= Microsoft

Wndows 2000
Server
Distributed

Systems
Guide

Microsoft

MW}Olfltdowsr@ 2000
Server
Distributed
Systems
Guide

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows 2000 Server Resource Kit / Microsoft Corporation.
p. cm.
ISBN 1-57231-805-8 .
1. Microsoft Windows 2000 Server. 2. Operating systems (Computers). I. Microsoft
Corporation.
QA76.76.063 M5241328 2000
005.4'4769--dc21 99-045616

Printed and bound in the United States of America.

123456789 WCWC 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about interna-
tional editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at fax (425)
936-7329. Visit our Web site at mspress.microsoft.com.

Active Accessibility, Active Channel, Active Client, Active Desktop, Active Directory, ActiveMovie, ActiveX, Authenticode,
BackOffice, DirectAnimation, DirectPlay, DirectShow, DirectSound, DirectX, DoubleSpace, DriveSpace, FrontPage, Georgia,
Hotmail, IntelliMirror, IntelliSense, JScript, Links, Microsoft, Microsoft Press, MSDN, MS-DOS, MSN, Natural, NetMeeting,
NetShow, OpenType, Outlook, PowerPoint, Sidewalk, Slate, Starts Here, Truelmage, Verdana, Visual Basic, Visual C++, Visual
InterDev, Visual J++, Visual Studio, WebBot, Win32, Windows, Windows Media, and Windows NT are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. NT is a trademark of Northern Telecom
Limited. Other product and company names mentioned herein may be the trademarks of their respective owners.

Any RFC excerpts are subject to the following statement:

Copyright © The Internet Society (1999). All Rights Reserved. This document and translations of it may be copied and furnished
to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed
for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into languages other than English. The limited permissions granted above
are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information
contained herein is provided on an “AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Information in this document, including URL and other Internet Web site references, is subject to change without notice.
The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any
real company, organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Juliana Aldous
Project Editor: Maureen Williams Zimmerman Part No. 097-0001948

Thank you to those who contributed to this book:

Department Managers: Paul Goode, Ken Western
Documentation Managers: Laura Burris, Martin DelRe, Peggy Etchevers
Resource Kit Program Managers: Chris Hallum, Martin Holladay,
Louis Kahn, Ryan Marshall, Paul Sutton

Distributed Systems Guide

Technical Writing Leads: Don Lundman, David Stern
Writers: Laura Burris, Eric Carmel, Jim Glynn, Randy Grandle, Bill Gruber
Mary Hillman, Heidi Johnson, James Klima, Don Lundman, Kathleen Norton
Shira Paul, Brian Roberts, Jason Rush, Alan Spring, David Stern, Jeff Thomas

Editing Leads: Deborah Annan, Jennifer Hendrix, Kate O'Leary
Book Editing Lead: Sigrid Strom
Developmental Editors: Vincent Abella, Kevin Bentley, Diana Boyle
Christopher Clements, Sandra Faucett, Chris McKitterick, Gary Moore
Kate O’Leary, Sigrid Strom, Todd Young
Copy Editors: Kate McLaughlin, Mary Rose Sliwoski,
Scott Somohano, Debbie Uyeshiro
Glossary: Daniel Bell

Resource Kit Tools Software Developers: Dan Grube,
Michael Hawkins, Darryl Wood, Zeyong Xu
Documentation Tools Software Developers: Amy Buck, Tom Carey,
Ryan Farber, Mark Pengra, Fred Taub

Production Leads: Sandy Dean, Jane Dow, Keri Grassl, Jason Hershey
Production Specialists: Michael Faber, Dani McIntyre, Lori Robinson

Indexing Leads: Jane Dow, Veronica Maier
Indexers: Lee Ross, Tony Ross

Lead Graphic Designer: Flora Goldthwaite
Designers: Chris Blanton, Siamack Sahafi
Art Production: Blaine Dollard, Jenna Kiter, Gabriel Varela

Test Lead: Jonathan Fricke
Testers: Brian Klauber, Jeremy Sullivan

Windows 2000 Lab Manager: Edward Lafferty
Administrators: Deborah Jay, Grant Mericle, Dave Meyer,
Dean Prince, Robert Thingwold, Luke Walker, Joel Wingert, Frank Zamarron
Lab Partners: Cisco Systems, Inc., Compagq, Inc.,
Hewlett-Packard Corporation, Intel Corporation

A special thanks to the following technical experts who contributed to and supported this effort:
Steven Adler, Mohammad Shabbir Alam, Hilal Al-Hilali, Anoop Anantha, Johnson Apacible, Elena
Apreutesei, Michael Armijo, Gigel Avram, Rudolph Balaz, Greg Baribault, Zach Beers, Colin Brace,
John Brezak, Eric Brown, Mark Brown, Peter Brundrett, Marius Bulau, Steven Burns, Charlie Chase,
Michael Cherry, Behrooz Chitsaz, Miguel Claudio, John Claugherty, Arren Conner, Paul Darcy,
Michael Dennis, Chuck Dermody, Tony Donno, Bo Downey, Michael Emanuel, Levon Esibov,
Cameron Etezadi, Scott Field, Carl Fischer, Eric Fitzgerald, Eric Flo, Michele Freed, Trevor
Freeman, Billy Fuller, Praerit Garg, Andrew Goodsell, Jay Graham, Robert Gu, Arobinda Gupta,
Don Hacherl, Andy Harjanto, Jim Harper, Richard Harrington, Vic Heller, Anne Hopkins, Michael
Howard, Khushru Irani, Billy Jack, Marc Jacobs, Rick Johnson, Nikhil Joshi, Steven Judd, Stuart
Kwan, Brian LaMacchia, Paul Leach, William Lees, Cheen Liao, David S. Loudon, Martin Lucas,
Matt Lyons, Jim Masson, Rui Maximo, Drew McDaniel, Denise Y. Miller, Mark Myers, Arun
Nanda, Jon Newman, Kumar Pandit, Jee Fung Pang, Jeff Parham, Geoff Pease, Michael Primeaux,
Bohdan Raciborski, Ajay Ramachandran, Balan Sethu Raman, Rich Randall, Robert Reichel, Jason
Robarts, Cynda Rochester, Jaret Russell, Mohammed Samji, Susan Saranovich, Murli Satagopan,
Eyal Schwartz, Joseph Seifert, Ullattil Shaji, Ron Sherrell, Brett Shirley, Dan Simon, Pete Skelly,
Heinrich Smit, Alan Smith, Eric Stadter, Todd Stecher, Jonathan Stephens, Dave Straube, Chandana
Surlu, Russ Surridge, Mike Swift, Kahren Tevosyan, Varadarajan Thiruvillamalai, Matt Thomlinson,
Darol Timberlake, Cezar Ungureanasu, Cliff Van Dyke, BJ Whalen, Charlie Wickham, Tim
Williams, Shaohua Yin, Kelvin Yiu, Gideon Yuval, Marios Zikos.

Contents

Introduction xlv

Document Conventions xlv
Resource Kit Compact Disc xlvi
Resource Kit Support Policy xlvii

Part1 Active Directory

Chapter 1 Active Directory Logical Structure 3
Active Directory Domain Hierarchy 5
Active Directory Domain Names 6

DNS Naming Conventions 7
NetBIOS Domain Names 9

Active Directory and DNS 10

DNS Hierarchy and Active Directory 10

DNS and the Internet 11

Active Directory and the Internet 12

DNS Host Names and Windows 2000 Computer Names 12
DNS Name Servers and Zones 13 '
Active Directory—Integrated DNS 15

Support for Dynamic Updates 18

Tree and Forest Structure 18

Tree: Implementation of a Domain Hierarchy and DNS Namespace
Forest: Implementation of All Trees 20

Forest Root Domain 22
Trust Relationships 23

Transitive and Nontransitive Trust 24

Direction of Trust 25

Authentication Protocols 26

Trust Path 27

Processing Authentication Referrals 28

Types of Trust Relationships 30

19

Trust Relationships Between Windows 2000 and Windows NT 4.0

Domains 33
Mixed-Environment Scenario 34

vi Contents

Active Directory Objects 35

Object Naming 36
Distinguished Name 36
Relative Distinguished Name 37
Naming Attributes 38
Object Identity and Uniqueness 39
Active Directory Name Formats 39
DNS-to-LDAP Distinguished Name Mapping 40
Logon Names 41

Domain Controllers 42
Multimaster Operations 42
Single-Master Operations 43

Global Catalog Servers 44
Global Catalog Attributes 45
Designating a Global Catalog 45
Global Catalog and Domain Logon Support 46
Search Requests and the Global Catalog 47

Organizational Units 48
Administrative Hierarchy 48
Group Policy 48
Delegation of Control 49

Object Security 49
Access Control 50
Delegation of Administration 50
Inheritance 51

Additional Resources 51

Chapter 2 Active Directory Data Storage 53
Active Directory Architecture 55
Active Directory and Windows 2000 Architecture 55
Security Subsystem Architecture 56
Directory Service Architecture 59
Directory System Agent 62
Database Layer 63
Extensible Storage Engine 63

Contents

vii

Protocols and Interfaces to Active Directory 64
LDAP 65
ADSI 69
Active Directory Replication 70
MAPI 71
SAM 71

Data Storage 73

Data Characteristics 74

Storage Limits 75
Object Size vs. Maximum Database Record Size 75
Garbage Collection 76
Database Defragmentation 78

Growth Estimates for Active Directory Users and Organizational Units 81
Directory Database Sizing Tests 82
Organizational Units 84
Adding Attributes 84

Windows 2000 SAM Storage 86
Mixed-Mode Storage Considerations 87
SAM Structure 88

| SAM Accounts on a Windows 2000 Server That Becomes a Domain
Controller 88

Migration of Windows NT 4.0 SAM Accounts to Active Directory
Objects 89

Data Model 91
Container Objects and Leaf Objects 91
Directory Tree 92
; RootDSE 93
! Extended LDAP Controls 97
| Attribute Range Option 98
Directory Partitions 99
‘ Directory Partition Subtrees 99
Forest Root Domain 101
Configuration Directory Partition 102
Schema Directory Partition 106
Domain Directory Partitions 107

viii Contents

Directory Data Store 111
Linked Attributes 112
Searching on Back Links 113
Group Members from External Domains 115
Phantom Records 117
Database Write Operations 117
Log-based Recovery 118
Attribute Indexing 118
Object-Based Security 119
Security Identifiers 119
Security Descriptors 120
Default Object Security 120
Installing Active Directory 121
Active Directory Configurations 123
Installation Prerequisites and Verifications 125
Verify Unique Names 126
Verify That TCP/IP Is Installed 126
Verify That DNS Client Is Configured 127
Get and Validate the DNS Domain Name 127
Get and Validate the NetBIOS Name 127
Enter Administrative Password 128
Get Credentials for the User 128
Get and Verify File Paths 129
Configure Site 129
Directory Service Configuration 130
Configuring Directory Partitions 131
Setting Services to Start Automatically 131
Setting Security 132
Creating a New Domain 135
DNS Installation and Configuration 140
Operations That Occur Following Installation 140
Removing Active Directory 141
Administrative Credentials 142

Removal from an Additional Domain Controller or the Last Domain
Controller 142

Removal of an Additional Domain Controller 143
Removal of the Last Domain Controller 143
Unattended Setup for Installation or Removal of Active Directory 144

Contents

ix

Chapter 3 Name Resolution in Active Directory 145
Locating Active Directory Servers 147

Domain Controller Name Registration 147
DNS Domain Name Registration 148
NetBIOS Domain Name Registration 150

SRV Resource Records 150
_msdcs Subdomain 151
SRV Records Registered by Net Logon 151
Host Records for Non-SRV-Aware Clients 155
Other SRV Record Content 156

Domain Controller Location Process 157
DsGetDcName API 158

Finding a Domain Controller in the Closest Site 161
Active Directory Site and Subnet Objects 162
Mapping IP Addresses to Site Names 163
Automatic Site Coverage 164
Cache Time-out and Closest Site 166
Clients with No Apparent Site 167

| Types of Locators 168
f IP/DNS-Compatible Locator Process for Windows 2000 Clients 168

Windows NT 4.0-Compatible Locator Process for Non-IP/DNS
Clients 171

Finding Information in Active Directory 174
Resolving Names in Directory Operations 174
Components of an LDAP Search 175
Search Filters 176
ObjectCategory vs. ObjectClass in a Search Filter 178
LDAP Referrals 178
Knowledge References 179
Subordinate References 181
Cross-References 181
Creating External Cross-References 183
Superior References 186
Ambiguous Name Resolution 186
Anonymous Queries 189
Using Access Control to Enable Anonymous Access 190
Security Precautions for Anonymous Access 192

X Contents

Global Catalog and LDAP Searches 193

Global Catalog Servers 193

Searching the Global Catalog vs. Searching the Domain 193
Searching for Deleted Objects 196
LDAP Search Clients 197

Administrative Clients 197

Windows Address Book 199

Ldp 202

Chapter 4 Active Directory Schema 203
Introduction to the Active Directory Schema 205
Location of the Schema in Active Directory 206
Finding the Schema Container 207
Subschema Subentry 209
Schema Files 209
Active Directory Schema Objects 210
attributeSchema Objects 210
Single-Value or Multivalue Attributes 211
Indexed Attributes 211
Attributes for attributeSchema Class Objects 212
classSchema Objects 214
Categories of Object Classes 215
Inheritance 217
System and Changeable Attribute Pairs 218
Mandatory Attributes 218
Attributes for classSchema Objects 220
Syntaxes 222
Object Identifiers 224
Structure and Content Rules 226
Schema Cache 228
Default Security of Active Directory Objects 229
Default Security of the Domain Directory Partition 229
Default Security of the Configuration Directory Partition 230
Default Security of the Schema Directory Partition 231
Default Security of Attributes and Classes 231

Contents Xi

Extending the Schema 232

When to Extend the Schema 232

How to Extend the Schema 233

Installation of Schema Extensions 234
Specify the Schema-ID-GUID 235
Naming 235
Modifying the Schema 236
Schema Administrators Group 237
Schema FSMO Role 238
Order of Processing When Extending the Schema 242

Adding and Modifying Schema Objects 243
Adding an Attribute 243
Modifying an Attribute 246
Adding a Class 246
Modifying a Class 248

System Checks and Restrictions Imposed on Schema Additions and
Modifications 249

Consistency Checks 249
Safety Checks 251
Deactivating Schema Objects 252
Disabling Existing Classes and Attributes 255
Effect of Deactivating a Schema Object on All Objects 256
Effects of Deactivating a Schema Object on Schema Updates 257
| Issues Related to Modifying the Schema 258
| Replication 258
1 Concurrency Control 258
‘ Handling Invalid Object Instances 259
| Methods for Extending the Schema 260
LDAP Data Interchange Format 260
| Comma-Separated Value File Format 266
Using LDIFDE and CSVDE to Modify the Schema 269
Using Active Directory Service Interfaces and Visual Basic Scripts 272
Using the Active Directory Schema Console 274

Xii Contents

Chapter 5 Service Publication in Active Directory 275
Introduction to Service Publication 277
Types of Service Information 277
Service Objects 278
Service Bindings 278
Service Instantiation 279
Directory Infrastructure for Service Publication 280
Connection Points 281
Where to Publish 282
Computer Object 284
Organizational Unit Container Hierarchy 284
Users and Computers Containers 284
System Container 285
Publishing Services in Active Directory 286
Publishing with the RPC Name Service (RpcNs) 288

Publishing with Windows Sockets Registration and Resolution (RnR)
288

Finding and Viewing Service Information In Active Directory 289
Windows 2000 RPC Name Service and Integration with Active Directory 290
Windows 2000 RPC Name Service Process 291
Security Considerations for All Services 293
Mutual Authentication 295
Principal Names 295
Mutual Authentication and Kerberos 296
Service Principal Names 296
Service Principal Names Syntax 297
Creating the Service Principal Name 297
Additional Resources 298

Chapter 6 Active Directory Replication 299

Active Directory Replication Model 301
Directory Partition Replicas ~ 301
Replication Model Benefits 302
Replication Model Components 303
Multimaster Replication 304
Store-and-Forward Replication 305
Pull Replication 306
State-based Replication 306
Replication Behavior 307

it e e o e -

Contents

xiii

Active Directory Updates 309
Originating Updates: Initiating Changes 309
Tracking Updates 310
Deciding What Changes to Replicate: Update Sequence Numbers 311
Resolving Conflicts: Stamps 314
Originating Add 315
Originating Modify 315
Originating Move 316
Originating Delete 316
Tracking Object Creation, Replication, and Change 317
Propagation Dampening 319
Multimaster Conflict Resolution Policy 320
Replication Topology 321
Topology Concepts and Components 322
Topology-related Components 322
Sites Container Hierarchy in Active Directory 325
Sites and Replication 326
Replication Efficiency 327
Site Design with Replication in Mind 327
Subnet-to-Site Mapping 328
When to Define a New Site 329
Default Site 330
Server and Site Connections 330
Server Objects 331
Server Connections 332
Site Links 334
Bridgehead Servers 335
Replication Transports 335
Synchronous vs. Asynchronous Communication 336
Transport for Replication Within a Site 336
Transports for Replication Between Sites 338
Replication Packet Size 340

Xiv Contents

Managing Replication Between Sites 342
Planning Replication Between Sites 342
Managing Site Links 343
Preferred Bridgehead Server Configuration 351
Bridgehead Server Failure 352
Site Link Bridges 356
Global Catalog Replication 358
Scenarios for Replication Between Sites 361
KCC and Topology Generation 364
Tools That Communicate with the KCC 364
Objects Required by the KCC for Building Topology 365
Topology Generation Phases 366
Intervals at Which the KCC Runs 367
Automated Replication Topology Generation Within a Site 368
Optimized Ring Topology Connections Within a Site 374
Automated Intersite Topology Generation 377
Security Between Replication Partners 380
RPC Transport Security 380
ISM Transport Security 381
Advanced Replication Management 382
Reciprocal Replication 382
Change Notification 383
Urgent Replication 386
Replication of Password Changes 388
Creation of Extra Connection Objects 389

Chapter 7 Managing Flexible Single-Master Operations 391
Introduction to Flexible Single-Master Operations 393
Operations Master Roles 394

Schema Master 395

Domain Naming Master 395

Relative Identifier Master 397

Primary Domain Controller Emulator 398

Infrastructure Master 400
Placing Operations Master Roles 400

Planning Role Placement 400

Performing Operations Master Role Transfers 402

Contents XV

Responding to Operations Master Failures 403
Primary Domain Controller Emulator Failures 403
Infrastructure Master Failures 404
Other Operations Master Failures 404
Using the Ntdsutil Tool for Role Placement 406
Controlling Access to Role Placements 409
Controlling Role Transfers 411
Controlling Role Seizures 412
Scripting Role Placement 413
Examining Operations Master Technical Details 414

Chapter 8 Monitoring Performance in Active Directory 417
Performance Tools 419
MMC Snap-ins 419
Performance 419
Event Viewer 421
Active Directory Performance Tools 421
Pmon 421
DisplayRID 422
DisplayOld 422
Trace Logging 423
System Monitor Counters 423
NTDS Object 423
Manually Loading and Unloading NTDS Counters 428
Database Object 428
Using System Monitor to Select Performance Counters 432
Additional Resources 433

Chapter 9 Active Directory Backup and Restore 435
Introduction to Active Directory Backup and Restore 437
Active Directory Backup 437
Active Directory Restore 438
Permissions and User Rights 439
Support for Third-Party Backup Tools 439
Backing Up Active Directory 440

XVi Contents

Restoring Active Directory 442
Restoring Active Directory Through Reinstallation and Replication 443
Restoring Active Directory from Backup Media 443

Nonauthoritatively Restoring Active Directory by Using the
Backup Tool 444

Using the Backup Tool to Restore Active Directory 445
Authoritative Restore 451
Authoritatively Restoring Active Directory by Using Ntdsutil 453

Impact of Authoritative Restore on Trust Relationships and Network
Connections 457

Additional Resources 458

Chapter 10 Active Directory Diagnostics, Troubleshooting, and Recovery 459
Summary of Active Directory Architecture 461
Protocols 461
DNS 461
TCP/IP 461
LDAP 462
Directory System Agent 462
Database Layer 463
Extensible Storage Engine 464
Domain Controller Locator 465
Diagnosing and Troubleshooting Active Directory Problems 468
Network Connectivity 470
Event Viewer 470
Hardware 471
Local Connectivity 472
Client Connectivity 474
Domain Controller Connectivity 478
Client-Domain Controller Trust Relationships 478
DHCP Server Issues 481
Using Network Monitor to Analyze Network Traffic Issues 482
Redirector Issues 487

Contents xvii

Name Resolution 488
DNS Registration and Consistency 489
Tools Used for Diagnosing and Troubleshooting DNS Issues 490
Identifying and Verifying DNS Problems 492
Troubleshooting DNS Record Registration Failure 497
Questionable IP Addresses 501
Determining the Name Resolution Method (DNS or WINS) 501
Identifying NetBIOS Name Resolution Problems 502
RPC Name Resolution Problems 507
LDAP Verification 509
Domain Controller Issues 525
Event Viewer 526
Using Dcdiag to Diagnose Domain Controller Issues 527
Using Ntdsutil to Manage Domain Controller Consistency 537
Identifying Windows 2000 Domain Controller Roles 538
Advertising as a Global Catalog Server 540
Using Dsastat to Detect Directory Partition Differences 541
Join and Authentication Issues 546
Joining a Computer to a Domain 546
Permissions on Computer Account Objects 554
Secure Channel Issues 556
Resetting Secure Channels and Computer Accounts 556

Checking Trust Relationships Authenticated By the Kerberos v5
Protocol 562

Fail Logons in Absence of Global Catalog Servers 562
Access Control 563
Event Viewer 563
Gaining Access to Other Computers 563
Gaining Access to Active Directory Objects 565
Auditing Policy 567
Advanced Troubleshooting 570
Active Directory Diagnostic Logging 570
Summary of Log Files Used in Active Directory 576

Xviii Contents

Active Directory Installation and Removal Issues 579
Ensuring Sufficient Disk Space 580
Ensuring Time Synchronization 580
Active Directory Installation Operations Master Requirements 580
Confirming DNS Configuration 581
Privileges Needed to Add an Additional Domain Controller 581
Operations Master Availability Requirements 582

Removing Data in Active Directory After an Unsuccessful Removal
of Active Directory 583

Troubleshooting Active Directory Installation Wizard Errors 585
Database Issues 594
Ensuring File Integrity 596
Ensuring Database Integrity 604
Schema Issues 606
FSMOs 608
Relative Identifier Master Operations Master Role Holder 608
Operations Master and Duplicate Operations Master Role Holders 609
Replication Issues 612
Replication Event Viewer Entries 615
Monitoring the Replication Links 622
Viewing Replication Status and Performance 627
Disaster Recovery 631
Repairing a Domain Controller 631
Repairing a Windows NT 4.0-based Backup Domain Controller 632

Recovering from a Deleted Windows 2000 Computer and
Domain Account 633

Recovering Active Directory 634
Additional Resources 634

Part2 Distributed Security

Chapter 11 Authentication 637
Basic Concepts of Authentication 639

Interactive Logon 639

Remote Logon 640

Security Principals 640
Authentication Protocols 641

Contents

Xix

How Kerberos Authentication Works 642
Basic Concepts for the Kerberos Protocol 642
Authenticators 643
Key Distribution 645
Session Tickets 646
Ticket-Granting Tickets 648
Authentication Across Domain Boundaries 649
Subprotocols 650
AS Exchange 651
TGS Exchange 652
CS Exchange 653
Tickets 654
What Is in a Ticket 654
How the KDC Limits a Ticket’s Lifetime 654
What Happens When Tickets Expire 655
What Clients Know About Tickets 656
Delegation of Authentication 656
Proxy Tickets 656
Forwarded Tickets 657
Kerberos Components in Windows 2000 658
Account Database 659
Kerberos Policy 660
Delegation of Authentication 661
Preauthentication 662
Kerberos Security Support Provider 662
Credentials Cache 663
Finding the KDC 664
IP Transport 664
Authorization Data 665
Name-based vs. Identity-based Authorization 665
How the KDC Prepares Authorization Data 667
How Services Use Authorization Data 667
Why Authorization Data Is Signed 668
Logging on Interactively 669
Logon Process 669
Logging on with a Password 670
Logging on with a Smart Card 673

XX Contents

Chapter 12 Access Control 675
Access Control Model 677
Key Terms 678
How Access Control Works 680
Rights 683
Permissions 683
Setting Permissions on Active Directory Objects 684
Viewing and Setting Per-Property Permissions 685
Access Masks 687
Extended Rights 689
User Rights 690
Conflicts Between Privileges and Permissions 692
Security Identifiers 693
Security Identifier Structure 694
Relative Identifier Allocation 696
SID vs. GUID 697
Well-Known SIDs 699
Access Tokens 700
Contents of an Access Token 700
Impersonation 701
Impersonation Levels 702
Configuring Clients and Services for Delegation 703
SID Attributes in an Access Token 707
Restricted Tokens 707
Security Descriptors 708
Parts of a Security Descriptor 708
Layout in Memory 709
Security Descriptor Control Flags 711
Where Access Control Information Comes From 712
Subjects 713
Object Managers 713
Parent Objects 714
How Owners are Assigned and Changed 720
How Primary Groups Are Assigned and Changed 723

Contents XXi

Access Control Lists 724
Access Control Entries 725
ACE Types 725
Structure of a Generic ACE 727
Structure of an Object-Specific ACE 728
DACLs for Newly Created Objects 729
DACLs for Newly Created Active Directory Objects 730
SACLs for Newly Created Objects 731
Inheritance 731
Inheritance Flags 732
Rules of Inheritance 733
Order of ACEs in a DACL 734
What Happens When You Upgrade 736
What Happens When You Convert FAT to NTFS 737
Access Check and Audit Generation 738
Access-Checking 739
Auditing 740

Chapter 13 Choosing Security Solutions That Use Public Key Technology 743
Weaknesses in Open Network Security 745
Windows 2000 Security Technologies 746
Network Security Solutions 747
Secure Mail 748
Standards-based Mail Clients 749
Secure Mail Clients 750
Key Management and Key Recovery Services 751
Secure Web Communications 752
Protocols for Secure Web Communication 753
Benefits of Secure Web Communication 754
Internet Information Services and Web Communication 755
! Secure Web Communication Options 756
Secure Access to Web Site Resources 757
Anonymous Access 757
Authenticated Access 758
} IP Addresses and Domain Names 758
: Certificate Mapping to User Accounts 758
NTFS Access Control Lists 760

XXii Contents

Digitally Signed Software 760
Code Signing Within Your Organization 761
Code Signing on the Internet 761
Automating Code Signing and Software Distribution 762
Security with Encrypting File System 762
File Encryption and Public Key Technology 763
Encrypted Data Recovery Policy 764
Recovery Agent Accounts 765
Security with IP Security 766
Security with Smart Cards 767
Benefits of Smart Cards 768
Personal Identification Numbers vs. Passwords 768
Network Smart Card Logon Process 769
Remote Access Logon Process 770
Other Smart Card Applications 770
Smart Card Enrollment 771
Smart Card Compatibility 771
Smart Card Options 772
FIPS-140-1 Security and FORTEZZA Crypto Cards 773
FIPS 140-1 773
FORTEZZA Crypto Cards 773
Custom Security Applications 774
Public Key Technology Standards and Interoperability 775
How to Choose Appropriate Security Solutions 776
Analyzing Business Information and Communication 777
Defining Communication and Information Security Goals 777
Determining Communication and Information Security Requirements 778
Assessing Security Risks 779
Assessing the Costs and Benefits of Security Solutions 780
Testing Your Proposed Security Plan 781
Additional Resources 782

Chapter 14 Cryptography for Network and Information Security 783
What Is Cryptography? 785

Background 785

Objective of Modern Cryptography Systems 786

Security Functions of Cryptography 787

Role of Cryptanalysis 789

Contents

xxiii

Basic Components of Modern Cryptography 790
Encryption 791
Symmetric Key Encryption 791
Public Key Encryption 792
Message Digest Functions 794
Hashed Message Authentication Code Functions 796
Secret Key Exchange 796
Diffie-Hellman Key Agreement 797
RSA Key Exchange 798
Digital Signatures 799
RSA Data Security Digital Signature Process 800
Digital Signature Security Standard 801
Uses for Digital Signatures 802
Basic Components of a Public Key Infrastructure 802
Ways to Establish Trust for Private Key and Public Key Sets 803
Peer-to-Peer Trust 803
Trust in Certification Authorities 803
Digital Certificates 804
Functions Like a Traditional Identification Card 804
Issued by Certification Authorities 805
Contents of X.509 Version 3 Certificates 806
Uses of the Public Key and Private Key Set 808
Certificate Management 808
i Certificate Enrollment 809
Certificate Distribution 809
Certificate Revocation Lists 810
Certificate Renewal 810
Certificate Audit Trail 810
Key Management 811
Security for Private Keys 811
Key Recovery 812
Certification Authorities in the Enterprise 813
Services Provided by Certification Authorities 813
Certificate Policies and Certification Authority Practices 813
Security for Certificate Authorities 815
Ways to Trust Certificate Authorities 815

XXiv Contents

Risk Factors for Cryptography Systems 816
Symmetric Key Length 816
Public Key Length 818
Key Lifetimes 819
Amount of Plaintext Known to Attackers 819
Strength of the Security Technology Implementation 820
Randomness of Generated Keys 821
Strength of the Security Protocols 8§22
Secure Storage of Private Keys 823
Cryptography Export Restrictions 824
Additional Resources 825

Chapter 15 Encrypting File System 827
Introduction to EFS 829

Features of EFS 829
Privacy 829
Transparent Operation 830
Integration with the File System 830
Data Recovery System 831

What the User Sees 832
Finding and Accessing an Encrypted File 833
Encrypting a File or Folder 835
Decrypting a Folder or File 839
Renaming, Copying, or Moving an Encrypted File or Folder 840
Backing Up an Encrypted File or Folder 841
Encrypting a File or Folder on Another Computer 841
Setting Permissions for Shared Folders 842

How EFS Works 843
Public Key Technology 843
Structure of an Encrypted File 844
Components of EFS 845
How Files Are Encrypted 847
How Data Is Read and Written in Encrypted Files 848
How Files Are Decrypted 849
How Files Are Recovered 849

