% Part of the five-volume — ®
-l 3 ~ Microsoft® Win32® Developer’s Reference Library ’cms

The essential reference to Win32"
technologies and APIs

David Iseminger
Series Editor

v [Seminger o

wW”ndaws

GDI

BASED ON

msdn library

Microsoft

The essential reference to Win32°
technologies and APIs

David Iseminger
Series Editor

indows

msdn library

GDI

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-
Microsoft Win32 Developer’s Reference Library / David Iseminger.
p. cm.
ISBN 0-7356-0816-4 v
1. Microsoft Win32. 2. Operating systems (Computers) 1. Title.
QA76.76.063 174 1999
005.26'8--dc21 99-045609
CIP

Printed and bound in the United States of America.

123456789 WCWC 432109

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any reai company, organization, product, person, or event is intended or shouid be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002308

Acknowledgements

Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You’d think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman—thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies...thanks to Julie for the help on that. Guy
Smith pointed me to the information | needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional “circled i” logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

Contents

Chapter 1: Introduction 1
How the Win32 Library Is Structured...........ccocoevevivniininininiieneiinieeene, 1
How the Win32 Library Is Designedcccceveivieieiieeninnienenieienceeesieseeeene 3

Chapter 2: What’s in This Volume? 5

Chapter 3: Using Microsoft Reference Resources 9

The Microsoft Developer Network (MSDN)ccceivieienensieniienieerieeeeseeesieenaeens 10
Comparing MSDN and MSDN Online.........ccocceeveereniminecreneneenenenenieseeneenens 10
MSDN SUDSCIIPLIONS ...eeuveeuveriieniieniieieneenientee e stesieseeesseeessessessesssesssesssesnne 12

MSDN Library SubSCIPLion........cccecervereriiesrenerirenieneeeeeseesreeeessessesseeaees 13
MSDN Professional SubSCIPtON.cc.eevvierierirreeieeeeeeeeiee e eseeeeeseeens 13
MSDN Universal SUDSCIIPHONcuevveruerueerierienieeeeeieeenreneeseeeeeseessennees 13
Purchasing an MSDN SubSCIIPtONcoveeeerueeruerniereieeeneneeeeeeeenerenens 14
USING MSDN ...ttt ettt ettt st st e st e st e s saeesbeeeessnas 15
Navigating MSDNc.ooiiiiiiiiieieeetteeee ettt et saee s 16
QUICK TIPS +eeveemeenieiiiieieieene ettt sttt sr et sae b eae s s e nesnenens 19
USING MSDN ONLINE....c..corueruinrinierieiierieteneentetietesseseeseeseessessessessesseessessesseens 19
Navigating MSDN ONIINecc.cceveereereninecrenenieereieeneneseeeeeesessessennes 21
MSDN Online Featuresccceeeeruienienieiiienieieteete et eveas 22
MSDN Online Registered USETS.......ccceverrieireenienenneernieeneeenieenreseeseenanens 25

The Windows Programming Reference Series........cocoeceveeveeriiennienienieneeniennnen. 27

Chapter 4: Finding the Developer Resources You Need 29

DEVEIOPET SUPPOTL ...ttt ettt ettt e s e b saeesesbesae e sbesnens 29

ONliNg RESOUITESeerveeuieiieiiniieiieienieniesiest sttt et s e sbese et ebesbeseensesbenns 31

Learning ProQUCLScc.oocveriernierienieniecsteeteee ettt ettt sr e ssee e 32

CONTEIEIICESeevvieenteiteeitieteeeteerte e et et e et e et esseestesatestesstesssessessseesseessaenseenseens 34

Other RESOUICESccueoviiiiiiiiiiiiieiecenencictcc ettt sae e 35

Chapter 5: Getting the Most Out of Win32 Technologies: Part 3coocssennnes 37

RPC EITOTS ..vevtiteiieiietenieeee et ste sttt ese et est et st et et evestesbesbeebesbassaensessessens 37

Using pointer_default(unique) and embedded pointers............cccevevueunnne. 38
A valid switch_is value in an RPC-capable structure

doesn’t ensure a NON-NULL POINter........cccceeveeeeereneenneniennieeienreeseneeene 38
A NULL DACL affords N0 proteCtionc.ecueceerveerseesueesueesueesreeseennnns 39
Call RpcImpersonateClient() before any security-relevant operation 40

vi

Contents

Starting and stopping iMPersOnationc..ccovevevuerieceninirenesieseneeneennes 40
Always check the result of RpcImpersonateClient()
before a security-relevant Operationcceceveviecieecivinieniinniiniicnennns 41
Call RpcRevertToSelf() after security-relevant operationscc.eu... 41
Strings are zero-terminated only when declared with strings in the .idl..... 42
Don’t copy arbitrary length data into independently-sized buffers 43
Using size_is may result in a zero-length structure;
it is not safe to dereference this without first checking its length............... 43
Calculations in a size_is or length_is specification are
susceptible t0 OVEITIOWcooviviiriierieiieeieeeee et 44
Strict context handles.........coceeeeeeeeiriencnininccer et 44
Kernel-Mode SpeCifiersccoiviiiiiiiiiiiiiiiicicc e 45
Don’t access user-provided memory without probing...........ccccecevveeuennne. 45
Don’t do multiple user-mode reads without captures..........cccocceevuivuecenene 46
Don’t trust the TEBccooiiiiiiiiiiieicccinricicee s 47
Avoid race conditions when modifying kernel data on user request.......... 47
Dealing with common interfaces for user mode and kernel mode 48
Validating buffered I/O in device drivers..........ccoevecciviiiicniniiinicnncinnens 48
METHOD_NEITHER requires full probe and capturecccccvuevuenene 48
SOIUtiON SUMMATYeeeiiiiiiieiiiiieriiieitcie ettt sre s ereessaa e sra e s saaessaneens 49
Chapter 6: Bitmaps 51
AbOUL BItMAPSoovviviiiiiiiiiiiiiicicic e 51
Bitmap ClassifiCationscceeevueereerriuirsiienirieesieesieesteeeseeesseeeseessareesseesnees 53
Device-Independent Bitmaps..........cccoeeviiiiiiiniiiniiicieiiinecc 53
Device-Dependent Bitmapsccccoceeieniiiiniiiiiiiniiniiiiiiccencenees 55
Bitmap Header TYPEScccveveerierireneriinieeereenieeecteteniesiecresesreses e saesenes 56
JPEG and PNG Extensions for Specific Bitmap Functions and Structures 58

Bitmap SCAliNG.....cccveeueeiiiieieierertercetteeeeertesre et 60
Bitmaps as Brushescooueieireiiiiieieeecctce et 60
Bitmap SOTAZEcc.veeiieniiiieetieteetee ettt s 61
Bitmap COmMPIESSION.......ceeruerrierrieriierieeieeiterteesreereereetessetesreesseesseesessaesneensees 63
Alpha BIENdIngceouereeruieieienienieienrenceeeteeseete et 64

Alpha Values per Pixel........cocoviiveniinieniinieeeeice e 65

Global Alpha Blending Settings...........cccccevveviiniiiniininiiniiiiiiencncneen 65
SMOOth ShaINGcovveiiiiiieiiiteeetectet ettt 65

ICM-Enabled Bitmap FUNCtionsccccceeveveviinieniiniinineincniineneicneeeccnes 66

Contents vii

Bitmap RefErenCe........cociiiiiiiieeeeeeetee ettt e 66
Bitmap FUNCHONSuiiveeiiiiieciieiieiecre ettt ere e ae e s b e ab e v e esveenneens 66
Bitmap STIUCIULES....c...veeivieiieeiie et eite ettt e iesre s e esteeeaaeesaraesasseenneesnes 116
Bitmap MACIOS.......eiuiiiiiiiiiieteeieeteet ettt ettt e 152

Chapter 7: Brushes 153

ADOUL BIUSHESvviiiiiiiiiieiiececcteeee ettt et setee et e e abe e eareeesbeaeane s 153
Brush OFigincc.cooioiiiiiiiiiiiciceiceceenee et 153
Logical Brush TYPESc.ceouerueieriiriieiieicierienienienieete ettt saa e saeeneens 154

SOIA BIUSH ...ttt e e e 155
StOCK BIUSH c..ceviiiiieiiiececcce ettt sttt e ane e 155
HatCh Brushi...coo ottt e e e rae e ae e e aaee s 155
Pattern Brushoooieiiiiieieceeee e 156
Pattern BIOCK Transfer........cccoecvvieiviiiiieieiieeeceeeee e 156
ICM-Enabled Brush FUNCLIONSccceeeeiiiiecieeeiecee e eeve e 157

Brush Referencecocviveviiiiiiiiiicieee ettt s e 157
Brush FUNCHONScocvieiiieiiecie ettt s e ser e e va e s e e eeas 157
Brush StIUCIUIES......ooeiieeciieciieccec ettt eve e e et rre e evaeennas 169

Chapter 8: Clipping......cocerusmeusesseeseense .175

ADOUL CHPPING...ccueiiuieieieieiieiteeieesieeiteeteetesseesaeeseeesaassesssessaesssaessesssesssesssassaens 175
ClPPING REZIONS ..ottt ettt sttt st s 175
CIP PathiS ..ottt st v et sae e nas 176

Clipping Reference..........cceeuieieeieeieeieeeeeeteeeee ettt 177
Clipping FUNCHONS.......ccviiiieieeieeieeeeieeeeie et sre ettt e e nes 177

Chapter 9: COlOrS.......couermmsmsmssmsmssssssssesssssssesssnns 193

ADOUL COLOTS ...veeivrieiiiectieetteeteeeteeeteeeteesseesaaeesesetsectsseseaesssaesssaeennsesnssassres 193
COLOT BASICS ..uuteiiieiiiieeiieerieeeireesreerteeseteeetesreeebeasee serseeessasesssaesasaessnsesnnees 193

COLOT VAIUESveeciiieiiiecre ettt tte e eve e e et e eraae e sar e e eaba e e saeennnas 194
Color Approximations and Ditheringcceceeeueeevererneenieenieneeneeneenne 194
Color in BItmaps...ccoveeeeieiieieeieeieet et et 195
COlOT MIXING ...ooveiiiiiiiiieiieiercete et srs e 195
COLOT PalBLESeecuveeeeieeeeiieeieeeiee et e e e ere e aeeteeeeaeeste e ereesesseesaeesaeesssaesases 196
Default Palettecccoveeeiieeiieeerieciiecieeeie et cre e vt e e eveeeeveeeneeeesseeeanas 196
L0gICal PalEtteccuevvereiiiiienieenicteteieiei ettt 197
Palette ANIMATION ...ccouvieriiiniieeiieeeeerieeeeereeerieesre et e esereesabeeassaeesseeennes 198
System Palette......coouecvivirieiiiiieneceeieee e e 198
System Palette and Static COLOTSccceeereeieienienerceieneeteeie e 200

Palette MESSAZES...uveeureiieiieiieriieteeteete st eteestesates et e etesteesteenseesseenrenas 200

viii Contents

Halftone Palette and Color Adjustment............cccceerreerecvercnercnneeenennes 201

COlOr RELEIENCEeoveiiiiieniiieietesie sttt ettt sttt a et esbe s anesnens 202
COolOT FUNCHONS. ...c..eiiiiiiiiiciiiceicete ettt ettt s 202
COlOT SEIUCHUTES ..ottt ettt sttt seebe st besesae b sbe s ebeeaesaen 223
COIOT MACTOS ...ttt st st et bbbt bbb s 226
COlOT MESSAZESeveeueentenieneeretenieniesiesttettestestestteteestesbesaeebeebeessensessensensessensns 231
Chapter 10: Coordinate Spaces and Transformations 235
About Coordinate Spaces and Transformations............ccceveveervereeerreseerenieniensnens 235
Transformation of Coordinate SPaces.........ccceeveereeriveereiriienenierieeeeseecreenes 235
World-Space to Page-Space Transformationsc.ccoceveeeverereececneneneenens 240
TranSIAtIONcevueriiriieieteieteee et ettt 240
SCAING ..ttt ettt sttt e ba s 242
ROTATION ..ttt sttt et sttt e s s sas 243

SREAT ...ttt ettt s 245
REfIECHON «.eovveiiiiiieiieitereeeceee ettt ettt et ee e 246
Combined World-to-Page Space Transformations............cccceevveevenrvennen. 247
Page-Space to Device-Space Transformationscocceceeeeveuervenieninennnens 247
Mapping Modes and Translationscccceevveevienieeeeceneerecieseeseeseeseeeens 247
Predefined Mapping MoOdEs..........ccoceevievvininiiecnienienineeieceeeeeesneneeeneenns 250
Application-Defined Mapping Modes..........coceeveverenenenenenieenreneenienes 250
Device-Space to Physical-Device Transformationcccoeeeverveneeccnrennenn 251
Default Transformationsc.ceceeveceevermerieenenerieie ettt nee 251
Coordinate Space and Transformation Reference.........coccoecvevieiiveniinnienicnnennnen. 252
Coordinate Space and Transformation Functions............ccoccevveeveeneeernnnennen. 252
Coordinate Space and Transformation Structures.............ceceeeevereeriesrenenenne 284

Chapter 11: Device Contexts

ADOUL DEVICE COMLEXLS ...uveveviierieeiieieiertesiesieetentestesseestessestessestesasessensensessesses

Graphic Objects

GraphiC MOdES.......c.ooiiiiiiiiiiii e 288

Device CONtEXt TYPES..cviriirereriiriieiiriterterieeieeit ettt ettt eseesbe st s aesneseens 289
Display Device CONLEXLScccevverrerrerreeiereriineerienteniesiesrestesseesessessessesses 289
Printer Device CONtEXLS.....cccovirirerieriereeerieetreserreseessesessessessessessenns 291
Memory Device COMEXLS.....coevreririrerienierieneertertesiesiesresreeseeeeeessessesnes 291
Information Device CONLEXLS......c.cervereerieniririeerienineneeseeeteeesnessenseseeenes 292

Device Context OPerationsccceeeeveruereerueienesseeneenresenensesieseesessessessens 292
Operations on Graphic ObDJECES......cc.evereerierineerieriinerenesrerieetesesresreens 292
Cancellation of Drawing Operationsc.cceceervereereresieeresenenensessessenns 293

Retrieving Device Datacoceoevirereeniinininecrenencneneeeeeeteiesie e 293

Contents ix

Saving, Restoring, and Resetting a Device Context.......c..coceeveviervenrennenn. 294
ICM-Enabled Device Context FUNCHONSc.cccveriiierieeieecreerie e 294
Device Context REfErence.........cccvcvevviiiiiiiiiiiccieeecce e et 295
Device Context FUNCHONS........ccccevevieiiieeiieciecseeseee et e eve e 295
Device ConteXt SIIUCLUIEScc.eeevueeeereeeeieeiieeieerirenreeereeeereesestreessseeenareeenees 344
Device ConteXt MESSAZESccvvverrerrerienierierienieeeeeeiriessesetesteeeessessesseessensenes 350
Chapter 12: Filled Shapes... 351
About Filled Shapesccccoouirieiiriieieierieiiei ettt 351
ADOUL EIIIPSESuieviiiieieiinieiieieieteeeeeeeetetesesic et esee e st ene e st ebe s 351
ADOUL CROTASeeievieiiieciiiceceeeteeete et sae et te e s tae e e e sreestaeeebeeenaeenns 352
ADOUL PIES....uiviiiiiiiieiiiie ettt re e sttt ae e e e rre e e e eanae e e e nanaeeennnns 352
ADOUL POLYZOMS....cuviiiiiiiiiieeieieetecteee ettt e e et e e e saeeneas 353
Drawing ReCtangles..........coeeverieriereeienienienienieneneeetesie e eieeveesteseasseseneens 353
Filled Shape Reference.........cccveveiiiieiieeiiecieceeesee e eree e ete e eneeereeeveeenas 354
Filled Shape FUnCHions..........ccccoeviiiiiiniinieniiiiincnnecteieee et 354
Chapter 13: Lines and Curves ... 367
About Lines and CUIVESc..ccevieeieerieecreeeireecasesrecrnreeesiaeessveeseeesaneeenseeenns 367
LD, .ottt et e e ettt e e e e taebe e e arneeeeenneaeenns 367
CUTVES c.evtieieeeite et ettt ettt e e teesbeeeereeetreeetbaeesbe e tsesreesreeenses eetneensseeennseesres 369
Combined Lines and CUIVES........c.cecueeieriereerieerieeiere e eieesteveesveeseeveennes 370
Line and Curve AUIIDULES..........ceeeveeeiiieeieeecieeere et eereeers e e seaesireeeneeenns 370
Line and Curve Reference............occveeiieiiiiiiiicieecee ettt 371
Line and Curve FUNCHONScccveeeiieiiieeieesieeereeicteeestveees e e seaeesveeeaveeenns 371
Chapter 14: MetafileS.....cummmmmmmmmmmmsmmsmsssssssssssssssmsssssssesssmsssssssssssse sessns 391
ADOUL MELATIIES....cviieiieiiieiiiccie ettt s et e e eeae e erae e aeaeate e nes 391
Enhanced-Format Metafiles...........ccceeviireiiienieinieericieeciceee e eree e 392
Enhanced Metafile RECOIS.........cecvuvieiiiiirieeiiecieiie e e eeae e 392
Enhanced Metafile Creationc.eeeeueeeevieeiiieeieneeeneeceereeeeveeeeieeeevneens 393
Enhanced Metafile Operationsccccceeeveniiviienenneniesenceeenienenneenes 394
Windows-Format Metafilesccoeevuiieeieeeiieeiieciiree e e e eeree e evne s 395
Metafile REFErENCEcocoviiiiiieeiieieeeerteeree ettt ae e e eba e e ave e saaaenes 397
Metafile FUNCHIONSc..eeeiiiieieeieeie ettt eeesveveeetae e s ressee s aneeeaneeeans 397
Metafile StrUCIUIES . .ccueeiiuiiiiiieeieecre ettt et e et e e eeve e e sreeeareeereeeneas 421
Enhanced Metafile StrUCtUIEScccueevuiieeiieieiieeeie ettt eevee e eree s 421
Chapter 15: Painting and Drawingcocosmsmmmmssssssmsssssssssssssssesssssssssssssssssessses 495
About Painting and DIrawing..........cceecerveeerieriienieneeiieiieeceeeseeseveseeeseeseeseeeneas 495

‘When to Draw in @ WINAOW ..ooeeeveeveeiieeeeeeeeeeeeeeeeeeeeeeeraaeassssaeeeeenaneees 495

X

Contents

The WM_PAINT MESSAZE ...c.ceoveruieireieiirieereieesiestesiesseeressesssessesessseseessensens 496
The Update ReION.....cc.eocuevieiiriieieieiecceecteen ettt 497
Invalidating and Validating the Update Regioncc..ccccceveeervrcrcncncnne. 497
Retrieving the Update ReIONc.cecuevueuuieveeiiininienieninceietcteneeeeeeeee 498
Excluding the Update RegIion........ccccovueuieviriiinenenienineneeieeeee e 498
Synchronous and Asynchronous Drawing............ceceevveeveenne e 498

Drawing Without the WM_PAINT Message........c.ccecevvervenerienieneneeeenieniens 499

Window Coordinate SYSIEIMceevveeeeeriiriereierteeiteiesteseeree e eteesreeeeeeeens 500

WiINAOW REZIONS. ..c..eoverririieiieieiiniieiteteieree ettt sttt st 500

Window Back@roundcccceouirierienieniine et 501

Minimized WINAOWS.........cevuirieieirinieiret ettt e 502

Resized WINAOWSc.cccruiriiriiiriineeiiirctee ettt es 503

NONCHENT ATEA...c..eiveeuieierieienietiriereertente e ctertenteste st st sbesbeeseesaebesbeeseessensens 503

Child WINAOWSeoueiieiiiiieniinieeeeestese ettt 504

About Display Device CONLEXLS........cerverueeererrenreruerenueerieneeeerereesseeesessensenes 505
Display Device Context Cache........ccooeeveveerierierenenenieieienie e 506
Display Device Context Defaultscocoeverererrnnennicneneeeneneeenes 506
Common Display Device CONEXLSc.ccererrreererrierieneieneeneeeneeeseeenseenns 507
Private Display Device CONtEXLScceererrereererereeerienreeneneeneeerenseneenes 508
Class Display Device CONEXLS......coueruerereruerienierenienereeeensentessesneesessennes 509
Window Display Device CONLEXLS.......cccourrerrerrererrererrenreceensenseeeresseneenes 510
Parent Display Device CONEXLScccvvrererrirriereienrierieeieeieseessressresaensnens 510

Window Update LOCKcoereruieiirineniine ettt 511

Accumulated Bounding Rectangle............ccooeveriecirceniniecieeceeeeeres 512

Painting and Drawing Reference............ccocoviveiieiiininiinenininceteeeeteeenieens 512

Painting and Drawing FUncCtions.........c..ccceceevrinieninenninennneeneneeeenceenes 512

Painting and Drawing StruCturesceceevereeeecencenieieeeriesesreseesesvenens 561

Painting and Drawing MeESSagEScccvvvreerierierreeeresreeeeeeseessesseseessessensens 562

Raster-Operation CodeScc.ceeeriireririrennienienienencereeieeeentenie et ebe s see e 570
Binary Raster OPerations..........co.coveuerreeenreuinienmereerenennensesensensenseeeessensenes 570
Ternary Raster Operations...........cccveeverererereierneneenienieeieseesreesreseeesnens 573

Chapter 16: Paths........... 583
ADOUL PAthS ..ottt s 583

Outlined and Filled Paths........c..cccoviiiiiniiiiiieeececeececee 584

Transformations of Pathsccccoviveriininieniininecrceieeieneeeeeee e 584

Clip Paths and GraphicC Effectscccecieveiineniininiciecieneecercee 585

Conversion of Paths t0 RegIONScccevivieiineniiiieirceee e 586

CUIVEA PAthS ..ttt ettt e e e s s esnaaaaeeee s 586

Contents Xi

Path REfErencecocoieoiiiniiiiiiiicecte ettt e 586
Path FUNCHONS........coveiiiiiiieiec ettt e eae s 586
Chapter 17: Pens 601
ADOUE PENS ...ttt st et 601
COSIMELIC PENS.....cueviniiiiiiriceiceter ettt ettt b e bt e b e enens 601
GEOMELTIC PENS ...ttt s e 601
PN AUTIDULESoouviuiiiiienienieeiteterte ettt sttt e et st ere sttt esbesaeteneenee s 602
Pen Width ..ot 602

Pen SEYIE ...cneiece ettt e 602

Pen COolOT ..ottt b 603

Pen Pattern.....c..cooiiiiiiieiectciee sttt e 603

Pen HatCh......ooooiiiiieee ettt s e 603

Pen ENd Capcoueeuiiiiiiiiiieeteeeeteeeetet ettt s e 604

PN JOIN ..ottt e 604
ICM-Enabled Pen FUNCHONS......c.coceevieieneinienenieicieeneeeeeteeneeee e e 605
Pen REferencCe.coueeruiruiiiiieictere ettt ettt e 605
Pen FUNCHONScoueieiirieeiniieieie ettt ettt sttt st et s beaere s nes 605
PEN SEIUCTUIES ...ttt sttt et ettt sbe e e abeneeneas 611
Chapter 18: Rectangles 617
ADbOout RECIANGIEScuviiiiiiiiiiiiicieciice ettt et 617
Rectangle CoOrdinatesocceeeeieieireerenreeeieeieeieneeeeeeeeressesseseseseseenees 617
Rectangle OPerationsocceeeiereeeieeirienieneneeteteentesseeeteteseeesseste seresseenes 617
Rectangle Reference. ..ot e 619
Rectangle FUNCHONS........cccoveeiieieieeinieceeresee et se e v 619
Rectangle STIUCTUIESc..eourierierereereniereneeteretee ettt sttt e e 629
Rectangle MACTOS......ccvecvieieiieeiieitieieeeeste et eaeeaeesae e s e s resreeneas 631
Chapter 19: Regions .633
ADOUL REZIONS.......eiiiiiiieieieniirieeeetet ettt ettt se e e be e sa st esaeseens 633
Region Creation and Selection...........cecuevveeereeierierieinieeese e esre e eveevee s 633
Region OPErationsccecviiiviiiiiiiiincnieiiieenectetesre et eaeeeeeee 633
Combining REZIONSc.covevviriiiiiriininenieicrereneete et et 634
Comparing RegIONScccocevuiiiiiiniiiiceeececeeeeeeeee e eeveeenees 634
FIlling REZIONScueiiiiiiiiiiieiiciicectneeneeeeceesetee e e 635
Painting REZIONS....c..cocveiiieriinirieiesiteeeetee ettt s 636
Inverting REIONSccocoiiiviiiiiiiiininicicccccreeee e e 636
Framing REeGIONS........cccoeueuiriieiniinieicncieieeteeecer et s 636

Retrieving a Bounding Rectangle..........c.cocoeeveiniinciencnencnenccnene 636

Xii Contents

MOVING REZIONSceeeuiiiiiiiiiieecteee ettt seenens 636

Hit Testing REZIONScc.covrieiriirirtenieienertesteet et s st esee e seesresaeennes 636
Region REfEIENCEcvevviriiiiiiiiirieere ettt sttt s be e e basseens 637
Region FUNCHONSc..oviiiirieniiiieie ettt sttt sve st sne s 637
ReZION SITUCTUTES....ccviiiiiuieieriiriinie ettt ettt see s e b sre s 659
Appendix A... 661

Appendix B 667

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer’s Reference Library, your comprehensive
reference guide to the Win32 development environment. This library, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming—without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you—the time-pressed and information-overloaded applications
developer—to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard-
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN Subscription. Don’t have
an MSDN subscription, or don't know why you should? I've included information about
that too, including the differences among the three levels of MSDN subscriptions, what
each level offers, and why you’d want a subscription when MSDN Online is available
over the Internet.

Microsoft is fairly well known for its programming, so doesn’t it make sense to share
some of that knowledge? | thought it made sense, so that’s why this—the Windows
Programming Reference Series—is the source where you’ll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don’t get lost in all the information provided in the Win32 Library,
each volume’s appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you’re looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

How the Win32 Library Is Structured

The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided and include the following:

2

Volume 3 Microsoft Windows GDI

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphics Device Interface)
Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library—and therefore, dividing Win32—into these functional
categories enables a software developer who’s focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,000-page Win32 tome),
and without having to shuffle among multiple, less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer friendly
manner and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview
Part 2: Reference
Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you’re reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN and MSDN Online, including a collection of insider
tips and tricks. Just as each volume’s Reference section (Part 2) contains different
reference material, each volume’s Part 1 contains different tips and tricks. To ensure that
you don’t miss out on some of them, make sure you take a look at Part 1 in each Win32
Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanatory
material for each programming area.

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

Chapter 1 Introduction 3

How the Win32 Library Is Designed

The Win32 Library, and all libraries in the Windows Programming Reference Series, is
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look-and-feel that is consistent with their electronic counterparts. In
other words, the way that a given function reference appears on the pages of this book
has been designed specifically to emulate the way that MSDN and MSDN Online
present their function reference pages.

The reason for maintaining such integration is simple: make it easy for you—the
developer of Windows applications—to use the tools and get the ongoing information
you need create quality programs. By providing a “common interface” among reference
resources, your familiarity with the Win32 Library reference material can be immediately
applied to MSDN or MSDN Online, and vice versa. In a word, it means consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in-
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and—in the absence of keyboards
and e-mail and upright chairs—get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

CHAPTER 2

What’s in This Volume?

Similar to the first two volumes, this third volume of the Win32 Library— Volume 3: GDI
(Graphical Device Interface)—focuses on one of the areas of Windows development that
most applications programmers must work with throughout the process of creating their
applications. Graphical Device Interface, commonly referred to as GDI, provides a
comprehensive set of functions, structures, and other programmatic elements that
developers can use in their applications to generate graphical output for displays,
printers, and other devices or objects.

The things that applications can do with GDI programming elements includes drawing lines
or shaped objects, specifying the colors or fills of such drawn objects, and applying the
objects used to create them, such as brushes and pens. The categories of GDI elements in
this volume of the Win32 Library include:

Bitmaps

Brushes

Clipping

Colors

Coordinate Spaces and Transformations

Device Contexts

Filled Shapes

Fonts and Text

Lines and Curves

Metafiles

Painting and Drawing

Paths

Pens

Printing and Print Spooler

Rectangles

Regions

6

Volume 3 Microsoft Windows GDI

Bitmaps enable application developers to manipulate graphical images that are stored
on disk. Bitmaps are collections of structures that are stored on disk and that specify or
contain information about the bitmap. Such information includes the header (which
stores data about the bitmap, such as resolution and dimensions), a palette, and an
array of bits that define the relationship between the pixels in the image.

A Brush is a tool used to paint the interior of shapes (such as squares or circles).
Brushes can be used by all sorts of applications, such as drawing programs (filling
shapes) and information managers (coloring a task box red for “overdue” indication).

Clipping is used to limit a given object’s output to a specified region or path. For
example, an application developer might use the clipping function to keep text from
spilling over into areas or regions in which the text would clutter the graphical
appearance, or would otherwise be inappropriate.

The reference section that covers Colors provides developers with the programmatic
interfaces they need to enrich their applications with the various colors that Windows
applications are capable of displaying.

You can use Coordinate Spaces and Transformations in a Windows application to do
such things as rotate, skew, or to zoom in or out of a particular graphical area within a
Windows application’s graphical space.

By using a Device Context, Windows applications enable continued device
independence. A device context, through the use of a pre-defined structure, defines a
set of graphics objects and the attributes associated with them, as well as the graphics
modes that affect their output.

Filled Shapes come in five forms—ellipse, chord, pie, polygon, and rectangle—and are
outlined and filled by the current pen and brush. The filled shape reference provides
functions that enable developers to use filled shapes in their applications.

Using Fonts and Text provides developers with the means to display text on output
devices, as well as the capability to install, query, and select different fonts.

Lines and Curves are used by applications to draw graphical output onto raster
devices. The lines and curves section provides reference for developers to...well...use
lines and curves in their applications.

Chapter 2 What's in This Volume? 7

A Metafile stores pictures in a device-independent format. Metafiles guarantee device
independence, whereas bitmaps do not. However, metafiles draw slowly, so keep that in
mind when determining which format is most appropriate for your application.

The reference section titled Painting and Drawing provides an explanation of how
Windows manages output to the display, and explains what applications must do to draw
in a window.

A Path is one or more shapes that is outlined, filled, or both.
Pens are graphic tools that applications can use to draw lines and curves.

In order to print to any given printer device, applications use the functions, structures,
messages, and escape functions in the Printing and Print Spooler reference chapter.

Windows applications specify rectangular areas and manipulate those areas through the
functional reference found in the chapter titled Rectangles.

Regions are various-shaped areas that can be used for various programming reasons,
such as filling or cursor-location testing.

Each of these GDI element categories is thoroughly explained, and its programmatic
reference information detailed, in individual chapters in Part 2 of this volume. In general,
each chapter begins with explanatory information on the given category, with the
associated programming elements—functions, structures, enumerations, and other
programming elements—detailed thereafter. For more information on any of these
categories, check out the table of contents at the beginning of the book, and then jump
to the appropriate chapter.

CHAPTER 3

Using Microsoft Reference
Resources

These days it isn’t the availability of information that’s the problem, it's the availability of
information. You read that right...but P'll clarify.

