

Microsoft®

VERSION

2003

INSIDE
MICROSOFT®

VISUAL SfUDIO' .NET

Brian Johnson
Craig Skibo
Marc Young

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

Encarta, Microsoft, Microsoft Press, MSDN, MS-DOS, Outlook, Visual Basic, Visual C++, Visual
InterDev, Visual J++, Visual J#, Visual SourceSafe, Visual Studio, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organiza
tion, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Acquisitions Editor: Danielle Bird Voeller
Project Editor: Sally Stickney
Technical Editor: Jack Beaudry

Body Part No. XOS-99931

For Will, Hunter, and Buffy, who waited very patiently

while Daddy finished his chapters.

-BJ.

To my parents, Al and]an; my brother, Brian;

and all my friends.

To Julia and Max-time to write more

new chapters of our life together.

-C.S.

-M.Y

I
Part I

1 The Evolution of Visual Studio .NET 3
2 Project Management in Visual Studio .NET 29
3 The Visual Studio .NET Editor 59
4 Visual Studio .NET Macros 97

Part II

5 The Add·in Wizard and the Automation Object Model 125
6 Add-in Architecture 151
7 Commands 181
8 Managing Solutions and Projects Programmatically 213
9 Visual Studio .NET Wizards 259

10 Programming the User Interface 287
11 Text Editing Objects and Events 341
12 The Code Model 375

Part Ill

13 Designing Setup Projects 397
14 Visual Studio .NET Help 441
15 Advanced Projects in Visual Studio .NET 463

Appendix

Code Model Reference 483

Index 519

v

Table of Contents vii

Table of C ntents
Acknowledgments xv

Introduction xvii

Part I Visual Studio .. NET as a Development Tool
1 The Evolution of Visual Studio .NET 3

Moving to Visual Studio .NET 3
Developing for .NET 4
Unmanaged Development Enhancements 6

New Compiler Options 7

Updated Class Libraries 8
C++ Attributes 9
Standards Conformance 9
A New IDE 10

Visual Studio .NET Features 10
Editors, Designers, and Tool Windows 11
Visual Studio .NET File Paths 21

Visual Studio .NET Extensibility 24
Macros 24
Add-ins 25
Wizards 26
The Visual Studio Integration Program (VSIP) 26

2 Project Management in Visual Studio .NET 29
Overview of Solutions and Projects 29
Understanding Solutions 31

Solution Items and Miscellaneous Files 32
Solution Properties 33
Solution and Solution User Options Files 35

viii Table of Contents

Projects 39
Project Items 40
Project Properties 41
Project Source Files 50
Project Dependencies 56

Building Projects and Solutions 57

3 The Visual Studio .NET Editor 59
Documents in the IDE 59

It's All About Text 60
Typing and Shortcuts 63
The Zen of Tabs and Code Formatting 70

Syntax Coloring, Line Numbering, and Outlining (or, What the Compiler Saw) 73
Syntax Coloring 73
Line Numbering 77
Outlining 79

Programming Help 81
I ntelliSense 81
Dynamic Help 85

Using the Command Window 86
Search, Replace, and Regular Expressions 88

Wild cards 90
Regular Expressions 92
Searching from the Command Window 94
Incremental Searching 95

4 Visual Studio .NET Macros 97
Macros: The Duct Tape of Visual Studio .NET 97

Recording Visual Studio .NET Macros 98
Macro Commands 100
Editing Macros in the Macros IDE 102
A Simple Macro 105

Working with Macros 106
Manipulating Documents and Text 107
Moving Windows 109
Using Assemblies in Your Macros 112
Macro Events 113

Part II

5

Table of Contents ix

Sharing Macros with Others 116
Exporting Modules and Projects 116
Turning Macros into Add-ins 118

..
The Add-in Wizard and the Automation Object Model

The Add-in Wizard
Running the Add-in Wizard
The Add-in Project
Installing and Loading the Add-in
Debugging the Add-in

The Automation Object Model
Automation Objects
Object Model Guidelines
Automation Events

125
125
126
127
134

136

137
138
139
140

6 Add-in Architecture 151
151
152
153
156
158
158
160
162
162
163
165
166
170
170
171
171
174
176

Writing an Add-in from Scratch
Compiling the Basic Add-in
Registering the Basic Add-in with COM
Registering the Basic Add-in with Visual Studio .NET

Add-in Events
The Add-in Event Sequence
The LifeCycle Add-in

The IDTExtensibility2 Interface
The EnvDTE Namespace
On Connection
OnStartupComplete
OnAddlnsUpdate
OnBeginShutdown
OnDisconnection

Add-in Registry Named Values
CommandPre/oad and the PreloadAddinState Key
LoadBehavior and CommandlineSate
SatelliteDLLPath and SatelliteDLLName

x Table of Contents

FriendlyName and Description 178
AboutBoxDetails and AboutBoxlcon 178

7 Commands 181
What Is a Command? 181

Locating Commands 182
Command Names 183
Executing Commands 185
Creating Macro Commands 186

Creating an Add-in Command 186
Handling a Command 188
Command State 189
How an Add-in Command Handler Is Found 191

The Command User Interface 191
The Command Bar Object Model 192
The Primary Command Bar 193
Adding a New Command Bar User Interface 194
Using Custom Bitmaps 196

Restoring a Lost Command and Its User Interface 197
devenv /setup 198
Custom Registration 198

Removing a Command 202
Command Parameters 205
Key Bindings 207

8 Managing Solutions and Projects Programmatically 213
Working with Solutions 213

Creating, Loading, and Unloading Solutions 214
Enumerating Projects 215
Capturing Solution Events 217
Solution Add-ins 223

Working with Project Items 225
Enumerating Project Items 225
Adding and Removing Project Items 228

Working with Language-Specific Project Objects 231
VSProject Projects 231

Table of Contents xi

Leveraging Visual Studio .NET Utility Project Types 238
Miscellaneous Files Project 238
Solution Items Project 240
Unmodeled Projects 240

Project and Project Item Events 241
Managing Build Configurations 243

Manipulating Solution Settings 243
Manipulating Project Settings 251
Build Events 254

Persisting Solution and Project Information Across IDE Sessions 257

9 Visual Studio .NET Wizards 259
An Overview of Wizards 259

Types of Wizards 259
Creating the Wizard Object 260
Creating the .vsz File 264

Where to Save .vsz Files 265
Creating Wizard Templates 268

Using Template Files 269
Solution Filenames and the New Project Wizard 271
Replacements 271
Raw Add New Item Templates 274

Custom Wizards 275
Running a Custom Wizard Programmatically 276
Chaining Custom Wizards 277

The Wizard Helper Library 279
Wizard Variables 283
Wizard Helper Methods 285
Completing the WizardBuilder Sample 285

10 Programming the User Interface 287
Window Basics 287

The Windows Collection 287
Using the Object Property 290
The Main Window 291

xii Table of Contents

Explorer Windows and the Uf Hierarchy Object 293
The U!HierarchyObject Tree 293
The VI Hierarchy Object 295
The UIHierarchyltems Object 297
The U/Hierarchyltem Object 297

The Toolbox Window 298
Tabs and Items 298
Adding Items to the Toolbox 299

The Task List Window 303
Task List Items 303
Adding New Tasks 303
The Taskltem Object 309
Task List Events 310
Comment Tokens 312

The Output Window 316
Output Window Panes 316

The Forms Designer Window 318
The /DesignerHost Interface 318
Marshaling 319
Adding Controls to a Form 319
Finding Existing Controls 320
A Form Layout Sample 321

Creating Custom Tool Windows 322
Shim Controls 325
Setting the Tab Picture of a Custom Tool Window 329
Setting the Selection Object 329

The Options Dialog Box 330
Changing Existing Settings 330
Creating Custom Settings 335

11 Text Editing Objects and Events 341
Editor Windows 341

The Window Object 342
The TextWindow and HTMLWindow Objects 343
The TextPane Object 345

Documents

The Document Object
The TextDocument Object

Point Objects

TextPoint

Virtual Point

Ed if Point
The TextSelection Object

A Comparison of TextSelection and EditPoint
Undo Contexts

Automatic Undo Contexts

Creating Undo Contexts

Stack Linkage
The LineChanged Event

Multiple LineChanged Event Handlers

12 The Code Model

Part Ill

Discovering Code
A Quick Tour Through a Source File

Getting a CodeElementfrom a Point Object

Generating Code
Building a Source File

13 Designing Setup Projects
Microsoft Windows Installer (MSI) Background

Creating Custom Installation Projects
File System Editor
Registry Editor

File Types Editor

User Interface Editor

Custom Actions
Launch Conditions Editor

Merge Modules

Setup for .NET Programs

Table of Contents xiii

348
348
353
353
353
354
357
357
359
360
361
362
365
366
371

375
375
375
388
389
389

397
397
398
399
404
411
413
421
425
431
432

xiv Table of Contents

14 Visual Studio .NET Help
Navigating the Help System

Help Windows

Search and Index Options
Narrowing Search Results

Creating Custom Help Filters
Searching from the Command Window

Customizing the Dynamic Help Window

Using the XML Help Provider Service
Creating Custom Help Files

Registering Your Help Collection

15 Advanced Projects in Visual Studio .NET

Appendix

Visual Studio .NET from the Command Line
Building Projects and Solutions from the Command Line

Setting GUI Options at the Command Line
VSIP Options

Source Control with Visual SourceSafe
Setting Up VSS
Placing Files Under Source Control
Working with Files Under Source Control
Planning Your Solutions Carefully

Don't Break the Build

Code Model Reference
Code Model Objects

FileCodeModel and CodeModel

CodeE/ement
Specialized Code Model Objects

Generating Code

Common Parameters

Main Add Methods
Other Add Methods

Remove Methods

Index

441
441
443
444
445
446
447
448
450
454
460

463
463
464
468
470
470
470
471
474
479
480

483
483
483
488
491
507
507
509
513
516

519

Acknowledgments

We need to thank a huge number of people for helping us put this book
together.

First, we'd like to thank our acquisitions editor, Danielle Bird Voeller, who
worked very hard to get this book rolling. She introduced Brian and Marc to Bill
Chiles, who in turn introduced us to Craig, which marked a turning point in our
development of the book. Bill was absolutely tireless in his efforts to get us the
information that we needed early on, and for that effort we are especially
grateful.

We would also like to thank our project editor, Sally Stickney, for her work
on this book. She's an excellent editor, but perhaps more important for us as
writers, she's an outstanding teacher. Jack Beaudry worked as our technical edi
tor and was instrumental in helping us hone the book into a complete, finished
product. Ina Chang was our copyeditor. We're very grateful to her for turning
our sometimes incoherent babbling into easy-to-understand, grammatically cor
rect sentences. Tess McMillan put together the book's Web page, and Tim Kim
tested our companion content installer. We'd also like to thank Michael
Kloepfer for his work on the book's art and Jason E. Fish for taking our author
photo.

Ken Hardy provided us with invaluable technical assistance and review.
Kalpana Sanghrajka and Natalie Wells helped us highlight the most exciting
user features of Microsoft Visual Studio .NET. In addition, we'd like to thank
Greg DeCicco, Kipper York, Kenny Kerr, and Sam Henry for their assistance.

Finally, Brian and Marc would like to thank Mary Dejong for giving us the
go-ahead to work on the book. Brian would like to thank his wife, Kathryn, for
her help, support, and motivation through the whole process; Craig would like
to thank his parents, his brother, and his friends for their support. Marc would
like to thank the Big Bang, without which none of this would have been possible.

xv

Introduction

In the fall of 2000, Marc Young and I (Brian Johnson) attended an event that
introduced Microsoft Visual Studio .NET to computer writers and editors from
around the world. We were both amazed to see how easy it was going to be to
create Windows and Web applications using this tool in the context of the .NET
Framework. As I watched the demonstrations, it became pretty clear to me that
this new tool deserved a book of its own. I took a few notes and jotted down
an outline for the book I had in mind. At the top of my outline, I wrote Inside
Visual Studio .NET.

About a year later, I was still toying with the idea of writing this book, but
other commitments were keeping me busy enough that I kept putting it off.
One day, Marc asked me if I would be interested in doing some writing and I
showed him the material I had put together for Inside Visual Studio .NET. I told
him I was interested in writing about the Visual Studio .NET automation object
model, about the IDE, and about the macros facility. Marc took this information
and spent nearly every night for three or four months writing add-ins and get
ting to know the internal workings of the IDE.

In the spring of 2002, we took a proposal to our acquisitions editor, Danielle
Bird Voeller, who got us in touch with a few people on the Visual Studio .NET
team. The first person she introduced us to was Bill Chiles, a program manager
responsible for many of the features that we were planning to write about.

Meeting Bill Chiles was probably the best thing that could have happened
to us because he in turn introduced us to Craig Skibo. Craig is the developer
who wrote most of the automation API that we cover in the book. Craig offered
to help us out with the book as best he could. At some point in our early con
versations with Craig, he told us that he was also working on a book about the
automation object model. In fact, he had already written four chapters but
wasn't sure he was ever going to have time to finish a book.

We read through Craig's chapters and found that they were exactly what
we were looking for and asked him if he would be willing to become a coau
thor with us on Inside Microsoft Visual Studio .NET 2003. He agreed, and Marc
and I couldn't have been more pleased.

xvii

xviii Introduction

What you're reading now is the result of a very close collaboration between
Craig, Marc, and me. What we wanted to produce was a book that would help
developers to use Visual Studio .NET 2003 ·more effectively, to customize and
extend the IDE, and finally, to see the tremendous productivity gains that they
can expect by moving their development efforts to Visual Studio .NET 2003 and
the .NET Framework.

Target Audience
The target audience for Inside Microsoft Visual Studio .NET 2003 is any devel
oper who is interested in learning the ins and outs of Visual Studio .NET. We
wrote the book using Visual Studio .NET 2003, but nearly everything that we
discuss in the book also applies to Visual Studio .NET 2002.

This book won't teach you programming, but it will help you understand
the solution and project paradigm used to organize the application projects that
you'll work with using Visual Studio .NET. That said, if you're a student who is
just learning a programming language, you might find the initial chapters of the
book very helpful as you go about programming in this IDE.

If you're interested in extending and customizing the Visual Studio .NET
IDE, this book is for you.

Book Layout
Inside Microsoft Visual Studio .NET 2003 is divided into three parts:

• In Part I, Visual Studio .NET as a Development Tool, we discuss the
Visual Studio .NET user experience and how developers can make
the most of the features of the IDE to become as productive as pos
sible. If you're a developer who is very experienced with the IDE,
you can probably breeze through the first part of the book fairly
quickly, though we've tried to add enough surprises so that most
developers will learn something new for their efforts. The subjects
covered in Part I include a discussion of the history of the IDE, man
aging solutions and projects, using the code editor, and an introduc
tion to the macros facility.

• Part II of the book, Extending Visual Studio .NET, provides an in
depth discussion of Visual Studio .NET 2003 add-ins and the auto
mation object model. In these chapters, you'll get an overview of
the extensibility API, architectural information about add-ins and
commands; a discussion of programmatic solution and project

Introduction xix

management; and information about building Visual Studio .NET
wizards, programming the Visual Studio .NET user interface, con
trolling the text editor, and using the code model to parse your
source files.

• In Part III of the book, we grouped together a number of topics that
tend not to get covered in most programming books because they're
not usually central to the language that's discussed. These topics
include an in-depth look at how to build deployment projects using
the Visual Studio .NET Help facility and building your own Help into
Visual Studio .NET. Finally, we devote some space to command-line
options used to build and test Visual Studio .NET 2003 solutions and
to using Microsoft Visual SourceSafe for version control.

The book also includes an appendix that provides you with some refer
ence material for the code object model discussed in Chapter 12.

Companion Content
You can find the book's companion content on the Web at http://
www.microsoft.com/mspress/books/6425.asp. Click the Companion Content link
in the More Information box to bring up the companion content page. From this
page, you can download the installer for the sample files. The installer was writ
ten using Visual Studio .NET, as described in Chapter 13 of the book. This
installer places a number of files on your machine in specific places. For example,
utility code is added to the Program Files\Microsoft Visual Studio .NET
2003\Common7\IDE\PublicAssemblies folder, sample code is installed in My
Documents\Microsoft Press\InsideVSNET, and macros are placed in your Visual
Studio .NET 2003 macros directory to make them available to you as you read
and work through the book. You can uninstall the samples and utilities from Add
Or Remove Programs in Control Panel. The Web page for the companion con
tents includes more details about what gets installed on your machine.

We wrote the samples in this book specifically for Visual Studio
.NET 2003, but most of the projects will work if you create new project
files and import the source back into Visual Studio .NET 2002. We
can't make any promises about what will work in Visual Studio .NET
2002, but most of the examples should give you little trouble. We rec
ommend upgrading if you're able to do so.

xx Introduction

System Requirements
You can use any system that will run Visual Studio .NET 2003 efficiently to build
and run most of the most of the examples in the book. We targeted Visual Stu
dio .NET 2003 Professional Edition, so if you have that, it should be enough. If
you're using one of the standard edition products such as Visual C# .NET, Visual
Basic .NET, or Visual C++ .NET, all of the macros discussed in the book should
work, but because we wrote the add-ins in all three languages, you'll need the
language specific to a particular add-in to compile.

Tracking Down an Author
If you have comments about the book, feel free to send them along to me at
brianjjo@hotmail.com. I most likely won't be able to answer technical ques
tions regarding building your add-ins, but I would like to get any feedback or
suggestions that you have for future editions of the book. For announcements
about changes to source code, please feel free to subscribe to the MSN commu
nity at http://groups.msn.com/insidevsnet/. For bug reports, please use the
Microsoft Press Support information in the next section.

If you have technical questions about using Visual Studio .NET, writing
macros, or building your add-ins, the best place to ask is probably in one of
Microsoft's newsgroups. The server is news:l/msnews.microsoft.com, and the
Visual Studio .NET groups all begin with microsoft.public.vsnet. In addition,
there's a Yahoo group devoted to add-ins at http://groups.yahoo.com/group/
vsnetaddin/ that all three of us monitor regularly.

Introduction xxi

Microsoft Press Support
Every effort has been made to ensure the accuracy of the book and it's com
panion content. Microsoft Press also provides corrections for books through the
World Wide Web at the following address:

http://www.microsoft.com/mspress!support/

To query the Knowledge Base for book and companion content correc
tions, visit http://www.microsoft.com/mspress/support/search .asp.

In addition to sending feedback directly to the authors, if you have com
ments, questions, or ideas regarding the presentation or use of this book or the
companion content, you can send them to Microsoft using either of the follow
ing methods:

Postal Mail:
Microsoft Press
Attn: Inside Microsoft Visual Studio .NET 2003 Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:
mspinput@microsoft.com

Please note that product support isn't offered through the above mail
addresses. For support information regarding Microsoft Visual Studio .NET
2003, go to http://msdn.microsoft.com/vstudio/. You can also call Standard Sup
port at (425) 635-7011 weekdays between 6 a.m. and 6 p.m. Pacific time, or you
can search Microsoft's Support Online at http://support.microsoft.com/support.

Part I
II

I I t
11111

I •
I I

The Evolution of
Visual Studio .NET

The normal development cycle for a Microsoft product is about two years.
Microsoft Visual Studio .NET, which was released in February 2002, took more
than three years to develop. The reason this product revision took longer than
usual was .NET, Microsoft's technology for managed applications and XML Web
services, which was also released in 2002. Visual Studio .NET 2003, the focus of
this book, was released nearly a year after .NET. It was revised to be released
in tandem with Microsoft .NET Server 2003; both use the .NET Framework ver
sion 1.1.

In this chapter, we'll provide a brief overview of .NET and unmanaged
development in Visual Studio .NET. We'll then introduce some of the features of
the integrated development environment (IDE) to provide some context for the
extensibility and customization discussion throughout the rest of the book. And
finally, we'll discuss the extensibility features that make Visual Studio .NET an
extremely compelling tool for programmers who are really looking to custom
ize and extend their development environment.

Moving to Visual Studio .NET
The evolution of development tools at Microsoft has always been focused on
emerging technologies. The release of a new tool is often concurrent with the
introduction and release of a new technology. In 1993, Microsoft CIC++ was at
version 7 when Microsoft introduced Visual C++ 1.0. Microsoft CIC++ was a truly
refined MS-DOS product. In fact, Microsoft CIC++ was so refined that a good
number of programmers were reluctant to upgrade to Visual C++. In the end,

3

4 Part I Visual Studio .NET as a Development Tool

though, the fully Windows-hosted IDE with its integrated editor, debugger, build
engine, and source browser made Visual C++ a compelling upgrade. The intro
duction of the Microsoft Foundation Classes (MFC) 2.0 in Visual C++ also helped
to further boost the product's popularity. Visual C++ made it possible to quickly
create Win32 and MFC-based Windows applications without having to pop in
and out of MS-DOS. Looking back, this made perfect sense: using a Windows
application to build Windows applications. But back then, the logic wasn't quite
as clear.

Fast-forward about nine years, to the introduction of .NET. This technol
ogy makes it possible to deploy extremely efficient managed applications and
XML-based Web services. At the .NET launch, Visual Studio, which was first
released in 1998, was at version 6. This tool, which is really a combination of
products-Visual C++, Visual Basic, Visual InterDev, and Visual J++-is the
most popular application development suite on the planet. Visual Studio 6 does
it all. It targets Win32, MFC, COM, ActiveX, Active Template Library (ATL), Java,
DirectX, and the Web; if you can do it in Windows, you can probably build it in
Visual Studio 6. Again, we had a very mature product with an extremely loyal
following. Visual Studio 6 is to Visual Studio .NET what Microsoft CIC++ was to
Visual C++ 1.0. In retrospect, it's easy to see why developers migrated from MS
DOS-based tools to Windows-based tools. Because the XML Web services infra
structure is still being built out, it might be less apparent why a move to .NET
and Visual Studio .NET is needed.

To answer that question, we should probably talk about what makes .NET
an attractive technology for developers and why Visual Studio .NET is the right
tool to use for targeting that environment.

Developing for .NET
When we were all developing programs in MS-DOS, you could look at a Win
dows 3.1 screen and see that this was how computing was supposed to be: lots
of color, beautiful fonts, and a high-resolution windowing system that took care
of most of the nasty stuff that made MS-DOS development hard. Because the
differences are more architectural than visual, it's a little more difficult to see the
advantages of .NET, but for developers, most of the features of .NET are at least
as compelling as those of Windows compared to MS-DOS.

One purpose of the .NET Framework is to simplify application develop
ment and deployment in the distributed Internet environment. This extends to
applications that are run locally or remotely or that are distributed over the
Internet. This simplification is achieved through a common language runtime
(CLR) that provides a managed execution environment available to any lan
guage that targets the runtime. The functionality this execution environment

Chapter 1 The Evolution of Visual Studio .NET 5

provides is made available to these languages through the .NET Framework
class library. Figure 1-1 illustrates how the CLR relates to the .NET Framework.

Managed application

Figure 1-1 The CLR and the .NET Framework class library are the two
major components of the .NET Framework.

The Common Language Specification (CLS) defines what a .NET-compliant
language must provide to the system. The common type system (CTS) ensures
that any types created by a language conforming to the CLS can be consumed
by any other CLS-compliant language.

Languages that target the CLR are compiled to Microsoft Intermediate Lan
guage (MSIL). These applications are compiled as PE (portable executable) files
and DLLs, so to users they look just like any Windows-based applications. The
MSIL code in these files is then]IT-compiled to machine instructions locally at
run time. All of this means that any CLS-compliant language that targets the CLR
will look like any other language to the runtime and can act and be treated as a
first-class citizen. For example, a Visual Basic .NET program will have the same
base functionality as a Visual C# program or even a managed C++ program.

For a detailed look at the architecture of .NET, take a look at
Applied Microsoft .NET Framework Programming by Jeffrey Richter
(Microsoft Press, 2002).

The managed CLR environment provides some other significant advan
tages. It's designed to help eliminate versioning conflicts-the infamous DLL
Hell. It's designed to provide an environment that ensures that code is executed
safely. And finally, it's designed with an API that is targetable from both Win
dows-based and Web-based applications.

You don't need to think about the .NET Framework as a monolithic virtual
machine that requires constant care and feeding. The .NET Framework pro
vides an environment that can be hosted by unmanaged components. The

6 Part I Visual Studio .NET as a Development Tool

unmanaged components (such as Internet Explorer and the ASP.NET runtime)
load the CLR and execute the managed code. The managed CLR provides gar
bage-collection services and security on a number of levels.

For corporate developers, this runtime solves a huge problem. In many
shops, the Visual Basic programmers, the CIC++ programmers, and the COBOL
programmers are all segregated. They meet to figure out how to functionally
interoperate, but in a number of ways they work as individual teams inside the
same space. In a shop that targets the CLR, development becomes a little more
manageable. The same .NET Framework class library is available across lan
guages. The CTS in the class library ensures that components can be easily
shared between .NET languages, as shown in Figure 1-2. These components
can even be exposed as XML Web services.

··visual Basic .NET
cf;;iss libti:iry

Managed Visua IC++
class tibtary

Compile

MS.IL

1-----I MS.1Land nativecode .1-l ----+11 Native code

Figure 1-2 .NET allows different languages to target a managed envi
ronment and to interoperate securely and efficiently.

The CLR provides a target that's available from most of the major program
ming languages used today. Visual Studio .NET has support for Visual C++,
Visual Basic .NET, Visual J# .NET, and Visual C# out of the box. You can add
support for a growing number of languages that are available from third-party
software vendors, including COBOL, Eiffel, Python, and Perl.

Unmanaged Development Enhancements
For Visual C++ programmers writing unmanaged code, Visual Studio .NET
offers enhancements that make it a good upgrade. We'll discuss the IDE-specific
features a bit later in the chapter. Here, we'll give a brief overview of the ver
sion 7 compiler and library features.

Chapter 1 The Evolution of Visual Studio .NET 7

New Compiler Options
Visual C++ .NET, the C++ component of Visual Studio .NET, has been enhanced
in a number of ways to help C++ programmers write robust, secure, and effi
cient code. Much of this improved functionality has been achieved through the
version 7.1 compiler. Microsoft has added 17 new compiler switches and 12 new
linker switches to Visual C++ .NET. The following are some of the more compel
ling new compiler switches. Even without the new features of the IDE and .NET,
for some developers these enhancements alone would justify an upgrade.

Code optimization: !Gl The /GL switch performs whole-program optimization
on a project. This optimization usually results in measurable performance
improvements, but you should be sure to read the cautionary notes in the doc
umentation regarding the use of this switch.

What the /GL switch essentially does is optimize the whole program based
on information from each of the modules. This type of optimization allows for
the use of registers across function boundaries. It also allows for the generation
of inline functions, even when the functions are defined in separate modules.

When the compiler team at Microsoft tests switches such as
this internally, they're actually able to do so against real-world code.
For example, they used the /GL switch on the game engine that
Ensemble Studios uses in the Age of Empires titles. This switch pro
duced a 10 percent increase in the performance of the engine.

Buffer overrun checks: !GS Nearly any application you write today has the
potential to be used over the Internet. The most common technique for exploit
ing applications over the Internet is the buffer overrun. When a hacker takes
advantage of a buffer overrun, he uses memory past the boundary that the
function's programmer thought would be necessary for the execution of the
routine. All a hacker needs is a tiny bit-of space to enter some assembly code,
and then he can usually call any function that's available to the hacked pro
gram. The !GS compiler switch can help prevent this sort of compromise by
injecting security checks into the target modules at compile time.

The security code works by allocating some memory on the stack just
before a function's return address. When the function is entered, a security
cookie is placed in that space. When the function is exited, the cookie is
checked; if it's been changed, a security error handling routine kicks in. By

8 Part I Visual Studio .NET as a Development Tool

default, this means that the user is notified of the potential compromise and the
process is exited. You can change this default behavior of the error handling
routine using the _set_security_error_handler function.

Note When I was tech editing the second edition of Writing Secure
Code, I ran across a slight problem with the samples designed to dem
onstrate buffer overruns. I was using Visual Studio .NET and I found
that I couldn't duplicate the examples in the way described. As you
can guess, the checks that were set by default in version 7 of the com
piler were blocking the buffer overrun hacks. It's fairly clear that without
even trying, code compiled in Visual Studio .NET will be safer code.
There's no panacea for preventing security problems in code, but
Visual C++ .NET can get you off to a pretty good start.

Run-time error checks: /RTCn The run-time error checks are designed to help
you catch bugs that are normally hard to detect. The !RTCn switches help you
detect problems with stack corruption (/RTCs), dependencies on uninitialized
variables (/RTCu), and data loss that can occur when you assign larger data to
a smaller variable and array overruns (/RTCc).

Like the !GS switch, the run-time error checks inject code at compile time.
The /RTCn switches aren't used with optimized /0 builds, and you'll get an
error if you try. The !RTCn switches have integrated support in the Visual Stu
dio .NET debugger. If a run-time error check condition is detected, the applica
tion will break into the debugger by default.

You can set any of these compiler switches inside the Visual Studio .NET
IDE through the Property Pages dialog box available from Solution Explorer.
Just right-dick on the project you want to set the options for, and choose Prop
erties. We'll discuss the project's Property Pages dialog box in more detail in
Chapter 2.

Updated Class Libraries
Visual C/C++ .NET lets developers continue to use the class libraries that
they've targeted over the years. Microsoft has stated that it is committed to sup
porting developers who use the unmanaged class ~ibraries that ship with Visual
Studio .NET for the foreseeable future. This support includes updates for future
versions of Windows.

Chapter 1 The Evolution of Visual Studio .NET 9

Microsoft is also moving to managed code internally at a fairly
rapid pace. We encourage you to learn and explore the .NET Frame
work because it is destined to become the native API for Windows
based applications.

The major class libraries that ship with Visual Studio .NET have been ver
sioned to match the build number of Visual Studio .NET, so these libraries are
now at version 7. These libraries include MFC 7, which features native support
for Windows XP, Windows 2000, and ATL 7. A new MFC feature is DHTML dia
log boxes, which allow you to create active, compelling dialog boxes for your
MFC applications. Finally, ATL and MFC now share some commonly used
classes, such as CString, that allow ATL programmers to take advantage of MFC
functionality without having to load all of MFC.

A new feature of ATL is ATL Server. ATL Server is used to create high-per
formance, ISAPI-based Web applications and XML Web services. You can use
ATL Server to build unmanaged XML Web services solutions or to integrate leg
acy ATL code into your .NET solutions.

Other class libraries that have been updated include the Standard Tem
plate Library (STL) and the C runtime (CRT).

C++ Attributes
C++ attributes allow programmers to add Interface Definition Language (IDL)
style attributes to C++ source files. These attributes are different from the
attributes that you can add to managed code. Attributes reduce the amount of
code that you have to write by hand by providing specific ATL functionality that
the compiler emits when the application is built.

Standards Conformance
Something that the Visual C++ team has worked extremely hard on over the last
couple of years is ANSI/ISO C++ standards compliance. In Visual C++ .NET
2003, the C++ compiler has reached a compliance level of more than 98 per
cent, making this compiler one of the most standards-compliant you can buy.

10 Part I Visual Studio .NET as a Development Tool

A New IDE
Microsoft's shift to .NET has required a new set of tools to make it easy for
developers to target the environment. Visual Studio .NET provides a number of
compelling features for developers who are writing code and for Windows and
Web developers moving to .NET.

First, Visual Studio .NET unifies the IDEs of the major languages that were
available in Visual Studio 6. Developers can now move freely between the dif
ferent languages hosted by the same IDE. Developers working in different lan
guages in Visual Studio .NET can work together more seamlessly and efficiently
than they've ever been able to.

Second, the languages that ship with Visual Studio .NET are all able to tar
get the CLR. More specifically, Visual Basic .NET and Visual C# both target the
CLR exclusively. Visual C++ .NET can target both the managed CLR and the
unmanaged Windows environment. Because all .NET code eventually becomes
MSIL and thenJIT-compiled binaries, the runtime operates in basically the same
way whether you're working in Visual C# or Visual Basic .NET. It might be eas
ier for certain languages to access functions outside the CLR, but languages that
target the CLR are functionally virtually identical. Developers are acutely aware
of the language chauvinism that tends to exist between programmers who spe
cialize in one language or another. With .NET, those lines start to blur and can
cause developers to see a once-dismissed language in a whole new light.

Finally, Visual Studio .NET provides editing and extensibility features that
make this IDE a best-of-class tool, regardless of the target platform. The
advanced features built into the designers and editors in Visual Studio .NET
make creating Windows-based and Web applications a breeze. A managed
code macros facility and IDE make recording and running macros easy and
seamless. And an updated extensibility API exposes parts of the IDE that have
never before been available to Visual Studio developers.

Visual Studio .NET Features
In this section, we'll present an overview of the Visual Studio .NET feature set.
We'll look at some of these features in more detail in the next few chapters of
the book. Here we'll define some common terms that we can use to describe
the different parts of the IDE. Visual Studio .NET is a fairly large and complex
product. The terms used to describe the IDE are helpful for developers who are
working to understand the tool and, perhaps more important, for developers
who will eventually extend the IDE through macros and add-ins.

Chapter 1 The Evolution of Visual Studio .NET 11

Editors, Designers, and Tool Windows
The windows in the Visual Studio .NET IDE fall into two major groups. Docu
ment windows are windows that usually appear tabbed in the center of the IDE
and that contain editors, designers, Web pages, or Help topics. Tool windows
are windows in the IDE that present utility functions to the programmer. The
tool windows include Solution Explorer, the Class View window, and the Prop
erties window, among others. Tool windows are distinct from editors and
designers in the way they dock around the sides of the IDE.

The extensibility API built in to Visual Studio .NET allows pro
grammers to create tool windows for use with language packages
installed into the IDE. The editors and designers in the IDE can be
accessed through this API, but the extensibility model doesn't allow
the creation of new document window types. For that you'll need to
look into the Visual Studio Integration Program (VSIP), which we'll
describe at the end of this chapter.

Figure 1-3 shows a typical developer setup with the different window
types labeled.

#include "stdatx .h'"
#include "rei!louree. h"
#include "ldd.In.h"

CAddtnRodule _AcUlod.ule;

I I DLL Entr7 Point
"C" 8001. VINAPI DllHain(HINSTANCE hins

Figure 1-3 A typical solution in Visual Studio .NET

12 Part I Visual Studio .NET as a Development Tool

Note All of the managed languages that ship with Visual Studio
.NET 2003 feature designer support in the IDE.

The Start Page
The first time you run Visual Studio .NET, you're presented with a Start Page
open to the My Profile tab, as shown in Figure 1-4. A profile is a window, key
board, and Help layout that's tailored to a specific type of programmer. The My
Profile tab allows you to select the profile that best describes the type of pro
grammer that you are and to apply those characteristics to the IDE. In general,
this page is designed to help you apply a window and keyboard layout that lets
you easily transition from your preferred Visual Studio 6 language into Visual
Studio .NET. If you're moving to .NET from Visual Studio 6, it's probably worth
your time to spend a few minutes viewing the available profiles.

Vorify that the Wllowin9 5ottings ore poniona:li1ed for you:

P~te:

Keyboard Ssheme: I [Default Settings) ::::J
Wmtjow La:ta!Jt: j Visual studio Default :;J

HdllV Filter: I (no filter) ::;]

Show He'-t

Figure 1-4 Setting the preferred initial profile from the Visual Studio
.NET Start Page

Chapter 1 The Evolution of Visual Studio .NET 13

If you can live with it, we suggest going with the default Visual
Studio Developer profile. You'll find that most of the books on Visual
Studio .NET use this profile and that it lays out the various tool win
dows in a logical, efficient manner. You'll probably also find yourself
spending less time messing with the layout as you rebuild machines
and move from one machine to another in your work environment.

In addition to affecting the window layout, the profile you choose affects
the keyboard shortcuts that are set in the IDE. For the most part, you'll find that
the Visual Basic 6 and Visual InterDev shortcuts have been employed in the
appropriate profiles. If you're a C++ programmer who's used to the keystrokes in
Visual C++ 6, you might notice some changes that can affect the way you work.
For example, in the Visual Studio Developer profile, the Alt+ 7 Disassembly win
dow keystroke is replaced with Ctrl+Alt+D. If you're finding that the keystrokes
you're used to aren't doing what you want in the IDE, we suggest you check the
profile you're using and adjust the Keyboard Scheme setting accordingly. In
Chapter 3, we'll discuss customizing and saving a keyboard mapping scheme.

Lab: Using a Custom Profile in a Macro
As you delve into Visual Studio .NET extensibility, you'll use the Macros IDE
a lot to experiment with the Visual Studio .NET extensibility APis. We'll dis
cuss macros in detail in Chapter 4, but let's take a minute to try out the mac
ros facility right now. To get started, press Alt+Fll to open the Macros IDE.
Take a look in the Project Explorer tool window in the Macros IDE. If you
installed the samples for this book, you should see a Macros project named
InsideVSNET. In that project, you'll find a module named Samples, which
contains macros that demonstrate concepts described in the book.

In this case, the macro we're going to run is named AutoHideToggle.
What AutoHideToggle does is to toggle the state of the tool windows in
Visual Studio .NET. It does this by calling the Window.AutoHideAll named
command that's available from the Visual Studio .NET main menu.

The problem with calling Window.AutoHideAll is that there's no
Window.AutoUnhideAll command, so you have to reset the window lay
out using the Reset Window Layout button in the Options dialog
box,reselect your profile from the My Profile tab on the Start Page, or tack
open the tool windows you want to see by hand. Our little macro takes
care of all this in true hacker style.

14 Part I Visual Studio .NET as a Development Tool

We want to keep our carefully customized window layout, so we'll
create a temporary profile that stores the positions of all the open tool
windows. We'll do this through the DTE. WindowConfigurations object.
Our macro will then apply this profile and call the Window.AutoHideAll
named command. To get back to where we were, we'll check whether the
temporary configuration is the active configuration. If it is, we'll use Apply
again, which will load all the tool windows back into place.

Here's the code:

Sub AutoHideToggle()
Static aTemp As WindowConfiguration = Nothing
Dim cmdobj As Command
' Create a variable to hold the AutoHideAll command.
cmdobj = DTE.Commands.Item("Window.AutoHideAll")
With DTE.WindowConfigurations

' Check if whether we're using our temporary configuration.
' If we aren't create one and save it out.
If aTemp Is Nothing Then

Else

' If we're not in the aTemp config, create a new
' aTemp and apply it to save it.
aTemp = .Add("aTemp")
aTemp.Apply()
' Call AutoHideAll.
DTE.Commands.Raise(cmdobj.Guid, cmdobj.ID, Nothing, Nothing)

' The second time this is run, the windows are put back
' the way they were the first time it was run.
aTemp.Apply()
aTemp = Nothing

End If
End With

End Sub

When you run this macro, you'll notice that it works but that it might
be too painfully slow to use. (Then again, it's no slower than getting
things back together by hand, so go ahead and use it if you feel so
inclined.) What it's doing is loading the configuration profile a number of
times (whenever the Apply method is called). In Chapter 4 we'll show you
how to speed up this little macro by turning it into an add-in. Chapter 3
provides some techniques you can use to make this macro accessible
through a menu command or a keyboard shortcut.

Chapter 1 The Evolution of Visual Studio .NET 15

The Help Filter setting lets you filter the information that the Visual Studio
.NET Help system presents to you by default as you work. If you're a specific
type of developer, such as an MFC or ATL C++ programmer, you can save some
time and clock cycles by having Visual Studio .NET filter the Help to the main
topics you're interested in. The Help Filter setting affects the Filtered By combo
box in the Search window, making what you set on the My Profile tab the
default. We'll explain how you can create your own custom Help filters in
Chapter 14.

The final option on the My Profile page sets the way that Visual Studio
.NET opens when you run the program. If you set At Startup to Show Start Page
(the default), you'll get the Get Started tab on the Start page when the IDE
loads. The Start Page offers some compelling features, but it's not everyone's
cup of tea. Keep in mind that this option is enabled in every profile and that if
you want to change how the IDE loads, you must set this option separately.

The Editor
In talking with members of the team that developed the base editor in Visual
Studio .NET, it's clear that they understand that programmers live in the editor.
It's where the most important programming work is done. To this end, the
Visual Studio .NET team worked hard to create a code editor that's on par with
the best commercial and free editors available today. To a great extent, they
have succeeded in this goal, largely due to new enhancements to the macros
facility. These enhancements include an extremely powerful extensibility
model, a new macro recording facility, and a dedicated Macros IDE. The Visual
Studio .NET extensibility model is a major focus of the book because it's what
we use to customize and to add functionality to the IDE.

Other new features in the editor include outlining, line numbering, and a
really outstanding search and replace facility, all of which are discussed in
detail in Chapter 3.

Designers
Visual Studio .NET offers four major types of designers: Windows Forms
designers, which let you create Windows Forms applications visually; Web
Forms designers, which help you create WYSIWYG ASP.NET Web Forms appli
cations; the Component Designer, which is used to build server-side compo
nents for enterprise solutions; and the XML Designer, which makes it easy for
programmers to work with XML Schema Definition (XSD) files.

In Visual Studio .NET 2003, all languages provide designers for .NET
application creation. This means that you can design your Windows Forms and
Web Forms in the same language you use to write your most important algo
rithms. In the past, it was common for developers to create the front end of

16 Part I Visual Studio .NET as a Development Tool

their application usihg a visual tool such as Visual Basic and to write the back
end in Visual C++. Because of the way that .NET assemblies interoperate, you're
still free to do your forms layout and library writing in different languages, but
you're no longer forced to work that way.

Tool Windows
Tool windows are the nondocument windows in the IDE that provide you with
information and utility functionality as you work. The IDE has a large number
of tool windows, and you can access them easily using keyboard shortcuts, the
Command Window, and menu commands. The following are the most com
monly used tool windows in Visual Studio .NET. These tool windows are pre
sented with their associated default keyboard shortcuts.

Solution Explorer (Ctrl+Alt+L) The Solution Explorer window is arguably the
most important tool window in Visual Studio .NET. In Visual Studio .NET, nearly
all the work done by a programmer revolves around a solution. A solution is a
collection of projects, which are themselves collections of files. It's through
Solution Explorer that you'll get access to the files in your projects. Here you'll
add new classes and files to projects, and even new projects to larger solutions.
Figure 1-5 shows a project in the Solution Explorer tool window.

Solution EHplorer: IhumbW1zard Iii

[E:'ii\'!1~ --·-
• Solution 'ThumbWizard' -(! ~pro-je~ct)--

8· · iiJHMftiAWftl
i±i ·· GlliJ References ;, ·· rn Assemblyinfo.vb

!!) Wizard.vb
i .. Iii Wizardfrm.vb

Figure 1-5 A managed project in Solution Explorer

Class View (Ctrl+Shift+C) The Class View window provides you with a hierar
chical view of the classes in your solution. If you're working with larger
projects, you might find it easier to navigate your solutions using Class View
than using Solution Explorer. Figure 1-6 shows the extensibility solution from
Figure 1-5 in Class View.

Chapter 1 The Evolution of Visual Studio .NET 17

Class View - 1 humbW1zard I!!]

!;i1iJ1 Pliffi@Mil
;~: {} ThumbWizard

i+J- ·<>i: ThumbnailWizard
d-~ WinWrapper

t+.! ~ Bases and Interfaces
~ Handle() As System. IntPtr
• applicatlonObject

t+:! ~ WizardFrm

Figure 1-6 The Class View window gives you an alternative view of the
objects in your solution.

Properties window (F4) In the Properties window, you can get and set proper
ties for the user interface items that you add to Windows Forms and Web Forms
applications. You can also use this window to set properties for solutions,
projects, and files that you have selected in Solution Explorer. Figure 1-7 shows
the Properties window for a setup project that's part of an extensibility solution.

/.Opacity

f:i RightT oleft

A>'.,i Show In T askbar
i*J. s;;~
·::·. SizeGripStyle

SnapToGrid
{\: StartPosition
~:~' .. Tag

100°/o

No

False
502,390

Auto

True

CenterParent

!f.lirfl.!_1'11 :1:;;;:;1-:~.;;_,•--;~•--.. ·-···--:~.• .. _;;;:;.l·:.~•:,:::;:,l ___ ;_,l::::=l=:~·=~-~-u~~~~~~:::~~~~~:~::: ... :~:::~--
TeHt
The text contained in the control,

Figure 1-7 You can use the Properties window to set properties of com
ponents, projects, and solutions.

Server Explorer (Ctrl+Alt+S) You use the Server Explorer tool window to access
data sources and information on your local machine and on remote servers.
Through this window, you can make data connections, access performance

18 Part I Visual Studio .NET as a Development Tool

counters and event logs, and even manage system services. Even when used
locally, this tool can save you a ton of time, letting you easily start and stop sys
tem services that you're testing and access system logs. In Figure 1-8, you can
see two machines available in Server Explorer. The first machine is the local
machine on which Visual Studio .NET is running. The second machine is a
remote test server.

Keep in mind that you'll need the proper level of access on a
particular server to access system information.

Figure 1-8 The Server Explorer window provides you with remote
access to the machines you're working with.

Toolbox (Ctrl+Alt+X) For the most part, the Visual Studio .NET Toolbox win
dow is used to hold the controls that you add to your Windows Forms and Web
Forms applications. That part is probably fairly familiar to you. What you might
not be aware of is that you can use the Toolbox to hold code fragments that
you use frequently or fragments you want to keep as you read through the Help
files or Web pages. The Clipboard Ring makes it possible for you to go back
and access previously copied text. You can add your own custom tabs to the
Toolbox to help organize your code and controls. You can see a custom tab in
the Toolbox in Figure 1-9. This tab is installed by the Visual Studio .NET guided
tour (available from http://msdn.microsoft.com/vstudio/productinfo/tour.asp).

Chapter 1 The Evolution of Visual Studio .NET 19

Toolbo1< • IJ
Data

co,~p9ne~ts.

II; Pointer

A Label

LinkLabel

JliJ Button

fShl TextBox

i MainMenu

!;;' CheckBox

t.'.- RadioButton

GroupBox

~ PictureBox

D Panel

[D DataGrid

~ List6ox

[!:I Checl<edListBox

Clipboard Ri~g

Figure 1-9 The Toolbox window gives you access to controls and code
snippets.

Command Window (Ctrl+Alt+A) The Command Window is a new feature of
Visual Studio .NET. It combines some of the best features of the Immediate win
dow from Visual Basic with the power of a command line. Chapter 2 covers the
Command Window in detail. You use the Command Window to enter and exe
cute named commands directly in Visual Studio .NET. A named command is
essentially any IDE command that you can run through a menu, toolbar button,
or shortcut. Many of the named commands in Visual Studio .NET aren't mapped
to a keystroke or available through a menu by default. The only way to access
these commands without mapping them or adding them to a toolbar is to type
them directly into the Command Window.

The Command Window has two modes of operation. In Command mode,
the window acts as a command-line tool. In Immediate mode, the Command
Window is used for debugging. In Immediate mode, you can execute state
ments, change variables and print their values, and evaluate expressions. To get
to Immediate mode from Command mode, type im.med. To get to Command
mode from Immediate mode, type >cmd.

20 Part I Visual Studio .NET as a Development Tool

Figure 1-10 shows the Command Window in Command mode.

>WindoTJ. CloseAllDocuments
>File. Ne"tJFil

I File.NewFile

Figure 1-10 The Command Window in Visual Studio .NET provides
easy access to narried commands in the IDE.

Macro Explorer (Alt+F8) The Macro Explorer window provides a view of the
macro projects that are currently loaded in the IDE. Keep in mind that a macro
project needs to be loaded in order for the macros in the project to be available
for use or for editing in the Macros IDE.

When you record a temporary macro by pressing Ctrl+Shift+R, that macro
becomes available through the My Macros \Recording Module\ Temporary Macro
item in Macro Explorer. You can rename the temporary macro to save it, or you
can copy the code from the macro into another module in the Macros IDE. We'll
discuss using recorded macros in more detail in Chapter 4. The Macro Explorer
window is shown in Figure 1-11.

Macros
~ InsideVSNET
Jii MyMacros

~Samples

IE I DevSt.udio6Editor
IE .. MokeAddin

l±> Utilities
[fl VSDebugger
B VSEditor

<~ BeginningOfFunction
-.:e CenterScreen

' '~ MNU@Ndih
··:e CountOccurrences
·'Ii) DoForWholeFile
··e EmacsStyle!ndentline
·'Im FillCommentParagraph
·"9 FixlineEnds
-.~ InsertDate

Figure 1-11 Macro Explorer gives you easy access to the macros avail
able for use.

Chapter 1 The Evolution of Visual Studio .NET 21

The IDE has a number of other important windows, which we'll talk about
more fully in the next couple of chapters. Among these are the various debug
ging windows, the Help windows, and the Object Browser.

Visual Studio .NET File Paths
In this section, we'll tell you a little bit about where Visual Studio .NET places
its important files. We'll cover this subject in more detail throughout the book,
where it applies, but for now you should be aware of the locations of the files
that you can manipulate to enhance the IDE and make automation a bit easier.
The default base folder for the Visual Studio .NET 2003 installation is \Program
Files\Microsoft Visual Studio .NET 2003. Most of the folders we'll talk about in
this section are subfolders under the Microsoft Visual Studio .NET 2003 folder
(unless we provide the full path).

Installing Visual Studio .NET also installs the .NET Framework SDK in the
SDK\ vl.1 subfolder. All the .NET Framework tools and samples are available in
this folder, so it's a good place to start digging around if you're just getting to
know .NET. Check out the StartHere.htm file in the SDK\ vl.1 folder for the full
story on the .NET Framework SDK.

The various languages that ship with Visual Studio .NET all have their own
subfolders that contain the project and solution templates for their respective
project types. These folders are all named appropriately. Visual C++-specific
files are found in VC7, C#-specific files are in VC#, and Visual Basic .NET files
are in Vb7. We'll use these folders to create and add custom projects to the var
ious languages in the IDE.

You'll notice a file named Samples.vsmacros in the IDE folder.
The sample macros for Visual Studio .NET that run in your IDE are
actually stored in your My Documents\Visual Studio Project\VSMacros
folder. The version in the IDE folder is a backup copy. You can edit the
Samples.vsmacros file in your My Documents\Visual Studio
Project\VSMacros\Samples folder, but try to keep the version in your
IDE folder clean. If you ever run into a macro corruption problem, you
can usually copy the Samples.vsmacros file from your IDE folder to
your VSMacros folder to get rid of the problem.

22 Part I Visual Studio .NET as a Development Tool

The IDE executable itself is Devenv.exe. This file is available in the
Common7\IDE subfolder. The IDE folder contains a number of subfolders that
you'll be using throughout the book. These folders include the PublicAssemblies
and PrivateAssemblies folders, which you'll use to add custom assemblies that are
available to macros in the IDE. You'll use the HTML folder to customize the Start
Page. The templates for the macro projects are stored in the MacroProjectltems
and MacroProjects folders. Generic item templates (those not associated with a
particular project type) are stored in the NewFileitems and NewScriptitems folders.

Adding an IDE Folder Shortcut to Your Tools Menu
If you do a lot of extensibility work, you might want to add a shortcut to
the IDE folder to your Visual Studio .NET Tools menu. To do this, follow
these steps:

1. Press Ctrl+Alt+A to open the Command Window, and then type
Tools.ExternalTools. This will open the External Tools dialog
box.

2. Click Add to add a new tool to the menu, and type IDE Folder
as the Title.

3. In the Command text box, type Explorer.exe.

4. In the Arguments text box, add the path to your Visual Studio
.NET IDE subfolder. (This is usually C:\Program Files\Microsoft
Visual Studio .NET 2003\Common7\IDE.)

5. Click OK.

If all that works, your IDE folder should open when you choose IDE
Folder from the Tools menu. We'll use the External Tools feature to create
some more time-saving shortcuts later in the book.

If you do command-line builds or if you simply like to work from the
command line, you'll want to set environmental variables for Visual Studio .NET
when you launch Cmd.exe. You have a couple of options for setting these vari
ables. First, you can simply open the Start menu and choose the Visual Studio

Chapter 1 The Evolution of Visual Studio .NET 23

.NET Command Prompt. You'll find that command prompt in the Visual Studio

.NET Tools folder, which is in the Microsoft Visual Studio .NET 2003 folder.

We suggest pinning the Visual Studio .NET Command Prompt
link to the Start menu so you'll have easy access to it as your primary
command prompt.

The Visual Studio environmental variables are available in a file named
vsvars32.bat, which is in the Common7\ Tools subfolder. If you want access to
these variables from every instance of Cmd.exe on your machine, you can add
C: \Program Files \Microsoft Visual Studio .NET 2003 \Common 7\ Tools to your
system path. (Alternatively, you can copy this file to a folder in your path.)
Then you can just type vsvars32 from any command prompt and you'll have a
Visual Studio .NET working environment from your current command prompt.

You can take this one step further by creating a Command item on the
Tools menu. You create a new menu item from the External Tools dialog box
by clicking Add, making the Title of the new item Command Prompt, and mak
ing the Command item cmd.exe. If you want, you can set the Initial Directory
box to $(ProjectDir). Setting the Initial Directory to your project directory will
open the command prompt to that directory. This can make it very convenient
to work with your project files from the command line.

Finally, consider adding the Common7\IDE path to your system variables.
The full path is C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\IDE. This will make Devenv.exe available from any command
prompt on your system. This path is added by the vsvars32.bat command, but
sometimes you just need access to Devenv.exe.

Consider using Devenv over Notepad when you're editing files
for command-line builds. Even though you might not get access to the
build and project facility without a solution, you still have access to
your custom tools and to your macros.

24 Part I Visual Studio .NET as a Development Tool

Visual Studio .NET Extensibility

Macros

Visual Studio .NET builds on an extensibility model that was first developed for
Visual C++ 5. In Visual Studio .NET, the DTE object (DTE stands for Develop
ment Tools Extensibility) sits at the top level of an automation model that fea
tures nearly 200 objects.

The functionality provided by the DTE object model can be described as
user-defined customization. The DTE API is available to developers who are
programming macros, wizards, and add-ins. Even more functionality is exposed
to commercial-language developers who are part of the Visual Studio Integra
tion Program (VSIP). (We'll discuss this program in more detail shortly.)

The following sections describe the automation mechanisms available to
developers who are customizing Visual Studio .NET.

The macros facility in Visual Studio .NET provides programmers with easy
access to the features available through the automation APis. The macros facil
ity features its own Macro Explorer tool window (described earlier in the chap
ter), an extremely powerful macro recording facility, and a full-blown Macros
IDE that is itself extensible through the DTE object model. We'll use macros to
illustrate concepts relating to extensibility throughout the book. Chapter 4 cov
ers creating and editing macros in the Macros IDE in detail.

Macros in Visual Studio .NET are written in Visual Basic .NET. Because
the macros facility takes advantage of .NET, macro programmers have access
to the entire .NET Framework as well as to custom assemblies built in any
other .NET language.

To open the Macros IDE, just press Alt+Fll from inside Visual Studio .NET.
The Macros IDE will open in a new window. The first thing you'll notice about
the Macros IDE is that its layout is extremely similar to the layout of Visual Stu
dio .NET itself. In fact, you'll find that most of the features available to you as a
Visual Studio .NET programmer are available to you as a macro programmer.

Figure 1-12 shows the Macros IDE in its default layout. This layout features
a Project Explorer window that shows all of your currently loaded macro projects.

Add-ins

Chapter 1 The Evolution of Visual Studio .NET 25

Sub Corraner.tRegion ()
Dim se lec:t ion As T@xtSelect ion .. DTE. Act iveDoc

Dim :;,tart As EditPoint "' :selection.TopPoint.Ct
Dim endpt M TextPoint .. selection.BottomPoint
Dim col'fltlentStart ./I..$ StrJ.t19 "' Ut1lities.LineOr:I

DTt. UndoContexc .Open ["Comment Region")
Try

Do While (start.Lesl!l'Than.(endpt))

start. Insert (convnentSte.r:t.)
start, Line Down ()
start .$tart0fLine ()

Figure 1-12 The Visual Studio .NET Macros IDE

Add-ins allow developers to create extensions to the Visual Studio .NET IDE
and to the Macros IDE. In general, compiled add-ins provide better perfor
mance than Visual Studio .NET macros. Add-ins also provide functionality that
integrates seamlessly into the environment. Independent software vendors
(ISVs) and individual programmers can extend the IDE through add-ins in a
way that makes the use of the add-in look just like a built-in part of the IDE.

Add-ins can be written in any .NET language, or they can be written as
native COM components in unmanaged Visual C++. Add-ins are required to
implement the IDTExtensibility2 interface. Most of the add-in samples in this
book will be shown in Visual C#. The book samples installed from the Web will
be available in both C# and Visual Basic .NET.

Microsoft makes available a number of add-in samples that you can use to
explore the extensibility object model or simply to add functionality to your Visual
Studio .NET IDE. The samples are available at http://msdn.microsoft.com/vstudio/
downloads/automation.asp. We'll use a few of these add-ins in the early chapters

26 Part I Visual Studio .NET as a Development Tool

Wizards

of the book to add specific features to Visual Studio .NET. Starting with Chapter 5,
we'll provide all the details you need to build your own custom add-ins.

Visual Studio .NET wizards are similar to add-ins, but they are created using the
ITDWizard interface. Wizards are fairly simple constructions that are designed
to take a user step by step through a specific task.

Wizards are used in Visual Studio .NET for a variety of purposes. Project
wizards help get you started on a particular type of Visual Studio .NET project.
Other wizards in the IDE, such as the MFC Event Handler Wizard shown in
Figure 1-13, walk you through adding code to an existing project.

Figure 1-13 The Event Handler Wizard helps you add code to existing
projects.

The Visual Studio Integration Program (VSIP)
We won't discuss VSIP much in this book because it's a specialized program
with fairly substantial licensing fees. The program makes available to licensees
APis that are not part of the extensibility API discussed in this book. Developers
who are part of the program can build custom editors and designers to integrate
new .NET languages and high-end tools into the IDE.

Companies that make specific integrated products include ActiveState
(makers of Visual Perl .NET and Visual Python .NET), Compuware (which
makes DevPartner Profiler), and Fujitsu (which makes NetCOBOL for .NET).

You can find out more about VSIP at http:l/msdn.microsoft.com/vstudio/vsipl

Chapter 1 The Evolution of Visual Studio .NET 27

Looking Ahead

In Chapter 2, we'll continue our discussion of Visual Studio .NET, focusing on
the project management facilities of the IDE. The chapter will provide some
insight into one of the great strengths of Visual Studio .NET: the ability to host
projects based on different programming languages in a single solution.

Project Management in
Visual Studio .NET

Nearly everything you do in Microsoft Visual Studio .NET revolves around solu
tions and projects. In this chapter, we'll talk about solutions and projects in
detail and give you a good handle on what those terms really mean. We'll also
describe project management in Visual Studio .NET and explain how you can
organize your software projects to maximize the features of the integrated
development environment (IDE).

Overview of Solutions and Projects
Managing complex software projects can be a difficult and messy affair. Visual
Studio .NET helps by organizing programming projects along the lines of solution
(groups of projects) and projects and by handling references to assemblies and to
components outside this structure. This organization and reference feature helps
promote code reuse by allowing you to take advantage of related projects, exist
ing assemblies, COM components, and source code. The easiest way to reuse
.NET code is through references to assemblies in your projects and solutions.

Visual Studio .NET organizes software projects on two
conceptual levels. Solutions contain projects and solution items.
Projects contain the source files that are compiled into executables
and assemblies.

29

30 Part I Visual Studio .NET as a Development Tool

The most important tool for project management in Visual Studio .NET is
Solution Explorer (Ctrl+Alt+L), shown in Figure 2-1. Solution Explorer is a tree
view window that provides access to all the projects and files that are part of
the currently open solution. Visual Studio .NET can host one solution at a time,
but you can run multiple instances of Visual Studio if you want to work with
multiple solutions concurrently.

Solutmn E>cplorer - YBWebApp ~

i1Jli!l~i~,.,,.. ___ , __ .:._·----·-'------··--· ·-····-----·-.··
'CIO Solution 'Chapter02' (7 projects) ll

rtJ ~ CPPWin32 §tit
CB I CSWebApp \~
~ · Ii CSWebService lt
~·· ~Ii.iii 12;~

Efl ·· ($) References .~
. f'.fj Assembly!nfo. vb ~;§
' · ij Global.asax r'fil

l]I Styles. css ~~
~ VBWebApp, vsdisco ~l
[i Web.config ;~~
~ WebForml.aspx 1;]

~YBWinApp ~
!fl · (iliil References ;~
· ·· E'.) Assembly!nfo.vb ~

, Ill Forml.vb ~
El , 1£3 SetupApplication ---
: ;,,... Gil Detected Dependencies

-ia so~~~~-c~:-Jif;~-1~-;,~1• c.~loo-~::

Figure 2-1 Solutions act as containers for projects and solution items.

Most new projects in Visual Studio .NET are created using a template
developed by a language integrator. For example, Visual Studio .NET 2003
ships with support for Microsoft Visual Basic .NET, Visual C#, Visual J#, and
Visual C++ .NET. Each of these languages features a number of project types
that programmers can choose from when creating a new project. A new project
is created as part of a new solution by default. You can also add projects to
existing solutions.

For Windows Forms applications and unmanaged Windows-based appli
cations, the solution file for a project is by default stored in the same folder as
the project. For Web Forms applications, solution files are typically stored in a
folder in the Visual Studio Projects folder in your My Documents folder and
point to the Web server that's hosting the application.

A single project can be a member of many different solutions. Because it's
so easy to reorganize your projects in Visual Studio .NET, you should feel free
to create you~nitial projects with default solutions . .Later on, you can move
yout projects around and add them to new solutions if you want.

Chapter 2 Project Management in Visual Studio .NET 31

I Lab: Playing with Solutions
~ J The best way to get comfortable with solutions and projects is to spend

some time playing with them. Let's say you're writing a book (like this
one!). You've got a hunch of samples, and you want to make it easy for
the reader to see all the samples from a single chapter in a single solution.

To get started, create a new folder named Chapter02. This folder will
hold the various project folders in the solution. Next, create a Visual C#
Windows Application project and call the new project SampleOl.csproj.
Save the project, and name the solution SampleOl.sln. Save the solution in
the same folder as the project, SampleOl.

With the solution file selected in Solution Explorer, choose Save
SampleOl.sln As from the File menu to save the file to the Chapter02
folder, naming it Chapter02.sln.

At this point, you've got two solutions: one in the Chapter02 folder
and one in the SampleOl folder. The Chapter02.sln file is the one that's
currently open. Let's add another project to the solution. Press Ctrl+Alt+A,
and enter File.AddNewProject in the Command Window. This should
bring up the Add New Project dialog box. Create a C# Windows applica
tion, and name it Sample02. You now have a solution file named
Chapter02 and two projects. Close the Chapter02 solution file and click
Yes if you're prompted to save.

If you go into the new folder created for Sample02, you'll notice that
there's no solution file for that project. No problem-just open the
Sample02.csproj file. You can work on that project alone and save a new
solution file in the Sample02 folder if you want. You can close that project
and go to the Chapter02 folder; again, you'll see the two projects. As you
can see, a project can be a member of a number of different solutions.
This is an important concept to understand as you plan team development
projects. As you explore the solution concept further, you'll also see that
it can be an integral part of code reuse in Visual Studio .NET.

Understanding Solutions
In Visual Studio .NET, a solution is a thin wrapper that contains a project or a
number of projects. Every project in Visual Studio .NET is part of a solution by
default, and even if you open a lone project file for editing, you'll be

32 Part I Visual Studio .NET as a Development Tool

prompted to save a new solution file for the project at some point in your edit
ing session. The solution concept is important because much of what you can
do in Visual Studio .NET revolves around accessing functionality that's
exposed in different projects.

Solution Items and Miscellaneous Files
Solutions can contain solution items and miscellaneous files in addition to
projects. Solution items can consist of HTML files, bitmaps, icons, XML files,
templates, and schemas, among others. Miscellaneous files can be a bit of a
mystery. First of all, you need to make the Miscellaneous Files folder visible in
Solution Explorer to take advantage of these kinds of files. To see this folder,
you select the Show Miscellaneous Files In Solution Explorer check box on the
Documents page in the Environment folder of the Options dialog box, as
shown in Figure 2-2. Keep in mind that you won't see the Miscellaneous Files
folder until you open a nonproject item in the IDE using File.OpenFile.

$- Documents

Dynamic Help
Fonts and Colors
Help
International
Keyboard
Projects and
Task list
Web Browser

Source Control

Text Editor

r ~e~use cUrrent dac:utnent wincJow J :if sa~d
P ~etect when file Is changed outside the envfonment

r . l?i.uto,load changes \if not currently modified inside the
i:9nVironment)

r.;· 1'.llP~ editing of read-only files, warn w~ attempt. to save
P Qpen file using directory of currently a.ctlve document
r.- ~~?.E0i~g;;11~~~~~£!ii'£ili~fii@;:)EIOP.i?f~!l

f'l)•cellaneous ~ project s~ves last

Figure 2-2 You can enable the Miscellaneous Files folder in the Options
dialog box.

Miscellaneous files are files that you might open in the IDE for reference
purposes-for example, if you want to review some code in a listing that you
don't want to make part of your project. Opening such a file in the IDE without
importing it into your solution automatically places the file into the Miscella
neous Files folder. The linked file is aggregated into the Miscellaneous Files
folder in a solution.

Chapter 2 Project Management in Visual Studio .NET 33

Keep in mind that any file you open from Visual Studio .NET gets a link in
the Miscellaneous Files folder. This folder persists your items between sessions
if you set Miscellaneous Files Project Saves Last to something like five items.
This means you can open specifications, schedules, and notes and have those
files at your fingertips every time you open your project, as shown in Figure 2-3.

Solution fw:plot et - M1scellaneous Fde4> ~

~
--l;fsoi~ti;;-n 'CSh~rpAddi~0-(lp~;;j~~t)----------------------

a- iWl CSharpAddin
[ti · Gil References

.. [l Assemblylnfo.cs
_ ' · [!) Connect.cs

l':J £) Miscellaneous Files
'. · · ~ AddinDevSchedule.mpp
1· .. · 1J tl@iil@•IQM•N
: IE) Readme.txt

Figure 2-3 You can use the Miscellaneous Files folder to store links to
documents relating to your projects.

Solution Properties
The Solution Property Pages dialog box gives you easy access to the settings
that apply to an entire solution. Among the options that you can control include
the startup project or projects for your solution, the locations for files and sym
bols used for debugging, and the configuration settings that apply to the differ
ent projects in your solution.

You can get to the Solution Property Pages dialog box by making sure that
the solution name is selected in Solution Explorer, pressing Ctrl+Alt+A, and
entering Project.Properties in the Command Window, or by right-clicking on
the project and then choosing Properties. Most of the major programming
projects in Visual Studio .NET present you with the Property Pages dialog box
shown in Figure 2-4.

34 Part I Visual Studio .NET as a Development Tool

Figure 2-4 The Solution Property Pages dialog box gives you access to
solution settings.

Common Properties
Clicking the Common Properties folder in the folder pane on the left exposes a
number of options. The first option is Startup Project. In multiple-project solu
tions, you can select which project launches when the solution is run from the
Debug menu. You'll most often set this option on the fly by right-clicking on a
project name in Solution Explorer and then choosing Set As Startup Project
from the project shortcut menu.

If you want to run more than one solution when you choose Start or Start
Without Debugging from the Debug menu, you can select the Multiple Startup
Projects option. Selecting this option lets you select the behavior of each of the
projects in your solution when you invoke Debug.Start or Debug.StartWithout
Debugging. You can select Start, Start Without Debugging, or None. The Move
Up and Move Down buttons to the right of the list of projects lets you set the
order in which the programs are started.

In a number of scenarios, running multiple projects concurrently might be
useful. You might want to test some interprocess communication features
between various assemblies in your solution. You might use a second project to
do some profiling or instrumentation. Another use might be to run a utility that
takes control of another assembly for automated testing purposes.

The second option in the Common Properties folder is Project Dependen
cies. When some assemblies in a solution depend on others in the same solu
tion, the build order for the different projects in the solution is critical. The
Project Dependencies settings let you specify which projects need to be built
before others in order to get the entire solution up and running.

Chapter 2 Project Management in Visual Studio .NET 35

The last two options in the Common Properties folder let you set file paths
for source files and debug symbols that might come up in your application.
These settings allow you to step into the source code for libraries that are ref
erenced by your projects but that aren't part of your project. If you're debug
ging a project that's referencing a debug version of a .NET assembly, Visual
Studio .NET is usually able to find the source for the assembly if it's available.
If the source is stored in a different location, you can specify the location of the
source files and the debug symbols so that you can debug into that source.

Configuration Properties
Solutions can have multiple configurations that give you quick access to preset
options relating to your solution. The Debug and Release configurations are
available to new projects by default, but you can create your own configurations
using the Configuration Manager, which is accessible from the Solution Property
Pages dialog box or from the Build menu (Build.ConfigurationManager).

Visual Studio .NET offers two types of configurations: solution configura
tions and project configurations. Solution configurations are for configuring dif
ferent build setups within a particular solution. For example, you can create
and save a specific solution that allows you to select a different configuration
for each project in your solution.

The second type of configuration is the project configuration. We'll discuss
custom project configurations in detail later in the chapter, but for now consider
how different projects might relate to one another in a solution. Project config
urations let you change some very specific build characteristics. These charac
teristics include code optimizations, debugging switches, and even the location
of the project's compiled files. If you have five projects with different custom
settings in a single solution, you should use custom solution configurations to
save and manage the different build scenarios that might come up.

Solution and Solution User Options Files
The solution source .sln file is a plain-text document that describes the solution.
The solution file contains links to the projects contained in the solution. It also
contains version information about the format of the solution file itself. Solution
files created with Visual Studio .NET 2002 carry the signature Microsoft Visual
Studio Solution File, Format Version 7.00. Solution files created with or con
verted to Visual Studio .NET 2003 read Microsoft Visual Studio Solution File,
Format Version 8. 00.

36 Part I Visual Studio .NET as a Development Tool

Once you convert a file to Visual Studio .NET 2003, you
can no longer open it in Visual Studio .NET 2002.

The .sln file also contains information on the various configurations that
have been set up in the solution. Information about the different solution con
figurations is stored in this file, along with information about how the different
project configurations are organized in those solution configurations. Listing 2-1
was used to organize a number of different project types for this chapter.

Chapter02.stn
MJcfrosoft Visual Studio Solution File, Format Versfon 7.00
Project("{F184B08FC81C-45F6-A57f-5AB0999lF28Fl") = "VBWi nApp

''VBWi nApp\ VBWi nApp. vbpl'oj",
"{D7AFF922-3805c461C-A07B"859080BFCFBF}"

End Project
Proje.ct("{Fl84B08F-C81C-45F6 ·A57F-5ABD9991F28FJ") "VBWebApp",

''http: //1oca1 host/VBWebApp/VBWebApp. vbpr.oj".
"{D654F4tC-7144·457A-9D73·A149ECD0DB40}"

EndProJl;lct .
Project(" {FAE04EC0"301F-11D3 •BF4B-00C04F79EF8C}") = "C.SlffnApp",

"CSWinApp\CSWinApp. csproj '',
"{90585FBl-AA56• 4.227 ·ABl4~23Fl6E4F07E4}"

EndProJect
Proj ect("fFAE04EC0-301F- llD3"BF4B· 00C04F79UBC1")

"http: l/l ocaJ host/CSWebApp/CSwebApp.csproj",
"(AB6607 EB ·DB6F -45 E8 • AE70 .• B97 2D2A652 Ft}"

EndProject
project("{8BC9¢EBB C8B4A, llD0•8D1.1-00A0C9lB.C942J")

"CPPWi n32\CPf'Wlri32. v.cproj",
'1{912ECF9E-.5ABA ·4E85c8955-2.60[)C464C317l"

Eni:lProj.ect ·
Glooal

Listing 2-1 An example solution file

Chapter 2 Project Management in Visual Studio .NET 37

GlobalSection(SolutionConfiguration) = preSolution
ConfigName.0 = Debug
ConfigName.1 = Debugl
ConfigName.2 = PostCMD
ConfigName.3 = PostExplorer
ConfigName.4 = Release

EndGlobalSection
GlobalSection(ProjectDependencies) = postSolution
EndGlobalSection
GlobalSection(ProjectConfiguration) = postSolution
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.Debug.ActiveCfg = Debug I .NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.Debug.Build.0 = Debug I .NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.Debugl.ActiveCfg = Debugl.NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.Debugl.Build.0 =Debug! .NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.PostCMD.ActiveCfg = Releasel.NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.PostCMD.Build.0 = Rel easel .NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.PostExplorer.ActiveCfg =

Release I .NET
{D7AFF922-3805-461C-A07B-859080BFCFBF}.PostExplorer.Build.0 =

Rel ease I· NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.Release.ActiveCfg = Release I .NET
{D7AFF922-38D5-461C-A07B-859080BFCFBF}.Release.Build.0 = Rel easel .NET
{D654F4FC-7144-457A-9D73-Al49ECD0DB40}.Debug.ActiveCfg =Debug I .NET
{D654F4FC-7144-457A-9D73-A149ECD0DB40}.Debug.Build.0 = Debugl.NET
{D654F4FC-7144-457A-9D73-Al49ECD0DB40}.Debugl.ActiveCfg = Debugl.NET
{D654F4FC-7144-457A-9073-A149ECD0DB40}.Debugl.Build.0 = Debug I .NET
{D654F4FCc7144-457A-9073-A149ECD0DB40}.PostCMD.ActiveCfg = Releasaj.NET
{D654F4FC-7144-457A-9D73-A149ECD0DB40}.PostCMD.Build.0 = Rel easel .NET
{D654F4FC-7144-457A·9D73~A149ECD0DB40}.PostExplorer,ActiveCfg =

Release I .NET
{D654F4FC-7144-457A-9D73-A149ECD0DB40}.PostExplorer.Build.0 =

Release I .NET
{D654F4FC-7144-457Ac9073-Al49ECD0DB40}.Releasa.ActiveCfg = Rel easel .NET
{D654F4FC-7144-457A-9D73-A149ECD0DB40}.Release.Bu1ld.0 =Rel easel .NET
{9D585FB1 ·AAS6,422? ·AB14·23Fl6E4F07E4}. Debug. Acti veCfg = Debug I· NET
{9D585FB1-AA56-4227-AB14-23F16E4F07E4}.Debug.Build.0 = Debug!.NET
{9D585FB1-AA56-4227-AB14-23Fl6E4F07E4}.Debugl.ActiveCfg = Debugll .NET
{9D585FBl·AA56·4227-AB14·23Fl6E4F07E4}.Debugl.Build.0 = Debugll.NET
{9D585FB1-AA56-4227-AB14-23F16E4F07E4}.PostCMD'.ActiveCfg = Debugll.NET
{9D585FB1-AA56-4227-AB14-23Fl6E4F07E4}.PostCMD.Build.0 = Debugll.NET
{90585FBl·AA56·4227-AB14-23F16E4F07E4}.PostExplorer,ActiveCfg =

Debugll .NET
{9D585FB1-AA56-4227-AB14-23F16E4F07E4}.PostExplorer.Butld;0 =

Debugll .NET
{9D585FB1-AA56-4227-AB14-23F16E4F07E4}.Release.ActiveCfg = Releaiel.NET

38 Part I Visual Studio .NET as a Development Tool

{9D585FBh\A5£"4227cAB14-23F16E4F07E4} :Rel ~ase. Build .0 = Rel easej .NET
JAB66fl7EB-DB6FC 45EB•AE70C B972DZA652Fl}. Debug. Act i veCfg = Debug I . NET .
tA86607EBcOB6F·45E8~AE7l>~B972D2A652Fl}. Debug.Build. 0 = Debu.g I ;NET

.··.·•· {AB66D?EB-DB6F-45ES·AE7D,·B97.2P2A652Fl}. Debugl .ActtveCfg = DeblJgJ. N.ET
{AB66D7,EB~DB6F-45E8-AE7D·B972D2A652Fl}. DebugL Build. 0 = Debugj .NET ..
{AB66D7EB-0B6F •45·E8-AE7D-B972D2A652Fl}. PostCMD .Acti veCfg ~·.Release I· NET

>t),B66D7EB-DB6F-45E8-AE7!>-B972p2A652F1J. PostCMD. Build .0 = Rel ease I ; NET
•.· {AB66D7E~·OB6f·45E8-AE7D·B972D2A652fl}. PostExplorer :ActiveCfg =

... Rel'easej .NET .·· ·. . ··.... . ·. · ·. . .
{AB66D7EB~DB6F~45E8-AE7D-B972D2AQ52Fl}. Pos.tExplorer. B,ui ld ,0 "'
· .R~leasej.NET · .·. · . · · .

{AB66D7EB-OB6F-45li:8-AE7D-B972D2A652Fl}. Rel ease .Acti veCfg = Rel ease j. N.ET
. {AB66WEB·PB6F-45E8-AE7D-B972D2A652Fl}.Release.Build.0 = Rel easel .NET

. '{912ECF9E"5ABA-4E85-8955·2B0DC464C377}. Debug .Act iveCfg = Debugl\ili n32
{912ECF9E·5ABA·4E85"8955-2B0DC464C377}.Debug.Bui1d.0 = DebugfW1n32
.{91ZECF9E-5ABA-4E85-8955 • 2B0DC464C377}. Debugl. Act i veCfg = Debug fWin.32
.{912ECF9Ec5ABA:4E85-8955·2B0DC464C377}.Debugl.Build.0 = DebugfWin32
{912ECF9E·5ABA-4E85·8955-2B0DC464C377}. PostCMD.Acti veCfg = ..

PostCMOIW1n3Z · .··. .· · . . · ..
{!ll2ECF9E-5ABA·.4E85·8955-280DC464C377}.PostCMD.Build.0 = PostCMDIW1n32.
{9l2ECF9E·5ABA·4E85-89S5-2B0DC464C377J. PostExplorer.Acti veCfg :::

PostExp1orerlWin3i
{9l2ECf9E-5ABA~4EB5.-8955-2B0DC464C377}. PostExpl or er •. Bui 1d.0 =

. P.ostExpl or er I Wi n32
· {912ECF9E-5ABA-4E85-8955- 2B0DC464C377}. Release .ActiveCfg =

Refease /Wi n32 .
{9l2ECF9E"5ABA~4E85-8955-2B0DC464C377}. Rel ease. Bui 1 d.·0 = .Release I Wi n32
{2022B3FD•6AFB-4.912-8687·4B09257 A48A1}. Debug .Acti veCfg = Debug I, NET
{2022B3F0-6AFB-4912-86B7-4B09257 A48Al}. Debug. Build. 0 = Debug!, flET.

· U1,022B3FD·6AFB~49l2-868i-4B09257 A48A1J. DebugLActiveCfg = Debug I· NET
{2e22s3FD•6AFB-4912-8687-4B09257 A48Al} ,Debu~L IM 1d.0 = Debµg I ·NET
{Z02283FD·6AFB•4912-8687-4B09257A48Al}. PostCMD.Acti veCfg = · Releas.e I· NET

·. {202283FD-'6AFB-4912-8687 ·4809257 A48Al}. PostCMO. Build .0. = R~l easel. NET
{2022B3FD-6AFB~491Z-86S7 "48092.57A48Al} .PostExpl orer ~ ActheCfg =

.• Re1easel.NET .·.... .. ·. . .
..• {2022B3FtHAFB~.4912-.8687-4B09257A48Ai}. PostExpl orer, Bun d. 0 =

··... Release I .NET . .· · · ·.·. · · ... • .·
{2022B3F0"6AFB~4912-8687-4B09257A48Al}. Release .ActiveCfg. = R~l ease.\.NET
{W?2B.3f{)-6AFB~.4912•86~7-4B09257A48All,Rel ease. Bui 1 d .0 ... R.el ea,sef.NET
{22A37BFE~.fi87D·44E6~9C~C-71l.7358CS018}. Debug ;Act1veCfg, =Deb.U(J [.·NET
. ti2A37BFE~.68.7D-44E6:.9c0c~711735BC5018}. Oebug.Bu1ld.0 = Debqg j.NET . .
.• l2.ZA~7Bf'E"687{)C44E6~9C0C~7llnsac5018}.1Jebugl .Acti \ieCfg =· Debug.l;NET

i22A371ffE·61}7D-44E6·9C0C-7ll735BC5018};Debugl.Build.0 = Debug! .NET ... • .
'{22A37BFE-6B7D-44E:6-9c0c-71173~BC5018}. PostCMD,ActiveCfg = Rel:ease I ;NET·

Chapter 2 Project Management in Visual Studio .NET 39

{22A37BFE-687D-44E6-9C0C-711735BC5018}.PostCMD.Build.0 =Release! .NET
{22A37BFE-687D-44E6-9C0C-711735BC5018}.PostExplorer.ActiveCfg =

Release I .NET
{22A37BFE-687D-44E6-9C0C-711735BC5018}.PostExplorer.Build.0 =

Release I .NET
{22A37BFE-687D-44E6-9C0C-711735BC5018}.Release.ActiveCfg = Release! .NET
{22A37BFE-687D-44E6-9C0C-711735BC5018}.Release.Build.0 = Rel easel .NET
EndGlobalSection
Glob1lSection(ExtensibilityGlobalsl = postSolution
EndGlobalSection
GlobalSection(ExtensibilityAddins) = postSolution
EndGlobalSection

EndGlobal

If you take a look at an .sln file in which solution items have been enabled
and added, you'll notice that there's no information about these files. Solution
items are considered user items, so links to these files are stored in the solution
user options (.suo) file. If you pass a folder containing an .sln and an .suo file
to another user on another machine, much of the information in the .suo file
will become useless to the second user and will be ignored.

Some important items are stored in the .suo file that you can choose to
pass to another person. Breakpoints that you set in your solution are stored in
the .suo file, as are tasks that have been added to the Task List window. If you
want to share that information with the person you're sharing the solution with,
you should be sure to keep the .suo file with the .sln file. If you don't need to
share such information, we recommend deleting that file because the file can
contain personal and confidential data such as the paths to network shares and
even your e-mail alias.

Projects
Projects are the second type of container used in Visual Studio .NET. Projects
are used to maintain the source files associated with individual assemblies, Web
sites and services, and applications. As with solutions, Solution Explorer is the
primary tool for managing projects in Visual Studio .NET.

40 Part I Visual Studio .NET as a Development Tool

Project Items
Projects in Visual Studio .NET consist primarily of file items. These items can be
links to files or source files in the same folder as the project file. Whether an
item is a link or an actual file depends on the type of project you're working
with. The files associated with Visual C++ projects are links displayed in Solu
tion Explorer. It just so happens that these files are usually in the same folder as
the projects. Deleting a link to a file in a Visual C++ project doesn't necessarily
delete the file that's opened by the link. It's a rather fine distinction, but if
you've ever moved a Visual C++ project and found yourself missing a project
file, it might be that the file existed outside the project folder. Windows Forms
projects can consist of a mix of links and actual file items. Web Forms projects
generally contain the actual files in the folder structure that hosts the project
file. Table 2-1 shows the possible relationships between project type and file
items in Visual Studio .NET 2003.

Table 2-1 Project Items in Visual Studio .NET 2003

Project Type

Visual C++

Visual Basic .NET (Web)

Visual C# .NET (Web)

Visual Basic .NET

Visual C# .NET

Visual J#

Associated Items

Links to items

Items in the project folder

Items in the project folder

Links and actual items

Links and actual items

Links and actual items

If you take a look at Solution Explorer for a Windows Forms application
written in Visual C# or Visual Basic .NET, you can see the mix of project items
and file structure items using Project.ShowAllFiles. Files that are part of the
project will appear normally. Files that are not part of the project but are in the
project folder will appear slightly grayed. The ShowAllFiles command is avail
able from the Project menu and via toolbar buttons in Solution Explorer. In
addition, you'll see a number of files that are kept hidden from the user by
default. These include some types of configuration files and the code-behind
files used in ASP.NET applications. In Figure 2-5, most of the items in the
project shown are project items.

· SolutiOn 'Chapter02' (S projects)

~l ' CPPWli32 T$.. !'!'!!ces
. $:.Jbin

, · · l!:J Assemblylnfo.cs
' .. · 41:;] CSWebApp. vsdlsco

;.. Web.config
IE 1·· Global.asax

l~·· •• WobForm 1.aspx

:+: I CSWebSer'lice
00 CSWlnApp
l±l VBWebApp
it, VBWlnApp

!l'I VJConsoloApp
1±1 SetupApphcation

Chapter 2 Project Management in Visual Studio .NET 41

Figure 2-5 Links and files in a Visual C# solution

In addition to the items, a project stores the configuration metadata associ
ated with the project. Information stored includes configuration data that you
specify in the IDE as well as build and debugging data. The nature of this data
differs from project type to project type. All .NET languages compile to Microsoft
intermediate language (MSIL), but the compilers themselves are written by dif
ferent teams, so the available options differ from language to language.

Project Properties
You set the options for a project in the Property Pages dialog box. (In Solution
Explorer, right~click on a project and choose Properties from the shortcut menu.)
The Property Pages dialog box looks a lot like the Solution Property Pages dia
log box we discussed earlier. However, the project Property Pages dialog box
has a lot more options that you can configure in a project. Most of these options
are settings that you would otherwise have to specify at the command line when
compiling a project; these settings match particular command-line options.

Between the four major languages that ship with Visual Studio .NET and
the different types of projects that you can create, we're talking about a lot of
compiler options. This is where project configuration in Visual Studio .NET gets
fun. By creating custom project configurations, you can try out a lot of different
types of builds and save those configurations for future use and reference.

42 Part I Visual Studio .NET as a Development Tool

Saving a Custom Configuration
You can access the Configuration Manager dialog box by clicking the Configu
ration Manager button in the Property Pages dialog box, or you can enter
Build.ConfigurationManager in the Command Window. To create a new
project configuration, click the drop-down button adjacent to the desired project
in the Configuration column of the Project Contexts grid and then click New.
You'll see the New Project Configuration dialog box (shown in Figure 2-6).

!<Default>

r.;· Al$!! create new $0~n conff9ur~s>

1 ·.OK. , .· Car.Cei t Help ·1

Figure 2-6 The New Project Configuration dialog box

Give your new configuration a name, and set the base settings for the con
figuration by selecting an existing configuration from the Copy Settings From
drop-down list. As with the New Solution Configuration dialog box, you can
create a new solution configuration automatically to match your new project
collfiguration by selecting the Also Create New Solution Configuration(s) check
box. At this point, you should be ready to play with some settings in your
project. Just create a new test configuration that you can play with and leave all
the default settings in the two default configurations.

Let's look at the different types of projects and some of the settings you
can configure in each.

Managed Application Projects
Managed applications, such as Visual Basic .NET, Visual C#, and Visual J#, all
use somewhat similar layouts in the Property Pages dialog box. Different fold
ers are available depending on whether you're creating a Windows Forms
application or a Web Forms application.

Common Properties
Figure 2-7 shows the General page for a Visual Basic .NET Windows Forms
application that's located in the Common Properties folder. This page is differ
ent from the General page in the Configuration Properties folder. Notice that
the Configuration combo box, Platform combo box, and Configuration Manager
button are all unavailable when items from the Common Properties folder are
open. You can't save these settings separately when you save a new build type.

Chapter 2 Project Management in Visual Studio .NET 43

The settings in this folder set properties such as Assembly Name, Output Type,
and Namespace. Other Common Properties settings include Page Layout, which
lets you specify either a Flow or Grid type layout for your Web Forms and Win
dows Forms applications; Target Schema, which lets you specify the level and
type of Web browser that your application will be compatible with; and the
Scripting Language for your application.

VllWmApp Properly Pil!V'!. ~l

Project fie: VBWMpp,vbproj

Output name: \IBWlrlApp.exe

Figure 2-7 The General page in the General folder for a Visual Basic
.NET Windows Forms application

Contrast this dialog box style with that shown in Figure 2-8, which shows
the General page for a Visual C# Web Forms application. The Visual Basic .NET
page uses controls to configure the same types of settings that are set in Visual
C# using a grid.

Figure 2-8 The General page for a Visual C# Windows Forms application

44 Part I Visual Studio .NET as a Development Tool

These two types of property page styles are consistent for each language.
Even though these page types are visually different, they provide access to the
same kinds of settings.

