default objects by calling the GetCurrentObject and GetObject
functions. The application can change these defaults by creating a new object and
selecting it into the DC. An object is selected into a DC by calling the SelectObject
function.

An application can set the current brush color to a specified color value with
SetDCBrushColor.

The GetDCBrushColor function returns the DC brush color. The SetDCPenColor
function sets the pen color to a specified color value. The GetDCPenColor function
returns the DC pen color.

Graphic Modes
The Win32 API supports five graphic modes that allow an application to specify how
colors are mixed, where output appears, how the output is scaled, and so on. These
modes, which are stored in a DC, are described in the following table:

Graphics mode Description

Background

Drawing

Mapping

Polygon-fill

Stretching

Defines how background colors are mixed with existing window
or screen colors for bitmap and text operations.

Defines how foreground colors are mixed .. vith existing windO'v'v'
or screen colors for pen, brush, bitmap, and text operations.

Defines how graphics output is mapped from logical (or world)
space onto the window, screen, or printer paper.

Defines how the brush pattern is used to fill the interior of
complex regions.

Defines how bitmap colors are mixed with existing window or
screen colors when the bitmap is compressed (or scaled down).

Chapter 11 Device Contexts 289

As it does with graphic objects, the system initializes a DC with default graphic modes.
An application can retrieve and examine these default modes by calling the following
functions:

Graphics mode

Background

Drawing

Mapping

Polygon-fill

Stretching

Function

GetBkMode

GetROP2

GetMapMode

GetPolyFiIIMode

GetStretchBltMode

An application can change the default modes by calling one of the following functions:

Graphics mode

Background

Drawing

Mapping

Polygon-fill

Stretching

Device Context Types

Function

SetBkMode

SetROP2

SetMapMode

SetPolyFiIIMode

SetStretchBltMode

There are four types of DCs: display, printer, memory (or compatible), and information.
Each type serves a specific purpose, as described in the following table:

Device context

Display

Printer

Memory

Information

Description

Supports drawing operations on a video display.

Supports drawing operations on a printer or plotter.

Supports drawing operations on a bitmap.

Supports the retrieval of device data.

Display Device Contexts
An application obtains a display DC by calling the BeginPaint, GetDC, or GetDCEx
function and identifying the window in which the corresponding output will appear.
Typically, an application obtains a display DC only when it must draw in the client area.
When the application is finished drawing, it must release the DC by calling the EndPaint
or ReleaseDC function.

290 Volume 3 Microsoft Windows GOI

There are three types of DCs for video displays:

• Class

• Common

• Private

Class Device Contexts
Class device contexts are supported strictly for compatibility with 16-bit versions of
Windows. When writing a Win32-based application, avoid using the class device context;
use a private device context instead.

Common Device Contexts
Common device contexts are display DCs maintained in a special cache by the system.
Common device contexts are used in applications that perform infrequent drawing
operations. Before the system returns the DC handle, it initializes the common device
context with default objects, attributes, and modes. Any drawing operations performed
by the application use these defaults unless one of the GDI functions is called to select a
new object, change the attributes of an existing object, or select a new mode.

Because only a limited number of common device contexts exist, an application should
release them after it has finished drawing. When the application releases a common
device context, any changes to the default data are lost.

Private Device Contexts
Private device contexts are display DCs that, unlike common device contexts, retain any
changes to the default data-even after an application releases them. Private device
contexts are used in applications that perform numerous drawing operations such as
computer-aided design (CAD) applications, desktop-publishing applications, drawing and
painting applications, and so on. Private device contexts are not part of the system
cache and therefore need not be released after use. The system automatically removes
a private device context after the last window of that class has been destroyed.

An application creates a private device context by first specifying the CS_OWNDC
window-class style when it initializes the style member of the WNDCLASS structure and
calls the RegisterClass function. For more information about window classes, see
Window Classes.

After creating a window with the CS_OWNDC style, an application can caii the GetDC,
GetDCEx, or BeginPaint function once to obtain a handle identifying a private device
context. The application can continue using this handle (and the associated DC) until it
deletes the window created with this class. Any changes to graphic objects and their
attributes, or graphic modes are retained by the system until the window is deleted.

Chapter 11 Device Contexts 291

Printer Device Contexts
The printer DC can be used when printing on a dot-matrix printer, ink-jet printer, laser
printer, or plotter. An application creates a printer DC by calling the CreateDC function
and supplying the appropriate arguments (the name of the printer driver, the name of the
printer, the file or device name for the physical output medium, and other initialization
data). When an application has finished printing, it deletes the printer DC by calling the
DeleteDC function. An application must delete (rather than release) a printer DC; the
ReleaseDC function fails when an application attempts to use it to release a printer DC.

For more information, see Printer Output.

Memory Device Contexts
To enable applications to place output in memory rather than sending it to an actual
device, use a special device context for bitmap operations called a memory device
context. A memory DC enables the system to treat a portion of memory as a virtual
device. It is an array of bits in memory that an application can use temporarily to store
the color data for bitmaps created on a normal drawing surface. Because the bitmap is
compatible with the device, a memory DC is also sometimes referred to as a compatible
device context.

The memory DC stores bitmap images for a particular device. An application can create
a memory DC by calling the CreateCompatibleDC function.

The original bitmap in a memory DC is simply a placeholder. Its dimensions are one
pixel by one pixel. Before an application can begin drawing, it must select a bitmap with
the appropriate width and height into the DC by calling the SelectObject function. To
create a bitmap of the appropriate dimensions, use the CreateBitmap,
CreateBitmaplndirect, or CreateCompatibleBitmap function. After the bitmap is
selected into the memory DC, the system replaces the single-bit array with an array
large enough to store color information for the specified rectangle of pixels.

When an application passes the handle returned by CreateCompatibleDC to one of the
drawing functions, the requested output does not appear on a device's drawing surface.
Instead, the system stores the color information for the resultant line, curve, text or
region in the array of bits. The application can copy the image stored in memory back
onto a drawing surface by calling the BitBlt function, identifying the memory DC as the
source device context and a window or screen DC as the target device context.

When displaying a DIB or a DDB created from a DIB on a palette device, you can
improve the speed at which the image is drawn by arranging the logical palette to match
the layout of the system palette. To do this, call GetDeviceCaps with the
NUMRESERVED value to get the number of reserved colors in the system. Then call
GetSystemPaletteEntries and fill in the first and last NUMRESERVED/2 entries of the

292 Volume 3 Microsoft Windows GOI

logical palette with the corresponding system colors. For example, if NUMRESERVED is
20, you would fill in the first and last 10 entries of the logical palette with the system
colors. Then fill in the remaining 256-NUMRESERVED colors of the logical palette (in our
example, the remaining 236 colors) with colors from the DIB and set the
PC_NOCOLLAPSE flag on each of these colors.

For more information about color and palettes, see Colors. For more information about
bitmaps and bitmap operations, see Bitmaps.

Information Device Contexts
The information DC is used to retrieve default device data. For example, an application
can call the CreatelC function to create an information DC for a particular model of
printer and then call the GetCurrentObject and GetObject functions to retrieve the
default pen or brush attributes. Because the system can retrieve device information
without creating the structures normally associated with the other types of device
contexts, an information DC involves far less overhead and is created Significantly faster
than any of the other types. After an application finishes retrieving data by using an
information DC, it must call the DeleteDC function.

Device Context Operations
An application can perform the following operations on a device context:

• Enumerate existing graphic objects.

• Select new graphic objects.

• Delete existing graphic objects.

• Save the current graphic objects, their attributes, and the graphic modes.

• Restore previously saved graphic objects, their attributes, and the graphic modes.

In addition, an application can use a device context to:

• Determine how graphics output is translated.

• Cancel lengthy drawing operations (begun by a thread in a multithreaded application).

• Reset a printer to a particular state.

Operations on Graphic Objects
After an application creates a display or printer DC, it can begin drawing on the
associated device or, in the case of the memory DC, it can begin drawing on the bitmap
stored in memory. However, before drawing begins-and sometimes while drawing is in
progress-it is often necessary to replace the default objects with new objects.

An application can examine a default object's attributes by calling the GetCurrentObject
and GetObject functions. The GetCurrentObject function returns a handle identifying
the current pen, brush, palette, bitmap, or font, and the GetObject function initializes a
structure containing that object's attributes.

Chapter 11 Device Contexts 293

Some printers provide resident pens, brushes, and fonts that can be used to improve
drawing speed in an application. Two functions can be used to enumerate these objects:
EnumObjects and EnumFontFamilies. If the application must enumerate resident pens
or brushes, it can call the EnumObjects function to examine the corresponding
attributes. If the application must enumerate resident fonts, it can call the
EnumFontFamilies function (which can also enumerate GDI fonts).

Once an application determines that a default object needs replacing, it creates a new
object by calling one of the following creation functions:

Graphic object Function

Bitmap

Brush

Color Palette

Font

Pen

Region

CreateBitmap, CreateBitmaplndirect,
CreateCompatibleBitmap, CreateDiscardableBitmap,
CreateDIBitmap

CreateBrushlndirect, CreateDIBPatternBrush,
CreateDlBPatternBrushPt, CreateHatchBrush,
CreatePatternBrush, CreateSolidBrush

Create Palette

CreateFont, CreateFontlndirect

CreatePen, CreatePenlndirect, ExtCreatePen

CreateEllipticRgn, CreateEllipticRgnlndirect,
CreatePolygon Rgn, CreatePolyPolygon Rgn,
CreateRectRgn, CreateRectRgnlndirect,
CreateRoundRectRgn

Each of these functions returns a handle identifying a new object. After an application
retrieves a handle, it must call the SelectObject function to replace the default object.
However, the application should save the handle identifying the default object and use
this handle to replace the new object when it is no longer needed. When the application
finishes drawing with the new object, it must restore the default object by calling the
SelectObject function and then delete the new object by calling the DeleteObject
function. Failing to delete objects causes serious performance problems.

Cancellation of Drawing Operations
When complex drawing applications perform lengthy graphics operations, they consume
valuable system resources. By taking advantage of the system's multitasking features,
an application can use threads and the Cancel DC function to manage these operations.
For example, if the graphics operation performed by thread A is consuming needed
resources, thread B can call the Cancel DC function to halt that operation.

Retrieving Device Data
The Win32 API provides two functions that applications can use to retrieve device data
using a device context: GetDeviceCaps and DeviceCapabilities.

294 Volume 3 Microsoft Windows GOI

GetDeviceCaps retrieves general device data for the following devices:

• Raster displays

• Dot-matrix printers

• Ink-jet printers

• Laser printers

• Vector plotters

• Raster cameras

The data includes the supported capabilities of the device, including device resolution
(for video displays), color format (for video displays and color printers), number of
graphic objects, raster capabilities, curve drawing, line drawing, polygon drawing, and
text drawing. An application retrieves this data by supplying a handle identifying the
appropriate device context, as well as an index specifying the type of data the function is
to retrieve.

The DeviceCapabilities function retrieves data specific to printers, including the number
of available paper bins, the duplex capabilities of the printer, the resolutions supported
by the printer, the maximum and minimum supported paper size, and so on. An
application retrieves this data by supplying strings specifying a printer device and port,
as well as an index specifying the type of data that the function is to retrieve.

Saving, Restoring, and Resetting a Device Context
The Win32 API provides three functions that an application can use to save, restore, and
reset a device context: SaveDC, RestoreDC, and ResetDC. The SaveDC function
records on a special GDI stack the current DC's graphic objects and their attributes, and
graphic modes. A drawing application can call this function before a user begins drawing
and save the application's original state-providing a clean slate for the user. To return
to this original state, the application calls the RestoreDC function.

ResetDC is provided to reset printer DC data. An application calls this function to reset
the paper orientation, paper size, output scaling factor, number of copies to be printed,
paper source (or bin), duplex mode, and so on. Typically, an application calls this
function after a user has changed one of the printer options and the system has issued a
WM_DEVMODECHANGE message.

ICM-Enabled Device Context Functions
Microsoft Windows 98 and Windows 2000 work with Microsoft Image Color Management
(ICM). ICM technology ensures that a color image, graphic, or text object is rendered as
closely as possible to its original intent on any device, despite differences in imaging
technologies and color capabilities between devices. For more information, see About
Image Color Management Version 2.0.

Chapter 11 Device Contexts 295

There are various functions in the graphics device interface (GDI) that use or operate on
color data. The following device context functions are enabled for use with ICM:

• CreateCompatibleDC

• CreateDC

• GetDCBrushColor

• GetDCPenColor

• ResetDC

• SelectObject

• SetDCBrushColor

• SetDCPenColor

Device Context Reference

Device Context Functions

Cancel DC
The Cancel DC function cancels any pending operation on the specified device context
(DC).

110Pl £ancelDC(
.HDCbd~ Ilhandcle to DC

};

Parameters
hdc

[in] Handle to the DC.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The Cancel DC function is used by multithreaded applications to cancel lengthy drawing
operations. If thread A initiates a lengthy drawing operation, thread B may cancel that
operation by calling this function.

296 Volume 3 Microsoft Windows GOI

If an operation is canceled, the affected thread returns an error and the result of its
drawing operation is undefined. The results are also undefined if no drawing operation
was in progress when the function was called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, CreateThread,
GetCurrentThread

ChangeDisplaySettings
The ChangeDisplaySettings function changes the settings of the default display device
to the graphics mode specified in IpOevMode.

To change the settings of a specified display device, use the
ChangeDisplaySettingsEx function.

Lti.uio>~ii~~el)ts~pl:.l1$ett'1.ngs~f . /c. '>0 ~<.:\,'
~tt~~~ii~H}~;Lr>tQde, '·'/1 9t:IJJ)bic$0mO"~

;':~If(f~o {fwfhg~':1" "'11 gr.apfii 6$""t:ltf~r n'n't'T'l\,'l\"
,)',; '1'," ,,' " ' ",' , ":, .. "

Parameters
IpOevMode

[in] Pointer to a DEVMODE structure that describes the new graphics mode. If
IpOevMode is NULL, all the values currently in the registry will be used for the display
setting. Passing NULL for the IpOevMode parameter and 0 for the dwFlags parameter
is the easiest way to return to the default mode after a dynamic mode change.

The dmSize member of DEVMODE must be initialized to the size, in bytes, of the
DEVMODE structure. The dmDriverExtra member of DEVMODE must be initialized
to indicate the number of bytes of private driver data following the DEVMODE
structure. In addition, you can use any or all of the following members of the
DEVMODE structure:

Member

dmBitsPerPel

dmPelsWidth

dmPelsHeight

dmDisplayFlags

dmDisplayFrequency

dmPosition

Meaning

Bits per pixel

Pixel width

Pixel height

Mode flags

Mode frequency

Chapter 11 Device Contexts 297

Windows 98, Windows 2000: Position of the
device in a multi monitor configuration

In addition to using one or more of the preceding DEVMODE members, you must also
set one or more of the following values in the dmFields member to change the
display setting:

Value

DM_BITSPERPEL

DM_PELSWIDTH

DM_PELSHEIGHT

DM_DISPLAYFLAGS

DM_DISPLAYFREQUENCY

DM_POSITION

dwf/ags

Meaning

Use the dmBitsPerPel value.

Use the dmPelsWidth value.

Use the dmPelsHeight value.

Use the dmDisplayFlags value.

Use the dmDisplayFrequency value.

Windows 98, Windows 2000: Use the
dmPosition value.

[in] Indicates how the graphics mode should be changed. This parameter can be one
of the following values:

Value Meaning

a

CDS_UPDATEREGISTRY

CDS_FULLSCREEN

The graphics mode for the current screen will be
changed dynamically.

The graphics mode for the current screen will be
changed dynamically and the graphics mode will be
updated in the registry. The mode information is
stored in the USER profile.

The system tests if the requested graphics mode
could be set.

The mode is temporary in nature.

Windows NT/2000: If you change to and from
another desktop, this mode will not be reset.

(continued)

298 Volume 3 Microsoft Windows GOI

(continued)

Value

CDS_SET _PRIMARY

CDS_RESET

Meaning

The settings will be saved in the global settings
area so that they will affect all users on the
machine. Otherwise, only the settings for the user
are modified. This flag is only valid when specified
with the CDS_UPDATEREGISTRY flag.

This device will become the primary device.

The settings should be changed, even if the
requested settings are the same as the current
settings.

The settings will be saved in the registry, but will
not take affect. This flag is only valid when
specified with the CDS_UPDATEREGISTRY flag.

Specifying CDS_TEST allows an application to determine which graphics modes are
actually valid, without causing the system to change to that graphics mode.

If CDS_UPDATEREGISTRY is specified and it is possible to change the graphics
mode dynamically, the information is stored in the registry and
DISP _CHANGE_SUCCESSFUL is returned. If it is not possible to change the
graphics mode dynamically, the information is stored in the registry and
DISP _CHANGE_RESTART is returned.

Windows NT/2000: If CDS_UPDATEREGISTRY is specified and the information
could not be stored in the registry, the graphics mode is not changed and
DISP _CHANGE_NOTUPDATED is returned.

Return Values
The ChangeDisplaySettings function returns one of the following values:

Value

DISP _CHANGE_SUCCESSFUL

DISP _CHANGE_RESTART

DISP _CHANGE_BADFLAGS

DISP _CHANGE_BADPARAM

DISP _CHANGE_BADMODE

DISP _CHANGE_NOTUPDATED

Meaning

The settings change was successful.

The computer must be restarted in order for the
graphics mode to work.

An invalid set of flags was passed in.

An invalid parameter was passed in. This can
include an invalid flag or combination of flags.

The display driver failed the specified graphics
mode.

The graphics mode is not supported.

Windows NT/2000: Unable to write settings to
the registry.

Chapter 11 Device Contexts 299

Remarks
To ensure that the DEVMODE structure passed to ChangeDisplaySettings is valid and
contains only values supported by the display driver, use the DEVMODE returned by the
EnumDisplaySettings function.

When the display mode is changed dynamically, the WM_DISPLAYCHANGE message
is sent to all running applications with the following message parameters:

Parameters

wParam

LOWORD(IParam)

HIWORD(IParam)

Meaning

New bits per pixel

New pixel width

New pixel height

Windows 95: If the calling thread has any top-level windows, ChangeDisplaySettings
sends these windows the WM_DISPLA YCHANGE message right away (for all other
windows the message is posted). This may cause the shell to get its message too soon
and could squash icons. To avoid this problem, have ChangeDisplaySettings do
resolution switching by calling on a thread with no windows, for example, a new thread.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettingsEx,
Create DC, DEVMODE, EnumDisplayDevices, EnumDisplaySettings,
WM_DISPLAYCHANGE

ChangeDisplaySettingsEx
The ChangeDisplaySettingsEx function changes the settings of the display device
specified in the IpszOeviceName parameter to the graphics mode specified in the
IpOevMode parameter.

LPCTSTRlps21JeyfceName.

I...PD;VMODE lpDevMode.
tI\IlND, hwnd,

DWORD dwt7ags
lPVOID .1Pilram

X;~ •.• ~.~ .

300 Volume 3 Microsoft Windows GOI

Parameters
JpszDeviceNarne

[in] Pointer to a null-terminated string that specifies the display device whose graphics
mode the function will obtain information about. See EnumDisplayDevices for further
information on the names associated with these display devices.

The JpszDeviceName parameter can be NULL. A NULL value specifies the default
display device.

/pOevMode
[in] Pointer to a DEVMODE structure that describes the new graphics mode. If
JpDevMode is NULL, all the values currently in the registry will be used for the display
setting. Passing NULL for the JpDevMode parameter and 0 for the dwFJags parameter
is the easiest way to return to the default mode after a dynamic mode change.

The dmSize member must be initialized to the size, in bytes, of the DEVMODE
structure. The dmDriverExtra member must be initialized to indicate the number of
bytes of private driver data following the DEVMODE structure. In addition, you can
use any of the following members of the DEVMODE structure:

Member

dmBitsPerPel

dmPelsWidth

dmPelsHeight

dmDisplayFlags

dmDisplayFrequency

dmPosition

Meaning

Bits per pixel

Pixel width

Pixel height

Mode flags

Mode frequency

Windows 98, Windows 2000: Position of the
device in a multi-monitor configuration.

In addition to using one or more of the preceding DEVMODE members, you must also
set one or more ofthe following values in the dmFields member to change the
display settings:

Value·

DM_BITSPERPEL

DM_PELSWIDTH

DM_PELSHEIGHT

DM_DISPLA YFLAGS

DM_DISPLAYFREQUENCY

DM_POSITION

Meaning

Use the dmBitsPerPel value.

Use the dmPelsWidth value.

Use the dmPelsHeight value.

Use the dmDisplayFlags value.

Use the dmDisplayFrequency value.

Windows 98, Windows 2000: Use the
dmPosition value.

Chapter 11 Device Contexts 301

hwnd
Reserved; must be NULL.

dwfJags
[in] Indicates how the graphics mode should be changed. This parameter can be one
of the following values:

Value

o

CDS_FULLSCREEN

CDS_GLOBAL

CDS_SET _PRIMARY

CDS_TEST

CDS_UPDATEREGISTRY

CDS_ VIDEOPARAMETERS

Meaning

The graphics mode for the current screen will be
changed dynamically.

The mode is temporary in nature.

Windows NT/2000: If you change to and from
another desktop, this mode will not be reset.

The settings will be saved in the global settings
area so that they will affect all users on the
machine. Otherwise, only the settings for the user
are modified. This flag is only valid when specified
with the CDS_UPDATEREGISTRY flag.

The settings will be saved in the registry, but will
not take effect. This flag is only valid when
specified with the CDS_UPDATEREGISTRY flag.

The settings should be changed, even if the
requested settings are the same as the current
settings.

This device will become the primary device.

The system te~ts if the requested graphics mode
could be set.

The graphics mode for the current screen will be
changed dynamically and the graphics mode will
be updated in the registry. The mode information is
stored in the USER profile.

Windows NT/2000: When set, the IParam
parameter is a pointer to a VIDEOPARAMETERS
structure.

Specifying CDS_TEST allows an application to determine which graphics modes are
actually valid, without causing the system to change to that graphics mode.

302 Volume 3 Microsoft Windows GOI

If CDS_UPDATEREGISTRY is specified and it is possible to change the graphics
mode dynamically, the information is stored in the registry and
DISP _CHANGE_SUCCESSFUL is returned. If it is not possible to change the
graphics mode dynamically, the information is stored in the registry and
DISP _CHANGE_RESTART is returned.

Windows NT/2000: If CDS_UPDATER~GISTRY is specified and the information
could not be stored in the registry, the graphics mode is not changed and
DISP _CHANGE_NOTUPDATED is returned.

IParam
Windows NT/2000: [in] If dwFlags is CDS_VIDEOPARAMETERS, IParam is a
pOinter to a VIDEOPARAMETERS structure. Otherwise IParam must be NULL.

Return Values
The ChangeDisplaySettingsEx function returns one of the following values:

Value Meaning

DISP _CHANGE_BADESC Windows NT/2000: Driver does not support this
functionality, or the driver returned an error.

DISP _CHANGE_BADFLAGS An invalid set of flags was passed in.

DISP _CHANGE_BADMODE The graphics mode is not supported.

DISP _CHANGE_BADPARAM An invalid parameter was passed in. This can
include an invalid flag or combination of flags.

DISP _CHANGE_FAILED The display driver failed the specified graphics
mode.

DISP _CHANGE_NOTUPDATED Windows NT/2000: Unable to write settings to the
registry.

DISP _CHANGE_RESTART The computer must be restarted for the graphics
mode to work.

DISP _CHANGE_SUCCESSFUL The settings change was successful.

Remarks
To ensure that the DEVMODE structure passed to ChangeDisplaySettingsEx is valid
and contains only values supported by the display driver, use the DEVMODE returned
by the EnumDisplaySettings function.

When the display mode is changed dynamically, the WM_DISPLAYCHANGE message
is sent to all running applications with the following message parameters:

Parameters

wParam

LOWORD(IParam)

HIWORD(IParam)

Meaning

New bits per pixel

New pixel width .

New pixel height

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Chapter 11 Device Contexts 303

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, CreateDC, DEVMODE,
EnumDisplayDevices, EnumDisplaySeHings, VIDEOPARAMETERS,
WM_DISPLAYCHANGE

CreateCompatibleDC
The CreateCompatibleDC function creates a memory device context (DC) compatible
with the specified device.

Parameters
hdc

[in] Handle to an existing DC. If this handle is NULL, the function creates a memory
DC compatible with the application's current screen.

Return Values
If the function succeeds, the return value is the handle to a memory DC.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A memory DC exists only in memory. When the memory DC is created, its display
surface is exactly one monochrome pixel wide and one monochrome pixel high. Before
an application can use a memory DC for drawing operations, it must select a bitmap of
the correct width and height into the DC. To select a bitmap into a DC, use the
CreateCompatibleBitmap function, specifying the height, width, and color organization
required.

304 Volume 3 Microsoft Windows GOI

When a memory DC is created, all attributes are set to normal default values. The
memory DC can be used as a normal DC. You can set the attributes; obtain the current
settings of its attributes; and select pens, brushes, and regions.

The CreateCompatibleDC function can only be used with devices that support raster
operations. An application can determine whether a device supports these operations by
calling the GetDeviceCaps function.

When you no longer need the memory DC, call the DeleteDC function.

ICM: If the DC that is passed to this function is enabled for Independent Color
Management (ICM), the DC created by the function is ICM-enabled. The source and
destination color spaces are specified in the DC.

, ~~~. ~1;g' "; ;'i,,;a;~.~: ",,:'
~. "", "t "" • ~j'~~'\ '1:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.1ib.

Device Contexts Overview, Device Context Functions, CreateCompatibleBitmap,
DeleteDC, GetDeviceCaps

CreateDC
The CreateDC function creates a device context (DC) for a device by using the specified
name.

Parameters
IpszDriver

Windows NT/2000: [in] Pointer to a null-terminated character string that specifies
either DISPLAY for a display driver, or the name of a printer driver, which is usually
WINSPOOL.

Chapter 11 Device Contexts 305

Windows 95/98: In Win32-based applications, this parameter is ignored and should
be NULL, with one exception: You may obtain a display DC by specifying the null
terminated string DISPLAY. If this parameter is DISPLAY, all other parameters must
be NULL.

IpszDevice
[in] Pointer to a null-terminated character string that specifies the name of the specific
output device being used, as shown by the Print Manager (for example, Epson FX-
80). It is not the printer model name. The IpszDevice parameter must be used.

Windows NT/2000: If IpszDriver is DISPLAY, IpszDevice must be NULL or the device
name of a specific display device (of the form \\.\DisplayX, where X is a positive
integer). If IpszDevice is NULL or \\.\DISPLAY1, then a DC is created for the primary
display device.

Windows NT 3.51 and 4.0: Only the primary display is possible.

Windows2000: It is possible to have more than one monitor on the system. See
EnumDisplayDevices and Multiple Display Monitors.

IpszOutput
This parameter is ignored for Win32-based applications, and should be set to NULL. It
is provided only for compatibility with 16-bit Windows. For more information, see the
Remarks section.

IplnitData
[in] Pointer to a DEVMODE structure containing device-specific initialization data for
the device driver. The DocumentProperties function retrieves this structure filled in
for a specified device. The IplnitData parameter must be NULL if the device driver is
to use the default initialization (if any) specified by the user.

Windows NT/2000: If IpszDriver is DISPLAY, IplnitData must be NULL or a pOinter to
a valid DEVMODE structure for the display device. This structure can be initialized
using the EnumDisplaySettings function. If IplnitData is NULL, then the display
device's current DEVMODE is used.

Return Values
If the function succeeds, the return value is the handle to a DC for the specified device.

If the function fails, the return value is NULL. The function will return NULL for a
DEVMODE structure other that the current DEVMODE.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Applications written for 16-bit versions of Windows used the IpszOutput parameter to
specify a port name or to print to a file. Win32-based applications do not need to specify
a port name. Win32-based applications can print to a file by calling the StartDoc function
with a DOCINFO structure whose IpszOutput member specifies the path of the output
file name.

306 Volume 3 Microsoft Windows GOI

When you no longer need the DC, call the DeleteDC function.

ICM: To enable ICM, set the dmlCMMethod member of the DEVMODE structure
(pointed to by the plnitData parameter) to the appropriate value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, Multiple Display Monitors,
DeleteDC, DEVMODE, EnumDisplayDevices, DOCINFO, DocumentProperties,
StartDoc

CreatelC
The CreatelC function creates an information context for the specified device. The
information context provides a fast way to get information about the device without
creating a device context (DC). However, GDI drawing functions cannot accept a handle
to an information context.

MOC ··CMllt:elt.C
LPCTSfRl psz{)rivef,
. LPCTSTR .1PSZ1JevJ:e.
lP:CTSTRlpszOutPfjt •
. COtiST DEVr4@~*lpdvmInft

);

Parameters
IpszDriver

[in] Pointer to a null-terminated character string that specifies the name of the device
driver (for example, Epson).

IpszDevice
[in] Pointer to a null-terminated character string that specifies the name of the specific
output device being used, as shown by the Print Manager (for example, Epson FX-
80). It is not the printei model name. The IpszDevice parameter must be used.

Chapter 11 Device Contexts 307

IpszOutput
This parameter is ignored for Win32-based applications, and should be set to NULL. It
is provided only for compatibility with 16-bit Windows. For more information, see the
Remarks section.

Ipdvmlnit
[in] Pointer to a DEVMODE structure containing device-specific initialization data for
the device driver. The DocumentProperties function retrieves this structure filled in
for a specified device. The Ipdvmlnit parameter must be NULL if the device driver is to
use the default initialization (if any) specified by the user.

Return Values
If the function succeeds, the return value is the handle to an information context.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Applications written for 16-bit versions of Windows used the IpszOutput parameter to
specify a port name or to print to a file. Win32-based applications do not need to specify
a port name.

When you no longer need the information DC, call the DeleteDC function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, DeleteDC,
DocumentProperties, DEVMODE, GetDeviceCaps

DeleteDC
The DeleteDC function deletes the specified device context (DC).

a:Qd((DeleteDC(
HDChdc

);r

308 Volume 3 Microsoft Windows GOI

Parameters
hdc

[in] Handle to. the device context.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
An application must not delete a DC whose handle was obtained by calling the GetDC
function. Instead, it must call the ReleaseDC function to free the DC.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, CreateDC, GetDC, ReleaseDC

DeleteObject
The DeleteObject function deletes a logical pen, brush, font, bitmap, region, or palette,
freeing all system resources associated with the object. After the object is deleted, the
specified handle is no longer valid.

~()~;velete9pJ~cr(.··
.. :;H~nlo~j·~()Pj~ct ..
,} .;

Parameters
hObject

[in] Handle to a logical pen, brush, font, bitmap, region, or palette.

Return Values
If the function succeeds, the return value is nonzero.

Chapter 11 Device Contexts 309

If the specified handle is not valid or is currently selected into a DC, the return value is
zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Do not delete a drawing object (pen or brush) while it is still selected into a DC.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted.
The bitmap must be deleted independently.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, SelectObject

DrawEscape
The DrawEscape function accesses the drawing capabilities of a video display that are
not directly available through the graphical device interface (GDI).

i nt;Dra~soilll·e(
.;IiDC:.hQ<i,
tritfitE.scape~ ..
1flt. cbInput.,
l~SfR IpulnDpta

J:

Parameters
hdc

. I f.escapefuntt i Of!
Iisile ofstrtlct!Jre for
l/st4'uCJure Jo rlnput·

[in] Handle to the DC for the specified video display.

nEscape
[in] Specifies the escape function to be performed.

cblnput
[in] Specifies the number of bytes of data pointed to by the IpszlnData parameter.

IpszlnData
[in] Pointer to the input structure required for the specified escape.

310 Volume 3 Microsoft Windows GOI

Return Values
The return value specifies the outcome of the function. It is greater than zero if the
function is successful, except for the QUERYESCSUPPORT draw escape, which checks
for implementation only. The return value is zero if the escape is not implemented. The
return value is less than zero if an error occurred.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
When an application calls the DrawEscape function, the data identified by cblnput and
IpszlnData is passed directly to the specified display driver.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions

EnumDisplayDevices
The EnumDisplayDevices function lets you obtain information about the display
devices in a system.

Parameters
Unused

This parameter is not used and should be set to NULL.

iDevNum
[in] Index value that specifies the display device of interest.

The operating system identifies each display device with an index value. The index
values are consecutive integers, starting at O. If a system has three display devices,
for example, they are specified by the index values 0, 1, and 2.

Chapter 11 Device Contexts 311

/pDisp/ayDevice
[out] Pointer to a DISPLAY_DEVICE structure that receives information about the
display device specified by iDevNum.

Before calling EnumDisplayDevices, you must initialize the cb member of
DISPLAY_DEVICE to the size, in bytes, of DISPLAY_DEVICE.

dwFlags
This parameter is currently not used and should be set to zero.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The function fails if iDevNum is greater than
the largest device index.

Remarks
In order to query all display devices in the system, call this function in a loop, starting
with iDevNum set to 0, and incrementing iDevNum until the function fails. And in order to
query all display devices in the desktop, the caller should filter out the display devices
which do not have the DISPLAY _DEVICE_A TT ACHED_ TO_DESKTOP flag in the
DISPLAY_DEVICE structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettings,
ChangeDisplaySettingsEx, CreateDC, DEVMODE, DISPLAY_DEVICE,
EnumDisplaySettings

Enum DisplaySettings
The EnumDisplaySettings function obtains information about one of a display device's
graphics modes. You can obtain information for all of a display device's graphics modes
by making a series of calls to this function.

312 Volume 3 Microsoft Windows GOI

Parameters
IpszOeviceName

[in] Pointer to a null-terminated string that specifies the display device whose graphics
mode the function will obtain information about.

This parameter can be NULL. A NULL value specifies the current display device on
the computer that the calling thread is running on.

If IpszOeviceName is not NULL, the string must be of the form \\.\DisplayX, where X
can have the values 1 , 2, or 3.

Windows 95/98: IpszOeviceName must be NULL.

iModeNum
[in] Specifies the type of information to retrieve. This value can be a graphics mode
index or one of the following values:

Value Meaning

Retrieve the current settings for the display
device.

Retrieve the settings for the display device that
are currently stored in the registry.

Graphics mode indexes start at zero. To obtain information for all of a display device's
graphics modes, make a series of calls to EnumDisplaySettings, as follows: Set
iModeNum to zero for the first call, and increment iModeNum by one for each
subsequent call. Continue calling the function until the return value is zero.

When you call EnumDisplaySettings with iModeNum set to zero, the operating
system initializes and caches information about the display device. When you call
EnumDisplaySettings with iModeNum set to a non-zero value, the function returns
the information that was cached the last time the function was called with iModeNum
set to zero.

~DOevMode

[out] Pointer to a DEVMODE structure into which the function stores information about
the specified graphics mode. Before calling EnumDisplaySettings, set the dmSize
member to sizeof(DEVMODE), and set the dmDriverExtra member to indicate the
size, in bytes, of the additional space available to receive private driver-data.

Chapter 11 Device Contexts 313

The EnumDisplaySettings function sets values for the following five DEVMODE
members:

• dmBitsPerPel

• dmPelsWidth

• dmPelsHeight

• dmDisplayFlags

• dmDisplayFrequency

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function fails if iModeNum is greater than the index of the display device's last
graphics mode. As noted in the description of the iModeNum parameter, you can use
this behavior to enumerate all of a display device's graphics modes.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettings,
ChangeDisplaySettingsEx, CreateDC, CreateDesktop, DEVMODE,
EnumDisplayDevices

EnumDisplaySettingsEx
The EnumDisplaySettingsEx function obtains information about one of the graphics
modes for a display device. You can obtain information for all of the graphics modes for
a display device by making a series of calls to this function.

This function differs from EnumDisplaySettings in that there is a dwFlags parameter.

314 Volume 3 Microsoft Windows GOI

Parameters
IpszDeviceName

[in] Pointer to a nUll-terminated string that specifies the display device about which
graphics mode the function will obtain information.

This parameter can be NULL. A NULL value specifies the current display device on
the computer that the calling thread is running on.

If IpszDeviceName is not NULL, the string must be of the form \\.\DisplayX, where X
can have the values 1, 2, or 3.

iModeNum
[in] Indicates the type of information to retrieve. This value can be a graphics mode
index or one of the following values:

Value Meaning

Retrieve the current settings for the display
device.

Retrieve the settings for the display device that
are currently stored in the registry.

Graphics mode indexes start at zero. To obtain information for all of a display device's
graphics modes, make a series of calls to EnumDisplaySettingsEx, as follows: Set
iModeNum to zero for the first call, and increment iModeNum by one for each
subsequent call. Continue calling the function until the return value is zero.

When you call EnumDisplaySettingsEx with iModeNum set to zero, the operating
system initializes and caches information about the display device. When you call
EnumDisplaySettingsEx with iModeNum set to a nonzero value, the function returns
the information that was cached the last time the function was called with iModeNum
set to zero.

IpDevMode
[out] Pointer to a DEVMODE structure into which the function stores information about
the specified graphics mode. Before calling EnumDisplaySettingsEx, set the
dmSize member to sizeof(DEVMODE), and set the dmDriverExtra member to
indicate the size, in bytes, of the additional space available to receive private driver
data.

The EnumDisplaySettingsEx function sets values for the following five DEVMODE
members:

• dmBitsPerPel

• dmPelsWidth

• dmPelsHeight

• dmDisplayFlags

• dmDisplayFrequency

dwFlags
[in] This parameter can be the following value:

Value Meaning

Chapter 11 Device Contexts 315

If set, the function will return all graphics modes
reported by the adapter driver, regardless of monitor
capabilities. Otherwise, it will only return modes that
are compatible with current monitors.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

To get extended error information, call GetLastError.

Remarks
The function fails if iModeNum is greater than the index of the display device's last
graphics mode. As noted in the description of the iModeNum parameter, you can use
this behavior to enumerate all of a display device's graphics modes.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettings,
ChangeDisplaySettingsEx, CreateDC, CreateDesktop, DEVMODE,
EnumDisplaySettings, EnumDisplayDevices

316 Volume 3 Microsoft Windows GOI

EnumObjects
The EnumObjects function enumerates the pens or brushes available for the specified
device context (DC). This function calls the application-defined callback function once for
each available object, supplying data describing that object. EnumObjects continues
calling the callback function until the callback function returns zero or until all of the
objects have been enumerated.

Parameters
hdc

[in] Handle to the DC.

nObjectType
[in] Specifies the object type. This parameter can be OBJ_BRUSH or OBJ_PEN.

IpObjectFunc
[in] Pointer to the application-defined callback function. For more information about
the callback function, see EnumObjectsProc.

IParam
[in] Pointer to the application-defined data. The data is passed to the callback function
along with the object information.

Return Values
If the function succeeds, the function returns the last value returned by the callback
function. Its meaning is user-defined.

If there are too many objects to enumerate, the function returns -1. In this case, the
callback function is not called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, EnumObjectsProc, GetObject

Chapter 11 Device Contexts 317

EnumObjectsProc
The EnumObjectsProc function is an application-defined callback function used with
the EnumObjects function. It is used to process the object data. The
GOBJENUMPROC type defines a pointer to this callback function. EnumObjectsProc
is a placeholder for the application-defined function name.

1.nt\~!~B~~K;l·· ~~~~~t,pfocif/'"
:~;,~~~ ..•.• !.. .' ~~;~\::;lVcIl!~iii.~J.:~rci'a.ttr;i.~ut~$<"
;~:t~;J~:~~!:::":;f .• ··::,Jll.~pi~:1c~t;i:p"- peftned : data

;)'t;::,: ",A, >,~",!;;< '~O'< °S«,. ');~;,::',< '~"~'"

Parameters
IpLogObject

[in] Pointer to a LOGPEN or LOGBRUSH structure describing the attributes of the
object.

IpData
[in] Pointer to the application-defined data passed by the EnumObjects function.

Return Values
To continue enumeration, the callback function must return a nonzero value. This value
is user-defined.

To stop enumeration, the callback function must return zero.

Remarks
An application must register this function by passing its address to the EnumObjects
function . . ;,
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Device Contexts Overview, Device Context Functions, EnumObjects, GlobalAlloc,
GlobalLock, LOGPEN, LOGBRUSH

318 Volume 3 Microsoft Windows GOI

GetCurrentObject
The GetCurrentObject function obtains a handle to an object of the specified type that
has been selected into the specified device context (DC).

Parameters
hdc

[in] Handle to the DC.

uObjectType
[in] Specifies the object type to be queried. This parameter can be one of the following
values:

Value Meaning

OBJ_BITMAP

OBJ_BRUSH

OBJ_COLORSPACE

OBJ_FONT

OBJ_PAL

OBJ_PEN

Return Values

Returns the current selected bitmap.

Returns the current selected brush.

Returns the current color space.

Returns the current selected font.

Returns the current selected palette.

Returns the current selected pen.

If the function succeeds, the return value is a handle to the specified object.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
An application can use the GetCurrentObject and GetObject functions to retrieve
descriptions of the graphic objects currently selected into the specified DC.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Chapter 11 Device Contexts 319

Device Contexts Overview, Device Context Functions, DeleteObject, GetObject,
SelectObject, CreateColorSpace

GetDe
The GetDC function retrieves a handle to a display device context (DC) for the client
area of a specified window or for the entire screen. You can use the returned handle in
subsequent GDI functions to draw in the DC.

The GetDCEx function is an extension to GetDC, which gives an application more
control over how and whether clipping occurs in the client area.

Parameters
hWnd

[in] Handle to the window whose DC is to be retrieved. If this value is NULL, GetDC
retrieves the DC for the entire screen.

Windows 98, Windows 2000: If this parameter is NULL, GetDC retrieves the DC for
the primary display monitor. To get the DC for other display monitors, use the
EnumDisplayMonitors and CreateDC functions.

Return Values
If the function succeeds, the return value is a handle to the DC for the specified window's
client area.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The GetDC function retrieves a common, class, or private DC depending on the class
style specified for the specified window. For common DCs, GetDC assigns default
attributes to the DC each time it is retrieved. For class and private DCs, GetDC leaves
the previously assigned attributes unchanged.

After painting with a common DC, the ReleaseDC function must be called to release the
DC. Class and private DCs do not have to be released. The number of DCs is limited
only by available memory.

320 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Device Contexts Overview, Device Context Functions, GetDCEx, ReleaseDC,
GetWindowDC

GetDCBrushColor
The GetDCBrushColor function retrieves a handle to the device context (DC) whose
brush color is to be returned.

t(}LO~~F" :~etD:c~r:Jisllt()!J:<1r<::
.' .• lI:~·.h(Jc; ..••.. ,i" II ~ n~1¥':td:~ IIC

Parameters
hdc

[in] Handle to the DC whose brush color is to be returned.

Return Values
If the function succeeds, the return value is a COLORREF which is a color reference for
the current DC brush color.

If the function fails, the return value is CLR_INVALID.

Remarks
The GetDCBrushColor function returns the previous DC_BRUSH color even if the stock
object DC_BRUSH is not selected in the DC. For information on setting the brush color,
see SetDCBrushCo!or.

ICM: Color management is performed if ICM is enabled.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Included as a resource in msimg32.dll.

Chapter 11 Device Contexts 321

Device Contexts Overview, Device Context Functions, SetDCBrushColor, COLORREF,
About Device Contexts

GetDCEx

Value

The GetDCEx function retrieves a handle to a display device context (DC) for the client
area of a specified window or for the entire screen. You can use the returned handle in
subsequent GDI functions to draw in the DC.

This function is an extension to the GetDC function, which gives an application more
control over how and whether clipping occurs in the client area.

Parameters
hWnd

[in] Handle to the window whose DC is to be retrieved. If this value is NULL, GetDCEx
retrieves the DC for the entire screen.

Windows 98, Windows 2000: If this parameter is NULL, GetDCEx retrieves the DC
for the primary display monitor. To get the DC for other display monitors, use the
EnumDisplayMonitors and CreateDC functions.

hrgnClip
[in] Specifies a clipping region that may be combined with the visible region of the DC.
If the value of flags is DCX_INTERSECTRGN or DCX_EXCLUDERGN, then the
operating system assumes ownership of the region and will automatically delete it
when it is no longer needed. In this case, applications should not use the region-not
even delete it-after a successful call to GetDCEx.

flags
[in] Specifies how the DC is created. This parameter can be one or more of the
following values:

Meaning

DCX_WINDOW Returns a DC that corresponds to the window rectangle rather
than the client rectangle.

Returns a DC from the cache, rather than the OWNDC or
CLASSDC window. Essentially overrides CS_OWNDC and
CS_CLASSDC.

(continued)

322 Volume 3 Microsoft Windows GDI

(continued)

Value Meaning

DCX_PARENTCLIP Uses the visible region of the parent window. The parent's
WS_CLlPCHILDREN and CS_PARENTDC style bits are
ignored. The origin is set to the upper-left corner of the window
identified by hWnd.

DCX_CLlPSIBLINGS Excludes the visible regions of all sibling windows above the
window identified by hWnd.

DCX_CLlPCHILDREN Excludes the visible regions of all child windows below the
window identified by hWnd.

DCX_NORESET ATTRS Does not reset the attributes of this DC to the default attributes
when this DC is released.

DCX_LOCKWINDOWUPDATE Allows drawing even if there is a LockWindowUpdate call in
effect that would otherwise exclude this window. Used for
drawing during tracking.

DCX_EXCLUDERGN The clipping region identified by hrgnCfip is excluded from the
visible region of the returned DC.

DCX_INTERSECTRGN The clipping region identified by hrgnClip is intersected with the
visible region of the returned DC.

DCX_VALIDATE When specified with DCX_INTERSECTUPDATE, causes the
DC to be completely validated. Using this function with both
DCX_INTERSECTUPDATE and DCX_VALIDATE is identical
to using the BeginPaint function.

Return Values
If the function succeeds, the return value is the handle to the DC for the specified
window.

If the function fails, the return value is NULL. An invalid value for the hWnd parameter
will cause the function to fail.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Unless the display DC belongs to a window class, the ReleaseDC function must be
called to release the DC after painting. Because only five common DCs are available at
any time, failure to release a DC can prevent other applications from accessing one.

The function returns a handle to a DC that belongs to the window's class if
CS_CLASSDC, CS_OWNDC or CS_PARENTDC was specified as a style in the
WNDCLASS structure when the class was registered.

Chapter 11 Device Contexts 323

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.10 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Device Contexts Overview, Device Context Functions, BeginPaint, GetWindowDC,
ReleaseDC, WNDCLASS

GetDCOrgEx
The GetDCOrgEx function obtains the final translation origin for a specified device
context (DC). The final translation origin specifies an offset that the system uses to
translate device coordinates into client coordinates (for coordinates in an application's
window).

Parameters
hdc

[in] Handle to the DC whose final translation origin is to be retrieved.

IpPoint
[out] Pointer to a POINT structure that receives the final translation origin, in device
coordinates.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The final translation origin is relative to the physical origin of the screen.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.

324 Volume 3 Microsoft Windows GOI

Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, CreatelC, POINT

GetDCPenColor
The GetDCPenColor function sets the current device context (DC) pen color to the
specified color value. GetDCPenColor will return the nearest physical color if the device
cannot represent the specified color value.

CO~O.RREFGetOCPenColor(

HDeh:de Il
Jf

Parameters
hdc

[in] Handle to the DC whose brush color is to be returned.

Return Values
If the function succeeds, the return value is a color reference (COLORREF) for the
previous DC pen color.

If the function fails, the return value is CLR_INVALID.

Remarks
The GetDCPenColor function will return the previous DC_PEN color even if the stock
object DC_PEN is not selected in the DC. See Setting the Pen or Brush C%r and
SetDCPenC%rfor more information.

ICM: Color management is performed if ICM is enabled.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in mSimg32.dll.

Device Contexts Overview, Device Context Functions, COLORREF

Chapter 11 Device Contexts 309

If the specified handle is not valid or is currently selected into a DC, the return value is
zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Do not delete a drawing object (pen or brush) while it is still selected into a DC.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted.
The bitmap must be deleted independently.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, SelectObject

DrawEscape
The DrawEscape function accesses the drawing capabilities of a video display that are
not directly available through the graphical device interface (GDI).

Parameters
hdc

[in] Handle to the DC for the specified video display.

nEscape
[in] Specifies the escape function to be performed.

cblnput
[in] Specifies the number of bytes of data pOinted to by the IpszlnData parameter.

IpszlnData
[in] Pointer to the input structure required for the specified escape.

310 Volume 3 Microsoft Windows GOI

Return Values
The return value specifies the outcome of the function. It is greater than zero if the
function is successful, except for the QUERYESCSUPPORT draw escape, which checks
for implementation only. The return value is zero if the escape is not implemented. The
return value is less than zero if an error occurred.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
When an application calls the DrawEscape function, the data identified by cblnput and
IpszlnData is passed directly to the specified display driver.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions

EnumDisplayDevices
The EnumDisplayDevices function lets you obtain information about the display
devices in a system.

Parameters
Unused

This parameter is not used and should be set to NULl.

iDevNum
[in] Index value that specifies the display device of interest.

The operating system identifies each display device with an index value. The index
values are consecutive integers, starting at O. If a system has three display devices,
for example, they are specified by the index values 0, 1, and 2.

Chapter 11 Device Contexts 311

IpDisplayDevice
[out] Pointer to a DISPLAY_DEVICE structure that receives information about the
display device specified by iDevNum.

Before calling EnumDisplayDevices, you must initialize the cb member of
DISPLAY_DEVICE to the size, in bytes, of DISPLAY_DEVICE.

dwFlags
This parameter is currently not used and should be set to zero.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The function fails if iDevNum is greater than
the largest device index.

Remarks
In order to query all display devices in the system, call this function in a loop, starting
with iDevNum set to 0, and incrementing iDevNum until the function fails. And in order to
query all display devices in the desktop, the caller should filter out the display devices
which do not have the DISPLAY_DEVICE_ATTACHED_TO_DESKTOP flag in the
DISPLAY_DEVICE structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettings,
ChangeDisplaySettingsEx, CreateDC, DEVMODE, DISPLAY_DEVICE,
EnumDisplaySettings

EnumDisplaySettings
The EnumDisplaySettings function obtains information about one of a display device's
graphics modes. You can obtain information for all of a display device's graphics modes
by making a series of calls to this function.

312 Volume 3 Microsoft Windows GOI

Parameters
/pszOeviceName

[in] Pointer to a null-terminated string that specifies the display device whose graphics
mode the function will obtain information about.

This parameter can be NULL. A NULL value specifies the current display device on
the computer that the calling thread is running on.

If /pszOeviceName is not NULL, the string must be of the form \\.\DisplayX, where X
can have the values 1 , 2, or 3.

Windows 95/98: /pszOeviceName must be NULL.

iModeNum
[in] Specifies the type of information to retrieve. This value can be a graphics mode
index or one of the following values:

Value Meaning

ENUM_CURRENT _SETTINGS

ENUM_REGISTRY _SETTINGS

Retrieve the current settings for the display
device.

Retrieve the settings for the display device that
are currently stored in the registry.

Graphics mode indexes start at zero. To obtain information for all of a display device's
graphics modes, make a series of calls to EnumDisplaySettings, as follows: Set
iModeNum to zero for the first call, and increment iModeNum by one for each
subsequent call. Continue calling the function until the return value is zero.

When you call EnumDisplaySettings with iModeNum set to zero, the operating
system initializes and caches information about the display device. When you call
EnumDisplaySettings with iModeNum set to a non-zero value, the function returns
the information that was cached the last time the function was called with iModeNum
set to zero.

~oOevMode
[out] Pointer to a DEVMODE structure into which the function stores information about
the specified graphics mode. Before calling EnumDisplaySettings, set the dmSize
member to sizeof(DEVMODE), and set the dmDriverExtra member to indicate the
size, in bytes, of the additional space available to receive private driver-data.

Chapter 11 Device Contexts 313

The EnumDisplaySettings function sets values for the following five DEVMODE
members:

• dmBitsPerPel

• dmPelsWidth

• dmPelsHeight

• dmDisplayFlags

• dmDisplayFrequency

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function fails if iModeNum is greater than the index of the display device's last
graphics mode. As noted in the description of the iModeNum parameter, you can use
this behavior to enumerate all of a display device's graphics modes.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettings,
ChangeDisplaySettingsEx, CreateDC, CreateDesktop, DEVMODE,
EnumDisplayDevices

EnumDisplaySettingsEx
The EnumDisplaySettingsEx function obtains information about one of the graphics
modes for a display device. You can obtain information for all of the graphics modes for
a display device by making a series of calls to this function.

This function differs from EnumDisplaySettings in that there is a dwFlags parameter.

314 Volume 3 Microsoft Windows GOI

Parameters
IpszDeviceName

[in] Pointer to a null-terminated string that specifies the display device about which
graphics mode the function will obtain information.

This parameter can be NULL. A NULL value specifies the current display device on
the computer that the calling thread is running on.

If IpszDeviceName is not NULL, the string must be of the form \\.\DisplayX, where X
can have the values 1, 2, or 3.

iModeNum
[in] Indicates the type of information to retrieve. This value can be a graphics mode
index or one of the following values:

Value Meaning

Retrieve the current settings for the display
device.

Retrieve the settings for the display device that
are currently stored in the registry.

Graphics mode indexes start at zero. To obtain information for all of a display device's
graphics modes, make a series of calls to EnumDisplaySettingsEx, as follows: Set
iModeNum to zero for the first call, and increment iModeNum by one for each
subsequent call. Continue calling the function until the return value is zero.

When you call EnumDisplaySettingsEx with iModeNum set to zero, the operating
system initializes and caches information about the display device. When you call
EnumDisplaySettingsEx with iModeNum set to a nonzero value, the function returns
the information that was cached the last time the function was called with iModeNum
set to zero.

IpDevMode
[out] Pointer to a DEVMODE structure into which the function stores information about
the specified graphics mode. Before calling EnumDisplaySettingsEx, set the
dmSize member to sizeof(DEVMODE), and set the dmDriverExtra member to
indicate the size, in bytes, of the additional space available to receive private driver
data.

The EnumDisplaySettingsEx function sets values for the following five DEVMODE
members:

• dmBitsPerPel

• dmPelsWidth
• dmPelsHeight

• dmDisplayFlags

• dmDisplayFrequency

dwFlags
[in] This parameter can be the following value:

Value Meaning

Chapter 11 Device Contexts 315

If set, the function will return all graphics modes
reported by the adapter driver, regardless of monitor
capabilities. Otherwise, it will only return modes that
are compatible with current monitors.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

To get extended error information, call GetLastError.

Remarks
The function fails if iModeNum is greater than the index of the display device's last
graphics mode. As noted in the description of the iModeNum parameter, you can use
this behavior to enumerate all of a display device's graphics modes.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Device Contexts Overview, Device Context Functions, ChangeDisplaySettings,
ChangeDisplaySettingsEx, CreateDC, CreateDesktop, DEVMODE,
EnumDisplaySettings, EnumDisplayDevices

316 Volume 3 Microsoft Windows GOI

EnumObjects
The EnumObjects function enumerates the pens or brushes available for the specified
device context (DC). This function calls the application-defined callback function once for
each available object, supplying data describing that object. EnumObjects continues
calling the callback function until the callback function returns zero or until all of the
objects have been enumerated.

Parameters
hdc

[in] Handle to the DC.

nObjectType
[in] Specifies the object type. This parameter can be OBJ_BRUSH or OBJ_PEN.

IpObjectFunc
[in] Pointer to the application-defined callback function. For more information about
the callback function, see EnumObjectsProc.

IParam
[in] Pointer to the application-defined data. The data is passed to the callback function
along with the object information.

Return Values
If the function succeeds, the function returns the last value returned by the callback
function. Its meaning is user-defined.

If there are too many objects to enumerate, the function returns -1. In this case, the
callback function is not called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.1ib.

Device Contexts Overview, Device Context Functions, EnumObjectsProc, GetObject

Chapter 11 Device Contexts 317

EnumObjectsProc
The EnumObjectsProc function is an application-defined callback function used with
the EnumObjects function. It is used to process the object data. The
GOBJENUMPROC type defines a pointer to this callback function. EnumObjectsProc
is a placeholder for the application-defined function name.

Parameters
IpLogObject

[in] Pointer to a LOGPEN or LOGBRUSH structure describing the attributes of the
object.

IpData
[in] Pointer to the application-defined data passed by the EnumObjects function.

Return Values
To continue enumeration, the callback function must return a nonzero value. This value
is user-defined.

To stop enumeration, the callback function must return zero.

Remarks
An application must register this function by passing its address to the EnumObjects
function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Device Contexts Overview, Device Context Functions, EnumObjects, GlobalAlloc,
GlobalLock, LOGPEN, LOGBRUSH

318 Volume 3 Microsoft Windows GDI

GetCurrentObject
The GetCurrentObject function obtains a handle to an object of the specified type that
has been selected into the specified device context (DC).

Parameters
hdc

[in] Handle to the DC.

uObjectType
[in] Specifies the object type to be queried. This parameter can be one of the following
values:

Value Meaning

OBJ_BITMAP

OBJ_BRUSH

OBJ_COLORSPACE

OBLFONT

OBJ_PAL

OBJ_PEN

Return Values

Returns the current selected bitmap.

Returns the current selected brush.

Returns the current color space.

Returns the current selected font.

Returns the current selected palette.

Returns the current selected pen.

If the function succeeds, the return value is a handle to the specified object.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
An application can use the GetCurrentObject and GetObject functions to retrieve
descriptions of the graphic objects currently selected into the specified DC.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Chapter 11 Device Contexts 319

Device Contexts Overview, Device Context Functions, DeleteObject, GetObject,
SelectObject, CreateColorSpace

GetDe
The GetDC function retrieves a handle to a display device context (DC) for the client
area of a specified window or for the entire screen. You can use the returned handle in
subsequent GDI functions to draw in the DC.

The GetDCEx function is an extension to GetDC, which gives an application more
control over how and whether clipping occurs in the client area.

:~~'}~iJ'"
1)':~~;il
Parameters
hWnd

[in] Handle to the window whose DC is to be retrieved. If this value is NULL, GetDC
retrieves the DC for the entire screen.

Windows 98, Windows 2000: If this parameter is NULL, GetDC retrieves the DC for
the primary display monitor. To get the DC for other display monitors, use the
EnumDisplayMonitors and CreateDC functions.

Return Values
If the function succeeds, the return value is a handle to the DC for the specified window's
client area.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The GetDC function retrieves a common, class, or private DC depending on the class
style specified for the specified window. For common DCs, GetDC assigns default
attributes to the DC each time it is retrieved. For class and private DCs, GetDC leaves
the previously assigned attributes unchanged.

After painting with a common DC, the ReleaseDC function must be called to release the
DC. Class and private DCs do not have to be released. The number of DCs is limited
only by available memory.

320 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Device Contexts Overview, Device Context Functions, GetDCEx, ReleaseDC,
GetWindowDC

GetDCBrushColor
The GetDCBrushColor function retrieves a handle to the device context (DC) whose
brush color is to be returned.

COtPR~iFi ;QI!f;PGilf;tsbe~19r'(,\;<.)'i } .
. ,~tln\!ir~f '.: ··.{TIi{ttrdi~.i~6t);;;;r.;
h~~r;.;:{;X~ .\.. .. .,'.' . "?"

Parameters
hdc

[in] Handle to the DC whose brush color is to be returned.

Return Values
If the function succeeds, the return value is a COLORREF which is a color reference for
the current DC brush color.

If the function fails, the return value is CLR_INVALID.

Remarks
The GetDCBrushColor function returns the previous DC_BRUSH color even if the stock
object DC_BRUSH is not selected in the DC. For information on setting the brush color,
see SetDCBrushC%r.

ICM: Color management is performed if ICM is enabled.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in mSimg32.dll.

Chapter 11 Device Contexts 321

Device Contexts Overview, Device Context Functions, SetDCBrushColor, COLORREF,
About Device Contexts

GetDCEx

Value

The GetDCEx function retrieves a handle to a display device context (DC) for the client
area of a specified window or for the entire screen. You can use the returned handle in
subsequent GDI functions to draw in the DC.

This function is an extension to the GetDC function, which gives an application more
control over how and whether clipping occurs in the client area.

Parameters
hWnd

[in] Handle to the window whose DC is to be retrieved. If this value is NULL, GetDCEx
retrieves the DC for the entire screen.

Windows 98, Windows 2000: If this parameter is NULL, GetDCEx retrieves the DC
for the primary display monitor. To get the DC for other display monitors, use the
EnumDisplayMonitors and CreateDC functions.

hrgnClip
[in] Specifies a clipping region that may be combined with the visible region of the DC.
If the value of flags is DCX_INTERSECTRGN or DCX_EXCLUDERGN, then the
operating system assumes ownership of the region and will automatically delete it
when it is no longer needed. In this case, applications should not use the region-not
even delete it-after a successful call to GetDCEx.

flags
[in] Specifies how the DC is created. This parameter can be one or more of the
following values:

Meaning

Returns a DC that corresponds to the window rectangle rather
than the client rectangle.

Returns a DC from the cache, rather than the OWNDC or
CLASSDC window. Essentially overrides CS_OWNDC and
CS_CLASSDC.

(continued)

322 Volume 3 Microsoft Windows GOI

(continued)

Value Meaning

DCX_PARENTCLIP Uses the visible region of the parent window. The parent's
WS_CLlPCHILDREN and CS_PARENTDC style bits are
ignored. The origin is set to the upper-left corner of the window
identified by h Wnd.

DCX_CLlPSIBLINGS Excludes the visible regions of all sibling windows above the
window identified by h Wnd.

DCX_CLlPCHILDREN Excludes the visible regions of all child windows below the
window identified by hWnd.

DCX_NORESET ATTRS Does not reset the attributes of this DC to the default attributes
when this DC is released.

DCX_LOCKWINDOWUPDATE Allows drawing even if there is a LockWindowUpdate call in
effect that would otherwise exclude this window. Used for
drawing during tracking.

DCX_EXCLUDERGN The clipping region identified by hrgnClip is excluded from the
visible region of the returned DC.

DCX_INTERSECTRGN The clipping region identified by hrgnClip is intersected with the
visible region of the returned DC.

DCX_VALIDATE When specified with DCX_INTERSECTUPDATE, causes the
DC to be completely validated. Using this function with both
DCX_INTERSECTUPDATE and DCX_VALIDATE is identical
to using the BeginPaint function.

Return Values
If the function succeeds, the return value is the handle to the DC for the specified
window.

If the function fails, the return value is NULL. An invalid value for the hWnd parameter
will cause the function to fail.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Unless the display DC belongs to a window class, the ReleaseDC function must be
called to release the DC after painting. Because only five common DCs are available at
any time, failure to release a DC can prevent other applications from accessing one.

The function returns a handle to a DC that belongs to the window's class if
CS_CLASSDC, CS_OWNDC or CS_PARENTDC was specified as a style in the
WNDCLASS structure when the class was registered.

Chapter 11 Device Contexts 323

, • "l ~:'I, " I~ ~ • ~.
• " 11'1 '!.< < ..

I :t,~ ,

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.10 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Device Contexts Overview, Device Context Functions, BeginPaint, GetWindowDC,
ReleaseDC, WNDCLASS

GetDCOrgEx
The GetDCOrgEx function obtains the final translation origin for a specified device
context (DC). The final translation origin specifies an offset that the system uses to
translate device coordinates into client coordinates (for coordinates in an application's
window).

Parameters
hdc

[in] Handle to the DC whose final translation origin is to be retrieved.

IpPoint
[out] Pointer to a POINT structure that receives the final translation origin, in device
coordinates.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The final translation origin is relative to the physical origin of the screen.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.

324 Volume 3 Microsoft Windows GOI

Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, CreatelC, POINT

GetDCPenColor
The GetDCPenColor function sets the current device context (DC) pen color to the
specified color value. GetDCPenColor will return the nearest physical color if the device
cannot represent the specified color value.

COlOR,REF ··GetllCeenCol or(
~\lc.hqc 1/

r;
Parameters
hdc

[in] Handle to the DC whose brush color is to be returned.

Return Values
If the function succeeds, the return value is a color reference (COLORREF) for the
previous DC pen color.

If the function fails, the return value is CLR_INVALID.

Remarks
The GetDCPenColor function will return the previous DC_PEN color even if the stock
object DC_PEN is not selected in the DC. See Setting the Pen or Brush Color and
SetDCPenColorfor more information.

ICM: Color management is performed if ICM is enabled.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in mSimg32.dll.

Device Contexts Overview, Device Context Functions, COLORREF

Chapter 11 Device Contexts 325

GetDeviceCaps
The GetDeviceCaps function retrieves device-specific information about the specified
device.

1 ntGetDev1ceCaps (
HDC;hdc., '. II handle toDG

•. ;,~.tlt··ltIJ1 d~i<'
\'," -'" - ,'.;,);.:.:,;,4 " ..

Parameters
hdc

[in] Handle to the DC.

nlndex
[in] Specifies the item to return. This parameter can be one of the following values:

Index

DRIVERVERSION

TECHNOLOGY

HORZSIZE

VERTSIZE

HORZRES

VERTRES

LOGPIXELSX

LOGPIXELSY

BITSPIXEL

PLANES

Meaning

The device driver version.

Device technology. It can be anyone of the following values:

DT _PLOTTER Vector plotter

DT _RASDISPLAY

DT _RASPRINTER

DT _RASCAMERA

DT _CHARSTREAM

DT_METAFILE

DT_DISPFILE

Raster display

Raster printer

Raster camera

Character stream

Metafile

Display file

If the hdc parameter is a handle to the DC of an enhanced metafile, the
device technology is that of the referenced device as specified to the
CreateEnhMetaFile function. To determine whether it is an enhanced
metafile DC, use the GetObjectType function.

Width, in millimeters, of the physical screen.

Height, in millimeters, of the physical screen.

Width, in pixels, of the screen.

Height, in raster lines, of the screen.

Number of pixels per logical inch along the screen width. In a system
with multiple display monitors, this value is the same for all monitors.

Number of pixels per logical inch along the screen height. In a system
with multiple display monitors, this value is the same for all monitors.

Number of adjacent color bits for each pixel.

Number of color planes.

(continued)

326 Volume 3 Microsoft Windows GOI

(continued)

Index

NUMBRUSHES

NUMPENS

NUMFONTS

NUMCOLORS

ASPECTX

ASPECTY

ASPECTXY

PDEVICESIZE

CLiPCAPS

SIZEPALETTE

NUMRESERVED

Meaning

Number of device-specific brushes.

Number of device-specific pens.

Number of device-specific fonts.

Number of entries in the device's color table, if the device has a color
depth of no more than 8 bits per pixel. For devices with greater color
depths, -1 is returned.

Relative width of a device pixel used for line drawing.

Relative height of a device pixel used for line drawing.

Diagonal width of the device pixel used for line drawing.

Reserved.

Flag that indicates the clipping capabilities of the device. If the device
can clip to a rectangle, it is 1. Otherwise, it is O.

Number of entries in the system palette. This index is valid only if the
device driver sets the RC_PALETTE bit in the RASTERCAPS index and
is available only if the driver is compatible with 16-bit Windows.

Number of reserved entries in the system palette. This index is valid only
if the device driver sets the RC_PALETTE bit in the RASTERCAPS
index and is available only if the driver is compatible with 16-bit
Windows.

COLORRES Actual color resolution of the device, in bits per pixel. This index is valid
only if the device driver sets the RC_PALETTE bitin the RASTERCAPS
index and is available only if the driver is compatible with 16-bit
Windows.

PHYSICALWIDTH For printing devices: the width of the physical page, in device units. For
example, a printer set to print at 600 dpi on 8.5-x11-inch paper has a
physical width value of 5100 device units. Note that the physical page is
almost always greater than the printable area of the page, and never
smaller.

PHYSICALHEIGHT For printing devices: the height of the physical page, in device units. For
example, a printer set to print at 600 dpi on 8.5-x11-inch paper has a
physical height value of 6600 device units. Note that the phYSical page is
almost always greater than the printable area of the page, and never
smaller.

PHYSICALOFFSETX For printing devices: the distance from the left edge of the physical page
to the left edge of the printable area, in device units. For example, a
printer set to print at 600 dpi on 8.5-x11-inch paper, that cannot print on
the leftmost 0.25-inch of paper, has a horizontal physical offset of 150
device units.

Chapter 11 Device Contexts 327

Index Meaning

PHYSICALOFFSETY For printing devices: the distance from the top edge of the physical page
to the top edge of the printable area, in device units. For example, a
printer set to print at 600 dpi on 8.S-x11-inch paper, that cannot print on
the topmost O.S-inch of paper, has a vertical physical offset of 300 device
units.

VREFRESH Windows NT/2000: For display devices: the current vertical refresh rate
of the device, in cycles per second (Hz).

SCALlNGFACTORX
SCALlNGFACTORY
BLTALIGNMENT

SHADEBLENDCAPS

RASTERCAPS

A vertical refresh rate value of 0 or 1 represents the display hardware's
default refresh rate. This default rate is typically set by switches on a
display card or computer motherboard, or by a configuration program
that does not use Win32 display functions such as
ChangeDisplaySettings.

Scaling factor for the x-axis of the printer.
Scaling factor for the y-axis of the printer.
Windows NT/2000: Preferred horizontal drawing alignment, expressed
as a multiple of pixels. For best drawing performance, windows should
be horizontally aligned to a multiple of this value. A value of zero
indicates that the device is accelerated, and any alignment may be used.
Windows 98/2000: Value that indicates the shading and blending
capabilities of the device.
SB_CONST _ALPHA Handles the SourceConstantAlpha

member of the BLENDFUNCTION
structure, which is referenced by the
blendFunction parameter of the

SB_GRAD_RECT
SB_GRAD_ TRI

SB_NONE

AlphaBlend function.
Capable of dOing GradientFiII rectangles.

Capable of doing GradientFili triangles.
Device does not support any of these
capabilities.
Capable of handling per-pixel alpha in
AlphaBlend.
Capable of handling premultiplied alpha in
AlphaBlend.

Value that indicates the raster capabilities of the device, as shown in the
following table:
RC_BANDING
RC_BITBLT
RC_BITMAP64

Requires banding support.

Capable of transferring bitmaps.
Capable of supporting bitmaps larger
than 64K.

(continued)

328 Volume 3 Microsoft Windows GOI

(continued)

Index

CURVECAPS

LlNECAPS

Meaning

RC_FLOODFILL

RC GDI20 OUTPUT
.- - ;:1-

RC_SCALING

RC_STRETCHBL T

RC_STRETCHDIB

Capable of supporting the SetDIBits and
GetDlBits functions.

Capable of supporting the
SetDlBitsToDevice function.

Capable of performing flood fills.

Capable of supporting features of 16-bit
Windows 2.0.

Specifies a palette-based device.

Capable of scaling.

Capable of performing the StretchBlt
function.

Capable of performing the StretchDiBits
function.

Value that indicates the curve capabilities of the device, as shown in the
following table:

CC_NONE

CC_CHORD

CC_CIRCLES

CC_ELLIPSES

CC_INTERIORS

CC_PIE

CC_ROUNDRECT

CC_STYLED

CC_WIDE

CC_WIDESTYLED

Device does not support curves.

Device can draw chord arcs.

Device can draw circles.

Device can draw ellipses.

Device can draw interiors.

Device can draw pie wedges.

Device can draw rounded rectangles.

Device can draw styled borders.

Device can draw wide borders.

Device can draw borders that are wide and
styled.

Value that indicates the line capabilities of the device, as shown in the
following table:

LC_NONE

LC_INTERIORS

LC_MARKER

LC_POL YLiNE

LC_POL YMARKER

LC_STYLED

Device does not support iines.

Device can draw interiors.

Device can draw a marker.

Device can draw a polyline.

Device can draw multiple markers.

Device can draw styled lines.

Device can draw wide lines.

Index

POL YGONALCAPS

TEXTCAPS

Meaning

Chapter 11 Device Contexts 329

Device can draw lines that are wide and
styled.

Value that indicates the polygon capabilities of the device, as shown in
the following table:
PC_NONE Device does not support polygons.
PC_INTERIORS
PC_POLYGON
PC_RECTANGLE
PC_SCANLINE
PC_STYLED
PC_WIDE

PC_WIDESTYLED

Device can draw interiors.
Device can draw alternate-fill polygons.
Device can draw rectangles.
Device can draw a single scanline.

Device can draw styled borders.
Device can draw wide borders.
Device can draw borders that are wide and
styled.
Device can draw winding-fill polygons.