Not long ago, getting the information you needed was a challenge because there wasn’t
enough of it; to find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn’t at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

Today, information surrounds us and sometimes stifles us; we’re overloaded with too
much information, and if we don’t take measures to filter out what we don’t need to meet
our goals, soon we become inundated and unable to discern what’s “junk information”
and what'’s information that we need to stay current, and therefore competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft’s own reference material as well; not because there is
information that isn’t needed, but rather because there is so much information that
finding what you need can be as challenging as figuring out what to do with it once you
have it. Developers need a way to cut through the information that isn’t pertinent to
them, and to get what they’re looking for. One way to ensure you can get to the
information you need is to know the tools you use; carpenters know how to use nalil
guns, and it makes them more efficient. Bankers know how to use ten-key machines,
and it makes them more adept. If you’re a developer of Windows applications, two tools
you should know are MSDN and MSDN Online. The third tool for developers—reference
books from the Windows Programming Reference Series—can help you get the most
out of the first two.

Books in the Windows Programming Reference Series, such as those found in the
Microsoft Win32 Developer’s Reference Library, provide reference material that focuses
on a given area of Windows programming. MSDN and MSDN Online, in comparison,
contain all of the reference material that all Microsoft programming technologies has
amassed over the past few years, and create one large repository of information.
Regardless of how well such information is organized, there’s a lot of it, and if you don’t
know your way around, finding what you need (even though it’s in there, somewhere)
can be frustrating and time-consuming and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,

10 Volume 3 Microsoft Windows GDI

other Microsoft reference resources are investigated, and by the end of the chapter,
you’ll know where to go for the Microsoft reference information you need (and how to
quickly and efficiently get there).

The Microsoft Developer Network (MSDN)

MSDN stands for Microsoft Developer Network, and its intent is to provide developers with
a network of information to enable the development of Windows applications. Many people
have either worked with MSDN or have heard of it, and quite a few have one of the three
available subscription levels to MSDN, but there are many, many more who don’t have
subscriptions and could use some concise direction on what MSDN can do for a developer
or development group. If you fall into any of these categories, this section is for you.

There is some clarification to be done with MSDN and its offerings; if you’ve heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

e Why do | need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

¢ What are the differences among the three levels of MSDN subscriptions?
e What happened to Site Builder Network...or, What is this Web Library?

® |s there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren’t getting as much out of
MSDN as you could. Or, maybe you’re wondering whether you're paying too much for
too little, or not enough to get the resources you need. Regardless, you want to be in the
know, not in the dark.

By the end of this chapter, you will know the answers to all these questions and more,
along with some effective tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online

Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their differences be boiled down? Yes, if broad strokes and some
generalities are used:

e MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or in some cases, on DVD).

Chapter 3 Using Microsoft Reference Resources 11

¢ MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its “customers” with the best presentation of material possible. These
strengths and media considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less “immediate” than MSDN Online because it gets to its subscribers
in the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn’t subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content, over the Internet, as soon as it comes available without having to wait for
the update CD to come in the mail. The interface with which MSDN displays its
material—which looks a whole lot like a specialized browser window—is also linked to
the Internet as a browser-like window. To further coordinate MSDN with the immediacy
of the Internet, MSDN Online has a section of the site dedicated to MSDN subscribers
that enables subscription material to be updated (on their local machines) as soon as it'’s
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based web sites. MSDN Online also
has a customizable interface (much like MSN.com) that enables visitors to tailor the
information that’s presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn’t come
with Microsoft product software, and doesn’t reside on your local machine.

Since it’s easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences—and similarities—between MSDN and MSDN Online
into a quickly identifiable format.

One feature that you will notice is shared between MSDN and MSDN Online is the
interface—they are very similar. That's almost certainly a result of attempting to ensure
that developers’ user experience with MSDN is easily associated with the experience
found on MSDN Online, and vice-versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So it isn’t an “either/or” question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online along with the additional
features provided with your MSDN subscription.

12 Volume 3 Microsoft Windows GDI

Microsoft Software:
Operating Systems .
BackOffice Products

Developer Tools
Beta Releases .
Complete SDKs and DDKs -
Ali Contenton CD - <
Real-Time Updates
Priority Support Incidents
MSDN Online Exclusives
MSDN Magazine

LRSS

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online. .

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren’t quite sure what the differences between its subscription levels are, you aren’t
alone. This section aims to provide a quick guide to the differences in subscription levels,
and an approximation what each subscription level costs.
There are three subscription levels for MSDN: Library, Professional, and Universal. Each

has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional

Chapter 3 Using Microsoft Reference Resources 13

subscription, you get everything provided in the Library subscription, plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription, plus even more features.

MSDN Library Subscription

The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn’t come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

® The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

Lots of sample code, which you can cut and paste into your projects, royalty free

The complete Microsoft Knowledge Base—the collection of bugs and workarounds
Technology specifications for Microsoft technologies

The complete set of product documentation, such as Visual Studio, Office, and others

Complete (and in some cases, partial) electronic copies of selected books and
magazines

e Conference and seminar papers—if you weren’t there, you can use MSDN’s notes

In addition to these items, you also get:

e Archives of MSDN Online columns

* Periodic e-mails from Microsoft chock full of development-related information
e A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks
e Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription

The Professional subscription is a superset of the Library subscription. In addition to the
features outlined in the previous section, MSDN Professional subscribers get the
following:

e Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation

¢ Windows SDKs and DDKs in their entirety

¢ International versions of Windows operating systems (as chosen)

e Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription

The Universal subscription is the all-encompassing version of the MSDN SubSCI’Ip'[IOﬂ In
addition to everything provided in the Professional subscription, Universal subscribers
get the following:

14

Volume 3 Microsoft Windows GDI

e The latest version of Visual Studio, Enterprise Edition

e The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

e Additional development tools, such as Office Developer, Front Page, and Project

e Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription

Of course, all of the features that you get with MSDN subscriptions aren’t free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library Subscﬁption has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional Subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you’re an existing Library subscriber who’s upgrading to a Professional subscription.

The MSDN Universal Subscription takes a big jump in price, at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level there’s an in-the-box rebate for $200.

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal—and in most cases, the
deal is much better. Also, if your organization is using lots of Microsoft products, whether
MSDN is a part of that group or not, whomever’s in charge of purchasing should look into
Microsoft Open License program; the Open License program gives purchasing breaks
for customers that buy lots of products. Check out www.microsoft.com/licensing for more
details. Who knows, if your organization qualifies you could end up getting an engraved
pen from your purchasing department, or if you're really lucky maybe even a plaque of
some sort, for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, | know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions, too.

Chapter 3 Using Microsoft Reference Resources

15

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase

the Win32 Library and an MSDN Universal subscription. That means every developer in

your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's

the kind of math even accountants can like.

Using MSDN

MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as

Windows platform versions and BackOffice applications. There’s no need to tell you how

to use Microsoft product software, but there’s a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN

subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

& @ Welcome tothe MSDN Library
& @ Visual Studio 6.0 Documentation
& Q Office Developer Documentation
& Q ‘windows CE Documentation
& @ Platform SDK.

& € SDK Documentation

@ @ DDK Documentation
& Q Windows Resource Kits
Q Tools and Technalogies
3] Q Knowledge Base

5 @ Technical Aticles

| Q Backgrounders

& @ Partial Books

@ @ Periodicals E
4 Q Conference Papers :
& @ Samples

Sneiiinab Lial Salnsg

kj technology.

MSDN Library
April 1999 release

Welcome to the April 1999
release of the MSDN Library. To
begin your exploration of what's
new in this release, click any of
the links on the right.

The MSDN Library is the
essential reference for
developers, with more than a
gigabyte of technical
programming information,
including sample code,
documentation, technical
articles, the Microsoft
Developer Knowledge Base, and
anything else you might need
to develop solutions that
implement Microsoft

Dr. GUI's Espresso Stand
Dr. GUI introduces the April
1999 release of the MSDN
Library.

What's New on the Library b | |
Click here for a
comprehensive hotlinked list
of new content in this release.

MSDN Faatures

Check outthese packages of
articles about our latest
technologies.

MSDN Online

Find out what's new for MSDN
Online members and read
selected columns from our
Web site.

Figure 3-2: The MSDN interface.

16 Volume 3 Microsoft Windows GDI

The interface is familiar and straightforward enough, but if you don’'t have a grasp of its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

Navigating MSDN

One of the primary features of MSDN—and to many, its primary drawback—is the sheer
volume of information it contains, over 1.1GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN’s content.

Basic navigation through MSDN is simple, and a lot like navigating through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics; expand a book by clicking the + box to its left, and its contents are
displayed with its nested books or reference pages, as shown in Figure 3-3. If you don’t
see the left pane in your MSDN viewer, go to the View menu and select Navigation
Tabs and they’ll appear.

Access Validation Functions

The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses, The following
access validation functions are available.

& @ Welcome to the MSDN Library
5 @ Visual Studio 6.0 Documentation
Q Office Developer Documentation
e ‘ ‘Windows CE Documentation
& () Platform SDK
‘what's New?
BackOffice
121 (A Base Services
e Q Microsoft Clustering Service
€@ Debugging and Eror Handling
B Q DLLs, Processes, and Thieads

1 isBadCodePtr Determines whether the calling

process has read access to the
mermory at the specified address.

IsBadReadPtr Determines whether the calling
process has read access to the
memory at a specified range of

addresses.

® e Files and 170 IsBadStringPtr | Determines whether the calling
- @ M process has read access to the
=] emory memory pointed to by a null-

=] (ﬁ Memory Management
=] @ About Memory Management
& @ Vitual Address Space
& Q Virtual Memory Functions
E] Heap Functions

& @ Ve
E] Global and Local Functions
@ Standard C Library Functions
2] Q Using the Virtual Memory Functions
Q Memory Management Reference
@ 2 File Mapping

terminated string pointer. The
function validates access for a
specified number of characters or
until it encounters the string's
terminating null character,

IsBadWritePir Determines whether the calling
process has write access to the
mermory at a specified range of k
addresses. k

The IsBadHugeReadPlr and IsBadHugeWritePir functions

are also available for compatibility with 16-bit versions of

Windows that distinouisher between narmal memory allneatinng
G 3

Figure 3-3: Basic navigation through MSDN.

Chapter 3 Using Microsoft Reference Resources 17

The four tabs in the left pane of MSDN—increasingly referred to as property sheets
these days—are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you’re interested in working with from the drop-down box, and the
information in each of the four navigation tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, thereby enabling you to better find the
information you’re really looking for. In the Index tab, results that might match your
inquiry but aren’tin the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren’t displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Books and Periodicals
MSDN, Content on Disk 2 only
MSDN, Content on Disk 3 only
MSDN, Knowledge Base

MSDN, Office Development

MSDN, Technical Articles and Backgrounders
Platform SDK, BackOffice

Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services

Platform SDK, Graphics and Multimedia
Services

Platform SDK, Management Services

Platform SDK, Messaging and Collaboration
Services

Platform SDK, Networking Services

Platform SDK, Security

Platform SDK, Tools and Languages
Platform SDK, User Interface Services
Platform SDK, Web Services

Platform SDK, What's New?

Platform SDK, Win32 API

Repository 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Docs
Visual C++, Platform SDK, and Enterprise Docs
Visual FoxPro Documentation

Visual InterDev Documentation

Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product Documentation

18 Volume 3 Microsoft Windows GDI

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK’s Security, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple—you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subsets
menu item. You’re presented with the window shown in Figure 3-4.

Define Subset

S R N
@ BackDffice
-QB Base Services L2 Platform SDK
() Clustering Service: Platform 51 dd ({1 Base Services
‘CQ] Debugging and Ermor Handling Ltﬁl Memory: Platform SDK
-&3 DLLs, Processes, and Thread Management Services
—':@ Files and 1/0: Platform SDK Q Metwarking Services

W& | Hardware: Platfors S0E Security
Y] Indexing Service: Platform SD
—4] International Features: Platforr
“Q@ Interprocess Communicatior: -
‘@ Performance Monitoring: Platfc
—((1 Removable Storage Manager. .
—@ Teminal Services: Platform S0

Component Services

Figure 3-4: The Define Subsets window.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you’re creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

Chapter 3 Using Microsoft Reference Resources 19

You can also delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the nearby Remove button.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets and filters the information available in the four navigation tabs just like the pre-
defined subsets do.

Quick Tips

Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page’s location in the information tree. Even if you know the general technology in which
your reference page resides, it’s nice to find out where it is in the content structure. This
is easy to fix: simply click the Locate button in the navigation toolbar, and all will be
synchronized.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser’s Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like | said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get our work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, |
think). Underscores come before letters in alphabetical order, so if you use an
underscore on all of your defined subsets, you get them placed at the front of the Active
Subset listing of available subsets. Also, by using an underscore, you can immediately
see which subsets you’ve defined, and which ones come with MSDN—it saves a few
seconds at most, but those seconds can add up.

Using MSDN Online

MSDN Online shares a lot of similarities with MSDN, and that probably isn’t by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right...and it should be; it’s a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

20

Volume 3 Microsoft Windows GDI

If you've used Microsoft's home page before (www.msn.com or home.microsoft.com),
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news and weather, stock
quotes, and other collections of information or news that suit your tastes or interests.

You can even insert a few Web links and have them readily accessible when you visit
the site. The MSDN Online home page can be customized in a similar way, but its
collection of headlines, information, and news sources are all about development. The
information you choose determines what information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you’ll
see is shown in Figure 3-5.

developers

BHMUNITY ,‘éuwrusams {8176 Guane | SERREHMEDN -

7 customize sewel|: desw] iénie | rRoaming
Customnjze the information that appears on your MSDN Online home page. Select your preferences
from the sections below, then return here and choose Save. (Yes, we know it's a lot of chaices,
There's a lot of information on this site.)Yuu can update your choices at any time by visiting this
Customize page.

You can customize the headlines you see on the MSDN Online home page by selecting frarmn the list of

technologies below, or you can choose a template we've preselected just for Web developers. Either
way, your selections will customnize what you see under Developer News, Libraries, and Support,

T A

I3

Select or clear the

check boues above to
turn the categories on " web Development * None {clears all}

or off. To change the we'll soon offer more preselected technology templates for other developer specialties; write us and
order in which the let us know what you'd prefer.

tegori . . . A
catagories appear on If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
the home page, click a

headlines, each tagged for a different technology:
category name, and
then click the up or I~ allow Duplicate Headlines

down arrow 7 to the

right

Figure 3-5: The MSDN Online configuration page.

As you can see from Figure 3-5, there are lots of technologies to choose from. If you're
interested in Web development, you can choose the option button near the top of the
Technologies section for Web Development, and a pre-defined subset of Web-centric
technologies is selected. For more Win32-centric technologies, you can choose the
appropriate technologies. If you want to choose all the technologies in a given
technology group, check the Include All box in the technology’s shaded title area.

Chapter 3 Using Microsoft Reference Resources 21

You can also choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News
Voices

Member Community
Events & Training
Support

Personal Links
Search

Libraries

Once you've defined your profile—that is, customized the MSDN Online content you
want to see—MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online’s home page, with the categories you’ve chosen
included in the order you specify. Note that clearing a given category—such as
Libraries—clears that category from the body of your MSDN Online home page (and
excludes headlines for that category), but does not remove that category from the MSDN
Online site navigation bar. In other words, if you clear the category it won’t be part of
your customized MSDN Online page’s headlines, but it'll still be available as a site
feature.

Finally, if you want your profile to be available to you regardiess of which computer
you'’re using, you can direct MSDN Online to create a roaming profile. Creating a
roaming profile for MSDN Online results in your profile being stored on MSDN Online’s
server, much like roaming profiles in Windows 2000, and thereby makes your profile
available to you regardless of the computer you're using. The option of creating a
roaming profile is available when you customize your MSDN Online home page (and can
be done any time thereafter). The creation of a roaming profile, however, requires that
you become a registered member of MSDN Online. More information about becoming a
registered MSDN Online user is provided in the section titted MSDN Online Registered
Users.

Navigating MSDN Online

Once you’re done customizing the MSDN Online home page to get the headlines you’re
most interested in seeing, moving through MSDN Online is really easy. A banner that
sits just below the MSDN Online logo functions as a navigation bar, with drop-down
menus that can take you to the available areas on MSDN Online, as Figure 3-6
illustrates. ~ :

22

Volume 3 Microsoft Windows GDI

a MSDN Online Site Guide - temet Explorer
i@ http://msdn. microsoft. com/siteguide/default. asp
msdn online

Site Guide

E iiniczs | LIBRARIES ‘| EOMMUNETY | DOWNLOSDS | SITE GUIDE | SEARCH MSBN. i 7

H;;icns}ldrng ‘
MSD IS e
~tode Comer 1,
March 2 Despthd .0
MSDN C BHTML Dude | online resource for developers, Here's some inforration to guide you through the site:
Dropul
* Our Duwamish Sample App :'ns a chronological list all the latest information posted to the MSDN Online site.
. W.?n* ws xlm:, fed Site Map Fan_give yon.{ the view from above.
e Usirn Lettérs to MSDN: E 35 for navigating the site.
* MSD o s ite. See About MSDN to learn about the MSDN subscription program, the MSDN ISV program,
onlin opgee vatle - ash newsletter, and more.
e Use Q&Axm ~_ i you decode the latest term or acronym that has you stumped.
® Wan g o Hup . . tell us how we can make the site easier to use and what kinds of information you'd like to see
244 geune’s Way S
Web Men Talking

Photo Credits: PhotoDisc

| Did you find this material useful? Gripes? Compliments? Suggestions for other articles? Write us!

1999 Microsoft Corporation, All rights reserved. Terms of use,

B i s dsomivoessidsn T T e

Figure 3-6: The MSDN Online navigation bar with its drop-down menus.

The list of available menu categories—which group the available sites and features
within MSDN Online—includes:

Home

Voices

Voices

Libraries

Community

Downloads

Site Guide

Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to explore the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online’s feature offerings.

MSDN Online Features

Each of MSDN Online’s seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Chapter 3 Using Microsoft Reference Resources 23

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you’ve (perhaps) customized, showing you all the latest
headlines for technologies that you’ve indicated you’re interested in reading about.

Voices is a collection of columns and articles that comprise MSDN Online’s magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home

page is shown in Figure 3-7.

3 MSDN Online Voices - Home Page - oft Intemnet Explorer

from MSON Dol

Duyarnish San N ; ﬁ
colununsts and feature wiiters

Design Digt
Web Mea Tal

The Newspaper Parsing and Sharing

Scripting Tlinic # XML is all about sharing. Columnist Charlie Heinemann talks about the Microsoft XML

Extremne XM parser, and how XML can make your data available.

DHTML Dude » ' ¢
tMore or Hass = - Hbe\:,,?:;lr::

Stona's Way ¢,
Servin' It Up
Code Corners
Geek Speak ¢

DESIGN DISCUSSION

Incorporating Digital Media Acquisition inte Site Design

Office Talk # Madja Vol Ochs details how to implement digital rights management on Web sites.
Deep C+++
Ask Jane ¢ by Nadja
Dr. GUI = ol Ochs
QRA e

DEEP C++

Handling Exceptions in C and C++, Part 3
In his third installment on exception handling, columnist Robert Schmidt addresses

3 voices archive the syntax and semantics of Standard C++ exception handling.

by Robert
Schmidt

e S e

Figure 3-7: The Voices home page.

Each of thet “voices” in the Voices site, adds its own particular twist on the issues that
face developers. Both application and Web developers can get their fill of magazine-like
articles from the sizable list of different articles available (and frequently refreshed) in the

Voices site.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides
the reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can explore in traditional MSDN fashion and

24

Volume 3 Microsoft Windows GDI

gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to explore the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can

be linked to directly at msdn.microsoft.com/workshop.

\ . msn online

sb Workshop

ESSENTIALS =

Component Development =

Content & Component Delivery »
Data Access & Databases =

Design »

DHTML, HTML & CSS e

Languages & Developrment Tools »
Messaging & Collaboration o

Networking, Protocols »
% Data Formats

Reusing Browser Technology »
Security & Cryptography s
Server Technologies »
Streaming & Interactive Media »
Web Content Management ¢

RML (Extensible Markup Language) ¢

ESSENTIALS

This section contains core
information and references,
including information on
authoring for different
browsers and platforms, end-
to-end examples of working
Web sites, slides from
conferences, specs, and
comprehensive links to
references and standards.

Wwelcome

The MSDN Online Web
workshop provides the latest
information about Internet
technologies, including
reference material and in-
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's New page
for updates.

The MSDN Online team

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

Figure 3-8: The Web Workshop home page, with its bulleted list of navigation start
points.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members}, and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

The Downloads site is where developers can find all sorts of useful items fit to

be downloaded, such as tools, samples, images, and sounds. The Downloads site is
also where MSDN subscribers go to get their subscription content updated over the
Internet to the latest and greatest releases, as described previously in this chapter in
the Using MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-10.

Chapter 3 Using Microsoft Reference Resources

25

Join «

Welcome to the MSDN Online Member Community

Online Special-Interest Groups

0SIGs

Membershi Updated June 4, 1999 Commerce
Yourtem :'gs;(;: : With an MSDN Online membership, developers can easily access technical (E;:\;b:l::.n?ent
e ezt « O longer 1 ns and ke adeantags of marmbor bemetie, Exchange /Outlook
Downloads » I;m::uon

Members Helping) R Server b
Mernbers Access the information you need, when you need it, with Online Speisl-Interest ‘ﬁ i
Offars » Groups (OSIGs). Web-based access to relevant newsgroups, sorted by product, MSDN Subscription i
y . . . 3
Training » make Ilj easy for you to get u:lformetlon you need to do Yuur]ub. Take advantage Office Developer
MSDN storas o Of special offers, find useful links, and stay up to date with the latest product and
i technology news. SQL Server
Visual Basic
Members Helping Members
. . . . Visual C++
Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the Wisual FoxPro
developer community. Get answers quickly I?y searchlnglthe MHM database for Visual InterDev
people who can answer your technical questions. Or, register as a volunteer and
help other developers when they need it. Sign up now! Visual 3++
. . Visual Studio
MSDN Online Certified Membership k
Windows 2000 éﬁ

_Microsoft Certified Professionals can get special benefits with their MSDN Online

Figure 3-9: The Community home page.

The Site Guide is just what its name suggests; a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn.microsoft.com/siteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other finely-tuned search capabilities. The Search MSDN home
page can be linked to directly at msdn.microsoft.com/search. The Search MSDN home
page is shown in Figure 3-11.

MSDN Online Registered Users

You may have noticed that some features of MSDN Online—such as the capability to
create a roaming profile of the entry ticket to some community features—require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won’t cost you anything more than a few minutes of registration time.

26 Volume 3 Microsoft Windows GDI

e Downloads - Microsoft Internet E xplorer

Tools Welcome to the MSDHN Online Downloads Area

sarmples

Tools

s
-
Images »
Sounds @ .
N Want to try out some great new products? Check out our tools area, where MSDN Online members and

Subscrib: . .
ubscrber guests can download over 40 trial, beta and full versions of the latest developer products, .

Downloads

Samples
In this section, you will find a great variety of samples which demonstrate ways to use the latest and

greatest Microsoft technologies to make your applications the best they can be. All samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with ;s are for users registered with Visual Studio only -- to get access to these,
register your product today.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Images

Download Web-ready images for free from our Images Downloads area. Currently, we have a great
collection created by Little Men's Studin, Inc, Little Men's Studio provides original clip art collections,
icons, and free quotes on affordable custorn graphics. Our image categories include rules, clip art,
buttons, bullets, photographs, and more, We will be updating this collection with more images so be
sure to check back frequently,

Figure 3-10: The Downloads home page.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an Online Special Interest Group
(OSIG) requires registration. That feature alone is reason enough to register. Rather
than attempting to call your developer buddy for an answer to a question (only to find out
that she’s on vacation for two days, and your deadline is in a few hours), you can go to
MSDN Online’s Community site and ferret through your OSIG to find the answer in a
handful of clicks. Who knows; maybe your developer buddy will begin calling you with
questions—you don't have to tell her where you’re getting all your answers.

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox—if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs—again, only if

you want to. It's easy for me to suggest that you become a registered user for MSDN
Online—I'm a registered user, and it's a great resource.

Chapter 3 Using Microsoft Reference Resources

27

3 MSDN Online Search - Microsoft Intewnet Explorer
| Fie - Edit: View. Favortes - Tools - Help

J Addléa iéj http: //search.microsoft.com/us/dev/

masdn online

Search

T HOME |7 OIGEs 1 /LIBRARIES’ | COMMUNITY' | DOWNLOADS | SITE GUIDE: | “sEARcHMeBN & . /0 i

1. Enter your search word(s} or phrase, or select a saved phrase from the drop-down list:

all Producks support | Search

Search Tips:

|Enter phrase

2. Select your search criteria:

exact phrase .

3. Specify your search scope:

" Library. g T
{# all sections of MSDN Library
{" Selected sections of MSDN Library

|saved search phrases v] | search l Advanced

Quick

¥ visual Studio Documentation

¥ Visual Basic Documentation

¥ Visual C++ Documentation

¥ Visual Fox Pro Documentation

¥ Visual InterDev Documentation

W Visual J++ Documentation

¥ visual SourceSafe Documentation

{¥ Tools & Technologies (including Win CE)

¥ Other SDK Documentation

¥ DDK Documentation

¥ windows Resource Kits

¥ Specifications

¥ Technical Articles

¥ Backgrounders

¥ Books and Partial Books :
¥ Periodicals -

Figure 3-11: The Search MSDN home page.

The Windows Programming Reference Series

The Windows Programming Reference Series provides developers with timely, concise,

and focused material on a given topic, enabling developers to get their work done as

efficiently as possible. In addition to providing reference material for Microsoft
technologies, each Library in the Windows Programming Reference Series also includes
material that helps developers get the most out of its technologies, and provides insights

that might otherwise be difficult to find.

The Windows Programming Reference Series is currently planned to include the

following libraries:

Win32 Library
Active Directory Library

Networking Services Library

29

CHAPTER 4

Finding the Developer
Resources You Need

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a /ot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft’s resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn’t go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support

Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft’s products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.com/support/customer/develop.htm.

30 Volume 3 Microsoft Windows GDI

Developers
Need Help Now?

Microsoft offers a wide variety of support for Developers, The Microsoft
Developer Network (MSDM) is packed with news, resources and technical

Go to a Suppotrt site services created especially for developers' unigue needs, Take advantage of
: ‘ .ﬁi newsgroups and chat rooms, search the online support archive or sign up for
“| our regular e-rmail news watch,

i Business Solutions Microsoft offers developers with Premier Support for Developer, Pay-per-

i Partners & Resellers Incident Support, Priority Annual Support and special consulting services, If
Developers you need more than occasional developer support, one of these options is
Home User sure to be right for you.

Education

Do you need help now?

Go to the Microsoft Developer Network (MSDHN) Support ServiceDesk,

Support Options

Premier Support for Developers
Priority Annual Support

Pay-Per-Incident Support
Consult Line

For additional information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 64K)

Figure 4-1: The Product Services Support page for developers.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft’s support services.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

e Premier Support for Enterprises

e Premier Support for Developers

e Premier Support for Microsoft Certified Solution Providers

® Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out more
information about Microsoft’s Premier Support, get in contact with them at 1-800-936-
2000.

Chapter 4 Finding the Developer Resources You Need 31

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

e Priority Comprehensive Support
¢ Priority Developer Support
¢ Priority Desktop Support

As a developer, the best support option for you is the Priority Developer Support. To get
more information about Priority Developer Support, you can reach Microsoft at 1-800-
936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there’s
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can’t be broken down into sub-issues or sub-problems (that
is, it can’t be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft’s support Web
site, but if you're on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support.microsoft.com/support/webresponse.asp.

Online Resources

Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online’s Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online’s Community site, go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft’s corporate site. You can search the Knowledge
Base online at support.microsoft.com/support/search.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.com/support/news.

32 Volume 3 Microsoft Windows GDI

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer’s Reference Library, and they are the following:

microsoft.public.win32.programmer.*
microsoft.public.ve.”
microsoft.public.vb.*
microsoft.public.platformsdk.*
microsoft.public.cert.”
microsoft.public.certification. *

Of course, Microsoft isn’t the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups—too many to
list—that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you’ll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products

Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as

Visual C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a
particular product (such as SQL Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do—there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don’t have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually

Chapter 4 Finding the Developer Resources You Need 33

didn’t know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are “tracks”
that candidates generally choose and that point their certification in a given direction,
such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

® Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0 (70-
016)

e Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

¢ Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

¢ Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

¢ Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

® Any Desktop or Distributed exam not used as a core requirement

¢ Designing and Implementing Data Warehouses with Microsoft SQL Server 7.0 and
Microsoft Decision Support Services 1.0

e Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

¢ [Implementing OLE in Microsoft Foundation Class Library 4.0 Applications

34

Volume 3 Microsoft Windows GDI

¢ Implementing a Database Design on Microsoft SQL Server 6.5
* Designing and Implementing Databases with Microsoft SQL Server 7.0
e Designing and Implementing Web Sites with Microsoft FrontPage 98

¢ Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

e Microsoft Access for Windows 95 and the Microsoft Access Developer’s Toolkit

¢ Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

¢ Designing and Implementing Database Applications with Microsoft Access 2000

¢ Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

¢ Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

¢ Developing Applications with Microsoft Visual Basic 5.0

e Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn’t that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you—regardiess of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams—and don’t be fooled by believing that if the book is bigger it must be better,
because that certainly isn’'t always the case—and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.com/train_cert/dev.

Conferences

As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year—occurring throughout the country and around the
world—on various topics. There are probably more conferences available than any

Chapter 4 Finding the Developer Resources You Need 35

brhuman being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one—the Professional Developers Conference (PDC).
Regardless of which conference you’re looking for, Microsoft has provided a central site
for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events.microsoft.com.

Other Resources

There are other resources available for developers of Windows applications, some of
which might be mainstays for one developer and unheard of for another. The listing of
developer resources in this chapter has been geared toward getting you more than
started with finding the developer resources you need: it's geared toward getting you
100 percent of the way, but there are always exceptions.

Perhaps you’re just getting started, and you want to get more hands-on instruction than
MSDN Online or MCSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and—who
knows?—maybe someone else will benefit from your knowledge:

wprs @ microsoft.com
If you’re sending e-mail about a particularly useful resource, type “Resources” in the

subject line. There aren’t any guarantees that you’ll get a reply, but I'll read all of the e-
mail and do what | can to ensure your resource idea gets considered.

37

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 3

This chapter is the third of the five-part collection of common programming
errors included in the Win32 Library to help you avoid these simple
programming pitfalls. This collection of common programming errors is
distributed in each Win32 Library volume’s Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers
Volume 4: Buffer Overflows and Miscellaneous Errors
Volume 5: Memory Abuse and Miscalculations

As you’ll notice, not all of these pitfalls are necessarily confined to Win32
programming (some are networking services based, for example). However,
since these common coding errors must be avoided in any Windows
application, they’re provided here in their entirety to round out the benefits of
owning the Win32 Library.

This, of course, is Volume 3, and the errors and examples found in this
chapter provide insights that can help you avoid problems with RPC errors and
kernel-mode specifiers in your programming projects. So, without further ado,
here they are!

RPC Errors

The use of RPC requires that programmers be aware of a number of issues
that can cause errors or expose their applications to various attacks:

Check unique pointers for NULL before dereferencing.
When using a switch_is construct that has a default clause:
¢ verify that the value switch is within expected range.

e verify that pointers within the switched object are not null before
dereferencing them.

Don’t use NULL DACLs; they don’t protect anything.
¢ |Impersonate before acting on behalf of the caller, and check the result.
Stop impersonating when finished acting on behalf of the caller, and check

38 Volume 3 Microsoft Windows GDI

the result.