How Certificates Are Stored 850

How Private Keys Are Stored 853
Protect Folder 854

How Encryption Keys Are Protected 855

Contents

XXV

Planning EFS Implementation 856
Security Analysis 856
Best Practices 858
Recovery Policy 860
Policy Implementation 860
Policy Enforcement 861
Storage 863
Certificates 864
User Certificates 864
Recovery Agent Certificates 865
Administrative Procedures 866
Securing the Recovery Key 866
Assigning Recovery Agent Accounts 868
Configuring Recovery Agent Policy 871
Viewing Recovery Agent Information 872
Recovering a File or Folder 872
Disabling EFS for a Specific Set of Computers 873
Disabling EFS for a Specific Folder 875
Using the System Key 876
Printing EFS Files 879
Troubleshooting EFS 881

Chapter 16 Windows 2000 Certificate Services and Public Key Infrastructure 883

Benefits of the Public Key Infrastructure 885
Strong Security with Public Key Technology 885
Integration with Active Directory and Distributed Security Services
Major Components of the Public Key Infrastructure 888
Windows 2000 Certificate Services 888
Entry Module 889
Policy Modules 890
Certificate Templates 891
Certificate Database 894
Exit Modules 894
Certification Authority Console 895

XXVi Contents

Microsoft CryptoAPI and Cryptographic Service Providers 898
Hardware and Software Cryptographic Service Providers 898
Microsoft Cryptographic Service Providers 898
FIPS 140-1 Level 1 Certification 899
Base vs. Enhanced Cryptographic Service Providers 900
Smart Card Cryptographic Service Providers 901
Cryptography Export Restrictions 901

Certificate Stores 902

Features of the Public Key Infrastructure 904

Certificates Console 904

Certification Authority Trust Model 907
Certification Authority Hierarchies 908
Certification Path 909
Certificate Trust Lists 912
Certificate Validation Process 914

Benefits of Multiple-Level Certification Hierarchies 916
General Benefits 916
Administrative Benefits 917
Benefits of Multiple Issuing Certification Authorities 917

Windows 2000 Certification Authorities 918
Enterprise Certification Authorities 918
Stand-alone Certification Authorities 918

Certificate Life Cycle 919
Nested Validity Dates 920
Certificates Issued by Stand-alone Certification Authorities 921
Certificates Issued by Enterprise Certification Authorities 921
Certification Authorities’ Certificates 922
Example of a Certificate Life Cycle 924
General Considerations for Key Lifetimes 925

Certificate Enrollment and Renewal Methods 927
Manual Certificate Requests for Windows 2000-based Clients 927
Automatic Computer Certificate Enrollment and Renewal 928
Web Enrollment Support Pages 929
Custom Enrollment and Renewal Applications 930

Public Key Group Policy 930

Certificate Revocation Lists 931

Preinstalled Trusted Root Certificates 932

Smart Card Support 932

Contents

XXvii

Certificate Mapping 934
Domain User Accounts 934
Internet Information Services 935
Roaming Profile Support 935
Certificate Services Deployment 936
Install Certification Authorities 936
Upgrading from Certificate Server 1.0 937

Creation of an Issuer Statement for the Certification
Authority (Optional) 937

Installing Windows 2000 Certificate Services 938
Configure Certification Authorities 941
Installation of the Certification Authority Certificate 941
Configuration of Policy Module Settings 942
Configuration of Exit Module Settings 943
Scheduling Certificate Revocation List Publication 944
Configuration of Certificates to Be Issued 945
Modification of Security for a Certification Authority 946
Enabling Netscape-compatible Web-based Revocation Checking 948

Modify the Default Security Permissions for Certificate
Templates (Optional) 948

Install and Configure Support Systems or Applications 950
Configure Public Key Group Policy 950
Automatic Certificate Enrollment 953
Root Certificate Trust 953
Certificate Trust Lists 954
EFS Recovery Agents 956
Install Web Enrollment Support on Another Computer (Optional) 957
Trusting the Computer for Delegation 958
Installing the Web Enrollment Support Pages 959
Configure Security for Web Enrollment Support Pages (Optional) 960
Integrate with Third-Party Certificate Services (Optional) 962
Ongoing Certificate Services Tasks 963
Using the Web Enrollment Support Pages 963
Choosing the Type of Certificate to Request 965
Submitting User Certificate Requests 966
Submitting Advanced Certificate Requests 967
Installing the Certificate After It Is Issued 975
Requesting Certificates with the Certificate Request Wizard 976

Xxviii Contents

Viewing Information About Certificates 977
Exporting Certificates and Private Keys 979
Backing Up and Restoring Certification Authorities 981
Windows 2000 Backup and Restore 981
Certification Authority Console Backup and Restore 982
Backup Strategies 982
Restore Considerations 983
Revoking Certificates 984
Publishing Certificate Revocation Lists 984
Approving or Denying Certificate Requests 984
Renewing Certification Authorities 985
Recovering Encrypted Data 986
Recovery for Encrypting File System 987
Recovery for Secure Mail 988
Using the Certificate Services Command-Line Programs 988
CertUtil.exe 989
CertReq.exe 989
CertSrv.exe 990
Disaster Recovery Practices 990
Using Preventive Practices for Servers 990
Providing Security for Certification Authority Servers 991
Protecting Private Keys for Certification Authority Servers 993
Developing Recovery Plans 994
Failed Certification Authority 994
Compromised Certification Authority 996
Additional Resources 997

Part3 Enterprise Technologies

Chapter 17 Distributed File System 1001
Introduction to Dfs 1003

What Dfs Does 1003

Features and Benefits 1004

Contents XXix

Basic Dfs Concepts 1007
Nomenclature 1007
Processes 1009
Maintaining the Partition Knowledge Table (PKT) 1009
Caching Referrals by Clients 1010
Gaining Access to a Dfs Shared Folder 1011
Linking Logical Names to Physical Addresses 1012
Switching Between Replicas During Failover 1013
Replicating Files 1014
Establishing Security 1015
Getting Started 1016
Administrator Perspective 1016
Client Perspective 1017
Architecture 1018
Block Diagrams 1018
How Dfs Works 1020
Windows 2000 Improvements of Dfs 4.x 1021
Scripting 1023
Design Guidelines for Dfs 1024
Problems That Dfs Solves 1024
Unified File System Namespace 1024
High Availability 1025
Load Sharing 1025
Capacity Expansion 1026
Intranet/Internet Publishing 1027
Naming Strategy 1028
Domain Naming 1029
Server Naming 1029
Dfs Root Naming 1030
Dfs Link Naming 1030
Shared Folder Naming 1031
Dfs Namespace Strategy 1031
Replication Strategy 1034
Dfs Roots 1034
Replica Sets 1034
Site Topology 1035
Security Strategy 1036

XXX Contents

Migration Strategy 1037
Existing Windows NT Shared Folders 1037
Dfs4.x 1037
Platform Interoperability 1038
Disaster Recovery Strategy 1039
Implementing Dfs 1040
Setup Considerations 1040
Dfs Server 1040
Dfs Client 1041
Dfs and Active Directory 1043
Dfs and Load Sharing 1043
Dfs and File Replication Service 1045
Dfs and Cluster Service 1045
Supporting Dfs 1046
Monitoring Dfs Activity 1046
Maintaining the Dfs Configuration 1047
Checking Shared Folder Status 1047
Taking Resources Offline 1048
Removing Dfs 1048
Troubleshooting Dfs Problems 1050
Gaining Access to the Dfs Namespace 1050
Tracking Shared Folders 1051
Gaining Access to Dfs Links and Shared Folders 1051
Security-Related Issues 1052
Replication Latency 1052
Dfs Utilities 1053
Additional Information 1055

Chapter 18 File Replication Service 1057
Introduction to FRS 1059
Replicating SYSVOL 1060
Replicating Dfs Replicas 1061
How FRS Works 1062
Detailed Operation 1065
FRS Tables 1068
FRS Startup 1069
Upgrading LMRepl to FRS 1070
LMRepl Process 1070
FRS Process 1071
Maintaining a Mixed Environment 1072

Contents

xxxi

Customizing FRS 1073
Setting File and Folder Filters 1073
Scheduling Replication 1074
On SYSVOL 1074
On Dfs Replicas 1075
Tuning Recommendations 1077
Monitoring Performance 1079
Restoring Replicated Files 1080
Nonauthoritative Restore Process 1081
Authoritative Restore Process 1082
Restoring Files on a Domain Controller 1082
Restoring Files on a Member Server 1083
Troubleshooting FRS 1084
FRS Logs 1085
Log Settings 1086
Analyzing Log Files 1088
Ntfrsutl Tool 1089

Chapter 19 Network Load Balancing 1091
Network Load Balancing Overview 1093
How Network Load Balancing Works 1094
System Requirements 1096
Components 1097
Network Load Balancing Design 1097
Implementing Network Load Balancing 1101
Configuring Network Load Balancing 1101
Cluster Parameters 1102
Host Parameters 1103
Host Priority ID 1103
Initial State 1103
Dedicated IP Address and Subnet Mask 1104
Port Rules 1104
Port Range 1104
Protocols 1105
Network Load Balancing with Network Hardware Switches 1106

XXxii

Contents

Scenarios 1109
IIS Server (Web Farm) 1109
Port-rule Settings 1109
Servicing Multiple Web Sites (Multihoming) 1109
Servicing a Web Site with Active Server Pages 1110
Servicing a Web Site That Uses Secure Sockets Layer 1111
Port-rule Settings 1111
Creating a Virtual Private Network 1112
Port-rules Settings 1112
Streaming Media 1113
Port-rules Settings 1113
Single-Server Failover Support 1113
Port-rule Settings 1114
Default Handling of Client Requests 1115
Wilbs Display Command 1115
Changing Network Load Balancing Resource Limits in the Registry
Additional Resources 1120

Chapter 20 Interpreting the Cluster Log 1121
Cluster Log Basics 1123
Anatomy of a Cluster Log Entry 1124
Component Event Log Entries 1125
Meanings of Abbreviations 1126
Resource DLL Log Entries 1127
Meanings of State Codes and Status Codes 1128
Techniques for Tracking the Source of a Problem 1129
Timestamps 1129
GUIDs, Resources, and Groups 1130
Process and Thread IDs 1132
GUM Updates and Sequence Numbers 1132
Shared Locks and gdwQuoBlockingResources 1134
Cluster Form and Join Operation Entries 1136
Initializing the Node 1136
Joining a Cluster (Unsuccessful Attempt) 1137°

1118

Contents XXXiii

Forming a Cluster 1139
Starting Resrcmon.exe 1140
Bringing the Quorum Resource Online 1140
Applying Quorum Log Changes to the Cluster Database 1145
Recreating Groups and Resources 1148
Configuring the Networks 1152
Bringing Resources Online 1157
Cluster Successfully Formed 1168
Log Summary of Cluster Formation 1169
Failure Scenarios 1169
Resource DLL Is Missing 1170
Intracluster Network Connection Is Broken 1170
Log from Node 2 1170
Log from Node 1 1172
Node Cannot Form Cluster Because Quorum Location Changed 1173
Tips 1175
Reading the Log in Word or WordPad 1175
Correlating the Windows 2000 Event Log and the Cluster Log 1175
Identifying GUIDs in the Registry 1175
Logging When Running the Cluster Service With the —debug Option 1177
State Codes 1178
State Codes for Cluster Nodes 1178
State Codes for Cluster Groups 1178
State Codes for Cluster Resources 1179
State Codes for Network Interfaces 1179
State Codes for Networks 1180
Context Numbers 1180
Additional Resources 1182

XXXiv Contents

Part4 Desktop Configuration Management

Chapter 21 Introduction to Desktop Management 1185
Change and Configuration Management 1187
IntelliMirror 1189
User Data Management 1189
Software Installation and Maintenance 1190
User Settings Management 1191
Windows 2000 Technologies That IntelliMirror Uses 1192
Active Directory 1193
Group Policy 1194
Windows Installer 1196
Offline Files 1196
Synchronization Manager 1196
Folder Redirection 1197
Disk Quotas 1197
Add/Remove Programs 1198
Windows Desktop 1199
Roaming User Profiles 1199
Remote OS Installation 1200
Configuring and Maintaining the Network Environment 1202
Microsoft Systems Management Server 1203
Combining Management Solutions 1204
Managing the Desktop 1205
Desktop Configuration 1205
User and Computer Configurations 1206
Understanding User Profiles 1207
Creating and Editing User Profiles 1208

Contents

XXXV

Desktop Configuration for Roaming and Mobile Users 1210
Software Installation and Maintenance 1210
Roaming User Profiles 1211
Folder Redirection 1211
Offline Files 1213
Cache Settings 1214

Roaming User Profile Settings 1215

Enhancements to Roaming User Profiles 1217
Merge Algorithm 1217
Nonroaming Folders 1219
Profile Location 1220
Quotas on Profile Size 1221

Specifying Security on the Desktop 1222

Additional Resources 1222

Chapter 22 Group Policy 1223
Group Policy Overview 1225
Active Directory Structure and Group Policy 1227
Managing Group Policy 1229
Group Policy Infrastructure and Mechanics 1229
Group Policy Objects and the Group Policy Snap-in 1229
Links to Sites, Domains, and Organizational Units 1230
Access to the Group Policy Snap-in 1230
Filtering by Security Group Membership 1230
Administrative Requirements for Using Group Policy 1230
Microsoft Management Console Snap-in Extension Model 1231
Configuring Group Policy 1232
‘ Group Policy Snap-in Namespace 1232
| Computer Configuration 1232
| User Configuration 1233
Extensions to the Group Policy Snap-in 1234
Administrative Templates 1236
Other Group Policy Extensions That Use the Registry 1237
Security Settings 1238
Incremental Security Templates 1239

XXXVi Contents

Security Configurations 1240
Compatible 1240
Secure 1240
High Secure 1241
Windows 2000 Default Security Templates 1241
Software Installation 1242
Scripts 1243
Folder Redirection 1244
Extending the Group Policy Snap-in 1245
Client-side Extensions to Group Policy 1246
Group Policy Storage 1246
Non-Local, Active Directory—Based Storage 1246
Group Policy Container 1247
Group Policy Template 1248
Local Group Policy Objects 1249
Group Policy Template Subfolders 1249
Registry.pol Files 1251
Group Policy Object Links 1252
No Override as Compared to Block Policy Inheritance 1252
Multiple Group Policy Objects 1253
Cross-Domain Editing of a Group Policy Object 1253
Using Security Groups to Filter and Delegate Group Policy 1254
Filtering the Scope of a Group Policy Object 1254
Setting Security Permissions for Receiving Group Policy 1254
Delegating Control of Group Policy 1256

Managing Group Policy Links for a Site, Domain, or Organizational
Unit 1257

Creating Group Policy Objects 1258
Editing Group Policy Objects 1258
Examples of Group Policy Delegation 1260
Creating MMC Consoles to Delegate Group Policy 1261
Group Policy Processing 1263
Synchronous and Asynchronous Processing 1265
Periodic Refresh Processing 1265
Optional Processing of Group Policy Even If It Has Not Changed 1266
Group Policy and Network Bandwidth 1266
Setting Policy for Slow-Link Definition 1267
Registry Reads 1268

Contents XXXVii

Specifying a Domain Controller for Setting Group Policy 1269
Specifying Policy for Domain Controller Options 1270
Domain Controller Selection Results 1272
Client-side Processing of Group Policy 1273
Client-side Extension Preferences 1273
Computer Policy for Client-side Extensions 1275
Using Group Policy on Stand-alone Computers 1278
Local Group Policy Object 1278
Starting Group Policy on Windows 2000 Professional 1279
Using the Group Policy Snap-in Focused on a Remote Computer 1279
Local Group Policy Object Processing 1281
Group Policy Loopback Support 1282
Supporting Windows NT 4.0, Windows 95, and Windows 98 Clients 1284

Using Windows NT 4.0 Administrative Templates in the Windows 2000 Group
Policy Console 1285

Migration Issues Pertaining to Group Policy 1285
The Client Side 1286
The Domain Controller Side 1286

Computer and User Accounts Both on Windows NT 4.0 Domain
Controllers. 1286

Computer and User Accounts Both on Windows 2000 Domain
Controllers 1287

Computer is Managed in a Windows NT 4.0 Account and User is Managed
in a Windows 2000 Account 1287

User is Managed in a Windows NT 4.0 Account and Computer is Managed
in a Windows 2000 Account 1288

Trust Relationships with Previous Versions of Windows 1289
Best Practices 1289
Additional Resources 1290

Chapter 23 Software Installation and Maintenance 1291
Introduction 1293
Software Installation 1294
Windows Installer 1295
Add/Remove Programs in Control Panel 1296
Phases of Software Management 1296
Preparation Phase 1297
Analyze Software Requirements 1297
Gather or Create Windows Installer Packages 1300

Xxxviii

Contents

Distribution Phase 1303
Software Distribution Points 1303
Distributing Windows Installer Packages 1304
Using Remote OS Installation 1307
Targeting Phase 1308
Manage Your Software 1308
Configure Software for Management 1313
Targeting Software for Multilingual Users 1321
Pilot Program 1322
Software Installation User Scenarios 1323
Installation Phase 1330
Updating Software by Using Patches and Upgrades 1332
Removing Software 1337
Windows Installer Technology 1338
Managing Windows Installer with Group Policy 1339
Windows Installer Package 1340
Natively Authoring Windows Installer Packages 1342
Additional Repackaging Programs 1343
Managing Software with Existing Setup Programs 1346
Customizing Windows Installer Packages 1350
Modifying Windows Installer Package Properties 1352
Distributing Additional Files 1353
Terminal Services and Software Installation and Maintenance 1354
Software Installation and Maintenance and Backing Up Data 1356
Best Practices and Troubleshooting 1357
Additional Resources 1358

Chapter 24 Remote OS Installation 1359
Remote OS Installation Overview 1361
Remote OS Installation Requirements 1362
Server Software Requirements 1363
Hardware Requirements 1364
Server Hardware Requirements 1364
Client Hardware Requirements 1364
Remote Installation Services 1367
RIS Components 1367
RIS Services 1368
Installing RIS 1369

Contents XXXiX

Deploying RIS Servers 1370
Authorizing RIS Servers in Active Directory 1372
Configuring RIS Servers 1374
Restricting Client Installation Options by Using Group Policy 1374
Defining a Computer Naming Policy 1375
Client Response Options 1378
Pre-staging Clients in Active Directory Using GUID 1378
GUID Format 1378
Clients Installing Operating System Images 1379
Preboot Execution Environment 1380
RIS Server PXE Environment 1380
DHCP and RIS on Separate Servers 1380
DHCP and RIS on the Same Server 1381
Verifying the Correct PXE ROM Version 1381
Creating Operating System Images 1382
Using CD-based Images 1382
Creating New CD-Based Images 1383
Modifying Properties of a CD-based Image 1384
Using RIPrep Images 1384
RIPrep Considerations 1385
Configuring a RIPrep Source Computer 1386
Using Software Installation and Maintenance with RIPrep 1387
RIPrep and User Profiles 1389
Running the RIPrep Wizard 1390
Relationship of SysPrep to Remote OS Installation 1392
Removing RIS Server Operating System Images 1393
Working with Answer Files 1394
Creating and Modifying Setup Answer Files 1394
Modifying Remote Installation Answer Files 1394
Associating an Answer File with an Image 1395
Setting Security Permissions in Answer Files 1396
How Answer Files Are Used During Remote Installation 1398
Specifying a CD Key in the Answer File 1398
Client Installation Wizard 1399
Using Client Installation Wizard to Install Clients 1399
Default Client Installation Wizard Process 1400

xl

Contents

Client Installation Wizard Screens 1401
Controlling Client Setup Options 1403
Automatic Setup 1403
Custom Setup 1404
Restart a Previous Setup Attempt 1404
Maintenance and Troubleshooting 1404
Client Installation Wizard Error Screens 1405
Customizing Client Installation Wizard Screens 1405
Adding Screens and Working With OSC Variables 1405
Modifying the OSChoice.osc File 1407
Creating a New Display.osc Screen 1408
Modifying the Answer Files to Work with the New OSC Variables 1409
Reserved OSC Variables 1410
Multilanguage RIS Servers 1412
Language Restrictions 1413
Single Instance Store 1414
Single Instance Store Groveler 1414
Backing Up a SIS Volume 1417
SIS Groveler Configuration Parameters 1417
Optional Registry Parameters for RIS BINL 1419
Troubleshooting RIS 1421
Troubleshooting: No Response From a RIS Server 1421
Troubleshooting: Working with Routers 1424

Chapter 25 Troubleshooting Change and Configuration Management 1425
Best Practices 1427
Troubleshooting Tools 1428
Verbose Logging 1429
Group Policy Issues 1431
Scripts Do Not Run 1431
Registry Settings Using Administrative Templates Are Not Applied 1432
Group Policy Object Does Not Open 1434
Active Directory and Sysvol Are Unsynchronized 1435

More Than 1,000 Group Policy Objects are present and Group Policy
fails 1437

No Group Policy Objects Are Applied 1438

Inheritance Issues with Group Policy Objects Cause Unexpected
Results 1440

Only Some IP Security and User Rights Policy Settings Are Applied 1441
Security Settings on Group Policy Object Cause Unexpected Results 1442

Contents xli

User Data Management Issues 1443
Files Do Not Synchronize 1443
User Cannot Make Files and Folders Available Offline 1445
Files Available When Online Are Not Available When Offline 1446
My Documents Icon Is Missing 1447
Folders Are Not Redirected 1448
Redirection Is Successful But Files and Folders Are Unavailable 1450
Software Installation and Maintenance Issues 1451
Published Application Does Not Appear 1451
Published Application Does Not Auto-install 1452
Unexpected Application Automatically Installs 1453
Installation Error Messages 1454
Feature Is Not Found 1455
Computer-Assigned Applications Do Not Install 1456
Installed Application Is Unexpectedly Removed 1457
Opening Application Installs New Application 1458
Shortcuts Still Appear for Removed Application 1459
Unexpected Applications Appear in Add/Remove Programs 1460
Upgrading Base Application Does Not Complete 1460
“Another Install in Progress” Error Message 1461
Opening Application Starts Windows Installer 1462
Cannot Prepare Package for Deployment 1462
Active Directory Does Not Allow Package to Deploy 1463
User Settings Management Issues 1464
Roaming User Profile Does Not Roam Correctly Using Multiple
Computers 1464
Roaming User Profile Lost and User Left with Temporary Profile 1465
Not All Settings Roam 1466
User Profile Does Not Roam 1467
Remote OS Installation Issues 1470
OSChooser Skips User 1470
File Not Found Before Welcome.osc 1471
File Not Found After Welcome.osc 1471
Duplicate Machine Account Warning Message 1472
Risetup Fails Due to Insufficient Rights 1472
RPC Server Unavailable Error Message 1473

xlii

Contents

BINL Server Does Not Respond and No Scope Problem Error Message
Appears 1473

BINL Server Does Not Respond and Debugging Error Message
Appears 1474

BINL Server Does Not Respond and Server Not Authorized Error Message
Appears 1474

BINL Server Does Not Respond and Unable to Read Active Directory Settings
Error Message Appears 1475

BINL Server Does Not Respond and Server Not Set to Answer Error Message
Appears 1475

BINL Server Does Not Respond and Client Unknown Error Message
Appears 1476

BINL Server Does Not Respond and Prestaged Clients Server Down Error
Message Appears 1476

BINL Server Does Not Respond and DHCP Packets Not Forwarded Error
Message Appears 1477

BINL Server Does Not Start and Unknown User Error Message
Appears 1477

Remote OS Installation Cannot Join Domain 1478
Gathering More Troubleshooting Information 1478
User Data Management 1478
Software Installation and Maintenance 1479
Software Installation and Maintenance Event Log Entries 1480
User Settings Management 1482

Part5 Appendixes

Appendix A Frequently Encountered LDAP API Functions 1485
Appendix B LDAP Requests for Comments 1487

Appendix C Active Directory Diagnostic Tool (Ntdsutil.exe) 1491
Invoking Ntdsutil Commands and Parameters 1493
How to Use Ntdsutil Menu Commands 1493
How Ntdsutil Processes Command Input 1494
How to Use Arguments with Ntdsutil Commands 1494
How to Automate Ntdsutil Commands 1495
Managing Active Directory Files 1495
Using the Connections Menu 1499

Contents

xliii

Selecting an Operation Target 1500

Managing Operations Master Roles 1501

Managing Orphaned Metadata 1505

Performing an Authoritative Restore 1506

Managing Domains 1507

Managing Lightweight Directory Access Protocol Policies 1508
Managing the IP Deny List 1510

Managing Security Accounts 1511

Using Semantics Database Analysis 1512

List of Menu Commands 1513

Appendix D User Rights 1515
Logon Rights 1517
Privileges 1519

Appendix E Well-Known Security Identifiers 1525

Appendix F “Certified for Microsoft Windows” Applications 1533
Windows 2000 Desktop Applications 1534
Windows 2000-based Distributed Applications 1534

Appendix G OSCML and Client Installation Wizard Variables 1537
Glossary 1545
Index 1589

xlv

Introduction

Document

Welcome to the Microsofte Windows® 2000 Server Resource Kit Distributed
Systems Guide.

The Microsofte Windowse® 2000 Server Resource Kit consists of seven volumes
and a single compact disc (CD) containing tools, additional reference materials,
and an online version of the books. Supplements to the Windows 2000 Server
Resource Kit will be released as new information becomes available, and updates
and information will be available on the Web on an ongoing basis.

The Distributed Systems Guide provides a conceptual, theoretical, functional, and
practical view of the various technologies that make up the

Microsofte Windowse 2000 distributed systems. This guide provides in-depth
technical information that encompasses four major areas: Active Directory™,
distributed security, enterprise technologies, and desktop configuration
management.

Conventions

The following style conventions and terminology are used throughout this guide.

Element Meaning

bold font Characters that you type exactly as shown, including
commands and switches. User interface elements are also
bold.

Italic font Variables for which you supply a specific value. For example,
Filename.ext could refer to any valid file name for the case in
question.

Monospace font Code samples.

%SystemRoot% The folder in which Windows 2000 is installed.

xlvi Introduction

Reader Alert Meaning

Tip Alerts you to supplementary information that is not essential
to the completion of the task at hand.

Note Alerts you to supplementary information.

Important Alerts you to supplementary information that is essential to

the completion of a task.

Caution Alerts you to possible data loss, breaches of security, or other
more serious problems.

Warning Alerts you that failure to take or avoid a specific action might
result in physical harm to you or to the hardware.

Resource Kit Compact Disc

The Windows 2000 Server Resource Kit companion CD includes a wide variety of
tools and resources to help you work more efficiently with Windows 2000.

Note The tools on the CD are designed and tested for the U.S. version of
Windows 2000. Use of these programs on other versions of Windows 2000 or on
versions of Microsofte Windows NT® can cause unpredictable results.

The Resource Kit companion CD contains the following:

Windows 2000 Server Resource Kit Online Books An HTML Help version of the
print books. Use these books to find the same detailed information about
Windows 2000 as is found in the print versions. Search across all of the books to
find the most pertinent information to complete the task at hand.

Windows 2000 Server Resource Kit Tools and Tools Help Over 200 software tools,
tools documentation, and other resources that harness the power of

Windows 2000. Use these tools to manage Active Directory™, administer security
features, work with the registry, automate recurring jobs, and many other
important tasks. Use Tools Help documentation to discover and learn how to use
these administrative tools.

Introduction xlvii

Windows 2000 Resource Kit References A set of HTML Help references:

= Error and Event Messages Help contains most of the error and event
messages generated by Windows 2000. With each message comes a
detailed explanation and a suggested user action.

= Technical Reference to the Registry provides detailed descriptions of
Windows 2000 registry content, such as the subtrees, keys, subkeys, and
entries that advanced users want to know about, including many entries that
cannot be changed by using Windows 2000 tools or programming
interfaces.

= Performance Counter Reference describes all performance objects and
counters provided for use with tools in the Performance snap-in of
Windows 2000. Use this reference to learn how monitoring counter values
can assist you in diagnosing problems or detecting bottlenecks in your
system.

= Group Policy Reference provides detailed descriptions of the Group
Policy settings in Windows 2000. These descriptions explain the effect of
enabling, disabling, or not configuring each policy, as well as explanations
of how related policies interact.

Resource Kit Support Policy

The software supplied in the Windows 2000 Server Resource Kit is not supported.
Microsoft does not guarantee the performance of the Windows 2000 Server
Resource Kit tools, response times for answering questions, or bug fixes to the
tools. However, we do provide a way for customers who purchase the

Windows 2000 Server Resource Kit to report bugs and receive possible fixes for
their issues. You can do this by sending e-mail to rkinput@microsoft.com. This e-
mail address is only for Windows 2000 Server Resource Kit related issues. For
issues relating to the Windows 2000 operating system, please refer to the support
information included with your product.

PART 1

Active Directory

Active Directory™ is the core feature of distributed systems in Microsofte
Windowse 2000. Part 1 provides detailed technical information about Active
Directory architecture and operation. This information is useful for network
administrators when implementing or troubleshooting directory services.

In This Part

Active Directory Logical Structure 3

Active Directory Data Storage 53

Name Resolution in Active Directory 145

Active Directory Schema 203

Service Publication in Active Directory 275
Active Directory Replication 299

Managing Flexible Single-Master Operations 391
Monitoring Performance in Active Directory 417
Active Directory Backup and Restore 435

Active Directory Diagnostics, Troubleshooting, and Recovery 459

CHAPTER 1

Active Directory Logical
Structure

Active Directory™, the directory service that is included with Microsofte
Windowse 2000, stores information about network objects and also implements
the services that make this information available and usable to users, computers,
and applications. The Domain Name System (DNS) hierarchical naming system
and Windows 2000 trust relationships provide a consistent, logical structure that
facilitates the organization of domains and domain resources in a predictable and
useful way.

In This Chapter

Active Directory Domain Hierarchy 5
Active Directory Domain Names 6
Active Directory and DNS 10

Tree and Forest Structure 18

Active Directory Objects 35

4

Part1 Active Directory

Related Information in the Resource Kit

For more information about Active Directory architecture and physical
storage, see “Active Directory Data Storage” in this book.

For more information about planning the DNS namespace, domain hierarchy,
and organizational unit structure, see “Designing the Active Directory
Structure” in the Microsofte Windowse 2000 Server Resource Kit Deployment
Planning Guide.

For more information about standard DNS concepts and using Windows 2000
DNS server, see “Introduction to DNS” and “Windows 2000 DNS” in the
Microsofte Windowse 2000 Server Resource Kit TCP/IP Core Networking
Guide.

Chapter 1 Active Directory Logical Structure 5

Active Directory Domain Hierarchy

In Windows 2000, a domain defines both an administrative boundary and a
security boundary for a collection of objects that are relevant to a specific group
of users on a network. A domain is an administrative boundary because
administrative privileges do not extend to other domains. It is a security boundary
because each domain has a security policy that extends to all security accounts
within the domain. Active Directory stores information about objects in one or
more domains.