Value that indicates the text capabilities of the device, as shown in the
following table:
TC_OP _CHARACTER Device is capable of character output

TC_OP _STROKE
TC_CP _STROKE
TC_CR_90

TC_CR_ANY
TC_SF _X_ YINDEP

TC_EA_DOUBLE
TC_IA_ABLE
TC_UA_ABLE

TC_SO_ABLE
TC_RA_ABLE
TC_VA_ABLE

precision.
Device is capable of stroke output precision.
Device is capable of stroke clip precision.
Device is capable of 90-degree character
rotation.
Device is capable of any character rotation.
Device can scale independently in the x
and y-directions.

Device is capable of doubled character for
scaling.
Device uses integer multiples only for
character scaling.

Device uses any multiples for exact
character scaling.
Device can draw double-weight characters.

Device can italicize.
Device can underline.
Device can draw strikeouts.
Device can draw raster fonts.
Device can draw vector fonts.

(continued)

330 Volume 3 Microsoft Windows GOI

(continued)

Index Meaning

TC_RESERVED

TC_SCROLLBL T

Reserved; must be zero.

Device cannot scroll using a bit-block
transfer. Note that this meaning may be the
opposite of what you expect.

COLORMGMTCAPS Windows 2000: Value that indicates the color management capabilities
of the device.

Return Values

Device can accept CMYK color space ICC
color profile.

Device can perform ICM (Image Color
Management) on either the device driver or
the device itself.

Device supports GetDeviceGammaRamp
and SetDeviceGammaRamp

Device does not support ICM.

The return value specifies the value of the desired item.

When nlndex is BITSPIXEL and the device has 15bpp or 16bpp, the return value is 16.

Remarks
GetDeviceCaps provides the following six indices in place of printer escapes:

Index Printer escape replaced

PHYSICALWIDTH

PHYSICALHEIGHT

PHYSICALOFFSETX

PHYSICALOFFSETY

SCAL!NGFACTORX

SCALlNGFACTORY

GETPHYSPAGESIZE

GETPHYSPAGESIZE

GETPRINTINGOFFSET

GETPHYSICALOFFSET

GETSCALlNGFACTOR

GETSCALlNGFACTOR

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Chapter 11 Device Contexts 331

Device Contexts Overview, Device Context Functions, CreateEnhMetaFile, CreatelC,
DeviceCapabilities, GetDIBits, GetObjectType, SetDIBits, SetDIBitsToDevice,
Stretch Bit, StretchDIBits

GetObject
The GetObject function retrieves information about a specified graphics object.
Depending on the graphics object, the function places a filled-in BITMAP, DIBSECTION,
EXTLOGPEN, LOGBRUSH, LOGFONT, or LOGPEN structure, or a count of table
entries (for a logical palette), into a specified buffer.

!~~lJjl1~[~~f;:,~~~~;~~~;~&~~*(~~~~;,:,"';f,;::~;;:~-",!5~~;it
Parameters
hgdiobj

[in] Handle to the graphics object of interest. This can be a handle to one of the
following: a logical bitmap, a brush, a font, a palette, a pen, or a device independent
bitmap created by calling the CreateDIBSection function.

cbBuffer
[in] Specifies the number of bytes of information to be written to the buffer.

/pvObject
[out] Pointer to a buffer that receives the information about the specified graphics
object.

The following table shows the type of information the buffer receives for each type of
graphics object you can specify with hgdiobj:

Object type Data written to buffer

HBITMAP

HBITMAP returned from a call to
CreateDIBSection

HPALETTE

HPEN returned from a call to
ExtCreatePen

HPEN

HBRUSH

HFONT

BITMAP

DIBSECTION, if cbBufferis set to
sizeof(DIBSECTION), or BITMAP, if cbBufferis
set to sizeof(BITMAP)

A WORD count of the number of entries in the
logical palette

EXTLOGPEN

LOG PEN

LOGBRUSH

LOG FONT

332 Volume 3 Microsoft Windows GOI

If the IpvObject parameter is NULL, the function return value is the number of bytes
required to store the information it writes to the buffer for the specified graphics object.

Return Values
If the function succeeds, and IpvObject is a valid pointer, the return value is the number
of bytes stored into the buffer.

If the function succeeds, and IpvObject is NULL, the return value is the number of bytes
required to hold the information the function would store into the buffer.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The buffer pointed to by the IpvObject parameter must be sufficiently large to receive the
information about the graphics object.

If hgdiobj is a handle to a bitmap created by calling CreateDIBSection, and the specified
bLlffer is large enough, the GetObject function returns a DIBSECTION structure. In
addition, the bmBits member of the BITMAP structure contained within the
DIBSECTION will contain a pointer to the bitmap's bit values.

If hgdiobj is a handle to a bitmap created by any other means, GetObject returns only
the width, height, and color format information of the bitmap. You can obtain the bitmap's
bit values by calling the GetDIBits or GetBitmapBits function.

If hgdiobj is a handle to a logical palette, GetObject retrieves a 2-byte integer that
specifies the number of entries in the palette. The function does not retrieve the
LOGPALETTE structure defining the palette, To retrieve information about palette
entries, an application can call the GetPaletteEntries function.

If hgdiobj is a handle to a font, the LOG FONT that is returned is the LOG FONT used to
create the font. If Windows had to make some interpolation of the font because the
precise LOGFONT could not be represented, the interpolation will not be reflected in the
LO~FONT. For example, if you ask for a vertical version of a font that doesn't support
vertical painting, the LOGFONT indicates the font is vertical, but Windows will paint it
horizontally.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib. .
Unicode:. Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 11 Device Contexts 333

Device Contexts Overview, Device Context Functions, CreateDIBSection,
GetBitmapBits, GetDiBits, GetPaletteEntries, GetRegionData, BITMAP,
DIBSECTION, EXTLOGPEN, LOGBRUSH, LOGFONT, LOGPALETTE, LOG PEN

GetObjectType
The GetObjectType retrieves the type of the specified object.

Parameters
h

[in] Handle to the graphics object.

Return Values
If the function succeeds, the return value identifies the object. This value can be one of
the following:

Value Meaning

OBJ_BITMAP Bitmap

OBJ_BRUSH Brush

OBJ_ COLORS PACE Color space

OBJ_DC Device context

OBLENHMETADC Enhanced metafile DC

OBJ_ENHMETAFILE Enhanced metafile

OBJ_EXTPEN Extended pen

OBJ_FONT Font

OBJ_MEMDC Memory DC

OBJ_METAFILE Metafile

OBJ_METADC Metafile DC

OBJ_PAL Palette

OBJ_PEN Pen

OBJ_REGION Region

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

334 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, GetObject, SelectObject

GetStockObject
The GetStockObject function retrieves a handle to one of the stock pens, brushes,
fonts, or palettes.

a'!2a~dBiJGet$tuC'1<QI5J~ct(..
1~tfhVt1dect ·

'h"

Parameters
fnObject

[in] Specifies the type of stock object. This parameter can be one of the following
values:

Value Meaning

BLACK_BRUSH

DKGRAY _BRUSH

DC_BRUSH

GRAY_BRUSH

HOLLOW_BRUSH

LTGRAY_BRUSH

NULL_BRUSH

WHITE_BRUSH

BLACK_PEN

Black brush.

Dark gray brush.

Windows 98/2000: Solid color brush. The default
color is white. The color can be changed by using the
SetDCBrushColor function. For more information,
see the Remarks section.

Gray brush.

Hollow brush (equivalent to NULL_BRUSH).

Light gray brush.

Null brush (equivalent to HOLLOW_BRUSH).

White brush.

Black pen.

Value

WHITE_PEN

ANSI_FIXED _FONT

ANSI_ VAR_FONT

DEVICE_DEFAULT _FONT

DEFAULT _GUI_FONT

Return Values

Chapter 11 Device Contexts 335

Meaning

Windows 98/2000: Solid pen color. The default color
is white. The color can be changed by using the
SetDCPenColor function. For more information, see
the Remarks section.

White pen.

Windows fixed-pitch (monospace) system font.

Windows variable-pitch (proportional space) system
font.

Windows NT/2000: Device-dependent font.

Default font for user interface objects such as menus
and dialog boxes.

Original equipment manufacturer (OEM) dependent
fixed-pitch (monospace) font.

System font. By default, the system uses the system
font to draw menus, dialog box controls, and text.

Fixed-pitch (monospace) system font. This stock
object is provided only for compatibility with 16-bit
Windows versions earlier than 3.0.

Default palette. This palette consists of the static
colors in the system palette.

If the function succeeds, the return value is a handle to the requested logical object.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Use the DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH stock objects only in
windows with the CS_HREDRAW and CS_ VREDRAW styles. Using a gray stock brush
in any other style of window can lead to misalignment of brush patterns after a window is
moved or sized. The origins of stock brushes cannot be adjusted.

The HOLLOW_BRUSH and NULL_BRUSH stock objects are equivalent.

The font used by the DEFAULT _GUI_FONT stock object could change. Use this stock
object when you want to use the font that menus, dialog boxes, and other user interface
objects use.

It is not necessary (but it is not harmful) to delete stock objects by calling DeleteObject.

Windows 98, Windows 2000: Both DC_BRUSH and DC_PEN can be used
interchangeably with other stock objects like BLACK_BRUSH and BLACK_PEN. For
information on retrieving the current pen or brush color, see GetDCBrushCo!or and

336 Volume 3 Microsoft Windows GOI

GetDCPenC%r. See Setting the Pen or Brush C%rfor an example of setting colors.
The GetStockObject function with an argument of DC_BRUSH OR DC_PEN can be
used interchangeably with the SetDCPenColor and SetDCBrushColor functions.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Device Contexts Overview, Device Context Functions, DeleteObject, SelectObject

ReleaseDC
The ReleaseDC function releases a device context (DC), freeing it for use by other
applications. The effect of the ReleaseDC function depends on the type of DC. It frees
only common and window DCs. It has no effect on class or private DCs.

Parameters
hWnd

[in] Handle to the window whose DC is to be released.

hOC
[in] Handle to the DC to be released.

Return Values
The return value indicates whether the DC was released. If the DC was released, the
ietUin value is 1 .

If the DC was not released, the return value is zero.

Remarks
The application must call the ReleaseDC function for each call to the GetWindowDC
function and for each call to the GetDC function that retrieves a common DC.

An application cannot use the ReleaseDC function to release a DC that was created by
calling the CreateDC function; instead, it must use the DeleteDC function.

Chapter 11 Device Contexts 337

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Device Contexts Overview, Device Context Functions, CreateDC, DeleteDC, GetDC,
GetWindowDC