Configuration Properties
The Configuration Properties folder for a project is the place where you can
play with settings and save them out in separate build types. You can easily cre
ate and save new build types for almost any kind of Visual Studio .NET project
and compile them from inside the IDE or from the command line, as we'll show
you in Chapter 15.

In this section, we'll point out a few of the important Configuration Prop
erties settings in the Property Pages dialog box for Visual C# projects. You can
get to most of these settings in a Visual Basic .NET Property Pages dialog box
as well, but we're using Visual C# because the grid style for these pages makes
them a little more concise.

Figure 2-9 shows the Build page from the Configuration Properties folder
for a Visual C# project. You can save any of these settings to a custom build
type. One of the most useful settings for configuring for a custom build type is
the Output Path. The default output path for a Visual C# Debug build is
\bin\Debug\. The release build is \bin\Release\ by default. When you create
a custom build type, you get one of these two paths, depending on which type
of build you get your initial settings from. If you're creating a custom build, it
might make sense to copy the output of that build to a new folder so you can
compare the output assemblies. For cases like this, you can create a new build
path to match your build name. For example, if you have a build named
DebugOverflow (to indicate that you've enabled overflow checks for this build
type), you can change the output to \bin\DebugOverflow.

Figure 2-9 The Build page for a Visual C# Windows Forms application

Chapter 2 Project Management in Visual Studio .NET 45

The Debugging page, shown in Figure 2-10, can be especially useful
when you're building class library, Web Forms, and XML Web services projects.
You can play with a lot of settings on this page, but one of the most useful to
our discussion is the Start URL option. Using different build types, you can
specify particular URLs that you want to test your XML Web service against. You
can use the Start Application option in the same way to test your libraries. It lets
you easily debug your service or library against a number of test applications.

CSWebService Property Pages !l:J

Figure 2-10 The Debugging page for a Web Forms application

Command-Line Settings
One setting I often use custom builds for is Command Line Arguments. By
creating a custom build type and setting a command-line argument for
that build type, I can save a lot of time that I'd normally spend fiddling
with scripts and the command shell. This setting came in handy when I
was tech-editing a security book and needed to test a number of different
strings in buffer overrun scenarios. By creating three or four different
build configurations, I was able to quickly debug and test applications
using different command-line arguments. Most important, I was able to
create these build types, move on to something else for a while, and come
right back to the security project and get straight into it because I had
already saved all my test scenarios as custom builds.

46 Part I Visual Studio .NET as a Development Tool

The Advanced page, shown in Figure 2-11, has some equally useful set
tings, especially for testers. Notice that on the Visual C# Advanced page in the
Configuration Properties folder you can specify the offset for a DLL, which can
be useful for debugging. You can also set the section size of your output file.
This size is normally 4 KB in Windows, but you can specify 512, 1024, 2048,
4096, 8192, or 16384 in .NET. The Incremental Build option is important if
you're using the /doc option to generate documentation from the comments in
your source code. The /doc option is ignored when you're doing an incremental
build, so you might want to create a custom documentation build and set the
Incremental Build property to False in that build type to ensure that your doc
umentation is updated when you debug.

Figure 2-11 The Advanced page for a Web Forms application

Visual C++ Projects
The Property Pages dialog box for Visual C++ projects has a huge number of
settings because of the large number of compile and link options available. The
custom build options that we've talked about in this chapter apply to Visual
C++ as well. In fact, because of the many properties available, you should find
custom settings for unmanaged projects very useful, especially in testing and
teaching scenarios.

Figure 2-12 shows the Property Pages dialog box for a Visual C++ Win32
project. You should notice right away that there's only one root folder in the
folder list on the left. Everything in that folder can be customized and saved in
a unique project configuration.

Chapter 2 Project Management in Visual Studio .NET 47

Deb1Jq
Debu;/
"'.obj;* .M<* .pdb;*. tlb;* .tl1;* .tlh;"'. tn'IP.: "', t$p;'". b.!11:;1

Applkation (.exe)

'"

"' Use M•.Jlti-Byte Character Set

"" Whole Program Optimization No

Figure 2-12 A custom configuration in Visual C++

The Property Pages dialog box for a Visual C++ project has a number of
subfolders under the Configuration Properties folder. Table 2-2 contains a list of
these folders and the general property types that you can set from each.

Table 2-2 Configuration Properties Subfolders in Visual C++

Subfolder

CIC++

Linker

Resources

MIDL

Browse Information

Build Events

Custom Build Step

Web References

Web Deployment

Properties

Compiler options, preprocessor definitions, paths to some
output files, and command-line compile options

Link options, debug options, and command-line link options

Resource filename and path, culture, and resource compiler
command line

Microsoft Interface Definition Language (MIDL) compiler
options, output paths, and compiler command line

Options relating to BSCMAKE (browser files)

Commands that you can run during the build process

Properties for configuring an additional task you specify
when building a file or a project. For example, you might
pass an input file to a tool that returns an output file.

Properties that determine how an XML Web service proxy
class will be created when you reference an XML Web
service in your project

Specifies how a Web deployment tool will install your
application

48 Part I Visual Studio .NET as a Development Tool

If you're an experienced Visual C++ programmer, you'll find most of these
settings fairly straightforward. The Web References folder is interesting in that
you can reference an XML Web service in Visual Studio .NET and the IDE cre
ates an appropriate proxy class that allows you to easily access the functionality
in the service.

The Build Events folder allows you to do a few interesting things with
your custom builds. You can see the Post-Build Event page in Figure 2-13. If
you're working with multiple projects and builds, you can use the Build Events
folder to run applications and scripts during your build process. In this case,
we've added a call to Regsvr32.exe as the command line for the Post-Build
Event in the project. After this project is built under this configuration, the target
file is registered with Windows.

Figure 2-13 Build events let you run applications during your build pro
cess.

Lab: Adding a Build Event
This is sort of a homework scenario, but I still find this kind of build trick
useful when I'm playing around with code. Let's say you're working on
some problems in C and you want to open the folder in which you've
built your new file. You could add a new tool to the Tools menu in Visual
Studio .NET that would let you open Windows Explorer to the current
project's build folder. (You should add such a tool because it's an easy
way to get a folder where you want it.) But let's be really lazy and create
a post-build event that launches Explorer.exe to the folder where our
build is being placed:

Chapter 2 Project Management in Visual Studio .NET 49

1. Create a custom build called PostExplorer.

2. Add the following Command Line to the Post-Build Event:

Explorer.exe $(TargetDir)

3. Rebuild your project.

You'll see the build process take place normally. After the build is
finished, you should see Windows Explorer open to your target folder.
You can now double-click the executable to run it, examine the files cre
ated in the build, and read the BuildLog.htm file.

The Property Pages dialog box accepts a number of commonly used mac
ros, which are described in Table 2-3.

Table 2-3 Macros Used in Property Pages

Macro

$(ConfigurationName)

$(DevEnvDir)

$(FrameworkDir)

$(FrameworkSDKDir)

$(FrameworkVersion)

$(Inherit)

$(InputDir)

$(InputExt)

$(InputFileName)

$(InputName)

$(InputPath)

$(IntDir)

$(Nolnherit)

$(0utDir)

$(PlaiformName)

$(ProjectDir)

$ (ProjectExt)

$(ProjectFileName)

Description

Current project configuration

Visual Studio .NET installation folder

.NET Framework installation folder

.NET Framework SDK installation folder

.NET Framework version number

Specifies the order of the inherited properties at the
command line created by Visual Studio .NET

Input file folder is equivalent to the project file folder

Extension of the input file

Name of the input file (name + extension)

Input filename

Input file path

Intermediate file path

Forces properties to not be inherited

Output folder

Name of the project platform, usually Win32 or .NET

Folder containing the project files

Extension of the project (.vcproj)

Full name of the project (CPPWin32.vcproj)

50 Part I Visual Studio .NET as a Development Tool

Table 2-3 Macros Used in Property Pages (continued)

Macro

$(ProjectName)

$(ProjectPath)

$(RemoteMachine)

$(SolutionDir)

$(SolutionExt)

$(SolutionFileName)

$(SolutionName)

$(SolutionPath)

$(TargetDir)

$(TargetExt)

$(TargetFileName)

$(TargetName)

$(TargetPath)

$(VCinstal!Dir)

$(VSinstal!Dir)

Project Source Files

Description

Name of the project (CPPWin32)

Full path to the project file

Remote machine (when debugging remotely)

Folder containing the solution file

Extension of the solution file (.sln)

Full name of the solution (Chapter02.sln)

Name of the solution (Chapter02)

Full path to the solution file

Output folder for the project

Extension of the output target (.exe)

Target filename (CPPWin32.exe)

Name of the target (CPPWin32)

Full path to the target

Visual C++ .NET installation folder

Visual Studio .NET installation folder

Project source files have different extensions, based on the language specific to
the project. The extensions and the project types that they hold are listed in
Table 2-4. Adding languages developed by Visual Studio Integration Program
(VSIP) vendors adds new project types.

Table 2-4 Project Types and Extensions

Project Type Extension

Visual Basic .NET .vbproj

Visual C# .csproj

Visual C++ .vcproj

Visual J# .vjproj

Deployment .vdproj

Listing 2-2, CSWinApp.csproj, is a Visual C# project file from Visual Studio
.NET. You can see that it contains many of the settings we discussed earlier.

Chapter 2 Project Management in Visual Studio .NET 51

CSWinApp.csproj .
<VisualStudioProject>

<CSHARP

>

ProjectType = "Local"
ProductVersion = "7.10.2215"
SchemaVersion = "2.0"
ProjectGuid = "{9DC32270-2155-414F-9BE5-C593ADE47FFD}"

<Build>
<Settings

>

Applicationicon ="App.ice"
AssemblyKeyContainerName = ""
AssemblyName = "CSWinApp"
AssemblyOriginatorKeyFile = ""
DefaultClientScript = "JScript"
DefaultHTMLPageLayout = "Grid"
Defaul tla rgetSchema = "IE.50"
DelaySign = "false"
OutputType = "WinExe"
PreBuildEvent = ""
PostBuildEvent = ""
RootNamespace = "CSWinApp"
RunPostBuildEvent = "OnBuildSuccess"
StartupObject

<Config
Name = "Debug"
AllowUnsafeBlocks ="false"
BaseAddress = "285212672"
CheckForOverflowUnderflow = "false"
ConfigurationOverrideFile =
DefineConstants = "DEBUG;TRACE"
DocumentationFile = ""

DebugSymbols = "true"
FileAlignment = "4096"
IncrementalBuild ="false"
NoStdlib = "false"
NoWarn = '"'

Optimize= "false"
OutputPath = "bin\Debug\"
RegisterForCominterop = "false"
RemovelntegerChecks ="false"
TreatWarningsAsErrors = "false"
Warninglevel = "4"

Listing 2-2 An example project file

52 Part I Visual Studio .NET as a Development Tool

c?nfigurat ionOVerrideF1 le·
· Defi neConstants = "TRACE"
Documentati onFHe = ''.'~

DebugS,Ymb.ols = "false''
Fil !;!Alignment = "4096"
lncremeritall3ul ld = ''false."
NoStdUb
No.warn= ""

bebugSymbols = "true••
File:Al i gnm~nt. = "4096"
lncrementa1Bui1d =
NoStdLib

Chapter 2 Project Management in Visual Studio .NET 53

AssemblyName = "System"
HintPath =

"C:\WINDOWS\Microsoft.NET\Framework\vl.1.4322\System.dll"
I>
<Reference

Name = "System.Data"
AssemblyName = "System.Data"
HintPath =

"C:\WINDOWS\Microsoft.NET\Framework\vl.1.4322\System.Data.dll"
I>
<Reference

Name = "System.Drawing"
AssemblyName ="System.Drawing"
HintPath =

"C:\WINDOWS\Microsoft.NET\Framework\vl.1.4322\System.Drawing.dll"
I>
<Reference

Name= "System.Windows.Forms"
AssemblyName = "System.Windows.Forms"
HintPath =

"C:\WINDOWS\Microsoft.NET\Framework\vl.1.4322\System.Windows.Forms.dll"
I>
<Reference

Name = "System.XML"
AssemblyName = "System.Xml"
HintPath =

"C:\WINDOWS\Microsoft.NET\Framework\vl.1.4322\System.XML.dll"
I>

<!References>
<!Build>
<Fil es>

<Include>
<File

RelPath = "App.ico"
BuildAction = "Content"

I>
<File

RelPath = "Assemblylnfo.cs"
SubType = "Code"
BuildAction = "Compile"

I>
<File

RelPath = "Forml.cs"
SubType = "Form"
BuildAction = "Compile"

54 Part I Visual Studio .NET as a Development Tool

:·/>···· ..
<!Include;:>

<IFfles.>
<lCSHARP>

· <IVJsua lStudi.oProj ect>

Visual Basic .NET, Visual C#, and Visual J# projects also contain user
option files. These files take the form ProjectName.ProjectExt.user.

A Visual Basic .NET user options file has the extension .vbroj.user. These
project user files are in XML and contain information specific to the custom
builds that you've created. The Visual C# project user file in Listing 2-3 is
matched to the .csproj file from Listing 2-2. Notice that there's an extra config
uration named Debugl. This is a custom configuration that was added to the
project during development. Unlike the binary .suo file, the .user files are intrin
sic to the custom build and should usually be kept with a project.

· c§w111~pp.c:ElprC>j."'''
<Vi.Sual$tucti~ProJect~ · .

· <cs~ARP.cLastQ~enV.ersion "'.
<B~fld>.

· <Settings Refer~cePatb ;,
<Con fig

Name = "Debug"
EnableASPDebugging ~ ~false"

· EnableASPX[)ebugging .= "false". .·
. lnabl e~~managedOeb~gging = ''fal se'.1

En~.bl eSilLServerDebu9.etmr= ·.;false"
RenioteOebugEnabl ed == "'false"
RemoteOebugMachi ne = ,,;,
S~ar't;Achmi "' "Project"
Stary-.r9tim;n~s• =. ·~··
Sta.rtPage. "' 'r"

· • ·.·.·startuRL {u••
· startWorkin9oi~ectori
St() rtWi·thIL . . .

Listing 2-3 An example project user options file

Chapter 2 Project Management in Visual Studio .NET 55

<Config
Name = "Rel ease"
EnableASPDebugging ="false"
EnableASPXDebugging = "false"
EnableUnmanagedDebugging = "false"
EnableSQLServerDebugging = "false"
RemoteDebugEnabled = "false"
RemoteDebugMachine = ""
StartAction = "Project"
StartArguments = ""
StartPage = '"'
StartProgram =
StartURL = ""
StartWorkingDirectory
StartWith!E = "false"

I>
<Config

I>

Name = "Debugl"
EnableASPDebugging ="false"
EnableASPXDebugging ="false"
EnableUnmanagedDebugging ="false"
EnableSQLServerDebugging = "false"
RemoteDebugEnabled = "false"
RemoteDebugMachine = ""
StartAction = "Project"
StartArguments = ""
StartPage = ""
StartProgram =
StartURL = ""
StartWorkingDirectory
StartWith!E = "true"

<!Settings>
<!Build>
<OtherProjectSettings

CopyProjectDestinationFolder
CopyProjectUncPath = ""
CopyProjectOption = "0"
ProjectView = "ProjectFiles"
ProjectTrust = "0"

I>
<JCSHARP>

<JVisualStudioProject>

56 Part I Visual Studio .NET as a Development Tool

Project Dependencies
If you're building complex solutions that contain a number of assemblies with
interproject dependencies, you can take advantage of Solution Explorer to help
you manage these dependencies. Solution Explorer makes it really easy to add
file, project, and Web references to your projects. For solutions with dependen
cies between projects, you'll want to use project references.

To add a project reference, open the Add Reference dialog box by select
ing a project in Solution Explorer and entering Project.Add.Reference in the
Command Window. On the Projects tab, you'll see a list of the projects in your
solution, as shown in Figure 2-14.

Add Reference l~I

Pro Name
CPPWin32

CSWinApp
VBWebApp
VBWinApp
VJConsoleApp

C:\Documents and Settings\Brian\Desktop\IN.,,
c: \lnetpub\wwwroot\VBWebApp
C: \Documents and Settings\Brian\Desktop\IN .. ,
C: \Documents and Settlngs\Brlan\Desktop\!N .. ,

Figure 2-14 Adding a project reference to a project in a solution

After you add a project reference, the functionality available from the ref
erenced project becomes available to the project adding the reference. At this
point, build order becomes important because the referenced assembly must be
built before the project that references it. To help you manage dependencies
such as this, Visual Studio .NET provides a Project Dependencies dialog box
(Projects.ProjectDependencies), as shown in Figure 2-15. This dialog box lets
you specify a dependency, and .it then changes the build order of affected
projects in a solution accordingly. The dialog box was updated automatically
with the dependency information when we added the project dependency. (If
we had added the output of this project as a standard dependency, Visual Studio

Chapter 2 Project Management in Visual Studio .NET 57

.NET wouldn't have changed this option for us.) Once the dependency was
specified, the XML Web service we referenced was added to the top of the build
list on the Build Order page.

Project Dependencies [X]
................. de"""'""'""'I I
LO.~~~ ~~-~-~..il Build Order

Ptoject:

jcswebApp

Qepends on:

[J CPPWin32
~ CSWebService
[J CSWinApp
[J SetupAppllcatlon
[J VBWebApp
lJ VBWinApp
[j VJConsoleApp

OK cancel j __ H•_IP_

Figure 2-15 Configuring build dependencies for a project

Building Projects and Solutions
Once the projects, custom build configurations, and references are set in a solu
tion, you can begin to work out the build scenarios that you want to run with
the different configurations. To specify which projects in the solution should be
built, you can use the Configuration Manager dialog box (shown in Figure 2-16).
You can easily exclude projects that might give you problems, or you can simply
save some time when you want to concentrate on a specific build in a solution.

Configurntion Manager [~I

B,d:lve Solution Conflg!Jratlon:

jPostCMD 3
f:roject Contexts (check the project configurations to build or deploy):

Pr · t Confl uratlon Platform Build

CPPWin32 PostCMD

CSWebApp Release

CSWebService Release

CSWinApp Debug!

SetupApplicatlon Release

VBWebApp Release

VR\Mlnt"lnn Oo111l•~f'o=r

Win32

_:j .NET

.NET

.NET

.NET

MJ:'T

Close

~J

_:J L.::.J'..J..:::::::::i
~

!'11
0
~

Help.

~I

Figure 2-16 Determining which project to build for a given build config
uration

58 Part I Visual Studio .NET as a Development Tool

There's one more powerful build dialog box you can use to batch-build
multiple-build configurations in a single go. The Batch Build dialog box
(Project.BatchBuild), shown in Figure 2-17, isn't available for every solution
type, but you can use it if your project consists of non-Web applications.

Figure 2-17 The Batch Build dialog box

The Batch Build dialog box lets you perform a number of important actions,
including building, rebuilding, and cleaning your projects. Clicking the Build but
ton initiates an incremental build for projects that are configured for such a build.
The Rebuild button initiates a Rebuild All for all of the selected projects. Clicking
the Clean button deletes the files that are output by a build so you can start clean
or share your projects without unnecessary bulk. Note that in Visual Studio .NET
the Clean command doesn't actually do anything for Visual Basic .NET and Visual
C# projects. The Visual Basic .NET and Visual C# teams decided that this kind of
functionality wasn't really necessary for managed projects, so it was left out.

Looking Ahead

While the project management facilities in Visual Studio .NET are formidable,
the usability of the IDE for developers also relies on the editor features in the
IDE. In Chapter 3, we'll discuss the code editor in detail and discuss techniques
that can help you become more productive as you write code.

The Visual- Studio .NET
Editor

The editor is the heart of any development environment. Programmers live in
their editors, and the editor in Microsoft Visual Studio .NET was designed to be
a programmer's editor. In this chapter, we'll take a close look at the editing tools
built into Visual Studio .NET. If you're an experienced programmer, the infor
mation in this chapter will help you become even more productive in Visual
Studio .NET; if you're new to Visual Studio .NET, this chapter will serve as intro
duction to its new and enhanced features. We'll show you how to access editor
features that make your job easier, and we'll describe some of the features of
the integrated development environment (IDE) that make working in Visual
Studio .NET a real pleasure.

Documents in the IDE
In Visual Studio .NET, everything you do revolves around the solution and the
projects in the solution. In that way, Visual Studio .NET becomes your project
management tool. What you're managing, for the most part, are source docu
ments that comprise your projects and the tool windows that provide func
tionality inside the IDE. To create and edit the documents themselves, you use
the Code Editor and the designers in the IDE. The source files you're editing
show up in windows that open to the center of the IDE and become part of
the tabbed view. The windows that contain these files are known collectively
as document windows, and they can be designers, editors, the Web browser,
and Help windows.

59

60 Part I Visual Studio .NET as a Development Tool

Dockable Tool Windows
Not all the tabbed windows in the IDE are document windows. You can add
a tool window to the tabbed windows at the center of the IDE by selecting
the window and toggling off the window's Dockable value on the Window
menu. The Object Browser window (Ctrl+Alt+J) is undocked by default,
making it a tabbed window in the IDE. The benefit of adding a tool window
to the set of tabbed windows at the center of the IDE is that you can display
a large amount of information at once. Alternatively, you can undock a tool
window by dragging it away from the edge where it's docked and leave its
Dockable setting on, essentially making the window a floating window. This
technique is especially handy if you're working with multiple monitors.

Visual Studio .NET has a huge number of additional Code Editor features
in the 7.0 and 7.1 versions. Among the new and enhanced features are outlin
ing, code formatting, and my personal favorite, line numbering.

All of these featufes can be accessed using named commands either from
the Visual Studio .NET Command Window (Ctrl+Alt+A) or through menu com
mands or keyboard shortcuts. Master these commands and you master Visual
Studio .NET.

It's All About Text
The place where you write your code in Visual Studio .NET goes by one of two
names, depending on the context of the file being edited. When you're working
on a file that's been saved as a programming language type recognized by
Visual Studio .NET, the editor you're working in is called the Code Editor. The
functionality that you'll find attached to the Code Editor will depend on how
your language was integrated into the IDE. When you're working on a text file
or a file type that's not been recognized by the IDE, you're working in the Text
Editor. This editor has less functionality than the Code Editor, but it's still fairly
powerful. It's important to note that you can run macros in either editor,
although the Code Editor hosts a much larger feature set. For the most part,
we'll refer to these editors collectively as the Code Editor, but we'll make a dis
tinction where appropriate.

Figure 3-1 shows the various parts of the Code Editor in the IDE. Take a
look at the names used in the figure. The parts are probably familiar to you from
a usage standpoint, but you might not be aware of their names. Depending on

. Chapter 3 The Visual Studio .NET Editor 61

which language you're using, you might find some slight naming differences in
the Code Editor, but the functionality is fairly consistent between languages.

Margin Indicator Bar -

Bookmark • Task list shortcut _J

Breakpoint

Outlining
indicator

Types
combo box

Code
pane

• I·•

.Ii Cann~ct..cpp : Implement.at.ion ot. ':Connect
thnclude .. std&:tx.h"

#iMlUde "'Keylla.pDlg.h"

[M•mbe~
~ombo box

I I Vhen run, t.he ll.ctd~1n ;iit:arct p.cepared t.he reg-1~try for the Adct--in.
JI A:i:;; a letter ti.me,. if the Add-in become~ u.nava1l!fble for l:'ea:eion:e euc:h e.:ei:

JI x

3

J
// 1) Y>.)u tocNed t.h.l.s pt:oJ=ict. 1~0 a Gonipute!.: at.bet: than vhii:.:h is VJ&S oi.:1gu1.a.lly c:te~t.e.J on.
// 2) You ~ho;!'!Je 'Ye~' qt.en. presented vir,h e :11ee.eiage eskini;1 it yo1.1 v:tsh to re1oove t,he Add~i

II 3) P:eq1stry car::upt,:i.on.
/! you vill need to re.--regisi:er t-h.e Add·~in by bu1ld1ni;i the MyAddin.::1setup 1n:cjecc
// by right: c.l.:i.C'lung the pro3er.:t in the :':lclution E!fplore-r, then r.:h-;.r.,~1ng l.l\.."!!t.1:i.ll.

:... /I CCcnnec:t
:Zl STI>METHOl'.!IllP cconn.eet 1 :CnCon.neetion (!Dispatch *pA.ppliee:c.1on# Add!n.Desi~rutrak!ojec:es: : ext Conne
: { -

Hru:STJL T hr "' S OK;
pApplication .. >'Ouery!ntertaee (_uuidof (EnvDTE: :_flT!J, (LPVOID1") &l'O_pDtt);
pAddinlnst.->Queryint.erface (_ uuictof (EnvDTE.:; Add In) , (LPVOID1t) &m _pAddinimitance);
'i.1.(Ctu'll'U!C:tM"DdP. 5) //.ll "'"' ~)(t-,_cm_UYSP.t".\!P)

{

Figure 3·1 The parts of the Code Editor window

The Code Editor is where you type in code and text. Most of the other fea
tures shown in the figure can be toggled off to give you an unfettered view of
the Code Editor. You can click and drag just above the scrollbar on the right
side of the Code Editor to break the view into two separate Code Panes. By
using multiple Code Panes with a single file, you can look at different parts of
your code concurrently.

The Navigation Bar contains the two boxes at the top of the Code Editor.
In Visual C#, these are the Types drop-down list and the Members drop-down
list. In Visual Basic .NET, these boxes are called the Class Name and Method
Name combo boxes. You can use the Navigation Bar to quickly jump to differ
ent parts of your code. In Visual Basic .NET, you can also use these boxes to
add methods to the current source file.

The light vertical line to the left of the code is the outlining indicator. By
clicking the + and - boxes along this line, you can hide and show blocks of code
within a source file. We'll discuss this feature in some detail later in the chapter.

The area between the rightmost part of the outlining indicator and the
Margin Indicator Bar is the selection margin. Clicking in the selection margin
selects the adjacent line of code. When your mouse pointer is in the area of the
selection margin, it changes from an arrow pointing northwest to one that's
pointing northeast. By clicking and dragging down or up in this area, you can

62 Part I Visual Studio .NET as a Development Tool

select complete blocks of code, as shown in Figure 3-2. The benefit of doing
this is that. you end up selecting the same amount of white space in each line
of code, giving you a nice clean block. (Trust me: for editors and writers, this
feature is huge.) Using the selection margin to select an entire line with a single
click can help reduce selection errors and can make it much easier to keep your
code formatting when you copy text between files.

Figure 3-2 Selecting text using the selection margin

The Margin Indicator Bar is a tool that serves many purposes. It's used to
set and delete breakpoints in your code, to indicate bookmarks in code, and to
hold Task List shortcuts. During debugging, you'll see an indicator in this mar
gin. When a breakpoint is hit, the breakpoint indicator will contain a yellow
arrow that points to the current line of code. This line of code is highlighted in
yellow by default. As you step through the code, the yellow indicator shows
you where you are in the code, and that line is highlighted in the Code Editor.

Notice the tab at the top of the Code Editor window. When you're in
tabbed view, you'll see a tab like this for every document and nondockable tool
window that you have open. These tabs let you navigate easily between multi
ple source files and forms in your project. If you prefer working with multiple
document interface (MDI) windows, such as the ones in Visual Studio 6, you
can turn off the tabs in the Options dialog box.

Now that we've reviewed the Code Editor window, let's take a look at the
kinds of things we can do inside the Code Editor to make programming and
editing tasks easier.

Chapter 3 The Visual Studio .NET Editor 63

Lab: Navigating Between Views and Windows
Let's loosen up our fingers and take a look at how to quickly navigate
between the Code Editor, the Designer window, Solution Explorer, and
Class View.

Let's say we're in a project and that we're working on some code and
some user interface design. Using the keyboard, press Ctrl+Alt+L to pop
into Solution Explorer. Navigate to a C# code file, and press Enter. By
default, any Windows Forms or Web Forms associated with the file will
open; otherwise, the source file will open. To see the source code for the
C# file, press F7. To pop back to the form, press Shift+F7.

Now click Ctrl+Alt+L again to pop back into Solution Explorer.
Navigate to another file, and press Enter. You should have at least three
tabs showing in the IDE. To jump between these open files, press
Ctrl+Tab or Ctrl+F6.

Finally, to jump into Class View, use Ctrl+Shift+C.
These are all important keystroke combinations. They let you move

around in the IDE without taking your hands off the keyboard. If you're
the kind of programmer who likes to stick close to the keyboard, these
shortcuts can save you a ton of time.

Typing and Shortcuts
If good editors are about anything, they're about efficient typing and text manip
ulation. If you're new to programming, you might not be aware of the ferocious
battles being fought in chat rooms and newsgroups and on Web sites between
factions of programmers who prefer one editor over another and who will argue
incessantly about what makes their editor better than another. (Not that I'm
above the fray, given my belief that Visual Studio .NET is the One True Editor.)

So what is it about text editing that causes such a strong reaction among
programmers? I think it has to do with the idea that programmers like to find
the most efficient way to do anything, and if a specific editor allows them to
accomplish their goals they become very attached to that editor. A secondary
reason is that it takes some time to master an editor, and once a programmer
masters an editor, he's less likely to want to learn things all over again unless a
better editor comes along.

The sections that follow are designed to show you how Visual Studio
.NET can work for a programmer who likes to keep her hands on the keyboard.
I've noticed that many of the most productive programmers I work with rarely

64 Part I Visual Studio .NET as a Development Tool

take their hands off the keyboard to perform routine tasks that less experienced
programmers go to the mouse for. The idea behind these shortcuts is to
improve your speed in the IDE, and they take some time and practice to learn.
The information that follows is provided as a quick reference for programmers
who are experienced with Windows shortcuts and as a tutorial for program
mers who are used to working in a UNIX editor such as Vi or Emacs.

Common Editing Shortcuts
Applications written for Microsoft Windows use a number of standard keyboard
shortcuts that you're probably familiar with. These shortcuts are known as
Common User Accessibility (CUA) shortcuts and are based on work done at
IBM that has standardized shortcuts across a number of platforms. The biggest
advantage of using this particular set of shortcuts is that once you learn them,
you can apply them in almost any Windows application, including Microsoft
Office. These shortcuts have also been labeled on a number of popular key
boards, including most of the Microsoft keyboards.

For more information about Windows keyboard shortcuts, see
the book Microsoft Windows User Experience (Microsoft Press,
1999), which details how shortcuts such as these should be used in
Windows applications.

The tables that follow group the common editing shortcuts for Visual Stu
dio .NET based on function and on when you're likely to use them in an editing
session. Table 3-1 lists the file shortcuts. You'll use these to open a new file or
existing files and to save files as you work.

Table 3-1 Common File Shortcuts

Command Keystroke Named Command

New Ctrl+N File.NewFile

Open Ctrl+O File. OpenFile

Save Ctrl+S File.SaveSelected!tems

Save All Ctrl+Shift+S File.SaveAll

Print Ctrl+P File.Print

Chapter 3 The Visual Studio .NET Editor 65

You'll notice that you're presented with a New File dialog box when you
try to create a new file in Visual Studio .NET. This might take a little getting used
to if you prefer to see a new text document appear immediately. By selecting a
specific file type when you create the new file, you enable much of the func
tionality associated with a particular language before you save the file. You can
save some time when creating a new file by using the Command Window and
adding the name and extension of the file you want to create. For example, if
you want to create a file named UserMotion.cpp, you press Ctrl+Alt+A to open
the Command Window and then enter File.NewFile UserMotion.cpp. Later in
this chapter, in the section "Using the Command Window," we'll show you how
to alias commands like this one so you can easily create the files you use most
often. In Chapter 4, we'll show you how to create a macro that creates a new
file of the type you're most likely to be interested in when you press Ctrl+N.

Navigating in a document using keystrokes is one of those skills you tend to
learn without actually picking up a book or reading an article. We'll review the
common navigation and selection keys and shortcuts here. They are listed in Table
3-2. Notice that selection involves holding down the Shift key and that moving to
a larger selection for a particular key usually involves holding down the Ctrl key.

Table 3-2 Common Navigation and Selection Shortcuts

Movement Movement Keystroke(s) Selection Keystroke

Character Right Arrow Shift+ Right Arrow

Left Arrow Shift+Left Arrow

Word Ctrl +Right Arrow Ctrl+Shift+Right Arrow

Ctrl +Left Arrow Ctrl+Shift+Left Arrow

Line End Shift+ End

Home Shift+ Home

Down Arrow Shift+ Down Arrow

Up Arrow Shift+Up Arrow

Code Pane Page Down Shift+ Page Down

Page Up Shift+Page Up

Document Ctrl+End Ctrl +Shift+ End

Ctrl+Home Ctrl+Shift+Home

66 Part I Visual Studio .NET as a Development Tool

Once you've selected text, you can copy or cut it to the Clipboard and you
can paste it back into the Code Editor. The common editing shortcuts are listed
in Table 3-3.

Table 3·3 Common Editing Shortcuts

Command Keystroke Named Command

Cut Ctrl+X Edit.Cut

Copy Ctrl+C Edit.Copy

Paste Ctrl+V Edit.Paste

Undo Ctrl+Z Edit.Undo

Redo Ctrl+Y Edit.Redo

Select current word Ctrl+W Edit.SelectCurrentWord

Select all Ctrl+A Edit.SelectAll

Lab: Using the Clipboard Ring
The Clipboard Ring is a tool you can use to track and use multiple copy
operations in the IDE. The Clipboard Ring is available as a tab in the Tool
box. To practice with the Clipboard Ring, pin open the Toolbox and click
the Clipboard Ring Toolbox tab. Open a code listing, and select some text.
Copy that text to the Clipboard, and watch the Clipboard Ring. Copy a few
more bits of text and notice that the most recently selected text is always
at the top. You can double-click any of the Clipboard items to insert them
into a file, but there's a much cooler way to use this tool. Press
Ctrl+Shift+Insert, holding down Ctrl+Shift. This will insert the text at the
top of the stack. Notice that the inserted text is still selected. Press Insert
again, and the second item on the stack replaces the selected text. Press
Insert a third time, and the text from the first copy operation is inserted.
(You get the idea.) Press Insert a final time, and you're back to the text
you last selected. You can cycle through the Clipboard Ring to easily find
the copied text you're looking for.

Finally, let's take a look at the shortcuts that you can use to transpose let
ters, words, and lines. You can use the shortcuts shown in Table 3-4 to swap the

Chapter 3 The Visual Studio .NET Editor 67

position of two items in the Code Editor. For example, if the cursor is posi
tioned before the letters AB, pressing Ctrl+T will cause the letters to switch their
order to BA. Typing Ctrl+Shift+T with the cursor adjacent to or in the word go
in the string go boldly will result in a transposition to boldly go. The most useful
shortcut in this group runs the command Edit.LineTranspose. Using the shortcut
Alt+Shift+T swaps the line where the cursor is located with the next line, mak
ing it really easy to move a line of code down the page.

Table 3-4 Transposition Shortcuts

Command

Transpose character

Transpose word

Transpose line

Keystroke

Ctrl+T

Ctrl+Shift+T

Alt+Shift+T

Named Command

Edit.CbarTranspose

Edit. WordTranspose

Edit.LineTranspose

These shortcuts should provide you with the functionality you need to
perform a fair number of editing tasks without the mouse if you choose to work
that way. There's nothing wrong with using the mouse for editing. It's not really
much slower to use the mouse than to use shortcuts, but the extra second or
two that it takes to go to the mouse can take you out of that creative groove you
can get into when you're editing. For me, transitioning from using a mouse
back to the keyboard takes a little more time than using a shortcut, so I try to
use shortcuts whenever possible.

Custom Keyboard Shortcuts
Earlier we talked about toggling a window's Dockable state to add it to the cen
ter of the IDE. There's no shortcut assigned by default to the Window.Dockable
command, but you might find that adding one would be handy for making a
very data-heavy window easier to read.

To create a new shortcut in the IDE, press Ctrl+Alt+A to open the Com
mand Window and enter Tools.Options. This will bring up the Options dialog
box (shown in Figure 3-3). Click the Keyboard item in the Environment folder
to bring up the Keyboard page. This page lets you do a number of things with
shortcuts in the IDE, such as create and edit shortcut keys, change the keyboard
mapping scheme, and save a custom mapping scheme. The first time you add
a custom shortcut to the IDE, you'll be prompted to save your mapping scheme
with a custom name.