Domains can be organized into parent-child relationships to form a hierarchy. A
parent domain is the domain directly superior in the hierarchy to one or more
subordinate, or child, domains. A child domain also can be the parent of one or
more child domains, as shown in Figure 1.1.

— Parentof Band C

— Child of A
Parent of D

— Child of C
Grandchild of A

Figure 1.1 Example of a Domain Hierarchy

This hierarchical structure is a change from the flat domain structure of
Microsofte Windows NTe version 4.0 and Microsofte Windows NTe

version 3.51. The domain hierarchy of Windows 2000 allows you to search
multiple domains in one query because each level of the hierarchy has information
about the levels that are immediately above it and below it. This hierarchy
information eliminates the need for you to know the location of a particular object
in order for you to find it. In Windows NT 4.0 and earlier, you must know both
the domain and the server where the object is located in order to find it.

For more information about Active Directory searches, see “Name Resolution in
Active Directory” in this book.

6 Part1 Active Directory

Active Directory Domain Names

Windows 2000 uses DNS naming standards for hierarchical naming of Active
Directory domains and computers. For this reason, domain and computer objects
are part of both the DNS domain hierarchy and the Active Directory domain
hierarchy. Although these domain hierarchies have identical names, they represent
separate namespaces.

Note The domain hierarchy defines a namespace. A namespace is any bounded
area in which standardized names can be used to symbolically represent some
type of information (such as an object in a directory or an Internet Protocol [IP]
address) and that can be resolved to the object itself. In each namespace, specific
rules determine how names can be created and used. Some namespaces, such as
the DNS namespace and the Active Directory namespace, are hierarchically
structured and provide rules that allow the namespace to be partitioned. Other
namespaces, such as the Network Basic Input/Output System (NetBIOS)
namespace, are flat (unstructured) and cannot be partitioned.

The main function of DNS is to map user-readable computer names to computer-
readable IP addresses. Thus, DNS defines a namespace for computer names that
can be resolved to IP addresses, or vice versa. In Windows NT 4.0 and earlier,
DNS names were not required; domains and computers used NetBIOS names,
which were mapped to IP addresses by using the Windows Internet Name Service
(WINS). Although DNS names are required for Windows 2000 domains and
Windows 2000-based computers, NetBIOS names also are supported in
Windows 2000 for interoperability with Windows NT 4.0 domains and with
clients that are running Windows NT 4.0 or earlier, Microsofte Windowse for
Workgroups, Microsofte Windowse 98, or Microsofte Windowse 95.

Note WINS and NetBIOS are not required in an environment where computers
run only Windows 2000, but WINS is required for interoperability between
Windows 2000-based domain controllers, computers that are running earlier
versions of Windows, and applications that depend on the NetBIOS namespace—
for example, applications that call NetServerEnum and other “Net*” application
programming interfaces (APIs) that depend on NetBIOS.

Chapter 1 Active Directory Logical Structure 7

DNS Naming Conventions

DNS naming standards are used within Active Directory to provide support for
industry-standardized mapping of DNS domain names to the IP addresses of
computers. When a DNS server is given a computer name, it resolves the name to
an IP address so that Transmission Control Protocol/Internet Protocol (TCP/IP)—
based applications can communicate with the computer by its IP address.

In addition to being identified by computer name in DNS, Active Directory
domain controllers are identified by specific services that they provide, such as
Lightweight Directory Access Protocol (LDAP) servers, domain controllers, and
Global Catalog servers. Therefore, when given the name of a domain and a
service specification, a DNS server can locate a domain controller of that type
within that domain. (For more information about how domain controllers are
located, see “Name Resolution in Active Directory” in this book.)

A DNS hierarchy is enforced by the following requirements:
= A child domain can have exactly one parent domain.

= Two children of the same parent cannot have the same name.

Because Active Directory domains use DNS names, these two standards apply to
Active Directory domains.

In the DNS naming structure, every portion of a DNS name that is separated by a
period (.) represents a node in the DNS hierarchical tree structure and an Active
Directory domain name in the Windows 2000 domain hierarchical tree structure.

Note In DNS, a node in the hierarchy can be a domain or a computer.

8

Part1 Active Directory

When you view a DNS name, a domain is any single portion of the DNS name
that is separated from other parts of the DNS name by a period. For example, in
the DNS domain name calif.noam.reskit.com, “calif,” “noam,” “reskit,” and
“com” each corresponds to a DNS domain. As illustrated in Figure 1.2, in Active
Directory, the domain name calif.noam.reskit.com represents a hierarchy in which
reskit.com is the root (topmost) domain, noam is a child domain of reskit.com
(noam.reskit.com), and calif is a child domain of noam.reskit.com.

reskit.com

noam.reskit.com

calif.noam.reskit.com

Figure 1.2 Example of an Active Directory Hierarchy with DNS Names

Note In reality, the .com domain is outside Active Directory, although it appears
as part of the domain name. Domains such as .com, .org, and .edu, to name a few,
are called top-level domains and are used on the Internet to classify organizations
by type. (For more information about top-level DNS domains, see Windows 2000
Server Help.)

The hierarchy of domains is created as a result of contiguous naming, where each
subordinate level includes, and adds to, the preceding level.

In DNS, the name that precedes a period is called a label. Reading the domain
name from right to left, applications can correctly interpret the order of hierarchy
for each label. And because two children of the same parent cannot have the same
name, a domain name is always unique in the hierarchy. Each domain in the
hierarchy defines its own portion of the overall namespace.

Whereas the Active Directory tree contains domains, the DNS tree contains both
domains and computers. Therefore, the leftmost portion of a DNS name can also
be a computer name.

Chapter 1 Active Directory Logical Structure 9

Note For more information about Internet Standard host names, see the Request
for Comments (RFC) link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Search for
RFC 1123. This host naming standard is recommended, but not required, for
Active Directory domain names. (In DNS, computers are historically referred to
as “hosts.”)

For more information about DNS naming and functionality, see Windows 2000
Server Help, and see “Introduction to DNS” in the TCP/IP Core Networking
Guide.

NetBIOS Domain Names

Windows 2000 provides support for applications that use the NetBIOS
networking API and the flat NetBIOS names used by these applications. This
support for non-DNS domain and computer names allows computers that are
running Windows NT 4.0 and earlier, or those that are running Windows 95 or
Windows 98, to identify Windows 2000 domains. For example, in a mixed-mode
environment, Windows NT 4.0-based backup domain controllers (also known as
“BDCs”) recognize a specified Windows 2000-based domain controller as the
primary domain controller (also known as a “PDC”). They use NetBIOS names to
locate the primary domain controller; therefore, each Windows 2000-based
domain controller must have a NetBIOS name to allow computers that are not
running Windows 2000 to log on. Likewise, other server and workstation
computers are recognized by NetBIOS names.

When you create a new domain during the Active Directory installation
procedure, the system provides a default NetBIOS domain name that matches the
leftmost label in the DNS domain name up to the first 15 bytes (NetBIOS names
have a limit of 15 bytes). You can change this name during the procedure, but you
cannot change it thereafter. When you name a stand-alone server or workstation
computer, you provide a computer name that is used as the NetBIOS name and is
concatenated with the domain name to form the full computer name.

Note An ASCII character is the equivalent of 1 byte. However, DNS host names
are encoded in UTF-8 format and do not necessarily have only 1 byte per
character.

For more information about DNS domain names, computer names, and host
names, see “Windows 2000 DNS” in the TCP/IP Core Networking Guide. For
more information about the Active Directory installation procedure, see “Name
Resolution in Active Directory” in this book.

10

Part1 Active Directory

Active Directory and DNS

DNS is the de facto naming system for IP-based networks and the naming service
that is used to locate computers on the Internet. Windows 2000 uses DNS to
locate computers and domain controllers (that is, to locate Active Directory). A
workstation or member server finds a domain controller by querying DNS. For
this reason, installing or upgrading to Microsofte Windowse 2000 Server requires
that a DNS infrastructure is in place or is installed simultaneously.

Windows 2000 DNS server is included with Windows 2000 Server and
Windows 2000 Advanced Server, and can be used to integrate DNS and Active
Directory for ease of DNS management. Windows 2000 DNS server can be
installed at the time you install Windows 2000 Server, at the time you install
Active Directory, or manually after you have installed either of them.

For more information about installing and using Windows 2000 DNS server, see
“Windows 2000 DNS” in the TCP/IP Core Networking Guide. For more
information about installing Active Directory, see “Active Directory Data
Storage” in this book.

DNS Hierarchy and Active Directory

Every Windows 2000 domain has a DNS name (for example, reskit.com), and
every Windows 2000-based computer has a DNS name (for example,
win2kserver.reskit.com). Thus, domains and computers are represented both as
objects in Active Directory and as nodes in DNS.

Because DNS domains and Active Directory domains share identical domain
names, it is easy to confuse their roles. The difference is that the two namespaces,
although sharing an identical domain structure, store different data and, therefore,
manage different objects: DNS stores zones and resource records, and Active
Directory stores domains and domain objects. Both systems use a database to
resolve names.

= DNS resolves domain names and computer names to resource records through
requests received by DNS servers as DNS queries to the DNS database.

= Active Directory resolves domain object names to object records through
requests that are received by domain controllers as LDAP search requests or as
modify requests to the Active Directory database.

Thus, the Active Directory domain computer account object is in a different
namespace from the DNS host record that represents the same computer in the
DNS zone. For more information about using Windows 2000 DNS server, see
“Windows 2000 DNS” in the TCP/IP Core Networking Guide.

Chapter 1 Active Directory Logical Structure 11

DNS and the Internet

The Internet is a TCP/IP network. Every computer on the Internet or on any other
TCP/IP network has an IP address. DNS locates TCP/IP hosts by resolving the
computer names that end users understand to the IP addresses that computers
understand. For example, the computer name DC1.reskit.com is resolved to the IP
address 172.16.44.1. The addresses on the Internet are managed by using the
globally distributed DNS database, but DNS can also be implemented locally to
manage addresses within private TCP/IP networks. To create a presence on the
Internet, it is recommended that an organization register its domain name with an
Internet DNS registration agency so that other computers on the Internet can
locate its servers, and vice versa. Registration is important to ensure that another
organization does not use the same domain name.

Because DNS is the organizational structure of the Internet, the entire Internet is a
single global namespace that is subdivided into a set of top-level domains that are
then further subdivided into second-level domains. The root of the Internet
domain namespace is managed by an Internet authority that is responsible for
delegating administrative responsibility for the top-level domains of the DNS
namespace and for registering second-level domain names. The top-level domains
are the basic domain categories, such as commercial (.com), educational (.edu),
and governmental (.gov). Second-level domains represent namespaces that are
formally registered to individuals and to institutions and, thus, provide an Internet
presence for these individuals and institutions. Their presence is supported by
pointers in the relevant top-level domains to DNS servers that are authoritative for
an individual’s or organization’s root domain; for example, name servers that are
authoritative for the .com DNS database contain pointers to DNS name servers in
the root domain of the private domain (reskit.com). These DNS pointers enable
other domains to use the Internet to find the reskit.com domain. Similarly, DNS
servers that are authoritative for the root domain for an individual or organization
provide pointers to all DNS servers in child domains of the root domain, and so
on down the hierarchy. DNS name servers on a private network likewise can
contain pointers to Internet name servers if you want to be able to locate other
domains on the Internet.

For more information about DNS and the Internet, see “Introduction to DNS” in
the TCP/IP Core Networking Guide. For more information about top-level and
second-level domains, see Windows 2000 Server Help.

12

Part1 Active Directory

Active Directory and the Internet

Active Directory can exist within the scope of the global Internet DNS
namespace. When an Internet presence is required by an individual or
organization, the Active Directory namespace is maintained as one or more
hierarchical Windows 2000 domains beneath a root domain that is registered as a
DNS namespace. Registration of individual and organizational root domain DNS
names ensures the global uniqueness of all DNS names and provides for the
assignment of network addresses that are recorded in the global DNS database.
Registration of the DNS name for the root domain of the individual or
organization also grants that individual or organization the authority to manage its
own hierarchy of child domains, zones, and hosts within the root domain.

Note An organization might or might not choose to be part of the global Internet
DNS namespace. However, even if the organization’s root domain is not
registered as an Internet DNS namespace, the DNS service is required to locate
Windows 2000-based computers in general and Windows 2000-based domain
controllers in particular.

For more information about DNS and DNS name servers, see Windows 2000
Server Help, and see “Introduction to DNS” in the TCP/IP Core Networking
Guide.

DNS Host Names and Windows 2000 Computer Names

In Windows 2000, a computer name is a human-friendly name that maps to the IP
network address by which the computer is physically located. In Windows NT 4.0
and earlier, a computer is identified primarily by a NetBIOS name—a name that is
recognized by WINS, which maps the name to a static IP address or to an address
configured dynamically by the Dynamic Host Configuration Protocol (DHCP). In
earlier versions of Windows NT, if DNS was employed, NetBIOS applications
queried the DNS namespace by appending a DNS domain name to the NetBIOS
name.

To maintain compatibility with NetBIOS names that are used on computers that
are not running Windows 2000, Windows 2000 incorporates the NetBIOS
computer name as the DNS host name and the DNS domain name as the Primary
DNS suffix. These two names are employed as distinct pieces of the full computer
name (equivalent to the FQDN), thereby accommodating both DNS and, where
needed, NetBIOS.

s

o i

Chapter 1 Active Directory Logical Structure 13

In Windows 2000, therefore, the full computer name has two parts:

= DNS host name

The leftmost label in the fully qualified DNS name. The DNS host name
identifies the computer’s account that is stored in Active Directory. It is also
the name of the Security Accounts Manager (SAM) local computer account on
a workstation or member server (a computer that runs Windows NT Server or
Windows 2000 Server but is not a domain controller). By default, the DNS
host name is also used as the NetBIOS version of the computer name for
compatibility with Windows NT 3.5x and Windows NT 4.0 domains and with
computers that are running Windows 95 or Windows 98.

Note The NetBIOS name and the DNS host name are not necessarily identical
because NetBIOS names are limited to 15 bytes in length. If the length of the
DNS host name is 15 bytes or less, by default the two names are identical. (For
more information about DNS host names, see “Windows 2000 DNS” in the
TCP/IP Core Networking Guide.)

= Primary DNS suffix domain name

By default, the Windows domain to which the computer is joined. The default
can be changed.

Figure 1.3 illustrates the form of a full computer name.

DNS Host Name j 4 § Primary DNS Suffix y- 1 Full Computer Name

l | !

clientt noam.reskit.com client1.noam.reskit.com

Figure 1.3 Components of a Full Computer Name

For more information about DNS, see “Introduction to DNS” and “Windows 2000
DNS” in the TCP/IP Core Networking Guide.

DNS Name Servers and Zones

DNS is a distributed database. DNS employs a client/server mechanism wherein
the server portion, the name server, maintains the database, responds to queries,
and processes updates. Windows 2000 DNS server can be installed on any
computer that is running Windows 2000 Server or Windows 2000 Advanced
Server. When installed on a domain controller, the DNS server is optimized for
use with Active Directory. DNS clients, called “resolvers,” are built-in
components of modern TCP/IP protocol implementations and, therefore, are
readily available to communicate with DNS servers.

14 Part1 Active Directory

DNS servers store the DNS database in zones. A zone is a contiguous partition of
the DNS namespace that contains the resource records for the DNS domains that
belong to the zone. When you configure DNS, you determine what these
partitions are. Because Active Directory domain names have a 1:1 correspondence
with DNS domains, it follows that DNS zones can include data about the
computers in one or more Active Directory domains—that is, zones and domains
do not have to have a 1:1 correspondence. One zone can encompass more than
one domain. A DNS namespace contains domains, subdomains, and computers,
which are also called “nodes.”

DNS zones store records that represent computers, which also have objects in
Active Directory. Figure 1.4 shows the relationship between the Active Directory
object for a computer and the DNS node and host resource record for this same
computer. The computer object and the host record are stored in different
namespaces, but they represent the same physical computer.

Active Directory Namespace DNS Namespace

Reskit.com

113

. ” (Root)

) Reskit.com
(1 Reskit Network Subnet 172.16.72 Zone

{1 Builtin

—{_1 Computers

8 Clientt
—@ Client2

:@ Client3
8 client20

—{ 1 Domain Controllers
=] Users

DNS Host Record
for Client1.reskit.com

Reskit.com

; host addresses

client.reskit.com IN A 172.16.72.1

client20.reskit.com IN A 172.16.72.20

Figure 1.4 The Clientl.reskit.com Computer Object in Active Directory and Its
Host Record in DNS

Chapter 1 Active Directory Logical Structure 15

Zone data identifies each host by DNS name and IP address; the data identifies
computers specifically as domain controllers by linking the service they run
(LDAP) to a computer name and IP address. Zone files also contain site
information that makes it possible to locate domain controllers in the same site as
the client and to locate domain controllers that have specific roles in the domain,
such as a Global Catalog server or a Kerberos v5 server. Zone data can be stored
in text files or in Active Directory. When zone data is stored in Active Directory,
you configure the zone as an Active Directory—integrated zone.

Note It is not necessary to use Windows 2000 DNS as your DNS server in order
to use Active Directory. However, the DNS server that you use must support
service resource records (SRV records) in accordance with the Internet
Engineering Task Force Internet Draft, “A DNS RR for Specifying the Location
of Services (DNS SRV),” which updates RFC 2052. To perform automatic zone
updates, the DNS server also should support the dynamic update protocol that is
described in RFC 2136. For more information about IETF Internet Drafts, see the
Internet Engineering Task Force (IETF) link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Follow the
links to Internet Drafts.

For more information about DNS, DNS zones, DNS resolvers, and DNS name
servers, see “Introduction to DNS” in the TCP/IP Core Networking Guide. For
more information about deciding which DNS server to use, see “Designing the
Active Directory Structure” in the Deployment Planning Guide. For more
information about Active Directory—integrated zones, see “Introduction to DNS”
and “Windows 2000 DNS” in the TCP/IP Core Networking Guide. For more
information about DNS service resource records, see “Name Resolution in Active
Directory” in this book.

Active Directory-Integrated DNS

Active Directory-integrated DNS enables Active Directory storage and replication
of DNS zone databases. Windows 2000 DNS server, the DNS server that is
included with Windows 2000 Server, accommodates storing zone data in Active
Directory. When you configure a computer as a DNS server, zones are usually
stored as text files on name servers—that is, all of the zones required by DNS are
stored in a text file on the server computer. These text files must be synchronized
among DNS name servers by using a system that requires a separate replication
topology and schedule called a zone transfer. However, if you use Active
Directory-integrated DNS when you configure a domain controller as a DNS
name server, zone data is stored as an Active Directory object and is replicated as
part of domain replication.

16

Part 1

Active Directory

Note Only DNS servers that run on domain controllers can load Active
Directory-integrated zones.

To use DNS integration within Active Directory, assign the zone type Active
Directory-integrated when you create the zone. (For more information about
how to create zones, see Windows 2000 Server Help.) Objects that represent zone
database records are created in the Microsoft DNS container within the System
container (visible in the Advanced Features view in Active Directory Users and
Computers), and the contents are replicated to all domain controllers in the
domain. When you have Active Directory—integrated DNS zones, all Active
Directory domain controllers that run Windows 2000 DNS server and are
appropriately configured function as primary name servers.

When DNS data is stored in Active Directory, each DNS zone is an Active
Directory container object (class dnsZone). The dnsZone object contains a DNS
node object (class dnsNode) for every unique name within that zone. These
unique names include the variations assigned to a specific host computer when it
functions, for example, as a primary domain controller or as a Global Catalog
server. The dnsNode object has a dnsRecord multivalue attribute that contains a
value for every resource record that is associated with an object’s name.

Figure 1.5 shows the relationship between the DNS nodes (dnsNode objects) in
the Active Directory—integrated zone and the computer objects that were
illustrated in Figure 1.4. When DNS is integrated with Active Directory, the DNS
node for a computer corresponds to a dnsNode object in the directory. The
resource records that are registered by the computer in DNS are represented as
attribute values on the dnsNode object.

A T B g K St e

Chapter 1 Active Directory Logical Structure 17

Active Directory Namespace DNS Namespace

Reskit.com

— = Builtin

. (Root)

[[Reskit.com
.com

Reskit.com
Zone

|-—§ Client20

— 1 Domain Controllers
"1 | ostAndFound

Copy of zone loaded in
System DNS and updated to and
from Active Directory.

d MicrosoftDNS
—{172.16.172 in-addr.arpa v
|| reskit.com |—{ [ctient1 “dnsNode 4—»@
client2 dnsNode .
—{] RootDNSServersJ cliont3 dnsNodse Reskit.com Zone
dnsZone object

—{"1 Users

Figure 1.5 DNS Zones and DNS Nodes Stored in Active Directory

When other non-Windows 2000 DNS servers are already in place and Active
Directory domains represent only part of the overall DNS namespace, standard
zone transfer still can be used to synchronize zone data between Active Directory
and other DNS servers (that is, using Active Directory—integrated primary DNS
zones does not preclude other DNS implementations). For more information about
using different DNS servers, see “Windows 2000 DNS” in the TCP/IP Core
Networking Guide.

When Windows 2000 DNS server is installed on at least one domain controller
and has Active Directory—integrated zones, the zone data is always replicated to
every domain controller in the domain.

18

Part1 Active Directory

For more information about where to place DNS servers, see Windows 2000
Server Help and also “Windows 2000 DNS” in the TCP/IP Core Networking
Guide. For more information about zone transfer and the location of zone data in
Active Directory, see “Introduction to DNS” and “Windows 2000 DNS,”
respectively, in the TCP/IP Core Networking Guide. For more information about
DNS objects in Active Directory, see Windows 2000 Server Help.

Support for Dynamic Updates

Windows 2000 DNS server supports the dynamic update protocol. This protocol
is a standard that allows hosts to dynamically register their names in the DNS
database, thus reducing administrative costs. When DNS zones are stored in
Active Directory, DNS is configured by default to accept dynamic updates. The
specification for dynamic update protocol is RFC 2136.

Secure dynamic update is a Windows 2000 feature that provides the additional
benefit of making it possible to authenticate clients that dynamically register their
host names in DNS. The server does not perform a dynamic update on behalf of a
client unless it has authenticated the client in Active Directory and determined
that the client has appropriate permissions to perform the dynamic update.

Note Secure dynamic update is available only with Active Directory—integrated
zones.

For more information about dynamic updates and secure dynamic updates, see
Windows 2000 Server Help and “Windows 2000 DNS” in the TCP/IP Core
Networking Guide.

Tree and Forest Structure

In accordance with DNS naming standards, Active Directory domains are created
in an inverted tree structure, with the root at the top. In addition, this

Windows 2000 domain hierarchy is based on trust relationships—that is, the
domains are linked by interdomain trust relationships.

Note The default interdomain trust relationships are created by the system during
domain controller creation. The number of trust relationships that are required to
connect n domains is n—1, whether the domains are linked in a single, contiguous
parent-child hierarchy or they constitute two or more separate contiguous parent-
child hierarchies.

Chapter 1 Active Directory Logical Structure 19

When it is necessary for domains in the same organization to have different
namespaces, create a separate tree for each namespace. In Windows 2000, the
roots of trees are linked automatically by two-way, transitive trust relationships.
Trees linked by trust relationships form a forest. A single tree that is related to no
other trees constitutes a forest of one tree.

The tree structures for the entire Windows 2000 forest are stored in Active
Directory in the form of parent-child and tree-root relationships. These
relationships are stored as trust account objects (class trustedDomain) in the
System container within a specific domain directory partition. For each domain in
a forest, information about its connection to a parent domain (or, in the case of a
tree root, to another tree root domain) is added to the configuration data that is
replicated to every domain in the forest. Therefore, every domain controller in the
forest has knowledge of the tree structure for the entire forest, including
knowledge of the links between trees. You can view the tree structure in Active
Directory Domain Tree Manager.

For more information about configuration data, see “Active Directory Data
Storage” in this book.

Tree: Implementation of a Domain Hierarchy and DNS Namespace

A Windows 2000 tree is a DNS namespace: it has a single root domain and is
built as a strict hierarchy; each domain below the root domain has exactly one
superior, or parent, domain. The namespace created by this hierarchy, therefore, is
contiguous—each level of the hierarchy is directly related to the level above it
and to the level below it, if any, as illustrated in Figure 1.6.

Reskit.com Tree

reskit.com

eu.reskit.com noam.reskit.com

calif.noam.reskit.com

Figure 1.6 Example of a Contiguous Tree Hierarchy

20

Part1 Active Directory

In Windows 2000, the following rules determine the way that trees function in the
namespace:

= A tree has exactly one name. The name of the tree is the DNS name of the
domain at the root of the tree.

= The names of domains created beneath the root domain (child domains) are
always contiguous with the name of the tree root domain.

= The DNS names of the child domains of a tree’s root domain reflect this
organization; therefore, the children of the root domain called “somedomain”
are always children of that domain in the DNS namespace (for example,
child1.somedomain, child2.somedomain, and so forth).

Child domains can represent geographical entities (for example, the United States
and Europe), administrative entities within the organization (for example, sales
and marketing departments), or other organization-specific boundaries, according
to the needs of the organization. Domains are created below the root domain to
minimize Active Directory replication and to provide a means for creating domain
names that do not change. Changes in the overall domain architecture, such as
domain collapses and domain re-creation, create difficult and potentially
IT-intensive support requirements. A good namespace design should be capable
of withstanding company reorganizations without the need to restructure the
existing domain hierarchy.

Note Administrative privileges do not extend from parent domains to child
domains. Privileges must be granted explicitly for each domain.

For more information about namespace design and the rationale for naming the
root domain and creating child domains, see “Designing the Active Directory
Structure” and “Determining Domain Migration Strategies” in the Deployment
Planning Guide. For more information about administrative privileges, see
“Authentication” and “Access Control” in this book.

Forest: Implementation of All Trees

A forest is a collection of one or more Windows 2000 Active Directory trees,
organized as peers and connected by two-way, transitive trust relationships. A
single domain constitutes a tree of one domain, and a single tree constitutes a
forest of one tree. Thus, a forest is synonymous with Active Directory—that is,
the set of all directory partitions in a particular directory service instance (which
includes all domains and all configuration and schema information) makes up a
forest.

Chapter 1 Active Directory Logical Structure 21

e e E

Trees in the same forest do not form a contiguous namespace. They form a
noncontiguous namespace that is based on different DNS root domain names.
However, trees in a forest share a common directory schema, configuration, and
Global Catalog. This sharing of common schema and configuration data, in
addition to trust relationships between their roots, distinguishes a forest from a set
of unrelated trees. Although the roots of the separate trees have names that are not
contiguous with each other, the trees share a single overall namespace because
names of objects can still be resolved by the same Active Directory. A forest
exists as a set of cross-reference objects and trust relationships that are known to
the member trees. Transitive trusts at the root domain of each namespace provide
mutual access to resources. (For more information about cross-reference objects,
see “Name Resolution in Active Directory” in this book.)

Important Tree and forest hierarchies are specific to Windows 2000 domains. A
Windows NT 4.0 domain that is configured to trust or to be trusted by a
Windows 2000 domain is not part of the Windows 2000 forest to which the
Windows 2000 domain belongs.

The forest structure provides companies with the option of constructing their
enterprise from separate, distinct, noncontiguous namespaces. Having a separate
namespace is desirable under some conditions where, for example, an acquired
company’s namespace should remain intact. If you have business units with
distinct DNS names, you can create additional trees to accommodate the names.
An example of this type of organization is shown in Figure 1.7.

Trust Relationship

Reskit.com Tree Acquired.com Tree
A€ e

reskit.com
acquired.com

eu.reskit.com noam.reskit.com child.acquired.com
calif.noam.reskit.com

Figure 1.7 Example of a Forest That Has Two Trees

22

Part1 Active Directory

Domains within an Active Directory forest share a common directory schema,
configuration information, and Global Catalog. They also have transitive trust
relationships that allow users in each domain access to available resources in all
other domains in the tree.

Note The directory schema and configuration data are shared because they are
stored in separate logical directory partitions that are replicated to domain
controllers in every domain in the forest. (For more information about directory
partitions, see “Active Directory Data Storage” in this book.) The data relative to
a particular domain is replicated only to domain controllers in the same domain.
(For more information about replication, see “Active Directory Replication” in
this book.) The Global Catalog is a domain controller that stores all objects of all
domains in an Active Directory forest, which makes it possible to search for
objects at the forest level rather than at the tree level.

For more information about the contents of Active Directory configuration,
directory schema, and Global Catalog, see “Active Directory Data Storage” in this
book. For more information about searching in Active Directory, see “Name
Resolution in Active Directory” in this book.

Forest Root Domain

The first domain created in the forest is called the forest root domain. The forest
root domain cannot be deleted, changed, or renamed. When you create a new tree,
you specify the root domain of the initial tree, and a trust relationship is
established between the root domain of the second tree and the forest root domain.
If you create a third tree, a trust relationship is established between the root
domain of the third tree and the forest root domain. Because a trust relationship is
transitive and bidirectional, the root domain of the third tree also has a two-way
trust relationship with the root domain of the second tree.

The distinguished name of the forest root domain is used to locate the
configuration and schema directory partitions in the namespace. The distinguished
names for the Configuration and Schema containers in Active Directory always
show these containers as child objects in the forest root domain. For example, in
the child domain noam.reskit.com, the distinguished name of the Configuration
container is cn=configuration,dc=reskit,dc=com. The distinguished name of the
Schema container is cn=schema,cn=configuration,dc=reskit,dc=com. However,
this naming convention provides only a logical location for these containers. The
containers do not exist as child objects of the forest root domain, nor is the
schema directory partition actually a part of the configuration directory partition.
They are separate directory partitions. Every domain controller in a forest stores a
copy of the configuration and schema directory partitions, and every copy of these
partitions has the same distinguished name on every domain controller.

Chapter 1 Active Directory Logical Structure 23

When Active Directory is installed on a Windows 2000 Server-based computer,
configuration and directory schema information is copied from the parent domain
to the new server. Updates to configuration and directory schema information are
replicated to all domain controllers throughout the forest. The distribution of this
configuration and directory schema information ensures that each domain
controller is aware of all other trust-related domains and of the replication
topology, which makes finding and using resources in other domains possible.
(For more information about finding information in Active Directory, see “Name
Resolution in Active Directory” in this book.)