ResetDC
The ResetDC function updates the specified printer or plotter device context (DC),
based on the information in the specified structure.

~~~~~~!~~,g't;, ,,;[:';'.If /~ahd.te!tti·;¢ 
, ·:CQHst. DEY MODE *JpJrrltOtJta 1/ DC 1nformat1on 
JIi;/.EL,i :,:,::;1 . ::' . . . . ' .. ,'. 

Parameters 
hdc 

[in] Handle to the DC to update. 

IplnitData 

,'.: 
.... : 

[in] Pointer to a DEVMODE structure containing information about the new DC. 

Return Values 
If the function succeeds, the return value is a handle to the original DC. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application will typically use the ResetDC function when a window receives a 
WM_DEVMODECHANGE message. ResetDC can also be used to change the paper 
orientation or paper bins while printing a document. 

The ResetDC function cannot be used to change the driver name, device name, or the 
output port. When the user changes the port connection or device name, the application 
must delete the original DC and create a new DC with the new information. 



338 Volume 3 Microsoft Windows GOI 

An application can pass an information DC to the ResetDC function. In that situation, 
ResetDC will always return a printer DC. 

ICM: The color profile of the DC specified by the hdc parameter will be reset based on 
the information contained in the IplnitData member of the DEVMODE structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Device Contexts Overview, Device Context Functions, DeviceCapabilities, DEVMODE, 
Escape 

RestoreDC 
The RestoreDC function restores a device context (DC) to the specified state. The DC is 
restored by popping state information off a stack created by earlier calls to the SaveDC 
function. 

'86.~4,',·R.$:t9r.~Q~.(,'; 

;;~i~~~'lf f'~t·"f:,\·~e,' 
Parameters 
hdc 

[in] Handle to the DC. 

nSavedDC 
[in] Specifies the saved state to be restored. If this parameter is positive, nSavedDC 
represents a specific instance of the state to be restored. If this parameter is negative, 
nSavedDC represents an instance relative to the current state. For example, -1 
restores the most recently saved state. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 11 Device Contexts 339 

Remarks 
The stack can contain the state information for several instances of the DC. If the state 
specified by the specified parameter is not at the top of the stack, RestoreDC deletes all 
state information between the top of the stack and the specified instance. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Device Contexts Overview, Device Context Functions, SaveDC 

SaveDC 
The Save DC function saves the current state of the specified device context (DC) by 
copying data describing selected objects and graphic modes (such as the bitmap, brush, 
palette, font, pen, region, drawing mode, and mapping mode) to a context stack. 

:P~~~~X=f:f' j;'~Jln'd'1et6' PC:':} " 
:)!~?:'-:";' i ", ,:f ;~ .. :"": ~'.:" ;,.":("" ': .It 

Parameters 
hdc 

[in] Handle to the DC whose state is to be saved. 

Return Values 
If the function succeeds, the return value identifies the saved state. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The SaveDC function can be used any number of times to save any number of instances 
of the DC state. 

A saved state can be restored by using the RestoreDC function. 



340 Volume 3 Microsoft Windows GDI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
WindoWs 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Device Contexts Overview, Device Context Functions, RestoreDC 

SelectObject 
The SelectObject function selects an object into the specified device context (DC). The 
new object replaces the previous object of the same type. 

Parameters 
hdc 

[in] Handle to the DC. 

hgdiobj 
[in] Handle to the object to be selected. The specified object must have been created 
by using one of the following functions: 

Object Functions 

Bitmap 

Brush 

Font 

Pen 

Region 

CreateBitmap, CreateBitmaplndirect, 
CreateCompatibleBitmap, CreateDIBitmap, 
CreateDIBSection 

(Bitmaps can be selected for memory DCs only, and for only 
one DC at a time.) 

CreateBrushlndirect, CreateDIBPatternBrush, 
CreateDIBPatternBrushPt, CreateHatchBrush, 
CreatePatternBrush, CreateSolidBrush 

CreateFont, CreateFontlndirect 

CreatePen, CreatePenlndirect 

CombineRgn, CreateEllipticRgn, 
CreateEllipticRgnlndirect, CreatePolygonRgn, 
CreateRectRgn, CreateRectRgnlndirect 



Chapter 11 Device Contexts 341 

Return Values 
If the selected object is not a region and the function succeeds, the return value is a 
handle to the object being replaced. If the selected object is a region and the function 
succeeds, the return value is one of the following values: 

Value 

SIMPLEREGION 

COMPLEXREGION 

NULLREGION 

Meaning 

Region consists of a single rectangle. 

Region consists of more than one rectangle. 

Region is empty. 

If an error occurs and the selected object is not a region, the return value is NULL. 
Otherwise, it is GDLERROR. 

Remarks 
This function returns the previously selected object of the specified type. An application 
should always replace a new object with the original, default object after it has finished 
drawing with the new object. 

An application cannot select a bitmap into more than one DC at a time. 

ICM: If the object being selected is a brush or a pen color management is performed. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Device Contexts Overview, Device Context Functions, CombineRgn, CreateBitmap, 
CreateBitmaplndirect, CreateBrushlndirect, CreateCompatibleBitmap, 
CreateDIBitmap, CreateDIBPatternBrush, CreateEllipticRgn, 
CreateEllipticRgnlndirect, CreateFont, CreateFontlndirect, CreateHatchBrush, 
CreatePatternBrush, CreatePen, CreatePenlndirect, CreatePolygonRgn, 
CreateRectRgn, CreateRectRgnlndirect, CreateSolidBrush, SelectClipRgn, 
SelectPalette 



342 Volume 3 Microsoft Windows GOI 

SetDCBrushColor 
SetDCBrushColor function sets the current device context (DC) brush color to the 
specified color value. If the device cannot represent the specified color value, the color is 
set to the nearest physical color. 

Parameters 
hde 

[in] Handle to the DC. 

erGolor 
[in] Specifies the new brush color. 

Return Values 
If the function succeeds, the return value specifies the previous DC brush color as a 
COLORREF value. 

If the function fails, the return value is CLR_INVALID. 

Remarks 
When the stock DC_BRUSH is selected in a DC, all the subsequent drawings will be 
done using the DC brush color until the stock brush is deselected. The default 
DC_BRUSH color is WHITE. 

The function will return the previous DC_BRUSH color, even if the stock brush 
DC_BRUSH is not selected in the DC: however, this will not be used in drawing 
operations until the stock DC_BRUSH is selected in the DC. 

See Setting the Pen or Brush Golor for an example of setting colors. The 
GetStockObject function with an argument of DC_BRUSH OR DC_PEN can be used 
interchangeably with the SetDCPenColor and SetDCBrushColor functions. 

ICM: Color management is performed if ICM is enabled. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Device Contexts Overview, Device Context Functions, GetDCBrushColor, COLORREF 



Chapter 11 Device Contexts 343 

SetDCPenColor 
SetDCPenColor function sets the current device context (DC) pen color to the specified 
color value. If the device cannot represent the specified color value, the color is set to 
the nearest physical color. 

Parameters 
hde 

[in] Handle to the DC. 

erGolor 
[in] Specifies the new pen color. 

Return Values 
If the function succeeds, the return value specifies the previous DC pen color as a 
COLORREF value. If the function fails, the return value is CLR_INVALID. 

Remarks 
The function will return the previous DC_PEN color, even if the stock pen DC_PEN is not 
selected in the DC: however, this will not be used in drawing operations until the stock 
DC_PEN is selected in the DC. 

See Setting the Pen or Brush Color for an example of setting colors. The 
GetStockObject function with an argument of DC_BRUSH OR DC_PEN can be used 
interchangeably with the SetDCPenColor and SetDCBrushColor functions. 

ICM: Color management is performed if ICM is enabled. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Device Contexts Overview, Device Context Functions, GetDCPenColor, COLORREF 



344 Volume 3 Microsoft Windows GOI 

Device Context Structures 

DISPLAY_DEVICE 
The DISPLAY_DEVICE structure receives information about the display device specified 
by the iDevNum parameter of the EnumDisplayDevices function. 

Members 
cb 

Size, in bytes, of the DISPLAY_DEVICE structure. This must be initialized prior to 
calling EnumDisplayDevices. 

DeviceName 
An array of characters identifying the device name. 

DeviceString 
An array of characters containing the device context string. 

StateFlags 
Device state flags. It can be any reasonable combination of the following: 

Value Meaning 

DISPLAY _DEVICE_ATTACHED_TO_DESKTOP The device is part of the desktop. 

DISPLAY _DEVICE_MIRRORING_DRIVER The device is a pseudo-device for 
NetMeeting. 

DISPLAY _DEVICE_MODESPRUNED The device has more display modes than its 
output devices support. 

DISPLAY _DEVICE_PRIMARY _DEVICE The primary desktop is on the device. For a 
system with a single display card, this is 
always set. For a system with multiple display 
cards, only one device can have this set. 

DISPLAY _DEVICE_VGA_COMPATIBLE The device is VGA compatible. 



Chapter 11 Device Contexts 345 

DevicelD 
Windows 98: A string that uniquely identifies the hardware adapter or the monitor. 
This is the Plug and Play identifier. 

DeviceKey 
Reserved. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Unicode: Declared as Unicode and ANSI structures. 

Device Contexts Overview, Device Context Structures, EnumDisplayDevices 

VIDEOPARAMETERS 
The VIDEOPARAMETERS structure contains information for a video connection. 

(continued) 



346 Volume 3 Microsoft Windows GOI 

(continued) 

Members 
guid 

Specifies the GUID for this structure. Display drivers should verify the GUID at the 
start of the structure before processing the structure. 

dwOffset 
Reserved; must be zero. 

dwCommand 
Specifies whether to retrieve or set the values that are indicated by the other 
members of this structure. This member can be one of the following values: 

Value Meaning 

dwFlags 

Gets current video capabilities. DwFlags is 0 if 
capability is not supported. 

Sets video parameters. 

Indicates which fields contain valid data. For VP _COMMAND_GET, these are the 
fields to retrieve, for VP _COMMAND_SET, these are the fields to set. dwFlags is 0 if 
capability is not supported. It can be any combination of the following: 

Value Fields containing data 

VP _FLAGS_TV _MODE dwMode 

VP _FLAGS_TV_STANDARD dwTVStandard 

VP _FLAGS_FLICKER dwFlickerFilter 

VP _FLAGS_OVERSCAN dwOverScanX, dwOverScanY 

VP _FLAGS_MA)CUNSCALED dwMaxUnscaledX, dwMaxUnscaledY. Do not 
use if VP _COMMAND_SET is specified. 

VP _FLAGS_POSITION dwPositionX, dwPositionY 

VP _FLAGS_BRIGHTNESS dwBrightness 

VP _FLAGS_CONTRAST dwContrast 

VP _FLAGS_COPYPROTECT dwCPType, dwCPCommand, dwCPStandard 

dwMode 
Specifies the current playback mode. This member is valid for both 
VP _COMMAND_GET and VP _COMMAND_SET. It can be one of the following: 



Value 

dwTVStandard 

Chapter 11 Device Contexts 347 

Meaning 

Describes a set of display settings that are 
optimal for Windows display, with the flicker filter 
on and any overscan display off. 

Describes a set of display settings for video 
playback, with the flicker filter off and the 
overscan display on. 

Specifies the TV standard. This field is valid for both VP _COMMAND_GET and 
VP _COMMAND_SET. It can be anyone of the following: 

VP_TV_STANDARD_NTSC_433 

VP_TV_STANDARD_NTSC_M 

VP_TV_STANDARD_NTSC_M_J 

VP _TV_STANDARD_PAL_60 

VP_TV_STANDARD_PAL_B 

VP_TV_STANDARD_PAL_D 

VP_TV_STANDARD_PAL_G 

VP_TV_STANDARD_PAL_H 

VP _TV~STANDARD_PAL_I 

VP_TV_STANOARD_PAL_M 

VP_TV_STANDARD_PAL_N 

VP_TV_STANDARD_SECAM_B 

VP_TV_STANDARD_SECAM_D 

VP_TV_STANDARD_SECAM_G 

VP_TV_STANDARD_SECAM_H 

VP_TV_STANDARD_SECAM_K 

VP _TV_STANDARD_SECAM_K1 

VP_TV_STANDARD_SECAM_L 

VP _ TV _STANDARD_SECAM_L 1 

VP _TV_STANDARD_WIN_VGA 

dwAvailableModes 
Specifies which modes are available. This is valid only for VP _COMMAND_GET. It 
can be any combination of the values specified in dwMode. 

dwAvailableTVStandard 
Specifies the TV standards that are available. This is valid only for 
VP _COMMAND_GET. It can be any combination of the values specified in 
dwTVStandard. 



348 Volume 3 Microsoft Windows GDI 

dwFUckerFilter. 
Specifies the flicker reduction provided by the hardware. This is a percentage value in 
tenths of a percent, from 0 to 1000, where 0 is no flicker reduction and 1000 is 
maximum flicker reduction. This field is valid for both VP _COMMAND_GET and 
VP _COMMAND_SET. 

dwOverScanX 
Specifies the amount of overscan in the horizontal direction. This is a percentage 
value in tenths of a percent, from 0 to 1000. A value of 0 indicates no overscan, 
ensuring that the entire display is visible. A value of 1000 is maximum overscan and 
typically causes some of the image to be off the edge of the screen. This field is valid 
for both VP _COMMAND_GET and VP _COMMAND_SET. 

dwOverScanY 
Specifies the amount of overscan in the vertical direction. This is a percentage value 
in tenths of a percent, from 0 to 1000. A value of 0 indicates no overscan, ensuring 
that the entire display is visible. A value of 1000 is maximum overscan and typically 
causes some of the image to be off the edge of the screen. This field is valid for both 
VP _COMMAND_GET and VP _COMMAND_SET. 

dwMaxUnscaledX 
Specifies the maximum horizontal resolution, in pixels, that is supported when the 
video is not scaled. This field is valid for both VP _COMMAND_GET and 
VP _COMMAND_SET. 

c;lwMaxUnscaledY 
Specifies the maximum vertical resolution, in pixels, that is supported when the video 
is not scaled. This field is valid for both VP _COMMAND_GET and 
vp _COMMAND_SET. 

dwPositionX 
Specifies the horizontal adjustment to the center of the image. Units are in pixels. This 
field is valid for both VP _COMMAND_GET and VP _COMMAND_SET. 

dwPositionY 
Specifies the vertical adjustment to the center of the image. Units are in scan lines. 
This field is valid for both VP _COMMAND_GET and VP _COMMAND_SET. 

dwBrightness 
Adjustment to the DC offset of the video signal to increase brightness on the 
television. it is a percentage value, 0 to 100, where 0 means no adjustment and 100 
means maximum adjustment. This field is valid for both VP _COMMAND_GET and 
VP _COMMAND_SET. 

dwContrast 
Adjustment to the gain of the video signal to increase the intenSity of whiteness on the 
television. It is a percentage value, 0 to 100, where 0 means no adjustment and 100 
means maximum adjustment. This field is valid for both VP _COMMAND_GET and 
VP _COMMAND_SET. 



Chapter 11 Device Contexts 349 

dwCPType 
Specifies the copy protection type. This field is valid for both VP _COMMAND_GET 
and VP _COMMAND_SET. It can be one of the following: 

Value 

VP _CP _ TYPE_APS_ TRIGGER 

VP _CP _ TYPE_MACROVISION 

dwCPCommand 

Meaning 

only DVD trigger bits available. 

Full macrovision data is available. 

Specifies the copy protection command. This field is only valid for 
VP _COMMAND_SET. It can be one of the following: 

Value 

VP _CP _CMD_ACTIVATE 

VP_CP_CMD_CHANGE 

VP _CP _CMD_DEACTIVATE 

dwCPStandard 

Meaning 

Activate copy protection. 

Change copy protection. 

Deactivate copy protection. 

Specifies TV standards for which copy protection types are available. This field is 
valid only for VP _COMMAND_GET. 

dwCPKey 
Specifies the copy protection key returned if dwCPCommand is set to 
VP _CP _CMD_ACTIVATE. The caller must set this key when the dwCPCommand 
field is either VP _CP _CMD_DEACTIVATE or VP _CP _CMD_CHANGE. If the caller 
sets an incorrect key, the driver must not change the current copy protection settings. 
This field is valid only for VP _COMMAND_SET. 

bCP _APSTriggerBits 
Specifies the DVD APS trigger bit flag. This is valid only for VP _COMMAND_SET. 
Currently, only bits 0 and 1 are valid, the rest of the size is for DWORD alignment 
purposes. It can be one of the following: 

Value 

VP _CP _ TYPE_APS_ TRIGGER 

VP _CP _ TYPE_MACROVISION 

bOEMCopyProtection 

Meaning 

Only DVD trigger bits available. 

Full macrovision data is available. 

Specifies the OEM specific copy protection data. Maximum of 256 characters. This 
field is valid for both VP _COMMAND_GET and VP _COMMAND_SET. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in tvout.h. 



350 Volume 3 Microsoft Windows GOI 

Device Contexts Overview, Device Context Structures, ChangeDisplaySettingsEx 

Device Context Messages 

WM_DEVMODECHANGE 
The WM_DEVMODECHANGE message is sent to all top-level windows whenever the 
user changes device-mode settings. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

This parameter is not used. 

IParam 
Pointer to a string that specifies the device name. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
This message cannot be sent directly to a window. To send the 
WM_DEVMODECHANGE message to all top-level windows, use the 
SendMessageTimeout function with the hWndparameter set to HWND_BROADCAST. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Device Contexts Overview, Device Context Messages 



351 

C HAP T E R 1 2 

Filled Shapes 

Filled shapes are geometric forms that are outlined by using the current pen and filled by 
using the current brush. There are five filled shapes: 

• Ellipse 

• Chord 

• Pie 
• Polygon 

• Rectangle 

About Fi lied Shapes 
A Win32-based application uses filled shapes in a variety of ways. Spreadsheet 
applications, for example, use filled shapes to construct charts and graphs, and drawing 
and painting applications use filled shapes to allow the user to draw figures and 
illustrations. 

About Ellipses 
An ellipse is a closed curve defined by two fixed points (f1 and f2) such that the sum of 
the distances (d1 + d2) from any pOint on the curve to the two fixed points is constant. 
The following illustration shows an ellipse drawn by using the Ellipse function. 

llipse 

Bounding rectangle 

When calling Ellipse, an application supplies the coordinates of the upper-left and lower
right corners of the ellipse's bounding rectangle. A bounding rectangle is the smallest 
rectangle completely surrounding the ellipse. When the system draws the ellipse, it 
excludes the right and lower sides if no world transformations are set. Therefore, for any 
rectangle measuring x units wide by yunits high, the associated ellipse measures x-1 
units wide by y-1 units high. If the application sets a world transformation by calling the 
SetWorldTransform or ModifyWorldTransform function, the system includes the right 
and lower sides. 



352 Volume 3 Microsoft Windows GOI 

About Chords 
A chord is a region bounded by the intersection of an ellipse and a line segment called a 
secant. The following illustration shows a chord drawn by using the Chord function. 

1- - -......---.----:or- - - -...----:::. - -I 

I ./ /' radial2"" I V/ ,;~./ 

l <, 
:', radial1', I 

...... ---- ..... I L ___ = ___ ==-___ _ 

'- Bounding rectangle 

When calling Chord, an application supplies the coordinates of the upper-left and lower
right corners of the ellipse's bounding rectangle, as well as the coordinates of two pOints 
defining two radials. A radial is a line drawn from the center of an ellipse's bounding 
rectangle to a point on the ellipse. 

When the system draws the curved part of the chord, it does so by using the current arc 
direction for the specified device context. The default arc direction is counterclockwise. 
You can have your application reset the arc direction by calling the SetArcDirection 
function. 

About Pies 
A pie is a region bounded by the intersection of an ellipse curve and two radials. The 
following illustration shows a pie drawn by using the Pie function. 

i - -,.".-..:::=--=-- --=.....- - - - i 
I / /' radial2 I 
V , 
I " I 

Pie 

I ' ...... 

L - - -"'"':....-=--- ---=""\~:ndinJg rectangle 

When calling Pie, an application supplies the coordinates of the upper-left and lower
right corners of the ellipse's bounding rectangle, as well as the coordinates of two pOints 
defining two radials. 

When the system draws the curved part of the pie, it uses the current arc direction for 
the given device context. The default arc direction is counterclockwise. An application 
can reset the arc direction by calling the SetArcDirection function. 



Chapter 12 Filled Shapes 353 

About Polygons 
A polygon is a filled shape with straight sides. The sides of a polygon are drawn by using 
the current pen. When the system fills a polygon, it uses the current brush and the 
current polygon fill mode. The two fill modes-alternate (the default) and winding
determine whether regions within a complex polygon are filled or left unpainted. An 
application can select either mode by calling the SetPolyFiliMode function. For more 
information about polygon fill modes, see Regions. 

The following illustration shows a polygon drawn by using Polygon. 

In addition to drawing a single polygon by using Polygon, an application can draw 
multiple polygons by using the PolyPolygon function. 

Drawing Rectangles 
A rectangle is a four-sided polygon whose opposing sides are parallel and equal in 
length. Although an application can draw a rectangle by calling the Polygon function, 
supplying the coordinates of each corner, the Rectangle function provides a simpler 
method. This function requires only the coordinates for the upper-left and the lower-right 
corners. When an application calls the Rectangle function, the system draws the 
rectangle, excluding the right and lower sides if no world transformation is set for the 
given device context. 

If a world transformation has been set by using the SetWorldTransform or 
ModifyWorldTransform function, the system includes the right and lower edges. 

In addition to drawing a traditional rectangle, you can draw rectangles with rounded 
corners. The RoundRect function requires that the application supply the coordinates of 
the lower-left and upper-right corners, as well as the width and height of the ellipse used 
to round each corner. 

The Win32 API also provides three functions that applications can use to manipulate 
rectangles, described as follows. 



354 Volume 3 Microsoft Windows GOI 

Function 

Fill Rect 

FrameRect 

InvertRect 

Filled Shape Reference 

Filled Shape Functions 

Chord 

Description 

Repaints the interior of a rectangle. 

Redraws the sides of a rectangle. 

Inverts the colors that appear within the interior of a 
rectangle. 

The Chord function draws a chord (a region bounded by the intersection of an ellipse 
and a line segment, called a secant). The chord is outlined by using the current pen and 
filled by using the current brush. 

Parameters 
hdc 

[in] Handle to the device context in which the chord appears. 

nLeftRect 
[in] Specifies the x-coordinate of the upper-left corner of the bounding rectangle. 

nTopRect 
[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle. 

nRightRect 
[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle. 

nBottomRect 
[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle. 



Chapter 12 Filled Shapes 355 

nXRadial1 
[in] Specifies the x-coordinate of the endpoint of the radial defining the beginning of 
the chord. 

nYRadial1 
[in] Specifies the y-coordinate of the endpoint of the radial defining the beginning of 
the chord. 

nXRadial2 
[in] Specifies the x-coordinate of the endpoint of the radial defining the end of the 
chord. 

nYRadial2 
[in] Specifies the y-coordinate of the endpoint of the radial defining the end of the 
chord. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The curve of the chord is defined by an ellipse that fits the specified bounding rectangle. 
The curve begins at the point where the ellipse intersects the first radial and extends 
counterclockwise to the point where the ellipse intersects the second radial. The chord is 
closed by drawing a line from the intersection of the first radial and the curve to the 
intersection of the second radial and the curve. 

If the starting point and ending point of the curve are the same, a complete ellipse is 
drawn. 

The current position is neither used nor updated by Chord. 

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 
32,767. The sum of nLeftRectand nRightRector nTopRectand nBottomRect 
parameters cannot exceed 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Filled Shapes Overview, Filled Shape Functions, AngleAre, Are, AreTo, Pie 



356 Volume 3 Microsoft Windows GOI 

Ellipse 
The Ellipse function draws an ellipse. The center of the ellipse is the center of the 
specified bounding rectangle. The ellipse is outlined by using the current pen and is filled 
by using the current brush. 

Parameters 
hdc 

[in] Handle to the device context. 

nLeftRect 
[in] Specifies the x-coordinate of the upper-left corner of the bounding rectangle. 

nTopRect 
[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle. 

nRightRect 
[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle. 

nBottomRect 
[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The current position is neither used nor updated by Ellipse. 

Windows 95/98: The sum oj the coordinates of the bounding rectangle cannot exceed 
32,767. The sum of nLeftRect and nRightRect or nTopRect and nBottomRect 
parameters cannot exceed 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Chapter 12 Filled Shapes 357 

Filled Shapes Overview, Filled Shape Functions, Arc, ArcTo 

FiliRect 
The FiliRect function fills a rectangle by using the specified brush. This function includes 
the left and top borders, but excludes the right and bottom borders of the rectangle. 

Parameters 
hOC 

[in] Handle to the device context. 

/pre 
[in] Pointer to a RECT structure that contains the logical coordinates of the rectangle 
to be filled. 

hbr 
[in] Handle to the brush used to fill the rectangle. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The brl!sh identified by the hbr parameter may be either a handle to a logical brush or a 
color value. If specifying a handle to a logical brush, call one of the following functions to 
obtain the handle: CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush. 
Additionally, you may retrieve a handle to one of the stock brushes by using the 
GetStockObject function. If specifying a color value for the hbr parameter, it must be 
one of the standard system colors (the value 1 must be added to the chosen color). For 
example: 

F:fll'R:ec:t(~(jc;"~r'ect';,!:~ IfflRU'$tI), (CQLOR:..WINDOW+IJ~;.' 

For a list of all the standard system colors, see GetSysColor. 



358 Volume 3 Microsoft Windows GOI 

When filling the specified rectangle, FiIIRect does not include the rectangle's right and 
bottom sides. GDI fills a rectangle up to, but not including, the right column and bottom 
row, regardless of the current mapping mode. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Filled Shapes Overview, Filled Shape Functions, CreateHatchBrush, 
CreatePatternBrush, CreateSolidBrush, GetStockObject, RECT 

FrameRect 
The FrameRect function draws a border around the specified rectangle by using the 
specified brush. The width and height of the border are always one logical unit. 

In.: .•...• H.IJ.:.: .• ,:.~ .•.. ·,r.·.~.·~.··.·,.·.oOAH·.'[).· •. · •. :.·: •.• h· .• ··f«; .• bC.'.·.J.·.· ... r: ...•. ~.·· ... i.~·.J ;r.'.c.: ..•. · .. :j j ~.."a;~j.Ol; •••. ',"" 
~l>IW~~~)~:~:t'~~~~(;tiru~h" " 

.. , . . . ", : ~ .. 

l:::':t "'~;,<:.:,Li·.:.\" ... 

Parameters 
hOC 

[in] Handle to the device context in which the border is drawn. 

Ipre 
[in] Pointer to a RECT structure that contains the logical coordinates of the upper-left 
and lower-right corners of the rectangle. 

hbr 
[in] Hand!e to the brush used to draw the border. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 12 Filled Shapes 359 

Remarks 
The brush identified by the hbr parameter must have been created by using the 
CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush function, or retrieved 
by using the GetStockObject function. 

If the bottom member of the RECT structure is less than or equal to the top member, or 
if the right member is less than or equal to the left member, the function does not draw 
the rectangle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Filled Shapes Overview, Filled Shape Functions, CreateHatchBrush, 
CreatePatternBrush, CreateSolidBrush, GetStockObject, RECT 

InvertRect 
The InvertRect function inverts a rectangle in a window by performing a logical NOT 
operation on the color values for each pixel in the rectangle's interior. 

,:.·~ .•. :.;i: .. ":.:",."k,,.':F.·',~.h, •. '.:k.I~~~ll'!t~l~!~,~t~:; 
'" '. ;.: : ~~, . ~ h:· ":, "'':-

Parameters 
hOC 

[in] Handle to the device context. 

/pre 
[in] Pointer to a RECT structure that contains the logical coordinates of the rectangle 
to be inverted. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



360 Volume 3 Microsoft Windows GOI 

Pie 

Remarks 
On monochrome screens, InvertRect makes white pixels black and black pixels white. 
On color screens, the inversion depends on how colors are generated for the screen. 
Calling InvertRect twice for the same rectangle restores the display to its previous 
colors. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Filled Shapes Overview, Filled Shape Functions, Fill Rect, RECT 

The Pie function draws a pie-shaped wedge bounded by the intersection of an ellipse 
and two radials. The pie is outlined by using the current pen and filled by using the 
current brush. 

Parameters 
hdc 

[in] Handle to the device context. 

nLeftRect 

",,':: ",.:;: i 

'J. :, )(": '. 

[in] Specifies the x-coordinate of the upper~left corner of the bounding rectangle. 

nTopRect 
[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle. 



Chapter 12 Filled Shapes 361 

nRightRect 
[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle. 

nBottomRect 
[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle. 

nXRadial1 
[in] Specifies the x-coordinate of the endpoint of the first radial. 

nYRadial1 
[in] Specifies the y-coordinate of the endpoint of the first radial. 

nXRadial2 
[in] Specifies the x-coordinate of the endpoint of the second radial. 

nYRadial2 
[in] Specifies the y-coordinate of the endpoint of the second radial. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The curve of the pie is defined by an ellipse that fits the specified bounding rectangle. 
The curve begins at the point where the ellipse intersects the first radial and extends 
counterclockwise to the point where the ellipse intersects the second radial. 

The current position is neither used nor updated by the Pie function. 

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 
32,767. The sum of nLeftRectand nRightRector nTopRectand nBottomRect 
parameters cannot exceed 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Filled Shapes Overview, Filled Shape Functions, AngleAre, Are, AreTo, Chord 



362 Volume 3 Microsoft Windows GOI 

Polygon 
The Polygon function draws a polygon consisting of two or more vertices connected by 
straight lines. The polygon is outlined by using the current pen and filled by using the 
current brush and polygon fill mode. 

Parameters 
hdc 

[in] Handle to the device context. 

IpPoints 
[in] Pointer to an array of POINT structures that specify the vertices of the polygon. 

nCount 
[in] Specifies the number of vertices in the array. This value must be greater than or 
equal to 2. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The polygon is closed automatically by drawing a line from the last vertex to the first. 

The current position is neither used nor updated by the Polygon function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Filled Shapes Overview, Filled Shape Functions, GetPolyFiliMode, POINT, Polyline, 
PolylineTo, PolyPolygon, SetPolyFiliMode 



Chapter 12 Filled Shapes 363 

PolyPolygon 
The PolyPolygon function draws a series of closed polygons. Each polygon is outlined 
by using the current pen and filled by using the current brush and polygon fill mode. The 
polygons drawn by this function can overlap. 

~9()~.POliti91;y'gC)n( 
' •.• , HPC, ),a<;;. •. . . . ..... ." . '. '. . . .'" IIh~ndl!! tope ......... . 

:iE~~~~;~~i~:~.i~~;;.:;~i;;~~·;;~·; 
Parameters 
hdc 

[in] Handle to the device context. 

IpPoints 
[in] Pointer to an array of POINT structures that define the vertices of the polygons. 
The polygons are specified consecutively. Each polygon is closed automatically by 
drawing a line from the last vertex to the first. Each vertex should be specified once. 

IpPolyCounts 
[in] Pointer to an array of integers, each of which specifies the number of points in the 
corresponding polygon. Each integer must be greater than or equal to 2. 

nCount 
[in] Specifies the total number of polygons. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The current position is neither used nor updated by this function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



364 Volume 3 Microsoft Windows GOI 

Filled Shapes Overview, Filled Shape Functions, GetPolyFiliMode, POINT, Polygon, 
Polyline, PolylineTo, SetPolyFiliMode 

Rectangle 
The Rectangle function draws a rectangle. The rectangle is outlined by using the current 
pen and filled by using the current brush. 

Parameters 
hdc 

[in] Handle to the device context. 

nLeftRect 
[in] Specifies the logical x-coordinate of the upper-left corner of the rectangle. 

nTopRect 
[in] Specifies the logical y-coordinate of the upper-left corner of the rectangle. 

nRightRect 
[in] Specifies the logical x-coordinate of the lower-right corner of the rectangle. 

nBottomRect 
[in] Specifies the logical y-coordinate of the lower-right corner of the rectangle. 

Return Values 
If the function succeeds, the. return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error injormation, caii GetLastError. 

Remarks 
The current position is neither used nor updated by Rectangle. 

The rectangle that is drawn excludes the bottom and right edges. 

If a PS.: .. NULL pen is used, the dimensions of the rectangle are 1 pixel less in height and 
1 pixel less in width. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Chapter 12 Filled Shapes 365 

Filled Shapes Overview, Filled Shape Functions, RoundRect 

RoundRect 
The RoundRect function draws a rectangle with rounded corners. The rectangle is 
outlined by using the current pen and filled by using the current brush. 

Parameters 
hdc 

[in] Handle to the device context. 

nLeftRect 
[in] Specifies the x-coordinate of the upper-left corner of the rectangle. 

nTopRect 
. [in] Specifies the y-coordinate of the upper-left corner of the rectangle. 

nRightRect 
[in] Specifies the x-coordinate of the lower-right corner of the rectangle. 

nBottomRect 
[in] Specifies the y-coordinate of the lower-right corner of the rectangle. 

nWidth 
[in] Specifies the width of the ellipse used to draw the rounded corners. 

nHeight 
[in] Specifies the height of the ellipse used to draw the rounded corners. 



366 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The current position is neither used nor updated by this function. 

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 
32,767. The sum of nLeftRectand nRightRector nTopRectand nBottomRect 
parameters cannot exceed 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Filled Shapes Overview, Filled Shape Functions, Rectangle 



367 

CHAPTER 13 

Lines and Curves 

Lines and curves are used to draw graphics output on raster devices. As discussed in 
this overview, a line is a set of highlighted pixels on a raster display (or a set of dots on a 
printed page) identified by two points: a starting point and an ending point. A regular 
curve is a set of highlighted pixels on a raster display (or dots on a printed page) that 
defines the perimeter (or part of the perimeter) of a conic section. An irregular curve is a 
set of pixels that defines a curve that does not fit the perimeter of a conic section. 

About Lines and Curves 

Lines 

All types of Win32-based applications use lines and curves to draw graphics output on 
raster devices. Computer-aided design (CAD) and drawing applications use lines and 
curves to outline objects, specify the centers of objects, the dimensions of objects, and 
so on. Spreadsheet applications use lines and curves to draw grids, charts, and graphs. 
Word processing applications use lines to create rules and borders on a page of text. 

A line is a set of highlighted pixels on a raster display (or a set of dots on a printed page) 
identified by two points: a starting point and an ending point. The pixel located at the 
starting point is always included in the line, and the pixel located at the ending point is 
always excluded. (This kind of line is sometimes called inclusive-exclusive.) 

When an application calls one of the Win32 line-drawing functions, graphical device 
interface (GDI), or in some cases a device driver, determines which pixels should be 
highlighted. GDI is a dynamic link library (DLL) that processes graphics function calls 
from a Win32-based application and passes those calls to a device driver. A device 
driver is a DLL that receives input from GDI, converts the input to device commands, and 
passes those commands to the appropriate device. GDI uses a digital differential 
analyzer (DDA) to determine the set of pixels that define a line. A DDA determines the 
set of pixels by examining each point on the line and identifying those pixels on the 
display surface (or dots on a printed page) that correspond to the paints. The following 
illustration shows a line, its starting point, its ending point, and the pixels highlighted by 
using a simple DDA. 



368 Volume 3 Microsoft Windows GOI 

~ ~- Ending point 
~ ~ 

IiJ\li" s' 
kfl: ~ 

\ 

Starting pOint 

The simplest and most common DDA is the Bresenham, or incremental, DDA. A 
modified version of this algorithm draws lines in Windows. The incremental DDA is noted 
for its simplicity, but it is also noted for its inaccuracy. Because it rounds off to the 
nearest integer value, it sometimes fails to represent the original line requested by the 
application. The DDA used by GDI does not round off to the nearest integer. As a result, 
this new DDA produces output that is sometimes much closer in appearance to the 
original line requested by the application. 

Note If an application requires line output that cannot be achieved with the new DDA, it 
can draw its own lines by calling the LineDDA function and supplying a private DDA 
(lineDDAProc). However, the LineDDA function draws lines much slower than the 
Win32 line-drawing functions. Do not use this function within an application if speed is a 
primary concern. 

An application can use the new DDA to draw single lines and multiple, connected line 
segments. An application can draw a single line by calling the lineTo function. This 
function draws a line from the current position up to, but not including, a specified ending 
point. An application can draw a series of connected line segments by calling the 
Polyline function, supplying an array of pOints that specify the ending point of each line 
segment. An application can draw multiple, disjointed series of connected line segments 
by calling the PolyPolyline function, supplying the required ending pOints. 

The following illustration shows line output created by calling the LineTo, Polyline, and 
PolyPolyline functions. 

Line To output 
PoiyPoiyiine output 



Chapter 13 Lines and Curves 369 

Curves 
A regular curve is a set of highlighted pixels on a raster display (or dots on a printed 
page) that define the perimeter (or part of the perimeter) of a conic section. An irregular 
curve is a set of pixels that define a curve that does not fit the perimeter of a conic 
section. In Win32-based applications, the ending point is excluded from a curve just as it 
is excluded from a line. 

When an application calls one of the Win32 curve-drawing functions, GOI breaks the 
curve into a number of extremely small, discrete line segments. After determining the 
endpoints (starting point and ending point) for each of these line segments, GOI 
determines which pixels (or dots) define each line by applying its OOA. 

An application can draw an ellipse or part of an ellipse by calling the Arc function. This 
function draws the curve within the perimeter of an invisible rectangle called a bounding 
rectangle. The size of the ellipse is specified by two invisible radials extending from the 
center of the rectangle to the sides of the rectangle. The following illustration shows an 
arc (part of an ellipse) drawn by using the Arc function. 

Arc 

Center 

I 

m----: 
I I 

I I Radial 
L __ _ 

- \. ~:~~ding rectangle 

When calling the Arc function, an application specifies the coordinates of the bounding 
rectangle and radials. The preceding illustration shows the rectangle and radials with 
dashed lines while the actual arc was drawn using a solid line. 

When drawing the arc of another object, the application can call the SetArcDirection 
and GetArcDirection functions to control the direction (clockwise or counterclockwise) 

in which the object is drawn. The default direction for drawing arcs and other objects is 
counterclockwise. 

In addition to drawing ellipses or parts of ellipses, Win32-based applications can draw 
irregular curves called Sezier curves. A Bezier curve is an irregular curve whose 
curvature is defined by four control points (p1, p2, p3, and p4). The control points p1 and 
p4 define the starting and ending points of the curve, and the control points p2 and p3 
define the shape of the curve by marking pOints where the curve reverses orientation. 



370 Volume 3 Microsoft Windows GOI 

Control point 1 r Starting point 

~ • Control point 2 

Ending point 

Starting point 
• Control point 2 

Control point 1 
Ending point 

An application can draw irregular curves by calling the PolyBezier function, supplying 
the appropriate control points. 

Combined Lines and Curves 
In addition to drawing lines or curves, Win32-based applications can draw combinations 
of line and curve output by calling a single function. For example, an application can 
draw the outline of a pie chart by calling the AngleAre function. 

The AngleAre function draws an arc along a circle's perimeter and draws a line 
connecting the starting pOint of the arc to the circle's center. In addition to using the 
AngleAre function, a Win32-based application can also combine line and irregular curve 
output by using the PolyDraw function. 

Line and Curve Attributes 
A device context (DC) contains attributes that affect line and curve output. The line and 
curve attributes include the current position, brush style, brush color, pen style, pen 
color, transformation, and so on. 

The default current position for any DC is located at the point (0,0) in logical (or world) 
space. You can set these coordinates to a new position by ca.!!ing the MoveToEx 
function and passing a new set of coordinates. 

Note The Win32 API provides two sets of line- and curve-drawing functions. The first 
set retains the current position in a DC, and the second set alters the position. You can 
identify the functions that alter the current position by examining the function name. If the 
function name ends with the preposition "To", the function sets the current position to the 
ending point of the last line drawn (LineTo, AreTo, PolylineTo, or PolyBezierTo). If the 
function name does not end with this preposition, it leaves the current position intact 
(Are, Polyline, or PolyBezier). 



Chapter 13 Lines and Curves 371 

The default brush is a solid white brush. An application can create a new brush by 
calling the CreateBrushlndirect function. After creating a brush, the application can 
select it into its DC by calling the SelectObject function. The Win32 API provides a 
complete set of functions to create, select, and alter the brush in an application's DC. For 
more information about these functions and about brushes in general, see Brushes. 

The default pen is a cosmetic, solid black pen that is one pixel wide. An application can 
create a pen by using the ExtCreatePen function. After creating a pen, your application 
can select it into its DC by calling the SelectObject function. The Win32 API provides a 
complete set of functions to create, select, and alter the pen in an application's DC. For 
more information about these functions and about pens in general, see Pens. 

The default transformation is the unity transformation (specified by the identity matrix). 
An application can specify a new transformation by calling the SetWorldTransform 
function. The Win32 API provides a complete set of functions to transform lines and 
curves by altering their width, location, and general appearance. For more information 
about these functions, see Coordinate Spaces and Transformations. 

Line and Curve Reference 

Line and Curve Functions 

AngleArc 
The AngleArc function draws a line segment and an arc. The line segment is drawn 
from the current position to the beginning of the arc. The arc is drawn along the 
perimeter of a circle with the given radius and center. The length of the arc is defined by 
the given start and sweep angles. 

BOOlAng.l eArJ:;( 
HtlChdc. 

.' int X.· 

int Y, •. 

II flandle to davicecpntext 
II x·coordi~,te or 6ircle~s center 
II y~cool"dtnate of c'ircle'S center 

aWoRD dwRiJdi u~. II ci rc 1 e' s radi us 

h 

flOAT eStltrtAng)e. ··11 a.rc's staf'tangle 
FlOATeSweepAngle II .arc's. sweepangl.e 

Parameters 
hdc 

[in] Handle to a device context. 

X 
[in] Specifies the logical x-coordinate of the center of the circle. 



372 Volume 3 Microsoft Windows GOI 

y 
[in] Specifies the logical y-coordinate of the center of the circle. 

dwRadius 
[in] Specifies the radius, in logical units, of the circle. This value must be positive. 

eStartAngle 
[in] Specifies the start angle, in degrees, relative to the x-axis. 

eSweepAngle 
[in] Specifies the sweep angle, in degrees, relative to the starting angle. 

Return Values 
If the function succeeds, the retum value is nonzero. 

If the function fails, the retum value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The AngleAre function moves the current position to the ending point of the arc. 

The arc drawn by this function may appear to be elliptical, depending on the current 
transformation and mapping mode. Before drawing the arc, AngleAre draws the line 
segment from the current position to the beginning of the arc. 

The arc is drawn by constructing an imaginary circle around the specified center point 
with the specified radius. The starting point of the arc is determined by measuring 
counterclockwise from the x-axis of the circle by the number of degrees in the start 
angle. The ending pOint is similarly located by measuring counterclockwise from the 
starting point by the number of degrees in the sweep angle. 

If the sweep angle is greater than 360 degrees, the arc is swept multiple times. 

This function draws lines by using the current pen. The figure is not filled. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, Are, AreTo, MoveToEx 



Arc 
The Arc function draws an elliptical arc. 

Parameters 
hdc 

Chapter 13 Lines and Curves 373 

[in] Handle to the device context where drawing takes place. 

nLeftRect 
[in] Specifies the logical x-coordinate of the upper-left corner of the bounding 
rectangle. 

Windows 95/98: The sum of nLeftRect plus nRightRect must be less than 32768. 

nTopRect 
[in] Specifies the logical y-coordinate of the upper-left corner of the bounding 
rectangle. 

Windows 95/98: The sum of nTopRect plus nBottomRect must be less than 32768. 

nRightRect 
[in] Specifies the logical x-coordinate of the lower-right corner of the bounding 
rectangle. 

Windows 95/98: The sum of nLeftRect plus nRightRect must be less than 32768. 

nBottomRect 
[in] Specifies the logical y-coordinate of the lower-right corner of the bounding 
rectangle. 

Windows 95/98: The sum of nTopRectplus nBottomRectmust be less than 32768. 

nXStartArc 
[in] Specifies the logical x-coordinate of the ending point of the radial line defining the 
starting point of the arc. 

nYStartArc 
[in] Specifies the logical y-coordinate of the ending point of the radial line defining the 
starting point of the arc. 



374 Volume 3 Microsoft Windows GDI 

nXEndArc 
[in] Specifies the logical x-coordinate of the ending point of the radial line defining the 
ending point of the arc. 

nYEndArc 
[in] Specifies the logical y-coordinate of the ending pOint of the radial line defining the 
ending point of the arc. 

Return Values 
If the arc is drawn, the return value is nonzero. 

If the arc is not drawn, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The points (nLeftRect, nTopRect) and (nRightRect, nBottomRec~ specify the bounding 
rectangle. An ellipse formed by the specified bounding rectangle defines the curve of the 
arc. The arc extends in the current drawing direction from the point where it intersects 
the radial from the center of the bounding rectangle to the (nXStartArc, n YStartArc) 
point. The arc ends where it intersects the radial from the center of the bounding 
rectangle to the (nXEndArc, nYEndArc) point. If the starting point and ending point are 
the same, a complete ellipse is drawn. 

The arc is drawn using the current pen; it is not filled. 

The current position is neither used nor updated by Arc. 

Windows 95/98: The drawing direction is always counterclockwise. 

Windows NT/2000: Use the GetAreDireetion and SetAreDireetion functions to get and 
set the current drawing direction for a device context. The default drawing direction is 
counterclockwise. 

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 
32,767. The sum of nLeftRectand nRightRector nTopRectand nBottomRect 
parameters cannot exceed 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, AngleAre, AreTo, Chord, 
Ellipse, GetAreDireetion, Pie, SetAreDireetion 



Chapter 13 Lines and Curves 375 

AreTo 
The AreTa function draws an elliptical arc. 

Parameters 
hdc 

[in] Handle to the device context where drawing takes place. 

nLeftRect 
[in] Specifies the logical x-coordinate of the upper-left corner of the bounding 
rectangle. 

nTopRect 
[in] Specifies the logical y-coordinate of the upper-left corner of the bounding 
rectangle. 

nRightRect 
[in] Specifies the logical x-coordinate of the lower-right corner of the bounding 
rectangle. 

nBottomRect 
[in] Specifies the logical y-coordinate of the lower-right corner of the bounding 
rectangle. 

nXRa dia I 1 
[in] Specifies the logical x-coordinate of the endpoint of the radial defining the starting 
point of the arc. 

nYRadial1 
[in] Specifies the logical y-coordinate of the endpoint of the radial defining the starting 
point of the arc. 

nXRadial2 
[in] Specifies the logical x-coordinate of the endpoint of the radial defining the ending 
point of the arc. 

nYRadial2 
[in] Specifies the logical y-coordinate of the endpoint of the radial defining the ending 
point of the arc. 



376 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
AreTo is similar to the Arc function, except that the current position is updated. 

The pOints (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding 
rectangle. An ellipse formed by the specified bounding rectangle defines the curve of the 
arc. The arc extends counterclockwise from the point where it intersects the radial line 
from the center of the bounding rectangle to the (nXRadia/1, nYRadia/1) point. The arc 
ends where it intersects the radial line from the center of the bounding rectangle to the 
(nXRadia/2, nYRadia/2) pOint. If the starting point and ending pOint are the same, a 
complete ellipse is drawn. 

A line is drawn from the current position to the starting point of the arc. If no error occurs, 
the current position is set to the ending point of the arc. 

The arc is drawn using the current pen; it is not filled. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, AngleAre, Are, 
SetAreDireetion 

GetArcDirection 
The GetAreDirection function returns the current arc direction for the specified device 
context. Arc and rectangle functions use the arc direction. 



Parameters 
hdc 

[in] Handle to the device context. 

Return Values 

Chapter 13 Lines and Curves 377 

The return value specifies the current arc direction; it can be anyone of the following 
values: 

Value 

AD_COUNTERCLOCKWISE 

AD_CLOCKWISE 

Meaning 

Arcs and rectangles are drawn counterclockwise. 

Arcs and rectangles are drawn clockwise. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, SetArcDirection 

LineDDA 
The LineDDA function determines which pixels should be highlighted for a line defined 
by the specified starting and ending points. 

Parameters 
nXStart 

[in] Specifies the x-coordinate of the line's starting point. 

nYStart 
[in] Specifies the y-coordinate of the line's starting pOint. 



378 Volume 3 Microsoft Windows GOI 

nXEnd 
[in) Specifies the x-coordinate of the line's ending point. 

nYEnd 
[in) Specifies the y-coordinate of the line's ending point. 

IpLineFunc 
[in) Pointer to an application-defined callback function. For more information, see the 
LineDDAProc callback function. 

IpData 
[in) Pointer to the application-defined data. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The LineDDA function passes the coordinates for each point along the line, except for 
the line's ending point, to the application-defined callback function. In addition to passing 
the coordinates of a point, this function passes any existing application-defined data. 

The coordinates passed to the callback function match pixels on a video display only if 
the default transformations and mapping modes are used. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, lineDDAProc 

LineDDAProc 
The LineDDAProc function is an application-defined callback function used with the 
LineDDA function. It is used to process coordinates. The LlNEDDAPROC type defines a 
pointer to this callback function. LineDDAProc is a placeholder for the application
defined function name. 



VOlD CALLBACK:L1 neDDAProc ( . 
\" . 

'1nt X. 

'n:~Y. .' .. 
~pAAAr.t7piJ~ta 

Parameters 
x 

II x·coordinate of point 
. tt .,Y"coOrdlnate.ofpqint ...•. 

I/'appli cation"':defi ned" d;rta 

[in] Specifies the x-coordinate of the current point. 
y 

[in] Specifies the y-coordinate of the current point. 

IpData 
[in] Pointer to the application-defined data. 

Return Values 
This function does not return a value. 

Remarks 

Chapter 13 Lines and Curves 379 

An application registers a LineDDAProc function by passing its address to the LineDDA 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Lines and Curves Overview, Line and Curve Functions, LineDDA 

LineTo 
The LineTo function draws a line from the current pOSition up to, but not including, the 
specified point. 

aO{)Ll;in~T(I( 
.Hl;lc' hd.c/· 



380 Volume 3 Microsoft Windows GDI 

Parameters 
hdc 

[in] Handle to a device context. 

nXEnd 
[in] Specifies the x-coordinate of the line's ending pOint. 

nYEnd 
[in] Specifies the y-coordinate of the line's ending point. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The coordinates of the line's ending point are specified in logical units. 

The line is drawn by using the current pen and, if the pen is a geometric pen, the current 
brush. 

If LineTo succeeds, the current position is set to the specified ending point. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, MoveToEx, Polyline, 
PolylineTo 



Chapter 13 Lines and Curves 381 

MoveToEx 
The MoveToEx function updates the current position to the specified point and 
optionally returns the previous position. 

Parameters 
hdc 

[in] Handle to a device context. 

X 
[in] Specifies the x-coordinate of the new position, in logical units. 

y 
[in] Specifies the y-coordinate of the new position, in logical units. 

IpPoint 
[out] Pointer to a POINT structure that receives the previous current position. If this 
parameter is a NULL pointer, the previous position is not returned. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The MoveToEx function affects all drawing functions. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, AngleArc, LineTo, POINT, 
PolyBezierTo, PolylineTo 



382 Volume 3 Microsoft Windows GOI 

PolyBezier 
The PolyBezier function draws one or more Sezier curves. 

Parameters 
hdc 

[in] Handle to a device context. 

Jppt 
[in] Pointer to an array of POINT structures that contain the endpoints and control 
points of the curve(s). 

cPoints 
[in] Specifies the number of points in the Jppt array. This value must be one more than 
three times the number of curves to be drawn, because each Sezier curve requires 
two control pOints and an endpoint, and the initial curve requires an additional starting 
point. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
Th Polybezier function draws cubic Sezier curves by using the endpoints and control 
pOints specified by the Ippt parameter. The first curve is drawn from the first point to the 
fourth point by using the second and third pOints as control points. Each subsequent 
curve in the sequence needs exactly three more points: the ending point of the previous 
curve is used as the starting pOint, the next two points in the sequence are control 
pOints, and the third is the ending point. 

The current position is neither used nor updated by the PolyBezier function. The figure 
is not filled. 

This function draws lines by using the current pen. 



Chapter 13 Lines and Curves 383 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, MoveToEx, POINT, 
PolyBezierTo 

PolyBezierTo 
The PolyBezierTo function draws one or more Bezier curves. 

Parameters 
hdc 

[in] Handle to a device context. 

Ippt 
[in] Pointer to an array of POINT structures that contains the endpoints and control 
points. 

cCount 
[in] Specifies the number of pOints in the Ippt array. This value must be three times the 
number of curves to be drawn, because each Bezier curve requires two control pOints 
and an ending point. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

, Windows NT/2000: To get extended error information, call GetLastError. 



384 Volume 3 Microsoft Windows GOI 

Remarks 
This function draws cubic Bezier curves by using the control points specified by the Jppt 
parameter. The first curve is drawn from the current position to the third point by using 
the first two pOints as control pOints. For each subsequent curve, the function needs 
exactly three more pOints, and uses the ending point of the previous curve as the 
starting pOint for the next. 

PolyBezierTo moves the current position to the ending point of the last Bezier curve. 
The figure is not filled. 

This function draws lines by using the current pen. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, MoveToEx, POINT, PolyBezier 

PolyDraw 
The PolyDraw function draws a set of line segments and Bezier curves. 

Parameters 
hdc 

[in] Handle to a device context. 

Jppt 
[in] Pointer to an array of POINT structures that contains the endpoints for each line 
segment and the endpoints and control points for each Bezier curve. 

/pbTypes 
[in] Pointer to an array that specifies how each point in the Jppt array is used. This 
parameter can be one of the following values: 



Type 

Chapter 13 Lines and Curves 385 

Meaning 

Specifies that this point starts a disjoint figure. This point 
becomes the new current position. 

Specifies that a line is to be drawn from the current position to 
this pOint, which then becomes the new current position. 

Specifies that this point is a control point or ending point for a 
Bezier curve. 

PT _BEZIERTO types always occur in sets of three. The current 
position defines the starting point for the Bezier curve. The first 
two PT_BEZIERTO pOints are the control points, and the third 
PT _BEZIERTO point is the ending point. The ending point 
becomes the new current position. If there are not three 
consecutive PT _BEZIERTO pOints, an error results. 

APT _LlNETO or PT _BEZIERTO type can be combined with the following value by 
using the bitwise operator OR to indicate that the corresponding point is the last point 
in a figure and the figure is closed. 

Value Meaning 

PT _CLOSEFIGURE Specifies that the figure is automatically closed after the 

cCount 

PT _LlNETO or PT _BEZIERTO type for this pOint is done. A 
line is drawn from this point to the most recent PT _MOVETO 
or MoveToEx point. 

This value is combined with the PT _LlNETO type for a line, 
or with the PT _BEZIERTO type of the ending point for a 
Bezier curve, by using the bitwise operator OR. 

The current position is set to the ending point of the closing 
line. 

[in] Specifies the total number of pOints in the Jppt array, the same as the number of 
bytes in the JpbTypes array. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



386 Volume 3 Microsoft Windows GOI 

Remarks 
The PolyDraw function can be used in place of consecutive calls to MoveToEx, LineTo, 
and PolyBezierTo functions to draw disjoint figures. The lines and curves are drawn 
using the current pen and figures are not filled. If there is an active path started by 
calling BeginPath, PolyDraw adds to the path. 

The points contained in the Jppt array and in the JpbTypes array indicate whether each 
point is part of a MoveTo, LineTo, or PolyBezierTo operation. It is also possible to 
close figures. 

This function updates the current position. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, BeginPath, EndPath, LineTo, 
MoveToEx, POINT, PolyBezierTo, PolyLine 

Polyline 
The Polyline function draws a series of line segments by connecting the pOints in the 
specified array. 

Parameters 
hdc 

[in] Handle to a device context. 

Jppt 
[in] Pointer to an array of POINT structures. Each structure in the array identifies a 
point in logical space. 

cPoints 
[in] Specifies the number of points in the array. This number must be greater than or 
equal to two. 



Chapter 13 Lines and Curves 387 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The lines are drawn from the first point through subsequent pOints by using the current 
pen. Unlike the LineTo function, the Polyline function neither uses nor updates the 
current position. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, LineTo, MoveToEx, POINT, 
PolylineTo, PolyPolyline 

PolylineTo 
The PolylineTo function draws one or more straight lines. 

BOOl,poilyl1nelo(:' ""'; •. 

. ;"""':'!",'.",tcN"S' 'Th.,.f.,pC.·.;'O .. ,;. ... · .. IU .... T .. ·,.'.··~,,'p;p:.,.:~." 1/ handle to'd,evice eont~xt "<:" .. f..,. l/:'-&r ray' of' :POi nts . 
·"q~O,I~fLc'COliri;t,;"'. tfr)umbEH' of polntStr array,', 

),; !: ' .' .. , .... 

Parameters 
hdc 

[in] Handle to the device context. 

Ippt 
[in] Pointer to an array of POINT structures that contains the vertices of the line. 

cCount 
[in] Specifies the number of pOints in the array. 



388 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A line is drawn from the current position to the first point specified by the Jppt parameter 
by using the current pen. For each additional line, the function draws from the ending 
point of the previous line to the next point specified by Jppt. 

PolylineTo moves the current position to the ending point of the last line. 

If the line segments drawn by this function form a closed figure, the figure is not filled. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, LineTo, MoveToEx, POINT, 
Polyline 

PolyPolyline 
The PolyPolyline function draws multiple series of connected line segments. 

11~~~I~~~.t:.:;'i~}~i~~~~~:i:i:.;,;i~;~~,;~);;::~;:;:: 
Parameters 
hdc 

[in] Handle to the device context. 

Jppt 
[in] Pointer to an array of POINT structures that contains the vertices of the polylines. 
The polylines are specified consecutively. 



Chapter 13 Lines and Curves 389 

IpdwPolyPoints 
[in] Pointer to an array of variables specifying the number of pOints in the Ippt array for 
the corresponding polyline. Each entry must be greater than or equal to two. 

cCount 
[in] Specifies the total number of entries in the IpdwPolyPoints array. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The line segments are drawn by using the current pen. The figures formed by the 
segments are not filled. 

The current position is neither used nor updated by this function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions, POINT, Polyline, PolylineTo 

SetArcDirection 
The SetArcDirection sets the drawing direction to be used for arc and rectangle 
functions. 

." ::' ., 

':,.,<~. ~."''' ".'- .~~, , 1n~· .•. ~~~~~ni;~~,if~:n( 
~.,HQC ,Mr;~;; .~" ...•••... ·t'lf:hW~dl~todd'e~'r~e'c~!ntext 
'1n~'ArdD1ri~ct1 ott, I I., new arc. d trect~otl ... ,,; . 

. n :';'<" " , ><} 
Parameters 
hdc 

[in] Handle to the device context. 



390 Volume 3 Microsoft Windows GOI 

ArcDirection 
[in] Specifies the new arc direction. This parameter can be one of the following values: 

Value Meaning 

AD_COUNTERCLOCKWISE 

AD_CLOCKWISE 

Return Values 

Figures drawn counterclockwise. 

Figures drawn clockwise. 

If the function succeeds, the return value specifies the old arc direction. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The default direction is counterclockwise. 

The SetArcDirection function specifies the direction in which the following functions 
draw: 

Arc 
ArcTo 
Chord 
Ellipse 
Pie 
Rectangle 
RoundRect 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Lines and Curves Overview, Line and Curve Functions 



391 

CHAPTER 14 

Metafiles 

A metafile is a collection of structures that stores a picture in a device-independent 
format. Device independence is the one feature that sets metafiles apart from bitmaps. 
Unlike a bitmap, a metafile guarantees device independence. There is a drawback to 
metafiles, however; they are generally drawn more slowly than bitmaps. Therefore, if an 
application requires fast drawing, and if device independence is not an issue, it should 
use bitmaps instead of metafiles. 

About Metafiles 
Internally, a metafile is an array of variable-length structures called metafile records. The 
first records in the metafile specify general information such as the resolution of the 
device on which the picture was created, the dimensions of the picture, and so on. The 
remaining records, which constitute the bulk of any metafile, correspond to the graphical 
device interface (GDI) functions required to draw the picture. These records are stored in 
the metafile after a special metafile device context (DC) is created. This metafile device 
context is then used for all drawing operations required to create the picture. When the 
system processes a GDI function associated with a metafile DC, it converts the function 
into the appropriate data and stores this data in a record appended to the metafile. 

After a picture is complete and the last record is stored in the metafile, you can pass the 
metafile to another application by: 

• Using the clipboard 

• Embedding it within another file 

• Storing it on disk 

• Playing it repeatedly 

A metafile is played when its records are converted to device commands and processed 
by the appropriate device. 

There are two types of metafiles: 

• Enhanced-format metafiles 

• Windows-format metafiles 



392 Volume 3 Microsoft Windows GOI 

Enhanced-Format Metafiles 
An enhanced-format metafile is used by Win32-based applications. The enhanced 
format consists of the following elements: 

• A header 

• A table of handles to GDI objects 

• A private palette 

• An array of metafile records 

Enhanced metafiles provide true device independence. You can think of the picture 
stored in an enhanced metafile as a "snapshot" of the video display taken at a particular 
moment. This "snapshof' maintains its dimensions no matter where it appears~n a 
printer, a plotter, the desktop, or in the client area of any Win32-based application. 

You can use enhanced metafiles to store a picture created by using the Win32 GDI 
functions (including new path and transformation functions). Because the enhanced 
metafile format is standardized, pictures that are stored in this format can be copied from 
one Win32-based application to another; and, because the pictures are truly device 
independent, they are guaranteed to maintain their shape and proportion on any output 
device. 

Enhanced Metafile Records 
An enhanced metafile is an array of records. A metafile record is a variable-length 
ENHMETARECORD structure. At the beginning of every enhanced metafile record is an 
EMR structure, which contains two members. The first member, iType, identifies the 
record type--that is, the GDI function whose parameters are contained in the record. 
Because the structures are variable in length, the other member, nSize, contains the 
size of the record. Immediately following the nSize member are the remaining 
parameters, if any, of the GDI function. The remainder of the structure contains 
additional data that is dependent on the record type. 

The first record in an enhanced metafile is always the ENHMETAHEADER structure, 
which is the enhanced-metafile header. The header specifies the following information: 

• Size of the metafile, in bytes 

• Dimensions of the picture frame, in device units 

• Dimensions of the picture frame, in .01-millimeter units 

• Number of records in the metafile 

• Offset to an optional text description 

• Size of the optional palette 

• Resolution of the original device, in pixels 

• Resolution of the original device, in millimeters 



Chapter 14 Metafiles 393 

An optional text description can follow the header record. The text description describes 
the picture and the author's name. The optional palette specifies the colors used to 
create the enhanced metafile. The remaining records identify the GDI functions used to 
create the picture. The following hexadecimal output corresponds to a record generated 
for a call to the SetMapMode function: 

.00.0~~H 000000.0C 0.0000£104 

The value Ox00000011 specifies the record type (corresponds to the 
EMR_SETMAPMODE constant defined in the file Wingdi.h). The value OxOOOOOOOC 
specifies the length of the record, in bytes. The value Ox00000004 identifies the mapping 
mode (corresponds to the MM_LOENGLISH constant defined in the SetMapMode 
function). 

For a list of additional record types, see Enhanced Metafile Structures. 

Enhanced Metafile Creation 
You create an enhanced metafile by using the CreateEnhMetaFile function, supplying 
the appropriate arguments. The system uses these arguments to maintain picture 
dimensions, determine whether the metafile should be stored on a disk or in memory, 
and so on. 

To maintain picture dimensions across output devices, CreateEnhMetaFile requires the 
resolution of the reference device. This reference device is the device on which the 
picture first appeared, and the reference DC is the device context associated with the 
reference device. When calling the CreateEnhMetaFile function, you must supply a 
handle that identifies this DC. You can get this handle by calling the GetDC or CreateDC 
function. You can also specify NULL as the handle to use the current display device for 
the reference device. 

Most applications store pictures permanently and therefore create an enhanced metafile 
that is stored on a disk; however, there are some instances when this is not necessary. 
For example, a word-processing application that provides chart-drawing capabilities 
could store a user-defined chart in memory as an enhanced metafile and then copy the 
enhanced metafile bits from memory into the user's document file. An application that 
requires a metafile that is stored permanently on a disk must supply the file name when 
it calls CreateEnhMetaFile. If you do not supply a file name, the system automatically 
treats the metafile as a temporary file and stores it in memory. 

You can add an optional text description to a metafile containing information about the 
picture and the author. An application can display these strings in the File Open dialog 
box to provide the user with information about metafile content that will help in selecting 
the appropriate file. If an application includes the text description, it must supply a 
pointer to the string when it calls CreateEnhMetaFile. 

When CreateEnhMetaFile succeeds, it returns a handle that identifies a special metafile 
device context. A metafile device context is unique in that it is associated with a file 
rather than with an output device. When the system processes a GDI function that 



394 Volume 3 Microsoft Windows GOI 

received a handle to a metafile device context, it converts the GDI function into an 
enhanced-metafile record and appends the record to the end of the enhanced metafile. 

After a picture is complete and the last record is appended to the enhanced metafile, the 
application can close the file by calling the CloseEnhMetaFile function. This function 
closes and deletes the special metafile device context and returns a handle identifying 
the enhanced metafile. 

To delete an enhanced-format metafile or an enhanced-format metafile handle, call the 
DeleteEnhMetaFile function. 

Enhanced Metafile Operations 
You can use the handle to an enhanced metafile to accomplish the following tasks: 

• Display the picture stored in an enhanced metafile. 

• Create copies of an enhanced metafile. 

• Edit an enhanced metafile. 

• Retrieve the optional description stored in an enhanced metafile. 

• Retrieve a copy of an enhanced-metafile header. 

• Retrieve a binary version of an enhanced metafile. 

• Enumerate the colors in the optional palette. 

These tasks are discussed in the sections in the remainder of this topic. 

Display the Picture Stored in an Enhanced Metafile 
You can display the picture stored in an enhanced metafile using the PlayEnhMetaFile 
function. Pass the function a handle to the enhanced metafile, without being concerned 
with the format of the enhanced metafile records. However, it is sometimes desirable to 
enumerate the records in the enhanced metafile to search for a particular GDI function 
and modify the parameters of the function in some manner. To do this, you can use 
EnumEnhMetaFile and provide a callback function, EnhMetaFileProc, to process the 
enhanced metafile records. To modify the parameters for an enhanced metafile record, 
you must know the format of the parameters within the record. 

Create Copies of an Enhanced Metafile 
Some applications create temporary backup (or duplicate) copies of a file before 
enabling the user to alter the original. An application can create a backup copy of an 
enhanced metafile by calling the CopyEnhMetaFile function, supplying a handle that 
identifies the enhanced metafile, and supplying a pointer to the name of the new file. 

To create a memory-based enhanced-format metafile, call the SetEnhMetaFileBits 
function. 

Most drawing, illustration, and computer-aided design (CAD) applications require a 
means of editing a picture stored in an enhanced metafile. Although editing an enhanced 



Chapter 14 Metafiles 395 

metafile is a complex task, you can use the EnumEnhMetaFile function in combination 
with other functions to provide this capability in your application. The EnumEnhMetaFile 
function and its associated callback function, EnhMetaFileProc, enable the application 
to process individual records in an enhanced metafile. 

Retrieve the Optional Description Stored in an Enhanced Metafile 
Some applications display the text description of an enhanced metafile with the 
corresponding file name in the Open dialog box. You can determine whether this string 
exists in an enhanced metafile by retrieving the metafile header with the 
GetEnhMetaFileHeader function and examining one of its members. If the string exists, 
the application retrieves it by calling the GetEnhMetaFileDescription function. 

Retrieve a Binary Version of an Enhanced Metafile 
You can retrieve the contents of a metafile by calling the GetEnhMetaFileBits function; 
however, before retrieving the contents, you must specify the size of the file. To get the 
size, you can use the GetEnhMetaFileHeader function and examine the appropriate 
member. 

Enumerate the Colors in the Optional Palette 
To achieve consistent colors when a picture is displayed on various output devices, you 
can call the CreatePalette function and store a logical palette in an enhanced metafile. 
An application that displays the picture stored in the enhanced metafile retrieves this 
palette and calls the RealizePalette function before displaying the picture. To determine 
whether a palette is stored in an enhanced metafile, retrieve the metafile header and 
examine the appropriate member. If a palette exists, you can call the 
GetEnhMetaFilePaletteEntries function to retrieve the logical palette. 

Windows-Format Metafiles 
Windows-format metafiles are limited in their capabilities and should rarely be used-the 
Windows-format functions are supported to maintain backward compatibility with 
applications that were written to run as 16-bit Windows-based applications. Instead, you 
should use the enhanced-format functions. 

A Windows-format metafile is used by 16-bit Windows-based applications. The format 
consists of a header and an array of metafile records. 

The following are the limitations of this format: 

• A Windows-format metafile is application and device dependent. Changes in the 
application's mapping modes or the device resolution affect the appearance of 
metafiles created in this format. 

• A Windows-format metafile does not contain a comprehensive header that describes 
the original picture dimensions, the resolution of the device on which the picture was 
created, an optional text description, or an optional palette. 



3~6 Volume 3 Microsoft Windows GOI 

• A Windows-format metafile does not support the new curve, path, and transformation 
functions. See the list of supported functions in the table that follows. 

• Some Windows-format metafile records cannot be scaled. 

• The metafile device context associated with a Windows-format metafile cannot be 
queried (that is, an application cannot retrieve device-resolution data, font metrics, 
and so on). 

Following are the only functions that are supported in Windows-format metafiles: 

AnimatePalette LineTo SelectPalette 

Arc MoveToEx SetBkColor 

BitBlt OffsetClipRgn SetBkMode 

Chord OffsetViewportOrgEx SetDlBitsToDevice 

CreateBrushlndirect OffsetWindowOrgEx SetMapMode 

CreateDIBPatternBrush PaintRgn SetMapperFlags 

CreateFontlndirect PatBlt SetPaletteEntries 
CreatePalette Pie SetPixel 

CreatePatternBrush Polygon SetPolyFiliMode 

CreatePenlndirect Polyline SetROP2 

DeleteObject PolyPolygon SetStretchBltMode 

Ellipse RealizePalette SetTextAlign 

Escape Rectangle SetTextCharacterExtra 

ExcludeClipRect ResizePalette SetTextColor 

ExtFloodFili RestoreDC SetTextJustification 

ExtTextOut Round Rect SetViewportOrgEx 

FiliRgn SaveDC SetWindowExtEx 

FloodFili ScaleViewportExtEx SetWindowOrgEx 

FrameRgn ScaleWindowExtEx StretchBlt 

IntersectClipRect SelectClipRgn StretchDIBits 

InvertRgn SelectObject TextOut 

To convert a Windows-fOimat metafile to an enhanced-format metafile, call the 
GetMetaFileBitsEx function to retrieve the data from the Windows-format metafile and 
then call the SetWinMetaFileBits function to convert this data into an enhanced-format 
metafile. To convert an enhanced-format record into a Windows-format record, call the 
GetWinMetaFileBits function. 



Chapter 14 Metafiles 397 

Metafi Ie Reference 

Metafile Functions 

CloseEnhMetaFile 
The CloseEnhMetaFile function closes an enhanced-metafile device context and 
returns a handle that identifies an enhanced-format metafile. 

Parameters 
hdc 

[in] Handle to an enhanced-metafile device context. 

Return Values 
If the function succeeds, the return value is a handle to an enhanced metafile. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can use the enhanced-metafile handle returned by the 
CloseEnhMetaFile function to perform the following tasks: 

• Display a picture stored in an enhanced metafile. 

• Create copies of the enhanced metafile. 

• Enumerate, edit, or copy individual records in the enhanced metafile. 

• Retrieve an optional description of the metafile contents from the enhanced-metafile 
header. 

• Retrieve a copy of the enhanced-metafile header. 

• Retrieve a binary copy of the enhanced metafile. 

• Enumerate the colors in the optional palette. 

• Convert an enhanced-format metafile into a Windows-format metafile. 

When the application no longer needs the enhanced metafile handle, it should release 
the handle by calling the DeleteEnhMetaFile function. 



398 Volume 3 Microsoft Windows GDI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.1ib. 

Metafiles Overview, Metafile Functions, CopyEnhMetaFile, CreateEnhMetaFile, 
DeleteEnhMetaFile, EnumEnhMetaFile, GetEnhMetaFileBits, GetWinMetaFileBits, 
PlayEnhMetaFile 

CopyEnhMetaFile 
The CopyEnhMetaFile function copies the contents of an enhanced-format metafile to a 
specified file. 

IfE"~N.ETAfllE CopyEnhMeta Fi 1e ( 
HEtlMKETAFII:.EhemfSrc. II handle to enhanced metClfHi; 
I.PCTSTR. JpszFi7 e 1I fll~ nam.e ... 

1; 

Parameters 
hemfSrc 

[in] Handle to the source-enhanced metafile. 

/pszFi/e 
[in] Pointer to the name of the destination file. If this parameter is NULL, the source 
metafile is copied to memory. 

Return Values 
If the function succeeds, the return value is a handle to the copy of the enhanced 
metafile. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
Where text arguments must use Unicode characters, use the CopyEnhMetaFile 
function as a wide-character function. Where text arguments must use characters from 
the Windows character set, use this function as an ANSI function. 

Applications can use metafiles stored in memory for temporary operations. 



Chapter 14 Metafiles 399 

When the application no longer needs the enhanced-metafile handle, it should delete the 
handle by calling the DeleteEnhMetaFile function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Metafiles Overview, Metafile Functions, DeleteEnhMetaFile 

CreateEnhMetaFile 
The CreateEnhMetaFile function creates a device context for an enhanced-format 
metafile. This device context can be used to store a device-independent picture. 

Parameters 
hdcRef 

[in] Handle to a reference device for the enhanced metafile. 

IpFilename 
[in] Pointer to the file name for the enhanced metafile to be created. If this parameter 
is NULL, the enhanced metafile is memory based and its contents are lost when it is 
deleted by using the DeleteEnhMetaFile function. 

IpRect 
[in] Pointer to a RECT structure that specifies the dimensions (in .01-millimeter units) 
of the picture to be stored in the enhanced metafile. 

IpDescription 
[in] Pointer to a string that specifies the name of the application that created the 
picture, as well as the picture's title. 



400 Volume 3 Microsoft Windows GDI 

Return Values 
If the function succeeds, the return value is a handle to the device context for the 
enhanced metafile. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
Where text arguments must use Unicode characters, use the CreateEnhMetaFile 
function as a wide-character function. Where text arguments must use characters from 
the Windows character set, use this function as an ANSI function. 

The system uses the reference device identified by the hdcRef parameter to record the 
resolution and units of the device on which a picture originally appeared. If the hdcRef 
parameter is NULL, it uses the current display device for reference. 

The left and top members of the RECT structure pOinted to by the IpRect parameter 
must be less than the right and bottom members, respectively. Points along the edges 
of the rectangle are included in the picture. If IpRect is NULL, the graphical device 
interface (GDI) computes the dimensions of the smallest rectangle that surrounds the 
picture drawn by the application. The IpRect parameter should be provided where 
possible. 

The string pointed to by the IpDescription parameter must contain a null character 
between the application name and the picture name and must terminate with two null 
characters-for example, "XYZ Graphics Editor\OBald Eagle\O\O", where \0 represents 
the null character. If IpDescription is NULL, there is no corresponding entry in the 
enhanced-metafile header. 

Applications use the device context created by this function to store a graphics picture in 
an enhanced metafile. The handle identifying this device context can be passed to any 
GDI function. 

After an application stores a picture in an enhanced metafile, it can display the picture on 
any output device by calling the PlayEnhMetaFile function. When displaying the picture, 
the system uses the rectangle painted to by the IpRect parameter and the resolution 
data from the reference device to position and scale the picture. 

The device context returned by this function contains the same deiauit attributes 
associated with any new device context. 

Applications must use the GetWinMetaFileBits function to convert an enhanced 
metafile to the older Windows metafile format. 

The file name for the enhanced metafile should use the .emf extension. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Chapter 14 Metafiles 401 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Metafiles Overview, Metafile Functions, CloseEnhMetaFile, DeleteEnhMetaFile, 
GetEnhMetaFileDescription, GetEnhMetaFileHeader, GetWinMetaFileBits, 
PlayEnhMetaFile, RECT 

DeleteEnhMetaFile 
The DeleteEnhMetaFile function deletes an enhanced-format metafile or an enhanced
format metafile handle. 

Bf1fJ~.~el~~Enh~et~i 1 e{ 
~·.Ej,tiM.trAUtEbemf.· ... · '/1 .tJ<lndl~:t~:an>en·f\j!'j'li;:ect ntetafP. 
l:~";;': :;. .... .. '" . 

Parameters 
hemf 

[in] Handle to an enhanced metafile. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
If the hemfparameter identifies an enhanced metafile stored in memory, the 
DeleteEnhMetaFile function deletes the metafile. If hemf identifies a metafile stored on 
a disk, the function deletes the metafile handle but does not destroy the actual metafile. 
An application can retrieve the file by calling the GetEnhMetaFile function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



402 Volume 3 Microsoft Windows GOI 

Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, CopyEnhMetaFile, CreateEnhMetaFile, 
GetEnhMetaFile 

EnhMetaFileProc 
The EnhMetaFileProc function is an application-defined callback function used with the 
EnumEnhMetaFile function. The ENHMFENUMPROC type defines a pOinter to this 
callback function. EnhMetaFileProc is a placeholder for the application-defined function 
name. 

Parameters 
hOC 

[in] Handle to the device context passed to EnumEnhMetaFile. 

IpHTable 
[in] Pointer to a HANDLETABLE structure representing the table of handles 
associated with the graphics objects (pens, brushes, and so on) in the metafile. The 
first entry contains the enhanced-metafile handle. 

IpEMFR 
[in] Pointer to one of the records in the metafile. This record should not be modified. (If 
modification is necessary, it should be performed on a copy of the record.) 

nObj 
[in] Specifies the number of objects with associated handles in the handle table. 

IpOata 
[in] Pointer to optional data. 

Return Values 
This function must return a nonzero value to continue enumeration; to stop enumeration, 
it must return zero. 



Chapter 14 Metafiles 403 

Remarks 
An application must register the callback function by passing its address to the 
EnumEnhMetaFile function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Metafile Functions, ENHMETARECORD, EnumEnhMetaFile, 
HANDLETABLE 

EnumEnhMetaFile 
The EnumEnhMetaFile function enumerates the records within an enhanced-format 
metafile by retrieving each record and passing it to the specified callback function. The 
application-supplied callback function processes each record as required. The 
enumeration continues until the last record is processed or when the callback function 
returns zero. 

B()fll£n~lIIgnhMet:arJJlr ....... . 

~~H~:~~nLE h~mf. ... .;; ~:~:~f~:;~:~~a~~d~~etafin 
.~HMf'£8UMPROClpElth~taFunc; JI~a1:1baCk;Tun<rtiO'n ...... . .. . 
)LJ'.:v:~~r 1f#?a.tp,;.; '. . Ii ealJba<:hf.uoctj,o,!l· da:ta. 

.;. CQNST'REer * 1plfeict. PI b~~nding.re~t~h~le· 

Parameters 
hdc 

[in] Handle to a device context. This handle is passed to the callback function. 

hemf 
[in] Handle to an enhanced metafile. 

IpEnhMetaFunc 
[in] Pointer to the application-supplied callback function. For more information, see 
EnhMetaFileProc. 

IpData 
[in] Pointer to optional callback-function data. 



404 Volume 3 Microsoft Windows GOI 

IpRect 
[in] Pointer to a RECT structure that specifies the coordinates of the picture's upper
left and lower-right corners. The dimensions of this rectangle are specified in logical 
units. 

Return Values 
If the callback function successfully enumerates all the records in the enhanced metafile, 
the return value is nonzero. 

If the callback function does not successfully enumerate all the records in the enhanced 
metafile, the return value is zero. 

Remarks 
Points along the edge of the rectangle pOinted to by the IpRect parameter are included in 
the picture. If the hdc parameter is NULL, the system ignores IpRect. 

If the callback function calls the PlayEnhMetaFileRecord function, hdc must identify a 
valid device context. The system uses the device context's transformation and mapping 
mode to transform the picture displayed by the PlayEnhMetaFileRecord function. 

You can use the EnumEnhMetaFile function to embed one enhanced-metafile within 
another. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, EnhMetaFileProc, PlayEnhMetaFile, 
PlayEnhMetaFileRecord, RECT 

GdiComment 
The GdiComment function copies a comment from a buffer into a specified enhanced
format metafile. 

SWt'GcUC9111mentC 
~l)thdC. r ... ;i ..••• 
WIt't •. cbStzl?'~ • F ..• 

c{}~s'[rWTE'''' 1 p;pata·· 
J;.' .. ,.: :" 



Parameters 
hdc 

Chapter 14 Metafiles 405 

[in] Handle to an enhanced-metafile device context. 

cbSize 
[in] Specifies the length of the comment buffer, in bytes. 

IpData 
[in] Pointer to the buffer that contains the comment. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
A comment can include any kind of private information-for example, the source of a 
picture and the date it was created. A comment should begin with an application 
signature, followed by the data. 

Comments should not contain application-specific or position-specific data. Position
specific data specifies the location of a record, and it should not be included because 
one metafile may be embedded within another metafile. 

A public comment is a comment that begins with the comment signature identifier 
GDICOMMENT _IDENTIFIER. The following public comments are defined: 

Public comment Definition 

GDICOMMENT _WINDOWS_M 
ETAFILE 

The GDICOMMENT_WINDOWS_METAFILE public 
comment contains a Windows-format metafile that is 
equivalent to an enhanced-format metafile. This 
comment is written only by the SetWinMetaFileBits 
function. The comment record, if given, follows the 
ENHMETAHEADER metafile record. The comment 
has the following form: 

DWORD ident; 
DWORD1Commentj 
DWORD nVersion; 

DWORD nChecKsum; 

.A [ This contil; ns GD1CQMMENLlDENTln t:R '. 
IlThis conta; rtsGDICOMMENLWINDOWS_METAFI LE. 
/I Tltis.c{)ntainsthe version number of 
II .theW;ndows~format metafile.' 

. U. Thi s. is the addi t i ve DWORD checKsum 
1/ for thli.errhanced metafile. The 
II checKsum for the enhanced metafile 
IIdataincludin~ thlscornment: r~cord 
II must be zero, Otherwise, the 

(continued) 



406 Volume 3 Microsoft Windows GDI 

(continued) 

'· ... ·;,U ~,~l1~nc:<fll1etafiJe. lJa$b;eenIiT1)Pd~t~.~.<f',· ,. 
,#'aTl:dwe"Wi'ndbwlil ~fo;)"matm!;tQf:i1.e is'' .' 
;i7':;'n:;;hnge~" viiii. ..... . ,;" .., 

'·'U'.JhU ,1nusthE! zefo . 
r::¥;1hi'S··1sthe ·s:ize,i~,pYtes. 
;fl;W':l.nd~~.'-forma t ·lIie~~n Ie dai';; tllat; 
/I foU1,l.WS. 

GDICOMMENT _BEGINGROUP The GDICOMMENT _BEGINGROUP public 
comment identifies the beginning of a group of 
drawing records. It identifies an object within an 
enhanced metafile. The comment has the following 
form: 

';IIThi s contairiSGElI£OMM'ENT-:-tI'lENTI FH:R~:, 
ff Thi s'contaiflS, GBICOMMENT;..,J3EGIN,GROt\P; ; 

;Thi5~'s tiJ.rp.(Yundill!:l hct~ngl~ 
fOJ'tlJeobjecftn,'dOgicaC . 

'./I:inthe opttonal un1c()de .... , ., 
,£j;q~$crJptlon; 5tH hY.tlJat f()Tl ows.:; . 
. this' isi:er01f;th~reis't\'O 

;<lfde.$~~i ptioostr:i:ng. 

GDICOMMENT _ENDGROUP The GDICOMMENT _ENDGROUP public comment 
identifies the end of a group of drawing records. The 
GDICOMMENT _BEGINGROUP comment and the 
GDICOMMENT _ENDGROUP comment must be 
included in a pair and may be nested. The comment 
has the following form: 

tlWO~D tdefltT. ,./1 Ttrrs conta i nSGUICOMMENLI DEHUFIER. 
bWORDi{j()m~nt; .' 1/ Thi s cont.ai ns, GOI.cOMMENT_ENDGRQUP. 

GDICOMMENT _MULTIFORMATS Windows NT 4.0 SP4 and earlier, Windows 
95/98: The GDiCOMMENT _MUL TiFORMATS 
public comment a!!.o'lJs multiple definitions of a 
picture to be included in an enhanced metafile. 
USing this comment, for example, an application 
can include an encapsulated PostScript definition 
as well as an enhanced metafile definition of a 
picture. When the record is played back, GDI 
selects and renders the first format recognized by 
the device. The comment has the following form: 



Chapter 14 Metafiles 407 

OWORD 
DWORO 
RECn 

ident: 
i Comment: 
rclOutput; 

/I This contains GDICOMMENT_IDENTIFIER. 
II This contains GDICOMMENT_MULTIFORMATS. 
II This is th8 bounding rectangle 

'/1 for the picture in logical 
I! coordinates. 
IIThis conta.1ns the number of 

..... ...... .' ....•. ,il fo.r~a:t;s in tile comment . 
EM~~O~~A! ~emrf<Him~t[lJ; I(ThiS jsan arr~¥ of sMRFORMAi 

QWORD. nformats; 

·~E .. "i:i: .. ' . . Ji"sf~tiitdr·ds:.i,n .• the '.!Jraer of 
.llpr~fer'e.1rce.. The:<£at'aifor e.ach 
;'jrf,QI'~atfol1 OWl the last 
jIEMRFORMATsj;~uctu~e! ' .. 

Windows 2000: The GDICOMMENT_MULTIFORMATS flag is not supported for EPS 
data. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, CreateEnhMetaFile, SetWinMetaFileBits 

GetEnhMetaFile 
The GetEnhMetaFile function creates a handle that identifies the enhanced-format 
metafile stored in the specified file. 

HE"HM€TAF I LEGat€n hMetaFfl e ( 
LPCTSTR 1pszMetaFi1e 1/ filename 

Parameters 
fpszMetaFile 

[in] Pointer to a null-terminated string that specifies the name of an enhanced 
metafile. 



408 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is a handle to the enhanced metafile. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
When the application no longer needs an enhanced-metafile handle, it should delete the 
handle by calling the DeleteEnhMetaFile function. 

A Windows-format metafile must be converted to the enhanced format before it can be 
processed by the GetEnhMetaFile function. To convert the file, use the 
SetWinMetaFileBits function. 

Where text arguments must use Unicode characters, use this function as a wide
character function. Where text arguments must use characters from the Windows 
character set, use this function as an ANSI function. 

Windows 95/98: The maximum length of the description string for an enhanced metafile 
is 16,384 bytes. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Metafiles Overview, Metafile Functions, DeleteEnhMetaFile, GetEnhMetaFile, 
SetWinMetaFileBits 

GetEnhMetaFileBits 
The GetEnhMetaFileBits function retrieves the contents of the specified enhanced
format metafile and copies them into a buffer. 

61tf't'Qe'tEllhMet~Fi.l~Btt$"( 
'"'ffEIiJilMnM !LEi: 'hemf " 1l't141.ridieto' 'me tl'lYi 

"';:;~'. '<":);; '~(f:·.·· . ,'" :. , ";'/." , "'.; ",/".", 
tfftf11.:"c~tfffr~ '" . 71,.51 ~eoftfa1<abuffef 
. t.:P&',fE·t1if):&tifer'~ 1/{j<f.t~biiffer :. " 

::i~~;'§::L;:,,:;~:d~';;j;;:;~~.~f~'j~:ili!~\,{~:·· ',: "" \' , ':r\~ }l::\,: ' 



Parameters 
hemf 

[in] Handle to the enhanced metafile. 

cbBuffer 

Chapter 14 Metafiles 409 

[in] Specifies the size, in bytes, of the buffer to receive the data. 

IpbBuffer 
[out] Pointer to a buffer that receives the metafile data. The buffer must be sufficiently 
large to contain the data. If IpbBuffer is NULL, the function returns the size necessary 
to hold the data. 

Return Values 
If the function succeeds and the buffer pointer is NULL, the return value is the size of the 
enhanced metafile, in bytes. 

If the function succeeds and the buffer pointer is a valid pointer, the return value is the 
number of bytes copied to the buffer. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
After the enhanced-metafile bits are retrieved, they can be used to create a memory
based metafile by calling the SetEnhMetaFileBits function. 

The GetEnhMetaFileBits function does not invalidate the enhanced-metafile handle. 
The application must call the DeleteEnhMetaFile function to delete the handle when it is 
no longer needed. 

The metafile contents retrieved by this function are in the enhanced format. To retrieve 
the metafile contents in the Windows format, use the GetWinMetaFileBits function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, DeleteEnhMetaFile, GetWinMetaFileBits, 
SetEnhMetaFileBits 



410 Volume 3 Microsoft Windows GDI 

GetEnhMetaFileDescription 
The GetEnhMetaFileDescription function retrieves an optional text description from an 
enhanced-format metafile and copies the string to the specified buffer. 

Parameters 
hemf 

[in] Handle to the enhanced metafile. 

cchBuffer 
[in] Specifies the size, in characters, of the buffer to receive the data. Only this many 
characters will be copied. 

IpszDescription 
[out] Pointer to a buffer that receives the optional text description. 

Return Values 
If the optional text description exists and the buffer pointer is NULL, the return value is 
the length of the text string, in characters. 

If the optional text description exists and the buffer pointer is a valid pOinter, the return 
value is the number of characters copied into the buffer. 

If the optional text description does not exist, the return value is zero. 

If the function fails, the return value is GDI_ERROR. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The optional text description contains two strings, the first identifying the application that 
created the enhanced metafile and the second identifying the picture contained in the 
metafile. The strings are separated by a null character and terminated with two null 
characters-for exampie, "XYZ Graphics Editor\OBaid Eagie\O\OH where \0 represents 
the null character. 

Where text arguments must use Unicode characters, use this function as a wide
character function. Where text arguments must use characters from the Windows 
character set, use this function as an ANSI function. 

Windows 95/98: The maximum length of the description string for an enhanced metafile 
is 16,384 bytes. 



Dtl~~uit~ments 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Chapter 14 Metafiles 411 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Metafiles Overview, Metafile Functions, CreateEnhMetaFile 

GetEn hMetaFi leHeader 
The GetEnhMetaFileHeader function retrieves the record containing the header for the 
specified enhanced-format metafile. 

lfIN"f'GetEnhMetaF11eHeader( 
HEMlIME"fAFILE .hemf •... 
IHN"fCbB#ffeplll ......... s.1z.e .. o.·.r.p.uffsr 
(P£Kt\MET:AJlJ::A~ER· 7pemh II.. data ... huff sr 

Parameters 
hemf 

[in] Handle to the enhanced metafile for which the header is to be retrieved. 

cbBuffer 
[in] Specifies the size, in bytes, of the buffer to receive the data. Only this many bytes 
will be copied. 

/pemh 
[out] Pointer to an ENHMETAHEADER structure that receives the header record. If 
this parameter is NULL, the function returns the size of the header record. 

Return Values 
If the function succeeds and the structure pointer is NULL, the return value is the size of 
the record that contains the header; if the structure pointer is a valid pOinter, the return 
value is the number of bytes copied. Otherwise, it is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



412 Volume 3 Microsoft Windows GDI 

Remarks 
An enhanced-metafile header contains such information as the metafile's size, in bytes; 
the dimensions of the picture stored in the metafile; the number of records stored in the 
metafile; the offset to the optional text description; the size of the optional palette, and 
the resolution of the device on which the picture was created. 

The record that contains the enhanced-metafile header is always the first record in the 
metafile. 

Windows 95/98: The maximum length of the description string for an enhanced metafile 
is 16,384 bytes. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, ENHMETAHEADER, PlayEnhMetaFile 

GetEn hMetaFi lePaletteE ntries 
The GetEnhMetaFilePaletteEntries function retrieves optional palette entries from the 
specified enhanced metafile. 

UINT, Ge~tl1hMet~Fi lePa tette£ntHes .~ . 
. H£NHMETAFItE:. hemf. 

UI~"r c[~ti'i'$:$. 
. tPPALETTEENTRY lpp.e 

h 

Parameters 
hemf 

1l.coLlntof'paletteentri~$ 
it~rr~j ·tifpal et:t;e entri;~ 

[in] Handle to the enhanced metafile. 

cEntries 
[in] Specifies the number of entries to be retrieved from the optional palette. 

/ppe 
[out] Pointer to an array of PALETTE ENTRY structures that receives the palette 
colors. The array must contain at least as many structures as there are entries 
specified by the cEntries parameter. 



Chapter 14 Metafiles 413 

Return Values 
If the array pointer is NULL and the enhanced metafile contains an optional palette, the 
return value is the number of entries in the enhanced metafile's palette; if the array 
pointer is a valid pointer and the enhanced metafile contains an optional palette, the 
return value is the number of entries copied; if the metafile does not contain an optional 
palette, the return value is zero. Otherwise, the return value is GDLERROR. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
An application can store an optional palette in an enhanced metafile by calling the 
CreatePalette and SetPaletteEntries functions before creating the picture and storing it 
in the metafile. By doing this, the application can achieve consistent colors when the 
picture is displayed on a variety of devices. 

An application that displays a picture stored in an enhanced metafile can call the 
GetEnhMetaFilePaletteEntries function to determine whether the optional palette 
exists. If it does, the application can call the GetEnhMetaFilePaletteEntries function a 
second time to retrieve the palette entries and then create a logical palette (by using the 
CreatePalette function), select it into its device context (by using the SelectPalette 
function), and then realize it (by using the RealizePalette function). After the logical 
palette has been realized, calling the PlayEnhMetaFile function displays the picture 
using its original colors. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

..~ . 

Metafiles Overview, Metafile Functions, CreatePalette, PALETTEENTRY, 
PlayEnhMetaFile, RealizePalette, Select Palette 

GetWinMetaFileBits 
The GetWinMetaFileBits function converts the enhanced-format records from a metafile 
into Windows-format records and stores the converted records in the specified buffer. 



414 Volume 3 Microsoft Windows GOI 

Parameters 
hemf 

[in] Handle to the enhanced metafile. 

cbBuffer 
[in] Specifies the size, in bytes, of the buffer into which the converted records are to 
be copied. 

IpbBuffer 
[out] Pointer to the buffer that receives the converted records. If IpbBufferis NULL, 
GetWinMetaFileBits returns the number of bytes required to store the converted 
metafile records. 

fnMapMode 
[in] Specifies the mapping mode to use in the converted metafile. 

hdcRef 
[in] Handle to the reference device context. 

Return Values 
If the function succeeds and the buffer pointer is NULL, the return value is the number of 
bytes required to store the converted records; if the function succeeds and the buffer 
pointer is a valid pointer, the return value is the size of the metafile data in bytes. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
This function converts an enhanced metafile into a Windows-format metafile so that its 
picture can be displayed in an application that recognizes the older format. 

The system uses the reference device context to determine the resolution of the 
converted metafile. 

The GetWinMetaFilej3its function does not invalidate the enhanced metafile handle. An 
application should call the OeleteEnhMetaFile function to release the handle when it is 
no longer needed. 

Due to the limitations of the Windows-format metafile, some information can be lost in 
the retrieved metafile contents. For example, an original call to the PolyBezier function 
in the enhanced metafile may be converted into a call to the Polyline function in the 



Chapter 14 Metaflles 415 

Windows-format metafile, because there is no equivalent PolyBezier function in the 
Windows format. 

16-bit Windows-based applications define the viewport origin and extents of a picture 
stored in a Windows-format metafile. As a result, the Windows-format records created by 
GetWinMetaFileBits do not contain the SetViewportOrgEx and SetViewportExtEx 
functions. However, GetWinMetaFileBits does create Windows-format records for the 
SetWindowExtEx and SetMapMode functions. 

To create a scalable Windows-format metafile, specify MM_ANISOTROPIC as the 
fnMapMode parameter. 

The upper-left corner of the metafile picture is always mapped to the origin of the 
reference device. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, DeleteEnhMetaFile, PolyBezier, Polyline, 
SetMapMode, SetViewportOrgEx, SetViewportExtEx, SetWindowExtEx, 
SetWinMetaFileBits 

PlayEnhMetaFile 
The PlayEnhMetaFile function displays the picture stored in the specified enhanced
format metafile. 

r~i~~~;~(;;~~.~~ii~;!;;~:~~~~i~tf;'l~ 
. ':. :(;: '>"';~i ::'~ ,.~ ",;; , . : .. ". , .. ~ :":. ,"·h··, ~:.~~ .•. :.!.,' 

).~ .... ,'", ,,' ',' ...... '. Y,'/ 

Parameters 
hdc 

[in] Handle to the device context for the output device on which the picture will appear. 

hemf 
[in] Handle to the enhanced metafile. 



416 Volume 3 Microsoft Windows GOI 

IpRect 
[in] Pointer to a RECT structure that contains the coordinates of the bounding 
rectangle used to display the picture. The coordinates are specified in logical units. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
When an application calls the PlayEnhMetaFile function, the system uses the picture 
frame in the enhanced-metafile header to map the picture onto the rectangle pointed to 
by the IpRect parameter. (This picture may be sheared or rotated by setting the world 
transform in the output device before calling PlayEnhMetaFile.) Points along the edges 
of the rectangle are included in the picture. 

An enhanced-metafile picture can be clipped by defining the clipping region in the output 
device before playing the enhanced metafile. 

If an enhanced metafile contains an optional palette, an application can achieve 
consistent colors by setting up a color palette on the output device before calling 
PlayEnhMetaFile. To retrieve the optional palette, use the 
GetEnhMetaFilePaletteEntries function. 

An enhanced metafile can be embedded in a newly created enhanced metafile by calling 
PlayEnhMetaFile and playing the source enhanced metafile into the device context for 
the new enhanced metafile. 

The states of the output device context are preserved by this function. Any object 
created but not deleted in the enhanced metafile is deleted by this function. 

To stop this function, an application can call the CancelDC function from another thread 
to terminate the operation. In this case, the function returns FALSE. 

Windows 95/98: PlayEnhMetaFile is subject to the limitations of the GDI. For example, 
Windows 95/98 supports only 16-bit signed coordinates. For records that contain 32-bit 
values, Windows 95/98 fails to play the record if the values are not in the range -32,768 
to 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



Chapter 14 Metafiles 417 

Metafiles Overview, Metafile Functions, CancelDC, GetEnhMetaFileHeader, 
GetEnhMetaFilePaletteEntries, RECT, SetWorldTransform 

PlayEnhMetaFileRecord 
The PlayEnhMetaFileRecord function plays an enhanced-metafile record by executing 
the graphics device interface (GDI) functions identified by the record. 

Parameters 
hdc 

[in] Handle to the device context passed to the EnumEnhMetaFile function. 

IpHandletable 
[in] Pointer to a table of handles to GDI objects used when playing the metafile. The 
first entry in this table contains the enhanced-metafile handle. 

IpEnhMetaRecord 
[in] Pointer to the enhanced-metafile record to be played. 

nHandles 
[in] Specifies the number of handles in the handle table. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
This is an enhanced-metafile function. 

An application typically uses PlayEnhMetaFileRecord in conjunction with the 
EnumEnhMetaFile function to process and play an enhanced-format metafile one 
record at a time. 

The hdc, IpHandletable, and nHandles parameters must be exactly those passed to the 
EnhMetaFileProc callback procedure by the EnumEnhMetaFile function. 



418 Volume 3 Microsoft Windows GOI 

If PlayEnhMetaFileRecord does not recognize a record, it ignores the record and 
returns TRUE. 

Windows 95/98: PlayEnhMetaFileRecord is subject to the limitations of GDI. For 
example, Windows 95/98 supports only 16-bit signed coordinates. For records that 
contain 32-bit values, Windows 95/98 fails to play the record if the values are not in the 
range -32,768 to 32,767. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.1ib. 

Metafiles Overview, Metafile Functions, EnumEnhMetaFile, PlayEnhMetaFile 

SetEnhMetaFileBits 
The SetEnhMetaFileBits function creates a memory-based enhanced-format metafile 
from the supplied data. 

·MEwtiMET AF i·LE>S~tt~'"et_P1·1·.1 f.t$.(;:~ :.J:",: ;~ :::3~· ."~'~ ~.: ":~ i~Y':. "L;jtJ-~ ::."~ .•.. ::~:~.~:,.~.~.~.li.,; .. ··i.·'.··:.~.t .•. ::.·~ · .. ·,'.r.·:,,;:'~ ::·.~~.·'.; .. !'.f~::·:.i~.::.:ll ~;t:::{:~~i: .. :~~;~;:;J.~~~:~.:i.i::~I·~::~~.ff~~~fS~~::;'?~~~! 
"·~;.f';(;b.~~:ri:~".;·:':;::i?~b4ff~<~t~~;'.;.}·.,;~~:£~~,.: _:"~~; .. " ,~:,~:~:s:::i]!.?:c.c;ili;i,·- -~: ;"i~~:~~ 
;~oltsr8tTE*JPuatiid I enhanced rnetafi'l e i'dat~ .·liuft-e.r .,' ," '," . :':' ;.r \' '.'. ;"q • 
): ;~"f'; ... ,:.~::-;: ":'~, "'?;. " ~,. :.-.. (~;'.r ",': ,>"~'~~:'. ;f~ ,," ", ; ,~: ; ": .. "j., ':'~"" ~~<~:~/"r:"~<~":>: ". "i"";' "~::":"" :t),;"r:~"""~" 7t;"" ":?":!.. ~", "" ~:~:i;?~;::""r~~:):·' t~"";~:";::: 

Parameters 
cbBuffer 

[in] Specifies the size, in bytes, of the data provided. 

IpData 
[in] Pointer to a buffer that contains enhanced-metafile data. (It is assumed that the 
data in the buffer was obtained by calling the GetEnhMetaFileBits function.) 

Return Values 
If the function succeeds, the return value is a handle to a memory-based enhanced 
metafile. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 14 Metafiles 419 

Remarks 
When the application no longer needs the enhanced-metafile handle, it should delete the 
handle by calling the DeleteEnhMetaFile function. 

The SetEnhMetaFileBits function does not accept metafile data in the Windows format. 
To import Windows-format metafiles, use the SetWinMetaFileBits function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, DeleteEnhMetaFile, GetEnhMetaFileBits, 
SetWinMetaFileBits 

SetWi nMetaFileBits 
The SetWinMetaFileBits function converts a metafile from the older Windows format to 
the new enhanced format and stores the new metafile in memory. 

!i~=lE~r'~i;SE~~~a~I~L;i: ..... . 
J)':: ~;:~"< l'::.T·' , .",. ' '.- 1 ~:"'.;' ""',',:'.c:;;,":. 

Parameters 
cbBuffer 

[in] Specifies the size, in bytes, of the buffer that contains the Windows-format 
metafile. 

IpbBuffer 
[in] Pointer to a buffer that contains the Windows-format metafile data. (It is assumed 
that the data was obtained by using the GetMetaFileBitsEx or GetWinMetaFileBits 
function.) . 

hdcRef 
[in] Handle to a reference device context. 

Ipmfp 
[in] Pointer to a METAFILEPICT structure that contains the suggested size of the 
metafile picture and the mapping mode that was used when the picture was created. 



420 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value is a handle to a memory-based enhanced 
metafile. 

If the function fails, the return value is NULL. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The Win32 API uses the reference device context's resolution data and the data in the 
METAFILEPICT structure to scale a picture. If the hdcRefparameter is NULL, the 
system uses resolution data for the current output device. If the /pmfp parameter is 
NULL, the system uses the MM_ANISOTROPIC mapping mode to scale the picture so 
that it fits the entire device surface. The hMFfield in the METAFILEPICT structure is not 
used. 

When the application no longer needs the enhanced metafile handle, it should delete it 
by calling the DeleteEnhMetaFile function. 

The handle returned by this function can be used with other enhanced-metafile 
functions. 

If the reference device context is not identical to the device in which the metafile was 
originally created, some GDI functions that use device units may not draw the picture 
correctly. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Metafiles Overview, Metafile Functions, DeleteEnhMetaFile, GetWinMetaFileBits, 
GetMetaFileBitsEx, METAFILEPICT, PlayEnhMetaFile 



Chapter 14 Metafiles 421 

Metafile Structures 

Enhanced Metafile Structures 

EMR 

The following structures are used with enhanced metafile records. Note that the first 
structure, EMR, is used as the first member of the remaining structures. 

The EMR structure provides the base structure for all enhanced metafile records. An 
enhanced metafile record contains the parameters for a specific GDI function used to 
create part of a picture in an enhanced format metafile. 

Members 
iType 

Specifies the record type. The parameter can be one of the following (with a link to the 
associated record structure): 

EMR_ABORTPATH EMR_POLYLlNE16 

EMR_ANGLEARC 

EMR_ARC 

EMR_ARCTO 

EMR_BEGINPATH 

EMR_BITBLT 

EMR_CHORD 

EMR_CLOSEFIGURE 

EMR_CREATEBRUSHINDIRECT 

EMR_POL YLiNETO 

EMR_POL YLiNET016 

EMR_POL YPOL YGON 

EMR_POL YPOL YGON16 

EMR_POL YPOL YLiNE 

EMR_POL YPOL YLlNE16 

EMR_POL YTEXTOUT A 

EMR_POLYTEXTOUTW 

EMR_CREATEDIBPA TTERNBRUSHPT EMR_REALIZEPALETTE 

EMR_CREATEMONOBRUSH 

EMR_CREATEPALETTE 

EMR_CREATEPEN 

EMR_DELETEOBJECT 

EMR_ELLIPSE 

EMR_RECTANGLE 

EMR_RESIZEPALETTE 

EMR_RESTOREDC 

EMR_ROUNDRECT 

EMR_SAVEDC 

(continued) 



422 Volume 3 Microsoft Windows GPI 

(continued) 

EMR_ENDPATH EMR_SCALEVIEWPORTEXTEX 

EMR_EOF EMR_SCALEWINDOWEXTEX 

EMR_EXCLUDECLI PRECT EMR_SELECTCLIPPATH 

EMR_EXTCREATEFONTINDIRECTW EMR_SELECTOBJECT 

EMR_EXTCREATEPEN EMR_SELECTPALETTE 

EMR_EXTFLOODFILL EMR_SETARCDIRECTION 

EMR_EXTSELECTCLlPRGN EMR_SETBKCOLOR 

EMR_EXTTEXTOUT A EMR_SETBKMODE 

EMR_EXTTEXTOUTW EMR_SETBRUSHORGEX 

EMR_FILLPATH EMR_SETCOLORADJUSTMENT 

EMR_FILLRGN EMR_SETDIBITSTODEVICE 

EMR_FLATTENPATH EMR_SETMAPMODE 

EMR_FRAMERGN EMR_SETMAPPERFLAGS 

EMR_GDICOMMENT EMR_SETMETARGN 

EMR_INTERSECTCLIPRECT EMR_SETMITERLIMIT 

EMR_INVERTRGN EMR_SETPALETTEENTRIES 

EMR_LlNETO EMR_SETPIXELV 

EMR_MASKBL T EMR_SETPOL YFILLMODE 

EMR_MODIFYWORLDTRANSFORM EMR_SETROP2 

EMR_MOVETOEX EMR_SETSTRETCHBL TMODE 

EMR_OFFSETCLlPRGN EMR_SETTEXT ALIGN 

EMR_PAINTRGN EMR_SETTEXTCOLOR 

EMR_PIE EM R_SETVI EWPORTEXTEX 

EMR_PLGBLT EMR_SETVIEWPORTORGEX 

EMR_POL YBEZIER EMR_SETWINDOWEXTEX 

EMR_POL YBEZIER16 EMR_SETWINDOWORGEX 

EMR_POL YBEZIERTO EMR_SETWORLDTRANSFORM 

EMR_POL YBEZIERT016 EMR_STRETCHBL T 

EMR_POL YDRAW EMR_STRETCHDIBITS 

EMR_POL YDRAW16 EMR_STROKEANDFILLPATH 

EMR_POL YGON EMR_STROKEPATH 

EMR_POL YGON16 EMR_WIDENPATH 

EMR_POL YLiNE 



Chapter 14 Metafiles 423 

The following record types are valid for Windows 95 and Windows NT 4.0 and later: 

EMR_CREATECOLORSPACE EMR_PIXELFORMAT 

EMR_DELETECOLORSPACE 

EMR_GLSBOUNDEDRECORD 

EMR_GLSRECORD 

EMR_SETCOLORSPACE 

EMR_SETICMMODE 

The following record types are valid for Windows 98 and Windows 2000 and later: 

EMR_ALPHABLEND EMR_SETICMPROFILEA 

EMR_COLORCORRECTPALETTE EMR_SETICMPROFILEW 

EMR_COLORMATCHTOTARGETW 

EMR_CREATECOLORSPACEW 

EMR_GRADIENTFILL 

nSize 

EMR_SETLAYOUT 

EMR_TRANSPARENTBLT 

Size of the record, in bytes. This member must be a multiple of four. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRALPHABLEND 
The EMRALPHABLEND structure contains members for the AlphaBlend enhanced 
metafile record. 

typed~f stru<;t tagEMMlPHA~LENO{ 
.. t,. .'0 .' 

EMRelriri 
... Rt~TLrilBQun~s:: . 
. r.ON9)"Dest; 
U)~G yDest; 
LONGc;~Desti; 
LONG. : cyOest; 
o WORD t:lwRop • 
. LONG xSr.c; .. 

LONG ySrc; 
.. : X FQRMxformSr'c: 

(continued) 



424 Volume 3 Microsoft Windows GOI 

(continued) 

COLQ'R.R£F ~rbC<ll o:r.Srq,;; 
· .. nW.oRO ", .;1tl'sa~e.s~.c ~. 

o1}\II,O R\). ,af;f'am1Sr~:1 
PWp'RO', ;:~ti:Bl\liS rg ; 
{}~{}RO"off~i ts,Src; 

, io.~'R,D 'cbBltSSl't; 
";'. LQNC%' ,~~~r'c:" 
i LON;S, . cy Sire; 
J EMRAt;PHr\sLlt:lm ,*?tM:RALPai~LiND: 
Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

xDest . 
Specifies the x coordinate, in logical units, of the upper-left corner of the destination 
rectangle. 

yDest 
Specifies the y coordinate, in logical units, of the upper-left corner of the destination 
rectangle. 

cxDest 
Logical width of the destination rectangle. 

cyDest 
Logical height of the destination rectangle. 

dwRop 
Stores the BLENDFUNCTION structure. 

xSrc 
Logical x coordinate of the upper-left corner of the source rectangle. 

ySrc 
Logical y coordinate of the upper-left corner of the source rectangle. 

xformSrc 
World-space to page-space transformation of the source device context. 

crBkColorSrc 
Background color (the RGB value) of the source device context. To make a 
COLORREF value, use the RGB macro. 

iUsageSrc 
Source bitmap information color table usage (OIB_RGB_COLORS). 

offBmiSrc 
Offset to the source BITMAPINFO structure. 

cbBmiSrc' 
Size of the source BITMAPINFO structure. 



offBitsSrc 
Offset to the source bitmap bits. 

cbBitsSrc 
Size of the source bitmap bits. 

cxSrc 
Width of source rectangle. 

cySrc 
Height of the source rectangle. 

Remarks 
This structure is to be used during metafile playback. 

, .~, :,' '. ' 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Chapter 14 Metafiles 425 

Metafiles Overview, Enhanced Metafile Structures, Metafiles, BITMAPINFO, 
AlphaBlend, COLORREF, RGB 

EMRANGLEARC 
The EMRANGLEARC structure contains members for the AngleArc enhanced metafile 
record. 

'tY~~ef,~tr~ct', tag:EMR,;,NC;LEARC' [ 
:::'It4,R ~ " 

··,:~i'tfrL: ' 
'.'i: 
·h 

.> 
~' .,' 

Members 
emr 

ltaftAn~le; " 

,.:'~;~:!~~~JEA~C,~, , 

Base structure for all record types. 

ptlCenter 
Logical coordinates of a circle's center. 

nRadius 
A circle's radius, in logical units. 



426 Volume 3 Microsoft Windows GOI 

eStartAngle 
An arc's start angle, in degrees. 

eSweepAngle 
An arc's sweep angle, in degrees. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, AngleArc 

EMRARC, EMRARCTO, EMRCHORD, EMRPIE 
The EMRARC, EMRARCTO, EMRCHORD, and EMRPIE structures contain members 
for the Are, ArcTo, Chord, and Pie enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

rclBox 
Bounding rectangle. 

ptlStart 
Coordinates of first radial ending point. 

ptlEnd 
Coordinates of second radial ending point. 



1I¥~~irements 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRBITBLT 

Chapter 14 Metafiles 427 

The EMRBITBL T structure contains members for the BitBlt enhanced metafile record. 
Note that graphics device interface (GDI) converts the device-dependent bitmap into a 
device-independent bitmap (DIB) before storing it in the metafile record. 

·typed~f:str\ue.t tagEMRB ITBL T { 
EMR" ., em,q .'" 

.' ,iEcri,' ,rclSoL!ilds; 
• . LUNG '. . .. xoast; 
:, tONG yO'e~t:', 
:~.Oo •. ~.G6' .•. :. " , "exiles to' 

.. .. 'cyDest; 
DWOR!} :',dw~bp; " 
tON{ :, ixSr.c:. 
tON.G'1'; ,ysrcr:: 
XfOR~xformSrc' : 

·co LORREfC~BkCO 1 o;s re:. 
DWORf) ···':i u'sageSre; 

__ ', QwP,~~ , 'offS'miSrc'; 
,OWORDoffBitsS~e: 
~DWORD "cbBi't~Src;' . 

};,.EMRBITBLT ~"'!'P:E~RBITBLT;. 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

xOest 

, . 
: . -. "'. . ~ .": .~. 

.. , ..... ;',,",' 

Logical x-coordinate of the upper-left corner of the destination rectangle. 

yOest 
Logical y-coordinate of the upper-left corner of the destination rectangle. 



428 Volume 3 Microsoft Windows GDI 

cxDest 
Logical width of the destination rectangle. 

cyDest 
Logical height of the destination rectangle. 

dwRop 
Raster-operation code. These codes define how the color data of the source rectangle 
is to be combined with the color data of the destination rectangle to achieve the final 
color. 

xSrc 
Logical x-coordinate of the upper-left corner of the source rectangle. 

ySrc 
Logical v-coordinate of the upper-left corner of the source rectangle. 

xformSrc 
World-space to page-space transformation of the source device context. 

crBkColorSrc 
Background color (the RGB value) of the source device context. To make 
a COLORREF value, use the RGB macro. 

iUsageSrc 
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc 
member can be either the DIB_PAL_COLORS or DIB_RGB_COLORS value. 

offBmiSrc 
Offset to source BITMAPINFO structure. 

cbBmiSrc 
Size of source BITMAPINFO structure. 

offBitsSrc 
Offset to source bitmap bits. 

cbBitsSrc 
Size of source bitmap bits. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BitBlt, BITMAPINFO, 
COLORREF, RGB 



Chapter 14 Metafiles 429 

EMRCOLORCORRECTPALETTE 
The EMRCOLORCORRECTPALETTE structure contains members for the 
ColorCorrectPalette enhanced metafile record. 

Members 
emr 

Base structure for all record types. 

ihPalette 
Index of the palette handle to color correct. 

nFirstEntry 
Index of the first entry in the palette to color correct. 

nPalEntries 
Number of palette entries to color correct. 

nReserved 
Reserved. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ColorCorrectPalette 



430 Volume 3 Microsoft Windows GOI 

EMRCOLORMATCHTOTARGET 
The EMRCOLORMATCHTOTARGET structure contains members for the 
ColorMatchToTarget enhanced metafile record. 

~Yl)~def/,structf.tagCOLQRMArcHToh.RGEi 
:tf4tf'eoir ;:. ,/ . 
. :.dW6RI)~wAtttoh; 
:'6W~Rri 'dwrla.gs;" 
• llWQR(r •• cbName, 
JJW~RD cbData; 

.,8YT E •. pata[ lli 
ltM~GP~PR/.fAlCHTOTARGET • 

Members 
emr 

Base structure for all record types. 

dwAction 
Action to be taken. This member can be one of the following values: 

Action 

CS_DISABLE 

CS_DELETE_TRANSFORM 

dwFlags 
This parameter can be the following value: 

Flag 

COLORMATCHTOTARGET_EMBEDED 

cbName 

Meaning 

Maps colors to the target device's color 
gamut. This enables color proofing. All 
subsequent draw commands to the DC 
will render colors as they would appear 
on the target device. 

Disables color proofing. 

If color management is enabled for the 
target profile, disables it and deletes the 
concatenated transform. 

Meaning 

Indicates that a color profile has been 
embedded in the metafile. 

Size of the desired target profile name, in bytes. 

cbData 
Size of the raw target profile data in bytes, if it is attached. 



Chapter 14 Metafiles 431 

Data 
An array containing the target profile name and the raw target profile data. The size of 
the array is cbName + cbData. If cbData is nonzero the raw target profile data is 