68 · Part I Visual Studio .NET as a Development Tool

. liiil Environment
General

Iii. ~o•:i:l:Qliipjllng~!
;--! ·: .:.:· Jerian's Shortcuts

~~~~:~n~elp - I'.~·~~: 
Fonts and Colors ; : . dock 

Help 1 ·•• .•. ·•• .. ··.·.·r:111••••••=1••••••••• International Setting~~ 1{ 

+ Keyboard ·1. 
Projects and Solution , J : 

Tasklist ' ; 

~s) forserected·t~!. Web Browser 

. di · .···Bl!N"'ve'•··· I. 
lJSe~~rtQ.tJiii · ~~~fii>,l'l;ut~s)i:•:- ' ' ·•·· 
l~lobal ... 31 Ctrl~,, Ctrl+~ . . y. AS~ c•f: 

····>~t.i::ijir~iy\,seq&yL .. 

.. · ~ < .}; ; c#el' l t;tolp' .l 
. , - ' ~ .,. --~, :! '~ ' 

Figure 3-3 The Keyboard page of the Options dialog box 

To find the command you want to assign the new shortcut to, type part of 
the command name in the Show Commands Containing box. In this case, type 
dock, and Window.Dockable will show up in the command list. 

Here's the tricky part. Nearly every possible keystroke shortcut has been 
taken in Visual Studio .NET. You can overwrite keystrokes that you think you'll 
never use, but that isn't always the most satisfactory solution. For one thing, if 
you go to work on a different machine and you haven't updated the shortcuts, 
you might end up keying the wrong command, which can be both annoying 
and potentially harmful to whatever you're typing in at the moment. You're best 
bet is to find an available key$troke and take maximum advantage of it. 

Visual Studio .NET now allows you to create chorded shortcuts. To start a 
chord, you hold down the Ctrl key and press another key. The IDE then waits 
for another stroke to determine which command to execute. I've found that 
Ctrl+, (Ctrl+comma) hasn't been taken in Visual Studio .NET by default. So I can 
chord all my personal commands off this key sequence and assign the second 
key sequence to one that matches the command I'm trying to execute. For the 
Window.Dockable command, I assign the sequence Ctrl+,, Ctrl+D (Ctrl+comma, 
Ctrl+D) by typing that combination in the Press Shortcut Key(s) box. Be sure to .. 
save the new shortcut by clicking the Assign button. 

While I have the Options dialog box open, I can add a keystroke shortcut 
for the Options dialog box itself by typing Tools.Options in the Show Com
mands Containing box and assigning the keystroke Ctrl+,, Ctrl+O. Now I can 
open the Options dialog box quickly at any time to customize my IDE. 



Chapter 3 The Visual Studio .NET Editor 69 

You can assign keystroke shortcuts to named commands in the IDE, to 
add-ins that you create or install, and to macros that you create and save. 

Using the Keybindings Table Add-in 
The only way to determine what shortcuts are assigned in Visual Studio .NET 
without resorting to code is to look at the commands assigned in the Options 
dialog box. That isn't the easiest way to map out what's going on, so Craig 
wrote a nice little add-in that lists all of the named commands and currently 
assigned shortcuts in the IDE. 

The Keybindings Table add-in is available from the Visual Studio .NET 
Web site at http://msdn.microsoft.com/vstudio/downloads/automation.asp. 
Because this add-in is written in C++, you need to compile it using Visual Studio 
.NET or Visual C++ .NET. The compiled add-in is registered in Visual Studio 
.NET during the build process. After you restart Visual Studio .NET, you'll find 
that the add-in loaded by the IDE. 

On the Visual Studio .NET Help menu, you'll find a new command named 
KeyMap. Choosing this command brings up the Keyboard Help dialog box, 
shown in Figure 3-4. 

Build.BuildSolution 
Build. Cancel 
Build.Compile 
Database.Run 
Database. R unS election 
Database. S tepl nto 
D ebug.ApplyCodeChanges 
Debug.Autos 
Debug. B reakAll 
Debug.Breakpoints 
Debug.CallStack 
Debug.ClearAllBreakpoinls 
Debug.Disassembl}' Global 
Debug.EnableBreakpoinl Global 
Debug.Exceptions Global 
Debug.Immediate Global 
Debug.Locals Global 
Debug. M emory1 Global 
Debug. M emory2 Global 
Debug. M emory3 Global 
Debug.Memory4 Global 
Debug.Modules Global 
Debug.NewBreakpoinl Global 
Debug.Quick\lo/alch Global 

Ke Bindin 
Ctrl+Shift+B 
Ctrl+Break 
Ctrl+F7 
Ctrl+E 
Ctrl+Q 
Alt+F5 
Alt+F10 
Ctrl+Alt+V. A 
Ctrl+Alt+B reak 
Ctrl+Alt+B 
Ctrl+Alt+C 
Ctrl+Shift+F9 
Ctrl+Alt+D 
Ctrl+F9 
Ctrl+Alt+E 
Ctrl+Alt+I 
Ctrl+All+V. L 
Ctrl+Alt+M. 1 
Cirl+Alt+M. 2 
Ctrl+Alt+M. 3 
Ctrl+Alt+M. 4 
Ctrl+Alt+U 
Cirl+B 
Shill+F9 

Figure 3-4 The Keyboard Help dialog box 

The Keybindings Table add-in performs a number of useful functions. You 
can use this add-in to browse the keystroke shortcuts assigned to named com
mands in the IDE, or you can just browse all the commands available. You can 
also copy the table entries to the Clipboard. Just select an entry and click the 



70 Part I Visual Studio .NET as a Development Tool 

Copy button. If you want to select multiple entries, hold down the Ctrl key and 
click another item in the list to select a range of entries. Once on the Clipboard, 
these entries can be pasted into Microsoft Excel for easier reading and sorting. 

The Zen of Tabs and Code Formatting 
Code formatting is another one of those issues that developers tend to feel 
strongly about. When it comes to code formatting, the bottom line for most 
organizations is that some sort of standard should exist. The formatting options 
for each of the languages supported in the Visual Studio IDE are set in the Text 
Editor folder of the Options dialog box. When you set options f9r All Lan
guages, as shown in Figure 3-5, you override the settings for each individual 
language listed in the Text Editor folder. 

General 
;iii All Languages 

General 
+Tabs 

Figure 3-5 Setting global Tabs options 

~ I C"'1d;I Help 

As you can see in the figure, you can set Indenting to None, Block, or 
Smart. The behavior of these options is determined by the language and the 
Tabs settings below them. When None is the selected Indenting type, pressing 
Enter at the end of a line will start the next line at the leftmost space in the Code 
Editor. Block indenting sets the indent to the same space as the first character 
in the current line. This is a common generic setting that lets you indent man
ually but doesn't force you to key a lot of extra tabs to get to where you want 
to be. The Smart setting applies an indent by context. For example, pressing 
Enter after an open brace ({ ) in C# will automatically indent the next line. 



Chapter 3 The Visual Studio .NET Editor 71 

The choice between using spaces or tab characters for indenting is usually 
a matter of personal preference or of the coding standard you want to apply. If 
you prefer that all the code you deal with consists of spaces rather than tabs, 
you can set that option globally when you customize your IDE. If you prefer 
spaces to tabs, keep in mind that Visual C# specifies tabs for indentation by 
default. You can view the white space in the document by using the Edit. View
Whitespace command (Ctrl+R, Ctrl+W). Figure 3-6 shows a document in which 
the white space is visible. If you use tab characters in your source code, they 
will show up as right arrows. If you use spaces in your code, a single dot will 
show up for every space. 

gnamespace·CSStyle 
{ 

- -7 / / / • <summary> 
-+ //I· Summary· description· for· Class1. 
4 /ll·</summary> 

- -+ class· Class1 

- ~ ~ / l I · <1:n.U'r'!1'r'1aryJ. 
-+ ~ ///·The·main·entry·point·for·the·application. 
4 4 /l/·</summary> 

·4 4 [STA.Thread] 
- -+ -+ static·void·Main(string[] ·args) 

4 4 { 

4 4 4 II 
4 4 4 //·TODO:·Add·code·to·start·application·here 
4 4 4 II 

Figure 3-6 Displaying white space in the Code Editor 

If you want to convert existing files from tabs to spaces or vice versa, 
select the desired option on the Tabs page of the Options dialog box and then 
click OK to close the dialog box. Then simply select all the code in the file by 
pressing Ctrl+A. Press Ctrl+K, Ctrl+F (Edit.FormatSelection) to apply the new 
formatting to the selection. 

The Formatting page of the Options dialog box, shown in Figure 3-7, con
trols a number of characteristics of code typed into a Code Pane. This page is 
available for most of the major languages supported in the IDE, but under 
Basic, the VB Specific page handles the customizations. The page in the figure 
shows the C# formatting options. 



72 Part I Visual Studio .NET as a Development Tool 

General 
(ii All Languages 
i:il Basic 
@al C# 

General 
Tabs ·-C/C++ 

css 

Figure 3-7 The C# Formatting page 

Different options are available for different languages. The option to 
notice in Figure 3-7 is the Leave Open Braces On Same Line As Construct check 
box. In C#, this check box is clear by default. This setting forces an open curly 
brace added at the end of a line to be moved to the next line in the Code Editor 
and to be aligned with the beginning of the statement. The following line is 
then indented like this: 

static void Main(string[J args) 

II 
II TODO: Add code to start application here 
II 

Selecting the Leave Open Braces On Same Line As Construct option 
causes your code to be formatted in slanted style, which is often called K&R for 
the style adopted by Kernighan and Ritchie in 1be C Programming Language 
(2nd ed., Prentice-Hall, 1988). In this style, the first brace in the block is located 
at the end of the statement, as in the following: 

static void Main(string[J args) { 
II 
II TODO: Add code to start application here 
II 

Once you decide on the style characteristics you want to apply to your 
code, you can use the Edit.FormatSelection command to apply the style. 



Chapter 3 The Visual Studio .NET Editor 73 

You might have noticed that the C# Language Specification employs a 
mixed style, similar to strict K&R styling, in which methods use the slanted style 
and classes use the straight style. When you use Edit.FormatSelection to apply 
your desired formatting, your style is applied to every selected block in your 
code. If you use the Edit.FormatDocument command, every block in the doc
ument is modified to match the selected style. To use a mixed style, select the 
Leave Open Braces On Same Line As Construct check box, but make sure that 
you don't apply your formatting to the entire document. 

Syntax Coloring, Line Numbering, and Outlining (or, What the 
Compiler Saw) 

None of what we're talking about in this chapter has anything to do with what 
happens when you build your applications. Depending on the language you use, 
compilers remove formatting and white space when a file is processed. At the 
editor level, however, even the small features provided in the IDE can have a pro
found effect on your productivity and comfort when you're working with code. 

Syntax Coloring 
To change the colors used in the Text Editor, go to the Fonts And Colors page 
located in the Environment folder in the Options dialog box. This page, shown 
in Figure 3-8, lets you change settings for most of the windows used in the IDE. 
The settings include printer settings, tool window settings, and the query and 
view designer settings. 

Options IX I 
Environment 

General Ir ext Editor ::!] b[se Del aults I 
Ef;irlt (bold type Indicates Fixed-width fonts)• :i)ze: 

!M' 
I~ ·"1iiil8~'ll!l!!l!§:ii>:t'l',Z~I ;11' 

I Courier New 

Qlsplay item$: 

Selected Text 
Inactive Selected Text 
Indicator Margin 
Line Numbers 
Visible White Space 
Brace MatchinQ 

Figure 3-8 The Fonts And Colors page 

::!] ! 10 

D:em for.i>ground: 

~! J • Automatic 
~I 

::!] i;;ustom ... 

Item bacisground: 

j D Automatic ::!] Custom. ... 

;~ r §,okl 

OK Ci!neel I Help . 



74 Part I Visual Studio .NET as a Development Tool 

To customize an item in your Text Editor windows, select the item in the 
Display Items list and select the Item Foreground color and Item Background 
color you want the item to use in the editor. Select the Bold check box if you 
want an item to appear in bold. The Text item governs the overall look of the 
Text Editor, so if you want to make a drastic change, such as displaying white 
text on a black background, set those colors first and then customize the rest 
of your items. This will let you see in the Sample window how other items 
with the Item Background or Item Foreground settings set to Automatic will 
look with the custom color you've selected for Text. For example, in Figure 
3-9, the Text item is set to display white text on a black background. Clicking 
the Comment item will show an Automatic background and a Dark Green 
foreground. You can change the foreground to Green and get much better 
visibility for the item. 

Documents 
Dynamic Help 

+ Fonts and Colors 
Help 

Web Browser 
6fj Source Control 

lilil Text Editor 
lilil Analyzer 

c: Iii Database Tools 
lilil Debugging 

Device Tools 

Figure 3-9 Customizing the Text Editor 

You can also use the Fonts And Colors page to change the default font 
used in the dialog boxes and on the Start Page of the IDE. Figure 3-10 shows a 
tool window after Dialogs And Tool Windows has been customized to use a 
custom font. You can easily get back to the Visual Studio .NET defaults by click
ing the Use Defaults button on the Fonts And Colors page. 



Chapter 3 The Visual Studio .NET Editor 75 

Index ~I 
!:,ook tor: 

#Region directive 

Filtered b'll: 

Visual Studio Macros 

-<m":Juser opt ion 
l identifier type character 
l operator 
l separator character 
l= operator 
#identifier type character 
#separator character 
#Const directive 
#Else dire ct ive 
#Elselt directive 
#End If directive 
#ExternalSource directive 
#IF •.. #ENDIF preprocessor directii,ie 
#It directive 
#lt ... Then ... #Else directive 

If :~:~i :~ ::~ i~:: ~~:~:~i:~ 
" operator 
& identifier t')'pe character 
& operator 

operator characters 
~ence and associati>Jih v: 

f;isv1utior1 Explorer j~Cl:o.ss View~ 

Figure 3-1 O The Index tool window after the Dialogs And Tool Windows 
option has been customized 

There's one customization on the Fonts And Colors page that can be very 
useful if you use a standard black-and-white printer to print your code listings 
or if you do a lot of customization of the Text Editor in the IDE. You can select 
Printer in the Show Setting For list box to set the fonts and colors used when 
you print a document. The Use button replaces the Use Defaults button in this 
circumstance to allow you to use a different set of font and color options when 
you print. If you're displaying white text on a black background, for example, 
you probably don't want to print your pages in that format. The Printer settings 
are kept separate from those for the Text Editor by default. If you want, you can 
use your custom Text Editor settings for printing by selecting Text Editor Set
tings from the list shown in Figure 3-11. 

Environment ....... 
"''""""' -""' • Fontund Colo" 

""" -,.,.,,.,.d 
PIOjltd:sandSolutkll't 
T'5i<IJ5t 
Weber...,.. 

SOurtec.r<roi 

-~ lo""""'... 3 ----"--' 
~rt>l<I 

Figure 3-11 Customizing printer settings 



76 Part I Visual Studio .NET as a Development Tool 

Here we'll use settings that are separate from those in the Text Editor. By 
customizing Printer output, you can improve the readability of the code that 
you're printing. Figure 3-12 shows some printer output after the comments have 
been set to Bold on the Fonts And Colors page. Keep in mind that this setting 
doesn't affect the appearance of the code in the Text Editor. 

e~ \Oocu."llento. and Setti:igs \bria:i.~o\Deaktoe\Ke):Map\KefMap\Add.I:l ~cpp 

I /Oopf'ri'Jht. (o) llicroooft Coz:po:cat:i.on. All ri'Jht.s rosarwod. 

II-...- ' ~t:ati"" of m:.r. lbq>ort:a. 

tinelud~ "stdafx-h" 
finclude "resou.rce.h"' 
Unclude "Add.In.h• 

CAddinModule _AtlModule; 

Figure 3-12 Printed source code with comments in bold 

Customizing at Microsoft 
If you've been to any conferences where Microsoft employees have dem
onstrated products, you might have noticed that they don't do much cus
tomization of the user interface or the Windows environment in which 
they work. There's a reason for this. There's an informal understanding at 
Microsoft that if you need to customize your environment (and you want 
to show that to customers), you should file a bug and argue that the fea
ture you're customizing should be set to your preference by default. (Of 
course, a customization such as temporarily making the font in the Text 
Editor larger so audience members can read more easily is exempt from 
this guideline.) It's not that it's wrong to customize things-it's just that we 
strive to always provide the customer with the best experience out of the 
box. If something needs to be changed to make that experience better, 
then that setting should be made the default if possible. 

If you spend a lot of time customizing the colors and fonts in your IDE, 
you might want to back up those settings so you can apply them on a different 
machine or have them in case you need to rebuild. You can back up your cus
tom settings by using Regedit to export the following registry key to a REG file 
on your machine. 

Visual Studio .NET 2002 

HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\7.0\FontAndColors 



Chapter 3 The Visual Studio .NET Editor 77 

Visual Studio .NET 2003 

HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\7.1\FontAndColors 

Once you've saved the registry key, you can import the REG file using 
Regedit if you need to. Restarting the IDE after importing your custom settings 
will apply the imported settings. 

Line Numbering 
You can set line numbering on the General page for any of the languages avail
able in the Text Editor folder in the Options dialog box. You can set this option 
for any specific language, or you can set it for all languages. You can toggle this 
setting in the Options dialog box, but there is no named command associated 
with this setting. 

To toggle this setting without opening the Options dialog box, you have 
to run a macro or an add-in to automate that functionality. Two of the macros 
that are part of the Samples macros set included with Visual Studio .NET were 
designed to turn line numbering on and off. You can customize these macros 
yourself, or you can use them from the Command Window, from shortcuts, or 
by creating new menu commands or toolbar buttons. 

The line-numbering macros are Macros.Samples. Utilities. TurnOnLine
Numbers and Macros.Samples. Utilities. TurnO.ffLineNumbers. Either of these can 
be a finger buster to type into the Command Window, even with the aid of 
IntelliSense, so we'll create an alias for each of these commands. An alias is a 
short command name that's used to represent a longer command in the Com
mand Window. To create an alias for the TurnOnLineNumbers macro, open the 
Command Window by pressing Ctrl+Alt+A and enter the following command: 

>alias lnon Macros.Samples.Utilities.TurnOnlineNumbers 

Now when you enter lnon, line numbering will be turned on (if it's cur
rently off). To turn line numbering off, we'll create an alias for the TurnO.ffLine
Numbers macro by typing the following into the Command Window: 

>alias lnoff Macros.Samples.Utilities.TurnOfflineNumbers 

The TurnO.ffLineNumbers macro is now mapped to !no.ff 
Suppose you now want to map these macros to keyboard shortcuts. That's 

not a problem-you just search for the word Numbers on the Keyboard page in 
the Environment folder of the Options dialog box, as we did earlier. Select the 
macro that you want to map to a keystroke, type your keystroke, and click the 
Assign button. We use the following mapping for the line-numbering macros. 
For TurnOnLineNumbers we map the keys Ctrl+,, Ctrl+N. (The N stands for 



78 Part I Visual Studio .NET as a Development Tool 

numbering.) We've mapped the TurnOfflineNumbers macro to Ctrl+,, 
Ctrl+Shift+N. Figure 3-13 shows how that shortcut looks after we've assigned it 
to the macro. 

Options l~I 

~ Environment 
General 
Documents 
Dynamic Help 

Task list 
Web Browser 

Iii Source Control 
Iii Text Editor 
(i:il Analyzer 
Iii Database Tools 

Debugging 
Device Tools 

Shortcut(•) for selected command: 

lctrl+,, CtrH-Shift+N (Global) ::!J IJ.emo"l 

Use n..W shortcut In: !'Te•• .. shortcut key(s): 

Figure 3-13 The TurnOffLineNumbers macro with a shortcut key 
assignment 

Setting up line numbering is fairly straightforward, but will we want to 
toggle line numbering often enough to justify the brain cells it'll take to remem
ber the aliases and the shortcuts we just created? Maybe. But if not, we can store 
these commands on a menu and then find them there when we need them. To 
add these macros to a menu, right-dick on a toolbar in Visual Studio .NET and 
choose Customize. On the Commands tab of the Customize dialog box, you'll 
find a Macros category. With Macros selected, scroll through the Commands list 
until you find Samples.Utilities.TurnOnLineNumbers. Choose that command 
and drag it to a menu. The menu you drag it to will expand, and you can place 
your selected command precisely where you want it. 

To customize the new menu command, right-click on it to bring up a 
shortcut menu. (The Customize dialog box must remain open.) You can rename 
the new command Turn On Line Numbers to make it a little more readable. Do 
the same with the TurnOfflineNumbers macro, as shown in Figure 3-14. 



Chapter 3 The Visual Studio .NET Editor 79 

Figure 3-14 Adding the TurnOffLineNumbers macro to a menu 

You can add a macro like this one to a toolbar in just the same way. In that 
case, you'll probably want to specify a button image to use with the macro that 
you're adding. 

Outlining 
The Visual Studio .NET outlining feature is probably familiar to programmers 
who've used other advanced editors. The idea is to group code by functionality 
to make it easier to navigate the code in the Code Editor. Figure 3-15 shows a 
code file in which the outline has been collapsed to the methods in the file. At 
the end of each collapsed line you'll see a box with ellipses in it. Hover your 
mouse pointer over that box to display a ToolTip that shows some of what's in 
the collapsed node. 



80 Part I Visual Studio .NET as a Development Tool 

Figure 3-15 A ToolTip indicates the contents of a collapsed node when 
Outlining is enabled. 

You can turn off outlining by pressing Ctrl+M, Ctrl+P (Edit.StopOutlining). 
Turning off outlining makes the outlining indicators along the side of the Code 
Editor disappear completely. You can restart outlining by pressing Ctrl+M, 
Ctrl+O (Edit.CollapsetoDefinitions). The CollapsetoDefinitions command will 
restart outlining in the Code Editor and will collapse each code block in the file. 
Pressing Ctrl+M, Ctrl+L (Edit.ToggleAllOutlining) will open all the collapsed 
blocks in the Code Editor. 

In addition to hiding logical code blocks in the Text Editor, you can col
lapse an arbitrary selection by selecting some text and pressing Ctrl+M, Ctrl+H 
(Edit.HideSelection). This function can be very handy for collapsing some code 
between two distant points in a code file, and it even works to collapse lines in 
a plain text file. If you want to expand the collapsed selection, press Ctrl+M, 
Ctrl+U (Edit.StopHidingCurrent). 

Table 3-5 lists the shortcuts associated with outlining in the Text Editor. 

Table 3-5 Outlining Shortcuts 

Command 

Stop outlining 

Toggle outlining 

Keystroke 

Ctrl+M, Ctrl+P 

Ctrl+M, Ctrl+L 

Named Command 

Edit.StopOutlining 

Edit. ToggleAllOutlining 



Chapter 3 The Visual Studio .NET Editor 81 

Table 3·5 Outlining Shortcuts (continued) 

Command 

Toggle expansion 

Hide selection 

Stop hiding selection 

Programming Help 

Keystroke 

Ctrl+M, Ctrl+M 

Ctrl+M, Ctrl+H 

Ctrl+M, Ctrl+U 

Named Command 

Edit. ToggleOutliningExpansion 

Edit.HideSelection 

Edit.StopHidingCurrent 

A number of features in the IDE make it easier for programmers to write code. 
You should be familiar with Help in the IDE, so we won't talk too much about 
it. Help in Visual Studio .NET is dead simple-you just select what you don't 
understand and press Fl. You almost always get what you're looking for. In this 
section, we'll go over some of the features of the IDE that you've probably used 
but that you might not be so familiar with. 

The Power of F1 
A true story: A guy called me a few years ago and told me he'd been trying 
to find out why he was getting a Visual Basic error code when he was run
ning some function (in Visual Basic 4, I think). He told me he'd been 
searching for an answer for hours and then finally called me for help. He 
e-mailed me his project, and I ran it while we talked. Sure enough, I got 
the same error. He heard my machine ding, and about 10 seconds later I 
told him what the error message meant. "How did you find that?!" the 
caller asked in amazement. I told him that I pressed Fl while the message 
box was still open. 

lntelliSense 
IntelliSense is one of those features that you start to rely on utterly as a pro
grammer. It's a time-saving feature that can really help you do the right thing 
when you're typing code into the IDE. What IntelliSense does is provide state
ment completion in the form of context-sensitive member lists that appear auto
matically as you type code into the Code Editor. These lists can save you a ton 
of time when you're programming an unfamiliar API, and they can help you 
reduce errors that would normally be caught only at build time. 



82 Part I Visual Studio .NET as a Development Tool 

IntelliSense works by parsing the code you type into the Code Editor 
based on the project type context. This means that your source file needs to be 
part of a project or a solution before IntelliSense kicks in. IntelliSense is mostly 
automatic. It works on code that's part of the .NET Framework, and it works on 
external methods from references you've added to your project. It even works 
on XML Web services references that have been added to a project. 

IntelliSense provides four major types of functionality when you're work
ing with a supported language. Most programmers will use four of these fea
tures-statement completion, parameter information, word completion, and 
code comments-in their automatic form; that is, they'll take the information as 
presented in the IDE without thinking too much about what's being shown. 
That's an absolutely valid way to use the technology. If this approach works for 
you and doesn't get in your way, IntelliSense is doing exactly what it's designed 
to do. You can also employ IntelliSense more deliberately by using the short
cuts associated with displaying IntelliSense information. 

You might want to turn statement completion and parameter information 
off if you find them distracting, in which case you'll need to use the shortcuts, 
named commands, or toolbar buttons associated with the various IntelliSense 
features to display this information. To turn off statement completion in the 
Code Editor, go to the Text Editor folder in the Options dialog box. Select the 
language you want to apply your changes to, or select All Languages if you 
want to apply your changes universally. Open the General page, and in the 
Statement Completion section clear Auto List Members check box. You can also 
toggle the Parameter Information setting from this page. 

Note You can increase the number of options returned in a member 
list by clearing Hide Advanced Members. Hide Advanced Members is 
the default setting for Visual Basic .NET, so you might be missing a 
number of possible completions if you leave that setting checked. 

With statement completion turned on, IntelliSense presents you with 
information as soon as you type an operator as part of a statement. If you have 
statement completion turned off or if you want to display this information 
immediately, press Ctrl+J. The result is shown in Figure 3-16. 



1-'l[·-J 
1si 
15i 
17: 
18! 
19! 
20! 

211 
22! } 
23: 
24i 

2sl 
26! 
27! 
2a1 
29! 

301 

Chapter 3 The Visual Studio .NET Editor 83 

static void Main(string[] args) 
{ 

II 
11 TODO: Add code to start applicat.ion here 

//int 
Console.L 

.,•fEquai~ 
llfl'Err~;· 
~In 

··• OpenStandardError 
.,,. OpenStandardlnput 

.• ,. OpenStandardOutput 

~Out 
-~•Read 
.,_. Readline 

=• ReferenceEquals 

·::J 

Figure 3-16 Forcing statement completion by pressing Ctrl+J 

To select an entry to complete a statement, use the up and down arrow 
keys to navigate to the desired completion and then press Tab. 

Note In Visual Studio .NET 2003, you can set an option to make 
lntelliSense preselect the most frequently used member for a particu
lar statement in Visual C#. You'll find this option on the Formatting 
page in the C# folder in the Options dialog box. 

To force parameter information like that shown in Figure 3-1 7, press 
Ctrl+Shift+Spacebar. This gives you a list of the parameter overloads you can 
choose from for a particular method. With the parameter information showing, 
use your up and down arrow keys to view the available parameters. 

11!-
1si 
16i 
17! 
1si 
19! 
2oi 
21! 
221 } 
23! 

static void Main(string[] args) 
{ 

II 
II TODO: Add code to start application here 
//int 
Console. T.Jrite ( 

L 'i17of 18ii! voidConsole.Write(stringformat, objectargO, objectargl) 
format: The format string. 

Figure 3-17 Viewing the parameter information for a method by press
ing Ctrl+Shift+Spacebar 



84 Part I Visual Studio .NET as a Development Tool 

Use the parameter information provided by selecting the item that best 
suits your needs and then type the parameters into your method. You'll notice 
that after you type each parameter, the next parameter in the list appears bold. 
Watching for this pattern helps ensure that every parameter in the list is 
entered correctly. 

You might not be too familiar with the word completion feature if you're 
used to using IntelliSense automatically. Word completion lets you type in a few 
characters of a particular statement and get a list of possible completions for 
that statement. This functionality is a bit different from statement completion, 
which gives you a member list based on context. Word completion simply gives 
you a list of all the possible completions for the letters you've typed in. The 
shortcut for word completion is Alt+ Right Arrow, but the statement completion 
shortcut (Ctrl+J) also works. 

Finally, you might have noticed that when you hold your mouse pointer 
over an identifier in the Code Editor, ToolTip information appears. This ToolTip 
information is part of the Quick Info feature of IntelliSense, which contains the 
declaration for the identifier and any associated code comments. You can force 
this information using Ctrl+K, Ctrl+I. You can add code comments to any 
method in Visual C# by typing I I I on the line directly above the method defi
nition. Even if you're not going to create documentation for your methods, 
IntelliSense makes code comments such as these helpful for letting another 
developer figure out how to use your code. 

Brace Matching 
Automatic brace matching is an IntelliSense feature that helps you determine 
whether braces in your code are matched properly. Brace matching works in 
Visual C# and Visual C++ and goes into effect when you type a closing brace 
into the Code Editor. The brace types affected include parentheses 0, brackets 
0, and braces {}. In addition, the conditional macro expressions #if, #else, and 
#endif are matched as you type the closing expression, and quotation marks 
are matched when you type the closing set. 

You can't turn off brace matching-but why would you want to? Well, you 
might want to, and we'll show you a way to at least hide this feature so it 
doesn't bother you while you're typing. To customize the way that braces are 
matched, go to the Fonts And Colors page in the Environment folder of the 
Options dialog box. Select Brace Matching from the Display Items list. If you 
clear the Bold check box for Brace Matching and leave the Foreground and 
Background settings as Automatic, you no longer see the matched braces when 
you type in the Code Editor. Of course, you can also change the colors and set
tings to make the brace matching stand out even more. Making the background 



Chapter 3 The Visual Studio .NET Editor 85 

Yellow while keeping the text Bold really makes the braces pop out (and is my 
preferred work setting). 

Dynamic Help 
Dynamic Help is one of those awesome features that's easy to overlook when 
you're working with a complex tool such as Visual Studio .NET. Dynamic Help 
is a tool window in the IDE that constantly serves up help suggestions based 
on what you're doing in the IDE. If you select a designer, you see suggestions 
for designer help. If you select a tool window, you see help for that particular 
tool window. 

More important, Dynamic Help serves up information based on code con
text in the IDE. If you open a Visual C# Code Editor window and you type Con
sole, you'll see a Dynamic Help window that looks like the one in Figure 3-18. 
This window provides links to the help topics appropriate to the System.Con
sole class. This is extremely significant because I can't even begin to tell you 
how many times I've typed Ctrl+Alt+F3 (Help.Search) and then proceeded to 
type the same thing I've already typed into the Code Editor. 

l1l 
(:Qii:l!I 

Console Members 

Console Class 

Main (C#l 

Code and Text Editor 
Coding Techniques and Proar am ming Practices 

Smart Device Projects 
[ij._' Samples 

Visual C# Samples 

Smart Device Samples 

Visual Studio Samoles 

(J:1I Getting Started 
Visual Studio W alkthroughs 

~ 9 Dynamic Help I 

Figure 3-18 The Dynamic Help window 

I think this feature isn't talked about more often because of limited space 
in the IDE. Developers need to use the Properties tool window frequently, so 
Dynamic Help gets left behind (literally). Using the appropriate shortcuts, you 
can change that a little bit and make it easier to use this window. 

To bring up the Dynamic Help window, press Ctrl+Fl. To get a feel for 
how this will work when you're using the IDE, open a project and be sure the 
Properties window is obscuring the Dynamic Help window. Navigate to some
place in one of the code files for the project and consider how you can get 
information about the different elements in your source file. You can place the 



86 Part I Visual Studio .NET as a Development Tool 

cursor in a particular statement and press Fl to bring up the associated Help 
topic. You can press Ctrl+Alt+F3 to open the Search window and then type in 
the subject that you're looking for help on, or you can press Ctrl+Fl and choose 
from one of the suggestions from Dynamic Help. In my experience, the 
Dynamic Help window provides the information I'm looking for well over 90 
percent of the time. Using this window takes a little practice, but when you get 
used to it you'll probably save a significant amount of time. 

Using the Command Window 
If you've used a modal editor such as Vim (Vi improved) for a number of years 
and are used to typing editor commands in at a command line, the Command 
Window in Visual Studio .NET will come as a welcome surprise. I've already 
referred to using the Visual Studio .NET Command Window a number of times 
(in both Chapter 1 and Chapter 2), but it's worth considering the various ways 
you can use this tool in your everyday work. 

If you've installed and played with the Keybindings Table add-in, you'll 
find that more than 1100 commands are available in the IDE. Of those com
mands, nearly 400 are bound to keyboard shortcuts by default. That leaves a 
huge number of commands that are available only through menus, toolbars, or 
the Command Window. 

The Command Window in Visual Studio .NET supports two modes of 
operation. In Command Mode, the Command Window runs named commands. 
In Immediate Mode, the Command Window evaluates expressions related to 
the code you're working with. You can toggle between Command Mode and 
Immediate Mode using a couple of commands. Typing immed will put the 
Command Window into Immediate Mode. You can switch back to Command 
Mode by typing >cmd. In fact, you can do some expression evaluation in Com
mand Mode while debugging by prefixing your command with a ? (question 
mark), as shown here: 

>? 
4 
>? = 7 

7 

>? + i 
14 

Conversely, you can easily enter a command while you're working in 
Immediate Mode by prefixing your command with a > (greater than) character: 

7 



Chapter 3 The Visual Studio .NET Editor 87 

i + i 

14 
>Edit.Find 
>immed 

You'll notice that as soon as you enter a completed command, the Com
mand Window switches into Command Mode. You'll need to enter the immed 
command to get back to Immediate Mode. Certain commands, such as 
Edit.Find, open a dialog box and return you to Immediate Mode. 

You can clear the Command Window by entering the els com
mand. You can do this from either Command Mode or Immediate 
Mode; the Command Window will be returned to the mode that it was 
in when you entered this command. 

As you've probably noticed by now, the named commands in Visual Stu
dio .NET generally map to menu commands in the IDE. So if you want to use 
a named command from the Command Window, all you usually need to do is 
to type the name of the menu containing the command and then the dot oper
ator and the name of the command. For example, if you want to search using 
the Command Window, you first bring the window to the front by pressing 
Ctrl +Alt+ A. To open the Find dialog box, you enter Edit.Find into the Com
mand Window. You'll notice that some commands, such as the Edit.Find com
mand, can take arguments. This means you can search from the Command 
Window without having to deal with a dialog box. Whether or not you find this 
approach better is a matter of taste. Now let's take a look at an idea that we 
introduced a little earlier in the chapter, aliasing, and look at how we can use 
that feature to make our work in the Command Window a little easier. 

We'll use the Edit.Find command as an example here. For this command 
to be really useful, you need to be able to quickly type the command and the 
search parameters. Entering Edit.Find takes a little more effort than you would 
normally want to expend on a command that you can already perform effi
ciently in a number of different ways. So let's map this command for a reason 
other than convenience. Let's say you're used to working in the Vi editor and 
you find yourself wanting to type \ (backslash) to search for items in the Text 
Editor. You can alias the backslash character to Edit.Find using the following 
command sequence: 

>alias \ Edit.Find 



88 Part I Visual Studio .NET as a Development Tool 

To use the new alias, you type your command just as if you were using the 
actual named command. The following shows using the new \ alias to search 
in the Text Editor for a couple of terms: 

>\ mainlargs /regex 

This implementation of the \ search character isn't perfect. You need to type a 
space between the character and the term or expression you're searching for. 
This feature does the job, though, and it makes converting to the new editor 
just a little easier. 

You'll probably find that aliasing commands is most useful for macros that 
you've written. The paths to these macros can get pretty long, and an alias can 
save you a lot of work. We'll talk about macros and how to employ them in the 
IDE in Chapter 4. 

There are two ways to get to a command prompt in Visual Studio .NET. 
The way that we've described in the book so far is to open the Command Win
dow using the Ctrl+Alt+A shortcut. You can also type commands into the Find 
combo box on the Standard toolbar by pressing Ctrl+D (Edit.GoToFindCombo). 
Normally, typing text in the Find combo box simply gives you a quick way to 
search the currently open document for a term or phrase. When you type a > 
(greater than) character into the box, the box changes to one capable of taking 
commands. You can then type named commands in the box that you would 
usually type in the Command Window. Because both the Command Window 
and the Find combo box support IntelliSense, you can simply type a named 
command to see all the possible completions for the command. You can see the 
list of completions in Figure 3-19. 

I >File.New 

File.NewBlankSolution 
File, NewFile 
File.NewProject 

Figure 3-19 Command completion in the Find combo box 

Search, Replace, and Regular Expressions 
If you can't easily search for and replace text in your editor, you're probably not 
working with a very good editor. It's great to be able to type in code easily, but 
finding and fixing code problems is something you must do often as a program
mer, and the search functions built into the editor are what make that work easy 
(or difficult). Visual Studio .NET offers a number of ways to search in the Text 
Editor, and it offers a powerful regular expressions facility that allows you to do 
extremely complex searches. 



Chapter 3 The Visual Studio .NET Editor 89 

First let's take a look at the named commands and shortcuts associated 
with the Find and Replace operations in Visual Studio .NET. These might be 
familiar to you because they're mapped to the Common User Accessibility 
(CUA) shortcuts that you might have used in Windows or in Office. 

To bring up the Find dialog box, press Ctrl+F. You can see this dialog box 
in Figure 3-20. The options in this dialog box are fairly straightforward. You can 
specify case (Match Case), whole word searches (Match Whole Word), and the 
direction of your search (Search Up). An interesting option on this dialog box 
is Search Hidden Text. When this check box is left clear, text that is hidden in 
a collapsed node of an outline won't be searched. 

Fiud what: 

Match £ase 

Match i;!hole word 
Search bidden text 

r Us!l_: 

All QPen documents 

Current proiect 

Onl~: IntSenEx.Class! 

Figure 3-20 The Find dialog box 

Efnd Next I 
fieplace :; J 

f:!!arkAll I 
Close I 

The Find dialog box in Visual Studio .NET is actually a tool window, so you 
can dock it in the IDE or even toggle off the Dockable option on the shortcut menu 
available from the title bar to make it a tabbed window in the center of the IDE. 

You can dock the Find dialog box by dragging it to a side of the IDE. But 
making it a floating dialog box might be preferable because it's easy to acciden
tally dock the window when you're trying to get it out of your way. You can 
turn off docking by choosing Floating on the shortcut menu for the dialog box. 
(Right-click the Close button on a dialog box to open its shortcut menu.) Doing 
so will let you drag the Find dialog box around the screen with impunity. 

You can bring up the Replace dialog box by pressing Ctrl+H. This dialog 
box (shown in Figure 3-21) is nearly identical to the Find dialog box, except 
that it contains a combo box for the Replace With text. 

I "I• • 

Fi[ld what: 

Rei;ilace wlthi 

Figure 3-21 The Replace dialog box 



90 Part I Visual Studio .NET as a Development Tool 

Using the Find and Replace dialog boxes is straightforward. Especially 
handy are the Search options, which let you choose between the current docu
ment, all open documents, the current project, and specific selections or blocks 
in the editor. 

The Find In Files dialog box (Ctrl+Shift+F), shown in Figure 3-22, and the 
Replace In Files dialog box (Ctrl+Shift+H) make it fairly easy to find text within 
a project or a directory structure. Setting up these file searches takes a little 
more work than performing a standard find command. You might find this facil
ity easier to use than the Windows search facility, but it's usually not quite as 
fast. (It depends on how wide your search is.) The most important button in this 
dialog box is the ... button, which opens the Look In dialog box. You can use 
this dialog box to narrow your search to your project or to a directory structure 
on your machine. The output from the Find In Files search is sent to the Find 
Results window by default. 

Figure 3-22 The Find In Files dialog box 

The Visual Studio .NET Find and Replace shortcuts are listed in Table 3-6. 

Table 3-6 Common Search Shortcuts 

Command 

Find 

Replace 

Find in files 

Replace in files 

Wildcards 

Keystroke 

Ctrl+F 

Ctrl+H 

Ctrl+Shift+F 

Ctrl+Shift+H 

Named Command 

Edit.Find 

Edit.Replace 

Edit.FindinFiles 

File .ReplaceinFiles 

The Use check box in the Find and Replace dialog boxes lets you choose 
between using regular expressions in your search strings and using wildcard 
characters. If you're not used to regular expressions, the Wildcards option can 



Chapter 3 The Visual Studio .NET Editor 91 

provide you with a lot of extra functionality with a very short learning curve. 
The wildcard characters let you fine-tune your search parameters. 

Let's take a look at how this works. If you want to search for a pattern of 
characters in a file that contains a number if incremented values such as 
H03XA01, H03XB02, H03XC03, H03XD04, and so on, you can use the# wild
card character to match any digit that comes up in the pattern and use the ? to 
match any character. To perform a search for these values, select Use in the 
Find dialog box and select Wild Cards from the adjacent combo box. The 
search string would then be something like H03X?O#. 

The simplest wildcard search allows you to search for a match while dis
regarding an ending character or group of characters. The* wildcard character 
provides this functionality. Continuing with the example in the previous para
graph, a more general search string that matches the same pattern might actu
ally be H03X*. If the body of the pattern isn't widely used in a file, you can 
expand the pattern to make things a little easier. 

Be aware that searches using the* character can extend beyond the end of 
the term(s) you're searching on, so you can end up with more selected than 
you had intended. For example, if you're looking for the term class in the Code 
Editor and you're using cla* as your search term, one of the returned selections 
might be class Classl. When you're performing a replace operation, you're 
probably not looking for a string like this. If you know the pattern of the item 
you're searching for, it's best to use specific parameters when possible. 

To search for a string that does not contain certain values, you use the [! ] 

wildcard. For example, working with the same list, let's say you want to match all 
the characters in the H03X?O# series except those that contain A or C as the fifth 
letter in the series. In such a case, the search string H03X!IAC]O# will return the 
values you're searching for while filtering out the items you don't want to see. 

The [ ] wildcard works by matching any of the characters inside the brack
ets as part of the search. To return only the items that contain A and D, the 
search string would look like H03X[AD]O#. 

Wildcards aren't as powerful as the regular expressions that we'll talk 
about in the next section, but they can be a lot easier to remember if you don't 
use regular expressions that often. You'll find the list of wildcard characters sup
ported in Visual Studio .NET Find and Replace operations in Table 3-7. 

Table 3-7 Wildcard Characters Supported in 
Visual Studio .NET 

Character 

# 

Description 

Searches for any single character in the pattern 

Searches for any single digit in the pattern 



92 Part I Visual Studio .NET as a Development Tool 

Table 3-7 Wildcard Characters Supported in 
Visual Studio .NET (continued) 

Character 

[! l 
[ l 

Regular Expressions 

Description 

Searches for one or more matching characters in the pattern 

Searches for characters that do not match the items in this list 

Searches for characters that match the characters in this list 

Whole books have been written about regular expressions, and it would take at 
least a chapter to do the subject justice, but because this is a book about Visual 
Studio .NET, we'll explain just enough about regular expressions in Find and 
Replace operations to get you started. Visual Studio .NET supports about 70 
regular expressions that you can use in Find and Replace operations. We'll talk 
about a few of these and how you can use them to improve your searches. To 
enable regular expressions in a search, you must select the Use check box and 
select Regular Expressions in the Use combo box. 

The set expression [ ] is similar to the wildcard expression we described 
earlier. This expression is used to include a number of different characters in a 
search. One powerful feature of this expression is that you can specify a range 
of characters to search for by placing a dash between two characters. For 
example, to search for any character in the series a through d in a regular 
expression, you can specify [a-d] in the Find What combo box. The expression 
[a-d]b searches for any of the following character sets in the Text Editor: ab, bb, 
cb, and db. 

Wherever there's a Find option, you'll have a Don't Find option-in this 
case, the expression [/\ ] weeds out the matches you don't want to see. For 
example, the expression [l\f-v]s returns a match for as, bs, cs, ds, and so on. It 
skips ts, us, vs, and so forth. 

If you want to find something at the beginning of a line, you can place the 
I\ character at the beginning of your search string. Using this expression alone 
will match the beginning of each line in a file. The $character indicates a search 
at the end of a line. Two other expressions match the beginning and the end of 
a particular word. The < character matches the beginning. of any word in the 
search string, and the > character matches the end of any word. These expres
sions must appear in a logical place in your search string. For example, if you 
want to search for all instances of the word int in a file, you can specify <int as 
your search string. This returns int as part of a larger word as long as int is at 
the beginning of the word. Integer and int both match, but mint doesn't match. 



Chapter 3 The Visual Studio .NET Editor 93 

If you want to take this a step further and search only for the word int, you can 
just add a closing > expression. 

You can create some pretty complex expressions with all the regular 
expression tools at your disposal. You might want to use these types of expres
sions to search your code for patterns that match a statement of a particular 
form. For example, if you want to search for C# MessageBox statements that 
provide only one string argument to the function, your expression might look 
something like this: 

<MessageBox.Show\(:qi<<.>l\l; 

That expression is somewhat complex, but it contains elements we've already 
discussed. The < expression indicates the beginning of a word. The words Mes
sageBox.Show are what we're looking for. The \ expression indicates that the 
next character is a literal and not a regular expression element. The :q expres
sion is interesting. It's a quoted string expression. It represents the same thing 
as typing (("{/\ ']*") I (1A J*')). The I expression that follows :q is an or expres
sion. The string you find in MessageBox.Show might be a string variable, so you 
can test for any single word by putting<.> in parentheses. The . represents any 
character, and you use parentheses to contain the or operation. Finally, you 
check for a closing semicolon. 

There's a problem with this expression, though, and it has to do with how 
the method calls are formatted in the Code Editor. If the programmer of the 
method call that you're searching for left white space between the end of the 
parameter and the closing parenthesis, you lose your match. You can adjust for 
that by adding the : Wh expression followed by the * expression, which will 
match any or no instance of the preceding expression. So now you're up to 
<MessageBox.Show\(:q IC<.>):Wh*\);. But what about space before the quoted 
string, <MessageBox.Show\( Wh*:q I(<.>): Wh*\J;? What about before the semi
colon? It goes on and on. Regular expressions are excellent tools for searching 
for text, but you really need to spend some quality time learning to work with 
them effectively. To that end, we recommend two books that cover regular 
expressions nicely. The first is Mastering Regular Expressions by Jeffrey E. F. 
Friedel (O'Reilly, 1997). The second book is Writing Secure Code, Second Edi
tion, by Michael Howard and David LeBlanc (Microsoft Press, 2003). The 
Friedel book does a good job of explaining regular expressions, and Writing 
Secure Code gives you some insight into uses for regular expressions that you 
might not have considered before. 

Table 3-8 contains the expressions we've discussed in this chapter. See 
Visual Studio .NET Help for the complete list. (Click Help in the Find dialog 
box, and on the help page that opens, you'll find a link to all the regular expres
sions supported in Visual Studio .NET.) 



94 Part I Visual Studio .NET as a Development Tool 

Table 3-8 Casual Regular Expressions 

Expression Description 

[] Find using provided set of characters. You can express a range using 
the - character. 

{/\ l Find not including the provided set of characters. 

< or > Find the beginning of a word or find the end of a word. 

/\ or $ Find at the beginning of a line or find at the end of a line 

Match any single character. 

\ 

:q 
:Wh 

The next character in the search string is a literal character and not a 
regular expression. 

Match regardless of character or characters. 

Match a quoted string. 

Match any type of white space . 

Searching from the Command Window 
Putting this all together, you might find it easier to perform a complex search 
operation from the Command Window. The Command Window gives you a lot 
more room for your search strings, especially if you're using wildcards or regu
lar expressions in your searches. 

To use the Find command from the Command Window, type Edit.Find 
followed by the string you want to search the current file for and press Enter. If 
you want to specify any of the switches associated with this command, type 
them after the search string you're entering. For example, if you want to use a 
wildcard in your search, your command might look something like this: 

Edit.Find Class# /Wild 

The rest of the Find command switches match the options in the Find dia
log box that we described earlier. Unless you reset them, these switches stick 
after each search as if you selected them in the dialog box. So you don't have 
to specify them every time you perform a search from the command line. To 
find out what Find options are currently set, enter Edit.Find /options, as 
shown here: 

>Edit.Find /options 
/wild /doc /names /sub 
> 



Chapter 3 The Visual Studio .NET Editor 95 

Table 3-9 lists most of the switches that apply to the Find command in 
Visual Studio .NET. You'll find that these are similar for Edit.Replace, Edit.Find
inFiles, and Edit.ReplaceinFiles. To get the full list, enter help Edit.Find in the 
Command Window. 

Table 3-9 Find Command Switches 

Switch Short Form Description 

/case le Case-sensitive 

/doc Id Search current document 

/hidden lh Search hidden code 

/markall Im Marks each occurrence in the Margin Indicator Bar 

/open lo Search all open documents 

/options It Display the current Find options 

/proc Ip Search current procedure only 

/set Is Search the currently selected text only 

/up lu Search up 

/regex Ir Search with regular expressions 

/wild 11 Search using wildcards 

/word lw Search for whole word only 

The Edit.Find command also contains a !reset switch that is 
supposed to reset the Find options to a default setting. This switch cur
rently has a bug that requires you to enter a parameter with the switch. 

Incremental Searching 
Incremental searching is a feature of Visual Studio .NET that's a real timesaver. 
An incremental search is performed one character at a time, matching each 
word in the search string from the top of the file. You can start an incremental 
search by pressing Ctrl+I. You'll see the mouse pointer transform into a down 
arrow like the one shown in Figure 3-23. 



96 Part I Visual Studio .NET as a Development Tool 

Figure 3-23 Starting an incremental search by pressing Ctrl+I 

With the down arrow showing, start typing the term you want to search 
for. As you type, words that match the letters are matched starting from the top. 
When you've completed the pattern you want to search for, press Ctrl+I again 
to move to the next match. You can continue to press Ctrl+I until you reach the 
end of the document to match every instance of the term you're searching for. 
If you want to search upward, just press Ctrl+Shift+I. It works in just the same 
way. You can exit the incremental search by pressing Enter or Esc. 

Looking Ahead 

This chapter should have given you a pretty good idea of how named com
mands apply to the Code Editor in the IDE and how you can customize the IDE 
by using alias commands in the Command Window, through keyboard short
cuts, and by adding menu items associated with named commands and macros. 
In Chapter 4, we'll take a look at how you can start to extend the IDE by creat
ing your own Visual Studio .NET macros. 



Visual Studio .NET Macros 
The macros facility in Microsoft Visual Studio .NET is arguably one of the most 
compelling reasons for using the IDE. This facility exposes almost all the func
tionality that you can access through the automation object model, but in an 
easy-to-use, scriptable form. 

In this chapter, we'll introduce you to macros in Visual Studio .NET. We'll 
show you how to record macros and how to edit macro projects in the Macros 
IDE. We'll also show you how you can extend macros using .NET assemblies 
and how to share your macros with others. In addition, we'll explain how you 
can turn a macro project into a full-fledged Visual Studio .NET add-in, using a 
macro that ships with the Visual Studio .NET samples. 

Macros: The Duct Tape of Visual Studio .NET 
The macros facility of Visual Studio .NET uses Visual Basic .NET as its macro 
language. This fit has a much better feel to it than the Visual Basic Scripting Edi
tion (VBScript) facility built into Microsoft Visual C++ 6.0. The Visual Basic .NET 
language can take full advantage of the .NET Framework and its own automa
tion object model, so it offers an extremely powerful and compelling set of fea
tures that you can use to automate tasks in the IDE. In fact, you can convert any 
macro into a Visual Basic .NET-based add-in that you can compile and share 
with other developers. 

As we mentioned in Chapter 1, Visual Studio .NET macros are saved into 
files with a .vsmacros extension. These macros are stored in the VSMacros71 
folder in your default Visual Studio .NET projects folder. You can specify the 
Visual Studio .NET projects folder in the Options dialog box, on the Projects 

97 



98 Part I Visual Studio .NET as a Development Tool 

and Solutions page in the Environment folder. By default, this path is My Doc
uments\ Visual Studio Projects. Macros are stored in the VSMacros71 subfolder. 

Visual Studio .NET macros are usually created in one of two ways. You 
can record a macro in the IDE (Ctrl+Shift+ R); the code generated during the 
. recording session will be stored in the MyMacros.RecordingModule. Temporary
Macro method. Alternatively, you can open the Macros IDE (Alt+Fll) and cre
ate a new method by writing it from scratch. One of the best things about 
macros is that they're designed to automate functionality in the Visual Studio 
.NET IDE. This means you can often simply record a macro, copy the generated 
code to a new method, and use that as the basis for your own automation 
project. You can also use this technique to get code for the add-ins you create 
for Visual Studio .NET. 

Visual Studio .NET macros are accessed in the IDE just like any other 
named command. You can enter the name of the macro in the Command Win
dow (Ctrl+Alt+A), you can add the macro to a toolbar or a menu, you can assign 
the macro a keystroke shortcut, you can run the macro by double-clicking it in 
Macro Explorer, and you can run the macro directly from the Macros IDE. 

When you run a macro by double-clicking it in the Macro 
Explorer window, the focus returns to the last active window. As a 
result, you can set the active document, open Macro Explorer, double

the macro and have it affect the last active document. 

We consider macros the duct tape of Visual Studio .NET-in the best 
sense of the term. Duct tape is made of an extremely strong material and can 
help you accomplish tasks quickly and easily. We would describe macros in 
the same way: they're extremely powerful tools in the IDE that you don't have 
to spend a ton of time thinking about. You can create your macro to perform 
your task and then tuck it away. If the macro is sufficiently important and pow
erful, you can turn it into a full blown add-in and then polish that code to your 
heart's content. 

Recording Visual Studio .NET Macros 
To record a Visual Studio .NET macro, first press the Ctrl+Shift+R keyboard 
shortcut. This combination brings up the Recorder toolbar and creates a macros 
module named RecordingModule if one doesn't already exist. You can see the 



Chapter 4 Visual Studio .NET Macros 99 

Recorder toolbar in Figure 4-1. Notice that you can pause, stop, or even cancel 
the recording session that you've started. 

Figure 4-1 The Recorder toolbar 

The easiest way to get going with macros is to record a simple macro 
that you might want to use repeatedly. For example, let's say you want to find 
the word Connects in your code files. You would normally use the Find or 
Find In Files command for this purpose. But by using one of these commands 
in the context of a macro, you can gain more flexibility and use the macro in 
later sessions. 

Here are the steps for recording the macro we have in mind: 

1. Press Ctrl+Shift+R to start the macro recorder. 

2. Press Ctrl+F to open the Find dialog box. 

3. Type Connect in the Find What box. 

4. Click Find Next. 

5. Press Ctrl+Shift+R to stop recording. 

We now have a TemporaryMacro method saved in the module Recording
Module. You can see that macro in Figure 4-2. 

Macros 
~ InsideVSNET 
~ MyMacros 

8+-- ~ MySavedMacros 
L~}-- ~ RecordingModule 

: ..... ::e Uiidlll 
~Samples 

Figure 4-2 The Macro Explorer window 



100 Part I Visual Studio .NET as a Development Tool 

Here's the listing that's generated by the preceding series of steps. Notice 
that mouse movements and keystrokes (such as Tab for navigating to the 
Replace dialog box) aren't recorded. Visual Studio .NET limits macro recording 
to actual named commands that are called during the recording session. 

Imports EnvDTE 
Imports System.Diagnostics 
Public Module RecordingModule 

Sub TemporaryMacro() 
DTE.ExecuteCommand("Edit.Find") 
DTE.Find.FindWhat ="Connect" 
DTE.Windows.Item("Connect.cpp"l.Activate() 
DTE.Find.FindWhat = "Connect" 
DTE.Find.Target= vsFindTarget.vsFindTargetCurrentDocument 
DTE.find.MatchCase = False 
DTE.Find.MatchWholeWord = False 
DTE.Find.Backwards= False 
DTE.Find.MatchinHiddenText = False 
DTE.Find.PatternSyntax = _ 

vsFindPatternSyntax.vsFindPatternSyntaxliteral 
DTE.Find.Action= vsFindAction.vsFindActionFind 
DTE.Find.Execute() 

End Sub 
End Module 

To play back this macro, press Ctrl+Shift+P, which is simply a shortcut to 
the Macros.Macros.RecordingModule. TemporaryMacro command. You should 
see the Find dialog box open with the first instance of the word you're search
ing for selected. In our case, this is the first instance of Connect in a file named 
Connect.cpp. 

Take a look at the line DTE. Windows.Item("Connect.cpp").Activate(). If 
Connect.cpp isn't already open, this line will bring it into focus in the IDE, so 
this macro won't be very useful if you want to save it for use with a number of 
different files or projects. Commenting out or removing this line from the listing 
will cause the macro to work with the currently active document. 

To save the recorded macro, you can either rename TemporaryMacro to 
something else in Macro Explorer or you can copy and paste the recorded code 
into another macro module or method. 

Macro Commands 
Macro Explorer lets you manage your macros from inside the Visual Studio 
.NET IDE. You can access the commands related to macros in the IDE from the 
Macros submenu of the Tools menu or through the shortcut menus within 
Macro Explorer. 



Chapter 4 Visual Studio .NET Macros 101 

Macros are divided into projects containing modules, which in turn con
tain methods. Projects are represented hierarchically in Macro Explorer below 
the Macro icon. Right-clicking the Macro icon brings up the shortcut menu con
taining commands for creating and loading macro projects. You can access the 
same functionality as named commands in the Command Window. Table 4-1 
lists the macro commands related to macro projects. 

Table 4-1 Macro Project Commands 

Command Description 

Tools.LoadMacroProject Brings up the Add Macro Project dialog box, where you 
can select a macro project file. 

Tools .NewMacroProject Brings up the New Macro Project dialog box, where you 
can save your macros into specific projects. 

Tools.Macros/DE Brings up the Macros IDE. This command is mapped to 
Alt+Fll. 

You can navigate to Macro Explorer by pressing Alt+FS. Most commands 
available from the shortcut menus in Macro Explorer are also available from the 
Command Window (because the items in Macro Explorer lose focus when you 
change to the Command Window). You can rename a macro project by right
clicking on the project in Macro Explorer and then clicking Rename. Doing so 
will allow you to edit the name of the macro project in place. You can delete a 
macro project by choosing Delete from the shortcut menu. The same basic 
shortcut menu items are available for renaming and deleting modules and 
methods from within Macro Explorer. 

Table 4-2 lists a few of the commands available from within a particular 
macro project. 

Table 4-2 Macro Project Commands 

Command 

Tools.Newmodule 

Tools.Newmacro 

Tools.Edit 

Description 

Brings up the New Module dialog box, where you can create a 
new module from within Macro Explorer 

When enabled, this command brings up the Macros IDE with a 
new macro method 

Brings up the Macros IDE open to the currently selected project 
or module 

By right-clicking on a macro in Macro Explorer, you can bring up a shortcut 
menu that lets yolJ work with the macro directly. The Run command executes 



102 Part I Visual Studio .NET as a Development Tool 

the Tools.Run command on the currently selected macro. The Rename com
mand allows you to edit the name of the macro in place. The change you make 
to the name is reflected in the method name in the Macros IDE. The Delete com
mand deletes the currently selected macro. And finally, the Edit command opens 
the current macro in the Macros IDE. 

Macro Explorer is a powerful tool for organizing the macros you've created. 
You'll find that you can do quite a bit in Macro Explorer without having to go to 
the Macros IDE. For example, you can record a macro, rename that macro to 
save it, and even add that same macro to a toolbar or a menu in the IDE, all with
out having to go to the Macros IDE. You'd probably find it limiting not to use the 
IDE, but it is possible. To really get the most out of Visual Studio .NET macros, 
you'll want to be able to create and edit them from within the Macros IDE. 

Editing Macros in the Macros IDE 
Working with the Macros IDE is similar to working in Visual Studio .NET. Many 
of the same shortcuts work in the Macros IDE. The Macros IDE editor features 
IntelliSense, and the Help system for macros is integrated right into the IDE. 

One difference you'll notice right away is that all your loaded macro 
projects show up in the Project Explorer window. Visual Studio .NET ships with 
an extremely useful set of macros out of the box. You can see these macros if 
you expand the Samples project in Project Explorer in the Macros IDE (as 
shown in Figure 4-3). 

Figure 4-3 'fhe Samples project in the Macros IDE 



Chapter 4 Visual Studio .NET Macros 103 

The memory space for macro projects is separated, so if you want to uti
lize functionality between different macros or if you want to take advantage of 
a common set of environmental events, you must keep the macros that you 
write inside the same project. If you want to access functionality from another 
macro project, you simply copy the macros you want to access into the project 
you're working on. For example, you can copy modules from the Samples 
project into your own project to take advantage of the functionality exposed 
by those macros. 

To create a new macro project, you need to start from the Visual Studio .NET 
IDE. You can use the New Macro Project command on the shortcut menu in Macro 
Explorer or you can enter Tools.NewMacroProject into the Command Window 
to open the New Macro Project dialog box (shown in Figure 4-4). Enter a name 
and location for your project, and then click OK. Pressing Alt+ Fl 1 will toggle you 
back to the Macros IDE, where you can work on the code in the new project. 

New Macro Project l'5i<] 

Iomplates: 

II 

Name: I TextMacros 

bocation: f D:\My Documents\Visual Studio Projects\VSMacros71 

Figure 4-4 The New Macro Project dialog box 

r.r ::::I pae ..!:!:J 

If you take a look at the new macro project created in Project Explorer, 
you'll notice that a number of features are added to your project by default. The 
References folder works similarly to the References folder in the Visual Studio 
.NET IDE. Two new modules are added to get your macros up and running. 
The EnvironmentEvents module contains generated code that gives you access 
to the events in the IDE. The Modulel module provides a place where you can 
start writing code. 



104 Part I Visual Studio .NET as a Development Tool 

Lab: Navigating Between IDEs 
To shift from the Macros IDE to the Visual Studio .NET IDE, you can click 
the Visual Studio button on the Macros IDE toolbar. There's no such but
ton on any of the default Visual Studio .NET toolbars, so you'll need to 
add one if you want to get back to the Macros IDE in the same way. To do 
so, right-dick on a toolbar in the Visual Studio .NET IDE and click Cus
tomize. On the Commands tab, find the Macros IDE command in the Tools 
category and drag it to the toolbar you want to use it from. The button will 
have the same infinity image used in the Macros IDE. This makes it easy 
to navigate between the two IDEs while you work on your macros. 

If you'll be doing a lot of macro development, a better solution is to 
run your machine with two monitors, keeping the Macros IDE in one 
screen and Visual Studio .NET in the other. 

Adding a reference to a macro project is slightly different from adding one 
to a standard Visual Basic .NET project. If you look at the Add Reference dialog 
box that's used in the Macros IDE ProjectExplorer (shown in Figure 4-5), you'll 
notice that it doesn't off er a way to add custom assemblies. 

Add Reference ~I 

.N!:T l 
Co onent Name 

System.Security 
System.ServiceProcess.dH 
System,Web,dll 
System, Web .Mobile ,dll 
System. Web.RegularExpressi ... 
System, Web.Services.di! 

System,Xml,dll 
VJSBrowserStubLib 

L0,5000,0 
L0,5000,0 
L0,5000,0 
1.0,5000,0 
1.0,5000.0 
1.0,5000.0 

C:\WINDOWS\Microsoft.NET,,, 
C:\WINDOWS\Microsoft.NET,,, 
C:\wINDOWS\Microsoft.NET,,, 
C:\WINDOWS\Microsoft,NET,,, 
C: \ WINDOWS\Microsoft,NET,,, 
C: \WINDOWS\Microsoft,NET,,, 

C :\WINDOWS\Microsoft,NET,,, 
C:\WINDOWS\Microsoft,NET,,, 
C:\WINDOWS\Microsoft,NET,,, 
C:\WINDOWS\Microsoft,NET,,, 
(":\WTNO.\)WS\,~jrr_no::nf_t ,NFT ... 

Figure 4-5 Add Reference dialog box 



Chapter 4 Visual Studio .NET Macros 105 

To add references to your own assemblies, you must copy them to the 
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\PublicAs
semblies folder. You can then add your own reference to the assembly from the 
Add Reference dialog box. Using assemblies, you can write your macro func
tionality in any language you want and then access that functionality from a 
fairly simple macro. You can also write assemblies that call to unmanaged code 
and assemblies that act as COM wrappers to access COM functionality from 
within your macros. 

Let's go over a few examples built from a new project. 

A Simple Macro 
Earlier in the book, we touched on the behavior of the File.NewFile command 
in Visual Studio .NET. Some programmers haven't been pleased that this com
mand displays a dialog box by default, forcing them to resort to the mouse or 
to a series of keystrokes to get an empty file up and running. But the solution 
is simple: you just create a macro that does exactly what you want and then 
assign that macro an alias in the Command Window. The following code is all 
you really need to create a new text file in the IDE: 

Imports EnvDTE 
Imports System.Diagnostics 

Public Module NewFile 

Sub NewTextFile() 
DTE.ItemOperations.NewFile("General\Text File") 

End Sub 

End Module 

As you can see, this macro has been created in a module named NewFile. 
It consists of a single method, NewTextFile. The single line of code in this macro 
simply creates a new file of the type Text File in the General folder of the New 
File dialog box. We'll talk about the NewFile method that creates the new text 
file in a minute. What's important right now is that we have a macro that will 
add just the functionality we want to the IDE. To make this macro a tool we're 
willing to spend some time with, we'll want to make the macro as easy to get 
to as possible. 

To get to a macro you want to execute, you've got a few choices. One 
approach is to run the macro from Macro Explorer in the Visual Studio .NET 
IDE. This works fine, but it's probably not the optimal solution for a macro that 
you're planning to use often. The second choice is to create an alias for the 



106 Part I Visual Studio .NET as a Development Tool 

macro in the Command Window. This is probably the best choice for a com
mand that you want to use while you're typing. To alias this command, you can 
type the alias command followed by the name of the macro. IntelliSense will 
kick in when you start to type a macro, so the whole alias line might look some
thing like this: 

>alias nf Macros.InsideVSNET.Chapter04.NewFile.NewTextFile 

Now you've got a new command you can use from the Command Win
dow: nf To create a new text file, you can simply press Ctrl+Alt+A and then 
type nfto get your new file. Of course, if you want to take it a step further, you 
can assign the macro a keystroke shortcut from the Options dialog box. In 
keeping with the Ctrl+, initial chord introduced earlier in the book, Ctrl+,,Ctrl+N 
might make a good shortcut. Finally, you can add a button to the toolbar that 
initiates the macro (as described in Chapter 3). 

The Imports statement in this sample is important. The API associated with 
the Visual Studio .NET automation object model is contained in the EnvDTE 
namespace. The automation object model is discussed in depth in Chapter 5 
through Chapter 12. Here we simply want to familiarize you with this object 
model and get you up and running with some of the more common function
ality that you'll use in your macro projects. Most of the subjects covered in the 
chapters that comprise Part II of the book apply to both macros and add-ins. In 
fact, you can use macros to quickly test add-in functionality that you're writing. 
You'll save time because you normally test an add-in by compiling the add-in 
and loading a second instance of the IDE. Using a macro, you can get to the 
automation object model, write and test your routines, and then add them to 
your add-in projects. 

Working with Macros 
The macros you build will use the automation object model to access and auto
mate the different parts of the IDE. In this section, we'll demonstrate how you 
can use macros to automate some simple tasks and we'll talk a bit about the 
automation object model as it applies to documents and windows in the IDE. 
We'll also discuss events and provide some simple examples to help you get 
going right away. Much of the material we'll cover here is discussed in detail in 
Part II of the book. 



Chapter 4 Visual Studio .NET Macros 107 

Manipulating Documents and Text 
Some of the most useful tasks you can perform with macros involve working 
with text in documents. You might want to search for text, change a selection 
in some way, or just insert text into a document. The Document object in the 
DTE provides a good deal of functionality that makes it easy to manipulate text 
in code documents. 

Macros are often run on the document with the current focus. To get the 
currently active document in the IDE, you use the DTE.ActiveDocument prop
erty, which returns a Document object. (Recall that a Visual Studio .NET docu
ment is an editor or a designer window that opens to the center of the IDE.) If 
the document is an editor, it has an associated TextDocument object. 

The TextDocument object has three properties of interest for programmers 
who want to manipulate text inside the object. The StartPoint property returns 
a TextPoint object that points to the beginning of the document. The EndPoint 
property returns an object that points to the end of the document. And finally, 
the Selection property returns a TextSelection object, which offers a number of 
properties and methods you can use on selected text. 

The TextPoint object provides location information for the editing function
ality inside a document. You create a TextPoint in a document whenever you 
want to insert or manipulate text in the document or when you want to get some 
information about a particular document. TextPoint objects aren't dependent on 
text selection, and you can use multiple TextPoint objects in a single document. 

Let's look at a couple of examples that use the objects we've mentioned. 
You should become familiar with this code because much of the macro auto
mation code you'll write will depend on it. 

First, let's get the ActiveDocument, create a couple of EditPoint objects, 
and add some text to the ActiveDocument using that information: 

Sub CommentWholeDoc() 
Dim td As TextDocument = ActiveDocument.Object 
Dim sp As TextPoint 
Dim ep As TextPoint 
sp = td.StartPoint.CreateEditPoint() 
ep = td.EndPoint.CreateEditPoint() 

sp.Insert{"/* ") 
ep.Insert(" */") 

End Sub 



108 Part I Visual Studio .NET as a Development Tool 

Running this sample on a. Visual C# or a Visual C++ code document will 
comment out the entire document, unless the source already contains com
ments. The macro isn't very practical, but it does show you how to put those 
parts together. You can use IntelliSense to make your- way through the objects 
created to experiment with some of the other functionality. 

Let's take a look at a second, more useful, example that inserts text into a 
document based on a selection. The following example creates an HTML com
ment in a document. This functionality doesn't exist in Visual Studio .NET 2003, 
so you might find this simple macro useful enough to add to your own toolbox. 
Here we'll declare ts as a TextSelection object and assign it the current selection 
using DTE.ActiveDocument.Selection: 

Sub HTMLComment() 
Dim ts As TextSelection = DTE.ActiveDocument.Selection 
ts.Insert("(!-- ", vsinsertFlags.vsinsertFlagslnsertAtStart) 
ts.Insert(" -->", vsinsertFlags.vsinsertFlagsinsertAtEnd) 

End Sub 

This macro uses the TextSelection Insert method to insert text around the 
Selection object. The Insert method takes two arguments. The first argument is 
the string that you want to insert into the selection. The second argument is a 
vsinsertFlags constant that defines where the insertion is to take place. The first 
Insert call in the example uses vsinsertFlagsAtStart. The second uses vsinsert
FlagsAtEnd. Table 4-3 lists these constants. 

Table 4-3 vslnsertFlags Constants 

Constant 

vslnsertFlagsCollapseToStart 

vslnsertFlagsCollapseToEnd 

vslnsertFlagsContainNewText 

vslnsertFlagslnsertAtStart 

vslnsertFlagslnsertAtEnd 

Description 

Collapses the insertion point from the end of the 
selection to the current TextPoint 

Collapses the insertion point from beginning of the 
selection to the current TextPoint 

Replaces the current selection 

Inserts the text before the start point of the selection 

Inserts text just after the .end point of the selection 

With a Selection, a TextPoint, and the methods available through the DTE, 
you should have a good basis for the types of operations you can perform with 
macros on source code. 



Chapter 4 Visual Studio .NET Macros 109 

Moving Windows 
Windows in Visual Studio .NET are controlled through the Window object, 
which is part of the DTE. Windows collection. The Window object provides 
functionality based on the window type. Specifically, the CommandWindow, 
OutputWindow, Tasklist, TextWindow, and Too/Box derive from the Window 
object. 

Of the window objects, OutputWindow is among the most practical for 
macro writing. You can use it to display and hold messages in much the same 
way you would use printf or Console. Write in a console application, or in the 
same way that you use MsgBox or MessageBox.Show in a Windows-based 
application. 

To use the OutputWindow object to display messages, you must create a 
new method that takes a string argument. You can then call the method with 
the argument in same way you use the MsgBox method to display a message. 
The following example is a method named MsgWin. It takes only a string as an 
argument. You can use this method in place of MsgBox when you want to 
quickly see a bit of text information. 

Sub MsgWin(ByVal msg As String) 
Dim win As Window= DTE.Windows.ItemCConstants.vsWindowKindOutput) 
Dim cwin As Window= 

DTE.Windows.Item(Constants.vsWindowKindCommandWindow) 
Dim ow As OutputWindow = win.Object 
Dim owp As OutputWindowPane 
Dim cwp As CommandWindow = cwin.Object 
Dim i As Integer 
Dim exists As Boolean= False 
' Check to see if we're running in the Command Window. If so, 
' we'll send our output there. If not, we'll send it to a Command 
' window. 
If CDTE.ActiveWindow Is cwin) Then 

cwp.OutputString(msg + vbCrlf) 
Else 

' Determine if the output pane name exits. If it does, we need 
' to send our message there. or we end up with multiple windows of 
' the same name. 
For i = 1 To ow.OutputWindowPanes.Count 

If ow.OutputWindowPanes().Item(i).Name() "MsgWin Output" Then 
exists = True 
Exit For 

End If 
Next 



11 O Part I Visual Studio .NET as a Development Tool 

' If our output pane exits, we'll use that to output the string, 
' otherwise, we'll add it to the list. 
If exists Then 

owp ow.OutputWindowPanes().Item(i) 
Else 

owp ow.OutputWindowPanes.Add("MsgWin Output") 
End If 
' Here we set the Output window to visible, activate the pane, 
' and send the string to the pane. 
win.Visible= True 
owp.Activate() 
owp.OutputString(msg + vbCrlf) 

End If 
End Sub 

MsgWin uses a pretty cool feature that's found in the samples that ship 
with Visual Studio .NET. The method determines whether the calling method 
was invoked from the Command Window. If it was, the output is directed right 
back to the user in the Command Window. If it's called from a macro that was 
run from a menu, shortcut, or button, MsgWin sends the output to an Output 
window named MsgWin Output. 

The Samples macros project that ships with Visual Studio .NET 
contains a lot of really good, functional macro code that you can use in 
the macros you write. 

To use the MsgWin macro, you must call it from another method. For this 
example, we've created a method that lists all the currently open windows in 
the IDE: 

Sub MsgWinTest() 
Dim wins As Windows DTE.Windows() 
Dim As Integer 

For = 1 To wins.Count 

Next 
End Sub 

MsgWi n (wins. I tern ( i ) . Ca pt ion. To String ( ) ) 

Figure 4-6 shows what the Visual Studio .NET IDE looks like after it has 
been invoked from the MsgWinText macro in the IDE. 



Chapter 4 Visual Studio . NET Macros 111 

er., AutoH1deSr.tup Microsoft.Oe!.!J!:lof!.ment Env:ironrmHJtfdesigpJ Mttdule1.vb ~IJ'f!J 
Ell& &cit ¥Jew etolett Q.ulld Qebug loci~ Jtlintkiw t;!elp 

Jjl.. ~ Relei.lise ~(default 

i-t Pointer 

Figure 4-6 The MsgBox Output window in the IDE 

You can do a lot of things with this basic MsgWin macro to improve it. It 
would be pretty trivial to overload the Msg Win method to allow for such actions 
as clearing the output pane or adding a heading to the list. For example, to cre
ate an overload for the MsgWin function that clears the output pane, you can 
make the method look something like this: 

Sub MsgWin(ByVal msg As String, ByVal clr As Boolean) 

' If clr is True then we'll clear the output pane. 
If clr =True Then 

owp . Cl ear ( ) 
End If 
' Here we set the Output window to visible. activate the pane, 
' and send the string to the pane. 
win.Visible = True 
owp.Activate() 
owp.OutputString(msg + vbCrlf) 

End If 
End Sub 

Of course, this overload won't do you much good if you call the macro the way 
we did in MsgBoxTest, but as you can see it's easy enough to do what you want 
with the macro. 



112 Part I Visual Studio .NET as a Development Tool 

Another way to add this kind of functionality to your macros is to create 
an assembly in the language of your choice and then reference that assembly 
from within your macro project. We did this with the CommandWindowPaneEx 
object. 

Using Assemblies in Your Macros 
A couple of things become apparent when you start to use macros a lot. The 
first is that you can use macros as a place to test the functionality of .NET 
assemblies. For example, if you want to test some bit of functionality in the 
framework, all you need to do is reference the appropriate assembly and then 
call the methods from within a macro. With a little practice, you'll find that the 
Macros IDE can work as a little laboratory that lets you try out functionality 
without having to mess around with rebuilding your projects. 

The second thing you'll notice is that you have to write all this cool stuff 
in Visual Basic, and if that's not your preferred language, you might be spend
ing a lot of time performing tasks you already know how to accomplish quickly 
in another language. As we mentioned earlier, there is a way to write macro 
functionality in languages other than Visual Basic-by building your function
ality into an assembly and then referencing that assembly from within your 
macro project. 

We wrote a base set of utility functions for the book that you can take 
advantage of in your own macros and add-ins. In the Utilities folder of the com
panion content, you'll find the Utilities solution. This solution contains the Out
put Window Pane Ex object. Build the solution and copy the 
InsideVSNET.Utilities.dll file from the bin \debug folder for the project into the 
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\Public
Assemblies folder. 

Once you've copied that file into your Public Assemblies folder, you can 
add a reference to the assembly from your macro project in the Macros IDE by 
right-clicking on the References folder in the Project Explorer window and 
choosing Add Reference, or by selecting the References folder and typing 
Pro;ect.Add.Reference into the Macros IDE Command Window. On the .NET 
tab of the Add Reference dialog box, you should see the new InsideVSNET.Util
ities assembly. Select it in the list, click Select, and then click OK. You'll see the 
new assembly in the list of references if you expand the References folder. 

After you add the reference to your project, it's helpful to add the appro
priate Imports statement to your module. In this case, you'll add the following 
to the top of the module: 

Imports InsideVSNET.Utilities 



Chapter 4 Visual Studio .NET Macros 113 

Once you add the reference, IntelliSense kicks in automatically as you cre
ate an OutputWindowPaneEx object and use it. The really cool thing about this 
object is that it lets you specify whether to send your output to the Output win
dow in the Visual Studio .NET IDE or to the Macros IDE. In this example, we 
specified the Macros IDE, passing DTE.Macros/DE when we created the object. 
We also changed the test a bit by enumerating the open windows in the Macros 
IDE rather than the Visual Studio .NET IDE, as we did earlier. 

Sub OutputWindowPaneExTest() 
Dim owp As New OutputWindowPaneEx(DTE.MacrosIDE) 
Dim wins As Windows= DTE.MacrosIDE.Windows() 
Dim i As Integer 

owp.Activate() 

For i = 1 To wins.Count 
owp.WriteLine(wins.Item(i).Caption.ToString()) 

Next 
End Sub 

In addition to letting you perform the tasks that you're able to perform 
with the OutputWindowPane object, OutputWindowPaneEx lets you do a num
ber of things with text that you want to send to an Output window. As we men
tioned, you can specify the IDE to which you want to send your output. The 
Write method has three overloads, letting you specify an object, a string, or a 
formatting string/parameter array. Using these overloads, you can specify for
matting options, much like using the System.Console. Write and System.Con
sole. WriteLine methods in the .NET Framework. 

Macro Events 
One of the most powerful features of macros in the IDE is an event model that 
lets you fire macros based on events that take place in the IDE. You can use 
events to fire macros that create logs, reset tests, or manipulate different parts of 
the IDE in the ways we've already talked about in this chapter'. In this short sec
tion, we'll show you how to create event handlers for different events in the 
IDE. Using this information and the detailed information about the different 
parts of the automation API discussed throughout the rest of the book, you 
should have a good idea how to take advantage of events in your own projects. 

The easiest way to get to the event handlers for a macros project is 
through the Project Explorer window in the Macros IDE. Expand a project, and 
you'll see an EnvironmentEvents module listed. Open that file, and you'll see 



114 Part I Visual Studio .NET as a Development Tool 

a block of code that's been generated automatically by the IDE. Here's the 
important part of the block. (The attributes have been removed to make this fit 
the page.) 

Public With Events DTEEvents As EnvDTE.DTEEvents 
Public With Events DocumentEvents As EnvDTE.DocumentEvents 
Public With Events WindowEvents As EnvDTE.WindowEvents 
Public With Events TasklistEvents As EnvDTE.TasklistEvents 
Public With Events FindEvents As EnvDTE.FindEvents 
Public With Events OutputWindowEvents As EnvDTE.OutputWindowEvents 
Public With Events SelectionEvents As EnvDTE.SelectionEvents 
Public With Events BuildEvents As EnvDTE.BuildEvents 
Public With Events SolutionEvents As EnvDTE.SolutionEvents 
Public With Events SolutionitemsEvents As EnvDTE.ProjectitemsEvents 
Public With Events MiscFilesEvents As EnvDTE.ProjectitemsEvents 
Public With Events DebuggerEvents As EnvDTE.DebuggerEvents 

As you can see from this listing, there are a lot of event types you can take 
advantage of in the IDE. In fact, you can use all the DTE events, though they're 
not included by default. You can add these other events to this list to get to the 
events that you're interested in. To create a new event handler, you select the 
event type you want to handle from the Class Name list at the top of the code 
window. You can see how this looks in Figure 4-7. 

·~ ·--• Orm.nts 
• findEwl'ltS ·-sE.Ot.t$>Ut-·--• -lon!-

Solullonltln>IE-
< yato. onteuct at e t r: u e > Public Uitb!ven.te: noaumentEvants As 
<Spt01. ContextBtatia.Lttr:it11.1te () > P'l.l.bUc VithEvent• 'Vindo•tventa la 
<Sy11tni.ContextSr:.attclt'tril:lu:te ()> Public \lith!vellt.a Tukl.Ut!ve:ncs Aei 
<Syete.ConteKtStettciAttribute () > P\Wlic 1JitbEvent• Findlvente As EnvDTE.rt1 
dptem.Co.ntextStat1c.A.tt.ribqte ()> P\lbl1e W:LtbEvru:i.t. OutputUihdoYEven.t:s Ae El 
<Sretem. Contextstaticlttr:Uoute I)> Public VitbEv1Hita Seleetionl\l'ent.s .ls lnvD'· 
<Syatem.contextStatto.A.tti:U:>ute I)> PUblic V:l.thEvents Bu:LldEvent• 1.s Env»'Tl.B1' 
<Svsto.ContewtStaticAter1but;e () > P'Ublic 1;1.tb!ve::ru:.e Solut1on.Ewnt1 As ErwDTJ, 
<Syetu.ContextStatic:::.A.ttril:lute ()> P'\ll:llic WithEvents Sol'UtioniteuEvmnts 

t.h1'v,,.nt.~ ..-1111n1"1 l,.,.F.Wont.l't Ai-: 

Figure 4-7 Selecting the event type you want to handle from the Class 
Name list 



Chapter 4 Visual Studio .NET Macros 115 

After you select an event type, the Method Name list in the upper-right por
tion of the code pane will list the events you can handle, as shown in Figure 4-8. 

1 I' x 

Ill\ (Declarations) 
11\(Dedarations) 
P OnBulldBeglr\ 

Palil!i!ll .............. j 
P OnButldProj(onf!QSeQ!n 

•··· ··-··· ·····1 fl OnBuildPro1ConfloDone 

Public Module EnvironmentEvents j 
#Region .. Atttomat:ically generated code, do not modify" 
'Autom."tt1caJ.ly ge:nei::ated do not mod:i.:ty 
'Event ;3ources Begu1 

<Syistem.contextStaticAttribute () > Pl.lb lie WithEvents DTEEver.tis As EnvDTE.DTEI 
<5yseem.Context5taticAttribui:,e () > Public: ldithEvente Doc\ttllentEvent& Ae EnvDTl 
<Sy.stem.ContextStaticAttt:ibut.e \) > Pu.blic TiJithEvent~ TiJindourEvent!I Aa EnvDTE, 1 
<Sy!Stem. Cont:extStaticAttribuce () > Public TilithEvent1' Ta~kLi:stEvente: As EnvDTl 
<$ystew.ContextStaticAttribute () > PUblic.: lJithEvente FindEvente As EnvDTE. Fi1 

Public @ithEvent~ OucputWinctowEventf! Ae Ei 
Public lJ1thEvent3 Si!!lection.Event::i As EnvD' 
Public 'tTithEvents BuildEvente A:! EnvDTE.B1 
Public ~JithEvent~ SolutianEve:nt3 A.3 EnvDTI 

Figure 4-8 Selecting the event you want to handle from the Method 
Name list 

Select the event you want from the list, and your event handler will be 
generated automatically. From this generated event handler, you can call a 
method that you've created in the project, or you can add your event handling 
functionality directly to the event handler code. In this example, we'll call the 
MsgWin function that we worked through earlier to display a message that indi· 
cates that the build has completed. 

Private Sub BuildEvents_OnBuildDone(ByVal Scope As EnvDTE.vsBuildScope, _ 
ByVal Action As EnvDTE.vsBuildAction) 
Handles BuildEvents.OnBuildDone 

MsgWin("Build is done!") 
End Sub 

As you can imagine, these events open up all sorts of possibilities for 
automation and customization in the IDE. One thing you should keep in mind 
when working with events is that all the code in a single macro project shares 
the same event module. This means that if you want to create different event 
handlers for the same event, you'll need to create the other event handlers in 
other projects. 



116 Part I Visual Studio .NET as a Development Tool 

Event Security 
As you can imagine, executing event code in a powerful macros facility 
such as the one in Visual Studio .NET has some potential security implica
tions. The first time you load a macro project that contains event-handling 
code, you see a dialog box that looks like this: 

the. macro project'!) :\My Docum•nts\lli.suel SWdio 
Project;\ VSMacto$71 \In$1del/SNET\lnsidelJSNET. v•mactO~ cQntainli 
l>V•ht handling code. · · 

i;,hable event handling code 
r. Q.isable event handftng code 

You should be sure you know where your macros come from when 
you load macro projects. If you're not sure of the event-handling code in 
the project, click Disable Event Handling Code in the Warning dialog box 
and review the code in the module before you use it. 

Sharing Macros with Others 
If you want to share the macros that you've created, you have a number of 
choices to make. Do you want to share the source? Do you want to share the 
whole project or just part of it? The answers to these questions will determine 
how to best share your work Let's take a look at the different ways that you can 
share your macro functionality with others. 

Exporting Modules and Projects 
The easiest way to share your macros with other developers is to simply cut and 
paste your source code into e-mail messages and Usenet postings. This approach 
works well if the methods you're sharing are fairly short and if they don't span 
multiple modules. If they do span multiple modules, you'll probably want to 
export the modules you want to share or simply pass on the whole project. 

To export a macro module in Visual Studio .NET, you must open the Mac
ros IDE and select the module you want to export from the Project Explorer 
window. Pressing Ctrl+E will invoke the File.SaveSelectedltemsAs command, 



Chapter 4 Visual Studio .NET Macros 117 

which brings up the Export File dialog box. This command is listed on the File 
menu as Export. 

The Export File dialog box lets you save the module as a .vb file that you 
can easily import into another project using the File.AddExisitingltem command 
(Shift+Alt+A). Don't forget to include the code from the EnvironmentEvents 
module if your macros rely on some sort of event functionality. 

If your macros are very complicated, you might want to share an entire 
macro project. You can do this in a couple of ways. You can copy the .vsmacros 
file for the project and pass it along, or you can save your macro project as a 
text-based project and share those files. 

To make a macros project text-based, you change the StorageFormat 
property in the Visual Studio .NET IDE for the project that you want to change. 
Select the project in Macro Explorer and then change the StorageFormat prop
erty in the Properties window from Binary (.vsmacros) to Text (UNICODE). 
This change will create a number of files in the macro project's folder that looks 
much like a regular Visual Studio .NET project folder. In Figure 4-9, you can see 
the folder for the Samples project after it has been converted to Text format. 

Figure 4-9 A macro project that has been stored in Text format 

The advantage of passing along a text-based project is that it allows other 
programmers to look at the source files in your project before loading them into 
their IDE. 

There's always a security risk in opening unknown macro projects in any 
application. Be sure you know where any binaries you open came from. At the 
very least, check the EnvironmentEvents.vb module to make sure it doesn't 
include any unexpected code. 

Also keep in mind that shipping a binary macro project does nothing to safe
guard your source code. To do that, you're better off adding your functionality to 



118 Part I Visual Studio .NET as a Development Tool 

an assembly that gets called from a macro, as we demonstrated earlier. An even 
better solution, where appropriate, is to turn your macro project into an add-in. 

Turning Macros into Add-ins 
Visual Studio .NET ships with a macro in the Samples project that lets you turn 
a macro project into a Visual Studio .NET add-in, complete with an installer. 
The macros in the MakeAddin module take a macro and turn it into an add-in 
project that you can compile and install into your environment. Macros that 
have been turned into add-ins can be shipped as binaries that are installed on 
a user's machine. Keep in mind, though, that you really should test the add-ins 
that you create in this way to make sure they do what you expect. 

For this example, we'll take the AutoHideToggle macro that we created in 
Chapter 1 and turn it into an add-in using the MakeAddin macros. To get 
started, copy the macro you want to turn into an add-in into a new macro 
project. You can give the project the same name as the method if you want. Just 
be sure to build the new project to test it before you use it. 

Next, you create a new add-in project in Visual Studio .NET by pressing 
Ctrl+Shift+N to open the New Project dialog box. Expand the Other Projects 
folder and then open the Extensibility Projects folder to get to the Visual Studio 
.NET Add-in project template, as shown in Figure 4-10. 

Figure 4-10 Creating a new add-in project 

Give your new add-in an appropriate name, and then go through the wiz
ard to create a Visual Basic .NET add-in project that installs a menu command 
in the IDE. 



Chapter 4 Visual Studio .NET Macros 119 

After your new add-in project is complete, press Ctrl+Alt+A to bring up the 
Command Window and then type Macros.Samples.MakeAddin.MakeAddin
FromMacroProj. This will bring up the input box shown in Figure 4-11. In the 
box, type the name of the macro project you want to turn into an add-in, and 
then click OK. 

Visual Studio Macros . • . [I] 
Enter the name of the M aero Proiect to create an 
Add·in out of 

Figure 4-11 Specifying the macro project you want to turn into an add-in 

At this point, if all the projects are of the right type, you should see a mes
sage asking you to confirm that you want to run the macro on the current 
project. Click OK, and the MakeAddin macro project will complete its work. 
When the macro is finished, you'll see the dialog box shown in Figure 4-12. 
What the MakeAddin macro has done is add the macro functionality from your 
project to the new add-in. 

Figure 4-12 The message box confirming completion and final instruc
tions for the MakeAddin macro 

To test the new add-in, press F5 to start debugging; you should see a sec
ond instance of the Visual Studio .NET IDE open. On the Tools menu of that 
second instance of the IDE, you should see a menu containing the name of 
your project and the name of the macros that were in your original macro 
project. You can see in Figure 4-13 that the AutoHideToggle add-in is ready to 
go. Choosing this menu command does exactly what running the macro in the 
IDE did in Chapter 1. 



120 Part I Visual Studio .NET as a Development Tool 

If you use this add-in or the macro described in Chapter 1 , 
keep in mind that the layout you have open will become your default 
layout. It won't overwrite the layouts that ship with Visual Studio .NET, 
but if you want to get back to one of those, you'll need to go back to 
the My Profile tab on the Start Page and select an alternative layout 
in the Windows Layout list. Then select the layout you chose when 
you originally created your profile and your windows should return to 
that layout. 

Figure 4-13 The new AutoHideToggle add-in in the IDE 

To use this new add-in in Visual Studio .NET, you build a release version 
of the setup project that's generated for the add-in and then you navigate to the 
folder containing the setup program. Close all your instances of Visual Studio 
.NET and run the Setup.exe program. When you open the IDE, you'll find that 
your new add-in has been installed and is ready for use. 



Chapter 4 Visual Studio .NET Macros 121 

Looking Ahead 

This chapter gave you some information about using the Visual Studio .NET 
macro facility to perform some simple automation tasks. Part II of the book 
should provide you with enough information to do just about anything you 
want with automation in Visual Studio .NET. 





Part II 

Extending isual 
Studio .NET 





The Add-in Wizard and the 
Automation Object Model 

The Add-in Wizard provided by Microsoft Visual Studio .NET makes creating 
add-ins as easy as taking a Sunday drive-just choose a few options, and the 
wizard generates a road-ready add-in that you can take for a spin in the inte
grated development environment (IDE). Of course, you won't drive very far if 
you can't find the add-in's clutch, stick shift, and steering wheel (not to mention 
the gas pedal), so in the first half of this chapter we'll show you how the differ
ent parts of an add-in work together to make it go. Think of it as "driver's ed" 
for wizard-generated add-ins. 

There's no point in taking your add-in out on the road without a worth
while destination in mind, so we've chosen one for you. In the second half of 
this chapter, we'll map out a scenic route through Visual Studio .NET's program-
ming interface: the automation object model. ' 

The Add·in Wizard 
You learned in Chapter 4 that macros provide a convenient way to automate 
tasks within Visual Studio .NET, and we encourage you to write macros as a first 
resort when customizing the IDE. But for some purposes, such as writing com
mercial software, you might find that macros are a poor choice in terms of per
formance and protection of intellectual property. In such cases, the appropriate 
vehicle is an add-in, which is a compiled DLL (providing increased protection) 
that runs within the IDE (providing increased performance). And the fastest 
way to get started as an add-in programmer is through the Add-in Wizard, 

125 



126 Part II Extending Visual Studio .NET 

which gathers your requirements in six easy steps and creates an add-in project 
tailored to your needs. 

Running the Add-in Wizard 
When you choose File I New I Project, Visual Studio .NET offers its selection of 
project types in the New Project dialog box. By expanding the Other Projects node 
and selecting Extensibility Projects, you'll find the Visual Studio .NET Add-in tem
plate shown in Figure 5-1; double-clicking its icon launches the Add-in Wizard. 

New P1oject ~j 

Iernpiates: 
.,_...,,.......~.......;.~_;_~-"'--~~ 

,. ·ail Visual l# Projects tl'.ii _A 
Lt:J· JEJ Visual C ++Projects ..... 
L ·1l1iia Setup and Deployment Projects 

1;:HllJ:I Other Projects 
'···GJ Database Projects 
EB··~ Enterprise Template Projects 

: : ··{&i Extensibility Profel;ts 
! '····fS Application Center Test Projects 
L. \iii;) Visual Studio Solutions 

:::J arowse ... 
P Create !llrectory for SOiution 

Help 

Figure 5-1 The Visual Studio .NET Add-in template 

The six pages of the Add-in Wizard collect your choices about the final 
form of your add-in. The wizard gives you control over the following areas: 

• Programming language The Add-in Wizard generates the add-in 
source code in one of three programming languages-C#, Visual 
Basic .NET, or Visual C++ (using the Active Template Library [ATL]). 
You're not restricted to these languages when you write add-ins by 
hand, however; any language that supports the creation of COM 
objects will suffice. 

• Application host Add-ins can run in the Visual Studio .NET IDE, 
the Macros IDE, or both. With few exceptions, the rules that apply to 
an add-in running in the Visual Studio .NET IDE also apply to an 
add-in running in the Macros IDE. (We'll point out differences 
between the two hosts when appropriate.) 



Chapter 5 The Add-in Wizard and the Automation Object Model 127 

• Name and description These settings let you associate a meaning
ful name and description with your add-in. The wizard stores these 
values in the registry so that any interested client can find them. 

• Menu command The Add-in Wizard can generate code that cre
ates a new menu item for your add-in, giving users a convenient way 
to load your add-in and execute a command. 

• Comm.and-line build support You can mark your add-in as 
being safe for use with unattended builds. Such an add-in promises 
that it won't display user interface elements that require user inter
vention (such as modal dialog boxes). 

• Load at startup Add-ins can request that they be loaded automat
ically when Visual Studio .NET starts up. 

• Access privileges You can make an add-in available to all users 
on a machine or just the user who installs the add-in. 

• About box information You can provide support information 
for your add-in that Visual Studio .NET will display in its About 
dialog box. 

When the Add-in Wizard finishes, it generates two projects: an add-in 
project that builds the add-in DLL and a setup project that builds a Windows 
Installer (MSI) file that you can use to distribute your add-in. 

The Add-in Project 
Add-ins are DLLs, so the Add-in Wizard creates a Class Library project for your 
add-in. This project contains a source file named Connect, which defines the 
add-in class, also named Connect. The Connect class implements the 
IDTExtensibility2 interface, which serves as the main conduit for add-in/IDE 
communication. (Connect also implements IDTCommandTarget if you select 
the user interface option in the Add-in Wizard.) Table 5-1 lists the five methods 
of the IDTExtensibility2 interface. 

Table s-1 IDTExtensibility2 Interface 

Method 

OnConnection 

OnStartupComplete 

OnAddlnsUpdate 

Description 

Called when the add-in is loaded. 

Called when Visual Studio .NET finishes loading. 

Called whenever an add-in is loaded or unloaded from Visual 
Studio .NET. 



128 Part II Extending Visual Studio .NET 

Table 5-1 IDTExtensibility2 Interface (continued) 

Method 

OnBeginShutdown 

OnDisconnection 

Description 

Called when Visual Studio .NET is closed. 