Note The Active Directory rootDSE is a figurative object that has no LDAP
distinguished name; it is not an “entry” in the directory but is represented as a null
distinguished name (“). It does, however, have attributes and is known to LDAP
as rootDSE. RootDSE is required by LDAP as an entry point to the directory. The
distinction must be clear between this root—the set of attributes that LDAP uses
to connect to a particular portion of the directory on a particular domain controller
—and the root domain of the forest. In addition, both of these “roots” are distinct
from the root of the DNS hierarchy, which is the empty space at the top of the

namespace that is represented as a period (*.”) and that is required as an entry
point to the DNS hierarchy.

For more information about rootDSE attributes and the directory tree, see “Active
Directory Data Storage” in this book. For more information about the DNS root,
see “Introduction to DNS” in the TCP/IP Core Networking Guide.

Trust Relationships

Active Directory provides security across multiple domains through interdomain
trust relationships. When there are trust relationships between domains, the
authentication mechanism for each domain trusts the authentication mechanism
for all other trusted domains. If a user or application is authenticated by one
domain, its authentication is accepted by all other domains that trust the
authenticating domain. Users in a trusted domain have access to resources in the
trusting domain, subject to the access controls that are applied in the trusting
domain.

Note “Access to resources” in any discussion of trust relationships always
assumes the limitations of access control. Trust relationships allow users and
computers to be authenticated (to have their identity verified) by an authentication
authority. Access control allows authenticated users to use the resources (files,
folders, and virtual containers) that they are authorized to use and prohibits them
from using (or even seeing) resources that they are not authorized to use. For
more information about resource authorization, see “Access Control” in this book.

24

Part1 Active Directory

Transitive and Nontransitive Trust

In Windows NT 3.51 and Windows NT 4.0, trust relationships must be created
explicitly in one direction. A two-way trust relationship is established by creating
two one-way trust relationships. Domains can be connected by explicit one-way
or two-way trust relationships for the purpose of enabling access to resources, but
they are not necessarily related in any other way.

In Windows 2000, domains can be joined to a domain tree or forest, and each
child domain has an automatic two-way trust relationship with the parent domain.
This trust relationship is also transitive. Transitive trust means that the trust
relationship extended to one domain is extended automatically to any other
domain that is trusted by that domain. Transitive trust is applied automatically for
all domains that are members of the domain tree or forest. Therefore, when a
grandchild domain is created, the trust relationship between the parent and child
domains is accepted by the grandchild domain, and vice versa. For example, if a
user account is authenticated by the parent domain, the user has access to
resources in the grandchild domain. Similarly, if the user is authenticated by a
child domain, the user has access to resources in the parent domain, as well as in
the grandparent domain.

The effect of transitive trust in Windows 2000 domains is that there is complete
trust between all domains in an Active Directory forest—every domain has a
transitive trust relationship with its parent domain, and every tree root domain has
a transitive trust relationship with the forest root domain.

Note In Windows 2000, transitive trust relationships are always two-way trust
relationships.

A nontransitive trust relationship can be created between Windows 2000 domains
when a transitive trust relationship is not appropriate, but this trust relationship
must be created explicitly. It can be created, for example, between two

Windows 2000 domains that are not in the same forest.

A trust relationship between a Windows 2000 domain and a Windows NT 4.0
domain is always a nontransitive trust relationship. If one of these domains is an
account domain and the other is a resource domain, the trust relationship is
usually created as a one-way trust relationship. If there are user accounts in both
domains, two one-way trust relationships can be created between them.

The trust relationship between two domains—whether one-way or two-way,
transitive or nontransitive—is stored as an interdomain trust account object in
Active Directory.

Chapter 1 Active Directory Logical Structure 25

For more information about the nature and management of interdomain trust
objects, see “Authentication” in this book. For more information about mixed-
mode trust relationships, see “Determining Domain Migration Strategies” in the
Deployment Planning Guide.

Direction of Trust

In describing trust relationships, arrows illustrate the direction of trust between
domains as follows:

= If B is the trusting domain and A is the trusted domain, B-->A indicates that
domain B trusts domain A. (The same trust relationship can be illustrated as
A<--B, that is, A is trusted by B.)

= When domain B trusts domain A (B-->A), users with accounts in domain A
can be authenticated for access to resources in domain B. However, users with
accounts in domain B are not trusted to be authenticated for access to
resources in domain A.

A hierarchy of Windows 2000 domains is implemented by trust relationships
between domains. The direction of the trust relationship between a parent domain
and its child domain in Active Directory is two-way (A<---->B), but it has the
following restrictions:

= The parent-child relationship between two domains in a domain tree is defined
by a subordinate name relationship. For example, noam.reskit.com is a child of
reskit.com, but noam.com is not a child of reskit.com. A parent-child trust
relationship requires both a parent-child relationship and a direction of trust, as
follows: Domain A can be specified as the parent of domain B only if B-->A
and B is a subordinate name of A.

» When a new domain joins a domain tree as a child, a parent-child trust
relationship is defined automatically that establishes a two-way, transitive trust
relationship.

Note Automatic configuration of replication topology requires that all parent-
child trust relationships within the forest are bidirectional and transitive.

26 Part1 Active Directory

The use of two-way, transitive trust relationships reduces management time
because it decreases by more than half the number of trust relationships that must
be managed, as the diagram in Figure 1.8 illustrates.

Explicit Two-Way Automatic Transitive

Trust Relationships Two-Way

Between Domains in Trust Relationships

Windows NT 4.0 Between Domains in
Windows 2000

Figure 1.8 Comparison of Two-way Trust Relationships in Windows NT 4.0 and
Windows 2000

Authentication Protocols

Windows 2000 authenticates users and applications by using one of two
protocols: the Kerberos v5 authentication protocol or the NTLM authentication
protocol. The protocol to be used is determined by the capabilities of the client
and the server. If the client does not recognize the Kerberos protocol (for
example, a computer that is running Windows NT 3.51 or Windows NT 4.0),
authentication occurs by using the NTLM challenge-response protocol.
Conversely, if the resource server does not support Kerberos authentication, the
client uses NTLM to authenticate to the server.

The Kerberos v5 protocol is the default protocol for network authentication on
computers that are running Windows 2000. The NTLM protocol is the default for
network authentication in Windows NT 4.0 and for Windows 95-based and
Windows 98-based computers that are running Distributed Systems Client. It is
retained in Windows 2000 for compatibility with previous versions of Windows-
based clients and servers. But the protocol of choice in Windows 2000, when
there is a choice, is the Kerberos protocol.

Chapter 1 Active Directory Logical Structure 27

In Windows 2000 domains, the Kerberos v5 authentication protocol is used to
authenticate logons when all of the following conditions are true:

= The user who is logging on uses a security account in a Windows 2000
domain.

= The computer that is being logged on to is a Windows 2000-based computer.
= The computer that is being logged on to is joined to a Windows 2000 domain.

= The computer account and the user account are in the same forest.

For any other combination of conditions, such as a computer that is running
Windows NT 3.51 or Windows NT 4.0, a user who has an account in a
Windows NT 3.51 or Windows NT 4.0 domain, or a domain that is a
Windows NT 3.51 or Windows NT 4.0 domain, the NTLM protocol is used to
authenticate logons.

The essential differences between the two protocols are these:

= When the NTLM protocol is used, the server must contact a domain
authentication service on a domain controller to verify the client credentials. A
server authenticates a client by forwarding the client credentials to a domain
controller in the client account domain.

= When the Kerberos protocol is used, the server does not have to contact the
domain controller. A client gets a ticket for a server by requesting one from a
domain controller in the server account domain; the server validates the ticket
without consulting any other authority.

For more information about the Kerberos v5 and NTLM authentication protocols,
see “Authentication” in this book.

Trust Path

A trust path is defined by a series of trust links from one domain to another
domain for passing authentication requests. For example, when a user makes a
request for information from a server in a domain other than the domain in which
the user is currently logged on, the server must be able to authenticate the user.
Before authentication can occur, Windows security must determine whether the
domain that is requested (the domain in which the contacted server is located) has
a trust relationship with the logon domain of the user account. To make this
determination, the Windows 2000 security system computes a trust path between
the domain controller for the server that receives the request and a domain
controller in the requesting user’s account domain.

28

Part1 Active Directory

In the Windows 2000 distributed security model, every workstation and server has
a direct trust path to a domain controller in the domain in which it is located. The
trust path is implemented by the Net Logon service through an authenticated
remote procedure call (RPC) connection to the trusted domain authority—namely,
the domain controller. In addition, a secure channel extends to other

Windows 2000 domains through interdomain trust relationships. The secure
channel is used to obtain and verify security information, including security
identifiers (SIDs) for users and groups.

Every Windows 2000 domain has knowledge of all other domains in the forest, as
well as of all external domains that it directly trusts or that trust it. By using this
information, a domain controller builds the shortest path for authentication. When
building the trust path, each domain is first checked to see whether it is the
requested domain and then checked for any shortcut trust relationships to the
requested domain. If none of these conditions exists, the request is passed
(“referred”) to the parent domain (because by definition, the child domain trusts
the parent domain). However, if there is no transitive trust relationship, the
request is denied. If the request is passed all the way to the root domain, it can be
referred to a different domain tree root in the forest or, if an external trust
relationship exists, to a domain in a different forest.

Note A shortcut trust relationship is a trust relationship that is created explicitly
to shorten the trust path between domains that are in the same forest.

If the authentication request is referred, a path is computed for either NTLM pass-
through authentication or for a Kerberos referral by using the information about
the tree and current shortcut trust relationships to find the path to the destination
domain. In this computation, shortcut trust relationships play the role of
circumventing the higher domains in the hierarchy. At each level of the tree, a
check is made of the shortcut trust relationships that might exist. If one is found to
the destination domain, the next domain in the tree does not have to be checked.

Processing Authentication Referrals

When a request for authentication is referred, trust relationships must be taken
into account with respect to their direction and whether they are transitive or
nontransitive. The two Windows authentication protocols process referrals
differently.

Chapter 1 Active Directory Logical Structure 29

Kerberos v5 Authentication Protocol

If the client uses the Kerberos v5 protocol, the client requests a ticket to the server
in the target domain from a domain controller in its account domain. The

Kerberos Key Distribution Center (KDC) is a service that acts as a trusted
intermediary between a client and server; it provides a session key that enables the
two parties to authenticate each other. If the target domain is different from the
current domain, the KDC uses the following logic to determine whether an
authentication request can be referred:

= [s the current domain trusted directly by the domain of the server that is being
requested?
= If yes, send the client a referral to the requested domain.
= If no, go to the next step.

= s there a transitive trust relationship between the current domain and the next
domain on the trust path?

= If yes, send the client a referral to the next domain on the trust path.

= If no, send the client a logon-denied message.

NTLM Authentication Protocol

If the client uses the NTLM authentication protocol, the initial request for
authentication goes directly from the client to the resource server in the target
domain. This server sends the user’s security credentials to a domain controller in
its computer account domain. This domain controller checks the user account
against its security accounts database. If the account does not exist, the domain
controller uses the following logic to perform pass-through authentication,
forward the request, or deny the request:

= Does the current domain have a direct trust relationship with the user’s
domain?

= If yes, the domain controller sends the credentials of the client to a domain
controller in the user’s domain for pass-through authentication.

= If no, go to the next step.

= Does the current domain have a transitive trust relationship with the user’s
domain?

= If yes, pass the authentication request on to the next domain in the trust
path. This domain controller begins the process again by checking the
user’s credentials against its security accounts database.

= If no, send the client a logon-denied message.

30

Part1 Active Directory

For more information about NTLM authentication and Kerberos v5 authentication
mechanisms, see “Authentication” in this book. For more information about cross-
reference objects in the Configuration container, see “Name Resolution in Active
Directory” in this book.

Types of Trust Relationships

The following types of trust relationships can be established with Windows 2000
domains:

Tree-Root Trust Relationship. A tree-root trust relationship is the trust relationship
that is established when you add a new tree to a forest. The Active Directory
installation process automatically creates a trust relationship between the domain
you are creating (the new tree root) and the forest root domain. A tree-root trust
relationship has the following restrictions:

= [t can be set up only between the roots of two trees in the same forest.

=]t must be transitive and two-way.

Parent-Child Trust Relationship. A parent-child trust relationship is the trust
relationship that is established when you create a new domain in a tree. The
Active Directory installation process automatically creates a trust relationship
between the new domain and the domain that immediately precedes it in the
namespace hierarchy (for example, noam.reskit.com is created as the child of
reskit.com). The parent-child trust relationship has the following characteristics:

=]t can exist only between two domains in the same tree and namespace.

= The parent domain is always trusted by the child domain.

=]t must be transitive and two-way in Windows 2000. The bidirectional nature
of transitive trust relationships allows the global directory information in
Windows 2000 to replicate throughout the hierarchy.

Shortcut Trust Relationship. A shortcut trust relationship (also called a cross-link
trust relationship) is a manually created trust relationship that improves the
efficiency of remote logons by shortening the trust path. If users in domain A
often need to gain access to resources in domain C, you might want to create a
direct link through a shortcut trust relationship so that domain B can be bypassed
in the trust path. A shortcut trust relationship has the following characteristics:

=]t can be established between any two domains in the same forest.
= It must be set up manually in each direction.

=]t must be transitive.

Chapter 1 Active Directory Logical Structure 31

External Trust Relationship. An external trust relationship is a manually created
trust relationship between Windows 2000 domains that are in different forests or
between a Windows 2000 domain and a domain whose domain controller is
running Windows NT 4.0 or earlier. An external trust relationship has the
following characteristics:

= Itis one-way.

= It must be set up manually in each direction to establish a two-way external
trust relationship.

= It is nontransitive.

Non-Windows Kerberos Realm Trust Relationship. A trust relationship that can be
established between a non-Windows Kerberos realm and a Windows 2000
domain. This trust relationship allows cross-platform interoperability with
security services based on other Kerberos v5 implementations. (For more
information about non-Windows Kerberos interoperability and setting up trust
relationships between Windows 2000 domains and non-Windows Kerberos
realms, see the Microsoft Windows 2000 Server link on the Web Resources page
at http://windows.microsoft.com/windows2000/reskit/webresources. Follow the
links to Deployment and then Security Services.)

The non-Windows Kerberos realm trust relationship has the following
characteristics:

= Itis used only by the Kerberos v5 authentication protocol, not by NTLM or
other authentication protocols.

= Itis one-way by default. To establish a two-way trust relationship, a one-way
trust relationship in each direction must be set up manually.

= It is nontransitive by default.

= When the direction of trust is from a non-Windows Kerberos realm to a
Windows 2000 domain, the non-Windows Kerberos realm trusts all security
principals in the Windows 2000 domain.

32

Part1 Active Directory

= When the direction of trust is from a Windows 2000 domain to a non-
Windows Kerberos realm, account mappings in Active Directory are used to
map a foreign Kerberos identity in a trusted non-Windows Kerberos realm to a
local account identity in a Windows 2000 domain. The Windows 2000 domain
uses only the account to which the non-Windows principal is mapped to
evaluate access to domain objects that have security descriptors. This identity
is required because non-Windows Kerberos tickets do not contain all of the
authorization data that is needed for Windows 2000. All such Windows 2000
proxy accounts can be used in groups and on access control lists (ACLs) to
control access on behalf of the non-Windows security principal.

MIT account mappings are managed by using Active Directory Users and
Computers. (For more information about MIT Kerberos interoperability and
managing foreign Kerberos identities, see the Microsoft Windows 2000 Server
link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Follow the
links to Deployment and then Security Services.)

Note If you create a non-Windows Kerberos realm trust relationship by using
Active Directory Domains and Trusts, the trust is one-way and nontransitive. You
can use the Netdom tool (Netdom.exe) to establish two-way, transitive, non-
Windows Kerberos realm trust relationships. You also can use Netdom to modify
a non-Windows Kerberos realm trust relationship that you created in Active
Directory Domains and Trusts; you can change the trust relationship from non-
transitive to transitive by using the /Transitive:yes option in Netdom. (To use
Netdom, install the Support Tools that are located in the Support\Tools folder on
the Windows 2000 Server operating system CD. To install the tools, double-click
the Setup icon in that folder.) For more information about using Netdom to create
non-Windows Kerberos realm trust relationships, see Windowse 2000 Support
Tools Help.

Use Active Directory Domains and Trusts to manage trust relationships by using
the properties of a domain object. The Properties page shows two lists; one
shows the trusted domains (Domains trusted by this domain), and the other
shows the trusting domains (Domains that trust this domain) for the current
domain.

For more information about establishing trust relationships by using Active
Directory Domains and Trusts, see Windows 2000 Server Help. For more
information about planning trust relationships, see ‘“Determining Domain
Migration Strategies” in the Deployment Planning Guide.

Chapter 1 Active Directory Logical Structure 33

Trust Relationships Between Windows 2000 and
Windows NT 4.0 Domains

Windows 2000 and Windows NT 4.0 domains can trust each other so that users
from either domain can authenticate in the other domain to gain access to
resources, but users can do so only if explicit, one-way trust relationships have
been created between the domains.

The following examples illustrate the effect of the direction of trust between a
Windows 2000 domain and a Windows NT 4.0 domain.

= A (Windows 2000 domain) --> B (Windows NT 4.0 domain). This trust
relationship indicates that users in domain B have access to resources in
domain A but do not have access to resources in any other domain within the
tree.

= B (Windows NT 4.0 domain) --> A (Windows 2000 domain). This trust
indicates that only users in domain A (not users in other domains within the
tree) have access to resources in domain B.

When a client views Windows 2000 trust relationships from a Windows NT 4.0-
based computer, the list of trust relationships that is displayed depends on the type
of domain to which the computer belongs:

= In a native-mode domain, the client sees a complete list of the domains in the
forest.

= In a mixed-mode domain, the client sees only those domains that are trusted
directly by the domain to which the client belongs. In a mixed-mode domain,
the client can be using a Windows NT 4.0-based backup domain controller.
To ensure consistent results, whether it uses a Windows NT 4.0-based domain
controller or a Windows 2000-based domain controller, the same limited list
of domains is presented to the client in both cases.

34

Part1 Active Directory

Mixed-Environment Scenario

Figure 1.9 illustrates a mixed environment of two Windows 2000 forests and a
Windows NT 4.0 domain. In all, four separate namespaces are implemented:
A.com, D.com, G.com, and F.

Forest 1 Forest 2

i e
; One-way, nontransitive,
1 external trust relationship

Windows NT 4.0
Domain

Figure 1.9 Mixed Environment of Two Forests and a Windows NT 4.0 Domain

The following conditions are represented in Figure 1.9:

A.com and D.com are the roots of separate trees in forest 1. The two-way,
transitive, tree-root trust between them provides complete trust between all
domains in the two trees of forest 1.

E.D.com uses resources in C.A.com for everyday business operations. To
shorten the trust path between the two domains, C.A.com trusts E.D.com
directly. This trust relationship serves only the purpose of shortening the trust
path for authenticating E.D.com users to use resources in C.A.com. The path is
shortened by cutting the number of hops required for authentication from three
(E.D.com to D.com, D.com to A.com, and A.com to C.A.com) to one
(E.D.com to C.A.com), which increases the speed of authentication.

G.com is the root of a single tree that makes up forest 2. The two-way,
transitive trust relationship between G.com and H.G.com allows both domains
to use each others’ resources.

Chapter 1 Active Directory Logical Structure 35

= Domain G.com in forest 2 implements an explicit one-way external trust
relationship with domain D.com in forest 1; users in domain D.com are trusted
to use resources in domain G.com. Because the trust relationship is
nontransitive, no other domains in forest 1 have access to resources in G.com,
and D.com does not have access to resources in H.G.com.

= Domain F is a Windows NT 4.0 domain that provides support services to the
users in E.D.com. This one-way nontransitive trust relationship does not
extend to any other domains in forest 1.

Active Directory Objects

Active Directory objects represent the physical entities that make up a network.
An object is an instance of storage of a class. A class is defined in the Active
Directory schema as a specific set of mandatory and optional attributes—that is,
an attribute can be present in an object in Active Directory only when that
attribute is permitted by the object’s class. Classes also contain rules that
determine which classes of objects can be superior to (parents of) a particular
object of the class. Each attribute is also defined in the directory schema. The
attribute definitions determine the syntax for the values the attribute can have.

When you create an object in Active Directory, you provide values for the
attributes of the object in its particular class, and you do so according to the rules
of the directory schema. For example, when you create a user object, you provide
alphanumeric values for the user’s first and last names, the logon identifier, and
perhaps other values, such as telephone number and address. You cannot create
the user object successfully without providing acceptable values for the user name
and logon name because these attributes are mandatory, according to the directory
schema.

Applications that create or modify objects in Active Directory use the directory
schema to determine what attributes the object must and might have, and what
those attributes can look like in terms of data structures and syntax constraints.
For this reason, the directory schema is maintained forest-wide so that all objects
created in the directory conform to the same rules.

Objects are either container objects or leaf objects. A container object stores other
objects, and, as such, it occupies a specific level in a subtree hierarchy. An object
class is a container if at least one other class specifies it as a possible superior;
thus, any object class defined in the schema can become a container. A leaf object
does not store other objects, and, as such, it occupies the endpoint of a subtree.

For more information about how Active Directory objects are stored, see “Active
Directory Data Storage” in this book. For more information about the directory
schema, see “Active Directory Schema” in this book.

36 Part1 Active Directory

Object Naming

Active Directory is an LDAP-compliant directory service, which means that all
access to directory objects occurs through LDAP. LDAP requires that names of
directory objects be formed according to RFC 1779 and RFC 2247, which define
the standard for object names in an LDAP directory service.

Distinguished Name

Objects are located within Active Directory domains according to a hierarchical
path, which includes the labels of the Active Directory domain name and each
level of container objects. The full path to the object is defined by the
distinguished name (also known as a “DN”). The name of the object itself,
separate from the path to the object, is defined by the relative distinguished name.

The distinguished name is unambiguous (identifies one object only) and unique
(no other object in the directory has this name). By using the full path to an
object, including the object name and all parent objects to the root of the domain,
the distinguished name uniquely and unambiguously identifies an object within a
domain hierarchy. It contains sufficient information for an LDAP client to retrieve
the object’s information from the directory.

For example, a user named James Smith works in the marketing department of a
company as a promotions coordinator. Therefore, his user account is created in an
organizational unit that stores the accounts for marketing department employees
who are engaged in promotional activities. James Smith’s user identifier is
JSmith, and he works in the North American branch of the company. The root
domain of the company is reskit.com, and the local domain is noam.reskit.com.
The diagram in Figure 1.10 illustrates the components that make up the
distinguished name of the user object JSmith in the noam.reskit.com domain.

cn=JSmith,ou=Promotions,ou=Marketing,dc=noam,dc=reskit,dc=com

Common Name=JSmith

%

Figure 1.10 Distinguished Name for the User Object JSmith

Chapter 1 Active Directory Logical Structure 37

Note Active Directory snap-in tools do not display the LDAP abbreviations for
the naming attributes domain component (dc=), organizational unit (ou=),
common name (cn=), and so forth. These abbreviations are shown only to
illustrate how LDAP recognizes the portions of the distinguished name. Most
Active Directory tools display object names in canonical form, as described later
in this chapter. Because distinguished names are difficult to remember, it is useful
to have other means for retrieving objects. Active Directory supports querying by
attribute (for example, the building number where you have to find a printer), so
an object can be found without having to know the distinguished name. (For more
information about searching Active Directory, see “Name Resolution in Active
Directory” in this book.)

Relative Distinguished Name

The relative distinguished name (also known as the “RDN”) of an object is the
part of the name that is an attribute of the object itself—the part of the object
name that identifies this object as unique from its siblings at its current level in the
naming hierarchy. In Figure 1.10, in the preceding section, the relative
distinguished name of the object is JSmith. The relative distinguished name of the
parent object is Users. The maximum length allowed for a relative distinguished
name is 255 characters, but attributes have specific limits imposed by the
directory schema. For example, in the case of the common name, which is the
attribute type often used for naming the relative distinguished name (cn), the
maximum number of characters allowed is 64.

Active Directory relative distinguished names are unique within a specific parent
—that is, Active Directory does not permit two objects with the same relative
distinguished name under the same parent container. However, two objects can
have identical relative distinguished names but still be unique in the directory
because within their respective parent containers, their distinguished names are
not the same. (For example, the object cn=JSmith,dc=noam,dc=reskit,dc=com is
recognized by LDAP as being different from cn=JSmith,dc=reskit,dc=com.)

The relative distinguished name for each object is stored in the Active Directory
database. Each record contains a reference to the parent of the object. By
following the references to the root, the entire distinguished name is constructed
during an LDAP operation. (For more information about LDAP operations, see
“Name Resolution in Active Directory” in this book.)

38

Part1 Active Directory

Naming Attributes

As illustrated earlier in this section, an object name consists of a series of relative
distinguished names that represent the object itself and also every object in the
hierarchy above it, up to the root object. Each portion of the distinguished name is
expressed as attribute_type=value (for example, cn=JSmith). The attribute type
that is used to describe the object’s relative distinguished name (in this case, cn=)
is called the naming attribute. If you were to create a new class in the Active
Directory schema (that is, a new classSchema object), the optional RdnAttID
attribute could be used to specify the naming attribute for the class. In Active
Directory, instances of default objects that you create have a default mandatory
naming attribute. For example, part of the definition of the class User is the
attribute cn (Common-Name) as the naming attribute. For this reason, the relative
distinguished name for user JSmith is expressed as cn=JSmith.

The naming attributes shown in Table 1.1 are used in Active Directory, as
described in RFC 2253.

Table 1.1 Default Active Directory Naming Attributes

Naming Attribute Naming Attribute
Object Class Display Name LDAP Name
user Common-Name cn
organizationalUnit Organizational-Unit-Name ou
domain Domain-Component dc

Other naming attributes described in RFC 2253, such as o= for organization name
and c= for country/region name, are not used in Active Directory, although they
are recognized by LDAP.

The use of distinguished names, relative distinguished names, and naming
attributes is required only when you are programming for LDAP and using Active
Directory Service Interfaces (ADSI) or other scripting or programming languages.
The Windows 2000 user interface does not require you to enter such values.

For more information about creating new classSchema objects, see “Active
Directory Schema” in this book. For more information about using ADSI, see the
Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

Chapter 1 Active Directory Logical Structure 39

Object Identity and Uniqueness

In addition to its distinguished name, every object in Active Directory has a
unique identity. Active Directory is identity based—that is, objects are known
internally by their identity, not by their current name. Objects might be moved or
renamed, but their identity never changes. The identity of an object is defined by a
globally unique identifier (GUID), a 128-bit number that is assigned by the
directory system agent when the object is created. The GUID is stored in an
attribute, objectGUID, that is present on every object. The objectGUID attribute is
protected so that it cannot be altered or removed. When you store a reference to
an Active Directory object in an external store (for example, a database such as
Microsofte SQL Server™), the objectGUID value should be used. Unlike a
distinguished name or a relative distinguished name, which can be changed, the
GUID never changes.

Active Directory Name Formats

Several formats for providing object names are supported by Active Directory.
These formats accommodate the different forms a name can take, depending on its
application of origin. Active Directory administrative tools display name strings
in a default format, which is the canonical name. The following formats are
supported by Active Directory and are based on the LDAP distinguished name:

LDAP Distinguished Name. LDAP v2 and LDAP v3 recognize the RFC 1779 and
RFC 2247 naming conventions, which take the form cn=common name,
ou=organizational unit, o=organization, c=country/region. Active Directory uses
the domain component (dc) instead of o=organization and does not support
c=country/region. In the LDAP distinguished name, the relative distinguished
names appear in order beginning at the left with the name of the leaf and ending at
the right with the name of the root, as shown here:

cn=jsmith,ou=promotions,ou=marketing,dc=noam,dc=reskit,dc=com

LDAP Uniform Resource Locator (URL). Active Directory supports access
through the LDAP protocol from any LDAP-enabled client. LDAP URLs are used
in scripting. An LDAP URL names the server holding Active Directory services
and the attributed name of the object (the distinguished name). For example:

LDAP://serverl.noam.reskit.com/cn=jsmith,ou=promotions,
ou=marketing,dc=noam,dc=reskit,dc=com

40

Part1 Active Directory

Active Directory Canonical Name. By default, the Windows 2000 user interface
displays object names that use the canonical name, which lists the relative
distinguished names from the root downward and without the RFC 1779 naming
attribute descriptors; it uses the DNS domain name (the form of the name where
the domain labels are separated by periods). For the LDAP distinguished name in
the previous example, the respective canonical name would appear as follows:

noam. reskit.com/marketing/promotions/jsmith

Note If the name of an organizational unit contains a forward slash character (/),
the system requires an escape character in the form of a backslash (\) to
distinguish between forward slashes that separate elements of the canonical name
and the forward slash that is part of the organizational unit name. The canonical
name that appears in Active Directory Users and Computers properties pages
displays the escape character immediately preceding the forward slash in the
name of the organizational unit. For example, if the name of an organizational
unit is Promotions/Northeast and the name of the domain is Reskit.com, the
canonical name is displayed as Reskit.com/PromotionsVNortheast.

DNS-to-LDAP Distinguished Name Mapping

Although DNS domain names match Active Directory domain names, they are not
the same thing. Active Directory names have a different format, which is required
by LDAP to identify directory objects. DNS domain names are therefore mapped
to Active Directory domain names, and vice versa, as described in RFC 2247.

All access to Active Directory is carried out through LDAP. LDAP uses
distinguished names to provide unique names to directory objects; every object in
Active Directory has an LDAP distinguished name. A distinguished name is a
naming structure that consists of a string of the hierarchical components that make
up the complete object. Each distinguished name component is the relative
distinguished name of an object in the hierarchy, beginning with the object itself
and ending with the root object in the domain tree. An algorithm automatically
provides an LDAP distinguished name for each DNS domain name.

The algorithm provides a domain component (dc) attribute-type label for each
DNS label in the DNS domain name. Each DNS label corresponds to the relative
distinguished name of an Active Directory domain. For example, the DNS domain
noam.reskit.com is translated to the LDAP distinguished name that has the form
dc=noam,dc=reskit,dc=com.

Chapter 1 Active Directory Logical Structure 41

Logon Names

A unique logon name is required by user security principals for gaining access to
a domain and its resources. Security principals are objects to which Windows
security is applied in the form of authentication and authorization. Users are
security principals, and they are authenticated (their identity is verified) at the
time they log on to the domain or local computer. They are authorized (allowed or
denied access) when they use resources.

User security principals have two types of logon names:

SAM Account Name. A SAM account name is a name that is required for
compatibility with Windows NT 4.0 and Windows NT 3.x domains. SAM account
names are sometimes referred to as flat names (because there is no hierarchy in
the naming, so every name must be unique in the domain). These terms serve to
differentiate these names from DNS hierarchical names.