attached and follows the target profile name at location Data[cbNamel. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ColorMatchToTarget 

EMRCREATEBRUSHINDIRECT 
The EMRCREATEBRUSHINDIRECT structure contains members for the 
CreateBrushlndirect enhanced metafile record. 

t:y,~ed~f',$trti€t'ta~£~RCR~A:T£SRUgHINDIR£ct,{· 
":fi4R:9J·t,0.g~~ :;~;; ;':::\ . ,~. /' "i;"':' ~' .. '. 

; .Pw~RQ/.H~Bl"tiscb!; , 
·,.Y~Ci"R~j~P· ,I.:' '. 

J ~MIJ~REAHBRu:glftNblRE1tT. *PEMRCREATE8'RUSHINIlI REct; 

Members 
emr 

Base structure for all record types. 

ihBrush 

Ib 

Index of brush in handle table. 

LOGBRUSH structure containing information about the brush. The IbStyle member 
must be either the BS_SOLlD, BS_HOLLOW, BS_NULL, or BS_HATCHED value. 

Note that if your code is used on both 32-bit and 64-bit platforms, you must use the 
LOGBRUSH32 structure. This maintains compatibility between the platforms when 
you record the metafile on one platform and use it on the other platform. If your code 
remains on one platform, it is sufficient to use LOGBRUSH. 



432 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, CreateBrushlndireet, LOGBRUSH, 
LOGBRUSH32 

EMRCREATECOLORSPACE 
The EMRCREATECOLORSPACE structure contains members for the 
CreateColorSpaee enhanced metafile record. 

tYlre~ef·structtllgEMRCREATEC{)nlRSPACE 
iH~.·· .. . elJJr; ..... 

DWORD ihC5; 
LOGCCtLoRSPACE It;s; . . 

} EH~CREATEC010RSPACE. *PEMRCREATE~OiL(tR$PAGt; 

Members 
emr 

Base structure for all record types. 

ihCS 
Index of the color space in handle table. 

les 
Logical color space. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windo'vvs 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, CreateColorSpaee, 
EMRCREATECOLORSPACEWEMRCREATECOLORSPACEW 



Chapter 14 Metafiles 433 

EMRCREATECOLORSPACEW 
The EMRCREATECOLORSPACEW structure contains members for the 
CreateColorSpaee enhanced metafile record. It differs from 
EMRCREATECOLORSPACE in that it has a Unicode logical color space and also has 
an optional array containing raw source profile data. 

tYliledef;'struct 0 tagE't>fRCREATtCOLORSPACEW { 

~{I~i~~~~;~~~; 
o~.· ~y'rE 0.00., htii..Lll."o 
} :~mil¢~tAfE'OL~R$p~eEW. '" poQfRC REA TECOLORSpAc EW; 

Members 
emr 

Base structure for all record types. 

ihCS 
Index of the color cpace in handle table. 

les 
Logical color space. Note that this is the Unicode version of the structure. 

dwFlags 
Can be the following: 

Flag Meaning 

CREATECOLORSPACE_EMBEDED 

ebData 

Indicates that a color space is 
embedded in the metafile. 

Size of the raw source profile data in bytes, if it is attached. 

Data 
An array containing the source profile data. The size of the array is ebData. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 



434 Volume 3 Microsoft Windows GOI 

Metafiles Overview, Enhanced Metafile Structures, CreateColorSpace , 
EMRCREATECOLORSPACE 

EMRCREATEDIBPATTERNBRUSHPT 
The EMRCREATEDIBPATTERNBRUSHPT structure contains members for the 
CreateDIBPatternBrushPt enhanced metafile record. The BITMAPINFO structure is 
followed by the bitmap bits that form a packed device-independent bitmap (DIS). 

Members 
emr 

Sase structure for all record types. 

ihBrush 
Index of brush in handle table. 

iUsage 
Value specifying whether the bmiColors member of the BITMAPINFO structure was 
provided and, if so, whether bmiColors contains explicit red, green, blue (RGS) 
values or indices. The iUsage member must be either the DIS_PAL_COLORS or 
DIS_RGS_COLORS value. 

offBmi 
Offset to BITMAPINFO structure. 

cbBmi 
Size of BITMAPINFO structure. 

off Bits 
Offset to bitmap bits. 

cbBits 
Size of bitmap bits. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Chapter 14 Metafiles 435 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, 
CreateDIBPatternBrushPt, RGB 

EMRCREATEMONOBRUSH 
The EMRCREATEMONOBRUSH structure contains members for the 
CreatePatternBrush (when passed a monochrome bitmap) or CreateDIBPatternBrush 
(when passed a monochrome DIB) enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

ihBrush 
Index of brush in handle table. 

iUsage 
Value specifying whether the bmiColors member of the BITMAPINFO structure was 
provided and, if so, whether bmiColors contains explicit red, green, blue (RGB) 
values or indices. The iUsage member must be either the DIB_PAL_COLORS or 
DIB_RGB_COLORS value. 

offBmi 
Offset to BITMAPINFO structure. 

cbBmi 
Size of BITMAPiNFO structure. 

off Bits 
Offset to bitmap bits. 



436 Volume 3 Microsoft Windows GOI 

cbBits 
Size of bitmap bits. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, 
CreateDIBPatternBrush, CreatePatternBrush, RGB 

EMRCREATEPALETTE 
The EMRCREATEPALETTE structure contains members for the CreatePalette 
enhanced metafile record. 

Members 
emr 

Base structure for all record types. 

ihPal 
Index of palette in handle table. 

Igpl 
LOG PALETTE structure that contains information about the palette. Note that 
peFlags members in the PALETIEENTRY structures do not contain any flags. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 



Chapter 14 Metafiles 437 

.. :~~(So·.·· '. 
Metafiles Overview, Enhanced Metafile Structures, CreatePalette, LOG PALETTE, 
PALETTE ENTRY 

EMRCREATEPEN 
The EMRCREATEPEN structure contains members for the CreatePen enhanced 
metafile record. 

Members 
emr 

Base structure for all record types 

ihPen 
Index to pen in handle table 

lopn 
Logical pen 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, CreatePen 

EMRELLIPSE, EMRRECTANGLE 
The EMRELLIPSE and EMARRECTANGLE structures contain members for the Ellipse 
and Rectangle enhanced metafile records. 

1:;Yp"defstf'ucttagEr4RELLIPSE.c{ 
.EMRernr;. 

RECTL rclBox: ............ " 
} E/ilRELUPSE .*PEMRElLIPSl:: •. 

E/ilRRECTANGLE i.···*pEMRREcTANGLE; 



438 Volume 3 Microsoft Windows GOI 

Members 
emr 

Base structure for all record types. 

rclBox 
Bounding rectangle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMREOF 
The EMREOF structure contains data for the enhanced metafile record that indicates the 
end of the metafile. 

'~III~;~?;~~" 
Members 
emr 

Base structure for all record types. 

nPalEntries 
Number of palette entries. 

off Pal Entries 
Offset to palette entries. 

nSizeLast 
Same size as the nSize member of the EMR structure. This member must be the last 
double word of the record. If palette entries exist, they precede this member. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



Chapter 14 Metafiles 439 

Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, EMR 

EMREXCLUDECLIPRECT, EMRINTERSECTCLIPRECT 
The EMREXCLUDECLtPRECT and EMRINTERSECTCLtPRECTstructures contain 
members for the ExcludeClipRect and IntersectClipRect enhanced metafile records . 

• t;}l!p;~ef~~tJi! l.tc:fia.~EM&~t:t.I:l[}·£'C~'lP~£cT·{ . 
. :i·EM~· i'llti·r'}. .: . "i:.: ; ".' . . ; 
··RECtin:itli~;·,., " .... ..... '. .' 

} 'EMttEXt:L'UIlEtUPIR£Ct ~" ; *f!$;~RdttUD~·CU~RECT • 
. > EMR1NTERSEt:rCtlP'REcr •. *PElIfRIN~ERSEGTCLIP.RECT.; 

Members 
emr 

Base structure for all record types. 

rclClip 
Clipping rectangle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMREXTCREATEFONTINDIRECTW 
The EMREXTCREATEFONTINDIRECTW structure contains members for the 
CreateFontlndirect enhanced metafile record. 

typedefstf'uct tagEMREXTCREATEF'ONTINDIRECTW { 
EMRemr.; 
Oil/ORO ihFont; 
tXTUiGFOl'HW elfw:. 

} EMREXl'CREA TEFONTnWI RECTII/, 
PEMREXTCREATE'FONTIMDIRECTW; • 



440 Volume 3 Microsoft Windows GOI 

Members 
emr 

Base structure for all record types. 

ihFont 
Index to the font in handle table. 

elfw 
Logical font. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, CreateFontlndirect 

EMREXTCREATEPEN 
The EMREXTCREATEPEN structure contains members for the ExtCreatePen 
enhanced metafile record. If the record contains a BITMAPINFO structure, it is followed 
by the bitmap bits that form a packed device-independent bitmap (DIS). 

Members 
emr 

Base structure for all record types. 

ihPen 
Index to pen in handle table. 

offBmi 
Offset to BITMAPINFO structure, if any. 

cbBmi 
Size of BITMAPINFO structure, if any. 



Chapter 14 Metafiles 441 

off Bits 
Offset to brush bitmap bits, if any. 

cbBits 
Size of brush bitmap bits, if any. 

elp 
Extended logical pen, including the elpStyleEntry member of the EXTLOGPEN 
structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, ExtCreatePen, 
EXTLOGPEN 

EMREXTFLOODFILL 
The EMREXTFLOODFILL structure contains members for the ExtFloodFili enhanced 
metafile record. 

'tdped'ef s'truct" ti'rgEMREXrFLooDFl,ii 
"£~f~~~mr;: """ " "" f • " 

p(1rNll:i~t1Start ; 
~(1LO~REFfcrColo~; 

inWORD iMod~; 
i:hiREx;rnoQ~l'H~t. *,PEMREXTfJ.oObFIt;L; "". 

Members 
emr 

Base structure for all record types. 

ptlStart 
Coordinates where filling begins. 

crColor 
Color of fill. To make a COLORREF value, use the RGB macro. 

iMode 
Type of fill operation to be performed. This member must be either the 
FLOODFILLBORDER or FLOODFILLSURFACE value. 



442 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ExtFloodFiII, COLORREF, RGB 

EMREXTSELECTCLIPRGN 
The EMREXTSELECTCLIPRGN structure contains members for the ExtSelectClipRgn 
enhanced metafile record. 

¥!" . · .. ~ir~:Ct;: ~~~ EMRErtSELEc;J;C ~lPR~f 
" .. E. '. tl~~~;·{<~'~":,··::/:;.i;,, '<Y'.".·{.;.'Eh • 
. 'I»JQ~lh~t>R9rf1lJat'a:, ., .. 
"D~ll1~if;dMo'de;'~ .,' •....... ,Y'· 
, ~rrE 'R.Ql1fl'a'tarn: . 

f:EAAixTSetEttcLlti.RGN, :rjle·M~kilsJi:l:.~cTedI>RGNj.:. ,. 
Members 
emr 

Base structure for all record types. 

cbRgnData 
Size of region data, in bytes. 

iMode 
Operation to be performed. This member must be one of the following values: 
RGN_AND, RGN_COPY, RGN_DIFF, RGN_OR, or RGN_XOR. 

RgnData 
Buffer containing RGNDATA structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ExtSelectClipRgn 



Chapter 14 Metafiles 443 

EMREXTTEXTOUTA,EMREXTTEXTOUTW 
The EMREXTTEXTOUTA and EMREXTTEXTOUTW structures contain members for the 
ExtTextOut, TextOut, or DrawText enhanced metafile records. 

typedef s1;r\.lcttagEMREXTTEXTOUTA{ 
EMR elllr: 
REcn rcl Bounds, 

·'.'()W.ORIl .iGf'alYhTC$~d.$.·· 
'Fi9'Aft"e~caler . " 
;FLPAfeY$cale; .......:<; .... 

E~imn{Teh1rtext; ...... '.... .•....... ' .•...•. '.' .... .....>. 
1 EM~R'XTTEXToUrA, *PEMRExtrEXTOU;fAF 

EMREXTTEXTOunr, *PEMREXTT EXTOU1W: 

Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

iGraphicsMode 
Current graphics mode. This member can be either the GM_COMPATIBLE or 
GM_ADVANCED value. 

exScale 
X-scaling factor from page units to .01 mm units if the graphics mode is the 
GM_COMPATIBLE value. 

eyScale 
V-scaling factor from page units to .01 mm units if the graphics mode is the 
GM_COMPATIBLE value. 

emrtext 
EMRTEXT structure, which is followed by the string and the intercharacter spacing 
array. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



444 Volume 3 Microsoft Windows GOI 

EMRFILLPATH, EMRSTROKEANDFILLPATH, 
EMRSTROKEPATH 

The EMRFILLPATH, EMRSTROKEANDFILLPATH, and EMRSTROKEPATH structures 
contain members for the FiIIPath, StrokeAndFiIIPath, and StrokePath enhanced 
metafile records. 

i;l~i 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRFILLRGN 
The EMRFILLRGN structure contains members for the FiIIRgn enhanced metafile 
record. 

typ~(jef1§:t:ru~t1iag~MRFjL~RG,fi 

S!rl,!m:~~:; .... . 
J·~~i1n:~';:i~i;'· 



Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

ebRgnData 
Size of region data, in bytes. 

ihBrush 
Index of brush, in handle table. 

RgnData 
Buffer containing RGNDATA structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Chapter 14 Metafiles 445 

Metafiles Overview, Enhanced Metafile Structures, FiliRgn, RGNDATA 

EMRFORMAT 
The EMRFORMAT structure contains information that identifies graphics data in an 
enhanced metafile. A GDICOMMENT_MULTIFORMATS enhanced metafile public 
comment contains an array of EMRFORMAT structures. 

t¥~epe:f~tru~c,:);.tag:~M~FOIRMAT 
DW'ORD dSi gnature; 
DWORD 
OW:4)RIJ 
'DW:t1~D:QffD~ta ; 

JEMRF<fRI1AT':.' 

Members 
dSignature 

Contains a picture format identifier. The following identifier values are defined: 

Identifier Meaning 

ENHMETA_SIGNATURE 

EPS_SIGNATURE 

The picture is in enhanced metafile format. 

The picture is in encapsulated PostScript file format. 



446 Volume 3 Microsoft Windows GOI 

nVersion 
Contains a picture version number. The following version number value is defined: 

Version Meaning 

cbData 

This is the version number of a level 1 encapsulated 
PostScript file. 

Specifies the size, in bytes, of the picture data. 

offData 
Specifies an offset to the picture data. The offset is figured from the start of the 
GDICOMMENT _MULTIFORMATS public comment within which this EMRFORMAT 
structure is embedded. The offset must be a DWORD offset. 

Remarks 
The reference page for GdiComment discusses enhanced metafile public comments in 
general, and the GDICOMMENT _MUL TIFORMATS public comment in particular. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, GdiComment 

EMRFRAMERGN 
The EMRFRAMERGN structure contains members for the FrameRgn enhanced 
metafile record. 

typ~defstr4Gt.tagEMRFRi\MERGN 
. EMRemr; 

aWORD c;bRgnOata; 
DWORD iMru~h; 
SFEL szrStroke; 
SiTE ··R~rmat.atlJ; 

JEMRFRAMERGN. *PEMRFRAMERGN; 



Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

cbRgnData 
Size of region data, in bytes. 

ihBrush 
Index of brush, in handle table. 

szlStroke 
Width and height of region frame. 

RgnData 
Buffer containing RGNDATA structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Chapter 14 Metafiles 447 

Metafiles Overview, Enhanced Metafile Structures, FrameRgn, RGNDATA 

EMRGDICOMMENT 
The EMRGDICOMMENT structure contains application-specific data. This enhanced 
metafile record is only meaningful to applications that know the format of the data and 
how to utilize it. This record is ignored by graphics device interface (GDI) during 
playback of the enhanced metafile. 

Members 
emr 

Base structure for all record types. 

cbData 
Size of data buffer, in bytes. 



448 Volume 3 Microsoft Windows GOI 

Data[1] 
Application-specific data. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRGLSBOUNDEDRECORD 
The EMRGLSBOUNDEDRECORD structure contains members for an enhanced 
metafile record generated by OpenGL functions. It contains data for OpenGL functions 
with information in pixel units that must be scaled when playing the metafile. 

Members 
emr 

Base structure for all record types 

rei Bounds 
Bounds of the rectangle, in recording coordinates, within which to perform the 
OpenGL function. 

ebData 
Size of Data, in bytes. 

Data 
Array of data representing the OpenGL function to be performed. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 



Chapter 14 Metafiles 449 

Metafiles Overview, Enhanced Metafile Structures, OpenGL on Windows NT, Windows 
2000, and Windows 95/98 

EMRGLSRECORD 
The EMRGLSRECORD structure contains members for an enhanced metafile record 
generated by OpenGL functions, It contains data for OpenGL functions that scale 
automatically to the OpenGL viewport. 

-Members 
emr 

Base structure for all records. 

cbData 
Size of Data, in bytes. 

Data 
Array of data representing the OpenGL function to be performed. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, OpenGL on Windows NT, Windows 
2000, and Windows 95/98 



450 Volume 3 Microsoft Windows GOI 

EMRGRADIENTFILL 
The EMRGRADIENTFILL structure contains members for the GradientFili enhanced 
metafile record. 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

nVer 
Number of vertices. 

nTri 
Number of rectangles or triangles to pass to GradientFill. 

ulMode 
Specifies the gradient fill mode. 

Ver[1] 
Pointer to an array of TRIVERTEX structures that each define a triangle vertex. 

Remarks 
This is a variable-length structure. The nVer element designates the beginning of the 
variable-length area. First comes an array of nVer TRIVERTEX structures to pass the 
vertices. Next comes an array of either nTri GRADIENT_TRIANGLE structures or nTri 
GRADIENT _RECT structures, depending on the value of jlMode (triangles or 
rectangles). 

This structure is to be used during metafile playback. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 



Chapter 14 Metafiles 451 

Metafiles Overview, Enhanced Metafile Structures, Metafiles, BITMAPINFO, 
GradientFiII, GRADIENT_TRIANGLE, GRADIENT _RECT 

EMRINVERTRGN, EMRPAINTRGN 
The EMRINVERTRGN and EMRPAINTRGN structures contain members for the 
InvertRgn and PaintRgn enhanced metafile records. 

,~~p~a.~;I'Atru Ii ~,ta~~t4fl;I NYERT'RGN 
EMRj':'e:mr ; '.' ....•.... ~Eeil.rt 113'O~ndS; 

:'PviQR~.;¢~~gntlatal... . 

.i'::~iNv~~t~~!~f·:l~Mitl .. NV··ERT·~GN)'·.·' . 
····~l>4~PA~,~TRG.". *.pEMRPAI~TRGN; . 

Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

cbRgnData 
Size of region data, in bytes. 

RgnData 
Buffer containing an RGNDATA structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, InvertRgn, PaintRgn 



452 Volume 3 Microsoft Windows GDI 

EMRLINETO, EMRMOVETOEX 
The EMRLlNETO and EMRMOVETOEX structures contains members for the LineTo 
and MoveToEx enhanced metafile records. 

Members 
emr 

ptl 

Base structure for all record types. 

Coordinates of the line's ending point for the LineTo function or coordinates of the 
new current position for the MoveToEx function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRMASKBLT 
The EMRMASKBL T structure contains members for the MaskBlt enhanced metafile 
record. Note that graphics device interface (GDI) converts the device-dependent bitmap 
into a device-independent bitmap (DIB) before storing it in the metafile record. 



XFORM·xformSrc.. 
:COLPAREFcrBkColorSrc: . 
,'QW4RD:;"o (:jlil'~:a~eS.rc: . '.'; 
'. {)WORP .• -of1antiSrc ; 

.oWOR-El . <ci)'Bl1I'tS,.N::,; 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

xDest 

Chapter 14 Metaflles 453 

Logical x-coordinate of the upper-left corner of the destination rectangle. 

yDest 
Logical y-coordinate of the upper-left corner of the destination rectangle. 

exDest 
Logical width of the destination rectangle 

eyDest 
Logical height of the destination rectangle 

dwRop 
Raster-operation code. These codes define how the color data of the source rectangle 
is to be combined with the color data of the destination rectangle to achieve the final 
color. 

xSre 
Logical x-coordinate of the upper-left corner of the source rectangle. 

ySre 
Logical y-coordinate of the upper-left corner of the source rectangle. 

xformSre 
World-space to page-space transformation of the source device context. 

erBkColorSre 
Background color (the RGB value) of the source device context. To make a 
COLORREF value, use the RGB macro. 



454 Volume 3 Microsoft Windows GOI 

iUsageSrc 
Value of the bmiColors member of the source BITMAPINFO structure. The 
iUsageSrc member can be either the DIB_PAL_COLORS or DIB_RGB_COLORS 
value. 

offBmiSrc 
Offset to source BITMAPINFO structure. 

cbBmiSrc 
Size of source BITMAPINFO structure. 

offBitsSrc 
Offset to source bitmap bits. 

cbBitsSrc 
Size of source bitmap bits. 

xMask 
Horizontal pixel offset into mask bitmap 

yMask 
Vertical pixel offset into mask bitmap 

iUsageMask 
Value of the bmiColors member of the mask BITMAPINFO structure. 

offBmiMask 
Offset to mask BITMAPINFO structure. 

cbBmiMask 
Size of mask BITMAPINFO structure. 

offBitsMask 
Offset to mask bitmap bits. 

cbBitsMask 
Size of mask bitmap bits. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, MaskBlt, 
COLORREF, RGB 



Chapter 14 Metafiles 455 

EMRMODIFYWORLDTRANSFORM 
The EMRMODIFYWORLDTRANSFORM structure contains members for the 
ModifyWorldTransform enhanced metafile record. 

Members 
emr 

Base structure for all record types. 

xform 
World-space to page-space transformation data. 

iMode 
Value specifying how the transformation data modifies the current world 
transformation. This member can be one of the following values: 

MWT_IDENTITV, MWT_LEFTMULTIPLY, or MWT_RIGHTMULTIPLY. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ModifyWorldTransform 

EMROFFSETCLIPRGN 
The EMROFFSETCLlPRGN structure contains members for the OffsetClipRgn 
enhanced metafile record. 

'.t .• ~.· •.•. ~M·':':~~R.<.',~ .. ,·.,·,.·s.~,t:E;'" f.· ... ·.~ .•. r:r· •. · •. : .• "·~.$.~ .• ~Ga.,f' ...• ,.·,2«t~~5;i:£'t,I}~{j ;'~-' \' ~,r: urr,I"" r,~ I~ #~R~F'$;EJ1CL±PR6N. ;i: 



456 Volume 3 Microsoft Windows GOI 

Members 
emr 

Base structure for all record types. 

ptlOffset 
Logical coordinates of offset. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, OffsetClipRgn 

EMRPIXELFORMAT 
The EMRPIXELFORMAT structure contains the members for the SetPixelFormat 
enhanced metafile record. The pixel format information in ENHMETAHEADER refers to 
this structure. 

ri;~!~~~~~.;~':\~~j,,~~~,t" 
Members 
emr 

Base structure for all record types. 

pfd 
PIXELFORMATDESCRIPTOR structure, which describes the pixel format. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetPixelFormat, 
ENHMETAHEADER, PIXELFORMATDESCRIPTOR 



Chapter 14 Metafiles 457 

EMRPLGBLT 
The EMRPLGBL T structure contains members for the Pig Bit enhanced metafile record. 
Note that graphical device interface (GDI) converts the device-dependent bitmap into a 
device-independent bitmap (DIB) before storing it in the metafile record. 

t'yp'ed~fstr.uct tagEMRPLG~LT L 

~'ii~:,,\::~~=';;i .. " ....• 

'i ~:.' 

:TfiIrlP/w:':· qb~mi'M1il$k,; 

:'fi,~::~" ;d:~~!:~::~:;Jc:-
;f,~~iRUGBtT /:,~PEM:~PL~Bl.r; 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

aptlDest 

:. ' 

Array of three points in logical space that identify three corners of the destination 
parallelogram. The upper-left corner of the source rectangle is mapped to the first 
point in this array, the upper-right corner to the second point in this array, and the 
lower-left corner to the third point. The lower-right corner of the source rectangle is 
mapped to the implicit fourth point in the parallelogram. 

xSre 
Logical x-coordinate of the upper-left corner of the source rectangle. 



458 Volume 3 Microsoft Windows GOI 

ySrc 
Logical y-coordinate of the upper-left corner of the source rectangle. 

cxSrc 
Logical width of the source. 

cySrc 
Logical height of the source. 

xformSrc 
World-space to page-space transformation of the source device context. 

crBkColorSrc 
Background color (the RGB value) of the source device context. To make a 
COLORREF value, use the RGB macro. 

iUsageSrc 
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc 
member can be either the DIB_PAL_COLORS or DIB_RGB_COLORS value. 

offBmiSrc 
Offset to source BITMAPINFO structure. 

cbBmiSrc 
Size of source BITMAPINFO structure. 

offBitsSrc 
Offset to source bitmap bits. 

cbBitsSrc 
Size of source bitmap bits. 

xMask 
Horizontal pixel offset into mask bitmap. 

yMask 
Vertical pixel offset into mask bitmap. 

iUsageMask 
Value of the bmiColors member of the mask BITMAPINFO structure. 

offBmiMask 
Offset to mask BITMAPINFO structure. 

cbBmiMask 
Size of mask BITMAPINFO structure. 

offBitsMask 
Offset to mask bitmap bits.· 

cbBitsMask 
Size of mask bitmap bits. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 



Chapter 14 Metafiles 459 

Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, PlgBlt, COLORREF, 
RGB 

EMRPOLVDRAW 
The EMRPOLYDRAW structure contains members for the PolyDraw enhanced metafile 
record. 

Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

cptl 
Number of points. 

aptl 
Array of 32-bit points. 

abTypes 
Array of values that specifies how each point in the aptl array is used. This member 
can be one of the following values: PT _MOVETO, PT _LlNETO, or PT _BEZIERTO. 
The PT _LlNETO or PT _BEZIERTO value can be combined with the 
PT _CLOSEFIGURE value by using the bitwise-xOR operator. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 



460 Volume 3 Microsoft Windows GOI 

Metafiles Overview, Enhanced Metafile Structures, PolyDraw 

EMRPOL YDRAW16 
The EMRPOLYDRAW16 structure contains members for the PolyDraw enhanced 
metafile record. 

Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

cpts 
Number of pOints. 

apts. 
Array of 16-bit pOints. 

abTypes 
Array of values that specifies how each point in the apts array is used. This member 
can be one of the following values: PT _MOVETO, PT _LlNETO, or PT _BEZIERTO. 
The PT _LlNETO or PT _BEZIERTO value can be combined with the 
PT _CLOSEFIGURE value by using the bitwise-OR operator. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, PolyDraw 



Chapter 14 Metafiles 461 

EMRPOL YLINE, EMRPOL YBEZIER, EMRPOL YGON, 
EMRPOL YBEZIERTO, EMRPOL YLINETO 

The EMRPOL YLlNE, EMRPOL YBEZIER, EMRPOL YGON, EMRPOL YBEZIERTO, and 
EMRPOLYLINETO structures contain members for the Polyline, PolyBezier, Polygon, 
PolyBezierTo, and PolylineTo enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

rclBounds 
.. Bounding rectangle, in device units. 

cptl 
Number of points array. 

aptl 
Array of 32-bit pOints. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



462 Volume 3 Microsoft Windows GOI 

EMRPOL YLINE16, EMRPOL YBEZIER16, 
EMRPOL YGON16, EMRPOL YBEZIERT016, 
EMRPOL YLINET016 

The EMRPOL YLlNE16, EMRPOL YBEZIER16, EMRPOL YGON16, 
EMRPOL YBEZIERT016, and EMRPOL YLINET016 structures contain members for the 
Polyline, PolyBezier, Polygon, PolyBezierTo, and PolylineTo enhanced metafile 
records. 

;type(j,$if:;$tf!V,ct';tagEM~PQLVlP'lE{ • 
"EtfR, , '~11I'i';;>;'~ ,';< .. ' ,. 

"~~~L'· r'ct'Boun~s· 
'nitfRD: '·.¢P1:·s~· ,. • 
····pal t;tlLa~'t$ [ l:f;> .. , .• ,' 

0' ~Io>-"".' ,'-;, oo~· ~.o '0 ," <"~ 

l'EM~P6L,(~lNdp .... 
. ~"'~;~g·~'t~thERi~;·' *P£MR~ LY£UiEIHIH 
.~M~POI,:.Y:aO.N16.; \. . *PEMRP01;YG0N16, ......•. ' . 
. . Efll~fi:ot;¥~Ezr ERTQ16, *ptkRPOLYBEZ'I ERTO:J:Vi .. ! 
E~RPDt'fLJN€TQi6. '. *PEMRPUquNHOl6}' 

Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

cpts 
Number of pOints in the array. 

apts 
Array of 16-bit points. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



Chapter 14 Metafiles 463 

EMRPOL YPOL YLINE, EMRPOL YPOL YGON 
The EMRPOL YPOL YLINE and EMRPOL YPOL YGON structures contain members for 
the PolyPolyline and PolyPolygon enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

nPolys 
Number of polys. 

cptl 
Total number of points in all polys. 

aPolyCounts 
Array of point counts for each poly. 

aptl 
Array of 32-bit points. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



464 Volume 3 Microsoft Windows GOI 

EMRPOL YPOL YLINE16, EMRPOL YPOL YGON16 
The EMRPOL YPOL YLlNE16 and EMRPOL YPOL YGON16 structures contain members 
for the PolyPolyline and PolyPolygon enhanced metafile records. 

typedei··,st·r~ct.· .. tagEMRPOLYPQ.C vC INE:Hf{ 

EMR ' .. ,. emr; ........ , ..... ' ., 
f{EctL . rClBounds ;' '. 

"'O~RI)·· •• 
Ol1l0RD 
OWCfRO. 

, PO'TfH'S; l'lptsYiJ; 
ltMRPPLYPOtYllN~ln. *P EMRPO LVPOLYLINE 16;' 

...... EMRrmLVFOLYGpNi6, *PEMRPOLY.f.>OLY'G'dN16; ". 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

nPolys 
Number of polys. 

epts 
Total number of pOints in all polys. 

aPolyCounts 
Array of point counts for each poly. 

apts 
Array of 16-bit points. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRPOLYTEXTOUTA,EMRPOLYTEXTOUTW 
The EMRPOL YTEXTOUTA and EMRPOL YTEXTOUTW structures contain members for 
the PolyTextOut enhanced metafile record. 



typjdef struct tagEMRPOLYTEXTOUTA { 
EMR emr: 

.. ~.RiciL·· 'tclBOJJnds : 
"';,_."'.',,~:;!:i_ :'."'~ ~'._','~', > 

,nwORD ;Graphi csMod.e: 

~;:t~j~~~ifr~;.~' 
Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

iGraphiesMode 

Chapter 14 Metafiles 465 

Current graphics mode. This member can be either the GM_COMPATIBLE or 
GM_ADVANCED value. 

exSeale 
X-scaling factor from page units to .01 mm units if the graphics mode is the 
GM_COMPATIBLE value. 

eySeale 
V-scaling factor from page units to .01 mm units if the graphics mode is the 
GM_COMPATIBLE value. 

eStrings 
Number of strings. 

aemrtext 
EMRTEXT structure, which is followed by the string and the intercharacter spacing 
array. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



466 Volume 3 Microsoft Windows GOI 

EMRRESIZEPALETTE 
The EMRRESIZEPALETTE structure contains members for the ResizePalette 
enhanced metafile record. 

emr 
Base structure for all record types. 

ihPal 
Index of the palette in the handle table. 

cEntries 
Number of entries in palette after resizing. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

",'.,,, . 

Metafiles Overview, Enhanced Metafile Structures, ResizePalette 

EMRRESTOREDC 
The EMRRESTOREDC structure contains members for the RestoreDC enhanced 
metafile record. 

~t~,::e~~;~:mft,::~.g~M.~R(SW~~Euq:,.,,{, , 
,J", ~~*~J~~~:b~;v1pEMRREStok~pc.i." 
Members 
emr 

Base structure for all record types. 

iRelative 
Relative instance to restore. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Chapter 14 Metaflles 467 

Metafiles Overview, Enhanced Metafile Structures, RestoreDC 

EMRROUNDRECT 
The EMRROUNDRECT structure contains members for the RoundRect enhanced 
metafile record. 

!$~i~~1i~!t"~fU.lUBtlRfit'f' { ,-". 

~t{)\"'~:"";'~.(":i): " , " " 

~;~~~:!~~~:fttl·· 
Members 
emr 

Base structure for all record types. 

rclBox 
Bounding rectangle. 

szlCorner 
Width and height of the ellipse used to draw rounded corners. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, RoundRect 



468 Volume 3 Microsoft Windows GOI 

EMRSCALEVIEWPORTEXTEX, 
EMRSCALEWINDOWEXTEX 

The EMRSCALEVIEWPORTEXTEX and EMRSCALEWINDOWEXTEX structures 
contain members for the ScaleViewportExtEx and ScaleWindowExtEx enhanced 
metafile records. 

Members 
emr 

Base structure for all record types. 

xNum 
Horizontal multiplicand. 

xDenom 
Horizontal divisor. 

yNum 
Vertical multiplicand. 

yDenom 
Vertical divisor. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



Chapter 14 Metafiles 469 

EMRSETCOLORSPACE,EMRSELECTCOLORSPACE, 
EMRDELETECOLORSPACE 

The EMRSETCOLORSPACE, EMRSELECTCOLORSPACE, and 
EMRDELETECOLORSPACE structures contain members for the SetColorSpace and 
DeleteColorSpace enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

ihCS 
Color space handle index. 

Remarks 
There is no function that generates an enhanced metafile record with the 
EMRSELECTCOLORSPACE structure. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRSELECTOBJECT,EMRDELETEOBJECT 
The EMRSELECTOBJECT and EMRDELETEOBJECT structures contain members for 
the SelectObject and DeleteObject enhanced metafile records. 

typed~f$tr~ct'ta;gEMRSE.LECTOBJECT 'c 

"",~::RD~~:~~ject.:'",' "', ",.., ' . ",,' ' .. 
}' EMRsELEtTQBJEtT,'*PEMRSEt;ECTODJECT.' 
'OOPELET~()lSJEcr;.,~P1i:MROElETEOBJEQT:' ',' . "'.' 

• ><>Y 'M~~ , 



470 Volume 3 Microsoft Windows GOI 

Members 
emr 

Base structure for all record types. 

ihObject 
Index of an object in the handle table. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 

EMRSELECTPALETTE 
-

The EMRSELECTPALETTE structure contains members for the SelectPalette 
enhanced metafile record. Note that the bForceBackground parameter in SelectPalette 
is always recorded as TRUE, which causes the palette to be realized as a background 
palette. 

Members 
emr 

Base structure for all record types. 

ihPal 
Index to logical palette in the handle table . 

• ". < 

." 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SelectPalette 



Chapter 14 Metafiles 471 

EMRSETARCDIRECTION 
The EMRSETARCDIRECTION structure contains members for the SetArcDirection 
enhanced metafile record. 

. .. . 
tYPEld'ef.·,~trl,t.ct·· .t.q9Ef1R~~T~RYIJ,I.~~ CIIDeN. 

£:MR eirrr' ~~c' ccu"c:},,": ,-<",~~_,: '-"", ,: _,'{ 

.,Q~~R,?·,t~r~OiJTe.cJ;iR·lJ),: . ..: ..•...•... , .................. '.') , 
}"IEf,fI,l,$f'Ji~R!;;t)fREt1I'l'JN·;."~,EKRS I12l»'Ml)cIRECT.I0H; 

Members 
emr 

Base structure for all record types. 

iArcDirection 
Arc direction. This member can be either the AD_CLOCKWISE or 
AD_COUNTERCLOCKWISE value. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, Arc, SetArcDirection 

EMRSETBKCOLOR,EMRSETTEXTCOLOR 
The EMRSETBKCOLOR and EMRSETTEXTCOLOR structures contain members for 
the SetBkColor and SetTextColor enhanced metafile records. 

typecte'l'st.rtlct.tagEMR$Etn:j{TCQl:OR{ 
EMf{ , emr: 
CO'l;.(JRTtE [.c rC.dl<1r; 

'} EMR~·tf'l~I(,Cj}IJ!tt,... il<PU1RSETBKCOlQR. 
~MRSElIEXT:CQ LelR. ,*,P8MR$ETTEHGOLOR; 

Members 
emr 

Base structure for all record types. 

crColor 
Color value.To make a COLORREF value, use the RGB macro. 



472 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, COLORREF, RGB 

EMRSETCOLORADJUSTMENT 
The EMRSETCOLORADJUSTMENT structure contains members for the 
SetColorAdjustment enhanced metafile record. 

Members 
emr 

Base structure for all record types. 

ColorAdjustment 
COLORADJUSTMENT structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetColorAdjustment 

EMRSETDIBITSTODEVICE 
The EMRSETDIBITSTODEVICE structure contains members for the 
SetDIBitsToDevice enhanced metafile record. 



typedef struct tagEMRSETOIBITSTOOEVICE { 
EMR emr; 
RECTL rclBounds; 
LONG xDest; 

LONG YOeSt: 
i.(}NQ· xSrc; 
.LONG.. ySrc: 
L.ONGtxSrt: . 

.... t~tfG;.cySr(:J· 
.'. t'lWORD:'offBmt srb 
~\lta:RP: .~bal!liS.r C:. 
DWMf>bfifl3ttsSrc: 

..•. DW~RDc~e 1tsSr·c'l. 
~ ~ f, ! '," • " • 

. DWORO·:i !;tsagi:rSrc; 
> OWORO':iSi;artScan: 

QWQRO> cScans;'· ..... '.' .... . ... 

};·EMRSETOYBhnODEVICE •. '*P:EMRS:£TblhTSTdpklJlc~;;)';\ 
Members 
emr 

Base structure for all record types. 

rclBounds 
Bounding rectangle, in device units. 

xDest 

Chapter 14 Metaflles 473 

Logical x-coordinate of the upper-left corner of the destination rectangle. 

yDest 
Logical y-coordinate of the upper-left corner of the destination rectangle. 

xSrc 
Logical x-coordinate of the lower-left corner of the source device-independent bitmap 
(OIB). 

ySrc 
Logical y-coordinate of the lower-left corner of the source DIB. 

cxSrc 
Width of the source rectangle. 

cySrc 
Height of the source rectangle. 

offBmiSrc 
Offset to the source BITMAPINFO structure. 

cbBmiSrc 
Size of the source BITMAPINFO structure. 

offBitsSrc 
Offset to source bitmap bits. 



474 Volume 3 Microsoft Windows GOI 

cbBitsSrc 
Size of source bitmap bits. 

iUsageSrc 
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc 
member can be either the DIS_PAL_COLORS or DIB_RGB_COLORS value. 

iStartScan 
First scan line in the array. 

cScans 
Number of scan lines. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, SetDlBitsToDevice 

EMRSETICMPROFILE 
The EMRSETICMPROFILE structure contains members for the SetlCMProfile 
enhanced metafile record .. 

t:YJuid.ef: str~~t:' ta.g EMRSfrlGliPROFJ LE { 
"EMR,' emr I ':.. ...' . 
Cf' <', , ',,;< "'."', ,.~ > 

.aY~RU :dwFl'IiQ'$; 
.J)NlPRQ . ,bN~me;: 

···DWORf) .. icbETl'ta; 
BYTE . DataLl] : 

JEt4RSET·ICMPROFlLL * PEMRSETTCMPRO Flu • 
EMRSETI:CMPROF1'lEA. *P,EMRSETICMPROFILEA, 
ujRSETICMPRon LEW, *PEMRSETItMPROFILEW; 

Members 
emr 

Base structure for all record types. 

dwFlags 
Profile Flags. 

cbName 
Size of the desired profile name. 



cbData 
Size of profile data, if attached. 

Data[1] 
Array size is cbName and cbData. 

Remarks 
This structure is to be used during metafile playback. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Chapter 14 Metafiles 475 

Metafiles Overview, Enhanced Metafile Structures, Metafiles, SetlCMProfile 

EMRSETMAPPERFLAGS 
The EMRSETMAPPERFLAGS structure contains members for the SetMapperFlags 
enhanced metafile record. 

typ~defstruct tagEMRSETMAPPERFLAGS { 
E~ emr; 
DWORD dwPl ags; 

} EMRSEtMAPPERFLAGS. *PEMRSETMAPPERFLAGS: 

Members 
emr 

Base structure for all record types. 

dwFlags 
Font mapper flag. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetMapperFlags 



476 Volume 3 Microsoft Windows GOI 

EMRSETMITERLIMIT 
The EMRSETMITERLIMIT structure contains members for the SetMiterLimit enhanced 
metafile record. 

typede(str:iJct tagEMRSETMITERLI.MIT {; 
EMR; 'emr; 
FLOAT eMiterL imi t;·· 

}' EMRSt:TMHtRLIMIT , *PEMRSETMltERLIMITi. 

Members 
emr 

Base structure for all record types. 

eMiterLimit 
New miter limit. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetMiterLimit 

EMRSETPALETTEENTRIES 
The EMRSETPALETTEENTRIES structure contains members for the Set Palette Entries 
enhanced metafile record. 

typec!er struct tagEMRSETPALETTEENTRJES { 
EMR emr; 
DWORD i hPa 1 ; 
aWORD . iSt£!rt~ 

DWORD c£ntrie~: 

PALEITEENTRYaPal Entri es [1]; 

} EMRSETPALETTEENTRIE$, *PEMRSETPALETTEENTRIES; 

Members 
emr 

Base structure for all record types. 

ihPal 
Palette handle index. 



Chapter 14 Metafiles 477 

iStart 
Index of first entry to set. 

cEntries 
Number of entries. 

aPalEntries 
Array of PALETTEENTRY structures. Note that peFlags members in the structures 
do not contain any flags. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, PALETTEENTRY, 
SetPaletteEntries 

EMRSETPIXELV 
The EMRSETPIXl:LV structure contains members for the SetPixelV enhanced metafile 
record. When an enhanced metafile is created, calls to SetPixel are also recorded in this 
record. 

m~~t~~~~:~:~$Er~[~.LV 
;j!·.··.~·~~~~~!i x~.·~~~t~~s~¥fni~ lV~' .. 
Members 
emr 

Base structure for all record types. 

ptlPixel 
Logical coordinates of pixel. 

crColor 
Color value.To make a COLORREF value, use the RGB macro. 

... ~ 



478 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetPixelV, SetPixel , COLORREF, 
RGB 

EMRSETVIEWPORTEXTEX, EMRSETWINDOWEXTEX 
The EMRSETVIEWPORTEXTEX and EMRSETWINDOWEXTEX structures contains 
members for the SetViewportExtEx and SetWindowExtEx enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

szlExtent 
Horizontal and vertical extents. For SetViewportExtEx, the extents are in device 
units, and for SetWindowExtEx, the extents are in logical units. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



Chapter 14 Metafiles 479 

EMRSETVIEWPORTORGEX, EMRSETWINDOWORGEX, 
EMRSETBRUSHORGEX 

The EMRSETVIEWPORTORGEX, EMRSETWINDOWORGEX, and 
EMRSETBRUSHORGEX structures contain members for the SetViewportOrgEx, 
SetWindowOrgEx, and SetBrushOrgEx enhanced metafile records. 

~liI~iillllri'I;;;!~Jr'" 
Members 
emr 

Base structure for all record types. 

ptlOrigin 
Coordinate of origin. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetBrushOrgEx, 
SetViewportOrgEx, SetWindowOrgEx 

EMRSETWORLDTRANSFORM 
The EMRSETWORLDTRANSFORM structure contains members for the 
SetWorldTransform enhanced metafile record. 

"~.}~ ..... '.: .. ~ PE·.·.~ .. ~ .. ~.:~E;T·:.W:f.:.·.~1.!T:.~R.·A.;t.·S;EF' .•.• 0".:' ;.RR •• ~MS. E •.... J.liD~~Dt~~fDj:tK·.' 
'. ""~ VI\UI", ~;~£~RS{T\!lO!U.&fRA"sf(j~t+'r 



480 Volume 3 Microsoft Windows GOI 

Members 
emr 

Base structure for all record types. 

xform 
World-space to page-space transformation data. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, SetWorldTransform 

EMRSTRETCHBL T 
The EMRSTRETCHBL T structure contains members for the Stretch Bit enhanced 
metafile record. Note that graphics device interface (GDI) converts the device-dependent 
bitmap into a device-independent bitmap (DIB) before storing it in the metafile record. 



Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

xDest 

Chapter 14 Metafiles 481 

Logical x-coordinate of the upper-left corner of the destination rectangle. 

yDest 
Logical y-coordinate of the upper-left corner of the destination rectangle. 

exDest 
Logical width of the destination rectangle. 

eyDest 
Logical height of the destination rectangle. 

dwRop 
Raster-operation code. These codes define how the color data of the source rectangle 
is to be combined with the color data of the destination rectangle to achieve the final 
color. 

xSre 
Logical x-coordinate of the upper-left corner of the source rectangle. 

ySre 
Logical y-coordinate of the upper-left corner of the source rectangle. 

xformSre 
World-space to page-space transformation of the source device context. 

erBkColorSre 
Background color (the RGB value) of the source device context.To make a 
COLORREF value, use the RGB macro. 

iUsageSre 
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSre 
member can be either the DIS_PAL_COLORS or DIB_RGB_COLORS value. 

offBmiSre 
Offset to the source BITMAPINFO structure. 

ebBmiSre 
Size of the source BITMAPINFO structure. 

offBitsSre 
Offset to source bitmap bits. 

ebBitsSre 
Size of source bitmap bits. 

exSre 
Width of the source rectangle. 

eySre 
Height of the source rectangle. 



482 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, COLORREF, RGB, 
StretehBlt 

EMRSTRETCHDIBITS 
The EMRSTRETCHDIBITS structure contains members for the StretehDIBits enhanced 
metafile record. 

Members 
emr 

Base structure for all record types. 

rei Bounds 
Bounding rectangle, in device units. 

xDest 
Logical x-coordinate of the upper-left corner of the destination rectangle. 

yDest 
Logical y-coordinate of the upper-left corner of the destination rectangle. 



Chapter 14 Metafiles 483 

xSrc 
Logical x-coordinate of the upper-left corner of the source rectangle. 

ySrc 
Logical y-coordinate of the upper-left corner of the source rectangle. 

cxSrc 
Width of the source rectangle. 

cySrc 
Height of the source rectangle. 

offBmiSrc 
Offset to the source BITMAPINFO structure. 

cbBmiSrc 
Size of the source BITMAPINFO structure. 

offBitsSrc 
Offset to source bitmap bits. 

cbBitsSrc 
Size of source bitmap bits. 

iUsageSrc 
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc 
member can be either the DIB_PAL_COLORS or DIB_RGB_COLORS value. 

dwRop 
Raster-operation code. These codes define how the color data of the source rectangle 
is to be combined with the color data of the destination rectangle to achieve the final 
color. 

cxDest 
Logical width of the destination rectangle. 

cyDest 
!..ogical height of the destination rectangle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, BITMAPINFO, StretchDIBits 



484 Volume 3 Microsoft Windows GOI 

EMRTEXT 
The EMRTEXT structure contains members for text output. 

Members 
ptlReferenee 

Logical coordinates of the reference point used to position the string. 

nChars 
Number of characters in string. 

off String 
Offset to string. 

fOptions 

rei 

Value specifying how to use the application-defined rectangle. This member can be a 
combination of the ETO_CLlPPED and ETO_OPAQUE values. 

Optional clipping and/or opaquing rectangle. 

offDx 
. Offset to intercharacter spacing array. 

Remarks 
The EMRTEXT structure is used as a member in the EMREXTTEXTOUT and 
EMRPOL YTEXTOUT structures. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures 



Chapter 14 Metafiles 485 

EMRTRANSPARENTBLT 
The EMRTRANSPARENTBLT structure contains members for theTransparentBLT 
enhanced metafile record. 

Members 
emr 

tagEI>tRTRANSPAf{ENTaLT.{ 
>':,~.:".": ",t'::: ,:,/;:,':'< .. ,<~< , :-:. '> "', ::'~::,,' 

Base structure for all record types. 

rclBounds 
Inclusive bounds, in device units 

xDest 
Logical x coordinate of the upper-left corner of the destination rectangle. 

yDest 
Logical y coordinate of the upper-left corner of the destination rectangle. 

cxDest 
Logical width of the destination rectangle. 

cyDest 
Logical height of the destination rectangle. 

dwRop 
Stores the transparent color. 

xSrc 
Logical x coordinate of the upper-left corner of the source rectangle. 



486 Volume 3 Microsoft Windows GOI 

ySrc 
Logical y coordinate of the upper-left corner of the source rectangle. 

xformSrc 
World-space to page-space transformation of the source device context. 

crBkColorSrc 
Background color (the RGB value) of the source device context. To make a 
COLORREF value, use the RGB macro. 

iUsageSrc 
Source bitmap information color table usage (DIB_RGB_COLORS). 

offBmiSrc 
Offset to the source BITMAPINFO structure. 

cbBmiSrc 
Size of the source BITMAPINFO structure. 

offBitsSrc 
Offset to the source bitmap bits. 

cbBitsSrc 
Size of the source bitmap bits. 

cxSrc 
Width of the source rectangle. 

cySrc 
Height of the source rectangle. 

Remarks 
This structure is to be used during metafile playback. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, Metafiles, TransparentBL T, 
BITMAPINFO, COLORREF, RGB 



Chapter 14 Metafiles 487 

Enhanced Metafile Records with No Parameters 
Contains data for the AbortPath, BeginPath, EndPath, CloseFigure, FlattenPath, 
WidenPath, SetMetaRgn, SaveDC, and RealizePalette enhanced metafile records. 

Members 
emr 

Base structure for all record types. 

, .. ,,' 

Metafiles Overview, Enhanced Metafile Structures 

Enhanced Metafile Records with One Parameter 
Contains parameters for the SelectClipPath, SetBkMode, SetMapMode, 
SetPolyFiIIMode, SetROP2, SetStretchBltMode, SetTextAlign, SetlCMMode, and 
Set Layout enhanced metafile records. 

¥.Yri~~f :~~~rli~t.~ ,'t!a~t;M.~sElCt<tttl.lPP,At~;, C . ": 
}.: . . j :';: ;:( ~ :, .. ,. 

:;-, '::;:'-»:' 
.:.:'::: 

. ,;'a!RSETf£JrFALlGN., .. 
'·,.,tMRSEt~(:MMO(}Ei!: .. ', 
f:~MRSEtLA¥O'OTJ' ' 

/ "':-::,' 

*pF:MR.$(i Ec'tccilP PATIf. 
. " .~,-. 

. ,:,[:~~:~;:iii:~~~~;N:;: ." . 
*~:EMRSEhAYUUl" , 



488 Volume 3 Microsoft Windows GOI 

Members 
emr 

Base structure for all record types. 

iMode 
Value and meaning that varies depending on the function contained in the enhanced 
metafile record. For a description of this member, see the documentation of the 
functions contained in this record. 

Metafiles Overview, Enhanced Metafile Structures, SelectClipPath, SetBkMode, 
SetMapMode, SetPolyFiIIMode, SetROP2, SetStretchBltMode, SetTextAlign 

ENHMETAHEADER 
The ENHMETAHEADER structure contains enhanced-metafile data such as the 
dimensions of the picture stored in the enhanced metafile, the count of records in the 
enhanced metafile, the resolution of the device on which the picture was created, and so 
on. 

This structure is always the first record in an enhanced metafile. 

(continued) 



(continued) 

fifo (WINVER >= 0x0400) 
OWORDcbPixeJ Format; 
.DWO.R .. OoffPix~l Format; 
DWORObO.p.en G L; 

iAeit:dif 1*.JIlNVE~>=ex0400 *1 
fl f(WI-~VER>"'}lX05~lil) 

..•• <S'ltEts~lMi crom~te rs .' ••.• 
*!;lr!(Mi"!*wrNv'E~>? '0x05@~ *1.' 
JE~Ht'1.EtAH~AOERI'!'PENHt.!ETAHEAOER: 

Members 
iType 

Chapter 14 Metafiles 489 

Specifies the record type. This member must specify the value assigned to the 
EMR_HEADER constant. 

nSize 
Specifies the structure size, in bytes. 

rclBounds 
Specifies the dimensions, in device units, of the smallest rectangle that can be drawn 
around the picture stored in the metafile. This rectangle is supplied by graphics device 
interface (GDI). Its dimensions include the right and bottom edges. 

rclFrame 
Specifies the dimensions, in .01-millimeter units, of a rectangle that surrounds the 
picture stored in the metafile. This rectangle must be supplied by the application that 
creates the metafile. Its dimensions include the right and bottom edges. 

dSignature 
Specifies a double word signature. This member must specify the value assigned to 
the ENHMETA_SIGNATURE constant. 

nVersion 
Specifies the metafile version. The current version value is Ox1 0000. 

nBytes 
Specifies the size of the enhanced metafile, in bytes. 

nRecords 
Specifies the number of records in the enhanced metafile. 

nHandles 
Specifies the number of handles in the enhanced-metafile handle table. (Index zero in 
this table is reserved.) 

sReserved 
Reserved; must be zero. 

nDescription 
Specifies the number of characters in the array that contains the description of the 
enhanced metafile's contents. This member should be set to zero if the enhanced 
metafile does not contain a description string. 



490 Volume 3 Microsoft Windows GOI 

off Description 
Specifies the offset from the beginning of the ENHMETAHEADER structure to the 
array that contains the description of the enhanced metafile's contents. This member 
should be set to zero if the enhanced metafile does not contain a description string. 

nPalEntries 
Specifies the number of entries in the enhanced metafile's palette. 

szlDevice 
Specifies the resolution of the reference device, in pixels. 

szlMillimeters 
Specifies the resolution of the reference device, in millimeters. 

cbPixel Format 
Windows 95/98, Windows NT4.0 and later: Specifies the size of the last recorded 
pixel format in a metafile. If a pixel format is set in a reference DC at the start of 
recording, cbPixelFormat is set to the size of the PIXELFORMATDESCRIPTOR. 
When no pixel format is set when a metafile is recorded, this member is set to zero. If 
more than a single pixel format is set, the header pOints to the last pixel format. 

off Pixel Format 
Windows 95/98, Windows NT4.0 and later: Specifies the offset of pixel format used 
when recording a metafile. If a pixel format is set in a reference DC at the start of 
recording or during recording, offPixelFormat is set to the offset of the 
PIXELFORMATDESCRIPTOR in the metafile. If no pixel format is set when a metafile 
is recorded, this member is set to zero. If more than a single pixel format is set, the 
header pOints to the last pixel format. 

bOpenGL 
Windows 95/98, Windows NT4.0 and later: Specifies whether any OpenGL records 
are present in a metafile. bOpenGL is a simple Boolean flag that you can use to 
determine whether an enhanced metafile requires OpenGL handling. When a metafile 
contains OpenGL records, bOpenGL is TRUE; otherwise it is FALSE. 

szlMicrometers 
Windows 98, Windows 2000: Size of the reference device in micrometers. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ENHMETARECORD 



Chapter 14 Metafiles 491 

ENHMETARECORD 
The ENHMETARECORD structure contains data that describes a graphics device 
interface (GDI) function used to create part of a picture in an enhanced-format metafile. 

typecdef struct tagENHMETAREC0RD { 
DWORD1 Typ.e; 
D\'iORDnsf;:;e; .. 
Dw.oRD:~~arlll(l:J; <;. 

lENHMET ARE{;O R:o~~PENHMETARECORD} 

Members 
iType 

Specifies the record type. 

nSize 
Specifies the size of the record, in bytes. 

dParm 
Specifies an array of parameters passed to the GDI function identified by the record. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, ENHMETAHEADER 

HANDLETABLE 
The HANDLETABLE structure is an array of handles, each of which identifies a graphics 
device interface (GDI) object. 

typedef struct tagHANDLETA8LE{< 
H&OIOBJobj€dHandle[l]; 

} HANDLETABLE.*PHANDLET ABLE; 

Members 
objectHandle 

Contains an array of handles. 



492 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include winqows.h. 

Metafiles Overview, Enhanced Metafile Structures, EnhMetaFileProc, 
EnumMetaFileProc 

POINTL 
The POINTL structure contains the coordinates of a point. 

Members 
x 

Specifies the horizontal (x) coordinate of the point. 

y 
Specifies the vertical (y) coordinate of the point. 

Windows NT/2000: Requires Windows NT3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in windef.h; include windows.h. 

ivletafiles Overview, Enhanced Metafiie Structures 



Chapter 14 Metafiles 493 

RECTL 
The RECTL structure defines the coordinates of the upper-left and lower-right corners of 
a rectangle. 

Members 
left 

Specifies the x-coordinate of the upper-left corner of the rectangle. 

top 
Specifies the y-coordinate of the upper-left corner of the rectangle. 

right 
Specifies the x-coordinate of the lower-right corner of the rectangle. 

bottom 
Specifies the y-coordinate of the lower-right corner of the rectangle. 

Remarks 
When RECTL is passed to the FiliRect function, the rectangle is filled up to, but not 
including, the right column and bottom row of pixels. This structure is identical to the 
RECT structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in windef.h; include windows.h. 

Metafiles Overview, Enhanced Metafile Structures, Fill Rect, RECT, SMALL_RECT 





CHAPTER 15 

Painting and Drawing 

This overview describes how the system manages output to the screen and explains 
what applications must do to draw in a window. In particular, this overview describes 
display device contexts (or, more simply, display Des) and how to prepare and use 
them. The overview does not explain how to use graphical device interface (GDI) 
functions to generate output, or how to print. 

About Painting and Drawing 

495 

Nearly all applications use the screen to display the data they manipulate. An application 
paints images, draws figures, and writes text so that the user can view data as it is 
created, edited, and printed. The Win32 API provides rich support for painting and 
drawing, but, because of the nature of multitasking operating systems, applications must 
cooperate with one another when accessing the screen. 

To keep all applications functioning smoothly and cooperatively, the system manages all 
output to the screen. Applications use windows as their primary output device instead of 
the screen itself. The system supplies display device contexts that uniquely correspond 
to the windows. Applications use display device contexts to direct their output to the 
specified windows. Drawing in a window (directing output to it) prevents an application 
from interfering with the output of other applications and allows applications to coexist 
with one another while still taking full advantage of the graphics capabilities of the 
system. 

When to Draw in a Window 
An application draws in a window at a variety of times: when first creating a window, 
when changing the size of the window, when moving the window from behind another 
window, when minimizing or maximizing the window, when displaying data from an 
opened file, and when scrolling, changing, or selecting a portion of the displayed data. 

The system manages actions, such as moving and sizing a window. If an action affects 
the content of the window, the system marks the affected portion of the window as ready 
for updating and, at the next opportunity, sends a WM_PAINT message to the window 
procedure of the window. The message is a signal to the application to determine what 
must be updated and to carry out the necessary drawing. 

Some actions are managed by the application, such as displaying open files and 
selecting displayed data. For these actions, an application can mark for updating the 
portion of the window affected by the action, causing a WM_PAINT message to be sent 
at the next opportunity. If an action requires immediate feedback, the application can 



496 Volume 3 Microsoft Windows GOI 

draw while the action takes place, without waiting for WM_PAINT. For example, a typical 
application highlights the area the user selects, instead of waiting for the next 
WM_PAINT message to update the area. 

In all cases, an application can draw in a window as soon as it is created. To draw in the 
window, the application must first retrieve a handle to a display device context for the 
window. Ideally, an application carries out most of its drawing operations during the 
processing of WM_PAINT messages. In this case, the application retrieves a display 
device context by calling the BeginPaint function. If an application draws at any other 
time, such as from within WinMain or during the processing of keyboard or mouse 
messages, it calls the GetDC or GetDCEx function to retrieve the display DC. 

The WM_PAINT Message 
Typically, an application draws in a window in response to a WM_PAINT message. The 
system sends this message to a window procedure when changes to the window have 
altered the content of the client area. The system sends the message only if there are no 
other messages in the application message queue. 

Upon receiving a WM_PAINT message, an application can call BeginPaint to retrieve 
the display device context for the client area, and use it in calls to GDI functions to carry 
out whatever drawing operations are necessary to update the client area. After 
completing the drawing operations, the application calls the EndPaint function to release 
the display device context. 

Before BeginPaint returns the display device context, the system prepares the device 
context for the specified window. It first sets the clipping region for the device context to 
be equal to the intersection of the portion of the window that needs updating and the 
portion that is visible to the user. Only those portions of the window that have changed 
are redrawn. Attempts to draw outside this region are clipped and do not appear on the 
screen. 

The system also can send WM_NCPAINT and WM_ERASEBKGND messages to the 
window procedure before BeginPaint returns. These messages direct the application to 
draw the nonclient area and window background. The nonclient area is the part of a 
window that is outside of the client area. The area includes features such as the title bar, 
window menu (also known as the System menu), and scroll bars. Most applications rely 
on the default window function, DefWindowProc, to draw this area and therefore pass 
the WM_NCPAINT message to this function. The window background is the coior or 
pattern that a window is filled with before other drawing operations begin. The 
background covers any images previously in the window or on the screen under the 
window. If a window belongs to a window class having a class background brush, the 
DefWindowProc function draws the window background automatically. 

BeginPaint fills a PAINTSTRUCT structure with information, such as the dimensions of 
the portion of the window to be updated and a flag indicating whether the window 
background has been drawn. The application can use this information to optimize 
drawing. For example, it can use the dimensions of the update region, specified by the 



Chapter 15 Painting and Drawing 497 

rePaint member, to limit drawing to only those portions of the window that need 
updating. If an application has very simple output, it can ignore the update region and 
draw in the entire window, relying on the system to discard (clip) any unneeded output. 
Because the system clips drawing that extends outside the clipping region, only drawing 
that is in the update region is visible. 

BeginPaint sets the update region of a window to NULL. This clears the region, 
preventing it from generating subsequent WM_PAINT messages. If an application 
processes a WM_PAINT message but does not call BeginPaint or, otherwise, clear the 
update region, the application continues to receive WM_PAINT messages as long as the 
region is not empty. In all cases, an application must clear the update region before 
returning from the WM_PAINT message. 

After the application finishes drawing, it should call EndPaint. For most windows, 
EndPaint releases the display device context, making it available to other windows. 
EndPaint also shows the caret, if it was previously hidden by BeginPaint. BeginPaint 
hides the caret to prevent drawing operations from corrupting it. 

The Update Region 
The update region identifies the portion of a window that is out-of-date or invalid and in 
need of redrawing. The system uses the update region to generate WM_PAINT 
messages for applications and to minimize the time applications spend bringing the 
contents of their windows up to date. The system adds only the invalid portion of the 
window to the update region, requiring only that portion to be drawn. 

When the system determines that a window needs updating, it sets the dimensions of 
the update region to the invalid portion of the window. Setting the update region does not 
immediately cause the application to draw. Instead, the application continues retrieving 
messages from the application message queue until no messages remain. The system 
then checks the update region, and if the region is not empty (non-NULL), it sends a 
WM_PAINT message to the window procedure. 

An application can use the update region to generate its WM_PAINT messages. For 
example, an application that loads data from open files typically sets the update region 
while loading, so that new data is drawn during processing of the next WM_PAINT 
message. In general, an application should not draw at the time its data changes, but 
route all drawing operations through the WM_PAINT message. 

Invalidating and Validating the Update Region 
An application invalidates a portion of a window and sets the update region by using the 
InvalidateReet or InvalidateRgn function. These functions add the specified rectangle 
or region (in client coordinates) to the update region, combining the rectangle or region 
with anything the system or the application might have previously added to the update 
region. 



498 Volume 3 Microsoft Windows GOI 

The InvalidateReet and InvalidateRgn functions do not generate WM_PAINT 
messages. Instead, the system accumulates the changes made by these functions and 
its own changes while a window processes other messages in its message queue. By 
accumulating changes, a window processes all changes at once instead of updating bits 
and pieces one step at a time. 

The ValidateReet and ValidateRgn functions validate a portion of the window by 
removing a specified rectangle or region from the update region. These functions are 
typically used when the window has updated a specific part of the screen in the update 
region before receiving the WM_PAINT message. 

Retrieving the Update Region 
The GetUpdateReet and GetUpdateRgn functions retrieve the current update region for 
the window. GetUpdateReet retrieves the smallest rectangle (in client coordinates) that 
encloses the entire update region. GetUpdateRgn retrieves the update region itself. 
These functions can be used to calculate the current size of the update region to 
determine where to carry out a drawing operation. 

BeginPaint also retrieves the dimensions of the smallest rectangle enclosing the current 
update region, copying the dimensions to the rePaint member in the PAINTSTRUCT 
structure. Because BeginPaint validates the update region, any call to GetUpdateReet 
and GetUpdateRgn immediately after a call to BeginPaint returns an empty update 
region. 

Excluding the Update Region 
The ExeludeUpdateRgn function excludes the update region from the clipping region 
for the display device context. This function is useful when drawing in a window other 
than when a WM_PAINT message is processing. It prevents drawing in the areas that 
will be updated during the next WM_PAINT message. 

Synchronous and Asynchronous Drawing 
Most drawing carried out during processing of the WM_PAINT message is 
asynchronous; that is, there is a delay between the time a portion of the window is 
invalidated and the time WM_PAINT is sent. During the delay, the application typically 
retrieves messages from the queue and carries out other tasks, The reason for the delay 
is that the system generally treats drawing in a window as a low-priority operation, and 
works as though user-input messages and messages that can affect the position or size 
of a window will be processed before WM_PAINT. 

In some cases, it is necessary for an application to draw synchronously; that is, draw in 
the window immediately after invalidating a portion of the window. A typical application 
draws its main window immediately after creating the window to signal the user that the 
application has started successfully. The system draws some control windows 
synchronously, such as buttons, because such windows serve as the focus for user 
input. Although any window with a simple drawing routine can be drawn synchronously, 



Chapter 15 Painting and Drawing 499 

all such drawing should be done quickly and not interfere with the application's ability to 
respond to user input. 

The UpdateWindow and RedrawWindow functions allow for synchronous drawing. 
UpdateWindow sends a WM_PAINT message directly to the window if the update 
region is not empty. RedrawWindow also sends a WM_PAINT message, but gives the 
application greater control over how to draw the window, such as whether to draw the 
nonclient area and window background or whether to send the message regardless of 
whether the update region is empty. These functions send the WM_PAINT message 
directly to the window, regardless of the number of other messages in the application 
message queue. 

Any window requiring time-consuming drawing operations should be drawn 
asynchronously to prevent pending messages from being blocked as the window is 
drawn. Also, any application that frequently invalidates small portions of a window should 
allow these invalid portions to consolidate into a single asynchronous WM_PAINT 
message, instead of a series of synchronous WM_PAINT messages. 

Drawing Without the WM_PAINT Message 
Although applications carry out most drawing operations while the WM_PAINT message 
is processing, it is sometimes more efficient for an application to draw directly in a 
window without relying on the WM_PAINT message. This can be useful when the user 
needs immediate feedback, such as when selecting text and dragging or sizing an 
object. In such cases, the application usually draws while processing keyboard or mouse 
messages. 

To draw in a window without using a WM_PAINT message, the application uses the 
GetDC or GetDCEx function to retrieve a display device context for the window. With the 
display device context, the application can draw in the window and avoid intruding into 
other windows. When the application has finished drawing, it calls the ReleaseDC 
function to release the display device context for use by other applications. 

When drawing without using a WM_PAINT message, the application usually does not 
invalidate the window. Instead, it draws in such a fashion that it can easily restore the 
window and remove the drawing. For example, when the user selects text or an object, 
the application typically draws the selection by inverting whatever is already in the 
window. The application can remove the selection and restore the original contents of 
the window by inverting again. 

The application is responsible for carefully managing any changes it makes to the 
window. In particular, if an application draws a selection and an intervening WM_PAINT 
message occurs, the application must ensure that any drawing done during the message 
does not corrupt the selection. To avoid this, many applications remove the selection, 
carry out usual drawing operations, and then restore the selection when drawing is 
complete. 



500 Volume 3 Microsoft Windows GOI 

Window Coordinate System 
The coordinate system for a window is based on the coordinate system of the display 
device. The basic unit of measure is the device unit (typically, the pixel). Points on the 
screen are described by x-coordinate and y-coordinate pairs. The x-coordinates increase 
to the right; the y-coordinates increase from top to bottom. The origin (0,0) for the system 
depends on the type of coordinates being used. 

The system and applications specify the position of a window on the screen in screen 
coordinates. For screen coordinates, the origin is the upper-left corner of the screen. The 
full position of a window is described often by a RECl structure containing the screen 
coordinates of two pOints that define the upper-left and lower-right corners of the 
window. 

The system and applications specify the position of points in a window by using client 
coordinates. The origin in this case is the upper-left corner of the window or client area. 
Client coordinates ensure that an application can use consistent coordinate values while 
drawing in the window, regardless of the position of the window on the screen. 

The dimensions of the client area also are described by a RECl structure that contains 
client coordinates for the area. In all cases, the upper-left coordinate of the rectangle is 
included in the window or client area, while the lower-right coordinate is excluded. 
Graphics operations in a window or client area are excluded from the right and lower 
edges of the enclosing rectangle. 

Occasionally, applications might be required to map coordinates in one window to those 
of another window. An application can map coordinates by using the 
MapWindowPoints function. If one of the windows is the desktop window, the function 
effectively converts screen coordinates to client coordinates, and vice versa; the desktop 
window is specified always in screen coordinates. 

Window Regions 
In addition to the update region, every window has a visible region that defines the 
window portion visible to the user. The system changes the visible region for the window 
whenever the Window changes size or whenever another window is moved such that it 
obscures or exposes a portion of the window. Applications cannot change the visible 
region directly, but the system automatically uses the visible region to create the clipping 
region for any display device context retrieved for the window. 

The clipping region determines where the system permits drawing. When the application 
retrieves a display device context using the BeginPaint, GetDC, or GetDCEx function, 
the system sets the clipping region for the device context to the intersection of the visible 
region and the update region. Applications can change the clipping region by using 
functions such as SetWindowRgn, SelectClipPath and SelectClipRgn, to further limit 
drawing to a particular portion of the update area. 



Chapter 15 Painting and Drawing 501 

The WS_CLlPCHILDREN and WS_CLlPSIBLINGS styles further specify how the 
system calculates the visible region for a window. If a window has one or both of these 
styles, the visible region excludes any child window or sibling windows (windows having 
the same parent window). Therefore, any drawing that would intrude otherwise in these 
windows will always be clipped. 

Window Background 
The window background is the color or pattern used to fill the client area before a 
window begins drawing. The window background covers whatever was on the screen 
before the window was moved there, erasing existing images and preventing the 
application's new output from being mixed with unrelated information. 

The system paints the background for a window or gives the window the opportunity to 
do so by sending it a WM_ERASEBKGND message when the application calls 
BeginPaint. If an application does not process the message, but passes it to 
DefWindowProc, the system erases the background by filling it with the pattern in the 
background brush specified by the window's class. If the brush is not valid or the class 
has no background brush, the system sets the fErase member in the PAINTSTRUCT 
structure that BeginPaint returns, but carries out no other action. The application, then, 
has a second chance to draw the window background, if necessary. 

If it processes WM_ERASEBKGND, the application should use the message's wParam 
parameter to draw the background. This parameter contains a handle to the display 
device context for the window. After drawing the background, the application should 
return a nonzero value. This ensures that BeginPaint does not erroneously set the 
fErase member of the PAINTSTRUCT structure to a nonzero value (indicating the 
background should be eras'ed) when the application processes the subsequent 
WM_PAINT message. 

An application can define a class background brush by assigning a brush handle or a 
system color value to the hbrBackground member of the WNDCLASS structure when 
registering the class with the RegisterClass function. The GetStockObject or 
CreateSolidBrush function can be used to create a brush handle. A system color value 
can be one of those defined for the SetSysColors function. (The value must be 
increased by one before it is assigned to the member.) 

An application can process the WM_ERASEBKGND message even though a class 
background brush is defined. This is typical in applications that enable the user to 
change the window background color or pattern for a specified window without affecting 
other windows in the class. In such cases, the application must not pass the message to 
DefWindowProc. 

It is not necessary for an application to align brushes, because the system draws the 
brush using the window origin as the point of reference. Given this, the user can move 
the window without affecting the alignment of pattern brushes. 



502 Volume 3 Microsoft Windows GOI 

Minimized Windows 
The system reduces an application's main window (overlapping style) to a minimized 
window when the user clicks Minimize from the window menu or, the application calls 
the ShowWindow function and specifies a value such as SW_MINIMIZE. Minimizing a 
window speeds up system performance by reducing the amount of work an application 
must do when updating its main window. 

For a typical application, the system draws an icon, called the class icon, when the 
window is minimized, labeling the icon with the name of the window. The class icon, a 
static image that represents the application, is specified by the application when it 
registers the window class. The application assigns a handle to the class icon to the 
hlcon member of WNDCLASS before calling RegisterClass. The application can use 
the Loadlcon function to retrieve the icon handle. 

Before drawing the class icon, the system sends a WM_ICONERASEBKGND message 
to the window procedure, enabling the application to prepare the background for drawing 
the icon by setting the best background colors possible for the icon. This is useful for 
applications that combine the icon with the current background colors. If the application 
processes the message, it should use the display device context provided with the 
message to draw the background (the wParam parameter contains a handle to the 
display DC). If the application does not process the WM_ICONERASEBKGND 
message, it should pass the message to DefWindowProc; the function fills the icon area 
with the current desktop color and pattern. After sending the WM_ICONERASEBKGND 
message, the system sends the WM_PAINTICON message to the window procedure. 
The application should forward immediately this internal message to DefWindowProc. 

The system does not require that a window class have a class icon. If an application sets 
the hlcon member of WNDCLASS to NULL, a class icon is not defined. In this case, the 
system sends the WM_ERASEBKGND message (instead of 
WM_ICONERASEBKGND) to a window of the class whenever the window must paint 
the icon background. The system then sends a WM_PAINT message and the 
application draws an icon or another image representing the minimized window. In such 
cases, the application must determine when the window is minimized and draw 
accordingly. It can do so by calling the Islconic function. If the function returns TRUE, 
the window is minimized. If an application has no class icon and fails to process 
WM_ERASEBKGND and WM_PAINT, the area that the system reserves for the 
appiication's icon wiii contain whatever was on the screen previously. 



Chapter 15 Painting and Drawing 503 

Resized Windows 
The system changes the size of a window when the user chooses window menu 
commands, such as Size and Maximize, or when the application calls functions, such as 
the SetWindowPos function. When a window changes size, the system assumes that 
the contents of the previously exposed portion of the window are not affected and do not 
need to be redrawn. The system invalidates only the newly exposed portion of the 
window, which saves time when the eventual WM_PAINT message is processed by the 
application. In this case, WM_PAINT is not generated when the size of the window is 
reduced. 
For some windows, any change to the size of the window invalidates the contents. For 
example, a clock application that adapts the face of the clock to fit neatly within its 
window must redraw the clock whenever the window changes size. To force the system 
to invalidate the entire client area of the window when a vertical, horizontal, or both 
vertical and horizontal change is made, an application must specify the CS_ VREDRAW 
or CS_HREDRAW style, or both, when registering the window class. Any window 
belonging to a window class having these styles is invalidated each time the user or the 
application changes the size of the window. 

Nonel ient Area 
The system sends a WM_NCPAINT message to the window whenever a part of the 
nonclient area of the window, such as the title bar, menu bar, or window frame, must be 
updated. The system can send also other messages to direct a window to update a 
portion of its client area; for example, when a window becomes active or inactive, it 
sends the WM_NCACTIVATE message to update its title bar. In general, processing 
these messages for standard windows is not recommended, because the application 
must be able to draw all the required parts of the non client area for the window. For this 
reason, most applications pass these messages to DefWindowProc for default 
processing. 

An application that creates custom nonclient areas for its windows must process these 
messages. When doing so, the application must use a window device context to carry 
out drawing in the window. The window device context enables the application to draw in 
all portions of the window, including the nonclient area. An application retrieves a 
window device context by using the GetWindowDC or GetDCEx function and, when 
drawing is complete, must release the window device context by using the ReleaseDC 
function. 

The system maintains an update region for the nonclient area. When an application 
receives a WM_NCPAINT message, the wParam parameter contains a handle to a 
region defining the dimensions of the update region. The application can use the handle 
to combine the update region with the clipping region for the window device context. The 
system does not automatically combine the update region when retrieving the window 



504 Volume 3 Microsoft Windows GOI 

device context unless the application uses GetDCEx and specifies both the region 
handle and the DCX_'NTERSECTRGN flag. If the application does not combine the 
update region, only drawing operations that would otherwise extend outside the window 
are clipped. The application is not responsible for clearing the update region, regardless 
of whether it uses the region. 

If an application processes the WM_NCACTIVATE message, after processing it must 
return TRUE to direct the system to complete the change of active window. If the window 
is minimized when the application receives the WM_NCACTIVATE message, it should 
pass the message to DefWindowProc. In such cases, the default function redraws the 
label for the icon. 

Child Windows 
A child window is a window with the WS_CHILD or WS_CHILDWINDOW style. Like 
other window styles, child windows receive WM_PAINT messages to prompt updating. 
Each child window has an update region, which either the system or the application can 
set to generate eventual WM_PAINT messages. 

A child window's update and visible regions are affected by the child's parent window; 
this is not true for windows of other styles. The system often sets the child window's 
update region when it sets the parent window's update region, causing the child window 
to receive WM_PAINT messages when the parent window receives them. The system 
limits the location of the child window's visible region to within the client area of the 
parent window, and clips any portion of the child window moved outside the parent 
window. 

The system sets the update region for a child window whenever part of the parent 
window's update region includes a portion of the child window. In such cases, the 
system first sends a WM_PAINT message to the parent window and then sends a 
message to the child window, allowing the child to restore any portions of the window 
that the parent might have drawn over. 

The system does not set the parent's update region when the child's is set. An 
application cannot generate a WM_PAINT message for the parent window by 
invalidating the child window. Similarly, an application cannot generate a WM_PAINT 
message for the child by invalidating a portion of the parent's client area that lies entirely 
under the child window. In such cases, neither window receives a WM_PAINT message. 

An application can prevent a child window's update region from being set when the 
parent window's is set by specifying the WS_CLlPCHILDREN style when creating the 
parent window. When this style is set, the system excludes the child windows from the 
parent's visible region and therefore ignores any portion of the update region that may 
contain the child windows. When the application paints in the parent window, any 
drawing that would cover the child window is clipped, making a subsequent WM_PAINT 
message to the child window unnecessary. 



Chapter 15 Painting and Drawing 505 

The update and visible regions of a child window are also affected by the child window's 
siblings. Sibling windows are any windows that have a common parent window. If sibling 
windows overlap, then setting the update region for one affects the update region of 
another, causing WM_PAINT messages to be sent to both windows. Sibling windows 
receive WM_PAINT messages in the reverse order of their position in the Z order. Given 
this, the window highest in the Z order (on the top) receives its WM_PAINT message 
last, and vice versa. 

Sibling windows are not automatically clipped. One sibling can draw over another 
overlapping sibling even if the window that is drawing has a lower position in the Z order. 
An application can prevent this by specifying the WS_CLlPSIBLINGS style when 
creating the windows. When this style is set, the system excludes all portions of an 
overlapping sibling window from a window's visible region, if the overlapping sibling 
window has a higher position in the Z order. 

Note The update and visible regions for windows that have the WS_POPUP or 
WS_POPUPWINDOW style are not affected by their parent windows. 

About Display Device Contexts 
A display device context is a device context (DC), created by the system, that an 
application uses to paint and draw a window. The system prepares each display device 
context for output to a window, setting the drawing objects, colors, and modes for the 
window instead of for the display device. When the application supplies the display 
device context through calls to GDI functions, GDI uses the information in the context to 
generate output in the specified window without intruding on other windows or other 
parts of the screen. 

The system provides five kinds of display device contexts: 

Type 

Common 

Class 

Parent 

Private 

Window 

Meaning 

Permits drawing in the client area of a specified window. 

Permits drawing in the client area of a specified window. 

Permits drawing anywhere in the window. Although the parent device 
context also permits drawing in the parent window, it is not intended to 
be used in this way. 

Permits drawing in the client area of a specified window. 

Permits drawing anywhere in the window. 

The system supplies a common, class, parent, or private device context to a window 
based on the type of display device context specified in that window's class style. The 
system supplies a window device context only when the application explicitly requests 
one-for example, by calling the GetWindowDC or GetDCEx function. In all cases, an 
application can use the WindowFromDC function to determine which window a display 
DC currently represents. 



506 Volume 3 Microsoft Windows GOI 

Display Device Context Cache 
The system maintains a cache of display device contexts that it uses for common, 
parent, and window device contexts. The system retrieves a device context from the 
cache whenever an application calls the GetDC or BeginPaint function; the system 
returns the DC to the cache when the application subsequently calls the ReleaseDC or 
EndPaint function. 

In 16-bit Windows, the cache contains five display device contexts, but only five device 
contexts from the cache can be active at a time. To ensure that other applications have 
access to these device contexts, an application must release a device context 
immediately after using it. Failure to do so eventually causes the application to fail. 

There is no predetermined limit on the amount of device contexts that a cache can hold; 
the system creates a new display device context for the cache if none is available. Given 
this, a Win32-based application can have more than five active device contexts from the 
cache at a time. However, the application must continue to release these device 
contexts after use. Because new display device contexts for the cache are allocated in 
the application's heap space, failing to release the device contexts eventually consumes 
all available heap space. The system indicates this failure by returning an error when it 
cannot allocate space for the new device context. Other functions unrelated to the cache 
may also return errors. 

Display Device Context Defaults 
Upon first creating a display device context, the system assigns default values for the 
attributes (that is, drawing objects, colors, and modes) that make up the device context. 
The following table shows the default values for the attributes of a display device 
context: 

Attribute 

Background color 

Background mode 

Bitmap 

Brush 

Brush origin 

Clipping region 

Current pen position 

Device origin 

Drawing mode 

Font 

Intercharacter spacing 

Default value 

Background color setting from Control Panel (typically, white). 

OPAQUE 

None 

WHITE_BRUSH 

(0,0) 
Entire window or client area with the update region clipped, as 
appropriate. Child and pop-up windows in the client area may 
also be clipped. 

(0,0) 
Upper-left corner of the window or client area. 

R2_COPYPEN 

SYSTEM_FONT 

o 



Mapping mode 

Palette 

Pen 

Polygon-fill mode 

Stretch mode 

Text color 

Viewport extent 

Viewport origin 

Window extent 

Window origin 

MM_TEXT 

DEFAULT_PALETTE 

BLACK_PEN 

ALTERNATE 

BLACKONWHITE 

Chapter 15 Painting and Drawing 507 

Text color setting from Control Panel (typically, black). 

(1 ,1) 

(0,0) 
(1 ,1) 

(0,0) 

An application can modify the values of the display device context attributes by using 
selection and attribute functions, such as SelectObject, SetMapMode, and 
SetTextColor. For example, an application can modify the default units of measure in 
the coordinate system by using SetMapMode to change the mapping mode. 

Changes to the attribute values of a common, parent, or window device context are not 
permanent. When an application releases these device contexts, the current selections, 
such as mapping mode and clipping region, are lost as the context is returned to the 
cache. Changes to a class or private device context persist indefinitely. To restore them 
to their original defaults, an application must set explicitly each attribute. 

Common Display Device Contexts 
A common device context is used for drawing in the client area of the window. The 
system provides a common device context by default for any window whose window 
class does not explicitly specify a display device context style. Common device contexts 
are typically used with windows that can be drawn without extensive changes to the 
device context attributes. Common device contexts are convenient because they do not 
require additional memory or system resources, but they can be inconvenient if the 
application must set up many attributes before using them. 

The system retrieves all common device contexts from the display device context cache. 
An application can retrieve a common device context immediately after the window is 
created. Because the common device context is from the cache, the application must 
always release the device context as soon as possible after drawing. After the common 
device context is released, it is no longer valid and the application must not attempt to 
draw with it. To draw again, the application must retrieve a new common device context, 
and continue to retrieve and release a common device context each time it draws in the 
window. If the application retrieves the device context handle by using the GetDC 
function, it must use the ReleaseDC function to release the handle. Similarly, for each 
BeginPaint function, the application must use a corresponding EndPaint function. 

When the application retrieves the device context, the system adjusts the origin so that it 
aligns with the upper-left corner of the client area. It also sets the clipping region so that 



508 Volume 3 Microsoft Windows GOI 

output to the device context is clipped to the client area. Any output that would otherwise 
appear outside the client area is clipped. If the application retrieves the common device 
context by using BeginPaint, the system also includes the update region in the clipping 
region to further restrict the output. 

When an application releases a common device context, the system restores the default 
values for the attributes of the device context. An application that modifies attribute 
values must do so each time it retrieves a common device context. Releasing the device 
context releases any drawing objects the application might have selected into it, so the 
application does not need to release these objects before releasing the device context. 
In all cases, an application must never assume that the common device context retains 
nondefault selections after being released. 

Private Display Device Contexts 
A private device context enables an application to avoid retrieving and initializing a 
display device context each time the application must draw in a window. Private device 
contexts are useful for windows that require many changes to the values of the attributes 
of the device context to prepare it for drawing. Private device contexts reduce the time 
required to prepare the device context and, therefore, the time needed to carry out 
drawing in the window. 

An application directs the system to create a private device context for a window by 
specifying the CS_OWNDC style in the window class. The system creates a unique 
private device context each time it creates a new window belonging to the class. Initially, 
the private device context has the same default values for attributes as a common 
device context, but the application can modify these at any time. The system preserves 
changes to the device context for the life of the window or until the application makes 
additional changes. 

An application can retrieve a handle to the private device context by using the GetDC 
function any time after the window is created. The application must retrieve the handle 
only once. Thereafter, it can keep and use the handle any number of times. Because a 
private device context is not part of the display device context cache, an application 
need never release the device context by using the ReleaseDC function. 

The system automatically adjusts the device context to reflect changes to the window, 
such as moving or sizing. This ensures that any overlapping windows are always 
properly clipped; that is, no action is required by the application to ensure clipping. 
However, the system does not revise the device context to include the update region. 
Therefore, when processing a WM_PAINT message, the application must incorporate 
the update region either by calling BeginPaint or retrieving the update region and 
intersecting it with the current clipping region. If the application does not call BeginPaint, 
it must explicitly validate the update region by using the ValidateRect or ValidateRgn 
function. If the application does not validate the update region, the window receives an 
endless series of WM_PAINT messages. 



Chapter 15 Painting and Drawing 509 

Because BeginPaint hides the caret if a window is showing it, an application that calls 
BeginPaint should also call the EndPaint function to restore the caret. EndPaint has no 
other effect on a private device context. 

Although a private device context is convenient to use, it is expensive in terms of system 
resources, requiring 800 or more bytes to store. Private device contexts are 
recommended when performance considerations outweigh storage costs. 

The system includes the private device context when sending the WM_ERASEBKGND 
message to the application. The current selections of the private device context, 
including mapping mode, are in effect when the application or the system processes 
these messages. To avoid undesirable effects, the system uses logical coordinates 
when erasing the background; for example, it uses the GetClipBox function to retrieve 
the logical coordinates of the area to erase and passes these coordinates to the FiliRect 
function. Applications that process these messages can use similar techniques. The 
system supplies a window device context with the WM_ICONERASEBKGND message 
regardless of whether the corresponding window has a private device context. 

An application can use the GetDCEx function to force the system to return a common 
device context for the window that has a private device context. This is useful for 
carrying'Qut quick touch-Ups to a window without changing the current values of the 
attributes of the private device context. 

Class Display Device Contexts 
By using a class device context, an application can use a single display device context 
for every window belonging to a specified class. Class device contexts are often used 
with control windows that are drawn using the same attribute values. Like private device 
contexts, class device contexts minimize the time required to prepare a device context 
for drawing. 

The system supplies a class device context for a window if it belongs to a window class 
having the CS_CLASSDC style. The system creates the device context when creating 
the first window belonging to the class and then uses the same device context for all 
subsequently created windows in the class. Initially, the class device context has the 
same default values for attributes as a common device context, but the application can 
modify these at any time. The system preserves all changes, except for the clipping 
region and device origin, until the last window in the class has been destroyed. A change 
made for one window applies to all windows in that class. 

An application can retrieve the handle for the class device context by using the GetDC 
function any time after the first window has been created. The application can keep and 
use the handle without releasing it because the class device context is not part of the 
display device context cache. If the application creates another window in the same 
window class, the application must retrieve the class device context again. Retrieving the 
device context sets the correct device origin and clipping region for the new window. 
After the application retrieves the class device context for a new window in the class, the 
device context can no longer be used to draw in the original window without again 



510 Volume 3 Microsoft Windows GOI 

retrieving it for that window. In general, each time it must draw in a window, an 
application must explicitly retrieve the class device context for the window. 

Applications that use class device contexts should always call BeginPaint when 
processing a WM_PAINT message. The function sets the correct device origin and 
clipping region for the window, and incorporates the update region. The application 
should also call EndPaint to restore the caret if BeginPaint hid it. EndPaint has no 
other effect on a class device context. 

The system passes the class device context when sending the WM_ERASEBKGND 
message to the application, permitting the current attribute values to affect any drawing 
carried out by the application or the system when processing this message. The system 
supplies a window device context with the WM_ICONERASEBKGND message 
regardless of whether the corresponding window has a class device context. As it could 
with a window having a private device context, an application can use GetDCEx to force 
the system to return a common device context for the window that has a class device 
context. 

Using class device contexts is not recommended. 

Window Display Device Contexts 
A window device context enables an application to draw anywhere in a window, 
including the nonclient area. Window device contexts are typically used by applications 
that process the WM_NCPAINT and WM_NCACTIVATE messages for windows with 
custom nonclient areas. Using a window device context is not recommended for any 
other purpose. 

An application can retrieve a window device context by using the GetWindowDC or 
GetDCEx function with the DCX_WINDOW option specified. The function retrieves a 
window device context from the display device context cache. A window that uses a 
window device context must release it after drawing by using the ReleaseDC function as 
soon as possible. Window device contexts are always from the cache; the CS_OWNDC 
and CS_CLASSDC class styles do not affect the device context. 

When an application retrieves a window device context, the system sets the device 
origin to the upper-left corner of the window instead of the upper-left corner of the client 
area. It also sets the clipping region to include the entire window, not just the client area. 
The system sets the current attribute values of a window device context to the same 
default values as a common device context. An application can change the attribute 
values, but the system does not preserve any changes when the device context is 
released. 

Parent Display Device Contexts 
A parent device context enables an application to minimize the time necessary to set up 
the clipping region for a window. An application typically uses parent device contexts to 
speed up drawing for control windows without requiring a private or class device context. 



Chapter 15 Painting and Drawing 511 

For example, the system uses parent device contexts for push-button and edit controls. 
Parent device contexts are intended for use with child windows only, never with top-level 
or pop-up windows. 

An application can specify the CS_PARENTDC style to set the clipping region of the 
child window to that of the parent window, so that the child can draw in the parent. 
Specifying CS_PARENTDC enhances an application's performance, because the 
system does not need to keep recalculating the visible region for each child window. 

Attribute values set by the parent window are not preserved for the child window; for 
example, the parent window cannot set the brush for its child windows. The only property 
preserved is the clipping region. The window must clip its own output to the limits of the 
window. Because the clipping region for the parent device context is identical to the 
parent window, the child window can potentially draw over the entire parent window, but 
the parent device context must not be used in this way. 

The system ignores the CS_PARENTDC style if the parent window uses a private or 
class device context, if the parent window clips its child windows, or if the child window 
clips its child windows or sibling windows. 

Window Update Lock 
A window update lock is a temporary suspension of drawing in a window. The system 
uses the lock to prevent other windows from drawing over the tracking rectangle 
whenever the user moves or sizes a window. Applications can use the lock to prevent 
drawing if they carry out similar moving or sizing operations with their own windows. 

An application uses the LockWindowUpdate function to set or clear a window update 
lock, specifying the window to lock. The lock applies to the specified window and all of its 
child windows. When the lock is set, the GetDC and BeginPaint functions return a 
display device context with a visible region that is empty. Given this, the application can 
continue to draw in the window, but all output is clipped. The lock persists until the 
application clears it by calling LockWindowUpdate, specifying NULL for the window. 
Although LockWindowUpdate forces a window's visible region to be empty, the function 
does not make the specified window invisible and does not clear the WS_ VISIBLE style 
bit. 

After the lock is set, the application can use the GetDCEx function, with the 
DCX_LOCKWINDOWUPDATE value, to retrieve a display device context to draw over 
the locked window. This allows the application to draw a tracking rectangle when 
processing keyboard or mouse messages. The system uses this method when the user 
moves and sizes windows. GetDCEx retrieves the display device context from the 
display device context cache, so the application must release the device context as soon 
as possible after drawing. 

While a window update lock is set, the system creates an accumulated bounding 
rectangle for each locked window. When the lock is cleared, the system uses this 
bounding rectangle to set the update region for the window and its child windows, forcing 



512 Volume 3 Microsoft Windows GOI 

an eventual WM_PAINT message. If the accumulated bounding rectangle is empty (that 
is, if no drawing has occurred while the lock was set), the update region is not set. 

Accumulated Bounding Rectangle 
The accumulated bounding rectangle is the smallest rectangle enclosing the portion of a 
window or client area affected by recent drawing operations. An application can use this 
rectangle to determine conveniently the extent of changes caused by drawing 
operations. It is sometimes used in conjunction with LockWindowUpdate to determine 
which portion of the client area must be redrawn after the update lock is cleared. 

An application uses the SetBoundsRect function (specifying DCB_ENABLE) to begin 
accumulating the bounding rectangle. The system subsequently accumulates points for 
the bounding rectangle as the application uses the specified display device context. The 
application can retrieve the current bounding rectangle at any time by using the 
GetBoundsRect function. The application stops the accumulation by calling 
SetBoundsRect again, specifying the DCB_DISABLE value. 

Painting and Drawing Reference 

Painting and Drawing Functions 

BeginPaint 
The BeginPaint function prepares the specified window for painting and fills a 
PAINTSTRUCT structure with information about the painting. 

Parameters 
hwnd 

[in] Handie to the window to be repainted. 

IpPaint 
[out] Pointer to the PAINTSTRUCT structure that will receive painting information. 

Return Values 
If the function succeeds, the return value is the handle to a display device context for the 
specified window. 



Chapter 15 Painting and Drawing 513 

If the function fails, the return value is NULL, indicating that no display device context is 
available. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The BeginPaint function automatically sets the clipping region of the device context to 
exclude any area outside the update region. The update region is set by the 
InvalidateRect or InvalidateRgn function and by the system after sizing, moving, 
creating, scrolling, or any other operation that affects the client area. If the update region 
is marked for erasing, BeginPaint sends a WM_ERASEBKGND message to the 
window. 

An application should not call BeginPaint except in response to a WM_PAINT message. 
Each call to BeginPaint must have a corresponding call to the EndPaint function. 

If the caret is in the area to be painted, BeginPaint automatically hides the caret to 
prevent it from being erased. 

If the window's class has a background brush, BeginPaint uses that brush to erase the 
background of the update region before returning. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, EndPaint, 
InvalidateRect, InvalidateRgn, PAINTSTRUCT, ValidateRect, ValidateRgn 

DrawAnimatedRects 
The DrawAnimatedRects function draws a wire-frame rectangle and animates it to 
indicate the opening of an icon or the minimizing or maximizing of a window. 

B(),~K iWl NAP Ii • DraWAn i lIlatedReets( 
HWrtPhwn~,' . t/ na;1Jdletocl i ppi ng window 

·in1;~·iC')\nf.: ...•.. ,........ Il:typepfantmatron 
·CO~S.TR~CT.*7prC;From. /I rectangle coordinates 
CO~S.T ;R~CT*''prI';To rectangle cqordiniltes 

).~ 



514 Volume 3 Microsoft Windows GOI 

Parameters 
hwnd 

[in] Handle to the window to which the rectangle is clipped. If this parameter is NULL, 
the working area of the screen is used. 

idAni 
[in] Specifies the type of animation. If you specify IDANLCAPTION, the window 
caption will animate from the position specified by IprcFrom to the position specified 
by IprcTo. The effect is similar to minimizing or maximizing a window. 

IprcFrom 
[in] Pointer to a RECT structure specifying the location and size of the icon or 
minimized window. Coordinates are relative to the rectangle specified by the IprcClip 
parameter. 

IprcTo 
[in] Pointer to a RECT structure specifying the location and size of the restored 
window. Coordinates are relative to the rectangle specified by the IprcClip parameter. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, RECT 

DrawCaption 



Parameters 
hwnd 

Chapter 15 Painting and Drawing 515 

[in] Handle to a window that supplies text and an icon for the window caption. 

hde 
[in] Handle to a device context. The function draws the window caption into this device 
context. 

Ipre 
[in] Pointer to a RECT structure that specifies the bounding rectangle for the window 
caption. 

uFlags 
[in] Specifies drawing options. This parameter can be zero or more of the following 
values: 

Value Meaning 

DC_ACTIVE 

DC_GRADIENT 

DC_ICON 

DC_INBUTTON 

DC_SMALLCAP 

The function uses the colors that denote an active caption. 

Windows 98, Windows 2000: When this flag is set, the 
function uses COLOR_GRADIENTACTIVECAPTION (if the 
DC_ACTIVE flag was. set) or 
COLOR_GRADIENTINACTIVECAPTION for the title-bar 
color. 

If this flag is not set, the function uses 
COLOR_ACTIVECAPTION or COLOR_INACTIVECAPTION 
for both colors. 

The function draws the icon when drawing the caption text. 

The function draws the caption as a button. 

The function draws a small caption, using the current small 
caption font. 

The function draws the caption text when drawing the caption. 

If DC_SMALLCAP is specified, the function draws a normal window caption. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



516 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, RECT 

DrawEdge 
The DrawEdge function draws one or more edges of rectangle. 

Parameters 
hdc 

[in] Handle to the device context. 

qrc 
[in/out] Pointer to a RECT structure that contains the logical coordinates of the 
rectangle. 

edge 
[in] Specifies the type of inner and outer edges to draw. This parameter must be a 
combination of one inner-border flag and one outer-border flag. The inner-border flags 
are as follows: 

Value Meaning 

BDR_RAISEDINNER 

BDR_SUNKENINNER 

Raised inner edge 

Sunken inner edge 

The outer-border flags are as follows: 

Value Meaning 

BDR_RAISEDOUTER 

BDR_SUNKENOUTER 

Raised outer edge 

Sunken outer edge 



Chapter 15 Painting and Drawing 517 

Alternatively, the edge parameter can specify one of the following flags: 

Value 

grfFlags 

Meaning 

Combination of BDR_RAISEDOUTER and 
BDR_SUNKENINNER 

Combination of BDR_SUNKENOUTER and 
BDR_RAISEDINNER 

Combination of BDR_RAISEDOUTER and 
BDR_RAISEDINNER 

Combination of BDR_SUNKENOUTER and 
BDR_SUNKENINNER 

[in] Specifies the type of border. This parameter can be a combination of the following 
values: 

Value Meaning 

BF_BOTTOM 

BF _BOTTOM LEFT 

BF _BOTTOMRIGHT 

BF _DIAGONAL 

BF _DIAGONAL_ENDBOTTOMLEFT 

BF _DIAGONAL_ENDBOTTOMRIGHT 

BF_FLAT 

BF_LEFT 

BF_MIDDLE 

BF_MONO 

BF_RECT 

BF_RIGHT 

Rectangle to be adjusted to leave space 
for client area. 

Bottom of border rectangle. 

Bottom and left side of border rectangle. 

Bottom and right side of border rectangle. 

Diagonal border. 

Diagonal border. The end point is the 
bottom-left corner of the rectangle; the 
origin is the top-right corner. 

Diagonal border. The end point is the 
bottom-right corner of the rectangle; the 
origin is the top-left corner. 

Diagonal border. The end point is the top
left corner of the rectangle; the origin is 
the bottom-right corner. 

Diagonal border. The end point is the top
right corner of the rectangle; the origin is 
the bottom-left corner. 

Flat border. 

Left side of border rectangle. 

Interior of rectangle to be filled. 

One-dimensional border. 

Entire border rectangle. 

Right side of border rectangle. 

(continued) 



518 Volume 3 Microsoft Windows GOI 

(continued) 

Value 

SF_SOFT 

SF_TOP 

SF_TOPLEFT 

SF _ TOPRIGHT 

Return Values 

Meaning 

Soft buttons instead of tiles. 

Top of border rectangle. 

Top and left side of border rectangle. 

Top and right side of border rectangle. 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, RECT 

DrawFocusRect 
The DrawFocusRect function draws a rectangle in the style used to indicate that the 
rectangle has the focus . 

. 80.0L:.'·:O~·.wFo¢us~Re¢t·( '/'1', , '. .) 

:.' HdCboq~/ >. . .. :lIh~ndJ~fci"de~ice '~ont~xt'" 
. Gpnr RECT,*] pfc. '11:1og1 C~l coord1 natl!~~:' 

)i .' 
Parameters 
hOC 

[in] Handle to the device context. 

/prc 

", ". 
: ~ . 

[in] Pointer to a RECT structure that specifies the logical coordinates of the rectangle. 



Chapter 15 Painting and Drawing 519 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
Because DrawFocusRect is an XOR function, calling it a second time with the same 
rectangle removes the rectangle from the screen. 

This function draws a rectangle that cannot be scrolled. To scroll an area containing a 
rectangle drawn by this function, call DrawFocusRect to remove the rectangle from the 
screen, scroll the area, and then call DrawFocusRect again to draw the rectangle in the 
new position. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, FrameRect, RECT 

DrawFrameControl 
The DrawFrameControl function draws a frame control of the specified type and style. 

Parameters 
hde 

[in] Handle to the device context of the window in which to draw the control. 

Ipre 
[in] Pointer to a RECT structure that contains the logical coordinates of the bounding 
rectangle for frame control. 



520 Volume 3 Microsoft Windows GOI 

uType 
[in] Specifies the type of frame control to draw. This parameter can be one of the 
following values: 

Value Meaning 

DFC_BUTTON 

DFC_CAPTION 

DCF_MENU 

DFC_POPUPMENU 

DFC_SCROLL 

uState 

Standard button 

Title bar 

Menu bar 

Windows 98, Windows 2000: Pop-up menu item 

Scroll bar 

[in] Specifies the initial state of the frame control. If uType is DFC_BUTTON, uState 
can be one of the following values: 

Value Meaning 

DFCS_BUTTON3STATE 

DFCS_BUTTONCHECK 

DFCS_BUTTONPUSH 

DFCS_BUTTONRADIO 

DFCS_BUTTONRADIOIMAGE 

DFCS_BUTTONRADIOMASK 

Three-state button 

Check box 

Push button 

Radio button 

Image for radio button (nonsquare needs image) 

Mask for radio button (nonsquare needs mask) 

If uType is DFC_CAPTION, uState can be one of the following values: 

Value 

DFCS_CAPTIONCLOSE 

DFCS_CAPTIONHELP 

DFCS_CAPTIONMAX 

DFCS_CAPTIONMIN 

DFCS_CAPTIONRESTORE 

Meaning 

Close button 

Help button 

Maximize button 

Minimize button 

Restore button 

if uType is DFC_MHJU, uState can be one of the following values: 

Value 

DFCS_MENUARROW 

DFCS_MENUARROWRIGHT 

DFCS_MENUBULLET 

DFCS_MENUCHECK 

Meaning 

Submenu arrow 

Submenu arrow pointing left. This is used for the 
right-to-Ieft cascading menus used with right-to
left languages, such as Arabic or Hebrew 

Bullet 

Check mark 



Chapter 15 Painting and Drawing 521 

If uType is DFC_SCROLL, uState can be one of the following values: 

Value 

DFCS_SCROLLCOMBOBOX 

DFCS_SCROLLDOWN 

DFCS_SCROLLLEFT 

DFCS_SCROLLRIGHT 

DFCS_SCROLLSIZEGRIP 

DFCS_SCROLLSIZEGRIPRIGHT 

DFCS_SCROLLUP 

Meaning 

Combo-box scroll bar 

Down arrow of scroll bar 

Left arrow of scroll bar 

Right arrow of scroll bar 

Size grip in bottom-right corner of window 

Size grip in bottom-left corner of window. This 
is used with right-to-Ieft languages such as 
Arabic or Hebrew 

Up arrow of scroll bar 

The following style can be used to adjust the bounding rectangle of the push button: 

Value 

DFCS_ADJUSTRECT 

Meaning 

Bounding rectangle is adjusted to exclude the 
surrounding edge of the push button 

One or more of the following values can be used to set the state of the control to be 
drawn: 

Value 

DFCS_CHECKED 

DFCS_FLAT 

DFCS_HOT 

DFCS_INACTIVE 

DFCS_MONO 

DFCS_PUSHED 

DFCS_TRANSPARENT 

Return Values 

Meaning 

Button is checked 

Button has a flat border 

Windows 98, Windows 2000: Button is 
hot-tracked 

Button is inactive (appears dimmed) 

Button has a monochrome border 

Button is pushed 

Windows 98, Windows 2000: The background 
remains untouched 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
If uType is either DFC_MENU or DFC_BUTTON, and uState is not 
DFCS_BUTTONPUSH, the frame control is a black-an-white mask (that is, a black frame 



522 Volume 3 Microsoft Windows GOI 

control on a white background). In such cases, the application must pass a handle to a 
bitmap memory device control. The application can then use the associated bitmap as 
the hbmMask parameter to the MaskBlt function, or it can use the device context as a 
parameter to the BitBlt function using ROPs, such as SRCAND and SRCINVERT. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, RECT 

DrawState 
The DrawState function displays an image and applies a visual effect to indicate a state, 
such as a disabled or default state. 

Parameters 
hdc 

Ijini~'~e heh1ht , 
Ili.ma~etyp·e and state. 

[in] Handle to the device context in which to draw. 

hbr 
[in] Handle to the brush used to draw the image, if the state specified by the fuFlags 
parameter is DSS_MONO. This parameter is ignored for other states. 

IpOutputFunc 
[in] Pointer to an application-defined callback function used to render the image. This 
parameter is required if the image type in fuFlags is DST _COMPLEX. It is optional 
and can be NULL if the image type is DST _TEXT. For all other image types, this 



Chapter 15 Painting and Drawing 523 

parameter is ignored. For more information about the callback function, see the 
DrawStateProc function. 

IData 
[in] Specifies information about the image. The meaning of this parameter depends on 
the image type. 

wData 

x 

y 

ex 

ey 

[in] Specifies information about the image. The meaning of this parameter depends on 
the image type. It is, however, zero extended for use with the DrawStateProc 
function. 

[in] Specifies the horizontal location at which to draw the image. 

[in] Specifies the vertical location at which to draw the image. 

[in] Specifies the width of the image, in device units. This parameter is required if the 
image type is DST _COMPLEX. Otherwise, it can be zero to calculate the width of the 
image. 

[in] Specifies the height of the image, in device units. This parameter is required if the 
image type is DST _COMPLEX. Otherwise, it can be zero to calculate the height of the 
image. 

fuFlags 
[in] Specifies the image type and state. This parameter can be one of the following 
type values: 

Value (type) Meaning 

The image is a bitmap. The low-order word of the IData 
parameter is the bitmap handle. 

The image is application defined. To render the image, 
DrawState calls the callback function specified by the 
IpOutputFune parameter. 

The image is an icon. The low-order word of IData is the 
icon handle. 

The image is text that can contain an accelerator 
mnemonic. DrawState interprets the ampersand (&) prefix 
character as a directive to underscore the character that 
follows. The IData parameter is a pointer to the string, and 
the wData parameter specifies the length. If wData is zero, 
the string must be nUll-terminated. 

The image is text. The IData parameter is a pointer to the 
string, and the wData parameter specifies the length. If 
wData is zero, the string must be null-terminated. 



524 Volume 3 Microsoft Windows GOI 

This parameter can be also one of the following state values: 

Value (state) Meaning 

DSS_DISABLED 

DSS_HIDEPREFIX 

DSS_NORMAL 

DSS_PREFIXONL Y 

DSS_RIGHT 

DSS_UNION 

Embosses the image. 

Windows 2000: Ignores the ampersand (&) prefix 
character in the text; thus, the letter that follows will not be 
underlined. This must be used with DST _PREFIXTEXT. 

Draws the image using the brush specified by the hbr 
parameter. 

Draws the image without any modification. 

Windows 2000: Draws only the underline at the position of 
the letter after the ampersand (&) prefix character. No text 
in the string is drawn. This must be used with 
DST _PREFIXTEXT. 

Aligns the text to the right. 

Dithers the image. 

For all states, except DSS_NORMAL, the image is converted to monochrome before 
the visual effect is applied. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Painting and Drawing Overview, Painting and Drawing Functions, DrawStateProc 



Chapter 15 Painting and Drawing 525 

DrawStateProc 
The DrawStateProc function is an application-defined callback function that renders a 
complex image for the DrawState function. The DRAWSTATEPROC type defines a 
pointer to this callback function. DrawStateProc is a placeholder for the application
defined function name. 

Parameters 
hde 

[in] Handle to the device context to draw in. The device context is a memory device 
context with a bitmap selected, the dimensions of which are at least as great as those 
specified by the ex and ey parameters. 

IData 
[in] Specifies information about the image, which the application passed to 
DrawState. 

wData 

ex 

ey 

[in] Specifies information about the image, which the application passed to 
DrawState. 

[in] Specifies the image width, in device units, as specified by the call to DrawState. 

[in] Specifies the image height, in device units, as specified by the call to DrawState. 

Return Values 
If the function succeeds, the return value is TRUE. 

If the function fails, the return value is FALSE. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Painting and Drawing Overview, Painting and Drawing Functions, DrawState 



526 Volume 3 Microsoft Windows GOI 

EndPaint 
The EndPaint function marks the end of painting in the specified window. This function 
is required for each call to the BeginPaint function, but only after painting is complete. 

Parameters 
hWnd 

[in] Handle to the window that has been repainted. 

IpPaint 
[in] Pointer to a PAINTSTRUCT structure that contains the painting information 
retrieved by BeginPaint. 

Return Values 
The return value is always nonzero. 

Remarks 
If the caret was hidden by BeginPaint, EndPaint restores the caret to the screen. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint, 
PAINTSTRUCT 

ExcludeUpdateRgn 
The ExcludeUpdateRgn function prevents drawing within invalid areas of a window by 
excluding an updated region in the window from a clipping region. 

irit E)(clitdiUpdate:Rgn( 

): 

HDC flOC; 
ItWNOhWnd 



Parameters 
hOC 

Chapter 15 Painting and Drawing 527 

[in] Handle to the device context associated with the clipping region. 

hWnd 
[in] Handle to the window to update. 

Return Values 
The return value specifies the complexity of the excluded region; it can be anyone of the 
following values: 

Value 

COMPLEXREGION 

ERROR 

NULLREGION 

SIMPLEREGION 

Meaning 

Region consists of more than one rectangle. 

An error occurred. 

Region is empty. 

Region is a single rectangle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint, 
GetUpdateRect, GetUpdateRgn, UpdateWindow 

GdiFlush 
The GdiFlush function flushes the calling thread's current batch. 

BOOI.;..G4tFlush(VOID) 

Parameters 
This function has no parameters. 

Return Values 
If all functions in the current batch succeed, the return value is nonzero. 

If not all functions in the current batch succeed, the return value is zero, indicating that at 
least one function returned an error. 



528 Volume 3 Microsoft Windows GOI 

Remarks 
Batching enhances drawing performance by minimizing the amount of time needed to 
call GDI drawing functions that return Boolean values. The system accumulates the 
parameters for calls to these functions in the current batch, and then calls the functions 
when the batch is flushed by any of the following means: 

• Calling the GdiFlush function. 

• Reaching or exceeding the batch limit set by the GdiSetBatchLimit function. 

• Filling the batching buffers. 

• Calling any GDI function that does not return a Boolean value. 

The return value for GdiFlush applies only to the functions in the batch at the time 
GdiFlush is called. Errors that occur when the batch is flushed by any other means are 
never reported. 

The GdiGetBatchLimit function returns the batch limit. 

Note The batch limit is maintained for each thread separately. In order to completely 
disable batching, call GdiSetBatchLimit(1) during the initialization of each thread. 

An application should call GdiFlush before a thread goes away if there is a possibility 
that there are pending function calls in the graphics batch queue. The system does not 
execute such batched functions when a thread goes away. 

A multithreaded application that serializes access to GDI objects with a mutex must 
ensure flushing the GDI batch queue by calling GdiFlush as each thread releases 
ownership of the GDI object. This prevents collisions of the GDI objects (device contexts, 
metafiles, and so on). 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, GdiGetBatchLimit, 
GdiSetBatchLimit 



Chapter 15 Painting and Drawing 529 

GdiGetBatchLimit 
The GdiGetBatchLimit function returns the maximum number of function calls that can 
be accumulated in the calling thread's current batch. The system flushes the current 
batch whenever this limit is exceeded. 

nWORD Gd1GftBatchL1m1t(VOID): 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is the batch limit. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The batch limit is set by using the GdiSetBatchLimit function. Setting the limit to 1 
effectively disables batching. 

Only GDI drawing functions that return Boolean values can be batched; calls to any 
other GDI functions immediately flush the current batch. Exceeding the batch limit or 
calling the GdiFlush function also flushes the current batch. 

When the system batches a function call, the function returns TRUE. The actual return 
value for the function is reported only if GdiFlush is used to flush the batch. 

Note The batch limit is maintained for each thread separately. In order to completely 
disable batching, call GdiSetBatchLimit(1) during the initialization of each thread. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Painting and Drawing Overview, Painting and Drawing Functions, GdiFlush, 
GdiSetBatchLimit 



530 Volume 3 Microsoft Windows GOI 

GdiSetBatchLimit 
The GdiSetBatchLimit function sets the maximum number of functions that can be 
accumulated in the calling thread's current batch. The system flushes the current batch 
whenever this limit is exceeded. 

Parameters 
dwLimit 

[in] Specifies the batch limit to be set. A value of a sets the default limit. A value of 1 
disables batching. 

Return Values 
If the function succeeds, the return value is the previous batch limit. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
Only GDI drawing functions that return Boolean values can be accumulated in the 
current batch; calls to any other GDI functions immediately flush the current batch. 
Exceeding the batch limit or calling the GdiFlush function also flushes the current batch. 

When the system accumulates a function, the function returns TRUE to indicate it is in 
the batch. When the system flushes the current batch and executes the function for the 
second time, the return value is either TRUE or FALSE, depending on whether the 
function succeeds. This second return value is reported only if GdiFlush is used to flush 
the batch. 

Note The batch limit is maintained for each thread separately. In order to completely 
disable batching, call GdiSetBatchLimit(1) during the initialization of each thread. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



Chapter 15 Painting and Drawing 531 

Painting and Drawing Overview, Painting and Drawing Functions, GdiFlush, 
GdiGetBatchLimit 

GetBkColor 
The GetBkColor function returns the current background color for the specified device 
context. 