¢ Don’t expect strings to be zero terminated unless string is specified in
the .idl file.

e Don’t copy arbitrary length data into independently-sized buffers.

e Check length of size_is specified data before dereferencing corresponding
pointers.

e Be aware that calculations in midl definitions using size_is and length_is
can overflow, and that it may be impossible for the server to detect this.

e Use strict context handles.

Using pointer_default(unique) and embedded pointers

When an RPC structure contains pointers, its pointers default to the default
pointer type (typically set by pointer_default(unique)). Under such
circumstances, unique pointers can be NULL and must be verified to be
non-NULL before being dereferenced.

Example
[Lo L
~pointer_default(unique)

typedef struct RPC STRBCTURE {
B IKSTANCE DATA *Instance,)
¥ RPC STRUCTURE

NTSTATUS ’

RpcInterface(.
- [1n] RPC_STRUCTURE “#s °

{ Sl _ - R . L o] M.Al.;.j;i—.{i«,’-:.u.._ S [

- INSTANCE_DATA =i HR L EA B R

_ 1 =s"-> Instance;

N 1f(*1 YL é}‘fﬁﬁ;“j‘i‘“’:h*éyi“be“ NU'LL
[4
A valid switch_is value in an RPC-capabIe structure

doesn’t ensure a non-NULL pointer

A valid value for the switch field does not change the default of embedded
pointers from unique. Thus, even when it’s valid, the pointer must still be
verified to be non-NULL before being dereferenced.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 39

Example

typedef struct rpc structure {
ype' SR
'pe)];unjon { : T
'[ca;etl)]"INSTANCE DATA *Instance. R

A NULL DACL affords no protection

A NULL DACL grants access to everyone and protects nothing; it doesn’t even
protect an object from having its DACL changed to deny access to everyone.
In general, an untrusted user should not be granted access to change a
security-descriptor's Owner or DACL fields (unless they own the object, in
which case no one else should be granted such access).

Example
In’ “/11zeSec&rttyDescriptor{pSecur1tyDescr1ptor._
! o SECURITY DESCRIPTORWREVISION)

_ SetSecur1tyDescr1ptorDacT(pSecurityDescriptor.

5 . : ' TRUE, © 7/ Dacl. present
NULL >y NULL Dacl’
FALSE) 1/ Not def&ulted

iif (f’Bsoi) ,. 2 SR '

SIS Rpcstat RpcServerﬂseProtsqup(TEXT("ncacn np"), .

' : 105 /7 max concurrent caiis -
“P1peName“;§*~' ‘ .

pSecurityDescriptar)

40 Volume 3 Microsoft Windows GDI

Remarks

This example exposes this error for RPC, but the error’s scope goes beyond
RPC. If you create a publicly accessible securable object and don’t secure it
against unauthorized users changing the DACL, anyone can lock the object
such that no one can access it.

Allowing “all” access—for example, applying a DACL granting
EVENT_ALL_ACCESS to everyone who accesses an event object—is an
equally bad idea, because “all” access typically grants WRITE_DAC and
WRITE_OWNER permissions. Granting either of these permissions explicitly
also enables objects to be locked up. Use (GENERIC_READ |
GENERIC_WRITE | GENERIC_EXECUTE) when it's necessary to grant
broad access to an object to any non-administrative-level user.

Call RpcimpersonateClient() before any security-relevant

operation

The purpose of many RPC servers is to act on behalf of a client, but they must
protect system integrity while doing so. Many RPC servers run in the system
context; impersonating the caller enables the server to use the user’s
credentials to access some objects, while otherwise being a part of the secure
side of the system.

Example

Remarks

Opening a process by pid without first impersonating can provide a caller with
access to the process that it normally wouldn’t have. The server now has a
handle to a process—LSASS for example—allowing it to scribble in the
address of a process the user would not have been allowed on its own.

Starting and stopping impersonation

There are a handful of issues that programmers should be on the lookout for
when starting and/or stopping impersonation.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 41

Always check the result of RpcimpersonateClient() before a

security-relevant operation

The RpclmpersonateClient() function returns an indication of success or
failure; skip the check and you may as well have skipped the call (which, as
we saw previously in this chapter, can be dangerous).

Call RpcRevertToSelf() after security-relevant operations

Once a server has acted on behalf of the user by impersonating, it should
revert to its own security context by calling RpcRevertToSelf(). Although the
consequences of failing to undo impersonation are typically not as drastic as
failing to impersonate, it can result in failure to function correctly, and cause
spurious behavior such as extra audits.

42

Volume 3 Microsoft Windows GDI

Remarks

This example shows how to avoid this programming error in RPC, the scope of
this error extends beyond RPC. Impersonation is possible over LPC, Named
Pipes, and when using Tokens. In all cases, a decision must be made as to
whose context (typically System versus untrusted user) should be used for
various operations, and impersonation used where appropriate.

Strings are zero-terminated only when declared with

strings in the .idl

Variably sized RPC buffers can be tricky to deal with. For the most part,
variably sized RPC buffers consist of either character strings (which should
contain NULL termination defining the size), or amorphous buffers for which
there is a corresponding size value passed to the function. The examples that
follow document some of the common errors involved in dealing with such
buffers.

A buffer that hasn’t been explicitly declared as a string type cannot be
assumed to contain a NULL terminator, and thus must not be passed to C
runtime string functions prior to verification of zero termination. This cannot be
done by touching a byte outside the valid length of your buffer.

Example

Remarks

The NameSize parameter should be checked and used to bound any
operations, either by explicitly attaching a NULL-terminator (on the server
side), or by using bounded string operations with the size of the buffer
specified.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 43

Don’t copy arbitrary length data into independently-sized
buffers

Data buffers should not be assumed to be bound by an arbitrary size limit. An
explicit check of the size of the indicated data must be made prior to copying
to local fixed-size buffers.

Example

wcscat(wszdobpath pwszName)

Remarks

string guarantees that the pwszName parameter is zero terminated, not that
its length is less than MAX_PATH.

Using size_is may result in a zero-length structure; it is not

safe to dereference this without first checking its length

A size_is specifier can result in a zero-length buffer but a non-NULL buffer
pointer (as reference pointers, such as passed parameters, cannot be NULL).
A unique pointer can always be NULL. The best practice is to verify both the
pointer as non-NULL and the buffer size as non-zero to avoid problems.

Example 1

ULONG .

RpcSevverSTQeRaut1ne(

~[ind ULONG Structure51ze. o

[in. sfze 15(5tructuré$1ze)] PSTRUCTURE Structure

’ m‘oﬂa na'meceﬁgth =gy

- 1f (Structuré) { ' ,
E : NameLength Strueture >NameLength

44

Volume 3 Microsoft Windows GDI

Remarks

There is no guarantee in this example that the StructureSize parameter is
sufficient to cover the NameLength member, and in fact, the Structure pointer
may be non-NULL, while StructureSize, and thus the allocated buffer, indicate
a zero length.

Remarks ; -
This example presents a similar problem. In this case, the StructureSize

parameter could be non-zero, but Structure—being defined as unique—could
contain a NULL.)

Calculations in a size_is or length_is specification are
susceptible to overflow

Calculations in the midl definition for a size_is or length_is specification are
subject to overflow problems. If you perform a calculation in a size_is or
length_is specification, consider what difficulties overflow (or rounding) might
cause.

Strict context handles

Context handles enable RPC servers to associate information with calls. RPC
looks up context handles in a linked list associated with each binding handie. If
you have more than one interface accessible from a single binding handle,
then the code must be prepared to reject invalid handles or use strict context
handles. Interfaces end up being accessible from a single binding handle if
they share things like the same named pipe. Using the
[strict_context_handle] on the interface definition in the .acf file causes RPC
to only allow context handles to be used against interfaces that created them.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 45

Kernel-Mode Specifiers

The most common programming errors associated with working in kernel
mode are associated with improperly validating user-provided structures. The
practice of improperly validating user-provided structures can cause problems
either by the increased kernel-mode privilege, or by accessing memory that
could cause a system crash. The following is a list of rules that should be
observed in kernel mode:

¢ Probe any user-provided pointers within a try-except before reading or
writing.

* Read user-mode memory only once; capture it for subsequent uses.

e Don't trust any user mode contents. Never trust the Thread Environment
Block (TEB).

e Other threads may change kernel objects’ states. Use locks.

* Never call kernel routines without access-checking objects passed to them.

e Validate buffer sizes for buffered I/O.

e Validate parameters on METHOD_NEITHER.

Don’t access user-provided memory without probing

All memory accesses using pointers provided by user mode must be validated
with a probe to stop user mode reading or writing of data for which the caller
has no access. Some memory addresses have side effects, such as a
bugcheck, or hardware effects as in the case of memory-mapped device
registers. It's not enough to simply use try-except clauses. The obvious way
to avoid these problems is to always probe user-provided addresses.

Example
NTSTATUS :
*NtBadFunct10n(

T,RVOID Paramv o

ﬁy ULONG Size -
y 2 S

fROUND COGG RoundCogg‘ o : S
1 Probe wz?? be sk1pped 1f Swze'*~ 0.
ProbeForRead(Param, g .
SRR DR | ze%,:;m CEL
;;1)::

x"4w s ?he next statemént may cause an
B 7 when the above probe is sk1pped i3
© /1 ‘address’ such as" @xFFFFFC@E is passed
~ U meory -managenment code will call KeBugCheck

46

Volume 3 Microsoft Windows GDI

77 d1rect1y. without returntng contro1 to i
// the exception handler. .

“if (((PCGGG)Param} >Type. R‘(_)urtldj‘j’{'
o} except .(EXCEPTiON_»EXEQUTE_‘HAN’DLER)‘ «
S0 oretdrn GetExceptionCode();: -
.

Don’t do multiple user-mode reads without captures

Despite the probe and capture rules (that is, read once, and if you have to
read twice, capture first and then read again), many programmers commit the
common error of making kernel-mode reads of user-mode memory multiple
times without a capture. This isn’t the best approach. Along those lines, user-
mode memory shouldn’t be used for temporary storage of a kernel-mode
algorithm; the data might have changed or become invalid during the interim.
Data read from user-mode memory should be read only once. Data once
written to user-mode memory shouldn’t be reread without revalidation. To
avoid this type of problem, probe once and (if necessary) capture for multiple
reads.

Example

NTSTATUS - ‘ : e : e
4Kerne]Rout1neCa1?edByUserMade(PUNICODE STRING Un1code5tr1ng} N

€

~ UNICODE_STRING CapturedString;

'=MGH#RV S - Bufferl..};
B 5 CRRCE SR R .
Ctry { '

/ ProbeForRead(UnicodeStr1ng,
s1zeof(UN1CODE STRING)
: s1zeof(UCHAR3) . :)
«ProbeForRead(UmcﬂdeStm‘ng SBuffer, o
’ UnicodeString- >Length. Lo '
) 'sizeof(UCHAR));
v'CapturedString *UnicodeStrwng,
‘;f‘ Rt1CapyMem0ry£Buffer.

S . CapturedString. Buffer,
wE Capturedstring Léngth)
[.1: . ;

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 47

Remarks

There is a tricky problem in this code example: the values for the length and
buffer of the string have actually been read twice. The first time they were
used to probe the buffer for read, and the second they were captured into the
CapturedString UNICODE_STRING structure. The values might actually
have been changed in the meantime, invalidating the probe and potentially
causing mischief.

Don’t trust the TEB

Accessing the current Thread Environment Block (TEB) from kernel mode is
just as dangerous as accessing any other user-mode memory. Although this is
generally a system construct, it could still be modified from user mode. In
general, validate any user-mode input into kernel mode, even if it's an implicit
“system” structure.

Avoid race conditions when modifying kernel data on user

request

Often kernel-mode routines manipulate kernel objects and move them from
one state to another. A kernel routine usually validates that the object is in the
correct state before advancing to the next step; such checks must be done
under locks if user mode can request the same transition from two threads at
once. If it's possible for the service to be reentered, avoid this potential
problem by always using locks to validate that an object is in the correct state
before advancing it to the next step. Possible reentry could include malicious
attacks, incorrect calls, and so forth, and is not limited to the path taken when
the function is used correctly.

Example
NTSTATUS
KernelFreeOb]

st

HANDLE Object) -

Valfdiandle(Obiect)) {
‘return STATUS.INVALID_HANDLE:

tFreeRoutineByHandle(Object

Remarks

Two threads running nearly simultaneously in this routine may both get returns
from IsValidHandle, implying that the handle is valid. Both threads would then
call the free routine, probably causing something nasty to happen.

48

Volume 3 Microsoft Windows GDI

Dealing with common interfaces for user mode and

kernel mode

Many kernel-mode interfaces have the same interface to manipulate objects
from user mode. The object is often used without access checking, although it
should not be accessible to user mode even for a short time. To avoid this
problem, mark objects with the correct access mode.

Validating buffered I/O in device drivers

Device drivers using buffered 1/0 paths must validate input and output buffer
sizes before writing or reading data. Validate that input buffers are large
enough to contain request packets, and that output buffers are large enough
to contain results.

Example

Remarks

The lack of a size check on OutputBuffer could cause an access violation if
ResultsLength > OutputBufferLength.

METHOD_NEITHER requires full probe and capture

Buffers sent to IOCTLs of type METHOD_NEITHER are simply pointers
supplied by the user; they are neither probed nor captured before being
passed to the intended driver. One way to avoid problems is to properly probe
and capture data passed using METHOD_NEITHER IOCTLs. When creating
new IOCTLs, a better solution is to use METHOD_BUFFERED if the data
does not require a pointer to be completely expressed.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 3 49

Remarks

The reference to Type3inputBuffer on a METHOD_NEITHER IOCTL
dereferences a buffer pointer directly passed by the caller, and not a pointer
buffered by the I/O subsystem. This situation can cause a bugcheck or direct
access to kernel-mode memory by a user-mode process.

Solution Summary

It's nice to have a concise version of the solutions to these common
programming problems, so this section summarizes how to avoid the issues
discussed in this chapter.

RPC Errors

1.

10.

Using pointer_default(unique) and embedded pointers: Check unique
pointers for NULL before dereferencing.

. A valid switch_is value in an RPC-capable structure doesn’t ensure a non-

NULL pointer: When using a switch_is construct that has a default clause:
o Verify that the value switching on is within expected range.

e Verify that pointers within the switched object are not NULL before
dereferencing them.

. ANULL DACL affords no protection: Don’t use NULL DACLs, they don’t

protect anything.

. Call RpclmpersonateClient() before any security-relevant operation:

Impersonate before acting on behalf of the caller, and check the result.

. Starting and stopping impersonation: Stop impersonating when finished

acting on behalf of the caller, and check the result.

. Strings are only zero-terminated when declared with string in the .idl.

Don’t expect strings to be zero-terminated unless string is specified in
the *.idl file.

. Don’t copy arbitrary length data into independently-sized buffers: This

one’s self-answering!

. Using size_is may result in a zero-length structure; it’s not safe to

dereference this without first checking its length. Check length of size_is
specified data before dereferencing corresponding pointers.

. Calculations in a size_is or length_is specification are susceptible to

overflow. Be aware that calculations in midl definitions using size_is and
length_is can overflow, and that it might be impossible for the server to
detect this.

Strict context handles: Use strict context handles.

50

Volume 3 Microsoft Windows GDI

Kernel-Mode Specifiers

1.

2,

Don’t access user-provided memory without probing. Probe any user-
provided pointers within a try-except before reading or writing.

Don’t do multiple user-mode reads without captures. Read user-mode
memory only once; capture it for subsequent uses.

. Never trust the TEB. Don’t trust any user mode contents.
. Avoid race conditions when modifying kernel data on user request.

Use locks to protect objects that can be changed by multiple threads.

. Dealing with common interfaces for user mode and kernel mode. Never call

kernel routines without access checking objects passed to them.

. Validate buffered I/O in device drivers. Validate buffer sizes for buffered I/O.
. METHOD_NEITHER requires full probe and capture. Validate parameters

on METHOD_NEITHER.

CHAPTER 6
Bitmaps

A bitmap is a graphical object used to create, manipuiate (scale, scroll, rotate, and
paint), and store images as files on a disk. This overview describes the bitmap classes
and bitmap operations.

About Bitmaps

A bitmap is one of the GDI objects that can be selected into a device context (DC).
Device contexts are structures that define a set of graphic objects and their associated
attributes, and graphic modes that affect output. The table below describes the GDI
objects that can be selected into a device context:

Graphic object Use

Bitmaps Creates, manipulates (scale, scroll, rotate, and paint), and
stores images as files on a disk.

Brushes Paints the interior of polygons, ellipses, and paths.

Fonts Draws text on video displays and other output devices.

Logical Palette A color palette created by an application and associated with
a given device context.

Paths One or more figures (or shapes) that are filled and/or outlined.

Pens A graphics tool that a Win32-based application uses to draw
lines and curves.

Regions A rectangle, polygon, or ellipse (or a combination of two or

more of these shapes) that can be filled, painted, inverted,
framed, and used to perform hit testing (testing for the cursor
location).

From a developer’s perspective, a bitmap consists of a collection of structures that
specify or contain the following elements:

¢ A header that describes the resolution of the device on which the rectangle of pixels
was created, the dimensions of the rectangle, the size of the array of bits, and so on.
o A logical palette.

e An array of bits that defines the relationship between pixels in the bitmapped image
and entries in the logical palette.

A bitmap size is related to the type of image it contains. Bitmap images can be either
monochrome or color. In an image, each pixel corresponds to one or more bits in a

52

Volume 3 Microsoft Windows GDI

bitmap. Monochrome images have a ratio of 1 bit per pixel (bpp). Color imaging is more
complex. The number of colors that can be displayed by a bitmap is equal to two raised
to the number of bits per pixel. Thus, a 256-color bitmap requires 8 bpp (28 = 256).

Control Panel applications are examples of applications that use bitmaps. When you
select a wallpaper for your desktop, you actually select a bitmap, which the system uses
to paint the desktop background. The system creates the selected wallpaper pattern by
repeatedly drawing a 32-by-32 pixel pattern on the desktop.

Figure 6-1 presents the developer’s perspective of the bitmap found in the file ’
Redbrick.bmp. It shows a palette array, a 32-by-32 pixel rectangle, and the index array
that maps colors from the palette to pixels in the rectangle.

Figure 6-1: Developer’s perspective of the Redbrick bitmap.

In the preceding example, the rectangle of pixels was created on a video graphics
adaptor (VGA) display device using a palette of 16 colors. A 16-color palette requires
4-bit indexes; therefore, the array that maps palette colors to pixel colors is composed of
4-bit indexes, too. (For more information about logical color-palettes, see Colors.)

Chapter 6 Bitmaps 53

Note In the above bitmap, the system maps indexes to pixels, beginning with the
bottom scan line of the rectangular region and ending with the top scan line. A scan line
is a single row of adjacent pixels on a video display. For example, the first row of the
array (row 0) corresponds to the bottom row of pixels, scan line 31. This is because the
above bitmap is a bottom-up device-independent bitmap (DIB), a common type of
bitmap. In top-down DIBs and in device-dependent bitmaps (DDBs), the system maps
indexes to pixels beginning with the top scan line.

Bitmap Classifications
There are two classes of bitmaps:

® Device-independent bitmaps (DIBs). The DIB file format was designed to ensure that
bitmapped graphics created using one application can be loaded and displayed in
another application, retaining the same appearance as the original.

¢ Device-dependent bitmaps (DDBs) were the only bitmaps available in early versions
of 16-bit Microsoft Windows (prior to version 3.0). However, as display technology
improved and the variety of available display devices increased, certain inherent
problems surfaced which could only be solved using DIBs. For example, there was no
method of storing (or retrieving) the resolution of the display type on which a bitmap
was created, so a drawing application could not determine quickly whether a bitmap
was suitable for the type of video display device on which the application was running.

Device-Independent Bitmaps

Bitmaps that contain a color table are device-independent. A color table describes how
pixel values correspond to RGB color values. RGB is a model for describing colors that
are produced by emitting light. A DIB contains the following color and dimension
information:

* The color format of the device on which the rectangular image was created.

¢ The resolution of the device on which the rectangular image was created.

* The palette for the device on which the image was created.

e An array of bits that maps red, green, blue (RGB) triplets to pixels in the rectangular
image.

¢ A data-compression identifier that indicates the data compression scheme (if any)
used to reduce the size of the array of bits.

The color and dimension information is stored in a BITMAPINFO structure.

The BITMAPINFO structure consists of a bitmap information header structure (see
Bitmap Header Types) followed by two or more RGBQUAD structures. The bitmap
information header structure specifies the dimensions of the pixel rectangle, describes
the device’s color technology, and identifies the compression schemes used to reduce

54

Volume 3 Microsoft Windows GDI

the bitmap’s size. The RGBQUAD structures identify the colors that appear in the pixel
rectangle.

There are two varieties of DIBs:

¢ A bottom-up DIB, in which the origin lies at the lower-left corner.
¢ A top-down DIB, in which the origin lies at the upper-left corner.

If the height of a DIB, as indicated by the Height member of the bitmap information
header structure, is a positive value, it is a bottom-up DIB; if the height is a negative
value, it is a top-down DIB. Top-down DIBs cannot be compressed.

The color format is specified in terms of a count of color planes and color bits. The count
of color planes is always 1; the count of color bits is 1 for monochrome bitmaps, 4 for
VGA bitmaps, and 8, 16, 24, or 32 for bitmaps on other color devices. An application
retrieves the number of color bits that a particular display (or printer) uses by calling the
GetDeviceCaps function, specifying BITSPIXEL as the second argument.

The resolution of a display device is specified in pixels per meter. An application can
retrieve the horizontal resolution for a video display, or printer, by following this three-
step process:

1. Call the GetDeviceCaps function, specifying HORZRES as the second argument.
2. Call GetDeviceCaps a second time, specifying HORZSIZE as the second argument.
3. Divide the first return value by the second return value.

The application can retrieve the vertical resolution by using the same three-step process
with different parameters: VERTRES in place of HORZRES, and VERTSIZE in place of
HORZSIZE.

The palette is represented by an array of RGBQUAD structures that specify the red,
green, and blue intensity components for each color in a display device’s color palette.
Each color index in the palette array maps to a specific pixel in the rectangular region
associated with the bitmap. The size of this array, in bits, is equivalent to the width of the
rectangle, in pixels, multiplied by the height of the rectangle, in pixels, multiplied by the
count of color bits for the device. An application can retrieve the size of the device’s
palette by calling the GetDeviceCaps function, specifying the NUMCOLORS constant
as the second argument.

The Microsoft Win32 API supports the compression of the palette array for 8-bpp and 4-
bpp bottom-up DIBs. These arrays can be compressed by using the run-length encoding
(RLE) scheme. The RLE scheme uses 2-byte values, the first byte specifying the
number of consecutive pixels that use a color index and the second byte specifying the
index. For more information about bitmap compression, see the description of the
BITMAPINFOHEADER, BITMAPCOREHEADER, BITMAPFILEHEADER,
BITMAPV4HEADER, and BITMAPV5HEADER structures.

Chapter 6 Bitmaps 55

An application can create a DIB from a DDB by initializing the required structures and
calling the GetDIBits function. To determine whether a device supports this function, call
the GetDeviceCaps function, specifying RC_DI_BITMAP as the RASTERCAPS flag.

An application that needs to copy a bitmap can use TransparentBIt to copy all pixels in
a source bitmap to a destination bitmap, except for those pixels that match the
transparent color.

An application can use a DIB to set pixels on the display device by calling the
SetDIBitsToDevice or the StretchDIBits function. To determine whether a device
supports the SetDIBitsToDevice function, call the GetDeviceCaps function, specifying
RC_DIBTODEYV as the RASTERCAPS flag. Specify RC_STRETCHDIB as the
RASTERCAPS flag to determine if the device supports StretchDIBits.

An application that needs to display a pre-existing DIB can use the SetDIBitsToDevice
function. For example, a spreadsheet application can open existing charts and display
them in a window by using the SetDIBitsToDevice function. To repeatedly redraw a
bitmap in a window, however, the application should use the BitBIt function. For
example, a multimedia application that combines animated graphics with sound would
benefit from calling the BitBIt function, because it executes faster than
SetDIBitsToDevice.

Device-Dependent Bitmaps

Note Device-dependent bitmaps are supported only for compatibility with applications
written for early versions of 16-bit Windows (prior to 3.0). If you are writing a
Win32-based application, or porting a 16-bit Windows-based application to the Win32
API, you should use DIBs.

DDBs are described by using a single structure, the BITMAP structure. The members of
this structure specify the width and height of a rectangular region, in pixels; the width of
the array that maps entries from the device palette to pixels; and the device’s color
format, in terms of color planes and bits per pixel. An application can retrieve the color
format of a device by calling the GetDeviceCaps function and specifying the appropriate
constants.

There are two types of DDBs: discardable and nondiscardable. A discardable DDB is a
bitmap that the system discards if the bitmap is not selected into a DC, and if system
memory is low. The CreateDiscardableBitmap function creates discardable bitmaps.
The CreateBitmap, CreateCompatlbIeBltmap, and CreateBitmapindirect functions
create nondiscardable bitmaps.

An application can create a DDB from a DIB by initializing the required structures and
calling the CreateDIBitmap function. Specifying CBM_INIT in the call to CreateDIBitmap
is equivalent to calling the CreateCompatibleBitmap function to create a DDB in the
format of the device, and then calling the SetDIBits function to translate the DIB bits to the
DDB. To determine whether a device supports the SetDIBits function, call the
GetDeviceCaps function, specifying RC_DI_BITMAP as the RASTERCAPS flag.

56

Volume 3 Microsoft Windows GDI

Bitmap Header Types

The bitmap has four basic header types:

BITMAPCOREHEADER
BITMAPINFOHEADER
BITMAPV4HEADER
BITMAPV5HEADER

[]

The four types of bitmap headers are differentiated by the Size member, which is the
first DWORD in each of the structures.

The BITMAPV5HEADER structure is an extended BITMAPV4HEADER structure, which
is an extended BITMAPINFOHEADER structure. However, the BITMAPINFOHEADER
and BITMAPCOREHEADER have only the Size member in common with other bitmap
header structures.

The BITMAPCOREHEADER and BITMAPV4HEADER formats have been superseded
by BITMAPINFOHEADER and BITMAPV5HEADER formats, respectively. The
BITMAPCOREHEADER and BITMAPV4HEADER formats are presented for
completeness and backward compatibility.

The BITMAPFILEHEADER structure contains information about the type, size, and
layout of a file that contains a DIB. A BITMAPINFO or BITMAPCOREINFO structure
immediately follows the BITMAPFILEHEADER structure in the DIB file.

There are two formats for reading and storing bitmap data in a file, the file format and the
Win32 API format. The file format and the format used by Win32 API are similar, but not
identical. Figure 6-2 shows the two types of formats. All segments are used for the file
format, while the Win32 API format excludes BITMAPFILEHEADER.

A color table describes how pixel values correspond to RGB color values. RGB is a
model for describing colors that are produced by emitting light.

Profile data refers to either the profile file name (linked profile) or the actual profile bits
(embedded profile). The file format places the profile data at the end of the file. The
Win32 API format usually places the profile data just after the color table (if present).
However, if the function receives a packed DIB, the profile data comes after the bitmap
bits, like in the file format.

Profile data will exist only for BITMAPV5SHEADER structures where bV5CSType is
PROFILE_LINKED or PROFILE_EMBEDDED. For Win32 functions that receive packed
DIBs, the profile data comes after the bitmap data.

Chapter 6 Bitmaps 57

BITMAPFILEHEADER

BITMAPINFO

Bitrnap Information Header
can beoneof the following:
BITMAPCOREHEADER, BITMARPINFOHEADER,
BITMAPVAHEADER or BITMARPYVAHEADER

Color table
(optional)

Bitmap Data

Figure 6-2: An example of the file format and the Win32 API format.

A palettized device is any device that uses palettes to assign colors. The classic
example of a palettized device is a display running in 8-bit color depth (that is, 256
colors). The display in this mode uses a small color table to assign colors to a bitmap.
The colors in a bitmap are assigned to the closest color in the palette that the device is
using. The palettized device does not create an optimal palette for displaying the bitmap;
it uses whatever is in the current palette. Applications are responsible for creating a
palette and selecting it into the system. In general, 16-bpp, 24-bpp, and 32-bpp bitmaps
do not contain color tables (a.k.a. optimal palettes for the bitmap); the application is
responsible for generating an optimal palette in this case. However, 16-bpp, 24-bpp, and
32-bpp bitmaps can contain such optimal color tables for displaying on palettized
devices; in this case, the application just needs to create a palette based on the color
table present in the bitmap file.

Bitmaps that are of 1, 4, or 8 bpp must have a color table with a maximum size based on
the bpp. The maximum size for 1-bpp, 4-bpp, and 8-bpp bitmaps is 2 to the power of the
bpp. Thus, a 1-bpp bitmap has a maximum of two colors, the 4-bpp bitmap has a
maximum of 16 colors, and the 8-bpp bitmap has a maximum of 256 colors.

58

Volume 3 Microsoft Windows GDI

Bitmaps that are 16 bpp, 24 bpp, or 32 bpp do not require color tables, but can have
them to specify colors for palettized devices. If a color table is present for 16-bpp, 24-
bpp, or 32-bpp bitmap, the ClrUsed field will specify the size of the color table, and the
color table must have that many colors in it. ClrUsed of zero indicates no color table.

The red, green, and blue bit field masks for BI_BITFIELD bitmaps immediately follow the
BITMAPINFOHEADER, BITMAPV4HEADER, and BITMAPV5HEADER structures. The
BITMAPV4HEADER and BITMAPV5HEADER structures contain additional members
for red, green, and blue masks, as follows:

Member Meaning
RedMask Color mask that specifies the red component of each pixel, valid
) only if the Compression member is set to BI_BITFIELDS.
GreenMask Color mask that specifies the green component of each pixel, valid
only if the Compression member is set to BI_BITFIELDS.
BlueMask Color mask that specifies the blue component of each pixel, valid

only if the Compression member is set to BI_BITFIELDS.

When the biCompression member of BITMAPINFOHEADER is set to BI_BITFIELDS
and the function receives an argument of type LPBITMAPINFO, the color masks will
immediately follow the header. The color table, if present, will follow the color masks.
BITMAPCOREHEADER bitmaps do not support color masks.

By default, bitmap data is bottom-up in its format. Bottom-up means that the first scan
line in the bitmap data is the last scan line to be displayed. For example, the o pixel of
the 0™ scan line of the bitmap data of a 10-pixel-by-10-pixel bitmap will be the 0" pixel of
the ninth scan line of the displayed or printed image. Run-length encoded (RLE) format
bitmaps and BITMAPCOREHEADER bitmaps can not be top-down bitmaps. The scan
lines are DWORD-aligned, except for RLE-compressed bitmaps. They must be padded
for scan-line widths, in bytes, that are not evenly divisible by four, except for RLE
compressed bitmaps. For example, a 10-pixel-by-10-pixel, 24-bpp bitmap will have two
padding bytes at the end of each scan line.

JPEG and PNG Extensions for Specific Bitmap
Functions and Structures

Starting with the Microsoft Windows 98 and Windows 2000 operating systems, the
StretchDIBits and SetDIBitsToDevice functions have been extended to allow JPEG
and PNG images to be passed as the source image to printer devices. This extension is
not intended as a means to supply general JPEG and PNG decompression to
applications, but, instead, to allow applications to send JPEG-compressed and PNG-
compressed images directly to printers that have hardware support for JPEG and PNG
images, respectively. “

Chapter 6 Bitmaps 59

The BITMAPINFOHEADER, BITMAPV4HEADER, and BITMAPV5HEADER structures
are extended to allow specification of biCompression values indicating that the bitmap
data is a JPEG or PNG image. These compression values are only valid for
SetDIBitsToDevice and StretchDIBits when the hdc parameter specifies a printer
device. To support metafile spooling of the printer, the application should not rely on the
return value to determine whether the device supports the JPEG or PNG file. The
application must issue QUERYESCSUPPORT with the corresponding escape before
calling SetDIBitsToDevice and StretchDIBits. If the validation escape fails, then the
application must fall back on its own JPEG or PNG support to decompress the image
into a bitmap.