User Principal Name. A user principal name (also known as a “UPN”) is a
“friendly” name that is shorter than the distinguished name and easier to
remember. The user principal name consists of a shorthand name that represents
the user and usually the DNS name of the domain where the user object resides, or
any other designated name.

The user principal name format consists of the user name, the “at” sign (@), and a
user principal name suffix. For example, the user James Smith, who has a user
account in the reskit.com domain, might have the user principal name
JSmith@reskit.com. The user principal name is independent of the distinguished
name of the user object, so a user object can be moved or renamed without
affecting the user logon name.

The user principal name is an attribute (userPrincipalName) of the security
principal object. If a user object’s userPrincipalName attribute has no value, the
user object has the default user principal name
<userName>@<DnsDomainName>.

If you create no other user principal name, the user principal name suffix for a
security principal is the domain in which the account is created (for example,
@reskit.com). You can create additional user principal name suffixes and assign
them to security principal accounts if you don’t want to use the default domain
name (for example, if the DNS domain name is extremely long and hard to
remember). The e-mail name can also be used as the user principal name suffix.
For example, in a large organization that has many domains, a user’s e-mail
address might be <userName>@<companyName>.com.

42

Part1 Active Directory

You can manage user principal name suffixes for a domain in the Active
Directory Domains and Trusts console in MMC. To add or remove a user
principal name suffix, open the properties for the Active Directory Domains and
Trusts node. User principal names are assigned at the time a user or group is
created. If you have created additional suffixes for the domain, you can select
from the list of available suffixes when you create the user or group account.

The suffixes appear in the list in the following order:

= Alternate suffixes. If you have created additional suffixes, the last one that you
created appears first.
= Root domain.

= The current domain.

For more information about creating user principal names, see Windows 2000
Server Help.

Domain Controllers

A domain controller is a computer that is running Windows 2000 Server and hosts
Active Directory. Domain controllers run the KDC service, which is responsible
for authenticating domain user logons. A domain controller stores directory
partitions. Directory partitions (also known as ‘“naming contexts”) correspond to
the logically distributed segments of Active Directory that are replicated as
discrete units. These segments correspond to the following directory partitions:

= A domain, of which there can be many in a particular forest (directory).
= The directory schema, of which there is one in a particular forest (directory).

= The Configuration container, of which there is one in a particular forest
(directory).

In addition to the domain directory partition that it stores, every domain controller
stores a replica of the schema directory partition and the configuration directory
partition. (For more information about directory partitions, see “Active Directory
Data Storage” in this book.)

Multimaster Operations

A domain can deploy many domain controllers, and all domain controllers can
accept Active Directory changes. Earlier versions of Windows NT used multiple
domain controllers, only one of which was allowed to update the directory
database. This single-master scheme required all changes to be replicated from the
primary domain controller to the backup domain controllers.

Chapter 1 Active Directory Logical Structure 43

In Windows 2000, every domain controller can receive changes, and the changes
are replicated to all other domain controllers. The day-to-day operations that are
associated with managing users, groups, and computers are typically multimaster
operations—that is, changes to these objects can be made on any domain
controller. There are some operations, however, that are not performed as
multimaster operations because they must occur at only one place and time. For
these operations, there are specially designated domain controllers that manage
the operations singly.

Single-Master Operations

Most operations can be made at any domain controller and the effects of these
operations (for example, deleting a user object) are replicated to all other domain
controllers that store a replica of the same directory partition in which the change
occurred. However, there are certain operations that must occur at only one
domain controller.

The domain controllers that are assigned to manage single-master operations are
called role owners for the operations. (For more information about managing
single-master operations, see “Managing Flexible Single-Master Operations” in
this book.) The single-master operations include the following:

Relative ID Pool Allocation One domain controller per domain is responsible for
assigning “pools” of relative identifiers to other domain controllers in that
domain. Relative identifiers (also known as “RIDs”) are identifiers that are used
in association with a domain identifier to make up the security identifier (also
known as a “SID”) for each security principal created in Active Directory. To
ensure uniqueness in a domain, a single domain controller has the relative ID
master role. The relative ID master assigns relative identifiers from a single pool
of these identifiers for the domain.

Schema Modification Changes to the same schema objects on different domain
controllers can result in an inconsistent directory schema and corrupt data. For
this reason, a single domain controller in a forest has the schema master role. The
schema master is responsible for all changes to the schema directory partition.

44

Part1 Active Directory

Primary Domain Controller Emulation For compatibility with Windows NT 3.51—
based and Windows NT 4.0-based servers, which can operate as backup domain
controllers in a mixed-mode Windows 2000 domain but still require a primary
domain controller (also known as the “PDC”), a specific Windows 2000-based
domain controller, the PDC emulator, is assigned to emulate the role of the
primary domain controller. This domain controller is perceived by the

Windows NT 3.51-based and Windows NT 4.0-based servers as a primary
domain controller. In a Windows 2000 domain, one domain controller is assigned
to be the PDC emulator and performs the role of the primary domain controller.

For information about upgrading Windows NT 3.51 and Windows NT 4.0
domains to Windows 2000 domains, see “Determining Domain Migration
Strategies” in the Deployment Planning Guide.

Certain Infrastructure Changes When objects are moved or deleted, a single
domain controller per domain, the infrastructure master, is responsible for
updating the security identifiers and distinguished names in cross-domain object
references in that domain.

Domain Naming A single domain controller per forest, the domain naming master,
is assigned the responsibility of ensuring that domain names are unique in the
forest and that cross-reference objects to external directories are maintained.

For more information about managing single-master roles, see “Managing
Flexible Single-Master Operations” in this book.

Global Catalog Servers

Every domain controller in a forest stores three full, writable directory partitions:
a domain directory partition, a schema directory partition, and a configuration
directory partition. A Global Catalog is a domain controller that stores these
writable directory partitions, as well as a partial, read-only copy of all other
domain directory partitions in the forest. The additional directory partitions are
“partial” because, although they collectively contain every object in the directory,
only a limited set of specific attributes are included for each object. The Global
Catalog is built automatically by the Active Directory replication system.

All of the directory partitions on a Global Catalog server, whether full or partial
partitions, are stored in a single directory database (Ntds.dit) on that server. There
is no separate storage area for Global Catalog attributes; they are treated as
additional information in the domain controller directory database.

Chapter 1 Active Directory Logical Structure 45

When a new domain is added to the forest, the information about the new domain

is stored in the configuration directory partition, which reaches the Global Catalog
server (and all domain controllers) through replication of forest-wide information.
When a new Global Catalog server is designated, this information is also stored in
the configuration directory partition and replicated to all domain controllers in the
forest.

Global Catalog Attributes

In its role as a domain controller, a Global Catalog server stores one domain
directory partition that has writable objects with a full complement of writable
attributes. The objects in all other domain directory partitions in the forest are
stored on a Global Catalog server as read-only objects with a partial set of
attributes. An attribute is marked as being replicated to the Global Catalog as part
of its schema definition. In the Active Directory Schema console in MMC, you
can use the Replicate this attribute to the Global Catalog check box to
designate an attributeSchema object as a member of the attribute set that is
replicated to the Global Catalog servers. If this check box is selected, the value in
the attribute isMemberOfPartialAttributeSet on the attributeSchema object is set
to TRUE, and the attribute is replicated to the Global Catalog as part of normal
Active Directory replication. The replication topology for the Global Catalog is
generated automatically by the Knowledge Consistency Checker (also known as
the “KCC”), a built-in process that implements a replication topology that is
guaranteed to deliver the contents of every directory partition to every Global
Catalog server. The attributes replicated into the Global Catalog include a base set
defined by Microsoft. Administrators can use the Active Directory Schema
console to specify additional attributes to meet the needs of their installation.

For information about adding an attribute to the Global Catalog attribute set, see
Windows 2000 Server Help and “Active Directory Schema” in this book. For
information about the Knowledge Consistency Checker and replication, see
“Active Directory Replication” in this book.

Designating a Global Catalog

The first domain controller in a forest is automatically designated as a Global
Catalog. Thereafter, a domain controller can be designated as a Global Catalog in
the NTDS Settings Properties dialog box in Active Directory Sites and Services.
The NTDS Settings object is a child of the server object, which is a child of the
site object in the Sites container. When you select the Global Catalog Server
check box, the domain controller is added to the Global Catalog replication
topology and populated by means of the normal replication process. When you
change an attribute that is flagged as belonging in the Global Catalog in any
domain, it is replicated to all Global Catalog servers.

46

Part1 Active Directory

The NTDS Settings object has the multivalue attribute hasMasterNCs, which
identifies the directory partitions that the domain controller stores. (“NC” stands
for “naming context,” which is a synonym for “directory partition.”) For every
domain controller, there are exactly three “master” (full and writable) directory
partitions: the domain directory partition, the schema directory partition, and the
configuration directory partition. The NTDS Settings object also has the
multivalue attribute hasPartialReplicationNCs. If the domain controller is a
Global Catalog server, this attribute has a value for each domain directory
partition in the forest, and it receives attribute changes through replication with
each respective domain directory partition in the forest.

Because the NTDS Settings object is stored in the configuration directory
partition, which is replicated to all domain controllers in the forest, all domain
controllers have the information about which servers are Global Catalog servers.

For more information about designating a Global Catalog server, see
Windows 2000 Server Help.

Global Catalog and Domain Logon Support

In a native-mode domain, a Global Catalog server is a requirement for logging on
to the domain. For this reason, it is advisable to have at least one Global Catalog
server in a site. If a Global Catalog is not available in a site and there is another
Global Catalog server in a remote site, the server in the remote site can be used
for the logon process. If no Global Catalog is available in any site, the logon
process proceeds with cached logon information.

Note A member of the Domain Admins group can complete the logon process
(not cached) even when a Global Catalog server is not available.

Universal Group Membership

The reason that a Global Catalog must be available for the domain logon process
is that the membership for universal groups is not stored on all domain controllers.
Because the membership of all universal groups is replicated to Global Catalog
servers, the complete universal group membership of a user can be determined by
querying a Global Catalog server.

Note Universal groups are available only when a domain is in native mode.

Chapter 1 Active Directory Logical Structure 47

During the logon process, a security token that contains the groups to which the
user belongs is associated with the user. Because universal group membership is
stored only on Global Catalog servers, only these servers can identify a user as
having membership in a specific universal group. If a universal group is present as
an access control entry in an access control list on a specific directory object, the
access token associated with the user during the logon session must contain that
group in order for the Allow or Deny access permission to be applied to the user.
Otherwise, a user could be granted access (on the basis of another group
membership) to an object that is specifically denied that user as a member of the
universal group. Similarly, this user would not be able to gain access to resources
to which he or she has legitimate access as a member of the universal group.

Note Deny access permission is processed before Allow access permission.
Therefore, if you are denied access to an object by virtue of membership in one
group and allowed access by virtue of membership in another group, the Deny
access takes precedence over the Allow access.

User Principal Name and Global Catalog Logon Support

User principal names are user names that can be used when a user is logging on to
a Windows 2000 domain. A user also can provide a SAM account name
(<DomainName\UserName>). In the Windows 2000 logon screen, you can type
your user name and select the domain name from the list, or you can use the user
principal name. If you use the user principal name, when you type the “at” sign
(@), the domain list is unavailable; Windows 2000 takes the domain name from
the user principal name suffix.

The user principal name format (<UserName>@<DNSDomainName>) is resolved
by the Global Catalog server. If a company has more than one forest and uses trust
relationships between the domains in the different forests, a user principal name
cannot be used to log on to a domain that is outside the forest because the user
principal name is resolved in the Global Catalog of the forest. For information
about Global Catalog placement to facilitate logging on to domains, see
“Designing the Active Directory Structure” in the Deployment Planning Guide.

Search Requests and the Global Catalog

Because the Global Catalog stores every object in the forest, it can be used to
locate objects in any domain without a referral to a different server. When a
search request is sent to port 389 (the default LDAP port), the search is conducted
on a single directory partition. If the object is not found in that directory partition
(and is not in the schema or configuration directory partitions), the request is
referred to a domain controller in a different domain that is assumed to contain the
requested object, on the basis of the distinguished name that is presented in the
search request.

48

Part 1

Active Directory

When a search request is sent to port 3268 (the default Global Catalog port), the
search includes all directory partitions in the forest—that is, the search is
processed by a Global Catalog server. If the request specifies attributes that are
part of the Global Catalog attribute set, the Global Catalog can return results for
objects in any domain without generating a referral to a domain controller in a
different domain.

For more information about LDAP search referrals and Global Catalog searches,
see “Name Resolution in Active Directory” in this book.

Organizational Units

Active Directory allows administrators to create a hierarchy within a domain that
meets the needs of their organization. The object class of choice for building these
hierarchies is the class organizationalUnit, a general-purpose container that can
be used to group most other object classes together for administrative purposes.
An organizational unit in Active Directory is analogous to a directory in the file
system; it is a container that can hold other objects.

Administrative Hierarchy

Organizational units can be nested to create a hierarchy within a domain and form
logical administrative units for users, groups, and resource objects, such as
printers, computers, applications, and file shares. The organizational unit
hierarchy within a domain is independent of the structure of other domains; each
domain can implement its own hierarchy. Likewise, domains that are managed by
a central authority can implement similar organizational unit hierarchies. The
structure is completely flexible, which allows organizations to create an
environment that mirrors the administrative model, whether it is centralized or
decentralized.

For information about planning and implementing an organizational unit
hierarchy, see “Designing the Active Directory Structure” in the Deployment
Planning Guide.

Group Policy

Group Policy can be applied to organizational units to define the abilities of
groups of computers and users that are contained within the organizational units.
Levels of control range from complete desktop lockdown to a relatively
autonomous user experience. Group Policy can affect functionality, such as what
applications are available to a group of users, what features within an application
are accessible on a particular computer, where documents are saved, and access
and user permissions. Group Policy also affects where, when, and how application
and operating system updates or special scripts are applied.

Chapter 1 Active Directory Logical Structure 49

Group Policy settings are stored as Group Policy objects in Active Directory. A
Group Policy object can be associated with one or more Active Directory
containers, such as a site, domain, or organizational unit.

For more information about Group Policy, see “Introduction to Desktop
Management,” “Software Installation and Maintenance,” and “Group Policy” in
this book.

Delegation of Control

The Windows 2000 object-based security model implements default access
control that is propagated down a particular subtree of container objects. You use
this technology to determine the security for an entire group of objects according
to the security that you set on the organizational unit that contains the objects,
which effectively delegates administrative control to individuals in the
organization. The best way to take full advantage of delegation and inherited
control on directory objects is to organize the hierarchy to match the way that the
directory is administered.

Note Because Active Directory is indexed, there is no need to organize the tree
for ease of browsing, which is likely to run counter to administrative objectives.

Administrative control over directory objects can be applied—or delegated—to
organizational units through access control. (For more information about
administrative control, see “Delegation of Administration” later in this chapter.)

Object Security

Authentication of user accounts determines that a user who logs on to a
Windows 2000 domain is who the user claims to be and that the user does indeed
have an account either in the domain or in a domain that is trusted. After the user
is authenticated, however, Active Directory must provide security (authorization)
to determine what objects the authenticated user can view or change and what
kinds of changes are allowed. This type of security is achieved through access
control.

Note The information presented here is provided as a security overview in the
context of understanding basic Active Directory functionality. For more
information about Active Directory security, see the chapters under “Distributed
Security” in this book.

50

Part1 Active Directory

Access Control

All Active Directory objects are protected by an ACL. ACLs determine who can
see the object and what actions each user can perform on the object. The existence
of an object is never revealed to a user who is not allowed to read it.

An ACL is a list of access control entries (ACEs) that are stored with the object
that the ACL protects. In Windows 2000, an ACL is stored as a binary value
within a security descriptor. Each ACE contains a security identifier that identifies
the security principal (the user or group) to whom the access control entry applies
and also information about what type of access the access control entry grants or
denies.

ACLs on Active Directory objects contain ACEs that apply to the object as a
whole and ACEs that apply to the individual properties of the object. This
structure allows an administrator to control not only which users can see an object
but also what properties the users can see. For example, all users might be granted
read access to the e-mail and telephone number properties for all other users, but
the security properties of users might be denied to all but members of a special
security administrators group. Individual users might be granted write access to
personal properties such as the telephone and mailing addresses on their own user
objects. Use the Delegate Control command in the context menu of an
organizational unit to set the access limits for appropriate groups.

For more information about access control, see “Access Control” in this book. For
more information about built-in object security, see “Active Directory Data
Storage” in this book. For information about anonymous read access, see “Name
Resolution in Active Directory” in this book.

Delegation of Administration

Delegation is one of the most important security features of Active Directory.
Delegation allows a higher administrative authority to grant specific
administrative user rights for containers and subtrees to individuals and groups.
Delegation eliminates the need for domain administrators to have sweeping
authority over large segments of the user population.

ACE:s can grant specific administrative rights on the objects in a container to a
user or group. Rights are granted for specific operations on specific object classes
through ACE:s in the container’s ACL. For example, to allow the user James
Smith to be an administrator of the Corporate Accounting organizational unit, you
add ACE:s to the ACL on Corporate Accounting as shown in Table 1.2.

Chapter 1 Active Directory Logical Structure 51

Table 1.2 Example of ACL Contents on an Organizational Unit

Applied to
ACE Security Principal Right These Objects
Allow James Smith Create, Delete User This object only
objects
Allow James Smith Full control User objects
Allow James Smith Create, Delete This object only
Group objects
Allow James Smith Full control Group objects
Allow James Smith Set Password User objects

Now James Smith can create new users and groups in Corporate Accounting and
set the passwords on existing users, but he can neither create any other object
classes nor affect users in any other containers (unless, of course, he is granted
that access by ACEs in the other containers).

For more information about delegation of administration, see “Access Control” in
this book. For information about how to apply delegation, see Windows 2000
Server Help.

Inheritance

You use inheritance to propagate a particular ACE from the container where it
was applied to all objects within the container. Inheritance can be combined with
delegation to grant administrative rights to a whole subtree of the directory in a
single operation. For more information about inheritance, see “Access Control” in
this book.

Additional Resources

= For more information about DNS, see DNS and BIND, 3d ed., by Paul Albitz
and Cricket Liu, 1998, Sebastopol, CA: O’Reilly & Associates.

= For more information about Requests for Comments (RFCs) and Internet
Drafts, see the Internet Engineering Task Force (IETF) link on the Web
Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

53

CHAPTER 2

Active Directory Data Storage

A directory service consists of both a directory storage system (called the

directory store) and a mechanism that is used to locate and retrieve information
} from the system. Active Directory™, the directory service that is included with
Microsofte Windowse 2000, stores objects that provide information about the real
things that exist in an organization’s network and that are associated with one or
more domains, such as users, specific groups of users, computers, applications,
services, files, and distribution lists. It then makes this information available to
users and applications throughout the organization.

In This Chapter

Active Directory Architecture 55

Data Storage 73

Installing Active Directory 121

Removing Active Directory 141

| Unattended Setup for Installation or Removal of Active Directory 144

|

54 Part1 Active Directory

Related Information in the Resource Kit

= For more information about the Active Directory hierarchy and Domain Name
System (DNS) naming, domain controller location, and tree and forest
structure, see “Active Directory Logical Structure” in this book.

= For more information about replication between sites and within a site, see
“Active Directory Replication” in this book.

= For more information about understanding and modifying the Active Directory
schema, see “Active Directory Schema” in this book.

= For more information about DNS, see “Introduction to DNS” and
“Windows 2000 DNS” in the Microsofte Windows® 2000 Server Resource Kit
TCP/IP Core Networking Guide.

Chapter 2 Active Directory Data Storage 55

Active Directory Architecture

Understanding the interactions of Active Directory architectural components
provides the basis for understanding how Active Directory stores and retrieves
data. The first step is understanding the relationship of Active Directory to the rest
of the Microsofte Windows® 2000 Server operating system.

Active Directory and Windows 2000 Architecture

Windows 2000 uses modules and modes that combine to provide operating
system services to applications. Two processor access modes, kernel and user,
divide the low-level, platform-specific processes from the upper-level processes,
respectively, to shield applications from platform differences and to prevent direct
access to system code and data by applications. Each application, including
service applications, runs in a separate module in user mode, from which it
requests system services through an application programming interface (API) that
gains limited access to system data. An application process begins in user mode
and is transferred to kernel mode, where the actual service is provided in a
protected environment. The process is then transferred back to user mode. The
security subsystem in user mode is the module in which Active Directory runs.
The security reference monitor, which runs in kernel mode, is the primary
authority for enforcing the security rules of the security subsystem. Figure 2.1
shows the location of Active Directory within Windows 2000.

sz) Security
-Application | Subsystem
Active |’ _
Win32 Directory Plug and Play
Subsystem Manager

v v

T User Mode
v

Kernel Mode

110 Security || IPC Memory || Process || Plug and Play|| Power || Window
Manager| | Reference|| Manager| | Manager| | Manager|| Manager Manager| | Manager
Monitor

File Graphics|

Systemsl : Object Manager I Device
Drivers

l» " 'Device Drivers “ Microkernel I

l Hardware Abstraction Layer (HAL)]

Figure 2.1 Active Directory Within the Windows 2000 Operating System

56

Part1 Active Directory

The tight integration of the directory service and security subsystem services is
key to the implementation of Windows 2000 distributed systems. Access to all
directory objects first requires proof of identity (authentication), which is
performed by components of the security subsystem, and then validation of access
permissions (authorization), which is performed by the security subsystem in
conjunction with the security reference monitor. The security reference monitor
enforces the access control applied to Active Directory objects.

For more information about the Windows 2000 operating system, see “Overview
of Networking in Windows 2000 Professional” in the Microsofte Windowse® 2000
Professional Resource Kit, which contains information about the core
technologies for both Microsofte Windowse 2000 Professional and

Windows 2000 Server. For more information about authentication, see
“Authentication” in this book. For more information about access permissions, see
“Access Control” in this book.

Security Subsystem Architecture

Windows 2000 includes a set of security components that make up the Windows
security model. These components ensure that applications cannot gain access to
resources without authentication and authorization. Components of the security
subsystem run in the context of the Lsass.exe process, and include the following:
= Local Security Authority

= Net Logon service

= Security Accounts Manager service

= LSA Server service

= Secure Sockets Layer

= Kerberos v5 authentication protocol and NTLM authentication protocol

The security subsystem keeps track of the security policies and the accounts that
are in effect on the computer system. In the case of a domain controller, which is
a computer that has Active Directory installed, these policies and accounts are the
ones that are in effect for the domain in which the domain controller is located.
They are stored in Active Directory.

Chapter2 Active Directory Data Storage 57

The Local Security Authority (LSA) is a protected subsystem that maintains the
information about all aspects of local security on a system (collectively known as
the local security policy) and provides various services for translation between
names and identifiers.

In general, the LSA performs the following functions:

= Manages local security policy.
= Provides interactive user authentication services.

= Generates tokens, which contain user and group information as well as
information about the security privileges for that user. After the initial logon
process is complete, all users are identified by their security identifier (SID)
and the associated access tokens.

= Manages the Audit policy and settings. When an audit alert is generated by the
Security Reference Monitor, the LSA is charged with writing that alert to the
appropriate system log.

The local security policy identifies the following:

= The domains that are trusted to authenticate logon attempts.

= Who can have access to the system and in what way (for example,
interactively, over the network, or as a service).

= Who is assigned privileges.
= What security auditing is to be performed.

= Default memory quotas (paged and nonpaged memory pool usage).

58

Part 1

Active Directory

Figure 2.2 shows a local perspective of Active Directory within the LSA security
subsystem (Lsass.exe). The LSA security subsystem provides services to both the
kernel mode and the user mode for validating access to objects, checking user
privileges, and generating audit messages.

 LSASRV
- Lsasrvdil

ecurity Accounts Manager

Sec
Samsrv.dl

Directory Service

Figure 2.2 Active Directory Within the Local Security Authority (Lsass.exe)

The LSA has the following components:

Netlogon.dll. The Net Logon service. Net Logon maintains the computer’s secure
channel to a domain controller. It passes the user’s credentials through a secure
channel to the domain controller and returns the domain security identifiers and
user rights for the user. In Windows 2000, the Net Logon service uses DNS to
resolve names to the Internet Protocol (IP) addresses of domain controllers. Net
Logon is the replication protocol for Microsofte Windows NTe version 4.0
primary domain controllers and backup domain controllers.

Msvi_0.dll. The NTLM authentication protocol. This protocol authenticates
clients that do not use Kerberos authentication.

Chapter 2 Active Directory Data Storage 59

Schannel.dll. The Secure Sockets Layer (SSL) authentication protocol. This
protocol provides authentication over an encrypted channel instead of a less-
secure clear channel.

Kerberos.dll. The Kerberos v5 authentication protocol.

Kdcsvc.dll. The Kerberos Key Distribution Center (KDC) service, which is
responsible for granting ticket-granting tickets to clients.

Lsasrv.dll. The LSA server service, which enforces security policies.

Samsrv.dll. The Security Accounts Manager (SAM), which stores local security
accounts, enforces locally stored policies, and supports APIs.

Ntdsa.dll. The directory service module, which supports the Windows 2000
replication protocol and Lightweight Directory Access Protocol (LDAP), and
manages partitions of data.

Secur32.dll. The multiple authentication provider that holds all of the components
together.

For more information about the LSA and its components, see “Authentication” in
this book. For more information about access control, see “Access Control” in this
book.

Directory Service Architecture

Active Directory functionality can be described as a layered architecture in which
the layers represent the server processes that provide directory services to client
applications. Active Directory consists of three service layers and several
interfaces and protocols that work together to provide directory services. The
three service layers accommodate the different types of information that are
required to locate records in the directory database. Above the service layers in
this architecture are the protocols and APIs (APIs are on the clients only) that
enable communication between clients and directory services or, in the case of
replication, between two directory services.

60

Part1 Active Directory

Figure 2.3 shows the Active Directory service layers and their respective
interfaces and protocols. The direction of the arrows indicates the manner in
which the different clients gain access to Active Directory through the interfaces.
LDAP and Messaging API (MAPI) clients gain access to the directory by calling
functions, indicated by one-way arrows into the directory system agent. The SAM
exists as separate dynamic-link library (DLL) and can call only entry points
exported by the directory system agent DLL, Ntdsa.dll. All other components
except the extensible storage engine (Esent.dll) are in Ntdsa.dll itself and are
linked to the functions that they want to call. Thus, a three-way interaction is
required between the three DLLs.

Windows NT4
Backup
LDAP/ADSV/ Replication Windows Domain
Outlook Transports NT4 Net Controller Outlook
Clients (RPC, SMTP IP) APIs Replication Clients
oap | | REPL | | sav | | mapl |
v i I | 1 v
Directory System Agent .- = -
T E— \4
Database Layer. '
" Extensible Storage Engine Ry ‘._’@

NTFS
Figure 2.3 Active Directory Service Layers and Interface Agents

The key service components include the following:

= Directory system agent. Builds a hierarchy from the parent-child relationships
stored in the directory. Provides APIs for directory access calls.

= Database layer. Provides an abstraction layer between applications and the
database. Calls from applications are never made directly to the database; they
go through the database layer.

= Extensible storage engine. Communicates directly with individual records in
the directory data store on the basis of the object’s relative distinguished name
attribute.

o

e R g SR S g

Chapter 2 Active Directory Data Storage 61

Data store (the database file Ntds.dit). This file is manipulated only by the
extensible storage engine database engine. You can administer the file by
using the Ntdsutil command-line tool. (To use Ntdsutil, install the Support
Tools that are located in the Support\Tools folder on the Windows 2000 Server
operating system CD. To install the tools, double-click the Setup icon in that
folder. For information about installing and using the Windows 2000 Support
Tools and Support Tools Help, see the file Sreadme.doc in the Support\Tools
folder of the Windows 2000 operating system CD.)

For more information about using Ntdsutil, see “Active Directory Diagnostic
Utility (Ntdsutil.exe)” and “Active Directory Diagnostics, Troubleshooting, and
Recovery” in this book, and see Microsoft Windows 2000 Support Tools Help.

Clients obtain access to Active Directory by using one of the following
mechanisms that are supported by Active Directory:

LDAP/ADSI. Clients that support LDAP use it to connect to the directory
system agent. The extensible storage engine (ESE) that is used by Microsofte
Exchange Server version 5.5 (and earlier) client/server messaging and
groupware also uses LDAP. Active Directory supports LDAPv3 (defined by
RFC 2251) and LDAPv?2 (defined by RFC 1777). Windows 2000 clients, as
well as Microsofte Windowse 98 and Microsofte Windowse 95 clients that
have the Active Directory client components installed, use LDAPv3 to connect
to the directory system agent. Active Directory Service Interfaces (ADSI) is a
means of abstracting the LDAP API by providing component object model
(COM) interfaces to Active Directory; however, Active Directory uses only
LDAP. The LDAP API is part of Wldap32.dll.

MAPI. Microsofte Outlooke messaging and collaboration clients connect to
the directory system agent by using the MAPI remote procedure call (RPC)
Address Book provider interface.

SAM. Windows clients that use Windows NT 4.0 or earlier use the SAM
interface to connect to the directory system agent. Replication from backup
domain controllers in a mixed-mode domain goes through the SAM interface
as well.

REPL. During directory replication, Active Directory directory system agents
connect to each other by using a proprietary RPC interface.

62

Part 1

Active Directory

Directory System Agent

The directory system agent (DSA) is the process that provides access to the store.
The store is the physical store of directory information located on a hard disk. The
DSA is the server-side process that creates an instance of a directory service.
Clients use one of the supported interfaces to connect (bind) to the DSA and then
search for, read, and write Active Directory objects and their attributes.

The Active Directory namespace is partitioned so that individual domain
controllers do not store the entire directory. Every DSA holds at least a single
Windows 2000 directory partition that stores domain data for a domain (such as
users, groups, and organizational units) plus two non-domain directory partitions
that store forestwide data, which includes the schema and configuration data.

The DSA layer provides the following functionality:

Object Identification Every object in Active Directory has a permanent globally
unique identifier (GUID) that is associated with several string forms of the object
name (SAMAccountName, user principal name, distinguished name) as well as a
security identifier. These object names and the security identifier are not
permanent—that is, they can be changed. All permanent references to the object
are kept in terms of the GUID; the object name is used for hierarchy navigation
and display purposes, and the security identifier is used for access control. The
DSA maintains the GUID association with an object when the object’s string
name or security identifier changes.

Schema Enforcement of Updates In a multimaster system, a change to a schema
object in one replica might conflict with existing objects in that replica and also
with objects in other replicas. In Windows 2000, a schema change is a single-
master operation, so if an update does not produce a conflict at the originating
replica, the update is considered acceptable at all replicas. Thus, replicated
updates do not perform any schema checks, and you do not have to wait until the
schema replicates before creating instances of a new object or attribute.