Called when the add-in is unloaded. 

The Connect.cs file in Listing 5-1 shows the code (minus some com
ments) that the Add-in Wizard generates for a typical C# add-in with a menu 
command. We'll walk through the source code, pointing out any interesting 
features along the way. 

Conriec.fa~s · 
.::11~mespace'f.lyAd'dirii ... ·.· 
>i '. ' . .. .. ···.··· 
'·· .. ·; u~trrg :system.:· 

•: ~~tn~ M°t<;:rosoft.Office.Core~ · 
······using·· ti<ten.stbiliJ.Y: 

· · u~t~g 'sYstern.Runtinie. l~teropServices; 
:tistij!j .E~yOT~i . . .. . 

·iii ·~·sn~rnaryJ 
ff{. >the obje~t for imple01enting an add~Jn. 
Jt(</$µmmarY>. · . · ·· ..•. ·· · ... •. • 
•ltl. <s~eai.s.o class.,.'TDTExtensi61.11t.y2•'·1> 
CGuidAttr.ihute C"BA857E4~~7873~45D2~8335-FCCD4123739E" >. 

·Prog Id< ''My Ad.di !lLConnect" l] 
· · · Ooject. Ex tens ibi l1ty. IDTExtens 1bil1ty2. 

Listing 5-1 The add-in source code generated by the Add-in Wizard 



Chapter 5 The Add-in Wizard and the Automation Object Model 129 

Ill Root object of the host application. 
Ill <lparam> 
Ill <param term='connectMode'> 
Ill Describes how the add-in is being loaded. 
Ill <lparam> 
Ill <param term='addininst'> 
Ill Object representing this add-in. 
Ill <lparam> 
public void OnConnection(object application, 

Extensibility.ext_ConnectMode connectMode. 
object addininst, ref System.Array custom) 

applicationObject = (_DTE)application; 
addininstance = CAddin)addininst: 

if (connectMode == 
Extensibility.ext_ConnectMode.ext_c11LUISetup) 

object [JcontextGUIDS =new object[] { }: 
Commands commands= applicationObject.Commands; 
_CommandBars commandBars = 

try 
{ 

} 

applicationObject.CommandBars; 

Command command = commands.AddNamedCommand( 
add In Instance, "MyAddinl", "MyAddinl", 
"Executes the command for MyAddinl", true, 59, 
ref contextGUIDS. 
(int)vsCommandStatus.vsCommandStatusSupported + 
(int)vsCommandStatus.vsCommandStatusEnabled): 

CommandBar commandBar = 
(CommandBar)commandBars["Tools"]: 

CommandBarControl commandBarControl = 
command.AddControl(commandBar, 1): 

catch(System.Exception l•e•IJ 
{ 

} 

llf <summary> .· .... 
II I Implements. the On Disconnection method of the 
Ill lDTExtensib'l,lity2. interface. 
Ill Rec1!ives. notification that the add-in is being unloaded. 



130 Part II Extending Visual Studio .NET 



Chapter 5 The Add-in Wizard and the Automation Object Model 131 

Ill <param term='custom'> 
Ill Array of parameters that are host-application specific. 
Ill <lparam> 
public void OnBeginShutdown(ref System.Array custom) 
{ 

} 

Ill <summary> 
Ill Implements the QueryStatus method of the 
Ill IDTCommandTarget interface. 
Ill This is called when the command's availability is updated. 
II/ <!summary> 
Ill <param term='commandName'> 
Ill The name of the command to determine state for. 
Ill <lparam> 
Ill <param term='neededText'> 
Ill Text that is needed for the command. 
Ill <lparam> 
Ill <param term='status'> 
Ill The state of the command in the user interface. 
Ill <lparam> 
Ill <param term='commandText'> 
Ill Text requested by the neededText parameter. 
Ill <lparam> 
public void QueryStatus(string commandName, 

EnvDTE.vsCommandStatusTextWanted neededText, 
ref EnvDTE. vsCommandStatus status, ref object commandText) 

· 1 f .C.neededtext: .. il:!\i , ... 
E:nvDTE.vsCommandStatusTextwahted.vscommandStatusTextw~rite'~None) 

{ ; .. 
if < comma&~~~ille '7' "MyAdd i nl. Connect.~yAddtni ''.) 

{ st~~~,,~~~i, .· · . . · ·. . <. ~::·<. ,, , 
) VsC?~!ll · ~U$)V~,Cqmlria\'ldStat~$~U~PO.~~~~:?h•.•. .. -

• vsCommaJ):d us•tnabl~d: · · 
} - . 

<summary> 
Implementir tte; S#c 
T.hi s 1 s called . ~h.Ein the 

<!summary> · ··· 
<pararrr term='commandName'> 



132 Part II Extending Visual Studio .NET 

III · Th{ riaR\e ¢.f. tlle :¢omm'and to' "'j/"'""'ro. • 
in <tpilril~V ~.: · 
III 

. •Ill 
II I <lparam>. · 
111 <pa.ram terlli=•varln.r> · · . · .. •< 
I II Parameters p'assedjrorii the caller fo' the 
u I </pa ram> · . ·· . · ·. ·· · · · 
I/ I <param t&rm='Yar~ut'> .· . 
111 Parameters P.a.$.set:l from th.e co!llllland. h.amtler 
I/I <!pa.ram> . . · ·., .: · · . · .· . · ·. 
Iii <pa.ram. terttr-'handled'::> . 
III Informs tM .cal 1 er whettier ... 
11/. <Jpa.ra[JI) , . > •. · •. • < ·•· •···.· 
pubi tc void Exec·(~trfng cornmaMN!lme ~-·· '·· .... 

EilvDTE .y $Cornman:dbec0pt1 tln .' execLiteOpti Ori •. 
r<e.f object var<O:u't. ref .boof handled) . . . ·. 

At the top of the listing, you'll see that the Add-in Wizard generates a set 
of using statements for the programmer's convenience. (A quick look through 
Connect.cs reveals that the Add~in Wizard eschews the using statements in 
favor of fully-qualified types-a practice that proves invaluable when you're 
trying to figure out where all the weird add-in types come from.) The two most 
important namespaces in the using statements are EnvDTE and Extensibility; 
the former defines the types used by IDTExtensibility2, and the latter defines 



Chapter 5 The Add-in Wizard and the Automation Object Model 133 

the types in the automation object model. (A close third in the namespace con
test is Microsoft.Office.Core, which defines types for manipulating command 
bars in the IDE.) 

The first method in the listing, OnConnection, wins the prize for "most 
important add-in method." Visual Studio .NET calls this method when it loads 
the add-in, and it passes the add-in a reference to the root object of the auto
mation object model through the application parameter. The code generated by 
the Add-in Wizard casts the application parameter to the EnvDTE._DTE type 
and stores the result in a private variable named applicationObject. All further 
interaction between the add-in and the automation object model takes place 
through the applicationObject variable. 

Visual Studio .NET also passes the add-in a reference to its corresponding 
Add!n object through the addlnlnst parameter; the add-in stores this reference 
in a private variable named add!nlnstance. 

The rest of the code in OnConnection creates an add-in menu command 
on the Tools menu. (This code is absent if you forgo the user interface option 
in the Add-in Wizard.) The menu-creation code executes conditionally, 
depending on the following if statement: 

if (connectMode == Extensibility.ext_ConnectMode.ext_cm_UISetup) 

The connectMode parameter holds a value that describes how the add-in was 
loaded. For add-ins that create a menu command, Visual Studio .NET passes 
in the Extensibility.ext_ConnectMode. ext_cm_U!Setup value the first time the 
add-in loads after being installed, which signals to the add-in that now is as 
good a time as any to add its commands to the IDE. 

The Add-in Wizard doesn't generate any code in the bodies of the other 
four IDTExtensibility2 methods: OnStartupComplete, OnAddinsUpdate, OnBe
ginShutdown, and OnDisconnection. The two IDTCommandTarget methods, 
QueryStatus and Exec, have some boilerplate code that helps manage the add
in's menu command and menu command clicks, respectively. To handle menu 
command clicks, you add code to the Exec method in the second if statement, 
which begins with 

if (commandName == "MyAddinl.Connect.MyAddinl") 

There isn't much code in Connect.cs, even if you've selected every option 
in the Add-in Wizard, but the code that's there creates a fully-functional add-in 
that you can build on. 



134 Part II Extending Visual Studio .NET 

Installing and Loading the Add-in 
The easiest (and best) way of installing your new add-in is to build the add-in 
setup project and install the MSI file that it creates. The MSI file is a completely 
self-contained package that can be deployed on any Windows machine, with 
one caveat: the target machine must have the .NET Framework installed. (If you 
need to, you can distribute the .NET Framework along with your add-in. Chap
ter 13 explains how.) This single-package distributable makes installing the 
add-in as simple as double-clicking the MSI file's icon in Windows Explorer. If 
you like, you also can install the add-in from within Visual Studio .NET. After 
you build the setup project, choose the Install command from the project's 
shortcut menu, as shown in Figure 5-2. After you launch the setup, an installer 
wizard steps you through the setup process. 

u.aina system: 
using Jlierosote. Office. Core; 
tl.8intl Extensibilit?: 
using: !yeteu. lh.mt:ime. Intei::opService:;,; 
uaing EnvDTE; 

I I! -<:nnntt>ar'i'/ 
I!/ The object .tor i:roplement:.ing an !dd-:i.n. 
J ! 1 /./~uir®anr> 

!fl -cei<:e"'*lso cl~ss:='!l1Tlt:..:.vens.t.b1.1li:y:1· 

[ Guid.lttribute ( "8J..857E4:9-'7873-45D2-83 3S-7CCD412 3'?39E") , Progl 
p®lic clue Connect : ctiject,. Exten:iibility. IDT'Exten~ibiJ.ity 
( 

Connect()Q 

void OnConnection(object. application, Extensibilit 

void On.Disconnection(Exten.!!ibility.ext._Disconnect! 

j UQlnstell I• &;1ds.k""1to_,;;,c.rtr~ .. : 
1X Rom"" 

I Rename 

Figure 5-2 Installing the add-in from within Visual Studio .NET 

The way you load your add-in into Visual Studio .NET can vary, depend
ing in part on the options you selected in the Add-in Wizard. If you chose to 
have your add-in load on startup, Visual Studio .NET will load the add-in auto
matically each time it runs. If you chose to have a user interface item for your 
add-in, the next time Visual Studio .NET runs, you'll be able to load the add-in 
by choosing its command from the Tools menu, as shown in Figure 5-3. 



Chapter 5 The Add-in Wizard and the Automation Object Model 135 

!;6~"!!ll ': 
• sdUtlon Expb'er • My~j 4 lC 

>----~ :J II ·.JJ fiili 
Connect to Qatabase.,, 

Add(RerooveT~rtems.,. 

add ... --... 
fl<"d Comment-. ..,.,, .. 
ti««» 

Attive:X Control Test COQt/Jirlet' Cr-
~or(~nltyEc:kioo 

Error Lookup 

ATl/MFC Ir ace Tool 

OlE(COMObject ~ 

SpY±+ 

... J ~tema!Tools... i 
Connect ( H.'.. :1 ~\.ISl:on'm... j 
v-¢1d OnConri-....-Qptlons--·~ .. ------•--'1Exte:ns1bili1 

void On.D isoonnec"Cion (Ex tens ib 1lit9. ex:t _D1sconnectl 

Figure 5-3 A default add-in menu command 

.. ~··s;;;,;,o,,1·r2"""""'' .. 
- ~-·· +' (;i!lReferences 

!!) AS$0mblyinfti.cs 
!!J Comed:.cs 

- li!il MyAd<lnls.tuo 
Ci Detected Del:leru:tencies 
~ dotnetfxreQst_x86.msrn 
,.J dte.olb 
i:J ErwOTE.dl 
.U Elttensbilty.dH 
ld MyAddint.tlb 

!-, ·UOfflce.dl 
~~dole.di 

il"""''°"""-MyAd<lnl( 

If you didn't choose either of these options, you can load the add-in by 
choosing Tools I Add-in Manager, which launches the Add-in Manager (shown 
in Figure 5-4). The Add-in Manager gives you control over all the registered 
add-ins, allowing you to load them, unload them, and mark them to load on 
startup and during command-line builds. 

Add in Manager ~J 

~escription: 

OK Cancel Help 

Figure 5-4 The Add-in Manager dialog box 



136 Part II Extending Visual Studio .NET 

Debugging the Add-in 
An add-in is just a DLL, so debugging an add-in project is no different from 
debugging any other Class Library project. Because a DLL can't run on its own, 
it needs a host application; for an add-in, that host is Visual Studio .NET 
(devenv.exe) or the Macros IDE (vsaenv.exe). The Add-in Wizard sets the 
debugging properties of the add-in project so that Visual Studio .NET is the 
host. You can examine and modify the project's debugging properties by right
clicking the add-in project in Solution Explorer, choosing Properties from the 
shortcut menu, and selecting Configuration Properties I Debugging in the 
Property Pages dialog box (shown in Figure 5-5). For most purposes, however, 
the default settings work just fine. 

:liCommon
<:iiConllgl.ralionPr--.. _ 

Adv.....t 

Figure 5-5 The add-in project's debugging properties 

In a typical debugging session, you open the add-in project in Visual Stu
dio .NET, set breakpoints in the add-in source code, and then start the debugger 
by choosing Start from the Debug menu (or pressing F5). The debugger, in 
turn, launches a second instance of Visual Studio .NET and attaches itself to this 
new process. You load the add-in to be debugged in the second instance of 
Visual Studio .NET, and when the add-in code hits a breakpoint, execution 
passes to the debugger running in the first instance of Visual Studio .NET. From 
there you can step through the code, examine the contents of variables and reg
isters, and perform other sundry debugging tasks. 

Debugging add-ins in the Macros IDE is almost as easy as debugging add
ins in Visual Studio .NET. The one catch is that you can't just open the Macros 
IDE from an instance of Visual Studio .NET and then attach the debugger from 
that instance to the Macros IDE. Why not? Because the two processes will dead-



Chapter 5 The Add-in Wizard and the Automation Object Model 137 

lock if Visual Studio .NET fires a macro event while execution is stopped in the 
debugger. Instead, the recommended way to debug add-ins in the Macros IDE 
is similar to the way you debug add-ins in Visual Studio .NET: open the add-in 
project in Visual Studio .NET, start a second instance of Visual Studio .NET, 
open the Macros IDE from the second instance of Visual Studio .NET, attach the 
debugger from the first instance of Visual Studio .NET to the Macros IDE pro
cess, load the add-in in the Macros IDE, and then debug as normal. (And don't 
forget to breathe.) 

Finally, you shouldn't feel obligated to run the Visual Studio .NET debug
ger if you have a favorite debugger you'd rather use. Any debugger that can 
handle delay-load DLLs will do (such as the Microsoft CLR Debugger that 
comes with the .NET Framework SDK, shown in Figure 5-6). 

f.lo ~ ~ llol>Jo Iools 't6l>dow !:tel> 

~ ilill!f!<; • rM 
• . _ ... ["'60]d•'•'""""" Doi. - [Z656J <No ..... ,. 

~r- · ---·-- ---- =-,,;~~J!~iL~:.:::~~:~:::::~ 
.. ~ -·····--· · ·-··· / Ti ···<p;ra·-eeo;;;·eictd.Intnst .~;:--···~ ····--· 

Nome 
+ 

111 Object representinq this .Add-in. 
111 <I p&.ram> 
111 <seeal8o clus•' IDTExtell81b1li.ty2' I> 
public void OnConnect.ion(ob3ect application, °""''""'"u'<Y· 
{ 

s:pJ):!~~a.tion(l)jecit • .t_»'J'.lf~pUCai:;ian; 
Mttlnlnst.ance ,.,. (Add.In)addininst~ 

it (eonnectRode: •• Exteneibility.ewt_Connec:tKode.exe_c:mw 
{ 

object [J c:onte:JttGUIDS ... new ol:ljee-t (] { l; 
CCfmlanda oom:oe.nd.8 • epplioationObjec:::t.COJm1anda; 
_comnand.Bar~ c0ll1B\&lld.Bar3 • applieationObject.COlmlelt 

11 Vhen run, the ld.d-1n wia:eu:d prepared the re91att 
11 At a late:r tirrie, the Add-in or its oommands 
I I 1 \ Vnn ri r.hi 111 nrn11"'~t. t'.n "' r:nmnnf'.,..r 

{~._ComOb;ect} 

ext:_cm_Afterstartup 
l>Y<tem._ComObiert} 
{System.Array} 

svstom.oo;ect 
ExtensMty.exr._ConnactMode 
sv-.Obfett 
System.Arr~ 

Figure 5-6 Using the CLR Debugger to debug an add-in 

The Automation Object Model 
One look at the automation object model chart and you'll agree that the Visual 
Studio .NET designers are serious about letting developers customize their pro
gramming environment. With over 140 different objects, the automation object 
model gives you unprecedented control over the IDE, from the solution level all 
the way down to a single parameter in a function. 



138 Part II Extending Visual Studio .NET 

Automation Objects 
Just as its name suggests, the automation object model exposes its functionality 
through objects-a programming paradigm familiar to most programmers 
today. Each object in the model encapsulates some small part of Visual Studio 
.NET and offers programmatic access to it through a set of methods, properties, 
and events. The objects are arranged in a hierarchy, with the methods and 
properties of one object allowing access to its child objects below and to its par
ent object above. 

The DTE object sits atop this automation object model hierarchy and 
serves as the entrance to its furthest recesses. Add-ins get their DTE reference 
from the application parameter of their OnConnection event; macros use the 
DTE reference in the predefined global variable named DTE. From this DTE ref
erence, you can reach all the other objects in the automation object model. If 
you're wondering what objects you might want to reach, the following short list 
should get your imagination working: 

• Solution, Project, and Projectltem objects give you programmatic 
control over all aspects of project management. 

• Document and TextDocument objects let you manipulate documents 
in the IDE. 

• TextSelection and TextPoint objects let you edit text as viewed in an 
editor window; EditPoint objects let you make changes directly to 
the text buff er. 

• FileCodeModel, CodeNamespace, Codelnterface, CodeVariable, Code
Function, and similar objects let you manipulate code constructs at a 
level independent of the underlying programming language. 

• CommandWindow, TaskList, OutputWindow, Too/Box, and other sim
ilar objects give you control of specific tool windows within the IDE. 

• Command objects let you access environment commands. 

• Debugger, Process, Program, Tbread, StackFrame, and other related 
objects give you control over the Visual Studio .NET debugger. 

Of course, the objects in the previous list are only the beginning. The 
remainder of the book covers these objects and more in exhaustive detail, 
teaching you everything you need to know to turn your copy of Visual Studio 
.NET into the coolest IDE on your block. 



Chapter 5 The Add-in Wizard and the Automation Object Model 139 

Object Model Guidelines 
Whenever possible, the automation object model design follows a few simple 
guidelines, shown in the following list. (Keep these rules in mind while you 
program, and you won't waste time agonizing over why Addlns(O) throws a 
COMException or why Activate won't display your @#&%*! output window.) 

• All objects use Automation types only. 

• All objects have a DTE property that returns the DTE object. 

• Collections have names that are the plural form of the objects they con
tain. For example, Documents is the collection of Document objects. 

• Collections are accessed through properties that have the same name 
as the collection. 

• Collections have an Item method-not a property-for accessing 
their contained items. 

• The Item method for a collection takes an object when you're using 
a managed language; it takes a VARIANT when you're using an 
unmanaged language. 

• The Item method on a collection takes a numerical index or the 
name of a collection item. 

• Numerical indexes into a collection are 1-based. 

• Collections have a Count method that returns a System.Int32 when 
you're using a managed language or a long when you're using an 
unmanaged language. 

• Collection items have a Collection property that returns the owning 
collection; all other objects have a Parent property that returns its 
parent object. 

• You add an item to a collection by using the Add method on the col
lection; you remove an item from a collection by using the Remove 
or Delete method on the item. (Delete applies to user interface items, 
such as Too!BoxTab objects; Remove applies to non-user interface 
items, such as Addin objects.) 

• The DTE.Events object provides access to all event interfaces. 

• A general object can return one or more specific objects through 
its Object property, which takes the case-insensitive name of the 
specific object. 



140 Part II Extending Visual Studio .NET 

• Creating a window doesn't automatically make that window visi
ble; instead, you make a window visible by setting its Visible prop
erty to True. 

• Properties that return a complete path to a file on disk are called 
FullName. 

• The Activate method sets the focus on a visible user interface item; 
if the item isn't visible, Activate won't necessarily make its con
tainer visible. 

Automation Events 
If automation objects tell you what you can do within Visual Studio .NET, auto
mation events tell you when you can do it. Each of the functional groups within 
the automation object model defines events that allow you to listen in on Visual 
Studio .NET's activities and take action based on what you hear. Together with 
automation objects, automation events allow you to achieve hands-free control 
over every important aspect of Visual Studio .NET. 

Connecting to Automation Events 
Connecting to automation events is pretty simple, although the syntax for doing 
so differs dramatically between the languages supported by Visual Studio .NET. 
We'll begin our events overview with C# because the C# syntax reveals every
thing we care to know about the mechanics of events. 

The DTE.Events property is the first stop on the way to automation events. 
This property returns an EnvDTE.Events interface, which defines the read-only 
properties shown in Table 5-2. Each of the Events properties returns an event 
interface with the same name as the property; each event interface, in turn, 
defines a set of events to which you can subscribe. 

Table 5-2 EnvDTE.Events Properties 

Property 

BuildEvents 

CommandEvents' 

Events 

OnBuildBegin 

OnBuildDone 

OnBuildProjConfigBegin 

OnBuildProjConfigDone 

After Execute 

BeforeExecute 



Chapter 5 The Add-in Wizard and the Automation Object Model 141 

Table 5-2 EnvDTE.Events Properties (continued) 

Property 

DebuggerEvents 

DocumentEvents' 

DTEEvents 

FindEvents 

MiscFilesEvents (returns Project
ItemsEvents) 

Output Window Events' 

SelectionEvents 

SolutionEvents 

Events 

OnContextChanged 

OnEnterBreakMode 

OnEnterDesignMode 

OnEnterRunMode 

OnExceptionNotHandled 

OnException Thrown 

DocumentClosing 

DocumentOpened 

DocumentOpening 

DocumentSaved 

ModeChanged 

OnBeginShutdown 

OnMacrosRuntimeReset 

OnStartupComplete 

FindDone 

ItemAdded 

ItemRemoved 

ItemRenamed 

PaneAdded 

PaneClearing 

Pane Updated 

OnChange 

AfterClosing 

BeforeClosing 

Opened 

ProjectAdded 

ProjectRemoved 

ProjectRenamed 

QueryCloseSolution 

Renamed 



142 Part II Extending Visual Studio .NET 

Table 5-2 EnvDTE.Events Properties (continued) 

Property 

Solution!temsEvents (returns 
Project!temsEvents) 

TaskListEvents' 

TextEditorEvents' 

Window Events' 

Events 

ItemAdded 

JtemRemoved 

ItemRenamed 

TaskAdded 

TaskModified 

TaskNavigated 

TaskRemoved 

LineChanged 

WindowActivated 

WindowClosing 

WindowCreated 

WindowMoved 

' C# won't allow you to reference these properties using property syntax because their get accessors take 
parameters. Use explicit calls to the get accessors instead. 

Before you can subscribe to one of the events in Table 5-2, you need to 
define the function that will handle the event, and to do that you need the 
event's signature. The Visual Studio .NET documentation contains all the signa
ture information for the automation events; once you have that information, 
you can define an event handler function whose prototype matches that of the 
corresponding event. 

Next you need the delegate that's defined for the event. In the .NET 
Framework event model, a delegate is a class that wraps a callback function 
(such as an event handler) and provides type-safe access to it. The delegates for 
the automation events have names that follow this pattern: _disp<event inter
face>_ <event name>EventHandler. To add your event handler to the event's list 
of subscribers, you create a new instance of the event's delegate, passing the 
event handler to the delegate's constructor, and then you assign the delegate to 
the event using the +=syntax. If you've never done this before, it's easier than 
it sounds. Let's look at an example. 

Suppose the software company you work for logs its daily builds and you 
would like to inject custom information into those logs, such as the name and 
department of the person performing the build. One way to do that would be 
to write an add-in that intercepts the BuildEvents. OnBuildBegin event-which 
fires just before a build takes place-and write the custom information into the 



Chapter 5 The Add-in Wizard and the Automation Object Model 143 

log from the event handler. A quick peek at the documentation reveals the 
event's signature: 

void OnBuildBegin(vsBuildScope scope, vsBuildAction action); 

When this event fires, Visual Studio .NET passes along information about the 
impending build through the scope and action parameters: the scope parameter 
tells you the extent of the build that is about to begin (solution, batch, or 
project), and the action parameter tells you the kind of build that is about to 
begin (build, rebuild all, clean, or deploy). The event handler that you create 
must have the same signature as this event; you can name the handler anything 
you like, but the event's name is as good as any other: 

public class Connect : Object, Extensibility.JDTExtensibility2 
{ 

private void OnBuildBegin(vsBuildScope scope, vsBuildAction action) 
{ 

II Log the builder's information 

} 

Now that the event handler is in place, it's time to wire it up to the event. 
From Table 5-2, you know that build events belong to the BuildEvents interface, 
so the delegate you need for the OnBeginBuild event has the name 
_dispBuildEvents_OnBeginBuildEventHandler. The following code wires up 
the event handler: 

public class Connect Object, Extensibility.JDTExtensibility2 
{ 

public void OnConnection(object application, 
Extensibility.ext_ConnectMode connectMode, 
object addlnlnst, 
ref System.Array custom) 

applicationObject = (_DTE)application; 
addlnlnstance = (Add!n)addlnlnst; 

buildEvents = applicationObject.Events.BuildEvents; 
buildEvents.OnBuildBegin += 

new _dispBuildEvents_OnBuildBeginEventHandler( 
this.OnBuildBegin); 



144 Part II Extending Visual Studio .NET 

public void OnOisconnection( 
Extensibility.ext_DisconnectMode disconnectMode, 
ref System.Array custom) 

bu1ldEvents.DnBuildBeg1n 
new _d1spBu1ldEvents_OnBuildBeg1nEventHandler( 

th1s.OnBuildBegin): 

private void OnBuildBegin(vsBuildScope scope, vsBuildAction action) 
{ 

II Log the builder's information 

private _DTE applicationObject; 
private Addin addininstance: 
pr1vate EnvDTE.Bu1ldEvents buildEvents: 

The pattern is simple: OnConnection hooks up the OnBuildBegin event han
dler to the event when the add-in loads, and OnDisconnection unhooks the 
same event handler when the add-in unloads. 

Important If you don't unsubscribe from all events before the add-in 
unloads, you're in for a good old-fashioned memory leak. Under nor
mal circumstances, the add-in becomes fair game for the garbage col
lector when Visual Studio .NET unloads it. But when the add-in doesn't 
unsubscribe from its events, it never gets garbage collected because 
the events still hold references to it. And like the ghosts in the movie 
The Sixth Sense who "don't even know they're dead," the add-in will 
behave as though nothing is wrong and will continue to process events 
long after it has passed on from the realm of Visual Studio .NET. 

Macro Event Handlers 
Connecting to events from add-ins is easy, and connecting to events from mac
ros is easier still. Every new macro project begins life with a module named 
EnvironmentEvents. This module defines an event variable for each of the 
event interfaces listed in Table 5-2, and these event variables are initialized 



Chapter 5 The Add-in Wizard and the Automation Object Model 145 

automatically by the Macros IDE. When the EnvironmentEvents module is open 
in an editor window, you can add a new event handler by selecting the event 
variable from the Class Name drop-down list and then selecting the event you 
want to connect to from the Method Name drop-down list (as shown in Figure 
5-7). The Macros IDE generates an empty event handler-all you have to do is 
add the code. 

~" los1deVSNFT Microsoft V1!!.Ual Studio Mdl:1os [design] fnvironmentfwnts G:!~j~ 

<System.ContextSt:atic:Attribute () > Public \11thEvents DTEEven'ts As EnvDTE.DTEEvents 
<$y3tem. ContextStat1cAttribute () > Public lifithEvem:,s Dccuttlo:mtEvents M EnvDTE .Doc:Ufuen.tEven 
<3ysteni. Context.Stat icAttr ibute l) > PUb lie 1JithEvents tifl.ndowEvents As EnvDTE. !JindowEvemts 
<System. ContextStaricAttribute () > Public \hthEvents TaskListEvents As !'.nvDTE. TasY.ListEven 
<Systeni.ContextStatic:Attribute () > Public YithEvents FindEvents EnvDTE.FindEvents 
<System. ContextStaticAt-tr ibute () > Public !JithEvents Outputlil'indowEvents As EnvDTE, Output Vi 
<Sysr:::em. ContextStaticAttribute 1) > Publlc WithEvent~s SelectionEvents As EnvDTE. 5electionEv 
-<Systeru. ContextStaticAttribute () > P1Jbl1c lJithivents Bl.tild.Events As EnvDTE.lh.tildEvents 
<System. CantextStaticA.ttribute () > Public WithEventa: SolutionEvents As EnvDTE .SolutionEven 
<System. ContextStaticAttr ibute t) > Public iJithEvents Sol ut1oniterns?:vent-s As EnvDTE. Project 
<SysteJll.ContextStaticAttribute () > Public With!:vents MiscfilesEvents As EnvDTE.Projectltem 

DebuggerKvencs b 

Figure 5-7 Adding a macro event handler 

To unsubscribe from an event, you just delete its event handler from the 
EnvironmentEvents module. Be careful not to modify or delete the event vari
ables located within the region marked "Automatically generated code, do not 
modify," because doing so might prevent the macro project from building. 

Defining Your Own Event Variables 
Although the EnvironmentEvents module is a convenient place to create and 
manage your macro event handlers, you might have reason to define some of 
your event handlers in other modules (if only to keep EnvironmentEvents from 
growing too large). To create an event handler in an arbitrary module, you first 
need to declare an event variable in that module. The following declaration cre
ates the MyWindowEvents variable for handling window events: 

<System.ContextStaticAttributeCl> Public WithEvents 
MyWindowEvents As EnvDTE.WindowEvents 



146 Part II Extending Visual Studio .NET 

If you open the module containing this declaration in an editor window, 
you can generate an empty event handler just as you would in the Environ
mentEvents module by selecting the MyWindowEvents variable from the Class 
Name drop-down list and then selecting the event you want to handle from the 
Method Name drop-down list. Unlike the EnvironmentEvents module, how
ever, the new event handler won't receive events automatically. That's because 
the Macros IDE initializes the event variables in EnvironmentEvents for you
when you create your own event variables, you have to initialize them yourself. 

To initialize an event variable, you assign the appropriate DTE.Events 
property to it: 

MyWindowEvents = DTE.Events.WindowEvents 

You can put the assignment in a regular macro and run the macro by hand, 
which works well enough for some situations, but your handler will miss all 
events up to the time you run the macro. If the event handler has to intercept 
events right from startup, you need to automate the assignment somehow. The 
DTEEvents interface defines the two events you'll need for this purpose: 
OnStartupComplete, which fires when Visual Studio .NET finishes loading, and 
OnMacrosRuntimeReset, which fires when a macro project is reloaded into 
memory. By creating handlers in EnvironmentEvents for both of these events 
and performing the assignment within each handler, you achieve automatic ini
tialization of your event variable: 

Public Module EnvironmentEvents 

Public Sub DTEEvents_OnMacrosRuntimeReset() _ 
Handles DTEEvents.OnMacrosRuntimeReset 

MyModule.MyWindowEvents = DTE.Events.WindowEvents 
End Sub 

Public Sub DTEEvents_OnStartupComplete() _ 
Handles DTEEvents.OnStartupComplete 

MyModule.MyWindowEvents = DTE.Events.WindowEvents 
End Sub 

End Module 

Filtered Events 
In general, you should use events sparingly because too many event handlers 
will degrade the performance of Visual Studio .NET. By creating a filtered event, 
however, you can have your event and eat it, too. Essentially, a filtered event 
lets you handle the events of some objects and ignore the events of others. For 
example, instead of receiving WindowClosing events for every window, you 



Chapter 5 The Add-in Wizard and the Automation Object Model 147 

can choose to receive WindowClosing events for the Task List window only. 
The DTE.Events properties listed in Table 5-3 allow you to create filtered events. 

Table 5-3 Properties for Filtered Events 

DTE.Events Property 

CommandEvents 

DocumentEvents 

OutputWindowEvents 

TaskListEvents 

TextEditorEvents 

WindowEvents 

Filtered By 

Command name 

Document object 

Output window pane name 

Task List category 

TextDocument object 

Window object 

Suppose you want to handle events from a specific window in the IDE. 
From Table 5-3, you see that the WindowEvents property accepts a Window 
object as its filter. You retrieve the Window object you want from the 
EnvDTE. Windows collection by passing its Item method the associated 
EnvDTE.Constants.vsWindowKind:xxx constant. Pass this Window object to the 
WindowEven.ts property and you'll receive an event interface for that particular 
window. The following code shows how to narrow down window events to the 
Macro Explorer window only: 

' Event variable declaration 
<System.ContextStaticAttribute()> Public WithEvents _ 

MacroExplorerWindowEvents As EnvDTE.WindowEvents 

Sub InitializeMacroExplorerFilter() 
Dim macroExplorerWindow As EnvDTE.Window 

macroExplorerWindow = _ 
DTE.Windows.Item(EnvDTE.Constants.vsWindowKindMacroExplorer) 

MacroExplorerWindowEvents = _ 
DTE.Events.WindowEvents(macroExplorerWindow) 

End Sub 

Sub MacroExplorerWindowEvents_WindowActivated( _ 
ByVal GotFocus As EnvDTE.Window, _ 
ByVal LostFocus As EnvDTE.Window) _ 
Handles MacroExplorerWindowEvents.WindowActivated 

' Description: Tracks each time the Macro Explorer window 
is activated 

End Sub 



148 Part II Extending Visual Studio .NET 

Lab: Unfiltered and Filtered Events 
Want to see the difference between unfiltered and filtered events? Then 
open the Output window and try the following experiment, which uses 
macros in the FilteredEvents module: 

1. Run the InitializeUnfilteredEvents macro, which initializes Docu
mentEvtmts and TextEditorEvents event variables without filters. 
FilteredEvents defines event handlers that process Document
Saved and LineChanged events for these two event variables. 

2. Create two new text files. 

3. Type a line of text, and press Enter in both of the files you cre
ated. The Output window displays a "LineChanged fired" mes
sage for each new line. 

4. Save both of the files. As you save each file, the Output window 
displays a "DocumentSaved fired" message. 

Because the DocumentEvents and TextEditorEvents event variables 
were initialized without filters, the corresponding event handlers receive 
events for all documents. Now, leave open the two files you created and 
try a similar experiment using filtered events: 

1. Run the InitializeFilteredEvents macro. This macro creates a file 
named New File and initializes the DocumentSaved and 
LineChanged event variables so that they target events for this 
file only. 

2. In the New File file, enter a line of text and press Enter. The 
Output window displays a "LineChanged fired" message. 

3. Switch to each of the text files you created, and repeat the pre
vious step. Notice that the Output window doesn't display 
"LineChanged fired" for either of these files. 

4. Save both of the text files. Again, notice that the Output win
dow doesn't display "DocumentSaved fired" messages. 

5. Save New File. This time, you'll see "DocumentSaved fired" in 
the Output window. 



Chapter 5 The Add-in Wizard and the Automation Object Model 149 

Late-Bound Events 
Programming languages integrated into Visual Studio .NET can offer late-bound 
events that monitor the status of their own project types-you can think of 
them as filtered events for projects. These project-specific events are shown in 
Table 5-4. 

Table 5-4 Late-Bound Events 

Language 

Visual C# 

Visual Basic 

Visual C++ 

Event Interface 

CSharpBuildManagerEvents 

CSharpProjectsEvents 

CSharpProjectltemsEvents 

CSharpReferencesEvents 

VBBuildManagerEvents 

VB!mportsEvents 

VBProjectsEvents 

VBProjectltemsEvents 

VBReferencesEvents 

CodeMode!Events 

VCProjectEngineEventsObject 

The event interface names are the same as the interfaces they derive from, 
but with a language-specific prefix: VBProjectsEvents, CSharpProjectltemsEv
ents, and so on. (The Visual C++ event interfaces are the exceptions because 
they derive from a different code base.) You retrieve the event interface you 
want by passing its name to the DTE.Events.GetObject method. For example, 
the following code initializes an event variable with the interface that handles 
all the C# project events: 

<System.ContextStaticAttribute()> Public WithEvents _ 
CSharpProjectsEvents As EnvDTE.ProjectsEvents 

Sub InitializeCSharpProjectsEvents() 
CSharpProjectsEvents = DTE.Events.GetObject("CSharpProjectsEvents") 

End Sub 

After the previous code executes, any event handlers you created for the 
CSharpProjectsEvents variable will receive C# project events only. 



150 Part II Extending Visual Studio .NET 

Looking Ahead 

Our Sunday drive is over. We've toured the Add-in Wizard countryside and 
cruised past the shores of the automation object model-now it's time to get to 
work. Pull your add-in into the garage, pop the hood, and roll up your sleeves. 
In the next chapter, we're stripping the add-in down to the frame and reassem
bling it piece by piece. 



Add-in Architecture 
As you learned in Chapter 5, the easiest way to create an add-in is by running the 
Add-in Wizard included with Microsoft Visual Studio .NET. The easiest way isn't 
always the best way, however, especially when you're trying to learn an unfamil
iar technology. In this chapter, we'll hold to the ideal that good wizards are tools, 
not crutches, and that you should use them as a convenience only after you're 
capable of writing the equivalent code. Of course, we don't expect you to reach 
that goal without a little help-in the pages that follow, we'll teach you every
thing you need to know to write the equivalent of a wizard add-in. By the end, 
if you pay attention, you just might be able to write your own Add-in Wizard. 

If that sounds like fun, then put your IDE away, open up a Command 
Window, and let's get started. In the next section, you'll learn the fundamentals 
of add-in construction by writing add-ins the old-fashioned way-by hand, 
from scratch. 

Writing an Add-in from Scratch 
Listing 6-1 shows the source code for our first add-in, named Basic. You can 
think of Basic as a wizard-generated add-in with all its clothes removed-the 
naked add-in that's left is the smallest one possible that still does something use
ful. And, as you can see from the listing, the smallest possible add-in is small 
indeed. That's because add-ins have one requirement only: a public class that 
derives from and implements the Extensibility.IDTExtensibility2 interface. 
Basic.cs satisfies this requirement by defining a single, public class, named 
Basic, that derives from IDTExtensibility2 and implements the interface's five 
methods-OnConnection, OnStartupComplete, OnAddlnsUpdate, OnBegin
Shutdown, and OnDisconnection. There's no Main method because Basic, like 

151 



152 Part II Extending Visual Studio .NET 

all add-ins, is destined to become a DLL. Instead, the OnConnection method 
serves as the add-in's entry point, and the Basic add-in implements that method 
by displaying its own name in a message box. 

·:Eia.:"Q~~'"'>· · · ·······:{ .· ... " : 
·~si.n9'sy$.t¢m• · ·•·· 

Listing 6-1 The Basic add-in source code 

Compiling the Basic Add-in 
If you add the source code in Listing 6-1 to a text file named Basic.cs, you 
can compile the Basic add-in from the command line by using the following 
command: 

csc /t:library /r:"c:\program files\microsoft visual studio .net 2003\ 
common7\ide\publicassemblies\extensibility.dll" basic.cs 



Chapter 6 Add-in Architecture 153 

The It: library flag directs the C# compiler to create a DLL (Basic.dll) from 
the source file, and the Ir: "c: \program files\microsoft visual studio . net 
2003\common 7\ide\publicassemblies\extensibility.dll" flag points the com
piler to the assembly that contains the Extensibility namespace (Extensibil
ity.dll). The Extensibility namespace defines three types, which all add-ins use: 
the IDTExtensibility2 interface and the ext_ConnectMode and 
ext_DisconnectMode enumerations, which define values passed to the OnCon
nection and OnDisconnection methods, respectively. 

Typing long references at the command line invites both carpal 
tunnel syndrome and boredom. As an alternative, you can add a refer
ence to the list of default references in the global CSC.rsp file, located 
at <WinDir>\Microsoft.NET\Framework\<Version>\CSC.rsp. For exam
ple, if you add /r:"c:\program files\microsoft visual studio .net 
2003\common7\ide\pub/icassemb/ies\extensibility.dll" to the global 
CSC.rsp file, you can compile the Basic add-in with the following com
mand: 

csc /t:library basic.cs 

Registering the Basic Add-in with COM 
At this point, you have an add-in in a file named Basic.dll. To be more precise, 
you have a managed add-in that is defined in an assembly stored in a file 
named Basic.dB. Now comes the grand irony of Visual Studio .NET add-ins: 
Without some help, Visual Studio .NET can't host the managed add-ins that it 
builds-not even the ones created by its own Add-in Wizard. The reason is that 
Visual Studio itself is mostly an unmanaged application. Visual Studio .NET 
inherited much of its functionality from Visual Studio 6, including its ability to 
host add-ins. Because Visual Studio 6 dealt with COM add-ins only, Visual Stu
dio .NET won't host any other kind, either. 

Fortunately, COM interoperability comes to the rescue. The .NET Frame
work designers knew from the beginning that the world wasn't about to throw 
away its enormous investment in COM and start all over with managed code, so 
they made sure that COM classes and .NET classes would be able to interact 
seamlessly. All it takes for a .NET class to make itself available to COM is for the 
.NET class to register itself as a COM class. In particular, managed add-ins 
require the following registry entries: 



154 Part II Extending Visual Studio .NET 

• HKEY_CLASSES_ROOT\<ProgID> A key whose name is the 
ProgID of the class that implements ID1Extensibility2 

• HKEY_CLASSES_ROOT\<ProgID>\CLSID A key whose default 
value is the CLSID of the class that implements ID1Extensibility2 

• HKEY_CLASSES_ROOT\CLSID\<CLSID> A key whose name is 
the CLSID of the class that implements ID1Extensibility2 

• HKEY_CLASSES_ROOT\CLSID\InprocServer32 A key whose 
named values identify the class that implements ID1Extensibility2 
and the assembly in which that class is defined 

Figure 6-1 shows the registry entries for the Basic add-in. 

Note Visual Studio .NET isn't the only beneficiary of COM interoper
ability. As long as your managed add-in is registered correctly, any 
environment that can host COM add-ins, such as Visual Basic 6, can 
host your managed add-in (provided, of course, that the .NET Frame
work is installed on the same machine). 

111!> llllt !lle<l:l'.- t1"> 
·-~---::t~---~--· .. ·'-----····-~r~;~-=:'·' ;i;;:ri·~---~-»·:,-,,,-139-··-s:·-;·..,··-i-.;._"'_ ~, .. '*,.-m ... 2-ii. *.---··-·~ 

f!l·llli '°""''er.AnalogRadoToo- 11: 
Iii QI BOAT ..... AnaiogRalioT-..,..t f 

:~:::::::~=·' 11 
; fii·Gii1 BDATuner.ATSCChamelTtNReqoest f 
i iji·ii'it BDATuner,ATSC~.l 
~ ~ OOATuner,ATSCComponentType 

e1o-~-~--~_ .. llol> .. 
&i!lii i•92oooi.Z-Ai.i~~T--·· 
'iii-
fft ~ -{992CFFAO-f'SSN01A..aeec-0000010CCC48}' 
\lhU {9'6C1Cf'S-511'F-UD3<lllOA-00600!l9'111B6f 
;ii]l {99SC--091'H"8c-A30M571-7} 
ill !ilii {-103-8184-110MIF1IHIOO>lf<:2Ct7B} 
ilil.lil {999131B8-817C·tlD2-90} 
~-li:ili99m71iC-30l'E-111'1-~3FAf 
ii·!lii {99061F63-1...,_..!AE~13} 
ii-I!!! <••'f·t<m-f'FC:>!ID0-e002~} 

Figure 6-1 The COM interoperability registry entries for the Basic add-in 



Chapter 6 Add-in Architecture 155 

Thankfully, there's no need to add these registry entries by hand. They're 
created automatically when you register your add-in using the .NET Framework 
Assembly Registry utility (RegAsm). The following command registers the Basic 
class as a COM class: 

regasm /codebase basic.dll 

Note Ignore RegAsm when it complains that the /codebase flag 
should be used only with strongly named assemblies. The /codebase 
flag generates the CLSID\lnproc8erver32\CodeBase named value
without this value, the CLR won't be able to locate your add-in's 
assembly. 

RegAsm generates a default ProgID and CLSID for each class it encounters 
in an assembly. (See the upcoming sidebar "GUIDs and FUIDs" for more infor
mation about the default CLSID.) The default ProgID is the same as the class's 
fully qualified name. For example, the code 

namespace Outer 
{ 

namespace Inner 
{ 

public class MyClass () 
{ 

} 

produces the default ProgID, Outer.lnner.MyClass. Because the Basic class 
doesn't belong to a namespace, its ProgID is simply Basic. 

GUIDs and FUIDs 
Traditionally, a CLSID is a globally unique identifier (GUID)-a 16-byte 
number that's guaranteed to be unique in time and space. However, close 
inspection of the default CLSID that RegAsm generates reveals a number 
that's a GUID in appearance only. In fact, RegAsm always generates the 
same CLSID when given the same fully qualified class name, regardless of 
where or when the number is generated. (We'll call this number a FUID
for-the-most-part unique identifier-which ranks just below a GUID.) 



156 Part II Extending Visual Studio .NET 

This means that if two different programmers, at two different times, 
on two different machines, on two different continents, register a class 
named Basic, their classes will have the same FUID: 992BOD1F-A395-
34F5-BFC9-EOA3E9385293. 

Well, you might not be able to stop others from co-opting your care
fully chosen class name, but you don't have to accept the off-the-rack 
FUID that RegAsm hands out to your class. That's where System.Run
time.lnteropServices.GuidAttribute comes in handy. When applied to a 
class, GuidAttribute overrides the default FUID and lets you assign a 
GUID of your own choosing. (And there are lots of GUIDs to choose 
from-just run the Create GUID utility [GuidGen] to create an honest 
GUID that your class can call its own.) 

Registering the Basic Add-in with Visual Studio .NET 
Basic.dll is a fully functional add-in, but Visual Studio .NET won't know of its 
existence yet. Add-ins signal their availability to the Visual Studio .NET inte
grated development environment (IDE) through one of the following registry 
entries 

• HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\ VisualStu
dio \ 7 .1 \Addlns \ <ProgID> 

• HKEY _CURRENT_ USER \Software \Microsoft\ VisualStudio \ 7 .1 \Add
Ins \ <ProgID> 

And they make themselves known to the Macros IDE through one of the corre
sponding VSA registry entries: 

• HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\ VSA \ 7 .1 \Add
Ins\ <ProgID> 

• HKEY _CURRENT_ USER \Software \Microsoft\ VSA \ 7 .1 \Add
Ins \ <ProgID> 

Note From here on out, we'll refer only to add-ins in the Visual Stu
dio .NET IDE. However, the information in the rest of the chapter 
applies equally well to add-ins in the Macros IDE. 



Chapter 6 Add-in Architecture 157 

The Add-in Manager populates its add-ins list from these two Addlns keys. 
An HKEY _LOCAL_MACHINE entry makes the add-in available to all users on a 
machine; because modifying the HKEY _LOCAL_MACHINE hive requires 
administrator privileges, an add-in registered in this way is also known as an 
administrator add-in. An HKEY _CURRENT_USER entry makes the add-in avail
able to the user who creates the entry and is mirrored in the user settings under 
HKEY_USERS; not surprisingly, an add-in registered in this way is known as a 
user add-in. In either case, the name of the key is the ProgID of the class that 
implements IDTExtensibility2. 

To register the Basic add-in for use by all users on a machine, run the Reg
istry Editor utility (RegEdit) and create the following key (assuming that you 
have administrator privileges): 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.1\ 
Addins\Basic 

After you create this key, run Visual Studio .NET and choose Tools I Add
in Manager to display the dialog box shown in Figure 6-2. Notice that the Add
in Manager lists the add-in's name as Basic. By default, the Add-in Manager dis
plays the ProgID it finds under the Addlns registry key. (In the section titled 
"Add-in Registry Named Values" later in this chapter, we'll cover the named val
ues for this ProgID registry key that control the display name and other prop
erties of the add-in.) 

Add rn Manager [~I 

Available Add·ins J Startup L Com11Jand Line J 
lcoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiio•oJiiiiiii-
o Web Hbsting Provider Upload Utility, 0 0 

!2escriptlon: 

OK <;:arn:el I Help 

Figure 6·2 The Add-in Manager dialog box showing the Basic add-in 



158 Part II Extending Visual Studio .NET 

If you select the check box to the left of Basic and click OK, Visual Studio 
.NET loads the add-in. Assuming all goes well, Visual Studio .NET will call 
Basie's OnConnection method and you'll see. the message box shown in Figure 
6-3. 

Figure 6-3 The message box displayed by the Basic add-in 

And that's how you create an add-in from scratch. In the next section, 
we'll examine exactly what happens to an add-in in the Visual Studio .NET 
environment when the add-in loads, when the add-in unloads, and all the time 
in between. 

Add-in Events 
Add-ins are event-driven. Most everything an add-in does it does in response to 
some external prodding, and Visual Studio .NET prods add-ins with the 
IDTExtensibility2 interface. We'll begin our exploration of add-in events by 
examining the sequence in which Visual Studio .NET calls the IDTExtensibility2 
methods. 

The Add-in Event Sequence 
Calls to the IDTExtensibility2 methods, which we'll also refer to as events, occur 
at predictable points in the lifetime of an add-in. Figure 6-4 shows the sequence 
of events from the time an add-in is loaded to the time it is unloaded. 

You can guess the actions that trigger the events just from the events' 
names, and the events occur pretty much in the order you would expect: 
OnConnection when an add-in loads, OnDisconnection when an add-in 
unloads, and so on. But however straightforward the event sequence might 
seem, it still holds a few surprises for the programmer who believes everything 
she reads in the documentation. The first surprise is the initial OnAddlnsUpdate 
event. The documentation says that an add-in receives OnAddlnsUpdate events 
only when other add-ins are loaded or unloaded; in truth, the add-in itself trig
gers the first OnAddlnsUpdate it receives. This isn't a bug; instead, it turns out 
that the documentation is wrong, but you could argue that Visual Studio .NET 
should be smarter about which add-ins get notified. After all, an add-in already 



Chapter 6 Add-in Architecture 159 

knows that it's being loaded when it receives the OnConnection event-it 
doesn't need an OnAdd!nsUpdate event to remind it of that. 

Figure 6-4 The add-in event sequence 

The second surprise involves the Add-in Manager. The Add-in Manager 
triggers OnAddlnsUpdate events whenever its OK button is clicked, regardless 
of whether an add-in was loaded or unloaded. This happens because clicking 
the OK button resets the add-ins list automatically, thereby triggering a round of 
OnAdd!nsUpdate events. This behavior is by design, for better or worse, so 
don't assume that every OnAddlnsUpdate event after the first has something 
important to tell. 



160 Part II Extending Visual Studio .NET 

The third surprise is that add-ins loaded by commands don't trigger OnAd
dlnsUpdate events, and neither do add-ins loaded or unloaded by way of their 
Connected properties. (We'll go over commands in detail in Chapter 7.) There's 
no nice way to describe this behavior, so we'll call a bug a bug and move on. 

The LifeCycle Add-in 
You can get a feel for the add-in event sequence by running the LifeCycle sam
ple add-in. LifeCycle, shown in Listing 6-2, handles each IDTExtensibility2 
event by displaying the name of the event in the Output window. After you 
build and register LifeCycle, load it into Visual Studio .NET using the Add-in 
Manager. Then try loading and unloading other add-ins, such as Basic, to trig
ger the different IDTExtensibility2 events. To fire the OnStartupComplete event, 
you first need to select the Startup check box for LifeCycle in the Add-in Man
ager, and then you must restart Visual Studio .NET. To fire the OnBeginShut
down event, close Visual Studio .NET while LifeCycle is loaded. 

Listing 6·2 The LifeCycle add-in source code 



} 

} 

Chapter 6 Add-in Architecture 161 

public void OnStartupComplete(ref Array custom) 
{ 

this.output.Writeline("OnStartupComplete event fired"); 

public void OnAddlnsUpdate(ref Array custom) 
{ 

this.output.Writeline("OnAddlnsUpdate event fired"); 

public void OnBeginShutdown(ref Array custom) 
{ 

this.output.Writeline("OnBeginShutdown event fired"); 

public void OnDisconnection(ext_DisconnectMode removeMode, 
ref Array custom) 

this.output.WriteLine("OnDisconnection event fired"); 

You already know how to build an add-in from scratch using the com
mand line-now it's time to learn how to build an add-in from scratch using 
Visual Studio .NET. (After all, this isn't a book about how command-line pro
gramming can make your life easier.) 

To construct the LifeCycle project, first create a new solution by choosing 
File I New I Blank Solution in Visual Studio .NET. Add a project named Life
Cycle to the solution by choosing File I Add Project I New Project and select
ing Visual C# Projects I Empty Project in the Add New Project dialog box. 
Finally, add a CS file named LifeCycle.cs to the project by choosing File I Add 
New Item and selecting Code File from the Add New Item dialog box. 

Next you need to alter two of the project's properties: output type and 
COM interoperability. A blank project builds a console application by default; 
to change the project into one that creates a DLL, right-click on the project 
name in Solution Explorer and choose Properties from the shortcut menu. In 
the Lif eCycle Property Pages dialog box, select Common Properties I General 
in the left pane and then select Class Library from the Output Type drop-down 
list in the right pane. The same dialog box lets you enable COM interoperabil-



162 Part II Extending Visual Studio .NET 

ity, which directs Visual Studio .NET to add the registry entries necessary to 
allow the add-in to function as a COM component. To enable COM interopera
bility for the add-in, select Configuration Properties I Build in the left pane of 
the LifeCycle Property Pages dialog box and select True from the Register For 
COM Interop drop-down list in the right pane. 

If you've just changed the output type, you have to click Apply 
before the Register For COM lnterop drop-down list is enabled. If you 
switch to Configuration Properties I Build before you apply the new out
put type, you're out of luck-you'll have to close and reopen the dialog 
box before you can select a new Register For COM lnterop setting. 

Once you've set up your project, enter the code from Listing 6-2 into the 
CS file. If you try to build the project at this point, the compiler will complain 
that it can't find the EnvDTE, Extensibility, and Utilities namespaces and the 
types they define. To add references to these namespaces, right-dick Refer
ences in Solution Explorer and choose Add Reference from the shortcut menu. 
On the .NET tab of the Add References dialog box, select envdte, extensibility, 
and InsideVSNET.Utilities from the component list. Once you've done this, you 
can build LifeCycle.dll without a problem. 

The IDTExtensibility2 Interface 
As you now know, an implementation of IDTExtensibility2 lies at the core of 
every add-in. Visual Studio .NET calls the methods on this interface whenever 
it needs to apprise an add-in of important events, such as when another add-in 
is loaded or unloaded, or when Visual Studio .NET is about to shut down. The 
communication isn't just one-way, either: through the IDTExtensibility2 inter
face, the add-in has access to and control over the entire Visual Studio .NET 
automation object model. 

The EnvDTE Namespace 
Before examining the individual IDTExtensibility2 methods, we need to take a 
quick look at the real objective of add-ins-controlling the objects in the 
EnvDTE namespace. The name EnvDTE stands for Environment Development 



Chapter 6 Add-in Architecture 163 

Tools Extensibility, which pretty much describes its purpose: it defines the 
Visual Studio .NET automation object model. The Visual Studio .NET documen
tation includes a chart of the automation object model that displays a hierarchy 
of over 140 objects defined by the EnvDTE namespace. The add-ins in this book 
will make use of most of those objects, but a few of the objects are of special 
interest to add-ins: 

• DTE The root object of the automation object model 

• DTE.Addln An object that represents an add-in 

• DTE.Addlns A collection of Addln objects that includes all add-ins 
registered with the Visual Studio .NET IDE 

• DTE.Solution.Addlns A collection of Add!n objects associated 
with a solution 

The next several examples will focus on the DTE, DTE.Add!n, and 
DTE.Add!ns objects, which collectively give you control over your own add-in 
and others. We'll cover the DTE.Solution.Addlns object in Chapter 8. 

The main purpose of an add-in class is to provide an implemen
tation of IDTExtensibility2, but that doesn't have to be its only purpose. 
An add-in class is a class, after all, and it can define any number of 
non-/DTExtensibility2-related methods, properties, and events. The 
automation object model provides access to your add-in class through 
the Addln.Object property, which returns the add-in's /Dispatch inter
face. The following macro code shows how you would call a public 
method named DisplayMessage on the MyAddln.Connect add-in 
class: 

Dim dispObj As Object = DTE.Addins.Item("MyAddin. 
dispObj.DisplayMessage("IDispatch a message to you.") 

OnConnection 
By far the most important of the IDTExtensibility2 methods, OnConnection pro
vides an add-in with the main object reference it needs to communicate directly 
with the IDE. The OnConnection method has the following prototype: 

public void OnConnection(object application, 
ext_ConnectMode connectMode, 



164 Part II Extending Visual Studio .NET 

object addininst, 
ref Array custom); 

The application parameter holds a reference to an instance of 
EnvDTE.DTE, which is the root object of the automation object model. Techni
cally, application holds a reference to an instance of EnvDTE.DTEClass, which 
implements the EnvDTE.DTE interface, which in turn derives from the 
EnvDTE._DTE interface. This last interface contains the types you want. To get 
at the _DTE interface types, you can cast application to DTE or _DTE, according 
to your taste. (See the upcoming sidebar "Underscoring the Obvious" to find 
out where all those EnvDTE underscores come from.) Almost every add-in that 
does something useful has need of the DTE object, so the first statements in 
OnConnection typically cache the DTE object in a global variable. 

Underscoring the Obvious 
Staring at the underscores that litter the EnvDTE namespace, you might 
begin to wonder what the Visual Studio .NET programmers were smoking 
when they designed it. Most of the type names in the EnvDTE namespace 
bear little resemblance to type names found elsewhere in the .NET Frame
work; the name EnvDTE itself violates the .NET Framework's Pascal-cas
ing rule. As it turns out, there's a legitimate reason for EnvDTEs strange 
names (which implies that the programmers' smoking material probably 
was legitimate also): that reason is COM. 

The original extensibility object model, Design Time Extensibility 
(DTE), began life as a COM component in previous versions of Visual Stu
dio. Rather than rewrite the component as managed code, the Visual Stu
dio .NET team chose to offer the component's functionality via COM 
interoperability. The EnvDTE assembly that shows up in the Add Refer
ence dialog box was generated mechanically by running the extensibility 
component's type library (dte.olb) through the Type Library Importer util
ity (Tlblmp). As it churns through a type library, Tlblmp preserves the 
type libra1y names exactly as it finds them-in the case of EnvDTE, the 
result is a namespace that carries its COM heritage in every underscore. 

Of course, the Visual Studio team made the right decision not to 
rewrite the extensibility component for the earliest versions of Visual Stu
dio .NET, so for now we'll just have to live with the funny names and hope 
our pinkies don't give out from typing Shift+<Underscore> all day. 



Chapter 6 Add-in Architecture 165 

The connectMode parameter tells an add-in the circumstance under which 
it was loaded. This parameter takes on one of the Extensibil
ity.ext_ConnectMode enumeration values shown in Table 6-1. 

Table 6-1 The Extensibility.ext_ConnectMode Enumeration 

Constant Value (Int32) Description 

ext_cm_AfterStartup OxOOOOOOOO Loaded after Visual Studio .NET started. 

ext_cm_Startup Ox00000001 Loaded when Visual Studio .NET started. 

ext_cm_External Ox00000002 Loaded by an external client. (No longer 
used by Visual Studio .NET.) 

ext_cm_CommandLine Ox00000003 Loaded from the command line. 

ext_cm_Solution Ox00000004 Loaded with a solution. 

ext_cm_U!Setup Ox00000005 Loaded for user interface setup. 

An add-in can check the connectMode value and alter its behavior accord
ingly. For example, when an add-in encounters ext_cm_UISetup, it knows that 
this is the first time it has run, so it can add its custom commands to the IDE 
menus and toolbars. (The Add-in Wizard generates code that handles the 
ext_cm_UJSetup case in this manner.) 

The addlnlnst parameter passes an add-in a reference to its own Addln 
instance, which it can store for later use. (The Addln instance proves invaluable 
for discovering the add-in's parent collection.) Finally, each of the 
IDTExtensibility2 methods includes a custom parameter, which allows add-in 
hosts to pass in an array of host-specific data. Visual Studio .NET always passes 
an empty array in custom. 

OnStartupComplete 
The OnStartupComplete event fires only in add-ins that load when Visual Studio 
.NET starts. The OnStartupComplete prototype looks like this: 

public void OnStartupComplete(ref Array custom); 

An add-in that loads at startup can't always rely on OnConnection for its 
initialization-if the add-in arrives too early, it will fail when it tries to access a 
Visual Studio .NET component that hasn't yet loaded. In such cases, the add-in 
can use OnStartupComplete to guarantee that Visual Studio .NET is up and run
ning first. 



166 Part II Extending Visual Studio .NET 

OnAddlnsUpdate 
The OnAdd!nsUpdate event fires when an add-in joins or leaves the Visual Stu
dio .NET environment. An add-in can use this event to enforce dependencies 
on other add-ins. Here's the OnAddlnsUpdate prototype: 

public void OnAddinsUpdate(ref Array custom); 

The lack of useful parameters reveals OnAddlnsUpdate's passive-aggres
sive nature-it interrupts your add-in to tell it that the state of some add-in has 
changed, but it withholds information about which add-in triggered the event 
and why. If you need to know the add-in responsible for the event, you have 
to discover its identity on your own. Fortunately, you have the DTE.Add!ns col
lection to aid you in your investigation. This collection holds a list of Addln 
objects (one for each registered add-in), and each Add!n object has a Con
nected property that exposes its connection status. You retrieve a specific add
in from the Addlns collection by passing the Addlns.Item method a ProgID or 
a 1-based index; if the requested index doesn't exist in the collection, the Item 
method throws an "invalid index" COMException; otherwise, it returns an 
Add!n reference. Here's one way to check InsideVSNET.Addins.LifeCycle's con
nection status: 

public void OnAddinsUpdate(ref Array custom) 
{ 

try 
{ 

Addin addin = 
this.dte.Addins.Item("InsideVSNET.Addins.LifeCycle"); 

if (addin.Connected == true) 

II InsideVSNET.Addins.LifeCycle is connected 

else 

II InsideVSNET.Addins.LifeCycle isn't connected 

catch (COMException) 

II InsideVSNET.Addins.LifeCycle isn't a 
II registered add-in 



Chapter 6 Add-in Architecture 167 

Of course, whether InsideVSNET.Addins.LifeCycle caused the event 
remains a mystery. The LoadUnload add-in, shown in Listing 6-3, does what the 
previous sample cannot: it deduces which add-in triggers the OnAddlnsUpdate 
event. 

Load Unload.cs 
namespace InsideVSNET 
{ 

namespace Addins 
{ 

using EnvDTE: 
using Extensibility; 
using InsideVSNET.Utilities; 
using Microsoft.Office.Core; 
using System; 
using System.Collections: 
using System.Runtime.InteropServices; 

[Gui dAttri bute ( "B2 FCDEBF-1536-4EA2-9 FlA-81878A9C0280"), 
Progid("LoadUnload.Connect")] 

public class Connect : Object~ IDTExtensibility2, IDTCommandTarget 
{ 

private DTE dte; 
private Addin addininstance: 
private Sortedlist addlnslist =new Sortedlist(); 
private Addins addlnsCollection; 
private OutputWindowPaneEx output: 
private string title = "LoadUnload": 

public Connect() 
{ 

} 

public void OnConnection(object application, 
ext_ConnectMode connectMode, 

{ 

object addininst, 
ref Array ~ustom) 

this.dte = (DTE)application; 
this.addininstance = <Addinladdininst: 
this.addinsCollection = this.dte.Addins; 

foreach (Addln addin in this.addinsCollection) 

Listing 6-3 The LoadUnload source code 



168 Part II Extending Visual Studio .NET 



Chapter 6 Add-in Architecture 169 

public void OnBeginShutdown(ref Array custom) 
{ 

} 

LoadUnload maintains a running list of add-ins and their connection sta
tuses in its addlnsList variable, which is declared as type SortedList. When 
OnAdd!nsUpdate fires, LoadUnload compares the connection statuses of the 
add-ins in its internal list with the connection statuses of the add-ins in the 
DTE.Add!ns collection-if it finds a discrepancy, it knows which add-in to 
blame for the event. Here's the first part of the main loop from Listing 6-3: 

this.addlnsCollection.Update(); 

foreach (Addln addln in this.addinsCollection) 
{ 

if (this.addinsList.Contains(addin.ProgID)) 
{ 

if (addln.Connected != 
(bool)this.addinsList[addin.ProgID]l 

string action = addln.Connected ? 
"loaded" : "unloaded"; 

this.output.WriteLine(addin.ProgID + 
"was "+action, this.title); 

The add!nsCollection variable holds a reference to the DTE.Add!ns collec
tion, and the call to Update synchs up the collection with the registry so that any 
newly created add-ins are included. (The Add-in Manager performs the equiv
alent of Update each time it runs.) After the call to Update, the main loop iter
ates through the current add-ins in add!nsCollection and checks whether each 
add-in already exists in its internal list. If so, the Connected property of the add
in is compared with the corresponding value stored in the internal list; if they 
differ, the Connected property determines whether the add-in was just loaded 
(true) or unloaded (false). 

If the currerit add-in doesn't exist in add!nsList, the add-in was registered 
sometime between the previous OnAdd!nsUpdate event and this OnAdd!nsUp
date event. Here's the second part of the main loop, which handles new add-ins: 

else 



170 Part II Extending Visual Studio .NET 

} 

string action = addln.Connected ? 
" and loaded" : String.Empty; 

this.output.WriteLine(addln.ProgID + 
"was added"+ action, this.title); 

this.addlnsList[addln.ProgIDJ = addin.Connected; 

The last statement either writes the current Connected value to an existing 
entry or creates a fresh entry for a newly registered add-in. 

LoadUnload isn't foolproof-for example, add-ins loaded by commands 
arrive and leave unannounced-but it works well enough for demonstration 
purposes. 

OnBeginShutdown 
Here's the prototype for OnBeginShutdown: 

public void DnBeginShutdown(ref Array custom); 

This event fires only when the IDE shuts down while an add-in is running. 
Although an IDE shutdown might get canceled along the way, OnBeginShut
down doesn't provide a cancellation mechanism, so an add-in should assume 
that shutdown is inevitable and perform its cleanup routines accordingly. An 
add-in that manipulates IDE state might use this event to restore the original 
IDE settings. 

OnDisconnection 
This event is similar to OnBeginShutdown in that it signals the end of an add
in's life; it differs from OnBeginShutdown in that the IDE isn't necessarily about 
to shut down. OnDisconnection also provides more information to an add-in 
than OnBeginShutdown does. OnDisconnection's prototype looks like this: 

public void OnDisconnection(ext_DisconnectMode removeMode, 
ref Array custom); 

The removeMode parameter passes in an IDTExtensibility2.ext_Disconnect 
Mode enumeration value that tells an add-in why it was unloaded. Table 6-2 
lists the ext_DisconnectMode values. 



Chapter 6 Add-in Architecture 171 

Table 6-2 The Extensibility.ext_DisconnectMode Enumeration 

Constant Value (lnt32) Description 

ext_dm_HostShutdown OxOOOOOOOO Unloaded when Visual Studio 
.NET shut down 

ext_dm_UserClosed OxOOOOOOOl Unloaded while Visual Studio was 
running 

ext_dm_U!SetupComplete Ox00000002 Unloaded after user interface 
setup 

ext_dm_SolutionClosed Ox00000003 Unloaded when solution closed 

The ext_DisconnectMode enumeration serves a purpose similar to 
ext_ConnectMode: it allows an add-in to alter its behavior to suit its current cir
cumstances. For example, an add-in that receives ext_dm_UISetupComplete 
probably would bypass its cleanup routines because it was loaded for initializa
tion purposes only. 

Add-in Registry Named Values 
As you learned earlier in this chapter, an add-in makes itself known to Visual 
Studio .NET by creating a ProgID-named subkey under the Addlns registry key. 
This subkey can contain a number of named values that allow you to fine-tune 
the behavior of an add-in. The following several sections cover the named val
ues you can apply to an add-in and describe the effects they produce. 

CommandPreload and the PreloadAddinState Key 
Many add-ins expose their functionality through menu items and toolbar but
tons in the IDE-when selected or clicked, these user interface items load the 
add-in and pass along the appropriate command for processing. Of course, the 
user interface items don't appear magically; an add-in creates them and adds 
them to the IDE the first time that the add-in loads. But without user interven
tion, how does an add-in first get loaded in order to create the user interface 
item to load it? The solution to this "chicken or egg" problem begins with the 
CommandPreload named value and ends with the PreloadAddinState key. A 
newly installed add-in sets its CommandPreload value to Oxl to tell Visual Stu
dio .NET that it wants to be loaded once, the next time the IDE starts up, for the 
purpose of adding its user interface items to the IDE (a process known as pre
loading). Figure 6-5 illustrates how Visual Studio .NET preloads add-ins. 



172 Part II Extending Visual Studio .NET 

Visual Studio .NET begins its startup. 

! 

Figure 6-5 How add-ins are preloaded 

Visual Studio ;NET loads 
startup add-ins and 

completes its own startup. 

Note Actually, preloaded add-ins aren't required to create user 
face items; they're free to perform any kind of "first load" 
they need, such as creating data files, adding custom registry An·rru=1c:: 

and so forth. 



Chapter 6 Add-in Architecture 173 

At startup, Visual Studio .NET preloads each add-in that has a Command
Preload value of Oxl, but only if the add-in hasn't yet been preloaded. The way 
Visual Studio .NET determines that an add-in hasn't been preloaded will differ 
a little depending on whether the add-in is an administrator add-in. As you can 
see from Figure 6-5, a user add-in's CommandPreload value alone determines 
whether it has been preloaded because Visual Studio .NET changes the value to 
Ox2 after preloading the add-in. An administrator add-in's CommandPreload 
value never changes, however, which means that Visual Studio .NET needs 
some other mechanism to keep track of whether the add-in has been pre
loaded. That's what the PreloadAddinState key is for: it holds a list of adminis
trator add-ins and their preload statuses. Before Visual Studio .NET preloads an 
administrator add-in, it checks PreloadAddinState--if this key is missing, the 
add-in isn't in the list, or the add-in is in the list and its value is set to Oxl, Visual 
Studio .NET knows that the add-in hasn't yet been preloaded. 

For both administrator and user add-ins, Visual Studio .NET preloads the 
add-ins silently, passing them the ext_cm_U!Setup value in their OnConnection 
events, and then unloads them immediately after OnConnection returns, pass
ing them the ext_dm_UISetupComplete value in their OnDisconnection events. 
After preloading an administrator add-in, Visual Studio .NET creates the Pre
loadAddinState key, if necessary, and sets the add-in's value to OxO; after pre
loading a user add-in, Visual Studio .NET sets the add-in's CommandPreload 
value to Ox2. 

When we say that Visual Studio .NET preloads add-ins 
silently, we mean silently. Under normal circumstances, Visual Studio 
.NET tells you when your add-in fails to load, and it even offers you the 
choice of removing the offending add-in from the Addlns registry key. 
When preloading, however, Visual Studio .NET won't give you the 
slightest hint that your add-in bombed. 

The PreloadAddinState key lives in the HKEY_CURRENT_USER branch of 
the registry at Software \Microsoft\ VisualStudio \ 7 .1 \Addins \PreloadAddinState. 
This key isn't created when you install Visual Studio .NET; instead, the key is 
created on demand the first time Visual Studio .NET preloads an administrator 
add-in for a particular user. In this way, an administrator add-in that sets Com
mandPreload to Oxl gets preloaded automatically for each user-including 
users who are added after the add-in is installed. 



174 Part II Extending Visual Studio .NET 

If you need to restore an add-in's user interface items, set its Pre
loadAddinState value to Ox1 if it's an administrator add-in, or set its 
CommandPre/oad value to Ox1 if it's a user add-in, and it will get pre
loaded the next time Visual Studio .NET runs. If you prefer the shotgun 
approach, you can restore the user interface items of every add-in by 
executing the following command at the command prompt: 

devenv /setup 

This command resets the IDE to its original state (thereby 
removing every add-in user interface item, along with any other cus
tomizations to the IDE), changes the CommandPreloadvalues of user 
add-ins from Ox2 to Ox1, and deletes the PreloadAddinState key; the 
result is that Visual Studio .NET preloads each and every one of these 
add-ins the next time it runs. A bit crude, but effective. 

Load Behavior and CommandLineSafe 
The LoadBehavior named value controls how an add-in is loaded and also 
reflects the add-in's current load state. Table 6-3 lists the possible LoadBehavior 
values. These values are bit flags, so in theory you can combine them to create 
your own custom load settings; in reality, with one exception, combinations of 
flags behave no differently from individual flags. 

Table 6-3 LoadBehavior Values 

Flag Value 

ID_UNLOADED OxO 

ID_STARTUP Oxl 

ID_LOADED Ox2 

ID_COMMAND _LINE Ox4 

Description 

Add-in currently is unloaded 

Add-in loads at startup 

Add-in currently is loaded 

Add-in loads during command-line builds 

The ID_UNLOADED and ID_LOADED values no longer serve a useful pur
pose. Use the Addln.Connected property instead to discover the load state of 
an add-in. 

The ID_STARTUP flag tells Visual Studio .NET to load the add-in when the 
IDE starts up. Add-ins that monitor IDE events, in particular, need to be up and 
running from the beginning-otherwise, they might miss some of the action. 
Add-ins that don't care about IDE events can omit this flag and wait to be 
loaded on demand. 



Chapter 6 Add-in Architecture 175 

The ID_COMMAND_LINE flag signals that an add-in should be loaded dur
ing command-line builds. Be aware that in Visual Studio .NET 2002 this flag 
doesn't work as advertised. In version 2002, the only effect this flag has is to 
disallow an add-in from being loaded by the Add-in Manager (and even this 
effect is overridden when the ID_STARTUP flag is present). 

The optional CommandLineSafe named value is supposed to work hand
in-hand with the ID_STARTUP and ID_COMMAND_LINE flags to ensure the suc
cess of unattended builds. A CommandLineSafe value of Oxl indicates that the 
add-in won't display a user interface that requires human interaction-at least, 
not when a build is started from the command line; a missing CommandLine
Safe entry or a CommandLineSafe value of OxO marks the add-in as unsuited for 
command-line builds. Currently, the CommandLineSafe value doesn't affect 
whether Visual Studio .NET loads the add-in-the value is for informational 
purposes only. 

Is It Safe? 
Clearly, the Visual Studio .NET designers had something special in mind 
when they created the command line-related registry values. Long builds 
and overnight builds are staples of the software industry, so any feature 
that improves the odds for successful, unattended builds is worth a sys 
admin's weight in gold. As far as add-ins go, Visual Studio .NET 2002 
includes all the components for the perfect command-line build-but the 
components just haven't been wired up yet. Here's how command-line 
builds work in Visual Studio .NET 2003: 

1. A developer initiates a command-line build. 

2. Visual Studio .NET loads the add-ins marked as 
ID_COMMAND_LINE and passes in an ext_cm_CommandLine 
value to each add-in's OnConnection event. · 

3. The add-ins use the ext_cm_CommandLine value as a signal to 
disable their user interfaces. 

But command-line builds don't work this way in Visual Studio .NET 
2002. Instead, ID_COMMAND_LINE doesn't affect whether an add-in is 
loaded; add-ins marked as ID_STARTUP are loaded by mistake; and Visual 
Studio .NET 2002 doesn't pass in ext_cm_CommandLine under any cir
cumstances. 



176 Part II Extending Visual Studio .NET 

Not to worry, though-all these problems are fixed in Visual Studio 
.NET 2003. And you can work around these problems in Visual Studio 
.NET 2002 by marking the add-in as ID_STARTUP and using code like the 
following, which sifts through the System.Environment.CommandLine 
property looking for evidence of a command-line build: 

if (Regex.IsMatch(System.Environment.CommandLine, "/build")) 
{ 

else 
{ 

II Command-line build 
System.Console.Writeline("Command-line build--phooey on GUI!"); 

II Not a command-line build 
MessageBox.Show("GUI for you!"); 

By placing the previous code in your add-in's OnConnection event 
handler, your add-in can decide at startup whether to display its user 
interface. 

SatelliteDLLPath and SatelliteDLLName 
If you want to distribute your add-in internationally, you need to pay attention 
to the problem of localization. A worldly add-in doesn't force a particular lan
guage on its users-instead, it communicates with each user in his or her native 
tongue. Of course, a standalone add-in can't possibly accommodate every lan
guage; instead, an add-in that supports localization stores its localizable 
resources in satellite DLLs. At run time, the add-in searches for the satellite DLL 
that corresponds to the current locale and uses the localized resources from that 
DLL to populate its user interface. In this way, the same add-in can support any 
number of languages simply by providing a localized satellite DLL for each 
locale. 

An add-in advertises the location of its satellite DLLs through the Satellite
DLLPath and SatelliteDLLName named values. SatelliteDLLName stores the sat
ellite DLL name (which implies that all localized satellite DLLs share the same 
file name), and SatelliteDLLPath stores the satellite DLL root folder. Each local
ized satellite DLL lives in its own folder under the root, and the name of the 
folder is the locale identifier of the language that the DLL supports. For exam
ple, the locale identifier for U.S. English is 1033, so the U.S. English satellite DLL 
is found at <SatelliteDLLPath>\1033\<SatelliteDLLName>. At run time, you can 



Chapter 6 Add-in Architecture 177 

locate an add-in's satellite DLL for the current locale by using either the 
Addln.SatelliteDllPath property or the DTE.Sate!liteDllPath method. 

Lab: Probing for Satellite DLLs 
The documentation claims that Visual Studio .NET locates an add-in's sat
ellite DLL by looking in the following places, in the order listed: 

<SatelliteDLLPath>\<Default system locale>\<SatelliteDLLName> 
<SatelliteDLLPath>\<Default user locale>\<SatelliteDLLName> 
<SatelliteDLLPath>\<OS setup locale>\<SatelliteDLLName> 
<SatelliteDLLPath>\1033\<SatelliteDLLName> 
<SatelliteDLLPath>\<SatelliteDLLName> 

Problem is, the documentation is wrong-at least in part. So, how 
does Visual Studio .NET find satellite DLLs? See for yourself. The Satellite
DLLProbing macro creates a directory named satellites that contains sub
directories for 133 of your favorite locales-from Afrikaans to Zulu-and 
copies a satellite DLL into each locale's directory. The macro's main loop 
calls the DTE.SatelliteDllPath method repeatedly: after each call, the 
macro displays the satellite DLL path and corresponding locale in the Out
put window, and then it deletes the current satellite DLL, forcing Satellite
DllPath to search in a new location the next time through the loop. 

If you run the SatelliteDLLProbing macro a couple of times, changing 
the user locale between runs, you'll notice that the user locale doesn't 
count for much. The system locale always overrides the user locale, which 
means the current user won't necessarily see his preferred locale. You'll 
also notice that SatelliteDllPath never finds the satellite DLL in <Satellite
DLLPath>, contrary to the claims made by the documentation. The most 
interesting result, however, is the stubborn determination with which Sat
elliteDllPath hunts down a stray satellite DLL. Instead of stopping after 
checking the system locale subdirectory and finding nothing, SatelliteDll
Path starts rummaging through the other locale subdirectories like a rac
coon digging through a trash can-the logic being, we suppose, that any 
language is better than no language at all. (Can't find English? Try Catalan 
instead!) In fact, Sate!liteDllPath goes so far as to search through nonlo
cale subdirectories, and if it finds a satellite DLL there, it'll use it. 



178 Part II Extending Visual Studio .NET 

Understand that localization is a complex issue and that Visual Studio 
.NET's satellite DLL search algorithm reflects that complexity-when the 
locales are set up correctly, the algorithm works just fine, but if a locale 
gets misplaced, the algorithm blows up spectacularly. The good news is 
that Visual Studio .NET uses the same mechanism for its own localization, 
which means that it will always find your add-in if your add-in uses the 
same locale as the Visual Studio .NET installation. 

FriendlyName and Description · 
The FriendlyName and Description named values allow you to apply a mean
ingful name and a short description to your add-in. An example of an applica
tion that uses these values is the Add-in Manager, which populates its add-in list 
with FriendlyName values and displays the Description value of the selected 
add-in in its Description box. 

FriendlyName and Description each store either a human-readable string 
or the ID of a string resource in the add-in's satellite DLL (in the form 
"#<resource ID>"). Pulling string resources out of satellite DLLs is fairly straight
forward; you can find code for doing so in the Add-in Manager Plus sample 
add-in. 

AboutBoxOetails and AboutBoxlcon 
The AboutBoxDetails and AboutBoxlcon named values buy your add-in some 
real estate on the Visual Studio .NET About dialog box, as shown in Figure 6-6. 
The About dialog box displays FriendlyName values in the Installed Products 
list; when a user selects an add-in from this list, the dialog box displays the add
in's AboutBoxlcon under the Product Details label and its AboutBoxDetails 
information in the text box next to its icon. 

Both the AboutBoxDetails and AboutBoxlcon entries need to 
be in the registry before the About dialog box will display your add-in's 
information; however, either or both of the values can be bogus. 



Chapter 6 Add-in Architecture 179 

About Microsoft DeveJopment Environment I:! 

Figure 6-6 Add-in information displayed in the Visual Studio .NET 
About dialog box 

The format of the AboutBoxDetails value is the same as that of the Friend
lyName and Description values-a string that holds either a short description or 
the ID of a string resource in the add-in's satellite DLL (in the form "#<resource 
ID>"). 

The AboutBoxlcon value offers a bit more flexibility than its counterpart. 
An add-in can store its icon information in one of four formats: 

• String data representing the ID of an icon resource in the add-in's 
satellite DLL (in the form "#<resource ID>"). 

• String data representing a path to an icon file. 

• String data representing a path to an executable file and the ID of an 
icon resource within that file (in the form "<path>,<resource ID>"). 
For example, "C:\Program Files\Microsoft Visual Studio .NET 
2003\Common7\IDE\devenv.exe,1200" refers to the Visual Studio 
.NET application icon. 

• Binary data of an icon. 

The last format gives an add-in the option of storing all its "personal" 
information-including FriendlyName, Description, and AboutBoxDetails
within the registry rather than distributed across separate files. Storing icon data 
in the registry is as easy as the following macro procedure, which takes the add
in's registry key and the pathname of the icon file as parameters: 

Sub SetAboutBoxicon(ByVal addlnKey As RegistryKey, _ 
ByVal iconPath As String) 



180 Part II Extending Visual Studio .NET 

Dim iconFile As FileStream = File.OpenRead(iconPathl 
Dim iconData(iconFile.Length) As Byte 
Dim As Integer 

For i = 0 To iconFile.Length - 1 
iconData(i) = iconFile.ReadByte 

Next 

addinKey.SetValue("AboutBoxicon", iconData) 
End Sub 

Hats off to Kenny Kerr for his icon resource management 
classes! We're hard-pressed to think of a more thankless task than 
writing managed code to pull icons from Win32 executable files, but 
Kenny did it and saved us the trouble, so we're happy to give him all 
the thanks that can fit into one of these notes. (We put his classes to 
work extracting icons for the Add-in Manager Plus add-in and couldn't 
be more pleased with the results.) You can find his Icon Browser utility, 
for which the icon resource management classes were originally writ
ten, and lots more cool stuff by Kenny at his Web site: http://www.ken
nyandkarin.com/kenny. 

Looking Ahead 

The next chapter is for that little bit of drill instructor inside all of us-the part 
that wants to hear others shout "HOW HIGH?" when we say "JUMP!" As you'll 
soon learn, macros, add-ins, and Visual Studio .NET make the most loyal and 
obedient of soldiers, always at the ready and eager to do your bidding: all you 
have to do is give the right commands. If you turn the page, we'll show you 
how ... "NOW!" 



Commands 
Commands are the most fundamental mechanism of communication between 
the user and the Microsoft Visual Studio .NET integrated development environ
ment (IDE). In this chapter, we'll explore how you can use existing commands 
as well as create your own commands from add-ins and macros. 

What Is a Command? 
If you've written user interface software for the Microsoft Windows operating 
system, you're probably familiar with the event-driven programming model. 
When the user clicks a button on a form, chooses a menu item, or presses a key 
on the keyboard, your program receives a notification of that user action. If 
you're programming at the Windows SDK level, such as with the Visual C++ 
programming language, when the user performs this action your program 
receives a message detailing what happened. If you're using a language such as 
Microsoft Visual Basic .NET or Microsoft Visual C# .NET, this notification hap
pens in the form of an event handler being called. These notifications are com
mands issued by the user, and the program carries out this command by 
performing some action for the user. 

Visual Studio .NET uses a method of notification similar to that of Win32 
message-passing to inform code as the user interacts with the IDE. However, 
because of the complexity and number of commands available in the Visual 
Studio .NET IDE, command routing, or passing a notification to the proper han
dler of that notification, isn't as simple as receiving a message. For instance, 
suppose the user chooses File I New I File. Because there are a number of dif
ferent add-on programs (not to be confused with add-ins), such as Visual C++ 
.NET, Visual Basic .NET, and Visual C# .NET, Visual Studio .NET needs to deter
mine which of these programs handles this menu item choice. When a Win32 

181 



182 Part II Extending Visual Studio .NET 

program handles a message, one message loop handles that message, but 
because there are a number of possible handlers of a command in Visual Studio 
.NET, commands need to be routed to the correct code. Each of these add-on 
products reserves a globally unique identifier (GUID) to uniquely identify itself, 
and each command that is available associates itself with the GUID of a partic
ular add-on. When a user executes a command, the GUID for that command is 
retrieved, the add-on program that handles that GUID is found, and the com
mand is sent to that add-on. 

A command also needs another part to identify itself. After all, if every 
command had just a GUID to identify it, and all the commands that belonged to 
an add-on had the same GUID, an add-on wouldn't be able to tell the differ
ence between, for instance, the New File command and the New Project com
mand. To disambiguate commands that all have the same GUID, a number, or 
ID, is assigned to each command in that group. An add-on is responsible for its 
own commands, so an ID can be assigned without conflicting with commands 
from a different add-on because the GUID for each add-on is different. When 
combined, this GUID and ID pair uniquely identifies each individual command. 

A command in Visual Studio .NET exists independently of any 
user interface elements (such as menu items) for that command. 
Commands can be created and destroyed, and a user interface ele
ment might have never been created for that command. But the oppo
site won't happen-a user interface element can't be created without 
having a corresponding command. 

Locating Commands 
In Visual Studio .NET, all the commands that a user can issue are represented in 
the object model by a Command object, and the Commands collection contains 
a list of these objects. Like other collection objects, Command objects allow the 
use of standard enumeration constructs such as the keywords foreach in Visual 
C# or For Each in Visual Basic .NET. Using these keywords, we can create a 
macro to walk the list of all Command objects: 

Sub WalkCommands() 
Dim cmd As EnvDTE.Command 
For Each cmd In DTE.Commands 

'use the EnvDTE.Command object here 
Next 

End Sub 



Chapter 7 Commands 183 

The Command collection's Item method works a bit differently from the 
Item methods of other collection objects. Commands.Item accepts as a param
eter the familiar numerical index, but it also accepts an additional optional argu
ment. If you're using the numerical indexing method, you should set the 
second argument to -1. This method has an additional argument because, as 
mentioned earlier, a GUID and ID pair is used to uniquely identify a command. 
The GUID, in string format, is passed as the first argument, and the ID of the 
command is passed as the second argument when you're using the GUID and 
ID to index the Commands collection. The following macro demonstrates find
ing the command for opening a file using the GUID and ID pair: 

Sub FindFileOpenCommand() 
Dim cmd As EnvDTE.Command 
cmd • DTE.Commands.Item("{5EFC7975-14BC-11CF-9B2B-00AA00573819}", 222) 

End Sub 

As you can see, code like this can be complicated to write because you 
need to find and learn the GUID and ID for every command (which would be 
hard to do because there are thousands of them), and then you must type this 
pair correctly every time, which can be a source of programming errors. To 
help with finding a Command object, the Commands.Item method accepts 
another format for indexing the collection, which is easier to remember: the 
name of a command. 

Command Names 
Remembering the G UID and ID for every command can be a huge waste of 
brainpower, so Visual Studio .NET defines an easier-to-remember textual repre
sentation for most commands. These names follow a general pattern: the text of 
the top-level menu on which the primary user interface element for the com
mand is located, followed by a period, the text of all submenus combined, a 
period, and finally the text of the menu item. Any nonalphanumeric characters 
(except for the period separators and underscores) are then removed from this 
string. So, to use the earlier example of finding the Command object for the 
open file command and combine it with our newly found way of using a com
mand name, a macro such as the following results: 

Sub FindFileOpenCommandByName() 
Dim command As EnvDTE.Command 
command• DTE.Commands.Item("File.OpenFile") 

End Sub 

To find the GUID and ID pair of a command, you can use the GUID and 
ID properties of the Command object. We used these two properties to find the 



184 Part II Extending Visual Studio .NET 

GUID and ID pair used in the FindFileOpenCommand macro shown earlier. 
This is the macro we used to find them: 

Sub FindGuidIDPair() 
Dim guid As String 
Dim id As Integer 
Dim command As EnvDTE.Command 
command= DTE.Commands.Item("File.OpenFile") 
guid = command.Guid 
id = command. ID 
MsgBox(guid + ", " + id.ToString()) 

End Sub 

The Options dialog box, shown in Figure 7-1, lets you find all the avail
able command names. You can select Environment I Keyboard in the left pane 
to display a list box that contains all the command names. 

Figure 7-1 The Options dialog box 

You can also use the object model to find available command names. We'll 
do this with the EnvDTE.Commands collection in this example macro: 

Sub CreateCommandlist() 
Dim command As EnvDTE.Command 
Dim output As New OutputWindowPaneEx(DTE, "Create Command List") 

For Each command In DTE.Commands 

Next 
End Sub 

If (command.Name <> Nothing) Then 
output.Writeline(command.Name) 

End If 



Chapter 7 Commands 185 

When the macro is run, it places into the Output window the name of 
each command. If you examine the macro closely enough, you'll notice a spe
cial check to verify that the name of the command isn't set to Nothing. This 
check is done because if a command doesn't have a name set, it returns Noth
ing if it's using Visual Basic .NET or null if it's using C#. The .NET Framework 
is smart enough that if you try to use this Nothing string, it will construct a Sys
tem.String object set to the empty string(""). For this macro, however, we want 
to filter out any unnamed commands, and we do this by checking for a Name 
set to Nothing. Commands that don't have a name are usually used internally by 
Visual Studio .NET for private communication, and the user generally shouldn't 
call them. We advise you not to use these commands because they can lead to 
unpredictable results. 

Executing Commands 
The purpose of a command is to provide a way for the user to direct Visl!al Stu
dio .NET to perform some action. Commands can be invoked in a number of 
ways, the most common of which is for the user to choose a menu item or click 
a toolbar button. But commands can also be run in other ways. For example, if 
you write a macro that conforms to the standard macro notation (it is defined as 
public, doesn't return a value, and takes no arguments unless the arguments are 
optional strings), the macros facility detects that macro and creates a command 
for it. Double-clicking that macro in the Macro Explorer window executes the 
command associated with that macro, which is handled by the Macros editor. A 
third way to run a command is to use the DTE.ExecuteCommand method. This 
method runs a command, given by name, as if the user had chosen the menu 
item for that command. 

To run our File.OpenFile command using the ExecuteCommand method, 
we would write code like this: 

Sub RunFileOpenCommand() 
DTE.ExecuteCommand("File.OpenFile") 

End Sub 

When a call is made to the ExecuteCommand method, execution of the macro 
or add-in waits until the command finishes executing. 

A final approach, which is useful for the power user, is to type the name 
of the command into the Command Window. As mentioned in Chapter 1, the 
Command Window is a text-based window in which you type the names of 
commands; when the user presses the Enter key, the command is run. The 
command name that you type into the Command Window is the same name 
that is returned from the Command.Name property, and it can be passed to the 
ExecuteCommand method. 



186 Part II Extending Visual Studio .NET 

Creating Macro Commands 
As mentioned before, macros that follow a special format are automatically 
turned into commands, and these macro commands are given a named coun
terpart. The name of a macro command is calculated by combining the string 
Macros, the name of the macro project, the name of the module or class the 
macro is implemented in, and finally the name of the macro with each portion 
separated by a period. Using this format, the TurnOnlineNumbers in the Sam
ples macro project that is installed with Visual Studio .NET takes on the name 
Macros.Samples.Utilities.TurnOnlineNumbers. You can enter this name in the 
Command Window or call it from another macro, like so: 

Sub Run Command.() 
DTE.ExecuteCommand("Macros.Samples.Utilities.TurnOnlineNumbers") 

End Sub 

Creating an Add-in Command 
Now that you know how commands are named, found, and run, it's time to ere"'.. 
ate your own command. As we saw earlier, when a command built into Visual 
Studio .NET is invoked, the add-on program for that command is located 
because of the GUID assigned to the command, and it is asked to handle the 
command invocation. Likewise, commands that you create need a target that 
handles the command invocation. Commands can be dynamically created and 
removed, but creating them requires that an add-in be associated with the new 
command so Visual Studio .NET can find and use that add-in as the target. The 
method to create a command, AddNamedCommand, can be found on the 
DTE.Commands collection object; here is its signature: 

public EnvDTE.Command AddNamedCommand(EnvDTE.Addin Addininstance, 
string Name, string ButtonText, string Tooltip, bool MSOButton, 
int Bitmap = 0, ref object[] ContextUIGUIDs, 
int vsCommandDisabledFlagsValue = 16) 

Here are the arguments: 

• Addlnlnstance The Addln object that will act as the command 
invocation target. 

• Name The name of the command. The name can contain only 
alphanumeric characters and the underscore character. Any invalid 
characters that are used are mapped to the underscore character. 

• ButtonText The text that is displayed on any user interface ele
ments such as buttons for the command that are placed on menus or 
command bars. 



Chapter 7 Commands 187 

• ToolTip Descriptive text providing users information about the 
command. 

• MSOButton True if the bitmap to display on user interface ele
ments for this command should use the predefined command bar 
button graphics. If False, then the graphic for the button is retrieved 
from the satellite DLL that is specified in the registration information 
for the add-in. 

• Bitmap If the MSOButton argument is True, then it is the index of 
the predefined command bar button graphic. See the HTML page in 
the CommandUIBmps folder included with the book's sample files 
for a listing of available images. If MSOButton is False, then this is the 
resource identifier of the bitmap picture in the satellite DLL. 

• ContextUIGUIDs This parameter is unused for Visual Studio .NET 
2003 and is reserved for a future version. An empty array of type Sys
tem. Object should be passed for this value. 

• vsCommandDisabledFlagsValue This is the default availability 
state of the button. If the add-in that handles the command invoca
tion has not yet been loaded, rather than forcing the add-in to load 
to find how the command should be displayed, this argument pro
vides a default availability state. This argument value is used in place 
of the value returned through the StatusOption argument of the 
IDTExtensibility2.QueryStatus method, which we'll discuss later in 
this chapter. 

When called, this method adds an item to the internal list of commands 
maintained by Visual Studio .NET. The full name of the command, which you 
can use in the Command Window or as an argument to the ExecuteCommand 
method, is constructed by taking the ProgID of the add-in and concatenating a 
period, followed by the value of the Name parameter. So, for example, if the 
name you provide to the AddNamedCommand method is MyCommand and 
the ProgID of the add-in is Mj;Addin.Connect, the name of the command that's 
created is MyAddin.Connect.MyCommand. 

All commands added with this method also have a GUID and ID pair 
assigned to them. The GUID that is used for all commands created with Add
NamedCommand is defined by the constant EnvDTE.Constants.vsAddlnCmd
Group; the ID value starts at the index 1 for the first call to AddNamedCommand, 
and it is incremented by 1 every time the AddNamedCommand method is called. 
Because of the data type used for IDs, a total of 4,294,967,296 commands can be 
created before conflicts arise between two add-in created commands. 



188 Part II Extending Visual Studio .NET 

Handling a Command 
With a newly created command, our code now needs to provide a way for 
Visual Studio .NET to call back to the add-in to let it know when the command 
is invoked. Usually, when an add-in or macro wants to be informed when the 
user has performed an action, an event connection is made. But command han
dlers work a bit differently: rather than connecting to an event source, your 
add-in must implement a specific interface. The reason for not using events is 
simple. When an add-in command is invoked, if the add-in that handles that 
command hasn't been loaded, the code for the add-in is loaded into memory 
and run by calling the OnConnection and other appropriate IDTExtensibility2 
methods, just as if you were to go into the Add-in Manager dialog box and 
select the check box for that add-in. Because the add-in is demand-loaded 
(loaded when the command is run), code within that add-in could not have 
been run to connect to an event handler. 

The interface to handle command invocations, named IDTCommandTar
get, is modeled on the JOleCommandTarget interface of the Win32 SDK but has 
been changed to be !Dispatch-compatible and easier to use. This is its signa
ture: 

public interface IDTCommandTarget 
{ 

public void Exec(string CmdName, 
EnvDTE.vsCommandExecOption ExecuteOption, ref object Variantin, 
ref object VariantOut, ref bool Handled); 

public void QueryStatus(string CmdName, 
EnvDTE.vsCommandStatusTextWanted NeededText, 
ref EnvDTE.vsCommandStatus StatusOption, 
ref object CommandText); 

When invoked, all commands that your add-in creates are dispatched 
through this interface, particularly through the Exec method. The Exec method 
has the following arguments: 

• CmdName The full name of the command. Your add-in should do 
a case-sensitive compare on this string to determine which command 
is being asked to run because all commands that the add-in creates 
are sent to this method for handling. 

• vsCommandExecOption For most situations, the value passed to 
this parameter is the vsCommandExecOptionDoDef a ult enumeration 
value, informing your add-in that it should do the work defined for 
that command. 



Chapter 7 Commands 189 

• Variantln As you'll see later in this chapter, commands can be 
passed data as an argument. If any arguments are passed to your 
command, they are passed through this argument. If your command 
is invoked through the user interface on a menu or a toolbar, the 
value of this parameter is null or Nothing (depending on the pro
gramming language used to write the add-in). 

• VariantOut This argument is used to pass data from your add-in 
to the caller. However, Visual Studio .NET will ignore any value that 
your command returns. 

• Handled This argument allows your add-in to pass back data to 
Visual Studio .NET signaling whether your add-in handled the com
mand. If a true value is returned, it is assumed that no further pro
cessing for the command is necessary. If this value is set to false on 
return, Visual Studio .NET continues searching for a handler for the 
command. The search should fail because no other command han
dler will accept the same G UID and ID pair for the command your 
add-in has created. 

Command State 
A command and its user interface don't always need to be enabled and avail
able to the user. For example, your add-in's command might be available only 
when a text editor is the currently active window. You can control whether 
your command is enabled, disabled, or in the latched state (which means a 
check mark is drawn next to the button if it is a menu item or appears with a 
box drawn around it if it is on a toolbar). You control this state by using the 
QueryStatus method of the IDTCommandTarget interface. If your add-in hasn't 
yet been loaded, the default status, or value passed as the last argument of Add
NamedCommand, is used to control the default behavior. However, once 
you've loaded the add-in-by executing the command or manually through the 
Add-in Manager dialog box-QueryStatus is called to determine the state. The 
QueryStatus method has the following arguments: 

• CmdName This argument has the same meaning as the CmdName 
argument passed to the Exec method of the IDTCommandTarget 
interface. 

• NeededText This parameter is always vsCommandStatusText
WantedNone. Your add-in should always verify that this value is 
passed because the other values are reserved for future versions of 
Visual Studio .NET. 



190 Part II Extending Visual Studio .NET 

• StatusOption Your add-in should fill in this parameter, which lets 
Visual Studio .NET know whether the add-in command is supported 
(vsCommandStatusSupported) or unsupported (vsCommandStatus
Unsupported), whether the command is enabled and can be called 
(vsCommandStatusEnabled), whether the command user interface 
can't be seen (vsCommandStatuslnvisible), or whether the user inter
face is drawn in the selected state (vsCommandStatusLatched). You 
can logically OR these values together to create the current status of 
the command and pass it back through this argument. 

• CommandText This value currently isn't used by Visual Studio 
.NET, and shouldn't be modified. 

Periodically, such as when the focus changes from one window to another 
or when a menu is displayed that contains an add-in command, Visual Studio 
.NET calls QueryStatus for that command to ensure that the user interface is 
synchronized with the command state. It is important to keep the code that 
implements QueryStatus as efficient as possible; otherwise, the user interface 
might become sluggish. Suppose you create a command that copies the cur
rently active file to a network share. You might be tempted to have the Query
Status method of a command check to ensure that a network connection is 
available and the share location can be found. If the network and shared loca
tion can be found, the command is enabled; otherwise, it is disabled. Testing 
for these connections can be time-consuming, taking up to a minute or more to 