~~~~~ej1~~!h:t~\t~~~i .~~·c~hteki .. ' 

Parameters
hdc

[in] Handle to the device context whose background color is to be returned.

Return Values
If the function succeeds, the return value is a COLOR REF value for the current
background color.

If the function fails, the return value is CLR_INVALID.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

>c •• 1." ,"

Painting and Drawing Overview, Painting and Drawing Functions, COLORREF,
GetBkMode, SetBkColor

GetBkMode

," "
':",.'''::

The GetBkMode function returns the current background mix mode for a specified
device context. The background mix mode of a device context affects text, hatched
brushes, and pen styles that are not solid lines.

't~t'Get'.kMode(J '
: :'iHbC'hdc', ' '{handle t(j' diw1:te,'Corit'ext

532 Volume 3 Microsoft Windows GOI

Parameters
hdc

[in] Handle to the device context whose background mode is to be returned.

Return Values
If the function succeeds, the return value specifies the current background mix mode,
either OPAQUE or TRANSPARENT.

If the function fails, the return value is zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, GetBkColor,
SetBkMode

GetBoundsRect
The GetBoundsRect function obtains the current accumulated bounding rectangle for a
specified device context.

The system maintains an accumulated bounding rectangle for each application. An
application can retrieve and set this rectangle.

;U~1$;;:i·
):' 'j ,'.

Parameters
hdc

[in] Handle to the device context whose bounding rectangle the function will return.

IprcBounds
[out] Pointer to the RECT structure that will receive the current bounding rectangle.
The application's rectangle is returned in logical coordinates, and the bounding
rectangle is returned in screen coordinates.

Chapter 15 Painting and Drawing 533

flags
[in] Specifies how the GetBoundsRect function will behave. This parameter can be
the following value:

Value

Return Values

Meaning

Clears the bounding rectangle after returning it. If this flag is not
set, the bounding rectangle will not be cleared.

The return value specifies the state of the accumulated bounding rectangle; it can be
one of the following values:

Value Meaning

o
DCB_DISABLE

DCB_ENABLE

DCB_RESET

DCB_SET

Remarks

An error occurred. The specified device context handle is invalid.

Boundary accumulation is off.

Boundary accumulation is on.

The bounding rectangle is empty.

The bounding rectangle is not empty.

The DCB_SET value is a combination of the bit values DCB_ACCUMULATE and
DCB_RESET. Applications that check the DCB_RESET bit to determine whether the
bounding rectangle is empty must also check the DCB_ACCUMULATE bit. The
bounding rectangle is empty only if the DCB_RESET bit is 1 and the
DCB_ACCUMULATE bit is O.

1t1tJit:i~"tits'

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

,'\AIS~::~.' \
Painting and Drawing Overview, Painting and Drawing Functions, SetBoundsRect

GetROP2
The GetROP2 function retrieves the foreground mix mode of the specified device
context. The mix mode specifies how the pen or interior color and the color already on
the screen are combined to yield a new color.

534 Volume 3 Microsoft Windows GOI

Parameters
hdc

[in] Handle to the device context.

Return Values
If the function succeeds, the return value specifies the foreground mix mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Following are the foreground mix modes:

Mix mode

R2_BLACK

R2_COPYPEN

R2_MASKNOTPEN

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MERGEPENNOT

R2_NOP

R2_NOT

R2_NOTCOPYPEN

R2_NOTMASKPEN

R2_NOTMERGEPEN

R2_NOTXORPEN

R2_WHITE

R2_XORPEN

Description

Pixel is always O.

Pixel is the pen color.

Pixel is a combination of the colors common to both the
screen and the inverse of the pen.

Pixel is a combination of the colors common to both the
pen and the screen.

Pixel is a combination of the colors common to both the
pen and the inverse of the screen.

Pixel is a combination of the screen color and the inverse
of the pen color.

Pixel is a combination of the pen color and the screen
color.

Pixel is a combination of the pen color and the inverse of
the screen color.

Pixel remains unchanged.

Pixel is the inverse of the screen color.

Pixel is the inverse of the pen color.

Pixel is the inverse of the R2_MASKPEN color.

Pixel is the inverse of the R2_MERGEPEN color.

Pixel is the inverse of the R2_XORPEN color.

Pixel is always 1 .

Pixel is a combination of the colors in the pen and in the
screen, but not in both.

Chapter 15 Painting and Drawing 535

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, SetROP2

GetUpdateRect
The GetUpdateRect function retrieves the coordinates of the smallest rectangle that
completely encloses the update region of the specified window. If the window was
created with the CS_OWNDC style and the mapping mode is not MM_ TEXT,
GetUpdateRect retrieves the rectangle in logical coordinates. Otherwise, it retrieves the
rectangle in client coordinates. If there is no update region, GetUpdateRect retrieves an
empty rectangle (sets all coordinates to zero).

~!;ij~~~G~:~!~'"~6"~:~;.t{~t~d~~;· , , . -.
;·:.~P'Jt;£€t" . ct:.:, If llpd'll~e /"ectal'lgH! coordfnates .

• ',;'):.;".::.l;~, •. :.:.~O",',;;~./p~y, ,:t)"'d!::t;l~;~i~·~~7)·~1i~.¥~~· >: ':,,: " :,' .':.
. '. ,i' ..," . ~"". <

Parameters
hWnd

[in] Handle to the window with an update region that is to be retrieved.

IpRect

",.;.

[out] Pointer to the RECT structure that receives the coordinates of the enclosing
rectangle.

An application can set this parameter to NULL to determine whether an update region
exists for the window. If this parameter is NULL, GetUpdateRect returns nonzero if
an update region exists, and zero if one does not. This provides a simple and efficient
means of determining whether a WM_PAINT message resulted from an invalid area.

bErase
[in] Specifies whether the background in the update region is to be erased. If this
parameter is TRUE and the update region is not empty, GetUpdateRect sends a
WM_ERASEBKGND message to the specified window to erase the background.

Return Values
If the update region is not empty, the return value is nonzero.

536 Volume 3 Microsoft Windows GOI

If there is no update region, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The update rectangle retrieved by the BeginPaint function is identical to that retrieved
by GetUpdateRect.

BeginPaint automatically validates the update region, so any call to GetUpdateRect
made immediately after the call to BeginPaint retrieves an empty update region.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint,
GetUpdateRgn, InvalidateRect, RECT, UpdateWindow, ValidateRect

GetUpdateRgn
The GetUpdateRgn function retrieves the update region of a window by copying it into
the specified region. The coordinates of the update region are relative to the upper-left
corner of the window (that is, they are client coordinates).

Parameters
hWnd

[in] Handle to the window with an update region that is to be retrieved.

hRgn
[in] Handle to the region to receive the update region.

bErase
[in] Specifies whether the window background should be erased and whether
nonclient areas of child windows should be drawn. If this parameter is FALSE, no
drawing is done.

Chapter 15 Painting and Drawing 537

Return Values
The return value indicates the complexity of the resulting region; it can be one of the
following values:

Value Meaning

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Remarks

Region consists of more than one rectangle.

An error occurred.

Region is empty.

Region is a single rectangle.

The BeginPaint function automatically validates the update region, so any call to
GetUpdateRgn made immediately after the call to BeginPaint retrieves an empty
update region.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

Painting and Drawing Overview, Painting and Drawing Functions

GetWindowDC
The GetWindowDC function retrieves the device context (DC) for the entire window,
including title bar, menus, and scroll bars. A window device context permits painting
anywhere in a window, because the origin of the device context is the upper-left corner
of the window instead of the client area.

GetWindowDC assigns default attributes to the window device context each time it
retrieves the device context. Previous attributes are lost.

."~,~:;'~~:9~~;t'ha~d;~:e·;··io·';;~~'~·d~~· ••. ;'· ...
:i;; t!;·<; ':;<'·':::>":~.~f;(· :{;~: .'~.; . ."C;~:J>,··"·

538 Volume 3 Microsoft Windows GOI

Parameters
hWnd

[in] Handle to the window with a device context that is to be retrieved. If this value is
NULL, GetWindowDC retrieves the device context for the entire screen.

Windows 98, Windows 2000: If this parameter is NULL, GetWindowDC retrieves
the device context for the primary display monitor. To get the device context for other
display monitors, use the EnumDisplayMonitors and CreateDC functions.

Return Values
If the function succeeds, the return value is a handle to a device context for the specified
window.

If the function fails, the return value is NULL, indicating an error or an invalid hWnd
parameter.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
GetWindowDC is intended for special painting effects within a window's nonclient area.
Painting in nonclient areas of any window is not recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of various parts
of the nonclient area, such as the title bar, menu, and scroll bars.

The GetDC function can be used to retrieve a device context for the entire screen.

After painting is complete, the ReleaseDC function must be called to release the device
context. Not releasing the window device context has serious effects on painting
requested by applications.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint, GetDC,
GetSystemMetrics, ReleaseDC

Chapter 15 Painting and Drawing 539

GetWindowRgn
The GetWindowRgn function obtains a copy of the window region of a window. The
window region of a window is set by calling the SetWindowRgn function. The window
region determines the area within the window where the system permits drawing. The
system does not display any portion of a window that lies outside of the window region

~~I'~i~:~~t~~~rifl~, .• t~';Wi~d~\¢""::">i.' ",:, .. '0: •...•. ','
" .,.H~.Q":ql:~q~ .1 I, ·,~~n~l:~ito.;~l nd~W~r~~+~h:.
):';<,: . ,.

Parameters
hWnd

[in] Handle to the window whose window region is to be obtained.

hRgn
[in] Receives a handle to the window region.

Return Values
The return value specifies the type of the region that the function obtains. It can be one
of the following values:

Value

NULLREGION

SIMPLEREGION

COMPLEXREGION

ERROR

Remarks

Meaning

The region is empty.

The region is a single rectangle.

The region is more than one rectangle.

An error occurred; the region is unaffected.

The coordinates of a window's window region are relative to the upper-left corner of the
window, not the client area of the window.

To set the window region of a window, call the SetWindowRgn function.

'I)ts

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
library: Use user32.lib.

540 Volume 3 Microsoft Windows GOI

Painting and Drawing Overview, Painting and Drawing Functions, SetWindowRgn

GrayString
The GrayString function draws shaded text at the specified location. The function draws
the text by copying it into a memory bitmap, shading the bitmap, and then copying the
bitmap to the screen. The function dims the text regardless of the selected brush and
background. GrayString uses the font currently selected for the specified device
context.

If the IpOutputFunc parameter is NULL, GDI uses the TextOut function, and the IpOata
parameter is assumed to be a pointer to the character string to be output. If the
characters to be output cannot be handled by TextOut (for example, the string is stored
as a bitmap), the application must supply its own output function.

BOO~GrayS;tph~(' ... '

':i~u~~t b~i~$h ;i·· ':' .. ~) ,~!~:~~ l~.:i~:;it~~_\
·GR;4.'fs.iRiMQIHioC Zp(Jui:pui:FU,!{;~ I (t;an~at;1(funtt't().rf; .

• I.PA!Wtlpl1~t,lI, .' . /l aRfrfl:C~1itj)n;';deft;recjcjata;
·ftrt')ltz~Ut1·i;: It: nUIIl,Qer '.~T'~·2tra:raHers;

". int'~;:; '11' h~r.lz~~ia(p(isi'tj on:;'
fnt y: . n 'vert i ca{'p.t>kitian .
ih,erl;'idtb,.ti:~fd~h ."

" :j;~t·. /'JJf}~Jf1I{t
).;,

Parameters
hOC

[in] Handle to the device context.

hBrush
[in] Handle to the brush to be used for dimming. If this parameter is NULL, the text is
dimmed with the same brush that was used to draw window text.

IpOutputFunc
[in] Pointer to the application-defined function that will draw the string, or, if TextOut is
to be used to draw the string, it is a NULL painter. For details, see the OutputProc
callback function.

IpOata
[in] Specifies a pointer to data to be passed to the output function. If the IpOutputFunc
parameter is NULL, IpOata must be a pointer to the string to be output.

Chapter 15 Painting and Drawing 541

nCount

X

y

[in] Specifies the number of characters to be output. If the nCount parameter is zero,
GrayString calculates the length of the string (assuming IpData is a pointer to the
string). If nCountis -1 and the function pointed to by IpOutputFunc returns FALSE,
the image is shown but does not appear dimmed.

[in] Specifies the device x-coordinate of the starting position of the rectangle that
encloses the string.

[in] Specifies the device y-coordinate of the starting position of the rectangle that
encloses the string.

nWidth
[in] Specifies the width, in device units, of the rectangle that encloses the string. If this
parameter is zero, GrayString calculates the width of the area, assuming IpData is a
pointer to the string.

nHeight
[in] Specifies the height, in device units, of the rectangle that encloses the string. If
this parameter is zero, GrayString calculates the height of the area, assuming IpData
is a pointer to the string.

Return Values
If the string is drawn, the return value is nonzero.

If either the TextOut function or the application-defined output function returned zero, or
there was insufficient memory to create a memory bitmap for dimming, the return value
is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Without calling GrayString, an application can draw dimmed strings on devices that
support a solid gray color. The system color COLOR_GRAYTEXT is the SOlid-gray
system color used to draw disabled text. The application can call the GetSysColor
function to retrieve the color value of COLOR_GRAYTEXT. If the color is other than zero
(black), the application can call the SetTextColor function to set the text color to the
color value and, then, draw the string directly. If the retrieved color is black, the
application must call GrayString to shade the text.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

542 Volume 3 Microsoft Windows GOI

Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Painting and Drawing Overview, Painting and Drawing Functions, o rawText ,
GetSysColor, OutputProc, SetTextColor, TabbedTextOut, TextOut

InvalidateRect
The InvalidateRect function adds a rectangle to the specified window's update region.
The update region represents the portion of the window's client area that must be
redrawn.

Parameters
hWnd

[in] Handle to the winclow whose update region has changed. If this parameter is
NULL, the system invalidates and redraws all windows, and sends the
WM_ERASEBKGND and WM_NCPAINT messages to the window procedure before
the function returns.

IpRect
[in] Pointer to a RECT structure that contains the client coordinates of the rectangle to
be added to the update region. If this parameter is NULL, the entire client area is
added to the update region.

bErase
[in] Specifies whether the background within the update region is to be erased when
the update region is processed. If this parameter is TRUE, the background is erased
when the BeginPaint function is called. If this parameter is FALSE, the background
remains unchanged.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Chapter 15 Painting and Drawing 543

Remarks
The invalidated areas accumulate in the update region until the region is processed
when the next WM_PAINT message occurs or until the region is validated by using the
ValidateRect or ValidateRgn function.

The system sends a WM_PAINT message to a window whenever its update region is
not empty and there are no other messages in the application queue for that window.

If the bErase parameter is TRUE for any part of the update region, the background is
erased in the entire region, not just in the specified part.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint,
InvalidateRgn, RECT, ValidateRect, ValidateRgn, WM_ERASEBKGND,
WM_NCPAINT, WM_PAINT

InvalidateRgn
The InvalidateRgn function invalidates the client area within the specified region by
adding it to the current update region of a window. The invalidated region, along with all
other areas in the update region, is marked for painting when the next WM_PAINT
message occurs.

Parameters
hWnd

[in] Handle to the window with an update region that is to be modified.

hRgn
[in] Handle to the region to be added to the update region. The region is assumed to
have client coordinates. If this parameter is NULL, the entire client area is added to
the update region.

544 Volume 3 Microsoft Windows GDI

bErase
[in] Specifies whether the background within the update region should be erased
when the update region is processed. If this parameter is TRUE, the background is
erased when the BeginPaint function is called. If the parameter is FALSE, the
background remains unchanged.

Return Values
The return value is always nonzero.

Remarks
Invalidated areas accumulate in the update region until the next WM_PAINT message is
processed, or until the region is validated by using the ValidateRect or ValidateRgn
function.

The system sends a WM_PAINT message to a window whenever its update region is
not empty and there are no other messages in the application queue for that window.

The specified region must have been created by using one of the region functions.

If the bErase parameter is TRUE for any part of the update region, the background in the
entire region is erased, not just in the specified part.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint,
InvalidateRect, ValidateRect, ValidateRgn, WM_PAINT

LockWindowUpdate
The LockWindowUpdate function disables or re-enables drawing in the specified
window. Only one window can be locked at a time.

Parameters
hWndLock

Chapter 15 Painting and Drawing 545

[in] Specifies the window in which drawing will be disabled. If this parameter is NULL,
drawing in the locked window is enabled.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero, indicating that an error occurred or another
window was already locked.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
If an application with a locked window (or any locked child windows) calls the GetDC,
GetDCEx, or BeginPaint function, the called function returns a device context with a
visible region that is empty. This will occur until the application unlocks the window by
calling LockWindowUpdate, specifying a value of NULL for hWndLock.

If an application attempts to draw within a locked window, the system records the extent
of the attempted operation in a bounding rectangle. When the window is unlocked, the
system invalidates the area within this bounding rectangle, forcing an eventual
WM_PAINT message to be sent to the previously locked window and its child windows.
If no drawing has occurred while the window updates were locked, no area is
invalidated.

LockWindowUpdate does not make the specified window invisible or clear the
WS_ VISIBLE style bit.

A locked window cannot be moved.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint, GetDC,
GetDCEx, WM_PAINT

546 Volume 3 Microsoft Windows GOI

OutputProc
The OutputProc function is an application-defined callback function used with the
GrayString function. It is used to draw a string. The GRAYSTRINGPROC type defines a
pOinter to this callback function. OutputProc is a placeholder for the application-defined
or library-defined function name.

Parameters
hdc

[in] Handle to a device context with a bitmap of at least the width and height specified
by the nWidth and nHeight parameters passed to GrayString.

IpData
[in] Pointer to the string to be drawn.

cchData
[in] Specifies the length, in characters, of the string.

Return Values
If it succeeds, the callback function should return TRUE.

If the function fails, the return value is FALSE.

Remarks
The callback function must draw an image relative to the coordinates (0,0).

.. :'

,

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Painting and Drawing Overview, Painting and Drawing Functions, GrayString

Chapter 15 Painting and Drawing 547

PaintDesktop
The PaintDesktop function fills the clipping region in the specified device context with
the desktop pattern or wallpaper. The function is provided primarily for shell desktops.

BO!)l'rJ'APl'.htntP(i!$ktop(.

. j;~~~~f~YiX.ti:~~~::;,,;to~ .
Parameters
hdc

[in] Handle to the device context.

Return Values
If the function succeeds, the return value is nonzero.

If the. function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions

RedrawWindow
The RedrawWindow function updates the specified rectangle or region in a window's
client area.

;mmL·tMQr:lt~dow(~,:; ,

~,Ji~~~:~~·,e;
HF:·· ,::~:::: :.;

548 Volume 3 Microsoft Windows GOI

Parameters
hWnd

[in] Handle to the window to be redrawn. If this parameter is NULL, the desktop
window is updated.

IprcUpdate
[in] Pointer to a RECT structure containing the coordinates of the update rectangle.
This parameter is ignored if the hrgnUpdate parameter identifies a region.

hrgnUpdate
[in] Handle to the update region. If both the hrgnUpdate and IprcUpdate parameters
are NULL, the entire client area is added to the update region.

flags
[in] Specifies one or more redraw flags. This parameter can be used to invalidate or
validate a window, control repainting, and control which windows are affected by
RedrawWindow.

The following flags are used to invalidate the window:

Flag (invalidation) Description

ROW _INTERNALPAINT

ROW_INVALIDATE

Causes the window to receive a WM_ERASEBKGND
message when the window is repainted. The
ROW_INVALIDATE flag must also be specified;
otherwise, ROW_ERASE has no effect.

Causes any part of the nonclient area of the window
that intersects the update region to receive a
WM_NCPAINT message. The ROW_INVALIDATE
flag must also be specified; otherwise, ROW_FRAME
has no effect. The WM_NCPAINT message typically
is not sent during the execution of RedrawWindow
unless either RDW_UPDATENOW or
RDW_ERASENOW is specified.

Causes a WM_PAINT message to be posted to the
window regardless of whether any portion of the
window is invalid.

Invalidates IprcUpdate or hrgnUpdate (only one may
be non-NULL). If both are NULL, the entire window is
invalidated.

The following flags are used to validate the window:

Flag (validation) Description

Suppresses any pending WM_ERASEBKGND
messages.

Chapter 15 Painting and Drawing 549

RDW_NOFRAME Suppresses any pending WM_NCPAINT messages.
This flag must be used with RDW_VALIDATE and is
typically used with RDW_NOCHILDREN.
RDW_NOFRAME should be used with care, as it
could cause parts of a window to be painted
improperly.

RDW_NOINTERNALPAINT Suppresses any pending internal WM_PAINT
messages. This flag does not affect WM_PAINT
messages resulting from a non-NULL update area.

RDW_ VALIDATE Validates IprcUpdate or hrgnUpdate (only one may be
non-NULL). If both are NULL, the entire window is
validated. This flag does not affect internal
WM_PAINT messages.

The following flags control when repainting occurs. RedrawWindow will not repaint
unless one of these flags is specified:

Flag Description

RDW_UPDATENOW

Causes the affected windows (as specified by the
RDW_ALLCHILDREN and RDW_NOCHILDREN
flags) to receive WMj'ICPAINT and
WM_ERASEBKGND messages, if necessary, before
the function returns. WM_PAINT messages are
received at the ordinary time.

Causes the affected windows (as specified by the
RDW_ALLCHILDREN and RDW_NOCHILDREN
flags) to receive WM_NCPAINT,
WM_ERASEBKGND, and WM_PAINT messages, if
necessary, before the function returns.

By default, the windows affected by RedrawWindow depend on whether the
specified window has the WS_CLlPCHILDREN style. Child windows that are not the
WS_CLlPCHILDREN style are unaffected; non-WS_CLlPCHILDREN windows are
validated or invalidated recursively until a WS_CLlPCHILDREN window is
encountered. The following flags control which windows are affected by the
RedrawWindow fUnction:

Flag Description

RDW_ALLCHILDREN

RDW_NOCHILDREN

Return Values

Includes child windows, if any, in the repainting
operation.

Excludes child windows, if any, from the repainting
operation.

If the function succeeds, the return value is nonzero.

550 Volume 3 Microsoft Windows GOI

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
When RedrawWindow is used to invalidate part of the desktop window, the desktop
window does not receive a WM_PAINT message. To repaint the desktop, an application
uses the RDW_ERASE flag to generate a WM_ERASEBKGND message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, GetUpdateRect,
GetUpdateRgn, InvalidateRect, InvalidateRgn, RECT, UpdateWindow

SetBkColor
The SetBkColor function sets the current background color to the specified color value,
or to the nearest physical color if the device cannot represent the specified color value.

~QL~flREf :$at8kCoi~r C" ., ">' ,

··Jille: h,d?:.~, " : .. l;I,· ~aa···."cl .. :~.· ... gl:, .. :tu:.On··dP .. _.' .•. rO·'l·.·, .. n .. ·,".:·· .. ' .. i.: ..• a:'~"l""'!.1' ··. '
):C~~:,RREFi (freol a{ IJ", 1'V .. ',";,~' ."

Parameters
hde

[in] Handle to the device context.

erGolor
[in] Specifies the new background color. To make a COLORREF value, use the RGB
macro.

Return Values
If the function succeeds, the return value specifies the previous background color as a
COLORREF value.

If the function fails, the return value is CLR_INVALID.

Windows NT/2000: To get extended error information, call GetLastError.

Chapter 15 Painting and Drawing 551

Remarks
This function fills the gaps between styled lines drawn using a pen created by the
CreatePen function; it does not fill the gaps between styled lines drawn using a pen
created by the ExtCreatePen function. The SetBKColor function also sets the
background colors for TextOut and ExtTextOut.

If the background mode is OPAQUE, the background color is used to fill gaps between
styled lines, gaps between hatched lines in brushes, and character cells. The
background color is used also when converting bitmaps from color to monochrome, and
vice versa.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, COLORREF,
CreatePen, ExtCreatePen, GetBKColor, GetBkMode, SetBkMode

SetBkMode
The SetBkMode function sets the background mix mode of the specified device context.
The background mix mode is used with text, hatched brushes, and pen styles that are
not solid lines.

i.Trt'S~t81t~ode(" , "
_;,bdc"" 1/~~JJgJ"LtQ QG

. int' iBJ<f<lO:de/ /1
) ~ ,

Parameters
hdc

[in] Handle to the device context.

iBkMode
[in] Specifies the background mode. This parameter can be one of the following
values:

Value Description

OPAQUE

TRANSPARENT

Background is filled with the current background color
before the text, hatched brush, or pen is drawn.

Background remains untouched.

552 Volume 3 Microsoft Windows GDI

Return Values
If the function succeeds, the return value specifies the previous background mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The SetBkMode function affects the line styles for lines drawn using a pen created by
the CreatePen function. SetBkMode does not affect lines drawn using a pen created by
the ExtCreatePen function.

The iBkMode parameter can also be set to driver-specific values. GDI passes such
values to the device driver and, otherwise, ignores them.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, CreatePen,
ExtCreatePen, GetBkMode

SetBoundsRect
The SetBoundsRect function controls the accumulation of bounding rectangle
information for the specified device context. The system can maintain a bounding
rectangle for all drawing operations. An application can examine and set this rectangle.
The drawing boundaries are useful for invalidating bitmap caches.

UIHT·· SetBoundsRect<
. HOC fldc.

COH§rR~CTi.~ 1 prcBoufld~.
UIH,.fl t/gs

) ;

Parameters
hdc

[in] Handle to the device context for which to accumulate bounding rectangles.

Chapter 15 Painting and Drawing 553

/prcBounds
[in] Pointer to a RECT structure used to set the bounding rectangle. Rectangle
dimensions are in logical coordinates. This parameter can be NULL.

flags
[in] Specifies how the new rectangle will be combined with the accumulated rectangle.
This parameter can be one of more of the following values:

Value Description

DCB_ACCUMULATE

DCB_DISABLE

DCB_ENABLE

Return Values

Adds the rectangle specified by the /prcBounds parameter
to the bounding rectangle (using a rectangle union
operation). Using both DCB_RESET and
DCB_ACCUMULATE sets the bounding rectangle to the
rectangle specified by the /prcBounds parameter.

Turns off boundary accumulation.

Turns on boundary accumulation, which is disabled by
default.

Clears the bounding rectangle.

If the function succeeds, the return value specifies the previous state of the bounding
rectangle. This state can be a combination of the following values:

Value

DCB_DISABLE

DCB_ENABLE

DCB_RESET

DCB_SET

Meaning

Boundary accumulation is off.

Boundary accumulation is on. DCB_ENABLE and
DCB_DISABLE are mutually exclusive.

Bounding rectangle is empty.

Bounding rectangle is not empty. DCB_SET and
DCB_RESET are mutually exclusive.

If the function fails, the return value is zero.

Windows NTl2000: To get extended error information, call GetLastError.

Remarks
The DCB_SET value is a combination of the bit values DCB_ACCUMULATE and
DCB_RESET. Applications that check the DCB_RESET bit to determine whether the
bounding rectangle is empty also must check the DCB_ACCUMULATE bit. The
bounding rectangle is empty only if the DCB_RESET bit is 1 and the
DCB_ACCUMULATE bit is O.

554 Volume 3 Microsoft Windows GDI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, GetBoundsRect,
RECT

SetROP2
The SetROP2 function sets the current foreground mix mode. GDI uses the foreground
mix mode to combine pens and interiors of filled objects with the colors already on the
screen. The foreground mix mode defines how colors from the brush or pen and the
colors in the existing image are to be combined.

1;rit Set RQP 2.(.'

HP~!.h~t~>~ ".
·nlt:fMi'it}JMod~

/:hbarHilet,9 .. JlC •. ' .'
'I, I'd rawjng o\odt!"

,): ': ;;/":,:, ~ >":"", '<~. ,
. . ' ~ . (.:.

Parameters
hdc

[in] Handle to the device context.

fnDrawMode
[in] Specifies the mix mode. This parameter can be one of the following values:

Mix mode

R2_BLACK

R2_COPYPEN

R2_MASKNOTPEN

R2_MASKPENNOT

R2_MERGENOTPEN

Description

Pixel is always O.

Pixel is the pen color.

Pixel is a combination of the colors common to both the
screen and the inverse of the pen.

Pixel is a combination of the colors common to both the
pen and the screen.

Pixel is a combination of the colors common to both the
pen and the inverse of the screen.

Pixel is a combination of the screen color and the inverse
of the pen color.

R2_MERGEPENNOT

R2_NOP

R2_NOT

R2_NOTCOPYPEN

R2_NOTMASKPEN

R2_NOTMERGEPEN

R2_NOTXORPEN

R2_WHITE

R2_XORPEN

Return Values

Chapter 15 Painting and Drawing 555

Pixel is a combination of the pen color and the screen
color.

Pixel is a combination of the pen color and the inverse of
the screen color.

Pixel remains unchanged.

Pixel is the inverse of the screen color.

Pixel is the inverse of the pen color.

Pixel is the inverse of the R2_MASKPEN color.

Pixel is the inverse of the R2_MERGEPEN color.

Pixel is the inverse of the R2_XORPEN color.

Pixel is always 1.

Pixel is a combination of the colors in the pen and in the
screen, but not in both.

If the function succeeds, the return value specifies the previous mix mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Mix modes define how GDI combines source and destination colors when drawing with
the current pen. The mix modes are binary raster operation codes, representing all
possible Boolean functions of two variables, using the binary operations AND, OR, and
XOR (exclusive OR), and the unary operation NOT. The mix mode is for raster devices
only; it is not available for vector devices.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, GetROP2

556 Volume 3 Microsoft Windows GOI

SetWindowRgn
The SetWindowRgn function sets the window region of a window. The window region
determines the area within the window where the system permits drawing. The system
does not display any portion of a window that lies outside of the window region.

Parameters
hWnd

[in] Handle to the window whose window region is to be set.

hRgn
[in] Handle to a region. The function sets the window region of the window to this
region.

If hRgn is NULL, the function sets the window region to NULL.

bRedraw
[in] Specifies whether the system redraws the window after setting the window region.
If bRedraw is TRUE, the system does so; otherwise, it does not.

Typically, you set bRedrawto TRUE if the window is visible.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
When this function is called, the system sends the WM_WINDOWPOSCHANGING and
WM_ WINDOWPOSCHANGED messages to the window.

The coordinates of a window's window region are relative to the upper-left corner of the
window, not the client area of the window.

After a successful call to SetWindowRgn, the system owns the region specified by the
region handle hRgn. The system does not make a copy of the region. Thus, you should
not make any further function calls with this region handle. In particular, do not delete
this region handle. The system deletes the region handle when it no longer needed.

To obtain the window region of a window, call the GetWindowRgn function.

Chapter 15 Painting and Drawing 557

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, GetWindowRgn,
WM_WINDOWPOSCHANGING

UpdateWindow
The UpdateWindow function updates the client area of the specified window by sending
a WM_PAINT message to the window if the window's update region is not empty. The
function sends a WM_PAINT message directly to the window procedure of the specified
window, bypassing the application queue. If the update region is empty, no message is
sent.

BllOt ;tJpdateW1nd:~.«> ..

);H!~N~~;~lllV'd~;;'. lt~~~I)~):~:to W4~U~; ..

Parameters
hWnd

[in] Handle to the window to be updated.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
WindowsCE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

558 Volume 3 Microsoft Windows GOI

Painting and Drawing Overview, Painting and Drawing Functions, ExcludeUpdateRgn,
GetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn, WM_PAINT

ValidateRect
The ValidateRect function validates the client area within a rectangle by removing the
rectangle from the update region of the specified window.

BOO~' Va l i da,teRect(
HIiINDhpjnd" II htUldlet0win(!<lw, "

, 'COcNST RE,CT *7p,kect U v a;l,1 dati on recta:~g're' co:6'rdi
h

Parameters
hWnd

[in] Handle to the window whose update region is to be modified. If this parameter is
NULL, the system invalidates and redraws all windows and sends the
WM_ERASEBKGND and WM_NCPAINT messages to the window procedure before
the function returns.

IpRect
[in] Pointer to a RECT structure that contains the client coordinates of the rectangle to
be removed from the update region. If this parameter is NULL, the entire client area is
removed.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The BeginPaint function automatically validates the entire client area. Neither the
ValidateRect nor the ValidateRgn function should be called if a portion of the update
region must be validated before the next WM_PAINT message is generated.

The system continues to generate WM_PAINT messages until the current update region
is validated.

Chapter 15 Painting and Drawing 559

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint,
I nvalidateRect , InvalidateRgn, RECT, ValidateRgn, WM_PAINT

ValidateRgn
The ValidateRgn function validates the client area within a region by removing the
region from the current update region of the specified window.

Parameters
hWnd

[in] Handle to the window whose update region is to be modified.

hRgn
[in] Handle to a region that defines the area to be removed from the update region. If
this parameter is NULL, the entire client area is removed.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The specified region must have been created by a region function. The region
coordinates are assumed to be client coordinates.

The BeginPaint function automatically validates the entire client area. Neither the
ValidateRect nor the ValidateRgn function should be called if a portion of the update
region must be validated before the next WM_PAINT message is generated.

560 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, BeginPaint,
ExcludeUpdateRgn, InvalidateRect, InvalidateRgn, ValidateRect, WM_PAINT

WindowFromDC
The WindowFromDC function returns a handle to the window associated with the
specified display device context (DC). Output functions that use the specified device
context draw into this window.

H~~·Wjn~Q~frolllJ)t(
. >HO(lh1)C,11

< - ,", - - -~"' ,- -" - .,. ,,' ~

) :,.'

Parameters
hOC

[in] Handle to the device context from which a handle for the associated window is to
be retrieved.

Return Values
The return value is a handle to the window associated with the specified DC. If no
window is associated with the specified DC, the return value is NULL.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Painting and Drawing Overview, Painting and Drawing Functions, GetDC, GetDCEx,
GetWindowDC

Chapter 15 Painting and Drawing 561

Painting and Drawing Structures

PAINTSTRUCT
The PAINTSTRUCT structure contains information for an application. This information
can be used to paint the client area of a window owned by that application.

Members
hde

._'"

':,\" ,'-

Handle to the display DC to be used for painting.

fErase
Specifies whether the background must be erased. This value is nonzero if the
application should erase the background. The application is responsible for erasing
the background if a window class is created without a background brush. For more
information, see the description of the hbrBaekground member of the WNDCLASS
structure.

rePaint
Specifies a RECT structure that specifies the upper-left and lower-right corners of the
rectangle in which the painting is requested.

fRestore
Reserved; used internally by the system.

flneUpdate
Reserved; used internally by the system.

rgbReserved
Reserved; used internally by the system.

,:
.:;. ':"-

Windows NT/2000: Requires Windows NT 3.1 or. later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

562 Volume 3 Microsoft Windows GOI

Painting and Drawing Overview, Painting and Drawing Structures, BeginPaint, RECT,
WNDCLASS

Painting and Drawing Messages

WM_DISPLA YCHANGE
The WM_DISPLAYCHANGE message is sent to all windows when the display
resolution has changed.

A window receives this message through its WindowProc function.

Parameters
wParam

Specifies the new image depth of the display, in bits per pixel.

IParam
The low-order word specifies the horizontal resolution of the screen.

The high-order word specifies the vertical resolution of the screen.

Remarks
This message is sent only to top-level windows. For all other windows, it is posted.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Painting and Drawing Overview, Painting and Drawing Messages, HIWORD, LOWORD

Chapter 15 Painting and Drawing 563

The WM_NCPAINT message is sent to a window when its frame must be painted.

A window receives this message through its WindowProc function.

lRE$UlTcCAt:lBACKW1 ndowProc(
· .• ·····H\IIN.Dhwf1G,

.. ··.il.llNl'/lM:s{/. ' .. " .

1:;~:~~;~;~~f~~:::'" .'
.)::.i·.· ••....••••... · •. ;;~; ' ..

Parameters
wParam

UhandTe. to window
h/WM....NCPAIWT

Handle to the update region of the window. The update region is clipped to the
window frame. When wParam is 1, the entire window frame needs to be updated.

IParam
This parameter is not used.

Return Values
An application returns zero if it processes this message.

Remarks
The DefWindowProc function paints the window frame.

An application can intercept the WM_NCPAINT message and paint its own custom
window frame. The clipping region for a window is always rectangular, even if the shape
of the frame is altered.

The wParam value can be passed to GetDCEx, as in the following example:

ca.s.,·. WMi..,.NC.PAI NT:

'., IfOChdCJ
fide = GetOCExOiwnd, (HRGN)wParam. OCUli I NOOW IDCLINTERSECTRGN);
11~p:aint.intoJ;hi sOC,:
RelEHI.seDC{ tTwnd, hde};

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

564 Volume 3 Microsoft Windows GOI

Painting and Drawing Overview, Painting and Drawing Messages, DefWindowProc,
GetDCEx, GetWindowDC, WM_PAINT

WM PAINT
The WM_PAINT message is sent when the system or another application makes a
request to paint a portion of an application's window. The message is sent when the
UpdateWindow or RedrawWindow function is called, or by the DispatchMessage
function when the application obtains a WM_PAINT message by using the GetMessage
or PeekMessage function.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the device context to draw in. If this parameter is NULL, use the default
device context. This parameter is used by some common controls to enable drawing
in a device context other than the default device context. Other windows can ignore
this parameter safely.

IParam
This parameter is not used.

Return Values
An application returns zero if it processes this message.

Remarks
The DefWindowProc function vaiidates the update region. The function may also send
the WM_NCPAINT message to the window procedure if the window frame must be
painted and send the WM_ERASEBKGND message if the window background must be
erased.

Chapter 15 Painting and Drawing 565

The system sends this message when there are no other messages in the application's
message queue. DlspatchMessage determines where to send the message;
GetMessage determines which message to dispatch. Get Message returns the
WM_PAINT message when there are no other messages in the application's message
queue, and DispatchMessage sends the message to the appropriate window
procedure.

A window may receive internal paint messages as a result of calling RedrawWindow
with the RDW_INTERNALPAINT flag set. In this case, the window may not have an
update region. An application should call the GetUpdateRect function to determine
whether the window has an update region. If GetUpdateRect returns zero, the
application should not call the BeginPaint and EndPaint functions.

An application must check for any necessary internal painting by looking at its internal
data structures for each WM_PAINT message, because a WM_PAINT message might
have been caused by both a non-NULL update region and a call to RedrawWindow with
the RDW_INTERNALPAINT flag set.

The system sends an internal WM_PAINT message only once. After an internal
WM_PAINT message is returned from GetMessage or PeekMessage or is sent to a
window by UpdateWindow, the system does not post or send further WM_PAINT
messages until the window is invalidated or until RedrawWindow is called again with
the RDW_INTERNALPAINT flag set.

For some common controls, the default WM_PAINT message proceSSing checks the
wParam parameter. If wParam is non-NULL, the control assumes that the value is an
HDC and paints using that device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Painting and Drawing Overview, Painting and Drawing Messages, BeginPaint,
DefWindowProc, DispatchMessage, EndPaint, GetMessage, GetUpdateRect,
PeekMessage, RedrawWindow, UpdateWindow, WM_ERASEBKGND,
WM_NCPAINT

566 Volume 3 Microsoft Windows GOI

The WM_PRINT message is sent to a window to request that it draw itself in the
specified device context, most commonly in a printer device context.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the device context in which to draw.

IParam
Specifies the drawing options. This parameter can be one or more of the following
values:

Value Meaning

PRF _CHECKVISIBLE

PRF _CHILDREN

PRF _CLIENT

PRF_ERASEBKGND

PRF _NONCLIENT

PRF_OWNED

Remarks

Draws the window only if it is visible.

Draws all visible children windows.

Draws the client area of the window.

Erases the background before drawing the window.

Draws the nonclient area of the window.

Draws all owned windows.

The DefWindowProc function processes this message based on which drawing option
is specified: if PRF _CHECKVISIBLE is specified and the window is not visible, do
nothing; if PRF _NONCLIENT is specified, draw the nonclient area in the specified device
context; if PRF _ERASEBKGND is specified, send the window a WM_ERASEBKGND
message; if PRF j'RINTCLlENT is specified, send the window a WM_PRINTCLIENT
message; if PRF _PRINTCHiLDREN is set, send each visible child window a WM_PRINT
message; if PRF _OWNED is set, send each visible owned window a WM_PRINT
message.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Chapter 15 Painting and Drawing 567

Painting and Drawing Overview, Painting and Drawing Messages, DefWindowProc,
WM_ERASEBKGND, WM_PRINTCLIENT

The WM_PRINTCLIENT message is sent to a window to request that it draw its client
area in the specified device context, most commonly in a printer device context.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the device context in which to draw.

IParam
Specifies drawing options. This parameter can be one or more of the following values:

Value Meaning

PRF _CHECKVISIBLE

PRF _CHILDREN

PRF_CLlENT

PRF_ERASEBKGND

PRF _NONCLIENT

PRF_OWNED

Remarks

Draws the window only if it is visible.

Draws all visible children windows.

Draws the client area of the window.

Erases the background before drawing the window.

Draws the nonclient area of the window.

Draws all owned windows.

A window can process this message in much the same manner as WM_PAINT, except
that BeginPaint and EndPaint do not have to be called (a device context is provided),
and the window should draw its entire client area instead of only the invalid region.

Windows that can be used anywhere in the system, such as controls, should process
this message. It is probably worthwhile for other windows to process this message also,
because it is relatively easy to implement.

568 Volume 3 Microsoft Windows GDI

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Painting and Drawing Overview, Painting and Drawing Messages, BeginPaint,
EndPaint, WM_PAINT

An application sends the WM_SETREDRAW message to a window to allow changes in
that window to be redrawn or to prevent changes in that window from being redrawn.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the redraw state. If this parameter is TRUE, the content can be redrawn
after a change. If this parameter is FALSE, the content cannot be redrawn after a
change.

IParam
This parameter is not used.

Return Values
An application returns zero if it processes this message.

Remarks
This message can be useful if an application must add several items to a list box. The
application can call this message with wParam set to FALSE, add the items, and then
call the message again with wParam set to TRUE. Finally, the application can call the
InvalidateRect function to cause the list box to be repainted.

Chapter 15 Painting and Drawing 569

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Painting and Drawing Overview, Painting and Drawing Messages, InvalidateRect

The WM_SYNCPAINT message is used to synchronize painting while avoiding linking
independent GUI threads.

A window receives this message through its WindowProc function.

Parameters
This message has no parameters.

Return Values
An application returns zero if it processes this message.

Remarks
When a window has been hidden, shown, moved, or sized, the system can determine
that it is necessary to send a WM_SYNCPAINT message to the top-level windows of
other threads. Applications must pass WM_SYNCPAINT to DefWindowProc for
processing. The DefWindowProc function will send a WM_NCPAINT message to the
window procedure if the window frame must be painted and send a
WM_ERASEBKGND message if the window background must be erased.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

570 Volume 3 Microsoft Windows GOI

Painting and Drawing Overview, Painting and Drawing Messages, DefWindowProc,
GetDCEx, GetWindowDC, WM_PAINT

Raster-Operation Codes
Raster-operation codes define how the graphical device interface (GDI) combines the
bits from the selected pen with the bits in the destination bitmap.

This overview lists and describes the binary and ternary raster operations used by GDI.
A binary raster operation involves two operands: a pen and a destination bitmap. A
ternary raster operation involves three operands: a source bitmap, a brush, and a
destination bitmap. Both binary and ternary raster operations use Boolean operators.

Binary Raster Operations
This section lists the binary raster-operation codes used by the GetROP2 and SetROP2
functions. Raster-operation codes define how GDI combines the bits from the selected
pen with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the
pixels in the selected pen and the destination bitmap are combined. The following are
the two operands used in these operations:

Operand Meaning

P
D

Selected pen

Destination bitmap

The Boolean operators used in these operations follow:

Operator

a
n

o
x

Meaning

Bitwise AND

Bitwise NOT (inverse)

Bitwise OR

Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the
following operation replaces the values of the pixels in the destination bitmap with a
combination of the pixel values of the pen and the selected brush:

o:P''d';<,':'

Chapter 15 Painting and Drawing 571

Each raster-operation code is a 32-bit integer whose high-order word is a Boolean
operation index and whose low-order word is the operation code. The 16-bit operation
index is a zero-extended, 8-bit value that represents all possible outcomes resulting from
the Boolean operation on two parameters (in this case, the pen and destination values).
For example, the operation indexes for the DPo and DPan operations are shown in the
following list:

P

o
o

D

o
1

o

DPo

o

1

1

Dpan

1

o

The following list outlines the drawing modes and the Boolean operations that they
represent:

Raster operation Boolean operation

R2_BLACK 0

R2_COPYPEN P

R2_MASKNOTPEN DPna

R2_MASKPEN DPa

R2_MASKPENNOT PDna

R2_MERGENOTPEN DPno

R2_MERGEPEN DPo

R2_MERGEPENNOT PDno

R2_NOP D

R2_NOT Dn

R2_NOTCOPYPEN Pn

R2_NOTMASKPEN DPan

R2_NOTMERGEPEN DPon

R2_NOTXORPEN DPxn

R2_WHITE 1

R2_XORPEN DPx

For a monochrome device, GDI maps the value zero to black and the value 1 to white. If
an application attempts to draw with a black pen on a white destination by using the
available binary raster operations, the following results occur:

572 Volume 3 Microsoft Windows GOI

Raster operation Result

R2_BLACK Visible black line

R2_COPYPEN Visible black line

R2_MASKNOTPEN No visible line

R2_MASKPEN Visible black line

R2_MASKPENNOT Visible black line

R2_MERGENOTPEN No visible line

R2_MERGEPEN Visible black line

R2_MERGEPENNOT Visible black line

R2_NOP No visible line

R2_NOT Visible black line

R2_NOTCOPYPEN No visible line

R2_NOTMASKPEN No visible line

R2_NOTMERGEPEN Visible black line

R2_NOTXORPEN Visible black line

R2_WHITE No visible line

R2_XORPEN No visible line

For a color device, GDI uses RGB values to represent the colors of the pen and the
destination. An RGB color value is a long integer that contains a red, a green, and a blue
color field, each specifying the intensity of the specified color. Intensities range from 0
through 255. The values are packed in the three low-order bytes of the long integer. The
color of a pen is always a solid color, but the color of the destination can be a mixture of
any two or three colors. If an application attempts to draw with a white pen on a blue
destination by using the available binary raster operations, the following results occur:

Raster operation Result

R2_BLACK Visible black line

R2_COPYPEN Visible white line

R2_MASKNOTPEN Visible black line

R2_MASKPEN Invisible blue line

R2_MASKPENNOT Visible red/green line

R2_MERGENOTPEN Invisible blue line

R2_MERGEPEN Visible white line

R2_MERGEPENNOT Visible white line

R2_NOP Invisible blue line

R2_NOT Visible red/green line

R2_NOTCOPYPEN Visible black line

Chapter 15 Painting and Drawing 573

R2_NOTMASKPEN

R2_NOTMERGEPEN

R2_NOTXORPEN

R2_WHITE

R2_XORPEN

Visible red/green line

Visible black line

Invisible blue line

Visible white line

Visible red/green line

Ternary Raster Operations
This section lists the ternary raster-operation codes used by the BitBlt, PatBlt, and
StretchBlt functions. Ternary raster-operation codes define how GDI combines the bits
in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the
pixels in the source, the selected brush, and the destination are combined. The following
are.the three operands used in these operations:

Operand Meaning

D

P

S

Destination bitmap

Selected brush (also called pattern)

Source bitmap

Boolean operators used in these operations follow:

Operator Meaning

a
n

o
x

Bitwise AND

Bitwise NOT (inverse)

Bitwise OR

Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the
following operation replaces the values of the pixels in the destination bitmap with a
compination of the pixel values of the source and brush:

The following operation combines the values Of the pixels in the source and brush with
the pixel values of the destination bitmap (there are alternative spellings of the same
function, so, although a particular spelling might not be in the list, an equivalent form
would be):

',:. "

'.~; ,;,

574 Volume 3 Microsoft Windows GOI

Each raster-operation code is a 32-bit integer whose high-order word is a Boolean
operation index and whose low-order word is the operation code. The 16-bit operation
index is a zero-extended, 8-bit value that represents the result of the Boolean operation
on predefined brush, source, and destination values. For example, the operation indexes
for the PSo and DPSoo operations are shown in the following list:

P S D PSo DPSoo

o
o
o
o

1

1
Operation index:

0

0

1

1

0

0

1

1

0

1

0

1

0

0

0

0

1

1

1

1

1

1

OOFCh

o
1

1

OOFEh

In this case, PSo has the operation index OOFC (read from the bottom up); DPSoo has
the operation index OOFE. These values define the location of the corresponding raster
operation codes, as shown in Table A.1, "Raster-Operation Codes." The PSo operation
is in line 252 (OOFCh) of the table; DPSoo is in line 254 (OOFEh).