Access Control Enforcement The DSA enforces security limitations in the
directory. The DSA layer reads security identifiers (SIDs) on the access token.

Support for Replication The DSA contains the hooks for replication notifications.
All object updates ultimately must go through the appropriate function for the
directory service to work properly.

Referrals DSA manages the directory hierarchy information (referred to as
“knowledge”), which it receives from the database layer. DSA is responsible for
cross-references of Active Directory domain objects up and down the hierarchy
and also out to other domain hierarchies.

Chapter 2 Active Directory Data Storage 63

Database Layer

The database layer provides an object view of database information by applying
schema semantics to database records, thereby isolating the upper layers of the
directory service from the underlying database system. The database layer is an
internal interface. No database access calls are made directly to the extensible
storage engine; instead, all database access is routed through the database layer.

Active Directory provides a hierarchical namespace. Each object is uniquely
identified in the database by its distinguished name. The individual naming
attribute, called the relative distinguished name, is unique within the object’s
parent container; the relative distinguished name and the chain of successive
parent object names make up the object’s distinguished name. The database stores
the relative distinguished name for each object, as well as a reference to the parent
object. The database layer follows these parent references and concatenates the
successive relative distinguished names to form distinguished names.

All data that describes an object is held as a set of attributes, which are stored as
columns in the database. The database layer is responsible for the creation,
retrieval, and deletion of individual records, attributes within records, and values
within attributes. To carry out these functions, the database layer uses the schema
cache (an in-memory structure in the DSA) to get the information about the
attributes that it needs. For more information about the schema cache, see “Active
Directory Schema” in this book. For more information about distinguished names
and relative distinguished names, see “Active Directory Logical Structure” in this
book.

Extensible Storage Engine

Active Directory is implemented on top of an indexed sequential access method
(ISAM) table manager. This database is a version of the ESE database that is used
by Microsofte Exchange Server version 5.5 client/server messaging and
groupware. The Windows 2000 version of this database is Esent.dll.

ESE stores all Active Directory objects. It can support a database up to
16 terabytes in size, which can theoretically hold many millions of objects per
domain.

Note Testing of the database has been carried out to 40 million objects per
domain.

64 Part1 Active Directory

The following ESE characteristics make it well suited to the storage needs of
Active Directory:

Is used by the directory service and information store in Exchange Server
version 5.5.

Supports indexing.
Supports multivalue attributes.

Supports update operations that are transacted for stability and integrity across
system failures.

Can be backed up while the domain controller is online.

Handles sparse rows well — that is, rows in which many of the properties do
not have values.

Active Directory comes with a predefined schema that defines all of the attributes
that are required and allowed for a given object. ESE reserves storage only for the
space that is used—that is, only for the attributes that have values, not for all
possible attributes. For example, if a user object already has 50 attributes defined
in the schema and you create a user with values for only 4 attributes, storage
space is allocated only for those 4 attributes. If more attributes are added later,
more storage is allocated for them.

Esent.dll implements the search and retrieval functionality of the underlying
database. Also, ESE is able to store attributes that can have multiple values. For
example, the database can store multiple phone numbers for a single user without
requiring a different phone number attribute for each phone number.

Protocols and Interfaces to Active Directory

The diagram of the Active Directory architecture (Figure 2.3) illustrates four
avenues of entry to Active Directory: LDAP/ADSI, REPL (replication), SAM,
and MAPI. Each of these access routes uses a different set of protocols and APIs
that enable communication with the directory service. Table 2.1 shows the APIs
that Active Directory supports and that can be used by developers to integrate
with Active Directory or use resources in Active Directory.

Chapter 2 Active Directory Data Storage 65

Table 2.1 Active Directory APIs

API Name

Description

LDAP C API

ADSI

MAPI

Windows NT 4.0

SAM

As described in RFC 1823 for LDAPv3, LDAP API is a C language
API to the LDAP network protocol.

COM interface to Active Directory that abstracts the details of
LDAP communications. ADSI provides services and Active
Directory information to directory-aware applications. ADSI
supports multiple programming languages, including Microsoft®
Visual Basic®, C, and Microsoft® Visual C++®. ADSI also can be
accessed by using Windows Script Host (WSH).

Messaging API that is supported for compatibility with Microsoft®
Exchange Client and Outlook Address Book client applications.

Windows NT 4.0 networking APIs (Net APIs) that are used by
Windows NT 4.0 clients to gain access to Active Directory through
SAM.

APIs that communicate with the DSA APIs.

These APIs communicate with Active Directory by using various access methods,
as described in Table 2.2.

Table 2.2 Active Directory Access Methods

Access Method Description

LDAP Core protocol that is supported by Active Directory, as
described in RFC 2251 (LDAPv3) and RFC 1777
(LDAPv2).

MAPI RPC RPC interfaces used by MAPI Address Book provider

Replication RPC RPC interfaces used by Active Directory replication over
IP transport for replication within sites and between sites.

Replication Simple Mail Replication protocol used by Active Directory replication

Transfer Protocol (SMTP) over IP transport for message-based replication between

sites only.

For more information about RPC, see “Windows 2000 Network Architecture” in
the TCP/IP Core Networking Guide.

LDAP

LDAP is both a protocol and an API. It is also associated with both a directory
service model that defines client/server mechanisms and an information model
that defines the nature of objects stored in an LDAP directory service.

66

Part1 Active Directory

The LDAP protocol is the Active Directory core protocol, which means that
LDAP is the only wire protocol that is supported by Active Directory. LDAP is
the preferred and most common way of interacting with Active Directory. The
LDAP API provides access to the LDAP protocol, and ADSI is the COM
interface to Active Directory that uses LDAP as the protocol.

Note LDAP is a wire protocol, which means that it manages the encapsulation
and sending of requests between a client and server.

LDAP Protocol

LDAP is a directory service protocol that specifies directory communications. It
runs directly over Transmission Control Protocol/Internet Protocol (TCP/IP) and
can also run over user datagram protocol (UDP) connectionless transports. LDAP
enables clients to query, create, update, and delete information stored in a
directory service over a TCP connection through the TCP default port 389. LDAP
was used initially as a front end to X.500 directories. LDAPvV3 is an industry
standard that can be used with any directory service, such as Active Directory,
that implements the LDAP protocol. Active Directory supports LDAPv2 (RFC
1777) and LDAPv3 (RFC 2251).

Note Windows 2000 Active Directory does not implement the X.500 protocols
(which include Directory Access Protocol [DAP], Directory System Protocol
[DSP], Directory Information Shadowing Protocol [DISP], and Directory
Operational Binding Management Protocol [DOP]). LDAP provides the most
important functions offered by DAP, and is designed to work over TCP/IP
without the overhead of “enveloping” OSI protocols over TCP/IP.

For more information about TCP/IP, see the TCP/IP Core Networking Guide.

LDAP Directory Service Model

The LDAP directory service is based on a client/server model. One or more
LDAP servers contain the data making up the directory tree. An LDAP client
connects to an LDAP server and requests information or performs an operation.
The server performs the operation or provides the information, or it refers the
client to another LDAP server that might be able to do so. When connecting to a
specific LDAP directory tree, it does not matter what LDAP server a client
connects to; a name presented to one LDAP server references the same object
(referred to as an entry in LDAP) that it would reference at another LDAP server.
This is an important feature of a global directory service.

Chapter 2 Active Directory Data Storage 67

LDAP Information Model

The LDAP information model is based on the entry, which contains information
about some object (for example, a person or computer). In Active Directory, an
LDAP entry is referred to as an object. Entries are composed of attributes, which
have a type and one or more values. Each attribute has a syntax that determines
what kind of values are allowed in the attribute. Examples of attribute syntaxes
are Unicode string, binary, and integer.

The following key aspects characterize the LDAP protocol:

= The protocol is carried directly over TCP for connection-oriented transport
(receipt of data is acknowledged) and UDP for connectionless transport (no
acknowledgment on sending or receiving data).

= Most protocol data elements can be encoded as ordinary strings (for example,
distinguished names).

= Referrals to other servers can be returned to the client.

= Simple Authentication and Security Layer (SASL) mechanisms can be used
with LDAP to provide associated security services.

= Attribute values and distinguished names can be internationalized through the
use of the International Standards Organization (ISO) 10646 character set.

= The protocol can be extended to support new operations, and controls can be
used to extend existing operations.

= The schema is published through an attribute on the root object (rootDSE) for
use by clients. (For more information about the schema, see “Active Directory
Schema” in this book. For more information about rootDSE, see “RootDSE”
later in this chapter.)

For more information about the LDAPv3 protocol, see the Request for Comments
(RFC) link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Follow the
links to RFC 2251 (“Lightweight Directory Access Protocol (v3),” the original
LDAPv3 description), RFC 2252 (“Attribute Syntax Definitions™), RFC 2253
(“UTF-8 String Representation of Distinguished Names”), RFC 2254 (“The String
Representation of LDAP Search Filters”), RFC 2255 (“The LDAP URL Format”),
RFC 2256 (“A Summary of the X.500[96] User Schema for Use with LDAPv3”),
and RFC 2247 (“Using Domains in LDAP/X.500 Distinguished Names”). For
more information about the LDAP RFCs, see “LDAP Requests for Comments” in
this book.

68

Part1 Active Directory

Differences Between LDAPv2 and LDAPv3

LDAPvV3 supports the following implementations that were not supported in
LDAPv2:

» The use of UTF-8 for all text string attributes to support extended character
sets. Active Directory sends all responses in UTF-8 encoded form.

= QOperational attributes that the directory maintains for its own use (for example,
to log the date and time when another attribute is modified).

= Referrals, which allow a server to direct a client to another server that might
have the information the client is requesting. An LDAP server can return a
referral to an LDAP client when the operation presented by the client cannot
be serviced locally and the LDAP server has knowledge of other LDAP
servers that can handle the operation.

= Schema publishing with the directory, which allows a client to discover what
object classes and attributes a server supports.

= Extended searching operations that allow paging and sorting of results and
client-defined searching and sorting controls.

= Stronger security through an SASL-based authentication mechanism.

= Extended operations, which provide additional functionality without changing
the protocol version.

LDAPv3 is backward compatible with LDAPv2. A requirement of an LDAPv3
server is that an LDAPv2 client be able to connect to it.

LDAP API

Unlike most other Internet protocols, the LDAP protocol has an associated API
that simplifies writing Internet directory service applications. LDAP APl is a
C-language API to the LDAP protocol. RFC 1823 specifies the LDAP APIs that
are required for a client to gain access to a directory service that supports the
LDAP protocol. This API set is relatively simple and supports both synchronous
and asynchronous calls to the server.

Microsoft implements the LDAP API in Wldap32.dll—also referred to as
“LDAP C” or “C-binding LDAP.” Applications that are written in LDAP are
compatible only with LDAP directory services. ADSI, which provides a COM
interface to Active Directory, is layered on top of LDAP and provides the easiest
access to Active Directory through LDAP. However, Active Directory also fully
supports the LDAP APIs for directory access.

Chapter 2 Active Directory Data Storage 69

For more information about the LDAP API and about programming in LDAP, see
the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. For more
information about LDAP referrals, see “Name Resolution in Active Directory” in
this book. For more information about the schema, see “Active Directory
Schema” in this book.

ADSI

The primary and recommended API for Active Directory is ADSI. ADSI enables
access to Active Directory by exposing objects stored in the directory as COM
objects. A directory object is manipulated using the methods on one or more
COM interfaces. ADSI providers contain the implementation of ADSI objects for
a particular namespace. By implementing the required interfaces, ADSI providers
translate these interfaces to the API calls of a particular directory service.

ADSI LDAP Provider

The ADSI LDAP provider operates on the ADSI client to provide access to
Active Directory or to other LDAP directory services. The ADSI LDAP provider
works with any LDAP server that supports at least LDAPv2. In addition to
Windows 2000 Active Directory, directory services that are accessible through the
LDAP provider include the following:

= Netscape Directory Server.

= Exchange Server 5.x.

= Microsoft Commercial Internet System (MCIS) Address Book Server.

= University of Michigan Stand-alone LDAP Directory (SLAPD) Server.

= Other Internet directory servers (for example, Ldap.yahoo.com).

Note The WinNT ADSI provider enables access to Microsofte Windows NTe
version 3.x and Windows NT 4.0 directories, providing for communication with
Windows NT 4.0 primary domain controllers and backup domain controllers.
Other providers include NDS for access to Novell Directory Services directories,
NWCOMPAT for access to Novell NetWare 3.x and Novell NetWare 4.x
directories, and IIS for access to HTTP data directories used by Internet
Information Services (IIS).

For more information about ADSI, see the Microsoft
Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

70

Part1 Active Directory

Active Directory Replication

Active Directory replication is performed over replication transport protocols,
which are represented in the Active Directory architecture diagram (Figure 2.3) as
REPL. For replication within a site, Active Directory replication uses RPC-over-
IP transport protocols. For replication between sites, Active Directory replication
uses two replication transport protocols: IP (RPC over IP) and Simple Mail
Transfer Protocol (SMTP over IP).

Note The user interface that is associated with connection properties in Active
Directory Sites and Services displays RPC for all connections within a site, and
displays either IP (for RPC over IP) or SMTP (for SMTP over IP) for
connections between sites. This convention is used to distinguish between RPC
over IP for connections that are between sites and those that are within a site.

RPC replication between sites can be scheduled and is compressed. For
replication within a site, RPC is always used. RPC replication within a site is not
compressed. Thus, Windows 2000 directory replication recognizes three degrees
of connectivity:

= Uniform, high-speed connectivity (RPC over IP for replication of all directory
partitions within a site).

= Point-to-point, synchronous, low-speed connectivity (RPC over IP for
replication of all directory partitions between sites).

= Mail-only, asynchronous connectivity (SMTP over IP for replication of only
non-domain directory partitions between sites).

On each DSA, replication uses a single thread to receive changes from other
servers and applies them locally by using either RPC synchronous transport or
asynchronous transport for messaging between sites. The choice of transport is
determined by the corresponding connection object (class n”TDSConnection).
Connection objects are created automatically by the Knowledge Consistency
Checker (KCC). You can also create connection objects manually by using Active
Directory Sites and Services. Both synchronous and asynchronous transports
operate on a request-response basis.

For more information about Active Directory replication, see “Active Directory
Replication” in this book.

Chapter 2 Active Directory Data Storage 71

MAPI

Messaging clients gain access to the Exchange Server directory service by using
MAPI address book providers. For compatibility with existing messaging clients,
Active Directory supports the MAPI-RPC address book provider, which allows
access to Active Directory (for example, to find the telephone number of a user).

Note In Windows 2000, the MAPI address book provider is provided solely for
backward compatibility with MAPI clients, such as Outlook.

SAM

SAM is a protected subsystem that manages user and group account information.
In Windows 2000, workstation security accounts are stored by SAM in the local
computer registry, and domain controller security accounts are stored in Active
Directory. In Windows NT 4.0, both local and domain security accounts are
stored in the registry.

Using SAM in Mixed Mode and Native Mode

Windows 2000 supports Win32 security APIs in both mixed mode and
native mode.

In mixed-mode domains, where Windows NT 4.0-based backup domain
controllers are still in use, SAM clients that run Microsofte Windows NTe®
version 3.51 or Windows NT 4.0 communicate with the SAM server through
SAM APIs, which are required for replication and for authentication against the
SAM database.

In native-mode domains, there are no Windows NT 4.0 domain controllers, but
there can be clients that run Windows 95, Windows 98, Windows NT 3.x, or
Windows NT 4.0. These clients continue to authenticate by using the same
SAM APIs.

SAM Client and Server Operations

Most SAM operations are structured as reads and writes of properties. For
workstation accounts, operations are reads from and writes to the registry.
Domain-account operations are performed on Active Directory objects and their
corresponding properties, which are stored as column values in the directory
database. The SAM client calls public SAM routines, which in turn call internal
routines that encapsulate the RPC. On the server side, the internal SAM routines
do the bulk of the work.

72

Part1 Active Directory

In Windows NT 4.0, all access to account information is accomplished through
internal SAM routine calls to the accounts database that is stored in the registry.
In Windows 2000, the SAM server effectively splits off the domain controller
account information from the workstation account information and places it in
Active Directory instead of in the registry. The logic in Samsrv.dll manages the
security principal database differently, depending on the role of the computer. On
a domain controller, Samsrv.dll uses Active Directory for security principal
storage. On all other Windows 2000-based computers, Samsrv.dll uses the SAM
database in the registry for storage.

Gaining access to Windows 2000 domain controller account information is
accomplished by routines that are implemented as part of the DSA process on the
server. These routines are called in-process on the server and offer the ability to
search for, read, and write directory service objects.

Figure 2.4 illustrates the interactions between the SAM client and server
processes and the storage of domain and local accounts. The SAM server depicts
the logic applied by Samsrv.dll in the domain controller case (Directory API),
where the accounts are domain accounts, and in all other cases (Registry API),
where the accounts are local to the computer.

Windows NT 4.0 Net APls
. (Public: SAM Routines) -

Internal SAM Routines = -
at Encapsulate the RPC o Samsrv.dll
SO Private SA

© Nidsadl
" (Directory AP}
ESE Database

Figure 2.4 SAM Client and Server Interactions and Account Storage

Chapter 2 Active Directory Data Storage 73

Data Storage

Active Directory stores data for an entire forest. “Directory” and “forest” can be
considered synonymous. Although there is a single directory, data storage is
distributed among one or more domains while consistent data is maintained
throughout the forest that applies to all domains. Computers that store Active
Directory are called domain controllers.

Active Directory is partitioned and replicated. So that it can support tens of
millions of objects, Active Directory is partitioned into logical segments. To
provide support for 100s of thousands of clients and to provide availability, each
logical partition replicates its changes separately among those domain controllers
in the forest that store copies (replicas) of the same directory partitions.

Some directory partitions store forestwide configuration information and schema
information; other directory partitions store information that is specific to
individual domains, such as users, groups, and organizational units. The directory
partitions that store domain information are replicated to domain controllers in
that domain only. The directory partitions that store configuration and schema
information are replicated to domain controllers in all domains. In this way,
Active Directory provides a data repository that is logically centralized but
physically distributed. Because all domain controllers store forestwide
configuration and schema information, a domain controller in one domain can
reference a domain controller in any other domain if the information that it is
requesting is not stored locally. In addition, domain controllers that are Global
Catalog servers store a full replica of one domain directory partition plus a partial
replica of every other domain in the forest. Thus, a domain controller that is a
Global Catalog server can be queried to find any object in the forest.

Note There is a distinction between a directory partition and a database partition.
The Active Directory database is not partitioned. Only the directory tree, which is
the logical representation of the data held by a domain controller, is partitioned.

The distribution of Active Directory data in the directory tree can be summarized
as follows:

Domainwide Data
» Domain-specific data is stored in a domain directory partition.
= A full, writable replica of the domain directory partition is replicated to every

domain controller in the domain, including any Global Catalog servers in the
domain.

74 Part1 Active Directory

Forestwide Data

= Forestwide data is stored in two directory partitions—the configuration
directory partition and the schema directory partition. The Configuration
container is the topmost object of the configuration directory partition; the
Schema container is the topmost object of the schema directory partition.

= Full, writable replicas of the configuration directory partition and the schema
directory partition are replicated to every domain controller in the forest.

= In addition to a full, writable replica of a single domain (the domain for which
the domain controller is authoritative), partial, read-only replicas of every
other domain directory partition in the forest are stored on domain controllers
that are designated as Global Catalog servers. The read-only replicas in the
Global Catalog are “partial” because they store only some of the attributes for
each object.

Note When Active Directory is first installed on a computer that is running
Windows 2000 Server, the entire full replicas or partial replicas are replicated to
create the directory. Thereafter, only changes to directory objects (attribute
changes and the creation and deletion of objects) are replicated.

Data Characteristics

The key characteristics of the data that is stored by a directory service correspond
to size and latency. Active Directory should store objects that are not so large that
they hamper replication and not so unstable that they change before an update
replicates to all replicas in the forest. Therefore, large, unstructured data sets and
data values that change frequently are not appropriate for storage in Active
Directory.

In general, Active Directory is appropriate for the storage of data that has the
following characteristics:

= The data is globally useful information in the domain that needs to be
replicated to each Active Directory domain controller.

= The data has well-defined object attributes and semantics.

= The data has a useful life that is at least two times the maximum replication
latency for the forest (to include replication of data that is marked to replicate
to the global catalog). In general, if data can become outdated before the
completion of a replication cycle or shortly thereafter, it should not be stored
in Active Directory. Clients should be able to tolerate the inability to update
data for at least as long as it takes for the data to be replicated throughout the
domain.

Chapter 2 Active Directory Data Storage 75

= The data-per-attribute value is not so large that it affects performance. An
attribute value is replicated as a single block of data; therefore, an attribute that
is x megabytes in size requires an equivalent amount of buffer space in the
sending and in the receiving domain controllers. If the amount of required
buffer space is large, the performance of the domain controller can be
adversely affected.

Storage Limits

There are no practical limits to the number of objects stored in Active Directory.
The Active Directory database has been tested for up to 40 million objects.
Performance tests show logon performance for a single LDAP client to be the
same with 10,000 objects, 100,000 objects, and 1 million objects—that is, the
directory service does not slow measurably when the size of the database
increases.

Note In a mixed-mode environment in which backup domain controllers are
running Windows NT 4.0, the recommended limit for the number of security
principal objects per domain is 40,000 (the sum of users, groups, and computers).
This limit is based on the Windows NT 4.0 SAM database storage capacity. (For
more information about SAM database capacity, see “Determining Domain
Migration Strategies” in the Microsoft Windows 2000 Server Resource Kit
Deployment Planning Guide.)

Object Size vs. Maximum Database Record Size

Each object in the directory is represented as one record, or row, in the database,
and each attribute is represented as one column in the row. The only exceptions
are certain attributes whose values are stored separately as links. The limit for
record size in the database is 800 non-linked values across all attributes.
Attributes that represent links do not count in this value. (For more information
about linked attributes, see “Linked Attributes” later in this chapter.) The size of
objects is not a problem if you use the recommended guidelines described in
“Data Characteristics” earlier in this chapter.

Note To enhance performance on domain controllers, install the Windows 2000
operating system on one drive, the Active Directory database file (Ntds.dit) on a
second drive, and the log files on a third drive. (For more information about disk
management, see “Data Storage and Management” in the Microsoft

Windows 2000 Server Resource Kit Server Operations Guide. For more
information about database page sizes, see the Microsoft Platform SDK link on
the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.)

76

Part1 Active Directory

Garbage Collection

Instead of deleting objects physically from the database, the directory service
removes most of the attributes and then tags the object as being in the fombstone
state, which means it has been logically deleted from the directory but has not yet
been completely removed. The tombstone tag alerts replication partners that the
object was deleted. Objects that are tagged as tombstones are moved to the
Deleted Objects container, where they remain until garbage collection removes
them. Thus, tombstones are used to replicate object deletions.

Garbage collection is a housekeeping process that runs on every domain
controller. At regular intervals (by default, 12 hours), garbage collection deletes
objects that are no longer needed by the directory service.

Garbage collection performs the following tasks:

= Deletes tombstones.

= Defragments the database file.

There are two values that control how garbage collection runs and what it
removes. These values are attributes of the cn=Directory

Service,cn=Windows NT,cn=Services,cn=Configuration,dc=ForestRootDomain
object:

= Tombstone lifetime determines the number of hours that a deleted object lives
as a tombstone in the directory before being collected as garbage, and it is set
in the tombstoneLifetime attribute. The default setting is 60 days, and the
minimum setting is 2 days.

= Garbage collection interval determines how often a domain controller
examines its database for expired tombstones that can be collected, and it is set
in the garbageCollPeriod attribute. The default setting is 12 hours, and the
minimum setting is 1 hour. This period is to ensure proper replication of
deleted objects.

Note The default value for these two attributes applies if the attribute is not set
(the initial state of the system). The minimum value applies if the attribute is
set to a value below the minimum (that is, the minimum is not declared in the
schema).

Chapter 2 Active Directory Data Storage 77

It is important that the tombstone lifetime be substantially longer than the
expected replication latency. The interval between cycles of deleting tombstones
must be at least as long as the maximum replication propagation delay across the
forest. Because the expiration of a tombstone lifetime is based on the time when
an object was deleted logically—rather than on the time when a particular server
received that tombstone through replication—an object’s tombstone is collected
as garbage on all servers at approximately the same time. If the tombstone has not
yet replicated to a particular server, that server never records the deletion.
Likewise, if you restore a domain controller from a backup that is older than the
tombstone lifetime, the domain controller does not have a record of some
deletions, which leads to inconsistencies between domain controllers.

The maximum garbage collection interval is one-third of the tombstone lifetime
(in hours). So if you set tombstoneLifetime to 30 days and garbageCollPeriod to
300 hours, your actual garbage collection period is only 10 days, or 240 hours.

You can use ADSI Edit to view or change the default settings for these attributes.
To change the values, use the procedure that follows.

Note To use ADSI Edit, install the Support Tools that are located in the
Support\Tools folder on the Windows 2000 Server operating system CD. To
install the tools, double-click the Setup icon in that folder. For more information
about using ADSI Edit, see Microsoft Windows 2000 Support Tools Help. For
information about installing and using the Windows 2000 Support Tools and
Support Tools Help, see the file Sreadme.doc in the Support\Tools folder of the
Windows 2000 operating system CD.

To view or change attribute values by using ADSI Edit

1. On the Start menu, point to Programs, Windows 2000 Support Tools,
Tools, and then click ADSI Edit.

2. If the directory partition whose attributes you want to change or view is not
displayed, right-click the ADSI Edit icon, and then click Connect to.

3. If the current computer is not the domain controller on which you want to
change attributes, under Computer, click Select or type a domain controller,
and then select or type the computer name.

4. To select the directory partition, under Connection Point, click Naming
Context.

5. In the Naming Context list, click a directory partition, and then click OK.

Note In the Name box, the name of the directory partition that you selected is
displayed. You can replace this name with a name that better identifies the
specific connection.

78 Part1 Active Directory

6. Navigate to the object whose property values you want to view or change.

7. In the Properties dialog box, in the Select which properties to view box,
click one these alternatives: Optional, Mandatory, or Both.

8. In the Select a property to view box, click the property that you want to view.
9. To change a property value, type the value in the Edit Attribute box.
10. Click Set, and then click OK.

When you view properties on cn=Directory Service,cn=Windows NT,
cn=Services,cn=Configuration,dc=forestRootDomain, if no value is set (which
means that the default is in effect), the value that you type in the Edit Attribute
box replaces the default value when you click Set.

For more information about backing up and restoring Active Directory, see
“Active Directory Backup and Restore” in this book. For more information about
replication, see “Active Directory Replication” in this book.

Database Defragmentation

To update the directory database file, the database system uses the quickest way
to fill database pages. Although this system is efficient in updating the database
quickly, it does not make the most efficient use of space in the database.
Defragmentation rearranges how the data is written in the database in order to
compress the data. You can defragment the database file online or offline by using
the Ntdsutil command-line tool. Defragmentation can take place online (while the
computer is running as a domain controller) or offline (while the computer is
running as a stand-alone server).

Online Defragmentation

ESE supports online defragmentation, which effectively rearranges pages within
the data file but does not release space back to the file system. ESE invokes online
defragmentation automatically at regular intervals after garbage collection. Online
defragmentation makes space available, but it does not reduce the size of the
database file. Only offline defragmentation provides you with a clear picture of
the amount of space consumed by the database file.

Chapter 2 Active Directory Data Storage 79

Offline Defragmentation

To release space back to the file system, you can perform offline defragmentation.
Offline defragmentation must be performed in Directory Services Restore Mode,
which restarts the computer as a stand-alone server—that is, the computer runs
offline and is not acting as a domain controller. In Directory Services Restore
Mode, you can use the Ntdsutil command-line tool to defragment the Ntds.dit file.
Offline defragmentation produces the defragmented version of the database file in
a separate directory. You can archive the original Ntds.dit file and move the
defragmented file into the current directory. (For more information about using
Ntdsutil to perform offline defragmentation, see “Active Directory Diagnostics,
Troubleshooting, and Recovery” and “Active Directory Diagnostic Utility
(Ntdsutil.exe)” in this book, and see Microsoft Windows 2000 Support

Tools Help.)

You can use offline defragmentation to test database growth by comparing the
defragmented version of the file with the fragmented version. For example, on a
newly installed domain controller, if you perform a bulk load of objects and then
defragment the database file offline, the difference between the two files is the
space occupied by the new objects.

You can set the DSA to log, during garbage collection, a message in the Directory
Service event log that states how much disk space might be freed up by offline
defragmentation. To activate logging of this message in the Directory Service
event log, edit the value of the Garbage Collection registry entry in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
NTDS\Diagnostics.

To activate logging of disk space that is freed by defragmentation
1. On the Start menu, click Run.
2. Type the following:
regedt32.exe
—Or—
regedit.exe
3. Click OK.

4. In the registry editor, navigate to
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NTDS\
Diagnostics.

5. Double-click the Garbage Collection entry.

80

Part1 Active Directory

6. In Regedt32.exe, type 1 in the Data box, type:
1
—Or—
In Regedit.exe, type 1 in the Data value box, type:
1
7. Click OK, and then cloyse the registry editor.

Caution Editing the registry directly can have serious, unexpected consequences
that can prevent the system from starting and require that you reinstall

Windows 2000. There are programs available in Control Panel or Microsoft
Management Console (MMC) for performing most administrative tasks. These
programs provide safeguards that prevent you from entering conflicting settings or
settings that are likely to degrade performance or damage your system. Registry
editors bypass the standard safeguards that are provided by these administrative
tools. Modifying the registry is recommended only when no administrative tool is
available. Before you make changes to the registry, it is recommended that you
back up any valuable data on the computer. For instructions about how to edit
registry entries, see Help for the registry editor that you are using. For more
information about the registry, see the Microsoft Windows 2000 Resource Kit
Technical Reference to the Windows 2000 Registry (Regentry.chm).

To defragment the database file offline, start the domain controller in Directory
Services Restore Mode.

To start a domain controller in Directory Services Restore Mode

1. During the phase of startup when you would usually select the operating
system, press F8 to display advanced startup options.

2. On the Windows 2000 Advanced Options menu, use the arrow keys to select
Directory Services Restore Mode, and then press ENTER.

Follow these recommended defragmentation procedures:

= Use offline defragmentation only when you know that database contents have
decreased considerably (for example, when a Global Catalog server becomes a
normal domain controller) and you need to reclaim space for other uses.

= Retain the original Ntds.dit file until the domain controller has restarted with
the defragmented file. When you have no doubt that the directory database is
in a consistent state, you can delete the fragmented (original) database file.