Bitmaps, Device Contexts, and Drawing Surfaces

A device context (DC) is a data structure defining the graphics objects, their associated
attributes, and the graphics modes affecting output on a device. To create a DC, call the
CreateDC function; to retrieve a DC, call the GetDC function.

Before returning a handle that identifies that DC, the system selects a drawing surface
into the DC. If the application called the CreateDC function to create a device context for
a VGA display, the dimensions of this drawing surface are 640 pixels by 480 pixels. If the
application called the GetDC function, the dimensions reflect the size of the client area.

Before an application can begin drawing, it must select a bitmap with the appropriate
width and height into the DC by calling the SelectObject function. When an application
passes the handle to the DC to one of the graphics device interface (GDI) drawing
functions, the requested output appears on the drawing surface selected into the DC.

For more information, see Memory Device Contexts.

Bitmap Creation

The Win32 API provides a number of functions to create bitmaps. To create a bitmap,
use the CreateBitmap, CreateBitmapindirect, or CreateCompatibleBitmap function,
CreateDIBitmap, and CreateDiscardableBitmap.

These functions all you to specify the width and height, in pixels, of the bitmap. The
CreateBitmap and CreateBitmaplindirect function also allow you to specify the number
of color planes and the number of bits required to identify the color. On the other hand,
the CreateCompatibleBitmap and CreateDiscardableBitmap functions use a specified
device context to obtain the number of color planes and the number of bits required to
identify the color.

The CreateDIBitmap function creates a device-independent bitmap. It contains a color
table that describes how pixel values correspond to RGB color values. For more
information, see Device-Independent Bitmaps.

After the bitmap has been created, you cannot change its size, number of color planes,
or number of bits required to identify the color.

When you no longer need a bitmap, call the DeleteObject function to delete it.

60

Volume 3 Microsoft Windows GDI

Bitmap Rotation

The Win32 API provides a function to copy a bitmap into a parallelogram; this function,
PlgBIt, performs a bit-block transfer from a rectangle in a source device context into a
parallelogram in a destination device context. In order to rotate the bitmap, an
application must provide the coordinates, in world units, to be used for the corners of the
parallelogram. (For more information about rotation and world units, see Coordinate
Spaces and Transformations.)

Bitmap Scaling

The Win32 API also provides a function to scale a bitmap; this function, StretchBlt,
performs a bit-block transfer from a rectangle in a source device context into a rectangle
in a destination device context. However, unlike the BitBIt function, which duplicates the
source rectangle dimensions in the destination rectangle, StretchBit allows an
application to specify the dimensions of both the source and destination rectangles.
When the destination bitmap is smaller than the source bitmap, the system combines
rows or columns of color data (or both) in the bitmap before rendering the corresponding
image on the display device. The system combines the color data according to the
specified stretch mode, which the application defines by calling the SetStretchBltMode
function. When the destination bitmap is larger than the source bitmap, the system
scales or magnifies each pixel in the resultant image accordingly.

Bitmaps as Brushes

The Win32 API provides a number of functions that use the brush currently selected into
a device context to perform bitmap operations. For example, the PatBit function
replicates the brush in a rectangular region within a window, and the FloodFill function
replicates the brush inside an area in a window bounded by the specified color (unlike
PatBIt, FloodFill does fill nonrectangular shapes).

The FloodFill function replicates the brush within a region bounded by a specified color.
However, unlike the PatBIt function, FloodFill does not combine the color data for the
brush with the color data for the pixels on the display; it sets the color of all pixels within
the enclosed region on the display to the color of the brush that is currently selected into
the device context.

Chapter 6 Bitmaps 61

Bitmap Storage

Bitmaps should be saved in a file that uses the established bitmap file format, and
assigned a name with the three-character .omp extension. The established bitmap file
format consists of a BITMAPFILEHEADER structure, followed by either a
BITMAPINFOHEADER, BITMAPV4HEADER, or BITMAPV5HEADER structure. An array
of RGBQUAD structures (also called a color table) follows the bitmap information header
structure. The color table is followed by a second array of indexes into the color table (the
actual bitmap data).

The bitmap file format is shown here:

BITMAPFILEHEADER
BITMAPINFOHEADER
RGBQUAD array

Color-index array

Windows 95 and Windows NT 4.0: Replace the BITMAPINFOHEADER structure with
the BITMAPV4HEADER structure.

Windows 98 and Windows 2000: Replace the BITMAPINFOHEADER structure with
the BITMAPVS5HEADER structure.

The members of the BITMAPFILEHEADER structure identify the file; specify the size of
the file, in bytes; and specify the offset, from the first byte in the header to the first byte of
bitmap data. The members of the BITMAPINFOHEADER, BITMAPV4HEADER, or
BITMAPVSHEADER structure specify the width and height of the bitmap, in pixels; the
color format (count of color planes and color bits-per-pixel) of the display device on
which the bitmap was created; whether the bitmap data was compressed before storage,
and the type of compression used; the number of bytes of bitmap data; the resolution of
the display device on which the bitmap was created;

and the number of colors represented in the data. The RGBQUAD structures specify the
RGB intensity values for each of the colors in the device’s palette. The color-index array
maps indexes values from the RGBQUAD array to pixels in a rectangular region on the
display.

The following hexadecimal output shows the contents of the file Redbrick.bmp:

0000 ¢]§4214§?76 02 00 ﬁegeg,ea',ee 00 7600 00 00 28;@? B
g@1g;,::ga gg?za{gg~pgee&dzefa9,.e@ 00 01 00 04 00 00 00 -
a8,) 80 00 00 00 00 00 ea 00 0000

egge BAEN SR

8030 ¢ 10000 60 00 00 00 00 80'00 00 8O . . .
0040 . 0 100780 00 00 00 8600 80 00 80 80 .

0050 " 90 0 co o0 0@ 00 00 £f 00 00 Ff

0060 0000 ¢ 0 ff 00 00 00 ff 00 ff 00 ff ff

0070 . 00 00 0000 00 00 00 00 00 00 aa‘ae‘*j;

(continued)

62

Volume 3 Microsoft Windows GDI

(continued)

0080 -~ 60 00 00, 08 00
0090 . . 00.00 00 00 00

000 - @1 09 11 1101
00b0 1 @9 1119 10 90.

00c0 - 91°10 91 0910
0@de . 91 01 01 19 00
00ed - 01 11-11-11 91
eefo 11 99 10 @1 11
0100 @1 1111 11 19

o1l - 11-19.00 ol 1@

@120 © 11 91 11 91 01

0136 10 91 11 01 11

0140 0199 19 61 91

@150 ' 11 10 11 91 99
0169 . 80 19 10 11 01

0170 99 9999 99 99
0180 00 02 00 00 00
0190° 00 00 80 00 00
9130 . 10 9@ 91 9@ .91
01b@. 91 11-11-11 18
elco ~ 9@ 11 1111 91
0140 - 19 09 91 11 61
@le0- 01 1@ 11 19 11

91fo . 91 01 11 @1 91

8200 © 99 11 10 90 91

9216 1@ 00 99 ol o1

9220 06 91 00 18 90

0236 91 90 11 09 11

0240 - 91 @1 01 1909
0250 01.19 11 11 91
0260 . 11 11 18- 01 11
9270 . 99199 99 99-99

o
00

90

11
10
99
10

11
16

19

11

1

1e
19

11
99:
(1’3

00

o0
00"
00

2o
00

b

20

00

20

00

00
99

00
11
11
19
99

u
29

91
11
10

19
91
19

9
99
20

99"
11
91

99

91
99
99

%
00
009
91
99
‘99
91"

99
91

91

99

11
@l
01

99

10
19
11:
49

11

16
91';
91"

11
99

00

80

19

11
0y
1¢
19

11

i

21

99

10

19
99

101191101 16 106909
©19 09 09 91 11 16.09 11
19 19 10 1@ 11

11 91.99°11°09 9

11 19716 11 99 10 89 1@
0910 19 10 1010
'11-01 99 01 11
99 90 81 19 09

91 09 11 9911 10 09 91

01 1111 19 11 9
199 99 99 99 99
0000 00 00 00 00
90 00 00 00 00 0!

19 09011009
1 19 10 11 10
'19.18 11 90 8991

00 18 11 0110 19
19 91 19 91 11 6¢
1116 09 10 10"

00 00 0000 00 00

1111 1111 19 0069 01

0100 119891 10

91 19 1’1,:06 99%\ e

1111191819 1911 09

1911 60 1111 00 10 11"
1091 01 98 1999 @
99 01 10 11 91 o1

111171196 19 011

©11.91.95°09 09 90
01 0011 00 91

99.99 9999 99-99 9¢

The following table shows the data bytes associated with the structures in a bitmap file:

Structure

Corresponding bytes

BITMAPFILEHEADER
BITMAPINFOHEADER
RGBQUAD array
Color-index array

0x00 — 0x0D
0x0E — 0x31
0x32 — 0x75
0x76 — 0x275

Chapter 6 Bitmaps 63

Bitmap Compression

The Win32 AP supports formats for compressing bitmaps that define their colors with
8 bpp or 4 bpp. Compression reduces the disk and memory storage required for the
bitmap.

Compression forms part of the following member names in the bitmap information
header structures for different platforms. In the discussion that follows, compression is
used to mean all of these variants:

Operating system Compression

Windows NT 3.51 and earlier biCompression
Windows NT 4.0 and Windows 95 bV4Compression
Windows 2000 and Windows 98 bV5Compression

When the Compression member of the bitmap information header structure is BI_RLES,
a run-length encoding (RLE) format is used to compress an 8-bit bitmap. This format can
be compressed in encoded or absolute mode. Both modes can occur anywhere in the
same bitmap:

¢ Encoded mode consists of two bytes: the first byte specifies the number of
consecutive pixels to be drawn using the color index contained in the second byte. In
addition, the first byte of the pair can be set to zero to indicate an escape character
that denotes the end of a line, the end of a bitmap, or a delta, depending on the value
of the second byte. The interpretation of the escape depends on the value of the
second byte of the pair, which can be one of the following values:

Value Meaning

0] End of line.

1 End of bitmap.

2 Delta. The 2 bytes following the escape contain unsigned

values indicating the horizontal and vertical offsets of the next
pixel from the current position.

¢ |n absolute mode, the first byte is zero and the second byte is a value in the range
03H through FFH. The second byte represents the number of bytes that follow, each
of which contains the color index of a single pixel. When the second byte is two or
less, the escape has the same meaning as encoded mode. In absolute mode, each
run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bltmap

0304 05 06 00 03 45 56 67 00 02 7860 az 05 01
02 78 00 00 09 1E 00 81 ‘

The bitmap expands as follows (two-digit values represent a color index for a single
pixel):

64

Volume 3 Microsoft Windows GDI

04 7§ 00 00 09 1t 00 "ol

When the Compression member is BI_RLE4, the bitmap is compressed by using a run-
length encoding format for a 4-bit bitmap, which also uses encoded and absolute modes:

¢ |n encoded mode, the first byte of the pair contains the number of pixels to be drawn
using the color indexes in the second byte. The second byte contains two color
indexes, one in its high-order 4 bits and one in its low-order 4 bits. The first of the
pixels is drawn using the color specified by the high-order 4 bits, the second is drawn
using the color in the low-order 4 bits, the third is drawn using the color in the high-
order 4 bits, and so on, until all the pixels specified by the first byte have been drawn.

¢ In absolute mode, the first byte is zero. The second byte contains the number of color
indexes that follow. Subsequent bytes contain color indexes in their high-order and
low-order 4 bits, one color index for each pixel. In absolute mode, each run must be
aligned on a word boundary. The end-of-line, end-of-bitmap, and delta escapes
described for BI_RLES also apply to BI_RLE4 compression.

The following example shows the hexadecimal values of a 4-bit compressed bitmap:
83" 94 57 36 60 06°45 56 67 98 @4 78 8’8 62 @5’ 01

The bitmap expands as follows (single-digit values represent a color index for a single
pixel):

end’ of RLE bitmap

Alpha Blending

Alpha blending is used to display an alpha bitmap, which is a bitmap that has
transparent or semitransparent pixels. In addition to a red, green, and blue color
channel, each pixel in an alpha bitmap has a transparency component known as its

Chapter 6 Bitmaps 65

alpha channel. The alpha channel typically contains as many bits as a color channel. For
example, an 8-bit alpha channel can represent 256 levels of transparency, from 0 (the
entire bitmap is transparent) to 255 (the entire bitmap is opaque).

Alpha blending mechanisms are invoked by calling AlphaBlend, which references the
BLENDFUNCTION structure.

Alpha Values per Pixel
Alpha values per pixel are only supported for 32-bpp BI_RGB. This formula is defined
as: -

This is represented in memory, as shown in the following table:
31:24 23:16 15:08 07:00
Alpha Red Green Blue

Global Alpha Blending Settings

Bitmaps can also be displayed with a transparency factor applied to the entire bitmap.
Any bitmap format can be displayed with a global constant alpha value by setting
SourceConstantAlpha in the BLENDFUNCTION structure. The global constant alpha
value has 256 levels of transparency, from 0 (entire bitmap is completely transparent) to
255 (entire bitmap is completely opaque). The global constant alpha value is combined
with the per-pixel alpha value.

Smooth Shading

Smooth shading is a method of shading a region with a color gradient. Including color
information, along with the bounds of drawing primitive, specifies the color gradient. GDI
linearly interpolates the color of the inside of the primitive passed on the color endpoints.
Color and vertex information is included with position information in the TRIVERTEX
structure.

Use the GradientFill function to fill a triangle or rectangle structure. To fill a triangle with
smooth shading, call GradientFill with the three triangle endpoints. To fill a rectangle
with smooth shading, call GradientFill with the upper-left and lower-right rectangle
coordinates. GradientFill references the TRIVERTEX, GRADIENT_RECT, and
GRADIENT_TRIANGLE structures.

For an example, see Drawing a Shaded Triangle.

66 Volume 3 Microsoft Windows GDI

ICM-Enabled Bitmap Functions

Windows 98 and Windows 2000 have been designed to work with Microsoft Image Color
Management (ICM). ICM technology ensures that a color image, graphic object, or text
object is rendered as closely as possible to its original intent on any device, despite
differences in imaging technologies and color capabilities between devices. Whether you
are scanning an image or other graphic on a color scanner, downloading it over the
Internet, viewing or editing it onscreen, or printing it on paper, film, or other media,

ICM 2.0 helps you keep colors consistent and accurate. For more information on ICM,
see About Image Color-Management Version 2.0.

There are various functions in the GDI that use or operate on color data. The following
bitmap functions are enabled for use with ICM:

¢ BitBIt e SetDIBits

e CreateDIBitmap o SetDIBitsToDevice
¢ CreateDIBSection ¢ StretchBit

o MaskBIt e StretchDIBits

e SetDIBColorTable

Bitmap Reference

Bitmap Functions

AlphaBlend

The AlphaBlend function displays bitmaps that have transparent or semitransparent
pixels.

80051. Mphas’!end(
'HDC hdcDest, e
nmr‘igi;jﬂgst,.f .

t nYOriginDest,
nt.nWidthDest, - -
"nﬂezgntﬁésf ¥
‘ thSI‘C. vt
int nXOrigfnSre.n,
'nYOrig:nSrc

;'handTeJt{}’ destination DG
X caord of upper Zeft_ce?ner &
, ?,1/ .destxmt&m wmth

/) destination height'
; 1hand1e 10 saurce D

hhgbarce w1dtﬁ ;
~5sawrce height

Chapter 6 Bitmaps 67

Parameter
hdcDest
[in] Handle to the destination device context.
nXOriginDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.
nYOriginDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.
nWidthDest
[in] Specifies the width, in logical units, of the destination rectangle.
nHeightDest
[in] Specifies the height, in logical units, of the destination rectangle.
hdcSrc
[in] Handle to the source device context.
nXOriginSrc
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the source
rectangle.
nYOriginSrc
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nWidthSre

[in] Specifies the width, in logical units, of the source rectangle.
nHeightSrc

[in] Specifies the height, in logical units, of the source rectangle.
blendFunction

[in] Specifies the alpha-blending function for source and destination bitmaps, a global
alpha value to be applied to the entire source bitmap, and format information for the
source bitmap. The source and destination blend functions are currently limited to
AC_SRC_OVER. See the BLENDFUNCTION and EMRALPHABLEND structures.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

If the source rectangle and destination rectangle are not the same size, the source
bitmap is stretched to match the destination rectangle. If the SetStretchBitMode
function is used, the iStretchMode value is automatically converted to
COLORONCOLOR for this function (that is, BLACKONWHITE, WHITEONBLACK, and
HALFTONE are changed to COLORONCOLOR).

68

Volume 3 Microsoft Windows GDI

The destination coordinates are transformed by using the transformation currently
specified for the destination device context. The source coordinates are transformed by
using the transformation currently specified for the source device context.

An error occurs (and the function returns FALSE) if the source device context identifies
an enhanced metafile device context.

If destination and source bitmaps do not have the same color format, AlphaBlend
converts the source bitmap to match the destination bitmap.

AlphaBlend does not support mirroring. If either the width or height of the source or
destination is negative, this call will fail.

If the source and destination are the same surface—that is, they are both the screen or
the same memory bitmap—and the source and destination rectangles overlap, an error
occurs and the function returns FALSE.

The source rectangle must lie completely within the source surface; otherwise, an error
occurs and the function returns FALSE.

AlphaBlend fails if the width or height of the source or destination is negative.

Note The SourceConstantaAlpha member of BLENDFUNCTION specifies an alpha
transparency value to be used on the entire source bitmap. The SourceConstantAlpha
value is combined with any per-pixel alpha values. If SourceConstantAlpha is 0, it is
assumed that the image is transparent. Set the SourceConstantAlpha value to 255
(which indicates that the image is opaque) when you want to use only per-pixel alpha
values.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in msimg32.dil.

Bitmaps Overview, Bitmap Functions

Chapter 6 Bitmaps 69

BitBlt

The BitBIt function performs a bit-block transfer of the color data corresponding to a
rectangle of pixels from the specified source device context into a destination device
context.

Parameters

hdcDest
[in] Handle to the destination device context.

nXDest
[in] Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

nYDest
[in] Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

nWidth
[in] Specifies the logical width of the source and destination rectangles.

nHeight
[in] Specifies the logical height of the source and the destination rectangles.

hdcSrc
[in] Handle to the source device context.

nXSrc
[in] Specifies the logical x-coordinate of the upper-left corner of the source rectangle.

nYSrc
[in] Specifies the logical y-coordinate of the upper-left corner of the source rectangle.

dwRop
[in] Specifies a raster-operation code. These codes define how the color data for the
source rectangle is to be combined with the color data for the destination rectangle to
achieve the final color.

Volume 3 Microsoft Windows GDI

The following list shows some common raster operation codes:

Value Description

BLACKNESS Fills the destination rectangle using the color associated with
index 0 in the physical palette. (This color is black for the default
physical palette.)

CAPTUREBLT Windows 98, Windows 2000: Includes any windows that are
layered on top of your window in the resulting image. By default,
the image contains only your window.

DSTINVERT Inverts the destination rectangle.

MERGECOPY Merges the colors of the source rectangle with the specified
pattern by using the Boolean AND operator.

MERGEPAINT Merges the colors of the inverted source rectangle with the

NOMIRRORBITMAP
NOTSRCCOPY
NOTSRCERASE
PATCOPY

PATINVERT

PATPAINT

SRCAND
SRCCOPY

SRCERASE

SRCINVERT
SRCPAINT

WHITENESS

colors of the destination rectangle by using the Boolean OR
operator.

Windows 98, Windows 2000: Prevents the bitmap from being
mirrored.

Copies the inverted source rectangle to the destination.

Combines the colors of the source and destination rectangles
by using the Boolean OR operator, and then inverts the
resultant color.

Copies the specified pattern into the destination bitmap.

Combines the colors of the specified pattern with the colors of
the destination rectangle by using the Boolean XOR operator.

Combines the colors of the pattern with the colors of the
inverted source rectangle by using the Boolean OR operator.
The result of this operation is combined with the colors of the
destination rectangle by using the Boolean OR operator.

Combines the colors of the source and destination rectangles
by using the Boolean AND operator.

Copies the source rectangle directly to the destination
rectangle.

Combines the inverted colors of the destination rectangle with
the colors of the source rectangle by using the Boolean AND
operator.

Combines the colors of the source and destination rectangles
by using the Boolean XOR operator.

Combines the colors of the source and destination rectangles
by using the Boolean OR operator.

Fills the destination rectangle using the color associated with
index 1 in the physical palette. (This color is white for the default
physical palette.)

Chapter 6 Bitmaps "

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks

If a rotation or shear transformation is in effect in the source device context, BitBIt
returns an error. If other transformations exist in the source device context (and a
matching transformation is not in effect in the destination device context), the rectangle
in the destination device context is stretched, compressed, or rotated, as necessary.

If the color formats of the source and destination device contexts do not match, the
BitBIt function converts the source color format to match the destination format.

When an enhanced metafile is being recorded, an error occurs if the source device
context identifies an enhanced-metafile device context.

Not all devices support the BitBIt function. For more information, see the RC_BITBLT
raster capability entry in the GetDeviceCaps function, as well as the following functions:
MaskBIt, PlgBIt, and StretchBIt.

BitBIt returns an error if the source and destination device contexts represent different
devices.

ICM: No color management is performed when blits occur.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions

CreateBitmap

The CreateBitmap function creates a bitmap with the specified width, height, and color
format (color planes and bits-per-pixel).

72 Volume 3 Microsoft Windows GDI

Parameters

nWidth
[in] Specifies the bitmap width, in pixels.
nHeight
[in] Specifies the bitmap height, in pixels.
cPlanes
[in] Specifies the number of color planes used by the device.

cBitsPerPel
[in] Specifies the number of bits required to identify the color of a single pixel.
IpvBits
[in] Pointer to an array of color data used to set the colors in a rectangle of pixels.
Each scan line in the rectangle must be word aligned (scan lines that are not word
aligned must be padded with zeros). If this parameter is NULL, the new bitmap is
undefined.

Return Values
If the function succeeds, the return value is a handle to a bitmap.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

After a bitmap is created, it can be selected into a device context by calling the
SelectObject function.

While the CreateBitmap function can be used to create color bitmaps. For performance
reasons applications should use CreateBitmap to create monochrome bitmaps and
CreateCompatibleBitmap to create color bitmaps. When a color bitmap returned from
CreateBitmap is selected into a device context, the system must ensure that the bitmap
matches the format of the device context into which it is being selected. Since
CreateCompatibleBitmap takes a device context, it returns a bitmap that has the same
format as the specified device context. Because of this, subsequent calls to
SelectObiject are faster than with a color bitmap returned from CreateBitmap.

If the bitmap is monochrome, zeros represent the foreground color, and ones represent
the background color for the destination device context.

Chapter 6 Bitmaps 73

If an application sets the nWidth or nHeight parameter to zero, CreateBitmap returns
the handle to a 1-pixel-by-1-pixel, monochrome bitmap.

When you no longer need the bitmap, call the DeleteObject function to delete it.
Windows 95/98: The created bitmap cannot exceed 16 MB in size.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, CreateBitmapindirect,
CreateCompatibleBitmap, CreateDIBitmap, DeleteObject, GetBitmapBits,
SelectObject, SetBitmapBits

CreateBitmaplindirect

The CreateBitmaplndirect function creates a bitmap with the specified width, height,
and color format (color planes and bits-per-pixel).

Parameters

Ipbm
[in] Pointer to a BITMAP structure that contains information about the bitmap. If an
application sets the bmWidth or bmHeight members to zero, CreateBitmapindirect
returns the handle to a 1-pixel-by-1-pixel, monochrome bitmap.

Return Values
If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetlLastError.
Remarks

After a bitmap is created, it can be selected into a device context by calling the
SelectObject function.

74

Volume 3 Microsoft Windows GDI

While the CreateBitmaplndirect function can be used to create color bitmaps, for
performance reasons applications should use CreateBitmaplindirect to create
monochrome bitmaps and CreateCompatibleBitmap to create color bitmaps. When a
color bitmap returned from CreateBitmaplindirect is selected into a device context, the
system must ensure that the bitmap matches the format of the device context into which
it is being selected. Since CreateCompatibleBitmap takes a device context, it returns a
bitmap that has the same format as the specified device context. Because of this,
subsequent calls to SelectObject are faster than W|th a color bitmap returned from
CreateBitmaplindirect.

If the bitmap is monochrome, zeros represent the foreground color, and ones represent
the background color for the destination device context.

When you no longer need the bitmap, call the DeleteObject function to delete it.
Windows 95/98: The created bitmap cannot exceed 16 MB in size.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bltmap Functions, BitBIt, BITMAP, CreateBitmap,
CreateCompatibleBitmap, CreateDIBitmap, DeleteObject, SelectObject

CreateCompatibleBitmap

The CreateCompatibleBitmap function creates a bitmap that is compatible with the
device that is associated with the specmed device context.

HBITW Créate(:omp 'tt&‘lesf tmapg

1nt rnﬁs;ghr ey / height f bitmap, in, pixel L

)
Parameters

hdc
[in] Handle to a device context.

Chapter 6 Bitmaps 75

nWidth
[in] Specifies the bitmap width, in pixels.

nHeight
[in] Specifies the bitmap height, in pixels.

Return Values
If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The color format of the bitmap created by the CreateCompatibleBitmap function
matches the color format of the device identified by the hdc parameter. This bitmap can
be selected into any memory device context that is compatible with the original device.

Because memory device contexts allow both color and monochrome bitmaps, the format
of the bitmap returned by the CreateCompatibleBitmap function differs when the
specified device context is a memory device context. However, a compatible bitmap that
was created for a nonmemory device context always possesses the same color format
and uses the same color palette as the specified device context.

Note When a memory device context is created, it initially has a 1-pixel-by-1-pixel,
monochrome bitmap selected into it. If this memory device context is used in
CreateCompatibleBitmap, the bitmap that is created is a monochrome bitmap.

To create a color bitmap, use the hDC that was used to create the memory device
context, as shown in the following code:

Cr"eata(:ompatib‘ret)c { hDC)~
.Createﬂampahme&]may (hDC) ;',:,.:;;,,_
Seiectl}béect ¢ memDC., HemBM 3 S T e

If an application sets the nWidth or nHeight parameters to zero,
CreateCompatibleBitmap returns the handle to a 1-pixel-by-1-pixel, monochrome
bitmap.

If a DIB section, which is a bitmap created by the CreateDIBSection function, is
selected into the device context identified by the hdc parameter,
CreateCompatibleBitmap creates a DIB section.

When you no longer need the bitmap, call the DeleteObject function to delete it.
Windows 95/98: The created bitmap cannot exceed 16 MB in size.

76

Volume 3 Microsoft Windows GDI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitméps Ovéfviéw, Bitmap Functions, CreateDIBSection, DeleteObject, SelectObject

CreateDIBitmap

The CreateDIBitmap function creates a DDB from a DIB and, optionally, sets the bitmap
bits.

Parameters

hdc
[in] Handle to a device context.

Ipbmih
[in] Pointer to a bitmap information header structure, which may be one of those
shown in the following table:

Operating system Bitmap information header
Windows NT 3.51 and earlier = - BITMAPINFOHEADER
Windows NT 4.0 and Windows 95 BIiTMAPV4HEADER
Windows 2000 and Windows 98 BITMAPV5HEADER

If fdwinitis CBM_INIT, the function uses the bitmap information header structure to .
obtain the desired width and height of the bitmap, as well as other information. Note

- that a positive value for the height indicates a bottom-up DIB while a negative value
for the height indicates a top-down DIB. Calling CreateDIBitmap with fdwinit as
CBM_INIT is equivalent to calling the CreateCompatibleBitmap function to create a
DDB in the format of the device, and then calling the SetDIBits function to translate
the DIB bits to the DDB.

Chapter 6 Bitmaps 77

fawinit
[in] Specifies how the system initializes the bitmap bits. The following value is defined:

Value Meaning

CBM_INIT If this flag is set, the system uses the data pointed to by the
Ipbinit and [pbmi parameters to initialize the bitmap’s bits.
If this flag is clear, the data pointed to by those parameters
is not used.

If fdwinitis zero, the system does not initialize the bitmap’s bits.

Ipbinit
[in] Pointer to an array of bytes containing the initial bitmap data. The format of the
data depends on the biBitCount member of the BITMAPINFO structure to which the
[pbmi parameter points.

Ipbmi
[in] Pointer to a BITMAPINFO structure that describes the dimensions and color
format of the array pointed to by the Ipbinit parameter.

fuUsage
[in] Specifies whether the bmiColors member of the BITMAPINFO structure was
initialized and, if so, whether bmiColors contains explicit red, green, blue (RGB)
values or palette indexes. The fuUsage parameter must be one of the following
values:

Value Meaning

DIB_PAL_COLORS A color table is provided and consists of an array of 16-bit
indexes into the logical palette of the device context into
which the bitmap is to be selected.

DIB_RGB_COLORS A color table is provided and contains literal RGB values.

Return Values
If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks

For a device to reach optimal bitmap-drawing speed, specify fdwinit as CBM_INIT. Then,
use the same color depth DIB as the video mode. When the video is running 4 bpp or 8
bpp, use DIB__ PAL_COLORS.

The CBM_CREATDIB flag for the fdwinit parameter is no longer supported.
When you no longer need the bitmap, call the DeleteObject function to delete it.

78

Volume 3 Microsoft Windows GDI

ICM: The fuUsage parameter specifies whether or not the bmiColors member of
BITMAPINFO pointed at by the Jpbmi parameter contains color information. If
bmiColors does not contain color information, no color management is performed for
the bitmap. The bmiHeader member of BITMAPINFO must contain either
BITMAPV4HEADER or BITMAPV5HEADER for color management to be enabled. The
contents of the resulting bitmap are not color matched after the bitmap has been
created.

Windows 95/98: The created bitmap cannot exceed 16 MB in size.

%

indows NT/2000: Reqﬁires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BITMAPINFO, BITMAPINFOHEADER,
CreateCompatibleBitmap, DeleteObject, GetDeviceCaps, GetSystemPaletteEntries,
SelectObject, SetDIBits

CreateDIBSection

The CreateDIBSection function creates a DIB to which applications can write directly.
The function gives you a pointer to the location of the bitmap’s bit values. You can
supply a handle to a file-mapping object that the function will use to create the bitmap, or
you can let the system allocate the memory for the bitmap.

Parameters

hdc
[in] Handle to a device context. If the value of iUsage is DIB_PAL_COLORS, the
function uses this device context’s logical palette to initialize the DIB’s colors.

Chapter 6 Bitmaps 79

pbmi
[in] Pointer to a BITMAPINFO structure that specifies various attributes of the DIB,
including the bitmap’s dimensions and colors.

iUsage
[in] Specifies the type of data contained in the bmiColors array member of the
BITMAPINFO structure pointed to by pbmi (either logical palette indexes or literal
RGB values). The following values are defined:

Value Meaning

DIB_PAL_COLORS The bmiColors member is an array of 16-bit indexes into
the logical palette of the device context specified by hdc.

DIB_RGB_COLORS The BITMAPINFO structure contains an array of literal

RGB values.
ppvBits
[out] Pointer to a variable that receives a pointer to the location of the DIB’s bit values.
hSection

[in] Handle to a file-mapping object that the function will use to create the DIB. This
parameter can be NULL.