The most commonly used raster operations have been given special names in the SDK
header file, Windows.h. You should use these names in your applications whenever
possible.

When the source and destination bitmaps are monochrome, a bit value of zero
represents a black pixel and a bit value of 1 represents a white pixel. When the source
and the destination bitmaps are color, those colors are represented with RGB values.
For more information about RGB values, see RGB.

Raster-Operation Codes

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

00 00000042 0 BLACKNESS

01 00010289 DPSoon

02 00020C89 DPSona

03 000300AA PSon

04 00040C88 SDPona

05 000500A9 DPon

06 00060865 PDSxnon

Chapter 15 Painting and Drawing 575

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

07 000702C5 PDSaon

08 00080F08 SDPnaa

09 00090245 PDSxon

OA 000A0329 DPna

OB 000BOB2A PSDnaon

OC 000C0324 SPna

OD 000DOB25 PDSnaon

OE 000E08A5 PDSonon

OF OOOFOOO1 Pn

10 00100C85 PDSona

11 001100A6 DSon NOTSRCERASE
12 00120868 SDPxnon

13 001302C8 SDPaon

14 00140869 DPSxnon

15 001502C9 DPSaon

16 00165CCA PSDPSanaxx

17 00171D54 SSPxDSxaxn

18 00180D59 SPxPDxa

19 00191CC8 SDPSanaxn

1A 001 A06C5 PDSPaox

1B 001 B0768 SDPSxaxn

1C 001C06CA PSDPaox

1D 001 D0766 DSPDxaxn

1E 001 E01A5 PDSox

iF 001 F0385 PDSoan

20 00200F09 DPSnaa

21 00210248 SDPxon

22 00220326 DSna

23 00230B24 SPDnaon

24 00240D55 SPxDSxa

25 00251CC5 PDSPanaxn

26 002606C8 SDPSaox

27 00271868 SDPSxnox

28 00280369 DPSxa

29 002916CA PSDPSaoxxn
(continued)

576 Volume 3 Microsoft Windows GOI

(continued)

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

2A 002AOCC9 DPSana

28 00281 D58 SSPxPDxaxn

2C 002C0784 SPDSoax

2D 002D060A PSDnox

2E 002E064A PSDPxox

2F 002 FOE2A PSDnoan

30 0030032A PSna

31 00310828 SDPnaon

32 00320688 SDPSoox

33 00330008 Sn NOTSRCCOPY

34 003406C4 SPDSaox

35 00351864 SPDSxnox

36 003601A8 SDPox

37 00370388 SDPoan

38 0038078A PSDPoax

39 00390604 SPDnox

3A 003A0644 SPDSxox

38 00380E24 SPDnoan

3C 003C004A PSx

3D 003D18A4 SPDSonox

3E 003E1824 SPDSnaox

3F 003FOOEA PSan

40 00400FOA PSDnaa

41 00410249 DPSxon

42 00420D5D SDxPDxa

43 00431CC4 SPDSanaxn

44 00440328 SDna SRCERASE

45 00450829 DPSnaon

46 004606C6 DSPDaox

47 0047076A PSDPxaxn

48 00480368 SDPxa

Chapter 15 Painting and Drawing 577

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

49 004916C5 PDSPDaoxxn
4A 004A0789 DPSDoax
48 00480605 PDSnox

4C 004COCC8 SDPana
4D 004D1954 SSPxDSxoxn

4E 004 E0645 PDSPxox

4F 004FOE25 PDSnoan

50 00500325 PDna
51 00510826 DSPnaon
52 005206C9 DPSDaox

53 00530764 SPDSxaxn
54 005408A9 DPSonon

55 00550009 Dn DSTINVERT

56 005601A9 DPSox

57 00570389 DPSoan

58 00580785 PDSPoax

59 00590609 DPSnox
5A 005A0049 DPx PATINVERT
58 005818A9 DPSDonox

5C 005C0649 DPSDxox
5D 005DOE29 DPSnoan

5E 005E1829 DPSDnaox
5F 005FOOE9 DPan

60 00600365 PDSxa
61 006116C6 DSPDSaoxxn
62 00620786 DSPDoax

63 00630608 SDPnox

64 00640788 SDPSoax
65 00650606 DSPnox

66 00660046 DSx SRCINVERT
67 006718A8 SDPSonox

68 006858A6 DSPDSonoxxn

69 00690145 PDSxxn

6A 006A01E9 DPSax
68 0068178A PSDPSoaxxn

(continued)

578 Volume 3 Microsoft Windows GOI

(continued)

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

6C 006C01E8 SDPax

6D 006D1785 PDSPDoaxxn

6E 006E1E28 SDPSnoax

6F 006FOC65 PDSxnan

70 00700CC5 PDSana

71 00711 D5C SSDxPDxaxn

72 00720648 SDPSxox

73 00730E28 SDPnoan

74 00740646 DSPDxox

75 00750E26 DSPnoan

76 00761828 SDPSnaox

77 007700E6 DSan

78 007801E5 PDSax

79 00791786 DSPDSoaxxn

7A 007A1 E29 DPSDnoax

78 00780C68 SDPxnan

7C 007C1E24 SPDSnoax

7D 007DOC69 DPSxnan

7E 007E0955 SPxDSxo

7F 007F03C9 DPSaan

80 008003E9 DPSaa

81 00810975 SPxDSxon

82 00820C49 DPSxna

83 00831E04 SPDSnoaxn

84 00840C48 SDPxna

85 00851E05 PDSPnoaxn

86 008617A6 DSPDSoaxx

87 008701C5 PDSaxn

88 008800C6 DSa SRCAND

89 00891808 SDPSnaoxn

8A 008AOE06 DSPnoa

Chapter 15 Painting and Drawing 579

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

8B 008B0666 DSPDxoxn

8C 008COE08 SDPnoa
8D 008D0668 SDPSxoxn

8E 008E1D7C SSDxPDxax
8F 008FOCE5 PDSanan

90 00900C45 PDSxna
91 00911E08 SDPSnoaxn
92 009217A9 DPSDPoaxx
93 009301C4 SPDaxn
94 009417AA PSDPSoaxx

95 009501C9 DPSaxn
96 00960169 DPSxx
97 0097588A PSDPSonoxx
98 00981888 SDPSonoxn

99 00990066 DSxn

9A 009A0709 DPSnax
9B 009B07A8 SDPSoaxn

9C 009C0704 SPDnax

9D 009D07A6 DSPDoaxn
9E 009E16E6 DSPDSaoxx
9F 009F0345 PDSxan
AO 00AOOOC9 DPa
A1 00A11B05 PDSPnaoxn
A2 00A20E09 DPSnoa
A3 00A30669 DPSDxoxn
A4 00A41885 PDSPonoxn
A5 00A50065 PDxn
A6 00A60706 DSPnax
A7 00A707A5 PDSPoaxn
A8 00A803A9 pPSoa

A9 00A90189 DPSoxn
AA 00AA0029 D
AB 00AB0889 DPSono
AC 00AC0744 SPDSxax
AD 00AD06E9 DPSDaoxn

(continued)

580 Volume 3 Microsoft Windows GOI

(continued)

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

AE 00AEOB06 DSPnao

AF 00AF0229 DPno

BO 00BOOE05 PDSnoa

B1 00B10665 PDSPxoxn

B2 00B21974 SSPxDSxox

B3 00B30CE8 SDPanan

B4 00B4070A PSDnax

B5 00B507A9 DPSDoaxn

B6 00B616E9 DPSDPaoxx

B7 00B70348 SDPxan

B8 00B8074A PSDPxax

B9 00B906E6 DSPDaoxn

BA 00BAOB09 DPSnao

BB 00BB0226 DSno MERGEPAINT

BC 00BC1CE4 SPDSanax

BD 00BDOD7D SDxPDxan

BE 00BE0269 DPSxo

BF 00BF08C9 DPSano

CO OOCOOOCA PSa MERGECOPY

C1 00C11B04 SPDSnaoxn

C2 00C21884 SPDSonoxn

C3 00C3006A PSxn

C4 00C40E04 SPDnoa

C5 00C50664 SPDSxoxn

C6 00C60708 SDPnax

C7 00C707AA PSDPoaxn

C8 00C803A8 SDPoa

C9 00C90184 SPDoxn

CA 00CA0749 DPSDxax

CB 00CB06E4 SPDSaoxn

CC 00CC0020 S SRCCOPY

Chapter 15 Painting and Drawing 581

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

CD 00CD0888 SDPono

CE 00CEOB08 SDPnao

CF 00CF0224 SPno

DO OODOOEOA PSDnoa

D1 00D1066A PSDPxoxn

D2 00D20705 PDSnax

D3 00D307A4 SPDSoaxn

D4 00D41D78 SSPxPDxax

D5 00D50CE9 DPSanan

D6 00D616EA PSDPSaoxx

D7 00D70349 DPSxan

D8 00D80745 PDSPxax

D9 00D906E8 SDPSaoxn

DA 00DA1CE9 DPSDanax

DB 00DBOD75 SPxDSxan

DC 00DCOB04 SPDnao

DD 00DD0228 SDno

DE 00DE0268 SDPxo

DF 00DF08C8 SDPano

EO 00 E003A5 PDSoa

E1 00E10185 PDSoxn

E2 00E20746 DSPDxax

E3 00E306EA PSDPaoxn

E4 00E40748 SDPSxax

E5 00E506E5 PDSPaoxn

E6 00E61CE8 SDPSanax

E7 00E70D79 SPxPDxan

E8 00E81D74 SSPxDSxax

E9 00E95CE6 DSPDSanaxxn

EA 00EA02E9 DPSao

EB 00EB0849 DPSxno

EC 00EC02E8 SDPao

ED 00ED0848 SDPxno

EE 00EE0086 DSo SRCPAINT
EF 00EFOA08 SDPnoo

(continued)

582 Volume 3 Microsoft Windows GOI

(continued)

Boolean
function Raster operation Boolean function in
(hexadecimal) (hexadecimal) reverse Polish Common name

FO 00FOO021 P PATCOPY
F1 00F10885 PDSono
F2 00F20B05 PDSnao

F3 00F3022A PSno
F4 00F40BOA PSDnao

F5 00F50225 PDno

F6 00F60265 PDSxo

F7 00F708C5 PDSano

F8 00F802E5 PDSao
F9 00F90845 PDSxno
FA 00FA0089 DPo
FB 00FBOA09 DPSnoo PATPAINT
FC 00FC008A PSo

FD OOFDOAOA PSDnoo
FE 00FE02A9 DPSoo
FF 00FF0062 1 WHITENESS

8000 80000000 Windows 98,
Windows 2000:
NOMIRRORBITM
AP

583

CHAPTER 16

Paths

A path is one or more figures (or shapes) that are filled, outlined, or both filled and
outlined. Win32-based applications use paths in many ways. Paths are used in drawing
and painting applications. Computer-aided design (CAD) applications use paths to
create unique clipping regions, to draw outlines of irregular shapes, and to fill the
interiors of irregular shapes. An irregular shape is a shape composed of Sezier curves
and straight lines. (A regular shape is an ellipse, a circle, a rectangle, or a polygon.)

About Paths
A path is one of the objects associated with a device context (DC). However, unlike the
default objects (the pen, the brush, and the font) that are part of any new DC, there is no
default path. For more information about DCs, see Device Contexts.

To create a path and select it into a DC, it is first necessary to define the points that
describe it. This is done by calling the BeginPath function, specifying the appropriate
drawing functions, and then by calling the EndPath function. This combination of
functions (BeginPath, drawing functions, and EndPath) constitute a path bracket.

Windows NT/2000: The following functions can be used in a path bracket.

AngleArc LineTo Polyline
Arc MoveToEx PolylineTo

ArcTo Pie PolyPolygon

Chord PolyBezier PolyPolyline

CloseFigure

Ellipse

ExtTextOut

PolyBezierTo

PolyDraw

Polygon

Rectangle

RoundRect

TextOut

Windows 95/98: When constructing a path, only the CloseFigure, ExtTextOut, LineTo,
MoveToEx, PolyBezier, PolyBezierTo, Polygon, Polyline, PolylineTo, PolyPolygon,
PolyPolyline, and TextOut functions are recorded.

584 Volume 3 Chapter 16 Microsoft Windows GOI

When an application calls EndPath, the system selects the associated path into the
specified DC. (If another path had previously been selected into the DC, the system
deletes that path without saving it.) After the system selects the path into the DC, an
application can operate on the path in one of the following ways:

• Draw the outline of the path (using the current pen).

• Paint the interior of the path (using the current brush).

• Draw the outline and fill the interior of the path.

• Modify the path (converting curves to line segments).

• Convert the path into a clip path.

• Convert the path into a region.

• Flatten the path by converting each curve in the path into a series of line segments.

• Retrieve the coordinates of the lines and curves that compose a path.

Outlined and Filled Paths
An application can draw the outline of a path by calling the Stroke Path function, it can
fill the interior of a path by calling the FiliPath function, and it can both outline and fill the
path by calling the strokeAndFiliPath function.

Whenever an application fills a path, the system uses the DC's current fill mode. An
application can retrieve this mode by calling the GetPolyFiIIMode function, and it can
set a new fill mode by calling the setPolyFiIIMode function. For a description of the two
fill modes, see Regions.

The following illustration shows the cross-section of an object created by a computer
aided design (CAD) application using paths that were both outlined and filled.

Transformations of Paths
Paths are defined using logical units and current transformations. (If the
setWorldTransform function has been called, the logical units are world units;
otherwise, the logical units are page units.) An application can use world transformations
to scale, rotate, shear, translate, and reflect the lines and Sezier curves that define a
path.

Chapter 16 Paths 585

Note A world transformation within a path bracket only affects those lines and curves
drawn after the transformation was set. It will have no affect on those lines and curves
that were drawn before it was set. For a description of the world transformation, see
Coordinate Spaces and Transformations.

An application can also use SetWorldTransform to outline the shape of the pen used to
outline a path if the pen is a geometric pen. For a description of geometric pens, see
Pens.

Clip Paths and Graphic Effects
An application can use clipping and paths to create special graphic effects. The following
illustration shows a string of text drawn with a large Arial font.

Clip Path
The next illustration shows the result of selecting the text as a clip path and drawing
radial lines for a circle whose center is located above and left of the string.

Ii
Note Before graphical device interface (GDI) adds text created with a bitmapped font to
a path, it converts the font to an outline or vector font.

An application creates a clip path by generating a path bracket and then calling the
SelectClipPath function. After a clip path is selected into a DC, output only appears
within the borders of the path.

In addition to creating special graphics effects, clip paths are also useful in applications
that save images as enhanced metafiles. By using a clip path, an application is able to
ensure device independence because the units used to specify a path are logical units
(as opposed to device units that are used to specify a region).

586 Volume 3 Chapter 16 Microsoft Windows GOI

Conversion of Paths to Regions
An application can convert a path into a region by calling the PathToRegion function.
Like SelectClipPath, PathToRegion is useful in the creation of special graphics effects.
For example, there are no functions that allow an application to offset a path; however,
there is a function that enables an application to offset a region (OffsetRgn). Using
PathToRegion, an application can create the effect of animating a complex shape by
creating a path that defines the shape, converting the path into a region (by calling
PathToRegion), and then repeatedly painting, moving, and erasing the region (by
calling functions in a sequence, such as FiIIRgn, OffsetRgn, and FiIIRgn).

Curved Paths
An application can flatten the curves in a path by calling the FlattenPath function. This
function is especially useful for applications that fit text onto the contour of a path which
contains curves. To fit the text, the application must perform the following steps:

1. Create the path where the text appears.

2. Call the FlattenPath function to convert the curves in a path into line segments.

3. Call the GetPath function to retrieve those line segments.

4. Calculate the length of each line and the width of each character in the string.

5. Use line-width and character-width data to position each character along the curve.

Path Reference

Path Functions

AbortPath
The AbortPath function closes and discards any paths in the specified device context.

SOOL·AbortPatn(
. HDC hdc.

>:
Parameters
hdc

[in] Handle to the device context from which a path will be discarded.

Chapter 16 Paths 587

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
If there is an open path bracket in the given device context, the path bracket is closed
and the path is discarded. If there is a closed path in the device context, the path is
discarded.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, BeginPath, EndPath

BeginPath
The BeginPath function opens a path bracket in the specified device context.

BOOl BeginPath(
HOC hdc lIhal1dle to DC

) ;

Parameters
hdc

[in] Handle to the device context.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

588 Volume 3 Chapter 16 Microsoft Windows GOI

Remarks
After a path bracket is open, an application can begin calling GDI drawing functions to
define the points that lie in the path. An application can close an open path bracket by
calling the EndPath function.

When an application calls BeginPath for a device context, any previous paths are
discarded from that device context.

Windows NT/2000: The following drawing functions define points in a path:

AngleArc LineTo Polyline

Arc MoveToEx PolylineTo

ArcTo Pie PolyPolygon

Chord PolyBezier PolyPolyline

CloseFigure PolyBezierTo Rectangle

Ellipse PolyDraw RoundRect

ExtTextOut Polygon TextOut

Windows 95/98: When constructing a path, only the CloseFigure, ExtTextOut, LineTo,
MoveToEx, PolyBezier, PolyBezierTo, Polygon, Polyline, PolylineTo, PolyPolygon,
PolyPolyline, and TextOut functions are recorded.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, EndPath, FiliPath, PathToRegion, SelectClipPath,
StrokeAndFiliPath, StrokePath, Widen Path

CloseFigure
The CloseFigure function closes an open figure in a path.

BOOLeloseFigur'E!(
HOChdc ./1 handle to oC

Parameters
hdc

Chapter 16 Paths 589

[in] Handle to the device context in which the figure will be closed.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The CloseFigure function closes the figure by drawing a line from the current position to
the first point of the figure (usually, the point specified by the most recent call to the
MoveToEx function) and then connects the lines by using the line join style. If a figure is
closed by using the LineTo function instead of CloseFigure, end caps are used to
create the corner instead of a join.

The CloseFigure function should only be called if there is an open path bracket in the
specified device context.

A figure in a path is open unless it is explicitly closed by using this function. (A figure can
be open even if the current point and the starting point of the figure are the same.)

After a call to CloseFigure, adding a line or curve to the path starts a new figure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, BeginPath, EndPath, ExtCreatePen, LineTo,
MoveToEx

590 Volume 3 Chapter 16 Microsoft Windows GOI

EndPath
The EndPath function closes a path bracket and selects the path defined by the bracket
into the specified device context.

Parameters
hdc

[in] Handle to the device context into which the new path is selected.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALlD_PARAMETER

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath

Chapter 16 Paths 591

FiliPath
The FiIIPath function closes any open figures in the current path and fills the path's
interior by using the current brush and polygon-filling mode.

BOOLF1l1 Path<
tlDt Me II handl eto DC

r{

Parameters
hdc

[in] Handle to a device context that contains a valid path.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Remarks
After its interior is filled, the path is discarded from the DC identified by the hdc
parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, BeginPath, SetPolyFiliMode, StrokeAndFiIIPath,
StrokePath

592 Volume 3 Chapter 16 Microsoft Windows GOI

Flatten Path
The FlattenPath function transforms any curves in the path that is selected into the
current device context (DC), turning each curve into a sequence of lines.

Parameters
hdc

[in] Handle to a DC that contains a valid path.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, Widen Path

Chapter 16 Paths 593

GetMiterLimit
The GetMiterLimit function returns the miter limit for the specified device context.

BOOl;.QetM1ter:L1m'ft(

ij~C .bt;lp t ...
,t>FL~AT peLUrli

):

Parameters
hdc

[in] Handle to the device context.

peUmit
[out] Pointer to a floating-point value that receives the current miter limit.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The miter limit is used when drawing geometric lines that have miter joins.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, ExtCreatePen, SetMiterLimit

594 Volume 3 Chapter 16 Microsoft Windows GOI

GetPath
The GetPath function retrieves the coordinates defining the endpoints of lines and the
control points of curves found in the path that is selected into the specified device
context.

Parameters
hdc

[in] Handle to a device context that contains a closed path.

IpPoints
[out] Pointer to an array of POINT structures that receives the line endpoints and
curve control pOints.

IpTypes
[out] Pointer to an array of bytes that receives the vertex types. This parameter can be
one of the following values.

Type Description

PT _BEZIERTO

Specifies that the corresponding point in the IpPoints
parameter starts a disjoint figure.

Specifies that the previous point and the corresponding
pOint in IpPoints are the endpoints of a line.

Specifies that the corresponding point in IpPoints is a
control point or ending point for a Bezier curve.

PT _BEZIERTO values always occur in sets of three. The
point in the path immediately preceding them defines the
starting pOint for the Bezier curve. The first two
PT _BEZIERTO pOints are the control points, and the third
PT _BEZIERTO point is the ending (if hard-coded) point.

A PT _LlNETO or PT _BEZIERTO value may be combined with the following value (by
using the bitwise operator OR) to indicate that the corresponding point is the last point
in a figure and the figure should be closed.

Chapter 16 Paths 595

Flag Description

PT _CLOSEFIGURE Specifies that the figure is automatically closed after the
corresponding line or curve is drawn. The figure is closed
by drawing a line from the line or curve endpoint to the
point corresponding to the last PT _MOVETO.

nSize
[in] Specifies the total number of POINT structures that can be stored in the array
pointed to by JpPoints. This value must be the same as the number of bytes that can
be placed in the array pointed to by JpTypes.

Return Values
If the nSize parameter is nonzero, the return value is the number of pOints enumerated.
If nSize is 0, the return value is the total number of points in the path (and GetPath
writes nothing to the buffers). If nSize is nonzero and is less than the number of points in
the path, the return value is -1.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER
ERROR_SUFFER_OVERFLOW

Remarks
The device context identified by the hdc parameter must contain a closed path.

The pOints of the path are returned in logical coordinates. Points are stored in the path in
device coordinates, so GetPath changes the points from device coordinates to logical
coordinates by using the inverse of the current transformation.

The FlattenPath function may be called before GetPath to convert all curves in the path
into line segments.

.m
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, FlattenPath, POINT, PolyDraw, WidenPath

596 Volume 3 Chapter 16 Microsoft Windows GOI

PathToRegion
The PathToRegion function creates a region from the path that is selected into the
specified device context. The resulting region uses device coordinates.

Parameters
hdc

[in] Handle to a device context that contains a closed path.

Return Values
If the function succeeds, the return value identifies a valid region.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT _COMPLETE
ERROR_INVALlD_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Remarks
The device context identified by the hdc parameter must contain a closed path.

After PathToRegion converts a path into a region, the system discards the closed path
from the specified device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, BeginPath, EndPath, SetPolyFiliMode

Chapter 16 Paths 597

SetM iterLi m it
The SetMiterLimit function sets the limit for the length of miter joins for the specified
device context.

B.OOL SetM1tEU"L~m1t.(
. HDeMc. . ./1 ~OI'Idle toOe
. ··FLOAleNewL 7 irHt) If ·l'l'ew m rt~Cthm'''e·

PFbOA-rp¢!(Jldc1rirtt· . .•• jjprev~ous,.mite} •. ltlll+t..,·.

Parameters
hdc

[in] Handle to the device context.

eNewLimit
[in] Specifies the new miter limit for the device context.

peOldLimit
[out] Pointer to a floating-point value that receives the previous miter limit. If this
parameter is NULL, the previous miter limit is not returned.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The miter length is defined as the distance from the intersection of the line walls on the
inside of the join to the intersection of the line walls on the outside of the join. The miter
limit is the maxirnum allowed ratio of the miter length to the line width.

The default miter limit is 10.0 .

• em:t!temiEinfs·
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib .

.•. ",fto
Paths Overview, Path Functions, ExtCreatePen, GetMiterLimit

598 Volume 3 Chapter 16 Microsoft Windows GOI

StrokeAnd Fi II Path
The StrokeAndFiliPath function closes any open figures in a path, strokes the outline of
the path by using the current pen, and fills its interior by using the current brush.

Q()G4'Strof<;~AT'HiFfll Path(
','Rhe hde IIharldle to DC

);

Parameters
hdc

[in] Handle to the device context.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALlD_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Remarks
The device context identified by the hdc parameter must contain a closed path.

The StrokeAndFiliPath function has the same effect as closing all the open figures in
the path, and stroking and filling the path separately, except that the filled region will not
overlap the stroked region even if the pen is wide.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.!ib.

Paths Overview, Path Functions, BeginPath, Fill Path , SetPolyFiliMode, StrokePath

Chapter 16 Paths 599

StrokePath
The Stroke Path function renders the specified path by using the current pen.

BOOI.StrokePath.(
HOC ·hdc l/ haocl] e tope.

)·f

Parameters
hdc

[in] Handle to a device context that contains a closed path.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_ CAN_NOT _COMPLETE
ERROR_INVALlD_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Remarks
The device context identified by the hdc parameter must contain a closed path.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, BeginPath, EndPath, ExtCreatePen

600 Volume 3 Chapter 16 Microsoft Windows GOI

WidenPath
The Widen Path function redefines the current path as the area that would be painted if
the path were stroked using the pen currently selected into the given device context.

Parameters
hdc

[in] Handle to a device context that contains a closed path.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_CAN_NOT _COMPLETE
ERROR_INVALlD_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Remarks
The Widen Path function is successful only if the current pen is a geometric pen created
by the ExtCreatePen function, or if the pen is created with the Create Pen function and
has a width, in device units, of more than one.

The device context identified by the hdc parameter must contain a closed path.

Any Bezier curves in the path are converted to sequences of straight lines approximating
the widened curves. As such, no Bezier curves remain in the path after Widen Path is
called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or iater.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Paths Overview, Path Functions, BeginPath, CreatePen, EndPath, ExtCreatePen,
SetMiterLimit

601

CHAPTER 17

Pens

A pen is a graphics tool that a Win32-based application uses to draw lines and curves.
Drawing applications use pens to draw freehand lines, straight lines, and curves.
Computer-aided design (CAD) applications use pens to draw visible lines, hidden lines,
section lines, center lines, and so on. Word processing and desktop publishing
applications use pens to draw borders and rules. Spreadsheet applications use pens to
designate trends in graphs and to outline bar graphs and pie charts.

About Pens
There are two types of pens: cosmetic and geometric. A cosmetic pen is used with
applications requiring lines of fixed width and lines that are quickly drawn. A CAD
application, for example, uses a cosmetic pen to generate hidden, section, center, and
dimension lines that are between .015 and .022 inches wide-regardless of the scale
factor. A geometric pen is used with applications requiring scalable lines, lines with
unique end or join styles, and lines that are wider than a single pixel. A spreadsheet
application, for example, uses a geometric pen to define each of the bars in a bar graph
as a wide line.

Cosmetic Pens
The dimensions of a cosmetic pen are specified in device units. Therefore, lines drawn
with a cosmetic pen always have a fixed width. Lines drawn with a cosmetic pen are
generally drawn 3 to 10 times faster than lines drawn with a geometric pen. Cosmetic
pens have three attributes: width, style, and color. For more information about these
attributes, see Pen Attributes.

To create a cosmetic pen, use the CreatePen, CreatePenlndirect, or ExtCreatePen
function. To retrieve one of the three stock cosmetic pens managed by the system, use
the GetStockObject function.

After you create a pen (or obtain a handle to one of the stock pens), select the pen into
the application's device context (DC) using the SelectObject function. From this point
on, the application uses this pen for any line-drawing operations in its client area.

Geometric Pens
The dimensions of a geometric pen are specified in logical units. Therefore, lines drawn
with a geometric pen can be scaled-that is, they may appear wider or narrower,
depending on the current world transformation. For more information about world
transformation, see Coordinate Spaces and Transformations.

602 Volume 3 Microsoft Windows GOI

In addition to the three attributes shared with cosmetic pens (width, style, and color),
geometric pens possess the following four attributes: pattern, optional hatch, end style,
and join style. For more information about these attributes, see Pen Attributes.

To create a geometric pen, an application uses the ExtCreatePen function. As with
cosmetic pens, the SelectObject function selects a geometric pen into the
application's DC.

Pen Attributes
There are seven pen attributes that define the type of pen and its characteristics: width,
style, color, pattern, hatch, end style, and join style. Both cosmetic and geometric pens
have the width, style, and color attributes. Only geometric pens have the pattern, hatch,
end style, and join style attributes. The pattern and optional hatch attribute are usually
associated with a brush but can also be used with geometricpens.

Pen Width
The width attribute specifies a cosmetic pen width in device units. When used with a
geometric pen, however, it specifies the pen's width in logical units. For more information
about device units, see Coordinate Spaces and Transformations.

Currently, the system limits the width of cosmetic pens to a single pixel; however, future
versions may remove this limitation.

Pen Style
The style attribute specifies the line pattern that appears when a particular cosmetic or
geometric pen is used. There are eight predefined pen styles. The following illustration
shows the seven of these styles that are defined by the system.

Solid

Dash

Dot

Dash- dot

D ash- dot-dot _ .. _ .. _ .. _ .. _ .. _ .. _ .. _.'_"_"_"_"_"_"_"_"_"_"_"_"_

Nuli

I nside-fr arne

The inside-frame style is identical to the solid style for cosmetic pens. However, it
operates differently when used with a geometriC pen. If the geometric pen is wider than a
single pixel and a drawing function uses the pen to draw a border around a filled object,
the system draws the border inside the object's frame. By using the inside-frame style,
an application can ensure that an object appears entirely within the specified
dimensions, regardless of the geometriC pen width.

Chapter 17 Pens 603

In addition to the seven styles defined by the system, there is an eighth style that is user
(or application) defined. A user-defined style generates lines with a customized series of
dashes and dots.

Use the CreatePen, CreatePenlndirect, or ExtCreatePen function to create a pen that
has the system-defined styles. Use the ExtCreatePen function to create a pen that has
a user-defined style.

Pen Color
The color attribute specifies the pen's color. An application can create a cosmetic pen
with a unique color by using the RGB macro to store the red, green, blue triplet that
specifies the desired color in a COLORREF structure and passing this structure's
address to the CreatePen, CreatePenlndirect, or ExtCreatePen function. (The stock
pens are limited to black, white, and invisible.) For more information about RGB triplets
and color, see Colors.

Pen Pattern
The pattern attribute specifies the pattern of a geometric pen.

The following illustration shows lines drawn with different geometric pens. Each pen was
created using a different pattern attribute.

Hatch~

Hollow

Custom~

Solid

The first line in the previous illustration is drawn using one of the six available hatch
patterns; for more information about hatch patterns, see Pen Hatch. The next line is
drawn using the hollow pattern, identical to the null pattern. The third line is drawn using
a custom pattern created from an 8-pixel-by-8-pixel bitmap. (For more information about
bitmaps and their creation, see Bitmaps.) The last line is drawn using a solid pattern.
Creating a brush and passing its handle to the ExtCreatePen function creates a pattern.

Pen Hatch
The hatch attribute specifies the hatch type of a geometric pen with the hatch pattern
attribute. There are six patterns available. The following illustration shows lines drawn
using different hatch patterns.

604 Volume 3 Microsoft Windows GOI

Backward diagonal_

Cross 1I111111111111111111111111111111111111111

Diagonal cross

Forwa.rd diagonal _

Horizontal

Vertical 11

Pen End Cap
The end cap attribute specifies the shape of a geometric pen: round, square, or flat. The
following illustration shows parallel lines drawn using each type of end cap.

Starting
point

Round

Square Ending
point

The round and square end caps extend past the starting and ending points of a line
dr~wn with a geometric pen; the flat end cap does not.

Pen Join
The join attribute specifies how the ends of two geometric lines are joined: beveled,
mitered, or round. The following illustration shows pairs of connected lines drawn using
each type of join.

Beveljoin ~

Round join cu
Miter join cu

Chapter 17 Pens 605

leM-Enabled Pen Functions
Microsoft Windows 98 and Microsoft Windows 2000 have been designed to work with
Microsoft Image Color Management (ICM). ICM technology ensures that a color image,
graphic, or text object is rendered as close as possible to its original intent on any
device, despite differences in imaging technologies and color capabilities among
devices. Whether you are scanning an image or other graphic on a color scanner,
downloading it over the Internet, viewing or editing it on the screen, or outputting it to
paper, film, or other media, ICM version 2.0 helps you keep its colors consistent and
accurate. For more information about ICM, see About Image Color Management Version
2.0.

There are various functions in the graphical device interface (GDI) that use or operate on
color data. The following pen functions are enabled for use with ICM:

• CreatePen

• ExtCreatePen

Pen Reference

Pen Functions

CreatePen
The CreatePen function creates a logical pen that has the specified style, width, and
color. The pen can subsequently be selected into a device context and used to draw
lines and curves.

HPEN CrfatePen(

) ;

i ntrn Pf:(f5ty r l!. . !lpe~o; ty 1 e
int nWidth.! Ipenwldtn
CPiORREF; cr~{)7or" II pen color

Parameters
fnPenStyle

[in] Specifies the pen style. It can be anyone of the following values:

Value Meaning

The pen is dashed. This style is valid only when the pen
width is one or less in device units.

The pen is dotted. This style is valid only when the pen
width is one or less in device units.

(continued)

606 Volume 3 Microsoft Windows GDI

(continued)

Value

PS_DASHDOTDOT

PS_INSIDEFRAME

nWidth

Meaning

The pen has alternating dashes and dots. This style is
valid only when the pen width is one or less in device
units.

The pen has alternating dashes and double dots. This
style is valid only when the pen width is one or less in
device units.

The pen is solid. When this pen is used in any GDI
drawing function that takes a bounding rectangle, the
dimensions of the figure are shrunk so that it fits entirely
in the bounding rectangle, taking into account the width
of the pen. This applies only to geometric pens.

The pen is invisible.

The pen is solid.

[in] Specifies the width of the pen, in logical units. If nWidth is zero, the pen is a single
pixel wide, regardless of the current transformation.

CreatePen returns a pen with the specified width bit with the PS_SOLID style if you
specify a width greater than one for the following styles: PS_DASH, PS_DASHDOT,
PS_DASHDOTDOT, PS_DOT.

crGolor
[in] Specifies a color reference for the pen color. To generate a COLORREF structure,
use the RGB macro.

Return Values
If the function succeeds, the return value is a handle that identifies a logical pen.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
After an application creates a logical pen, it can select that pen into a device context by
calling the SelectObject function. After a pen is selected into a device context, it can be
used to draw lines and curves.

If the value specified by the nWidth parameter is zero, a line drawn with the created pen
always is a single pixel wide regardless of the current transformation.

If the value specified by nWidth is greater than 1, the fnPenStyle parameter must be
PS_NULL, PS_SOLlD, or PS_INSIDEFRAME.

Chapter 17 Pens 607

If the value specified by nWidth is greater than 1 and fnPenStyle is PS_INSIDEFRAME,
the line associated with the pen is drawn inside the frame of all primitives except
polygons and polylines.

If the value specified by nWidth is greater than 1, fnPenStyle is PS_INSIDEFRAME, and
the color specified by the crGolor parameter does not match one of the entries in the
logical palette, the system draws lines by using a dithered color. Dithered colors are not
available with solid pens.

When you no longer need the pen, call the DeleteObject function to delete it.

ICM: No color management is done at creation. However, color management is
performed when the pen is selected into an leM-enabled device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Pens Overview, Pen Functions, COLORREF, CreatePenlndirect, DeleteObject,
ExtCreatePen, GetObject, RGB, SelectObject

Create Pen Indi reet
The CreatePenlndirect function creates a logical cosmetic pen that has the style, width,
and color specified in a structure.

HPEff1:reatePenlndirect(
cONsrLoGPEN *lplgpn I/style. width, and color

) :

Parameters
Iplgpn

[in] Pointer to a LOGPEN structure that specifies the pen's style, width, and color.

Return Values
If the function succeeds, the return value is a handle that identifies a logical
cosmetic pen.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

608 Volume 3 Microsoft Windows GOI

Remarks
After an application creates a logical pen, it can select that pen into a device context by
calling the SelectObject function. After a pen is selected into a device context, it can be
used to draw lines and curves.

When you no longer need the pen, call the DeleteObject function to delete it.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.1ib.

Pens Overview, Pen Functions, CreatePen, DeleteObject, ExtCreatePen, GetObject,
LOGPEN, RGB, SelectObject

ExtCreatePen
The ExtCreatePen function creates a logical cosmetic or geometric pen that has the
specified style, width, and brush attributes.

Parameters
dwPenStyle

[in] Specifies a combination of type, style, end cap, and join attributes. The values
from each category are combined by using the bitwise OR operator (I).

The pen type can be one of the following values:

Value

PS_COSMETIC

PS_GEOMETRIC

Meaning

The pen is cosmetic.

The pen is geometric.

Chapter 17 Pens 609

The pen style can be one of the following values:

Value

PS_DASHDOTDOT

PS_INSIDEFRAME

PS_NULL

PS_SOLID

PS_USERSTYLE

Meaning

Windows NT/2000: The pen sets every other pixel.
(This style is applicable only for cosmetic pens.)

The pen is dashed.

Windows 95: This style is not supported for
geometric lines.

Windows 98: Not supported.

The pen is dotted.

Windows 95/98: This style is not supported for
geometric lines.

The pen has alternating dashes and dots.

Windows 95: This style is not supported for
geometric lines.

Windows 98: Not supported.

The pen has alternating dashes and double dots.

Windows 95: This style is not supported for
geometric lines.

Windows 98: Not supported.

The pen is solid. When this pen is used in any GDI
drawing function that takes a bounding rectangle, the
dimensions of the figure are shrunk so that it fits
entirely in the bounding rectangle, taking into account
the width of the pen. This applies only to geometric
pens.

The pen is invisible.

The pen is solid.

Windows NT/2000: The pen uses a styling array
supplied by the user.

The end cap is only specified for geometric pens. The end cap can be one of the
following values:

Value Meaning

PS_ENDCAP _FLAT

PS_ENDCAP _ROUND

PS_ENDCAP _SQUARE

End caps are flat.

End caps are round.

End caps are square.

610 Volume 3 Microsoft Windows GOI

The join is only specified for geometric pens. The join can be one of the following
values:

Value Meaning

PS_JOIN_BEVEL

PS_JOIN_MITER

Joins are beveled.

Joins are mitered when they are within the current
limit set by the SetMiterLimit function. If it exceeds
this limit, the join is beveled.

Joins are round.

Windows 95/98: The PS_ENDCAP _ROUND, PS_ENDCAP _SQUARE,
PS_ENDCAP _FLAT, PS_JOIN_BEVEL, PS_JOIN_MITER, and PS_JOIN_ROUND
styles are supported only for geometric pens when used to draw paths.

dwWidth
[in] Specifies the width of the pen. If the dwPenStyle parameter is PS_GEOMETRIC,
the width is given in logical units. If dwPenStyle is PS_COSMETIC, the width must be
set to 1.

Iplb
[in] Pointer to a LOG BRUSH structure. If dwPenStyle is PS_COSMETIC, the Ibeolor
member specifies the color of the pen and the IbStyle member must be set to
BS_SOLID. If dwPenStyle is PS_GEOMETRIC, all members must be used to specify
the brush attributes of the pen.

dwStyleCount
[in] Specifies the length, in DWORD units, of the IpStyle array. This value must be
zero if dwPenStyle is not PS_USERSTYLE.

IpStyle
[in] Pointer to an array. The first value specifies the length of the first dash in a user
defined style, the second value specifies the length of the first space, and so on. This
pointer must be NULL if dwPenStyle is not PS_USERSTYLE.

Return Values
If the function succeeds, the return value is a handle that identifies a logical pen.

!f the function fails, the return value is zero.

Windows NT/2000: To get extended error information, caii GetlastError.

Remarks
A geometric pen can have any width and can have any of the attributes of a brush, such
as dithers and patterns. A cosmetic pen can only be a single pixel wide and must be a
solid color, but cosmetic pens are generally faster than geometric pens.

The width of a geometric pen is always specified in world units. The width of a cosmetic
pen is always 1.

Chapter 17 Pens 611

End caps and joins are only specified for geometric pens.

After an application creates a logical pen, it can select that pen into a device context by
calling the SelectObject function. After a pen is selected into a device context, it can be
used to draw lines and curves.

If dwPenStyle is PS_COSMETIC and PS_USERSTYLE, the entries in the IpStyle array
specify lengths of dashes and spaces in style units. A style unit is defined by the device
where the pen is used to draw a line.

If dwPenStyle is PS_GEOMETRIC and PS_USERSTYLE, the entries in the IpStyle array
specify lengths of dashes and spaces in logical units.

If dwPenStyle is PS_ALTERNATE, the style unit is ignored and every other pixel is set.

If the IbStyle member of the LOGBRUSH structure pointed to by Iplb is SS_PATTERN,
the bitmap pOinted to by the IbHatch member of that structure cannot be a DIS section'.
A DIS section is a bitmap created by CreateDIBSection. If that bitmap is a DIS section,
the ExtCreatePen function fails.

When an application no longer requires a specified pen, it should call the DeleteObject
function to delete the pen.

ICM: No color management is done at pen creation. However, color management is
performed when the pen is selected into an ICM-enabled device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Pens Overview, Pen Functions, CreateDIBSection, CreatePen, CreatePenlndirect,
DeleteObject, GetObject, LOGBRUSH, SelectObject, SetMiterLimit

Pen Structures

EXTLOGPEN
The EXTLOGPEN structure defines the pen style, width, and brush attributes for an
extended pen. This structure is used by the GetObject function when it retrieves a
description of a pen that was created when an application called the ExtCreatePen
function.

612 Volume 3 Microsoft Windows GOI

Members
elpPenStyle

. Specifies a combination of pen type, style, end cap style, and join style. The values
from each category can be retrieved by using a bitwise AND operator with the
appropriate mask.

The elpPenStyle member masked with PS_ TYPE_MASK has one of the following
pen type values:

Value

PS_COSMETIC

PS_GEOMETRIC

Meaning

The pen is cosmetic.

The pen is geometric.

The elpPenStyle member masked with PS_STYLE_MASK has one of the following
pen styles values:

Value Meaning

PS_DASH

PS_DASHDOT

PS_DASHDOTDOT

PS_DOT

PS .. :JNSIDEFRAME

PS_NULL

PS_SOUD

PS_USERSTYLE

The pen is dashed.

The pen has alternating dashes and dots.

The pen has alternating dashes and double dots.

The pen is dotted.

The pen is solid. When this pen is used in any GDI
drawing function that takes a bounding rectangle, the
dimensions of the figure are shrunk so that it fits
entirely in the bounding rectangle, taking into account
the width of the pen. This applies only to
PS_GEOMETRIC pens.

The pen is invisible.

The pen is solid.

The pen uses a styling array supplied by the user.

Chapter 17 Pens 613

The following category applies only to PS_GEOMETRIC pens. The elpPenStyle
member masked with PS_ENDCAP _MASK has one of the following end cap values:

Value

PS_ENDCAP _FLAT

PS_ENDCAP _ROUND

PS_ENDCAP _SQUARE

Meaning

Line end caps are flat.

Line end caps are round.

Line end caps are square.

The following category applies only to PS_GEOMETRIC pens. The elpPenStyle
member masked with PS_JOIN_MASK has one of the following join values:

Value

PS_JOIN_BEVEL

PS_JOIN_MITER

elpWidth

Meaning

Line joins are beveled.

Line joins are mitered when they are within the current
limit set by the SetMiterLimit function. A join is
beveled when it would exceed the limit.

Line joins are round.

Specifies the width of the pen. If the elpPenStyle member specifies geometric lines,
this value is the width, in logical units, of the line. Otherwise, the lines are cosmetic
and this value is 1 .

elpBrushStyle
Specifies the brush style of the pen. The elpBrushStyle member value can be one of
the following:

Value

BS_DIBPATTERN

BS_DIBPATTERNPT

BS_HATCHED

BS_HOLLOW

BS_PATTERN

BS_SOLID

Meaning

Specifies a pattern brush defined by a DIB
specification. If elpBrushStyle is BS_DIBPATTERN,
the elpHatch member contains a handle to a packed
DIB. For more information, see discussion in elpHatch.

Specifies a pattern brush defined by a DIB
specification. If elpBrushStyle is
BS_DIBPATTERNPT, the elpHatch member contains
a pointer to a packed DIB. For more information, see
discussion in elpHatch.

Specifies a hatched brush.

Specifies a hollow or NULL brush.

Specifies a pattern brush defined by a memory bitmap.

Specifies a solid brush.

614 Volume 3 Microsoft Windows GOI

elpColor
If elpBrushStyle is BS_SOLID or BS_HATCHED, elpColor specifies the color in
which the pen is to be drawn. For BS_HATCHED, the SetBkMode and SetBkColor
functions determine the background color.

If elpBrushStyle is BS_HOLLOW or BS_PATTERN, elpColor is ignored.

If elpBrushStyle is BS_DIBPATTERN or BS_DIBPATTERNPT, the low-order word of
elpColor specifies whether the bmiColors members of the BITMAPINFO structure
contain explicit RGB values or indices into the currently realized logical palette. The
elpColor value must be one of the following:

Value Meaning

The color table consists of an array of 16-bit indices
into the currently realized logical palette.

The color table contains literal RGB values.

The RGB macro is used to generate a COLORREF structure.

elpHateh
If elpBrushStyle is BS_PATTERN, elpHateh is a handle to the bitmap that defines
the pattern.

If elpBrushStyle is BS_SOLID or BS_HOLLOW, elpHateh is ignored.

If elpBrushStyle is BS_DIBPATTERN, the elpHateh member is a handle to a packed
DIB. To obtain this handle, an application calls the GlobalAlloe function with
GMEM_MOVEABLE (or LoealAlloe with LMEM_MOVEABLE) to allocate a block of
memory and then fills the memory with the packed DIB. A packed DIB consists of a
BITMAPINFO structure immediately followed by the array of bytes that define the
pixels of the bitmap.

If elpBrushStyle is BS_DIBPATTERNPT, the elpHateh member is a pointer to a
packed DIB. The pointer derives from the memory block created by LoealAlloe with
LMEM_FIXED set or by GlobalAlloe with GMEM_FIXED set, or it is the pointer
returned by a call like LoealLoek (handle_to_the_dib). A packed DIB consists of a
BITMAPINFO structure immediately followed by the array of bytes that define the
pixels of the bitmap.

If elpBrushStyle is BS_HATCHED, the elpHateh member specifies the orientation of
the lines used to create the hatch. it can be one of the foilowing values:

Value Meaning

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

4S-degree upward hatch (left to right)

Horizontal and vertical crosshatch

4S-degree crosshatch

4S-degree downward hatch (left to right)

Horizontal hatch

Vertical hatch

Chapter 17 Pens 615

elpNumEntries
Specifies the number of entries in the style array in the elpStyleEntry member. This
value is zero if elpPenStyle does not specify PS_USERSTYLE.

elpStyleEntry
Specifies a user-supplied style array. The array is specified with a finite length, but it
is used as if it repeated indefinitely. The first entry in the array specifies the length of
the first dash. The second entry specifies the length of the first gap. Thereafter,
lengths of dashes and gaps alternate.

If elpWidth specifies geometric lines, the lengths are in logical units. Otherwise, the
lines are cosmetic and lengths are in device units.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.

Pens Overview, Pen Structures, BITMAPINFO, COLORREF, ExtCreatePen,
GetObject, GlobalAlloc, RGB, SetBkColor, SetBkMode

LOGPEN
The LOG PEN structure defines the style, width, and color of a pen. The
CreatePenlndirect function uses the LOGPEN structure.

t¥pedf¢f str.uct tq9lOG~EN

lh~r ..)opnStYl e;
FlOINf "lfJfJpWi dth;

;PO~ORREF .10PtlCql or;
}lOGPIEN.*PLOGPEN;

Members
lopnStyle

Specifies the pen style, which can be one of the following values:

616 Volume 3 Microsoft Windows GOI

Value

PS_DASH

PS_DOT

PS_DASHDOT

PS_DASHDOTDOT

PS_INSIDEFRAME

lopnWidth

Meaning

The pen is dashed.

The pen is dotted.

The pen has alternating dashes and dots.

The pen has dashes and double dots.

The pen is solid. When this pen is used in any GDI
drawing function that takes a bounding rectangle, the
dimensions of the figure are shrunk so that it fits entirely
in the bounding rectangle, taking into account the width
of the pen. This applies only to geometric pens.

The pen is invisible.

The pen is solid.

Specifies the POINT structure that contains the pen width, in logical units. If the
pointer member is NULL, the pen is one pixel wide on raster devices. The y member
in the POINT structure for lopnWidth is not used.

lopnColor
Specifies the pen color. To generate a COLORREF structure, use the RGB macro.

Remarks
If the width of the pen is greater than 1 and the pen style is PS_INSIDEFRAME, the line
is drawn inside the frame of all GDI objects except polygons and polylines. If the pen
color does not match an available RGB value, the pen is drawn with a logical (dithered)
color. If the pen width is less than or equal to 1, the PS_INSIDEFRAME style is identical
to the PS_SOLID style.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Dec!ared in wingdLh; include \Nindows.h.

Pens Overview, Pen Structures, COLORREF, CreatePenlndirect, POINT, RGB

617

CHAPTER 18

Rectangles

Microsoft Win32 -based applications use rectangles to specify rectangular areas on the
screen or in a window.

About Rectangles
In Win32-based applications, rectangles are used for the cursor clipping region, the
invalid portion of the client area, an area for displaying formatted text, or the scroll area.
Your applications can also use rectangles to fill, frame, or invert a portion of the client
area with a given brush, and to retrieve the coordinates of a window or a window's client
area.

Rectangle Coordinates
An application must use a RECT structure to define a rectangle. The structure specifies
the coordinates of two pOints: the upper left and lower right corners of the rectangle. The
sides of the rectangle extend from these two points and are parallel to the x- and y-axes.

The coordinate values for a rectangle are expressed as signed integers. The coordinate
value of a rectangle's right side must be greater than that of its left side. Likewise, the
coordinate value of the bottom must be greater than that of the top.

Because applications can use rectangles for many different purposes, the Win32
rectangle functions do not use an explicit unit of measure. Instead, all rectangle
coordinates and dimensions are given in signed, logical values. The mapping mode and
the function in which the rectangle is used determine the units of measure.

Rectangle Operations
The Microsoft Win32 application programming interface (API) provides several functions
for working with rectangles.

The SetRect function creates a rectangle, the CopyRect function makes a copy of a
given rectangle, and the SetRectEmpty function creates an empty rectangle. An empty
rectangle is any rectangle that has zero width, zero height, or both. The IsRectEmpty
function determines whether a given rectangle is empty. The EqualRect function
determines whether two rectangles are identical-that is, whether they have the same
coordinates.

The InflateRect function increases or decreases the width or height of a rectangle, or
both. It can add or remove width from both ends of the rectangle; it can add or remove
height from both the top and bottom of the rectangle.

618 Volume 3 Microsoft Windows GOI

The OffsetRect function moves a rectangle by a given amount. It moves the rectangle
by adding the given x-amount, y-amount, or x- and y-amounts to the corner coordinates.

The PtlnRect function determines whether a given point lies within a given rectangle.
The pOint is in the rectangle if it lies on the left or top side or is completely within the
rectangle. The point is not in the rectangle if it lies on the right or bottom side.

The IntersectRect function creates a new rectangle that is the intersection of two
existing rectangles, as shown in the following figure.

Rectangle 2 Intersection

The UnionRect function creates a new rectangle that is the union of two existing
rectangles, as shown in the following figure.

Union

For information about functions that draw ellipses and polygons, see Filled Shapes.

Rectangle Reference

Rectangle Functions

CopyRect

Chapter 18 Rectangles 619

The CopyRect function copies the coordinates of one rectangle to another.

B()(tl.·.CPpyRl!c1;(
tPRfCT rpraDst; II destirfationrectangle
CONST RECr *1 Pf'CSrC ·11 source rectangl e .

).

Parameters
IprcDst

[out] Pointer to the RECT structure that receives the logical coordinates of the source
rectangle.

IprcSrc
[in] Pointer to the RECT structure whose coordinates are to be copied.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, RECT, SetRect, SetRectEmpty

EqualRect
The EqualRect function determines whether the two specified rectangles are equal by
comparing the coordinates of their upper-left and lower-right corners.

620 Volume 3 Microsoft Windows GOI

Parameters
Iprc1

[in] Pointer to a RECT structure that contains the logical coordinates of the first
rectangle.

Iprc2
[in] Pointer to a RECT structure that contains the logical coordinates of the second
rectangle.

Return Values
If the two rectangles are identical, the return value is nonzero.

If the two rectangles are not identical, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, IsRectEmpty, PtlnRect, RECT

InflateRect
The InflateRect function increases or decreases the width and height of the specified
rectangle. The InflateRect function adds dx units to the left and right ends of the
rectangle and dy units to the top and bottom. The dx and dy parameters are signed
values; positive values increase the width and height, and negative values decrease
them.

BQOL.>Inflat~~ec;t(...
'lR~ECT 7pr.S:> II
il'!t'i;fx.
int\'l;ty lIamountj;o ..

);. i

Parameters
Ipre

Chapter 18 Rectangles 621

[in/out] Pointer to the RECT structure that increases or decreases in size.

dx

dy

[in] Specifies the amount to increase or decrease the rectangle width. This parameter
must be negative to decrease the width.

[in] Specifies the amount to increase or decrease the rectangle height. This parameter
must be negative to decrease the height.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use. user32.1ib.

;.~.. ..,.',

Rectangles Overview, Rectangle Functions, IntersectRect, OffsetRect, RECT,
UnionRect

I ntersectRect
The IntersectRect function calculates the intersection of two source rectangles and
places the coordinates of the intersection rectangle into the destination rectangle. If the
source rectangles do not intersect, an empty rectangle (in which all coordinates are set
to zero) is placed into the destination rectangle.

622 Volume 3 Microsoft Windows GOI

Parameters
IpreDst

[out] Pointer to the RECT structure that is to receive the intersection of the rectangles
pOinted to by the IpreSre1 and IpreSre2 parameters. This parameter cannot be NULL.

IpreSre1
[in] Pointer to the RECT structure that contains the first source rectangle.

IpreSre2
[in] Pointer to the RECT structure that contains the second source rectangle.

Return Values
If the rectangles intersect, the return value is nonzero.

If the rectangles do not intersect, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, InflateRect, OffsetRect, RECT, UnionRect

IsRectEmpty
The IsRectEmpty function determines whether the specified rectangle is empty. A
empty rectangle is one that has no area; that is, the coordinate of the right side is less
than or equal to the coordinate ofthe left side, or the coordinate of the bottom side is
less than or equal to the coordinate of the top side.

~o.~~~~~~;~;~~~~;~, Il rect~n'gl~':
:.)::;<:.<,:, ,; ~~''':' '.;':~ :<:-- ;'."

Parameters
/pre

"? .:

[in] Pointer to a RECT structure that contains the logical coordinates of the rectangle.

Chapter 18 Rectangles 623

Return Values
If the rectangle is empty, the return value is nonzero.

If the rectangle is not empty, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

,

Rectangles Overview, Rectangle Functions, EqualRect, PtlnRect, RECT

OffsetRect
The OffsetRect function moves the specified rectangle by the specified offsets.

aOOL:()ffS'et~ct(, • '. . . (. . .', "
'Lnt£cit:lp~'c.;I/;~~t'ah!ilEr .' .".
1i1t ,(jx;: .:.:'·tI. ~9dzo~tal' offset '" '.,' .
J.n,~;dl·· ; .).t.1feftic~l l;}ffsef .':

)f

Parameters
/pre

' -. ,"."':'-..---:-;:-:

. ". "':"(':,," ':-;.'

[in/out] Pointer to a RECT structure that contains the logical coordinates of the
rectangle to be moved.

dx

dy

[in] Specifies the amount to move the rectangle left or right. This parameter must be a
negative value to move the rectangle to the left.

[in] Specifies the amount to move the rectangle up or down. This parameter must be a
negative value to move the rectangle up.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

624 Volume 3 Microsoft Windows GOI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, InflateRect, IntersectRect, UnionRect,
RECT

PtlnRect
The PtlnRect function determines whether the specified point lies within the specified
rectangle. A point is within a rectangle if it lies on the left or top side or is within all four
sides. A point on the right or bottom side is considered outside the rectangle.

Parameters
Ipre

[in] Pointer to a RECT structure that contains the specified rectangle.

pt
[in] Specifies a POINT structure that contains the specified point.

Return Values
If the specified point lies within the rectangle, the return value is nonzero.

If the specified point does not lie within the rectangle, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The rectangle must be normalized before PtlnRect is called. That is, Ipre.right must be
greater than Ipre.left and Ipre.bottom must be greater than Ipre.top. If the rectangle is not
normalized, a point is never considered inside of the rectangle.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Chapter 18 Rectangles 625

Rectangles Overview, Rectangle Functions, EqualRect, IsRectEmpty, POINT, RECT

SetRect
The SetRect function sets the coordinates of the specified rectangle. This is equivalent
to assigning the left, top, right, and bottom arguments to the appropriate members of the
RECT structure.

Parameters
/pre

[out] Pointer to the RECT structure that contains the rectangle to be set.

xLeft
[in] Specifies the x-coordinate of the rectangle's upper-left corner.

yTop
[in] Specifies the y-coordinate of the rectangle's upper-left corner.

xRight
[in] Specifies the x-coordinate of the rectangle's lower-right corner.

yBottom
[in] Specifies the y-coordinate of the rectangle's lower-right corner.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

626 Volume 3 Microsoft Windows GOI

Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, CopyRect, SetRectEmpty, RECT

5etRectEmpty
The SetRectEmpty function creates an empty rectangle in which all coordinates are set
to zero.

Parameters
Ipre

[out] Pointer to the RECT structure that contains the coordinates of the rectangle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, CopyRect, RECT, SetRect

SubtractRect
The SubtractRect function obtains the coordinates of a rectangle determined by
subtracting one rectangle from another.

BOOl SubtractRect(
lPRECT 7prcDst.
CONST RECr*7prcSrcl.
tONST RECT *7prcSf'c2

Parameters
IprcDst

1/ destination rectangle
fJ first rectangle
II second rectangle

Chapter 18 Rectangles 627

[out] Pointer to a RECT structure that receives the coordinates of the rectangle
determined by subtracting the rectangle pointed to by IprcSrc2 from the rectangle
pOinted to by IprcSrc1.

IprcSrc1
[in] Pointer to a RECT structure from which the function subtracts the rectangle
pOinted to by IprcSrc2.

IprcSrc2
[in] Pointer to a RECT structure that the function subtracts from the rectangle pOinted
to by IprcSrc1.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function only subtracts the rectangle specified by IprcSrc2 from the rectangle
specified by IprcSrc1 when the rectangles intersect completely in either the x- or y
direction. For example, if * IprcSrc1 has the coordinates (10,10,100,100) and * IprcSrc2
has the coordinates (50,50,150,150), the function sets the coordinates of the rectangle
pointed to by IprcDstto (10,10,100,100). If * IprcSrc1 has the coordinates
(10,10,100,100) and * IprcSrc2 has the coordinates (50,10,150,150), however, the
function sets the coordinates of the rectangle pOinted to by IprcDst to (10,10,50,100).

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, IntersectRect, RECT, UnionRect

628 Volume 3 Microsoft Windows GOI

UnionRect
The UnionRect function creates the union of two rectangles. The union is the smallest
rectangle that contains both source rectangles.

Parameters
IprcDst

[out] Pointer to the RECT structure that will receive a rectangle containing the
rectangles pOinted to by the IprcSrc1 and IprcSrc2 parameters.

IprcSrc1
[in] Pointer to the RECT structure that contains the first source rectangle.

IprcSrc2
[in] Pointer to the RECT structure that contains the second source rectangle.

Return Values
If the specified structure contains a nonempty rectangle, the return value is nonzero.

If the specified structure does not contain a nonempty rectangle, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The system ignores the dimensions of an empty rectangle-that is, a rectangle in which
all coordinates are set to zero, so that it has no height or no width.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Rectangles Overview, Rectangle Functions, InflateRect, IntersectRect, OffsetRect,
RECT

Chapter 18 Rectangles 629

Rectangle Structures

POINT
The POINT structure defines the x- and y- coordinates of a point.

Members
x

Specifies the x-coordinate of the point.

y
Specifies the y-coordinate of the point.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in windef.h; include windows.h.

Rectangles Overview, Rectangle Structures, ChiidWindowFromPoint,
GetBrushOrgEx, PtlnRect, SetBrushOrgEx, WindowFromPoint

POINTS
The POINTS structure defines the coordinates of a point.

Members
x

Specifies the x-coordinate of the point.

y
Specifies the y-coordinate of the point.

630 Volume 3 Microsoft Windows GOI

REeT

Windows NT/2000; Requires Windows NT 3.1 or later.
Windows 95/98; Requires Windows 95 or later.
Windows CE; Requires version 1.0 or later.
Header; Declared in windef.h; include windows.h.

Rectangles Overview, Rectangle Structures, ChiidWindowFromPoint, PtlnRect,
WindowFromPoint, POINT

The RECT structure defines the coordinates of the upper-left and lower-right corners of a
rectangle.

Members
left

Specifies the x-coordinate of the upper-left corner of the rectangle.
top

Specifies the y-coordinate of the upper-left corner of the rectangle.
right

Specifies the x-coordinate of the lower-right corner of the rectangle.
bottom

Specifies the y-coordinate of the lower-right corner of the rectangle.

Remarks
When RECT is passed to the FiIIRect function, the rectangle is filled up to, but not
including, the right column and bottom row of pixels. This structure is identical to the
RECTL structure.

Windows NT/2000; Requires Windows NT 3.1 or later.
Windows 95/98; Requires Windows 95 or later.
Windows CE; Requires version 1.0 or later.
Header; Declared in windef.h; include windows.h.

Chapter 18 Rectangles 631

Rectangles Overview, Rectangle Structures, FiliRect, RECTL, SMALL_RECT

Rectangle Macros

MAKEPOINTS
The MAKEPOINTS macro converts a value that contains the x- and y-coordinates of a
point into a POINTS structure.

Parameters
dwValue

Specifies the coordinates of a point. The x-coordinate is in the low-order word, and
the y-coordinate is in the high-order word.

Return Values
The return value is a pOinter to a POINTS structure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.

Rectangles Overview, Rectangle Macros, GetMessagePos

POINTSTOPOINT
The POINTSTOPOINT macro copies the contents of a POINTS structure into a POINT
structure .

. POI NTSTOPOIl4T(
POINT pt • . II POINT structure

. POINTS pts II POINTS structure
H

CHAPTER 19

Regions

A region is a rectangle, polygon, or ellipse (or a combination of two or more of these
shapes) that can be filled, painted, inverted, framed, and used to perform hit testing
(testing for the cursor location).

About Regions
Following are three types of regions that have been filled and framed.

Rectangular Elliptical Polygonal
region region region

Region Creation and Selection

633

An application creates a region by calling a function associated with a specific shape.
The following table shows the function(s) associated with each of the standard shapes:

Shape Function

Rectangular region

Rectangular region
with rounded corners

Elliptical region

Polygonal region

CreateRectRgn, CreateRectRgnlndirect, SetRectRgn

CreateRoundRectRgn

CreateEllipticRgn, CreateEllipticRgnlndirect

CreatePolygonRgn, CreatePolyPolygonRgn

Each region creation function returns a handle that identifies the new region. An
application can use this handle to select the region into a device context by calling the
SelectObject function and supplying this handle as the second argument. After a region
is selected into a device context, the application can perform various operations on it.

Region Operations
Applications can combine regions, compare them, paint or invert their interiors, draw a
frame around them, retrieve their dimensions, and test whether the cursor lies within
their boundaries.

634 Volume 3 Microsoft Windows GOI

Combining Regions
An application combines two regions by calling the CombineRgn function. Using this
function, an application can combine the intersecting parts of two regions, all but the
intersecting parts of two regions, the two original regions in their entirety, and so on.
Following are five values that define the region combinations:

Value Meaning

The intersecting parts of two original regions define a new
region.

A copy of the first (of the two original regions) defines a new
region.

The part of the first region that does not intersect the second
defines a new region.

The two original regions define a new region.

Those parts of the two original regions that do not overlap
define a new region.

The following illustration shows the five possible combinations of a square and a circular
region resulting from a call to CombineRgn.

RGN_AND RGN - COPY RGN - DlFF
1------

I
I
I

" " " , , , ,

" "'- J " "'- J " '" - J

RGN - OR RGN_XOR

Comparing Regions
An application compares two regions to determine whether or not they are identical by
calling the EqualRgn function. EqualRgn considers two regions identical if they are
equal in size and shape.

Chapter 19 Regions 635

Filling Regions
An application fills the interior of a region by calling the FiliRgn function and supplying a
handle that identifies a specific brush. When an application calls FiliRgn, the system fills
the region with the brush by using the current fill mode for the specified device context.
There are two fill modes: alternate and winding. The application can set the fill mode for
a device context by calling the SetPolyFiliMode function. The application can retrieve
the current fill mode for a device context by calling the GetPolyFiliMode function.

The following illustration shows two identical regions: one filled using alternate mode and
the other filled using winding mode.

Alternate Mode
To determine which pixels the system highlights when alternate mode is specified,
perform the following test:

1. Select a pixel within the region's interior.

2. Draw an imaginary ray, in the positive x-direction, from that pixel towards infinity.

3. Each time the ray intersects a boundary line, increment a count value.

The system highlights the pixel if the count value is an odd number.

Winding Mode
To determine which pixels the system highlights when winding mode is specified,
perform the following test:

1. Determine the direction in which each boundary line is drawn.

2. Select a pixel within the region's interior.

3. Draw an imaginary ray, in the positive x-direction, from the pixel toward infinity.

4. Each time the ray intersects a boundary line with a positive v-component, increment a
count value. Each time the ray intersects a boundary line with a negative y
component, decrement the count value.

The system highlights the pixel if the count value is nonzero.

636 Volume 3 Microsoft Windows GDI

Painting Regions
An application fills the interior of a region by using the brush currently selected into a
device context by the PaintRgn function. This function uses the current polygon fill
modes (alternate and winding).

Inverting Regions
An application inverts the colors that appear within a region by calling the InvertRgn
function. On monochrome displays, InvertRgn makes white pixels black and black pixels
white. On color screens, this inversion is dependent on the type of technology used to
generate the colors for the screen.

Framing Regions
An application draws a border around a region by calling the FrameRgn function and
specifying the border width and brush pattern that the system uses when drawing the
frame.

Retrieving a Bounding Rectangle
An application retrieves the dimensions of a region's bounding rectangle by calling the
GetRgnBox function. If the region is rectangular, GetRgnBox returns the dimensions of
the region. If the region is elliptical, the function returns the dimensions of the smallest
rectangle that can be drawn around the ellipse. The long sides of the rectangle are the
same length as the ellipse's major axis, and the short sides of the rectangle are the
same length as the ellipse's minor axis. If the region is polygonal, GetRgnBox returns
the dimensions of the smallest rectangle that can be drawn around the entire polygon.

Moving Regions
An application moves a region by calling the OffsetRgn function. The given offsets along
the x-axis and y-axis determine the number of logical units to move left or right and up or
down.

Hit Testing Regions
An application performs hit testing on regions to determine the coordinates of the current
cursor position. Then it passes these coordinates-as well as a handle identifying the
region-to the PtlnRegion function. The cursor coordinates can be retrieved by
processing the various mouse messages, such as WM_LBUTTONDOWN,
WM_LBUTTONUP, WM_RBUTTONDOWN, and WM_RBUTTONUP. The return value
for PtlnRegion indicates whether the cursor position is within the given region.

Region Reference

Region Functions

CombineRgn

Chapter 19 Regions 637

The CombineRgn function combines two regions and stores the result in a third region.
The two regions are combined according to the specified mode.

Parameters
hrgnDest

[in] Handle to a new region with dimensions defined by combining two other regions.
(This region must exist before CombineRgn is called.)

hrgnSrc1
[in] Handle to the first of two regions to be combined.

hrgnSrc2
[in] Handle to the second of two regions to be combined.

fnCombineMode
[in] Specifies a mode indicating how the two regions will be combined. This parameter
can be one of the following values:

Value·

RGN_AND

RGN_COPY

RGN_DIFF

RGN_OR

RGN_XOR

Return Values

Description

Creates the intersection of the two combined regions.

Creates a copy of the region identified by hrgnSrc1.

Combines the parts of hrgnSrc1 that are not part of hrgnSrc2.

Creates the union of two combined regions.

Creates the union of two combined regions except for any
overlapping areas.

The return value specifies the type of the resulting region. It can be one of the following
values:

638 Volume 3 Microsoft Windows GOI

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Remarks

Meaning

The region is more than a single rectangle.

No region is created.

The region is empty.

The region is a single rectangle.

The three regions need not be distinct. For example, the hrgnSrc1 parameter can equal
the hrgnDest parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Regions Overview, Region Functions, CreateEllipticRgn, CreateEllipticRgnlndirect,
CreatePolygon Rgn, CreatePolyPolygon Rgn, CreateRectRgn,
CreateRectRgnlndirect, CreateRoundRectRgn

CreateEllipticRgn
The CreateEllipticRgn function creates an elliptical region.

HMtf~r!!li:lt&EllipUcRgn(....
,:.·~ittlLeftRe~~~llxccoord .. up~r.-teH£onjerof. re~1;~ngle
·lnt;nf;opRe~t. II y'coordofupper-left cO.rner tyf rectangle

)·l

1rrtinRight~eCt. il x-coord of 1 ower- f'i9htciornerof rectangl ~
lnt,nBo.ttomRect fI yccoord'oflower-~ight corner of.rect.ar1~le

Parameters
nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the bounding rectangle of the
ellipse.

nTopRect
[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle of the
ellipse.

Chapter 19 Regions 639

nRightRect
[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle of
the ellipse.

nBottomRect
[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle of
the ellipse.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A bounding rectangle defines the size, shape, and orientation of the region: The long
sides of the rectangle define the length of the ellipse's major axis; the short sides define
the length of the ellipse's minor axis; and the center of the rectangle defines the
intersection of the major and minor axes.

The coordinates of the bounding rectangle are specified in logical units.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Regions Overview, Region Functions, CreateEllipticRgnlndirect, DeleteObject,
SelectObject

CreateE II i ptieRgn I nd i reet
The CreateEllipticRgnlndirect function creates an elliptical region.

HRGHC~rea teE~ J iPticR~Jfllndi r~ct(
CONSTRECT:~lpf(; If boulldH19/rectangle

) :

640 Volume 3 Microsoft Windows GOI

Parameters
/pre

[in] Pointer to a RECT structure that contains the coordinates of the upper-left and
lower-right corners of the bounding rectangle of the ellipse.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A bounding rectangle defines the size, shape, and orientation of the region: The long
sides of the rectangle define the length of the ellipse's major axis; the short sides define
the length of the ellipse's minor axis; and the center of the rectangle defines the
intersection of the major and minor axes.