complete. A user who has to wait more than a minute for your command to 
update itself would be much happier if the command were always enabled and 
he or she would receive an error message when the command was invoked. 

Programmatically Determining Command State 
At times, you might need to programmatically determine whether a command 
is enabled, such as when you want to invoke a command using DTE.Execute
Command. All commands, whether a macro command, one created by an add
in, or one built into Visual Studio .NET, support a QueryStatus method. When 
you invoke the DTE.ExecuteCommand and the command isn't enabled because 
the QueryStatus method returned a value indicating that isn't currently avail
able, you'll get an exception if you're using a language supported by the .NET 
Framework. 

To check whether a command is enabled and avoid this error condition, 
you can use the Command.IsAvailable property. For example, to make sure 
that the Build.BuildSolution command can be called before you invoke it, you 
can use the following code: 



Chapter 7 Commands 191 

Sub CheckAvailability() 
If (DTE.Commands.Item("Build.BuildSolution").IsAvailable =True) Then 

DTE.ExecuteCommand("Build.BuildSolution") 
End If 

End Sub 

How an Add-in Command Handler Is Found 
When a user invokes your command, Visual Studio .NET needs to know which 
add-in handles that command so it can call the methods of the IDTCommand
Target interface. It first inspects the command name; as noted earlier, the first 
part of the full command name is the ProgID of the add-in, and the remainder 
is the value passed for the Name parameter of the AddNamedCommand 
method. To locate the add-in, Visual Studio .NET extracts the ProgID from the 
command name and then checks the add-in corresponding to that ProgID to 
see whether it's loaded; if it isn't, it is told to load. Visual Studio .NET looks for 
the IDTCommandTarget interface (which must be implemented on the same 
object that implements IDTExtensibility2) on the add-in object instance, and 
then it calls the Exec method, passing the name of the command as the first 
parameter. 

If, during this process, the add-in can't be found, the user is presented 
with the message box shown in Figure 7-2. 

Microsoft Development Environment 

The Add-in supporting this command could not be loaded. Do you wish to remove the command? 
If you choose yes, you can re-create the command by relnstallln9 the Add·in. 

I r:~],ii>~:::::::i 11to 

Figure 7-2 The message box displayed by Visual Studio .NET when a 
command's add-in doesn't load 

If the user clicks the Yes button, the command is removed using the Com
mand.Delete method, and any user interface elements for that command are 
removed. If the add-in is loaded but the IDTCommandTarget interface can't be 
found on the add-in object, the command is treated as if the QueryStatus 
method had returned the vsCommandStatusUnsupported flag, 

The Command User Interface 
Visual Studio borrows its toolbar and menu system from the Microsoft Office 
suite of applications. The command bars provide a common user interface 



192 Part II Extending Visual Studio .NET 

experience across all of the Office applications as well as Visual Studio .NET. 
Because the command bars also support an object model, these applications 
also share a common programming model for accessing the command bar 
structure. 

The main point of access to the command bar objects is through the 
DTE.CommandBars property. This property returns a 
Microsoft.0.ffice.Core.CommandBars object, which is defined in the assembly 
Office.dll. The following macro code demonstrates retrieving this object: 

Sub GetCommandBars() 
Dim commandBars As Microsoft.Office.Core.CommandBars 
commandBars = DTE.CommandBars 

End Sub 

The Command Bar Object Model 
The command bar object model is arranged in a treelike hierarchy, in the same 
way as the Visual Studio .NET object model is. At the top of this tree is a col
lection of Microsoft.O.ffice.Core.CommandBarobjects that includes all the com
mand bars and shortcut menus and the main menu bar. Each command bar 
contains a collection of controls that have the type Microsoft.Office.Core.Com
mandBarControl. Once a CommandBarControl is retrieved, it can be con
verted into one of three types. The first type, a CommandBarButton, is any 
item on a command bar that the user can click to perform an action; this is anal
ogous to executing a Visual Studio .NET command. To get to a CommandBar
Button object, a cast must be performed from the CommandBarControl object: 

Sub GetCommandBarButton() 
Dim commandBarBtn As Microsoft.Office.Core.CommandBarButton 
Dim commandBarCtl As Microsoft.Office.Core.CommandBarControl 
Dim commandBarCtls As Microsoft.Office.Core.CommandBarControls 

'Find the View command bar 
commandBarCtls = DTE.CommandBars.Item("View").Controls 
'Retrieve the first control on the menu 
commandBarCtl = commandBarCtls.Item(l) 
'Convert the CommandBarControl to a CommandBarButton object 
commandBarBtn = CType(commandBarCtl, _ 

Microsoft.Office.Core.CommandBarButton) 
MsgBox(commandBarBtn.Caption) 

End Sub 

The object returned from the Controls collection can be converted into a 
CommandBarPopup if the item is the root node of a submenu. An example of 
this is the New item on the File menu; when the user hovers the mouse cursor 
over this menu, a submenu appears. You can also retrieve a CommandBar-



Chapter 7 Commands 193 

Popup when the item is on a split-button drop-down menu, such as the New 
Project I New Blank Solution button on the Standard command bar: 

Sub GetCommandBarPopup() 
Dim commandBar As Microsoft.Office.Core.CommandBar 
Dim cmdBarControl As Microsoft.Office.Core.CommandBarControl 
Dim cmdBarPopup As Microsoft.Office.Core.CommandBarPopup 

'Find the "Standard" command bar 
commandBar = DTE.CommandBars.Item("Standard"l 
'Find the first control on the command bar 
cmdBarControl = commandBar.Controls.Item(l) 
'Convert the CommandBarControl to a CommandBarPopup 
cmdBarPopup = CType(cmdBarControl. _ 

Microsoft.Office.Core.CommandBarPopup) 
MsgBox(cmdBarPopup.Controls.Item(l).Caption) 

End Sub 

A popup menu is itself a command bar. You can't cast directly to a Com
mandBar object on a popup menu, but this object does contain a Command
Bar property, which returns a CommandBar object, which itself has a 
collection of controls (as you can see in the next-to-last line in the preceding 
macro code). 

The Primary Command Bar 
The DTE.CommandBars property returns the collection of all CommandBar 
objects available within Visual Studio .NET, but the most commonly used com
mand bar is the main menu. Looking at the menu, you can see the File, Edit, 
and View items as well as a number of additional menu items; all of these are 
CommandBar objects within the DTE.CommandBars collection. But because 
there might be multiple items within the collection with the same name, index
ing the collection using the name might not work. For example, there are mul
tiple CommandBar objects with the title View, and you might not always get 
the one you want if you index the CommandBars collection with the string. 
View. The following macro might return the View command bar for the SQL 
editor, a deployment project popup menu, or the View menu: 

Sub GetView() 
Dim cmdbars As Microsoft.Office.Core.CommandBars 
Dim commandBar As Microsoft.Office.Core.CommandBar 

cmdbars = DTE.CommandBars 
commandBar = cmdbars.Item("View") 

End Sub 



194 Part II Extending Visual Studio .NET 

To work around this, you can find the CommandBar object for the menu 
bar, called MenuBar, and then find the View submenu command bar: 

Sub GetMenuCommandBar() 
Dim commandBar As Microsoft.Office.Core.CommandBar 
Dim cmdBarControl As Microsoft.Office.Core.CommandBarControl 
Dim cmdBarPopupView As Microsoft.Office.Core.CommandBarPopup 
Dim cmdBarView As Microsoft.Office.Core.CommandBar 

'Retrieve the MenuBar command bar 
commandBar = DTE.CommandBars.Item("MenuBar") 
'Find the View menu 
cmdBarControl = commandBar.Controls.Item("View") 
'Convert to a CommandBarPopup 
cmdBarPopupView = CType(cmdBarControl, _ 

Microsoft.Office.Core.CommandBarPopup) 
'Get the CommandBar object for the view menu 
cmdBarView = cmdBarPopupView.CommandBar 
MsgBox(cmdBarView.Name) 

End Sub 

By default, if the Add-in Wizard generates an add-in and the option is 
selected to place an item on the Tools menu, code is generated to place a menu 
item on the Tools menu of the menu bar. If you want to move this command 
user interface to a different menu, you can simply change the string "Tools" to 
a different menu title; but be careful to select the correct menu. It's easy to 
make the mistake of selecting the wrong command bar, causing the command 
button to seemingly disappear because it was placed somewhere that you did 
not expect it to go. 

Adding a New Command Bar User Interface 
With a Command object in hand (found by either indexing the Commands col
lection or adding a new command) and after using the methods described ear
lier to find the proper command bar, you can add a new button to that 
command bar that invokes your command when clicked. You do this using the 
Command.AddControl method. When you add a command using the Add
NamedCommand method, that command is persisted to disk and re-created 
automatically when Visual Studio .NET is next started. Likewise, when you 
place a control on a command bar using the AddControl method, that control 
and its placement are saved to disk and re-created when Visual Studio .NET is 
run. The first argument of the AddControl method is the CommandBar object 
that the button is to be placed on. The second argument defines the numerical 



Chapter 7 Commands 195 

position of the control in relation to the other controls on the command bar. (If 
this value is 1, the control will be the first item on the command bar, and if the 
value is 2, it will be the second item, and so forth.) 

You can hard-code an index to place the control, but the control might not 
appear where you think it should go in relation to other controls. The reason is 
that a command bar might have one or more separators (or lines drawn 
between two controls) that divide controls into logical groups. These groups 
are also controls on the command bar, and they should be counted when you 
calculate the position. Not only are group controls counted as items in the 
index, but so are controls that are not visible because the value vsCommand
Statuslnvisible is returned from your QueryStatus method. If the control to be 
added should be placed at the bottom or end of the command bar, you can use 
the Controls.Count property to determine the final position: 

Sub AddControl() 
Dim command As EnvDTE.Command 
Dim commandBar As Microsoft.Office.Core.CommandBar 

'Find the File.OpenFile command 
command• DTE.Commands.Item("File.OpenFile") 
'Find the Tools CommandBar 
commandBar • DTE.CommandBars.Item("Tools") 
'Add a control to the Tools menu that when 
' clicked will invoke the File.OpenFile command 
command.AddControl(commandBar, commandBar.Controls.Count + 1) 

End Sub 

Note that the index used doesn't fix a control to a particular position. If you add 
a control to position 1 and a second control is added to position 1, the first con
trol is pushed into the second position. 

At times, it might make sense to create a new command bar to place your 
buttons on because the default set of command bars don't suit your needs. The 
command bar object model allows you to create new command bars, but cre
ating one in this way might not achieve the desired effects. Command bars cre
ated in this way are created in a temporary state, which means that when you 
exit and restart Visual Studio .NET, the command bar will have been destroyed. 
Because the button user interface for commands persists across instances, you'll 
want your command bars to also persist across instances. The Visual Studio 
.NET object model lets you do this, using the Commands.AddCommandBar 
method, which has this signature: 

public object AddCommandBar(string Name, EnvDTE.vsCommandBarType Type,_ 
Microsoft.Office.Core.CommandBar CommandBarParent • null, int Position = ll 



196 Part II Extending Visual Studio .NET 

This method has the following arguments: 

• Name The caption to display on the command bar. 

• Type A value from the vsCommandBarType enumeration. If the 
value is vsCommandBarTypeToolbar, a command bar is created that 
can be docked to the top, left, bottom, or right of the Visual Studio 
.NET window. If the value is vsCommandBarTypeMenu, the com
mand bar is added as a submenu to another command bar. If the 
value is vsCommandBarTypePopup, a shortcut menu is created. 

• CommandBarParent If the value passed for the Type parameter 
is vsCommandBarTypeToolbar or vsCommandBarTypePopup, this 
value should be null or Nothing (depending on the language used). 
If the value passed to the Type parameter is vsCommandBarType
Menu, the new menu should be rooted on the command bar object. 

• Position This value is necessary only if the Type parameter is set 
to vsCommandBarTypeMenu. It defines the location on the parent 
command bar where the new menu command is placed. It has the 
same meaning as the Position parameter of the AddControl method. 

How the newly created command bar is shown to the user depends on 
the type of command bar that's created. If the command bar type is a new 
menu, the menu item is hidden from the user until the command bar for that 
menu item is populated with buttons. If the command bar created is a new tool
bar, the Visible property of the returned CommandBar object should be set to 
True. If a popup menu is created, you can show the menu to the user using the 
CommandBar.ShowPopup method, which takes two arguments, the x and y 
coordinates of the top left of where the popup menu should appear. 

Using Custom Bitmaps 
Visual Studio .NET has a number of predefined bitmaps that you can place on 
menu items and command bar buttons, but they might not always meet your 
needs. To use your own bitmap for the image on a button, you must register for 
your add-in a satellite DLL containing the bitmap in its resources (Chapter 6 has 
more information on creating satellite DLLs), and you must change the call to 
Commands.AddNamedCommand so Visual Studio .NET can find your bitmap. 
First, you should set the AddNamedCommand method's MSOButton parameter 
to false to tell Visual Studio .NET that the bitmap isn't among the default, built
in pictures but is in the satellite DLL. Second, you should change the Bitmap 
parameter to the resource ID of the bitmap in your satellite DLL. 



Chapter 7 Commands 197 

The bitmap must have a specific format to be usable by Visual Studio 
.NET. It must be 16 pixels high and 16 pixels wide and must be saved so that it 
has 16 colors. Visual Studio .NET can also draw the picture so that a portion of 
it shows as transparent. To.enable this, you must make the transparent area 
have the RGB (red, green, blue) color value of 0, 254, 0. (Note that this color 
isn't the lime green color displayed in the color palette of the Visual Studio .NET 
image editor or the Paint application in Windows.) 

Creating the bitmap so it has the correct size and color depth can be com
plicated. The CustomBitmap sample shows how this is done. The setup project 
has been modified to install the satellite DLL containing the custom bitmap into 
the correct place and to properly register the satellite DLL. When you install the 
sample using the setup project, you might find that the bitmap that appears on 
the button for the command on the Tools menu is blank. The reason is that the 
bitmap file used (in the file CustomBitmap\ CustomBitmapUl\untitled.bmp) is 
a blank template that uses the transparency color; you can use it as a starting 
point for creating your own custom bitmaps. The sample also shows how we 
modified the call to the AddNamedCommand method to reference the custom 
bitmap. As you can see in the following code, we changed the MSOButton 
argument from true to false and the Bitmap argument from 59 to 1. (1 is the 
resource identifier for the bitmap in the satellite DLL.) 

Command command= commands.AddNamedCommand(addlnlnstance, "CustomBitmap", 
"CustomBitmap", "Executes the command for CustomBitmap", false, 1, 
ref contextGUIDS, (int)vsCommandStatus.vsCommandStatusSupported + 
(int)vsCommandStatus.vsCommandStatusEnabled); 

Restoring a Lost Command and Its User Interface 
You might notice from time to time when you're developing an add-in (espe
cially just after you've created the add-in) that the user interface for your com
mand and the command itself have seemed to disappear. This happens because 
of the way the information for your command is stored. When Visual Studio 
.NET closes, all the information about the menu and toolbar placement, includ
ing the commands built into Visual Studio .NET and the ones you create, are 
saved to a file on disk. But if something happens that keeps Visual Studio .NET 
from saving this file, your commands and their user interface might be lost. 

For example, suppose you create an add-in using the Add-in Wizard and 
you start debugging the resulting project. If you close the debugged instance of 
Visual Studio .NET by choosing File I Exit (or by using any other way of closing 
an application gracefully), its toolbar information is saved to a file on disk. When 
you close the instance of Visual Studio .NET that you used to develop the add
in, its toolbar information is saved as well, but the information defining your 



198 Part II Extending Visual Studio .NET 

toolbar placements that was generated by the instance being debugged is over
written. Thus, you lose any of the command information your add-in created. 

You can lose this information in another way. Suppose you run the Add-in 
Wizard and generate an add-in, and then you start debugging that add-in by 
pressing the FS key. Rather than closing down the debugged instance Visual Stu
dio .NET (by choosing File I Exit or some other way), however, you choose to 
stop debugging in the debugger. That instance of Visual Studio .NET never has 
a chance to save its command information to disk, so that information is lost. 

devenv /setup 
You can re-create your command in a number of ways. First, you can close 
down all instances of Visual Studio .NET and from a command prompt window 
(the MS-DOS prompt), you can type devenv /setup. This will cause Visual Stu
dio .NET to start and rebuild all the command bar information, removing any 
commands or CommandBar objects that were created by all add-ins. Running 
devenv /setup will also reset the appropriate flags to cause the add-in to rebuild 
its command information when Visual Studio .NET is started the next time. 

Using devenv /setup can also produce undesired side 
effects: when command information is regenerated, all commands cre
ated by add-ins as well as customizations of commands (such as the 
moving of a button from one command bar to another) will be lost. 

You can also re-create your command from the ResetCmdBarlnfo add-in 
included with the book's sample files. ResetCmdBarlnfo creates a command on 
the Tools menu. Choosing this menu item creates an instance of Visual Studio 
.NET that specifies the /setup command-line option. When Visual Studio .NET is 
done re-creating the toolbar information, it closes. This has the same effect as 
typing devenv /setup from the command prompt. 

Custom Registration 
Another way to re-create a command is to reset the CommandPreload flag (first 
discussed in Chapter 6) that's registered for your add-in during build time. If the 
add-in you're building is written using Visual C++, you can easily modify the 
registration code for your add-in to reset this flag within the .rgs file, but a .NET 
assembly is not registered like Visual C++ COM objects are. To do custom sys
tem registry manipulation when an assembly is registered as a COM object, you 



Chapter 7 Commands 199 

can use .NET attributes. The .NET Framework libraries contain two attributes 
located in the System.Runtime.lnteropSeruices namespace, named ComRegister
FunctionAttribute and ComUnregisterFunctionAttribute. These attributes, when 
placed on a static (for C#) or shared (for Visual Basic .NED public method that 
takes an argument of type System. Type, are called during the RegAsm phase of 
registering a .NET component as a COM object (which happens every time the 
add-in project is built). Therefore, you can insert code that looks like this into 
your add-in's class declaration: 

[ComRegisterFunctionAttributeJ 
public static void RegisterFunction(Type t) 
{ 

string progID =String.Empty; 

foreach (System.Attribute attrib in t.GetCustomAttributes(false)) 
{ 

if (attrib.GetType().FullName == 
"System.Runtime.InteropServices.ProgidAttribute") 

ProgidAttribute progidAttrib = (ProgidAttribute)attrib: 
progID = progidAttrib.Value: 

if (progID != String.Empty) 
{ 

RegistryKey key = Registry.CurrentUser.DpenSubKey( 
@"Software\Microsoft\VisualStudio\7.1\Addins\" + progID, 
true): 

if (key != null) 
{ 

if (((int)key.GetValue("CommandPreload", -l)J 2) 

key.SetValue("CommandPreload", 1): 

} 

key = Registry.CurrentUser.OpenSubKey( 
@"Software\Microsoft\VSA\7.1\Addins\" + progID, true); 

if (key != null) 
{ 

if (((int)key.GetValue("CommandPreload", -1)) 2) 
key.SetValue("CommandPreload", 1): 

} 

(continued) 



200 Part II Extending Visual Studio .NET 

} 

} 

key = Registry.CurrentUser.OpenSubKey( 
· @"Software\Microsoft\VisualStudio\7.1\PreloadAddinState", 

true): 

if (key!= null) 
{ 

key.DeleteValue(progID, false): 
} 

key = Registry.CurrentUser.OpenSubKey( 
@"Software\Microsoft\VSA\7.1\PreloadAddinState", true): 

if (key != null) 
{ 

key.DeleteValue(progID, false); 

[ComUnregisterfunctionAttribute] 
public static void Unregisterfunction(Type t) 
{ 

string progID = String.Empty; 

foreach (System.Attribute attrib in t.GetCustomAttributes(false)J 
{ 

if (attrib.GetType().FullName == 
"System.Runtime.InteropServices.ProgidAttribute") 

{ 

} 

ProgidAttribute progidAttrib = CProgidAttribute)attrib: 
progID = progidAttrib.Value: 

if (progID != String.Empty) 
{ 

RegistryKey key= Registry.CurrentUser.OpenSubKey( 
@"Software\Microsoft\VisualStudio\7.1\PreloadAddinState", 
true): 

if (key != null) 
{ 

key.DeleteValue(progID, false): 
} 



Chapter 7 Commands 201 

key = Registry.CurrentUser.OpenSubKey( 
@"Software\Microsoft\VSA\7.1\PreloadAddinState", true); 

if (key !=null I 
{ 

key.DeleteValue(progID, false); 

So, what does this code do? The first few lines of code in each function find 
the class that the function is implemented within, using reflection. The code then 
walks the list of attributes of that class, searching for the attribute that sets the 
ProgID of the add-in when it is registered as a COM object-the ProgldAttribute 
attribute. Once this attribute is found, the ProgID for the add-in can be retrieved. 
The remainder of the code simply checks for certain registry values, which if 
present and set to the value 2 are reset back to 1. Currently, the code resets val
ues if they are present for the Visual Studio .NET Macros editor and Visual Studio 
.NET. If one or the other application isn't suitable for your application, you 
should remove that registry check. Also, if more applications based on Visual Stu
dio .NET technology become available and you set your add-in to load for that 
application, you should add an appropriate check for that application's registry 
settings. You can find code that demonstrates resetting these flags in the ReReg
isterCS add-in included with the book's sample files. 

Note This registration method will repair only a broken command 
creation and won't fully create all the necessary add-in registration 
settings. You can use this method to add your own registration code to 
register the add-in, but our example here doesn't do that. 

These methods are useful for another situation besides repairing a lost com
mand: moving the command bar user interface. Suppose you used the Add-in 
Wizard to create the default add-in code that places a button on the Tools menu. 
During development, however, you decide that the user interface for your com
mand belongs on a different command bar-for example, the View menu. After· 
rewriting the code to find the correct menu, you must reset the CommandPre
load flag so the code will run to place the user interface elements. 



202 Part II Extending Visual Studio .NET 

Add-in Performance 
To make sure your commands are created correctly and to work around 
the problems that we've discussed, you might be tempted to set your add
in to load on startup, call AddNamedCommand to create your commands 
after the add-in loads, and then call Delete to remove the commands when 
the add-in is unloaded. We advise you not to do this for one reason: per
formance. The Visual Studio .NET automation team designed commands 
so the user of an add-in is not penalized for having add-ins installed. 

Suppose a user has 10 add-ins installed. If each of these add-ins were 
set to load on startup, you'd have to create, initialize, and execute the 
code of 10 separate components just to have the user interface for these 
add-ins available to that user, even if she never uses the add-ins. Also, it 
might not seem that bad to have your add-in load on startup, but the user 
will notice the additional time it takes to start Visual Studio .NET. The 
problems with commands not being saved from one instance of Visual 
Studio .NET to the next is a problem only for the developer and will 
rarely, if ever, be seen by the user. 

A user once told Microsoft of a bug where Visual Studio .NET 
seemed to get slower over time, to where it was taking well over a minute 
to start. Microsoft looked for the standard performance-related problems, 
such as a badly fragmented disk drive, background processes that con
sume too much CPU bandwidth, and low memory conditions. The prob
lem turned out to originate with an add-in that was set to load on startup 
and re-created its commands each time it was loaded. The third-party sup
plier of this add-in (which shall remain nameless) changed the code, and 
the user has been happily using the add-in ever since. 

Removing a Command 
Once created, if a command is no longer needed (for example, if your add-in is 
being uninstalled), you can delete it. Only commands created by add-ins can be 
deleted, however; commands defined by Visual Studio .NET or commands for 
macros can't be removed and an error is generated if a call is made to remove 
a non-add-in created command. To remove a command, you use the Com
mand.Delete method; it removes not only the command name but also any user 
interface elements for that command, such as buttons on command bars. 



Chapter 7 Commands 203 

Sub DeleteMyCommand() 
DTE.Commands.Item("MyAddin.Connect.MyCommand").Delete() 

End Sub 

Uninstalling an add-in should remove any commands that it has created, 
but by default, the code generated by the Add-in Wizard doesn't do this. You 
can add a custom action to your add-in component to remove these com
mands. A custom action is code that is run by the installer project created by the 
Add-in Wizard during install and/or uninstall time. During install and uninstall, 
the installer loads your add-in component and searches for a public class that 
derives from the System.Configuration.Install.Installer class and uses the Run
lnstaller(true) attribute. If a class meets these criteria, the methods Install and 
Uninstall are called, allowing any custom code to be run. Creating a component 
of this type is simple. In the Add New Item dialog box, you can insert an 
Installer Class project item, as shown in Pigure 7-3. 

~ategorles: remplates: 

\t] d Local Project Items Web Custom Inherited User 
Control Control 

Text File Frameset XSLT File 

ll Ii 
Style Sheet ,,.,, .. Bitmap File 

:TE. 

Qpen 

Figure 7-3 The Add New Item dialog box, with the Installer Class item 
selected 

The following code implements the Uninstall and Install methods of the 
Installer class. These methods first check to make sure that no instances of the 
devenv.exe (the executable for Visual Studio .NET) process are running. These 
methods prompt the user to close any instances if any are running, and when 
they have been closed, the custom action starts a new instance of Visual Studio 
.NET through the automation model. The Uninstall method then continues on, 
calling the Delete method to delete the command. You can modify this code to 
find and delete the commands that your add-in has created. 



204 Part II Extending Visual Studio .NET 

This code also helps install an add-in using the Install method. When the 
CommandPreload flag is set in the registry, the next time Visual Studio .NET 
runs it starts the process of allowing add-ins to create commands. You've seen 
the problems that can arise if Visual Studio .NET is closed unexpectedly or if 
multiple instances are created before the command information can be written 
to disk. Using a custom action, you can create an instance of Visual Studio .NET 
through the automation model and then immediately close the process. This 
allows Visual Studio .NET to create any commands and save this data, allowing 
your user to avoid the trap of command information being overwritten. 

bool IsVSRunning() 
{ 

System.Diagnostics.Process []processes = 
System.Diagnostics.Process.GetProcesses(); 

foreach(System.Diagnostics.Process process in processes) 
{ 

//Wrap in a try catch. If the process is not owned by 
//the user then an exception will be thrown trying to 
//get the ProcessModule 
try 
{ 

if((process !=null) && (process.MainModule !=null)) 
{ 

//Get the file name of the process, 
II and compare it to 'devenv.exe' 
string fileName = process.MainModule.FileName; 
fileName = System.IO.Path.GetFileName(fileName); 
if(System.String.Compare(fileName, "devenv.exe") 0) 

return true; 

catch(System.Exception ex) 
{ 

} 

return false; 

public override void Uninstall(System.Collections.IDictionary savedStatel 
{ 

base.Uninstall(savedState); 
System.Windows.Forms.MessageBox.Show("Uninstall"); 
while(IsVSRunning()) 
{ 

System.Windows.Forms.MessageBox.Show("A running instance of Visual "+ 
Studio .NET was found.\n\nPlease close all copies of Visual "+ 
"Studio .NET, then press OK.", "Uninstall. .. ", 
System.Windows.Forms.MessageBoxButtons.OK); 



EnvDTE.DTE dte =new EnvDTE.DTEClass(); 
//Change the name of the command below 
//to the name of the command you have created 

Chapter 7 Commands 205 

II This can be called multiple times, once for each command created 
dte.Commands.Item("MyAddinl.Connect.MyAddinl", -1).Delete(); 

public override void Install(System.Collections.IDictionary stateSaver) 
{ 

base.Install(stateSaver); 
System.Windows.Forms.MessageBox.Show("Install"); 
while(IsVSRunning()) 
{ 

System.Windows.Forms.MessageBox.Show("A running instance of Visual " + 
"Studio .NET was found.\n\nPlease close all copies of Visual "+ 
"Studio .NET, then press OK.", "Install ... ", 
System.Windows.Forms.MessageBoxButtons.OK); 

EnvDTE.DTE dte = new EnvDTE.DTEClass(); 

Once this component has been added to your add-in's project, the last 
step is to add it to the list of custom actions available to the installer. You do this 
by opening the Custom Actions editor of the installer project: right-click the 
setup project and choose View I Custom Actions. Next, you add the primary 
output of the add-in project to the Uninstall and Install nodes of this editor by 
right-clicking on each of these nodes in the Custom Actions window, choosing 
Add Custom Action, double-clicking on the Application Folder item in the 
Select Item In Project dialog box, and selecting Primary Output From Addin 
Project Name. 

You don't need to add a custom action to your installer project to delete 
your commands during uninstall. Deleting commands that are no longer used 
results in the best user experience, but you don't need to manually remove the 
commands you create. When your add-in is uninstalled, it leaves behind any 
commands and the user interface for those commands. If the user chooses any of 
the commands for which the add-in that handles that command can't be found, 
the user is presented with the message box shown earlier in Figure 7-2. If the 
user clicks Yes, the command and any of its user interface elements are removed. 

Command Parameters 
Commands that you create for your add-in can accept parameters. You can pass 
these parameters to the command handler when they're invoked from the 
Command Window or by using the DTE.ExecuteCommand method. For 



206 Part II Extending Visual Studio .NET 

example, suppose your add-in created a command with the name MyAd
din.Connect.Command. If the user types into the Command Window the lines 

MyAddin.Connect.Command 
MyAddin.Connect.Command My Parameters 

the IDTCommandTarget.Exec method of your add-in is called twice. The first 
time, the Varin parameter is an empty string("''). The second time, Varin con
tains the string ''My Parameters". Everything after the name of the command 
(except trailing and ending white space) is copied verbatim into the Varin 
parameter. It's up to your add-in to parse the list of supplied parameters and 
handle them as needed. Parameters can also be passed using the ExecuteCom
mand method; up to this point, we've only seen ExecuteCommand being 
passed one argument-the full name of the command. However, you can pass 
an optional second argument, which is the parameter that's passed to your 
command handler the same way that data is passed when the command is 
invoked through the Command Window. 

Commands that support parameters often require a specific syntax for 
what can be passed in. A user might be able to look up in the documentation 
exactly what that syntax is, but it would be easier for the user to ask the com
mand directly for help. A common format for finding help from command-line 
utilities in Windows is to type the name of the program followed by a /? argu
ment. The Visual Studio .NET Command Window also supports help in a similar 
fashion. If the user types the command name followed by!? into the Command 
Window, your IDTCommandTarget.Exec method is called with the ExecuteOp
tion parameter set to a value OR'ed together with vsCommandExecOp
tion.vsCommandExecOptionShowHelp. When this value is passed, your add-in 
can decide the best method of displaying help, such as displaying a Web page 
with documentation. The CommandHelp add-in included with the book's sam
ple files demonstrates displaying a Help file when the !? parameter is specified 
to a command. 

Macros can also take parameters. To declare a macro that takes arguments, 
you must make all the arguments optional strings with a defined default value, 
as demonstrated in this macro: 

Sub OptionalArguments(Optional ByVal optArg As String= "I am optional") 
MsgBox(optArg) 

End Sub 

This macro can be called from the Command Window or the ExecuteCom
mand method, using either just its name or the name and arguments. If the 
argument isn't specified when this macro is called, a message box with the text 
"I am optional" is displayed to the user. If an argument is specified, the message 
box uses that argument text. Macros don't provide special functionality for 
invoking help, but you can simulate this functionality by checking the argument 



Chapter 7 Commands 207 

value passed-if it's set to the string!?, the user has requested help. You can 
rewrite the macro as follows to handle help: 

Sub Optiona1Arguments2(0ptional ByVal optArg As String "I am optional") 
If (optArg = "/?") Then 

Dim helpString As String 
helpString "Usage: OptionalArguments [optArg]" 
helpString = helpString + vblf 
helpString = helpString +"This macro will display in "+ 

"a message box the passed argument." 
MsgBox(helpString) 

Else 
MsgBox(optArg) 

End If 
End Sub 

Key Bindings 
You've seen the many ways that commands can be invoked, but each way 
requires either moving your hand from the keyboard to the mouse or typing a 
long string of commands. To aid in accessibility or just to make invoking these 
commands easier, many commands are assigned a shortcut keystroke, or key 
binding. For example, rather than picking up the mouse, opening the File 
menu, choosing the Open submenu, and then clicking File to open a file, you 
can use the keystroke Ctrl+O to quickly access the Open File dialog box. 

Each command can have one or more key bindings assigned to it. The 
Command.Bindings property allows you to read or set the bindings assigned to 
that command. When you call this property to retrieve the set of bindings, an 
array of objects containing strings describing each binding is returned, which 
can be enumerated to find each binding. You can set bindings by using this 
property, and they can accept either a singular string to set a single keystroke 
or an array of strings to assign multiple bindings at once. You can see how 
these key bindings are retrieved in this macro: 

Sub GetFileOpenBindings() 
Dim bindings As Object() 
Dim binding As Object 
bindings= DTE.Commands.ltemC"File.OpenFile").Bindings 
For Each binding In bindings 

Next 
End Sub 

MsgBox(CStr(bindingll 

Each binding that is set has a specific format, and you must follow this for
mat closely to avoid generating an error. Here's the format: 

Scope::ModifierKeys+Key,ModifierKeys2+Key2 



208 Part II Extending Visual Studio .NET 

And here's a description of each piece of the binding: 

• Scope is the context in which the key binding can be applied. For 
example, pressing the Ctrl+B key binding makes the selected text 
bold when you're using the HTML editor; if the image editor is active 
(a bitmap is loaded and is the active window), the brush tool is 
selected. If neither the HTML editor nor the image editor is active, 
pressing Ctrl+B displays the debugger breakpoints dialog box. A 
number of scopes are available, but the most common is the Global 
scope. In this scope, the command is available everywhere except 
when a more specific scope is active. The Ctrl+B keystroke for dis
playing debugger breakpoints is in the Global scope, while Ctrl+B 
for bolding text is in the HTML Editor Design View scope and takes 
precedence over the breakpoints dialog box if an HTML designer 
window is active. 

• Modifier keys are system keys that are pressed while you're pressing 
another key. These modifiers include the Alt, Shift, and Ctrl keys. 
One or more modifier keys can be specified; they can appear in any 
order but must be separated by the + character. 

• A key is any key on a standard 102-key keyboard (which excludes 
keys on newer Windows keyboards, such as the Windows key, mul
timedia keys, and the Fn key on some notebook keyboards). If a key 
is a system key, such as Fl, F2, and so forth or the Esc key, a Modi
fier key isn't required. If the key is an alphanumeric key, a Modifier 
must be specified. It can't be Shift alone but must include either Alt 
or Ctrl or both because some keystrokes are reserved and can't be 
overridden. (For example, A and Shift+ A are reserved by the text edi
tor.) The keys available for use are the alphanumeric keys, the 
unshifted characters (such as the comma and period), and the values 
Bkspce, Del, Ins, Space, Fl to F24, Enter, Break, Up Arrow, Down 
Arrow, Left Arrow, Right Arrow, Tab, Home, End, PgUp, PgDn, Esc, 
NUM *, NUM -, NUM +, and NUM /. The Caps Lock, Print Screen, 
Num Lock, and Pause keys are reserved by the operating system, so 
you can't use them. 

• ModifierKeys2 and Key2 make up another set of keystrokes. These 
are optional and can be used to refine command groups. For exam
ple, you can have your add-in use the key binding Ctrl+Shift+D, 0 to 
open a file into a tool window, while Ctrl+Shift+D, S can save that 
file. Key2 isn't restricted to being grouped with a modifier key, 
which means that ModifierKeys2 is optional. 



Chapter 7 Commands 209 

Using this format, we can assign the keystroke Ctrl+Shift+D,O within the 
Global scope by using code like this: 

Sub SetKeyBinding() 
Dim command As Command 
command= DTE.Commands.Item("File.OpenFile") 
command.Bindings= "Global ::Ctrl+Shift+D,O" 

End Sub 

This call to the Bindings property sets one key binding, but you can also 
assign more than one key binding at a time by passing an array of Sys
tem.Object, each set to a System.String: 

Sub SetKeyBindings() 
Dim command As Command 
Dim bindings(l) As Object 
bindings(0) ="Global ::Ctrl+Shift+D,O" 
bindings(l) ="Global ::Ctrl+Shift+D,F" 
command= DTE.Commands.Item("File.OpenFile") 
command.Bindings = bindings 

End Sub 

When any changes are made to the key bindings for a command, all the 
bindings for that command are removed, and if the binding is in use with 
another command, that binding is also removed. After running a macro such as 
this, users who are accustomed to using Ctrl+O to open a file might become 
confused about why their familiar binding has been lost, but this setting can be 
preserved through code: 

Sub SetKeyBindingsPreserve() 
Dim command As Command 
Dim bindings() As Object 
Dim preserveLength As Integer 

command= OTE.Commands.Item("File.OpenFile") 
'Retrieve the current bindings for the command 
bindings = command.Bindings 
'Find the number of current bindings 
preserveLength =bindings.Length 
'Add 2 elements to the array (remember, preservelength 
' will be 1 more than the number of elements, and this 
' extra value with 1 added to it becomes 2 elements 
ReDim Preserve bindings(preservelength + 1) 
'Assign our new bindings 
bindings(preservelength) = "Global::Ctrl+Shift+D,O" 
bindings(preservelength + 1) ="Global ::Ctrl+Shift+D,F" 
command.Bindings = bindings 

End Sub 



210 Part II Extending Visual Studio .NET 

When you attempt to modify the set of key bindings for a command, you 
might get an exception with the message "Setting key bindings valid only when 
using a non-built-in key binding scheme." This exception occurs because the 
key binding schemes that ship with Visual Studio .NET are read-only; to modify 
the keyboard scheme, you or your user must first switch to a user-defined key 
scheme. You can do this through the user interface in the Options dialog box 
on the Environment I Keyboard tab by clicking the Save As button or by assign
ing a path to the Environment I Keyboard property collection's Scheme prop
erty. If, when you're setting this value, the .vsk file (keyboard schemes are 
saved into a file with the extension .vsk) doesn't exist, a file is created for you. 

The following macro creates a keyboard scheme file in the user's applica
tion data folder for Visual Studio .NET: 

Sub ChangeKeyboardScheme() 
Dim props As EnvDTE.Properties 
Dim,prop As EnvDTE.Property 
Dim path As String 
Dim folder As System.Environment.Special Folder 

'Find the Environment, Keyboard, scheme property 
props = DTE.Properties("Environment", "Keyboard") 
prop= props.Item("Scheme") 
'Set the path we wish to save information to 
folder= System.Environment.SpecialFolder.ApplicationData 
path = System.Environment.GetFolderPath(folder) 
path = path + "\Microsoft\VisualStudio\7.1\scheme.vsk" 
'Set the path 
prop.Value= path 

End Sub 

Lab: Creating a Command and Key Binding Cheat Sheet 
I like to keep handy a printout of all commands and the bindings of those 
commands that Visual Studio .NET offers. When I find that I'm running a 
certain command repeatedly, I look up that command on my printout and 
then try to remember the keystroke shortcut for that command. Finding 
the command that I want to run might take a while because there are so 
many commands, but over time this approach has increased my produc
tivity because I no longer need to hunt for a command on the menus-I 
can just press a keystroke. Here's the macro I used to create my command 
cheat sheet: 



Sub GenerateCommandCheatSheet() 
Dim cmd As Command 
Dim selection As TextSelection 
Dim binding As String 
Dim newDocument As Document 

Chapter 7 Commands 211 

'Open a new document to store the information 
newDocument = DTE.ItemOperations.NewFile( _ 

"General\Text File").Document 
selection = newDocument.Selection 
'Enumerate all commands: 
For Each cmd In DTE.Commands 

Next 
End Sub 

If (cmd.Name <> Nothing) Then 
Dim str As String 
'Get the command name, and format to 
' make the output look nice: 
str = cmd.Name 
str = str.PadRight(70) 
'Output the command name, and the bindings for the command: 
If (cmd.Bindings.Length > 0) Then 

Else 

For Each binding In cmd.Bindings 
str = str + binding 
selection.lnsert(str + vblf) 
str 
str = str.PadRight(70) 

Next 

selection.Insert(str + vblf) 
End If 

End If 

Looking Ahead 

In the next chapter, we'll focus on using the object model to create and modify 
solutions and projects that are loaded into Visual Studio .NET. We'll also look at 
how to work with those solutions, such as changing how a solution and 
projects are compiled into a running program. 





Managing Solutions and 
Projects Programmatically 

Microsoft Visual Studio .NET is rich with tools to help you manage and com
plete your programming tasks. One of these tools is the project management 
system. Projects are where files are created, managed, and compiled to create 
the resulting program. In this chapter, you'll discover how you can manipulate 
projects using the automation object model. 

Working with Solutions 
In Visual Studio .NET, a solution is the basic unit of project management. A 
solution is a container for any number of projects that work together to create 
the whole of a program. Each project within a solution can contain code files 
that are compiled to create the program, folders to make managing the files eas
ier, and references to other software components that a project might use. You 
manage a solution through the Solution Explorer tool window, where you can 
add, remove, and modify projects and the files they contain. When a solution 
file is opened, a node is created within Solution Explorer that represents the 
solution, and each project added to this solution appears as a subnode of the 
top-level one. 

Within the Visual Studio .NET object model, a solution is represented by 
the EnvDTE.Solution object, which you can retrieve using the Solution property 
of the DTE object, as shown in the following macro: 

Sub GetSolution() 
Dim solution As EnvDTE.Solution 
solution= DTE.Solution 

End Sub 
213 



214 Part II Extending Visual Studio .NET 

Creating, loading, and Unloading Solutions 
To use the Solution object and its methods and properties, you don't need to 
create or open a solution file from disk. You can use the Solution object even 
though the solution node in Solution Explorer might not be visible. Visual Stu
dio .NET always has a solution open, even if it exists only in memory and not 
on disk. If you open a solution file from disk and the in-memory solution is not 
dirty (modified but not saved to disk), this in-memory solution is discarded and 
the solution on disk is loaded. If the in-memory solution has been modified 
(such as by having a new or existing project added), when you close it you'll be 
prompted to save the solution to disk. 

To save a solution programmatically, you can use the method Solu
tion.SaveAs; you pass it the full path, including the filename and the .sln file 
extension, to where the solution should be stored on disk. However, using the 
Solution.SaveAs method might not always work and can generate an exception 
because you must first save a solution file to disk or load it from an existing 
solution file on disk before the SaveAs method can be used. To allow saving of 
the solution file, you can use the Create method. You use this method to specify 
information such as where the solution file should be saved and the name of 
the solution. By combining the Create and SaveAs methods, you can not only 
create the solution but also save it: 

Sub CreateAndSaveSolution() 
DTE.Solution.Create("C:\", "Solution") 
DTE.Solution.SaveAs("C:\Solution.sln") 

End Sub 

Once you create a solution file and save it to disk, whether through the 
user interface or the object model, you can use the Solution. Open method to 
open it. Using the file path given in the CreateAndSaveSolution macro, we can 
open our solution as shown here: 

DTE.Solution.Open("C:\Solution.sln") 

When you call this method, the currently open solution is discarded and 
the specified solution file is opened. When an open solution is closed to make 
way for the solution file that is being loaded, you won't be notified that the cur
rent solution is being closed, even if the current solution has been modified. 
This means you won't be given the option to save any changes. A macro or an 
add-in can use the ItemOperations.PromptToSave property to offer the option 
of saving a solution. The ItemOperations object, which is accessed from the 
DTE.ItemOperations property, contains various file manipulation methods and 
properties. One property of this object, PromptToSave, displays a dialog box 



Chapter 8 Managing Solutions and Projects Programmatically 215 

that gives you the option to select files to save and returns a value detailing 
which button you clicked. This property also saves the files you've chosen to 
save. This property won't show the dialog box if no files need to be saved-it 
will immediately return a value indicating that you clicked the OK button. You 
can combine the PromptToSave property with the Open method to properly 
save modified files and open a solution: 

Sub OpenSolution() 
Dim promptResult As vsPromptResult 
'Offer to save any open and modified files: 
promptResult = DTE.ItemOperations.PromptToSave 
'If the user pressed anything but the Cancel button, 
' then open a solution file from disk: 
If promptResult <> vsPromptResult.vsPromptResultCancelled Then 

DTE.Solution.Open("C:\Solution.sln") 
End If 

End Sub 

You've learned how to create, save, and open a solution-the only piece 
missing from the life cycle of a solution is closing it. The Solution object sup
ports the method Close, which you can use to close a solution file. This method 
accepts one optional Boolean parameter, which you can use to direct Visual 
Studio .NET to save the file when you close it. If you pass the value true for this 
parameter, the solution file is saved before you close it; if you set it to false, any 
changes to the file are discarded. 

Enumerating Projects 
The Solution object is a collection of Project objects, and because it is a collec
tion, it has an Item method that you can use to find a project within the solution. 
This method supports the numeric indexing method, like the Item method of 
other objects does, but it also supports passing a string to find a project. The 
string form of the Solution.Item method is different from that of other Item meth
ods, however; rather than taking the name of a project, Solution.Item requires the 
unique name of a project. A unique name, as its name indicates, uniquely identi
fies a project among all other projects within a solution. Unique names are used 
to index the projects collection because Visual Studio .NET might eventually sup
port loading two projects that have the same name but are located in different 
folders on disk. (Visual Studio .NET 2003 requires that all projects within a solu
tion have a name that is different from all other projects.) Because loading two or 
more projects with the same name might be allowed in a version of Visual Studio 
.NET after version 7.1, the name alone isn't enough to differentiate one project 
from another when you call the Item method. You can retrieve the unique name 
of a project using the Project. UniqueName property. The following macro 
retrieves this value for all the projects loaded into a solution: 



216 Part II Extending Visual Studio .NET 

Sub EnumProjects() 
Dim project As EnvDTE.Project 
For Each project In DTE.Solution 

MsgBox(project.UniqueName) 
Next 

End Sub 

The Solution object isn't the only collection of all projects that are loaded. 
The Solution object has a Projects property, which also returns a collection of 
the available projects and works in the same way that the Solution object does 
for enumerating and indexing projects. It might seem redundant to have this 
same functionality in two places, but the Visual Studio .NET object model team, 
after performing usability studies, found that developers didn't recognize the 
Solution object as a collection. They therefore added this Projects collection to 
help developers find the list of projects more easily. The EnumProjects macro 
can be rewritten as follows to use the Projects collection: 

Sub EnumProjects2() 
Dim project As EnvDTE.Project 
For Each project In DTE.Solution.Projects 

MsgBox(project.UniqueName) 
Next 

End Sub 

You can find the list of projects by using the Solution and Projects collec
tions, but at times you'll need to find the projects that you've selected within 
Solution Explorer tree view window. You can do this using the DTE.ActiveSolu
tionProjects property. When you call this property, Visual Studio .NET looks at 
the items selected within Solution Explorer. If a project node is selected, the 
Project object for that selected project is added to a list of objects that will be 
returned. If a project item is selected, the project containing that item is also 
added to the list returned. Finally, any duplicates are removed from the list and 
the list is returned. The following macro demonstrates using this property: 

Sub FindSelectedProjects() 
Dim selectedProjects As Object() 
Dim project As EnvDTE.Project 
selectedProjects = DTE.ActiveSolutionProjects 
For Each project In selectedProjects 

Next 
End Sub 

MsgBox(project.UniqueName) 



Chapter 8 Managing Solutions and Projects Programmatically 217 

Capturing Solution Events 
As you interact with a solution, Visual Studio .NET fires events that allow an 
add-in or a macro to receive notifications about which actions you perform. 
These events are fired through the SolutionEvents object, which you can access 
through the Events.SolutionEvents property. You can capture solution events in 
the usual way-by opening the EnvironmentEvents module of any macro 
project, selecting the SolutionEvents object in the left drop-down list at the top 
of the code editor window, and selecting the event name in the right drop
down list of this window. 

Here are the signatures and meanings for the events available for a 
solution: 

• void Opened() This event is fired just after a solution file has been 
opened. 

• void Renamed(string OldName) This event handler is called 
just after a solution file has been renamed on disk. The only argu
ment passed to this handler is the full path of the solution file just 
before it was renamed. 

• void ProjectAdded(EnvDTE.Project Project) This event is fired 
when a project is inserted into the solution. One argument is passed 
to this event handler-the EnvDTE.Project object for the project that 
was inserted. 

• void ProjectRenamed(EnvDTE.Project Project, string OldName) 
This event is fired when a project within the solution has been 
renamed. The event handler is passed two arguments. The first is of 
type EnvDTE.Project and is the object for the project that has just 
been renamed. The second parameter is a string that contains the full 
path of the project file before it was renamed. 

• void ProjectRemoved(EnvDTE.Project Project) This event is 
fired just before a project is removed from the solution. This event 
handler receives as an argument the EnvDTE.Project object for the 
project that is being removed. Just as when you use the BeforeC!os
ing event, you shouldn't modify the project being removed within 
this event because the project has already been saved to disk (if you 
specified that the file be saved) before being removed, and any mod
ifications to the project will be discarded. 

• void QueryCloseSolution( ref boot fCancel) This event is fired 
just before Visual Studio .NET begins to close a solution file. The 



218 Part II Extending Visual Studio .NET 

handler for this event is passed one argument-a reference to a Bool
ean variable. An add-in or a macro can block a solution from being 
closed by setting this parameter to true, or it can allow the solution 
to be closed by setting the parameter to false. You should take care 
when you choose to stop the solution from being closed-users 
might be unpleasantly surprised if they try to close the solution but 
a macro or an add-in disallows it. 

• void BeforeClosing() This event is fired just before the solution 
file is about to close but after it has been saved (if you specified the 
option to save). Because this event is fired after the chance to save 
the file has passed, the event handler shouldn't make any changes to 
the solution because those changes will be discarded. 

• void AfterClosing() This event is fired just after the solution file 
has finished closing. 

The sample named SolutionEvents, which is among the book's sample 
files, demonstrates connecting to each of these events. Once you load this sam
ple, as each event is fired the add-in displays a message box showing a bit of 
information about the event that was fired. The QueryCloseSolution event han
dler also offers the option of canceling the closing of the solution. The source 
code for this add-in sample is shown in Listing 8-1. 

Solution Events.cs 
namespace Solutio~Events 
{ 

using System: 
using Microsoft.Office.Core; 
using Extensibility; 
using System.Runtjme.InteropServices; 
using EnvOTE; 

[Gui dAttri but.e ( "1FF0C203~80.36·4A54" A7.1Ac B0F82BA60B0C" l. 
Prbgld("SolutionEvents.Connect")J 

public class Connect : Object, Extensibility.IOTE)itensibility2 

public ConnectO 
{ 

} 

Listing 8-1 Source code for the solution events add-in 



Chapter 8 Managing Solutions and Projects Programmatically 219 

public void OnConnection(object application, 
Extensibility.ext_ConnectMode connectMode, 
object addininst, ref System.Array custom) 

applicationObject = (_OTE)application: 
addlninstance = (Addin)addlninst; 

//Set the solutionEvents delegate variable using the 
II DTE.Events.SolutionEvents property: 
solutionEvents = CEnvDTE.SolutionEvents) 

applicationObject.Events.SolutionEvents; 

//Set up all available event handlers by creating a new 
II instance of the appropriate delegates: 
solutionEvents.AfterClosing +=new 

_dispSolutionEvents_AfterClosingEventHandler(AfterClosing); 
solutionEvents,BeforeClosing +=new 

_dispSolutionEvents_BeforeClosingEventHandler(BeforeClosing); 
solutionEvents..Opened +=new 

_di~pSolutionEvents_OpenedEventHaridlen(Opened); 

solutionEvents.ProjectAdded +=new 
_dispSolutionEvents_ProjectAddedEventHandler(ProjectAddedl; 

solutionEvents.ProjectRemoved += new 
_dispSolutionEvents_ProjectRemovedEventHandler 
(ProjectRemovedl; 

solutionEvents.ProjectRenamed +=new 
_dispSolutionEvents_ProjectRenamedEventHandler 
CProjectRenamed); 

solutionEvents.OueryCloseSolution +=new 
_dispSolutionEvents_QueryCloseSolutionEventHandler 

(QueryCloseSolution); 
solutionEvents.Renamed +=new 

_dispSolutionEvents_RenamedEventHandlerCRenamed); 

public voi.d OnDisconnection( 
Extensibility.ext_DisconnectMode disconnectMode, 
ref System.Array custom) 

//The Add-in is closing. Disconnect the event handlers: 
solutionEvents.AfterClosing -=new 

_dispSolutionEvents_AfterClosingEventHandler(AfterClosing); 
sOlutionEvents.BeforeClosing -=new 

_di spSo 1 ut i onEvents_Befo re Closing EventHand 1 er (BeforeCl o sing l ; 
solutionEvents.Opened -=new 

_dispSolutionEvents_OpenedEventHandler{Opened); 
solutionEvents.ProjectAdded ~=new 

_dispSolutionEvents_ProjectAddedEventHandler(ProjectAdded); 



220 Part II Extending Visual Studio .NET 

solution Events .ProJectRemoved -= new 
_dtspSo1utionEvents_ProjectRemcivedEventHandler 
(Proj ectRerrto\led); 

solutionEvents.Projectil.enamed -=new 
_diSpSo1utionEverits'-ProjectRenamedEventHandler 
<Project Renamed): 

soluti ont:vents. QueryCloseSol ut ion.-= new 
_dispSolutiohEvents_QtieryCloseSolutionEvehtHi!ndler( 
Que~yC1oseSo1ut1on); 

solutionEvents.Renamed -= new 
...:di spSoluti onEvents~RenamedEventHandl er< Renamed l; 



Chapter 8 Managing Solutions and Projects Programmatically 221 

//Display the UniqueName of the project that has been added. 
public void ProjectAddedCEnvDTE.Project project) 
{ 

} 

System.Windows.Forms.MessageBox.Show( 
"SolutionEvents.ProjectAdded\nProject: "+ project.UniqueName, 
"Solution Events"): 

//SolutionEvents.ProjectRemoved delegate handler. 
//Display the UniqueName of the project that has been added. 
public void ProjectRemovedCEnvDTE.Project project) 
{ 

} 

System.Windows.Forms~MessageBox.ShowC 

, "SolutionEvents.ProjectRemoved\nProject: " + 
project.UniqueName, "Solution Events"): 

//SolutionEvents.ProjectRemoved delegate handler. 
//Display the Uni queName, of the project that ,has been renamed, 
II and the f~ll p*th f11e before it was renamed. 
public void ProjectRenamed(EnvDTE.Project project, string oldName) 
{ ' 

} 

System.Windows.Forms.MessageBox.Show( 
"SolutionEvents.ProjectRenamed\nProject: " + 
project. U,ni queName 
+ "\nOld project name: "+ oldName, "Solution Events"); 

//SolutionEvents.QueryCloseSolution delegate handler. 
//Asks if closing'the s61ution shou1d be canceled. 
public void QueryClriseSolution<ref bool cancel) 
{ 

ff(System.Windows.Forms.MessageBox.ShowC 
"SolutionEvents.OueryCldseSolution\nContinue with close?", 
"Solution Events", 
System.Wtndows.Forms.MessageBoxButtons.YesNol 
System. Wfodows. Forms. DialogResul t. Yes I 

cancel = false: 
else 

cancel = true: 

//SolutionEvents.QueryCloseSolutton delegate handler; 
//Displays the full path the solution before and after it was renamed. 
public void RenamedCstring oldNamel 
{ 

System.Windows.Forms.MessageBox.Show< 
"SolutionEvents.Renamed\nNew,,solutfon name: "+ 



222 Part II Extending Visual Studio .NET 

Lab: Bug with Events Being Disconnected? 
Over the years, I've often been asked if there is a bug with events because 
events can be unexpectedly lost and no longer fire even if code to discon
nect an event is never run. This problem is due to a common program
ming mistake that reveals itself because of how the garbage collector 
works in the .NET Framework. Look at the following code, which con
nects to the solution renamed event: 

public void ConnectSolutionEvents() 
{ 

EnvDTE.SolutionEvents solutionEvents; 
solutionEvents = (EnvDTE.SolutionEvents) 
applicationObject.Events.SolutionEvents; 
solutionEvents.Renamed +=new 

_dispSolutionEvents_RenamedEventHandler(Renamed); 

When this method is called to connect to the Renamed event, the 
solutionEvents variable is assigned to an instance of the SolutionEvents 
object. But the solutionEvents variable is local to the ConnectSolution
Events method and, as a result, when ConnectSolutionEvents returns to 
the caller, solutionEvents is marked as available to be garbage collected. 
Usually the event fires once or twice, but when the garbage collector starts 
working, it sees that this variable can be removed from memory and 
removes it, thus disconnecting the event handler. To make your event 
handler code work correctly, you should move the solutionEvents variable 
outside the method and to class scope. This will ensure that the event han
dler isn't collected until the class is unloaded. Also note that this behavior 
applies to all event handlers when they're connected using the .NET 
Framework, not just the Solution Renamed event. 



Chapter 8 Managing Solutions and Projects Programmatically 223 

Solution Add-ins 
As you saw in Chapter 6, Visual Studio .NET lets you write customization code 
by creating add-ins. Once you load an add-in, it will continue to run until you 
unload it or Visual Studio .NET is closed. Just as Visual Studio .NET can load 
and run add-ins, solutions can do so as well. As Visual Studio .NET starts to load 
a solution, it examines the solution file to see whether it contains a reference to 
any add-ins. If it does, it loads those add-ins and calls the same methods on the 
IDTExtensibility2 interface (OnConnection, OnDisconnection, and so forth) as 
appropriate, just as if the add-in were loaded as a nonsolution add-in. 

Creating a solution add-in can offer some benefits over creating a non
solution add-in, such as when an add-in should be available only when a spe
cific solution is open and running. For example, suppose you want to keep 
track of how many times a build of a solution is performed. You could create an 
add-in that would be loaded in the traditional way, but if the add-in were to 
count the number of times a specific solution is built, having this add-in loaded 
all the time would waste system resources. 

The Add-in Wizard doesn't offer any options for creating solution add-ins, 
but by creating a nonsolution add-in and making a few modifications, you can 
generate all the necessary basic code. The only difference between a nonsolution 
add-in and a solution add-in is in how Visual Studio .NET is told to load the add
in. A standard add-in stores information in the registry; solution add-ins store their 
information directly in the solution (.sln) file. Knowing this, you can easily 
change the output for a standard add-in into a solution add-in. The first step is to 
run the Add-in Wizard, selecting the appropriate language but not changing any 
of the other options from their default. After the wizard finishes running and gen
erating code, you delete the setup project for that add-in project. The setup 
project is used mainly to populate the system registry with values, and because 
these values aren't needed for a solution add-in, the setup project isn't necessary. 

If you follow these steps to create a solution add-in, this add-in 
will be available tor loading as a nonsolution add-in on your develop
ment computer because the wizard creates the registry keys tor a 
standard add-in when the code is generated. Having these extra keys 
in the system registry might be a little awkward for the developer of the 
solution add-in, but it won't cause any unwanted effects for the user of 
the solution add-in. If you do not want to clutter the Add-in Manager 
dialog box or if you want to remove the possibility of accidentally load-
ing the solution add-in as a nonsolution add-in, you can safely remove 
these keys. 



224 Part II Extending Visual Studio .NET 

The next step is to register the add-in with the solution file. The property 
Solution.Add!ns returns an Add!ns collection-the same one that is returned 
from the D1E.Addlns property except that this collection contains only the add
ins registered with the solution file. To register the add-in with the solution, you 
use the Add!ns.Add method, which has the following method signature and 
parameters: 

public EnvDTE.Addin Add(string ProgID, string Description, string Name, 
bool Connected) 

Here's what the arguments that are passed to this method mean: 

• Prog/D The COM ProgID of the add-in to be associated with the 
solution. 

• Description A description of the add-in. This value is used only 
for note keeping and isn't used by Visual Studio .NET. 

• Name A short name for the add-in. Like the description, this value 
isn't used by Visual Studio .NET. 

• Connected If this value is set to true, the add-in will be loaded 
after being associated with the solution and will be loaded again 
whenever the solution is reopened. If this value is false, the add-in 
will be associated with the solution but won't be loaded, and it won't 
be loaded when the solution is reopened. 

Because you can't associate an add-in with a solution file through the reg
istry-you must use code-you must decide on a way of running the code to 
insert the add-in into the solution. If it is running in a shared environment in 
which the source code is checked into a source code control system (such as 
Microsoft Visual SourceSafe), the project administrator can write and run a 
macro with the appropriate code and then check in the solution file, thus mak
ing the add-in load for everyone the next time the latest version of the solution 
is retrieved from source code control. Another approach is to create a wizard 
that makes the appropriate call to Add!ns.Add after generating the code for the 
project. The easiest approach, however, might be to use something similar to 
the Add-in Manager dialog box to manage solution add-ins. 

Visual Studio .NET doesn't provide a solution add-in manager, but you can 
build one using an add-in (a standard add-in, not a solution add-in). The Solu
tionAddinManager add-in, which is among the book's sample files, adds a com
mand to the shortcut menu for the solution node in Solution Explorer. Choosing 
this command displays a dialog box in which you can load, unload, add, and 
remove solution add-ins. 



Chapter 8 Managing Solutions and Projects Programmatically 225 

Working with Project Items 
Solutions manage a number of projects, and each project manages the files that 
are built into a program. Each project contains files that can be enumerated and 
programmed. 

Enumerating Project Items 
Files within a project are arranged hierarchically. A project can contain any 
number of files and one or more folders, which themselves can contain addi
tional files and folders. To match this project hierarchy, the project object model 
is also arranged hierarchically, with the Projectltems collection representing the 
nodes that contain items and the Projectltem object representing each item 
within this collection. To enumerate this hierarchy, you use the Projectltems 
and Projectltem objects. The following macro walks the first level of the hierar
chy of the Projectltems and Projectltem objects by obtaining the top-level Pro
jectltems object using the Project.Projectltems property: 

Sub EnumToplevelProjectitems() 
Dim projitem As EnvDTE.Projectltem 
Dim projectProjectltems As EnvDTE.Projectltems 
Dim project As EnvDTE.Project 

'Find the first project in a solution: 
project = DTE.Solution.Projects.Item(l) 
'Retrieve the collection of project items: 
projectProjectitems = project.Projectltems 
'Walk the list of items in the collection: 
For Each projitem In projectProjectltems 

MsgBoxCprojitem.Name) 
Next 

End Sub 

Some items within a project, such as a folder, are both an item within the 
project hierarchy and a container of other files and folders. Because these fold
ers are both items and collections of items, a folder is represented in the project 
model hierarchy with both a Projectltem object and a Projectltems object. You 
can determine whether a Projectltem node is also a container of more Project
Item nodes by calling the Projectltem.Projectltems property, which returns a 
Projectltems collection if the node can contain subitems. You can enumerate all 
the Projectltem and Projectltems objects within a project by writing a recursive 
macro function such as this: 



226 Part II Extending Visual Studio .NET 

Sub EnumProjectitems(ByVal projitems As EnvDTE.Projectitems) 
Dim projitem As EnvDTE.Projectitem 
'Find all the Projectitem objects in the given collection: 
For Each projitem In projitems 

MsgBox(projitem.Name) 

Next 
End Sub 

'And walk any items the current item may contain: 
EnumProjectitems(projitem.Projectitems) 

Sub EnumProject() 
Dim project As EnvDTE.Project 
'Find the first project in a solution: 
project = DTE.Solution.Projects.Item(l) 
EnumProjectitems(project.Projectitems) 

End Sub 

The EnumProject macro first finds the Projectltems collection of a given 
project, and then it calls the EnumProjectltems subroutine, which will find all 
the Projectltem objects that the collection contains. If the Projectltem object is 
itself a collection, it will recursively call the EnumProjectltems subroutine to dis
play the items it contains. 

Folders aren't the only items that can contain a collection of Projectltem 
objects. Some files, such as Windows Forms and Web Forms files, are also col
lections of files. Each of these file types has associated resource files (in the 
form of .resx files), and Web Forms files also have an associated code-behind 
file. In the default state, Solution Explorer won't give any indication of whether 
these files are containers for other files, but you can modify it to show the files 
that these file types contain. Choose Show All Files from the Project menu to 
show all form files as expandable in the tree view that makes up Solution 
Explorer. When the EnumProject macro (shown earlier) is run, the Project
Item.Projectltems property returns a collection that contains the Projectltem 
objects for these subitems. Code such as the EnumProject macro will return the 
same values whether or not the Show All Files menu command has been 
selected. This command affects only the Solution Explorer user interface. 

You can combine the techniques for enumerating files and files within 
folders to find a specific item within a project. Suppose you've created a Win
dows Forms application solution and modified the project to look like that 
shown in Figure 8-1. 



Chapter 8 Managing Solutions and Projects Programmatically 227 

~Icons 

~ 1.11'1!1 
ff!!j App.ico 

~ Assemblyinfo.cs 
Ell Forml.cs 

Figure 8-1 A Windows Forms application with nested resources 

Using the Projectltem object and Projectltems collection, you can write a 
macro such as the following to locate the Bitmapl.bmp file: 

Sub FindBitmap() 
Dim project As EnvDTE.Project 
Dim projectProjectltems As EnvDTE.Projectltems 
Dim resourcesProjectltem As EnvDTE.Projectltem 
Dim resourcesProjectltems As EnvDTE.Projectltems 
Dim bitmapsProjectitem As EnvDTE.Projectitem 
Dim bitmapsProjectltems As EnvDTE.Projectltems 
Dim bitmapProjectltem As EnvDTE.Projectltem 

'Get the project: 
project= DTE.Solution.ltem(l) 
'Get the list of items in the project: 
projectProjectltems = project.Projectitems 
'Get the item for the Resources folder: 
resourcesProjectltem = projectProjectltems.Item("Resources"l 
'Get the collection of items in the Resources folder: 
resourcesProjectltems = resourcesProjectltem.Projectltems 
'Get the item for the Bitmaps folder: 
bitmapsProjectltem = resourcesProjectitems.Item("Bitmaps") 
'Get the collection of items in the Bitmaps folder: 
bitmapsProjectitems = bitmapsProjectltem.Projectltems 
'Get the item for the Bitmapl.bmp file: 
bitmapProjectltem = bitmapsProjectltems.Item("Bitmapl.bmp"l 
MsgBox(bitmapProjectitem.Name) 

End Sub 



228 Part II Extending Visual Studio .NET 

You can walk down the tree of the Projectltem and Projectltems hierarchy 
to find a specific file, but sometimes you might need a quicker and easier way 
of locating the Projectltem object for a file with a specific filename in a project. 
You can use the FindProjectltem method of the Solution object to find an item 
by passing a portion of the file path to where the file is located on disk. For 
example, suppose two add-in projects have been created (using the Add-in 
Wizard) in a folder you created called Addins located in the root of drive C. 

Each of these two add-ins, MyAddinl and MyAddin2, contains a file named 
Connect.cs. You could use the following macro to locate the Connect.cs file in 
either project: 

Sub Finditem() 
Dim projectitem As EnvDTE.Projectitem 
projectltem = DTE.Solution.FindProjectltem("Connect.cs") 

End Sub 

However, because FindProjectltem returns any file that matches this filename, 
you can't tell which Projectltem will be returned-the Projectltem object for the 
Connect.cs in MyAddinl or the Projectltem object for Connect.cs in MyAddin2. 
To refine the search, you can supply a bit more of the file path as the specified 
filename, as shown in the following macro, which adds the name of the folder 
on disk that contains the MyAddinl version of Connect.cs: 

Sub FinditemWithFolder() 
Dim projectitem As EnvDTE.Projectltem 
projectitem = DTE.Solution.FindProjectitem("MyAddinl\Connect.cs") 

End Sub 

Of course, just as you can specify a portion of the path to find the Project
Item, you can use the whole path to zero in on the exact item you want: 

Sub FinditemWithFullPath() 
Dim projectitem As EnvDTE.Projectitem 
projectitem = _ 

DTE.Solution.FindProjectitem("C:\Addins\MyAddinl\Connect.cs") 
End Sub 

Adding and Removing Project Items 
You can add new files to a project in two ways. The first way is to use the 
AddFromDirectory, AddFromFile, AddFromFileCopy, and AddFromTemplate 
methods of the Project/terns interface (which we'll discuss in more detail in 
Chapter 9). The second way is to use the ltemOperations object. This object 
offers a number of file manipulation methods to help make working with files 
easier. The difference between using the methods of the Projectltems object and 
the methods of ltemOperations is that the Projectltems object gives an add-in or 



Chapter 8 Managing Solutions and Projects Programmatically 229 

a macro more fine-grained control over where within a project the new file is 
created. The ItemOperations object is more user-interface-oriented; it adds the 
new file to the project or folder that is selected in Solution Explorer, or, if a file 
is selected, it adds the item to the project or the folder containing that file. 
These features help make macro recording possible. If you start the macro 
recorder and add a file using Solution Explorer, a call to one of the methods of 
the ItemOperations object is recorded into the macro. The selected item is 
where files are added when the proper method is called. 

One method of the ItemOperations object, AddExistingltem, takes as its 
only argument the path to a file on disk and adds this file to the selected project 
or folder within a project. Depending on the type of project, the file might be 
copied to the project folder before being added or a reference might be added 
to the file without copying the file. Visual Basic .NET and C# projects are folder
based, which means that the project hierarchy shown in Solution Explorer is 
mirrored on disk, and any files within the project must be in the folder contain
ing the project or in one of its subfolders. Visual C++ projects work a little dif
ferently: a file that is part of the project can be located anywhere on disk, and 
it doesn't need to be within the folder containing the project or a child folder. 
For instance, suppose a file named file.txt is located in the C:\ root folder. If we 
run the macro 

Sub AddExistingitem() 
DTE.ItemOperations.AddExistingitem("C:\file.txt") 

End Sub 

and the item selected in Solution Explorer is a C# or a Visual Basic .NET project 
or one of its children, file.txt will be copied into the folder or subfolder contain
ing the project file, and then added to the project. But if the selected item is a 
Visual C++ project, the file will be left in place and a reference will be added to 
this file. 

While AddExistingltem inserts a file from disk into a project, AddNewltem 
creates a new file and adds it to the project. This method takes two arguments 
and has the following method signature: 

public EnvDTE.Projectitem AddNewitem(string Item= "General\Text File", 
string Name = "") 

You can add a new item through the user interface by right-clicking a 
project and choosing Add I Add New Item from the shortcut menu item, which 
brings up the Add New Item dialog box. When you perform these steps for a C# 
project, you'll see the dialog box shown in Figure 8-2. 



230 Part II Extending Visual Studio .NET 

Custom Inherited form Web Custom 
Control Control 

Figure 8-2 The Add New Item dialog box for a C# project 

The Add New Item dialog box is related to the AddNewltem method in 
that the first parameter of AddNewltem is the type of file to be added and you 
can find this file type using the dialog box. The file type is calculated by taking 
the path to the item selected in the tree view, with each portion of the path sep
arated by a backslash, and then taking the title of the item in the list on the right 
side of the dialog box. So, for example, when a Windows Forms file is added 
to the project, the top-most node of the tree view (Local Project Items) is con
catenated with the backslash character. Next, the string "UT' is appended to this 
string because it is the tree node that contains the Windows Forms item to be 
added, followed by another backslash. Finally, the name of the item shown in 
the right panel of the dialog box, the string "Windows Form" is added, resulting 
in the string that can be passed to AddNewltem: ''Local Project Items\Ul\ Win
dows Form". The second argument of this method is simply the name of the file 
to create, with the file extension. If the filename parameter passed is an empty 
string, a default file name is generated and used. 

You might occasionally need to remove an item that has been added to a 
project because you no longer need it. The Projectltem object supports two 
methods for removing items from the project, Remove and Delete. These two 
methods both remove an item from the project, but Delete is more destructive 
because it also erases the file from disk by moving it into the computer's Recy
cle Bin. 



Chapter 8 Managing Solutions and Projects Programmatically 231 

Working with Language-Specific Project Objects 
The Visual Studio .NET project object model was designed to provide functional
ity common to all project types. However, some projects can support additional, 
unique functionality. For example, a C# project has a references node within its 
project, but a Setup project does not. If you could programmatically add and 
remove these references, you'd get a lot of flexibility in writing add-ins, macros, 
and wizards. To enable such project-specific programming, the Visual Studio 
.NET project object model is extensible, allowing each project type to offer addi
tional methods and properties beyond those defined by the Project object. 

You can access the specific object type by using the Object property of the 
Project object. This property returns an object of type System.Object, which you 
can convert to the object model type supported by a specific language. The 
most commonly used project extension is the VSProject object, which is avail
able for a Visual Basic .NET or C# project types. 

VSProject Projects 
VSLangProj. VSProject is the interface that defines extensions to the 
EnvDTE.Project object for Visual Basic .NET or C# projects. Once you've 
retrieved the EnvDTE.Project interface for one of these project types, you can get 
to the VSLangProj. VSProject interface by calling the Project.Object property. The 
following macro code, which assumes that the first project in the Projects collec
tion is a Visual Basic or C# project, retrieves the VSProject object for that project: 

Sub GetVSProject() 
Dim project As EnvDTE.Project 
Dim vsproject As VSLangProj.VSProject 
project= DTE.Solution.Projects.Item(!) 
vsproject = CType(project.Object, VSLangProj.VSProject) 

End Sub 

References 
References are pointers to software components that a project can use to 
reduce the amount of code a programmer needs to write. A project uses the 
type information contained within a reference to display information in the 
form of lntelliSense statement completion. A reference also provides informa
tion to the compiler for resolving symbols used in programming code. A refer
ence can be an assembly or another project loaded into the solution, and you 
can create references to COM components by wrapping the COM object type 
information library with an interop assembly. You can add references through 
the user interface by right-clicking the References node in a Visual Basic or C# 
project, choosing Add Reference from the shortcut menu, and then selecting a 
component in the dialog box that appears. 



232 Part II Extending Visual Studio .NET 

Using the VSLangProj.References object, you can enumerate, add, or 
remove references. To get to the References object, you use the VSProject.Ref
erences property. For example, the following code retrieves the References 
object and then enumerates the references that have been added to a project: 

Sub EnumReferences() 
Dim proj As EnvDTE.Project 
Dim vsproj As VSLangProj.VSProject 
Dim references As VSLangProj.References 
Dim reference As VSLangProj.Reference 
proj = DTE.Solution.Projects.Item(l) 
vsproj = proj.Object 
references= vsproj.References 
For Each reference In references 

MsgBox(reference.Name) 
Next 

End Sub 

You add a reference to an assembly by calling the References.Add method 
and passing the path to the assembly. The Add method copies the assembly 
into the project output folder unless a copy of the assembly with the same ver
sion and public key information is stored in the global assembly cache (GAC). 
This is done so that when the project output is run or loaded by another assem
bly, the correct assembly referenced can be loaded. The following macro code 
adds a reference to an assembly: 

Sub AddReferenceToAssembly() 
Dim vsproj As VSLangProj.VSProject 
Dim proj As EnvDTE.Project 
proj = DTE.Solution.Projects.Item(l) 
vsproj = CType(proj.Object, VSLangProj.VSProject) 
vsproj.References.Add("C:\Program Files\Microsoft Visual Studio .NET" 

& "2003\Common7\IDE\PublicAssemblies\extensibility.dll") 
End Sub 

This code finds the VSProject object for a project and then adds a refer
ence to the Extensibility.dll metadata assembly (assuming that the default instal
lation location of Visual Studio .NET was used)-the same assembly that 
contains the definition of the IDTExtensibility2 interface, which is used for 
building add-ins. You can't add assemblies located within the GAC as refer
ences to a project because the Visual Basic and C# project systems maintain a 
separation between the files that are referenced for building against and files 
that are used during a component's run time. 

During development, a component that is compiled by one project in a 
solution might be needed by a component in another project. You can create a 
reference from one project to another project by using the Refer
ences.AddProject method. This method accepts a Project object and adds a ref
erence to that project, as shown here: 



Chapter 8 Managing Solutions and Projects Programmatically 233 

Sub AddProjectReference() 
Dim vsproj As VSLangProj.VSProject 
Dim proj As EnvDTE.Project 
'Find the project the reference will be added to: 
proj = DTE.Solution.Projects.Item(l) 
vsproj = CType(proj.Object, VSLangProj.VSProject) 
'Find the referenced project: 
proj = DTE.Solution.Projects.Item(2) 
'Make the project to project reference: 
vsproj.References.AddProjectCproj) 

End Sub 

Adding a reference to a COM object requires a few values that are COM
centric and might not be very intuitive to the non-COM programmer: the type 
library GUID, or library identifier (LIBID), of the type library that defines the 
COM component, and the version major and minor values of that type library. 
Using these values, you can add a reference to the type library of a COM com
ponent, and Visual Studio .NET will automatically create an interop assembly 
for that type library. The following macro code adds a reference to the type 
library for Windows Media Player: 

Sub AddCOMReference() 
Dim vsproj As VSLangProj.VSProject 
Dim proj As fnvDTE.Project 
proj = DTE.Solution.Projects.Item(l) 
vsproj = CType(proj.Object, VSLangProj.VSProject) 
vsproj.References.AddActiveX( _ 

"{22D6F304-B0F6-11D0-94AB-0080C74C7E95}", 1, 0) 
End Sub 

Web References 
The .NET Framework not only makes traditional software development easier, 
but it also makes new software development methodologies possible. One of 
these new methodologies involves XML Web services. XML Web services enable 
software development across the Internet by placing software code on a server, 
which can then be accessed by software that is run on the user's computer. 
Visual Studio .NET makes connecting desktop software to XML Web services as 
easy as adding a Web reference. When a reference to an XML Web service is 
made, a special file written using the Web Services Description Language 
(WSDL) file is downloaded from the server computer and a proxy class (a class 
that contains the logic to translate a method or property call from the client 
computer across the Internet to the server computer) is generated from the 
WSDL file. This proxy class can then be used to call to the XML Web service. 

The following macro adds a Web reference to a project. It retrieves the 
VSProject object for a project and then calls the AddWebReference method with 



234 Part II Extending Visual Studio .NET 

the URL for the XML Web service. This example uses the TerraServer Web ser
vice provided by Microsoft, which offers detailed geographic information and 
satellite images for the United States. This Web service is located at http://terra
server. homeadvisor. msn. com/TerraService.asmx 

Sub AddTerraServerWebRef() 
Dim vsProj As VSLangProj.VSProject 
Dim serviceURL As String 
'Set the URL to the TerraServer web service 
serviceURL = "http://terraserver.microsoft.net/TerraService.asmx" 
'Find the VSProject for a project 
vsProj = DTE.Solution.Projects.Item(ll.Object 
'Add the web reference 
vsProj.AddWebReference(serviceURL) 

End Sub 

When this Web reference is made, the WSDL file describing the XML Web 
service is downloaded from the server computer and the proxy class for the ser
vice is generated and automatically added to the project. This class is placed in 
a namespace defined by the server's URL, but in reverse order. So, for example, 
if the XML Web service were located at www.microsoft.com, the namespace for 
the service would be com.microsoft.www. In this example, TerraServer is 
located at the server URL terraserver.homeadvisor.msn.com so the namespace 
used is com.msn.homeadvisor.terraserver. Once a reference to an XML Web ser
vice has been added to a project, using that service is as easy as calling methods 
on the generated proxy class. 

Lab: Using an XML Web Service 
While working on this book, I bought an electronic telescope that can 
automatically find and point to stars. But before I could use it, I needed to 
program the telescope with the latitude and longitude of my location
Redmond, Washington. But how could I find this information? The solu
tion was to write a small program that can be run on any computer with 
an Internet connection to find my location through the TerraServer XML 
Web service-a kind of cheap, Web-enabled GPS locator. 

After creating a new C# console application and adding a reference 
to the TerraServer Web service, I had all the pieces necessary to find the 
location of a city anywhere within the United Sates. To find a location, a 
variable of type Place, which is filled in with the name of a city, state, and 
country, is passed to the TerraService.GetPlaceFacts method. This method 
returns an object of type PlaceFacts, which holds, among other data, the 



Chapter 8 Managing Solutions and Projects Programmatically 235 

latitude and longitude of the specified city. The following code is the same 
code I used to find my geographic location; all you do to find the latitude 
and longitude of your own location is to change the strings for the city, 
state, and country. 

static void Main(string[J args) 
{ 

//Declare variables: 
com.msn.homeadvisor.terraserver.PlaceFacts placeFacts; 
com.msn.homeadvisor.terraserver.TerraService terraService; 
com.msn.homeadvisor.terraserver.Place place; 

//Create the necessary objects: 
terraService =new com.msn.homeadvisor.terraserver.TerraService(); 
place= new com.msn.homeadvisor.terraserver.Place(); 

//Find the Latitude and Longitude for Redmond, Washington: 
place.City= "Redmond"; 
place.State = "Washington"; 
place.Country= "USA"; 

//Call to the web service, retrieving the requested information: 
placeFacts = terraService.GetPlaceFacts(place); 

//Display the information to the console: 
System.Console.Write(place.City +" Latitude and Longitude: "); 
System.Console.Write(placeFacts.Center.Lat.ToString()); 
System.Console.Write(" "); 
System.Console.WriteLine(placeFacts.Center.Lon.ToString()); 

Imports 
To make the programmer's life easier, Visual Basic .NET and C# source code 
can contain using and Imports statements to shorten the identifiers used to 
access the namespace defined by a library of code. For example, to display a 
message box, you could use the longer, more specific identifier to resolve to a 
class name: 

System.Windows.Forms.MessageBox.Show("Hello World") 

But if this code were repeated a number of times, you'd have to type the name
space identifier over and over, which could lead to programming errors. You 
can use an Imports statement in Visual Basic to shorten what you have to type: 

Imports System.Windows.Forms 



236 Part II Extending Visual Studio .NET 

Later in the program, you can use this shorter form of the code: 

MessageBox.Show("Hello World") 

Visual Basic also allows you to enter import statements through a project's 
Property Pages dialog box (Figure 8-3) rather than typing the Imports statement 
into the source code. By using the dialog box instead of typing the statement 
into code, you can make the imports available for all the files within the project, 
not just the file that uses the Imports statement. 

Figure 8-3 Entering import statements through the project's Property 
Pages dialog box 

Using the VSProject.Imports collection, you can enumerate, remove, and 
add imports for the entire project. The following macro adds the System.XML 
namespace to a Visual Basic .NET project: 

Sub AddSystemXMLimport() 
Dim vsProj As VSLangProj.VSProject 
Dim vsimports As VSLangProj.Imports 
vsProj = DTE.Solution.Projects.Item(l).Object 
vsProj.Imports.Add("System.Xml") 

End Sub 

The Imports object is valid only for the Visual Basic .NET 
project type. Any attempt to access this object for another project type 
will return null if you're using C# to access this object or will return 
Nothing if you're using Visual Basic .NET. 



Chapter 8 Managing Solutions and Projects Programmatically 237 

ProjectProperties 
Each project has a number of options associated with it that allow you to con
trol how you interact with that project. You can set these options under the 
Common Properties node of a project's Property Pages dialog box. The options 
include the name of the component that the compiler should build, the kind of 
project to be generated (an .exe or a .dll), and layout options for the HTML 
designer. You can also set these options programmatically by using the Proper
ties property of the Project object. This property returns the same Properties 
object that's used throughout Visual Studio .NET to set options. The following 
macro walks the list of properties available to a project as well as the values and 
types of each property: 

Sub WalkVSProjectProperties() 
Dim project As EnvDTE.Project 
Dim properties As EnvDTE.Properties 
Dim [property] As EnvDTE.Property 
Dim owp As InsideVSNET.Utilities.OutputWindowPaneEx 
owp = New InsideVSNET.Utilities.OutputWindowPaneExCDTE, _ 

"Project properties") 
project= DTE.Solution.Projects.Item(l) 
properties = project.Properties 
For Each [property] In properties 

Next 
End Sub 

owp.Writeline("Name: "+ [property].Name) 
owp.Writeline("Value: "+ [property].Value.ToString()) 
owp.Writeline("Type: "+ [property].Value.GetType().FullName) 
owp.Writeline() 

You can use this Property object not only to read the values of properties 
but also to set the properties for a project. The following macro demonstrates 
this. It sets the icon to use for a project when it is compiled. This code assumes 
that an icon named Icon.ico is located in the folder containing the project file. 

Sub SetProjectlcon() 
Dim project As EnvDTE.Project 
Dim [property] As EnvDTE.Property 
Dim projectPath As String 
project= DTE.Solution.Projects.Item(l) 
'Get the Property object for the icon: 
[property] = project.Properties.ItemC"Applicationlcon") 
'Construct the path to the icon based off of the 
' project path: 
projectPath project.FullName 
projectPath System.10.Path.GetDirectoryNameCprojectPath) 
projectPath projectPath + "\Icon.ico" 

(continued) 



238 Part II Extending Visual Studio .NET 

'Set the icon for the project: 
[propertyJ.Value = projectPath 

End Sub 

Leveraging Visual Studio .NET Utility Project Types 
To help you more easily maintain files within a solution, Visual Studio .NET 
makes available various utility projects. These utility projects allow you to keep 
track of files that are not part of any other project that is loaded into a solution. 
Because any file type can be stored within these projects, such as program 
source files and Microsoft Word documents, these projects can't be compiled 
into a program. And because utility projects are part of Visual Studio .NET and 
are not associated with any particular programming language, they are avail
able to all users of Visual Studio .NET and don't require Visual Basic .NET, C#, 
or Visual C++ to be installed. 

Miscellaneous Files Project 
When you're working with a solution, you might need to open files that are not 
part of an existing project. When you open such a file, it is automatically added 
to a project called Miscellaneous Files. A project file isn't created on disk for this 
project, as with other project types, but you get a convenient way of locating 
files that are open but are not part of any other project that is open within the 
solution. You can think of the Miscellaneous Files project as a list of most 
recently used open documents-when you open a file, an item for that file is 
added to the project, and when you close the file, it is removed. By default, the 
Miscellaneous Files project and the files it contains don't appear in the Solution 
Explorer tree hierarchy, but you can easily make them visible by opening the 
Tools Options dialog box, selecting the Environment I Documents node, and 
selecting the Show Miscellaneous Files In Solution Explorer check box. 

The Miscellaneous Files project has a unique name associated with it that, 
unlike with other projects, doesn't change over time. This name, "<MiscFiles>", 
is defined by the constant vsMiscFilesProjectUniqueName. The following macro 
retrieves the Project object for the Miscellaneous Files project: 

Sub FindMiscFilesProject() 
Dim project As EnvDTE.Project 
Dim projects As EnvDTE.Projects 
projects= DTE.Solution.Projects 
project= projects.Item(EnvDTE.Constants.vsMiscFilesProjectUniqueName) 

End Sub 



Chapter 8 Managing Solutions and Projects Programmatically 239 

When the first file is opened within the Miscellaneous Files project, an 
item is added to the Solution.Projects collection that implements the Project 
interface. It works just like the Project interface implemented by projects such 
as Visual Basic .NET or C# projects, except that a few of the properties will 
return null or Nothing or throw a System.NotlmplementedException when 
called. Table 8-1 lists the methods and properties of the Project object that 
return a meaningful value for the Miscellaneous Files project and the Project
/tern and Project/terns objects contained within this project. 

Table s-1 Methods and Properties of the Project, Project/terns, and 
Project/tern Objects 

Project Projectitems 

DTE DTE 

Projectltems Parent 

Name (read-only) Item 

UniqueName GetEnumerator I _NewEnum 

Kind Kind 

Ful!Name Count 

ContainingProject 

Projectltem 

DTE 

Collection 

Name (read-only) 

FileCount 

Kind 

FileNames 

SaveAs 

Save 

Is Open 

Open 

Delete 

Remove 

Expand View 

ContainingProject 

lsDirty 

You can add new files to the Miscellaneous Files project using the ItemOp
erations.NewFile method, which has the following method signature: 

public EnvDTE.Window NewFile(string Item= "General\Text File", 
string Name = "", string ViewKind = 
"{00000000-0000-0000-0000-000000000000}") 

By applying the techniques we used earlier to calculate the first parameter 
for the ItemOperations.AddNewltem, we can find the value that should be 
passed to the NewFile method. The second parameter also has the same mean
ing as the second parameter of the ItemOperations.AddNewltem method-the 
name of the file (with extension) that is to be added-and if the empty string is 



240 Part II Extending Visual Studio .NET 

passed, a default name is calculated. The last argument specifies which view 
the file should be opened in when it is added. These values can be found 
within the EnvDTE.Constants class and begin with the name vsViewKind. 

Solution Items Project 
The Solution Items project works in a similar way to the Miscellaneous Files 
project but with a few small differences. Files that are opened in the Miscella
neous Files project are removed from that project when the solution is closed; 
items added to the Solution Items project stay with that project even after the 
solution is closed. Because these files stay within the project, you can think of 
the Solution Items project as a housekeeping project because you can keep 
items such as documentation, notes, and other files you might use in this 
project for easy access. Like the Miscellaneous Files project, the Solution Items 
project can't be built but supports an EnvDTE.Project object (with limited func
tionality, however). The same methods and properties shown in Table 8-1 
apply to the Solution Items project. Also like the Miscellaneous Files project, the 
Solution Items project reserves a unique name for indexing the Solu
tion.Projects collection, so you can find the Solution Items project within the list 
of projects maintained by the solution. You can use this constant, vsSolution
ltemsProjectUniqueName, as shown in the following example: 

Sub FindSolutionitemsProject() 
Dim project As EnvDTE.Project 
Dim projects As EnvDTE.Projects 
projects = DTE.Solution.Projects 
project = projects.Item( _ 

EnvDTE.Constants.vsSolutionitemsProjectUniqueName) 
End Sub 

You add items to the Solution Items project by calling the AddNewltem 
and AddExistingltem methods of the ItemOperations object. This means you 
must first select the Solution Items project within Solution Explorer. And 
because the Solution Items project can be created only by the user manually 
adding a file to the project, you must be sure that the project exists before you 
attempt to add an item to it. 

Unmodeled Projects 
All the project types we've discussed so far have implemented a Project object 
that can be used by a macro or an add-in. However, a few project types, such 
as a database project or a project that has been unloaded using the Project I 
Unload Project command, don't implement the Project object themselves. To 



Chapter 8 Managing Solutions and Projects Programmatically 241 

allow some programmability for these project types, Visual Studio .NET sup
ports the unmodeled project type. An unmodeled project provides an imple
mentation of the Project object that supports only the properties common 
among all project types, which are DTE, Kind, and Name. All other properties 
and methods on this implementation of the Project object return values that 
have no useful meaning or generate an exception when called and shouldn't be 
used by a macro or an add-in. You can distinguish an unmodeled project from 
other project types by checking the Project.Kind property, which returns the 
constant EnvDTE.Constants.vsProjectKindUnmodeled if the project is an 
unmodeled project. The following macro enumerates all the projects loaded 
into a solution and determines which ones are unmodeled: 

Sub FindUnmodeledProjects() 
Dim i As Integer 
For i = 1 To DTE.Solution.Projects.Count 

Dim project As EnvDTE.Project 

Next 
End Sub 

project= DTE.Solution.Projects.Item(i) 
If (project.Kind= EnvDTE.Constants.vsProjectKindUnmodeled) Then 

MsgBox(project.Name +" is unmodeled") 
End If 

You might notice that the FindUnmodeledProjects macro uses 
the numerical indexing method rather than the enumerator to find each 
project in a solution. It does this because of a bug in Visual Studio 
.NET that won't return a correct Project object when you use the enu
merator. This bug applies only to unmodeled projects; using the enu
merator works fine for other project types. 

Project and Project Item Events 
Just as a solution fires events to allow an add-in or macro to respond to the 
actions the user is performing, the various project types also fire events so that 
an add-in or a macro can be informed of what the user is doing. You connect 
to the events fired by the different project types in different ways, but each 
project type supports the same interfaces used to handle the event invocations. 
Each project type fires two classes of events: actions performed with the project 
and actions performed with the items within those projects. Here are the events 
and the signatures that the project will fire: 



242 Part II Extending Visual Studio .NET 

void ItemAdded(ByVal Project As EnvDTE. Project) 
void ltemRemoved(ByVal Project As EnvDTE.Project) 
void ItemRenamed(ByVal Project As EnvDTE.Project, 

ByVal OldName As String) 

These are the available signatures of the project item events: 

void ltemAdded(ByVal Projectltem As EnvDTE.Projectitem) 
void ItemRemoved(ByVal Projectltem As EnvDTE.Projectitem) 
void ItemRenamed(ByVal Projectltem As EnvDTE.Projectitem, _ 

ByVal OldName As String) 

Project events and project item events both fire three separate events
ltemAdded, ItemRemoved, ItemRenamed. These signify that a project or a 
project item was added, removed, or renamed, respectively. 

Connecting to project items and projects events within a macro project 
requires more than connecting to other types of events supported by Visual Stu
dio .NET. For example, to connect to solution events within a macro project, 
you first open the EnvironmentEvents module. Then, within this module, you 
select the SolutionEvents event object from the Class Name drop-down list on 
the left side of the text window and select a solution events handler method 
from the Method Name drop-down list. Connecting to project and project item 
events in a macro isn't this easy, however; you have to write a little glue code 
to connect the events. First, you declare the event variable by adding the fol
lowing code to the EnvironmentEvents module. (This example uses the C# 
project events.) 

<System.ContextStaticAttributeCl> _ 
Public WithEvents csharpProjectitemsEvents As EnvDTE.ProjectltemsEvents 

When you enter this code, an entry appears in the left drop-down list at 
the top of the code for the EnvironmentEvents macro module. Select the entry 
to fill the right drop-down list with the events for this object, and select each 
event to create the code necessary for capturing that event. At this point, the 
event handler won't be invoked for C# projects because the event variable, 
csharpProjectltemsEvents, has yet to be set to an instance of a Projectltems
Events object. You can set this variable to an instance of the correct event object 
by creating a handler for DTEEvents.OnStartupComplete and placing within it 
the code to connect to the event, much as you would within an add-in: 

Private Sub DTEEvents_OnStartupComplete() _ 
Handles DTEEvents.OnStartupComplete 

csharpProjectitemsEvents = _ 

DTE.Events.GetObject("CSharpProjectitemsEvents"l 
End Sub 



Chapter 8 Managing Solutions and Projects Programmatically 243 

With this event handler in place, when Visual Studio .NET is closed and 
then restarted, the OnStartupComplete handler will be invoked, which will 
cause the event variable to be connected. Of course, you can insert this same 
code into a macro and run the macro; Visual Studio .NET doesn't need to be 
restarted for the event variable to be set. Here's an example of such a macro: 

Sub ConnectCSharpProjectltemsEvents() 
csharpProjectltemsEvents = _ 

DTE.Events.GetObject("CSharpProjectltemsEvents") 
End Sub 

You can connect to the project and project items events for project types 
other than the Miscellaneous File and Solution Items projects by changing the 
string passed to the Events.GetObject method. For example, to connect to Visual 
Basic .NET project and project item events, you can use the strings VBProject
sEvents and VBProjectltemsEvents. You can use the strings V]SharpProjects
Events and V]SharpProjectltemsEvents to connect to events thrown by a 
Microsoft Visual J# project, and you can use eCSharpProjectsEvents and 
eCSharpProjectltemsEvents to capture events thrown by a C# smart device 