If hSection is not NULL, it must be a handle to a file-mapping object created by calling
the CreateFileMapping function with the PAGE_READWRITE or
PAGE_WRITECOPY flag. Read-only DIB sections are not supported. Handles
created by other means will cause CreateDIBSection to fail.

If hSection is not NULL, the CreateDIBSection function locates the bitmap’s bit
values at offset dwOffset in the file-mapping object referred to by hSection. An
application can later retrieve the hSection handle by calling the GetObject function
with the HBITMAP returned by CreateDIBSection.

If hSection is NULL, the system allocates memory for the DIB. In this case, the
CreateDIBSection function ignores the dwOffset parameter. An application cannot
later obtain a handle to this memory. The dshSection member of the DIBSECTION
structure filled in by calling the GetObject function will be NULL.

dwOffset
[in] Specifies the offset from the beginning of the file-mapping object referenced by
hSection where storage for the bitmap’s bit values is to begin. This value is ignored if
hSection is NULL. The bitmap’s bit values are aligned on doubleword boundaries, so
dwOffset must be a multiple of the size of a DWORD.

Return Values
If the function succeeds, the return value is a handle to the newly created DIB, and
*ppvBits points to the bitmap’s bit values.

If the function fails, the return value is NULL, and *ppvBits is NULL.
Windows NT/2000: To get extended error information, call GetLastError.

80

Volume 3 Microsoft Windows GDI

Remarks

As noted above, if hSection is NULL, the system allocates memory for the DIB. The
system closes the handle to that memory when you later delete the DIB by calling the
DeleteObject function. If hSection is not NULL, you must close the hSection memory
handle yourself after calling DeleteObject to delete the bitmap.

Windows NT/2000: You need to guarantee that the GDI subsystem has completed any
drawing to a bitmap created by CreateDIBSection before you draw to the bitmap
yourself. Access to the bitmap must be synchronized. Do this by calling the GdiFlush
function. This applies to any use of the pointer to the bitmap’s bit values, including
passing the pointer in calls to functions such as SetDIBits.

ICM: If the bmiHeader member of BITMAPINFO (pointed to by pbmi) does not contain
BITMAPV4HEADER or BITMAPV5S5HEADER, no color management is done. Otherwise,
color management is enabled, and the specified color space is associated with the
bitmap.

T 3.1 or later.

Windows NT/2000: Requires Windows N

Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BITMAPINFO, CreateFileMapping,
DeleteObject, DIBSECTION, GdiFlush, GetDIBColorTable, GetObject, SetDIBits,
SetDIBColorTable

ExtFloodFill

The ExtFloodFill function fills an area of the display surface with the current brush.

i A 35 14 e fun

Parameters

hdc
[in] Handle to a device context.

Chapter 6 Bitmaps 81

nXStart
[in] Specifies the logical x-coordinate of the point where filling is to start.

nYStart
[in] Specifies the logical y-coordinate of the point where filling is to start.

crColor
[in] Specifies the color of the boundary or of the area to be filled. The interpretation of
crColor depends on the value of the fuFillType parameter. To create a COLORREF
color value, use the RGB macro.

fuFillType
[in] Specifies the type of fill operation to be performed. This parameter must be one of
the following values:

Value Meaning

FLOODFILLBORDER The fill area is bounded by the color specified by the
crColor parameter. This style is identical to the filling
performed by the FloodFill function.

FLOODFILLSURFACE The fill area is defined by the color that is specified by
crColor. Filling continues outward in all directions as
long as the color is encountered. This style is useful for
filling areas with multicolored boundaries.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The following are some of the reasons this function might fail:

e The filling could not be completed.
o The specified point has the boundary color specified by the crColor parameter (if
FLOODFILLBORDER was requested).

e The specified point does not have the color specified by crColor (if
FLOODFILLSURFACE was requested).

e The point is outside the clipping region—that is, it is not visible on the device.

If the fuFillType parameter is FLOODFILLBORDER, the system assumes that the area
to be filled is completely bounded by the color specified by the crColor parameter. The
function begins filling at the point specified by the nXStart and nYStart parameters and
continues in all directions until it reaches the boundary.

If fuFillType is FLOODFILLSURFACE, the system assumes that the area to be filled is a
single color. The function begins to fill the area at the point specified by nXStart and

82

Volume 3 Microsoft Windows GDI

nYStart and continues in all directions, filling all adjacent regions containing the color
specified by crColor.

Only memory device contexts and devices that support raster-display operations support
the ExtFloodFill function. To determine whether a device supports this technology, use
the GetDeviceCaps function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, COLORREF, FloodFill, GetDeviceCaps, RGB

GetBitmapDimensionEx

The GetBitmapDimensionEx function retrieves the dimensions of a bitmap. The
retrieved dimensions must have been set by the SetBltmalemensmnEx function.

BODL ﬁetBit.mapﬁimensMnEx(i o e
 HBITMAP : hBitmap,. =~ /1 hamﬂe to mtmap
LPSIZE 7pD1mens1on 1! dmenswnﬁ :

):

Parameters

hBitmap
[in] Handle to the bitmap.

IpDimension
[out] Pointer to a SIZE structure to receive the bitmap dimensions.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The function returns a data structure that contains fields for the height and width of the
bitmap. If those dimensions have not yet been set, the structure that is returned will have
zeros in those fields.

Chapter 6 Bitmaps 83

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Ovérview, iBitmap’ Functions, SetBitmapDimensionEx, SIZE

GetDIBColorTable

The GetDIBColorTable function retrieves RGB (red, green, blue) color values from a
range of entries in the color table of the DIB section bitmap that is currently selected into
a specified device context.

Parameters

hdc
[in] Handle to a device context. A DIB section bitmap must be selected into this device
context.

uStartindex
[in] A zero-based color table index that specifies the first color table entry to retrieve.

cEntries
[in] Specifies the number of color table entries to retrieve.

pColors
[out] Pointer to a buffer that receives an array of RGBQUAD data structures
containing color information from the DIB’s color table. The buffer must be large
enough to contain as many RGBQUAD data structures as the value of cEntries.

Return Values

If the function succeeds, the return value is the number of color table entries that the
function retrieves.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

84

Volume 3 Microsoft Windows GDI

Remarks

The GetDIBColorTable function should be called to retrieve the color table for DIB
section bitmaps that use 1, 4, or 8 bpp. The biBitCount member of a bitmap’s
associated BITMAPINFOHEADER structure specifies the number of bits per pixel. DIB
section bitmaps with a biBitCount value greater than eight do not have a color table, but
they do have associated color masks. Call the GetObject function to retrieve those color
masks.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

SRR

Bltmaps Overwew Bltmap Functlons BITMAPINFOHEADER, CreateDIBSection,
DIBSECTION, GetObject, RGBQUAD, SetDIBColorTable

GetDIBits

The GetDIBits function retrieves the bits of the specified bitmap and copies them into a
buffer using the specified format.

int GetDIBItS(. L I R o e e R R
~HDC hdc, ;//"handie to DC. R

" HBITMAP hbmp, /[handle to b1tmap

| UINT uStartScan, . // first scan line to set :
UINT cScaanes,-l /7. nimber of scan:Tines: to copy)', RETE LS IR
TUEPYOID TpvBits, . //-array-for bitmap bits T L oo co ol e
~ILPBITMAPINFO Ipbi, // bitmap data buffer = 1 o oo ol
UINT uUsagé - . // RGB.or palette index . 1

Parameters
hdec

[in] Handle to the device context.
hbmp

[in] Handle to the bitmap.

uStartScan
[in] Specifies the first scan line to retrieve.

Chapter 6 Bitmaps 85

cScanlines
[in] Specifies the number of scan lines to retrieve.

IpvBits
[out] Pointer to a buffer to receive the bitmap data. If this parameter is NULL, the
function passes the dimensions and format of the bitmap to the BITMAPINFO
structure pointed to by the [pbi parameter.

Ipbi
[in/out] Pointer to a BITMAPINFO structure that specifies the desired format for the
DIB data.

uUsage
[in] Specifies the format of the bmiColors member of the BITMAPINFO structure. It
must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table should consist of an array of 16-bit indexes
into the current logical palette.

DIB_RGB_COLORS The color table should consist of literal red, green, blue
(RGB) values.

Return Values
If the IpvBits parameter is non-NULL and the function succeeds, the return value is the
number of scan lines copied from the bitmap.

Windows 95/98: If the JpvBits parameter is NULL and GetDIBits successfully fills the
BITMAPINFO structure, the return value is the total number of scan lines in the bitmap.

Windows NT/2000: If the JpvBits parameter is NULL and GetDIBits successfully fills the
BITMAPINFO structure, the return value is non-zero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

If the requested format for the DIB matches its internal format, the RGB values for the
bitmap are copied. If the requested format does not match the internal format, a color
table is synthesized. The following table describes the color table synthesized for each
format:

Value Meaning

1_BPP The color table consists of a black and a white entry.

4_BPP The color table consists of a mix of colors identical to the
standard VGA palette.

8_BPP The color table consists of a general mix of 256 colors

defined by GDI. (Included in these 256 colors are the 20
colors found in the default logical palette.)

24 _BPP No color table is returned.

86

Volume 3 Microsoft Windows GDI

If the pvBits parameter is a valid pointer, the first six members of the bitmap information
header structure must be initialized to specify the size and format of the DIB. The scan
lines must be aligned on a DWORD except for RLE compressed bitmaps.

A bitmap information header structure may be one of the following:

Operating system Bitmap information header

Windows NT 3.51 and earlier BITMAPINFOHEADER
Windows NT 4.0 and Windows 95 BITMAPV4HEADER
Windows 2000 and Windows 98 BITMAPV5HEADER

A bottom-up DIB is specified by setting the height to a positive number, while a top-down
DIB is specified by setting the height to a negative number. The bitmap’s color table will
be appended to the BITMAPINFO structure.

If pvBits is NULL, GetDIBits examines the first member of the first structure pointed to
by Ipbi. This member must specify the size, in bytes, of a BITMAPCOREHEADER or a
bitmap information header structure. The function uses the specified size to determine
how the remaining members should be initialized.

If IpvBits is NULL and the bit count member of BITMAPINFO is initialized to zero,
GetDIBits fills in a bitmap information header structure or BITMAPCOREHEADER
without the color table. This technique can be used to query bitmap attributes.

The bitmap identified by the hbmp parameter must not be selected into a device context
when the application calls this function.

The origin for a bottom-up DIB is the lower-left corner of the bitmap; the origin for a top-
down DIB is the upper-left corner.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, SetDIBits

Chapter 6 Bitmaps 87

GetPixel

The GetPixel function retrieves the red, green, blue (RGB) color value of the pixel at the
specified coordinates.

COLORREF“ GetPixel ! ¢ ,

A hemd?e to DC R : ,

/7 x-coordinate: of ptxel L
,,—coordmat ,jof ixel

}; L;: Sl

Parameters
hde
[in] Handle to the device context.
nXPos
[in] Specifies the logical x-coordinate of the pixel to be examined.

nYPos
[in] Specifies the logical y-coordinate of the pixel to be examined.

Return Values

The return value is the RGB value of the pixel. If the pixel is outside of the current
clipping region, the return value is CLR_INVALID.

Remarks
The pixel must be within the boundaries of the current clipping region.

Not all devices support GetPixel. An application should call GetDeviceCaps to
determine whether a specified device supports this function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

: 2

Bitmaps Ci)v\h)erv'iew, Bitmap Functions, COLORREF, GetDeviceCaps, SetPixel

88

Volume 3 Microsoft Windows GDI

GetStretchBltMode

The GetStretchBItMode function retrieves the current stretching mode. The stretching
mode defines how color data is added to or removed from bitmaps that are stretched or
compressed when the StretchBIt function is called.

Parameters
hde
[in] Handle to the device context.

Return Values
If the function succeeds, the return value is the current stretching mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions

GradientFill

The GradientFill function fills rec'rangle and trlangl structures.

seak ﬁi‘agii&ath ¥ 3 £

pmivékﬂi piferz:e,;
o ‘ULONG: dwt#t;m Vertex,

Chapter 6 Bitmaps 89

Parameters
hdc
[in] Handle to the destination device context.

pVertex
[in] Pointer to an array of TRIVERTEX structures that each define a triangle vertex.

dwNumVertex
[in] The number of vertices in pVertex.

pMesh
[in] Array of GRADIENT_TRIANGLE structures in triangle mode, or an array of
GRADIENT_RECT structures in rectangle mode.

dwNumMesh
[in] The number of elements (triangles or rectangles) in pMesh.
dwMode
[in] Specifies gradient fill mode. This parameter can be one of the following values:
Value Meaning
GRADIENT_FILL_RECT_H In this mode, two endpoints describe a rectangle.

The rectangle is defined to have a constant color
(specified by the TRIVERTEX structure) for the
left and right edges. GDI interpolates the color
from the top to bottom edge and fills the interior.

GRADIENT_FILL_RECT_V In this mode, two endpoints describe a rectangle.
The rectangle is defined to have a constant color
(specified by the TRIVERTEX structure) for the
top and bottom edges. GDI interpolates the color
from the top to bottom edge and fills the interior.

GRADIENT_FILL_TRIANGLE In this mode, an array of TRIVERTEX structures
is passed to GDI along with a list of array indexes
that describe separate triangles. GDI performs
linear interpolation between triangle vertices and
fills the interior. Drawing is done directly in 24-bpp
and 32-bpp modes. Dithering is performed in 16-
bpp, 8-bpp, 4-bpp, and 1-bpp mode.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks

To add smooth shading to a triangle, call the GradientFill function with the three triangle
endpoints. GDI will linearly interpolate and fill the triangle.

90

Volume 3 Microsoft Windows GDI

To add smooth shading to a rectangle, call GradientFill with the upper-left and lower-
right coordinates of the rectangle. There are two shading modes used when drawing a
rectangle. In horizontal mode, the rectangle is shaded from left to right. In vertical mode,
the rectangle is shaded from top to bottom.

The GradientFill function uses a mesh method to specify the endpoints of the object to
draw. All vertices are passed to GradientFill in the pVertex array. The pMesh parameter
specifies how these vertices are connected to form an object. When filling a rectangle,
pMesh points to an array of GRADIENT_RECT structures. Each GRADIENT_RECT
structure specifies the index of two vertices in the pVertex array. These two vertices form
the upper-left and lower-right boundary of one rectangle.

In the case of filling a triangle, pMesh points to an array of GRADIENT_TRIANGLE
structures. Each GRADIENT_TRIANGLE structure specifies the index of three vertices
in the pVertex array. These three vertices form one triangle.

In order to simplify hardware acceleration, this routine is not required to be pixel-perfect
in the triangle interior.

For more information, see Smooth Shading, Drawing a Shaded Triangle, and Drawing a
Shaded Rectangle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in msimg32.dll.

Bitfnaps Overview, Bitmap Functions, EMRGRADIENTFILL, GRADIENT_RECT,
GRADIENT_TRIANGLE, TRIVERTEX

LoadBitmap

The LoadBitmap function loads the specified bitmap resource from a module’s
executable file. This function has been auperseded by the Loadlmage functlon

HBITMAP LoadBitmap(G [y e
HINSTANCE ‘hinstance, //. hand]e to apphcaf1 n - instan
LPCTSTR Tsztmapﬂame // name of bitmap resource f :

¥

Parameters
hinstance

[in] Handle to the instance of the module whose executable file contains the bitmap to
be loaded.

Chapter 6 Bitmaps 91

IpBitmapName
[in] Pointer to a null-terminated string that contains the name of the bitmap resource to
be loaded. Alternatively, this parameter can consist of the resource identifier in the
low-order word and zero in the high-order word. The MAKEINTRESOURCE macro
can be used to create this value.

Return Values

If the function succeeds, the return value is the handle to the specified bitmap.
If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

If the bitmap pointed to by the I[pBitmapName parameter does not exist or there is
insufficient memory to load the bitmap, the function fails.

An application can use the LoadBitmap function to access the predefined bitmaps used
by the Win32 API. To do so, the application must set the hinstance parameter to NULL
and the I[pBitmapName parameter to one of the following values:

OBM_BTNCORNERS OBM_OLD_RESTORE
OBM_BTSIZE OBM_OLD_RGARROW
OBM_CHECK OBM_OLD_UPARROW
OBM_CHECKBOXES OBM_OLD_ZOOM
OBM_CLOSE OBM_REDUCE
OBM_COMBO OBM_REDUCED
OBM_DNARROW OBM_RESTORE
OBM_DNARROWD OBM_RESTORED
OBM_DNARROWI OBM_RGARROW
OBM_LFARROW OBM_RGARROWD
OBM_LFARROWD OBM_RGARROWI
OBM_LFARROWI OBM_SIZE
OBM_MNARROW OBM_UPARROW
OBM_OLD_CLOSE OBM_UPARROWD
OBM_OLD_DNARROW OBM_UPARROWI
OBM_OLD_LFARROW OBM_ZOOM
OBM_OLD_REDUCE OBM_ZOOMD

Bitmap names that begin with OBM_OLD represent bitmaps used by 16-bit versions of
Windows earlier than 3.0.

For an application to use any of the OBM__ constants, the constant OEMRESOURCE
must be defined before the Windows.h header file is included.

92

Volume 3 Microsoft Windows GDI

The application must call the DeleteObject function to delete each bitmap handle
returned by the LoadBitmap function.

Windows 95 has a problem dealing with Win32 .exe or .dll files that contain resources
whose size is 64 KB or larger. To retain Win16 compatibility, Windows 95 converts the
32-bit size into a 16-bit size and a shift count. When it does this conversion it rounds
down instead of up, so some bytes can be lost. In addition, Win16 uses the same shift
count for all resources, thus the shift required for a large resource can cause a small
resource to be severely truncated, or even eliminated completely.

To avoid this problem, compute the scaling factor for the largest resource and pad all
resources with zeros so each is a multiple of the scaling factor. For example, a resource
of size 0x100065 is converted to 0x8003 * 32, which loses 5 bytes. To save the 5 bytes,
you must pad the resource with 27 zeros so that it becomes size 0x100080 and is then
converted to 0x8004 * 32. And any smaller resource must also be padded with zeros so
it is a multiple of the scaling factor, which in this case is 32.

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.

Header: Declared in winuser.h; include windows.h.

Library: Use user32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Bifmaps Overview, kBitmap Functions, CreateBitmap, DeleteObject, LoadCursor,
Loadlcon, Loadlmage, MAKEINTRESOURCE

MaskBit

The MaskBIt function combines the color data for the source and destination bitmaps
using the specmed mask and raster operation.

BOOL MaskBTt(= - , S ch
‘MfHDC_hchesﬁ,, o f/,haﬂ le: uo«destwnat1on DC

Ant nXpest, /. x-coord of. destination upper]eft covner ,
int n¥Dest, /7-y-coord of destination upper-left cérn :
-int. nWidth, juﬁE/ﬁ”Wldtﬁ of source and dest1nat1on j}

‘1nt nHéJght - j}/nhe1ght of source and- dest1nat)

~HDC-hdeSre, - ?{//handle to source DC"
int nXSrc.) '1{/ix ccard of upper=
“k1ut aysrc.(S It y- coord of upps
\HBITMAP bmeask f/fhand3e to: meno rome. b L
ing xMask,: ’ﬂ/f‘hcmzontﬂ offset into mask bqtm

Chapter 6 Bitmaps 93

int yMask, ~ // vertical offset into mask bitmap
, DWORdeRop '// raster operation code ’
Parameters
hdcDest

[in] Handle to the destination device context.
nXDest

[in] Specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

nYDest
[in] Specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

nWidth
[in] Specifies the width, in logical units, of the destination rectangle and source
bitmap.

nHeight
[in] Specifies the height, in logical units, of the destination rectangle and source
bitmap.

hdcSrc
[in] Handle to the device context from which the bitmap is to be copied. It must be
zero if the dwRop parameter specifies a raster operation that does not include a
source.

nXSrc
[in] Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

nYSrc
[in] Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

hbmMask
[in] Handle to the monochrome mask bitmap combined with the color bitmap in the
source device context.

xMask
[in] Specifies the horizontal pixel offset for the mask bitmap specified by the hbmMask
parameter.

yMask
[in] Specifies the vertical pixel offset for the mask bitmap specified by the hbmMask
parameter.

dwRop
[in] Specifies both foreground and background ternary raster operation codes that the
function uses to control the combination of source and destination data. The
background raster operation code is stored in the high-order byte of the high-order
word of this value; the foreground raster operation code is stored in the low-order byte
of the high-order word of this value; the low-order word of this value is ignored, and
should be zero. The macro MAKEROP4 creates such combinations of foreground
and background raster operation codes.

94

Volume 3 Microsoft Windows GDI

For a discussion of foreground and background in the context of this function, see the
following Remarks section.

For a list of common raster operation codes, see the BitBIt function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

A value of 1 in the mask specified by hbmMask indicates that the foreground raster
operation code specified by dwRop should be applied at that location. A value of 0 in the
mask indicates that the background raster operation code specified by dwRop should be
applied at that location.

If the raster operations require a source, the mask rectangle must cover the source
rectangle. If it does not, the function will fail. If the raster operations do not require a
source, the mask rectangle must cover the destination rectangle. If it does not, the
function will fail.

If a rotation or shear transformation is in effect for the source device context when this
function is called, an error occurs. However, other types of transformation are allowed.

If the color formats of the source, pattern, and destination bitmaps differ, this function
converts the pattern or source format, or both, to match the destination format.

If the mask bitmap is not a monochrome bitmap, an error occurs.

When an enhanced metafile is being recorded, an error occurs (and the function returns
FALSE) if the source device context identifies an enhanced-metafile device context.

Not all devices support the MaskBIt function. An application should call the
GetDeviceCaps function to determine whether a device supports this function.

If no mask bitmap is supplied, this function behaves exactly like BitBIt, using the
foreground raster operation code.

ICM: No color management is performed when blits occur.

Windows 98, Windows 2000: When used in a multimonitor system, both hdeSrc and
hdcDest must refer to the same device or the function will fail.

Chapter 6 Bitmaps 95

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functiohs, BitBIt, GetDeviceCaps, PlgBIt, StretchBIt

PlgBIt

The PlgBIt function performs a bit-block transfer of the bits of color data from the
specified rectangle in the source device context to the specified parallelogram in the
destination device context. If the given bitmask handle identifies a valid monochrome
bitmap, the function uses this bitmap to mask the bits of color data from the source
rectangle.

‘,; hand1e to dest1nat1on DC
. /1 destination vertices
/'t hand1e to source DC-. IR b 0o
X coord of 'source upper Teft corner o
[fy scoord of source: upper left corner :
f,iwthh of .source rectang1e ' ‘
u:,height of source. reéctangle

: ;\‘i ﬂt nHeTght

. HBITMAP hmeask 4';/‘/ handle to bitmask ~ :
“dnt XMask,’ '“szt /7% coord of bitmask upper-left corner
int yMask ,(,,f SRRt v coord of bitmask Uppers !eft corner
g i Bt T .

Parameters
hdcDest

[in] Handle to the destination device context.
IpPoint

[in] Pointer to an array of three points in logical space that identify three corners of the
destination parallelogram. The upper-left corner of the source rectangle is mapped to
the first point in this array, the upper-right corner to the second point in this array, and
the lower-left corner to the third point. The lower-right corner of the source rectangle is
mapped to the implicit fourth point in the parallelogram.

hdcSrc
[in] Handle to the source device context.

96

Volume 3 Microsoft Windows GDI

nXSrc
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nYSrc
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nWidth
[in] Specifies the width, in logical units, of the source rectangle.

nHeight
[in] Specifies the height, in logical units, of the source rectangle.

hbmMask
[in] Handle to an optional monochrome bitmap that is used to mask the colors of the
source rectangle.

xMask
[in] Specifies the x-coordinate of the upper-left corner of the monochrome bitmap.

yMask
[in] Specifies the y-coordinate of the upper-left corner of the monochrome bitmap.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The fourth vertex of the parallelogram (D) is defined by treating the first three points (A,
B, and C) as vectors and computing D= B+ C— A.

If the bitmask exists, a value of one in the mask indicates that the source pixel color
should be copied to the destination. A value of zero in the mask indicates that the
destination pixel color is not to be changed. If the mask rectangle is smaller than the
source and destination rectangles, the function replicates the mask pattern.

Scaling, translation, and reflection transformations are allowed in the source device
context; however, rotation and shear transformations are not. If the mask bitmap is not a
monochrome bitmap, an error occurs. The stretching mode for the destination device
context is used to determine how to stretch or compress the pixels, if that is necessary.

When an enhanced metafile is being recorded, an error occurs if the source device
context identifies an enhanced-metafile device context.

The destination coordinates are transformed according to the destination device context;
the source coordinates are transformed according to the source device context. If the
source transformation has a rotation or shear, an error is returned.

If the destination and source rectangles do not have the same color format, PlgBIt
converts the source rectangle to match the destination rectangle.

Chapter 6 Bitmaps 97

Not all devices support the PlgBIt function. For more information, see the description of
the RC_BITBLT raster capability in the GetDeviceCaps function.

If the source and destination device contexts represent incompatible devices, PlgBIt
returns an error.

Windows 98, Windows 2000: When used in a multimonitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BitBIt, GetDeviceCaps, MaskBiIt,
SetStretchBItMode, StretchBIt

SetBitmapDimensionEx

The SetBitmapDimensionEx function assigns preferred dimensions to a bitmap. These
dimensions can be used by appllcatlons however, they are not used by the system

B&Gi SetﬁitmapﬁimensionExé - ,,; el
‘ A4 hand?e : bitmap s «
i b1tmap width 1n ﬂi mm units

i /"bitmap hewght in..01-mm nnits
°(// origfna? dimens%ons o

Parameters

hBitmap
[in] Handle to the bitmap. The bitmap cannot be a DIB-section bitmap.

nWidth
[in] Specifies the width, in 0.1-millimeter units, of the bitmap.

nHeight
[in] Specifies the height, in 0.1-millimeter units, of the bitmap.

IpSize
[out] Pointer to a SIZE structure to receive the previous dimensions of the bitmap.
This pointer can be NULL.

98

Volume 3 Microsoft Windows GDI

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks

An application can retrieve the dimensions assigned to a bitmap with the
SetBitmapDimensionEx function by calling the GetBitmapDimensionEx function.

The bitmap identified by hBitmap cannot be a DIB section, which is a bitmap created by
the CreateDIBSection function. If the bitmap is a DIB section, the
SetBitmapDimensionEx function fails.

A

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps OVerview, Bitmap Functions, CreateDIBSection, GetBitmapDimensionEX,
SIZE

SetDIBColorTable

The SetDIBColorTable function sets RGB (red, green, blue) color values in a range of
entries in the color table of the DIB that is currently selected into a specified device
context.

UINT SetDIBCo]orTalﬂe(i ’
" HDC hde, gy hand'le to. DC

UINT uStartIndex, . 7/ color table index of first entry
UINT “cEntries, i /1 number of color table entries.

CONST RGBQUA[? *pCo?ors // ar*ray of co]or table em:ries W'f
i v , i , :

Parameters
hdc
[in] Specifies a device context. A DIB must be selected into this device context.

uStartindex
[in] A zero-based color table index that specifies the first color table entry to set.

Chapter 6 Bitmaps 99

cEntries
[in] Specifies the number of color table entries to set.

pColors
[in] Pointer to an array of RGBQUAD structures containing new color information for
the DIB’s color table.

Return Values
If the function succeeds, the return value is the number of color table entries that the
function sets.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

This function should be called to set the color table for DIBs that use 1 bpp, 4 bpp, or
8 bpp. The BitCount member of a bitmap’s associated bitmap information header
structure.

A bitmap information header structure may be one of the following:

Operating system Bitmap information header
Windows NT 3.51 and earlier BITMAPINFOHEADER
Windows NT 4.0 and Windows 95 BITMAPVAHEADER
Windows 2000 and Windows 98 BITMAPV5HEADER

BITMAPINFOHEADER structure specifies the number of bits per pixel. Device-
independent bitmaps with a biBitCount value greater than 8 do not have a color table.

Windows NT 4.0 and Windows 95:The bV4BitCount member of a bitmap’s associated
BITMAPV4HEADER structure specifies the number of bits per pixel. Device-
independent bitmaps with a bV4BitCount value greater than 8 do not have a color table.

Windows 2000 and Windows 98: The bV5BitCount member of a bitmap’s associated
BITMAPV5HEADER structure specifies the number of bits per pixel. Device-
independent bitmaps with a bV5BitCount value greater than 8 do not have a color table.

ICM: No color management is performed.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

100 Volume 3 Microsoft Windows GDI

Bitmaps Overview, Bitfnap Functions, BITMAPINFOHEADER, CreateDIBSection,
DIBSECTION, GetDIBColorTable, GetObject, RGBQUAD

SetDIBits

The SetDIBits function sets the pixels in a bitmap using the color data found in the
specified DIB.

int’ SetDIB'Its(A AR A

‘V.HDC hdey A hamﬂe to DC

‘ »BBITMAP mep, i Lo ST handTe to- b*‘ltmap
“WINT uStartScanm, ' /7 starting scan Hne o
«“_UINT cScaannes,; "f/f number of iscan’ 1ines |
,,"*CQNST VQ”IB *Ipvﬂits,_l ; ‘// array of b1tmap, bits
- CONST BITMAPINFO x«zpbmf /4 bitmap data ;
;NT fuCa?of*Use A // type of co]qr fndexes tc use ;

Parameters

hdc
[in] Handle to a device context.

hbmp
[in] Handle to the bitmap that is to be altered using the color data from the specified
DIB.

uStartScan
[in] Specifies the starting scan line for the device-independent color data in the array
pointed to by the IpvBits parameter.

cScanlLines
[in] Specifies the number of scan lines found in the array containing device-
independent color data.

IpvBits
[in] Pointer to the DIB color data, stored as an array of bytes. The format of the bitmap
values depends on the biBitCount member of the BITMAPINFO structure pointed to
by the [pbmi parameter.

Ipbmi
[in] Pointer to a BITMAPINFO structure that contains information about the DIB.

fuColorUse
[in] Specifies whether the bmiColors member of the BITMAPINFO structure was
provided and, if so, whether bmiColors contains explicit red, green, blue (RGB)
values or palette indexes. The fuColorUse parameter must be one of the following
values:

Chapter 6 Bitmaps 101

Value Meaning

DIB_PAL_COLORS The color table consists of an array of 16-bit indexes into
the logical palette of the device context identified by the
hdc parameter.

DIB_RGB_COLORS The color table is provided and contains literal RGB
values.

Return Values
If the function succeeds, the return value is the number of scan lines copied.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Optimal bitmap drawing speed is obtained when the bitmap bits are indexes into the
system palette.

Applications can retrieve the system palette colors and indexes by calling the
GetSystemPaletteEntries function. After the colors and indexes are retrieved, the
application can create the DIB. For more information, see System Palette.

The device context identified by the hdc parameter is used only if the
DIB_PAL_COLORS constant is set for the fuColorUse parameter; otherwise it is ignored.

The bitmap identified by the hbmp parameter must not be selected into a device context
when the application calls this function.

The scan lines must be aligned on a DWORD except for RLE-compressed bitmaps.

The origin for bottom-up DIBs is the lower-left corner of the bitmap; the origin for top-
down DIBs is the upper-left corner of the bitmap.