The coordinates of the bounding rectangle are specified in logical units.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Regions Overview, Region Functions, CreateEllipticRgn, DeleteObject, RECT,
SelectObject

CreatePolygonRgn
The CreatePolygonRgn function creates a po!ygonal region.

Parameters
Ippt

Chapter 19 Regions 641

[in] Pointer to an array of POINT structures that define the vertices of the polygon.
The polygon is presumed closed. Each vertex can be specified only once.

cPoints
[in] Specifies the number of points in the array.

fnPolyFillMode
[in] Specifies the fill mode used to determine which pixels are in the region. This
parameter can be one of the following values:

Value Meaning

ALTERNATE

WINDING

Selects alternate mode (fills area between odd-numbered and
even-numbered polygon sides on each scan line).

Selects winding mode (fills any region with a nonzero winding
value).

For more information about these modes, see the SetPolyFiIIMode function.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Regions Overview, Region Functions, CreatePolyPolygonRgn, DeleteObject, POINT,
SelectObject, SetPolyFiliMode

CreatePolyPolygonRgn
The CreatePolyPolygonRgn function creates a region consisting of a series of
polygons. The polygons can overlap.

642 Volume 3 Microsoft Windows GOI

Parameters
Ippt

[in] Pointer to an array of POINT structures that define the vertices of the polygons.
The polygons are specified consecutively. Each polygon is presumed closed and
each vertex is specified only once.

IpPolyCounts
[in] Pointer to an array of integers, each of which specifies the number of pOints in one
of the polygons in the array pointed to by Ippt.

nCount
[in] Specifies the total number of integers in the array pOinted to by IpPolyCounts.

fnPolyFiIIMode
[in] Specifies the fill mode used to determine which pixels are in the region. This
parameter can be one of the following values:

Value

ALTERNATE

WINDING

Meaning

Selects alternate mode (fills area between odd-numbered and
even-numbered polygon sides on each scan line).

Selects winding mode (fills any region with a nonzero winding
value).

For more information about these modes, see the SetPolyFiIIMode function.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Chapter 19 Regions 643

Regions Overview, Region Functions, CreatePolygonRgn, DeleteObject, POINT,
SelectObject, SetPolyFiliMode

CreateRectRgn
The CreateRectRgn function creates a rectangular region.

~;l~~r~~~~~i;~~~~r~~ii~~~afsi~:~~!fflil~
Parameters
nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the region.

nTopRect
[in] Specifies the y-coordinate of the upper-left corner of the region.

nRightRect
[in] Specifies the x-coordinate of the lower-right corner of the region.

nBottomRect
[in] Specifies the y-coordinate of the lower-right corner of the region.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2QOO: To get extended error information, call GetLastError.

Remarks
The region will be exclusive of the bottom and right edges.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

644 Volume 3 Microsoft Windows GOI

, .

Regions Overview, Region Functions, CreateRectRgnlndirect, CreateRoundRectRgn,
DeleteObject, SelectObject

CreateRectRgnlndirect
The CreateRectRgnlndirect function creates a rectangular region.

Parameters
Ipre

[in] Pointer to a RECT structure that contains the coordinates of the upper-left and
lower-right corners of the rectangle that defines the region.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULl.

WindowsNT/2000: To get extended error information, call GetLastError.

Remarks
The region will be exclusive of the bottom and right edges.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.1ib.

Regions Overview, Region Functions, CreateRectRgn, CreateRoundRectRgn,
DeleteObject, RECT, SelectObject

CreateRoundRectRgn
The CreateRoundRectRgn function creates a rectangular region with rounded corners.

Chapter 19 Regions 645

HR~"CreateRou"d~ectRgn(.
1ntnLeftRect. II~·coordinateofupper~Jeft. corner '.'

. Ant,;nrQpRect, ,M .:y~coordinate;o.f. upper·leftcQr:~\i,r~

........ !~!.:~:~!;:~!;.... ", ·:~~.·;·i~;~:i;:~:::·:t~~::.:.~::.:~t~~~~~:~;, ... '
.int JIW1dtftEJ 11,psf!..I/h'e1g;ht,'6fe·Htpse '. • ... ~ .• " . ..' '

):·i~';~i; .. n~~~·qt:~~·~+J~~2·:1fi:;~i>0~~):·~~i·~~}~'~~jii··~f:\·:':,;:·;.:~·;!,C·'~:':.,
Parameters
nLeftRect

[in] Specifies the x~coordinate of the upper-left corner of the region.

nTopRect
[in] Specifies the v-coordinate of the upper-left corner of the region.

nRightRect
[in] Specifies the x-coordinate of the lower-right corner of the region.

nBottomRect
[in] Specifies the v-coordinate of the lower-right corner of the region.

n Width Ellipse
[in] Specifies the width of the ellipse used to create the rounded corners.

nHeightEllipse
[in] Specifies the height of the ellipse used to create the rounded corners.

Return Values
If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call G~tLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdLh; include windows.h.
Library: Use gdi32.lib.

Regipns Overview, Region Functions, CreateRectRgn, CreateRectRgnlndirect,
D~leteObject, SelectObject

646 Volume 3 Microsoft Windows GDI

EqualRgn
The EqualRgn function checks the two specified regions to determine whether they are
identical. The function considers two regions identical if they are equal in size and
shape.

'80tft.Equallt~n(, ' "
.:~RStI;~S,~Ci?glll. .;h.~ and-l et~; ii' r si ,.

KRSM.hSrcRgn2 1/ hall.dl~:t,q;;Se£ollii:L
):. ..; .

Parameters
hSrcRgn1

[in] Handle to a region.

hSrcRgn2
[in] Handle to a region.

Return Values
If the two regions are equal, the return value is nonzero.

If the two regions are not equal, the return value is zero. A return value of ERROR
means at least one of the region handles is invalid.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Regions Overview, Region Functions, CreateRectRgn, CreateRectRgnlndirect

ExtCreateRegion
The ExtCreateRegion function creates a region from the specified region and
transformation data.

Parameters
IpXform

Chapter 19 Regions 647

[in] Pointer to an XFORM structure that defines the transformation to be performed on
the region. If this pOinter is NULL, the identity transformation is used.

nCount
[in] Specifies the number of bytes pOinted to by IpRgnData.

IpRgnData
[in] Pointer to a RGNDATA structure that contains the region data.

Return Values
If the function succeeds, the return value is the value of the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
An application can retrieve data for a region by calling the GetRegionData function.

Windows 95/98: Regions are no longer limited to the 64-KB heap.

Windows 95/98: World transforms that involve either shearing or rotations are not
supported. ExtCreateRegion fails if the transformation matrix is anything other than a
scaling or translation of the region.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Regions Overview, Region Functions, GetRegionData, RGNDATA, XFORM