application. You can use eVBProjectsEvents and eVBProjectltemsEvents to cap
ture events thrown by a Visual Basic .NET smart device application. The Pro
jectEvents sample demonstrates how to connect to all these project and project 
item events. It connects to the events provided by each project type, and as 
each event is fired, a message box is displayed containing information about 
that event. 

Managing Build Configurations 
Editing and manipulating a project is an important part of the development pro
cess, but most of your time is spent building and compiling a project, not mov
ing around files within a project. Visual Studio .NET provides an object model 
for building a solution and controlling how the projects contained within that 
solution should be compiled. The root object for controlling how a solution 
should be built is named SolutionBuild; you access it by calling the Solu
tion.SolutionBuild property, and you control how each project within the solu
tion should be built by using the ConfigurationManager object, which is 
accessed through the Project.ConfigurationManager property. 

Manipulating Solution Settings 
Visual Studio .NET uses solution configurations to manage how a solution is 
built. A solution configuration is a grouping of project configurations that 
describe how the projects within the solution should be built. A project config
uration, in the simplest terms, tells the various compilers how to create the code 



244 Part II Extending Visual Studio .NET 

for a project. Each project can contain multiple project configurations that you 
can switch between within the solution configuration to control how the com
pilers build the code. The most common solution and project configurations are 
debug and release, which cause a project to be built with debugging informa
tion and with code optimizations, respectively. When a project such as a Win
dows Forms project is first created, Visual Studio .NET creates the debug 
solution configuration containing the Windows Forms debug project configura
tion and the release solution configuration containing the release Windows 
Forms project configuration. You can create new solution configurations that 
contain any of the available project configurations or new project configura
tions that can be loaded into any solution configuration. 

SolutionContiguration and SolutionContext Objects 
Solution configurations are represented in the object model through the Solu
tionConfigurations collection, which contains SolutionConfiguration objects. 
Because the SolutionConfigurations object is a collection, you can use the stan
dard techniques for enumerating this collection and use the Item method to find 
a specific SolutionConfiguration object by name. To create new solution con
figuration, you use the SolutionCon:figurations.Add method, which makes a 
copy of an existing solution configuration and then renames it to the specified 
name. The signature of this method is 

public EnvDTE.SolutionConfiguration Add(string NewName, 
string ExistingName, bool Propagate) 

Here are the arguments that are passed to this method: 

• NewName This is the name of the new solution configuration. It 
can't be the same as any existing solution configuration name, and it 
must follow the file system's file-naming rules. (It can't contain char
acters such as \, /, :, *, ?, ", <, or>.) 

• ExistingName This is either the name of an existing solution con
figuration that is copied to create the new solution configuration or 
the string "<Default>". If the name "<Default>" is used, the currently 
active solution configuration is used as the source of what is copied. 

• Propagate If this parameter is true, when the new solution con
figuration is created, a copy of each project configuration referenced 
by the solution configuration is made and assigned the same name 
as the new solution configuration and each of these copies of project 
configurations is loaded into the new solution configuration. If this 
parameter is false, the new solution configuration is created and the 
same project configurations that were assigned to the solution con
figuration source are assigned to the new solution configuration. 



Chapter 8 Managing Solutions and Projects Programmatically 245 

The SolutionConfiguration object has one method and one property of 
note. One of these methods is named Activate; when a build is performed, 
whether through the user interface or through the object model by using the 
SolutionBuild.Build method, the currently active SolutionConfiguration is the 
configuration that is built. Therefore, activating a particular solution configura
tion causes any build actions to build the active solution configuration. The 
other item of importance is the SolutionContexts property. As discussed earlier, 
a SolutionConfiguration is a container of the projects within a solution and the 
project configuration associated with that solution configuration. The Solution
Configuration.SolutionContexts property returns the list of those projects and 
which configuration of each project to build. 

To set which project configuration is built when the solution is built, you 
can change the SolutionContext object's ConfigurationName to any project 
configuration name that the project supports. The following macro changes the 
debug solution configuration to build the release version of a project that is 
loaded into the solution: 

Sub ChangeProjectConfiguration() 
Dim solutionBuild As EnvDTE.SolutionBuild 
Dim solutionCfgs As EnvDTE.SolutionConfigurations 
Dim solutionCfg As EnvDTE.SolutionConfiguration 
Dim solutionContext As EnvDTE.SolutionContext 
'Find the debug solution configuration: 
solutionBuild = DTE.Solution.SolutionBuild 
solutionCfgs = solutionBuild.SolutionConfigurations 
solutionCfg = solutionCfgs.Item("Debug") 
'Retrieve the solution context for the first project: 
solutionContext = solutionCfg.SolutionContexts.Item(l) 
'Change the debug solution context to build the 
' Release project configuration: 
solutionContext.ConfigurationName ="Release" 
'Reset the build flag for this context: 
solutionContext.ShouldBuild =True 

End Sub 

Not only can you modify a SolutionContext to set the project configuration 
that should be built for a particular solution configuration, but you can also set 
values such as that specifying whether the project configuration should be built. 
This is done in the next-to-last line of the preceding macro, where the Should
Build property is set to true. In this macro, this property must be set because, as 
is expected, when the debug solution configuration is first created it doesn't con
tain the release project configuration. It therefore isn't set to build for that solu
tion configuration, so when the debug solution configuration is set to build the 
release project configuration, that "do not build" state is carried along with it. 



246 Part II Extending Visual Studio .NET 

StartupProjects 
When you start a solution running (usually by pressing the FS key), the project 
builder first verifies that all the projects that need to be built are up-to-date, and 
then it starts walking the list of projects that are set as startup projects, running 
each project in turn. You can set the list of startup projects through the user 
interface by right-clicking the solution node in Solution Explorer and then 
choosing Set StartUp Projects from the shortcut menu. You'll see the Solution 
Property Pages dialog box (shown in Figure 8-4), in which you can set the star
tup projects for a solution containing four Windows Forms applications. 

Figure 8-4 Setting the projects that will start when you run a solution 

You can also set startup projects through the object model using the Solu
tionBuild.StartupProjects property. This property is set to a value of type Sys
tem. Object, which is packed with the projects to start when you run a solution. 
The value passed to the StartupProjects property can take two forms: a single 
string that is the unique name of a project (which will set one single project to 
run) or an array of System.Object (which will be filled with one or more project 
unique names and will cause multiple projects to be run). 

For example, suppose an open solution contains two projects, both of 
them to be designated as a startup project. You can use code such as the fol
lowing to set these projects as startup projects: 

Sub SetStartupProjects() 
Dim startupProjects(l) As Object 
startupProjects(0) = DTE.Solution.Projects.Item(l).UniqueName 
startupProjects(l) = DTE.Solution.Projects.Item(2).UniqueName 
DTE.Solution.SolutionBuild.StartupProjects = startupProjects 

End Sub 



Chapter 8 Managing Solutions and Projects Programmatically 247 

If only one project should be set as a startup project, the code looks like 
this: 

Sub SetStartupProject() 
Dim startupProject As String 
startupProject = DTE.Solution.Projects.Item(l).UniqueName 
DTE.Solution.SolutionBuild.StartupProjects = startupProject 

End Sub 

When you set the startup projects, you must be careful to supply only 
buildable projects. If one of the projects supplied to SolutionBuild.Startup
Projects is, for example, the unique name for the Miscellaneous Files project or 
the Solution Items project, an error is generated. 

Visual Studio .NET contains a bug that affects using the Solu
tionBuild.StartupProjects property with multiple projects. When you 
change this property from starting only one project to starting multiple 
projects, the list of startup projects is modified. However, the Multiple 
Startup Projects option button won't be selected; you must select it 
yourself. Setting the SolutionBuild.StartupProjects property won't 
affect this button's state. 

Project Dependencies 
When you work with a solution that contains multiple projects, the components 
built by one project might rely on the output of another project. An example of 
this is a control project called UserControl, which is placed on the form of a 
Windows Forms application called WinForm. Because changes to the UserCon
trol project might affect how that control is used by the Windows Forms project, 
the UserControl project must be compiled before the WinForm project is com
piled. To enforce this relationship between the two projects, you can create a 
project dependency. The dependencies between two or more projects can be 
depicted using a dependency graph; the dependency graph for the projects 
WinForm and UserControl is shown in Figure 8-5. The arrow is pointing to the 
project that another project is dependent on. 

~I UserControl I 
Figure 8-5 A dependency graph showing a WinForm project dependent 
on a UserControl project 



248 Part II Extending Visual Studio .NET 

Suppose we add a new project to the solution-a class library called Class
Lib that implements functionality used by both the WinForm and the UserCon
trol projects. A dependency graph for this solution is shown in Figure 8-6. 

L l'li'C ....... 'I I Class~ib . 

Figure 8-6 The dependency graph for three projects 

You can see in this dependency graph that the WinForm project can't be 
built until the UserControl and ClassLib projects have been built. The UserCon
trol project relies only on the ClassLib project being built first. When a build of 
this solution is started, if the build system chooses the UserControl project to 
start building first, this causes the ClassLib project to build. If the build system 
chooses the ClassLib project first, that project is built immediately because it 
doesn't depend on any other projects. When the UserControl project is built, 
the ClassLib project isn't built again because it is up-to-date. Regardless of 
which project the build system chooses to build first, the last project to be built 
is the WinForm project because it relies on the output of the other two projects. 

A problem can occur with a dependency graph if you create a cyclic 
dependency, in which one or more projects are mutually dependent. Suppose 
the WinForm project relies on the UserControl project, the UserControl project 
relies on the ClassLib project, and the ClassLib project relies on the WinForm 
project. The cycle shown in Figure 8-7 is generated. 

r VVi!')FtJrrh I I U\'!efC:ontr('.)I 

t I ~,~~$£Ip I 
Figure 8-7 A dependency graph of three projects with a cycle 

If the WinForm project is built, the build of the UserControl project is trig
gered because of the dependency. Building the UserControl project causes the 
building of the ClassLib project, which is dependent on the WinForm project. If 
the Visual Studio .NET build system were unable to detect this cycle, the loop 
would continue forever in an attempt to find the first project to build. But Visual 
Studio .NET is smart enough to detect dependency cycles, and it disallows 
them. 

You can create dependencies between projects through the user interface 
by choosing Project j Project Dependencies, which will display the Project 
Dependencies dialog box (shown in Figure 8-8). The dialog box shows all the 



Chapter 8 Managing Solutions and Projects Programmatically 249 

projects that can be set as a dependency for the UserControl project. The Win
Form check box is shaded because a dependency is set from the WinForm 
project to the UserControl project and Visual Studio .NET won't allow a cycle 
between the WinForm project and the UserControl project to be created. 

Project Dependencies ~I 

Q.ependson: 

: .. 1 Classlib 
WinForm 

OK 

Figure 8-8 Setting project dependencies 

You can also set build dependencies through the object model. The Solu
tionBuild.BuildDependencies property returns a BuildDependencies object, 
which is a collection of BuildDependency objects. You can index this collection 
using the Item method-you can pass a numeric index, an EnvDTE.Project 
object, or the unique name of a project. Each project in the solution has its own 
EnvDTE.BuildDependency object, whose RequiredProjects property you can 
use to add, remove, or retrieve dependencies for a project. The following 
macro displays in the Output window the available projects in the open solu
tion, as well as all the projects it depends on. 

Sub Depends() 
Dim projectDep As EnvDTE.BuildDependency 
Dim project As EnvDTE.Project 
Dim owp As New InsideVSNET.Utilities.OutputWindowPaneEx(DTE, 

"Build dependencies") 

For Each projectDep In DTE.Solution.SolutionBuild.BuildDependencies 
Dim reqProjects As Object() 

owp.Write("The project ") 
owp.Write(projectDep.Project.Namel 
owp.Writeline(" relies on:") 



250 Part II Extending Visual Studio .NET 

Next 
End Sub 

reqProjects = projectDep.RequiredProjects 
If CreqProjects.Length = 0) Then 

owp.Writeline(vbTab + "<None>") 
Else 

For Each project In reqProjects 
owp.Writeline(vbTab +project.Name) 

Next 
End If 
owp.Writeline() 

Using the BuildDependency object, you can create a macro or an add-in 
that sets up the dependencies between two or more projects. Suppose, using 
our current example, that a solution with the projects WinForm, UserControl, 
and ClassLib is loaded and no dependencies have been set. The BuildDepen
dency object supports three methods for modifying the projects that a project is 
dependent on: AddProject, RemoveProject, and RemoveAl!Projects. AddProject 
and RemoveProject accept the unique name of a project that should be added or 
removed as a dependency for a specific project. RemoveAl!Projects takes no 
arguments and removes all project dependencies. The following macro, SetDe
pendencies, builds the correct dependencies for the three-project solution to 
conform to the dependency graph shown in Figure 8-6: 

Sub SetDependencies() 
Dim buildDependencies As EnvDTE.BuildDependencies 
Dim buildDependency As EnvDTE.BuildDependency 
Dim project As EnvDTE.Project 

Dim winFormUniqueName As String 
Dim userControlUniqueName As String 
Dim classlibUniqueName As String 

'Gather up the unique name of each project 
For Each project In DTE.Solution.Projects 

Next 

If (project.Name = "WinForm") Then 
winFormUniqueName = project.UniqueName 

Elseif (project.Name= "UserControl") Then 
userControlUniqueName = project.UniqueName 

Elseif (project.Name= "Classlib") Then 
classlibUniqueName = project.UniqueName 

End If 

buildDependencies = DTE.Solution.SolutionBuild.BuildDependencies 
For Each buildDependency In buildDependencies 



Next 
End Sub 

Chapter 8 Managing Solutions and Projects Programmatically 251 

If (buildDependency.Project.Name = "WinForm"J Then 
buildDependency.RemoveAllProjects() 
'Add all projects except the WinForm 
' project as a dependency: 
buildDependency.AddProject(userControlUniqueName) 
buildDependency.AddProject(classlibUniqueNamel 

Elseif (buildDependency.Project.Name = "UserControl") Then 
buildDependency.RemoveAllProjects(J 
'Add a dependency to the Classlib project: 
buildDependency.AddProject(classlibUniqueName) 

End If 

Manipulating Project Settings 
Solution configurations are used to group together project configurations. Each 
project contains a number of configurations that control how the compiler 
should create the program code for that project. Because a project can have 
multiple project configurations associated with it, you can generate different 
versions of a program. 

ContigurationManager Object 
You manage project configurations through the ConfigurationManager object, 
which has a collection of Configuration objects and lets you create new config
urations. Configurations for a project are arranged in a grid pattern, with the 
configuration type, such as debug or release, along one axis of the grid and the 
platform on which the configuration will be built for on the other axis. The plat
forms that Visual Studio .NET currently supports are Win32 for 32-bit Windows 
running on the x86 processor, .NET if the project is being compiled for the 
Microsoft .NET platform, and Pocket PC and Windows CE if the project is built 
for the Windows CE platforms. Because projects can build only one platform 
type at a time, the second axis will always have one dimension. 

You can find a particular project configuration in several ways. The first 
way is to use the familiar Item method that's available on all collection objects. 
However, unlike other Item methods on most collection objects, the Configura
tionManager.Item method requires two parameters. The first parameter can be 
a numerical index and spans the entire grid of platforms and configurations. 
You can also use Item to directly locate a Configuration by passing the config
uration name as the first parameter and the platform name as the second 
parameter. Suppose a Visual C++ project is open in Solution Explorer. To find 
the Configuration object for the Win32 debug build, you can use code such as 
the following: 



252 Part II Extending Visual Studio .NET 

Sub RetrieveDebugWin32Configuration() 
Dim config As Configuration 
Dim project As EnvDTE.Project 
project= DTE.Solution.Projects.Item(l) 
config = project.ConfigurationManager.Item("Debug", "Win32") 

End Sub 

Another way to retrieve specific configurations is to use the Configura
tionManager. ConfigurationRow and ConfigurationManager.Plaiform methods, 
which take the build type and the platform name, respectively. These methods 
return a collection of Configuration objects that you can iterate through to find 
a specific item. The ConfigurationRow method returns a list of all configura
tions with the passed name; the Plaiform method returns a list of all configura
tions belonging to a specific platform. These methods are most useful if you 
want to modify the settings of configurations that are closely related to one 
another, such as walking all the Win32 configurations of a Visual C++ project 
and enabling managed extensions, thus allowing your program to use the .NET 
Framework in C++ code. The following code sample does just that. After find
ing the Win32 configurations available to a project, it retrieves the Properties 
object for that configuration and sets the ManagedExtension property to true, 
allowing the compiler to generate code that can work with the .NET Frame
work. 

Sub SetManagedExtensionsProperty() 
Dim configManager As ConfigurationManager 
Dim configs As Configurations 
Dim config As Configuration 
Dim project As EnvDTE.Project 
project= DTE.Solution.Projects.Item(l) 
configManager = project.ConfigurationManager 
configs = configManager.Platform("Win32") 
For Each config In configs 

Next 
End Sub 

Dim prop As EnvDTE.Property 
prop= config.Properties.Item("ManagedExtensions") 
prop.Value= True 

You can create new configurations based on an existing configuration in 
the same way that you can create new solution configurations by copying an 
existing solution configuration. You create new project configurations using the 
ConfigurationManager.AddConfigurationRow method. This method takes as its 
parameters the name of the new configuration and an existing configuration 
name, which is used as a template for creating the new configuration. AddCon
figurationRow also accepts as an argument a Boolean value. This parameter, 



Chapter 8 Managing Solutions and Projects Programmatically 253 

named Propagate, works in the same way as the Propagate parameter of the 
SolutionConfigurations.Add method, but in reverse. When the SolutionConfig
urations.Add method is called with the Propagate parameter set to true, a copy 
of the solution configuration and all the project configurations it contains is 
made. If the AddCon.figurationRow method is called with its Propagate param
eter set to true, the currently active solution configuration is copied, its name is 
set to the name passed as the new project configuration, and the new solution 
configuration is modified to contain the newly created project configuration. 

The ConfigurationManager object contains the method 
AddP/atform, which works much like the AddConfigurationRow 
method but adds a platform row to the build type configuration grid. If 
you call this method for any of the current versions of the Microsoft
language products, an exception will be generated because new plat
forms can't be added for these project types. This doesn't mean that 
this method won't work for third-party programming language projects 
or future versions of Microsoft programming languages. 

Most project types support only one platform type, and some projects, such 
as setup projects, do not support any platform-what is built is platform-agnos
tic. A setup project doesn't care whether its contents are intended for Win32 or 
.NET platforms; its role is to contain files to be installed onto the user's com
puter, so a platform is not a consideration when you build a setup project. 
Because the build type configuration grid can't be one-dimensional, a pseudo
platform is generated for these project types, and its name is set to "<NIA>". 

Project Configuration Properties 
Project configurations differ in the property values that are set. For example, 
one difference between the debug and release configurations is that the debug 
configuration doesn't optimize the code, which makes debugging easier to per
form, and optimization is turned on for the release configuration to make the 
code run faster. Such properties are set through the object returned by calling 
the Configuration.Properties property. As you saw earlier in the SetManagedEx
tensionsProperty macro example, this property returns an EnvDTE.Properties 
object-the same object that is used throughout Visual Studio .NET to set prop
erty values on various objects. The following macro retrieves the debug and 
release configurations for a project, reads the Boolean Optimize configuration 



254 Part II Extending Visual Studio .NET 

property, negates it, and then stores it back into the configuration. This means 
that the Optimize property is inverted for all these configurations. 

Sub SwapOptimizationSettings() 
Dim project As EnvDTE.Project 
Dim configManager As EnvDTE.ConfigurationManager 
Dim configs As EnvDTE.Configurations 
Dim config As EnvDTE.Configuration 
Dim props As EnvDTE.Properties 

'Find the ConfigurationManager for the project: 
project= DTE.Solution.Projects.Item(l) 
configManager = project.ConfigurationManager 

'Get the debug configuration manager 
configs = configManager.ConfigurationRow("Debug") 
'Walk each configuration in the debug configuration row 
For Each config In configs 

Next 

Dim optimize As Boolean 
'Get the Optimize property for the configuration 
props = config.Properties 
optimize= props.Item("Optimize").Value 
'Negate the value 
props.Item("Optimize").Value =Not optimize 

'Repeat for the release configuration 
configs = configManager.ConfigurationRow("Release") 
For Each config In configs 

Next 

End Sub 

Build Events 

Dim optimize As Boolean 
'Get the Optimize property for the configuration 
props = config.Properties 
optimize= props.Item("Optimize").Value 
'Negate the value 
props.Item("Optimize").Value =Not optimize 

As each stage of a build is performed, Visual Studio .NET fires an event that can 
be captured by a macro or add-in, allowing custom code to be run. Four events 
are defined. Here are their signatures: 

void OnBuildBegin(EnvDTE.vsBuildScope Scope, EnvDTE.vsBuildAction Action); 
void OnBuildProjConfigBegin(string Project, string ProjectConfig, 

string Platform, string SolutionConfig); 
void OnBuildProjConfigDone(string Project, string ProjectConfig, 



Chapter 8 Managing Solutions and Projects Programmatically 255 

string Platform, string SolutionConfig, bool Success); 
void OnBuildOoneCEnvDTE.vsBuildScope Scope, EnvDTE.vsBuildAction Action); 

These event handlers have the following meanings: 

• OnBuildBegin This event is fired just before a build is started. Two 
arguments are passed to the handler of this event. The first argument 
is an enumeration of type EnvDTE.vsBuildScope, which can be either 
vsBuildScopeBatch (if you chose to start a batch build of one or more 
projects), vsBuildScopeProject (if you selected a single project to 
build by right-clicking on a project and choosing Build, or vsBuild
ScopeSolution (if you chose the active solution configuration to 
build). The second argument is of type EnvDTE.vsBuildAction and 
can be either vsBuildActionBuild (if the project or solution configu
ration is to be compiled), vsBuildActionC!ean (if the project or solu
tion configuration's built output is to be deleted from disk), 
vsBuildActionDeploy (if the project or solution configuration is to be 
deployed to its target), or vsBuildActionRebuildAll (if the project or 
solution configuration is to be rebuilt, even if the project's depen
dencies do not warrant a rebuild). 

• OnBuildProjConfigBegin This event is fired when a project's 
configuration starts to be built. It is passed four arguments, each of 
type string. The first argument is the unique name of the project 
being built, the second is the name of the configuration being built, 
the third is the name of the platform being built, and last is the name 
of the solution configuration being built. 

• OnBuildProjC01ifigDone This event handler is fired after a 
project configuration has been built. It is passed the same arguments 
as the OnBuildProjConfigBegin event, with the addition of a Bool
ean value that signals whether the configuration was built success
fully (true) or failed to build (false). 

• OnBuildDone This event is fired after all build steps have been 
completed, whether successfully or unsuccessfully. 

Among the samples that accompany this book is one called BuildEvents, 
which demonstrates connecting to each of the build events. As each event han
dler is called, the information passed to that event handler is displayed within 
the output window, which contains information about the arguments that were 
passed to each handler. For example, if we were to create a solution containing 
two projects, ClassLibraryl and ClassLibrary2, load the sample add-in, and per
form a build on the solution by choosing Build I Build Solution, the following 
information would be displayed: 



256 Part II Extending Visual Studio .NET 

OnBuildBegin 
Scope: vsBuildScopeSolution 
Action: vsBuildActionBuild 

OnBuildProjConfigBegin 
Project: Classlibraryl.csproj 
Platform: . NET 
Solution Configuration: Debug 

OnBuildProjConfigDone 
Project: Classlibraryl.csproj 
Platform: .NET 
Solution Configuration: Debug 
Success: True 

OnBuildProjConfigBegin 
Project: .. \Classlibrary2\Classlibrary2.csproj 
Platform: .NET 
Solution Configuration: Debug 

OnBuildProjConfigDone 
Project: .. \Cl assL i bra ry2\Cl assl i bra ry2. csproj 
Platform: .NET 
Solution Configuration: Debug 
Success: True 

OnBuildDone 
Scope: vsBuildScopeSolution 
Action: vsBuildActionBuild 

The information above outlines the steps performed to build this two
solution project. It starts with a call to the OnBuildBegin event handler and 
then builds each project configuration contained within the solution configura
tion, one after another, with the OnBuildDone event handler being fired to sig
nal that the build process has been completed. With Visual Studio .NET 2003, 
the OnBuildProjConfigBegin and OnBuildProjConfigEnd events are fired one 
after another, with no other build events fired between them. However, a macro 
or add-in should not take advantage of this order of events if you plan to port 
this code to a future version of Visual Studio .NET because future versions 
might take advantage of multiprocessor computers, building one project config
uration on one processor and another project configuration on another proces
sor. If a macro or an add-in were to rely on this order of events, the code might 
not work properly. 



Chapter 8 Managing Solutions and Projects Programmatically 257 

Persisting Solution and Project Information Across 
IDE Sessions 

At times, your add-in or macro might need to save some data that should be 
carried along with the solution or project file. The object model supports saving 
information into these files with the EnvDTE.Globals object. You can find this 
object by calling the Globals property of both of these objects: 

Sub SolutionGlobals() 
Dim globals As EnvDTE.Globals 
globals = DTE.Solution.Globals 

End Sub 

Sub ProjectGlobals() 
Dim globals As EnvDTE.Globals 
globals= DTE.Solution.Projects.Item(l).Globals 

End Sub 

The Globals object of the Solution and Project objects works in much the 
same way as the Globals object found on the DTE object, with a few minor dif
ferences. First, if a macro or an add-in stores data into the solution or project 
file, even if the VariablePersists flag is set for that variable the data might not be 
written into the solution or project file. This is because making a change to a 
variable causes the project or solution file to be put into a modified state. If you 
close the solution or project file but do not choose to save the modified files, 
the data won't be written into that file. Second, unlike the EnvDTE.Globals 
object of the DTE object, which can store data into a wide variety of formats, 
data stored into a solution or project file can be stored only in string format. 
This is because project and solution files are text-based, so any data stored into 
these files must also be in a text format. This doesn't mean that nonstring data 
can't be stored into the solution or project Globals object. It just means that 
when the data is to be written into the solution or project files, an attempt will 
be made to convert the data into a string. If that fails, the data won't be stored. 
Also, because the data is converted into a string when it is stored into the solu
tion or project files, when the Globals object is restored from the solution or 
project file this data will also be in a string format. It is up to the macro or add
in code to properly determine which format the data is in. 

Earlier in this chapter, you saw a scenario of a solution add-in in which 
every time a build was performed a counter was incremented to keep track of 
the number of builds. The Solution.Globals object provides a good place to 
store this value, as is demonstrated in the BuildCounter sample. This sample, 
when loaded into a solution, first connects to the OnBuildDone event. As each 
OnBuildDone event is fired, the sample checks for the existence of the Build
Counter variable within the solution Globals object. If this value exists, it is 



258 Part II Extending Visual Studio .NET 

incremented and stored back into the Globals object. If this value doesn't exist, 
the value 1 is stored. The code for the OnBuildDone event is shown here: 

void OnBuildDone(EnvDTE.vsBuildScope Scope, EnvDTE.vsBuildAction Action) 
{ 

//Increment the build counter by storing a value in the 
II solution file through the Globals object: 
Globals globals; 
globals = applicationObject.Solution.Globals; 
if(globals.get_VariableExists("BuildCounter")) 
{ 

else 
{ 

} 

!IA counter has been set, increment it: 
System.Int32 int32; 
int32 = System.Int32.Parse((string)globals["BuildCounter"]); 
int32++; 
globals["BuildCounter"J = int32.ToString(); 

//The variable has never been set, seed the counter: 
globals["BuildCounter"J = 1.ToString(); 
globals.set_VariablePersists("BuildCounter", true); 

Looking Ahead 

In this chapter, we looked at how the pieces of the object model fit together to 
programmatically manage the many project types that can be loaded into a 
solution. We also examined the various objects that you can use to modify how 
those projects are built. In the next chapter, we'll apply these project manage
ment concepts to create wizards for Visual Studio .NET. 



Visual Studio .NET Wizards 
Wizards, which are familiar to users of Microsoft Windows, provide a simple, 
step-by-step way of making a complex task simple. In this chapter, we'll discuss 
how to create your own wizards to run within Microsoft Visual Studio .NET. 

An Overview of Wizards 
A programmer's work can be repetitive. There's plenty of new, innovative code 
to write, but a lot of code is common to all projects. Rather than writing this 
code over and over, you can use a wizard to generate the starter code and start 
writing the core implementation of a project. A wizard can display a dialog box 
to walk the user through a set of steps, asking questions, and it uses the 
answers to make a complicated or often-repeated task easier to complete. Alter
natively, a wizard can skip displaying a dialog box and simply generate code 
without asking the user for any input. Windows is full of wizards, such as wiz
ards that help connect to printers and networks and even ones to find help 
when something goes wrong. Visual Studio .NET, on the other hand, uses wiz
ards to generate code. 

Types of Wizards 
You can build and run three types of wizards in Visual Studio .NET. The type 
that's probably the most familiar to developers is the New Project wizard. A 
New Project wizard, as its name suggests, generates the code for a project that 
gives the user a starting point for a new program. New Project wizards are 
invoked when the user selects an item in the right panel of the New Project dia
log box, which is displayed by choosing File I New I Project. 

259 



260 Part II Extending Visual Studio .NET 

The second type of wizard is an Add New Item wizard. Once a project has 
been created, a user often needs to add new files, such as classes, images, or 
Web pages, to that project. An Add New Item wizard can be used to create these 
new files. The common way to access this type of wizard is by right-clicking on 
a project in the Solution Explorer window and choosing Add I Add New Item. 
This displays the Add New Item dialog box, from which wizards can be run. 

The third and least-often used wizard type is a Custom wizard. A Custom 
wizard isn't invoked directly by Visual Studio .NET; rather, it is explicitly called 
by a macro, an add-in, or another wizard. A Custom wizard can't be classified 
as an Add New Item wizard or a New Project wizard, but it can walk the user 
through a set of steps to accomplish some task. With a Custom wizard, you can 
add wizard-like functionality anywhere within Visual Studio .NET and not be 
limited only to creating new projects or adding new files to an existing project, 
as you are with New Project or Add New Item wizards. 

Whether you choose to create a New Project, Add New Item, or Custom 
wizard, you implement it in the same basic way: you create a COM object that 
implements the wizard, you create a .vsz file to let Visual Studio .NET know 
about your wizard, and then you create the source code templates. We'll discuss 
each of these wizard types in this chapter as well as how to build them. 

Creating the Wizard Object 
Every wizard, whether it is a New Project wizard, an Add New Item wizard, or 
a Custom wizard, is simply a COM object that implements the EnvDTE.IDTWiz
ard interface. Execute, the only method of this interface, is called when Visual 
Studio .NET loads the wizard. The signature for this interface is 

public interface IDTWizard 
{ 

public void Execute(object Application, int hwndOwner, 
ref object[] ContextParams, 
ref object[] CustomParams, 
ref EnvDTE.wizardResult retval) 

A number of arguments are supplied to the Execute method: 

• Application The DTE object for the instance of Visual Studio .NET 
in which the wizard is being run 

• hwndOwner A handle to a window that the wizard can use as a 
parent for any user interface elements that the wizard creates 



Chapter 9 Visual Studio .NET Wizards 261 

• ContextParams An array of type object that describes the state 
Visual Studio .NET is in when the wizard is run 

• CustomParams An array of type object containing data defined 
by the wizard writer and passed to the wizard object 

The Execute method is where all the processing for a wizard takes place. 
Within this method, a wizard has complete control over how it performs its 
work. Visual Studio .NET places no restrictions on how a wizard is imple
mented other than that it must implement the IDTWizard interface on a COM 
object. A wizard can display a user interface to ask the user questions, or it can 
use the information provided through the various arguments of the Execute 
method to perform its work. You can think of the Execute method as similar to 
the Main function of a Visual Basic or Visual C# console application: once 
called, it can do whatever it wants. 

The ContextParams argument passed to Execute is an array of elements 
that's populated with values the user enters in the Add New Item or New 
Project dialog box. It also contains a number of other values, provided by 
Visual Studio .NET, that give hints to your wizard about how it should generate 
code. The values in the array change depending on whether the wizard is run 
as a New Project wizard, an Add New Item wizard, or a Custom wizard. The 
arguments for the various project types and the order in which those types 
appear are listed in Table 9-1 and Table 9-2. 

Table 9-1 ContextParams Array Values Passed to a 
New Project Wizard 

Value Description 

Wizard Type 

Project Name 

Local Directory 

Installation Directory 

Exclusive 

The value EnvDTE. Constants. vs WizardNewProject. 

The name of the project to create. This doesn't include the 
filename extension. 

The directory in which to create the project or solution. 

The location on disk where Visual Studio .NET was 
installed. 

If this value is true, a wizard should close the current solu
tion and create a new one. If the value is false, the solution 
shouldn't be closed and the project should be added to the 
currently open solution file. 

(continued) 



262 Part II Extending Visual Studio .NET 

Table 9-1 ContextParams Array Values Passed to a 
New Project Wizard (continued) 

Value Description 

Solution Name 

Silent 

The name of the solution to create, if specified. This solu
tion name is available if the Create Directory For Solution 
check box is selected in the New Project dialog box. 

A Boolean flag indicating whether the wizard should run 
without displaying any user interface elements to the user. If 
this is true, use reasonable defaults when you generate code. 

Table 9-2 ContextParams Array Values Passed to an 
Add New Item Wizard 

Value 

Wizard Type 

Project Name 

Project Items 

New Item Location 

New Item Name 

Product Install Directory 

Silent 

Description 

The value EnvDTE.Constants.vsWizardAdditem. 

The name of the project the item is being added to. 

The EnvDTE.Projectltems collection the item should be 
added to. 

The folder on disk in which the item should be created. 

The name the user entered into the Name box in the Add 
New Item dialog box. 

The folder in which the programming language is 
installed. 

A Boolean flag indicating whether the wizard should run 
without displaying any user interface elements to the 
user. If this is true, use reasonable defaults when you 
generate code. 

We didn't include a table that lists context parameters for a Custom wizard 
because these are not determined by Visual Studio .NET-they're supplied by 
an add-in, a macro, or even another wizard. We'll discuss the Custom wizard 
type and the CustomParams that Custom wizards are passed in more detail later 
in this chapter. 

When run, a wizard should verify that the first element of the context 
parameter array is the constant EnvDTE.Constants.vsWizardNewProject if the wiz
ard is a New Project wizard or the constant EnvDTE.Constants.vsWizardAddltem 
if the wizard is an Add New Item wizard. If the GUID doesn't match the type of 
wizard the object implements, the object should return the error code wizard
Result. wizardResultFailure through the retval argument of IDTWizard.Execute. 



Chapter 9 Visual Studio .NET Wizards 263 

Note When you check the GUID that is passed as the wizard type, 
you should perform a case-insensitive comparison because the con
stants vsWizardNewProject and vsWizardAddltem might have a differ
ent case than any value passed from Visual Studio .NET as the first 
value in the ContextParams array. 

An example implementation of a wizard and the code to extract the ele
ments from the ContextParams array are shown in Listing 9-1. 

Wizard.cs 
using System: 
using System.Runtime.InteropServices: 

namespace BasicWizard 
{ 

[GuidAttribute("E5D0A8B2-A449-4d3b-B47B-99494D23A58B"), 
ProgidAttribute("MyWizard.Wizard")J 
public class Wizard : EnvDTE.IDTWizard 
{ 

public void Execute(object Application, int hwndOwner, 
ref object[] ContextParams, 

{ 

ref object[] CustomParams, 
ref EnvDTE.wizardResult retval) 

EnvDTE.DTE application= CEnvDTE.DTE)Application: 
string wizardType = Cstring)ContextParams[0]; 

if(System.String.Compare(wizardType, 
EnvDTE.Constants.vsWizardNewProject, true) == 0) 

} 

string newProjectName = (string)ContextParams[lJ; 
string newProjectLocation = (string)ContextParams[2]; 
string vtsualStudioinstallDirectory = 

CstringJContextParams[3J; 
bool exclusiveProject = (bool)ContextParams[4]: 
string newSoluttonName = (string)ContextParams[5]: 
bool runSilent ~ CboollContextParams[6]; 

else if(System.String.Compare(wizardType, 
EnvDTE.Constants.vsWizardAddltem, true) == 0) 

{ 

Listing 9-1 The wizard add-in source code 



264 Part II Extending Visual Studio .NET 

st.ring pr.ojectNa,ma "'.<$trlng)~ontaxt~arams[ll: 
EnvDTL ProJectltems proJectitems ·~· >········ ·· .. ··· · 

CEnvDTE ;Projectitems)ContextParamsl2J: 
string ··.neWitemtocattqn '=<(strtngJContex~Params[3J: 
strJng .n.ewJtemName·· =• {str1ngJContextParams14l: 
st.rt n9. productinstaillDirect9ry···.;,,.·.·.· ( $tri ng}ContextPf.iraffist5]: 
bool runSHent = Cbool)ContextParamsf6l: 

Creating the . vsz File 
As you saw in Chapter 6, to create an add-in you must provide information to 
Visual Studio .NET to let it know that the add-in is available to be loaded. This 
information, which is stored in the system registry, includes the programmatic 
identifier (ProgID) as well as information detailing how the add-in should be 
loaded. Likewise, a wizard needs a way to announce itself as being available; 
but unlike with an add-in, you must rely on the file system to make a wizard 
available. You do this by creating a hierarchy of folders in a specific location on 
disk and placing files with the extension .vsz in within this folder hierarchy. 

A .vsz file has a simple text-based file format. The file starts with the string 
"VSW7ZARD 7.0", which tells Visual Studio .NET that the file declares a wizard 
and that the wizard should be run in Visual Studio .NET version 7 or later. The 
next line of text is a token that starts with "Wizard=" and is followed by the 
ProgID or the class identifier (ClassID) of the COM object implemented by the 
wizard. If we were to use the ProgID from the Wizard.cs code shown in Listing 
7-1, the line in the .vsz file would appear as follows: 

Wizard=MyWizard.Wizard 

We could also use the ClassID format: 

Wizard:.{E5D0ABB2-A449-4d3b-B47B-99494D23A58B} 

After the line for the ProgID or ClassID, you can place a list of user-defined 
data. This data can be any string data that you want to pass to your wizard, and 



Chapter 9 Visual Studio .NET Wizards 265 

it can be static (hard-coded into the .vsz file during development) or generated 
when your wizard is installed by a setup program. Each line of this data starts 
with the token "Param= '', and your wizard can require any number of these 
entries (including 0). Here's an example of this data: 

Param=Hello World 
Param=Second line of data 

Each of these Param tokens is passed as an element of the CustomParams 
array when your wizard's Execute method is invoked and can be found within 
a wizard with code such as this C# snippet: 

for(int i = 0 ; i < CustomParams.Length ; i++) 
{ 

string data = (string)CustomParams[i]; 
System.Windows.Forms.MessageBox.Show(data); 

When this code runs, the strings passed to CustomParams have the leading 
"Param=" stripped from each string; only the raw data is specified. 

Even if you're using Visual Studio .NET 2003 (version 7.1 ), the 
first line of a .vsz file must start with the string 'VSWIZARD 7.0', not 
'VSW/ZARD 7. 1 '. 

Where to Save . vsz Files 
For a user to run your wizard, you must place the .vsz file in a specific location 
on disk so the New Project or Add New Item dialog box can find it and make 
that wizard available to be run. When the New Project or Add New Item dialog 
box is shown, a folder or number of folders on disk are read for the subfolders 
and files they contain. The names of these folders are inserted into the tree on 
the left side of the dialog box, and any subfolders are inserted as subitems of 
that tree node. As the user selects nodes in the tree, each file within the folder 
corresponding to the selected node is displayed in the list on the right side of 
the dialog box. 

For example, Figure 9-1 shows the New Project dialog box with the file 
system modified to add a folder called A Sub Folder under the Extensibility 
Projects folder, which is the folder on disk where the .vsz files are stored for the 
Add-in Wizard. When the contents of the Extensibility Projects folder are copied 
into the A Sub Folder folder, they appear on the right side of the dialog box if 



266 Part II Extending Visual Studio .NET 

this new folder is selected. The A Sub Folder folder was created in the folder 
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\Extensi
bility Projects (using the default installation location). 

Figure 9-1 A new subfolder shown in the New Project dialog box 

You can find the location to store your new project .vsz files programmat
ically using the TemplatePath property of the Solution object. The following 
macro displays message boxes showing the folder in which the .vsz files can be 
stored so that they will appear within the Visual Basic Projects and Visual C# 
Projects nodes on the right side of the New Project dialog box: 

Sub VSZLocation() 
'Display the .vsz path for Visual Basic Projects 
MsgBox(DTE.Solution.TemplatePath( _ 

VSLangProj.PrjKind.prjKindVBProject)) 

'Display the .vsz path for C# Projects 
MsgBox(DTE.Solution.TemplatePath( _ 

VSLangProj.PrjKind.prjKindCSharpProject)) 
End Sub 

The TemplatePath property was poorly named-a better name 
would be VSZFilePath. Don't confuse the word Template in the prop
erty name with file templates (which we'll discuss later in this chapter). 



Chapter 9 Visual Studio .NET Wizards 267 

The constants prjKindVBProject and pr;KindCSharpProject, which are 
defined in the metadata assembly VSLangProj.dll, are GUIDs in the form of a 
string. There are, as you probably know, project types other than those for 
Visual Basic and C#, but constants that can be passed to TemplatePath prop
erty for those projects types aren't found in any assembly. You can manually 
find the project type GUIDs for these other project types by poking around in 
the system registry. Under the registry key HKEY_LOCAL_MACHINE\SOFT
WARE\Microsoft\ VisualStudio \ 7 .1 \Projects is a list of GUIDs; each GUID 
defines a project type that Visual Studio .NET supports. Replacing the argu
ment to Solution. Template path with one of these GUIDs returns the path in 
which to store your .vsz file so that an entry for the wizard appears in the New 
Project dialog box for that project type. If we search through this area of the 
registry for vcproj (the extension used for Visual C++ project files), we'll find 
that the GUID for the Visual C++ project type is {8BC9CEB8-8B4A-11D0-8Dll
OOAOC91BC942}. We can use this GUID to locate the path to where we can 
store .vsz files so they'll appear in the Visual C++ Projects node of the New 
Project dialog box: 

Sub VSZLocation2() 
'Display the .vsz path for Visual C++ Projects: 
MsgBox(DTE.Solution.TemplatePath( _ 

"{07CD18Bl-3BA1-lld2-890A-0060083196C6}")1 
End Sub 

As you can see in Figure 9-1, a different image is shown for each .vsz file 
found. You can associate an image with a .vsz file by placing an icon (.ico) 
file in the same folder-one with the same name as the .vsz file but with the 
.ico extension. For the Add-in Wizard, the .vsz file on disk is called Visual Stu
dio .NET Add-in.vsz. When the user selects the folder, a file called Visual Stu
dio .NET Add-in.ico is searched for and, if found, used as the display image. 
If an icon for a .vsz file isn't found, the default icon for files as defined by 
Windows is used. 

The Add New Item dialog box uses the directory structure in a similar way 
to the New Project dialog box. You can add new folders, and any files with a 
.vsz extension that the user selects will be run as a wizard. The only difference 
between the Add New Item dialog box and the New Project dialog box is that 
the template directories are located in different places. Figure 9-2 shows the 
directory structure after it was modified for the Add New Item dialog box and 
a text file template was placed in that folder. 



268 Part II Extending Visual Studio ;NET 

Figure 9-2 A custom folder in the Add New Item dialog box 

You retrieve the location where the .vsz files are stored for this dialog box 
much like you retrieve the path for the New Project dialog box, but using a dif
ferent method. Rather than using the Solution. TemplatePath method, you pass 
the project type GUID to the Solution.ProjectltemsTemplatePath method. You 
can use the following macro to find the path to where C# Add New Item .vsz 
files can be stored: 

Sub ProjectitemVSZLocation() 
'Display the .vsz path for C# project items: 
MsgBox(DTE.Solution.ProjectitemsTemplatePath( _ 

VSLangProj.PrjKind.prjKindCSharpProject)) 
End Sub 

Creating Wizard Templates 
A wizard's purpose is to create a new project or add code files to an existing 
project. But where does the code for these projects or project items come from? 
The answer is template files. Templates are the source code files that a wizard 
adds to a solution or an existing project. These files are placed on disk, and 
when a wizard wants to add the project or file, the template project and the files 
the project references or the file for an Add New Item wizard is copied into a 
folder the user specifies and is then added to the solution or project. 

Templates are normally created using one of the wizards for generating a 
project or a project item, and then the file(s) of the new project are modified to 



Chapter 9 Visual Studio .NET Wizards 269 

fit the requirements of the project or project item you're trying to create. The 
code that's created and added to a solution when you run the Add-in Wizard is 
generated in this way. We used the C# and Visual Basic Class Library Wizard to 
generate the base project and then modified this project to implement the add
in. The Add-in Wizard locates this project and adds it to the solution, and then 
the files in this newly created project are modified to conform to the options the 
user selected when running the wizard. 

Using Template Files 
Once you've created the template files, you need a way to add them to the solu
tion or project. Visual Studio .NET supports a number of methods to accomplish 
this. In Chapter 8, we explored the project model but purposely left out a dis
cussion of two methods of the Solution object: AddFromFile and AddFromTem
plate. These two methods are used to add project templates to a solution. 
AddFromFile adds a reference in the solution file to the project, keeping the 
project file where it exists on disk. Calling this method is analogous to right
clicking on the solution node in the Solution Explorer window, choosing Add 
I Add Existing Project, and browsing to a project file. Wizards, however, usually 
want to add a copy of a project template to the solution; otherwise, the user of 
the generated project would modify the template project and subsequent run
ning of the wizard would add a reference to this same modified project. Wiz
ards should normally use the AddFromTemplate method, which copies the 
project template and its associated files to a destination folder and then adds a 
reference of this copy to the solution. The signature for AddFromTemplate is 

public EnvDTE.Project AddFromTemplate(string FileName, string Destination, 
string ProjectName, bool Exel usive = false) 

Here are the arguments: 

• FikName The full path to the project template. 

• Destination The location on disk to which the project and the files 
it references are copied. The wizard should create this destination 
path before AddFromTemplate is called. 

• ProjectName The name assigned to the project file and the name 
in Solution Explorer where it has been copied. Don't attach the 
extension of the project type to this argument. 

• Exclusive If this parameter is set to trne, the current solution is 
closed and a new one created before the template project is added. 
If this parameter is false, the solution isn't closed and the newly cre
ated project is added to the currently open solution. 



270 Part II Extending Visual Studio .NET 

Note If the Exclusive parameter is set to true when AddFromFile or 
AddFromTemplate is called, the existing project is closed without the 
user being given the option to save any modified files. You should give 
the user the option to save by calling the ltemOperations.Prompt
ToSave property before calling AddFromTemplate or AddFromFile. 

AddFromTemplate and AddFromFile will add a template project from any
where on disk; that is, the files don't need to be stored in a specific location
just a place that is convenient to find. A common place to store the template 
files is in a folder named Templates that has been placed in the same folder as 
the COM object implementing the wizard. If the wizard is built using a language 
supported by the .NET Framework, you can use reflection to calculate the path 
to the templates using code like this: 

string templatePath = 
System.Reflection.Assembly.GetExecutingAssembly().Location; 

templatePath = System.IO.Path.GetDirectoryName(templatePath) + 
"\\Templates\\"; 

The AddFromTemplate method adds a project template to a solution, but 
the Projectltems collection has a series of methods for adding files to an existing 
project: AddFromDirectory, AddFromFileCopy, AddFromFile, and AddFrom
Template. AddFromDirectory accepts as a parameter the path to a folder on disk; 
this folder is searched recursively, causing all its contained files and subfolders to 
be added to the project. AddFromFileCopy and AddFromFile both perform the 
same basic operation, adding a reference to the specified file on disk to the 
project. However, AddFromFileCopy copies the file into the project's directory 
structure before adding this reference. AddFromFileCopy differs from the 
AddFromTemplate method of the Projectltems collection (not to be confused 
with the AddFromTemplate method of the Solution object) in that AddFrom
Template copies the file into the folder on disk for the project and then the 
project might make some modifications to the file after the files are added. 

Here are the signatures and parameters for these methods: 

public EnvDTE.Projectitem AddFromDirectory(string Directory) 
public EnvDTE.Projectitem AddFromFileCopy(string FilePath) 
public EnvDTE.Projectitem AddFromFile(string FileName) 
public EnvDTE.Projectitem AddFromTemplate(string FileName, string Name) 

• Directory The source folder on disk. Searches for files and sub
folders begin with this folder. 



Chapter 9 Visual Studio .NET Wizards 271 

• FilePath I FileName The location of the file to copy or add a 
reference to. 

• Name The resulting name of the file. This name should have the 
extension of the file type. 

Each of these methods returns a Projectltem, an object that can be used to per
form operations on the file that was added (such as opening the file or access
ing the file's contents). 

Solution Filenames and the New Project Wizard 
When a New Project wizard is run, a solution filename might or might not be 
specified within the ContextParams array, depending on whether the user has 
selected the Create Directory For Solution check box, which is visible after the 
user clicks More in the New Project dialog box. If the check box is selected, the 
New Solution Name box is enabled, allowing the user to specify a new directory 
name for the solution. If the user doesn't select the check box, when a project 
is created using Solution.AddFromTemplate you should use the name specified 
for the project in the ContextParams array as the name of the project, the name 
of the solution file (if the exclusive argument in the ContextParams array is true 
and a solution is not currently open), and the name of the folder on disk to con
tain those files. These solution and project files should also be stored in the 
same folder. If the user selects the check box, the solution name argument in 
the list of context parameters is valid and you should name the root directory for 
the solution and the solution file using the solution name argument. 

To create and name a solution file, you can use the Solution.Create 
method (as discussed in Chapter 8) by passing in the path for where to store the 
solution file and the name of the solution as arguments. Under the directory for 
the solution file, you should create a new folder to contain the project file, and 
you should name both the folder and the project with the project name passed 
into the ContextParams array. 

Replacements 
When you use a template to create a new project or a new file, the code that's 
generated will most likely not match the requirements for your wizard. For 
example, if the C# Class Library Wizard is run, the class that is generated is 
named Classl. The user can modify this class manually to give it a different 
name, but it's better to dynamically give the class a name that reflects the kind 
of class the wizard is generating (such as the name Wizard if the class imple
ments a wizard). You can do this by replacing specific textual tokens within the 
template files after they've been added to the solution or project. To make a 



272 Part II Extending Visual Studio .NET 

replacement, you use the editor object model to search for the token, and then 
you modify the token's text. Tokens can be just about any text that is placed in 
the file, but normally they have a specific format that is distinguished from 
other text within the file. A common token used as a placeholder for the class 
name is %CLASSNAME%. The template for the class with the tokens added 
would look something like this: 

public class %CLASSNAME% 
{ 

public %CLASSNAME%() 
{ 

II 
II TODO: Add constructor logic here 
II 

The following macro, named MakeReplacements, replaces tokens in a file. 
Some of the concepts that this macro uses, such as the EnvDTE. TextPoint 
objects, might be unfamiliar to you, but we'll cover them in Chapter 11. 

Sub MakeReplacements(ByVal projectitem As EnvDTE.Projectitem, _ 
ByVal token As String, _ 
ByVal replaceWith As String) 

Dim window As EnvDTE.Window 
Dim textDocument As EnvDTE.TextDocument 
Dim textRanges As EnvDTE.TextRanges 
Dim findOptions As Integer 
findOptions = EnvDTE.vsFindOptions.vsFindOptionsFromStart + _ 

EnvDTE.vsFindOptions.vsFindOptionsMatchCase + _ 
EnvDTE.vsFindOptions.vsFindOptionsMatchWholeWord 

'Open the specified project item. 
' This will open the file but show it hidden: 
window= projectitem.Open(EnvDTE,Constants.vsViewKindTextView) 

'Find the,TextDocument object for the project item: 
textDocument = window.Document.Object("TextDocument") 

'Replace all the text that matches token with the replaceWith text: 
textDocument.ReplacePattern(token, replaceWith, _ 

findOptions, textRanges) 
End Sub 

Once you've opened the file that contains the class definition and made it 
the active document (by using the Projectltem object returned by the Add* 
methods of the Projectltems collection), you can call the following macro to 
replace the %CLASSNAME% token with the class name MyClass: 



Chapter 9 Visual Studio .NET Wizards 273 

Sub MakeReplacements() 
MakeReplacements(DTE.ActiveWindow.Projectitem, _ 

"%CLASSNAME%". "MyClass") 
End Sub 

Among the many variations on searching for tokens and replacing the text 
is deleting the text between two separate tokens. This technique is useful if the 
user selects an option in the user interface of a wizard that would cause a bit of 
code not to be needed. The Add-in Wizard uses this technique to remove the 
code for creating a command bar button when the Yes, Create A 'Tools' Menu 
Item check box on the Choose Add-in Options page of the Add-in Wizard has 
been cleared. The following macro deletes the text between two tokens: 

Sub DeleteBetweenTokens(ByVal projectitem As EnvDTE.Projectitem, _ 
ByVal tokenl As String, _ 
ByVal token2 As String) 

Dim window As EnvDTE.Window 
Dim textDocument As EnvDTE.TextDocument 
Dim tokenEndPoint As EditPoint 
Dim tokenStartPoint As EditPoint 
Dim findOptions As Integer 
findOptions = EnvDTE.vsFindOptions.vsFindOptionsMatchCase + _ 

EnvDTE.vsFindOptions.vsFindOptionsMatchWholeWord 

'Open the specified project item. 
' This will open the file, but show it hidden: 
window = projectitem.Open(EnvDTE.Constants.vsViewKindTextView) 

'Find the TextDocument object for the project item: 
textDocument = window.Document.Object("TextDocument") 

'Create edit points for searching: 
tokenEndPoint = textDocument.StartPoint.CreateEditPoint() 
tokenStartPoint = textDocument.StartPoint.CreateEditPoint() 

'Loop while all start I end tokens can be found: 
While (tokenStartPoint.FindPattern(tokenl, findOptions)) 

If (tokenEndPoint.FindPattern(token2, findOptions, tokenEndPoint)) _ 
Then 

'Move the selection to bracket the start I end tokens: 
textDocument.Selection.MoveToPoint(tokenStartPoint, False) 
textDocument.Selection.MoveToPoint(tokenEndPoint, True) 

'Delete the selection: 
textDocument.Selection.Delete{) 

Else 



274 Part II Extending Visual Studio .NET 

Exit While 
End If 

End While 
End Sub 

If our template code were modified to look like this 

public class %CLASSNAME% 
{ 

public %CLASSNAME%() 
{ 

II 
II TODD: Add constructor logic here 
II 

%BEGINOPTIONALCODE% 
void SomeOptionalCode() 
{ 

} 

%ENDOPTIONALCODE% 
} 

after running this macro 

Sub MakeReplacements2() 
MakeReplacements(DTE.ActiveWindow.Projectitem, _ 

"%CLASSNAME%", "MyClass") 
DeleteBetweenTokens(DTE.ActiveWindow.Projectitem, _ 

"%BEGINOPTIONALCODE%", "%ENDOPTIONALCODE%") 
End Sub 

the following code would result: 

public class MyClass 
{ 

public MyClass() 
{ 

II 
II TODD: Add constructor logic here 
II 

Raw Add New Item Templates 
An Add New Item wizard is generally used to add a file to a project and then 
modify the file by making replacements to it. However, sometimes a template 
file doesn't need to be modified after it's been inserted into a project. An 



Chapter 9 Visual Studio .NET Wizards 275 

example of this is a text file. When the user chooses to add a text file to a 
project, a blank file is added. Creating a wizard object just to insert a blank file 
is a waste of both disk space (to hold the wizard DLL) and time. To get around 
this, Visual Studio .NET allows what are called raw templates. When displaying 
the Add New Item dialog box, Visual Studio .NET not only searches for and 
shows .vsz files in the right panel of that dialog box but it also shows any other 
files within the folder where .vsz files can be placed. If the user selects one of 
these raw template files in the Add New Item dialog box, the equivalent of an 
AddFromFileCopy is performed on the file-the file is copied into the directory 
structure for the project that the item is being added to, and then the file is 
added to the project. To create a raw template, you simply create a file and 
place that file into the path returned by calling the ProjectltemsTemplatePath 
method and specifying the appropriate project type. 

Custom Wizards 
Visual Studio .NET has built-in support for creating only two types of wizards, 
New Project and Add New Item wizards. However, at times you might need to 
build a wizard that doesn't fit either of these types. Visual Studio .NET supports an 
extensible wizard architecture that allows you to create and invoke your own type 
of wizard, called a Custom wizard. An example of a Custom wizard is a wizard 
you can invoke to insert common code constructs, such as default implementa
tions of classes, methods, or properties, directly into an existing source code file. 

Why Custom Wizards? 
The Visual Studio .NET automation group didn't add the ability to create 
Custom wizards simply to provide another way to extend a program with 
your own software creations; Custom wizards were born out of necessity. 
The Visual C++ group needed a way to add new functions and variables to 
classes from within the Class View tool window, and they wanted to do it in 
a wizard-like way. To make this possible, they added Custom wizards to the 
list of wizard types. They created wizards to add both functions and vari
ables, and by calling the DTE.Launch Wizard method with the proper 
parameters to programmatically launch the wizards, they were able to allow 
the user to modify a class in a way that is familiar to them. So when you 
right-dick on a C++ class within the Class View window and choose Add I 
Add Function or Add I Add Variable, you're really running a Custom wizard. 



276 Part II Extending Visual Studio .NET 

To create a Custom wizard, you build a COM object that implements the 
IDTWizard interface and you create a .vsz file for that wizard just as you would 
for a New Project or Add New Item wizard. However, unlike with the other 
types of wizards, you select the list of context parameters that your wizard 
takes, and a Custom wizard is invoked through your own code rather than 
through a dialog box. As you've seen, a list of context arguments is passed to a 
wizard when it is run, supplying information about how the wizard should do 
its work. If a wizard is to be run as a New Project or Add New Item wizard, 
Visual Studio .NET calculates the proper context parameters array and passes 
that array to the IDTWizard.Execute method. A Custom wizard is started pro
grammatically, either from an add-in, a macro, or another wizard, and the call
ing application fills in the context parameters array. 

There are no restrictions on the context parameters that can 
be passed to a Custom wizard, but we recommend that you make the 
first argument a GUID that the caller and the wizard agree on before
hand. The wizard should then verify that the GUID passed is the 
expected GUID before proceeding. This approach helps keep the wiz
ard from incorrectly using the context parameters and throwing an 
exception or crashing. 

Running a Custom Wizard Programmatically 
Your program could manually load a wizard COM object, find the IDTWizard 
interface of that wizard, and pass off the appropriate values to the Execute 
method, but it would be easier to let Visual Studio .NET handle much of this 
work for you. You can use the automation model to launch wizards program
matically using the DTE.Launch Wizard method. This method takes as its argu
ments the path to a .vsz file and an array of context parameters. Because the 
path to the .vsz file is passed to this method, the .vsz file for a Custom wizard 
can be stored anywhere on disk-it doesn't have to be in a specific location, as 
the other wizard types do. Once called, the Launch Wizard method instantiates 
the wizard COM object defined within the .vsz file and creates the custom 
parameters array that the .vsz file contains. The Launch Wizard method then 
passes off all the necessary values to the Execute method of that wizard. 

You can see the Launch Wizard method in use in the sample CustomWiz
ard. This wizard first verifies that the first argument of the ContextParams array 
is the expected wizard type GUID, and then it simply walks the list of context 



Chapter 9 Visual Studio .NET Wizards 277 

and custom arguments that it is passed, displaying a message box for each item 
that it finds in those arrays. Here's the macro that starts this wizard running: 

Sub CallCustomWizard(l 
Dim contextParams(l) As Object 
contextParams(0) = "{9A4B2CFF-7A69-4671-BFA5-AE000C44AEFB}" 
contextParams(ll = "Hello world!" 
DTE.LaunchWizard("C:\samples\CustomWizard.vsz", contextParams) 

End Sub 

If the wizard sample is placed in the folder C:\samples, this macro packs 
the wizard type and the string "Hello world!" into an array of type object and 
then calls Launch Wizard. The wizard defined the GUID {9A4B2CFF-7A69-4671-
BFA5-AEODOC44AEFB} and expects this string as the first element of the Con
textParams array; if the wizard doesn't get this string, it will refuse to run and 
will return immediately with an error. 

Chaining Custom Wizards 
You can use the Launch Wizard method to chain wizards together, which means 
calling one wizard within another wizard to simplify creating a project. Suppose 
you need a solution that contains an XML Web service and you need a Windows 
Forms application to gather data from that XML Web service and display it to the 
user. Cre'1ting the form project is simple enough: you run the Windows Form 
Wizard to create the Windows Forms template project, and then you create the 
wizard object that will add the form template to a solution. But creating the XML 
Web service for the solution isn't as easy as creating a template and adding it to 
the solution. An XML Web service project, once created, is found only on a Web 
server. None of the files for that XML Web service except the project file are 
found on the local computer-the project file simply points to the server and the 
location on the server where the files can be found. A wizard could talk to the 
Web server through a protocol such as Front Page server extensions, giving it the 
proper commands to store the files of an XML Web service, but it would be eas
ier to call on the Web Service Wizard to create the and store those files for you. 

The sample project ChainWizard, which is included with the sample files 
for this book, demonstrates how to do this. Here's a portion of the Execute 
method of this wizard: 

const string serviceName = "ChainWizardWebService"; 
object [JcontextParamsChain =new object[?]; 
EnvDTE.wizardResult wizardResultChain; 
EnvDTE.DTE dte = (EnvDTE.DTE)Application; 

II Add our web service by filling in the context parameters, 
II and chain to the Web Service Wizard 



278 Part II Extending Visual Studio .NET 

contextParamsChain[0] EnvDTE.Constants.vsWizardNewProject; 
contextParamsChain[l] serviceName; 
contextParamsChain[2] "http://localhost/" + serviceName; 
contextParamsChain[3] = System.IO.Path.GetDirectoryName(dte.FullName); 
contextParamsChain[4] = (bool )ContextParams[4]; 
contextParamsChain[5] = ""; 

contextParamsChain[6] = false; 
string webSvcTemplatePath = dte.Solution.get_TemplatePath( 

VSLangProj.PrjKind.prjKindCSharpProject); 
webSvcTemplatePath += "CSharpWebService.vsz"; 
wizardResultChain = dte.LaunchWizard(webSvcTemplatePath, 

ref contextParamsChain); 

This code creates and fills in the context parameters that are sent to the wiz
ard object, which is run with the call to Launch Wizard. You calculate the location 
of the .vsz file for the XML Web service by using the TemplatePath property and 
passing the project type for the C# project language. Note that this code makes no 
attempt to create a unique XML Web service name every time it is run. If the wiz
ard is run multiple times, you should either delete the XML Web service created 
on the server or change the variable value serviceName to a unique value. 

The result of running the Chain Wizard sample is a solution containing an 
XML Web service project and a Windows Forms project that consumes the func
tionality of the XML Web service. 

Lab: Decoding Wizard Parameters 
How do you determine which arguments to pass to a wizard during chain
ing? You can do i~ by tricking Visual Studio .NET into calling a throwaway 
wizard whose sole use is to capture and let you debug the custom and con
text parameters passed to the wizard. This is what I did to find what should 
be passed to the ASP.NET Web Service Wizard in the Chain Wizard sample. 

To start, run the Visual Basic .NET or C# Class Library wizard from 
the New Project dialog box. Then modify that project to implement the 
IDTWizard interface and register the library as a COM object by assigning 
the code a GUID and a ProgID and setting the flag in the project Property 
Pages dialog box to register as a COM object, just as you would for other 
wizards. The next step is to change the .vsz file to point to this throwaway 
wizard; because our example chains to the C# Web Service Wizard, we'll 
modify the .vsz file for that wizard. Search in the Visual Studio .NET 
2003\ VC#\CSharpProjects folder for the file named CSharpWebService.vsz 
and open the file in Notepad. We're about to modify this file, so it might 
be a good idea to make a backup copy. 



Chapter 9 Visual Studio .NET Wizards 279 

With this .vsz file open in Notepad, simply change the ProgID from 
VsWizard.VsWizardEngine.7.1 to the ProgID of the throwaway wizard, 
and then save the .vsz file. Now, back in Visual Studio .NET, where you 
have the wizard project open, place a breakpoint on the Execute method 
of your wizard and press F5. (You'll need to set Visual Studio .NET, or 
devenv.exe, as the debug target first.) In the new instance of Visual Studio 
.NET that appears, open the New Project dialog box and run the C# ASP 
.NET Web Service Wizard. Your wizard should be called in place of the 
ASP.NET Web Service Wizard, and when the breakpoint on the Execute 
method is hit, you can spy on what kind of data is passed to the wizard 
through the custom and context parameters. 

Don't forget to restore the correct .vsz file-otherwise, the throwaway 
wizard will be run when you actually want to create an XML Web service. 

The Wizard Helper Library 
As you've seen, creating wizards isn't a very complicated task. By simply creat
ing a COM object that implements the IDT'Wizard interface and placing a .vsz 
file on disk, you can create a wizard that the user can run by using the New 
Project or Add New Item dialog box. But creating and displaying the user inter
face for a wizard can be tedious, which is why we've avoided the topic of wiz
ard user interfaces until now. To create the user interface for a wizard, you must 
create a Windows Form and the pages for the wizard. The Windows Form will 
display the pages of the wizard, and the Next, Back, Finish, and Cancel buttons 
must properly navigate between these pages. 

Much of the code to display the user interface for a wizard is boilerplate 
code and is similar for all wizards. To make creating wizards with a user inter
face easier, we've included in the book's sample files the source code for a 
library that manages this user interface. Simply called WizardLibrary, the library 
implements the IDT'Wizard interface and also handles splitting the Context
Params array into separate variables, making wizard creation less error-prone. 
To use this library to implement a wizard, you simply create a user control for 
each page of the wizard, write a small amount of code to let the library know 
which pages are available, and then implement wizard-specific functionality 
such as creating and adding project code. 

Let's use this library to build a wizard that generates the code for a wiz
ard-a "Wizard Wizard." First, we create a C# class library project called Wiz
ardBuilder, and then we can add a reference to the WizardLibrary assembly 



280 Part II Extending Visual Studio .NET 

(you must load and build this project from the example source files first so that 
the library code can be referenced) and then derive the class within our project 
from lnsideVSNet. WizardLibrary. WizardLibrary (the base class that imple
ments the functionality for the library). After making the changes to register the 
object for COM, our code will look like this: 

[GuidAttribute("lEF6B85C-FD5C-4fb4-BA4D-
5ED221195DBF"), ProgldAttribute("WizardBuilder.Wizard")J 
public class Wizard : InsideVSNet.Wizardlibrary.Wizardlibrary 
{ 

public Wizard() 
{ 

With this basic startup code, we can define the pages that the wizard dis
plays to the user. The first page contains two options that the user can modify: 
an option to create an Add New Item or New Project wizard and an option to 
specify where the user can run the wizard. These options take care of creating 
the .vsz file and placing it in the correct place for the wizard that WizardBuilder 
generates. The second page allows the user to specify how many pages the 
resulting wizard code has. Since the library uses .NET user controls to imple
ment each page of our wizard, we can use the Add New Item dialog box to add 
two user controls-Pagel and Page2-to our project and then add the appro
priate windows controls to these forms. 

With the two user controls, or pages, added to our project, we need some 
way for the wizard library to communicate with each page to let it do the work 
of generating the output project and modifying the source code files that are 
generated. We can do this by having each page implement the interface 
lnsideVSNet. WizardLibrary.JWizardPage, which is defined by the library and 
has this signature: 

public interface IWizardPage 
{ 

void PerformWorkl(Wizardlibrary Wizardlibrary); 
void PerformWork2(Wizardlibrary Wizardlibrary); 
string Headinglabel 
{ 

get; 

string Descriptionlabel 
{ 



get: 

System.Drawing.Image Icon 
{ 

get: 

void ShowHelp(); 

Chapter 9 Visual Studio .NET Wizards 281 

void Initialize (Wizardlibrary wizardlibrary); 

Here are the methods and properties of this interface: 

• PerformWorkl This method is called when the user clicks the 
Finish button and the wizard page should start generating code. Each 
page is responsible for generating its own code within the project, 
and that work is done within this method. 

• PerformWork2 Each wizard page has its Perform Workl method 
called in the order that the pages are displayed. However, sometimes 
one page's output might depend on the output of another page. 
Information can be generated in the PerformWorkl method, saved, 
and retrieved for further processing during the Perform Work2 
method. After the Perform Workl method for each page has been 
called, PerformWork2 is called in the display order of each page. 

• HeadingLabel This read-only property allows your wizard page to 
return information about the headline that's displayed in the top line 
of the wizard. In the Add-in Wizard's user interface, the top portion, 
or banner, of the user interface displays three pieces of information 
to the user: a headline displayed in bold text, descriptive text, and an 
icon for the page. This property returns the headline for the page. 

• DescriptionLabel This property returns the description string to 
be displayed in the wizard banner. 

• Icon This property returns a picture in the format of a Sys
tem.Drawing.Image type to display in the banner of the wizard. 

• ShowHelp This method is called when the Help button in the 
lower left of the wizard is clicked, signaling that the user is request
ing help for the page. 

• Initialize This method is called after the wizard page has been 
added to the list of pages maintained by the library. 



282 Part II Extending Visual Studio .NET 

With this interface implemented by each user control, we can tell the wiz
ard library about the pages. The library implements the IDTWizard interface 
and its Execute method for us, but when the wizard is first run, it calls a method 
defined in the Wizardlibrary class (from which we derived our wizard class), 
which is declared as abstract and is also called Execute. This method, which 
should be placed within the class that inherits from the Wizardlibrary class, is 
defined as follows: 

public override void Execute(EnvDTE.DTE applicationDbject); 

This version of Execute is where we set up the wizard library to let it know 
which pages are available to it. You add pages by calling the WizardLi
brary.AddPage method, passing an instance of one of our user controls that 
implements the IWizardPage interface in the order that they should appear in 
the user interface for your wizard. We can create and add the two user controls 
we created earlier (Pagel and Page2) within the Execute method using code 
such as this: 

public override void ExecuteCEnvDTE.DTE applicationDbject) 
{ 

Title = "Wizard Builder"; 
AddPage(new Pagel()); 
AddPage(new Page2()); 

This code not only tells the library about the pages of our wizard but also 
sets the title of the wizard dialog box to. Wizard Builder. The Wizardlibrary 
class defines a property, Title, that sets the text of the user interface form for the 
wizard. When this Execute method returns, the wizard library has all the infor
mation it needs to run. The library then displays the Windows Form dialog box 
with the user control pages displayed and implements the proper navigation 
between pages of the wizard. The wizard library also manages the wizardResult 
parameter of the IDTWizard.Execute method, returning wizardResultSuccess if 
the Finish button is clicked, wizardResultCancel if the Cancel button is clicked, 
wizardResultFailure if an exception is thrown, and wizardResultBackOut if the 
first page of the wizard is displayed and the user clicks the Back button. With 
this code written, when the wizard is run, the dialog box in Figure 9-3 is shown 
with the first page of the wizard displayed. 



Chapter 9 Visual Studio .NET Wizards 283 

Wizard Builder (Page 1 of 2) 

Choose a wizard type 
Choooe a vriza.rd type and a- place to store the .vsz file. 

Choose a type of wizard to create: 

t• Create a new project wizard 

r Create a new project item wi,,,,.d. 

Choose a location to store the .vsz file: 

Visual Basic. Projects 

Visual C# Projects 

Visual C ++Projects 
Extensibility Projects 

Figure 9-3 The first page of the WizardBuilder sample, with the first 
page displayed 

Wizard Variables 
As we've discussed, when the IDTWizard.Execute method is called, information 
is passed to the wizard through the ContextParams and CustomParams argu
ments. But the Execute method that your wizard implements isn't passed these 
arguments because the wizard library handles extracting the variables from the 
ContextParams array and storing them as member variables. The values of Cus
tomParams aren't extracted in the same way as ContextParams because these 
variables are specific to your wizard and the library has no previous knowledge 
about what it contains. Table 9-3 and Table 9-4 list the variable names you can 
use, how they correspond to the values listed in Table 9-1 and Table 9-2, and 
the context in which you can use them. 

Table 9-3 New Project Wizard Library Variables and Their 
Corresponding ContextAttribute Array Values 

Variable 

wizard Type 

newProjectName 

newProjectLocation 

Corresponding Value 

Wizard Type 

Project Name 

Local Directory 

(continued) 



284 Part II Extending Visual Studio .NET 

Table 9-3 New Project Wizard Library Variables and Their 
Corresponding ContextAttribute Array Values (continued) 

Variable 

visua!Studiolnstal!Directory 

exclusiveProject 

newSolutionName 

runSilent 

Corresponding Value 

Installation Directory 

Exclusive 

Solution Name 

Silent 

Table 9-4 Add Item Wizard Library Variables and Their 
Corresponding ContextAttribute Array Values 

Variable 

wizard Type 

projectName 

projectltems 

newltemlocation 

newltemName 

productlnstal!Directory 

runSilent 

Corresponding Value 

Wizard Type 

Project Name 

Project Items 

New Item Location 

New Item Name 

Product Install Directory 

Silent 

The variables listed in Table 9-3 and Table 9-4 are generated by extracting 
values from the context parameters array. Two other variables are available 
within the wizard library, and they are available to either New Project or Add 
New Item wizards: 

• application The DTE object for the instance of Visual Studio .NET 
in which the wizard is running 

• Custom.Arguments A list of the custom parameters, copied verba
tim from the CustomParam arguments passed to the IDTWizard.Exec 
method 

The wizard library provides one other variable that your wizard can use. 
We mentioned earlier that the !WizardPage.PerformWorkl method can save 
information for later use in the IWizardPage.PerformWork2 method. However, 
one page of a wizard doesn't have access to the data of another page because 
they are separate objects. For storing information, the wizard library contains a 
data member named customData that has the type System.Collections.Special
ized.ListDictionary. This data member allows one page of the wizard to store a 



Chapter 9 Visual Studio .NET Wizards 285 

name and value pair for use by another page of the wizard. The sample wizard 
we're building here uses the customData member value to store information 
such as the EnvDTE.Project object, which was created with the call to Create
Project within the Perform Workl method of the first page of the wizard. 

Wizard Helper Methods 
The wizard library supports four helper methods that a wizard can use when 
generating the resulting project or file. You can use CreateProject, which has 
the following signature, to create a project based on a project template. 

public EnvDTE.Project CreateProject(string templatePath) 

This method creates a solution file if one is needed and places the project 
file in the correct folder on disk if the user specified creating separate folders 
for the project and solution files. The only parameter this project accepts is the 
path to the template project file. Values such as the name of the project and 
solution, as well as whether the solution file should be closed or the new 
project should be added to the currently open solution file, don't need to be 
passed to this method because these values are already known to the wizard. 
The final two methods, DeleteBetweenTokens and MakeReplacements, are C# 
versions of the macros of the same name shown earlier in this chapter; you can 
use them to modify the source files you create. 

Completing the WizardBuilder Sample 
Now that we've covered the techniques for building wizards using the library, 
we can complete the WizardBuilder sample. We've already created a class that 
derives from the WizardLibrary class, created the Execute method, added two 
pages in the form of user controls to the project, and implemented the IWizard
Page interface in each of these pages. All that's left to do is to generate the out
put code. We'll start by creating the template files. We'll create a C# class library 
called WizardTemplate, specify the project setting to register as a COM object, 
and modify the code for the class to the following: 

namespace %NAMESPACE% 
{ 

Ill <summary> 
Ill Summary description for Classl. 
Ill <!summary> 
[GuidAttribute("%GUID%"), ProgidAttribute("%NAMESPACE%.Wizard"l] 

public class Wizard : InsideVSNet.Wizardlibrary.Wizardlibrary 
{ 

public Wizard() 
{ 



286 Part II Extending Visual Studio .NET 

II 
II TODD: Add constructor logic here 
II 

public override void Execute(EnvDTE.DTE application) 
{ 

Title = "My Wizard"; 
%WIZARD PAGES% 

} 

When run, the wizard replaces %NAMESPACE% with the name of the 
project specified in the New Project dialog box, and %GUID% is replaced with 
a new GUID. The token % WIZARDPAGES% is replaced with code generated to 
add an instance of the pages to the library. The next template to create is the 
template for the pages of the wizard. We'll do this by running the C# Windows 
Control Library Wizard, modifying the generated user control to implement 
IWizardPage, and changing the namespace and all instances of the class name 
with the tokens %NAMESPACE% and %PAGENAME%, respectively. We'll copy 
the file for the user control into the templates folder for our wizard. 

The last step is to fill out the PerformWorkl and PerjormWork2 methods 
for the two pages of the wizard. Perform Workl for the first page handles creat
ing the project and making replacements within the file, as outlined earlier. 
PerformWork2 for this first page handles building the .vsz file, placing a copy in 
the folder the user specified, and adding a reference to the WizardLibrary.dll 
assembly. PerformWorkl for the second page isn't used; PerformWork2 for this 
page handles adding one copy of the user control template for each of the 
number of pages the user specified while running the wizard, and then makes 
the proper replacements in the newly added page. Finally, the PerformWork2 
method sets up the code in the wizard.cs file to make the replacement to the 
% WIZARDPAGES% token. 

Looking Ahead 

In this chapter and the previous one, we have dealt with projects and their 
items-manipulating them through the object model and creating them using 
wizards. Next we'll move on to something a little different: windows within 
Visual Studio .NET and how to program them. 



Programming the User 
Interface 

Microsoft Visual Studio .NET is made up of many different windows that show 
data to the user, including the Task List, Solution Explorer, and the Windows 
Forms designer. You can manipulate these windows not only by using the 
mouse and keyboard but also through the object model by using a macro or an 
add-in. In this chapter, we'll discuss the many objects you can program in the 
user interface of Visual Studio .NET. 

Window Basics 
The user interface for each window in Visual Studio .NET is different from that 
of other windows, but they all share a few basic methods and properties. Let's 
look at the common parts of the object model. 

The Windows Collection 
Visual Studio .NET contains a number of tool and document windows that you 
can access through the automation model. Each of these windows is repre
sented in the object model by a Window object and can be found in the Win
dows collection, which is accessible through the DTE. Windows property. 

You can retrieve a Window object from the Windows collection in a num
ber of ways. One way is to use the enumerator to walk the list of all available 
windows, as shown here: 

287 



288 Part II Extending Visual Studio .NET 

Sub EnumWindows() 
Dim window As EnvDTE.Window 
For Each window In DTE.Windows 

MsgBox(window.Caption) 
Next 

End Sub 

Or you can use the numerical indexing method: 

Sub EnumWindows2() 
Dim window As EnvDTE.Window 
Dim i As Integer 
For i = 1 To DTE.Windows.Count 

MsgBox(DTE.Windows.Item(l).Caption) 
Next 

End Sub 

However, using these formats for finding a window isn't optimal because you 
usually want to find one specific window, and looking at all the windows to 
find it is a waste of CPU cycles. The numerical indexing method isn't always 
best because the position of a window from one instance of Visual Studio.NET 
to the next might change, so you can't rely on using an index to return a spe
cific Window object. In fact, you have no guarantee that calling the Item 
method two times in a row using a numerical index will return the same 
EnvDTE. Window object because new windows might be created in between 
calls to this method. In addition, the numerical indexing method might not find 
all the available windows. For example, creating a tool window can be an 
expensive operation. To increase performance, Visual Studio .NET won't create 
a tool window until one is specifically asked for, and because the numerical 
indexing method looks only for windows that have been created, a particular 
tool window might not be found. 

A simple experiment shows how enumerating through the list of all tool 
windows· slows down your code if all tool windows haven't been created. By 
default, the Server Explorer tool window is docked and hidden on the left side 
of the Visual Studio .NET main window. If you move the mouse pointer over 
the icon for this window, the Server Explorer window appears. If this window 
hasn't yet been shown for that instance of Visual Studio .NET, you'll see a cou
ple-second delay as the window is created before being shown for the first 
time. If you run the EnumWindows2 macro and some of the Window objects 
need to be created, creating those windows will consume a lot of processor 
time, causing the macro to run very slowly. 

Another way to find a window is to index the Windows collection by 
using the name of the window. The following macro demonstrates this 
approach; it uses the name of the Task List tool window to find the Window 
object for the Task List. 



Chapter 10 Programming the User Interface 289 

Sub FindTasklistWindow() 
Dim objWindow As EnvDTE.Window 
objWindow = DTE.Windows.Item("Task List") 

End Sub 

This is also not the best way of finding a particular Window object, as this 
example clearly shows. During a search for a window, the string passed to the 
Windows.Item method is compared to the title of each window until a window 
with a matching title is found. If you right-dick on the Task List and choose 
Show Tasks I Comment, the title of this window becomes "Task List - X Com
ment tasks shown (filtered)," where Xis a number. Because the string "Task 
List" passed to the Item method doesn't exactly match the title of the Task List 
window, the code Windows.Jtem("Task List") won't find the Window object. 
This isn't to say you can't use the title indexing method in some situations. 
Some windows, such as the Properties window or Object Browser window, 
have names that don't change (unless the user is using a different language), 
and finding such windows by using the window title as the index works. 
Another reason why passing the title of a window isn't the best choice for the 
Item method is because, just as in the case of a numerical index, if the tool win
dow hasn't been created, the Window object won't be found. 

The best way to find a Window object is to use an index that is unique and 
independent of both the position within the Windows collection and the title of 
the window. Each tool window has a constant GUID assigned to it; you can 
pass this GUID to the Item method to find the window you need. Because a 
GUID might be hard to remember, most of the tool windows that Visual Studio 
.NET can create have constants defined that are easier to remember and recog
nize. These constants all start with the prefix vsWindowKind and are static 
(shared if you're using the Visual Basic .NET language) members of the 
EnvDTE.Constants class. The following macro finds the Task List tool window: 

Sub FindTasklistWindow2() 
Dim objWindow As EnvDTE.Window 
objWindow = DTE.Windows.Item(EnvDTE.Constants.vsWindowKindTasklist) 

End Sub 

Because the GUID is unique to a specific tool window and doesn't change 
over time, you don't need to worry about either the caption of a window or its 
position within the EnvDTE. Windows collection changing. One other benefit of 
using the GUID is that even if the window you're searching for hasn't yet been 
created, Visual Studio .NET is smart enough to create the tool window when it's 
asked for. 

You might occasionally run across a window that doesn't have a constant 
GUID defined for it. The Favorites window is an example. When you need such 



290 Part II Extending Visual Studio .NET 

a window, you can use the GUID in the form of a string in place of one of the 
predefined constants, as shown in the following example, which retrieves the 
Window object for the Favorites window: 

Sub FindTheFavoritesWindow() 
Dim window As EnvDTE.Window 
window= DTE.Windows.Item("{E8B06F43-6D01-11D2-AA7D-00C04F990343}") 

End Sub 

You can find the GUID that can be passed to the Item method by using the 
ObjectKind property. The following macro takes this approach to display the 
GUID for the Favorites window: 

Sub FindTheFavoritesWindow2() 
Dim window As EnvDTE.Window 
'You should show the Favorites window 
' before calling this code! 
window= DTE.Windows.Item("Favorites") 
MsgBox(window.ObjectKind) 

End Sub 

When you run this macro, the GUID for the Favorites window is displayed in a 
message box. You can then define a constant set to this GUID, and use this con
stant in any code that needs to find this window. This is how we found the 
GUID for the FindTheFavoritesWindow macro. 

Using the Object Property 
Many windows in Visual Studio .NET have an object model that you can use to 
manipulate the data contained in that window. You can find these window-spe
cific objects using the Object property of the Window object. For example, call
ing the Object property of the Window object for the Task List window returns 
the TaskList object, which allows you to enumerate, add, and change properties 
of task items in the Task List window. The following macro retrieves the 
TaskList object: 

Sub GetTasklistObject() 
Dim window As EnvDTE.Window 
Dim tasklist As EnvDTE.Tasklist 
window= DTE.Windows.Item(EnvDTE.Constants.vsWindowKindTasklist) 
tasklist = CType(window.Object, EnvDTE.Tasklist) 

End Sub 

A number of types are available as the programmable object for the differ
ent windows, not just the TaskList object, as shown in the macro. Table 10-1 
lists the GUID constant you pass to the Item method to find a Window object, 
as well as the programmable object for that window. 



Chapter 10 Programming the User Interface 291 

Table 10-1 Windows and Their Programmable Objects 

Window GUID Constant Object Type 

Command Window vsWindowKindCommandWindow EnvDTE.CommandWindow 

Macro Explorer vs WindowKindMacroExplorer EnvDTE. U/Hierarchy 

Output window vs Window Kind Output EnvDTE. Output Window 

Server Explorer vs WindowKindServerExplorer EnvDTE. U/Hierarchy 

Solution Explorer vs WindowKindSolutionExplorer EnvDTE. U/Hierarchy 

Task List vs WindowKindTaskList EnvDTE. Tasklist 

Toolbox vs WindowKindToolbox EnvDTE. Too/Box 

Web browser vs WindowKindWebBrowser SHDocVw. WebBrowser 
window 

Text editor <None> EnvDTE. Text Window 

Forms designer <None> System. Component-
Model.Design.IDesignerHost 

HTML designer <None> EnvDTE.HTMLWindow 

Not only do some of the tool windows in Visual Studio .NET have an 
object model, but a couple of the document windows have an object model as 
well. The Window.Object property of the text editor, .NET Forms designer, and 
HTML designer windows returns an object appropriate for programming that 
window object. The object for programming the .NET Forms designer windows 
is discussed later in this chapter; the objects for programming the text editor 
and HTML editor windows are discussed in Chapter 11. 

The Main Window 
Each tool and document window in Visual Studio .NET has a Window object 
available. However, Visual Studio .NET is also a window, so it's only fair that a 
Window object be available for that window as well. Rather than indexing the 
EnvDTE. Windows collection to find this Window object, you use the Main Win
dow property of the DTE object: 

Sub FindTheMainWindow() 
Dim mainWindow As EnvDTE.Window 
mainWindow = DTE.MainWindow 

End Sub 

When you work with the Window object for the Visual Studio .NET main 
window, a few methods and properties don't work as they do when you work 
with tool or document Window objects. The differences between tool and docu
ment Window objects and the Window object for the main window are as follows: 



292 Part II Extending Visual Studio .NET 

• The Document, Selection, Object, Projectltem, and Project methods 
return null if you're using C#, and they return Nothing if you're using 
Visual Basic .NET. 

• The set versions of the Caption and Linkable properties generate an 
exception if called. 

• JsFloating and AutoHides generate an exception if you call the get or 
set versions of these properties. 

• The Close method generates an exception if called. 

A number of methods and properties don't work on the Window object 
for the main window, and one property is available only for the main window. 
If an add-in or a macro needs to display a dialog box, you should supply a par
ent window when the dialog box is shown to correctly manage focus and set 
the "modalness" of the new window. You can use the main Visual Studio .NET 
window as the parent window by using the Window.HWnd property. This 
property returns a handle to a window-a Windows platform SDK HWND data 
type. This property is hidden, so when you develop your add-in or macro it 
doesn't appear within statement completion. Because the .NET Framework 
can't use HWND values as a parent, this handle must first be wrapped by a dass 
that implements an interface that the .NET library can accept as a parent. You 
can implement this interface, System. Windows.Forms.!Win32Window, on your 
add-in class or on a separate class within a macro project. The !Win32Window 
interface has one property named Handle; this property returns a System.JntPtr, 
which contains the handle to a parent window and, in this case, is the value 
returned from the Window.HWnd property. When it's time to show a form 
using the Form.ShowDialog method, you can pass the class that implements the 
!Win32Window as an argument to this method. 

To implement !Win32Window for an add-in, you must first add it to the 
interface list for your add-in, as shown here: 

public class Connect : Object, Extensibility.IDTExtensibility2, 
System.Windows.Forms.IWin32Window 

Next, you add the implementation of the Handle property: 

//Implementation of the IWin32Window.Handle property: 
public System.IntPtr Handle 
{ 

get 
{ 

return new System.IntPtr (applicationObject.MainWindow.HWnd); 



Chapter 10 Programming the User Interface 293 

Finally, you can display the form (assuming that a form class named Forml 
exists within an add-in project) using code such as this: 

Form! form!= new Form!(); 
forml.ShowDialog(this); 

Implementing this interface within a macro is even easier; the macro sam
ples project that is installed with Visual Studio .NET already contains the code 
for a class that implements this interface. Located in the Utilities module of the 
Samples project, this class, named Win Wrapper, can be instantiated and passed 
to any code that requires a parent window, such as the standard Open File dia
log box: 

Sub ShowFileOpenDialog() 
Dim openFile As New OpenFileDialog 
openFile.ShowDialog(New WinWrapper) 

End Sub 

All you do is copy the Win Wrapper class into your macro project, and it's ready 
to use. 

Explorer Windows and the U/Hierarchy Object 
User interface hierarchy (or UI hierarchy) windows are tool windows that use a 
tree-like structure to display their data. Examples include the Solution Explorer, 
Server Explorer, and Macro Explorer windows. The UIHierarchy object and its 
associated objects U!Hierarchyltems and U!Hierarchyltem are so named 
because they represent a hierarchy of objects displayed in a tool window. The 
UIHierarchy object is used extensively by the macro recorder, allowing it to 
record the correct code to modify the selection within a UI hierarchy window; 
you can also use the U!Hierarchy object as a valuable source of information 
about what is contained within these tool windows. 

The U/Hierarchy Object Tree 
The U!Hierarchy, U!Hierarchyltems, and U!Hierarchyltem objects work recur
sively. The UIHierarchy object is used to find the U!Hierarchyltems collection, 
which contains all the root items of the tree within a UI hierarchy window. Each 
root tree item is represented by a U!Hierarchyltem object within the UIHierar
chyltems collection, and because all of these tree items can themselves contain 
subitems, the UIHierarchyltem. UIHierarchyltems property returns a UIHierar
chyltems collection. This pattern of tree nodes returning a collection of other 
nodes continues until that branch of the tree ends. The following macro uses 
the UIHierarchy object to find and display the name of the top-level node of 
Macro Explorer: 



294 Part II Extending Visual Studio .NET 

Sub GetToplevelUIHierltems() 
Dim macroExplWin As Window 
Dim uiHierarchy As EnvDTE.UIHierarchy 
Dim uiHierarchyltems As EnvDTE.UIHierarchyltems 
'Find the macro explorer window, and the UIHierarchy 
' object for this window: 
macroExplWin = DTE.Windows.Item(Constants.vsWindowKindMacroExplorerl 
uiHierarchy = macroExplWin.Object 
'Get the top level collection of items: 
uiHierarchyltems = uiHierarchy.UIHierarchyltems 
'Display the name of the first node in this collection: 
MsgBox(uiHierarchyltems.Item(l).Name) 

End Sub 

Here, Macro Explorer's U/Hierarchy object is found and the collection of 
U/Hierarchyltems is retrieved. The name displayed is that of the first item in 
the collection, which in this case is Macros because the top-level node in 
Macro Explorer is always the Macros node. 

Continuing with our example, the Macros node in the Macro Explorer 
window contains a number of macro projects. Because this node can have 
subitems, it is a container of U/Hierarchyltem objects, so the U/Hierarchy
Item. U/Hierarchyltems property returns a collection object. This U/Hierarchy
Items collection contains a list of all the macro projects, and if we modify the 
earlier macro, we can walk the list of the macro projects: 

Sub WalkMacroProjects() 
Dim macroExplWin As Window 
Dim uiHierarchy As EnvDTE.UIHierarchy 
Dim uiHierarchyltems As EnvDTE.UIHierarchyltems 
Dim uiHierarchyltem As EnvDTE.UIHierarchyltem 
Dim uiHierarchyltem2 As EnvDTE.UIHierarchyltem 
'Find the Macro Explorer window, and the U!Hierarchy 
' object for this window: 
macroExplWin = DTE.Windows.Item(Constants.vsWindowKindMacroExplorer) 
uiHierarchy = macroExplWin.Object 
'Get the first node in this collection, the Macros node: 
uiHierarchyltem = uiHierarchy.UIHierarchyltems.Item(l) 
'Walk all the items in this collection, which is 
' the list of macro projects: 
For Each uiHierarchyltem2 In uiHierarchyltem.UIHierarchyitems 

MsgBox(uiHierarchyltem2.Name) 
Next 

End Sub 

These sample macros show how to walk the hierarchy shown in the 
Macro Explorer window. To use this code to look at what is contained in the 
Solution Explorer and Server Explorer windows, you can simply change the 
value passed to the Windows.Item method to Constants.vsWindowKindSolu
tionExplorer or Constants.vsWindowKindServerExplorer. 



Chapter 10 Programming the User Interface 295 

Note Do the VI Hierarchy objects seem familiar? Walking the VI Hier
archy, U/Hierarchylterns, and U/Hierarchyltern objects to find an item 
in a UI hierarchy window is similar to using Project/terns and Project
/tern to walk a project to find a project item. The reason for this similar