ICM: Color management is performed. If the specified BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the color profile of the current device
context is used as the source color space profile. If the BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the sRGB color space is used. If the
specified BITMAPINFO structure is BITMAPV4AHEADER or BITMAPV5HEADER, the
color space profile associated with the bitmap is used as the source color space.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

102 Volume 3 Microsoft Windows GDI

Bitmaps vérv:ew, Bitfﬁép Functions, BITMAPINFO, GetDIBits,
GetSystemPaletteEntries

SetDIBitsToDevice

The SetDIBitsToDevice function sets the pixels in the specified rectangle on the device
that is associated with the destination device context using color data from a DIB .

Windows 98 and Windows 2000: SetDIBitsToDevice has been extended to allow a
JPEG or PNG image to be passed as the source image.

ta:,hél‘e,',ihégsf}j‘g‘hi; s
-source Tower-Teft . cof

Parameters

hdec
[in] Handle to the device context.

XDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

Vnast

[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

dwWidth

[in] Specifies the width, in logical units, of the DIB.
dwHeight

[in] Specifies the height, in logical units, of the DIB.
XSrc

[in] Specifies the x-coordinate, in logical units, of the lower-left corner of the DIB.

Chapter 6 Bitmaps 103

YSrc
[in] Specifies the y-coordinate, in logical units, of the lower-left corner of the DIB.

uStartScan
[in] Specifies the starting scan line in the DIB.
cScanlLines
[in] Specifies the number of DIB scan lines contained in the array pointed to by the
IpvBits parameter.
IpvBits
[in] Pointer to DIB color data stored as an array of bytes. For more information, see
the following Remarks section.
lpbmi
[in] Pointer to a BITMAPINFO structure that contains information about the DIB.
fuColorUse
[in] Specifies whether the bmiColors member of the BITMAPINFO structure contains
explicit red, green, blue (RGB) values or indexes into a palette. For more information,
see the following Remarks section.
The fuColorUse parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table consists of an array of 16-bit indexes into
the currently selected logical palette.

DIB_RGB_COLORS The color table contains literal RGB values.

Return Values
If the function succeeds, the return value is the number of scan lines set.

If the function fails, the return value is zero.
Windows NT/2000: To get extended error information, call GetLastError.

Windows 98 and Windows 2000: If the driver cannot support the JPEG or PNG file
image passed to SetDIBitsToDevice, the function will fail and return GDI_ERROR. If
failure does occur, the application must fall back on its own JPEG or PNG support to
decompress the image into a bitmap, and then pass the bitmap to SetDIBitsToDevice.

Remarks ,
Optimal bitmap drawing speed is obtained when the bitmap bits are indexes into the
system palette.

Applications can retrieve the system palette colors and indexes by calling the
GetSystemPaletteEntries function. After the colors and indexes are retrieved, the
application can create the DIB. For more information about the system palette, see
Colors.

104

Volume 3 Microsoft Windows GDI

The origin of a bottom-up DIB is the lower-left corner of the bitmap; the origin of a top-
down DIB is the upper-left corner.

To reduce the amount of memory required to set bits from a large DIB on a device

surface, an application can band the output by repeatedly calling SetDIBitsToDevice,
placing a different portion of the bitmap into the JpvBits array each time. The values of
the uStartScan and cScanLines parameters identify the portion of the bitmap contained
in the IpvBits array.

The SetDIBitsToDevice function returns an error if it is called by a process that is
running in the background while a full-screen MS-DOS session runs in the foreground.

Windows 98, Windows 2000:

¢ |f the biCompression member of BITMAPINFOHEADER is Bl_JPEG or BI_PNG,
IpvBits points to a buffer containing a JPEG or PNG image. The biSizelmage
member of specifies the size of the buffer. The fuColorUse parameter must be set to
DIB_RGB_COLORS.

¢ |f the bV4Compression member of BITMAPV4HEADER is BI_JPEG or BI_PNG,
IpvBits points to a buffer containing a JPEG or PNG image. The bV4Sizelmage
member of BITMAPV4HEADER specifies the size of the buffer. The fuColorUse
parameter must be set to DIB_RGB_COLORS.

¢ |f the bV5Compression member of BITMAPV5HEADER is BI_JPEG or BI_PNG,
IpvBits points to a buffer containing a JPEG or PNG image. The bV5Sizelmage
member of BITMAPV5HEADER specifies the size of the buffer. The fuColorUse
parameter must be set to DIB_RGB_COLORS.

* To ensure proper metafile spooling while printing, applications must call the
CHECKJPEGFORMAT or CHECKPNGFORMAT escape to verify that the printer

recognizes the JPEG or PNG image, respectively, before calling SetDIBitsToDevice.

ICM: Color management is performed. If the specified BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the color profile of the current device
context is used as the source color space profile. If the BITMAPINFO structure is not
BITMAPV4HEADER or BITMAPV5HEADER, the sRGB color space is used. If the
specified BITMAPINFO structure is BITMAPV4AHEADER or BITMAPV5HEADER, the
color space profile associated with the bitmap is used as the source color space.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Chapter 6 Bitmaps 105

-+ 4
Bitmaps Overview, Bitmap Functions, BITMAPINFO, GetSystemPaletteEntries,
SetDIBits, StretchDIBits

SetPixel

The SetPixel function sets the pixel at the specified coordinates to the specified color.
; ; , s . o

Parameters
hdc
[in] Handle to the device context.
X
[in] Specifies the x-coordinate, in logical units, of the point to be set.
Y
[in] Specifies the y-coordinate, in logical units, of the point to be set.

crColor
[in] Specifies the color to be used to paint the point. To create a COLORREF color
value, use the RGB macro.

Return Values

If the function succeeds, the return value is the RGB value that the function sets the
pixel to. This value may differ from the color specified by crColor, that occurs when an
exact match for the specified color cannot be found.

If the function fails, the return value is —1.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks
The function fails if the pixel coordinates lie outside of the current clipping region.

Not all devices support the SetPixel function. For more information, see
GetDeviceCaps.

mdows NZOO: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

106 Volume 3 Microsoft Windows GDI

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview,

Bitmap Functions, COLORREF, GetDeviceCaps, GetPixel, RGB,
SetPixelV |

SetPixelV

The SetPixelV function sets the pixel at the specified coordinates to the closest
approximation of the specified color. The point must be in the clipping region and the
visible part of the device surface.

Parameters

hdc
[in] Handle to the device context.

X
[in] Specifies the x-coordinate, in logical units, of the point to be set.

Y
[in] Specifies the y-coordinate, in logical units, of the point to be set.

crColor
[in] Specifies the color to be used to paint the point. To create a COLORREF color
value, use the RGB macro.

Return Values
If the function succeeds, the return vaiue is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
Not all devices support the SetPixelV function. For more information, see the description
of the RC_BITBLT capability in the GetDeviceCaps function.

SetPixelV is faster than SetPixel because it does not need to return the color value of
the point actually painted.

Chapter 6 Bitmaps 107

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, COLORREF, GetDeviceCaps, RGB, SetPixel

SetStretchBltMode

The SetStretchBItMode function sets the bitmap stretching mode in the specified device
context.

‘tmap strefching mode i

Parameters
hdc
[in] Handle to the device context.
iStretchMode
[in] Specifies the stretching mode. This parameter can be one of the following values:
Value Description
BLACKONWHITE Performs a Boolean AND operation using the color
values for the eliminated and existing pixels. If the
bitmap is a monochrome bitmap, this mode
preserves black pixels at the expense of white
pixels.
COLORONCOLOR Deletes the pixels. This mode deletes all eliminated
lines of pixels without trying to preserve their
information.

(continued)

108 Volume 3 Microsoft Windows GDI

(continued)

Value Description

HALFTONE Maps pixels from the source rectangle into blocks of
pixels in the destination rectangle. The average
color over the destination block of pixels
approximates the color of the source pixels.
After setting the HALFTONE stretching mode, an
application must call the SetBrushOrgEx function to
set the brush origin. If it fails to do so, brush
misalignment occurs.
This is not supported on Windows 95/98.

STRETCH_ANDSCANS Same as BLACKONWHITE.

STRETCH_DELETESCANS Same as COLORONCOLOR.

STRETCH_HALFTONE Same as HALFTONE.

STRETCH_ORSCANS Same as WHITEONBLACK.

WHITEONBLACK Performs a Boolean OR operation using the color

values for the eliminated and existing pixels. If the
bitmap is a monochrome bitmap, this mode
preserves white pixels at the expense of black
pixels.

Return Values
If the function succeeds, the return value is the previous stretching mode.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The stretching mode defines how the system combines rows or columns of a bitmap with
existing pixels on a display device when an application calls the StretchBIt function.

The BLACKONWHITE (STRETCH_ANDSCANS) and WHITEONBLACK
(STRETCH_ORSCANS) modes are typically used to preserve foreground pixels in
monochrome bitmaps. The COLORONCOLOR (STRETCH_DELETESCANS) mode is
typically used to preserve color in color bitmaps.

The HALFTONE mode is slower and requires more processing of the source image than
the other three modes; but produces higher quality images. Also note that
SetBrushOrgEx must be called after setting the HALFTONE mode to avoid brush
misalignment.

Additional stretching modes might also be available depending on the capabilities of the
device driver.

Chapter 6 Bitmaps 109

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, GetStretchBltMode, SetBrushOrgEXx, StretchBIt

StretchBlt

The StretchBlIt function copies a bitmap from a source rectangle into a destination
rectangle, stretching or compressing the bitmap to fit the dimensions of the destination
rectangle, if necessary. The system stretches or compresses the bitmap according to the
stretching mode currently set in the destination device context.

j‘width of source rectan‘éi&'g;, IS
1 jheigm . of source réctang’le

Y

Parameters

hdcDest
[in] Handle to the destination device context.

nXOriginDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nYOriginDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nWidthDest
[in] Specifies the width, in logical units, of the destination rectangle.

110

Volume 3 Microsoft Windows GDI

nHeightDest
[in] Specifies the height, in logical units, of the destination rectangle.

hdcSrc
[in] Handle to the source device context.

nXOriginSrc
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nYOriginSrc
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the source
rectangle.

nWidthSrc

[in] Specifies the width, in logical units, of the source rectangle.
nHeightSrc

[in] Specifies the height, in logical units, of the source rectangle.
adwRop

[in] Specifies the raster operation to be performed. Raster operation codes define how
the system combines colors in output operations that involve a brush, a source
bitmap, and a destination bitmap.

See BitBlt for a list of common raster operation codes.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

StretchBlt stretches or compresses the source bitmap in memory and then copies the
result to the destination rectangle. The color data for pattern or destination pixels is
merged after the stretching or compression occurs.

When an enhanced metafile is being recorded, an error occurs (and the function returns
FALSE) if the source device context identifies an enhanced-metafile device context.

If the specified raster operation requires a brush, the system uses the brush currently

TS 4 Viusii, us

selected into the destination device context.

The destination coordinates are transformed by using the transformation currently
specified for the destination device context; the source coordinates are transformed by
using the transformation currently specified for the source device context.

If the source transformation has a rotation or shear, an error occurs.

If destination, source, and pattern bitmaps do not have the same color format,
StretchBIt converts the source and pattern bitmaps to match the destination bitmap.

Chapter 6 Bitmaps 111

If StretchBIt must convert a monochrome bitmap to a color bitmap, it sets white bits (1)
to the background color and black bits (0) to the foreground color. To convert a color
bitmap to a monochrome bitmap, it sets pixels that match the background color to white
(1) and sets all other pixels to black (0). The foreground and background colors of the
device context with color are used.

StretchBIt creates a mirror image of a bitmap if the signs of the nWidthSrc and
nWidthDest parameters or of the nHeightSrc and nHeightDest parameters differ. If
nWidthSrc and nWidthDest have different signs, the function creates a mirror image of
the bitmap along the x-axis. If nHeightSrc and nHeightDest have different signs, the
function creates a mirror image of the bitmap along the y-axis.

Not all devices support the StretchBIt function. For more information, see
GetDeviceCaps.

ICM: No color management is performed when a blit operation occurs.

Windows 98, Windows 2000: When used in a multimonitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bltmaps Overvnew Bitmap Functlons BltBIt GetDewceCaps MaskBIit, PigBlt,
SetStretchBltMode

StretchDIBits

The StretchDIBits function copies the color data for a rectangle of pixels in a DIB to the
specified destination rectangle. If the destination rectangle is larger than the source
rectangle, this function stretches the rows and columns of color data to fit the destination
rectangle. If the destination rectangle is smaller than the source rectangle, this function
compresses the rows and columns by using the specified raster operation.

Windows 98 and Windows 2000: StretchDIBits has been extended to allow a JPEG or

PNG image to be passed as the source |mage

int Stretchozms(R T I S BT N Ry
CHDE hde, ;a/f haﬁd}e to ncx

Sdnt Xﬁesti- : 1 x-mord nf de

e /1. €orner

mt%en ; upper ?eft

(contlnued)

112

Volume 3 Microsoft Windows GDI

(continued)

5

L

Parameters
hdc
[in] Handle to the destination device context.
XDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.
YDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.
nDestWidth
[in] Specifies the width, in logical units, of the destination rectangle.
nDestHeight
[in] Specifies the height, in logical units, of the destination rectangle.
XSre
[in] Specifies the x-coordinate, in pixels, of the source rectangle in the DIB.
YSrc
[in] Specifies the y-coordinate, in pixels, of the source rectangle in the DIB.
nSrcWidth
[in] Specifies the width, in pixels, of the source rectangle in the DIB.
nSrcHeight
[in] Specifies the height, in pixels, of the source rectangle in the DIB.
IpBits
[in] Pointer to the DIB bits, which are stored as an array of bytes. For more
information, see the Remarks section.
IpBitsInfo
[in] Pointer to a BITMAPINFO structure that contains information about the DIB.

Chapter 6 Bitmaps 113

iUsage
[in] Specifies whether the bmiColors member of the BITMAPINFO structure was
provided and, if so, whether bmiColors contains explicit red, green, blue (RGB)
values or indexes. The iUsage parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The array contains 16-bit indexes into the logical palette
of the source device context.

DIB_RGB_COLORS The color table contains literal RGB values.

For more information, see the Remarks section.

dwRop
[in] Specifies how the source pixels, the destination device context’s current brush,
and the destination pixels are to be combined to form the new image. For more
information, see the following Remarks section.

Return Values
If the function succeeds, the return value is the number of scan lines copied.

If the function fails, the return value is GDI_ERROR.
Windows NT/2000: To get extended error information, call GetLastError.

Windows 98/Windows 2000: If the driver cannot support the JPEG or PNG file image
passed to StretchDIBits, the function will fail and return GDI_ERROR . If failure does
occur, the application must fall back on its own JPEG or PNG support to decompress the
image into a bitmap, and then pass the bitmap to StretchDIBits.

Remarks
The origin of a bottom-up DIB is the bottom-left corner; the origin of a top-down DIB is
the upper-left corner.

StretchDIBits creates a mirror image of a bitmap if the signs of the nSrcWidth and
nDestWidth parameters, or if the nSrcHeight and nDestHeight parameters differ. If
nSrcWidth and nDestWidth have different signs, the function creates a mirror image of
the bitmap along the x-axis. If nSrcHeight and nDestHeight have different signs, the
function creates a mirror image of the bitmap along the y-axis.

Windows 98/Windows 2000: This function allows a JPEG or PNG image to be passed
as the source image. How each parameter is used remains the same, except as follows:

e |f the biCompression member of BITMAPINFOHEADER is BI_JPEG or BI_PNG,
IpBits points to a buffer containing a JPEG or PNG image, respectively. The
biSizelmage member of BITMAPINFOHEADERspecifies the size of the buffer. The
iUsage parameter must be set to DIB_RGB_COLORS. The dwRop parameter must
be set to SRCCOPY.

114

Volume 3 Microsoft Windows GDI

¢ |f the bVv4Compression member of BITMAPV4HEADER is BI_JPEG or BI_PNG,
IpBits points to a buffer containing a JPEG or PNG image, respectively. The
BITMAPV4HEADER's bV4Sizelmage member specifies the size of the buffer. The
iUsage parameter must be set to DIB_RGB_COLORS. The dwRop parameter must
be set to SRCCOPY.

o |f the bV5Compression member of BITMAPV5HEADER is Bl_JPEG or BI_PNG,
IpBits points to a buffer containing a JPEG or PNG image, respectively. The
BITMAPV5HEADER'’s bV5Sizelmage member specifies the size of the buffer. The
iUsage parameter must be set to DIB_RGB_COLORS. The dwRop parameter must
be set to SRCCOPY.

¢ To ensure proper metafile spooling while printing, applications must call the
CHECKJPEGFORMAT or CHECKPNGFORMAT escape to verify that the printer
recognizes the JPEG or PNG image, respectively, before calling StretchDIBits.

ICM: Color management is performed. If the specified BITMAPINFO’s bmiHeader does
not contain BITMAPV4HEADER or BITMAPV5HEADER, the color profile of the current
device context is used as the source color space profile. If it does not have a color
profile, the sRGB space is used. If the specified BITMAPINFO’s bmiHeader contains
BITMAPV4HEADER or BITMAPV5HEADER, the color space profile specified in the
bitmap header is used as the source of color space profile.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Bitmaps Overview, Bitmap Functions, BITMAPINFO, SetMapMode,
SetStretchBitMode

TransparentBit

The TransparentBIt function performs a bit-block transfer of the color data
corresponding to a rectangle of pixels from the specified source device context into a
destination device context.

‘BOOL: Transparenw}t(Lot -
" HDC hdcDest, * 1/ handle ta destination';ﬁ(ﬁ
: int nXOriganest, AT x~cocrd of dest‘ina‘
, A corner R (
int nYOriginDest,- 14-y-coord of desﬁnati,. upper-left

Chapter 6 Bitmaps 115

[/ corner : S
1/ width of»destination

Parameters

hdcDest
[in] Handle to the destination device context.

nXOriginDest
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nYOriginDest
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the
destination rectangle.

nWidthDest
[in] Specifies the width, in logical units, of the destination rectangle.

hHeightDest
[in] Handle to the height, in logical units, of the destination rectangle.

hdcSrc
[in] Handle to the source device context.

nXOriginSrc
[in] Specifies the x-coordinate, in logical units, of the source rectangle.

nYOriginSrc
[in] Specifies the y-coordinate, in logical units, of the source rectangle.

nWidthSrc
[in] Specifies the width, in logical units, of the source rectangle.

nHeightSrc
[in] Specifies the height, in logical units, of the source rectangle.

crTransparent
[in] The RGB color in the source bitmap to treat as transparent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.
Windows NT/2000: To get extended error information, call GetLastError.

116 Volume 3 Microsoft Windows GDI
Remarks
The TransparentBIt function supports all formats of source bitmaps. However, for
32 bpp bitmaps, it just copies the alpha value over. Use AlphaBlend to specify 32 bits-
per-pixel bitmaps with transparency.
If the source and destination rectangles are not the same size, the source bitmap is
stretched to match the destination rectangle. When the SetStretchBltMode function is
used, the iStretchMode modes of BLACKONWHITE and WHITEONBLACK are
converted to COLORONCOLOR for the TransparentBIt function.
The destination device context specifies the transformation type for the destination
coordinates. The source device context specifies the transformation type for the source
coordinates.
TransparentBIt does not mirror a bitmap if either the width or height, of either the
source or destination, is negative.
Windows 98/Windows 2000: When used in a multimonitor system, both hdcSrc and
hdcDest must refer to the same device or the function will fail.
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.
Library: Included as a resource in msimg32.dll.
Bitmaps Overview, Bitmap Functions, AlphaBlend, SetStretchBltMode

Bitmap Structures

BITMAP

The BITMAP structure defines the type, width, height, color format, and bit values of a
bitmap.

Chapter 6 Bitmaps 117

"~ WORD- meitsPixe1
LPVOID bmBits; o
'} BITMAP, #*PBITMAP;

Members
bmType
Specifies the bitmap type. This member must be zero.

bmWidth
Specifies the width, in pixels, of the bitmap. The width must be greater than zero.

bmHeight
Specifies the height, in pixels, of the bitmap. The height must be greater than zero.

bmWidthBytes
Specifies the number of bytes in each scan line. This value must be divisible by two,
because the system assumes that the bit values of a bitmap form an array that is
word aligned.

bmPlanes
Specifies the count of color planes.

bmBitsPixel
Specifies the number of bits required to indicate the color of a pixel.

bmBits
Pointer to the location of the bit values for the bitmap. The bmBits member must be a
long pointer to an array of character (1-byte) values.

Remarks

The bitmap formats currently used are monochrome and color. The monochrome bitmap
uses a one-bit, one-plane format. Each scan is a multiple of 32 bits.

Scans are organlzed as follows for a monochrome bltmap of hetght n:

The pixels on a monochrome device are either black or white. If the corresponding bit in
the bitmap is 1, the pixel is set to the foreground color; if the corresponding bit in the
bitmap is zero, the pixel is set to the background color.

All devices that have the RC_BITBLT device capablllty support bitmaps. For more
information, see GetDeviceCaps.

Each device has a unique color format. To transfer a bitmap from one device to another,
use the GetDIBits and SetDIBits functions.

118 Volume 3 Microsoft Windows GDI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Ove‘ri)iéw, Bitmap Structures, CreateBitmaplIndirect, GetObject

BITMAPCOREHEADER

The BITMAPCOREHEADER structure contains information about the dimensions and
color format of a DIB.

typedef struct tagBITMAPCOREHEADER {
‘Bwokﬂ chize,
L WORD bcwidth*“'%
~_WORD bcHeﬂght
WORD' bcPlanes,..,'
WORD . beBitCount; - P
'} ‘BITMAPCOREHEADER, *PBITMAPCOREHEADER

Members
bcSize
Specifies the number of bytes required by the structure.
bcWidth
Specifies the width of the bitmap, in pixels.
bcHeight
Specifies the height of the bitmap, in pixels.
bcPlanes
Specifies the number of planes for the target device. This value must be 1.
beBitCount
Specifies the number of bits-per-pixel. This value must be 1, 4, 8, or 24.

Remarks

The BITMAPCOREINFO structure combines the BITMAPCOREHEADER structure and
a color table to provide a complete definition of the dimensions and colors of a DIB. For
more information about specifying a DIB, see BITMAPCOREINFO.

Chapter 6 Bitmaps 119

An application should use the information stored in the beSize member to locate the
color table in a BITMAPCOREINFO structure, using a method such as the followmg

pColor = ((LPBYTE) pBitmapCoreInﬁo +
. (NORD) (pBitmapCorelInfo -> chize))

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREINFO

BITMAPCOREINFO

The BITMAPCOREINFO structure defines the dimensions and color information for
a DIB.

‘typeceef sEruct BITMAPCOREINFD: {
BIT%APCOREHEADER bmc1Header

* 'RGBTRIPLE - ; bmc1Co10rsI1]
¥ BIT&APCOREINFO *PBITMAPCOREINFO
Members

bmciHeader

Specifies a BITMAPCOREHEADER structure that contains information about the
dimensions and color format of a DIB.

bmciColors
Specifies an array of RGBTRIPLE structures that define the colors in the bitmap.

Remarks

A DIB consists of two parts: a BITMAPCOREINFO structure describing the dimensions
and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits
in the array are packed together, but each scan line must be padded with zeros to end
on a LONG boundary. The origin of the bitmap is the lower-left corner.

The beBitCount member of the BITMAPCOREHEADER structure determines the
number of bits that define each pixel and the maximum number of colors in the bitmap.
This member can be one of the following values:

120

Volume 3 Microsoft Windows GDI

Value

Meaning

1

24

The bitmap is monochrome, and the bmciColors member contains two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the
pixel is displayed with the color of the first entry in the bmciColors table; if
the bit is set, the pixel has the color of the second entry in the table.

The bitmap has a maximum of 16 colors, and the bmciColors member
contains up to 16 entries. Each pixel in the bitmap is represented by a 4-bit
index into the color table. For example, if the first byte in the bitmap is Ox1F,
the byte represents two pixels. The first pixel contains the color in the
second table entry, and the second pixel contains the color in the sixteenth
table entry.

The bitmap has a maximum of 256 colors, and the bmciColors member
contains up to 256 entries. In this case, each byte in the array represents a
single pixel.

The bitmap has a maximum of 22 colors, and the bmciColors member is
NULL. Each three-byte triplet in the bitmap array represents the relative
intensities of blue, green, and red, respectively, for a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an array of
16-bit unsigned integers that specify indexes into the currently realized logical palette,
instead of explicit RGB values. In this case, an application using the bitmap must call the
DIB functions (CreateDIBitmap, CreateDIBPatternBrush, and CreateDIBSection) with
the iUsage parameter set to DIB_PAL_COLORS.

Note The bmciColors member should not contain palette indexes if the bitmap is to be
stored in a file or transferred to another application. Unless the application has exclusive
use and control of the bitmap, the bitmap color table should contain explicit RGB values.

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.

e

Bitmaps Overview, Bitmap Structures, BITMAPCOREHEADER, CreateDIBitmap,

CreateDIBPatternBrush, CreateDIBSection, RGBTRIPLE

Chapter 6 Bitmaps 121

BITMAPFILEHEADER

The BITMAPFILEHEADER structure contains information about the type, size, and
layout of a file that contains a DIB.

Members
bfType
Specifies the file type; must be BM.
bfSize
Specifies the size, in bytes, of the bitmap file.
bfReserved1
Reserved; must be zero.

bfReserved2
Reserved; must be zero.

bfOffBits
Specifies the offset, in bytes, from the BITMAPFILEHEADER structure to the bitmap
bits.

Remarks

A BITMAPINFO or BITMAPCOREINFO structure immediately follows the
BITMAPFILEHEADER structure in the DIB file.

.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREINFO, BITMAPINFO

122 Volume 3 Microsoft Windows GDI

BITMAPINFO

The BITMAPINFO structure defines the dimensions and color information for a Win32
DIB.

typedef struct tagBITMAPINFO. { -

'BITMAPINFOHEADER ‘bmiHeader; = -
“RGBQUAD . bmiColors[11:
¥ BITMAPINFO; *PBITMAPINFO; " 7"

Members

bmiHeader
Specifies a bitmap information header structure that contains information about the
dimensions of color format. The bitmap information header structure is version-
related:

Windows NT 3.51 and earlier: Use the BITMAPINFOHEADER structure.
Windows 95 and Windows NT 4.0: Use the BITMAPV4HEADER structure.
Windows 98 and Windows 2000: Use the BITMAPV5HEADER structure.
bmiColors
The bmiColors member contains one of the following:
¢ An array of RGBQUAD. The elements of the array that make up the color table.

e An array of 16-bit unsigned integers that specifies indexes into the currently
realized logical palette. This use of bmiColors is allowed for functions that use
DIBs. When bmiColors elements contain indexes to a realized logical palette, they
must also call the following bitmap functions:

CreateDIBitmap

CreateDIBPatternBrush

CreateDIBSection

The iUsage parameter of CreateDIBSection must be set to DIB_PAL_COLORS.
Platform differences are listed in the following:
Windows NT 3.51 and earlier: Use of the number of entries in the array depends on the

values of the biBitCount and biClrUsed members of the BITMAPINFOHEADER
structure.

Windows 95 and Windows NT 4.0: Use of the number of entries in the array depends
on the values of the bV4BitCount and bV4CirUsed members of the
BITMAPV4HEADER structure.

Windows 98 and Windows 2000: Use of the number of entries in the array depends on
the values of the bV5BitCount and bV5CIirUsed members of the BITMAPV5HEADER
structure.

The colors in the bmiColors table appear in order of importance. For more information,
see the Remarks section.

Chapter 6 Bitmaps 123

Remarks

A DIB consists of two distinct parts: a BITMAPINFO structure describing the dimensions
and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits
in the array are packed together, but each scan line must be padded with zeros to end
on a LONG data-type boundary. If the height of the bitmap is positive, the bitmap is a
bottom-up DIB and its origin is the lower-left corner. If the height is negative, the bitmap
is a top-down DIB and its origin is the upper left corner.

A bitmap is packed when the bitmap array immediately follows the BITMAPINFO
header. Packed bitmaps are referenced by a single pointer. For packed bitmaps, the
ClrUsed member must be set to an even number when using the DIB_PAL_COLORS
mode so that the DIB bitmap array starts on a DWORD boundary.

Note The bmiColors member should not contain palette indexes if the bitmap is to be
stored in a file or transferred to another application.

Unless the application has exclusive use and control of the bitmap, the bitmap color
table should contain explicit RGB values.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, CreateDIBitmap, CreateDIBPatternBrUsh,
CreateDIBSection, RGBQUAD

BITMAPINFOHEADER

The BITMAPINFOHEADER structure contains information about the dimensions and
color format of a DIB.

Applications developed for Windows NT 4.0 and Windows 95 may use the
BITMAPV4HEADER structure. Applications developed for Windows 2000 and
Wlndows 98 may use the BITMAPV5HEADER structure for mcreased functlonahty

sdef. struct tagBIiTMAPINFﬁHEADER{

QWRB« b*if:ampresswn,” ORI SRR O LR
(continued)

124

Volume 3 Microsoft Windows GDI

(continued)

. DHORD - hrSizeImage, HeE ety

} &ITMAPi NFOH EADER Vi *PB ITMAPIN FQHEAEER

Members

biSize
Specifies the number of bytes required by the structure.

biWidth
Specifies the width of the bitmap, in pixels.
Windows 98, Windows 2000: If biCompression is BI_JPEG or BI_PNG, the
biWidth member specifies the width of the decompressed JPEG or PNG image file,
respectively.

biHeight
Specifies the height of the bitmap, in pixels. If biHeight is positive, the bitmap is a
bottom-up DIB and its origin is the lower-left corner. If biHeight is negative, the
bitmap is a top-down DIB and its origin is the upper-left corner.
If biHeight is negative, indicating a top-down DIB, biCompression must be either
BI_RGB or BI_BITFIELDS. Top-down DIBs cannot be compressed.
Windows 98, Windows 2000: If biCompression is BI_JPEG or BI_PNG, the
biHeight member specifies the height of the decompressed JPEG or PNG image file,
respectively.

blPIanes
Specifies the number of planes for the target device. This value must be set to 1.

biBitCount
Specifies the number of bits-per-pixel. The biBitCount member of the
BITMAPINFOHEADER structure determines the number of bits that define each pixel

and the maximum number of colors in the bitmap. This member must be one of the
following values:

Value Meaning

0 Windows 98, Windows 2000: The number of bits per plxel is specified
or implied by the JPEG or PNG format.

1 The bitmap is monochrome, and the bmiColors member contains two

entries. Each bit in the bitmap array represents a pixel. If the bit is
clear, the pixel is displayed with the color of the first entry in the
bmiColors table; if the bit is set, the pixel has the color of the second
entry in the table.

Chapter 6 Bitmaps 125

Value

Meaning

16

24

The bitmap has a maximum of 16 colors, and the bmiColors member
contains up to 16 entries. Each pixel in the bitmap is represented by a
4-bit index into the color table. For example, if the first byte in the
bitmap is Ox1F, the byte represents two pixels. The first pixel contains
the color in the second table entry, and the second pixel contains the
color in the sixteenth table entry.

The bitmap has a maximum of 256 colors, and the bmiColors member
contains up to 256 entries. In this case, each byte in the array
represents a single pixel.

The bitmap has a maximum of 2216 colors. If the biCompression
member of the BITMAPINFOHEADER is BI_RGB, the bmiColors
member is NULL. Each WORD in the bitmap array represents a single
pixel. The relative intensities of red, green, and blue are represented
with five bits for each color component. The value for blue is in the least
significant five bits, followed by five bits each for green and red. The
most significant bit is not used. The bmiColors color table is used for
optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPINFOHEADER.

If the biCompression member of the BITMAPINFOHEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components, respectively,
of each pixel. Each WORD in the bitmap array represents a single
pixel.