FiliRgn
The FiIIRgn function fills a region by using the specified brush.

~~~i!.'~tll'~fitj:( ,"'. ,;.,;','; :;' , .... ,tf\": .. ' .,' , . 

·····=~:~~;~~.~E~~·'Ei~~~;i:~~!t'~;j~i,.~.;f~" 
, .. :"t~i· <".~:'.:;" :"; .;~:!~ ~ 1i.: ',; ~:~';-. , "'f·t;,;":· . '(.: ";" ,:~ ''', 



648 Volume 3 Microsoft Windows GOI 

Parameters 
hdc 

[in] Handle to the device context. 

hrgn 
[in] Handle to the region to be filled. The region's coordinates are presumed to be in 
logical units. 

hbr 
[in] Handle to the brush to be used to fill the region. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, CreateBrushlndirect, CreateDIBPatternBrush, 
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, PaintRgn 

FrameRgn 
The FrameRgn function draws a border around the specified region by using the 
specified brush. 



Parameters 
hdc 

[in] Handle to the device context. 

hrgn 

Chapter 19 Regions 649 

[in] Handle to the region to be enclosed in a border. The region's coordinates are 
presumed to be in logical units. 

hbr 
[in] Handle to the brush to be used to draw the border. 

nWidth 
[in] Specifies the width, in logical units, of vertical brush strokes. 

nHeight 
[in] Specifies the height, in logical units, of horizontal brush strokes. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, FiIIRgn, PaintRgn 

GetPolyFi IIMode 
The GetPolyFiIIMode function retrieves the current polygon fill mode. 

Parameters 
hdc 

[in] Handle to the device context. 



650 Volume 3 Microsoft Windows GOI 

Return Values 
If the function succeeds, the return value specifies the polygon fill mode, which can be 
one of the following values: 

Value 

ALTERNATE 

WINDING 

Meaning 

Selects alternate mode (fills area between odd-numbered and 
even-numbered polygon sides on each scan line). 

Selects winding mode (fills any region with a nonzero winding 
value). 

If an error occurs, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, SetPolyFiliMode 

GetRegionData 
The GetRegionData function fills the specified buffer with data describing a region. This 
data includes the dimensions of the rectangles that make up the region. 

~1~.~i~'~f;ji~1~~~~~if~~~~~~2.;:M,;;li 
~~J~~t{DA;r~ ,7~R,~??~;~ '~t,,~~,~~.,~(.~,li~~;:~ffir;' ':i\ ',,:';':;( .. :';:','" 
Parameters 
hRgn 

[in] Handle to the region. 

dwCount 
[in] Specifies the size, in bytes, of the IpRgnData buffer. 



Chapter 19 Regions 651 

IpRgnData 
[out] Pointer to a RGNDATA structure that receives the information. If this parameter 
is NULL, the return value contains the number of bytes needed for the region data. 

Return Values 
If the function succeeds and dwCount specifies an adequate number of bytes, the return 
value is always dwCount. If dwCount is too small or the function fails, the return value is 
o. If IpRgnData is NULL, the return value is the required number of bytes. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The GetRegionData function is used in conjunction with the ExtCreateRegion function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, ExtCreateRegion, RGNDATA 

GetRgnBox 
The GetRgnBox function retrieves the bounding rectangle of the specified region. 

(~~~~::%;~~}i;;:~r~<~::~~: : ..: .... 
Parameters 
hrgn 

[in] Handle to the region. 

Ipre 
[out] Pointer to a RECT structure that receives the bounding rectangle. 

Return Values 
The return value specifies the region's complexity. It can be one of the following values: 



652 Volume 3 Microsoft Windows GOI 

Value 

COMPLEXREGION 

NULLREGION 

SIMPLEREGION 

Meaning 

Region is more than a single rectangle. 

Region is empty. 

Region is a single rectangle. 

If the hrgn parameter does not identify a valid region, the return value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/!)8: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, RECT 

InvertRgn 
The InvertRgn function inverts the colors in the specified region. 

Parameters 
hdc. 

[in] Handle to the device context. 

hrgn 
[in] Handle to the region for which colors are inverted. The region's coordinates are 
presumed t9 be logical coordinates. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 



Chapter 19 Regions 653 

Remarks 
On monochrome screens, the InvertRgn function makes white pixels black and black 
pixels white. On color screens, this inversion is dependent on the type of technology 
used to generate the colors fOI" the screen. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, FiliRgn, PaintRgn 

OffsetRgn 
The OffsetRgn function moves a region by the specified offsets. 

Parameters 
hrgn 

[in] Handle to the region to be moved. 

nXOffset 
[in] Specifies the number of logical units to move left or right. 

nYOffset 
[in] Specifies the number of logical units to move up or down. 

Return Values 
The return value specifies the new region's complexity. It can be one of the following 
values: 

Value 

COMPLEXREGION 

ERROR 

NULLREGION 

SIMPLEREGION 

Meaning 

Region is more than one rectangle. 

An error occurred; region is unaffected. 

Region is empty. 

Region is a single rectangle. 



654 Volume 3 Microsoft Windows GOI 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions 

PaintRgn 
The PaintRgn function paints the specified region by using the brush currently selected 
into the device context. 
~BOOl:"'P.'-1.:ft.t~(' ,::: .:>., : .... : ,":," o:·::./.~ .. ·:,,:+,r.';;'i:-;":·''77:.: ~~. '.:~. ,.N,:'." :"j ,: .. ~~:_ 

',HOP .···.Ii~~!:~i ~ I'b ~h~l~>to ' di~ ice . c~~f~~t: i, :., <. , ;,' 
HRGH "t<gtt q h~ndl~' t~ regi~tl' to :be':i>a1rited' 

>:,(.,.," v, .. "':'", : .... ,':.:i -:>.,,<,':; 

Parameters 
hdc 

[in] Handle to the device context. 

hrgn 
[in] Handle to the region to be filled. The region's coordinates are presumed to be 
logical coordinates. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 



Chapter 19 Regions 655 

Regions Overview, Region Functions, FiIIRgn 

PtlnRegion 
The PtlnRegion function determines whether the specified point is inside the specified 
region. 

Parameters 
hrgn 

[in] Handle to the region to be examined. 

X 
[in] Specifies the x-coordinate of the point. 

y 
[in] Specifies the y-coordinate of the point. 

Return Values 
If the specified point is in the region, the return value is nonzero. 

If the specified point is not in the region, the return value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, RectlnRegion 

Rectln Region 
The RectlnRegion function determines whether any part of the specified rectangle is 
within the boundaries of a region. 



656 Volume 3 Microsoft Windows GOI 

Parameters 
hrgn 

[in] Handle to the region. 

Ipre 
[in] Pointer to a RECT structure containing the coordinates of the rectangle. The lower 
and right edges of the rectangle are not included. 

Return Values 
If any part of the specified rectangle lies within the boundaries of the region, the return 
value is nonzero. 

If no part of the specified rectangle lies within the boundaries of the region, the return 
value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.1ib. 

Regions Overview, Region Functions, PtlnRegion, RECT 

SetPolyFi II Mode 
The SetPolyFiIIMode function sets the polygon fill mode for functions that fill polygons. 

ll"ltSetPol yFi:llMQ!"l~L~ 
flOChlic. . ... 
tntiPql,yFi UMode 

Parameters 
hde 

[in] Handle to the device context. 

iPolyFiIIMode 
[in] Specifies the new fill mode. This parameter can be one of the following values: 



Chapter 19 Regions 657 

Value Meaning 

ALTERNATE Selects alternate mode (fills the area between odd-numbered 
and even-numbered polygon sides on each scan line). 

WINDING 

Return Values 

Selects winding mode (fills any region with a nonzero winding 
value). 

The return value specifies the previous filling mode. If an error occurs, the return value is 
zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
In general, the modes differ only in cases where a complex, overlapping polygon must 
be filled (for example, a five-sided polygon that forms a five-pointed star with a pentagon 
in the center). In such cases, ALTERNATE mode fills every other enclosed region within 
the polygon (that is, the points of the star), but WINDING mode fills all regions (that is, 
the points and the pentagon). 

When the fill mode is ALTERNATE, GDI fills the area between odd-numbered and even
numbered polygon sides on each scan line. That is, GDI fills the area between the first 
and second side, between the third and fourth side, and so on. 

When the fill mode is WINDING, GDI fills any region that has a nonzero winding value. 
This value is defined as the number of times a pen used to draw the polygon would go 
around the region. The direction of each edge of the polygon is important. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, GetPolyFiliMode 



658 Volume 3 Microsoft Windows GOI 

SetRectRgn 
The SetRectRgn function changes a region into a rectangular region with the specified 
coordinates. 

Parameters 
hrgn 

[in] Handle to the region. 

nLeftRect 
[in] Specifies the x-coordinate of the upper-left corner of the rectangular region. 

nTopRect 
[in] Specifies the y-coordinate of the upper-left corner of the rectangular region. 

nRightRect 
[in] Specifies the x-coordinate of the lower-right corner of the rectangular region. 

nBottomRect 
[in] Specifies the y-coordinate of the lower-right corner of the rectangular region. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Windows NT/2000: To get extended error information, call GetLastError. 

Remarks 
The region does not include the lower and right boundaries of the rectangle. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in wingdi.h; include windows.h. 
Library: Use gdi32.lib. 

Regions Overview, Region Functions, CreateRectRgn 



Chapter 19 Regions 659 

Region Structures 

RGNDATA 
The RGNDATA structure contains a header and an array of rectangles that compose a 
region. The rectangles are sorted top to bottom, left to right. They do not overlap. 

typ'eQe:fstruct..;;RG'NoAtA { 
•. 'R(,j;NI1A1"AHEADER'l"dh; . 

•... ·.cftar .. BUfhr~n; 

} R~N[)Ah. *PRGNDATA: 

Members 
rdh 

Specifies a RGNDATAHEADER structure. The members of this structure specify the 
type of region (whether it is rectangular or trapezoidal), the number of rectangles that 
make up the region, the size of the buffer that contains the rectangle structures, and 
so on. 

Buffer 
Specifies an arbitrary-size buffer that contains the RECT structures that make up the 
region. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 

Regions Overview, Region Structures, RECT, RGNDATAHEADER 



660 Volume 3 Microsoft Windows GOI 

RGNDATAHEADER 
The RGNDATAHEADER structure describes the data returned by the GetRegionData 
function. 

Members 
dwSize 

Specifies the size, in bytes, of the header. 

iType 
Specifies the type of region. This value must be RDH_RECTANGLES. 

nCount 
Specifies the number of rectangles that make up the region. 

nRgnSize 
Specifies the size of the buffer required to receive the RECT structure that specifies 
the coordinates of the rectangles that make up the region. If the size is not known, this 
member can be zero. 

reBound 
Specifies a bounding rectangle for the region. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in wingdi.h; include windows.h. 

Regions Overview, Region Structures, GetRegionData, RECT, RGNDATA 



661 

APPENDIX A 

Index A: Elements Grouped by Technology 

The indexes in Part 3 make finding information in the Win32 Library volumes as easy as 
possible. Rather than cluttering the Table of Contents with information about individual 
programmatic elements (and thereby making the TOC uselessly jumbled), I've created 
these indexes and put them in the back of each volume. With these indexes, you'll be 
able to locate the programmatic element you're interested in-and see where it fits within 
the volumes and their technologie~uickly and easily. 

Also, to keep you informed and up-to-date about Microsoft technologies, I've created a 
live Web-based document that maps Microsoft technologies to the locations where you 
can get more information about them. This link gets you to the live index of technologies: 
www.iseminger.com/winprs/technologies 

As always, send me feedback if you can think of ways to improve this section. I can't 
guarantee a reply, but I'll read it, and if others can benefit, I'll incorporate the idea into 
future volumes. 

Bitmap Reference 66 
Bitmap Functions 66 

AlphaBlend 
BitBlt 
CreateBitmap 
CreateBitmaplndirect 
CreateCompatibleBitmap 
CreateDIBitmap 
CreateDIBSection 
ExtFloodFill 
GetBitmapDimensionEx 
GetDlBColorTable 
GetDlBits 
GetPixel 
GetStretchBltMode 
GradientFili 
LoadBitmap 
MaskBI! 
PlgBlt 
SetBitmapDimensionEx 
SetDlBColorTable 
SetDlBits 
SetDlBitsToDevice 
Set Pixel 
SetPixelV 
SetStretchBltMode 
Stretch Bit 
StretchDIBits 

TransparentBlt 
Bitmap Structures 116 
BITMAP 
BITMAPCOREHEADER 
BITMAPCOREINFO 
BITMAPFILEHEADER 
BITMAPINFO 
BITMAPINFOHEADER 
BITMAPV4HEADER 
BITMAPV5HEADER 
BLEND FUNCTION 
COLORADJUSTMENT 
DIBSECTION 
GRADIENT _RECT 
GRADIENT_TRIANGLE 
RGBQUAD 
RGBTRIPLE 
SIZE 
TRIVERTEX 

Bitmap Macros 152 
MAKEROP4 

Brush Reference 157 
Brush Functions 157 

CreateBrushlndirect 
CreateDIBPatternBrushPt 
CreateHatchBrush 
CreatePatternBrush 



662 Volume 3 Microsoft Windows GOI 

Brush Reference (continued) 
Brush Functions (continued) 

CreateSolidBrush 
GetBrushOrgEx 
GetSysColorBrush 
PatBlt 
SetBrushOrgEx 

Brush Structures 169 
LOG BRUSH 
LOGBRUSH32 

Clipping Reference 177 
Clipping Functions 177 

ExcludeClipRect 
ExtSelectClipRgn 
GetClipBox 
GetClipRgn 
GetMetaRgn 
GetRandomRgn 
IntersectClipRect 
OffsetClipRgn 
PtVisible 
RectVisible 
SelectClipPath 
SelectClipRgn 
SetMetaRgn 

Color Reference 202 
Color Functions 202 

AnimatePalette 
Create Halftone Palette 
CreatePalette 
GetColorAdjustment 
GetNearestColor 
GetNearestPalettelndex 
GetPaletteEntries 
GetSystemPaletteEntries 
GetSystemPaletteUse 
HTU 1_ ColorAdj ustment 
RealizePalette 
ResizePalette 
SelectPalette 
SetColorAdjustment 
SetPaletteEntries 
SelSystemPaietieUse 
Unreal izeObject 
UpdateColors 

Color Structures 223 
COLORREF 
LOG PALETTE 
PALETTE ENTRY 

Color Macros 226 
GetBValue 
GetGValue 
GetRValue 
PALETTEINDEX 

PALETTERGB 
RGB 

Color Messages 231 
WM_PALETTECHANGED 
WM_PALETTEISCHANGING 
WM_QUERYNEWPALETTE 
WM_SYSCOLORCHANGE 

Coordinate Space and Transformation 
Reference 252 

Coordinate Space and Transformation 
Functions 252 

ClientToScreen 
CombineTransform 
DPtoLP 
GetCurrentPositionEx 
GetGraphicsMode 
GetMapMode 
GetViewportExtEx 
GetViewportOrgEx 
GetWindowExtEx 
GetWindowOrgEx 
GetWorldTransform 
LPtoDP 
MapWindowPoints 
ModifyWorldTransform 
OffsetViewportOrgEx 
OffsetWindowOrgEx 
ScaleViewportExtEx 
ScaleWindowExtEx 
ScreenToClient 
SetGraphicsMode 
SetMapMode 
SetViewportExtEx 
SetViewportOrgEx 
SetWindowExtEx 
SetWindowOrgEx 
SetWorldTransform 

Coordinate Space and Transformation 
Structures 284 

XFORM 

Device Context Reference 295 
Device Context Functions 295 

CanceiDC 
ChangeDisplaySettings 
ChangeDisplaySettingsEx 
CreateCompatibleDC 
CreateDC 
CreatelC 
DeleteDC 
DeleteObject 
DrawEscape 
EnumDisplayDevices 
EnumDisplaySettings 
EnumDisplaySettingsEx 



EnumObjects 
EnumObjectsProc 
GetCurrentObject 
GetDC 
GetDCBrushColor 
GetDCEx 
GetDCOrgEx 
GetDCPenColor 
GetDeviceCaps 
GetObject 
GetObjectType 
GetStockObject 
ReleaseDC 
ResetDC 
RestoreDC 
Save DC 
SelectObject 
SetDCBrushColor 
SetDCPenColor 

Device Context Structures 344 
DISPLAY_DEVICE 
VIDEOPARAMETERS 

Device Context Messages 350 
WM_DEVMODECHANGE 

Filled Shape Reference 354 
Filled Shape Functions 354 

Chord 
Ellipse 
FiliRect 
FrameRect 
InvertRect 
Pie 
Polygon 
PolyPolygon 
Rectangle 
RoundRect 

Line and Curve Reference 371 
Line and Curve Functions 371 

AngleArc 
Arc 
ArcTo 
GetArcDirection 
LineDDA 
LineDDAProc 
LineTo 
MoveToEx 
PolyBezier 
PolyBezierTo 
PolyDraw 
Polyline 
PolylineTo 
PolyPolyline 
SetArcDirection 

Appendix A Index A: Elements Grouped by Technology 663 

Metafile Reference 397 
Metafile Functions 397 

CloseEnhMetaFile 
CopyEnhMetaFile 
CreateEnhMetaFile 
DeleteEnhMetaFile 
EnhMetaFileProc 
EnumEnhMetaFile 
GdiComment 
GetEnhMetaFile 
GetEnhMetaFileBits 
GetEnhMetaFileDescription 
GetEnhMetaFileHeader 
GetEnhMetaFilePaletteEntries 
GetWinMetaFileBits 
PlayEnhMetaFile 
PlayEnhMetaFileRecord 
SetEnhMetaFileBits 
SetWinMetaFileBits 

Metafile Structures 421 
Enhanced Metafile Structures 421 

EMR 
EMRALPHABLEND 
EMRANGLEARC 
EMRARC 
EMRARCTO 
EMRCHORD 
EMRPIE 
EMRBITBLT 
EMRCOLORCORRECTPALETTE 
EMRCOLORMATCHTOTARGET 
EMRCREATEBRUSHINDI RECT 
EMRCREATECOLORSPACE 
EMRCREATECOLORSPACEW 
EMRCREATEDIBPATTERNBRUSHPT 
EMRCREATEMONOBRUSH 
EMRCREATEPALETTE 
EMRCREATEPEN 
EMRELLIPSE 
EMRRECTANGLE 
EMREOF 
EMREXCLUDECLIPRECT 
EMRINTERSECTCLIPRECT 
EMREXTCREATEFONTINDIRECTW 
EMREXTCREATEPEN 
EMREXTFLOODFILL 
EMREXTSELECTCLlPRGN 
EMREXTTEXTOUTA 
EMREXTTEXTOUTW 
EMRFILLPATH 
EMRSTROKEANDFILLPATH 
EMRSTROKEPATH 
EMRFILLRGN 
EMRFORMAT 
EMRFRAMERGN 



664 Volume 3 Microsoft Windows GOI 

Metafile Reference (continued) 
Enhanced Metafile Structures (continued) 

EMRGDICOMMENT 
EMRGLSBOUNDEDRECORD 
EMRGLSRECORD 
EMRGRADIENTFILL 
EMRINVERTRGN 
EMRPAINTRGN 
EMRLlNETO 
EMRMOVETOEX 
EMRMASKBLT 
EMRMODI FYWORLDTRANSFORM 
EMROFFSETCLlPRGN 
EMRPIXELFORMAT 
EMRPLGBLT 
EMRPOL YDRAW 
EMRPOL YDRAW16 
EMRPOL YLiNE 
EMRPOL YBEZIER 
EMRPOLYGON 
EMRPOL YBEZIERTO 
EMRPOL YLiNETO 
EMRPOL YLlNE16 
EMRPOL YBEZIER16 
EMRPOL YGON 16 
EMRPOL YBEZIERT016 
EMRPOL YLiNET016 
EMRPOL YPOL YLiNE 
EMRPOL YPOL YGON 
EMRPOL YPOLYLlNE16 
EMRPOLYPOLYGON16 
EMRPOL YTEXTOUTA 
EMRPOL YTEXTOUTW 
EMRRESIZEPALETTE 
EMRRESTOREDC 
EMRROUNDRECT 
EMRSCALEVIEWPORTEXTEX 
EMRSCALEWINDOWEXTEX 
EMRSETCOLORSPACE 
EMRSELECTCOLORSPACE 
EMRDELETECOLORSPACE 
EMRSELECTOBJECT 
EMRDELETEOBJECT 
EMRSELECTPALETTE 
EMRSETARCDIRECTION 
EMRSETBKCOLOR 
EMRSETTEXTCOLOR 
EMRSETCOLORADJUSTMENT 
EMRSETDIBITSTODEVICE 
EMRSETICMPROFILE 
EMRSETMAPPERFLAGS 
EMRSETMITERLIMIT 
EMRSETPALETTEENTRIES 
EMRSETPIXELV 
EMRSETVIEWPORTEXTEX 

EMRSETWINDOWEXTEX 
EMRSETVIEWPORTORGEX 
EMRSETWINDOWORGEX 
EMRSETBRUSHORGEX 
EMRSETWORLDTRANSFORM 
EMRSTRETCHBL T 
EMRSTRETCHDIBITS 
EMRTEXT 
EMRTRANSPARENTBL T 
ENHMETAHEADER 
ENHMETARECORD 
HANDLETABLE 
POINTL 
RECTL 

Painting and Drawing Reference 512 
Painting and Drawing Functions 512 

BeginPaint 
DrawAnimatedRects 
DrawCaption 
DrawEdge 
DrawFocusRect 
DrawFrameControl 
DrawState 
DrawStateProc 
EndPaint 
ExciudeUpdateRgn 
GdiFlush 
GdiGetBatchLimit 
GdiSetBatchLimit 
GetBkColor 
GetBkMode 
GetBoundsRect 
GetROP2 
GetUpdateRect 
GetUpdateRgn 
GetWindowDC 
GetWindowRgn 
GrayString 
InvalidateRect 
InvalidateRgn 
LockWindowUpdate 
OutputProc 
PaintDesktop 
RedrawWindow 
SetBkColor 
SetBkMode 
SetBoundsRect 
SetROP2 
SetWindowRgn 
UpdateWindow 
ValidateRect 
ValidateRgn 
WindowFromDC 



Appendix A Index A: Elements Grouped by Technology 665 

Painting and Drawing Structures 561 
PAINTSTRUCT 

Painting and Drawing Messages 562 
WM_DISPLAYCHANGE 
WM_NCPAINT 
WM_PAINT 
WM_PRINT 
WM_PRINTCLIENT 
WM_SETREDRAW 
WM_SYNCPAINT 

Path Reference 586 
Path Functions 586 

AbortPath 
BeginPath 
CloseFigure 
EndPath 
FiliPath 
Flatten Path 
GetMiterLimit 
GetPath 
PathToRegion 
SetMiterLimit 
StrokeAndFillPath 
Stroke Path 
Widen Path 

Pen Reference 605 
Pen Functions 605 

CreatePen 
CreatePenlndirect 
ExtCreatePen 

Pen Structures 611 
EXTLOGPEN 
LOGPEN 

Rectangle Reference 619 
Rectangle Functions 619 

CopyRect 
EqualRect 
InflateRect 
IntersectRect 
IsRectEmpty 
OffsetRect 

PtlnRect 
SetRect 
SetRectEmpty 
SubtractRect 
UnionRect 

Rectangle Structures 629 
POINT 
POINTS 
RECT 

Rectangle Macros 631 
MAKEPOINTS 
POINTSTOPOINT 
POINTTOPOINTS 

Region Reference 637 
Region Functions 637 

CombineRgn 
CreateEllipticRgn 
CreateEllipticRgnlndirect 
CreatePolygonRgn 
CreatePolyPolygonRgn 
CreateRectRgn 
CreateRectRgnlndirect 
CreateRoundRectRgn 
EqualRgn 
ExtCreateRegion 
FiliRgn 
FrameRgn 
GetPolyFiliMode 
GetRegionData 
GetRgnBox 
InvertRgn 
OffsetRgn 
PaintRgn 
PtlnRegion 
RectinRegion 
SetPolyFiliMode 
SetRectRgn 

Region Structures 659 
RGNDATA 
RGNDATAHEADER 





APPENDIX B 

Index B: Volume 1, Elements 
Listed Alphabetically 

A CreateloCompletionPort .............................. 502 
CreateJobObject ............................................ 81 

AbnormalTermination .................................. 750 CreateProcess ............................................... 82 
AddAtom ...................................................... 346 CreateProcessAsUser ................................... 92 
AddUsersToEncryptedFile .......................... 655 CreateProcessWithLogonW ........................ 100 
AliocateUserPhysicalPages ........................ 261 CreateRemoteThread .................................. 107 
AreFileApisANSI .......................................... 481 CreateThread ............................................... 110 
AssignProcessToJobObject .......................... 74 CWPRETSTRUCT ....................................... 457 
AttachThreadlnput ......................................... 75 CWPSTRUCT .............................................. 458 

B D 
Beep ............................................................ 767 DEBUGHOOKINFO ..................................... 459 
BindloCompletionCaliback ............................ 77 DebugProc ................................................... 429 
BY _HANDLE_FILE_INFORMATION .......... 606 DecryptFile ................................................... 658 

DefineDosDevice ......................................... 504 

c DeleteAtom .................................................. 347 
DeleteFiber .................................................. 112 

CaIlMsgFilter ................................................ 420 
CaliNextHookEx .......................................... 421 

DeleteFile ..................................................... 506 
DeleteVolumeMountPoint ............................ 659 

CallWndProc ............................................... 422 DisableThreadLibraryCalis .......................... 217 

CaIlWndRetProc .......................................... 424 DISKQUOTA_USER_INFORMATION ........ 731 

Cancello ...................................................... 482 DIiMain ......................................................... 219 

CBT_CREATEWND .................................... 456 DuplicateHandle .......................................... 406 

CBT ACTIVATESTRUCT ............................. 456 
CBTProc ...................................................... 425 
ChangeClipboardChain ............................... 363 E 
CHARSETINFO ........................................... 810 EFS_CERTIFICATE_BLOB ......................... 732 
CloseClipboard ............................................ 364 EFS_HASH_BLOB ...................................... 733 
CloseHandle ................................................ 404 EmptyClipboard ........................................... 365 
CommandLineToArgvW ................................ 78 EncryptFile ................................................... 660 
ConvertThreadToFiber .................................. 79 ENCRYPTION_CERTIFICATE .................... 733 
COPYDATASTRUCT .................................. 343 ENCRYPTION_CERTIFICATE_HASH ....... 734 
CopyFile ...................................................... 483 ENCRYPTION_CERTIFICATE_HASH_ 
CopyFileEx .................................................. 485 LIST .......................................................... 735 
CopyMemory ............................................... 263 ENCRYPTION_CERTIFICATE_LlST .......... 735 
CopyProgressRoutine ................................. 486 Encryption Disable ........................................ 661 
CountClipboardFormats .............................. 364 EnumClipboardFormats ............................... 366 
CreateDirectory ........................................... 488 EVENTMSG ................................................. 460 
CreateDirectoryEx ....................................... 489 EXCEPTION_POINTERS ............................ 759 
CreateFiber. ................................................... 80 EXCEPTION_RECORD .............................. 759 
CreateFile .................................................... 491 ExitProcess .................................................. 113 
CreateHardLink ........................................... 656 ExitTh read .................................................... 115 

667 



668 Volume 1 Microsoft Windows Base Services 

F GetDiskFreeSpace ...................................... 523 
GetDiskFreeSpaceEx .................................. 525 

FatalAppExit ................................................ 768 GetDriveType ............................................... 526 
FiberProc ..................................................... 116 GetEnvironmentStrings ................................ 122 
FILE_NOTIFY _INFORMATION .................. 609 GetEnvironmentVariable .............................. 123 
FileEncryptionStatus ................................... 662 GetExceptionCode ....................................... 751 
FilelOCompletionRoutine ............................ 507 GetExceptionlnformation ............................. 753 
Fill Memory ................................................... 264 GetExitCodeProcess ................................... 124 
FindAtom ..................................................... 348 GetExitCodeThread ..................................... 125 
FindClose .................................................... 509 GetFiberData ............................................... 207 
FindCloseChangeNotification ...................... 510 GetFileAttributes .......................................... 527 
FINDEX_INFO_LEVELS ............................. 617 GetFileAttributesEx ...................................... 530 
FINDEX_SEARCH_OPS ............................ 618 GetFilelnformationByHandle ........................ 531 
FindFirstChangeNotification ........................ 511 GetFileSize .................................................. 532 
FindFirstFile ................................................. 513 GetFileSizeEx .............................................. 533 
FindFirstFileEx ............................................ 514 GetFileType ................................................. 534 
FindFirstVolume .......................................... 663 GetFuliPathName ........................................ 535 
FindFirstVolumeMountPoint ........................ 665 GetGuiResources ........................................ 126 
FindNextChangeNotification ....................... 517 GetHandlelnformation .................................. 413 
FindNextFile ................................................ 518 GetLastError ................................................ 776 
FindNextVolume .......................................... 666 GetLogicalDrives ......................................... 536 
FindNextVolumeMountPoint ....................... 667 GetLogicalDriveStrings ................................ 537 
FindVolumeClose ......................................... 668 GetLongPathName ...................................... 538 
FindVolumeMountPointClose ...................... 669 GetModuleFileName .................................... 224 
FlashWindo'IV ..... : ......................................... 769 GetModuleHandle ........................................ 225 
FlashWindowEx ........................................... 770 GetMsgProc ................................................. 433 
FLASHWINFO ............................................. 783 GetOpenClipboardWindow .......................... 371 
FlushFileBuffers .......................................... 519 GetPriorityClass ........................................... 127 
FONTSIGNATURE ...................................... 810 GetPriorityClipboardFormat ......................... 372 
ForegroundldleProc ..................................... 432 GetProcAddress .......................................... 226 
FormatMessage ........ : ................................. 771 GetProcessAffinityMask ............................... 128 
FreeEncryptionCertificateHashList. ............. 670 GetProcessHeap ......................................... 266 
FreeEnvironmentStrings .............................. 117 GetProcessHeaps ........................................ 267 
FreeLibrary .................................................. 222 GetProcessloCounters ................................ 130 
FreeLibraryAndExitThread .......................... 223 GetProcessPriorityBoost. ............................. 130 
FreeUserPhysicaIPages .............................. 265 GetProcessShutdownParameters ............... 131 

GetProcessTimes ........................................ 132 

G 
GetProcessVersion ...................................... 134 
GetProcessWorkingSetSize ........................ 135 

GET _FILEEX_INFO_LEVELS .................... 619 
GetAtomName ............................................. 349 

GetQueuedCompletionStatus ...................... 539 
GetShortPathName ..................................... 541 

GetBinaryType ............................................ 521 
GetClipboardData ........................................ 367 
GetClipboardFormatName .......................... 368 
GetClipboardOwner ..................................... 369 
GetClipboardSequenceNumber .................. 370 
GetClipboardViewer .................................... 371 
GetCommandLine ....................................... 117 

GetStartuplnfo .............................................. 136 
GetTempFileName ...................................... 543 
GetTempPath ............................................... 545 
GetTextCharset ........................................... 795 
GetTextCharsetlnfo .................................... 796 
GetThreadPriority ......................................... 137 
GetThreadPriorityBoost ............................... 138 

GetCompressedFileSize ............................. 670 
GetCurrentDirectory .................................... 522 
GetCurrentFiber .......................................... 207 

GetThreadTimes .......................................... 139 
GetVolumelnformation ................................. 672 
GetVolumeNameForVolumeMountPoint ..... 675 

GetCurrentProcess ...................................... 118 GetVolumePathName .................................. 676 

GetCurrentProcessld ................................... 119 GetWriteWatch ............................................. 268 

GetCurrentThread ....................................... 120 GlobaIAddAtom ............................................ 350 

GetCurrentThreadld .................................... 121 GlobaIDeleteAtom ........................................ 352 



Appendix B Elements Listed Alphabetically 669 

GlobaIFindAtom ........................................... 353 GetQuotaUsedText ........................... 718 
GlobalGetAtomName .................................. 354 GetSid ............................................... 719 
GlobaIMemoryStatus ................................... 269 GetSidLength .................................... 720 

Invalidate ........................................... 721 

H SetQuotaLimit ................................... 721 
SetQuota Threshold ........................... 722 

HeapAlioc .................................................... 271 
HeapCompact ............................................. 273 
HeapCreate ................................................. 275 
HeapDestroy ................................................ 277 
HeapFree ..................................................... 278 
HeapLock .................................................... 280 
HeapReAlioc ............................................... 281 
HeapSize ..................................................... 284 
HeapUnlock ................................................. 286 
HeapValidate ............................................... 287 
HeapWalk .......................... , .............. ; .......... 289 

IDiskQuotaUserBatch ................................... 723 
Add .................................................... 724 
Remove ............................................. 725 
RemoveAII ......................................... 726 
FlushToDisk ...................................... 726 

IEnumDiskQuotaUsers ................................. 727 
Clone ....................................... , ........ , 728 
Next ................................................... 729 
Reset ................................................. 730 
Skip ................................................... 730 

InitAtomTable ................................................ 355 
I nt32x32To64 ................................................ 546 
Int64ShllMod32 ............................................. 547 
Int64ShraMod32 ........................................... 548 

IDiskQuotaControl ........................................ 683 
AddUserName .............................................. 684 

AddUserSid ...................................... 686 
CreateEnumUsers ............................ 688 
CreateUserBatch .............................. 690 
DeleteUser ........................................ 691 
FindU~erName ................................. 692 
FindUserSid ...................................... 693 
GetDefaultQuotaLimit ....................... 694 
GetDefaultQuotaLimitText ................ 695 
GetDefaultQuotaThreshold .............. 696 
GetDefaultQuotaThresholdText ....... 697 
GetQuotaLogFlags ........................... 698 

Int64ShrIMod32 ............................................. 549 
IO_COUNTERS ............................................ 184 
IsBadCodePtr ................................................ 290 
IsBadReadPtr., .............................................. 291 
IsBadStringPtr ............................................... 293 
IsBadWritePtr ................................................ 294 
IsClipboardFormatAvailable .......................... 373 
IsDBCSLeadByte .......................................... 798 
IsDBCSLeadSyteEx ...................................... 799 
IsReparseTagHighLatency ........................... 736 
IsReparseTagMicrosoft ................................. 737 
IsReparseTagNameSurrogate ...................... 738 
IsTextUnicode ............................................... 800 

GetpuotaState .................................. 699 
GiveUserNameResolutionPriority .... 700 J 
Initialize ............................................. 701 
InvalidateSidNameCache ................. 702 
SetDefaultQuotaLimit ....................... 703 

JOBOBJECT _ASSOCIATE_COMPLETION 
PORT ......................................................... ~85 

SetDefaultQuotaThreshold ............... 704 
SetQuotaLogFlags ........................... 705 
SetQuotaState .................................. 706 
ShlMownNameResolution ............... 707 

IDiskQuotaEvents ......................................... 708 
OhUserNameChanged ..................... 708 

I DiskQuotaUser ............................................ 709 
GetAccountStatus ....................... , .... 710 
GeUD ................................................ 711 

JOBOBJECT _BASIC_ACCOUNTING 
INFORMATION ................................ ~ ........ 188 

JOBOBJECT _BASIC_AND_IO_ACCOUNTING 
. INFORMATION ... : ...................................... 190-

JOBOBJECT BASIC LIMIT 
INFORMATION ...... ~ ......... ~ ....................... 191 

JOBOBJECT _BASIC_PROCESS ID 
LIST .......................................... ~ .... ~ ......... 195 

JOBO~JECT _BASIC_UI_ 

GetName .......................................... 712 
GetQuotalnformation ........................ 713 
GetQuotaLimit .................................. 714 
GetQuotaLimitText ........................... 715 
GetQuotaThreshold .......................... 716 
GetQuotaThresholdText ................... 716 
GetQuotaUsed ................................. 717 

RESTRICTIONS ........................................ 196 
JOSOBJECT _END_OF _JOB TIME 

INFORMATION ................... ~ ........ ~ ........... 197 
JOBOBJECT _EXTENDED LIMIT 

INFORMATION .... : ......... ~ ......... ~ .............. 199 
JOBOBJECT _SECURITY_LIMIT 

. INFORMATION ........................ ~ ............... 200 



670 Volume 1 Microsoft Windows Base Services 

JournaIPlaybackProc .................................... 434 
JournaIRecordProc ....................................... 437 

Q 
QueryDosDevice ........................................... 562 

K QuerylnformationJobObject. ......................... 146 
QueryRecoveryAgentsOnEncryptedFile ....... 677 

KBDLLHOOKSTRUCT ................................. 460 QueryUsersOnEncryptedFile ........................ 678 

KeyboardProc ............................................... 439 QueueUserWorkltem .................................... 148 

L R 
LARGE_INTEGER ....................................... 610 
LoadLibrary ................................................... 228 
LoadLibraryEx .............................................. 230 
LOCALESIGNATURE .................................. 811 

RaiseException ............................................. 754 
ReadDirectoryChangesW ............................. 563 
ReadFile ........................................................ 567 
ReadFileEx ................................................... 571 

LockFile ........................................................ 550 ReadFileScatter ............................................ 574 

LockFileEx .................................................... 551 RegisterClipboardFormat. ............................. 375 

LowLevelKeyboardProc ............................... 441 
LowLevelMouseProc .................................... 442 

RemoveDirectory .......................................... 576 
RemoveUsersFromEncryptedFile ................ 679 
ReplaceFile ................................................... 577 
ResetWriteWatch .......................................... 299 

M ResumeThread ............................................. 150 

MAKEINTATOM ........................................... 356 
MapUserPhysicalPages ............................... 295 s 
MapUserPhysicaIPagesScatter .................... 297 
MEMORY _BASIC_INFORMATION ............. 328 
MEMORYSTATUS ....................................... 331 

Search Path ................................................... 580 
SetClipboardData ......................................... 376 

MessageBeep .............................................. 777 
MessageProc ............................................... 444 
METAFILEPICT ............................................ 378 

SetClipboardViewer ...................................... 377 
SetCurrentDirectory ...................................... 581 
SetEndOfFile ................................................. 582 

MOUSEHOOKSTRUCT ............................... 462 SetEnvironmentVariable ............................... 151 

MOUSEHOOKSTRUCTEX .......................... 463 
MouseProc ................................................... 446 
MoveFile ....................................................... 553 

SetErrorMode ................................................ 778 
SetFileApisToANSI ....................................... 583 
SetFileApisToOEM ....................................... 585 

MoveFileEx ................................................... 554 SetFileAttributes ........................................... 586 

MoveFileWithProgress ................................. 557 
MoveMemory ................................................ 298 
MSLLHOOKSTRUCT ................................... 464 

SetFilePointer ............................................... 588 
SetFilePointerEx ........................................... 591 
SetHandlelnformation .................................. .414 

MuIDiv ........................................................... 560 
MultiByteToWideChar .................................. 802 

SetinformationJobObject .............................. 152 
SetLastError : ................................................. 780 
SetLastErrorEx .............................................. 781 

o SetPriorityClass ............................................ 153 
SetProcessAffinityMask ................................ 155 

OFSTRUCT .................................................. 611 
OpenClipboard ............................................. 374 
OpenJobObject ............................................ 141 
OpenProcess ................................................ 142 
OpenThread ................................................. 144 

SetProcessPriorityBoost ............................... 156 
SetProcessShutdownParameters ................. 157 
SetProcessWorkingSetSize .......................... 159 
SetThreadAffinityMask .................................. 161 
SetThreadldeaIProcessor ............................. 162 
SetThreacjPriority .......................................... 163 
SetThreadPriorityBoost. ................................ 165 

p SetUnhandledExceptionFilter ....................... 756 
SetUserFileEncryptionKey ............................ 680 

PostQueuedCompletionStatus ..................... 561 SetVolumeLabel ........................................... 593 
PROCESS_HEAP _ENTRY .......................... 333 SetVolumeMountPoint .................................. 681 
PROCESS_INFORMATION ........................ 202 SetWindowsHookEx .................................... .447 



Appendix B Elements Listed Alphabetically 671 

SheliProc ...................................................... 451 VirtualFreeEx ................................................ 313 
Sleep ............................................................ 166 VirtualLock .................................................... 316 
SleepEx ........................................................ 167 VirtualProtect ................................................ 318 
STARTUPINFO ............................................ 202 VirtualProtectEx ............................................ 320 
SuspendThread ............................................ 169 VirtualQuery .................................................. 323 
SwitchToFiber .............................................. 170 VirtuaIQueryEx .............................................. 325 
SwitchToThread ........................................... 171 VirtuaIUnlock ................................................. 326 
SysMsgProc ................................................. 453 

T 
w 
WaitForlnputldle ........................................... 182 

TerminateJobObject ..................................... 172 WideCharToMultiByte ................................... 806 
TerminateProcess ........................................ 173 WIN32_FILE_ATTRIBUTE_DATA ............... 612 
TerminateThread .......................................... 174 WIN32_FIND_DATA ..................................... 614 
TEXT ............................................................ 812 WM_ASKCBFORMATNAME ........................ 380 
ThreadProc ................................................... 176 WM_CANCELJOURNAL .............................. 465 
TlsAlioc ......................................................... 176 WM_CHANGECBCHAIN .............................. 381 
TlsFree ......................................................... 178 WM_CLEAR .................................................. 382 
TlsGetValue .................................................. 179 WM_COPY ................................................... 383 
TlsSetValue .................................................. 180 WM_COPYDATA .......................................... 343 
TranslateCharsetlnfo .................................... 805 WM_CUT ...................................................... 383 

WM_DESTROYCLIPBOARD ....................... 384 

u WM_DRAWCLIPBOARD .............................. 385 
WM_HSCROLLCLIPBOARD ........................ 386 

U I nt32x32To64 ............................................. 594 WM_PAINTCLIPBOARD .............................. 387 

ULARGE_INTEGER ..................................... 611 
UnhandledExceptionFilter ............................ 757 
UnhookWindowsHookEx .............................. 455 

WM_PASTE .................................................. 388 
WM_QUEUESYNC ....................................... 467 
WM_RENDERALLFORMATS ...................... 389 

UnlockFile ..................................................... 595 WM_RENDERFORMAT ............................... 390 

UnlockFileEx ................................................. 596 WM_SIZECLIPBOARD ................................. 391 

UserHandleGrantAccess .............................. 181 WM_ VSCROLLCLIPBOARD ........................ 392 
WriteFile ........................................................ 598 

v WriteFileEx .................................................... 601 
WriteFileGather ............................................. 604 

VirtuaIAlloc .................................................... 301 
VirtualAllocEx ............................................... 306 z 
VirtuaIFree .................................................... 311 

ZeroMemory .................................................. 327 





673 

APPENDIX B 

Index B: Volume 2, Elements Listed 
Alphabetically 

A CB_GETLOCALE ........................................ 101 
CB_GETTOPINDEX .................................... 1 02 

ACCEL. ........................................................ 452 CB_INITSTORAGE ..................................... 103 
ActivateKeyboardLayout ............................. 467 CB_INSERTSTRING ................................... 104 
AppendMenu ............................................... 246 CB_L1MITTEXT ............................................ 105 

CB_RESETCONTENT ................................ 106 

B CB_SELECTSTRING .................................. 106 
CB_SETCURSEL ........................................ 108 

Blocklnput .................................................... 469 
BM_CLlCK ..................................................... 56 
BM_GETCHECK ........................................... 57 
BM_GETIMAGE ............................................ 58 
BM_GETSTATE ............................................ 59 
BM_SETCHECK ........................................... 60 
BM_SETIMAGE ............................................ 61 
BM_SETSTATE ............................................ 62 
BM_SETSTYLE ............................................. 63 
BN_CLlCKED ................................................ 64 
BN_DBLCLK ................................................. 65 
BN_DOUBLECLICKED ................................. 66 
BN_KILLFOCUS ........................................... 66 
BN_SETFOCUS ............................................ 67 
BroadcastSystemMessage .......................... 614 

CB_SETDROPPEDWIDTH ......................... 108 
CB_SETEDITSEL ........................................ 109 
CB_SETEXTENDEDUI... ............................. 110 
CB_SETHORIZONTALEXTENT ................. 111 
CB_SETITEMDATA ..................................... 112 
CB_SETITEMHEIGHT ................................. 113 
CB_SETLOCALE ......................................... 114 
CB_SETTOPINDEX .................................... 115 
CB_SHOWDROPDOWN ............................. 116 
CBN_CLOSEUP .......................................... 117 
CBN_DBLCLK ............................................. 118 
CBN_DROPDOWN ..................................... 119 
CBN_EDITCHANGE .................................... 120 
CBN_EDITUPDATE .................................... 120 
CBN_ERRSPACE ....................................... 121 
CBN_KILLFOCUS ....................................... 122 

c CBN_SELCHANGE ..................................... 123 
CBN_SELENDCANCEL .......................... : ... 124 

CallWindowProc .......................................... 682 
CB_ADDSTRING .......................................... 84 
CB_DELETESTRING .................................... 85 
CB_DIR ......................................................... 86 
CB_FINDSTRING ......................................... 88 
CB_FINDSTRINGEXACT ............................. 89 
CB_GETCOUNT ........................................... 90 
CB_GETCURSEL ......................................... 91 
CB_GETDROPPEDCONTROLRECT ........... 92 
CB_GETDROPPEDSTATE .......................... 93 
CB_GETDROPPEDWIDTH .......................... 93 
CB_GETEDITSEL ......................................... 94 
CB_GETEXTENDEDUI ................................. 95 
CB_GETHORIZONTALEXTENT .................. 96 
CB_GETITEMDATA ...................................... 97 
CB_GETITEMHEIGHT .................................. 98 
CB_GETLBTEXT .......................................... 99 
CB_GETLBTEXTLEN ................................. 100 

CBN_SELENDOK ........................................ 125 
CBN_SETFOCUS ........................................ 125 
CharLower ................................................... 323 
CharLowerBuff ............................................. 324 
CharNext ...................................................... 325 
CharNextExA ............................ : .................. 326 
CharPrev ...................................................... 327 
CharPrevExA ............................................... 327 
CharToOem ................................................. 328 
CharToOemBuff ........................................... 329 
CharUpper ................................................... 330 
CharUpperBuff ............................................. 331 
CheckDlgButton ............................................. 53 
CheckMenultem ........................................... 249 
CheckMenuRadioltem ................................. 250 
CheckRadioButton ......................................... 54 
ClipCursor .................................................... 200 
COMBOBOXINFO ......................................... 77 



674 Volume 2 Microsoft Windows User Interface 

COMPAREITEMSTRUCT ............................. 78 
CompareString ............................................ 332 E 
CopyAcceleratorTable ................................. 446 EnableMenultem .......................................... 256 
CopyCursor ................................................. 201 EnableScroliBar ........................................... 134 
Copylcon ..................................................... 218 EnableWindow ............................................. 470 
CreateAcceleratorTable .............................. 447 EndDialog .................................................... 555 
CreateCaret ................................................. 192 EndMenu ...................................................... 258 
CreateCursor ............................................... 202 EnumProps .................................................. 687 
CreateDialog ............................................... 537 EnumPropsEx .............................................. 688 
CreateDialoglndirect. ................................... 539 ExtractAssociatedlcon ................................. 229 
CreateDialoglndirectParam ......................... 541 Extractlcon ................................................... 231 
CreateDialogParam ..................................... 543 ExtractlconEx ............................................... 232 
Createlcon ................................................... 219 
CreatelconFromResource ........................... 221 
CreatelconFromResourceEx ....................... 222 F 
Createlconlndirect ....................................... 224 
CreateMDIWindow ...................................... 653 

FoldString ..................................................... 336 

CreateMenu ................................................. 251 
CreatePopupMenu ...................................... 252 G 
CURSORINFO ............................................ 216 

GET APPCOMMAND LPARAM ............... .437 
GET-DEVICE LPARAM ............................. 438 

D GET -KEYSTATE LPARAM ....................... .439 
GET - KEYSTATE - WPARAM ..................... .440 

DefDlgProc .................................................. 545 GET - NCHITTEST WPARAM ..................... 440 
DefFrameProc ............................................. 655 
DefMDIChiidProc ......................................... 657 
DefWindowProc ........................................... 684 

GET=:WHEEL_DELTA_WPARAM ............... 441 
GET XBUTTON WPARAM ....................... .441 
GetActiveWindow ........................................ 472 

DeleteMenu ................................................. 253 
DestroyAcceleratorTable ............................. 448 
DestroyCaret ............................................... 193 

GetAsyncKeyState ....................................... 472 
GetCapture .................................................. 373 
GetCaretBlinkTime ...................................... 194 

DestroyCursor ............................................. 203 GetCaretPos ................................................ 195 
Destroylcon ................................................. 225 
DestroyMenu ............................................... 254 

GetClipCursor .............................................. 204 
GetComboBoxlnfo ......................................... 76 

DialogBox .................................................... 546 GetCursor .................................................... 205 
DialogBoxlndirect ........................................ 547 GetCursorlnfo .............................................. 206 
DialogBoxlndirectParam .............................. 550 GetCursorPos .............................................. 207 
DialogBoxParam ......................................... 552 
DialogProc ................................................... 553 
DispatchMessage ........................................ 616 
DlgDirListComboBox ..................................... 73 
DlgDirSelectComboBoxEx ............................ 75 
DLGITEMTEMPLATE ................................. 582 

GetDialogBaseUnits .................................... 556 
GetDlgCtrl1 D ................................................. 557 
GetDlgltem ................................................... 558 
GetDlgltemlnt ............................................... 559 
GetDlgltemText ............................................ 561 
GetDoubleClickTime .................................... 373 

DLGITEMTEMPLATEEX ............................. 584 GetFocus ..................................................... 474 
DLGTEMPLATE .......................................... 586 Getlconlnfo .................................................. 233 
DLGTEMPLATEEX ..................................... 589 
DM_GETDEFID ........................................... 595 
DM_REPOSITION ....................................... 596 
DM_SETDEFID ........................................... 596 
DragDetect ...................................... : ........... 372 
Drawlcon ..................................................... 225 
DrawlconEx ................................................. 227 
DRAWITEMSTRUCT .................................... 80 
DrawMenuBar ............................................. 255 

GetlnputState ............................................... 617 
GetKeyboardLayout ..................................... 475 
GetKeyboardLayoutList ............................... 476 
GetKeyboardLayoutName ........................... 477 
GetKeyboardState ....................................... 478 
GetKeyNameText ........................................ 479 
GetKeyState ................................................. 480 
GetLastlnputlnfo .......................................... 482 
GetMenu ...................................................... 258 

Duplicatelcon ............................................... 229 GetMenuBarlnfo .......................................... 259 



APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 675 

GetMenuCheckMarkDimensions ................ 260 KEYBDINPUT .............................................. 511 
GetMenuDefaultitem ................................... 261 KiIiTimer ....................................................... 674 
GetMenulnfo ................................................ 262 
GetMenultemCount ..................................... 263 
GetMenultemlD ........................................... 264 L 
GetMenultemlnfo ......................................... 264 LASTINPUTINFO ......................................... 513 
GetMenultemRect ....................................... 266 LoadAccelerators ......................................... 449 
GetMenuState ............................................. 267 LoadCursor .................................................. 208 
GetMenuString ............................................ 269 LoadCursorFromFile .................................... 209 
GetMessage ................................................ 618 Loadlcon ...................................................... 235 
GetMessageExtralnfo .................................. 620 LoadKeyboardLayout ................................... 485 
GetMessagePos .......................................... 621 LoadMenu .................................................... 278 
GetMessageTime ........................................ 622 LoadMenulndirect ........................................ 279 
GetMouseMovePointsEx ............................. 374 LoadString .................................................... 353 
GetNextDlgGroupltem ................................. 562 LookuplconldFromDirectory ........................ 236 
GetNextDlgTabltem ..................................... 563 LookuplconldFromDirectoryEx .................... 238 
GetProp ....................................................... 689 Istrcat ........................................................... 354 
GetQueueStatus .......................................... 622 Istrcmp ......................................................... 355 
GetScroliBarlnfo .......................................... 136 Istrcmpi ......................................................... 356 
GetScrolllnfo ................................................ 137 Istrcpy ........................................................... 358 
GetScroliPos ............................................... 139 Istrcpyn ......................................................... 359 
GetScroliRange ........................................... 140 Istrlen ........................................................... 360 
GetStringTypeA ........................................... 338 
GetStringTypeEx ......................................... 342 
GetStringTypeW .......................................... 346 M 
GetSubMenu ............................................... 270 MapDialogRect ............................................ 566 
GetSystemMenu .......................................... 271 MapVirtuaIKey .............................................. 487 

MapVirtualKeyEx ......................................... 489 

H MDICREATESTRUCT ................................. 659 
MDINEXTMENU .......................................... 297 

HARDWAREINPUT ..................................... 509 MEASUREITEMSTRUCT .............................. 82 
HideCaret .................................................... 195 MENUBARINFO .......................................... 297 
HiliteMenultem ............................................ 272 MENUEX_ TEMPLATE_HEADER ............... 298 

MENU EX_ TEMPLATE_ITEM ...................... 299 
MENUGETOBJECTINFO ............................ 301 
MENUINFO .................................................. 302 

ICONINFO ................................................... 239 MenultemFromPoint .................................... 280 
ICONMETRICS ........................................... 240 MENUITEMINFO ......................................... 304 
INPUT .......................................................... 510 MENUITEIVITEMPLATE ............................... 309 
InSendMessage .......................................... 624 MENUITEMTEMPLATEHEADER ............... 310 
InSendMessageEx ...................................... 6215 MessageBox ................................................. 567 
InsertMenu ................................................... 273 MessageBoxEx ............................................ 572 
InsertMenultem ........................................... 276 MessageBoxlndirect .................................... 577 
IsCharAlpha ................................................. 350 ModifyMenu ................................................. 281 
IsCharAlphaNumeric ................................... 351 mouse_event ............................................... 376 
IsCharLower ................................................ 352 MOUSEINPUT ............................................. 514 
IsCharUpper ................................................ 352 MOUSEMOVEPOINT .................................. 385 
IsDialogMessage ......................................... 564 MSG ............................................................. 645 
IsDlgButtonChecked ...................................... 55 M~GBOXPARAMS ...................................... 593 
IsMenu ......................................................... 278 
IsW!ndowEnabled ........................................ 483 o 
K OemKeyScan ............................................... 491 

QemToChar ................................................. 361 
keybd_event ................................................ 483 OemToCh&rBuff ........................................... 361 



676 Volume 2 Microsoft Windows User Interface 

p SetDoubleClickTime .................................... 381 
Set Focus ...................................................... 496 

PeekMessage .............................................. 626 SetKeyboardState ........................................ 497 
Post Message ............................................... 628 SetMenu ....................................................... 285 
PostQuitMessage ........................................ 630 SetMenuDefaultltem .................................... 286 
PostThreadMessage ................................... 631 SetMenulnfo ................................................. 287 
PropEnumProc ............................................ 690 SetMenultemBitmaps .................................. 288 
PropEnumProcEx ........................................ 691 SetMenultemlnfo ......................................... 290 

SetMessageExtralnfo .................................. 642 

Q SetProp ........................................................ 693 
SetScrolllnfo ................................................. 147 

QueryPerformanceCounter ......................... 675 SetScroliPos ................................................ 149 
QueryPerformanceFrequency ..................... 676 SetScroll Range ............................................ 151 

SetSystemCursor ......................................... 213 

R SetTimer ...................................................... 677 
ShowCaret ................................................... 198 

RegisterHotKey ........................................... 492 ShowCursor ................................................. 215 
RegisterWindowMessage ........................... 632 ShowScrollBar ............................................. 152 
ReleaseCapture .......................................... 379 STM_GETICON ........................................... 173 
RemoveMenu .............................................. 284 STM_GETIMAGE ........................................ 174 
RemoveProp ............................................... 692 STM_SETICON ........................................... 175 
ReplyMessage ............................................. 633 STM_SETIMAGE ......................................... 176 

STN_CLlCKED ............................................ 177 

s STN_DBLCLK .............................................. 177 
STN_DISABLE ............................................ 178 

SBM_ENABLE_ARROWS .......................... 157 STN_ENABLE .............................................. 179 
SBM_GETPOS ............................................ 158 Swap Mouse Button ....................................... 382 
SBM_GETRANGE ...................................... 159 
SBM_GETSCROLLINFO ............................ 159 
SBM_SETPOS ............................................ 161 T 
SBM_SETRANGE ....................................... 162 TimerProc .................................................... 678 
SBM_SETRANGEREDRAW ....................... 163 ToAscii ......................................................... 498 
SBM_SETSCROLLlNFO ... , ......................... 164 ToAsciiEx ..................................................... 499 
SCROLLBARINFO ...................................... 154 ToUnicode .................................................... 501 
Scroll DC ...................................................... 142 ToUnicodeEx ............................................... 503 
SCROLLINFO ............................................. 155 TPMPARAMS .............................................. 310 
ScroIiWindow ............................................... 143 TrackMouseEvent ........................................ 383 
ScroliWindowEx .......................................... 145 TRACKMOUSEEVENT ............................... 385 
SendAsyncProc ........................................... 634 TrackPopupMenu ........................................ 291 
SendDlgltemMessage ................................. 579 TrackPopupMenuEx .................................... 294 
Sendlnput .................................................... 494 TranslateAccelerator .................................... 450 
Send Message ............................................. 636 TranslateMDISysAccel ................................ 658 
SendMessageCaliback ................................ 637 Trans!ateMessage ....................................... 642 
SendMessageTimeout ................................ 639 
SendNotifyMessage .................................... 640 
SetActiveWindow ........................................ 495 u 
SetCapture .................................................. 380 Unload Keyboard Layout ............................... 505 
SetCaretBlinkTime ...................................... 196 UnregisterHotKey ......................................... 506 
SetCaretPos ................................................ 197 
SetCursor .................................................... 211 
SetCursorPos .............................................. 212 v 
SetDlgltemlnt. .............................................. 580 VkKeyScan .................................................. 507 
SetDlgltemText ............................................ 581 VkKeyScanEx ........................ '" ................... 508 



APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 677 

w WM_MENUCHAR ........................................ 456 
WM_MENUCOMMAND ............................... 316 

WaitMessage ............................................... 644 WM_MENUDRAG ....................................... 316 
WindowProc ................................................ 685 WM_MENUGETOBJECT ............................ 317 
WM_ACTIVATE .......................................... 517 WM_MENURBUTTONUP ........................... 318 
WM_APP ..................................................... 646 WM_MENUSELECT .................................... 458 
WM_APPCOMMAND .................................. 387 WM_MOUSEACTIVATE .............................. 399 
WM_CAPTURECHANGED ......................... 390 WM_MOUSEHOVER .................................. 401 
WM_CHANGEUISTATE ............................. 453 WM_MOUSELEAVE .................................... 402 
WM_CHAR .................................................. 518 WM_MOUSEMOVE ..................................... 403 
WM_COMMAND ......................................... 311 WM_MOUSEWHEEL .................................. 404 
WM_COMPAREITEM ................................. 126 WM_NCHITTEST ........................................ 407 
WM_CONTEXTMENU ................................ 312 WM_NCLBUTTONDBLCLK ........................ 409 
WM_CTLCOLORBTN ................................... 68 WM_NCLBUTTONDOWN .......................... .41 0 
WM_CTLCOLORDLG ................................. 597 WM_NCLBUTTONUP ................................ .411 
WM_CTLCOLORSCROLLBAR .................. 165 WM_NCMBUTTONDBLCLK ...................... .412 
WM_CTLCOLORSTATIC ............................ 180 WM_NCMBUTTONDOWN .......................... 414 
WM_DEADCHAR ........................................ 520 WM_NCMBUTTONUP ................................ 415 
WM_DRAWITEM ........................................ 127 WM_NCMOUSEHOVER ............................. 416 
WM_ENTERIDLE ........................................ 599 WM_NCMOUSELEAVE .............................. 417 
WM_ENTERMENULOOP ........................... 314 WM_NCMOUSEMOVE .............................. .418 
WM_ERASEBKGND ................................... 241 WM_NCRBUTTONDBLCLK ........................ 419 
WM_EXITMENULOOP ............................... 315 WM_NCRBUTTONDOWN .......................... 420 
WM_GETDLGCODE ................................... 600 WM_NCRBUTTONUP ................................. 421 
WM_GETFONT ............................................. 50 WM_NCXBUTTONDBLCLK ........................ 423 
WM_GETHOTKEY ...................................... 522 WM_NCXBUTTONDOWN ........................... 424 
WM_HOTKEY ............................................. 523 WM_NCXBUTTONUP ................................. 426 
WM_HSCROLL ........................................... 166 WM_NEXTDLGCTL. .................................... 602 
WM_ICONERASEBKGND .......................... 242 WM_NI=XTMENU ........................................ 319 
WM_INITDIALOG ........................................ 601 WM_PAINTICON ......................................... 243 
WM_INITMENU ........................................... 455 WM_QUERYUISTATE ................................ 459 
WM_INITMENUPOPUP .............................. 456 WM_RBUTTONDBLCLK ............................. 427 
WM_KEYDOWN ......................................... 524 WM_RBUTTONDOWN ................................ 429 
WM_KEYUP ................................................ 526 WM_RBUTTONUP ...................................... 430 
WM_KILLFOCUS ........................................ 527 WM_SETCURSOR ...................................... 217 
WM_LBUTTONDBLCLK ............................. 391 WM_SETFOCUS ......................................... 528 
WM_LBUTTONDOWN ................................ 392 WM_SETFONT .............................................. 51 
WM_LBUTTONUP ...................................... 394 WM_SETHOTKEY ....................................... 529 
WM_MBUTTONDBLCLK ............................ 395 WM_SYSCHAR ........................................... 460 
WM_MBUTTONDOWN ............................... 397 WM_SYSCOMMAND .................................. 462 
WM_MBUTTONUP ..................................... 398 WM_SYSDEADCHAR ................................. 530 
WM_MDIACTIVATE .................................... 661 WM_SYSKEYDOWN ................................... 532 
WM_MDICASCADE .................................... 662 WM_SYSKEYUP ......................................... 534 
WM_MDICREATE ....................................... 663 WM_TIMER ................................................. 679 
WM_MDIDESTROY .................................... 665 WM_UNINITMENUPOPUP ......................... 320 
WM_MDIGETACTIVE .... ., ........................... 666 WM_UPDATEUISTATE ............................... 464 
WM_MDIICONARRANGE. .......................... 667 WM_USER ................................................... 647 
WM_MDIMAXIMIZE .................................... 667 WM_ VSCROLL. ........................................... 168 
WM_MDINEXT .....................•...................... 668 WM_XBUTTONDBLCLK ............................. 431 
WM_MDIREFRESHMENU .......................... 669 WM_XBUTTONDOWN ................................ 433 
WM_MDIRESTORE .................................... 670 WM_XBUTTONUP ...................................... 435 
WM_MDISETMENU .................................... 671 wsprintf ......................................................... 362 
WM_MDITILE .............................................. 672 wvsprintf ....................................................... 366 
WM_MEASUREITEM .................................. 128 





679 

APPENDIX B 

Index B: Volume 3, Elements 
Listed Alphabetically 

A CreateDIBitmap ............................................. 76 
CreateDIBPatternBrushPt.. .......................... 159 

AbortPath ..................................................... 586 CreateDIBSection .......................................... 78 
AlphaBlend .................................................... 66 CreateEnhMetaFile ...................................... 399 
AngleArc ...................................................... 371 CreateHalftonePalette ................................. 203 
AnimatePalette ............................................ 202 CreateHatchBrush ....................................... 160 
Arc ............................................................... 373 CreateIC ....................................................... 306 
ArcTo ........................................................... 375 Create Palette ............................................... 204 

CreatePatternBrush ..................................... 162 

B 
CreatePen .................................................... 605 
CreatePenlndirect ........................................ 607 

BeginPaint ................................................... 512 CreateSolidBrush ......................................... 163 

BeginPath .................................................... 587 
BitBlt .............................................................. 69 
BITMAP ....................................................... 116 D 
BITMAPCOREHEADER .............................. 118 DeleteDC ..................................................... 307 
BITMAPCOREINFO .................................... 119 DeleteEnhMetaFile ...................................... 401 
BITMAPFILEHEADER ................................ 121 DeleteObject ................................................ 308 
BITMAPINFO .............................................. 122 DIBSECTION ............................................... 145 
BITMAPINFOHEADER ............................... 123 DISPLAY_DEVICE ...................................... 344 
BITMAPV4HEADER .................................... 128 DPtoLP ......................................................... 254 
BITMAPV5HEADER .................................... 133 DrawAnimatedRects .................................... 513 
BLENDFUNCTION ...................................... 140 DrawCaption ................................................ 514 

DrawEdge .................................................... 516 

c DrawEscape ................................................. 309 
DrawFocusRect ........................................... 518 

Cancel DC .................................................... 295 DrawFrameControl ...................................... 519 

ChangeDisplaySettings ............................... 296 
ChangeDisplaySettingsEx ........................... 299 

DrawState .................................................... 522 
DrawStateProc ............................................. 525 

Chord ........................................................... 354 
ClientToScreen ............................................ 252 
CloseEnhMetaFile ....................................... 397 E 
CloseFigure ................................................. 589 Ellipse .......................................................... 356 
COLORADJUSTMENT ............................... 142 EMR ............................................................. 421 
COLORREF ................................................. 223 EMRALPHABLEND ..................................... 423 
CombineTransform ...................................... 253 EMRANGLEARC ......................................... 425 
CopyEnhMetaFile ........................................ 398 EMRARC ..................................................... 426 
CopyRect.. ................................................... 619 EMRARCTO ................................................ 426 
CreateBitmap ................................................ 71 EMRCHORD ................................................ 426 
CreateBitmaplndirect. .................................... 73 EMRPIE ....................................................... 426 
CreateBrushlndirect .................................... 157 EMRBITBLT ................................................. 427 
CreateCompatibleBitmap .............................. 74 EMRCREATEBRUSHINDIRECT ................ 431 
CreateCompatibleDC .................................. 303 EMRCREATECOLORSPACE ..................... 432 
CreateDC ..................................................... 304 EMRCREATEDIBPA TTERNBRUSHPT ...... 434 



680 Volume 3 Microsoft Windows GOI 

EMRCREATEMONOBRUSH ...................... 435 EMRSCALEWINDOWEXTEX .................... .468 
EMRCREATEPALETTE .............................. 436 EMRSELECTOBJECT ................................. 469 
EMRCREATEPEN ...................................... 437 EMRDELETEOBJECT ................................. 469 
EMRELLIPSE EMRSELECTPALETTE ............................... 470 
EMRRECTANGLE ...................................... 437 EMRSETARCDIRECTION .......................... 471 
EMREOF ..................................................... 438 EMRSETBKCOLOR .................................... 471 
EMREXCLUDECLIPRECT ......................... 439 EMRSETTEXTCOLOR ................................ 471 
EMRINTERSECTCLIPRECT ...................... 439 EMRSETCOLORADJUSTMENT ................. 472 
EMREXTCREATEFONTINDIRECTW ........ 439 EMRSETCOLORSPACE ............................. 469 
EMREXTCREATEPEN ............................... 440 EMRSELECTCOLORSPACE ...................... 469 
EMREXTFLOODFILL.. ................................ 441 EMRDELETECOLORSPACE ...................... 469 
EMREXTSELECTCLlPRGN ....................... 442 EMRSETDIBITSTODEVICE ........................ 472 
EMREXTTEXTOUT A .................................. 443 EMRSETICMPROFILE ................................ 474 
EMREXTTEXTOUTW ................................. 443 EMRSETMAPPERFLAGS ........................... 475 
EMRFILLPATH EMRSETMITERLIMIT ................................. 476 
EMRSTROKEANDFILLPATH ..................... 444 EMRSETPALETTEENTRIES ...................... 476 
EMRSTROKEPATH .................................... 444 EMRSETPIXELV ......................................... 477 
EMRFILLRGN ............................................. 444 EMRSETVIEWPORTEXTEX ....................... 478 
EMRFORMAT ............................................. 445 EMRSETWINDOWEXTEX .......................... 478 
EMRFRAMERGN ........................................ 446 EMRSETVIEWPORTORGEX ..................... 479 
EMRGDICOMMENT ................................... 447 EMRSETWINDOWORGEX ......................... 479 
EMRGLSBOUNDEDRECORD ................... 448 EMRSETBRUSHORGEX ............................ 479 
EMRGLSRECORD ...................................... 449 EMRSETWORLDTRANSFORM ................. 479 
EMRGRADIENTFILL. .................................. 450 EMRSTRETCHBLT ..................................... 480 
EMRINVERTRGN ....................................... 451 EMRSTRETCHDIBITS ................................ 482 
EMRPAINTRGN .......................................... 451 EMRTEXT .................................................... 484 
EMRLlNETO ............................................... 452 EMRTRANSPARENTBL T .......................... .485 
EMRMOVETOEX ........................................ 452 EndPaint ...................................................... 526 
EMRMASKBLT ............................................ 452 EndPath ....................................................... 590 
EMRMODIFYWORLDTRANSFORM .......... 455 Enhanced Metafile Records with No 
EMROFFSETCLlPRGN .............................. 455 Parameters ............................................... 487 
EMRPIXELFORMAT ................................... 456 Enhanced Metafile Records with One 
EMRPLGBL T ............................................... 457 Parameter ................................................ 487 
EMRPOL YDRAW ........................................ 459 EnhMetaFileProc ......................................... 402 
EMRPOLYDRAW16 .................................... 460 ENHMETAHEADER .................................... 488 
EMRPOLYLlNE ........................................... 461 ENHMETARECORD .................................... 491 
EMRPOLYBEZIER ...................................... 461 EnumDisplayDevices ................................... 31 0 
EMRPOLYGON ........................................... 461 EnumDisplaySettings ................................... 311 
EMRPOLYBEZIERTO ................................. 461 EnumDisplaySettingsEx .............................. 313 
EMRPOLYLINETO ...................................... 461 EnumEnhMetaFile ....................................... 403 
EMRPOL YLlNE16 ....................................... 462 EnumObjects ............................................... 316 
EMRPOLYBEZIER16 .................................. 462 EnumObjectsProc ........................................ 317 
EMRPOLYGON16 ....................................... 462 EqualRect .................................................... 619 
EMRPOL YBEZIERT016 ............................. 462 ExcludeClipRect .......................................... 177 
EMRPOLYLINET016 .................................. 462 ExcludeUpdateRgn ...................................... 526 
EMRPOL YPOL YLiNE ................................. 463 ExtCreatePen ............................................... 608 
EM RPOLYPOL YGON ................................. 463 ExtFloodFiII .................................................... 80 
EMRPOLYPOL YLlNE16 ............................. 464 EXTLOGPEN ............................................... 611 
EM RPOLYPOL YGON16 ............................. 464 ExtSelectClipRgn ......................................... 178 
EMRPOL YTEXTOUTA ................................ 464 
EMRPOL YTEXTOUTW ............................... 464 
EMRRESIZEPALETTE ............................... 466 F 
EMRRESTOREDC ...................................... 466 FiliPath ......................................................... 591 
EMRROUNDRECT ..................................... 467 
EMRSCALEVIEWPORTEXTEX ................. 468 

FiliRect ......................................................... 357 
FlattenPath ................................................... 592 



Appendix B Index B: Volume 3, Elements Listed Alphabetically 681 

FrameRect ................................................... 358 GetViewportOrgEx ....................................... 259 
GetWindowDC ............................................. 537 

G GetWindowExtEx ......................................... 260 
GetWindowOrgEx ........................................ 261 

GdiComment ............................................... 404 GetWindowRgn ............................................ 539 

GdiFlush ...................................................... 527 GetWinMetaFileBits ..................................... 413 

GdiGetBatchLimit ........................................ 529 GetWorldTransform ..................................... 262 

GdiSetBatchLimit. ........................................ 530 GRADIENT_RECT ...................................... 146 

GetArcDirection ........................................... 376 GRADIENT_TRIANGLE .............................. 147 

GetBitmapDimensionEx ................................ 82 
GetBkColor .................................................. 531 

GradientFill ..................................................... 88 
GrayString .................................................... 540 

GetBkMode .................................................. 531 
GetBoundsRect ........................................... 532 
GetBrushOrgEx ........................................... 164 H 
GetBValue ................................................... 226 HANDLETABLE ........................................... 491 
GetClipBox .................................................. 180 HTU L ColorAdjustment ................................ 211 
GetClipRgn .................................................. 181 
GetColorAdjustment .................................... 205 
GetCurrentObject ........................................ 318 
GetCurrentPositionEx .................................. 255 InflateRect .................................................... 620 
GetDC .......................................................... 319 
GetDCBrushColor ....................................... 320 

IntersectClipRect. ......................................... 184 
IntersectRect ................................................ 621 

GetDCEx ..................................................... 321 InvalidateRect .............................................. 542 
GetDCOrgEx ............................................... 323 
GetDCPenColor .......................................... 324 

InvalidateRgn ............................................... 543 
InvertRect. .................................................... 359 

GetDeviceCaps ........................................... 325 
GetDlBColorTable ......................................... 83 

IsRectEmpty ................................................. 622 

GetDIBits ....................................................... 84 
GetEnhMetaFile .......................................... 407 L 
GetEnhMetaFileBits .................................... 408 
GetEnhMetaFileHeader ............................... 411 
GetEnhMetaFilePaletteEntries .................... 412 
GetGraphicsMode ....................................... 256 
GetGValue ................................................... 226 
GetMapMode ............................................... 257 
GetMetaRgn ................................................ 182 
GetMiterLimit ............................................... 593 
GetNearestColor ......................................... 206 
GetNearestPalettelndex .............................. 207 
GetObject .................................................... 331 

LineDDA ....................................................... 377 
LineDDAProc ............................................... 378 
LineTo .......................................................... 379 
LoadBitmap .................................................... 90 
LockWindowUpdate ..................................... 544 
LOGBRUSH ................................................. 169 
LOGBRUSH32 ............................................. 172 
LOGPALETIE ............................................. 224 
LOGPEN ...................................................... 615 
LPtoDP ......................................................... 263 

GetObjectType ............................................ 333 
GetPaletteEntries ........................................ 208 
GetPath ....................................................... 594 

M 
GetPixel ......................................................... 87 MAKEPOINTS ............................................. 631 
GetRandomRgn .......................................... 183 MAKEROP4 ................................................. 152 
GetROP2 ..................................................... 533 MapWindowPoints ....................................... 264 
GetRValue ................................................... 227 MaskBlt .......................................................... 92 
GetStockObject ........................................... 334 ModifyWorldTransform ................................ 265 
GetStretchBltMode ........................................ 88 MoveToEx .................................................... 381 
GetSysColorBrush ....................................... 165 
GetSystemPaletteEntries ............................ 209 
GetSystemPaletteUse ................................. 210 o 
GetUpdateRect. ........................................... 535 
GetUpdateRgn ............................................ 536 

OffsetClipRgn ............................... : ............... 185 
OffsetRect .................................................... 623 

GetViewportExtEx ....................................... 258 



682 Volume 3 Microsoft Windows GOI 

OffsetViewportOrgEx ................................... 267 ScaleWindowExtEx ...................................... 270 
OffsetWindowOrgEx .................................... 268 ScreenToClient ............................................ 271 
OutputProc .................................................. 546 SelectClipPath ............................................. 188 

SelectClipRgn .............................................. 189 

p SelectObject. ................................................ 340 
SelectPalette ................................................ 215 

PaintDesktop ............................................... 547 
PAINTSTRUCT ........................................... 561 

SetArcDirection ............................................ 389 
SetBitmapDimensionEx ................................. 97 

PALETTEENTRY ........................................ 224 SetBkColor ................................................... 550 

PALETTEINDEX ......................................... 228 SetBkMode .................................................. 551 

PALETTERGB ............................................. 229 SetBoundsRect ............................................ 552 

PatBlt ........................................................... 166 SetBrushOrgEx ............................................ 168 

PathToRegion ............................................. 596 
Pie ............................................................... 360 

SetColorAdjustment ..................................... 216 
SetDCBrushColor ........................................ 342 

PlayEnhMetaFile ......................................... 415 
PlayEnhMetaFileRecord .............................. 417 
PlgBlt ............................................................. 95 
POINT .......................................................... 629 

SetDCPenColor ........................................... 343 
SetDIBColorTable .......................................... 98 
SetDIBits ...................................................... 100 
SetDIBitsToDevice ....................................... 102 

POINTL. ....................................................... 492 SetEnhMetaFileBits ..................................... 418 

POINTS ....................................................... 629 SetGraphicsMode ........................................ 272 

POINTSTOPOINT ....................................... 631 SetMapMode ................................................ 274 

POINTTOPOINTS ....................................... 632 SetMetaRgn ................................................. 191 

PolyBezier ................................................... 382 
PolyBezierTo ............................................... 383 
PolyDraw ..................................................... 384 
Polygon ........................................................ 362 
Polyline ........................................................ 386 
PolylineTo .................................................... 387 
PolyPolygon ........ : •....................................... 363 
PolyPolyline ................................................. 388 
PtlnRect ....................................................... 624 

SetMiterLimit ................................................ 597 
SetPaletteEntries ......................................... 217 
SetPixel ........................................................ 105 
SetPixelV ..................................................... 106 
SetRect ........................................................ 625 
SetRectEmpty .............................................. 626 
SetROP2 ...................................................... 554 
SetStretchBltMode ....................................... 107 
SetSystemPaletteUse .................................. 219 

PtVisible ....................................................... 186 SetViewportExtEx ........................................ 276 
SetViewportOrgEx ....................................... 278 
SetWindowExtEx ......................................... 279 

R SetWindowOrgEx ......................................... 280 

RealizePalette ............................................. 213 
RECT ........................................................... 630 
Rectangle .................................................... 364 
RECTL ......................................................... 493 
RectVisible .................................................. 187 
RedrawWindow ........................................... 547 
ReleaseDC .................................................. 336 
ResetDC ...................................................... 337 
ResizePalette .............................................. 214 

SetWindowRgn ............................................ 556 
SetWinMetaFileBits ..................................... 419 
SetWorldTransform ...................................... 282 
SiZE ............................................................. 150 
Stretch Bit ..................................................... 109 
StretchDIBits ................................................ 111 
StrokeAndFiliPath ........................................ 598 
StrokePath ................................................... 599 
SubtractRect ................................................ 626 

RestoreDC ................................................... 338 
RGB ............................................................. 230 T 
RGBQUAD .................................................. 148 
RGBTRIPLE ................................................ 149 TransparentBlt ............................................. 114 

RoundRect. .................................................. 365 TRIVERTEX ................................................. 151 

s u 
SaveDC ....................................................... 339 UnionRect .................................................... 628 

ScaleViewportExtEx .................................... 269 UnrealizeObject ........................................... 221 



Appendix B Index B: Volume 3, Elements Listed Alphabetically 683 

UpdateColors .............................................. 222 WM_DISPLA YCHANGE .............................. 562 
UpdateWindow ............................................ 557 WM_NCPAINT ............................................. 563 

WM_PAINT .................................................. 564 

v WM_PALETTECHANGED .......................... 231 
WM_PALETTEISCHANGING ...................... 232 

ValidateRect ................................................ 558 WM_PRINT .................................................. 566 

ValidateRgn ................................................. 559 
VIDEOPARAMETERS ................................ 345 

WM_PRINTCLIENT ..................................... 567 
WM_QUERYNEWPALETTE ....................... 233 
WM_SETREDRAW ..................................... 568 

w WM_SYNCPAINT ........................................ 569 
WM_SYSCOLORCHANGE ......................... 234 

Widen Path ................................................... 600 
WindowFromDC .......................................... 560 x 
WM_DEVMODECHANGE .......................... 350 

XFORM ........................................................ 284 





APPENDIX B 

Index B: Volume 4, Elements 
Listed Alphabetically 

A CreateStatusWindow ................................... 562 
CreateUpDownControl ................................. 735 

ACM_OPEN ................................................ 127 
ACM_PLA Y ................................................. 128 
ACM_STOP ................................................. 129 D 
ACN_START ............................................... 136 
ACN_STOP ................................................. 136 
AddPropSheetPageProc ............................. 435 
Animate_Close ............................................ 130 
Animate_Create .......................................... 130 
Animate_Open ............................................ 131 
Animate_OpenEx ........................................ 132 
Animate_Play .............................................. 133 
Animate_Seek ............................................. 134 
Animate_Stop .............................................. 135 

DateTime_GetMonthCal .............................. 205 
DateTime_GetMonthCalColor ..................... 205 
Date Ti me _ GetMonthCal Font ....................... 207 
DateTime_ GetRange ................................... 207 
Date Time_ GetSystemtime ........................... 208 
DateTime_SetFormat .................................. 209 
DateTime_SetMonthCalColor ...................... 210 
DateTime_SetMonthCalFont ....................... 211 
DateTime_SetRange ................................... 211 
DateTime_SetSystemtime ........................... 212 
DestroyPropertySheetPage ......................... 436 

c DL_BEGINDRAG ......................................... 228 
DL_CANCELDRAG ..................................... 229 

CBEM_DELETEITEM ................................. 145 DL_DRAGGING ........................................... 230 
CBEM_GETCOMBOCONTROL ................. 146 DL_DROPPED ............................................. 230 
CBEM_GETEDITCONTROL. ...................... 146 DRAGLISTINFO .......................................... 231 
CBEM_GETEXTENDEDSTYLE ................. 147 Drawlnsert .................................................... 226 
CBEM_GETIMAGELIST ............................. 147 DrawStatusText ........................................... 563 
CBEM_GETITEM ........................................ 148 DTM_GETMCCOLOR ................................. 197 
CBEM_GETUNICODEFORMA T.. ............... 149 DTM_GETMCFONT .................................... 198 
CBEM_HASEDITCHANGED ...................... 149 DTM_GETMONTHCAL ............................... 198 
CBEM_INSERTITEM .................................. 150 DTM_GETRANGE ....................................... 199 
CBEM_SETEXTENDEDSTYLE .................. 151 DTM_GETSYSTEMTIME ............................ 200 
CBEM_SETIMAGELlST .............................. 151 DTM_SETFORMAT ..................................... 200 
CBEM_SETITEM ........................................ 152 DTM_SETMCCOLOR .................................. 201 
CBEM_SETUNICODEFORMAT ................. 153 DTM_SETMCFONT ..................................... 202 
CBEN_BEGINEDIT ..................................... 154 DTM_SETRANGE ....................................... 203 
CBEN_DELETEITEM .................................. 154 DTM_SETSYSTEMTIME ............................. 204 
CBEN_DRAGBEGIN ................................... 155 DTN_CLOSEUP .............. ; ........................... 213 
CBEN_ENDEDIT ......................................... 155 DTN_DATETIMECHANGE .......................... 214 
CBEN_GETDISPINFO ................................ 156 DTN_DROPDOWN ...................................... 215 
CBEN_INSERTITEM ................................... 157 DTN_FORMAT ............................................ 216 
CCM_GETUNICODEFORMAT ..................... 86 DTN_FORMATQUERY ............................... 216 
CCM_GETVERSION ..................................... 87 DTN_USERSTRING .................................... 217 
CCM_SETUNICODEFORMAT ..................... 88 DTN_WMKEYDOWN .................................. 218 
CCM_SETVERSION ..................................... 89 
COLORSCHEME ........................................ 104 
COMBOBOXEXITEM .................................. 158 E 
CreatePropertySheetPage .......................... 435 ExtensionPropSheetPageProc .................... 437 

685 



686 Volume 4 Microsoft Windows Common Controls 

F HDN_FIL TERBTNCLlCK ............................. 294 
HDN_FIL TERCHANGE ............................... 295 

FIRST _IPADDRESS ................................... 325 HDN_GETDISPINFO ................................... 295 
FlatSB_EnableScroliBar .............................. 236 HDN_ITEMCHANGED ................................ 296 
FlatSB_GetScrolllnfo ................................... 237 HDN_ITEMCHANGING ............................... 297 
FlatSB_GetScroIiPos ................................... 238 HDN_ITEMCLlCK ........................................ 297 
FlatSB_GetScroliProp ................................. 239 HDN_ITEMDBLCLICK ................................. 298 
FlatSB_GetScroliRange .............................. 241 HDN_ TRACK ............................................... 298 
FlatSB_SetScrollinfo ................................... 242 HDTEXTFIL TER Structure .......................... 306 
FlatSB_SetScroliPos ................................... 243 Header_ClearFilter ...................................... 274 
FlatSB_SetScroIiProp .................................. 244 Header_CreateDraglmage .......................... 275 
FlatSB_SetScroIiRange ............................... 247 Header _Delete Item ...................................... 275 
FlatSB_ShowScroliBar ................................ 248 Header_EditFilter ......................................... 276 
FORWARD_WM_NOTIFY ............................ 92 HeadecGetBitmapMargin ........................... 277 
FOURTH_IPADDRESS ............................... 326 Headec GetlmageList. ................................. 278 

Header_Getitem .......................................... 278 

G 
Headec GetltemCount. ................................ 279 
HeadecGetltemRect ................................... 280 

GetEffectiveClientRect .................................. 81 
GetMUILanguage .......................................... 82 

Header_GetOrderArray ............................... 281 
Header _ GetUnicodeFormat. ........................ 282 
HeadeUnsertltem ....................................... 282 

H 
Header_Layout ............................................ 283 
Header_OrderTolndex ................................. 284 

HAN DLE_WM_NOTI FY ................................ 93 
HDHITIESTINFO ........................................ 301 
HDITEM ....................................................... 303 
HDLA YOUT ................................................. 306 
HDM_CLEARFILTER .................................. 258 
HDM_CREATEDRAGIMAGE ..................... 259 
HDM_DELETEITEM .................................... 259 
HDM_EDITFIL TER ...................................... 260 
HDM_GETBITMAPMARGIN ....................... 261 
HDM_GETIMAGELlST ................................ 261 

Header_SetBitmapMargin ........................... 285 
Header _SetFilterChangeTimeout ................ 286 
Header_SetHotDivider ................................. 286 
HeadecSetimageList .................................. 287 
Header _Setltem ........................................... 288 
HeadecSetOrderArray ................................ 289 
Header _SetU nicodeFormat ......................... 290 
HKM_GETHOTKEY ..................................... 315 
HKM_SETHOTKEY ..................................... 316 
HKM_SETRULES ........................................ 317 

HDM_GETITEM .......................................... 262 
HDM_GETITEMCOUNT ............................. 262 
HDM_GETITEMRECT ................................ 263 
HDM_GETORDERARRAY ......................... 264 
Hm.,cGETUNICODEFORMAT ................... 265 
HDM_HITIEST ........................................... 265 
HDM_INSERTITEM .................................... 266 
HDM_LA YOUT ............................................ 266 
HDM_ORDERTOINDEX ............................. 267 
HDM_SETBITMAPMARGIN ....................... 268 
HDM_SETFIL TERCHANGETIMEOUT ....... 268 
HDM_SETHOTDIVIDER ............................. 269 
HDM_SETIMAGELIST ................................ 270 
HDM_SETITEM ........................................... 271 
HDM_SETORDERARRAY .......................... 271 
HDM_SETUNICODEFORMAT ................... 272 

INDEXTOSTATEIMAGEMASK ..................... 94 
InitCommonControls ...................................... 83 
I nitCommonControlsEx .................................. 83 
INITCOMMONCONTROLSEX .................... 104 
InitializeFlatSB ............................................. 235 
InitMUILanguage ........................................... 84 
IPM_CLEARADDRESS ............................... 320 
IPM_GETADDRESS .................................... 321 
IPM_ISBLANK ............................................. 322 
IPM_SETADDRESS .................................... 322 
IPM_SETFOCUS ......................................... 323 
IPM_SETRANGE ......................................... 323 
IPN_FIELDCHANGED ................................. 324 

HDN_BEGINDRAG ..................................... 291 
HDN_BEGINTRACK ................................... 292 
HDN_DIVIDERDBLCLICK .......................... 292 L 
HDN_ENDDRAG ......................................... 293 LBltemFromPt .............................................. 227 
HDN_ENDTRACK ....................................... 293 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 687 

M MonthCaLSetUnicodeFormat ..................... 378 
MONTHDA YSTATE ..................................... 385 

MakeDragList .............................................. 228 
MAKEIPADDRESS ..................................... 326 
MAKEIPRANGE .......................................... 327 N 
MCHITTESTINFO ....................................... 382 
MCM GETCOLOR. ..................................... 339 
MCM - GETCURSEL.. .................................. 340 
MCM - GETFIRSTDAYOFWEEK ................. 341 
MCM - GETMAXSELCOUNT ....................... 342 
MCM - GETMAXTODAYWIDTH .................. 342 
MCM - GETMINREORECT .......................... 343 
MCM - GETMONTHDEL TA .......................... 344 
MCM - GETMONTHRANGE ........................ 345 
MCM - GETRANGE ...................................... 346 
MCM - GETSELRANGE ............................... 347 
MCM - GETTODAY ...................................... 347 
MCM - GETUNICODEFORMAT .................. 348 
MCM - HITTEST ........................................... 349 
MCM - SETCOLOR ...................................... 351 
MCM - SETCURSEL .................................... 352 
MCM - SETDAYSTATE ................................ 353 
MCM - SETFIRSTDAYOFWEEK ................. 354 
MCM - SETMAXSELCOUNT ....................... 354 
MCM - SETMONTHDEL TA .......................... 355 
MCM - SETRANGE ...................................... 356 
MCM - SETSELRANGE ............................... 357 
MCM - SETTODA Y ...................................... 358 
MCM-SETUNICODEFORMAT ................... 358 
MCN -GETDAYSTATE ................................ 379 
MCN - SELCHANGE .................................... 380 
MCN - SELECT ............................................ 380 
Menu-Help .................................................... 564 
MonthCal GetColor ..................................... 359 
MonthCal-GetCurSel .................................. 360 
MonthCal=GetFirstDayOfWeek ................... 361 
MonthCal GetMaxSelCount ....................... 362 
MonthCal=GetMaxTodayWidth ................... 363 

NM CHAR ..................................................... 95 
NM - CLiCK ..................................................... 95 
NM=CLlCK (status bar) ............................... 578 
NM_CLlCK (tab) .......................................... 639 
NM CUSTOMDRAW ................................... 117 
NM=CUSTOMDRAW (header) .................... 299 
NM_CUSTOMDRAW (rebar) ....................... 535 
NM_CUSTOMDRAW (Tooltip) .................... 687 
NM_CUSTOMDRAW (trackbar) .................. 728 
NM DBLCLK ................................................. 96 
NM=DBLCLK (status bar) ............................ 579 
NM HOVER ................................................... 96 
NM - KEYDOWN ............................................. 97 
NM - KILLFOCUS ........................................... 98 
NM=KILLFOCUS (date time) ....................... 219 
NM NCHITTEST ........................................... 98 
NM=NCHITTEST (rebar) ............................. 536 
NM OUTOFMEMORY .................................. 99 
NM - RCLICK .................................................. 99 
NM=RCLICK (header) ................................. 300 
NM_RCLICK (status bar) ............................. 579 
NM_RCLICK (tab) ........................................ 639 
NM RDBLCLK ............................................. 100 
NM=RDBLCLK (status bar) ......................... 580 
NM RELEASEDCAPTURE ......................... 101 
NM - RELEASEDCAPTURE (header) .......... 301 
NM=RELEASEDCAPTURE (monthcal) ....... 381 
NM RELEASEDCAPTURE (pager) ........... .408 
NM - RELEASEDCAPTURE (rebar) ............. 537 
NM - RELEASEDCAPTURE (tab) ................ 640 
NM - RELEASEDCAPTURE (trackbar) ........ 729 
NM - RELEASEDCAPTURE (up-down) ....... 746 
NM - RETURN .............................................. 101 

MonthCaLGetMinReqRect ......................... 363 NM - SETCURSOR. ...................................... 102 
MonthCaLGetMonthDelta ........................... 364 
MonthCaLGetMonthRange ........................ 365 
MonthCaLGetRange ................................... 366 
MonthCaLGetSelRange ............................. 367 
MonthCaLGetToday ................................... 368 

NM=SETCURSOR (ComboBoxEx) ............. 157 
NM SETFOCUS .......................................... 102 
NM=SETFOCUS (date time) ....................... 219 
NM TOOLTIPSCREATED .......................... 103 
NMCBEDRAGBEGIN .................................. 161 

MonthCal GetUnicodeFormat .................... 368 
MonthCal-HitTest... ..................................... 369 
MonthCal=SetColor ..................................... 370 

NMCBEENDEDIT ........................................ 160 
NMCHAR ..................................................... 105 
NMCOMBOBOXEX ..................................... 161 

MonthCal SetCurSel. .................................. 371 
MonthCal=SetDayState ............................... 372 

NMCUSTOMDRAW ..................................... 119 
NMDATETIMECHANGE .............................. 220 

MonthCal_SetFirstDayOfWeek ................... 373 NMDATETIMEFORMAT .............................. 221 
MonthCaLSetMaxSelCount ........................ 374 NMDATETIMEFORMATOUERY ................. 222 
MonthCal SetMonthDelta ........................... 375 
MonthCal=SetRange ................................... 376 

NMDATETIMESTRING ............................... 223 
NMDATETIMEWMKEYDOWN .................... 224 

MonthCal_SetSeIRange .............................. 377 NMDAYSTATE ............................................ 384 
MonthCaLSetToday .................................... 377 NMHDDISPINFO ......................................... 307 



688 Volume 4 Microsoft Windows Common Controls 

NMHDFIL TERBTNCLICK Structure ............ 308 PGM_SETBORDER .................................... 396 
NMHDR ....................................................... 106 PGM_SETBUITONSIZE ............................. 396 
NMHEADER ................................................ 309 PGM_SETCHILD ......................................... 397 
NMIPADDRESS .......................................... 329 PGM_SETPOS ............................................ 398 
NMKEY ........................................................ 107 PGN_CALCSIZE ......................................... 409 
NMMOUSE .................................................. 107 PGN_SCROLL. ............................................ 409 
NMOBJECTNOTIFY ................................... 108 PropertySheet .............................................. 438 
NMPGCALCSIZE ........................................ 410 PropSheeCAddPage ................................... 461 
NMPGSCROLL ........................................... 411 PropSheeCApply ......................................... 461 
NMRBAUTOSIZE ........................................ 544 PropSheeCCancelToClose ......................... 462 
NMREBAR ................................................... 545 PropSheeCChanged ................................... 463 
NMREBARCHEVRON ................................ 546 PropSheeCGetCurrentPageHwnd .............. 464 
NMREBARCHILDSIZE ................................ 547 PropSheeC GetTabControl .......................... 465 
NMSELCHANGE ......................................... 384 PropSheeCHwndTolndex ............................ 465 
NMTCKEYDOWN ....................................... 644 PropSheeUdTolndex .................................. 466 
NMTOOLTIPSCREATED ............................ 109 PropSheeUndexToHwnd ............................ 467 
NMITCUSTOMDRAW ................................ 691 PropSheeUndexTold .................................. 467 
NMITDISPINFO ......................................... 691 PropSheeUndexToPage ............................ 468 
NMUPDOWN .............................................. 747 PropSheeUnsertPage ................................ 469 

PropSheeUsDialogMessage ...................... 470 

p PropSheeCPageTolndex ............................ 471 
PropSheeCPressButton .............................. 472 

Pager_ForwardMouse ................................. 399 
Pager_GetBkColor ...................................... 399 
Pager_GetBorder ........................................ 400 
Pager_GetButtonSize .................................. 401 
PagecGetButtonState ................................ 401 
PagecGetDropTarget ................................. 402 
Pager_GetPos ............................................. 403 
PagecRecalcSize ....................................... 403 
Pager_SetBkColor ....................................... 404 
Pager_SetBorder ......................................... 405 
PagecSetButtonSize .................................. 406 
Pager_SetChiid ........................................... 406 
Pager_SetPos ............................................. 407 
PBM_DEL T APOS ....................................... 417 
PBM_GETPOS ............................................ 417 
PBM_GETRANGE ...................................... 418 
PBM_SETBARCOLOR ............................... 419 
PBM_SETBKCOLOR .................................. 419 
PBM_SETPOS ............................................ 420 
PBM_SETRANGE ....................................... 421 
PBM_SETRANGE32 ................................... 421 
PBM_SETSTEP .......................................... 422 
PBM_STEPIT .............................................. 423 
PBRANGE ................................................... 423 

PropSheeCQuerySiblings ........................... 473 
PropSheeCRebootSystem .......................... 474 
PropSheeCRemovePage ............................ 474 
PropSheeCRestartWindows ........................ 475 
PropSheeCSetCurSel ................................. 476 
PropSheeCSetCurSeIByID .......................... 477 
PropSheeCSetFinish Text ............................ 477 
PropSheeCSetHeaderSubTitle ................... 478 
PropSheet_SetHeaderTitle .......................... 479 
PropSheeCSetTitle ...................................... 480 
PropSheeCSetWizButtons .......................... 481 
PropSheeCUnChanged ............................... 482 
PROPSHEETHEADER ................................ 493 
PROPSHEETPAGE ..................................... 499 
PropSheetPageProc .................................... 439 
PropSheetProc ............................................ 440 
PSHNOTIFY ................................................ 503 
PSM_ADDPAGE ......................................... 441 
PSM_APPLY ................................................ 442 
PSM_CANCEL TOCLOSE .......................... .442 
PSM_CHANGED ......................................... 443 
PSM_GETCURRENTPAGEHWND ............. 444 
PSM_GEITABCONTROL ........................... 445 
PSM_HWNDTOINDEX ................................ 445 

PGM_FORWARDMOUSE .......................... 390 
PGM_GETBKCOLOR ................................. 391 
PGM_GETBORDER ................................... 391 
PGM_GETBUTTONSIZE ............................ 392 
PGM_GETBUITONSTATE ........................ 392 
PGM_GETDROPTARGET .......................... 393 
PGM_GETPOS ........................................... 394 
PGM_RECALCSIZE .................................... 395 
PGM_SETBKCOLOR .................................. 395 

PSM_IDTOINDEX ....................................... 446 
PSM_INDEXTOHWND ................................ 446 
PSM_INDEXTOID ....................................... 447 
PSM_INDEXTOPAGE ................................. 447 
PSM_INSERTPAGE .................................... 448 
PSM_ISDIALOGMESSAGE ........................ 449 
PSM_PAGETOINDEX ................................. 450 
PSM_PRESSBUITON ................................ 451 
PSM_QUERYSIBLlNGS .............................. 451 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 689 

PSM_REBOOTSYSTEM ............................. 452 RB_SETCOLORSCHEME ........................... 529 
PSM_REMOVEPAGE ................................. 453 RB_SETPALETTE ....................................... 529 
PSM_RESTARTWINDOWS ....................... 453 RB_SETPARENT ........................................ 530 
PSM_SETCURSEL ..................................... 454 RB_SETTEXTCOLOR ................................. 531 
PSM_SETCURSELID ................................. 455 RB_SETTOOL TIPS ..................................... 532 
PSM_SETFINISHTEXT ............................... 456 RB_SETUNICODEFORMAT ....................... 532 
PSM_SETHEADERSUBTITLE ................... 456 RB_SHOWBAND ......................................... 533 
PSM_SETHEADERTITLE ........................... 457 RB_SIZETORECT ....................................... 534 
PSM_SETTITLE .......................................... 458 RBHITTESTINFO ........................................ 548 
PSM_SETWIZBUTTONS ............................ 459 RBN_AUTOSIZE ......................................... 537 
PSM_UNCHANGED ................................... 460 RBN_BEGINDRAG ...................................... 538 
PSN_APPLY ................................................ 483 RBN_CHEVRONPUSHED .......................... 539 
PSN_GETOBJECT ..................................... 484 RBN_CHILDSIZE ........................................ 539 
PSN_HELP .................................................. 484 RBN_DELETEDBAND ................................. 540 
PSN_KILLACTIVE ....................................... 485 RBN_DELETINGBAND ............................... 541 
PSN_QUERYCANCEL. ............................... 486 RBN_ENDDRAG ......................................... 541 
PSN_QUERYINITIALFOCUS ..................... 487 RBN_GETOBJECT ...................................... 542 
PSN_RESET ............................................... 488 RBN_HEIGHTCHANGE .............................. 543 
PSN_SETACTIVE ....................................... 489 RBN_LAYOUTCHANGED ........................... 543 
PSN_ TRANSLATEACCELERATOR ........... 489 REBARBANDINFO ...................................... 548 
PSN_WIZBACK ........................................... 490 REBARINFO ................................................ 552 
PSN_WIZFINISH ......................................... 491 
PSN_WIZNEXT ........................................... 492 s 
R SB_GETBORDERS ..................................... 565 

SB_GETICON .............................................. 566 
RB_BEGINDRAG ........................................ 510 SB_GETPARTS ........................................... 566 
RB_DELETEBAND ..................................... 511 SB_GETRECT ............................................. 567 
RB_DRAGMOVE ........................................ 511 SB_GETTEXT.. ............................................ 567 
RB_ENDDRAG ........................................... 512 SB_GETTEXTLENGTH ............................... 569 
RB_GETBANDBORDERS .......................... 512 SB_GETTIPTEXT ........................................ 570 
RB_GETBANDCOUNT ............................... 513 SB_GETUNICODEFORMAT ....................... 570 
RB_GETBANDINFO ................................... 514 SB_ISSIMPLE .............................................. 571 
RB_GETBARHEIGHT ................................. 515 SB_SETBKCOLOR ..................................... 572 
RB_GETBARINFO ...................................... 515 SB_SETICON .............................................. 572 
RB_GETBKCOLOR .................................... 516 SB_SETMINHEIGHT ................................... 573 
RB_GETCOLORSCHEME .......................... 516 SB_SETPARTS ........................................... 574 
RB_GETDROPTARGET ............................. 517 SB_SETTEXT .............................................. 574 
RB_GETPALETTE ...................................... 518 SB_SETTIPTEXT ........................................ 575 
RB_GETRECT ............................................ 518 SB_SETUNICODEFORMAT ....................... 576 
RB_GETROWCOUNT ................................ 519 SB_SIMPLE ................................................. 577 
RB_GETROWHEIGHT. ............................... 519 SBN_SIMPLEMODECHANGE .................... 580 
RB_GETTEXTCOLOR ................................ 520 SECOND_IPADDRESS ............................... 328 
RB_GETTOOL TIPS .................................... 520 ShowHideMenuCtl ......................................... 85 
RB_GETUNICODEFORMAT ...................... 521 
RB_HITTEST .............................................. 522 
RB_IDTOINDEX .......................................... 522 T 
RB_INSERTBAND ...................................... 523 
RB_MAXIMIZEBAND .................................. 524 
RB_MINIMIZEBAND ................................... 524 
RB_MOVEBAND ......................................... 525 
RB_PUSHCHEVRON ................................. 526 
RB_SETBANDINFO .................................... 527 
RB_SETBARINFO ...................................... 527 
RB_SETBKCOLOR ..................................... 528 

TabCtrl_AdjustRect. ..................................... 619 
TabCtrLDeleteAliltems ................................ 620 
TabCtrLDeleteltem ...................................... 620 
TabCtrl_DeselectAll ..................................... 621 
TabCtrL GetCurFocus .................................. 622 
TabCtrl_GetCurSel ...................................... 622 
TabCtrLGetExtendedStyle .......................... 623 



690 Volume 4 Microsoft Windows Common Controls 

TabCtrLGetlmageList ................................. 623 TCHITTESTINFO ........................................ 644 
TabCtrLGetltem .......................................... 624 TCITEM ........................................................ 645 
TabCtrLGetitemCount ................................ 625 TCITEMHEADER ........................................ 647 
TabCtrLGetltemRect .................................. 625 TCM_ADJUSTRECT ................................... 601 
TabCtrLGetRowCount ................................ 626 TCM_DELETEALLITEMS ............................ 601 
TabCtrLGetTooITips ................................... 627 TCM_DELETEITEM .................................... 602 
TabCtrLGetUnicodeFormat ........................ 627 TCM_DESELECT ALL .................................. 602 
TabCtrLHighlightltem .................................. 628 TCM_GETCURFOCUS ............................... 603 
TabCtrLHitTest ........................................... 629 TCM_GETCURSEL ..................................... 604 
TabCtrUnsertltem ....................................... 629 TCM_GETEXTENDEDSTYLE .................... 604 
TabCtrl_Removelmage ............................... 630 TCM_GETIMAGELIST ................................ 605 
TabCtrLSetCurFocus .................................. 631 TCM_GETITEM ........................................... 605 
TabCtrLSetCurSel ...................................... 632 TCM_GETITEMCOUNT .............................. 606 
TabCtrl_SetExtendedStyle .......................... 632 TCM_GETITEMRECT ................................. 606 
TabCtrl_SetimageList. ................................. 633 TCM_GETROWCOUNT .............................. 607 
TabCtrLSetitem .......................................... 634 TCM_GETTOOLTIPS .................................. 607 
TabCtrl_SetltemExtra .................................. 634 TCM_ GETUN ICODEFORMAT .................... 608 
TabCtrl_SetltemSize ................................... 635 TCM_HIGHLIGHTITEM ............................... 609 
TabCtrLSetMinTabWidth ............................ 636 TCM_HITTEST ............................................ 609 
TabCtrLSetPadding .................................... 637 TCM_INSERTITEM ..................................... 610 
TabCtrLSetToolTips ................................... 637 TCM_REMOVEIMAGE ................................ 611 
TabCtrLSetUnicodeFormat ........................ 638 TCM_SETCURFOCUS ................................ 611 
TBM_CLEARSEL ........................................ 705 TCM_SETCURSEL ..................................... 612 
TBM_CLEARTICS ....................................... 706 TCM_SETEXTENDEDSTYLE ..................... 613 
TBM_GETBUDDY ....................................... 706 TCM_SETIMAGELIST ................................. 614 
TBM_GETCHANNELRECT ........................ 707 TCM_SETITEM ........................................... 614 
TBM_GETLINESIZE ................................... 708 TCM_SETITEMEXTRA ............................... 615 
TBM_GETNUMTICS ................................... 708 TCM_SETITEMSIZE ................................... 616 
TBM_GETPAGESIZE ................................. 709 TCM_SETMINTABWIDTH ........................... 616 
TBM_GETPOS ............................................ 710 TCM_SETPADDING .................................... 617 
TBM_GETPTICS ......................................... 710 TCM_SETTOOL TIPS .................................. 617 
TBM_GETRANGEMAX ............................... 711 TCM_SETUNICODEFORMAT .................... 618 
TBM_GETRANGEMIN ................................ 711 TCN_FOCUSCHANGE ............................... 640 
TBM_GETSELEND ..................................... 712 TCN_GETOBJECT ...................................... 641 
TBM_GETSELSTART ................................. 713 TCN_KEYDOWN ......................................... 642 
TBM_GETTHUMBLENGTH ........................ 713 TCN_SELCHANGE ..................................... 642 
TBM_GETTHUMBRECT ............................. 714 TCN_SELCHANGING ................................. 643 
TBM_GETTIC .............................................. 715 THIRD_IPADDRESS ................................... 329 
TBM_GETTICPOS ...................................... 715 TOOLlNFO ................................................... 693 
TBM_GETTOOLTIPS .................................. 716 TTHITTESTINFO ......................................... 695 
TBM_GETUNICODEFORMAT ................... 716 TTM_ACTIVATE .......................................... 666 
TBM_SETBUDDY ....................................... 717 TTM_ADDTOOL .......................................... 666 
TBM_SETLINESIZE .................................... 718 TTM_ADJUSTRECT .................................... 667 
TBM_SETPAGESIZE .................................. 719 TTM_DEL TOOL. .......................................... 668 
TBM_SETPOS ............................................ 719 TTM_ENUMTOOLS ..................................... 669 
TBM_SETRANGE ....................................... 720 TTM_GETBUBBLESIZE .............................. 669 
TBM_SETRANGEMAX ............................... 721 TTM_ GETCURRENTTOOL ......................... 670 
TBM_SETRANGEMIN ................................ 722 TTM_GETDELAYTIME ................................ 671 
TBM_SETSEL ............................................. 722 TTM_GETMARGIN ...................................... 671 
TBM_SETSELEND ..................................... 723 TTM_ GETMAXTIPWIDTH ........................... 672 
TBM_SETSELST ART ................................. 724 TTM_ GETTEXT ........................................... 673 
TBM_SETTHUMBLENGTH ........................ 725 TTM_GETTIPBKCOLOR ............................. 674 
TBM_SETTIC .............................................. 725 TTM_GETTOOLCOUNT ............................. 674 
TBM_SETTIPSIDE ...................................... 726 TTM_GETTOOLlNFO .................................. 675 
TBM_SETTOOLTIPS .................................. 727 TTM_HITTEST ............................................ 675 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 691 

TTM_NEWTOOLRECT ............................... 676 UDM_GETBUDDY ....................................... 738 
TTM_POP .................................................... 677 UDM_GETPOS ............................................ 738 
TTM_RELA YEVENT ................................... 677 UDM_GETRANGE ...................................... 739 
TTM_SETDELA YTIME ................................ 678 UDM_GETRANGE32 .................................. 740 
TTM_SETMARGIN ...................................... 679 UDM_GETUNICODEFORMAT ................... 740 
TTM_SETMAXTIPWIDTH ........................... 680 UDM_SETACCEL. ....................................... 741 
TTM_SETTIPBKCOLOR ............................. 681 UDM_SETBASE .......................................... 742 
TTM_SETTIPTEXTCOLOR ........................ 681 UDM_SETBUDDY ....................................... 742 
TTM_SETTITLE .......................................... 682 UDM_SETPOS ............................................ 743 
TTM_SETTOOLlNFO .................................. 683 UDM_SETRANGE ....................................... 743 
TTM3RACKACTIVATE ............................. 683 UDM_SETRANGE32 ................................... 744 
TTM_ TRACKPOSITION .............................. 684 UDM_SETUNICODEFORMAT .................... 745 
TTM_UPDATE ............................................ 685 UDN_DELTAPOS ........................................ 746 
TTM_UPDATETIPTEXT .............................. 686 UninitializeFlatSB ......................................... 249 
TTM_WINDOWFROMPOINT ..................... 686 
TTN_GETDISPINFO ................................... 688 
TTN_POP .................................................... 689 w 
TTN_SHOW ................................................ 690 WM_NOTIFY ................................................. 90 

WM_NOTIFYFORMAT .................................. 91 

u 
UDACCEL ................................................... 748 
UDM_GETACCEL ....................................... 737 
UDM_GETBASE ......................................... 738 





APPENDIX B 

Index B: Volume 5, Elements 
Listed Alphabetically 

A CPL_STOP .................................................. 736 
CPIApplet ..................................................... 409 

ABM_ACTIVATE ......................................... 721 
ABM_GETAUTOHIDEBAR ......................... 721 
ABM_GETSTATE ........................................ 722 D 
ABM_GETTASKBARPOS ........................... 723 DefScreenSaverProc .................................. .410 
ABM_NEW .................................................. 723 DIIGetVersion ............................................... 411 
ABM_QUERYPOS ...................................... 724 DLLGETVERSIONPROC ............................ 412 
ABM_REMOVE ........................................... 724 Dilinstall ....................................................... 710 
ABM_SETAUTOHIDEBAR ......................... 725 DoEnvironmentSubst ................................... 413 
ABM_SETPOS ............................................ 726 
ABM_WINDOWPOSCHANGED ................. 726 
ABN_FULLSCREENAPP ............................ 727 
ABN_POSCHANGED ................................. 728 
ABN_STATECHANGE ................................ 728 

DragAcceptFiles ........................................... 414 
DragFinish .................................................... 415 
DragQueryFile .............................................. 416 
DragQueryPoint ........................................... 417 

ABN_WINDOWARRANGE ......................... 729 
AssocCreate ................................................ 670 F 
ASSOCDATA .............................................. 561 
ASSOCF ...................................................... 561 
ASSOCKEY ................................................. 563 
AssocQueryKey ........................................... 671 
AssocQueryString ....................................... 672 
AssocQueryStringByKey ............................. 674 
ASSOCSTR ................................................. 563 

FindEnvironmentString ................................ 418 
FindExecutable ........................................... .419 
FM_GETDRIVEINFO ................................... 736 
FM_GETFILESEL ........................................ 737 
FM_GETFILESELLFN ................................. 738 
FM_GETFOCUS .......................................... 739 
FM_GETSELCOUNT ................................... 739 
FM_GETSELCOUNTLFN ............................ 740 

B FM_REFRESH_ WiNDOWS ........................ 740 

BrowseCalibackProc ................................... 481 
FM_RELOAD_EXTENSIONS ...................... 741 
FMEVENT _HELPMENUITEM ..................... 742 
FMEVENT _HELPSTRING ........................... 742 

c FMEVENT_INITMENU ................................ 743 
FMEVENT _LOAD ........................................ 744 

ChrCmpl ...................................................... 575 FMEVENT_SELCHANGE ........................... 745 
ColorAdjustLuma ......................................... 707 FMEVENT _ TOOLBARLOAD ....................... 745 
ColorHLSToRGB ......................................... 708 FMEVENT_UNLOAD ................................... 746 
ColorRGBToHLS ......................................... 708 FMEVENT _USER_REFRESH .................... 746 
CPL_DBLCLK ............................................. 730 FMExtensionProc ........................................ 483 
CPL_EXIT .................................................... 730 FOLDERFLAGS ........................................... 564 
CPL_GETCOUNT ....................................... 731 FOLDERVIEWMODE .................................. 566 
CPUNIT ..................................................... 732 
CPUNQUIRE ............................................ 732 
CPL_NEWINQUIRE .................................... 733 G 
CPL_STARTWPARMS ............................... 735 GetMenuContextHelpld ............................... 420 

GetWindowContextHelpld ........................... 420 

693 



694 Volume 5 Microsoft Windows Shell 

H IContextMenu 
GetCommandString ......................... 183 

HashData ..................................................... 711 InvokeCommand .............................. 185 
QueryContextMenu .......................... 186 

IContextMenu2 
HandleMenuMsg .............................. 189 

lAC List IContextMenu3 

Expand ............................................ 141 
IACList2 

GetOptions ...................................... 143 
SetOptions ....................................... 143 

IActiveDesktop 
AddDesktopltem Method ................. 145 
AddDesktopltemWithUI Method ...... 146 
AddUrl Method ................................ 148 

HandleMenuMsg2 ............................ 191 
ICopyHook 

CopyCaliback ................................... 193 
ICurrentWorkingDirectory 

GetDirectory ..................................... 195 
SetDirectory ..................................... 196 

IDeskBand 
GetBandlnfo ..................................... 197 

ApplyChanges ................................. 149 
GenerateDesktopltemHtml. ............. 150 
GetDesktopltem .............................. 150 
GetDesktopltemByl D ....................... 151 
GetDesktopltemBySource ............... 152 
GetPatterh ....................................... 153 

IDockingWindow 
CloseDW .......................................... 199 
ResizeBorderDW ............................. 199 
ShowDW .......................................... 201 

I DockingWindowFrame 
AddToolbar ...................................... 202 

GetDesktopltemCount... .................. 153 
GetDesktopltemOptions .................. 154 
GetWalipaper .................................. 154 
GetWalipaperOptions ...................... 155 
ModifyDesktopltem .......................... 156 
RemoveDesktopltem ....................... 157 
SetDesktopltemOptions .................. 157 
SetPattern ........................................ 158 

FindToolbar ...................................... 203 
RemoveToolbar ............................... 204 

IDockingWindowSite 
GetBorderDW .................................. 214 
RequestBorderSpaceDW ................ 215 
SetBorderSpaceDW ........................ 215 

IDragSourceHelper 
InitializeFromBitmap ........................ 206 

SetWalipaper ................................... 159 
SetWalipaperOptions ...................... 159 

IASyncOperation 
EndOperation .................................. 161 
GetAsyncMode ................................ 162 
InOperation ...................................... 163 
SetAsyncMode ................................ 163 
StartOperation ................................. 164 

IAutoComplete 
Enable ............................................. 167 

InitializeFromWindow ....................... 207 
IDropTargetHelper 

DragEnter ......................................... 209 
DragLeave ....................................... 210 
DragOver ......................................... 210 
Drop ................................................. 211 
Show ................................................ 212 

IEmptyVolumeCache 
Deactivate ........................................ 217 
GetSpaceUsed ................................. 218 

Init .................................................... 168 Initialize ............................................ 219 

IAutoComplete2 
GetOptions ...................................... 170 
SetOptions ....................................... 171 

IColumnProvider 

Purge ............................................... 221 
ShbwProperties ................................ 222 

IEmptyVolumeCache2 
Initialize Ex ........................................ 224 

GetColumnlnfo ................................ 174 IEmptyVolumeCacheCallback 

GetltemData .................................... 175 PurgeProgress ................................. 227 

Initialize ............................................ 176 Scan Progress .................................. 228 

ICommDlgBrowser 
IncludeObject .................................. 177 
OnDefaultCommand ........................ 178 

IEnumExtraSearch 
Clone ................................................ 229 
Next .................................................. 230 

OnStateChange ............................... 178 
ICommDIgBrowser2 

GetDefaultMenuText ....................... 180 

Reset ................................................ 231 
Skip .................................................. 231 

IEnumlDList 

GetViewFlags .................................. 181 
Notify ............................................... 182 

Clone ................................................ 233 
Next. ................................................. 233 



APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 695 

Reset ............................................... 235 
Skip .................................................. 235 

I Extractlcon 
Extract ............................................. 237 
GetlconLocation .............................. 238 

IExtractlmage 
Extract ............................................. 241 
GetLocation ..................................... 241 

I Extractlmage2 
GetDateStamp ................................. 244 

IFileViewer 
PrintTo ............................................. 245 
Show ................................................ 24 6 
Showlnitialize ................................... 247 

I FileViewerSite 
GetPinnedWindow ........................... 248 
SetPinnedWindow ........................... 249 

IInputObject 
HasFocusIO ..................................... 250 
TranslateAcceleratorlO ................... 251 
UIActivatelO .................................... 251 

IInputObjectSite 
OnFocusChangeIS .......................... 253 

InetlsOffline ................................................. 421 
INewShortcutHook 

GetExtension ................................... 254 
GetFolder ......................................... 255 
GetName ......................................... 256 
GetReferent ..................................... 256 
Set Folder ......................................... 257 
SetReferent ..................................... 258 

I NotifyReplica 
YouAreAReplica .............................. 259 

IntiStrEqN .................................................... 576 
IntIStrEqNI ................................................... 577 
IntiStrEqWorker ........................................... 578 
IObjMgr 

Append ............................................ 260 
Remove ........................................... 261 

IPersistFileSystemFolder 
GetFolderTargetlnfo ........................ 265 
InitializeEx ....................................... 266 

I PersistFolder 
Initialize ............................................ 262 

IPersistFolder2 
GetCurFolder ................................... 263 

I ProgressDialog 
HasUserCancelied .......................... 269 
SetAnimation ................................... 269 
SetCancelMsg ................................. 270 
SetLine ............................................ 271 
SetProgress ..................................... 272 
SetProgress64 ................................. 273 
SetTitle ............................................ 274 
StartProgressDialog ........................ 274 

StopProgressDialog ......................... 276 
Timer ................................................ 276 

IQueryAssociations 
GetData ............................................ 279 
GetEnum .......................................... 280 
GetKey ............................................. 280 
GetString .......................................... 281 
Init .................................................... 282 

IQuerylnfo 
GetlnfoFlags .................................... 284 
GetlnfoTip ........................................ 285 

I ReconciiableObject 
GetProgressFeedbackMax 

Estimate ........................................ 286 
Reconcile ......................................... 287 

IReconcilelnitiator 
SetAbortCaliback ............................. 292 
SetProgressFeedback ..................... 293 

I RemoteComputer 
Initialize ............................................ 294 

IResolveSheliLink 
ResolveSheliLink ............................. 296 

IRunnableTask 
IsRunning ......................................... 298 
Kill .................................................... 299 
Resume ............................................ 299 
Run ................................................... 300 
Suspend ........................................... 300 

ISheliBrowser 
BrowseObject. .................................. 302 
EnableModelessSB ......................... 304 
GetControlWindow ........................... 304 
GetViewStateStream ....................... 306 
InsertMenusSB ................................ 307 
OnViewWindowActive ...................... 308 
QueryActiveSheliView ..................... 309 
RemoveMenusSB ............................ 31 0 
SendControlMsg ............................... 311 
SetMenuSB ...................................... 312 
SetStatusTextSB .............................. 313 
SetToolbarltems ............................... 314 
TranslateAcceleratorSB ................... 315 

ISheliChangeNotify 
OnChange ........................................ 316 

ISheliDetaiis 
ColumnClick ..................................... 319 
GetDetaiisOf .................................... 320 

IShellExecuteHook 
Execute ............................................ 323 

IShellExtlnit 
Initialize ............................................ 324 

ISheliFolder 
BindToObject ................................... 327 
BindToStorage ................................. 328 
CompareIDs ..................................... 329 



696 Volume 5 Microsoft Windows Shell 

CreateViewObject ........................... 331 DestroyViewWindow ........................ 387 
EnumObjects ................................... 332 EnableModeless .............................. 387 
GetAttributesOf ................................ 333 EnableModelessSV ......................... 388 
GetDisplayNameOf ......................... 335 GetCurrentinfo ................................. 388 
GetUIObjectOf ................................. 337 GetltemObject .................................. 389 
ParseDisplayName .......................... 338 Refresh ............................................ 390 
SetNameOf ...................................... 342 SaveViewState ................................. 391 

ISheliFolder2 Selectltem ........................................ 392 
EnumSearches ................................ 344 TranslateAccelerator ........................ 393 
GetDefaultColumn ........................... 345 U IActivate ......................................... 394 
GetDefaultColumnState .................. 346 ISheliView2 
GetDefauItSearchGUID ................... 347 CreateViewWindow2 ....................... 396 
GetDetailsEx .................................... 347 GetView ........................................... 397 
GetDetailsOf .................................... 348 HandleRename ................................ 397 
MapNameToSCID ........................... 349 SelectAndPositionltem ..................... 398 

IShelilcon ITaskbarList 
GeticonOf ........................................ 351 Activate Tab ...................................... 400 

IShelilconOverlay AddTab ............................................ 400 
GetOverlaylconlndex ....................... 353 DeleteTab ........................................ 401 
GetOverlaylndex ............................. 354 Hrlnit ................................................ 402 

IShelllconOverlayldentifier SetActiveAIt. ..................................... 402 
GetOverlaylnfo ................................ 356 IUniformResourceLocator 
GetPriority ........................................ 357 GetURL ............................................ 403 
IsMemberOf ..................................... 358 InvokeCommand .............................. 405 

ISheliLink SetURL ............................................ 406 
GetArguments ................................. 360 IURL_SETURL_FLAGS ............................... 566 
GetDescription ................................. 361 IURL_SETURUNVOKECOMMAND_ 
GetHotkey ........................................ 361 FLAGS ...................................................... 567 
GetlconLocation .............................. 362 IURLSearchHook 
GetiDList. ......................................... 363 Translate .......................................... 407 
GetPath ........................................... 364 
GetShowCmd .................................. 365 
GetWorkingDirectory ....................... 366 M 
Resolve ............................................ 366 MAKEDLLVERULL ...................................... 571 
SetArguments .................................. 368 
SetDescription ................................. 369 
SetHotkey ........................................ 370 

M I M EAssociation Dialog ............................... 421 
MLLoadLibrary ............................................. 579 

SeticonLocation ............................... 371 
SetiDList .......................................... 371 p 
SetPath ............................................ 372 
SetRelativePath ............................... 373 
SetShowCmd .................................. 374 
SetWorkingDirectory ....................... 375 

ISheliLinkDataList 
AddDataBlock .................................. 376 
CopyDataBlock ................................ 377 
GetFlags .......................................... 378 
RemoveDataBlock ........................... 379 
SetFlags .......................................... 379 

ISheliPropSheetExt 
Add Pages ........................................ 381 
ReplacePage ................................... 382 

ISheliView 
AddPropertySheetPages ................. 384 
CreateViewWindow ......................... 385 

PathAddBackslash ....................................... 61 0 
PathAddExtension ....................................... 610 
PathAppend ................................................. 611 
PathBuildRoot .............................................. 612 
PathCanonicalize ......................................... 613 
PathCombine ............................................... 614 
PathCommonPrefix ...................................... 615 
PathCompactPath ........................................ 615 
PathCompactPathEx ................................... 616 
PathCreateFromUrl ...................................... 617 
PathFileExists .............................................. 618 
PathFind Extension ....................................... 619 
PathFindFileName ....................................... 620 
PathFindNextComponent ............................ 620 
PathFindOnPath .......................................... 621 



APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 697 

PathFindSuffixArray ................... , ................ 622 SHAppBarMessage ..................................... 429 
PathGetArgs ................................................ 623 SHAutoComplete ......................................... 712 
PathGetCharType ....................................... 623 SHBindToParent .......................................... 430 
PathGetDriveNumber .................................. 624 SHBrowseForFolder .................................... 431 
PathlsContentType ...................................... 625 SHChangeNotify .......................................... 432 
PathlsDirectory ............................................ 625 SHCONTF .................................................... 568 
PathlsDirectoryEmpty .................................. 626 SHCopyKey ................................................. 675 
PathlsFileSpec ............................................ 627 SHCreateDirectoryEx .................................. 437 
PathlsHTMLFile ........................................... 627 SHCreateProcessAsUser ............................ 438 
PathlsLFNFileSpec ..................................... 628 SHCreateSheliPalette .................................. 709 
PathlsNetworkPath ...................................... 629 SHCreateStreamOnFile ............................... 714 
PathlsPrefix ................................................. 630 SHCreateThread .......................................... 714 
PathlsRelative ............................................. 630 SHDeleteEmptyKey ..................................... 676 
PathlsRoot ................................................... 631 SHDeleteKey ............................................... 677 
PathlsSameRoot ......................................... 632 SHDeleteValue ............................................ 678 
PathlsSystemFolder .................................... 632 Shell_Notifylcon ........................................... 439 
PathlsUNC ................................................... 633 SheIiAbout. ................................................... 441 
PathlsUNCServer ........................................ 634 Shell Execute ................................................ 442 
PathlsUNCServerShare .............................. 634 SheIlExecuteEx ............................................ 445 
PathisURL ................................................... 635 SHEmptyRecycleBin .................................... 447 
PathMakePretty ........................................... 636 SHEnumKeyEx ............................................ 679 
PathMakeSystemFolder .............................. 636 SHEnumValue ............................................. 680 
Path Match Spec ........................................... 637 SHFileOperation .......................................... 448 
Path Parse Icon Location ............................... 638 SHFreeNameMappings ............................... 449 
Path QuoteS paces ....................................... 639 SHGetDataFromIDList ................................. 450 
PathRelativePathTo .................................... 639 SHGetDesktopFolder ................................... 451 
PathRemoveArgs ........................................ 641 SHGetDiskFreeSpace ................................. 452 
PathRemoveBackslash ............................... 641 SHGetFilelnfo .............................................. 453 
PathRemoveBlanks ..................................... 642 SHGetFolderLocation .................................. 457 
PathRemoveExtension ................................ 642 SHGetFolderPath ........................................ 458 
PathRemoveFileSpec .................................. 643 SHGeticonOverlaylndex .............................. 461 
PathRenameExtension ................................ 644 SHGetlnstanceExplorer ............................... 462 
PathSearchAndQualify ................................ 644 SHGetMalloc ................................................ 463 
PathSetDlgltemPath .................................... 645 SHGetNewLinklnfo ...................................... 464 
PathSkipRoot .............................................. 646 SHGetPathFromIDList ................................. 466 
PathStripPath .............................................. 647 SHGetSettings ............................................. 466 
PathStripToRoot .......................................... 647 SHGetSpecialFolderLocation ...................... 468 
PathUndecorate .......................................... 648 SHGetSpeciaIFolderPath ............................. 469 
PathUnExpandEnvStrings ........................... 649 SHGetThreadRef ......................................... 716 
PathUnmakeSystemFolder ......................... 650 SHGetValue ................................................. 681 
PathUnquoteSpaces ................................... 651 SHGNO ........................................................ 569 

SHlnvokePrinterCommand .......................... 470 

R 
SHLoadlnProc .............................................. 472 
SHOpenRegStream ..................................... 717 

RegisterDialogClasses ................................ 423 
REGSAM ..................................................... 669 

SHOpenRegStream2 ................................... 718 
SHQuerylnfoKey .......................................... 683 
SHQueryRecycleBin .................................... 473 

s SHQueryValueEx ......................................... 684 
SHRegCloseUSKey ..................................... 685 

ScreenSaverConfigureDialog ...................... 424 
ScreenSaverProc ........................................ 425 
SetMenuContextHelpld ............................... 426 
SetWindowContextHelpld ........................... 427 
SHAddToRecentDocs ................................. 428 

SHRegCreateUSKey ................................... 686 
SHREGDEL_FLAGS ................................... 705 
SHRegDeleteEmptyUSKey ......................... 687 
SHRegDeleteUSValue ................................. 688 
SHRegDuplicateHKey ................................. 689 
SHREGENUM_FLAGS ................................ 706 



698 Volume 5 Microsoft Windows Shell 

SHRegEnumUSKey ................................... , 690 StrRStrl ........................................................ 602 
SHRegEnumUSValue ................................. 691 StrSpn .......................................................... 603 
SHRegGetBoolUSValue ............................. 692 StrStr ............................................................ 604 
SHRegGetPath ............................................ 693 StrStrl ........................................................... 604 
SHRegGetUSValue ..................................... 694 StrTolnt ........................................................ 605 
SHRegOpenUSKey ..................................... 696 StrTolntEx .................................................... 606 
SHRegQuerylnfoUSKey .............................. 697 StrTrim ......................................................... 607 
SHRegQueryUSValue ................................. 698 
SHRegSetPath ............................................ 700 
SHRegSetUSValue ..................................... 701 T 
SHRegWriteUSValue .................................. 702 TranslateURL ............................................... 475 
SHSetThreadRef ......................................... 719 
SHSetValue ................................................. 704 
SHStrDup .................................................... 580 

TRANSLATEURUN_FLAGS ..................... 570 

U 
SOANGLETENTHS ..................................... 573 
SoftwareUpdateMessageBox ...................... 473 
SOPALETTEINDEX .................................... 573 
SOPALETTERGB ....................................... 573 
SORGB ........................................................ 574 
SOSETRATIO ............................................. 574 

UndeleteFile ................................................. 484 
U rlApplyScheme .......................................... 651 
URLAssociationDialog ................................. 476 
URLASSOCIATIONDIALOG_IN_FLAGS .... 571 
UrICanonicalize ............................................ 653 
UrlCombine .................................................. 654 

StrCat .......................................................... 581 
StrCatBuff .................................................... 581 

UrICompare .................................................. 655 
UrICreateFromPath ...................................... 656 

StrChr .......................................................... 582 
StrChrl ......................................................... 583 
StrCmp ........................................................ 584 
StrCmpl ....................................................... 585 
StrCmpN ...................................................... 585 
StrCmpNI ..................................................... 586 

UrlEscape .................................................... 657 
UrlEscapeSpaces ........................................ 658 
UrlGetLocation ............................................. 659 
UrlGetPart .................................................... 660 
UrlHash ........................................................ 661 
Urlls .............................................................. 662 

StrCpy .......................................................... 587 
StrCpyN ....................................................... 588 
StrCSpn ....................................................... 589 
StrCSpnl ...................................................... 590 
StrDup ......................................................... 591 
StrFormatByteSize ....................................... 592 

UrllsFileUrl ................................................... 663 
UrllsNoHistory .............................................. 664 
UrllsOpaque ................................................. 665 
U rlUn Escape ................................................ 666 
UrIUnEscapelnPlace .................................... 667 

StrFormatByteSize64A ................................ 593 
StrFormatKBSize ......................................... 594 w 
StrFromTimelnterval .................................... 595 
StrlslntiEqual ............................................... 596 
StrNCat ........................................................ 597 
StrPBrk ........................................................ 598 
StrRChr ........................................................ 598 
StrRChrl ....................................................... 599 
StrRetToBuf ................................................. 600 
StrRetToStr .................................................. 601 

WinHelp ....................................................... 477 
WM_CPL_LAUNCH ..................................... 747 
WM_CPL_LAUNCHED ................................ 747 
WM_DROPFILES ........................................ 748 
WM_HELP ................................................... 749 
INM_ TCARD ................................................ 749 
wnsprintf ....................................................... 608 
wvnsprintf ..................................................... 609 





Petzold 
for the 

MFC programmer! 

U.s.A. $59.99 

Thep,emie, 
,,,,,",ufoofo, 
ooject·ofiented 
pmgramming on 
32·blt Wlndo_ 
platforms 

U.K. £56.99 [V.A.T. included] 
Canada $89.99 
ISBN 1·57231·695·0 

Microsoft Press@ products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft® Sales Office, or visit 
our Web site at mspress.microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call1·800·MSPRESS in the 
U.S. (in Canada, call 1·800·268·2222). 

Prices and availability dates are subject to change. 

Expanding what's widely considered the 

definitive exposition of Microsoft's powerful 

C++ class library for the Windows API, PRO

GRAMMING WINDOWS@ WITH MFC, Second 

Edition, fully updates the classic original with 

all-new coverage of COM, OLE, and ActiveX:s' 

Author Jeff Prosise deftly builds your compre

hension of underlying concepts and essential 

techniques for MFC programming with unpar

alleled expertise-once again delivering the 

consummate resource for rapid, object

oriented development on 32-bit Windows 

platforms. 

mspress.microsoft.com 



Here they are in one place-

practical, 
detailed 

. explanations 
of the Microsoft 

networking APls! 
--- MictosottPress 

Network 
Programming 

for 

L .::.,.-=. 
wrJ::,,,,,, 

! Clear, practical 

U.S.A. $49.99 

I guide to 
! Microsoft's 
I netw01'klng API .. 
L ... 

Anthony Jones and 
Jim Ohlund 

U.K. £46.99 [V.A.T. included] 
Canada $74.99 
ISBN 0-7356-0560-2 

Microsoft Press~ products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft Sales Office, or visit 
our Web site at mspress microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the 
U.S. (in canada, call 1-800-268-2222). 

Prices and availability dates are subject to change. 

Microsoft has developed many exciting 
networking techriologies, but until now no 
single source has described how to use 
them with older, and even some newer, 
application programming interfaces 
(APls). NETWORK PROGRAMMING FOR 
MICROSO~ WINDOWS@ is the only book 
that provides definitive, hands-on cover
age of how to use legacy networking APls, 
such as NetBIOS, on 32-bit platforms, plus 
recent networking APls such as Winsock 2 
arid Remote Access Service (RAS). 

mspress.microsoft.com 



Official 
Guidelines .. , 

for User Interface 
Developers and Designers 

MicIosoItPress 

Official Guidelines for User Interface 
Developers and Designers 

Windows 
User Experience 

U.S.A. $49.99 
U.K. £46.99 [VAT. included] 
Canada $74.99 
ISBN 0-7356-0566-1 

Here are the revised, updated, official Microsoft 
guidelines for creating well-designed, visually and function 
ally consistent user interfaces for applications that run on 
the Microsoft Windows family of operating systems, 
including Windows 98 and Windows 2000. A revision of 
The Windows Interface Guidelines for Software Design, 
the standard resource for designing Windows interfaces, 
MICROSOFT WINDOWS USER EXPERIENCE is an essential 
handbook for all programmers and designers who work 
with the latest releases of Windows and Microsoft Internet 
Explorer, regardless of experience level or development 
tools used. It covers the basic principles of user-interface 
design and methodologies, and it specifies how you can 
apply data-centered concepts such as objects and proper
ties to interface design. The book includes detailed 
information on mouse, keyboard, and other input-device 
interaction and on how to use the common interface 
elements supplied by the system. It also includes informa
tion about supporting international and disabled users. 

Microsoft Press@ products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft@ Sales Office, or visit 
our Web site at mspress.micrQSoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the 
U.S. (in Canada, call1-BOO-268-2222). 

mspress.microsoft.com 

Prices and availability dates are subject to change. 



Learn how 
CO + 

can simplify your 
development tasks 

IIicIosoIt'Press 

Understanding 

COM+ 
The Architecture tor Enterprise Development 
Using Mlerc.off:· T •• hnologies 

U.s.A. $24.99 
U.K. £22.99 
Canada $37.99 
ISBN 0-7356-0666-8 

DavIdS. Platt 
-'YOreeHcoe. 
Leed Arehltect, COM+ 

Microsoft Press@ products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft Sales Office, or visit 
our Web site at mspress.microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the 
U.S. (in Canada, call 1-800-268-2222). 

Prices and availability dates are subject to change. 

Wouldn't it be great to have an enterprise 

application's infrastructure so that you could inherit 

what you need and spend your time writing your 

own business logic? COM+ is what you've been 

waiting for-an advanced development environment 

that provides prefabricated solutions to common 

enterprise application problems. UNDERSTANDING 

COM+ is a succinct, entertaining book that offers an 

overview of COM+ and key COM+ features, explains 

the role of COM+ in enterprise development, and 

describes the services it can provide for your com

ponents and clients. You'll learn how COM+ can 

streamline application development to help you 

get enterprise applications up and running and 

out the door. 

mspress.microsoft.com 









Part No. 097-0002308 

Wndows 
GDI 

This essential Windows 2000 and Windows 98/ 
Windows 95 reference volume is part of the five-volume 
Microsoft Win32* Developer's Reference Library. In its 
printed form, this material is portable, easy to use, and 
easy to browse-a highly condensed, completely indexed, 
intelligently organized complement to the information 
available on line and through the Microsoft Developer 
Network (MSDN). Each volume includes an overview of 
the five-volume library, two appendixes of programming 
elements, and tips on how and where to find other 
Microsoft developer reference resources you may need. 

Microsoft Windows GDI 

This volume provides complete reference materials about 
the services provided by the Windows GDI (Graphical 
Device Interface), including bitmaps, brushes, clipping, 
colors, coordinate spaces and transformations, device 
contexts, filled shapes, lines and curves, metafiles, painting 
and drawing, paths, pens, rectangles, and regions . 

• icrosott~ 