For more information about performing offline defragmentation, see “Active
Directory Diagnostics, Troubleshooting, and Recovery” in this book.

Chapter 2 Active Directory Data Storage 81

When you test the effects of loading a specific set of objects on database growth,
keep the following in mind:

= When the directory contains objects that you have added recently, the database
is in a fragmented state, which makes it impossible to tell how much space the
objects actually occupy in the database file.

= Online defragmentation does not reduce the size of the database file. Only
offline defragmentation accomplishes reduction of file size.

= If you have garbage collection event logging set to 1, you can use the
Directory Service log in Event Viewer to view messages about the amount of
space that would be made available by offline defragmentation.

Growth Estimates for Active Directory Users and Organizational Units

A series of tests has been performed to arrive at average object sizes for objects
that are typically stored in Active Directory. These tests begin with the size of the
default Ntds.dit file immediately following the promotion of a domain controller.

Important Ntds.dit grows by increments and uses fractional pages in the Btrees to
avoid page splits. Therefore, if you add objects, the database size seems larger
than the actual data.

The database file size is not updated until the file has been closed. Because Active
Directory always keeps its database open and the database file never shrinks while
online, Windows 2000 always reports the larger file size when the domain
controller is restarted. However, the free space that remains on the drive is
reported correctly, so through subtraction you can reconstruct the actual file size.

To find the approximate size of data plus indices, set the registry to log disk space
that is freed by defragmentation (see the procedure “To activate logging of disk
space that is freed by defragmentation” earlier in this chapter) and use the Ntdsutil
command-line tool to compact (defragment) the database offline. (For more
information about using Ntdsutil to perform offline defragmentation, see “Active
Directory Diagnostics, Troubleshooting, and Recovery” and “Active Directory
Diagnostic Utility (Ntdsutil.exe)” in this book.)

82 Part1 Active Directory

Table 2.3 shows the sizes for users, organizational units, and attributes. You can
use these numbers to perform additional calculations.

Table 2.3 Disk Space That Is Required for Storing Active Directory Objects

Object Estimated size in database
User 3.7KB

Organizational unit 1.1KB

Attribute (10 bytes) 100 bytes

Directory Database Sizing Tests

In general, two kinds of directory database sizing tests were performed. In the first
series of tests, the database was loaded with large numbers of identical objects to
show how the database grows when objects are loaded and how much space is
consumed for the object types in each test. In the second series of tests, a blueprint
for a company with user objects, group objects, and file shares was created. Then
objects were added in successive increments of 100,000 to show how large the
database can become for small, medium, and large companies.

In most of the tests, the object load operation consisted of several steps. The
empty database size was recorded, and the first set of objects was loaded. The
database then was defragmented offline and the fragmented and the defragmented
versions of the database measured. The fragmented version of the file was used
when the next set of objects was loaded.

The objective of the single-object load tests was to determine how the size of the
database increases with respect to an increase in attribute value size. Because the
database engine consumes space only for attributes for which values are set, the
number of object attributes that have values makes a significant difference in the
size of an object. In tests that were conducted only for user and organizational
unit objects, only mandatory attributes were set. Mandatory attributes must
contain at least one value in order for the directory service to create the object.
Subsequent tests show how adding attributes to an object affects object size.

Chapter 2 Active Directory Data Storage 83

Table 2.4 User Object Growth Test Results

Because user objects play a significant role in directory deployment, you have to
know how big the user objects are to determine how big the database will grow
when you add users. Up to 500,000 users were loaded in the database in
increments of 100,000 users. The results of the test are shown in Table 2.4.

Fragmented database Defragmented database
Number KB per Growth Bytes per KB per Growth Bytes per
of users database (in KB) user database (in KB) user
0 10,256 - -- 10,256 -- -
100,000 516,064 505,808 5,179 364,560 354,304 3,628
200,000 899,088 383,024 4,551 720,912 356,352 3,639
300,000 1,294,352 395,264 4,383 1,079,312 358,400 3,649
400,000 1,675,280 380,928 4,262 1,435,664 356,352 3,649
500,000 2,060,328 385,048 4,199 1,792,016 356,352 3,649

The database file growth pattern shown in Table 2.4 is linear. In fact, the growth
between two load operations is always almost identical —approximately

385,000 KB in the fragmented version of the file and approximately 356,000 KB
in the defragmented version of the file. The only exception to this linear growth
pattern is the load operation in the first step when the first 100,000 users are
loaded. Here the increase in file size is much greater (about 516,000 KB).

This test illustrates how online defragmentation affects database size. Between the
time the first set of objects (100,000 users) was added on the first day and the time
the size of the file was checked on the next day, online defragmentation had
occurred and rearranged the objects in the database. The online defragmentation
made space available for new objects, but it did not shrink the database file size.
Therefore, the size of the fragmented file is much greater than the size of the file
when the next set of 100,000 user objects is loaded and the space in the database
file can be used. The increase in file size for the fragmented version of the file is
not much different from the increase in file size for the defragmented version of

the file.

Loading 500,000 users (with values for only the mandatory attributes set) into
Active Directory requires about 1.8 GB. To compute the size of one user object,
subtract the size of an empty store and then divide the store size by the number of
users. In this case, one user object is 3,649 bytes in size. User objects in Active
Directory are larger than most other objects because they contain many mandatory
attributes.

84 Part1 Active Directory

Organizational Units

Because information in Active Directory is organized in a hierarchy of
organizational units, a series of tests was conducted to measure the effect of
adding organizational unit objects on the database size. Table 2.5 shows the
results of these tests.

Table 2.5 Organizational Unit Object Growth Test Results

Fragmented database Defragmented database
Number of KB per Growth Bytes per KB per Growth Bytes per
users database (in KB) user database (in KB) user
0 10,256 - -- 10,256 -- -
2,000 12,304 2,048 1,049 10,256 0 -
4,000 16,440 4,136 1,583 12,304 2,048 524
6,000 18,448 2,008 1,398 14,352 2,048 699
8,000 20,496 2,048 1,311 18,448 4,096 1,049
10,000 24,592 4,096 1,468 20,496 2,048 1,049
12,000 26,640 2,048 1,398 22,544 2,048 1,049
14,000 28,688 2,048 1,348 24,592 2,048 1,049
16,000 32,784 4,096 1,442 26,640 2,048 1,049

The results in Table 2.5 show that the growth pattern for organizational units also
is linear. The size of one organizational unit is 1,049 bytes.

Adding Attributes

The next series of tests enlarged the user objects with extension attributes 1
through 10. The attributes are defined in the schema as string-valued attributes.
Each string was filled with 10 characters.

The test began with a store that contained 100,000 user objects with only their
mandatory attribute set. The server was demoted to a non-domain controller,
promoted back to a domain controller, and then loaded with 100,000 user objects
again, this time with one extension attribute. The process was repeated with two
attributes, then three attributes, and so forth. The results are shown in Table 2.6.

Chapter 2 Active Directory Data Storage 85

Table 2.6 Test Results for Extension Attributes with a User Object

Fragmented database

Defragmented database

Number of
extension KB per Bytes per Database/ Bytes per Bytes per
attributes database user defrag. user attribute
0 522,256 5,242 364,560 3,627 --
1 413,712 4,130 364,560 3,627 0
2 413,712 4,130 364,560 3,627 0
3 485,392 4,864 382,992 3,816 63
4 663,568 6,689 405,520 4,046 105
5 698,384 7,045 405,520 4,046 84
6 706,576 7,129 407,568 4,067 73
7 704,528 7,108 444,432 4,445 117
8 702,480 7,087 444,432 4,445 102
9 497,680 4,990 444,432 4,445 91
10 497,680 4,990 444,432 4,445 82
11 497,680 4,990 444,432 4,445 74

In the fragmented version of the database, the size of the database increases by

significantly larger increments at some steps than at others. This variation occurs
when the database engine allocates space for new pages. Such large increases do
not occur for the defragmented version of the database.

The growth of the defragmented database again is very linear. One additional
attribute with a string size of 10 characters adds approximately 100 bytes to an

object’s size.

For more information about Active Directory growth management and capacity
planning, see “Designing the Active Directory Structure” in the Deployment
Planning Guide, and see the Microsoft Windows 2000

Server link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

86

Part1 Active Directory

Windows 2000 SAM Storage

In Windows NT 4.0, both domain controllers and workstations store security
principal accounts in the SAM database, which uses the registry as its underlying
persistent storage. In Windows 2000, domain security principal accounts are
stored in Active Directory instead of the registry. Although security accounts are
stored in Active Directory, SAM is retained on Windows 2000 domain controllers
for compatibility with those domains and applications that depend on it. SAM also
is used by Windows 2000—based computers that are not domain controllers for
local account storage. Thus, SAM manages security principal accounts. It uses
Active Directory for storage of these accounts on a domain controller, and it uses
the SAM database in the registry on workstations, stand-alone servers, and
member servers. SAM (Samsrv.dll) provides a simple form of name resolution,
minimal transactions, replication, and secure storage for the security database.

In Windows 2000, there are two types of accounts: workstation accounts and
domain accounts. Workstation accounts, which include user and group accounts
on workstations, member servers, and stand-alone servers, are limited in scope to
the physical computer where the accounts reside. A domain account has a broader
scope than a workstation account; it extends to all physical computers within the
domain. A workstation administrator, for example, has administrative privileges
on the local computer (a workstation or member server), but a domain
administrator has administrative privileges on all computers within the domain.

In Windows NT 3.51 and Windows NT 4.0, both categories of accounts are stored
in the SAM database (in the registry). In Windows 2000, domain controllers store
domain user, group, and computer accounts only in Active Directory;
workstations and member servers continue to store local accounts in the SAM
database. On Windows 2000 domain controllers, the existing SAM database is
deleted and replaced by a new registry key that stores a small SAM database,
which is used principally for Directory Services Restore Mode. When you start a
domain controller in Directory Services Restore Mode, the SAM registry database
is used for the security principal database instead of Active Directory.

In addition, Windows 2000 SAM supports the following:

= Multimaster account replication among peer domain controllers
= Creation and deletion of user properties

= Read, write, and query third-party properties as defined by supplemental
security packages in the LSA. (For more information about the LSA, see
“Access Control” in this book.)

Chapter 2 Active Directory Data Storage 87

Domain controllers that are running Windows 2000 Server are completely
compatible with domain controllers that are running Windows NT 4.0—that is, a
Windows NT 4.0-based client can be authenticated by a Windows 2000-based
domain controller, and a Windows NT 4.0-based backup domain controller can
continue to replicate with Windows 2000-based domain controllers. In a
Windows 2000 domain, a Windows 2000-based domain controller can be
configured to assume, or “emulate,” the role of a primary domain controller (the
PDC emulator flexible single-master operation role).

For more information about the PDC emulator role of a Windows 2000 domain
controller, see “Managing Flexible Single-Master Operations” in this book, see
“Determining Domain Migration Strategies” in the Deployment Planning Guide,
and see Windows 2000 Server Help.

Mixed-Mode Storage Considerations

In mixed mode, account storage capacity is limited by the SAM database, which
is still used for domain accounts on the backup domain controllers. A

Windows NT 4.0-based backup domain controller is able to store approximately
40,000 security principal accounts (users, groups, and computers). The SAM
database size does not decrease when you delete objects, but the database
becomes fragmented and contains “empty” space. This empty space is reclaimed
as new objects are added, which can result in less available storage than the
number of accounts might indicate. For example, changing group membership
leaves an unoccupied storage space for the membership that was removed.

Note Running Regback against the SAM database can remove the spaces, but
only if the physical RAM of the computer is at least twice as large as the current
SAM (because of the way Regback works). For information about

techniques for compressing the SAM database, see the

Knowledge Base link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Search the
Knowledge Base using the keywords “database” and “shrink.”

88

Part1 Active Directory

SAM Structure

The Windows NT 4.0 and Windows 2000 SAM both contain collections of
domain security accounts. A “domain” in the SAM sense can refer either to all of
the accounts on a single computer or all of the accounts in a Windows domain.
The Builtin container contains default local group accounts (such as
Administrators and Users) that are installed whenever a new workstation, server,
or domain controller is set up. It provides some basic account types, such as
Administrator and Guest, that give the operator sufficient capability to add further
accounts to the computer or domain. The Builtin container account SIDs are the
same on every Windows 2000 or earlier system. These fixed SIDs allow the
predefined groups to be placed in access control lists without regard to the domain
of the system. For this reason, the objects in the Builtin container cannot be
changed.

In Windows 2000, domains continue to contain the same objects as in
Windows NT 4.0, as well as several additional properties on certain objects.

SAM Accounts on a Windows 2000 Server That Becomes a
Domain Controller

When you install Active Directory on a computer that is running Windows 2000
Server to create a domain controller, you can either create a new domain or
configure the domain controller to contain a copy of an existing domain. In both
cases, the existing registry key that contains the SAM database is deleted and is
replaced by a new, smaller SAM database. The security principals in this database
are used only when the server is started in Directory Services Restore Mode.

The disposition of the security principals in the SAM database on the server is
different in each case, as follows:

= If you create an additional domain controller in an existing domain, the
security accounts in the existing SAM database on the server are deleted. The
accounts from the existing domain are replicated to Active Directory on the
new domain controller.

= [If you create a new domain, the security accounts in the existing SAM
database are preserved as follows:

= User accounts become user objects in Active Directory.

» Local groups in the account domain become group objects in Active
Directory. The group type indicates a local group.

= Built-in local groups become group objects in Active Directory. The group
type indicates a built-in local group. These groups retain their constant
SIDs and are stored in the Builtin container.

Chapter 2 Active Directory Data Storage 89

Migration of Windows NT 4.0 SAM Accounts to Active

Directory Objects

When a Windows NT 4.0 domain controller is upgraded to Windows 2000, SAM
security accounts are migrated to Active Directory objects. The relationship
between Windows NT 4.0 accounts and Windows 2000 Active Directory objects
is as follows:

“Normal” user accounts, which represent people, are stored as objects of the
class user in Active Directory.

Computer user accounts (called “machine accounts” in Windows NT 4.0),
which represent devices, are stored as objects of the class computer, which is a
derived class of user and is exposed as the base class user to clients and
domain controllers that are running earlier versions of Windows. (For more
information about derived classes and base classes, see “Active Directory
Schema” in this book.) By default, these accounts are placed in the Computers
container after an upgrade, although there is no restriction that requires
computer accounts to be confined to the Computers container. A control flag
on the user account identifies the account type as a server or workstation,
domain controller, or normal user account. Windows 2000 maintains the
Windows NT 4.0 semantics (the flags that determine the nature of objects—for
example, a computer versus a user object) for workstation accounts.

Note In Active Directory Users and Computers, the Role property
(“attribute”) on computer accounts indicates the account type. This property
represents the userAccountControl flag value on the machineRole property of
4096 for a server or workstation or 8192 for a domain controller.

Global group accounts are stored as group objects in Active Directory.

Local group accounts from the SAM account domain are stored as group
objects in Active Directory.

Built-in local group accounts from the SAM Builtin domain (for example, the
Administrators group) are stored as domain local group objects in Active
Directory in the Builtin container. Groups from the SAM Builtin domain have
constant SIDs.

Backup domain controller computer accounts are represented identically to
workstation computer accounts, except that a different flag is set to
distinguish them.

90

Part1 Active Directory

= LSA account objects grant privileges on the workstation computer to a
particular account. They are maintained in the registry and synchronized
between the domain controllers by being replicated to the workstation policy.
By default, each domain controller in the domain has the same workstation
policy. Therefore, a change to an LSA account object updates the
corresponding workstation policy for the PDC emulator. The workstation
policy change replicates to every other Windows 2000 domain controller in the

domain.

The upgrade from a given Windows NT 4.0 SAM account to the corresponding
Windows 2000 Active Directory object is summarized in Table 2.7.

Table 2.7 Upgrade of Windows NT 4.0 Accounts to Windows 2000 Active Directory

Objects

Windows NT 4.0 SAM

Windows 2000 Active Directory

Normal user account

Computer user account
Domain controller account

Global group in an account
domain

Local group in an account
domain

Local group in the Builtin
domain

Domain trust account

Trusted domain object

User object.

Computer object, where the user account control flag
indicates a workstation trust account.

Computer object, where the user account control flag
indicates a server trust account.

Group object, where the group type indicates a global
group.

Group object, where the group type indicates a local group.

Group object, where the group type indicates a local group
as well as Builtin group (for example, Administrators,
Backup Operators, and so forth).

Trusted domain object. (Assumes the role of both inbound
and outbound halves of the trust relationship; there is also
a domain trust account of class user for backward
compatibility.)

Trusted domain object, upgraded.

For more information about upgrade issues, see “Determining Domain Migration
Strategies” in the Deployment Planning Guide.

Chapter 2 Active Directory Data Storage 91

Data Model

The Active Directory data model is derived from the X.500 model of objects and
attributes. An object is a distinct, named set of attributes that represents something
concrete, such as a user, a printer, or an application. Thus, Active Directory holds
objects that represent entities of various sorts, which are described by attributes
(also called “properties”). For example, attributes of a user object might include
the user’s given name, surname, and e-mail address.

The universe of objects that can be stored in Active Directory is defined in the
schema. For each object class, the schema defines what mandatory attributes an
instance of the class is required to have, what optional additional attributes it can
have, and what object class can be a parent of the current object class. LDAP
defines the protocol that is used for accessing and modifying directory
information.

Note Active Directory is not an X.500 directory; as such, it does not support
X.500 protocols.

Container Objects and Leaf Objects

A leaf object is an object that has no child objects. The term “container” refers to
one of two things:

= An object of the container structural class.
= An object that has child objects.

Container is a structural class of object, which means that container objects can
be created in Active Directory. In the schema, structural classes define objects
that can be created as instances of the class in Active Directory. Other objects can
be “container” objects in the general sense of the word (that is, they can have
child objects), but they do not belong to the container class. For example, an
organizational unit is a container object, although its class is organizationalUnit,
not container. An organizational unit object has many attributes that provide
functionality that an ordinary container does not have.

For more information about structural classes, see “Active Directory Schema” in
this book.

92 Part1 Active Directory

Directory Tree

The directory tree represents the hierarchy of Active Directory objects for a given
forest. The hierarchy provides the basis both for using names for navigation and
for defining the scope of search requests.

For every object in Active Directory, information is stored in the directory
database that identifies (references) the parent object; each object has exactly one
parent. By virtue of these parent references, the hierarchy of objects managed by
Active Directory forms a tree structure in which the vertices are the directory
entries (class instances, or objects) and the connecting lines are the parent-child
relationships between the entries. The objects that populate the directory create
this tree structure according to the rules of the schema, which define what classes
of objects are allowed to be created in which positions relative to other objects.
For example, the schema might dictate that a given class of object can be the child
of one class but not the child of another class.

The following are several architectural restrictions and requirements within the
directory tree:

= Domain objects, which are containers, can be children only of other domain
objects. For example, a domain cannot be the child of an organizational unit.

» The root of the directory tree is called rootDSE, or directory root. RootDSE is
an “imaginary” object that has no hierarchical name or schema class, but it
does have a set of attributes that identify the contents of a given domain
controller. Thus, rootDSE constitutes the root of the directory tree from the
perspective of the domain controller to which you are connected.

= Below the root of the tree, every directory has a root domain, which is the first
domain created in a forest. This domain always has a child container called
Configuration, which contains configuration data for the forest. The
configuration data includes information about all services, sites, and other
domains (partitions) in the forest. The Configuration container has a child
container called Schema. The domain and the Configuration container, with its
child Schema container, represent the three default Active Directory directory
partitions.

For more information about parent-child relationships, see “Active Directory
Schema” and “Active Directory Logical Structure” in this book.

Chapter 2 Active Directory Data Storage 93

RootDSE

The rootDSE (DSA-specific Entry) represents the top of the logical namespace for
one domain controller, and, therefore, it represents the top of the LDAP search
tree. There is only one root for a given directory, but the information stored in the
root is specific to the domain controller to which you connect. The attributes of
rootDSE identify both the directory partitions (the domain, schema, and
configuration directory partitions) that are specific to one domain controller and
the forest root domain directory partition. Thus, the rootDSE provides a “table of
contents” for a given domain controller.

The rootDSE publishes information about the LDAP server, including what
LDAP versions it supports, supported Simple Authentication and Security Layer
(SASL) mechanisms, and supported controls, as well as the distinguished name
for its subschemaSubentry.

The following are the operational attributes on the rootDSE object. All LDAP
servers recognize these attribute names, but when the attribute corresponds to a
feature that the server does not implement, the attribute is absent.

subschemaSubentry The name of a subschema entry, which is used to administer
information about the schema; in particular, the object classes and attribute types
that are supported. (For more information about subschemaSubentry, see “Active
Directory Schema” in this book.)

namingContexts Naming contexts (directory partitions) that this server masters
(stores as a writable replica) or shadows (stores as a read-only replica). This
attribute allows a client to choose suitable base objects for searching when the
client has contacted a server.

supportedControl Object identifiers that identify the LDAP controls that the
server supports. If the server does not support any controls, this attribute is absent.

supportedSASLMechanisms The names of the SASL mechanisms that the server
supports. SASL is a standard for negotiating an authentication mechanism and
(optionally) an encryption mechanism. If the server does not support either type of
mechanism, this attribute is absent.

supportedLDAPVersion The versions of LDAP that the server implements.

supportedExtension Object identifiers (known as “OIDs”) that identify the
supported extended operations that the server supports. If the server does not
support any extensions, this attribute is absent. This attribute is absent by default
for Active Directory servers.

94

Part1 Active Directory

altServer The values of this attribute are URLSs of other servers that can be
contacted when this server becomes unavailable. If the server does not know of
any other servers, this attribute is absent. This attribute is absent by default for
Active Directory servers.

In addition to the operational attributes described in the preceding paragraphs,
Active Directory also supports the following informational attributes:
currentTime. The current time in the generalized time format.

dsServiceName. NTDS settings.

defaultNaming Context. The default naming context (directory partition) for a
particular server. This value is the distinguished name of the domain directory
partition for which this domain controller is authoritative.

schemaNaming Context. The naming context (directory partition) for the
forest schema.

configurationNamingContext. The naming context (directory partition) for the
forest Configuration container.

rootDomainNamingContext. The distinguished name for the domain naming
context (directory partition) that is the first domain that was created in this forest.
This domain functions as the forest root domain.

supportedLDAPPolicies. Supported LDAP management policies.

highestCommittedUsn. Highest update sequence number (USN) committed to the
database on this domain controller. (For information about update sequence
numbers, see “Active Directory Replication” in this book.)

dnsHostName. The DNS name of this domain controller.
serverName. The fully qualified distinguished name for this domain controller.

supportedCapabilities. The object identifier value (1.2.840.113556.1.4.800) that
indicates the additional capabilities of an Active Directory server, such as
dynamic update, integrated DNS zones, and LDAP policies.

LdapServiceName. The service principal name for the LDAP server, which is
used for mutual authentication.

isSynchronized. Boolean indicator for whether the domain controller has
completed its initial sync with replica partners.

isGlobalCatalogReady. Boolean indicator for whether the domain controller is
prepared to advertise itself as a Global Catalog.

Chapter 2 Active Directory Data Storage 95

For more information about rootDSE and rootDSE attributes, see the Request for
Comments (RFC) link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Follow the
links to RFC 2251 and RFC 2252.

You can use ADSI Edit or Ldp to see the contents of rootDSE for a given domain
controller.

Note To use ADSI Edit and Ldp, install the Support Tools that are located in the
Support\Tools folder on the Windows 2000 Server operating system CD. To
install the tools, double-click the Setup icon in that folder. For more information
about using ADSI Edit and Ldp, see Microsoft Windows 2000 Support Tools
Help. For information about installing and using the Windows 2000 Support
Tools and Support Tools Help, see the file Sreadme.doc in the Support\Tools
folder of the Windows 2000 operating system CD.

To view rootDSE properties by using ADSI Edit
1. In ADSI Edit, right-click the ADSI Edit icon, and then click Connect to.

2. To connect to a different domain controller from the default domain controller
(the domain controller for the domain to which you are logged on), click
Select or type a domain or server, and then type a domain name or server
name.

Under Connection Point, click Naming Context.

In the Naming Context list, click RootDSE and then click OK.
Expand the RootDSE [ServerName] node.

Right-click the RootDSE folder, and then click Properties.

In the RootDSE Properties dialog box, view a property value by selecting the
property in the Select properties to view box.

NN kW

You can use ADSI Edit to view one rootDSE property value at a time. To view
the entire list of properties and their values, use Ldp.

Ldp.exe is a graphical tool that you can use to perform LDAP operations, such as
connect, bind, search, modify, add, and delete, against any LDAP-compatible
directory, such as Active Directory. When you use Ldp to connect to a domain
controller, the tool displays a list of the rootDSE attribute values that are stored on
the domain controller to which you connect.

Note You can open Ldp in any of the following ways: from the Windows 2000
Support Tools menu by selecting Active Directory Administration Tool; from
the Run dialog box by typing ldp; or from a command prompt by typing ldp.

96

Part1 Active Directory

» To connect to a domain controller and view rootDSE attributes by using Ldp

1. In Ldp, on the Connection menu, click Connect.

2. In the Server box, either use the current domain controller name or type the
name of the domain controller to which you want to connect.

3. In the Port box, type the port number that you want to use.

Port 389 is the default port for LDAP; port 3268 is the default port for the
Active Directory Global Catalog.

4. Click OK.

The following printout shows the results of an Ldp Connect operation. The
rootDSE information is displayed in the Ldp details pane.

1d = Tdap_open("sea-rk-dc-01", 389);

Established connection to sea-rk-dc-01.

Retrieving base DSA information...

Result <0>: (null)

Matched DNs:

Getting 1 entries:

>> Dn:

1> currentTime: 10/1/1999 15:49:25 Pacific Standard Time Pacific
Daylight Time;

1> subschemaSubentry:
CN=Aggregate,CN=Schema,CN=Configuration,DC=reskit,DC=com;

1> dsServiceName: CN=NTDS Settings,CN=SEA-RK-DC-
01,CN=Servers,CN=Default-First-Site-
Name,CN=Sites,CN=Configuration,DC=reskit,DC=com;

3> namingContexts: CN=Schema,CN=Configuration,DC=reskit,DC=com;
CN=Configuration,DC=reskit,DC=com; DC=reskit,DC=com;

1> defaultNamingContext: DC=reskit,DC=com;

1> schemaNamingContext: CN=Schema,CN=Configuration,DC=reskit,DC=com;
1> configurationNamingContext: CN=Configuration,DC=reskit,DC=com;
1> rootDomainNamingContext: DC=reskit,DC=com;

16> supportedControl: 1.2.840.113556.1.4.319; 1.2.840.113556.1.4.801;

1.2.840.113556.1.4.473; 1.2.840.113556.1.4.528; 1.2.840.113556.1.4.417;
1.2.840.113556.1.4.619; 1.2.840.113556.1.4.841; 1.2.840.113556.1.4.529;
1.2.840.113556.1.4.805; 1.2.840.113556.1.4.521; 1.2.840.113556.1.4.970;
1.2.840.113556.1.4.1338; 1.2.840.113556.1.4.474;
1.2.840.113556.1.4.1339; 1.2.840.113556.1.4.1340;
1.2.840.113556.1.4.1413;

2> supportedLDAPVersion: 3; 2;

Chapter 2 Active Directory Data Storage 97

11> supportedLDAPPolicies: InitRecvTimeout; MaxConnections;
MaxConnIdleTime; MaxActiveQueries; MaxNotificationPerConn; MaxPageSize;
MaxQueryDuration; MaxTempTableSize; MaxResultSetSize; MaxPoolThreads;
MaxDatagramRecv;

1> highestCommittedUSN: 191396;

2> supportedSASLMechanisms: GSSAPI; GSS-SPNEGO;

1> dnsHostName: SEA-RK-DC-01.reskit.com;

1> ldapServiceName: reskit.com:sea-rk-dc-01$@RESKIT.COM;

1> serverName: CN=SEA-RK-DC-01,CN=Servers,CN=Default-First-Site-
Name,CN=Sites,CN=Configuration,DC=reskit,DC=com;

1> supportedCapabilities: 1.2.840.113556.1.4.800;

1> isSynchronized: TRUE;

1> isGlobalCatalogReady: TRUE;

Note The rootDSE attribute values also can be retrieved from an LDAPv3 server
by using a base-level search with a null base distinguished name and with the
filter (objectClass=*). (For more information about LDAP searches, see “Name
Resolution in Active Directory” in this book.)

For more information about rootDSE, see the Microsoft Platform SDK link on the
Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Search the
SDK on the keyword “rootDSE”.

Extended LDAP Controls

Windows 2000 supports several LDAP controls that extend the functionality of
the LDAPvV3 protocol. Microsoft has defined these LDAP controls to increase the
functionality of Active Directory. These controls provide functionality that is not
provided by current Internet Engineering Task Force (IETF) RFCs. The rootDSE
indicates all controls that are in effect for the contacted server through the object
identifier (also known as “OID”) values in the supportedControl attribute.

Extended LDAP control functionality is useful to programmers who are using
LDAP to perform directory operations. Some of the operations that can be
implemented using extended controls are deleting trees, paging and sorting search
results, and showing deleted objects. (For more information about showing
deleted objects, see “Active Directory Name Resolution” in this book.)

98

Part1 Active Directory

For more information about using LDAP controls, see the
Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.
Search the SDK using the keyword “LDAPControl” (one word).

Note LDAP control object identifiers are required only by the LDAP API. Most
developers use ADSI, which uses other mechanisms, such as search preference
flags, to achieve the same functionality. For more information about using ADSI,
see the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

Attribute Range Option

The LDAP protocol reads a multivalue attribute as a single entity, which can be
inconvenient in the time that it takes when the number of values is large or, in
some cases, makes reading the attribute impossible. The Range option can be
specified as part of an attribute description to retrieve the values of a multivalue
attribute incrementally. An attribute description includes an attribute type (for
example, member) and a list of options, one of which can be the Range option.
When presented in a searchRequest message, the Range option specifies a zero-
relative range of elements (for example, 0-9) to be retrieved. By specifying the
Range option followed by a range specifier, only the number of values in that
range are retrieved.

To retrieve a range of values in Ldp, open a search (on the Browse menu, click
Search), and then, in the Search dialog box, click Options. In the Attributes
box, specify an attribute and the Range option. The attribute name and the Range
option must be enclosed in quotation marks (" ").

For example, to read six members of a group at a time, use the group
distinguished name as the search base and type the following in the Attributes
box: ""member;range=0-5". This search will return six values for an object with
multiple values in the member attribute.