Windows NT/Windows 2000: When the biCompression member is
BI_BITFIELDS, bits set in each DWORD mask must be contiguous and
should not overlap the bits of another mask. All the bits in the pixel do
not have to be used.

Windows 95/98: When the biCompression member is BI_BITFIELDS,
the system supports only the following 16bpp color masks: A 5-5-5 16-
bit image, where the blue mask is 0x001F, the green mask is OXO3EO,
and the red mask is 0x7C00; and a 5-6-5 16-bit image, where the blue
mask is 0x001F, the green mask is OX07EO, and the red mask is
0xF800.

The bitmap has a maximum of 2424 colors, and the bmiColors
member is NULL. Each 3-byte triplet in the bitmap array represents the
relative intensities of blue, green, and red, respectively, for a pixel. The
bmiColors color table is used for optimizing colors used on palette-
based devices, and must contain the number of entries specified by the
biClrUsed member of the BITMAPINFOHEADER.

(continued)

126

Volume 3 Microsoft Windows GDI

(continued)
Value Meaning
32 The bitmap has a maximum of 2/32 colors. If the biCompression

member of the BITMAPINFOHEADER is BI_RGB, the bmiColors
member is NULL. Each DWORD in the bitmap array represents the
relative intensities of blue, green, and red, respectively, for a pixel. The
high byte in each DWORD is not used. The bmiColors color table is used
for optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPINFOHEADER.

If the biCompression member of the BITMAPINFOHEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components, respectively, of
each pixel. Each DWORD in the bitmap array represents a single pixel.

Windows NT/2000: When the biCompression member is
BI_BITFIELDS, bits set in each DWORD mask must be contiguous and
should not overlap the bits of another mask. All the bits in the pixel do not
need to be used.

Windows 95/98: When the biCompression member is BI_BITFIELDS,
the system supports only the following 32-bpp color mask: The blue mask
is 0XO00000FF, the green mask is 0x0000FF00, and the red mask is
0x00FF0000.

biCompression
Specifies the type of compression for a compressed bottom-up bitmap (top-down
DIBs cannot be compressed). This member can be one of the following values:

Value Description

BI_RGB An uncompressed format.

BI_RLES A run-length encoded (RLE) format for bitmaps with 8 bpp. The
compression format is a 2-byte format consisting of a count byte
followed by a byte containing a color index. For more information,
see Bitmap Compression.

BI_RLE4 An RLE format for bitmaps with 4 bpp. The compression format is

a 2-byte format consisting of a count byte followed by two word-
length color indexes. For more information, see Bitmap
Compression.

BI_BITFIELDS Specifies that the bitmap is not compressed and that the color

BI_JPEG

BI_PNG

table consists of three DWORD color masks that specify the red,
green, and blue components, respectively, of each pixel. This is
valid when used with 16-bpp and 32-bpp bitmaps.

Windows 98, Windows 2000: Indicates that the image is a JPEG
image.

Windows 98, Windows 2000: Indicates that the image is a PNG
image.

Chapter 6 Bitmaps 127

biSizelmage
Specifies the size, in bytes, of the image. This may be set to zero for BI_RGB
bitmaps.
Windows 98, Windows 2000: If biCompression is BI_JPEG or BI_PNG,
biSizelmage indicates the size of the JPEG or PNG image buffer, respectively.

biXPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the
bitmap. An application can use this value to select a bitmap from a resource group
that best matches the characteristics of the current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

biClrUsed
Specifies the number of color indexes in the color table that are actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount member for the compression mode
specified by biCompression.

If biClrUsed is nonzero and the biBitCount member is less than 16, the biClrUsed
member specifies the actual number of colors the graphics engine or device driver
accesses. If biBitCount is 16 or greater, the biClrUsed member specifies the size of
the color table used to optimize performance of the system color palettes. If biBitCount
equals 16 or 32, the optimal color palette starts immediately following the three
DWORD masks.
If the bitmap is a packed bitmap (a bitmap in which the bitmap array immediately
follows the BITMAPINFO header and is referenced by a single pointer), the
biClrUsed member must be either zero or the actual size of the color table.
biClrimportant
Specifies the number of color indexes that are required for displaying the bitmap. If
this value is zero, all colors are required.

Remarks

The BITMAPINFO structure combines the BITMAPINFOHEADER structure and a color
table to provide a complete definition of the dimensions and colors of a DIB. For more
information about DIBs, see Device-Independent Bitmaps and BITMAPINFO.

An application should use the information stored in the biSize member to locate the
color table in a BITMAPINFO structure, as follows:

pﬁor = ((LPSTR)pBitmapInfo + i
(N&RD)(:pB*itmapIﬁfc >1ﬁm’iHeader b1S1Ze)), .

Windows 98, Windows 2000: The BITMAPINFOHEADER structure is extended to
allow a JPEG or PNG image to be passed as the source image to StretchDIBits.

128 Volume 3 Microsoft Windows GDI

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

BITMAPV4HEADER

The BITMAPV4HEADER structure is the Windows 95 and Windows NT 4.0 bitmap
information header file. Applications written for earlier versions of Windows NT should
continue to use BITMAPINFOHEADER. Applications written for Windows 2000 and
Windows 98 can use BITMAPV5SHEADER.

gtypedef struet {

‘bv4Compression; |
VAsizeImages =1
bV4XPelsParMeter;
N bV4YPelsPerMete 3
bVACIrUsed:
'TbV4C1rImportan1
V4Redﬂask¢
Vﬁﬁreenﬂask
.V4E1ueMask

' bvaganmagreen;
S bvAGammaBlue; o ot
¥ BITMAPV4HEAD£R 4PBITMAPVAHEADER:

Chapter 6 Bitmaps 129

Members

bV4Size
Specifies the number of bytes required by the structure. Applications should use this
member to determine which bitmap information header structure is being used.

bV4Width
Specifies the width of the bitmap, in pixels.
Windows 98, Windows 2000: If bV4Compression is BI_JPEG or BI_PNG,
bV4Width specifies the width of the JPEG or PNG image in pixels.

bV4Height
Specifies the height of the bitmap, in pixels. If bV4Height is positive, the bitmap is a
bottom-up DIB and its origin is the lower-left corner. If bV4Height is negative, the
bitmap is a top-down DIB and its origin is the upper-left corner.
if bV4Height is negative, indicating a top-down DIB, bV4Compression must be
either BI_RGB or BI_BITFIELDS. Top-down DIBs cannot be compressed.
Windows 98, Windows 2000: If bV4Compression is Bl_JPEG or BI_PNG,
bV4Height specifies the height of the JPEG or PNG image in pixels.

bV4Planes
Specifies the number of planes for the target device. This value must be set to 1.

bV4BitCount
Specifies the number of bits per pixel. The bV4BitCount member of the
BITMAPV4HEADER structure determines the number of bits that define each pixel
and the maximum number of colors in the bitmap. This member must be one of the
following values:

Value Meaning

0 Windows 98, Windows 2000: The number of bits-per-pixel is
specified or is implied by the JPEG or PNG file format.

1 The bitmap is monochrome, and the bmiColors member contains

two entries. Each bit in the bitmap array represents a pixel. If the
bit is clear, the pixel is displayed with the color of the first entry in
the bmiColors table; if the bit is set, the pixel has the color of the
second entry in the table.

4 The bitmap has a. maximum of 16 colors, and the bmiColors
member contains up to 16 entries. Each pixel in the bitmap is
represented by a 4-bit index into the color table. For example, if
the first byte in the bitmap is 0x1F, the byte represents two pixels.
The first pixel contains the color in the second table entry, and the
second pixel contains the color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the bmiColors
member contains up to 256 entries. In this case, each byte in the
array represents a single pixel.

(continued)

130

Volume 3 Microsoft Windows GDI

(continued)
Value

Meaning

16

24

32

bV4Compression

The bitmap has a maximum of 2416 colors. If the
bV4Compression member of the BITMAPINFOHEADER is
Bl_RGB, the bmiColors member is NULL. Each WORD in the
bitmap array represents a single pixel. The relative intensities of
red, green, and blue are represented with five bits for each color
component. The value for blue is in the least significant five bits,
followed by five bits each for green and red, respectively. The
most significant bit is not used. The bmiColors color table is used
for optimizing colors used on palette-based devices, and must
contain the number of entries specified by the bV4ClrUsed
member of the BITMAPV4HEADER.

If the bV4Compression member of the BITMAPV4AHEADER is

BI_BITFIELDS, the bmiColors member contains three DWORD
color masks that specify the red, green, and blue components of
each pixel. Each WORD in the bitmap array represents a single

pixel.

The bitmap has a maximum of 2724 colors, and the bmiColors
member is NULL. Each 3-byte triplet in the bitmap array
represents the relative intensities of blue, green, and red for a
pixel. The bmiColors color table is used for optimizing colors used
on palette-based devices, and must contain the number of entries
specified by the bV4ClrUsed member of the BITMAPV4HEADER.

The bitmap has a maximum of 2A32 colors. If the biCompression
member of the BITMAPV4HEADER is BI_RGB, the bmiColors
member is NULL. Each DWORD in the bitmap array represents
the relative intensities of blue, green, and red for a pixel. The high
byte in each DWORD is not used. The bmiColors color table is
used for optimizing colors used on palette-based devices, and
must contain the number of entries specified by the biClrUsed
member of the BITMAPV4HEADER.

If the bVv4Compression member of the BITMAPV4AHEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD
color masks that specify the red, green, and blue components of
each pixel. Each DWORD in the bitmap array represents a single
pixel.

Specifies the type of compression for a compressed bottom-up bitmap (top-down
DIBs cannot be compressed). This member can be one of the following values:

Chapter 6 Bitmaps 131

Value Description
BI_RGB An uncompressed format.
BI_RLES8 A run-length encoded (RLE) format for bitmaps with 8 bpp. The

compression format is a 2-byte format consisting of a count byte
followed by a byte containing a color index. For more information,
see Bitmap Compression.

BI_RLE4 An RLE format for bitmaps with 4 bpp. The compression format is a
2-byte format consisting of a count byte followed by two word-length
color indexes. For more information, see Bitmap Compression.

BI_BITFIELDS Specifies that the bitmap is not compressed. The members
bV4RedMask, bV4GreenMask, and bV4BlueMask specify the red,
green, and blue components for each pixel. This is valid when used
with 16-bpp and 32-bpp bitmaps.

BI_JPEG Windows 98, Windows 2000: Specifies that the image is
compressed using the JPEG file interchange format. JPEG
compression trades off compression against loss; it can achieve a
compression ratio of 20:1 with little noticeable loss.

BI_PNG Windows 98, Windows 2000: Specifies that the image is
compressed using the PNG file interchange format.

bV4Sizelmage
Specifies the size, in bytes, of the image. This may be set to zero for BI_RGB
bitmaps.
Windows 98, Windows 2000: If biCompression is BI_JPEG or BI_PNG,
bV4Sizelmage is the size of the JPEG or PNG image buffer.

bV4XPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the
bitmap. An application can use this value to select a bitmap from a resource group
that best matches the characteristics of the current device.

bV4YPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

bV4CirUsed
Specifies the number of color indexes in the color table that are actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the bV4BitCount member for the compression mode
specified by bV4Compression.

If bV4ClrUsed is nonzero and the bV4BitCount member is less than 16, the
bV4ClirUsed member specifies the actual number of colors the graphics engine or
device driver accesses. If bV4BitCount is 16 or greater, the bV4ClrUsed member
specifies the size of the color table used to optimize performance of the system color
palettes. If bV4BitCount equals 16 or 32, the optimal color palette starts immediately
following the BITMAPV4 HEADER.

132

Volume 3 Microsoft Windows GDI

When the bitmap array immediately follows the BITMAPINFO header, it is a packed
bitmap. Packed bitmaps are referenced by a single pointer. Packed bitmaps require
that the bV4ClrUsed member be either zero or the actual size of the color table.

bV4Clirimportant
Specifies the number of color indexes that are required for displaying the bitmap. If
this value is zero, all colors are important.
bV4RedMask
Color mask that specifies the red component of each pixel, valid only if
bV4Compression is set to BI_BITFIELDS.
bV4GreenMask
Color mask that specifies the green component of each pixel, valid only if
bV4Compression is set to BI_BITFIELDS.
bV4BlueMask
Color mask that specifies the blue component of each pixel, valid only if
bV4Compression is set to BI_BITFIELDS.
bV4AlphaMask
Color mask that specifies the alpha component of each pixel.
bV4CSType
Specifies the color space of the DIB. The following table lists the value for
bV4CSType:

Value Meaning

LCS_CALIBRATED_RGB This value indicates that endpoints and gamma
values are given in the appropriate fields.

See the LOGCOLORSPACE structure for information that defines a logical color
space.

bV4EndPoints
A CIEXYZTRIPLE structure that specifies the x, y, and z coordinates of the three
colors that correspond to the red, green, and blue endpoints for the logical color

space associated with the bitmap. This member is ignored unless the bV4CSType
member specifies LCS_CALIBRATED_RGB.

Note A color space is a model for representing color numerically in terms of three or
more coordinates. For example, the RGB color space represents colors in terms of
the red, green, and blue coordinates.

bV4GammaRed
Toned response curve for red. This member is ignored unless color values are
calibrated RGB values and bV4CSType is set to LCS_CALIBRATED_RGB. Specified
in 16716 format.

bV4GammaGreen

Toned response curve for green. Used if bV4CSType is set to
LCS_CALIBRATED_RGB. Specified as 16716 format.

Chapter 6 Bitmaps 133

bV4GammaBlue
Toned response curve for blue. Used if bV4CSType is set to
LCS_CALIBRATED_RGB. Specified as 16”16 format.

Remarks

The BITMAPINFO structure combines the BITMAPV4HEADER structure and a color
table to provide a complete definition of the dimensions and colors of a DIB. For more
information about DIBs, see Device-Independent Bitmaps and BITMAPINFO.

An application should use the information stored in the bV4Size member to locate the
color table in a BITMAPINFO structure, as follows:

Wmdows 98, Wmdows 2000: The BITMAPV4HEADER structure is extended to allow a
JPEG or PNG image to be passed as the source image to StretchDIBits.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

BITMAPV5HEADER

The BITMAPV5HEADER structure is the Windows 2000 and Windows 98 bitmap
information header file. The Independent Color Management interface (ICM) 2.0 allows
International Color Consortium (ICC) color profiles to be linked or embedded in DIBs
(DIBs). See Using Structures in ICM 2.0 for more information.

Applications written for Windows NT 4.0 and Windows 95 can use the
BITMAPV4HEADER structure. Applications written for earlier versions of Windows NT
should continue to use the BITMAPINFOHEADER structure.

The BITMAPV5HEADER is an extended version of BITMAPINFOHEADER and allows a
JPEG or PNG i |mage to be passed as the source |mage to StretchDIBits.

‘typedef s*t:rjm:t £

(continued)

134

Volume 3 Microsoft Windows GDI

(cont/nued)
v ”")z»;\bkl*spf{@rue'<";A~ g

5V5YPe1sPérMeter‘f By
bVSCTrUsed e

,~bVSRedMa$k: %
“fbVSGreenMask

Lé"g'bVSﬁammaRed o R
"V”TbVSGammaGreen‘ ER SR S

X?:,bVEPYdfiTeDéta, ﬁ5'1fﬁ K

, eﬂbV5Pr0f1!e51:e, '_v' “
' . bVSReserved; ' L
¥ EITMAPV%HEADER “#PBITMAP ,HEADER
Members
bV5Size

Specifies the number of bytes required by the structure. Applications should use this
member to determine which bitmap information header structure is being used.
bV5Width
Specifies the width of the bitmap, in pixels.
If bV5Compression is BI_JPEG or BI_PNG, the bV5Width member specifies the
width of the decompressed JPEG or PNG image in pixels.
bV5Height
Specifies the height of the bitmap, in pixels. If the value of bV5Height is positive, the
bitmap is a bottom-up DIB and its origin is the lower-left corner. If bV5Height value is
negative, the bitmap is a top-down DIB and its origin is the upper-left corner.
If bV5Height is negative, indicating a top-down DIB, bV5Compression must be
either BI_RGB or BI_BITFIELDS. Top-down DIBs cannot be compressed.
If bv5Compression is BI_JPEG or BI_PNG, the bV5Height member specifies the
height of the decompressed JPEG or PNG image in pixels.
bV5Planes
Specifies the number of planes for the target device. This value must be set to 1.
bV5BitCount

Specifies the number of bits that define each pixel and the maximum number of colors
in the bitmap.

Chapter 6 Bitmaps 135

This member can be one of the following values:

Value

Meaning

0

16

24

The number of bits per pixel is specified or is implied by the JPEG or
PNG file format.

The bitmap is monochrome, and the bmiColors member contains two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear,
the pixel is displayed with the color of the first entry in the bmiColors
color table. If the bit is set, the pixel has the color of the second entry in
the table.

The bitmap has a maximum of 16 colors, and the bmiColors member
contains up to 16 entries. Each pixel in the bitmap is represented by a 4-
bit index into the color table. For example, if the first byte in the bitmap is
0x1F, the byte represents two pixels. The first pixel contains the color in
the second table entry, and the second pixel contains the color in the
sixteenth table entry.

The bitmap has a maximum of 256 colors, and the bmiColors member
contains up to 256 entries. In this case, each byte in the array represents
a single pixel.

The bitmap has a maximum of 2216 colors. If the biCompression
member of the BITMAPV5HEADER structure is BI_RGB, the bmiColors
member is NULL. Each WORD in the bitmap array represents a single
pixel. The relative intensities of red, green, and blue are represented with
five bits for each color component. The value for blue is in the least
significant five bits, followed by five bits each for green and red. The most
significant bit is not used. The bmiColors color table is used for
optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPV5HEADER.

If the biCompression member of the BITMAPV5HEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components, respectively, of
each pixel. Each WORD in the bitmap array represents a single pixel.

When the biCompression member is BI_BITFIELDS, bits set in each
DWORD mask must be contiguous and should not overlap the bits of
another mask. All the bits in the pixel do not need to be used.

The bitmap has a maximum of 2424 colors, and the bmiColors member
is NULL. Each 3-byte triplet in the bitmap array represents the relative
intensities of blue, green, and red, respectively, for a pixel. The
bmiColors color table is used for optimizing colors used on palette-
based devices, and must contain the number of entries specified by the
biClrUsed member of the BITMAPV5HEADER structure.

(continued)

136

Volume 3 Microsoft Windows GDI

(continued)
Value Meaning
32 The bitmap has a maximum of 232 colors. If the biCompression

member of the BITMAPV5HEADER is BI_RGB, the bmiColors member
is NULL. Each DWORD in the bitmap array represents the relative
intensities of blue, green, and red, respectively, for a pixel. The high byte
in each DWORD is not used. The bmiColors color table is used for
optimizing colors used on palette-based devices, and must contain the
number of entries specified by the biClrUsed member of the
BITMAPV5HEADER.

If the biCompression member of the BITMAPV5HEADER is
BI_BITFIELDS, the bmiColors member contains three DWORD color
masks that specify the red, green, and blue components of each pixel.
Each DWORD in the bitmap array represents a single pixel.

bV5Compression
Specifies that the bitmap is not compressed. The bV5RedMask, bV5GreenMask,
and bV5BlueMask members specify the red, green, and blue components of each
pixel. This is valid when used with 16-bpp and 32-bpp bitmaps. This member can be
one of the following values:

Value

Meaning

BI_RGB

BI_RLE8

BI_RLE4

An uncompressed format.

A run-length encoded (RLE) format for bitmaps with 8 bpp. The
compression format is a two-byte format consisting of a count
byte followed by a byte containing a color index. If
bV5Compression is BI_RGB and the bV5BitCount member is
16, 24, or 32, the bitmap array specifies the actual intensities of
blue, green, and red rather than using color table indexes. For
more information, see Bitmap Compression.

An RLE format for bitmaps with 4 bpp. The compression format
is a two-byte format consisting of a count byte followed by two
word-length color indexes. For more information, see Bitmap
Compression.

BI_BITFIELDS Specifies that the bitmap is not compressed and that the color

BI_JPEG

BI_PNG

table consists of three BWORD color masks that specify the red,
green, and blue components of each pixel. Valid when used with
16-bpp and 32-bpp bitmaps.

Specifies that the image is compressed using the JPEG file
Interchange Format. JPEG compression trades off compression
against loss; it can achieve a compression ratio of 20:1 with little
noticeable loss.

Specifies that the image is compressed using the PNG file
Interchange Format.

Chapter 6 Bitmaps 137

bV5Sizelmage
Specifies the size, in bytes, of the image. This may be set to zero for BI_RGB
bitmaps.
If bv5Compression is BI_JPEG or BI_PNG, bVSizelmage is the size of the JPEG or
PNG image buffer.

bV5XPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the
bitmap. An application can use this value to select a bitmap from a resource group
that best matches the characteristics of the current device.

bV5YPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the
bitmap.

bV5CirUsed
Specifies the number of color indexes in the color table that are actually used by the
bitmap. If this value is zero, the bitmap uses the maximum number of colors
corresponding to the value of the bV5BitCount member for the compression mode
specified by bV5Compression.
If bV5CIrUsed is nonzero and bV5iBitCount is less than 16, the bV5CIrUsed
member specifies the actual number of colors the graphics engine or device driver
accesses. If bV5BitCount is 16 or greater, the bV5CIrUsed member specifies the
size of the color table used to optimize performance of the system color palettes. If
bV5BitCount equals 16 or 32, the optimal color palette starts immediately following
the BITMAPV5HEADER. If BV5CIrUsed is nonzero, the color table is used on
palettized devices, and bV5CIrUsed specifies the number of entries.
When the bitmap array immediately follows the BITMAPINFO header, it is a packed
bitmap. Packed bitmaps are referenced by a single pointer. Packed bitmaps require
that the bV5CIrUsed member must be either zero or the actual size of the color table.

bV5CIirimportant
Specifies the number of color indexes that are required for displaying the bitmap. If
this value is zero, all colors are required.

bV5RedMask
Color mask that specifies the red component of each pixel, valid only if
bV5Compression is set to BI_BITFIELDS.

bV5GreenMask
Color mask that specifies the green component of each pixel, valid only if
bV5Compression is set to BI_BITFIELDS.

bV5BlueMask
Color mask that specifies the blue component of each pixel, valid only if
bV5Compression is set to BI_BITFIELDS.

bV5AlphaMask
Color mask that specifies the alpha component of each pixel.

bV5CSType
Specifies the color space of the DIB.

138

Volume 3 Microsoft Windows GDI

The following table specifies the values for bV5CSType:

Value Meaning

LCS_CALIBRATED_RGB This value implies that endpoints and
gamma values are given in the appropriate
fields.

LCS_sRGB Specifies that the bitmap is in sSRGB color
space.

LCS_WINDOWS_COLOR_SPACE This value indicates that the bitmap is in the
system default color space, sRGB.

PROFILE_LINKED This value indicates that bV5ProfileData
points to the file name of the profile to use
(gamma and endpoints values are ignored).

PROFILE_EMBEDDED This value indicates that bV5ProfileData
points to a memory buffer that contains the
profile to be used (gamma and endpoints
values are ignored).

See the LOGCOLORSPACE structure for information that defines a logical color
space.

bV5EndPoints
A CIEXYZTRIPLE structure that specifies the x-, y-, and z-coordinates of the three
colors that correspond to the red, green, and blue endpoints for the logical color
space associated with the bitmap. This member is ignored unless the bV5CSType
member specifies LCS_CALIBRATED_RGB.

bV5GammaRed
Toned response curve for red. Used if bV5CSType is set to
LCS_CALIBRATED_RGB. Specified in 16716 format.

bV5GammaGreen
Toned response curve for green. Used if bV5CSType is set to
LCS_CALIBRATED_RGB. Specified in 16216 format.

bV5GammaBlue
Toned response curve for blue. Used if bV5CSType is set to
LCS_CALIBRATED_RGB. Specified in 16”16 format.

bV5ProfileSize
Size, in bytes, of embedded profile data.

bV5Intent
Rendering intent for bitmap. This can be one of the following values:

Chapter 6 Bitmaps 139

Value Intent ICC name Meaning

LCS_GM_ABS_COLORIMETRIC Match Absolute Maintains the white point.
Colorimetric Matches the colors to their
nearest color in the destination
gamut.

LCS_GM_BUSINESS Graphic Saturation Maintains saturation. Used for
business charts and other
situations in which undithered
colors are required.

LCS_GM_GRAPHICS Proof Relative Maintains colorimetric match.

Colorimetric Used for graphic designs and
named colors.

LCS_GM_IMAGES Picture Perceptual Maintains contrast. Used for
photographs and natural images.

bV5ProfileData
The offset, in bytes, from the beginning of the BITMAPV5HEADER structure to the
start of the profile data. If the profile is embedded, profile data is the actual profile, and
it is linked. (The profile data is the null-terminated file name of the profile.) This cannot
be a Unicode string. It must be composed exclusively of characters from the Windows
character set (code page 1252). These profile members are ignored unless the
bV5CSType member specifies PROFILE_LINKED or PROFILE_EMBEDDED.

bV5Reserved
This member has been reserved for future use. Its value should be set to zero.

Remarks

The BITMAPINFO structure combines the BITMAPV5SHEADER structure and a color
table to provide a complete definition of the dimensions and colors of a DIB. For more
information about DIBs, see Device-Independent Bitmaps and BITMAPINFO.

An application should use the information stored in the bV5Size member to locate the
color table in a BITMAPINFO structure, as follows:
fp(}d]‘gr’é,‘((.LPSTR)‘pBi\tmapIﬁfo : '+‘ ,

. (WORD)(pBitmapInfo->bmiHeader.biSize));

If bV5Height is negative, indicating a top-down DIB, bV5Compression must be either
BI_RGB or BI_BITFIELDS. Top-down DIBs cannot be compressed.

When a DIB is loaded into memory, the profile data (if present) should follow the color
table, and the bV5ProfileData should provide the offset of the profile data from the
beginning of the BITMAPV5HEADER structure. The value stored in bV5ProfileDate will
be different from the value returned by the sizeof operator given the
BITMAPV5HEADER argument, because bV5ProfileData is the offset in bytes from
thebeginning of the BITMAPV5HEADER structure to the start of the profile data. (Bitmap
bits do not follow the color table in memory). Applications should modify the
bV5ProfileData member after loading the DIB into memory.

140

Volume 3 Microsoft Windows GDI

For packed DIBs, the profile data should follow the bitmap bits similar to the file format.
The bV5ProfileData member should still give the offset of the profile data from the
beginning of the BITMAPV5HEADER.

Applications should access the profile data only when bV5Size equals the size of the
BITMAPB5HEADER and bV5CSType equals PROFILE_EMBEDDED or
PROFILE_LINKED.

If a profile is linked, the path of the profile can be any fully qualified name (including a
network path) that can be opened using the CreateFile function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Ko Fn
Bitmaps Overview, Bitmap Structures

BLENDFUNCTION

The BLENDFUNCTION structure controls blending by specifying the blending functions
for source and destination bitmaps.

CBYTE - Alphaformaty oo oo
YBLENDFUNCTION;: ¥PBLENDFUNCTLON, $PBLENDFUNCTIONS
Members

BlendOp

Specifies the source blend operation. Currently, the only source and destination blend
operation that has been defined is AC_SRC_OVER. For details, see the following
Remarks section.

BlendFlags
Must be zero.

SourceConstantAlpha
Specifies an alpha transparency value to be used on the entire source bitmap. The
SourceConstantAlpha value is combined with any per-pixel alpha values in the
source bitmap. If you set SourceConstantAlpha to 0, it is assumed that your image

Chapter 6 Bitmaps 141

is transparent. Set the SourceConstantAlpha value to 255 (opaque) when you only
want to use per-pixel alpha values.

AlphaFormat
This member controls the way the source and destmatlon bitmaps are interpreted.
AlphaFormat has the following value:

Value Meaning

AC_SRC_ALPHA This flag is set when the bitmap has an Alpha channel (that is,
per-pixel alpha). Note that the APIs use premultiplied alpha,
which means that the red, green and blue channel values in
the bitmap must be premultiplied with the alpha channel value.
For example, if the alpha channel value is x, the red, green
and blue channels must be multiplied by x and divided by Oxff
prior to the call.

Remarks

When the AC_SRC_OVER operation is used, the source bitmap is placed over the
destination bitmap based on the alpha values of the source pixels.

If the source bitmap has no per-pixel alpha value, the blend is based on the
SourceConstantAlpha value, as shown in the following table:

Dst.Red = Src.Red * SourceConstantAlpha +
‘ (1 - SourceConstantAlpha) * Dst.Red

Dst.Green = Src.Green * SourceConstantAlpha +
(1 - SourceConstantAlpha) * Dst.Green
Dst.Blue = Src.Blue * SourceConstantAlpha +

(1 - SourceConstantAlpha) * Dst.Blue

If the source bitmap has per-pixel alpha and the SourceConstantAlpha is not used (that
is, it equals Oxff), the blend is based on the per-pixel alpha, as shown in the following
table:

Dst.Red Src.Red + (1 - Src.Alpha) * Dst.Red
Dst.Green = Src.Green + (1 - Src.Alpha) * Dst.Green
Dst.Blue Src.Blue + (1 - Src.Alpha) * Dst.Blue

If the destination bitmap has an alpha channel, then:
Dst.alpha = Src.Alpha + (1 - SrcAlpha) * Dst.Alpha
If the source has per-pixel alpha and the SourceConstantAlpha is used (that is, it is not

Oxff), the source is pre-multiplied by the SourceConstantAlpha and then the blend is
based on the per-pixel alpha. The following tables show this:

142 Volume 3 Microsoft Windows GDI

Src.Red = Src.Red * SourceConstantAlpha;
Src.Green = Src.Green * SourceConstantAlpha;
Src.Blue = Src.Blue * SourceConstantAlpha;
Src.Alpha = Src.Alpha * SourceConstantAlpha;

Dst.Red = Src.Red + (1 - Src.Alpha) * Dst.Red
Dst.Green = Src.Green + (1 - Src.Alpha) * Dst.Green
Dst.Blue = Src.Blue + (1 - Src.Alpha) * Dst.Blue

Dst.Alpha = Src.Alpha + (1 - Src.Alpha) * Dst.Alpha

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

TS 24

Bitmaps Overview, Bitmap Structures

COLORADJUSTMENT

The COLORADJUSTMENT structure defines the color adjustment values used by the
StretchBIt and StretchDIBits functions when the stretch mode is HALFTONE. You can
set the color adjustment values by calling the SetCoIorAdjustment function.

4typédef struct tagCGLORABJUSTMENT 1=
UWORD caSizey . .
1”ﬂﬁRDj_caF1ags.: |
L;WO&D?Qcalllum1nant1ndex. .
< WORD -caRedGamma ;- ’
~HORD fcaGreenGammax
*WORD }caBTueGamma, .
" MORD caReferenceBlacks = o
¥, NQRB>>caReferencewh}te,ﬂfifff S
LTSEGRT cacantras o

Chapter 6 Bitmaps

143

Members
caSize

Specifies the size, in bytes, of the structure.

caFlags

Specifies how the output image should be prepared. This member may be set to
NULL or any combination of the following values:

Value

Meaning

CA_LOG_FILTER

CA_NEGATIVE

callluminantindex

Specifies that a logarithmic function should
be applied to the final density of the output
colors. This will increase the color contrast
when the luminance is low.

Specifies that the negative of the original
image should be displayed.