ity is that the U/Hierarchy objects were designed to reflect how you 
would use the Project/tern and Project/terns objects. 

The U/Hierarchy Object 
Finding a specific node within a UI hierarchy window can involve a great deal 
of code, especially if the node is nested more than a couple levels deep. Using 
the U!Hierarchy. Getltem method, you can directly find a U!Hierarchyltem 
object of a node rather than writing a lot of code to traverse the tree of nodes. 
For example, if you want to get to the U!Hierarchyltem object of the InsertDate 
macro located in the VSEditor module of the Samples macro project, you can 
write code such as this: 

Sub FindU!HierltemForlnsertDateMacro() 
Dim macroExplWin As Window 
Dim uiHierarchy As EnvDTE.U!Hierarchy 
Dim uiHierarchyitem As EnvDTE.U!Hierarchyltem 
Dim uiHierarchyitems As EnvDTE.U!Hierarchyltems 
macroExplWin = DTE.Windows.Item(Constants.vsWindowKindMacroExplorer) 
uiHierarchy = macroExplWin.Object 
uiHierarchyltems = uiHierarchy.UIHierarchyitems 
uiHierarchyitem = uiHierarchyitems.Item("Macros") 
uiHierarchyltems = uiHierarchyitem.UIHierarchyitems 
uiHierarchyitem = uiHierarchyitems.Item("Samples") 
uiHierarchyitems = uiHierarchyitem.UIHierarchyltems 
uiHierarchyitem = uiHierarchyitems.Item("VSEditor"I 
uiHierarchyitems = uiHierarchyitem.UIHierarchyitems 
uiHierarchyitem = uiHierarchyltems.Item("InsertDate") 
MsgBox(uiHierarchyltem.Name) 

End Sub 

This bit of code is quite verbose, however, and we can shorten it by using the 
U!Hierarchy. Getltem method: 

Sub FindU!HierltemForlnsertDateMacro2() 
Dim macroExplWin As Window 
Dim uiHierarchy As EnvDTE.UIHierarchy 
Dim uiHierarchyitem As EnvDTE.UIHierarchyitem 
macroExplWin = DTE.Windows.Item(Constants.vsWindowKindMacroExplorer) 



296 Part II Extending Visual Studio .NET 

uiHierarchy = macroExplWin.Object 
uiHierarchyitem = _ 

uiHierarchy.Getitem("Macros\Samples\VSEditor\InsertOate") 
MsgBox(uiHierarchyitem.Name) 

End Sub 

UIHierarchy.Getltem accepts a string, which is the path to an item that pin
points a node within the hierarchy. This path is calculated by taking the names 
of each node in the branch to the tree node that you want to find, separated by 
the forward slash character. Although the UIHierarchy.Getltem method finds 
nodes within the Macro Explorer and Solution Explorer windows, a bug in 
Visual Studio .NET doesn't all.ow you to find a UIHierarchyltem object in the 
Server Explorer window. 

The UIHierarchy.Selectedltems property returns an array of UIHierarchy
Item objects for items that are selected within the UI hierarchy tree. Like other 
arrays returned by the object model when you're using a language supported 
by .NET, this property returns an array of untyped objects-an array of Sys
tem. Object. 

Sub GetUIHierSelecteditems() 
Dim macroExplWin As Window 
Dim uiHierarchy As EnvDTE.UIHierarchy 
Dim selectedltems As Object() 
Dim uiHierarchyitem As EnvDTE.UIHierarchyitem 
macroExplWin = DTE.Windows.Item(Constants.vsWindowKindMacroExplorer) 
uiHierarchy = macroExplWin.Object 
selecteditems = uiHierarchy.Selecteditems 
For Each uiHierarchyitem In selecteditems 

Next 
End Sub 

MsgBox(uiHierarchyitem.Name) 

To help the macro recorder record the movement of selections in a UI hier
archy window, the UIHierarchy object has two methods, SelectUp and Select
Down, that simulate the user selecting nodes within the tree. Both methods take 
as arguments two parameters. The first parameter is of type EnvDTE.vsUISelec
tionType, which denotes how nodes should be selected and closely reflects how 
the keyboard and mouse can be used to select particular nodes. EnvDTE.vsUISe
lectionTypeSelect selects a single node within the tree, causing any other 
selected node or nodes to lose their selection state. EnvDTE.vsUISelectionType
Extend selects from the last selected node to the chosen node, much as if the 
user had clicked on a node while holding down the Shift key. EnvDTE.vsUISe
lectionTypeSetCaret doesn't select a node-it moves the caret within the tree to 
the specified node. Lastly, EnvDTE.vsUISelectionTypeToggle swaps the selection 
state of a node, setting the selection if the node isn't selected or clearing the 



Chapter 10 Programming the User Interface 297 

selection if it is selected. The second parameter of the SelectUp and SelectDown 
methods is a count parameter. By default, only one item is selected in either the 
up or down direction, but you can supply a different value so more than one 
node can be selected at one time. 

The U!Hierarchy object also has a method named DoDefaultAction. This 
method simulates the user pressing the Enter key with one or more nodes 
selected in the tree. For example, if a macro node is selected in Macro Explorer 
and the UIHierarchy.DoDefaultAction method is called, that macro runs. 

The U/Hierarchyltems Object 
The EnvDTE. U!Hierarchyltems object is a collection of EnvDTE. U!Hierarchy
Item objects and works like any other collection object in the Visual Studio 
object model. This object supports one property that is not part of the standard 
set of methods and properties of other collection objects: the Expanded prop
erty. This property is of type Boolean and returns whether the nodes under
neath the U!Hierarchyltem collection are shown in the user interface. Setting 
this property to True has the same effect as the user clicking the plus symbol 
next to a tree view item; setting it to False is the same as the user clicking the 
minus symbol. 

The U/Hierarchyltem Object 
The EnvDTE.UIHierarchyltem, being a collection item, supports the standard 
collection item methods and properties, such as Collection and Name. It also 
supports a method named Select. This method is similar to the UIHierar
chy.SelectUp and UIHierarchy.SelectDown methods, except that it works on 
only one node at a time-the UIHierarchyltem that the Select method was 
called on. Because the Select method modifies only the current U!Hierarchy
Item, it doesn't accept a number of items to select. 

Calling the U!Hierarchyltem.Object property returns the extensibility 
object, if one is available, for that node. For example, when you're using Solu
tion Explorer, you can retrieve a EnvDTE.Project or EnvDTE.Projectltem object 
behind that node by using the Object property. The following code finds the 
U!Hierarchyltem for the first project and second item within that project (the 
second item is searched for because the first item, when a .NET project is 
loaded, is the References node) and gets the EnvDTE.Project and EnvDTE.Pro
jectltem objects for those nodes: 

Sub GetUIHieritemObject() 
Dim uihier As EnvDTE.UIHierarchy 
Dim uihierProj As EnvDTE.UIHierarchyitem 



298 Part II Extending Visual Studio .NET 

Dim uihierProjitem As EnvDTE.UIHierarchyitem 
Dim project As EnvDTE.Project 
Dim projitem As EnvDTE.Projectitem 
uihier =DTE.Windows.Item(_ 

Constants.vsWindowKindSolutionExplorer).Object 
uihierProj = uihier.U!Hierarchyltems.ltem(l).UIHierarchyltems.Item(l) 
project= uihierProj.Object 
uihierProjitem = uihierProj.U!Hierarchyitems.Item(2) 
proj!tem = uihierProjitem.Object 

End Sub 

The Toolbox Window 
The Toolbox stores controls and code snippets that you can drag onto the 
Forms Designer window, text editor windows, and anything else that can be a 
drag-and-drop target. The Toolbox is made up of a set of tabs where items can 
be stored and grouped into _related categories. The items on a Toolbox tab are 
relatively static, but one tab, the Clipboard Ring, changes often and collects text 
that has been cut or copied from a text editor window. 

Tabs and Items 
To find the Toolbox window, you can pass the constant vsWindowKindToolbox 
to the Windows.Item method, which returns a Window object. The ToolBox 
object is then found by calling the returned object's Window.Object property, as 
shown here: 

Sub FindTheToolBox() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
toolBox = toolBoxWindow.Object 

End Sub 

Because the Toolbox can contain more than one tab, a collection is avail
able to enumerate all these tabs. You find this collection, the ToolBoxTabs 
object, by calling the ToolBox. ToolBoxTabs property. Using the ToolBoxTabs 
collection, you can enumerate each ToolBoxTab object in the Toolbox and even 
create new tabs to house components or text fragments of your choosing. To 
create a new tab, you use the ToolBoxTabs.Add method, which takes as an 
argument the name of the new tab to create and returns a ToolBoxTab object 
for the newly created tab. The following macro adds a new Toolbox tab: 



Chapter 10 Programming the User Interface 299 

Sub AddNewToolBoxTab() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
tool Box= toolBoxWindow.Object 
toolBox.ToolBoxTabs.Add("My commonly used items").Activate() 

End Sub 

This code creates a new tab called My Commonly Used Items, and the Activate 
method of the ToolBoxTab object makes sure it's the selected tab. 

Not only is the Toolbox a collection of tabs, but each tab is also a collec
tion of items. Each collection item is represented in the object model by a Tool
Boxltem object and can be enumerated using the Too!Boxltems object, which is 
found by calling the ToolBoxTab. Too!Boxltems property. You can walk the 
entire contents of the Toolbox using the EnumerateToolBoxContents macro, 
shown here: 

Sub EnumerateToolBoxContents() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
Dim toolBoxTab As ToolBoxTab 
Dim outputWindow As New _ 

InsideVSNET.Utilities.OutputWindowPaneEx(DTE, "Toolbox contents") 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
toolBox = toolBoxWindow.Object 
For Each toolBoxTab In toolBox.ToolBoxTabs 

Dim toolBoxitem As ToolBoxitem 
outputWindow.Writeline(toolBoxTab.Name) 

Next 
End Sub 

For Each toolBoxitem In toolBoxTab.ToolBoxitems 
outputWindow.Writeline(vbTab + toolBoxitem.Name) 

Next 

Once you find a Too!Boxltem object, you'll see that you can't do much 
with it. You can call the Select method to make sure it's the active item in the 
Toolbox, you can remove the item using the Delete method, and you can find 
the label that's displayed in the user interface by using the Name property. 
Although the object model of a Too!Boxltem is a functional dead end, the real 
power that the Toolbox object model offers you is the ability to create new 
items. 

Adding Items to the Toolbox 
The Toolbox can hold different types of objects, such as text, HTML, COM com
ponents, and .NET components. You can add your own items by using the Tool
BoxTab.Add method, which takes three parameters. The first parameter, Name, is 



300 Part II Extending Visual Studio .NET 

the name of the item to add; this string is the text that will be displayed within the 
Toolbox user interface. The second parameter, Data, defines the information 
stored in the Toolbox for the item. How this data is formatted depends on the 
third parameter, Format, which is of type vsToolBox/temFormat. 

The simplest data type that can be stored is raw text. The string passed to 
the Data parameter is copied verbatim into the Toolbox item, and when the 
text is dragged onto a window that supports drag-and-drop with a Clipboard 
format of type text (such as a text editor window), it is copied into that window. 
To add a text fragment, you can use code like this: 

Sub AddTextToTheToolBox() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
Dim toolBoxTab As EnvDTE.ToolBoxTab 
Dim toolBoxitems As EnvDTE.ToolBoxitems 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
toolBox = toolBoxWindow.Object 
toolBoxTab = toolBox.ToolBoxTabs.Item("General") 
toolBoxitems = toolBoxTab.ToolBoxitems 
toolBoxltems.Add("My Text", "This is some text", _ 

vsToolBoxitemFormat.vsToolBoxitemFormatText) 
End Sub 

This code starts by walking the object model and finding the General tab of the 
Toolbox. It ends by calling the Too!Boxltems.Add method and adding an item 
labeled My Text with the text This is some text that has the Clipboard format of 
type text. 

Adding text in the HTML format is similar to adding text-the differences 
are that rather than passing raw text, you need to pass a fragment of HTML 
code, and the format of the data is marked as HTML by using vsToolBoxltem
FormatHTML: 

Sub AddHTMLToTheToolBox() 
Dim toolBoxWindow As EnvDTE.Window 
Dim tool Box As EnvDTE.ToolBox 
Dim toolBoxTab As EnvDTE.ToolBoxTab 
Dim toolBoxitems As EnvDTE.ToolBoxitems 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
toolBox = toolBoxWindow.Object 
toolBoxTab = toolBox.ToolBoxTabs.Item("General") 
toolBoxitems = toolBoxTab.ToolBoxitems 
toolBoxitems.Add("My HTML", "<b>This is bold HTML<lb>", _ 

vsToolBoxitemFormat.vsToolBoxitemFormatHTML) 
End Sub 



Chapter 1 O Programming the User Interface 301 

After you run this code, a fragment of HTML is placed onto the Toolbox; if you 
drag that Toolbox item into the HTML designer, text will appear in bold style. 

Note Remember that HTML is really just an application of XML that 
follows a particular schema. Because HTML is XML, you can also store 
XML fragments as HTML on the Toolbox. Visual Studio .NET not only 
lets you drag-and-drop these HTMUXML fragments into an HTML doc
ument, but it also allows you to drag them into an XML document. 

Along with these two text formats, the Toolbox can also store ActiveX 
controls, which can be dragged onto HTML files or Win32 applications (such as 
an MFC dialog box) that support hosting ActiveX controls. To add an ActiveX 
control, you supply the vsToolBoxltemFormatGUID data type. The format of the 
Data argument is the CLSID GUID of the ActiveX control or (despite the name 
of the format type) the ProgID of the control. The following macro adds two 
copies of the Windows Media Player control to the Toolbox. The first one is 
added using the CLSID of the control, and the second is added based on its 
ProgID: 

Sub AddCOMObjectToTheToolBox() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
Dim toolBoxTab As EnvDTE.ToolBoxTab 
Dim toolBoxitems As EnvDTE.ToolBoxitems 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
toolBox = toolBoxWindow.Object 
toolBoxTab = toolBox.ToolBoxTabs.Item("General") 
toolBoxitems = toolBoxTab.ToolBoxitems 
toolBoxitems.Add("Name", "{22D6F312-B0F6-11D0-94AB-0080C74C7E95}", _ 

vsToolBoxitemFormat.vsToolBoxitemFormatGUID) 
toolBoxitems.Add("Name", "MediaPlayer.MediaPlayer.l", _ 

vsToolBoxitemFormat.vsToolBoxitemformatGUID) 
End Sub 

When you run this code, you'll notice that the Name parameter is ignored. This 
is because the Toolbox extracts the name from the control. 

The last type of item you can add to the Toolbox is a .NET Framework 
component. You use the vsToo!BoxltemFormatDotNETComponent type format 
and supply the path location of a .NET assembly. That assembly is searched for 
controls, and if any are found, they're added to the Toolbox tab. For example, 
suppose you have an assembly called WindowsControlLibrary.dll at the root of 
your C: drive. The following code adds all the controls contained within that 
assembly to the Toolbox: 



302 Part II Extending Visual Studio .NET 

Sub AddDotNetComponentToTheToolBox() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
Dim toolBoxTab As EnvDTE.ToolBoxTab 
Dim toolBoxitems As EnvDTE.ToolBoxitems 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolbox) 
tool Box= toolBoxWindow.Object 
toolBoxTab = toolBox.ToolBoxTabs.Item("General") 
toolBoxitems = toolBoxTab.ToolBoxitems 
toolBoxitems.Add("Control", "C:\WindowsControllibrary.dll", _ 

vsToolBoxitemFormat.vsToolBoxitemFormatDotNETComponentl 
End Sub 

Often, an assembly that contains a control is placed into the global assem
bly cache (GAC) so it is available to all .NET Framework programs. Because the 
path to an assembly in the GAC isn't easy to find, you can load that assembly, 
ask it for its path, and then pass the path to the Toolbox add function. For 
example, suppose you have a user control with the assembly name Windows
ControlL ibra ry, version number 1.0.795.38182, and a public key of 
6fc70375761725c0. Using the System.Reflection.Assembly.Load static method, 
you can load the assembly by passing in the assembly name, version number, 
and public key. This method returns a System.Reflection.Assembly object, which 
supports a CodeBase property that returns the path in the file:!// format. 

Sub AddDotNetComponentToTheToolBox2() 
Dim toolBoxWindow As EnvDTE.Window 
Dim toolBox As EnvDTE.ToolBox 
Dim toolBoxTab As EnvDTE.ToolBoxTab 
Dim toolBoxitems As EnvDTE.ToolBoxitems 
Dim asm As System.Reflection.Assembly 
toolBoxWindow = DTE.Windows.Item(Constants.vsWindowKindToolboxl 
tool Box= toolBoxWindow.Object 
toolBoxTab = toolBox.ToolBoxTabs.Item("General") 
toolBoxitems = toolBoxTab.ToolBoxitems 
asm = System.Reflection.Assembly.Load("WindowsControllibraryl, Version=l.0. 

795.38182, Culture=neutral, PublicKeyToken=6fc70375761725c0") 
toolBoxitems.Add("Control", asm.CodeBase, _ 

vsToolBoxitemFormat.vsToolBoxitemFormatDotNETComponent) 
End Sub 

Just as when you add an ActiveX control, when you add a .NET component to 
the Toolbox, the Name parameter is ignored and the name of the control is 
derived from the control itself. This might seem like a bug in Visual Studio .NET, 
but adding an assembly to the Toolbox differs slightly from adding the other 
formats. When you add text, HTML, or an ActiveX control, an EnvDTE. ToolBox
ltem object for the newly added item is returned. However, when you add an 
assembly, a null or Nothing value (depending on the programming language 



Chapter 10 Programming the User Interface 303 

used) is always returned. This is because an assembly can contain zero, one, or 
multiple controls. If the assembly contains zero controls, this null or Nothing 
return value makes sense because nothing was added and there's no Too!Box
Item object to return. Multiple items cannot be returned because the method 
returns only a single EnvDTE.ToolBoxltem object, not an array. If the assembly 
has only one control, it can return an EnvDTE. Too!Boxltem, but it would seem 
odd to return an item in this case and not in the others, so the design team 
decided to also return null or Nothing in this case. 

The Task List Window 
As you saw earlier, the programmable object behind the Task List window is the 
EnvDTE. TaskList object. Using the TaskList object, you can add new task items 
to provide information to the user about work that needs to be performed, as 
well as examine tasks added by a compiler or other tool. 

Task List Items 
The EnvDTE. TaskList object lets you get to the items in the Task List by calling 
the Taskltems property, which returns a Taskltems collection containing one 
item for each task item in the Task List window. You can view subsets of the 
items in the Task List by filtering out items that don't belong to a particular 
grouping, or category, but items that are hidden because of this filtering will still 
have an item in the EnvDTE. Taskltems collection. 

As with any other collection, you can index EnvDTE. Taskltems by its 
numerical position, which returns an EnvDTE. Taskltem object. You can use a 
number as an index to this collection, but it doesn't have a string format as an 
index. 

Adding New Tasks 
You can add new items to the Task List to build a wide range of new tools. Here 
are examples of tools you can build that use the Task List: 

• Code analysis tools that find common programming errors, letting 
you find a bug before your customer does. You can place details 
about these errors in the Task List alongside compiler errors. 

• Scheduling tools that pull information from other software such as 
Microsoft Project and create task items to let programmers know 
when a specific portion of their work is due. When the check box 
next to a task item is selected, the corresponding item in Project is 
marked as completed. 



304 Part II Extending Visual Studio .NET 

• An add-in that searches through compiler errors and fixes as many as 
it can. Remember the last time you compiled a C# project, only to 
have errors generated because you forgot a semicolon? Wouldn't it 
be great to have a tool to fix this automatically? 

• A macro that synchronizes your calendar in Microsoft Outlook with 
the Visual Studio .NET Task List, reminding you to, among other 
things, pick up a gift on your way home from work for an anniver
sary or a birthday. (Such a tool can save you from a lot of grief.) 

You can build such tools because you insert new task items into the Task 
List using the Taskltems.Add method. Taskltems.Add offers a great deal of flex
ibility in what elements are displayed for new task items and how they're dis
played. As a result, this method has one of the most complex argument 
signatures of all the methods in Visual Studio .NET: 

public EnvDTE.Taskltem Add(string Category, 
string Subcategory, 
string Description, 
EnvDTE.vsTaskPriority Priority= vsTaskPriorityMedium, 
object Icon, 
bool Checkable= false, 
string File = "", 
int Line= -1. 
bool CanUserDelete = true, 
bool Fl ushltem = true) 

You can use the sample add-in AddTaskListitems to see the output gener
ated by the many combinations of these parameters. We'll look at each param
eter in turn over the next few sections. 

Category and Subcategory 
All tasks, whether they're created by the automation object model or by Visual 
Studio .NET itself, belong to a category. Categories are used simply to group 
tasks and relate them to one another. Common category types are compile 
errors, user tasks, and shortcuts. When the user right-clicks on the Task List and 
chooses Show Tasks, either all tasks can be shown or they can be filtered to 
show only the tasks belonging to a category group. You can create new cate
gory groups using the Category parameter of the Add method. When you call 
the method, the list of currently known categories is searched for a category 
with a name that matches this argument. If one is not found, a new category is 
added and the new task item is added to this category. If a category with a 
matching name is found, the new task is added to that existing category group. 



Chapter 1 O Programming the User Interface 305 

Visual Studio .NET doesn't currently use the Subcategory argument of the 
Add method; your add-in or macro can leave it blank. 

Description 
The description of a task appears in the Description column of the Task List, 
and the Description argument of the Add method sets this column. This param
eter of the Add method and the Category and Subcategory parameters are the 
only required parameters. Ignoring the optional parameters for now, we'll cre
ate our first Task List item using the following macro code: 

Sub TLAdditems() 
Dim tasklist As EnvDTE.Tasklist 
tasklist = DTE.Windows.Item(Constants.vsWindowKindTaskList).Object 
tasklist.Taskltems.Add("Category", "Description2") 
tasklist.Taskltems.Add("Category", "", "Descriptionl") 

End Sub 

After you run this macro and choose Sort By I Category from the Task List 
shortcut menu, the Task List appears as shown in Figure 10-1. 

:2,ort By Comment 

Show Description Iooltip !l.uild Errors 

~ Cop~ ~ser 

X. Qelete :i_hortcut 

Ne~t Task Po[icy 

Ptevious Task 0 C.ategory 

Current EJle 

~hocked 

U[lchecked 

Figure 10-1 Task List items added by a macro and the categories 
they're sorted by 

Priority 
The next argument you can pass to the Add method is the Priority argument. 
This argument is optional when you use the Visual Basic .NET programming 
language, but if it's supplied, an icon appears in the first column of the Task 
List-the priority column-to remind the user of the importance of completing 



306 Part II Extending Visual Studio .NET 

that task. A high-priority task has a red exclamation point next to it, a low-pri
ority task has a blue downward-pointing arrow, and a medium-priority task has 
no priority icon. The following macro adds new task items to the Task List, each 
with a different priority. The Task List should appear as shown in Figure 10-2 
after you run the macro. 

Sub TLAdditemsPriority() 
Dim tasklist As EnvDTE.Tasklist 
tasklist = DTE.Windows~Item(Constants.vsWindowKindTasklist).Object 
tasklist.Taskitems.Add("Category", "", _ 

Descriptionl", vsTaskPriority.vsTaskPriorityHigh) 
tasklist.Taskitems.Add("Category", "", _ 

"Description2", vsTaskPriority.vsTaskPrioritylow) 
tasklist.Taskitems.Add("Category", "", _ 

"Description3", vsTaskPriority.vsTaskPriorityMedium) 
End Sub 

Description3 

Description2 

Description! 

Figure 10-2 The Task List showing items with different priority values 

Icon 
The Icon parameter allows you to place an icon next to a newly added task item 
to identify that task item. The five predefined icons are described in Table 10-2. 

Table 10-2 Predefined Icons for Task List Items 

Icon Image Constant 

• vsTasklcon. vsTasklconComment 

vsTasklcon. vsTasklconUser 

vsTasklcon.vsTasklconSquiggle 

vsTasklcon.vsTasklconSbortcut 

vsTasklcon.vsTasklconCompile 



Chapter 1 O Programming the User Interface 307 

Left out of this table is the default icon, vsTasklconNone-a blank icon
which appears if this parameter is not specified. 

If you call the Task/terns.Add method and supply the value 
vsTasklconShortcut as the icon, a shortcut in a file isn't created. The 
icon is used for display purposes only. This applies to the other values 
that can be passed as the Icon parameter; using vsTasklconCompile 
doesn't create a compiler error, vsTasklconComment doesn't add a 
comment to a source file, and so forth. 

If these predefined images don't suit the task item you're creating, you can 
create your own image to display next to the task. You need a 16-by-16-pixel 
bitmap image with a color depth of 16. Any pixel in the image that has a back
ground RGB color of 0,255,0 will bleed through the image, showing the back
ground of the Task List. To set the image, you must first load the bitmap into an 
!PictureDisp object and then pass it as the Icon parameter. An !PictureDisp is 
the COM way of passing around a bitmap object. To create an IPictureDisp 
object in a .NET add-in, you must write a little P /Invoke code to create this 
object type. (P/Invoke is the technology the .NET Framework uses to call 
unmanaged code from .NET programs.) The system DLL, oleaut32.dll, exports a 
method called OleLoadPictureFile that takes a path to a bitmap file, which can 
be the bitmap to show in the Task List, and returns the necessary !PictureDisp 
object. Before you call the OleLoadPictureFile method, you must add some 
code to the class that implements your add-in that might seem magical: 

[Dlllmport("oleaut32.dll", CharSet=System.Runtime.InteropServices.CharSet.Auto, 
SetlastError=true)J 
internal extern static int OleLoadPictureFile(object fileName, 
[MarshalAsAttribute(UnmanagedType.IDispatch)] ref object ipictrueDisp); 

This code defines the method signature for code that's exported from the COM 
DLL OleAut32.dll, and with this P/Invoke method declared, you can call the 
OleLoadPictureFile method with the filename of the custom bitmap: 

object objIPictureDisp = null: 
string filename = "C:\Somelmage.eps": 
int nret = OleLoadPictureFile(fileName, ref objIPictureDisp); 

When this method call returns, the obj!PictureDisp variable is set to an !Picture
Disp object that can be passed as the Jeon parameter of the Task/terns.Add 
method. 



308 Part II Extending Visual Studio .NET 

If you try to call the Add method from within a macro and pass as the Icon 
parameter <ia IPictureDisp object, an exception is generated. This happens 
because the Visual Studio .NET Macros editor runs your macros in a separate 
process. When a method or property is called on the Visual Studio .NET object 
model, all data must be marshaled, or translated from the memory being used 
by the Macros editor program to the memory used by the Visual Studio .NET 
program, across the process boundaries. However, objects such as !Picture and 
!PictureDisp can't be marshaled across processes, so if you try to create an !Pic
ture and !PictureDisp and pass it to the Task/terns.Add method from a macro, 
an exception will be generated. This limitation prevents you from creating a 
task with a custom image from a macro, but you can create and use a custom 
bitmap from within an add-in because add-ins are loaded into the same process 
as Visual Studio .NET. 

Checkable 
The Checkable parameter of TaskListltems.Add controls whether the check box 
appears next to a task item. If it's set to trne, the check box is available; if it's 
set to false, the check box does not appear. 

File and Line 
File and Line are a string and integer, respectively, that fill out the File and Line 
columns of the Task List. These can contain any values you want-they're not 
used in any way other than for information to display within the Task List. If the 
user later performs the default action on the task (either double-clicking or 
pressing the Enter key when the task item is selected), the file won't open and 
the caret won't be placed on the line specified in the Line argument. This is 
because the object model makes no assumptions about the data in the file; if 
the file points to a binary file, opening and placing the caret on a line might not 
do what you expect; rather than dQJ something that might be incorrect, it does 
nothing. However, you can still connect an event handler onto the task item 
that was created, watch for a TaskNavigate event (discussed later), and then 
manually open the file using code. 

CanUserDelete 
The CanUserDelete parameter controls whether the user can delete the task 
item by pressing the Delete key when the task is selected in the user interface. 
If this value is set to false, the user cannot delete the item, but you can still 
delete it through the object model by calling the Taskltem.Delete method. 

Flush Item 
The last parameter of TaskListltems.Add is a Boolean value called Flushltem. As 
each new item is inserted into the Task List, the Task List must be updated to 



Chapter 10 Programming the User Interface 309 

show the new task. If you add a large number of tasks, redrawing the Task List 
each time an item is added will slow down your application's performance. If 
you pass a false value as the Flush/tern argument, no updates are made to the 
Task List until either another task item is added that does an update or the 
method Tasklterns.ForcelternsToTaskList is called. 

The Task/tern Object 
Once an item has been added to the Task List-whether it was created using 
the Task/terns.Add object or created by Visual Studio .NET itself and obtained 
by the Task/terns collection-you can use the Task/tern object's methods and 
properties to examine and modify the data displayed for that task item. The 
properties Category, Subcategory, Checked, Description, FileNarne, Line, and 
Priority each can be read programmatically to see what data is stored for those 
columns of the Task List. You can also set these properties as long as they're not 
read-only. Some task items that Visual Studio .NET creates have their columns 
marked as read-only so they can't be modified. To test whether a particular col
umn can be set, you can make a call to the JsSettable property, which accepts 
as a parameter the column within the Task List (a vsTaskListColurnn enumera
tion value), and if the column can be modified the lsSettable property returns 
true; otherwise, it returns false. For example, to change a task item's description 
value, you can write code such as this, which first verifies that the description 
can be changed: 

Sub ModifyTaskDescription() 
Dim tasklist As EnvDTE.Tasklist 
Dim task As EnvDTE.Taskitem 
tasklist = DTE.Windows.Item(Constants.vsWindowKindTaskList).Object 
task= tasklist.Taskitems.Item(l) 
If (task.IsSettable(vsTasklistColumn.vsTasklistColumnDescription)) Then 

task.Description = "A new description" 
End If 

End Sub 

Delete deletes the item, if deletion is possible, from the list of items. As 
mentioned earlier, all items added through the object model can be deleted 
whether the CanUserDelete parameter is true or false when you call the Task
/terns.Add method. Other task items can be deleted depending on who created 
them. For example, if the task item was added by the user clicking on Click 
Here To Add A New Task Item in the Task List, it can be deleted using the 
object model. If the item was created by IntelliSense or by a compiler, an 
exception is generated when this method is called because the only way to 
remove the task item is to modify the source code that's causing the task item 
to appear. 



310 Part II Extending Visual Studio .NET 

The Navigate method simulates the user double-clicking or pressing the 
Enter key when the task has the focus. If the task was added by Visual Studio 
.NET or by a compiler or if the task is a shortcut task, this opens the target file 
and places the caret on the line specified by the task. If the task was added 
through the automation model, no action is taken unless you write code to 
manually navigate to the proper file and line location using the TaskNavigated 
event. 

Task List Events 
As the user interacts with the Task List, events are fired to allow your add-in or 
macro to respond to those user interactions. Possibly the most important event 
of your add-in or macro that adds task list items is the TaskNavigate event. This 
event is fired when the user double-clicks on a Task List item, presses the Enter 
key when a task has the focus, or chooses Next Task or Previous Task from the 
Task List's shortcut menu. To capture this event, you can connect to the 
TasklistEvents. TaskNavigated event. This event is passed the Taskltem object of 
the item that the user wants to navigate to, plus a reference to a Boolean value 
called NavigateHandled that you can use to tell Visual Studio .NET whether 
your code has handled the navigation of the task item. If the value false is 
passed back through the NavigateHandled argument and no one else handles 
the navigation of the task, Visual Studio .NET plays a bell sound for the user. 

Connecting to this event within a macro project is as simple as opening 
the EnvironmentEvents macro module, selecting the TaskListEvents item from 
the drop-down list at the top left of the editor window for this module, and then 
selecting the TaskNavigated event from the top right drop-down list. Using this 
event and the arguments that are passed to it, you can write a macro event han
dler for the NavigateHandled event that opens the file (if specified) that the task 
item refers to and select the line in the source file that the task item points to. 
The code for this event handler would look like this: 

Private Sub TasklistEvents_TaskNavigated(ByVal Taskitem As EnvDTE.Taskitem, _ 
ByRef NavigateHandled As Boolean) Handles TasklistEvents.TaskNavigated 
'If the file argument has been specified for this task ... 
If CTaskitem.FileName <> "") Then 

Dim fileWindow As EnvDTE.Window 
Dim textWindow As EnvDTE.TextWindow 
Dim textPane As EnvDTE.TextPane 

'Then open the file, find the TextWindow and TextPane objects ... 
fileWindow = DTE.ItemOperations.OpenFile(Taskitem.FileName, _ 

EnvDTE.Constants.vsViewKindTextView) 
textWindow = CType(fileWindow.Object. EnvDTE.TextWindow) 
textPane = CType(textWindow.ActivePane. EnvDTE.TextPane) 



Chapter 1 O Programming the User Interface 311 

'Then move the caret to the correct line: 
textPane.Selection.MoveTo(Taskitem.Line, 1, False) 
textPane.Selection.Selectline() 
NavigateHandled =True 

End If 
End Sub 

Connecting to this event within an add-in is almost as simple as connect
ing to it within a macro, but a little more code is needed. The first step is to 
declare a variable to connect the event handler to. In this case, we're connect
ing to Task List events, so we'll use the EnvDTE.TaskListEvents class: 

private EnvDTE.TasklistEvents tasklistEvents; 

Next you declare the event handler method, which must follow the 
method signature as declared in the Object Browser. You can also convert the 
macro code shown earlier into C# for an add-in: 

public void TaskNavigated(EnvDTE.Taskitem taskitem, 
ref bool navigateHandled) 

//If the file argument has been specified for this task ... 
if(taskitem.FileName != "") 
{ 

EnvDTE.Window fileWindow; 
EnvDTE.TextWindow textWindow; 
EnvDTE.TextPane textPane; 

//Then open the file, find the TextWindow and TextPane objects ... 
fileWindow = applicationObject.ItemOperations.OpenFile( 

taskitem.FileName, EnvDTE.Constants.vsViewKindTextView); 
textWindow = (EnvDTE.TextWindow)fileWindow.Object; 
textPane = (EnvDTE.TextPane)textWindow.ActivePane; 

//Then move the caret to the correct line: 
textPane.Selection.MoveTo(taskitem.Line, 1, false); 
textPane.Selection.Selectline(); 
navigateHandled = true; 

Finally, you must set the taskListEvents variable to an instance of a 
TaskListEvents object, which you find by calling the Events. TaskListEvents prop
erty. This property takes one argument-a category that's used as a filter. If you 
pass the empty string as an argument, your event handler is called when any task 
item generates an event-whether the item was added by an add-in or macro or 
by Visual Studio .NET itself. But if you specify a category for this argument-the 



312 Part II Extending Visual Studio .NET 

same category string you can pass as the first argument to the Taskltems.Add 
method--only events for a task item that have this same category are sent to your 
event handler. This filtering mechanism can help cut down on the number of 
events that are fired, thereby increasing the performance of your code. Because 
we want our code to handle events for all task items, we'll pass the empty string 
to the Events. TaskListEvents property: 

EnvDTE.Events events = applicationObject.Events; 
tasklistEvents = (EnvDTE.TasklistEvents)events.get_TasklistEvents(""); 

The last step is to associate the event object with the event handler. You do 
this by creating a new EnvD1E._dispTaskListEvents_TaskNavigatedEventHandler 
object and adding it to the taskListEvents. TaskNavigated collection of event han
dlers: 

tasklistEvents.TaskNavigated += new 
_dispTasklistEvents_TaskNavigatedEventHandler(this.TaskNavigated); 

TaskNavigated isn't the only Task List event your code can capture. 
TaskAdded and TaskRemoved events are fired when a new task item is added or 
just before it's removed, respectively. The last event, TaskModified, is fired 
when one of the columns of the Task List is modified. For instance, the user can 
check or uncheck an item or change the priority or descriptive text for a task 
item. To let your code know when these tasks are changed, the TaskModified 
event is fired, passing the task item and the column that was modified. 

Comment Tokens 
Developers commonly leave portions of their code incomplete as they work, 
with the intention of adding it later. This omitted code might include error
checking, some parameter validation, or notes to themselves to handle a few 
additional code paths. Of course, unless you specifically search through the 
code for these tokens, either by visually inspecting it or by using the Visual Stu
dio .NET search tools, you might never revisit these notes and make the correc
tions. However, if you use a special notation, the Task List can find and report 
these notes for you automatically. When you open a source file, the file is 
scanned for these special tokens, and if any are found, an entry is made in the 
Task List. The tokens in the source file have the format of a language comment 
marker followed by the comment token, the colon character, and finally the 
note that is to appear within the Task List. For example, the comment //TODO: 
Fix this later creates a Task List item for Visual C++ and C# with the description 
Fix this later, and the comment 'TODO: Fix this later does the same for a Visual 
Basic .NET file. 



Chapter 1 O Programming the User Interface 313 

The special tokens that the Task List searches for are defined in the 
Options dialog box, where you can add new tokens and remove or modify 
existing tokens. Figure 10-3 shows the available tokens: HACK, TODO, 
UNDONE, and UnresolvedMergeConflict. 

Options ~ 

E'.5\ Environment 
General 
Documents 
Dynamic Help 
Fonts'and Colol's 
Help 

International Setting~ 
Keyboard 
Projects and Solution 

~-WebBrowser 
Options Add·in 
Source Control 
Text Editor 

P ~onfirm deletion of tasks 

P' ~am when adding a user task that won't be shown 

Comment Tokens ·--··- ----- ·-- -·-----~-- --· -·----
E'..riority: 

I Normal ::!:] 

The TODO token cannot be renamed or removed1 but the priority for the 
token can be modified, 

OK 

Figure 10-3 Task List token options 

You can add a new token by typing a token name in the Name box, 
selecting a priority, and then clicking the Add button. You can also add, 
remove, and modify these tokens through the object model. To program these 
tokens, you use the Properties collection. You'll find more details about the 
Properties collection later in this chapter-for now, we'll overlook the details of 
how to use the Properties collection and look only at how to change the tokens 
using this object. The first step is to find the CommentTokens property using 
code such as the following: 

Sub GetTokensArray() 
Dim tokens As Object() 
Dim prop As EnvDTE.Property 
Dim props As EnvDTE.Properties 
props= DTE.Properties("Environment", "Tasklist") 
prop= props.Item("CommentTokens") 
tokens= prop.Value 

End Sub 

The CommentTokens property returns an array of strings that have a spe
cial format, and when this macro is run, it finds all the available tokens in the 
format TokenName: Priority, where TokenName is what should appear after the 



314 Part II Extending Visual Studio .NET 

comment notation for the given language and Priority is the numerical value of 
an item in the EnvDTE.vsTaskPriority enumeration. In the preceding macro, the 
string for the TODO token is "TOD0:2" because the string to search for in the 
text editor is "TODO" and the priority that appears in the Task List for this token 
is vsTaskPriorityMedium (whose numerical value is 2). 

Adding your own token to the list of tokens is a three-step process. Setting 
the list of tokens clears the current list (at least the tokens that are not read
only ), so you need to preserve the known tokens so you don't overwrite the 
known tokens that the user might have created. First, you need to retrieve the 
list of current Task List tokens. You add your own token to the array of existing 
tokens, and then you set the property with the expanded array. You can see this 
in the following macro, which adds a high-priority SECURITY token to the list of 
comment tokens: 

Sub AddSecurityToken() 
Dim tokens As Object() 
Dim token As String 
Dim prop As EnvDTE.Property 
Dim props As EnvDTE.Properties 
'Find the property holding the known tokens 
props = DTE.PropertiesC"Environment", "Tasklist") 
prop = props.ItemC"CommentTokens") 
tokens =prop.Value 
Add one to the list of known tokens to hold 
' the new SECURITY token 
ReDim Preserve tokens(tokens.Length) 
'Add the new token 
tokens(tokens.Length - 1) = "SECURITY:3" 
'Set the list of known tokens 
prop.Value= tokens 

End Sub 

To delete a token, you run similar code, but instead of adding an element 
to the array you remove an element: 

Sub RemoveSecurityToken() 
Dim tokens As Object() 
Dim newTokens As Object() 
Dim token As String 
Dim i As Integer = 0 
Dim found As Boolean= False 
Dim prop As EnvDTE.Property 
Dim props As EnvDTE.Properties 
props = DTE.Properties("Environment", "Tasklist") 



Chapter 10 Programming the User Interface 315 

prop= props.Item("CommentTokens") 
tokens= prop.Value 
'Don't want to shrink the array if 

the token is not available 
For Each token In tokens 

Next 

If token = "SECURITY:3" Then 
found = True 
Exit For 

End If 

'If the SECURITY token was not found, then 
' there is nothing to remove so we can exit 
If found= False Then 

Exit Sub 
End If 
'Resize the newTokens array 
ReDim newTokens(tokens.Length - 2) 
'Copy the list of tokens into the newTokens array 
' skipping the SECURITY token 
For Each token In tokens 

Next 

If token <> "SECURITY:3" Then 
newTokens(i) =token 
i = i + 1 

End If 

'Set the list of tokens 
prop.Value= newTokens 

End Sub 

If your add-in generates code to place in the text buffer and you want to 
insert a comment token that gives the user additional information about how to 
modify the code, you can use the TaskList.DefaultCommentToken property to 
find which token to insert. The following code creates a string containing a 
class, with the default comment token directing the user to where to insert 
code: 

Sub InsertTLTokenCode() 
Dim classString As String 
Dim tasklist As EnvDTE.Tasklist 
tasklist = DTE.Windows.Item(Constants.vsWindowKindTaskList).Object 
classString "Public Class AClass" + Chr(13) 
classString classString + Chr(9) + "'" + tasklist.DefaultCommentToken 
classString classString + ": Insert your code here" + Chr(13) 
classString classString + "End Class" 

End Sub 



316 Part II Extending Visual Studio .NET 

The Output Window 
The Output window is where Visual Studio .NET displays text information gen
erated by tools such as compilers or the debugger. The Output window is also 
a perfect place for any tools you create that generate text information that might 
be useful to the user. In fact, throughout this book the sample macros and add
ins use the class library OutputWindowPaneEx to display text in the Output 
window as these samples do their work. 

The object behind the Output window is called OutputWindow, and you 
can find this object using code such as this: 

Sub FindOutputWindow() 
Dim window As EnvDTE.Window 
Dim outputWindow As EnvDTE.OutputWindow 
window= DTE.Windows.Item(EnvDTE.Constants.vsWindowKindOutput) 
outputWindow = CType(window.Object, EnvDTE.OutputWindow) 

End Sub 

Output Window Panes 
The user interface of the Output window consists of a number of view ports, or 
panes, each of which displays text. You can switch between these panes by 
selecting a pane by name from the drop-down list at the top of the Output win
dow. You can enumerate the panes using the OutputWindowPanes object, as 
shown here: 

Sub EnumOutputWindowPanes() 
Dim window As EnvDTE.Window 
Dim outputWindow As EnvDTE.OutputWindow 
Dim outputWindowPanes As EnvDTE.OutputWindowPanes 
Dim outputWindowPane As EnvDTE.OutputWindowPane 
'Find the OutputWindow object 
window= DTE.Windows.Item(EnvDTE.Constants.vsWindowKindOutput) 
outputWindow = CType(window.Object, EnvDTE.OutputWindow) 
'Retrieve the OutputWindowPanes object 
outputWindowPanes = outputWindow.OutputWindowPanes 
'Enumerate each OutputWindowPane 
For Each outputWindowPane In outputWindowPanes 

MsgBox(outputWindowPane.Name) 
Next 

End Sub 

You can also use the OutputWindowPanes object to create new panes. 
The method Add takes as its only argument the name of the new pane to create: 



Sub CreateOutputW1ndowPane() 
Dim window As EnvDTE.Window 

Chapter 10 Programming the User Interface 317 

Dim outputWindow As EnvDTE.OutputWindow 
Dim outputWindowPanes As EnvDTE.OutputWindowPanes 
Dim outputWindowPane As EnvDTE.OutputWindowPane 
'Find the OutputWindow object 
window= DTE.Windows.Item(EnvDTE.Constants.vsWindowKindOutput) 
outputWindow = CType(window.Object, EnvDTE.OutputWindow) 
'Retrieve the OutputWindowPanes object 
outputWindowPanes = outputWindow.OutputWindowPanes 
'Add a new pane: 
outputWindowPane = outputWindowPanes.Add("My New Pane") 

End Sub 

This macro creates a new output window pane named My New Pane 
that's ready to be filled with the text output of your add-in or macro code. You 
can inject code into this window using the OutputWindowPane.OutputString 
method, which takes a string that's appended to the end of other text in the 
appropriate pane. As strings are placed into the Output window pane, they're 
injected without a line break between them; this means that if a new line char
acter needs to be placed between each string, you must write the code to do 
this. The following macro sample displays the contents of the folder containing 
the solution file that's currently open; as each file path is displayed in the Out
put window pane, a line break (or ASCII value 13) is inserted: 

Sub DisplaySolutionDirectory() 
Dim files As String() 
Dim file As String 
Dim directoryOutputWindowPane As OutputWindowPane 
Dim fullName As String 
Dim outputWindow As OutputWindow 
outputWindow = DTE.Windows.Item(Constants.vsWindowKindOutputl.Object 

'Find the folder the solution is in, as well as the files that are 
' in that folder: 
fullName = System.IO.Path.GetDirectoryName(DTE.Solution.FullName) 
files = System.IO.Directory.GetFiles(fullName) 

'Try to find a "Solution Directory" pane, if one does not exist, 
' create it: 
With outputWindow.OutputWindowPanes 

Try 
directoryOutputWindowPane = .Item("Solution Directory") 
'Show the pane: 
directoryOutputWindowPane.Activate() 

Catch 
directoryOutputWindowPane = .Add("Solution Directory") 



318 Part II Extending Visual Studio .NET 

End Try 
End With 
'Clear the pane: 
directoryOutputWindowPane.Clear() 
For Each file In files 

Next 
End Sub 

'Display the file path, with a line break between each line 
directoryOutputWindowPane.OutputString(file + Chr(13)) 

This macro demonstrates the use of a few methods and properties of the 
OutputWindowPane object. The Activate method makes sure the pane corre
sponding to the instance of the OutputWindowPane that it's being called on is 
the same pane displayed to the user; it simulates selecting that pane from the 
drop-down list in the Output window. OutputString dumps a string into the 
pane, and Clear removes all text from that pane. Another property, TextDocu
ment, which isn't shown in this macro, deserves special note. It returns an 
EnvDTE. TextDocument object for the pane that's read-only-you can retrieve 
the contents of this window, but not change it. (You can only use OutputString 
to modify the contents.) We'll discuss this object in further detail in the next 
chapter. 

The Forms Designer Window 
You visually create the user interface for your .NET Framework program in the 
Visual Studio .NET Forms designer. By simply dragging and dropping controls 
from the Toolbox onto a form and setting a few properties in the Properties 
window, you can build the user interface for your program. The Forms designer 
was built with .NET components and uses the System. Windows.Forms assembly 
to display and create the form. Because the System. Windows.Forms assembly is 
used, programming a form in the designer is similar to programming a form as 
it executes at run time. 

The /DesignerHost Interface 
A Forms designer window exposes an object model, as many of the other 
windows do. The object hierarchy returned from calling the Window.Object 
property of a Forms designer window is of type System.Component
Model.Design.!DesignerHost. To examine and modify a form within the 
designer, you must find the System. Windows.Forms.Control object for that 
form. You can do this by calling the IDesignerHost.RootComponent property 



Chapter 10 Programming the User Interface 319 

and casting the object returned into a Forms.Control object, as shown in this 
code snippet: 

System.Windows.Forms.Control control; 
System.ComponentModel .Design.IDesignerHost designerHost; 
designerHost =(System.ComponentModel .Design.IDesignerHost) 

applicationObject.ActiveWindow.Object; 
control = (System.Windows.Forms.Control )designerHost.RootComponent; 

The System. Windows.Forms.Form class derives from the Sys
tem. Windows.Forms.Control class. The code shown here demon
strates how to manipulate a user control, but you can use the same 
unmodified code to program a Windows Form. 

Using the System. Windows.Forms.Control object, you can connect events 
to determine when the form was modified, to find and modify properties such 
as the dimensions of the form, and place, modify, and remove controls n the 
form. 

Marshaling 
If you try to use the IDesignerHost interface from within a macro, a Sys
tem.Runtime.Remoting.RemotingException exception is thrown. This is because 
user interface elements, such as the System. Windows.Control object, cannot be 
remoted across process boundaries. Remember that the Macros IDE runs in a 
process separate from the Visual Studio .NET process. Because of this restric
tion, the designer object model can be used only within an add-in and not from 
a macro. 

Adding Controls to a Form 
Once you find the IDesignerHost interface for a Forms designer, you can easily 
add new controls to the form. To add a control, you need the System. Type 
object that describes the control. You can find this object using the Type.Get
Type static method, which is passed the full class name of a control. For exam
ple, to add a list view control to a form, you can use code such as this: 

System.Type type; 
type= System.Type.GetType("System.Windows.Forms.ListView"); 



320 Part II Extending Visual Studio .NET 

You can then pass this Type object to the IDesignerHost.CreateComponent 
method to create the control. This method has two overloads, the first of which 
takes two parameters. The first parameter is the Type object we just found, and 
the second parameter is the variable name of the control we want to create. 
This variable name must be unique among variables contained within the 
form's class; otherwise, a name collision will occur and an exception will be 
generated. The second overload of this method takes as an argument only the 
Type object; the Forms designer examines the form code to find a unique vari
able name to use. Both of these overloads emit the appropriate code to instan
tiate a control of the specified type. The following code creates a list view 
control with the variable name list ViewControl: 

System.ComponentModel .!Component component; 
component= designerHost.CreateComponent(type, "listViewControl"l; 

If you were to add this code to an add-in and execute it, you wouldn't see 
the control appear on the form. This is because the control, while instantiated, 
hasn't been parented to the form and added to the form's Controls collection. 
To add the control to the form's Controls collection, you must set the Parent 
property of the control to the form that should contain the control. You can set 
the Parent property (or any property of a control, for that matter) using the Sys
tem.ComponentModel.PropertyDescriptorCollection object. This object contains 
a collection of properties available for a control; as values are set for the prop
erties they contain, code is generated within the form's class that corresponds to 
the property you set. You can set the Parent property as follows: 

System.ComponentModel .PropertyDescriptorCollection props; 
System.ComponentModel .PropertyDescriptor propParent; 
//Find the properties for the listViewControl control: 
props = System.ComponentModel .TypeDescriptor.GetProperties(component); 
//Get the Parent property 
propParent = props["Parent"J; 
//Set the Parent property to the form: 
prep Pa rent. Set Va 1 ue ( newCont re 1 , des i gne rHos t. RootComponent) ; 

Finding Existing Controls 
You now know how to create controls and place them on a form. But how do 
you find existing controls on a form? As mentioned earlier, the IDesigner
Host.RootComponent property returns an object that can be cast into a Sys
tem. Windows.Forms.Control object. Using this object, you can call methods and 
properties just as you would at run time to find information about a form. For 
example, the following code walks the list of controls contained in a Sys
tem. Windows.Forms.Control object: 



Chapter 10 Programming the User Interface 321 

System.ComponentModel .Design.!DesignerHost designer; 
System.Windows.Forms.Control rootControl; 

//Set the designer variable here from the Window.Object property 

rootControl = (System.Windows.Forms.Control)designer.RootComponent 
foreach (System.Windows.Forms.Control control in rootControl .Controls) 
( 

//Retrieve desired control information 

You can use the PropertyDescriptorCollection object to find properties of a 
control much as you would to set properties on the form, except you use the 
Property Descriptor. Get Value method: 

System.ComponentModel .Design. IDesignerHost designer; 
System.ComponentModel .PropertyDescriptor propControls; 
System.ComponentModel .PropertyDescriptorCollection props; 
System.ComponentModel .!Component component; 
System.Windows.Forms.Form form; 
System.Drawing.Size size; 
designer= (System.ComponentModel .Design.IDesignerHost) applicationObject.Activ 
eWindow.Object; 
component = designer.RootComponent; 

//Get the Size property using the forms designer: 
props = System.ComponentModel .TypeDescriptor.GetProperties(component); 
propControls = props["Size"J; 
size= (System.Drawing.Size)propControls.GetValue(component); 

//Get the Size property directly from the form: 
form (System.Windows.Forms.Form)component; 
size = form.Size; 

A Form Layout Sample 
Visual Basic 6 and earlier has a tool window called Form Layout that shows the 
size of a form being designed as it would appear on the desktop of your com
puter. Visual Studio .NET doesn't have this feature, but you can easily add it 
using the automation model of the Forms designer. You can find the source 
code for this sample, called FormView, among the book's sample files. 

When the add-in starts, it creates a tool window that draws a virtual mon
itor representing your computer monitor. The screen of the virtual monitor 
matches the display resolution of your monitor. (If your computer uses multiple 
monitors, the resolution of the primary monitor is used.) After connecting to the 
WindowActivated event, it waits for a Forms designer window to become 



322 Part II Extending Visual Studio .NET 

active, and then it looks at the available controls in the form and draws the form 
and its controls on the virtual screen. For example, if you create a form that has 
the calendar and button controls on it, as shown in Figure 10-4, the Forms 
designer window, shown in Figure 10-5, appears. 

Figure 10-4 A Windows Form with a calendar control and a button 
control 

Figure 10-5 The Form Layout window showing the form from Figure 10-4 

Creating Custom Tool Windows 
As you know, most of the windows in Visual Studio .NET have an object model 
that you can use to program the contents and present data that your code gen
erates. However, at times you might need to display data in a way that the exist
ing tool windows cannot handle. To allow you to display data in a way that is 



Chapter 10 Programming the User Interface 323 

most suitable for your add-in, the Visual Studio .NET object model allows cre
ation of custom tool windows. 

To create a tool window, all you need is an ActiveX control and an add
in that makes a call to the Windows.CreateToolWindow method. CreateTool
Window has the following method signature: 

public EnvDTE.Window CreateToolWindow(EnvDTE.Addln Addlnlnst, 
string ProgID, 
string Caption, 
string GuidPosition, 
ref object DocObj) 

This method returns a Window object that behaves like any tool window that 
Visual Studio .NET creates. Here are the arguments for this method: 

• Addlnlnst An add-in object that's the sponsor of the tool window. 
When the sponsor add-in is unloaded, all tool windows associated 
with that add-in are automatically closed and the ActiveX control is 
unloaded. 

• ProgID The ProgID of the ActiveX control that's hosted on the 
newly created tool window. 

• Caption The text to show in the title bar of the new tool window. 

• GuidPosition A GUID in string format. As you'll recall, the Win
dows.Item method can be indexed by a GUID, and that GUID 
uniquely identifies a specific window. The GUID assigned to your 
tool window and the GUID passed to the Windows.Item method are 
set using this parameter. This GUID must be different from the GUID 
used by other tool windows; if you call CreateToolWindow multiple 
times, you must use a different GUID for each window. 

• DocObject Most ActiveX controls have a programmable object in 
the form of a COM !Dispatch interface, which is mapped to a Sys
tem. Object when you're using the .NET Framework. The program
mable object of the ActiveX control is passed back to the caller 
through this parameter, which allows you to program the control as 
you would any other tool window. You can also retrieve the pro
grammable object of the ActiveX control by calling the Object prop
erty of the Window object for the tool window that's created using 
the CreateToolWindow method. 

To demonstrate using the CreateToolWindow method, the samples that 
accompany this book include an add-in project called VSMediaPlayer. This 



324 Part II Extending Visual Studio .NET 

sample creates a tool window using Windows Media Player as the ActiveX con
trol and then, by using the programmable object of the control, plays an audio 
file. The code that does the work of creating the tool window looks like this: 

void CreateMediaPlayerToolWindow() 
{ 

EnvDTE.Windows windows; 
EnvDTE.Window mediaPlayerWindow; 
object controlObject =null; 
string mediaPlayerProgID = "MediaPlayer.MediaPlayer"; 
string toolWindowCaption = "Windows Media Player"; 
string toolWindowGuid = "{AB5E549E-F823-44BB-8161-BE2BD5D698D8}"; 

//Create and show a tool window that hosts the 
II Windows Media Player control: 
windows = applicationObject.Windows; 
mediaPlayerWindow = windows.CreateToolWindow(addininstance, 

mediaPlayerProgID, 
toolWindowCaption, 
toolWindowGuid, 
ref controlObject); 

mediaPlayerWindow.Visible =true; 

//Play the Windows "Tada" sound: 
//Can only get the system directory (Eg: C:\windows\system32). 
II need to change this to the Windows install dir 
string mediaFile = System.Environment.GetFolderPath( 

System.Environment.Special Folder.System); 
mediaFile += "\\ .. \\media\\tada.wav"; 
MediaPlayer.IMediaPlayer2 mediaPlayer = 

(MediaPlayer.IMediaPlayer2)controlObject; 
mediaPlayer.AutoStart =true; 
mediaPlayer.FileName = mediaFile; 

The CreateMediaPlayerToolWindow method is called in two places in the 
sample add-in-once in the OnConnection method and once in the OnStartup
Complete method. It must be called twice because of the way add-ins are 
loaded by Visual Studio .NET. If an add-in is set to load on startup, when Visual 
Studio .NET starts, the add-in starts loading. This loading process includes call
ing the OnConnection method. But the OnConnection method is called just 
before the Visual Studio .NET main window is created and shown. If you call 
the CreateToolWindow method within OnConnection before the main window 
is shown, creating the tool window will fail because creating an ActiveX control 
requires its parent window to be visible. You can check to make sure that the 
main window has been created by examining the connectMode argument 



Chapter 10 Programming the User Interface 325 

passed to the OnConnection method. If this is set to ext_cm_AfterStartup, the 
add-in was loaded through the Add-in Manager or by means other than the load 
on startup flag being set and Visual Studio .NET being started. Therefore, the 
tool window can be shown when an add-in is loaded using an OnConnection 
implementation such as this: 

public void OnConnection(object application, 
Extensibility.ext_ConnectMode connectMode, object addininst, 
ref System.Array custom) 

applicationObject = (_DTE)application; 
addininstance = (Addin)addininst; 

//If the add-in is loaded from the Add-in Manager dialog, then 
II create and show the tool window: 
if(connectMode == Extensibility.ext_ConnectMode.ext_cm_AfterStartup) 
{ 

CreateMediaPlayerToolWindow(); 

If the load on startup flag is set and you want to show the tool window 
when an add-in is loaded, you can create the window in the OnStartupCom
plete method. This method is called when initialization of Visual Studio .NET is 
complete, which includes creating and showing the main window. It's as simple 
as this code snippet: 

public void OnStartupComplete(ref System.Array custom) 
{ 

//If the add-in is loaded at startup, then 
II create and show the tool window: 
CreateMediaPlayerToolWindow(); 

The CreateToo!Window method can be a powerful aid in creating an add
in' s user interface, but it does add one complication. As mentioned earlier, 
when a tool window is created, an ActiveX control is instantiated and hosted 
within the new window; but ActiveX controls cannot be created using the .NET 
Framework. To allow use of a .NET user control within a tool window, you 
need a shim control. 

Shim Controls 
To enable hosting of a .NET Framework user control in a tool window, you can 
use a specialized ActiveX control called a shim control. A shim control is simply 
an ActiveX control written in an unmanaged language (such as Visual C++) that 



326 Part II Extending Visual Studio .NET 

creates an instance of the .NET common language runtime (CLR). Using a small 
amount of code, you can direct the instance of the CLR to create the user con
trol to display in the tool window and then parent the control onto the shim 
ActiveX control. You can add new user controls to an existing project by choos
ing Project I Add User Control, or you can create a new Windows Control 
Library project, which will create a user control object. 

The book's sample files include an implementation of a shim control 
called VSUserControlHost and a sample that uses the shim control, CSHosted
Control. To create and host an instance of a user control on a tool window, two 
steps are needed. First, to host the shim ActiveX control in a tool window, you 
call the CreateToolWindow method, supplying the ProgID of the shim, as 
shown in this line of code taken from the CSHostedControl sample: 

toolWindow = applicationObject.Windows.CreateToolWindow(addininstance, 
"VSUserControlHost.VSUserControlHostCtl", "C# Hosted Control", 
"{C4E8F504-E3FB-4828-82F4-DDD1CAE13D39}", ref obj); 

The next step is to tell the shim control where the Windows control can be 
found and the name of the class that implements the control. You do this 
through the VSUserControlHostLib.IVSUserControlHostCtl interface, which you 
can obtain by casting the programmatic object of the shim control: 

shimControl = 

(VSUserControlHostlib.IVSUserControlHostCtl )toolWindow.Object; 

The IVSUserControlHostCtl interface has four methods that you can call to 
pass the control's location and class name as well as other bits of information. 
Here's the signature of the interface: 

System.Object HostUserControl(System.String Assembly, System.String Class); 
System.Object HostUserControl2(System.Int32 HWnd); 

Each of these methods returns the programmable object of the .NET control 
that's hosted by the shim control. The arguments passed to these methods are 
as follows: 

• Assembly The location of the assembly that contains the control 
that is to be hosted. This location can be in one of three formats. The 
first is the full path to the assembly of the user control, such as 
C:\Assembly.dll. The second format is the URL of an assembly 
located on a Web server, such as http://localhost/Assembly.dll. The 
third format is the full name of an assembly located within the GAC, 
such as System. Windows.Forms, Version= 1.0.5000.0, Culture=neu
tral, PublicKeyToken=b77a5c561934e089, Custom=null for the 
assembly implementing the System. Windows.Forms namespace. 



Chapter 10 Programming the User Interface 327 

• Class The full name of the class that implements the control that is 
to be hosted. If the assembly location is the full name of the Sys
tem. Windows.Form assembly, as given above, and the name of the 
class is System. Windows.Forms.Button, an instance of the Windows 
Forms Button object is created and hosted in the tool window. 

• HWnd The handle of a .NET control that is to be hosted within 
the shim control. Using this form of hosting a control is useful if the 
control has already been created or if the control code is located in 
the same assembly as the add-in calling CreateToolWindow 
because you can create the control and pass its window handle 
rather than passing information such as the location of the assem
bly and the class name. 

Add-in developers commonly add a user control class to an add-in and 
then place that control on a tool window. You can do this using the shim con
trol in two ways. The first way is to find the location of the assembly that imple
ments the add-in and pass this as the first parameter to the HostUserControl 
method, as shown here: 

VSUserControlHostlib.IVSUserControlHostCtl shimControl; 
string assemblyPath; 
EnvDTE.Window toolWindow; 
object obj= null; 
toolWindow = applicationObject.Windows.CreateToolWindow(addininstance, 

"VSUserControlHost.VSUserControlHostCtl", "Hosted Control", 
"{A71654EC-A72E-40cf-9CD6-63FA3C52C307}", ref obj); 

toolWindow.Visible =true; 
shimControl = 

CVSUserControlHostLib.IVSUserControlHostCtl)toolWindow.Object; 
assemblyPath = System.Reflection.Assembly.GetExecutingAssembly().Location; 
shimControl .HostUserControl(assemblyPath, "MyAddinl.UserControll"l; 

The second way is to instantiate the control directly and pass the control's win
dow handle to the HostUserContro/2 method: 

VSUserControlHostlib.IVSUserControlHostCtl shimControl; 
string assemblyPath; 
EnvDTE.Window toolWindow; 
object obj= null; 
toolWindow = applicationObject.Windows.CreateToolWindow(addininstance, 

"VSUserControlHost.VSUserControlHostCtl", "Hosted Control", 
"{A71654EC-A72E-40cf-9CD6-63FA3C52C307}", ref obj); 

toolWindow.Visible =true; 
shimControl = 

(VSUserControlHostlib.IVSUserControlHostCtlltoolWindow.Object; 
assemblyPath = System.Reflection.Assembly.GetExecutingAssembly().Location; 
UserControll uc =new UserControll(); 
shimControl .HostUserControl3(uc.Handle.Toint32()); 



328 Part II Extending Visual Studio .NET 

Lab: Setting Up a Web Server to Host a User Control for a 
Tool Window 
The HostUserControl method of the shim control takes as its first argument 
the full path to a .NET Framework user control on disk, the full name of 
an assembly in the computer's GAC, or a URL to a control that's on a Web 
server. If you put a user control for a tool window on a Web server, you 
can modify the control to provide new functionality and bug fixes to the 
user, but the user must connect to the Internet to download the control. If 
the user isn't connected to the Internet or if your Web server is down 
when a request for the control is made and the c;ontrol has previously 
been downloaded, the control is loaded from the computer's download 
cache. 

You can use the Microsoft Internet Information Services (IIS) Web 
server running on your computer as a test server. To set up your project to 
place your user control on the Web server, simply right-click on the 
project for the user control you want to place on a tool window and 
choose Properties to display the Property Pages dialog box for that 
project. Select the Configuration Properties I Build node, change the Con
figuration drop-down list selection to All Configurations, and then enter 
the path to your IIS Web server directory (usually C:\Inetpub\wwwroot) 
as the Output Path property. To cause the shim control to load your con
trol from the Web server, change the path to the control from a location on 
disk or the name of an assembly on disk to http://localhost/ assem
blyname.dll. 

You should keep a few things in mind when you load a control from 
a Web server. First, any assemblies that the control references, except ones 
within the GAC of the computer that load the control, must be placed in 
the same folder on the Web server so the .NET Framework loader can find 
those references. Second, you can't program the object exposed through 
the control unless you use the Type.InvokeMember method. This is 
because of the way the .NET Framework resolves types when methods 
and properties are invoked. Third, before giving your add-in to a user, you 
must copy the user control to a server that the user can access and change 
the URL passed to the HostUserControl method to poil)t to that server. 



Chapter 10 Programming the User Interface 329 

Setting the Tab Picture of a Custom Tool Window 
When two or more tool windows are tab-linked together, an image is displayed 
so the user can quickly recognize the tool windows that are linked together. 
Figure 10-6 shows the Macro Explorer, Solution Explorer, and Properties win
dows docked to one another. 

Figure 10-6 The pictures displayed on the tabs of the Macro Explorer, 
Solution Explorer and Properties windows 

To set the tab picture for a tool window that's created by an add-in, you 
use the Window.SetTabPicture method. SetTabPicture takes as its argument a 
COM IPictureDisp type, which is mapped to the .NET Framework as a Sys
tem.Object type. To create an IPictureDisp object, you can use the same tech
nique described earlier of calling the OleLoadPictureFile method and then 
passing the returned IPictureDisp object to the SetTabPicture method. 

The bitmap to place onto a tool window tab must have a specific format, 
and any deviation from this format can cause the bitmap to appear with incor
rect colors or not appear at all. This bitmap must be 16 by 16 pixels, with a 
color depth of 16. If any portion of the bitmap is to show as transparent, the 
transparent pixels must have the RGB value 0,254,0. The format for this bitmap 
is the same format used for displaying custom pictures on command bar but
tons (as discussed in Chapter 7); a bitmap can be shared for these two uses. 

You can call the Window.SetTabPicture method only on a tool window 
created using the Windows.CreateToolWindow method. Windows defined by 
Visual Studio .NET already have their bitmaps set; if you try to change them, an 
exception will be generated. If you want to set the bitmap for your own tool 
window, you should set it before setting the Visible property of your window to 
true; otherwise, the picture might not be displayed immediately. Lastly, if a cus
tom picture is not set, Visual Studio uses a default picture-the Visual Studio 
.NET logo. 

Setting the Selection Object 
As you select different windows in Visual Studio .NET, you see the Properties 
window update itself with properties available for those windows. For exam
ple, if you select a file in Solution Explorer, a set of properties is made avail
able-such as the file path, when the file was modified, or how the file should 
be built. When you create a tool window, you might also want to have proper
ties for your tool window appear in the Properties window. You set items to 
appear in the Properties window using the Window.SetSelectionContainer 



330 Part II Extending Visual Studio .NET 

method, which takes as a parameter an array of type System.Object. These items 
are displayed in the Properties window when the window that has this method 
called on it becomes the active window. The sample VSMediaPlayerAdv, an 
extension to the VSMediaPlayer sample, displays a property set in the Proper
ties window by calling the SetSelectionContainer method with the programma
ble object of Windows Media Player, which was returned through the DocObj 
parameter of the CreateToolWindow method. This portion of code shows how 
this is done: 

object [JpropertiesWindowObjects = {mediaPlayer}; 
mediaPlayerWindow.SetSelectionContainer(ref propertiesWindowObjects); 

You can call the SetSelectionContainer method only on tool windows that 
you create. If you call this method on a Window object for, say, the Solution 
Explorer tool window, an exception will be generated. 

The Options Dialog Box 
Developers can be a finicky bunch-they want Visual Studio .NET to work the 
way they want down to the finest detail; if even one option is set up in a way 
they didn't expect, they can become quite unproductive. The Options dialog 
box is full of options that you configure-everything from how many spaces 
are inserted when the Tab key is pressed in the text editor to whether the status 
bar is shown along the bottom of the main window of Visual Studio .NET. 

Changing Existing Settings 
Many settings in the Options dialog box can be controlled through the automa
tion model using the Properties and Property objects. To find a Properties col
lection, you must first calculate the category and subcategory of the settings you 
want to modify. On the left side of the dialog box is a tree view control that's 
rarely more than two levels deep. The top-level nodes in this tree, such as Envi
ronment, Source Control, and Text Editor, are the categories of options you can 
manipulate. Each category contains a group of related Options pages, each con
taining a number of controls you can manipulate to customize your program
ming environment. The subitem nodes are the subcategories of the Options 
dialog box; if you select one of these nodes, the right side of the Options dialog 
box changes to show the options for that category and subcategory. The cate
gory and subcategory used to find a Properties collection are based on the cat
egory and subcategory displayed in the Options dialog box user interface, but 
their names might be slightly different from the category and subcategory 
names. To find the list of categories and subcategories, you must use the Reg-



Chapter 1 O Programming the User Interface 331 

istry Editor. First, you find the item in the Options dialog box that you want to 
edit. For·our example, we'll modify the tab indent size of the Visual Basic .NET 
source code editor, which is found on the page of the Text Editor category and 
Basic subcategory. 

The Text Editor category is a bit different from other categories 
in the Options dialog box in that it has three levels, with the third level 
being a sub-subcategory. However, in the automation model, the Gen
eral and Tabs sub-subcategories are combined into one and have the 
same name as the programming language. 

After running regedit.exe, you must navigate the key HKEY_LOCAL_ 
MACHINE\SOFTWARE\Microsojt\ VisualStudio \ 7.1\AutomationP properties. 
Underneath this key is a list of all the property categories accessible to a macro 
or an add-in. We're looking for the Text Editor category-the key whose name 
most closely matches this category name in the user interface is TextEditor 
(without a space). After expanding this item in the Registry Editor, you'll see list 
of subcategories; one of those subcategories, Basic, matches the subcategory 
displayed in the user interface of the Tools Options dialog box, so this is the 
subcategory we'll use. 

Now that we've found the automation category and subcategory TextEdi
tor and Basic, we can plug these values into the DTE.Properties property to 
retrieve the Properties collection: 

Sub GetVBTextEditorProperties() 
Dim properties As Properties 
properties = DTE.Properties("TextEditor", "Basic") 

End Sub 

The last step in retrieving a Property object is to call the Item method of 
the Properties collection. The Item method accepts as an argument the name of 
the property, but this name is not stored anywhere except within the object 
model. Remember that the Properties object is a collection, and like all other 
collection objects it can be enumerated to find the objects it contains and the 
names of those objects. You can use the following macro to examine the names 
of what will be passed to the Properties.Item method. The macro walks all the 
categories and subcategories listed in the registry and then uses the enumerator 
of the Properties collection to find the name of Property object contained in that 
collection. Each of these category, subcategory, and property names are then 
inserted into a text file that the macro creates: 



332 Part II Extending Visual Studio .NET 

Sub WalkPropertyNames() 
Dim categoryName As String 
Dim key As Microsoft.Win32.RegistryKey 
Dim newDocument As Document 
Dim selection As TextSelection 
'Open a new document to store the information 
newDocument = DTE.ItemOperations.NewFile("General\Text File").Document 
selection = newDocument.Selection 
'Open the registry key that holds the list of categories: 
key= Microsoft.Win32.Registry.Loca1Machine 
key= key.OpenSubKey( _ 

"SOFTWARE\Microsoft\VisualStudio\7.1\AutomationProperties") 
'Enumerate the categories: 
For Each categoryName In key.GetSubKeyNames() 

Dim subcategoryName As String 
selection.Insert(categoryName + vblf) 
'Enumerate the subcategories: 

Next 
End Sub 

For Each subcategoryName In _ 
key.OpenSubKey(categoryName).GetSubKeyNames() 
Dim properties As Properties 

Next 

Dim prop As [Property] 
selection.Insert(" "+ subcategoryName + vblf) 
Try 

'Enumerate each property: 
properties = DTE.Properties(categoryName, subcategoryName) 
For Each prop In properties 

selection.Insert(" 
Next 

Catch 
End Try 

" + prop.Name + vblf) 

Using the output from this macro, we can find the TextEditor category and 
the Basic subcategory and then look in the Options dialog box for something 
that looks like the name Tab Size. The closest match is TabSize. Using this 
name, we can find the Property object for the Visual Basic .NET text editor Tab 
Size: 

Sub GetVBTabSizeProperty() 
Dim properties As Properties 
Dim prop As [Property] 
properties = DTE.Properties("TextEditor", "Basic") 
prop= properties.Item("TabSize") 

End Sub 

Now all that's left to do is retrieve the value of this property using the 
Property. Value property: 



Chapter 1 O Programming the User Interface 333 

Sub GetVBTabSize() 
Dim properties As Properties 
properties = DTE.Properties("TextEditor", "Basic") 
MsgBox(properties.Item("TabSize").Value) 

End Sub 

This macro displays the value 4, which is the same value in the Tools 
Options dialog box for the Tab Size option of the Basic subcategory of the Text 
Editor category. You set this value the same way you retrieve the value, except 
the Value property is written to rather than read: 

Sub SetVBTabSize() 
Dim properties As Properties 
properties = DTE.Properties("TextEditor", "Basic") 
properties.Item("TabSize").Value = 4 

End Sub 

By simply changing the category and subcategories passed to the 
DTE.Properties property and looking at the list of property names generated by 
the WalkPropertyNames macro, you can modify many of the options shown in 
the Tools Options dialog box. 

Is It What It Says It Is? 
When you use the Visual Studio .NET object model, you might use the 
Visual Basic .NET Is operator or the .NET Framework Object.Equals 
method to try to determine whether two objects are the same. But the Is 
operator and the Equals method might not always return what you expect 
because of how the Visual Studio .NET object model was built. If you run 
a macro such as this 

Sub CompareWindowsObjects() 
Dim windowl As Window 
Dim window2 As Window 
windowl = DTE.Windows.Item(Constants.vsWindowKindTaskList) 
window2 = DTE.Windows.Item(Constants.vsWindowKindTaskList) 
MsgBox(windowl Is window2) 

End Sub 

a message box with the value True is displayed. When you ask for a Win
dow object, the object model checks to see whether a Window object has 
been created for the specific window; if not, a new Window object is con
structed and returned to the calling code. If a Window object has already 
been created, that object is recycled and returned to the caller. This is both 



334 Part II Extending Visual Studio .NET 

a performance and memory consumption optimization because new 
objects are not unnecessarily created (which consumes memory) and ini
tialized (which consumes processor time). But if you run code such as this 

Sub ComparePropertyObjects() 
Dim propsl As Properties 
Dim props2 As Properties 
propsl = DTE.Properties("Environment", "General") 
props2 = DTE.Properties("Environment", "General") 
MsgBox(propsl Is props2) 

End Sub 

the message box displays False because the Properties collection must be 
reconstructed each time you call the DTE.Properties property to be sure it 
has the most up-to-date information. 

Calling the DTE.Properties property multiple times can cause huge 
memory consumption problems. Suppose you call the DTE.Properties 
property repeatedly in a tight loop; every time the property is called, a new 
Properties collection is created, initialized, and then returned to the calling 
code. This object consumes memory for the COM object that Visual Studio 
.NET creates, and if you're using a programming language supported by 
the .NET Framework, a .NET wrapper class that allows you to program this 
object is constructed. You can see the memory consumption grow almost 
boundlessly if you run the following macro and watch the vsmsvr.exe pro
cess (the process that hosts the instance of the .NET Framework and runs 
macro code) on the Processes tab of Windows Task Manager: 

Sub RepeatedConstruct() 
Dim i As Long 

Dim props As Properties 
For i = 1 To Long.MaxValue 

Next 
End Sub 

props = DTE.Properties("Environment", "General") 

When you run this macro, the loop never allows a garbage collection 
to occur because the .NET Framework is focused on running your code, 
not searching and removing unused objects. To make sure your program 
doesn't waste more memory than it should, you should be sure you're not 
creating more objects than necessary by using the ls operator or the 
Object.Equals method and optimizing accordingly. For example, you can 
rewrite the RepeatedConstrnct macro as follows and avoid system memory 
stress by simply moving the call to DTE.Properties outside of the loop: 



Sub OptimizedRepeatedConstruct() 
Dim i As Long 
Dim props As Properties 

Chapter 10 Programming the User Interface 335 

Dim showStatusbar As Boolean 
props = DTE.Properties("Environment", "General") 
For i = 1 To Long.MaxValue 

Next 
End Sub 

showStatusbar = props.Item("ShowStatusBar"l.Value 

An unscientific measurement (consisting of opening up Windows 
Task Manager and noting of the amount of memory consumed before 
and after running the macro) shows that moving the one line outside of 
the loop saves almost 35 MB of memory-something your users will 
appreciate. 

Creating Custom Settings 
Not only can you examine and modify existing settings, but you can also create 
your own options for your add-ins. Creating a page in the Options dialog box 
for your add-in requires an ActiveX control and making modifications to the 
system registry to let Visual Studio .NET know to load your Options page. An 
add-in is also required because Visual Studio .NET uses registry keys located 
under the registry keys for your add-in to find which Options pages are avail
able. When the user opens the Options dialog box, the registry keys for each 
add-in is examined, and if the registry settings for a custom tools options page 
is found, the ActiveX control is instantiated and shown in the Options dialog 
box. 

You can create the registry keys for a Options page by modifying the reg
istry settings of the setup project created when you ran the Add-in Wizard. To 
make the necessary modifications, right-click on the setup project for your add
in in the Solution Explorer tool window and choose View I Registry. The Reg
istry editor window for the setup project will open. Expand the tree view on the 
left side of this window until you find the ProgID key for the add-in you created 
using the wizard, and select that item. If you call the add-in you created using 
the wizard-OptionsAddin-and use all the default options except you select 
the Yes, Create A "Tools" Menu Item option, the left panel of the registry editor 
should look like that in Figure 10-7. 



336 Part II Extending Visual Studio .NET 

OptionsAddin.Connect 

Figure 10-7 The Registry editor of an add-in called OptionsAddin 

To declare an Options page, you must add three registry keys to this 
selected key, each one a child of the previous one added. The first key you cre
ate is called Options. As Visual Studio .NET displays the Options dialog box, 
every add-in's registry keys are examined and if the Options key is present, the 
Options dialog box knows that an add-in might have a Options page associated 
with it. To create the Options key, right-dick on the registry key for the ProgID 
of the add-in, choose New / Key, and then type Options. The next two registry 
keys to create for the tools options are the category and subcategory of the 
Options page. To create the registry keys for the category and subcategory, sim
ply repeat the steps you performed to create the Options key, with the category 
as a child of the Options key and the subcategory as a child of the category key. 
You can name the keys anything you want; the name that you use will be the 
text displayed in the Options dialog box tree. If you were to use the name 
Options Add-in for the category of your page and General for the subcategory, 
the registry editor should appear as shown in Figure 10-8. 

HKEY _LOCAL_MACHINE 

Figure 10-8 The Registry editor of an add-in with the registry keys for 
an Options page 



Chapter 10 Programming the User Interface 337 

The last step in setting up the registry for an Options page is to declare the 
ProgID of the ActiveX control hosted in the Options dialog box when the appro
priate category and subcategory are selected. To do this, select the subcategory 
node in the left side of the registry editor window, right-dick on the right side of 
this window, choose New I String Value, and the type the name Control To set 
this registry key's value, with the value Control selected, look in the Properties 
window and type the ProgID of the ActiveX control into the Value property. We 
haven't yet created the ActiveX control that we'll host, but if you're following 
along with this sample, enter the value OptionsAddinPage. OptionsAddinPageCtl. 
(This is the ProgID of the control that we'll soon create.) 

Creating the ActiveX Control 
When the registry editor of the setup project is populated with the registry keys 
necessary to declare the tools options page, the next step is to create the 
ActiveX control. This step is not as easy as it might seem. When we were trying 
to create a tool window using the Windows.CreateToolWindow method and we 
wanted to use a .NET Framework user control as the user interface for the win
dow, we had to use a shim ActiveX control to host the user control because a 
.NET control is not an ActiveX control. The problem with using a user control 
as a Tools Options page is that, first, it is not an ActiveX control, and second, 
you cannot use the shim control because you need to be able to run code to tell 
the shim where to find the user control. Because Visual Studio .NET creates 
Tools Options pages for you instead of you creating it as you did with a tool 
window, code never has the chance to run to program the shim control. 

For all these reasons, a .NET user control cannot be used as an Options 
page. That leaves the option of using an unmanaged programming language 
that can create ActiveX controls-such as Visual C++. To create this control, you 
first add an ATL project to the project that contains your add-in; for this exam
ple, we'll call it OptionsAddinPage. Next, you implement an ActiveX composite 
control, hook up some additional interfaces, and write additional code to wire 
up the page. Because this is a book about programming Visual Studio .NET, 
we'll use our bag of tricks to create an Options page wizard. This wizard, 
OptionsPageWizard, will generate all the code necessary to create a Tools 
Options page for us. After building the wizard sample and copying the .vsz file 
into the Extensibility Projects folder, as you did in Chapter 9 for the Wizard
Builder sample, you can right-dick on the solution node in Solution Explorer, 
enter the project name OptionsAddin, and then run the wizard to create the 
starter code. The only option this wizard asks for is the ProgID of the add-in 
that the Options page is for so the correct location within the system registry to 
store options can be computed. 



338 Part II Extending Visual Studio .NET 

The IDTToo/sOptionsPage Interface 
An Options page has three stages in its lifetime: creation, interaction, and dis
missal. To allow your page to know about these three stages, you can option
ally implement the IDTI'oolsOptionsPage interface on the ActiveX control of 
your page. This interface has the following signature: 

public interface IDTToolsOptionsPage 
{ 

public void GetProperties(ref object PropertiesObject); 
public void OnAfterCreated(EnvDTE.DTE DTEObject); 
public void OnCancel(); 
public void OnHelp(); 
public void OnOK(); 

When the user first displays the Options dialog box, Visual Studio .NET 
sees in the registry that you've declared a page, and it creates an instance of 
your ActiveX control. If the IDTI'oolsOptionsPage interface is implemented on 
that control, the OnA.fterCreated method is created and is passed the DTE object 
for the instance of Visual Studio .NET that is creating the control. The imple
mentation of this method can perform any initialization steps needed, such as 
reading values from the system registry and using these values to set up the 
user interface of the control. The default page that the OptionsPageWizard gen
erates does this very thing-reading a value from the registry, and if set to acer
tain value, selecting the check box. 

The Options dialog box has three buttons the user can click: OK, Cancel, 
and Help. If the user clicks OK, the IDTI'oolsOptionsPage.OnOK method is 
called, giving your page a chance to store back into the system registry any val
ues that the user might have selected. The code generated by the wizard stores 
the state of the check box into the registry at this time. You should also perform 
any cleanup work in the OnOK method because the Options page is about to 
be dismissed. If the user clicks the Cancel button, the OnCancel method is 
called. No values that the user selected in the page should be persisted, and this 
method is called so you can perform any cleanup necessary because, as when 
the user clicks OK, the Options dialog box is about to be closed. If the user 
clicks Help, the OnHelp method is called, giving your page a chance to display 
any help necessary to the user. Unlike the other buttons, Help doesn't dismiss 
the dialog box, so you shouldn't do any cleanup or store or discard values dur
ing this method call. 

The last method of the IDTI'oolsOptionsPage interface is the GetProperties 
method. This method allows users to retrieve a Properties object for the options 
on your page in the same way they could retrieve a Properties object for other 
Options pages. 



Chapter 1 O Programming the User Interface 339 

Exposing a Property Object 
As you saw earlier, many of the values in the Options dialog box are program
mable through the Properties collection. You can also allow the user to set and 
retrieve the values of your page through the Properties collection using the Get
Properties method. This method returns an !Dispatch interface, which is 
wrapped up into a Properties collection by Visual Studio .NET and handed back 
to the user when the DTE.Properties property is called with the category and 
subcategory of your page. By default, the OptionsPageWizard wizard creates 
one property, called CheckBoxOption, of the !Dispatch interface. It corresponds 
to the check box on the user interface of the control. Using our example of the 
OptionsAddinPage page, you can call to this property using a macro such as 
this: 

Sub GetSetCustomOptions() 
Dim properties As EnvDTE.Properties 
Dim prop As EnvDTE.Property 
'Retrieve the Properties object of our custom page: 
properties = DTE.Properties("Options Add-in", "General") 
prop= properties.Item("CheckBoxOption") 
'Display the options value: 
MsgBox(prop.Value) 
'Change the value, then display the new value: 
prop.Value= True 
MsgBox(prop.Value) 

End Sub 

In your add-in, when you need to retrieve the value of an option, you can 
use code such as that shown in GetSetCustomOptions to find how the add-in 
can act according to the user's preferences. For example, suppose you want to 
add a Tools Options page for the VSMediaPlayer tool window to allow the user 
to set a multimedia file that is played when the window is activated. You can 
use a line of code such as this to find that file path: 

DTE.Properties("VSMediaPlayer", "General").Item("MediaFile").Value 

It's important that you not cache the values you retrieve from a Property object 
because the user might modify these options at any time, and if you did not 
retrieve the value when the window became active, the cached file to play will 
be out-of-date. 



340 Part II Extending Visual Studio .NET 

Looking Ahead 

In this chapter, you learned how you can program many of the windows avail
able in Visual Studio .NET. In the next chapter, we'll show you how to program 
the data in one specific window type: the text editor window. 



Text Editing Objects 
and Events 

Much of what a programmer does during the workday (and worknight) 
involves editing text. In fact, editing text is so much a part of programming that 
many a successful business has been built around creating a better Notepad, 
and the popularity of these editors has grown in direct proportion to the num
ber of mundane tasks that they automate and the extent to which they can be 
customized. As you learned in Chapter 3, Visual Studio .NET boasts a first-class 
code editor, and the automation object model lets you leverage the editor's 
functionality to create all the editing features that would've been included had 
you been in charge at Microsoft. 

Editor Windows 
If you want to edit text in the IDE, you need a document; if you have a docu
ment, you also have an editor window. In Visual Studio .NET, documents and 
editor windows are like Siegfried and Roy-together, they work magic; apart, 
they're just a couple of sequined guys with pet tigers. (OK, we admit the anal
ogy isn't perfect.) The point is that you can't have one without the other, so it 
pays to know a little about editor windows even if editing text in documents is 
your ultimate goal. Figure 11-1 gives a sneak preview of the editor windows of 
interest to us in this chapter. 

341 



342 Part II Extending Visual Studio .NET 

Window Object 
DTE.ActiveWindow 
DTE.Windows.Item("Connect.cs") 

TextWindow Object 
DTE.ActiveWindow.Object 
DTE.Windows.Item 

("Connect.cs").Object 

applicatio:nObjei:t "" 
edd!11Il'UStance "' 

TextPane Object 

Window Object 
DTE.Windows.ItemC"HTMLPagel.htm"l 

HTMLWindow Object 
DTE.Windows.Item 

("HTMLPagel.htm").Object 

DTE.ActiveWindow.Object.ActivePane 
DTE.ActiveWindow.Selection.TextPane 
DTE.Windows.ItemC"Connect.cs"l.Object.ActivePane 
DTE.Windows.Item("Connect.cs").Selection.TextPane 

Figure 11-1 Editor windows 

The Window Object 
There's not much to say about the Window object-it's just a short stop on the 
way to more specialized windows. Finding a window is straightforward: if you 
want the window that has the focus, the DTE.Active Window property returns it 
to you; if you want some other window and you know its caption, use 
DTE. Windows.Item(<caption> ). (Figure 11-1 shows the code for retrieving the 
Connect.cs and HTMLPagel.htm windows.) 

Once you have a Window object, the most important property for finding 
other windows is Object, which returns the corresponding TextWindow or 
HTMLWindow object for editor windows. If you don't know for certain which 



Chapter 11 Text Editing Objects and Events 343 

type the Object property holds, you'll have to check using the TypeOj .. Is 
(Visual Basic) or is (C#) keyword, as in 

If TypeOf DTE.ActiveWindow.Object Is TextWindow Then 

End If 

Of course, if you don't check and you use the wrong object, you'll receive an 
exception courtesy of the common language runtime (CLR). 

The TextWindow and HTMLWindow Objects 
The TextWindow and HTMLWindow objects represent the editor windows in 
the IDE. Each type offers a small set of properties that give you access to editor
window-specific features. Table 11-1 lists the TextWindow properties. The two 
properties of note are ActivePane and Panes, which give you access to the 
panes in a given editor window. 

Table 11-1 TextWindow Properties 

Property Description 

ActivePane Returns the TextPane object associated with the active pane. 

DTE Returns the top-level DTE object. 

Panes Returns a TextPanes collection containing the panes in the window. 

Parent Returns the parent Window object. 

Selection Returns the TextSelection object for the active pane. (It is equivalent 
to Parent.Selection.) 

Essentially, an HTMLWindow object is just a TextWindow object-except 
when it isn't. Table 11-2 shows the HTMLWindow properties. 

Table 11-2 HTMLWindow Properties 

Property 

CurrentTab 

CurrentTabObject 

DTE 

Parent 

Description 

Sets or returns the currently selected tab (HTML or Design) 

Returns a TextWindow object when the HTML tab is selected 
or returns an IHTMLDocument2 interface when the Design tab 
is selected 

Returns the top-level DTE object 

Returns the parent Window object 



344 Part II Extending Visual Studio .NET 

The CurrentTab property uses values from the EnvDTE.vsHTMLTabs 
enumeration: vsHTMLTabsSource when setting or returning the HTML tab and 
vsHTMLTabsDesign when setting or returning the Design tab. The 
CurrentTabObject property returns a TextWindow object when the HTML tab 
is selected, which is why we suggested earlier that an HTMLWindow is just a 
TextWindow in disguise. When the Design tab is selected, however, Current
TabObject returns an mshtml.JHTMLDocument2 interface, which provides 
access to the Dynamic HTML (DHTML) object model of the underlying docu
ment. Be aware that the views offered by the Design tab and HTML tab aren't 
synchronized: changes in one view won't propagate to the other until you 
switch views. In practical terms, this means that you should use references 
only to the current view. 

To use the mshtml namespace, you need its primary interop 
assembly: Microsoft.mshtml.dll. You can find this assembly at (of all 
places) Program Files\Microsoft.NET\Primary lnterop Assemblies. 
Add-in writers can add a reference to this assembly by browsing to it 
from the Add Reference dialog box; macro writers first need to copy 
the DLL file to Visual Studio .NET's PublicAssemblies folder before 
they can access the assembly. 

As you now know, it takes several steps to discover whether a text win
dow hides inside an arbitrary window. If you think it would be nice to have a 
function that takes care of these steps for you, you're in luck: 

Function GetTextWindow(ByVal win As Window) As TextWindow 
' Description: Returns the TextWindow object for a given window, 

or Nothing if not a text window 

Dim txtWin As TextWindow = Nothing 

' Check for TextWindow 
If TypeOf win.Object Is TextWindow Then 

txtWin = win.Object 

' Otherwise, check for HTMLWindow, then TextWindow 
Elself TypeOf win.Object Is HTMLWindow Then 

Dim html Win As HTMLWindow = win.Object 

If htmlWin.CurrentTab = vsHTMLTabs.vsHTMLTabsSource Then 
txtWin = htmlWin.CurrentTabObject 



End If 
End If 

Return txtWin 
End Function 

The TextPane Object 

Chapter 11 Text Editing Objects and Events 345 

The TextPane object represents a pane in an editor window. Every editor win
dow can be split into two panes to allow you to juxtapose two locations in a 
text file. You can split the view manually either by double-clicking the splitter 
bar-the thin rectangle at the top of the scroll bar-or by clicking and dragging 
the splitter bar to the desired location. Afterwards, you can make changes to the 
same document through either pane. 

Finding TextPane Objects 
The automation object model makes it easy to find TextPane objects if you 
already have a Text Window object: just use the ActivePane property or iterate 
through the Panes collection until you find the TextPane you want. Unfortu
nately, the TextWindow object's alter ego, HTMLWindow, doesn't offer similar 
properties directly, so you first have to use logic like that found in the Get
TextWindow function from the previous section to extract a TextWindow 
from an HTMLWindow. 

An alternative way of retrieving a TextPane is through the TextSelection 
object. TextSelection has a TextPane property that returns the pane to which the 
selection belongs. (TextPane has an orthogonal property, Selection, that returns 
the TextSelection in the pane.) TextWindow and HTMLWindow both have a 
Selection property, as does Window, which means there's an indirect path to 
TextPane that all window objects can travel. For most purposes, however, using 
a Text Window to find a TextPane works just fine. 

One pane-related question you might ask is whether a second pane is 
open in an editor window. The following code gives you the answer: 

Function IsSecondPaneOpen(ByVal txtWin As TextWindowl As Boolean 
' Description: Returns whether a second pane is open in a text window 

Return CtxtWin.Panes.Count = 2) 
End Function 

The TextPanes collection returned by Panes has one TextPane object for each 
pane in the window, so its Count property returns 2 when a second pane is open. 

Here's a more interesting problem-finding the top or bottom pane in a 
window. The problem would be intractable except for the fact that the bottom 
pane is always at index 1 of its TextPanes collection. Given that bit of informa
tion, here are two functions that return the appropriate pane: 



346 Part II Extending Visual Studio .NET 

Function GetTopPane(ByVal txtWin As TextWindow) As TextPane 
' Description: Returns the top pane in the text window 

Dim txtPane As TextPane Nothing 

If txtWin.Panes.Count = Then 
' Only one pane, so return it 
txtPane = txtWin.ActivePane 

Else 
' Top pane is always index 2 
txtPane = txtWin.Panes.Item(2) 

End If 

Return txtPane 
End Function 

Function GetBottomPane(ByVal txtWin As TextWindow) As TextPane 
' Description: Returns the bottom pane in a text window. Returns 

top pane if only one pane is open 

' Bottom pane is always index 
Return txtWin.Panes.Item(l) 

End Function 

The ActivateTopPane and ActivateBottomPane macros included with the book's 
sample files let you test the previous code on live windows. 

One last question you might want answered is which pane a given Text
Pane belongs to. At first, it might seem easy enough to compare the given Text
Pane with its corresponding member in the TextPanes collection, but for the 
reasons given in the Chapter 10 sidebar "Is It What It Says It Is?" you can't com
pare TextPane references and expect a straight answer. Fortunately, you can 
compare TextSelection references successfully, which is all the help you need to 
write the following functions: 

Function IsTopPane(ByVal txtPane As TextPane) As Boolean 
' Description: Returns whether the given TextPane is the top pane 

Dim result As Boolean = False 

If txtPane.Collection.Count 
result =True 

Else 

1 Then 

If txtPane.Selection Is txtPane.Collection.Item(2).Selection Then 
result = True 

End If 
End If 



Return result 
End Function 

Chapter 11 Text Editing Objects and Events 347 

Function IsBottomPane(ByVal txtPane As TextPane) As Boolean 
' Description: Returns whether the given TextPane is the bottom pane 

Dim result As Boolean = False 

If txtPane.Collection.Count = 2 Then 
result=_ 

(txtPane.Selection Is txtPane.Collection.Item(l).Selection) 
End If 

Return result 
End Function 

A Splitting Headache 
Search all you want, but you won't find a Split method in the automation 
object model. However, Visual Studio .NET defines a Windows.Split com
mand that works on the active window. For fun, here's a macro that splits 
every splittable window in the IDE. (If you don't think it's fun to have to 
unsplit all those windows, you'll find the corresponding UnsplitAllWin
dows macro in the book's sample files): 

Sub SplitAllWindows() 
' Description: Splits all text windows 

Dim win As Window 
Dim txtWin As TextWindow 
Dim saveWin As Window = DTE.ActiveWindow 

For Each win In DTE.Windows 
txtWin GetTextWindow(win) 

Next 

If Not txtWin Is Nothing Then 
SplitWindow(txtWin) 

End If 

saveWin.Activate() 
End Sub 



348 Part II Extending Visual Studio .NET 

Sub SplitWindow(ByVal txtWin As TextWindow, _ 
Optional ByVal restoreActive As Boolean = False) 

' Description: Splits a text window and optionally restores the 
active window when finished 

Dim split As Command = DTE.Commands.Item("Window.Split") 
Dim saveWin As Window 

If restoreActive Then 