For more information about using the Range option, see the

Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

Search the SDK using the keywords “range specifier” and “‘enumerating groups.”

Chapter 2 Active Directory Data Storage 99

Directory Partitions

To scale to tens of millions of objects, a forest is partitioned into domains. Each
Active Directory domain controller can be a member of one domain, and domain
controllers within the same domain contain the same information. Domain
controllers from different domains share the same configuration and schema data,
but they do not share the same domain data. The means to distributing storage in
this manner is the directory partition, which is also called a “naming context.”

In Active Directory, a directory partition is a portion of the directory namespace.
Each directory partition contains a hierarchy (subtree) of directory objects in the
directory tree. The same directory partition can be stored as copies (replicas) on
many domain controllers, and the copies are updated through directory
replication.

Because a domain defines a security boundary and also represents the logical
boundary of objects that belong to the same administration, each domain is
mapped to a different directory partition so that the objects belonging to two
different domains can be maintained and replicated independently. Likewise,
information that is relevant to the entire forest is replicated separately.

Directory Partition Subtrees

Every domain controller contains the following three directory partitions:

Configuration Contains the Configuration container, which stores configuration
objects for the entire forest in cn=configuration,dc=forestRootDomain. Updates to
this container are replicated to all domain controllers in the forest. Configuration
objects store information about sites, services, and directory partitions. You can
view the contents of the Configuration container by using ADSI Edit.

Schema Contains the Schema container, which stores class and attribute
definitions for all existing and possible Active Directory objects in
cn=schema,cn=configuration,dc=forestRootDomain. Updates to this container are
replicated to all domain controllers in the forest. You can view the contents of the
Schema container in the Active Directory Schema console.

Domain Contains a <domain> container (for example, the Reskit.com container),
which stores users, computers, groups, and other objects for a specific

Windows 2000 domain (for example, the Reskit.com domain). Updates to the
<domain> container are replicated to only domain controllers within the domain
and to Global Catalog servers if the update is made to an attribute that is marked
for replication to the Global Catalog. The <domain> container is displayed in the
Active Directory Users and Computers console. The hierarchy of domain
directory partitions can be viewed in the Active Directory Domains and Trusts
console, where trust relationships between domains can be managed.

100

Part1 Active Directory

Each directory partition is a contiguous portion of the directory tree, and each one
starts at a single point (the directory partition head) and spreads to either leaf
nodes (for the schema and configuration directory partitions) or to the heads of
other directory partitions below it (for domain directory partitions). Each directory
partition, therefore, has exactly one directory partition immediately above it in the
tree (except for a tree root domain directory partition, which has only the rootDSE
above it) and possibly more directory partitions immediately below it. For domain
directory partitions, this order manifests itself in the hierarchical infrastructure
discussed in “Active Directory Logical Structure” in this book.

Note You cannot rename the topmost object in a directory partition, which means
that you cannot rename a domain, the Schema container, or the Configuration
container.

Directory Partition Hierarchy

There is an important distinction between the physical storage of a directory
partition and its logical position in the directory tree. Physically, all objects are
stored in a single database table, regardless of the directory partition to which they
are assigned by virtue of their object names. Logically, the head of a directory
partition appears in the naming hierarchy as the topmost object—that is, the
<domain> container, the Configuration container, and the Schema container each
has a distinguished name that identifies its position in the hierarchy. The
respective directory partitions contain those objects, which are called “heads”; the
domain directory partition contains an object named dc=domainName; the
Configuration directory partition contains an object named
cn=configuration,dc=forestRootDomain; and the schema directory partition
contains an object named cn=schema,cn=configuration,dc=forestRootDomain.

Chapter 2 Active Directory Data Storage 101

Figure 2.5 shows a conceptual diagram of the directory tree hierarchy, including
the directory root (rootDSE) and the default directory partitions below the
directory root. In any Active Directory forest, the configuration directory
partitions and schema directory partitions are always in these locations.

(RootDSE)

Forest Root Domain
Directory Partition

Configuration \

Direcory Partition ...Domain Tree(s)...

T Directory Root

Schema
Directory Partition

Figure 2.5 Default Active Directory Partitions

Each domain controller in the forest holds a master copy (replica) of the
configuration and schema directory partitions, which are copied to a domain
controller during domain controller promotion. All updates to configuration and
schema directory partitions are replicated to every domain controller in the forest.
In this way, site, service, domain, and schema information is kept consistent
throughout the forest.

Forest Root Domain

Because the forest root domain is the first domain created in a forest, it is the root
domain in the domain namespace hierarchy. In naming only, the topmost object of
the configuration directory partition (the Configuration container) is the child of
the forest root domain object in the hierarchy. The distinguished name of the
Configuration container (cn=configuration,dc=forestRootDomain) reflects this
naming hierarchy.

102

Part1 Active Directory

Although the distinguished name of the Configuration container indicates that it is
a child of the forest root domain object, the configuration directory partition is not
physically part of the forest root domain directory partition but is a separate
directory partition that is replicated to all domain controllers in the forest; in
contrast to the configuration directory partition, the forest root domain directory
partition is replicated to only domain controllers in that domain. Similarly, the
topmost object in the schema directory partition (the Schema container) is the
child of the Configuration container. The distinguished name of the Schema
container (cn=schema,cn=configuration,dc=forestRootDomain) shows the
location of the schema to be within the forest root domain. Although the Schema
container is a child of the Configuration container, the schema directory partition
is not physically part of the configuration directory partition nor part of the forest
root domain directory partition.

For more information about replication of directory partitions, see “Active
Directory Replication” in this book.

Configuration Directory Partition

The configuration directory partition is created initially when the first

Windows 2000 domain is created during the installation of Active
Directory;thereafter, it is replicated to every domain controller in the forest. When
a child domain or a new tree-root domain is created in the forest or when an
additional domain controller is added to an existing domain, the configuration
directory partition is copied to the new domain controller.

Chapter 2 Active Directory Data Storage 103

Viewing the Configuration Container

You can view the Configuration container by using ADSI Edit. When you open
ADSI Edit, the Configuration container for the forest of the domain to which you
are connected is displayed, along with the current domain directory partition and
the Schema directory partition. Figure 2.6 illustrates the contents of the
Configuration container as it is displayed in ADSI Edit.

-5 Domain NC [MHILLMANZ.noam.reskit.com] chsDiswaySpecifiavs container rs,CN=Configuration, DC=reskit,DC=com
Configuration Contaner [MHILLMAN2,noam.reskit.com]. {3 CN=Extended-Rights container CN=Extended-Rights,CN=Configuration, DC=reskit,DC=com
2 CHCantigation, DGmréskin i miin, (3 cN=LostAndFoundConfig lostAndFound CN=LostAndFoundConfig, CN=Configuration, DC=reskit, DC=com
(2 On=DisplaySpecifiers A Ch=Partitions crossRefContainer CN=Partitions, CN=Configuration,DC=reskit,DC=com
@ (Q cN=Extended-Rights {2 CN=Physical Locations physicalLocation CN=Physical Locations, CN=Configuration,DC=reskit,DC=com
@-L3 CN=LostAndFoundConfig 3 cN=services container CN=Services, CN=Configuration, DC=reskit,DC=com
;lod Ci=Partitions (3 c=sites sitesContainer CN=Sites, CN=Configuration,DC=reskit, DC=com
{3 C=Physical Locations 3 C=tWelKnown Security Principals ~ container CN=WelKnown Security Principals, CN=Configuration, DC=reskit,DC=com
@ L CN=Services
-0 CN=Sites

#1-{3 CN=Wellnown Security Principals
@5 Schema [MHILLMANZ,noam.reskit.com]

Figure 2.6 Contents of the Configuration Container

The following objects are child containers within the Configuration container.

DisplaySpecifiers Contains the objects that define different user interfaces for
each object class in the schema that requires a graphical user interface (for
example, context menus and property pages). The display specification system
uses the information that is stored in the display specifiers to form different user
interfaces for administrators and for end users. One set of elements, such as
property pages, context menus, and so forth, can be associated with administrative
applications, and a different set of elements can be associated with end-user
applications. For example, display specifiers are responsible for what you as an
administrator see when you use ADSI Edit; they are also responsible for what a
user sees in the product user interface. What you see and what the user sees are
different, even though what is seen in both cases references the same objects. The
display specification system stores information for property sheets, context
menus, icons, creation wizards, and localized class and attribute names.

The DisplaySpecifiers container stores other containers that correspond to each
locale that is supported by Windows 2000. A locale is either a language or a
language in combination with a country/region. Windows 2000 supports more
than 150 locales, such as French (Belgium), Arabic (Saudi Arabia), and so forth.
The names of locale containers are the hexadecimal representations of the locale
identifiers (LCIDs). For example the English (United States) locale container

is 409.

104

Part1 Active Directory

Display specifier objects (class displaySpecifier) are named by appending the
LDAP Display Name of the class object with the string “-Display.” For example,
the user class has a corresponding display specifier object called “user-Display.”
Thus, when an Active Directory administrative tool displays an object of a
particular class, the object is displayed according to information contained in the
display specifier object whose name contains the same name as the respective
class within the container for the current locale.

Because Active Directory allows the schema to be modified by creating new
classes and attributes or modifying existing classes, display specifier objects can
be modified to reflect any new user interface elements that schema modifications
require. For more information about display specifiers, see the

Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

Follow the links to the “Windows 2000 Active Directory Programmer’s Guide.”

Extended-Rights Contains the set of all extended rights for the forest, stored as
controlAccessRight objects. Access control on custom actions or operations are
called control access rights, or extended rights. Access control determines who is
permitted to perform operations on Active Directory objects. Access to standard
actions or operations is controlled by two major types of permissions: container
operations and attribute-based access. Other operations can have semantics that
are not tied to specific attributes, and these operations might also require access
control. For example, the user class can be granted a Send As right that can be
used by Exchange Server, Outlook, or any other e-mail program, to determine
whether a particular user can have another user send e-mail messages on their
behalf. To add an extended right to Active Directory, you create a
controlAccessRight object in the Extended-Rights container. For more
information about extended rights, see “Access Control” in this book. For more
information about creating extended rights objects, see the Microsoft Platform
SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources. Follow the
links to the “Windows 2000 Active Directory Programmer’s Guide.”

LostAndFoundConfig Provides storage for global configuration objects that are
being created in containers that are simultaneously being deleted elsewhere on the
network. If an object has been created in or moved to a location that no longer
exists after replication, the “lost” object is added to the LostAndFoundConfig
container. A LostAndFound container in each domain directory partition serves
the same purpose for domain-specific objects.

Partitions Stores the cross-references to every directory partition in the forest,
including the configuration partition, the schema partitions, and all domain
directory partitions. These cross-references to directory partitions make referrals
to other domains possible during LDAP searches. Domain directory partitions can
be viewed and managed in Active Directory Domains and Trusts.

Chapter 2 Active Directory Data Storage 105

Physical Locations [Is not implemented in Windows 2000, but is reserved for
future use.]

Sites Identifies all of the sites in the enterprise network, the domain controllers in
those sites, and the replication topology. The contents take the form of transports
between sites, subnets, and the first site created, which is called Default-First-
Site-Name. The contents of the Sites container can be viewed and managed in
Active Directory Sites and Services. For more information about Sites container
objects, see “Active Directory Replication” in this book.

Services Stores network-wide, service-specific information that applications use
to connect to instances of services in the forest, irrespective of the computer on
which the service runs. This service information includes system volumes,
network services, and routing and remote access services. The contents of the
Services container can be viewed and managed in Active Directory Sites and
Services. For more information about the Services container objects, see “Service
Publication in Active Directory” in this book, and see Windows 2000 Server
Help.

Well-Known Security Principals Contains the special identities that are defined by
the Windows 2000 security system, such as'Everyone, Local System, Principal
Self, Authenticated User, and Creator Owner.

Although other information can be stored in the Configuration container, it is
recommended that the following criteria apply to this data:

= The information is truly of global interest (for example, the default
configuration and policy information for all instances of a given service in the
enterprise).

= The information is highly available, such that referencing the information that
is stored in another domain is not sufficient.

= The volatility of the information is very low.

= The volume of information is very small.

Note Global information should be stored in one of two places: in a child of the
Services container or in a child of a site object.

106

Part1 Active Directory

Managing Configuration Data

Three administrative tools in Windows 2000 enable you to manage different
portions of the Configuration container. The following tools are available on the
Start menu; point to Programs and then to Administrative Tools, which is the
default menu.

= Active Directory Sites and Services.

You can manage the objects in the
cn=sites,cn=configuration,dc=ForestRootDomain container and the
cn=services,cn=configuration,dc=ForestRootDomain container.

Note The Services node in Active Directory Sites and Services is hidden by
default. To reveal the Services node, in Active Directory Sites and Services,
right-click Active Directory Sites and Services, point to View, and then click
Show Services Node.

= Active Directory Domains and Trusts.

You can manage the trust relationships between the domain directory partitions
represented in the cn=partitions,cn=configuration,dc=forestRootDomain
container. For more information about managing trust relationships, see
“Active Directory Logical Structure” and “Authentication” in this book.

= Active Directory Schema.

You can manage classSchema and attributeSchema objects stored in the
Schema container (cn=schema cn=configuration,dc=forestRootDomain).
Active Directory Schema is available as an MMC snap-in that you can install
from the MMC Console menu. However, there are special requirements for
installing this tool that do not apply to the installation of other MMC snap-ins.
For more information about how to install the Active Directory Schema MMC
snap-in and about managing the schema, see “Active Directory Schema” in
this book.

For more information about managing configuration data, see “Active Directory
Replication” and “Active Directory Diagnostics, Troubleshooting, and Recovery”
in this book.

Schema Directory Partition

The schema for Active Directory consists of a set of object classes, attributes, and
syntaxes. The schema also defines rules that ensure that objects are created and
modified with consistency. Active Directory contains a default set of classes and
attributes that cannot be modified. However, if you have the credentials to do so
and if schema modification is enabled for the domain controller, you can extend
the schema by adding new attributes and classes to represent application-specific
classes. These changes must be targeted at the domain controller that holds the
schema master role for the forest.

Chapter 2 Active Directory Data Storage 107

For more information about enabling schema modification and extending the
schema, see “Active Directory Schema” in this book. For more information about
single-master roles, see “Managing Flexible Single-Master Operations” in this
book, and see Windows 2000 Server Help. For more information about

default classes and the schema, see the Microsoft Platform

SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

If all of the conditions are in place for schema modification, you can install the
Active Directory Schema MMC snap-in to manage the classSchema and
attributeSchema objects. This snap-in is not available by default and must be
installed separately. You can also use ADSI Edit to view the schema directory
partition objects and properties. When you open ADSI Edit, the Schema container
is displayed by default. Expand the container to view the attributes and classes.

For more information about installing the Active Directory Schema snap-in, see
“Active Directory Schema” in this book. For more information about managing
schema objects, see Windows 2000 Server Help.

Domain Directory Partitions

When you create a new domain, a domain directory partition is created in Active
Directory as an instance of the class domainDns and is added to the list of domain
partitions in the Partitions container.

Viewing the Contents of a Domain Directory Partition

The topmost object in each domain directory partition is a container object that is
named for the DNS domain. The child containers of the domain container can be
viewed in the Active Directory Users and Computers console.

A domain container has the following child containers:

Note Some containers are visible in the Active Directory Users and Computers
console only in the Advanced Features view. To view all of the containers in
Active Directory Users and Computers, on the View menu, click Advanced
Features. In addition to displaying more containers, when viewing an object’s
properties in the Advanced Features view, object details and security property
pages are also displayed. The Object tab displays class, creation, and
modification information about the object The Security tab can be used to set
permissions on an object so that unauthorized users do not have access to
protected information.

108

Part1 Active Directory

Users Default storage area for new user accounts that are created through legacy
APIs that are not Active Directory-aware. When a Windows NT 4.0 domain or a
Windows NT 3.51 domain is upgraded to Windows 2000, the user accounts and
groups are moved automatically to the Users container. The Users container also
supports the Windows NT 4.0 tool User Manager (Usrmgr). This container cannot
be renamed.

Note In client applications, the Users container and other special containers (such
as Computers, System, Domain Controllers, Infrastructure, Deleted Objects, and
LostAndFound) can be dependably located by using well-known GUID
containers. For more information about using ADSI to locate special containers,
see the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources.

System (Advanced Features) Built-in system settings for the various system
service containers and objects. (For more information about the System container,
see “Contents of the System Container” later in this chapter.)

LostAndFound (Advanced Features) Storage area for new domain objects whose
containers were deleted elsewhere at the same time that the object was created. If
an object has been created in or moved to a location that is missing after
replication, the “lost” object is added to the LostAndFound container. The
LostAndFoundConfig container in the configuration directory partition serves the
same purpose for forest-wide objects.

Builtin Objects that represent the default built-in groups (for example, Builtin,
Administrators).

Deleted Objects A special container, not visible in the UL, to which objects are
moved when they are deleted. The deleted objects are stored as tombstones, which
are eventually removed by garbage collection. The contents of the Deleted
Objects container are visible if you search by using the 1.2.840.113556.1.4.417
control, which enables you to see deleted objects. (For more information about
viewing deleted objects and about LDAP searches, see “Name Resolution in
Active Directory” in this book.)

Domain Controllers Default container for new Windows 2000 domain controllers.
The Domain Controllers container cannot be renamed.

Infrastructure Holds information used by the domain controller that holds the
infrastructure master role, which keeps interdomain object references up to date.
The Infrastructure master creates deleted child objects in the Infrastructure
container. When these deleted objects replicate, they have the effect of removing
outdated phantom records. (For more information about phantom records, see
“Phantom Records™ later in this chapter.)

Chapter 2 Active Directory Data Storage 109

Computers Default storage area for “new” computer objects that were originally
created through legacy APIs that are not Active Directory—aware. When a
Windows NT 4.0 domain or a Windows NT 3.51 domain is upgraded to
Windows 2000, the computer accounts are moved automatically to the Computers
container.

ForeignSecurityPrincipals Proxy objects for security principals from
Windows NT 4.0 domains or Windows NT 3.51 domains or from different forests
that have been added to Windows 2000 groups.

Note Unlike the configuration and schema directory partitions, a full copy of the
domain directory partition is replicated only among domain controllers within the
same domain, not to other domains in the forest. A partial copy of domain objects
(all objects, but a limited set of attributes that have been configured to replicate to
the global catalog) is also replicated to all domain controllers that are configured
to be Global Catalog servers.

You can use Active Directory Users and Computers to manage the contents of the
domain directory partition. You can use ADSI Edit to manage properties that are
not displayed in Active Directory Users and Computers. When you open ADSI
Edit, the domain directory partition for the domain to which you are logged on is
displayed by default.

Contents of the System Container

The System container stores per-domain operational information, which includes
the default local security policy, file link tracking, network meetings, objects
representing other trusted domains, and containers for RPC and Winsock
connection points.

The System container has the following child containers:

» AdminSDHolder. Administrator security descriptor holder. Windows 2000
implements protection of administrative groups by a background task that
computes the set of memberships and checks whether their security descriptors
are well-known protected security descriptors. This task is executed only on
the domain controller that has the primary domain controller emulator (PDC
emulator) role. (For more information about security descriptors, see “Access
Control” in this book. For more information about the PDC emulator role, see
“Managing Flexible Single-Master Operations” in this book.)

110

Part1 Active Directory

Default Domain Policy. Lists the security groups and default permissions for
the domain. It stores policies for passwords, lockouts, Kerberos, Encrypting
File System (EFS) data recovery, and trusted root certificates. It also holds the
Application Categories container. Each application that is deployed has one or
more associated categories that can be used to organize the applications in an
organization. Categories appear when you add or change programs in
Add/Remove Programs in Control Panel. A drop-down list displays all the
categories. The object class of Application Category is classStore. The
classStore is where COM components and applications are published. The
Application Deployment wizard writes to the classStore. (For more
information about the default domain policy, see “Group Policy” in this book.)

Dfs Configuration. Lists the Fault Tolerant Distributed file system (Dfs)
configuration and Dfs volume information. (For more information about Dfs,
see “Distributed File System” in this book.)

File Replication Service. Lists the Domain System Volume (SYSVOL share)
and provides replication schedule from Sunday through Saturday 12:00 a.m. to
12:00 a.m. (For more information about the File Replication Service, see “File
Replication Service” in this book.)

FileLinks. Used by the Distributed Link Tracking Server service (TrkSvr) to
store information about linked files that have moved across NTFS volumes.
Includes the ObjectMoveTable, which tracks moved files, and the
VolumeTable, which maps volume IDs to computer IDs. (For more
information about distributed link tracking, see the Microsoft Platform SDK
link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources

IP Security. Contains the IP Security policies that are applied to local
computers, domain member servers, domains, organizational units, or any
Group Policy object in Active Directory. Depending upon your organization’s
guidelines, IP Security policies can store multiple security actions, called rules,
so that one policy can be applied to multiple computers. These security
specifications apply to all users who log on to the computer. (For more
information about IP Security policies, see “Internet Protocol Security” in the
TCP/IP Core Networking Guide.

Meetings. Microsofte NetMeetinge uses the “Meetings” folder to publish
network meeting objects.

MicrosoftDNS. Active Directory-integrated zone database records are created
in this container, and the contents are replicated to all domain controllers in the
domain. When DNS data is stored in Active Directory, each DNS zone is an
Active Directory container object (dnsZone). The dnsZone object contains a
dnsNode object for every unique name within that zone. The dnsNode object
has a dnsRecord multivalue attributed that contains a value for every resource
record associated with an object’s name. (For more information about Active
Directory-Integrated zones, see “Windows 2000 DNS” in the TCP/IP Core
Networking Guide.

Chapter 2 Active Directory Data Storage 111

= Policies. Contains Group Policy objects, which specify user and computer
configurations for groups of users and computers. This container is identified
by GUID and includes version information that is used to ensure that
information is synchronized with Group Policy template information; status
information that indicates whether the Group Policy object is enabled or
disabled; and a list of components, or extensions, that have settings in the
Group Policy object. (For more information about Group Policy, see “Group
Policy” in this book.)

Note In addition to the Policies container, Group Policy objects are also stored
in a Group Policy template and are identified by a GUID. The Group Policy
template is located in the system volume and is used to store file type data for
the Group Policy object.

Important It is highly recommended that you do not make changes to the
Policies container. Instead, use the Group Policy MMC snap-in to specify a
desktop configuration for a particular Group Policy object.

= RpcServices. Includes the Remote Procedure Call (RPC) name service lookup
for domains by using versions of Windows earlier than Windows 2000.

= WinsockServices. Windows Sockets services that publish themselves using the
registration and resolution (RnR) APIs are published in this container.

For more information about services that are published in the System container,
see “Active Directory Service Publication” in this book.

Directory Data Store

Active Directory data is stored in the Ntds.dit ESE database file. Two copies of
Nitds.dit are present in separate locations on a given domain controller:

%SystemRoot%\NTDS\Ntds.dit This file stores the database that is in use on the
domain controller. It contains the values for the domain and a replica of the values
for the forest (the Configuration container data).

%SystemRoot%\System32\Ntds.dit This file is the distribution copy of the default
directory that is used when you promote a Windows 2000—based computer to a
domain controller. The availability of this file allows you to run the Active
Directory Installation Wizard (Dcpromo.exe) without your having to use the
Windows 2000 Server operating system CD. During the promotion process,
Ntds.dit is copied from the %SystemRoot%\System32 directory into the
%SystemRoot%\NTDS directory. Active Directory is then started from this new
copy of the file, and replication updates the file from other domain controllers.

112

Part1 Active Directory

Linked Attributes

Some interobject references in the directory require back-references for either
usability or administrative purposes. For example, if managedBy is an object
attribute, you can look at ObjectA and determine that ObjectA is managed by
ObjectB. Likewise, it is sometimes helpful to be able to look at ObjectB and
determine what objects ObjectB manages (the values of the managedObjects
attribute). Active Directory maintains referential integrity between objects that
reference each other so that when one object is moved in the directory tree, the
reference between it and other objects is maintained. This referencing is
accomplished through linked attributes.

Two attributes that are linked are marked in the schema as having the same link-
pair identifier—one is marked as the forward link and the other as the back link.
For reasons that relate to security and replication, only the forward link attribute
can be modified. For example, in the managedBy/managedObjects link pair,
managedBy is the forward link. Therefore, to adjust the managedObjects attribute
on a user object, you must go to the objects that you want to add or remove from
the user’s managedObjects value and modify the managedBy value on each
object. Back-link attributes are computed when they are requested by a user
action.

Note When you extend the schema, you have to know when to make an object a
link object. For more information about extending the schema, see “Active
Directory Schema” in this book.

To find all of the objects that ObjectB manages, links are examined for all records
in which the link pair is managedBy/managedObjects and the back-link attribute
identifies ObjectB. The link pairs of those records provide the database identifiers
of all the records (objects) that are managed by ObjectB.

The managedBy and managedObjects example uses a single-value forward link
and a multivalue back link, respectively, but there is no requirement that the
forward link be a single-value link. For example, distribution list membership is
implemented both as a forward-link and as a back-link pair. The back-link objects
would be the objects that store the isMemberOfDI attribute. The forward-link
member attribute is a multivalue attribute, which allows a user to be a member of
more than one distribution list. The back link must always be a multivalue link
because it is impossible to restrict who creates links to various objects.

Chapter 2 Active Directory Data Storage 113

Table 2.8 shows link values for an object (ObjectB) that is the manager of several
other objects (ObjectA, ObjectC, and ObjectD). The distribution list (DL1) is an
example of an object that has several objects as members.

Table 2.8 Example of Forward-Link and Back-Link Values

Linked object Back-linked object Link pair

ObjectA ObjectB managedBy/managedObjects
ObjectC ObjectB managedBy/managedObjects
ObjectD ObjectB managedBy/managedObjects
DL1 ObjectE member/isMemberOfDI

DL1 ObjectF member/isMemberOfDI

DL1 ObjectG member/isMemberOfDI

When an object that is linked is deleted, all of its linked attribute values are
deleted. In the preceding example, if ObjectA were deleted, the managedObjects
multivalue attribute on ObjectB would suddenly (and with no change to any
replication-related metadata) lose a value. Similarly, if ObjectB were deleted, the
value of the managedBy attribute on ObjectA would suddenly be blank. Nothing
about the object changes in either case, except that the attribute value is gone.

Searching on Back Links

When you request the value of a back link on a particular object (for example,
“What objects are managed by ObjectB?”), the system searches for all objects
whose corresponding forward link names the original object (that is, “What
objects have ObjectB as the value in their managedBy attribute?”). The results of
that search and, hence, the apparent contents of the back-link attribute, depend on
the LDAP port to which the client is bound; that is, the results can differ,
depending on whether the client binds to the local domain (LDAP port 389) or the
Global Catalog (LDAP port 3268).

For example, suppose that you are looking at the user object named “JohnDoe.”
You are interested in discovering the groups in which JohnDoe has memberships.
Suppose further that JohnDoe is an object in the child domain B that has a parent
domain A. If you bind to the JohnDoe object in domain B and read the memberOf
attribute, you receive a list of all group memberships in domain B, including both
domain local and global groups; however, you do not see any memberships in
groups outside domain B. On the other hand, if you bind to the copy of the
JohnDoe object in the Global Catalog and read the memberOf attribute, you see
the group memberships in all universal groups in the forest. You do not see any
domain local group memberships, however, because local groups are not
replicated to the Global Catalog. Thus, to see all of an object’s memberships, you
must search both the local and Global Catalog copies of the object.

114

Part1 Active Directory

For example, suppose you are interested in learning what the groups are to which
JohnDoe has memberships. The system implicitly searches for all objects whose
forward links name the object (that is, the group objects that have JohnDoe as a
value for the member attribute). Suppose further that JohnDoe is an object in the
child domain B that has a parent domain A. When there is more than one domain
in a forest, you must take into account the following group behaviors:

= By definition, global groups cannot contain members from other domains.
Therefore, in our example, only global groups in one domain (the domain to
which JohnDoe belongs) can possibly have JohnDoe as a member.

= Domain local groups can contain members from other domains; however,
although objects in these groups are replicated to the Global Catalog, their
member attribute is not.

In the example, if you bind to the JohnDoe object in domain B and read the
memberOf attribute, Active Directory lists all groups in domain B that have
JohnDoe as a member, including both local and global groups; however, no
groups except for domain B (the domain to which JohnDoe belongs) are visible.

If you bind to the copy of the JohnDoe object in the Global Catalog and read the
memberOf attribute, the groups that are listed depend on what domain contains the
Global Catalog server, assuming that there is not a Global Catalog server in both
domains.

= If the Global Catalog server is in domain A, Active Directory lists the group
memberships in all global groups in the forest. However, Active Directory
does not list domain local groups in domain B because although domain local
group objects are replicated to domain controllers, their member attributes are
not. Thus, to see all of an object’s memberships, you must search both the
local domain (domain B) and Global Catalog copies (in domain A) of the
object, unless the domain controller is a Global Catalog server.

= If the Global Catalog server is also a domain controller in domain B, Active
Directory lists both the global groups and the domain local groups of which
JohnDoe is an immediate member. When there is a Global Catalog server in
the local domain, this local Global Catalog server is the best server to search.

Note Memberships in domains that are external to the forest are not found in
either type of search because they are outside the scope of the forest. These
memberships must be discovered by using the respective external cross-
reference. (For more information about external cross-references, see “Name
Resolution in Active Directory” in this book.)

Chapter 2 Active Directory Data Storage 115

Group Members from External Domains

If you add a member of a trusted domain from a different forest to a group in your
domain, Samsrv.dll creates a placeholder object of the class
foreignSecurityPrincipal. This object represents the real object, about which
Active Directory has no information because the object exists in a different forest.
When you list the members of a group, Active Directory usually lists the
distinguished names of the group members. For a member that is from an external
domain, Active Directory displays the distinguished name of the foreign security
principal object in the form of a NetBIOS name. For example, the user JohnD
from the domain Acquired.com would appear as JohnD in “acquired” as shown in
Figure 2.7.

. ol Horts | et 1] Mooty |

> Memberg,? :
=1 JohrD acquired

JaneD noam.reskit. comsers
.|| SalesAdmin noam.reskit.com/Sales

L e,

Figure 2.7 Example of a Members Tab That Displays the Distinguished Name of a
Foreign Security Principal

116 Part1 Active Directory

If you open the properties on the foreign group member, an informational message
like the one in Figure 2.8 appears. This message explains that the member is not a
real object in Active Directory but a placeholder for the object. The object SID is
displayed in the title bar of the dialog box.

Figure 2.8 Properties for a Member from an External Domain

You can use the object’s SID in an LDAP query to determine the LDAP name of
the object. Such a query involves enumerating all trusted domai