Specifies the type of standard light source under which the image is viewed. This
member may be set to one of the following values:

Value

Meaning

ILLUMINANT_DEVICE_DEFAULT

ILLUMINANT_A
ILLUMINANT_B
ILLUMINANT_C
ILLUMINANT_D50
ILLUMINANT_D55
ILLUMINANT_D65

ILLUMINANT_D75
ILLUMINANT_DAYLIGHT
ILLUMINANT_F2
ILLUMINANT_FLUORESCENT
ILLUMINANT_NTSC
ILLUMINANT_TUNGSTEN

caRedGamma

Device’s default. Standard used by output
devices.

Tungsten lamp.
Noon sunlight.
NTSC daylight.
Normal print.
Bond paper print.

Standard daylight. Standard for CRTs and
pictures.

Northern daylight.

Same as ILLUMINANT_C.
Cool white lamp.

Same as ILLUMINANT_F2.
Same as ILLUMINANT_C.
Same as ILLUMINANT_A.

Specifies the nth power gamma-correction value for the red primary of the source
colors. The value must be in the range from 2500 to 65,000. A value of 10,000 means

no gamma correction.
caGreenGamma

144 Volume 3 Microsoft Windows GDI

Specifies the nth power gamma-correction value for the green primary of the source
colors. The value must be in the range from 2500 to 65,000. A value of 10,000 means
no gamma correction.

caBlueGamma
Specifies the nth power gamma-correction value for the blue primary of the source
colors. The value must be in the range from 2500 to 65,000. A value of 10,000 means
no gamma correction.

caReferenceBlack
Specifies the black reference for the source colors. Any colors that are darker than
this are treated as black. The value must be in the range from 0 to 4000.

caReferenceWhite
Specifies the white reference for the source colors. Any colors that are lighter than
this are treated as white. The value must be in the range from 6000 to 10,000.

caContrast
Specifies the amount of contrast to be applied to the source object. The value must be
in the range from —100 to 100. A value of 0 means no contrast adjustment.

caBrightness
Specifies the amount of brightness to be applied to the source object. The value must
be in the range from —100 to 100. A value of 0 means no brightness adjustment.

caColorfulness
Specifies the amount of colorfulness to be applied to the source object. The value
must be in the range from —100 to 100. A value of 0 means no colorfulness
adjustment.

caRedGreenTint
Specifies the amount of red or green tint adjustment to be applied to the source
object. The value must be in the range from —100 to 100. Positive numbers adjust
towards red and negative numbers adjust towards green. Zero means no tint
adjustment.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, GetColorAdjustment, SetColorAdjustment,
SetStretchBItMode, StretchBlt, StretchDIBits

Chapter 6 Bitmaps 145

DIBSECTION

The DIBSECTION structure contains information about a DIB created by calling the
CreateDIBSection function. A DIBSECTION structure includes information about the
bitmap’s dimensions, color format, color masks, optional file mapping object, and
optional bit values storage offset. An application can obtain a filled-in DIBSECTION
structure for a given DIB by calling the GetObject function.

o dsoffs
‘) DIBSECTION, *PDIBSECTION;:
Members

dsBm

A BITMAP data structure that contains information about the DIB: its type, its
dimensions, its color capacities, and a pointer to its bit values.

dsBmih
A bitmap information header structure that contains information about the color format
of the DIB.
A bitmap information header structure may be one of the following:
Operating system Bitmap information header
Windows NT 3.51 and earlier BITMAPINFOHEADER
Windows NT 4.0 and Windows 95 BITMAPV4HEADER
Windows 2000 and Windows 98 BITMAPV5HEADER.
dsBitfields

Specifies three DWORD color masks for the DIB. This field is only valid when the
BitCount member of the Bitmap Information Header structure has a value greater
than 8. Each color mask indicates the bits within a DWORD that are used to encode
one of the three color channels (red, green, and blue).

dshSection
Contains a handle to the file mapping object that the CreateDIBSection function used
to create the DIB. If CreateDIBSection was called with a NULL value for its hSection
parameter, causing the system to allocate memory for the bitmap, the dshSection
member will be NULL.

dsOffset
Specifies the offset to the bitmap’s bit values within the file mapping object referenced
by dshSection. If dshSection is NULL, the dsOffset value has no meaning.

146

Volume 3 Microsoft Windows GDI

Wlndows NT/2000: Requnres Wlndows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

itmaps Overview, Bitrhap Structures, BITMAP, BITMAPINFOHEADER,
CreateDIBSection, GetDIBColorTable, GetObject

GRADIENT_RECT

The GRADIENT_RECT structure specifies the index of two vertices in the pVertex array.
These two vertices form the upper-left and lower-right boundaries of a rectangle.

typedef struct GRADIER‘E’ REGT
ULORG Upper‘Left
ULONﬁ . Lowermght :

]‘GRADIENT RECT *PGRADIEHT RECT

Members

UpperLeft
Specifies the upper-left corner of a rectangle.

LowerRight
Specifies the lower-right corner of a rectangle.

Remarks

The GRADIENT_RECT structure contains the values used in the dwMode parameter of
the GradientFill function. For related GradientFill structures, see
GRADIENT_TRIANGLE and TRIVERTEX.

For an example of the use of this structure, see Drawing a Shaded Rectangle.

2

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

Chapter 6 Bitmaps 147

GRADIENT_TRIANGLE

The GRADIENT_TRIANGLE structure specifies the index of three vertices in the
pVertex array. These three vertices form one triangle.

Members
Vertexi
First point of the triangle where sides intersect.

Vertex2
Second point of the triangle where sides intersect.

Vertex3
Third point of the triangle where sides intersect.

Remarks

The GRADIENT_TRIANGLE structure contains the values used in the dwMode
parameter of the GradientFill function. For related GradientFill structures, see
GRADIENT_RECT and TRIVERTEX.

For an example of this function, see Drawing a Shaded Triangle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, GradientFill, GRADIENT_RECT, TRIVERTEX

148 Volume 3 Microsoft Windows GDI

RGBQUAD

The RGBQUAD structure describes a color consisting of relative intensities of red,
green, and blue.

Members

rgbBlue ;
Specifies the intensity of blue in the color.

rgbGreen
Specifies the intensity of green in the color.

rgbRed
Specifies the intensity of red in the color.

rgbReserved
Reserved; must be zero.

Remarks

The bmiColors member of the BITMAPINFO structure consists of an array of
RGBQUAD structures.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.

-+

Bitmaps Overview, Bitmap Structures, BITMAPINFO, CreateDIBitmap,
CreateDIBSection, GetDIBits, SetDIBits, SetDIBitsToDevice, StretchDIBits

Chapter 6 Bitmaps 149

RGBTRIPLE

The RGBTRIPLE structure describes a color consisting of relative intensities of red,
green, and blue. The bmciColors member of the BITMAPCOREINFO structure consists
of an array of RGBTRIPLE structures.

GBT!
Members
rgbtBlue
Specifies the intensity of blue in the color.
rgbtGreen
Specifies the intensity of green in the color.
rgbtRed
Specifies the intensity of red in the color.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures, BITMAPCOREINFO

150 Volume 3 Microsoft Windows GDI

SIZE

The SIZE structure specifies the width and height of a rectangle.

‘typedef struct tagSIZE { =
L LONG ¢X; - B
¥SIZE, *PSIZE;
Members
(4

Specifies the rectangle’s width.

cy
Specifies the rectangle’s height.

Remarks

The rectangle dimensions stored in this structure may correspond to viewport extents,
window extents, text extents, bitmap dimensions, or the aspect-ratio filter for some
extended functions.

_Requiements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in windef.h; include windows.h.

Bitmaps Overview, Bitmap Structures, GetAspectRatioFilterEx,
GetBitmapDimensionEx, GetTextExtentPoint32, GetViewportExtEX,
GetWindowEXxtEx, ScaleViewportExtEx, ScaleWindowEXxtEx,
SetBitmapDimensionEx, SetViewportExtEx, SetWindowExtEx

Chapter 6 Bitmaps 151

TRIVERTEX

The TRIVERTEX structure contains color mformatnon and posmon information.
typedef struct _TRIVERTEX { AT ' ’

Members
X
Specifies the x-coordinate, in logical units, of the upper-left corner of the rectangle.
Y Specifies the y-coordinate, in logical units, of the upper-left corner of the rectangle.
Red
Indicates color information at the point of x, y.
Green
Indicates color information at the point of x, y.
Blue
Indicates color information at the point of x, y.
Alpha
Indicates color information at the point of x, y.
Remarks

In the TRIVERTEX structure, x and y indicate position in the same manner as in the
POINTL structure contained in the wtypes.h header file. Red, Green, Blue, and Alpha
members indicate color information at the point x, y. The color information of each
channel is specified as a value from 0x0000 to 0xff00. This allows higher color resolution
for an object that has been split into small triangles for display. The TRIVERTEX structure
contains information needed by the pVertex parameter of GradientFill. For an example
of the use of this structure, see Drawing a Shaded Triangle and Drawing a Shaded
Rectangle.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Structures

152 Volume 3 Microsoft Windows GDI

Bitmap Macros

MAKEROP4

The MAKEROP4 macro creates a quaternary raster operation code for use with the
MaskBIt function. The macro takes two ternary raster operation codes as input, one for
the foreground and one for the background, and packs their Boolean operation indexes
into the high-order word of a 32-bit value. The low-order word of this value will be
ignored.

Parameters

fore
Specifies a foreground ternary raster operation code.

back
Specifies a background ternary raster operation code
Return Values

The return value is a DWORD quaternary raster operation code for use with the MaskBit
function.

ks NS .

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.

Bitmaps Overview, Bitmap Macros, MaskBIt

153

CHAPTER 7

Brushes

A brush is a graphics tool that a Win32-based application uses to paint the interior of
polygons, ellipses, and paths. Drawing applications use brushes to paint shapes; word
processing applications use brushes to paint rules; computer-aided design (CAD)
applications use brushes to paint the interiors of cross-section views; and spreadsheet
applications use brushes to paint the sections of pie charts and the bars in bar graphs.

About Brushes

There are two types of brushes: logical and physical. A logical brush is a description of
the ideal bitmap that an application uses to paint shapes. A physical brush is the actual
bitmap that a device driver creates based on an application’s logical-brush definition. For
more information about bitmaps, see Bitmaps.

When an application calls one of the functions that creates a brush, it retrieves a handle
that identifies a logical brush. When the application passes this handle to the
SelectObject function, the device driver for the corresponding display or printer creates
the physical brush.

Brush Origin

When an application calls a drawing function to paint a shape, the system positions a
brush at the start of the paint operation and maps a pixel in the brush bitmap to the client
area at the window origin, which is the upper-left corner of the window. The coordinates
of the pixel that the system maps are called the brush origin. The default brush origin is
located in the upper-left corner of the brush bitmap, at the coordinates (0,0). The system
then copies the brush across the client area, forming a pattern that is as tall as the
bitmap. The copy operation continues, row by row, until the entire client area is filled.
However, the brush pattern is visible only within the boundaries of the specified shape.

There are instances when the default brush origin should not be used. For example, it
may be necessary for an application to use the same brush to paint the backgrounds of
its parent and child windows and blend a child window’s background with that of the
parent window. To do this, the application should reset the brush origin by calling the
SetBrushOrgEx function and shifting the origin the required number of pixels. (An
application can retrieve the current brush origin by calling the GetBrushOrgEx function.)

Figure 7-1 shows a five-pointed star filled by using an application-defined brush. The
illustration shows a zoomed image of the brush, as well as the location to which it was
mapped at the beginning of the paint operation.

154 Volume 3 Microsoft Windows GDI

Bruzh arigin

The brush origin is mapped
to the window orngin.

[Mndnw arigin
| :

Figure 7-1: Using an application-defined brush to fill a figure.

Logical Brush Types

There are four types of logical brushes: solid, stock, hatch, and pattern. These
brushes are shown in the following illustration.

A
Solid brusgh . Hatch brush (5
'ﬂ-ﬁux ="
Qi
Stock brush . Pattern brush | ::1
O

The stock and hatch types each have several predefined brushes.

The CreateBrushindirect function creates a logical brush with a specified style, color,
and pattern.

Chapter 7 Brushes 155

Solid Brush

A solid brush is a logical brush that contains 64 pixels of the same color. An application
can create a solid logical brush by calling the CreateSolidBrush function, specifying the
color of the brush required. After creating the solid brush, the application can select it
into its device context and use it to paint filled shapes.

Stock Brush

There are seven predefined logical stock brushes maintained by the graphics device
interface (GDI). There are also 21 predefined logical stock brushes maintained by the
window management interface (USER).

The following rectangles were painted by using the seven predefined stock brushes.

Black . Light gray
Dark gray - Mull

White

Gray |

Hollow

An application can retrieve a handle identifying one of the seven stock brushes by calling
the GetStockObiject function, specifying the brush type.

The 21 stock brushes maintained by the window management interface correspond to
the colors of window elements such as menus, scroll bars, and buttons. An application
can obtain a handle identifying one of these brushes by calling the GetSysColorBrush
function and specifying a system-color value. An application can retrieve the color
corresponding to a particular window element by calling the GetSysColor function. An
application can set the color corresponding to a window element by calling the
SetSysColors function.

Hatch Brush

There are six predefined logical hatch brushes maintained by GDI. The following
rectangles were painted by using the six predefined hatch brushes.

156

Volume 3 Microsoft Windows GDI

b
Forward diagonal /
R %%

Backward diagonal

Cross Honzontal

§ % Vertical

An application can create a hatch brush by calling the CreateHatchBrush function,
specifying one of the six hatch styles.

Diagonal cross g

N,

Pattern Brush

A pattern (or custom) brush is created from an application-defined bitmap or device-
independent bitmap (DIB). The following rectangles were painted by using different
pattern brushes.

Pattern 1

Pattern 2

Pattern 3

0,

Q=g=D)
CInCln

To create a logical pattern brush, an application must first create a bitmap. After creating
the bitmap, the application can create the logical pattern brush by calling the
CreatePatternBrush or CreateDIBPatternBrushPt function, supplying a handle that
identifies the bitmap (or DIB). The brushes that appear in the preceding illustration were
created from monochrome bitmaps. For a description of bitmaps, DIBs, and the functions
that create them, see Bitmaps.

Pattern Block Transfer

The name of the PatBIt function (an abbreviation for pattern block transfer) implies that
this function simply replicates the brush (or pattern) until it fills a specified rectangle.
However, the function is actually much more powerful. Before replicating the brush, it
combines the color data for the pattern with the color data for the existing pixels on the
video display by using a raster operation (ROP). An ROP is a bitwise operation that is
applied to the bits of color data for the replicated brush and the bits of color data for the
target rectangle on the display device. There are 256 ROPs; however, the PatBIt
function recognizes only those that require a pattern and a destination (not those that
require a source). The following table identifies the most common ROPs.

Chapter 7 Brushes 157

ROP Description

PATCOPY Copies the pattern to the destination bitmap.

PATINVERT Combines the destination bitmap with the pattern by using the
Boolean XOR operator.

DSTINVERT Inverts the destination bitmap.

BLACKNESS Turns all output to binary zeroes.

WHITENESS Turns all output to binary ones.

For more information, see Raster Operation Codes.

ICM-Enabled Brush Functions

Microsoft Windows 98 and Microsoft Windows 2000 have been designed to work with
Microsoft Image Color Management (ICM). ICM technology ensures that a color image,
graphic, or text object is rendered as close as possible to its original intent on any
device, despite differences in imaging technologies and color capabilities between
devices. Whether you are scanning an image or other graphic on a color scanner,
downloading it over the Internet, viewing or editing it on the screen, or outputting it to
paper, film, or other media, ICM 2.0 helps you keep its colors consistent and accurate.
For more information on ICM, see About Image Color Management Version 2.0.

The following brush functions are enabled for use with ICM:

e CreateBrushindirect

e CreateDIBPatternBrush
e CreateDIBPatternBrushPt
e CreateHatchBrush

¢ CreatePatternBrush

e CreateSolidBrush

Brush Reference

Brush Functions

CreateBrushindirect

The CreateBrushindirect function creates a logical brush that has the specified style,
color, and pattern.

smE.gs. s

158

Volume 3 Microsoft Windows GDI

Parameters
Iplb
[in] Pointer to a LOGBRUSH structure that contains information about the brush.

Return Values
If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateBrushindirect, it can select it into
any device context by calling the SelectObject function.

A brush created by using a monochrome bitmap (one color plane, one bit per pixel) is
drawn using the current text and background colors. Pixels represented by a bit set to 0
are drawn with the current text color; pixels represented by a bit set to 1 are drawn with
the current background color.

If the IbStyle member of the LOGBRUSH structure pointed to by /p/b is BS_PATTERN,
the bitmap pointed to by the IbHatch member of that structure cannot be a DIB section.
A DIB section is a bitmap created by the CreateDIBSection function. If IbStyle is

BS_PATTERN and the bitmap is a DIB section, the CreateBrushindirect function fails.

When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when
the brush is selected into an ICM-enabled device context.

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not
supported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs
larger than 8 by 8 pixels.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Chapter 7 Brushes 159

Brushes Overview, Brush Functions, CreateDiBSection, DeleteObject,
GetBrushOrgEx, LOGBRUSH, SelectObject, SetBrushOrgEx

CreateDIBPatternBrushPt

The CreateDIBPatternBrushPt function creates a logical brush that has the pattern
specified by the device-independent bitmap (DIB).

Parameters

IpPackedDIB
[in] Pointer to a packed DIB consisting of a BITMAPINFO structure immediately
followed by an array of bytes defining the pixels of the bitmap.

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not
supported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs
larger than 8 by 8 pixels.

iUsage
[in] Specifies whether the bmiColors member of the BITMAPINFO structure contains
a valid color table and, if so, whether the entries in this color table contain explicit red,
green, blue (RGB) values or palette indices. The jUsage parameter must be one of
the following values.

Value Meaning

DIB_PAL_COLORS A color table is provided and consists of an array of
16-bit indices into the logical palette of the device
context into which the brush is to be selected.

DIB_RGB_COLORS A color table is provided and contains literal RGB
values.

Return Values
If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetLastError.

160 Volume 3 Microsoft Windows GDI

Remarks
A brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateDIBPatternBrushPt, it can select
that brush into any device context by calling the SelectObject function.

When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when
the brush is selected into an ICM-enabled device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Brushes Overview, Brush Functions, BITMAPINFO, CreateDIBPatternBrush,
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, DeleteObject,
GetBrushOrgEx, SelectObject, SetBrushOrgEx

CreateHatchBrush

The CreateHatchBrush function creates a logical brush that has the specified hatch
pattern and color.

HBﬁUSH CreataﬂatchBrysh(

Parameters
fnStyle
[in] Specifies the haich styie of the brush. This parameter can be one of the foilowing
values.
Value Meaning
HS_BDIAGONAL 45-degree downward left-to-right hatch
HS_CROSS Horizontai and vertical crosshatch

HS_DIAGCROSS 45-degree crosshatch

Chapter 7 Brushes 161

Value Meaning
HS_FDIAGONAL 45-degree upward left-to-right hatch
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch
clrref

[in] Specifies the foreground color of the brush that is used for the hatches. To create
a COLORREF color value, use the RGB macro.

Return Values
If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateHatchBrush, it can select that
brush into any device context by calling the SelectObject function.

If an application uses a hatch brush to fill the backgrounds of both a parent and a child
window with matching color, it may be necessary to set the brush origin before painting
the background of the child window. You can do this by having your application call the
SetBrushOrgEx function. Your application can retrieve the current brush origin by
calling the GetBrushOrgEXx function.

When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when
the brush is selected into an ICM-enabled device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Brushes Overview, Brush Functions, CréateblBPatternBrush,
CreateDIBPatternBrushPt, CreatePatternBrush, CreateSolidBrush, DeleteObject,
GetBrushOrgEx, SelectObject, SetBrushOrgEx, COLORREF, RGB

162 Volume 3 Microsoft Windows GDI

CreatePatternBrush

The CreatePatternBrush function creates a logical brush with the specified bitmap
pattern. The bitmap can be a DIB section bitmap, which is created by the
CreateDIBSection function.

B T

Parameters

hbmp
[in] Handle to the bitmap to be used to create the logical brush.

Windows 95: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not
supported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/2000 and Windows 98: Brushes can be created from bitmaps or DIBs
larger than 8 by 8 pixels.

Return Values
If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetlLastError.

Remarks
A pattern brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreatePatternBrush, it can select that
brush into any device context by calling the SelectObject function.

You can delete a pattern brush without affecting the associated bitmap by using the
DeleteObject function. Therefore, you can then use this bitmap to create any number of
pattern brushes. :

A brush created by using a monochrome (1 bit per pixel) bitmap has the textand
background colors of the device context to which it is drawn. Pixels represented by a 0
bit are drawn with the current text color; pixels represented by a 1 bit are drawn with the
current background color.

ICM: No color is done at brush creation. However, color management is performed when
the brush is selected into an ICM-enabled device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.

Chapter 7 Brushes 163

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Brushes Overview, Brush Functions, CreateBitmap, CreateBitmaplindirect,
CreateCompatibleBitmap, CreateDIBPatternBrush, CreateDIBPatternBrushPt,
CreateDIBSection, CreateHatchBrush, DeleteObject, GetBrushOrgEx, LoadBitmap,
SelectObject, SetBrushOrgEx

CreateSolidBrush

The CreateSolidBrush function creates a Ioglcal brush that has the specmed solid color.

;BBRUSH Cr‘eatﬁSoHdBrush(R
it DL{)RREE cho?ar // brush co]or vaTua

Parameters

crColor
[in] Specifies the color of the brush. To create a COLORREF color value, use the
RGB macro.

Return Values
If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.
Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A solid brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateSolidBrush, it can select that
brush into any device context by calling the SelectObject function.

ICM: No color is done at brush creation. However, color management is performed when
the brush is selected into an ICM-enabled device context.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

164

Volume 3 Microsoft Windows GDI

Brushes Overview, Brush Functions, CreateDIBPatternBrush‘,
CreateDIBPatternBrushPt, CreateHatchBrush, CreatePatternBrush, DeleteObject,
SelectObject, COLORREF, RGB

GetBrushOrgEx

The GetBrushOrgEx function retrieves the current brush origin for the specified device
context. This function replaces the GetBrushOrg function.

""BrushOrgEx(

Parameters

hde
[in] Handle to the device context.

Ippt b
[out] Pointer to a POINT structure that receives the brush origin, in device
coordinates.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A brush is a bitmap that the system uses to paint the interiors of filled shapes.

The brush origin is a set of coordinates with values between 0 and 7, specifying the
location of one pixel in the bitmap. The default brush origin coordinates are (0,0). For
horizontal coordinates, the value 0 corresponds to the leftmost column of pixels; the
value 7 corresponds to the rightmost column. For vertical coordinates, the value 0
corresponds to the uppermost row of pixels; the value 7 corresponds to the lowermost
row. When the system positions the brush at the start of any painting operation, it maps
the origin of the brush to the location in the window’s client area specified by the brush
origin. For example, if the origin is set to (2,3), the system maps the origin of the brush
(0,0) to the location (2,3) on the window’s client area.

Chapter 7 Brushes 165

If an application uses a brush to fill the backgrounds of both a parent and a child window
with matching colors, it may be necessary to set the brush origin after painting the parent
window but before painting the child window.

Windows NT/2000: The system automatically tracks the origin of all window-managed
device contexts and adjusts their brushes as necessary to maintain an alignment of
patterns on the surface.

Windows 95/98: Automatic tracking of the brush origin is not supported. Applications
must use the UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align
the brush before using it.

(e

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Brushes Overview, Brush FUnctiohs, POINT, SelectObject, SetBrushOrgEX,
UnrealizeObject

GetSysColorBrush

The GetSysColorBrush function retrieves a handle identifying a logical brush that
corresponds to the specmed color index.

HBRUSH" ﬁetﬁys(:o!erﬁr‘usﬁ(L S
, sm—. nIndex // §yste:m Coiar indexx 3 ‘
} FIESREA o B . P < ’ e

Parameters

nindex
[in] Specifies a color index. This value corresponds to the color used to paint one of
the 21 window elements.

Return Values
The return value identifies a logical brush.

166

Volume 3 Microsoft Windows GDI

Remarks

A brush is a bitmap that the system uses to paint the interiors of filled shapes. An
application can retrieve the current system colors by calling the GetSysColor function.
An application can set the current system colors by calling the SetSysColors function.

An application must not register a window class for a window using a system brush.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

[i S
Brushes Overview, Brush Functions, GetSysColor, SetSysColors

PatBIt

The PatBIt function paints the specified rectangle using the brush that is currently
selected into the specified device context. The brush color and the surface color or
colors are comblned by usmg the specnfled raster operat|on

BGGL PatBTt(

. /7 haﬂdie to DC BN SRR
i 17 x-coord of upper Teft rectang}e ‘corner
l"lﬁil y= ceord of upper 1eft rectang?e cﬁrner
4 widthe of réctangle
Ry height'af rectangl
Jf raster openatfon-aode

Parameters

hdc
[in] Handle to the device context.

nXLeft
[in] Specifies the x-coordinate, in logical units, of the upper-left corner of the rectangle
to be filled.

nYLeft
[in] Specifies the y-coordinate, in logical units, of the upper-left corner of the rectangle
to be filled.

nWidth
[in] Specifies the width, in logical units, of the rectangle.

Chapter 7 Brushes 167

nHeight
[in] Specifies the height, in logical units, of the rectangle.

dwRop
[in] Specifies the raster operation code. This code can be one of the following values.

Value Meaning

PATCOPY Copies the specified pattern into the destination bitmap.

PATINVERT Combines the colors of the specified pattern with the colors
of the destination rectangle by using the Boolean XOR
operator.

DSTINVERT Inverts the destination rectangle.

BLACKNESS Fills the destination rectangle using the color associated with

index 0 in the physical palette. (This color is black for the
default physical palette.)

WHITENESS Fills the destination rectangle using the color associated with
index 1 in the physical palette. (This color is white for the
default physical palette.)

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The values of the dwRop parameter for this function are a limited subset of the full 256
ternary raster-operation codes; in particular, an operation code that refers to a source
rectangle cannot be used.

Not all devices support the PatBIt function. For more information, see the description of
the RC_BITBLT capability in the GetDeviceCaps function.

| o
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

Brushes Overview, Brush Functions, GetDeviceCaps

168 Volume 3 Microsoft Windows GDI

SetBrushOrgEx

The SetBrushOrgEx function sets the brush origin that GDI assigns to the next brush an
application selects into the specified device context.

Parameters

hdc
[in] Handle to the device context.

nXOrg
[in] Specifies the x-coordinate, in device units, of the new brush origin. If this value is
greater than the brush width, its value is reduced using the modulus operator (nXOrg
mod brush width).

nYOrg
[in] Specifies the y-coordinate, in device units, of the new brush origin. If this value is
greater than the brush height, its value is reduced using the modulus operator (nYOrg
mod brush height).

Ippt
[out] Pointer to a POINT structure that receives the previous brush origin.

This parameter can be NULL if the previous brush origin is not required.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks
A brush is a bitmap that the system uses to paint the interiors of filled shapes.

The brush origin is a pair of coordinates specifying the location of one pixel in the
bitmap. The default brush origin coordinates are (0,0). For horizontal coordinates, the
value 0 corresponds to the leftmost column of pixels; the width corresponds to the
rightmost column. For vertical coordinates, the value 0 corresponds to the uppermost
row of pixels; the height corresponds to the lowermost row.

Chapter 7 Brushes 169

The system automatically tracks the origin of all window-managed device contexts and
adjusts their brushes as necessary to maintain an alignment of patterns on the surface.
The brush origin that is set with this call is relative to the upper-left corner of the client
area.

An application should call SetBrushOrgEx after setting the bitmap stretching mode to
HALFTONE by using SetStretchBItMode. This must be done to avoid brush
misalignment.

Windows NT/2000: The system automatically tracks the origin of all window-managed
device contexts and adjusts their brushes as necessary to maintain an alignment of
patterns on the surface.

Windows 95/98: Automatic tracking of the brush origin is not supported. Applications
must use the UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align
the brush before using it.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in wingdi.h; include windows.h.
Library: Use gdi32.lib.

i

Brushes Overview, Brush Functions, GetBrushOrgEx, POINT, SelectObject,
SetStretchBltMode, UnrealizeObject

Brush Structures

LOGBRUSH

The LOGBRUSH structure defines the style, color, and pattern of a physical brush. It is
used by the CreateBrushindirect and ExtCreatePen functions.

170 Volume 3 Microsoft Windows GDI

Members
ibStyle

Specifies the brush style. The IbStyle member must be one of the following styles.

Value

Meaning

BS_DIBPATTERN

BS_DIBPATTERNS8X8
BS_DIBPATTERNPT

BS_HATCHED
BS_HOLLOW
BS_NULL
BS_PATTERN
BS_PATTERNS8X8
BS_SOLID

IbColor

A pattern brush defined by a device-independent bitmap
(DIB) specification. If IbStyle is BS_DIBPATTERN, the
IbHatch member contains a handle to a packed DIB. For
more information, see discussion in IbHatch.

Windows 95: Creating brushes from bitmaps or DIBs
larger than 8 by 8 pixels is not supported. If a larger
bitmap is specified, only a portion of the bitmap is used.

Same as BS_DIBPATTERN.

A pattern brush defined by a device-independent bitmap
(DIB) specification. If IbStyle is BS_DIBPATTERNPT,
the IbHatch member contains a pointer to a packed DIB.
For more information, see discussion in IbHatch.

Hatched brush.

Hollow brush.

Same as BS_HOLLOW.

Pattern brush defined by a memory bitmap.
Same as BS_PATTERN.

Solid brush.

Specifies the color in which the brush is to be drawn. If IbStyle is the BS_HOLLOW or
BS_PATTERN style, IbColor is ignored.

If IbStyle is BS_DIBPATTERN or BS_DIBPATTERNPT, the low-order word of
IbColor specifies whether the bmiColors members of the BITMAPINFO structure
contain explicit red, green, blue (RGB) values or indices into the currently realized
logical palette. The IbColor member must be one of the following values.

Value

Meaning

DIB_PAL_COLORS

DIB_RGB_COLORS

The color table consists of an array of 16-bit indices into
the currently realized logical palette.

The color table contains literal RGB values.

If IbStyle is BS_HATCHED or BS_SOLID, IbColor is a COLORREF color value. To
create a COLORREF color value, use the RGB macro.

Chapter 7 Brushes 17

IbHatch
Specifies a hatch style. The meaning depends on the brush style defined by IbStyle.

If IbStyle is BS_DIBPATTERN, the IbHatch member contains a handle to a packed
DIB. To obtain this handle, an application calls the GlobalAlloc function with
GMEM_MOVEABLE (or LocalAlloc with LMEM_MOVEABLE) to allocate a block of
memory and then fills the memory with the packed DIB. A packed DIB consists of a
BITMAPINFO structure immediately followed by the array of bytes that define the
pixels of the bitmap.

If IbStyle is BS_DIBPATTERNPT, the IbHatch member contains a pointer to a
packed DIB. The pointer derives from the memory block created by LocalAlloc with
LMEM_FIXED set or by GlobalAlloc with GMEM_FIXED set, or it is the pointer
returned by a call like LocalLock (handle_to_the_dib). A packed DIB consists of a
BITMAPINFO structure immediately followed by the array of bytes that define the
pixels of the bitmap.

If IbStyle is BS_HATCHED, the IbHatch member specifies the orientation of the lines
used to create the hatch. It can be one of the following values.

Value Meaning

HS_BDIAGONAL A 45-degree upward, left-to-right hatch
HS_CROSS Horizontal and vertical cross-hatch
HS_DIAGCROSS 45-degree crosshatch

HS_FDIAGONAL A 45-degree downward, left-to-right hatch
HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch

If IbStyle is BS_PATTERN, IbHatch is a handle to the bitmap that defines the
pattern. The b