saveWin = DTE.ActiveWindow 

End If 

txtWin.Parent.Activate() 

If split.IsAvailable And Not IsSecondPaneOpen(txtWin) Then 
DTE.Commands.Raise(split.Guid, split.ID, Nothing, Nothing) 

End If 

If restoreActive Then 
saveWin.Activate() 

End If 
End Sub 

Documents 
At the risk of stating the obvious (and possibly the painfully obvious), the 
Visual Studio .NET text editor operates on documents. When you program, it's 
easy to think that you're typing in a file: you load source code from a file when 
you begin editing and you save the changes to a file when you finish, so it's nat
ural to assume that all the time in-between is spent working on a file. However, 
a file is a something that exists on disk-the document you work with in the 
text editor is something less permanent but infinitely more malleable. This sec
tion introduces you to the two objects that capture these qualities of documents 
and make them available to you through automation: the Document and Text
Document objects. 

The Document Object 
The Document object serves as a general-purpose wrapper for text data; it pro
vides methods and properties that give you high-level control over both the 
data and the windows in which that data appears. 



Chapter 11 Text Editing Objects and Events 349 

Creating and Finding Documents 
You can create a document programmatically by using methods of the ItemOp
erations object, which is covered in Chapter 8, and the Projectltems object, 
which is covered in Chapter 9. For example, the ItemOperations.NewFile 
method, which corresponds to the File I New I File menu command, lets you 
create a file that isn't associated with a particular project. The following macro 
shows how to create a text file using the NewFile method: 

Sub CreateNewTextFile() 
' Description: Shows how to use the ItemOperations.NewFile method 

to create a new text file 

Dim Item As String= "General\Text File" 
Dim Name As String= "MyTextFile" 
Dim ViewKind As String = Constants.vsViewKindPrimary 
Dim win As Window 

win= DTE.ItemOperations.NewFile(ltem, Name, ViewKind) 
End Sub 

One peculiarity of the NewFile method's Name parameter is that it speci
fies the name of the new document indirectly. With an existing file, the docu
ment name and the window caption both correspond to the filename. With a 
document created by NewFile, however, the Name parameter serves as the cap
tion of the new document's window only-the document acquires the name of 
the temporary file created by Visual Studio .NET to store the new document. 
The "indirectly" part happens when you save the document: Visual Studio .NET 
displays the Name value as the default name of the file to save. 

You have three main ways of finding and retrieving an existing Document 
object: the DTE.Documents collection, the Window.Document property, and 
the DTE.ActiveDocument property. The DTE.Documents collection contains a 
reference to every open Document object. Just like any other collection in the 
automation object model, you can iterate through the Document objects in the 
collection looking for the one you want, or if you know the name of the docu
ment, you can retrieve it by using the Documents.Item method, like so: 

Dim doc As Document= DTE.Documents.Item("MyFile.cs") 

If you have a Window object, its Document property returns the associ
ated Document object. Some of the tests for this chapter use the following 
macro to retrieve the Document object of a Window; if the window doesn't 
exist, the macro creates a new text file with the requested caption and returns 
its Document object: 



350 Part II Extending Visual Studio .NET 

Function GetDocument(ByVal caption As String) As Document 
' Description: Retrieves the Document object associated with 

the specified window, or creates a text file in 
a new window and returns its Document object 

Dim win As Window= DTE.Windows.Item(caption) 

' Check whether window is open 
If win Is Nothing Then 

win= DTE.ItemOperations.NewFile("General\Text File", caption) 
End If 

Return win.Document 
End Function 

Managing Document Windows 
The relationship of Document objects to windows is one-to-many: a window 
always has one associated Document, but a Document can be open in many 
windows. You can open a new window on a document by using the Docu
ment.NewWindow method, which works the same as the Window I New Win
dow menu command. Each of the windows associated with a particular 
document will have as its caption the document name followed by a colon(:) 
and the window number. (For example, "Connect.cs:l," "Connect.cs:2," and so 
on.) Because the windows have the same underlying data, changes in one win
dow can be seen by all other related windows. 

Visual Basic files don't support Document.NewWindow 
and throw a "not implemented" exception when you call this method. 

The ability to have multiple windows means that you won't find a Docu
ment.Parent property that returns the containing window. (Which window 
would it return?) Instead, you can find all the windows associated with a par
ticular document by iterating through the Document. Windows collection, as 
shown by the following macro: 

Sub ListDocumentWindows() 
Description: Lists all the windows associated with 

each open document 

Dim output As New OutputWindowPaneEx(DTE, title) 



Chapter 11 Text Editing Objects and Events 351 

output.Clear() 
output.Writeline("--- ListDocumentWindows ---") 
output.Writeline() 

Dim doc As Document 

For Each doc In DTE.Documents 
Dim win As Window 

Next 
End Sub 

output.Writeline(doc.Name & " windows:") 

For Each win In doc.Windows 
output.Writeline(" " & win.Caption) 

Next 

You can find the active window for the Document object by using its 
ActiveWindow property, which returns the active window, if applicable, or the 
top-most window associated with the document if none of the document's win
dows is active. 

The Document.ActiveWindow property has a bug-it 
always returns the first document window, regardless of which window 
has the focus. 

Managing Document Changes 
The coarsest means available to the Document object for managing changes is 
its ReadOnly property, which allows you to get or set the document's read-only 
state. Methods that modify a document's text throw an exception if the docu
ment is read-only, so it's worth checking the ReadOnly property before you 
make text changes. 

You can undo and redo changes to a document by using the Docu
ment. Undo and Document.Redo methods, respectively. These two methods 
offer the same functionality as their Edit menu counterparts. The Undo and 
Redo methods both return a Boolean value indicating whether the operation 
took place. 



352 Part II Extending Visual Studio .NET 

You can call Document.Undo or Document.Redo on a 
read-only document all you want, so long as the corresponding undo 
or redo stack is empty; in such cases, the method returns False. Prob
lem is, you can change the Document.ReadOnly property on the fly, 
which means you can have undoable (or redoable) changes in your 
document when you switch from read-write to read-only. If you call 
Undo or Redo on a nonempty undo or redo stack of a read-only docu
ment, you get an exception. 

The Document. TextSelection property returns the TextSelection object 
associated with the active window, or the top-most window if none of the doc
ument's windows has the focus. You can use the TextSelection object's myriad 
editing methods and properties to automate just about any editing task you can 
think of. (You'll learn all about TextSelection objects in the upcoming section 
titled "The TextSelection 0 bject. ") 

Saving and Closing Documents 
The Document.Save method saves the document and optionally lets you 
choose the name and the location to save to. The Save method throws an 
exception if the location you specify doesn't already exist; if you give a correct 
location but no name, the Save method uses the current name of the document. 
(A bug in the Visual C++ implementation causes the Save method to ignore any 
new filename you give it.) If you want to save every open document in one call, 
use the SaveAll method of the Documents collection. What you gain in conve
nience you give up in control-you can't specify new names or locations for 
the files as you can with the Save method. 

The Document. Close method closes a document and also lets you pass in 
a vsSaveChanges value that signals whether to save changes (vsSaveChanges), 
discard changes (vsSaveChangesNo), or let the user decide whether to save 
changes (vsSaveChangesPrompt, which is the default). The Documents collec
tion has a corresponding CloseAll method that lets you close every document 
and also specify a vsSaveChanges value to apply to every document. 

The Document.Saved property indicates whether the document has 
changes that haven't yet been saved-a value of False means that the document 
is dirty, as indicated by an asterisk in the document window's title bar. Essen
tially, this property controls whether the IDE prompts you to save a document 
when the document is closed. You can write to this property, but be aware that 
you will lose changes if you close a dirty document after setting its Saved prop
erty to True. 



Chapter 11 Text Editing Objects and Events 353 

The TextDocument Object 
Whereas a Document object can represent any document in the IDE, the Text
Document object represents text documents only. You retrieve a TextDocument 
object by using the Document. O~ject method and passing in an empty string or 
a value of "TextDocument"; the method returns null or Nothing for nontext 
documents. 

The most important TextDocument properties and methods are those 
related to the TextPoint, EditPoint, and TextSelection editing objects. The Text
Document.Selection property returns the text document's selection and behaves 
just the same as the Document.Selection property. The StartPoint and EndPoint 
properties return TextPoint objects that mark the beginning and end, respec
tively, of the text document buffer. The CreateEditPoint method returns an Edit
Point object at the location of the TextPoint passed into the method; passing in 
null or Nothing creates an EditPoint at the beginning of the document. 

Calling TextDocument.CreateEditPoint with a TextPoint 
parameter makes little sense because a TextPoint object already 
has its own CreateEditPoint method. However, passing null to Text
Document.CreateEditPoint is the only way to create an EditPoint 
without first creating an intermediary point object. 

Point Objects 
As you might guess, a point object represents a position in a text document. 
The automation object model gives you three point objects to choose from: 
TextPoint, VirtualPoint, and EditPoint. 

TextPoint 
The TextPoint object embodies the fundamental attributes of a text document 
location; VirtualPoint and EditPoint implement the TextPoint interface, so all 
point objects have these fundamental attributes in common. The following list 
gives you an idea of what these attributes might be: 

• Line information The Line property returns which line of the 
document the point is in. 



354 Part II Extending Visual Studio .NET 

• Offset information The AbsoluteCharOflset and LineCharOflset 
properties return the number of characters between the point and 
the beginning of the document and the beginning of the current line, 
respectively. 

• Extreme information The AtStartOjDocument, AtEndOJDocu
ment, AtStartOfline, and AtEndOfline properties allow you to 
determine whether the point is at the beginning or end of a docu
ment or line. 

The TextPoint LessThan, Equa!To, and GreaterThan methods also let you dis
cover the relation of one point with respect to another. 

The TextPoint object doesn't have methods that allow you to edit text 
directly. Instead, you either pass these point objects to editing methods or use 
them to create an EditPoint at a particular location, which you can then use to 
edit text. Table 11-3 shows you the different ways to find a TextPoint object. 

Table 11-3 How to Retrieve a TextPointObject 

Returned By 

StartPoint property 

EndPoint property 

Virtua/Point 

Applies To 

TextDocument 

TextPane 

TextRange 

TextDocument 

TextRange 

A Virtua!Point object represents a point in virtual space, which, sorry to disap
point, has nothing to do with The Matrix. Virtual space is a text editor feature 
that allows the insertion point to move indefinitely past the end of a line; typing 
a character at a point in virtual space causes the editor to automatically fill in 
the space between the end of the line and the new character. You can enable 
virtual space for all languages by opening the Tools Options dialog box, select
ing Text Editor I All Languages I General, and selecting the Enable Virtual 
Space check box in the Settings area. (See Figure 11-2.) 



Chapter 11 Text Editing Objects and Events 355 

Environment 

Source Control 

~; Statement Completion 

~ Text Editor 

General 

Ell All Language• 

$> l.!IDll 
Tabs 

CJ Basic 

CJ C# 

D C/C++ 
CJ css 
CJ HTML/XML 
CJ PL/SQL 
Cl Plain Text 
CJ SQL 
CJ T-SQL 
CJ T-SQL7 

W !l_uto list members 

tjjde advanced members 

~ e_arameter information 

Settings 

W Enable ,;rtual •pace 

r ~ordwrap 

Display-----

\.Jne numbers 

Enable single·dick \JRL navigation 

Navigation bat 

Note: This page sets options for all languages. To change options for only 
one language 1 select the desired language from the tree on the left. 

Figure 11-2 Enabling virtual space 

Table 11-4 shows the different ways you can find a VirtualPoint object. As 
you can see from the table, VirtualPoint objects spring from TextSelection 
objects, which gives you a clue to their function; selections can extend into vir
tual space, so the TextSelection object needs Virtua!Point objects to keep track 
of endpoints that fall outside the text buff er. 

Table 11-4 How to Retrieve a Virtua/Point Object 

Returned By 

ActivePoint property 

AnchorPoint property 

BottomPoint property 

TopPoint property 

Applies To 

TextSelection 

As with the TextPoint object, one of the VirtualPoint object's main uses 
involves the creation of EditPoint objects. Be aware, however, that a Virtu
a!Point object can't create an EditPoint object in virtual space-if you try, the 
EditPoint gets created at the end of the current line instead. You can avoid 
those situations by using the following function, which tells you when a Virtu
alPoint has strayed into virtual space: 

Function IsVirtualSpace(ByVal vrtPoint As VirtualPoint) As Boolean 
' Description: Returns whether the VirtualPoint lies in virtual space 

Return vrtPoint.LineCharOffset <> vrtPoint.VirtualCharOffset 
End Function 



356 Part II Extending Visual Studio .NET 

The VirtualPoint object defines a property named VirtualCharO.ffset that 
returns how far the point is from the beginning of the line. The VirtualCharOJf
set property always has the same value as the LineCharOffiet property except 
when the point is in virtual space. 

Lab: Exploring Virtual Space 
The best way to understand virtual space and its effects on point objects 
is to test it for yourself. Here's a quick experiment: 

1. Turn off virtual space in the editor. 

2. Open a new text file and type I am a fish. without hitting 
Enter. 

3. Select the entire sentence by dragging the mouse from left to 
right. Notice that the editor won't extend the selection beyond 
the period. 

4. Open the Output window and run the DisplayTextSelec
tionEditPoints macro. Observe that the DisplayColumn entries 
for TopPoint and BottomPoint are 1 and 13, respectively. 

5. Run the DisplayTextSelectionVirtualPoints macro. Notice that 
the DisplayColumn entries for TopPoint and BottomPoint 
match those from the previous step. 

6. Run the DisplayTextSelectionText macro and observe that the 
output is 'I am a fish.' 

When you disable virtual space, you confine VirtualPoint objects to 
the limits of the text buffer. Enable virtual space, however, and those same 
VirtualPoint objects can wander off to parts unknown: 

1. Enable virtual space in the text editor. 

2. Reselect the entire sentence, but this time extend the selection 
beyond its end. 

3. Rerun the DisplayTextSelectionEditPoints and DisplayTextSelection
VirtualPoints macros. Notice that the EditPoint values remain 
unchanged but the VirtualPoint's VirtualCharOffiet and VirtualDis
playColumn values exceed those of the corresponding LineCharOJf
set and DisplayColumn values. 



Chapter 11 Text Editing Objects and Events 357 

4. Run the DisplayTextSelectionText macro and observe that its output 
is the same as before. 

That last step shows that virtual space exists outside the text buffer; 
it also shows that virtual space doesn't count as selected text. Instead, vir
tual space allows for what you might call WYSINWYG editing-what you 
see isn't necessarily what you get. 

Edi/Point 
The EditPoint is the workhorse of the point objects. In addition to the TextPoint 
methods and properties, EditPoint has methods that let you automate every 
possible modification of the text buffer. Table 11-5 shows the different ways 
you can get an EditPoint object. 

Table 11-5 How to Retrieve an EditPoint Object 

Returned By 

CreateEditPoint method 

Applies To 

EditPoint 

TextPoint 

Virtua!Point 

TextDocument 

We'll examine EditPoint's methods shortly, in the section titled "A Com
parison of TextSelection and EditPoint." 

The TextSelection Object 
The TextSelection object pulls double duty as a representation of the caret in the 
editor window as well as a representation of the currently selected text. (You 
can think of the caret as a zero-length selection.) Because there can be only one 
selection in an editor window, there can be only one TextSelection object per 
document. Figure 11-3 breaks down a TextSelection into its constituent parts. 



358 Part II Extending Visual Studio .NET 

AnchorPoint = TopPoint 

ActivePoint = BottomPoint 

ActivePoint = TopPoint 

AnchorPoint = BottomPoint 

Figure 11-3 Anatomy of a TextSelection 

As you can see in Figure 11-3, four properties delineate a TextSelection: 
TopPoint, BottomPoint, AnchorPoint, and ActivePoint. Each of these properties 
returns a VirtualPoint object from one of the ends of the selected range. The 
TopPoint and BottomPoint properties always refer to the upper-left and bottom
right of the selection, respectively. The AnchorPoint and ActivePoint properties 
refer to the equivalent of the start and end points of a mouse-drag selection; for 
example, the top selection in Figure 11-3 would result from dragging the mouse 
from the beginning of using Extensibility; to the end of using EnvDTE;. You can 
determine the orientation of a TextSelection by checking its JsActiveEndGreater 
property, which returns True when ActivePoint equals BottomPoint. If the ori
entation isn't to your liking, you can flip it by calling the TextSelection.SwapAn
chor method, which exchanges the positions of AnchorPoint and ActivePoint. 

The TextSelection.lsEmpty property lets you know whether there's a selec
tion, and you can retrieve the selected text from the Text property. If there's no 
selection, Text always returns an empty string. The converse doesn't hold, how
ever, because Text returns an empty string for a virtual space selection. When a 
selection spans multiple lines, the TextRanges property holds a collection of 
TextRange objects, one for each line of the selection. 

Table 11-6 lists the different ways you can get a TextSelection object. 



Chapter 11 Text Editing Objects and Events 359 

Table 11-6 Properties Returning a TextSelection Object 

Property 

Selection 

Applies To 

Document 

TextDocument 

TextPane 

Text Window 

Window 

A Comparison of TextSelection and EditPoint 
The TextSelection and EditPoint objects offer a bewildering array of editing 
methods, which are listed in Table 11-7. Looking at the table, you'll see that 
TextSelection and EditPoint share the majority of their methods and have only 
a few seemingly minor differences, which makes choosing one over the other 
akin to choosing between the 52-feature Swiss army knife that comes with scis
sors and the 52-feature Swiss army knife that comes with a saw. In most circum
stances, either knife will do just fine-it's only in those particular moments 
when you need to gather firewood or do a little personal grooming that you 
suddenly realize that you can't cut down branches with scissors and you can't 
trim nose hairs with a saw. Using the editing objects is much the same in that 
you won't know whether you've chosen the right one for the job until it fails 
you. 

Table 11-7 TextSe/ection and EditPoint Methods 

Task 

Moving the 
insertion point 

Finding and 
retrieving text 

Selecting text 

Modifying text 

Methods in Common 

CharLeft, CharRight, End
OftJocument, EndOfline, 
LineDown, Lineup, MoveTo
AbsoluteOffset, MoveToLine
AndOffset, MoveToPoint, 
StartOftJocument, StartOf
Line, WordLeft, WordRight 

FindPattern 

ChangeCase, Copy, Cut, 
Delete, Delete Whitespace, 
Indent, Insert, InsertFrom
File, PadToColumn, Paste, 
ReplacePattern, SmartFor
mat, Unindent 

TextSelection Only 

Collapse, Go Toline, Move
ToDisplayColumn, Page
Down, PageUp 

FindText 

SelectAll, SelectLine 

EditPoint Only 

GetLines, GetText 

DeleteLeft, Destructiveinsert, ReplaceText 
Newline, Tabify, Untabify 



360 Part II Extending Visual Studio .NET 

Table 11-7 TextSelection and EditPoint Methods (continued) 

Task Methods in Common TextSelection Only EditPoint Only 

Managing book- ClearBookmark, NextBook-
marks mark, PreviousBookmark, 

SetBookmark 

Miscellaneous OutlineSection SwapAnchor Read Only 

The fundamental difference between the two objects is that the TextSelec
tion object is view-based and the EditPoint object is buffer-based. The TextSe
lection object exists primarily to model user actions within the text editor-if 
you can do it by hand in the editor, you can do it with the TextSelection object. 
(You can see this demonstrated every time you record a macro: the Macro 
Recorder translates changes that you make to text documents into sequences of 
TextSelection statements.) This emphasis on WYSIWYG functionality, however, 
means that the global view state can affect the behavior of a TextSelection 
method. For example, when line wrapping is enabled, you can't count on Text
Selection.LineDown moving the insertion point to the next line of text in the 
buffer-if the line wraps underneath the insertion point, then moving the inser
tion point to the next line in the view serves only to move the insertion point 
further down the same line in the buffer. 

The EditPoint object, on the other hand, knows nothing about the view, 
so its operations are immune from the view's effects. Therefore, a call to Edit
Point.LineDown always moves the EditPoint to the next line in the buffer, 
regardless of the line wrapping state. The only drawback of this insulation from 
the view is that you can't use EditPoint objects to affect virtual space. 

So there you have it-if you want your add-ins and macros to make use of 
the view state automatically, use TextSelection; if you want complete control 
over the text buff er, use EditPoint. 

Undo Contexts 
The modern user interface has come a long way toward fulfilling one of 
humankind's greatest hopes-to be saved from its own stupidity. The undo 
facility you find in most of today's applications represents the crowning 
achievement of this pursuit. The next best thing to a time machine, undo allows 
you to roll back your most recent mistakes-usually with considerable relief
so that you can start making new ones in their place. The automation object 
model gives you full access to Visual Studio .NET's undo manager, allowing you 
to define your own sets of mistakes that can be undone at the click of a button. 



Chapter 11 Text Editing Objects and Events 361 

Automatic Undo Contexts 
The basic unit of "undoability" is the undo context. (We'll use this term to mean 
both an undoable unit-the named entity that appears on the undo list-and 
the mechanism by which you group individual actions to create an undoable 
unit.) The Visual Studio .NET IDE creates undo contexts automatically as you 
program, allowing you to undo and redo edits to your code. Try the following 
experiment to see some of the automatic undo contexts created by Visual Stu
dio .NET: 

1. Open a blank text file in Visual Studio .NET. 

2. Type spelled backwards is epyT and press Enter. 

3. Copy a block of text from some document and paste it into the text 
file. 

When you've finished, click the drop-down list on the Undo button and you'll 
see the list of undo contexts shown in Figure 11-4. (The drop-down list repre
sents the document's undo stack, which is the internal data structure that stores 
the undoable changes.) The three undo contexts named Paste, Enter, and Type 
each represent one or more individual actions that can be undone as a whole. 
You can appreciate the ability to group multiple actions under a single name 
when it comes to large paste operations, where the alternative would be undo
ing the pasted characters one by one. 

J{nock~ knock. 

llho's there? 

Interrupting cow. 

Interrupti 

Moo' 

Figure 11-4 A list of undo contexts 



362 Part II Extending Visual Studio .NET 

Creating Undo Contexts 
An undo context is an atomic transaction: you open the undo context and give 
it a name, make changes to one or more documents, and then either commit 
the changes by closing the undo context or abort all the changes. Once com
mitted, the changes can be undone as a group only. You create your own undo 
contexts by calling methods of the DTE. UndoContext object: Open begins an 
undo context, SetAborted discards all changes made within the current undo 
context, and Close commits the changes and pushes the undo context onto the 
undo stacks of the participating documents. 

The undo manager in Visual Studio .NET allows only one undo context at 
a time to be open, and to share that undo context you must follow a few rules. 
First, always call Open within a try block because this method throws an excep
tion if an undo context is already open. Although you can check the availability 
of the undo context by using the UndoContext.IsOpen property, which returns 
True when an undo context is open, a False value won't guarantee that the 
undo context will still be free by the time your code executes Open. Second, if 
you open an undo context, you should close it when you're finished with it by 
calling Close or SetAbort. (Use just one or the other because SetAbort closes the 
undo context for you and calling Close on a closed undo context raises an 
exception.) Third, you should never call SetAbort or Close on someone else's 
undo context. That's just not nice. 

Macro writers, be aware that the undo manager doesn't 
trust you to close your own undo contexts. Instead, it automatically 
closes any undo context opened by a macro when execution returns to 
Visual Studio .NET. (Add-ins are free to keep their undo contexts open 
as long as they want, regardless of the consequences.) If you find that 
somewhat demeaning, then don't give the undo manager the satisfac
tion-instead, always use SetAbort or Close to tidy up your undo con
texts. 

Because only one undo context can be open at a time, if you don't acquire 
the undo context, any changes you make will belong to some other context. If 
the changes you need to make absolutely positively must be in their own con
text, you'll have to poll the UndoContext.IsOpen property until the undo con
text becomes free. Listing 11-1 shows one way to do this. 



Chapter 11 Text Editing Objects and Events 363 

UndoContextTimer 
<System.ContextStaticAttribute()> Public WithEvents UndoTimer _ 

As System.Timers.Timer 

Private Const title As String "Text Editor" 

Sub UndoContextTimer() 
' Description: If undo context is busy, creates a timer that 

polls the UndoContext.IsOpen property until the 
undo context becomes free 

' Start timer if undo context is busy 
If Not AddText() Then 

UndoTimer = New System.Timers.Timer() 
UndoTimer.Interval = 100 
UndoTimer.Enabled =True 

End If 
End Sub 

Private Function AddText() As Boolean 
' Description: Adds text to the "Text File" document within 

the "Timer" undo context 

Dim success As Boolean = True 

Try 
' Open the undo context 
DTE.UndoContext.Open("Timer") 

' Open the "Text File" document for •diting 
Dim txtDoc As TextDocument = GetTextDocument ("Text File") 
Dim editPnt As EditPoint = txtDoc.StartPoint.CreateEditPoint 

' Add some text 
editPnt.InsertC"Here's text in the 'Timer' undo context."_ 

+System.Environment.Newline) 

' Close the undo context 
DTE.UndoContext.Close() 

Catch 
success= False 

End Try 

Retu.rn success 
Erid Fun c.t ion 

Listing 11-1 Grabbing the undo context when it becomes free 



364 Part II Extending Visual Studio .NET 

.,.f¥uiY1Jc·· s-0b.h¥lc1~ti.~e~d;;&1'a'.ps.edcByValsen,cl~f:~sb.~J~.C\t~.;~i/.•·.··· ...... ···.··.· .. ·········, .•.. 
ByV~l ;e· As· syst~rr1m~.rS:\Ela11sectE:van:t~rg$) ·.Hiindles ... ·undoJiiner ,Elij'pS.ed· 

' .. :: ·,. :' .",~:~, ... '"' .. · .... '.'~>".· ' ',· ·.· ~. :.· ·: " ·:·~· :: .<:: :, ,·,·,· .. ~j·.:< . 

' Check'. wpe~!fe'.r~·t~~:~b~~· C?nt~Jd;/lA free·.. · ... ~·· . ' 
· If Not ·OJE;U.n(ll:iC(ln,~eXtitsOpen Then .. ): : .... 

· undi>T.ime~:.f:na.bie.<t '"" ;ra·ise · · · 
' . ·. :~ 

<'K111:· f1·rife?11' J.:d<i1exf js 

if AddTextc5 Then· · 
Utidofo me,r.'01.Spo$e(f 

, UndoTim~r ·::: .. 'Nothitl9 
Else 



Chapter 11 Text Editing Objects and Events 365 

Normally, you shouldn't have to resort to the measures taken in Listing 11-
1 because the undo context shouldn't be open for long periods of time. How
ever, it's good to know that it can be done. 

Stack Linkage 
Sooner or later, when you edit multiple documents within the same undo con
text, you run across the problem of desynchronized undo stacks. Suppose you 
edit Documentl and Document2 within the Link undo context. After you close 
Link, it gets pushed onto the tops of the two documents' undo stacks. Then, if 
you undo Link in Documentl, you also undo Link in Document2 because their 
edits belong to the same atomic operation. So far, so good. 

Suppose you add some text to Document2. These new edits get pushed 
onto the top of Document2's undo stack. What happens now when you try to 
undo Link in Documentl? To respect Link's atomicity, you have to undo Link in 
Document2, and there's the problem-you can't undo Link in Document2 with
out first undoing the text that was just added. The undo stacks have become 
desynchronized. 

The undo manager solves this synchronization problem by introducing 
the concept of stack linkage. By default, an undo context that involves more 
than one document has a nonstrict stack linkage, which allows the atomicity of 
the undo context to be broken across documents; when the break happens, 
each document ends up with its own undo context containing only changes to 
itself. In our previous example, if the Link undo context were created with a 
nonstrict stack linkage, you could undo Link in Documentl without affecting 
Document2. Link would disappear from Documentl's undo stack but remain 
on Document2's undo stack, minus the changes to Documentl. A strict stack 
linkage, on the other hand, enforces the undo context's atomicity with extreme 
prejudice. If our previous example were to involve a strict stack linkage, the 
undo manager would kill any attempt to undo Link in Documentl. 

You specify the strictness of the stack linkage through the second param
eter to UndoContext.Open, passing True for strict. You can identify undo con
texts with strict stack linkage by the plus ( +) sign that precedes their names on 
undo lists. 



366 Part II Extending Visual Studio .NET 

Lab: Strict and Nonstrict Stack Linkage 
The UndoContexts.StackLinkage macro lets you test the differences 
between strict and nonstrict stack linkages. This macro creates three doc
uments and adds text to them within an undo context; an optional Bool
ean parameter controls whether the undo context's stack linkage is strict. 
Follow these steps to see a nonstrict stack linkage in action: 

1. In the Command Window, type Macros.InsideVS
NET.Chapterll.UndoContexts.StackLinkage and press 
Enter. The macro creates three files-Nonstrictl, Nonstrict2, 
and Nonstrict3-and adds text to them within the Non
strictLinkage undo context. 

2. In any of the files, click the Undo button, and then click the 
Redo button. You'll see that the changes to the documents are 
undone and redone as a group. 

3. Add some additional text to the Nonstrict2 file. 

4. Select the Nonstrict3 file and click its Undo button. 

The changes disappear from Nonstrict3 and its Undo button turns 
gray. The undo lists for Nonstrictl and Nonstrict2 still show NonstrictLink
age, however, which means that the atomicity of NonstrictLinkage has 
been broken. You'll find that Nonstrictl's NonstrictLinkage undoes the 
changes in Nonstrictl without affecting Nonstrict2, and vice-versa. 

Now, close all the documents and redo the previous steps, but add 
True to the macro command in step 1. The True parameter tells Stack
Linkage to create files named Strictl, Strict2, and Strict3, and to add text to 
them within the StrictLinkage undo context. This time, when you try step 
4, you'll get the error message "The application cannot undo." That's the 
essence of strict stack linkage. 

The LineChanged Event 
The automation object model defines a single event specific to editing: the 
LineChanged event. Having only one text-editing event at your disposal is both 
a blessing and a curse, analogous to owning a single flat screwdriver when half 
the world is built using Phillips screws-you always know which tool you're 



Chapter 11 Text Editing Objects and Events 367 

going to use and you can disassemble just about anything, given time, but you 
sometimes find yourself wishing for a more varied toolbox. 

The LineChanged event has three parameters to help you figure out why 
the event fired. The first two parameters, StartPoint and EndPoint, mark the 
beginning and end of the changes to the text buffer. You can use these Text
Point values to retrieve the changes, like so: 

Dim text As String 
text = StartPoint.CreateEditPoint.GetText(EndPointl 

And if you're ever curious about which document the changes belong to, you 
can follow the object hierarchy up a couple of levels to find the parent docu
ment: 

Dim doc As Document 
doc = StartPoint.Parent.Parent 

The third parameter, Hint, is a bit flag that holds values from the 
vsTextChanged enumeration (shown in Table 11-8). The flags set in Hint are 
evidence from the crime scene that you can piece together to recreate the 
actions leading up to the event. (In practice, the Hint parameter doesn't give 
you quite enough information to figure out exactly what led to the event
but then, if it did, it wouldn't be called a hint.) 

Table 11-s The vsTextChanged Enumeration 

Field 

vsTextChangedMultiLine 

vsTextChangedSave 

vsTextChangedCaretMoved 

vsTextChangedReplaceAll 

vsTextChangedNewLine 

vsTextChangedFindStarting 

Description 

The changes affected multiple lines of text. 

The changes were saved to disk. 

The insertion point moved off the line containing 
the changes. 

The entire text buffer was replaced by an insertion. 

A new line was entered. 

A find operation moved the insertion point off the 
line containing changes. 

The LineChanged event doesn't really fire when the line changes-that is, 
it doesn't fire for each new character added or deleted from a line. Instead, the 
event fires when changes to a line are committed in some way, such as when 
the insertion point moves off the line, changes are saved to disk, or the docu
ment window loses focus. An undo context effectively disables this event until 
the undo context closes; afterwards, the event fires if any of the changes made 
within the undo context would have caused it to fire under normal circum
stances (the insertion point moves off a changed line, the entire text buffer is 



368 Part II Extending Visual Studio .NET 

replaced by an insert, and so forth). The event handler receives StartPoint and 
EndPoint values that reflect all uncommitted changes from before and during 
the undo context. Listing 11-2 demonstrates this effect. 

UndoContexts and LlneChanged Events 
Private Const title As String = "Text Editihg Events~ 

<System.ContextStat1 cAttribute( » Publ i.c WithEvents _ 
TextEditorEventsl As EnvDTE.TextEditorEvents 

Sub Li neChangedAndUndoContext.s (Opt; ona 1 By Val useUndoContext _ 
As String = "False") 

' Description: Demonstrates the effect of undo contexts on the 
LtneChanged event 

TextEditorEventsl = DTE.Events.TextEditorEvents(} 

Dim useUndo As Boolean = ToBoolean(~seUndoContext} 

' Create a new docum.ent 
Dim txtOoc As. TextD.ocument = GetTextDocument ("Li neChanged Test".} 
Dim edi.tPnt As EditPoint. '= txtDoc.EndPoint.CreateEditPoint 

' Insert text. Not a new. line; so woh't trigger LineChanged 
editPnt.Insert("Beginning of document.") 

If useUndo Then 
Try 

·DTE .. UndoContext. OpenC"L i neChangedAndUndoContexts" l 

' Inside undo .context. so new Ti ne.s won't trigger 
' LineCha.rrned unti.1 the .. l!ndo context closes 
ed itPnt .. I nse t't( En vi ron.ment. NewL i ne) 
editPnt:Insert("Kere's a new line," + tnvi.ronmen.t.Newline) 

··DTE. UndoContext .Close() 
Catch· 
End. ·Try 

Else 
. ~ No u.ndo conte~t, so new lin~s trigger LineCl:ianged immediately 
editPnt; Insert( Envi ronment.NewL i ne) 
editPnt. Insertl"Here's a new \1 ifle·" + Envtron!llent.NewLine) 

End If 
End.Sub 

Listing 11-2 Testing the effect of undo contexts on the LineChanged 
event 



Chapter 11 Text Editing Objects and Events 369 

' LineChanged event handler 
Public Sub TextEditorEventsl_LineChanged( _ 

ByVal StartPoint As EnvDTE.TextPoint, _ 
ByVal EndPoint As EnvDTE.TextPoint, _ 
ByVal Hint As Integer) Handles TextEditorEventsl.LineChanged 

Dim output As New OutputWindowPaneEx(DTE. title) 

output.Writeline("--- TextEditorEventsl_LineChanged ---") 
output.WritelineC"Changed text:") 
output.WriteLine(StartPoint.CreateEditPoint.GetText(EndPoint)) 
output.Writeline() 

End Sub 

Function ToBooleanCByVal val As Object) As Boolean 
Dim bool As Boolean= False 

Try 
• Convert the bool parameter 
bool = System.Convert.ToBoolean(val) 

Catch 
End Try 

Return boo 1 
End Function 

The LineChangedAndUndoContexts macro in Listing 11-2 creates a new 
document and adds a couple lines of text to it. Figure 11-5 shows the result of 
running this macro without using undo contexts-the LineChanged event fires 
once for each new line of text, which is the same as if you had typed in the 
lines by hand. Figure 11-6 shows what happens when you wrap the changes in 
an undo context. Because the new lines are created within an undo context, all 
the changes, including the ones before the undo context started, get rolled into 
one LineChanged event that fires after the undo context closes. 



370 Part II Extending Visual Studio .NET 

-~- Tx:tld1torllvemt$_Line~9ed --
Chang•d t.:icto: 
H"u:-e'lil a new line. 

Figure 11-5 Text changes without an undo context generate two 
LineChanged events. 

Figure 11-6 Text changes with an undo context generate one 
LineChanged event. 



Chapter 11 Text Editing Objects and Events 371 

Multiple LineChanged Event Handlers 
A LineChanged event handler can modify the text buffer without triggering 
LineChanged events, which allows you to add changes without fear of reentry. 
When multiple event handlers are involved, any changes that one event handler 
makes are seen by all event handlers downstream; the same Hint parameter 
gets passed along to each succeeding event handler, but the StartPoint and 
EndPoint parameters expand or contract to include any changes made by pre
vious event handlers. 

Lab: Using Multiple LineChanged Event Handlers 
The MultipleHandlers add-in included with the book's sample files lets 
you experiment with the changes that pass down the chain of multiple 
LineChanged event handlers. MultipleHandlers defines three 
LineChanged event handlers, whose names reflect the order in which they 
fire: LineChangedl, LineChanged2, and LineChanged3. (Note that an add
in's event handlers fire in the same order in which they subscribe to the 
event. Multiple macro event handlers, however, fire in reverse order of 
declaration.) Each of these event handlers displays information about its 
parameters; in addition, LineChangedl and LineChanged2 modify the 
document so you can see how the changes are passed along to 
LineChanged2 and LineChanged3, respectively. 

MultipleHandlers also defines a command named ReplaceAll, which 
accepts an optional Boolean parameter that controls the changes made by 
LineChanged2. Passing a False parameter (or no parameter) to ReplaceAll 
directs LineChanged2 to add a line of text, whereas a True parameter 
causes LineChanged2 to replace all text in the document with the docu
ment's last two lines. Note that one call to ReplaceAll buys you one 
LineChanged event-LineChanged3 unsubscribes the event handlers so 
you don't accidentally modify important files when you're done with the 
lab. 

Here's experiment #l: 

1. Open a new text file. 

2. In the Command Window, type MultipleHandlers.Connect.
ReplaceAll and press Enter. 

3. In the text file, type in a line of text (such as Here's a line) and 
press Enter. 



372 Part II Extending Visual Studio .NET 

Pressing Enter triggers the LineChanged event, and the Text Editing 
Event Output Window pane displays the event handlers' output. You'll see 
that the changed text grows from LineChangedl to LineChanged3 as new 
text is added by intervening event handlers. 

Experiment #2 demonstrates the constancy of the Hint parameter: 

1. Open a new text file and add three lines of text. 

2. In the Command Window, type MultipleHandlers.Connect.
ReplaceAll and press Enter. 

3. Run the TextEditingEvents.ReplaceTextWithLastTwoLines macro. 
In the Text Editing Event Output Window pane, verify that one 
of the hints is vsTextChangedReplaceAll. 

The ReplaceTextWithLastTwoLines macro copies the last two lines of 
text in a document and then replaces all the text in the document with 
those two lines. LineChanged passes along the vsTextChangedReplaceAll 
value to let you know that a wholesale replacement triggered the event. 
But see what happens when MultipleHandlers performs the same opera
tions in its LineChanged2 event handler: 

1. Open a new text file and add two lines of text. 

2. In the Command Window, type MultipleHandlers.Connect.
ReplaceAll True and press Enter. 

3. Add a third line of text and press Enter. 

When you examine the output, you'll see that every event handler 
received vsTextChangedCaretMoved and vsTextChangedNewline as the 
hints for the event, even though LineChanged2 performed actions that 
otherwise would have garnered a vsTextChangedReplaceAll. Keep this in 
mind if you're tempted to use the Hints parameter in your event handler's 
logic-if your event handler isn't first in line, the information in Hints 
might be as stale as month-old biscotti. 



Chapter 11 Text Editing Objects and Events 373 

Looking Ahead 

The automation object model makes it easy to edit text. And because source 
code is just text, the automation object model makes it easy to edit source code, 
right? Well, yes and no. Editing source code as if it were just a large array of 
characters works well enough for many problems, and you can use the objects 
and events in this chapter to solve those, but as programmers we know there's 
plenty of structure to be found in that array of characters if we look at it from 
a higher level. In the next chapter, we'll show you the higher-level view pro
vided by the automation object model: the code model. 





The Code Model 
The Visual Studio .NET code model promises to be nothing less than the pro
grammer's Universal Translator, the macro writer's Babel fish, the hacker's Espe
ranto. The idea is simple-define a single API that captures the essence of the 
most common programming constructs, and have each of the languages in 
Visual Studio .NET implement that API in its native tongue. The result is a single 
set of objects-the code model-that a programmer can use to read or write 
code in any of the languages in Visual Studio .NET. 

Discovering Code 
One of the basic uses of the code model is to find code that's already there. The 
code model gives you the tools to enumerate all the code constructs in a project 
as well as zero in on a code construct in a specific source file at the user's request. 

A Quick Tour Through a Source File 
Let's look at an example file to see how the code model represents it. Listing 12-
1 shows a (somewhat) typical C# source file. 

namespace CMNamespace 
( 

delegate void CMDelegate(int delParam): 

struct CMStruct 
{ 

int field: 

Listing 12-1 An example C# source file 
375 



376 Part II Extending Visual Studio .NET 

The code in Listing 12-1 defines a namespace that holds a menagerie of 
code constructs, including a delegate, a structure, an enumeration, an interface, 
and a class. The interface and the class each define members of their own: the 
interface defines a method, and the class defines a member variable, a method, 
and a property. 

The code model gives you different ways of looking at these constructs, 
depending on your needs. We'll begin with the most basic representation: the 
CodeElement. The CodeElement object exposes a number of properties that 
allow you to determine the specific kind of code construct being represented. 
Figure 12-1 shows how the code model wraps each of the code constructs in 
Listing 12-1. 



Chapter 12 The Code Model 377 

CodeE/ement 

CMNamespace 

CodeElement 

·- ----.-1 CM Delegate I Code Element 
I 1- - - - - - J ... __ d_el_Pa_r_a_m _ __, 

Code Element 

CodeE/ement i ___ c_M_S,...tr_uc_t _ __.I 
1- - - - - -1.._ ___ F_ie_J_d __ _. 

CodeE/ement 

CodeE/ement 4.___cM_E..,..n_um_. _ ..... I 
CodeEl;m~:r - - -1 ... __ M_e_m_b_e_r _ __, 

CM Interface I CodeE/ement 

1- - - - - - j CMlnterfaceMethod I 
Code Element I 

I 

•-I CMG/ass I CodeElement 

~ -----1 CMAttribute 

Code Element 

- - - - -1 ... __ m_e_m_b_e_r~_a_r_~ 
Code Element 

CMCallbackFunction CodeE/ement 

pa ram ------1 
Code Element ------~ 

------... I __ c_M_P_ro_p_e_rt_Y_~ 
Figure 12-1 The CodeE/ement objects that the code model generates 
for Listing 12-1 

Figure 12-1 illustrates the hierarchical relationship between the different 
CodeElement objects, starting with CMNamespace. The dotted lines are to 
remind you that the CodeElement objects have no direct connections linking 
them together-you'll need a more refined view before you can navigate the 
hierarchy. 



378 Part II Extending Visual Studio .NET 

As a programmer, you know that modern programming lan
guages have complexity to spare-so much so that the 21 days to 
mastery promised by some programming books hardly seems enough 
time to teach yourself cout << "Hello, world";, much less all of Visual 
C++. Now try to imagine the complexity of the code model, which 
strives to distill the functionality of four major languages-Visual C++, 
Visual C#, Visual J#, and Visual Basic-into a single, comprehensive 
API. If you think one chapter might not be enough to cover all the code 
model, you're right, and this chapter doesn't even try. Instead, this 
chapter gives merely a short introduction to the two main uses of the 
code model-code discovery and code generation; we'll defer com
plete coverage of the code model until the Appendix. 

Navigating the Hierarchy 
Before you can navigate the hierarchy shown in Figure 12-1, you need access 
to the top-level CodeElement objects. The FileCodeModel object represents a 
source file and its code constructs, and the FileCodeModel.CodeElements prop
erty holds the collection of top-level CodeElement objects that we want. In our 
example, the only top-level object is CMNamespace, so you'd expect to find 
only one CodeElement object in the FileCodeModel.CodeElements collection. 
(Alternatively, you could use the CodeModel.CodeElements collection, which 
holds the top-level CodeElement objects for an entire project, but then you'd 
have to search the items in the collection to find the one representing 
CMNamespace.) To get you started on your code model journey, Listing 12-2 
provides functions that return the FileCodeModel object or the CodeModel 
object associated with the active window. 

Function. G:etFileOodeModelO · As .. F'n eCodeMode 1 
; .... Qescri.ption:. ieturns the .. F!l e~odeMode.l 

Listing 12-2 The GetFileCodeModel and GetCodeModel functions 



Return fem 
End Function 

Function GetCodeModel() As CodeModel 

Chapter 12 The Code Model 379 

• Description: Returns the CodeModel object of the active window 

Dim txtWin As TextWindow = GetTextWindow<DTE.ActiveWindow) 
Dim cm As CodeModel 

If Not txtWin Is Nothing Then 
Try 

cm= txtWin.Parent.Projectitem.ContainingProject.CodeModel 
Catch e As Exception 
End Try 

End If 

Return cm 
End Function 

We established already that you can't travel directly from one CodeElement 
object to another, so how do you find the rest of the CodeElement objects from 
the CMNamespace CodeElement object? The answer is that you query the 
CodeElement object for the interface that corresponds to the underlying code 
construct and then use that interface to find the related CodeE!ement objects. The 
code model defines interfaces for each of the major code constructs: Code
Namespace, CodeStruct, Codelnterface, CodeClass, CodeEnum, CodeVariable, 
CodeDelegate, CodeProperty, CodeAttribute, CodeFunction, and CodeParameter. 
Each of these interfaces offers properties and methods specific to its underlying 
code construct; for example, CodeFunction has a Parameters collection that con
tains a CodeParameter object for each formal parameter of the underlying func
tion. The CodeElement.Kind property returns a value from the vsCMElement 
enumeration that indicates the specific type of the underlying code construct. For 
the CodeElement that wraps CMNamespace, the Kind property returns 
vsCMElementNamespace, which means you can retrieve a CodeNamespace inter
face from that CodeElement object. 

Once you have the CodeNamespace interface, you can retrieve its children 
in the hierarchy by iterating through its Members collection. Most of the inter
faces also contain a Members collection, which allows you to access their chil
dren. Navigating the code hierarchy, then, requires successive iterations of 
querying the CodeE!ement object for a specific interface and then finding the 
child CodeE!ement objects through the Members property of the interface. Fig
ure 12-2 shows a more detailed view of our example hierarchy. The solid lines 
in Figure 12-2 represent the child code elements reachable through the Mem
bers collections. 



380 Part II Extending Visual Studio .NET 

CodeNamespace 

CodeDelegate 

CodeParameter 

- - - - - - r< delPa)';arn > I 
CodeStruct 

CodeC/ass 

CodeAttribute 

- - - - - - f ·· ¢i4Atti-11:!tite 

Code Variable 

CodeFunction 

1-------1 cN1ca11backF"un¢tiorl CodeParameter 

- - - - - - j pararn • I 
CodeProperty ......... ----~--.......... 

Figure 12·2 A detailed view of the example hierarchy 

Listing 12-3 shows one way of traversing the hierarchy. You pass in a 
CodeElements collection to the RecurseCodeElements routine, which iterates 
through the collection, writing the names of each item to the Output window and 
calling itself recursively whenever the current item sports a Members collection. 



Chapter 12 The Code Model 381 

Sub TestRecurseCodeElements() 
Dim output As New OutputWindowPaneEx(DTE) 

output.Clear() 
output.Writeline("--- TestRecurseCodeElements ---") 
output.Writeline() 

Dim fem As FileCodeModel GetFileCodeModel() 

If Not fem Is Nothing Then 
RecurseCodeElements(fcm.CodeElements. 0) 

End If 
End Sub 

Sub RecurseCodeElements(ByVal elements As CodeElements, _ 
ByVal level As Integer) 

Dim output As New OutputWindowPaneEx(DTE) 

Dim indent As New String("", 4 •level) 
Dim members As CodeElements 
Dim elem As CodeElement 

• Iterate through each item in CodeElements collection 
For Each elem In elements 

Next 
End Sub 

• Display element name 
output.Writeline(indent & elem.Name) 

members = GetMembers(eleml 

If Not members Is Nothing Then 
' Call macro recursively 
RecurseCodeElements(members, level + 1) 

End If 

Function GetMembers(ByVal elem As CodeElement) As CodeElements 
Dim members As CodeElements Nothing 

If Not elem Is Nothing Then 
' Determine the element type and retrieve its .Members collection 
Select Case elem.Kind 

Case vsCMElement.vsCMElementNamespace 
Dim cdeNamespace As CodeNamespace elem 
members = cdeNamespace.Members 

Listing 12-3 Navigating the hierarchy recursively 



382 Part II Extending Visual Studio .NET 

Case vsCMHement. vsCME.l ementCl ass 
.Dim c:dedass As CodeClass = elem 

member$·.,,,· cd.eClass.Memb.ers 

Case vsCME1ement;vsCME1ementStruct 
-Oi~ cdeStrutt As CodeStruct = elem 
members = cdeStruct. Members 

Case vsCMElement.vsCMElementDelegate 
Dim cdeDelegate As CodeDelegate = elem 
members = cdeDelegate.Members 

Case vsCME1ement.vsCMElementEnum 
Dim cdeEnum As Code.Enum = elem 
members = cdeEnum.Members 

case vsCMElement.vsCMElementinterface 
Dim cdeinterface As Codeinterface =elem 
members • cdelnterface.Members 

End Select 
End U 

Return members 
End Function 

The GetMembers function in Listing 12-3 determines the type of the 
CodeElement passed to it, assigns the CodeElement to a variable of the correct 
type, and returns the type's Members collection. In Visual Basic, you could just 
as easily return Members from the CodeElement variable itself, assuming that the 
underlying object also implemented a Members property. However, strongly 
typed languages require that you explicitly cast the CodeElement variable to the 
correct type (or Querylnterface for the correct interface), so we tried to use 
code comparable to that used by such languages. 

The GetMembers function illustrates some of the complexities involved 
with managing the code model interfaces. To help manage this complexity, the 
code model defines a generic interface named CodeType, which you can 
retrieve from any object that also supports one of the following interfaces: 
CodeClass, CodeStruct, Codelnterface, CodeEnum, and CodeDelegate. (Inciden
tally, CodeType defines the Members property, which is why you can find this 
property on objects that support the previous interfaces.) If you have a CodeEle
ment object, you can check for the availability of the CodeType interface 
directly by using the CodeElement.IsCodeType property. 



Chapter 12 The Code Model 383 

So, CodeType gives us yet another way to view our example hierarchy, as 
shown in Figure 12-3; CodeType also simplifies the logic needed to traverse the 
code hierarchy, as shown in Listing 12-4. The one "gotcha" in the CodeType 
approach is that CodeNamespace objects don't support the CodeType interface. 
In the RecurseCodeElementsByCodeType macro, solving this "gotcha" requires 
an extra if branch to check for CodeNamespace elements specifically. 

CodeNamespace 

CMNamespace 

Code Type 

CM Delegate CodeParameter 

- - - - - - J delParam 
Code Type 

CMStruct Code Variable 

Field 
Code Type 

CMEnum Code Variable 

Member 
Code Type 

CM Interface CodeFunction 

'------1 CMlnterfaceMethod 
Code Type 

CMC/ass CodeAttribute 

- - - - - - J CMAttribute 

Code Variable 

memberVar 

CodeFunction 

1-------<CMCallbackFunction CodeParameter 

- - - - - - J param 
Code Property 

CM Property 

Figure 12-3 A Code Type view of the example hierarchy 

We're almost at the end. You can see from Figure 12-2 and Figure 12-3 that 
the Members collections let you reach all CodeElement objects except the 
attribute on the class and the parameters in the delegate and the class member 
function. The CodeClass interface defines an Attributes collection that holds the 



384 Part II Extending Visual Studio .NET 

CodeAttribute objects that apply to the class, and the CodeDelegate and Code
Function interfaces define a Parameters collection of CodeParameter objects; 
iterating through those collections allows you to complete the journey through 
the code hierarchy. 

Sub. TestRecurseCodeEl ementsByCodeType () 
Dim output As New OutputW.i ndowPaneEx(DTE) 

output.Clear() 
output. Write Line("-· - Te.stRecurseCodeEl ementsByCodeType - · ~") 
output,Wrtteline() 

Dim fem A~ FileCodeModel GetFileCodeModel() 

If Not fem Is Nothing. Then 
RecurseCodeElementsByCodeType(fcm.CodeElements, 0) 

End If 
End Sub 

Sub. RecurseCodeEl ementsByCodeType( By Va 1 e 1 em.en ts As CocteEl ements, _ 
ByVal .lev.el As Integer) 

Dim output As New ()utputWindowPaneEx(DTE) 

Dim indent As New. Str.'ing(" ", 4 * level> 
Dim e 1 em As Code Element 

• Iterate through each item in CodeElements collection 
For Each elem In elements 

Next 
End Sµb 

' Di.splay element name 
output.Wrtteline(indent & elem.Name> 

'.Check whether element is a namespace 
If el.em. Kind = vsCMEl ement. vsCMEl ementNamespace Then 

Oirn cdeNamespace As CodeNamespace = elem 

' Call .macro recursively 
RecurseCodeElementsByCodeTypeCcdeNamespace.Members, level + 1) 

Check whethe.r CodeTyp.e i.s avai 1 abl.e 
Elseif elem.IsCodeType Then 

Dim cdeType As CodeType "." elem 

• ca.11 macro recursively 
RecurseCodeElementsByCodeTypeCcdeType.Members, level + 1) 

.End lf 

Listing 12-4 Using Code Type to recurse through the code hierarchy 



Chapter 12 The Code Model 385 

Lab: Using the Code Model Explorer Add-in 
The Code Model Explorer (CME) add-in provides a handy interface for 
exploring the code model objects that represent your Visual Studio .NET 
projects. In this lab, you'll use the CME add-in to examine a typical add-in 
project. Follow these steps to get started: 

1. Create a new Visual C++ add-in project. 

2. Choose Tools I Code Model Explorer to display the CME add
in's main form. 

3. Open the Output window. 

4. Select the definition of CConnect, as shown in Figure 12-4. 

·~~MyAddin1 
c:iiJM-1 

,t; CJ Souiee Fihn 
-;~Heade<Fm 

H iEJ Comect.h 
? COM 
? "tt!ISOl.IK:8.h" 
? ''ibi<!llllcoSfSS.e7d8-4ddcfS5t&<l9oBedOe93eZ' .. ~i

l!t1[filR~.h 
:~ID ttdat11.h 
~ Reeource Files-

!i;J M-15....., 

!,;:= ' rshowo-
,.. CodeModel '. r Show01ildMn 

'··· . ··-·· ·- .. : 

Code Model-et 
:.:.H_···codec1.;;.·· ti.~ai1~ ---

N:c•ss .. o 
AtitribUtes = 
Bases • 

CC01ll.Obj•at.l\ooeix 
CC®'COClU5 
IDispa.tchlmpl 

Cbild.t:en "' 
[Bapl COK 

[V•dUJ.al a_pPTI 
[Variabl•I a_pJ.ddln!r.stance 
C Junct:.iOl't.) CCON:lect 

{J\m.ct.ionl Final.Const.rw:~ 

[ Punceionl Finalhle:ue 
t Punct:.ionl OnColll\8cti01'l 
[Junction] OnDis~0m1•ct.ion 

{JunctiOAJ On!.dd.InsUJida.t• 
!Futtct.ionj OnSte.r:tupCoaplet.fl 

£1'W.ctionl OnB•q~d.:.wn 
[WCll&.$el CCo•ObJ~c:tRootJhr: 

[VCBaHl CCoaCoClau 
tVCBasel IDi!s:patchit11pl 

c-· 
CConn.ect 

Ileriv•dTypu • lxeeptS.on 1reta lUUtSUL't: 0)1:8CI0000$. 
:OocCoaaene = 

-<.S11HUAP.Y>CC:onn.t1c:t.c/~> "'!, 

~- w 

Figure 12-4 The CME add-in output 

When you select a CodeElement node in the CME add-in tree view, 
the add-in dumps information about the CodeElement to the Output win
dow. For example, in the Output window shown in Figure 12-4, the"--
CodeClass Details ---" header indicates that CConnect is represented by a 
CodeClass object; the "Bases" entry shows CConnect's three base classes
CComObjectRootEx, CComCoClass, and !Dispatchlmpl; and the "Children" 
entry lists the 14 CodeElement objects in CConnect's Children collection. 



386 Part II Extending Visual Studio .NET 

When you select the Show Definition check box, the CME add-in will 
do its best to display the source code for the selected CodeElement node. 
If you select the Show Definition check box, expand the CConnect node, 
and select the OnConnection node, you'll see the OnConnection source 
code highlighted in the Connect.cpp file (as shown in Figure 12-5). 

l
:TD=~ ::~•cc: 10nDUoooneocion(Add 

) i:eturn S:_OK; 

STI:ilU:THOl)IKP CCor.necti :Ot\A.dd.IuUpdat'!i (SJ.F / 

l: r•«••n s_OK; . 

STDHTBODIKP CConnectt ;OnSee.reupCCll'IJ)lete ( 

I < i:eturn s_OK; 
,"'-M,'-

Ef CC>w1ecl 
. ; ...• ,,. CC>w1ecl 

: .. :~ 
L .... FNIFl-lil·•·-!!i·-Orll-
$"•0-mllf>dale 
f!!· .. OnSt~ 
!ff· .. DrlleginShWlown 
' .• "'-pl)T£ ....................... 

A_....h 

Figure 12-5 The CME add-in Show Definition feature 

Selecting the Show Children check box tells the CME add-in to display 
the CodeElement objects from the Children collection. For Visual C++ 
CodeElement objects, the Children collection is a superset of the Members 
collection and includes objects such as the bases for the parent CodeEle
ment. Select Show Children and then collapse and reexpand the CConnect 
node, and you'll see its Children nodes highlighted in red (as shown in Fig
ure 12-6). Notice that the corresponding COM node from the Members col
lection doesn't have any child nodes, which means that the red COM node 
has Children nodes of its own. Expand the red COM node and you'll see 
that its children consist of two COM_INI'ERFACE_ENTRY nodes; select the 
first COM_INI'ERFACE_ENTRYnode to see the output shown in Figure 12-7. 



Chapter 12 The Code Model 387 

I!! Code Model Explorer l'Cl~~J 

· • FinalConslrucl 
.,. FinalR elease 

1±1 ·.,. 0 nConneclion 
!fl · '··• 0 nD isconnection 
f!l ·.,,. 0 nl\ddl nsU pd ale 
i±l ,. 0 nS lartupComplete 
i+I • 0 nB eginS hutdown 

+ m_pDTE 
+ m_pAddl nl nslance 

i+i ? COM 
f m_pDTE 
f m_pAddl nl nslance 

_.._. CConnei:::t 

·.,,. FinalConstruct 
.-,,_• FinalRelease 

f:j:.i ·• nnl'"'r'lt'1t"'lPi"tinn 

Show D elinition 

I" . Show Children 

Figure 12-6 The Show Children feature 

·:cc,,,_, 
"• CConnect 
? COM 
• FiMIConstruct 
.• Fina1Re1'~ 
·• OnConnection 
,. OnDisconnectiori 
• Onb.ddlnsUpd~e 
• Ofl51a1tupComplete 
• OnBeginShutdi:iwn 
f !>\.POTE 
1• m_pt..ddlnlnstMJce 
? COM 

? 1119P11ii••• 
? COM_INTERFACE_ENTRY 
f CConnec! 

Children 
[P•r••t:<•U"l !Dispatch 

l!'u,llNn• .. con_INUl;tll'ACl_Pt'J\Y' 
t».toLoc•tion • vi:C'.!UnfoLcu:ationProjeet:< 

b:Cod•fyp• "' Fals• 
Kind ., vs:CR1lit:111mtl1ap!ntry 
tan1J1,1.ao;e, .. Vis1.1al CH 
Pro)•~"ItQlll .. CQllnllCt;.h 

Figure 12-7 COM_INTERFACE_ENTRYdetails 

Finally, select the CodeModel option, which displays the CodeEle
ment objects available through the CodeModel.CodeElements property. In 
addition to the top-level objects available through the FileCodeModel 
object, you'll find CodeElement objects representing everything from mac
ros to IDL libraries. 



388 Part II Extending Visual Studio .NET 

Getting a CodeElement from a Point Object 
You've seen how to start at the top of a CodeElement hierarchy and visit every 
child. The code model also allows you to find a CodeElement from a point 
object in a source file. This ability enables you to create interactive features that 
respond to the programmer's input. 

The code model offers two ways of retrieving a CodeElement object from 
a point: the CodeElementFromPoint method of the FileCodeModel object and 
the CodeElement property of the TextPoint, EditPoint, and VirtualPoint objects. 
Here's the prototype for CodeElementFromPoint: 

CodeElement CodeElementFromPoint(TextPoint Point, vsCMElement Scope); 

The CodeElementFromPoint method takes a TextPoint object that specifies 
a location in a source file and a vsCMElement value that determines which of 
the enclosing code elements to return. For example, in Listing 12-1, if you had 
a TextPoint located on the param parameter of CMCallbackFunction, calling 
CodeElementFromPoint with a vsCMElement value of vsCMElementParameter 
would return the CodeElement representing param; calling CodeElementFrom
Point with a vsCMElement value of vsCMElementClass would return the 
CodeElement representing CMClass. 

The CodeElement property takes a vsCMElement value that serves the 
same purpose as the Scope parameter of CodeElementFromPoint. You might 
wonder why the code model would bother with CodeElementFromPoint when 
point objects already have a way to get a CodeElement. The answer is that the 
CodeElement property is implemented in terms of CodeElementFromPoint and 
is just a concise way of calling xxxPoint.Parent.Parent.Projectltem.FileCode
Model. CodeElementFromPoint. 

Lab: Finding CodeE/ement Objects from Point Objects 
The TestCodeElementFromPoint and TestCodeElementProperty macros let 
you get a feel for how the Scope parameter affects the CodeElement 
returned by the CodeElementFromPoint method and the CodeElement 
property. To use either of the macros, open the Output window, place the 
insertion point anywhere in a source code file, and run the macro. The 
macro calls CodeElementFromPoint or the CodeElement property with 
each possible vsCMElement value in the Scope parameter and sends infor
mation about the returned CodeElement to the Output window. 



Chapter 12 The Code Model 389 

If you run these macros on different code constructs in source files 
from different languages, you'll soon notice that Visual C++ does the best 
job of returning the element you request. However, best doesn't mean 
perfect. For example, suppose you have the Visual C++ equivalent of List
ing 12-1. If you were to place the insertion point on the param parameter 
of CMCallbackFunction and run the TestCodeElementFromPoint macro, 
Visual C++ would correctly return CMCallbackFunction for vsCMElement
Function, CMClass for vsCMElementC!ass, and CMNamespace for 
vsCME!ementNamespace, but it would miss param entirely when asked 
for vsCMElementParameten The same test for the other languages yields 
the following results: Visual C# ties Visual J# at 2 for 3 (vsCMElementPa
rameter and vsCMElementFunction), and Visual Basic is 1 for 3 (vsCM
ElementParameter). What's worse are the false positives-the incorrect 
CodeElement objects that are returned in place of the correct ones. You might 
order a vsCMElementParameter, but don't be surprised if the waiter brings 
you a vsCMElementFunction instead. 

So what are you to make of all this? Basically, you can't trust 
CodeElementFromPoint and CodeElement in the general case-at least not 
yet. At best, you might be able to get by in certain situations, when you 
know that only a particular language will be used. 

Generating Code 
The other main use of the code model is to generate source code programmat
ically. This aspect of the code model reveals most clearly the promise of a uni
versal programming language: the same AddClass method that generates a 
Visual C# class when run against a .cs file will generate a Visual C++ class when 
run against a .cpp file, and will generate a Visual J# class when run against a .jsl 
file. In this section, we'll show how to generate the source file in Listing 12-1 by 
using the code model. Note that the following example provides only the brief
est of introductions to this subject-for details about the objects and methods 
used in this section, please refer to the Appendix. 

Building a Source File 
All of the code model methods that generate code begin with Add, as in Add
Namespace, AddClass, AddVariable, and so on. By calling an Add method on a 
CodeElement, you create a new code construct within the CodeE!ement. Note 



390 Part II Extending Visual Studio .NET 

that CodeE!ement objects can't adopt other existing CodeE!ement objects-they 
can have children only by bearing their own; a consequence of this is that you 
have to create your code hierarchy from the top down. The top-most element 
in Listing 12-1 is CMNamespace, so you begin by creating a new namespace, as 
shown in the following code: 

Sub Createlisting_l2_1() 
Dim fem As FileCodeModel = GetFileCodeModel() 

If Not fem Is Nothing Then 
Dim cdeNamespace As CodeNamespace 

' Try to create a new namespace 
Try 

cdeNamespace = fcm.AddNamespace("CMNamespace") 
Catch e As Exception 
End Try 

' If successful. create the rest of the code elements 
If Not cdeNamespace Is Nothing Then 

End If 
End If 

End Sub 

The FileCodeModel.AddNamespace method generates the source code for 
a new top-level namespace and returns a reference to its corresponding Code
Namespace object. The call to AddNamespace takes place within a Try/Catch 
block because Add methods throw an exception if they're unab¥e to create the 
requested code element. Assuming all goes well, you'll have a reference with 
which to create the namespace's child elements. 

The first child element to create is CMDelegate. CMDelegate defines an 
integer parameter, and you can create both the delegate and the parameter in 
the same Try/Catch block: 

Try 
Dim cdeDelegate As CodeDelegate 

' Try to create a new delegate 
cdeDelegate = cdeNamespace.AddDelegate("CMDelegate", _ 

vsCMTypeRef.vsCMTypeRefVoid) 

' Try to add a new parameter to the delegate 
cdeDelegate.AddParameter("delParam", vsCMTypeRef.vsCMTypeRefintl 

Catch e As Exception 
End Try 



Chapter 12 The Code Model 391 

AddDelegate and AddParameter both take a parameter that specifies the 
code element's type; the vsCMTypeRejvsCMTypeRejVoidvalue represents a void 
type, and the vsCMTypeRejvsCMTypeReftnt value represents an integer type. 
The previous code doesn't declare a variable to store AddParameters return 
value because nothing further needs to be done with the delegate's parameter. 

Next you create the structure and its field: 

Try 
Dim cdeStruct As CodeStruct 

' Try to create a new structure 
cdeStruct = cdeNamespace.AddStruct("CMStruct", -1) 

' Try to add a new field to the structure 
cdeStruct.AddVariable("field", vsCMTypeRef.vsCMTypeRefint) 

Catch e As Exception 
End Try 

By now the rhythm should be familiar: define a variable for the new code 
element, assign the return value of the Add method to the variable, and call 
methods on the variable to alter the new code element. The -1 parameter to 
AddStruct tells the method to insert the source code for the new structure after 
every other sibling code element; all the Add methods accept this optional 
parameter. Here's the code for creating the enumeration and the interface: 

Try 
Dim cdeEnum As CodeEnum 

' Try to create a new enumeration 
cdeEnum = cdeNamespace.AddEnum("CMEnum", -1) 

' Try to add a new member to the enumeration 
cdeEnum.AddMember("Member") 

Catch e As Exception 
End Try 

Try 
Dim cdeinterface As Codeinterface 

' Try to create a new interface 
cdeinterface cdeNamespace.Addinterface("CMinterface", -1) 

' Try to add a new method to the interface 
cdeinterface.AddFunction("CMinterfaceMethod", _ 

vsCMFunction.vsCMFunctionFunction, vsCMTypeRef .vsCMTypeRefint) 
Catch e As Exception 
End Try 



392 Part II Extending Visual Studio .NET 

The second parameter to AddFunction lets you specify what kind of func
tion to create, such as a constructor, a destructor, a pure virtual function, and so 
on; the value of vsCMFunction.vsCMFunctionFunction for CMinteifaceMethod 
creates a vanilla function. Finally, here's the code that creates the class, its 
attribute, and all its members: 

Try 
Dim cdeClass As CodeClass 

' Try to create a new class 
cdeClass = cdeNamespace.AddClass("CMClass", -11 

Try 
' Try to add a new attribute to the class 
cdeClass.AddAttribute("CMAttribute", "CMVal"I 

Catch e As Exception 
End Try 

Try 
' Try to add a new member variable to the class 
cdeClass.AddVariable("memberVar", vsCMTypeRef.vsCMTypeRefObject, -1) 

Catch e As Exception 
End Try 

Try 
Dim cdeFunction As CodeFunction 

' Try to add a new member function to the class 
cdeFunction = cdeClass.AddFunction("CMCallbackFunction", _ 

vsCMFunction.vsCMFunctionFunction, _ 
vsCMTypeRef.vsCMTypeRefVoid, -11 

' Try to add a new parameter to the member function 
cdeFunction.AddParameter("param", vsCMTypeRef.vsCMTypeReflnt) 

Catch e As Exception 
End Try 

Try 
' Try to add a new property to the class 
cdeClass.AddProperty("CMProperty", "CMProperty", _ 

vsCMTypeRef.vsCMTypeReflnt, -1) 
Catch e As Exception 
End Try 

Catch e As Exception 
End Try 



Chapter 12 The Code Model 393 

Now that you're done writing the code that writes the code, it's time for 
some bad news: none of the language implementations will generate a com
plete simulacrum of Listing 12-1 from this code, either because the language 
doesn't support a particular code construct or because the language hasn't yet 
implemented a particular Add method. You can verify this for yourself by run
ning the Createlisting_12_1 macro on different language source files-if you 
do, you'll find that Visual C# generates everything but the attribute; Visual C++ 
generates everything but the delegate and the property; Visual J# generates 
everything but the delegate, structure, enumeration, attribute, and property; 
and Visual Basic doesn't generate anything. Again, that's the bad news-the 
good news is that the code model is a young branch of the automation object 
model, so you can expect major improvements in its next version. 

Looking Ahead 

The code model brings us to the end of Part II of this book. Part III takes you 
into territory mostly uncharted by other programming books: in it you'll learn 
how to set up Setup, find help on Help, hotwire the V12 command-line engine 
hidden under the unassuming hood of the Visual Studio .NET IDE, and keep 
your source safe from everyone, including yourself. 





Part Ill 





Designing Setup Projects 
When creating a new application, the last thing a developer usually thinks 
about is how to get the application onto the user's computer. In this chapter, 
we'll explore the tools in Microsoft Visual Studio .NET that help you create 
setup files for use with Windows Installer. 

Microsoft Windows Installer (MSI) Background 
In the early days of Microsoft Windows development, an application rarely con
sisted of more than a single executable file and maybe a DLL or two, so install
ing the application was as simple as copying the files from a floppy disk onto 
the computer. Changes to the system settings were rare, and when necessary 
they were simply a few changes to the win.ini and system.ini files in the 
C:\ Windows folder. 

Much has changed since those days; preparing even the simplest of appli
cations so the user can run it on modern versions of Windows requires many 
changes to the user's computer. The setup process for a modern Windows 
application must modify the system registry to associate files with your applica
tion so when the user double-dicks on the file it automatically opens. It must 
place COM DLLs in various locations on disk and register them, causing 
changes to the system registry. It must modify the Start menu so the user can 
conveniently find and run your application. In the case of Web applications and 
XML Web services, installing an application on a Web server requires not only 
placing the files on the server's hard drive but also configuring Microsoft Inter
net Information Services (IIS) to serve the Web application to the user. 

Since those early days of Windows development, countless setup devel
opment tools have become available. One of the most popular ones, which 

397 



398 Part Ill Deployment, Help, and Advanced Projects 

Microsoft used, was called Acme Setup; it was used in programs such as 
Microsoft Office 95 and Microsoft Visual Studio 6.0. Acme Setup and many of 
the other setup technologies got the job done, but they were complicated to 
develop for and didn't provide the user with a consistent experience from one 
application to another. These setup technologies could also be dan,gerous to 
the user's computer. If a problem occurred during installation, such as an error 
in installing a component, or if the user canceled the installation, the state of the 
computer would become unstable; some components or registry settings would 
be left behind or incorrectly removed. 

To make developing setup programs easier and to solve the problems 
associated with existing setup programs, the Office product group set out to 
develop a new type of setup program. This technology is called Windows 
Installer. When a Windows Installer setup program is built, a file with the .msi 
extension is created; the user can double-dick on this file to start installing a 
program. The files that make up the program to be installed can be either com
pressed and stored within the .msi file or stored loosely (on a distribution 
medium such as a floppy disk, CD, or DVD that's separate from the .msi file). 

Because logic is built into Windows Installer for handling the system reg
istry, COM objects, and (with version 2.0 of Windows Installer, the same ver
sion used by Visual Studio .NET and the .NET Framework) .NET components 
and .NET Web applications, installing these components is easy. Windows 
Installer also takes care of mundane setup chores such as making sure the 
computer has enough disk space, and it creates an entry in Control Panel's Add 
Or Remove Programs applet for uninstalling the program. Lastly, Windows 
Installer is transactional, which means the state of the computer is preserved 
when you install a component or a registry key. If a problem occurs during 
setup, a rollback is performed that restores the computer to the state it was in 
before setup was started. 

Creating Custom Installation Projects 
With the tools in Visual Studio .NET, you can easily create a setup project that, 
when built, generates an .msi file. You can find the templates for creating a 
setup project in the New Project dialog box, by selecting the Setup And Deploy
ment Projects node in the Project Types tree. The Setup Project type is used to 
install client software, such as a .NET or Win32 program, onto a user's com
puter, and the Web Setup Project type is used to install a Web application or 
Web service onto a server computer. The Merge Module template (discussed 
later in this chapter) is used to create setup project components. 



Chapter 13 Designing Setup Projects 399 

If you were to add a setup project to an existing solution and then choose 
Build I Build Solution to build your solution, the setup project wouldn't build 
because in the Configuration Manager dialog box the setup project isn't 
selected by default to build. Setup projects can take a while to build, and 
because you usually don't need to recompile the .msi file each time you want 
to debug a project, not building the setup project each time you compile the 
solution saves you some time. When you're ready to test your setup project, 
you can right-click on it in Solution Explorer and choose Build or you can select 
the Build check box in the Configuration Manager dialog box. If you're creating 
a setup project in a new solution file, the Build check box is selected by default 
because no other projects are in the solution. 

Once a setup project has been added to a solution, you can choose 
among six editors to build your setup project: File System, Registry, File Types, 
User Interface, Custom Actions, and Launch Conditions. You can use any of 
these editors to configure how your software is installed onto a user's com
puter. You can display any of these editor windows by selecting a setup project 
in Solution Explorer and then clicking the appropriate button on the command 
bar or right-clicking on the project in Solution Explorer and choosing View and 
then the editor. 

File System Editor 
You use the File System editor to graphically indicate where files that make up 
your software project should be placed on disk when the .tnsi file is installed. 
In this editor, you can add folders and files compiled by a project to create a 
directory structure that's logical for your application. 

Specifying an Installation Folder 
To install your program, you must create the directory structure that will contain 
the program's files. Many default installation folders are available in the File Sys
tem editor, giving you a starting point for a directory structure. To add a file to 
a folder, right-click on the appropriate folder, point to Add, and then select one 
of the file types-Folder to create a subfolder, Project Output to add a file gen
erated by another project in the solution, File for a file on disk, or Assembly for 
an assembly file. Visual Studio .NET defines the following folders that you can 
add files or folders to: 

• Common Files Folder For files that are common among all pro
grams installed on the computer. This folder can be found at C: \Pro
gram Files\Common Files. 



400 Part Ill Deployment, Help, and Advanced Projects 

• Fonts Folder For all the font files installed on the computer. The 
default location of this folder is C:\ Windows\Fonts. 

• Program Files Folder The folder where all programs installed on 
the computer should be stored. It can be found at C:\Program Files. 

• System Folder For storing operating system components. This 
folder should be modified only in the rarest of situations. It can be 
found at C:\ Windows\System32. 

• User's Application Data Folder The folder where applications 
can store data files that the user shouldn't manipulate. It can be 
found at C:\Documents and Settings\username\Application Data. 

• User's Desktop For all the items shown on the user's desktop. The 
default location for this folder is C:\Documents and Settings\user
name\Desktop. 

• User's Favorites Folder For links to favorite items. The default 
location for this folder is C:\Documents and Settings\user
name\Favorites. 

• User's Personal Data Folder For documents that the user creates. 
This folder can be found at C: \Documents and Settings\ user
name\My Documents. 

• User's Programs Menu For shortcuts to programs that will be 
shown on the Start menu. This folder can be found at C: \Documents 
and Settings\username\Start Menu\Programs. 

• User's Send To Menu For Send To menu items, which you can see 
by clicking on a file in Windows Explorer and selecting the Send To 
menu. This folder can be found at C:\Documents and Settings\user
name\SendTo. 

• User's Start Menu For Start menu items. This folder can be found 
at C:\Documents and Settings\username\Start Menu. 

• User's Startup Folder For all programs (or shortcuts to programs) 
that will run when the user logs in to the operating system. This 
folder can be found at C:\Documents and Settings\username\Start 
Menu \Programs \Startup. 

• User's Template Folder For templates to create new files. This is 
the source folder where the items on the New menu of the desktop's 
shortcut menu are located. This folder can be found at C:\Docu
ments and Settings\username\ Templates. 



Chapter 13 Designing Setup Projects 401 

• Windows Folder For operating system files. A typical location is 
C: \Windows. 

• Global Assembly Cache Folder For the computer's global assem
bly cache (GAC). Any files placed in this folder are accessible by the 
.NET Framework for all users of the computer. 

• Application Folder The folder where you should store most of 
the files and project output you're installing onto the user's com
puter. This folder defaults to C:\Program Files\Manufacturer\Pro
ductName, where Manufacturer and ProductName are the property 
values in the Properties window when the setup project is selected 
in Solution Explorer. 

• Web Application Folder A folder that's available only if the setup 
project is a Web Setup Project. Items added to this folder are installed 
in the IIS virtual folder and are available (security settings permitting) 
to users of your Web server. 

You can also create a new folder on the computer that's not a child of any 
of the default folders. To do this, right-dick on the File System On Target 
Machine node in the File System editor and choose Add Special Folder I Cus
tom Folder. The name you enter for the folder is not the path for the folder that 
will be created on the computer-it's for display purposes in the File System 
editor only. You set the folder path by selecting the newly created custom 
folder and typing the path to create in the DejaultLocation property in the 
Properties window. However, be careful when you create a custom folder and 
give it a hard-coded path; if you enter a disk drive that's not available on the 
computer, an error is generated. Later in this chapter, you'll see how you can set 
the path of the folder dynamically at installation time. 

Project Output 
Once you create a program and the directory structure to hold the program, 
you need a way to add the files to the File System editor. You could build your 
code project and then manually select each file generated by the project and 
add them to the File System editor. However, this approach can lead to prob
lems. For example, if you switch the project type from Debug to Release, you 
must manually modify the setup project to make sure the correct build version 
of the files is copied into the setup project. Another problem is that you might 
inadvertently omit a file or add a file that is not needed, causing the program to 
not function properly or causing the .msi file to be bigger than it needs to be. 
To make selecting files to install for a project easier, you can include the project 
output in a setup project. 



402 Part Ill Deployment, Help, and Advanced Projects 

To add a project's output to the File System editor, right-click on the folder 
that should contain the output and choose Add I Project Output. The Add 
Project Output Group dialog box opens and lists the projects that generate out
put and lists output types you can add to the setup project. The project output 
types you can add to a setup project are: 

• Documentation Files This type adds any files generated by Intel
liDoc to the File System editor. IntelliDoc files can be generated only 
from C# projects, so this option appears only if the project selected 
in the Project box is a C# project. 

• Primary Output This group contains the DLL or EXE file that the 
project creates when compiled. You must add this output to the File 
System editor to enable the user to run your program. 

• Localized Resources If you add this output type to the File System 
editor, all resource satellite DLLs are copied into the selected folder. 

• Debug Symbols This output type contains all the debug symbols, 
such as .pdb files, that are used to debug the application. If you want 
users of your application to be able to debug problems, you should 
add this output type to the File System editor. However, placing 
debugging symbols on the user's computer increases the size of the 
.msi file. In addition, you make it easier for people to reverse-engineer 
your application and possibly gain access to your intellectual property. 

• Content Files This output type includes all files within the 
selected project that were added as content files. 

• Source Files This project output type includes all the source files 
used to build a project. 

• Built Outputs This output type is available only if the selected 
project is another setup project. Adding this output type to a setup 
project allows you to install an .msi file onto the installer's disk. 

When a project's output is added to a setup project, Visual Studio .NET 
automatically scans the output and adds to the setup project any files (such as 
assemblies, unmanaged DLLs, or type libraries) that the project is dependent 
on. When the setup project is compiled, these dependent DLLs are packaged 
up into the .msi file and installed alongside the code that's dependent on those 
DLLs. These dependent DLLs appear in the File System editor alongside the file 
or project output that is dependent on them, and they're added to Solution 
Explorer underneath the Detected Dependencies folder of your setup project. 



Chapter 13 Designing Setup Projects 403 

You can control which dependencies are installed on the user's computer 
by excluding a dependency; you simply right-dick on a dependency file and 
choose Exclude. There can be many reasons for excluding a file, the most com
mon of which is that the user has the dependency file on her computer and 
therefore you don't need to package that file into the .msi file. In addition, 
when a project's output is added to the File System editor, a project depen
dency is created from the setup project to the project generating output. As a 
result, when a solution build is started, the project, which has its output in the 
setup project, is built before the setup project is compiled, which ensures that 
the files in the setup project are up-to-date. 

Have Your Wizards Stopped Working? 
When you test your setup project to make sure it installs and uninstalls 
properly, you might find that some programs have stopped working
especially after you uninstalled the .msi file. This problem is common when 
you're building a setup program for wizards or add-ins. Suppose you refer
ence the assembly VSLangProj within your add-in project. When you build 
the setup project for the add-in, the setup project sees that you referenced 
the VSLangProj assembly and automatically adds it to the setup project as 
a dependency. Also, because VSLangProj is a Primary Interop Assembly 
(PIA) for the type library VSLangProj.tlb, the type library is added to the 
setup project as a dependency. This last file is where you can run into trou
ble. When COM objects (including type libraries) are added to the File Sys
tem editor, they're automatically set to be registered when installed. 

If the .msi file for your add-in or wizard is uninstalled, Windows 
Installer removes all the files that it installed on the system. Because the 
VSLangProj.tlb type library is being uninstalled, it also unregisters itself as a 
type library. Other components, such as Visual Studio .NET wizards, use this 
type library, and if the type library is not registered, the wizards cannot run. 

To fix this problem and prevent it from recurring, you can scan your 
setup project after adding a new project output to the File System editor, 
to look for components added as dependencies that aren't part of your 
project. If you find such a file, right-dick on that file and choose Exclude, 
or if you know that the dependency is located within a merge module, 
add the merge module to your setup project. This ensures that the com
ponent is properly installed on the computer. (VSLangProj is not in a 
merge module, so this is not an option for a wizard or an add-in.) 



404 Part Ill Deployment, Help, and Advanced Projects 

If you've already uninstalled an .msi file that contains a dependency 
that shouldn't have been installed and you want to repair your computer, 
you have a few options. The first is to run the repair option of the appli
cation that has stopped working. If the application is Visual Studio .NET, 
the repair process will be lengthy and you might not want to go through 
it. An alternative way of fixing the problem is to find and then manually 
reregister the type libraries and COM objects that were unregistered. You 
can do this only if you have the necessary tools. The third option is to cre
ate a throwaway setup project, add the necessary components (such as 
VSLangProj.tlb) to the setup project, and then build and install that setup 
project. This causes the file to be registered, and as long as you do not 
uninstall this .msi file, everything should once again work fine. 

Registry Editor 
With the Registry editor, you can point and click your way to creating entries in 
the system registry when the .msi file is installed. During installation, the regis
try keys and values you create within this editor are copied into the system reg
istry, mirroring the structure you create. You can see an example of the Registry 
editor being used to help set up an add-in when you run the Add-in Wizard. 
The purpose of a setup project being added to a solution when you run this 
wizard is not to install files (although the setup project also helps do that) but 
to create the registry keys necessary for Visual Studio .NET to find, load, and 
run your add-in. 

You'll notice that the Registry editor window closely resembles the Regis
try Editor program (regedit.exe) that's installed with Windows. Just as you can 
edit the system registry using regedit.exe, you can edit the registry using the 
Registry editor, except that registry settings declared in the Visual Studio .NET 
Registry editor window are created at install time. 

If you use a setup project to install a COM object created with the C++ 
programming language, you must decide whether to define the registry keys for 
that COM object within the Registry editor or let the COM object register itself 
during installation. When the output of a COM object project is added to the 
File System editor, the Register property in the Properties window for that out
put is set to vsdrpCOM, which means the COM object knows how to register 
itself, and the DllRegisterSeroer and DllUnregisterSeroer methods are called on 
installation or uninstallation of that object. However, if a COM object registers 
itself, the keys it creates aren't included in the transactional feature of Windows 



Chapter 13 Designing Setup Projects 405 

Installer. If installation fails, the DllUnregisterServer method is called to try and 
roll back the registry key creation; if that fails, some registry entries might be left 
behind. On the other hand, creating the registry entries for a COM object can be 
a tedious, error-prone chore. If all you need to do is copy the entries in an .rgs 
file to the Registry editor, it isn't a problem, but you must create multiple regis
try keys and values for every interface defined by that COM object so the proxy 
and stub DLL for that interface are set up correctly. The choice is yours, but you 
should consider the options carefully. 

The User/Machine Hive 
The Registry editor lets you modify the registry settings for the four main registry 
root sections, or hives: HKEY _CLASSES_ROOT, HKEY _CURRENT_USER, 
HKEY _LOCAL_MACHINE, and HKEY _USERS. However, the Registry editor for an 
.msi setup project has one additional node that's not a root key within the system 
registry: the User/Machine Hive key. This key is used to conditionally modify the 
HKEY_LOCAL_MACHINE key or HKEY_CURRENT_USER key and is dependent 
on an option the user selects when installing an .msi file. If you create a setup 
project and then build and install the resulting .msi file, the second page of the 
setup user interface appears as shown in Figure 13-1. On the bottom left of this 
dialog box are two options, Everyone and Just Me. If the user selects Everyone, all 
the registry keys you create in the User/Machine Hive key are placed in the sys
tem registry under the HKEY_LOCAL_MACHINE key. If the user selects Just Me, 
all these settings are placed in the HKEY_CURRENT_USER key of the system reg
istry. If the person running the .msi file has reduced permissions, such as Guest, 
these two option buttons are not displayed and the setting defaults to Just Me. 

The installer will install Setup1 to the following folder. 

To install in this folder. c~ck "Ne~t". To. install to a different folder. enter it below or click ''Browie". 

[older: 

jc:\Program Files\Delault Company Name\Selup1 I 

lnstaH Setup1 for youiself. or for anyone who uses this computer: 

O&veryone 

Figure 13-1 The Select Installation Folder page of an .msi setup file 



406 Part Ill Deployment, Help, and Advanced Projects 

Installer Properties 
Although the Registry editor provides an easy-to-use, point-and-dick way to 
create registry settings for your program, the registry modifications you make 
are static. That is, the key names, value names, and data values you enter are 
copied into the registry during setup exactly as you've typed them. However, at 
times you'll need to create a registry key with a name or value that's dynamic, 
reflecting the state of the computer when the user installs an .msi file. Such 
dynamic values are known as installer properties. Using an installer property in 
the Registry editor is as simple as placing the installer property name within 
square brackets; when the .msi file is run, Windows Installer notices these 
installer properties and replaces them with the appropriate values. 

Table 13-1 lists the most commonly used installer properties of the nearly 
200 that are available. New ones are being added with each new version of Win
dows Installer. You should consult MSDN for an up-to-date listing of the avail
able installer properties. As an example, to place the date on which the user 
installed the .msi file into the registry, you use [Date] as the registry key name, 
value name, or value. You can combine installer properties by placing them next 
to one another, and you can add string data where appropriate. For example, 
the value !Time]-[Date] is expanded to create the value 17:54:35-11110/2002 for 
November 10, 2002, at 5:54:35PM. You can see one of these installer properties 
being used when you first create a setup project. If you look in the Registry edi
tor of a setup project, you can see that the keys HKEY_LOCAL_MACHINE\Soft
ware\[Manufacturer] and HKEY_CURRENT_USER\Software\[Manufacturer] are 
automatically created for you. These keys are where you can place data specific 
to your company's software; the token [Manufacturer] expands into the name of 
your company, which you can enter as the Manufacturer property in the Prop
erties window when the setup project is selected in Solution Explorer. 

Table 13-1 Commonly Used Installer Properties 

Installer Property Description 

AdminToolsFolder Folder where tools to administer 
the computer are stored. 

AdminUser This value is 1 if the installing 
user has administrator privi
leges, 0 if not. 

AppDataFolder Folder where application
specific data is stored. 

Example 

C:\Documents and Settings\user
name\Start Menu\Programs\Administra
tive Tools\ 

1 

C:\Documents and Settings\username\ 
Application Data\ 



Chapter 13 Designing Setup Projects 407 

Table 13-1 Commonly Used Installer Properties (continued) 

Installer Property 

ARPCONTACT 

Author 

CommonApp
DataFolder 

CommonFilesFolder 

ComputerName 

Date 

DesktopFolder 

FavoritesFolder 

FontsFolder 

Description 

The name of the technical sup
port contact person. This value 
is set using the Author property 
in the Properties window when 
the setup project is selected. 

The author of the installer. The 
value of this property is set in 
the Properties window when 
the setup project is selected in 
Solution Explorer. 

The folder shared by all users 
for storing application-specific 
data. 

The folder where shared soft
ware components are stored. 

The network name of the com
puter. 

The date on which the .msi file 
is installed. 

The folder for installing user's 
desktop items. 

The folder where Internet 
Explorer favorites are stored. 

The folder where fonts are 
stored. 

Example 

Default Company Name 

Default Company Name 

C:\Documents and Settings\All Users\ 
Application Data\ 

C:\Program Files\Common Files\ 

CRAIGS4000 

11/10/2002 

C:\Documents and Settings\username\ 
Desktop\ 

C:\Documents and Settings\username\ 
Favorites\ 

C:\ Windows\Fonts\ 

Intel If setup is running on a com- 6 
puter with one or more Intel 
processors, this value is the pro
cessor class being used: 4 for a 
486, 5 for a Pentium, 6 for a P6, 
and so on. 

LocalAppDataFolder The folder for nonroaming, 
application-specific user data. 

Log on User 

Manufacturer 

MyPicturesFolder 

The user name of the person 
running the .msi file. 

The name of the company that 
created the .msi file. 

The folder where user images 
are stored. 

C:\Documents and Settings\username\ 
Local Settings \Application Data\ 

Craig Skibo 

Default Company Name 

C:\Documents and Settings\username\ 
My Documents\My Pictures\ 



408 Part Ill Deployment, Help, and Advanced Projects 

Table 13-1 Commonly Used Installer Properties (continued) 

Installer Property Description 

MsiNTProductType The type of the operating sys
tem installed. A value of 1 
means that the computer is a 
workstation, 2 means that the 
computer is a domain controller, 
and 3 means it's a server. 

NetHoodFolder 

Persona/Folder 

Physica!Memory 

PrintHoodFolder 

Privileged 

The Network Neighborhood 
folder. 

Folder where user documents 
are stored. 

The amount of memory, in 
megabytes, on the computer 
where the .msi file is being run. 

The folder where printers are 
installed. 

This value is 1 if the installation 
is performed under elevated 
user privileges. 

Example 

1 

C:\Documents and Settings\username\ 
Nei:Hood\ 

C:\Documents and Settings\username\ 
My Documents\ 

384 

C:\Documents and Settings\username\ 
PrintHood\ 

1 

ProductlD The serial number entered in 111-7000000 
the Serial Number edit box in 
the User Information dialog box 
(described later in this chapter). 

ProductName The name of the product being Setupl 
installed. You set this value by 
changing the ProductName 
property in the Visual Studio 
.NET Properties window when 
the setup project is selected. 

ProductVersion The version of the .msi file 1.0.0 
being installed. You set this 
value in the Version property in 
the Properties window when 
the setup project is selected in 
Solution Explorer. 

ProgramFilesFolder The Program Files folder. C:\Program Files\ 

ProgramMenuFolder The folder where Start menu 
program shortcuts are stored. 

RecentFolder The folder where shortcuts to 
recently used documents are 
stored. 

C:\Documents and Settings\username\ 
Start Menu\Programs\ 

C:\Documents and Settings\user
name\Recent\ 



Chapter 13 Designing Setup Projects 409 

Table 13-1 Commonly Used Installer Properties (continued) 

Installer Property Description 

RemoteAdminTS This value is 1 if the computer 
has terminal services installed 
and configured. 

ROOTDRIVE The drive on which to install the 
program. 

ScreenX The width, in pixels, of the 
user's primary monitor. 

ScreenY The height, in pixels, of the 
user's primary monitor. 

SendToFolder The folder containing items 
shown on the context menu 
when you right-dick on a file in 
Windows Explorer and choose 
Send To. 

ServicePackLevel The current service pack ver-
sion installed on the computer. 

ServicePackLevel- The minor version number of 
Minor the service pack installed. 

SourceDir The folder containing the .msi 
file. 

StartMenuFolder The folder where Start menu 
shortcuts are stored. 

StartupFolder The folder containing links to 
programs that are started when 
the user logs in to the operating 
system. 

SystemFolder The Windows system folder. 

SystemLanguageID The locale identifier (LCID) of 
the operating system. 

TARGETDIR The folder where the setup 
project is being installed. 

TempFolder The folder for temporary files. 

TemplateFolder The folder where templates are 
stored. Templates are the items 
shown on the New menu when 
the context menu of the desk
top is displayed. 

Example 

1 

C:\ 

1024 

768 

C:\Documents and Settings\user
name\SendTo\ 

1 

0 

C:\Documents and Settings\username\ 
My Documents\ Visual Studio Projects\ 
Setupl \Debug\ 

C:\Documents and Settings\username\ 
Start Menu\ 

C:\Documents and Settings\username\ 
Start Menu\Programs\Startup\ 

C:\ Windows\System32\ 

1033 

C:\Program Files\Default Company 
Name\ Setupl \ 

C:\ Documents and Settings\ username\ 
Local Settings\ Temp\ 

C:\Documents and Settings\username\ 
Templates\ 



410 Part Ill Deployment, Help, and Advanced Projects 

Table 13-1 Commonly Used Installer Properties (continued) 

Installer Property Description Example 

Time The time when the .msi file is 17:54:35 
being installed, in the format 
HH:MM:SS. 

UserLanguageID The locale identifier (LCID) in 1033 
use by the user. 

USERNAME The logon name of the user craigs 
installing the .msi file. 

VersionNT The version of operating system 501 
being used if the operating sys-
tern is 32-bit NT class. 

Virtua!Memory The amount of memory, in 576 
megabytes, assigned to the vir-
tual memory page. 

WindowsBuild The build number of the operat- 2600 
ing system. 

WindowsFolder The folder in which the operat- C:\ Windows\ 
ing system is installed. 

Windows Volume The hard disk drive on which C:\ 
Windows is installed. 

You can use these installer property values not only in the Registry editor 
but also in the File System editor. The previous section described how you can 
define custom folders that are created when the .msi file is installed, but the 
path to those folders was hard-coded. Using installer properties, you can spec
ify that the path of a custom folder be determined at install time. 

Suppose you need to create a folder for storing application-specific data. 
The installer property AppDataFolder is typically set to the value C: \JJocuments 
and Settings\username\Application Data\, which is the folder where user-spe
cific data for a program, such as configuration options, should be stored. The 
installer property ProductName is set to the name of the product being installed, 
which defaults to the name of the setup project. You could set the custom 
folder's location to point to the path C: \Documents and Settings\user
name\Application Data \ProductName, but if the user installs the operating sys
tem to the D drive or changes the application data path, this won't be the correct 
location to store data. You can combine the installer properties AppDataFolder 
and ProductName and set the Def aultLocation property for the folder to create 
within the Properties window into [AppDataFolder}[ProductNameJ. This auto
matically creates the folder C:\Documents and Settings\username\Application 
Data\Setupl (where the name of the setup project is Setupl). 



Chapter 13 Designing Setup Projects 411 

File Types Editor 
Of all the technologies built into Windows to help users get started using their 
computers, file associations are probably the most overlooked. Back in the days 
of MS-DOS, if you wanted to view or edit a data file, you had to know which 
application could be used to edit that file, and then you had to know how to 
start that application to view it. With Windows, all you need to know is how to 
double-click, because when you double-click the icon in Windows Explorer, 
the application associated with that file is automatically run and the data file is 
loaded. You create associations by creating a set of system registry keys and val
ues that link the extension of a data file to the program that views or edits that 
file. You can use the Registry editor of a setup project to define your file asso
ciations, but this can be complicated. The File Types editor in Visual Studio 
.NET lets you easily define your file associations. 

Suppose you create a new way of storing image data in a compressed for
mat that's better than any other image format available. You've also created a 
.NET program named MylmageViewer to make viewing, printing, and editing 
that file format possible. If the user of this file format wants to print the image, 
she can open your viewer application, choose File I Open, browse to the 
image (which has the file extension .myimage), and then choose File I Print to 
print the image. Or, she can let Windows handle all the work for her using a file 
association. For the purposes of this example, we'll leave the theories about 
image file formats to other books and use a bitmap file, renamed to have the 
.myimage extension, as our file format. 

To create a .myimage file association within a setup project, first open the 
File Types editor for the setup project by right-clicking the setup project in Solu
tion Explorer and choosing View I File Types. Right-click on the File Types On 
Target Machine node, and select Add File Type. This creates a file association 
for the Open verb. A verb is an action you take against the file; the default verb 
(denoted within the File Types editor using boldface) is the action performed 
when the user double-clicks on the file in Windows Explorer. Other common 
verbs are Print and Edit. For our example, we'll add both of these. 

To add the Print verb, right-click on the file type node you just created, 
choose Add Action, and then type &Print. The verb name is preceded by an 
ampersand because this text will be displayed to the user when a .myimage file 
is right-clicked in Windows Explorer and the P key will be the shortcut key for 
printing. Next, you set how the verb will tell your program that it has been 
invoked. Select &Print and, in the Properties window, type the command-line 
argument for the Print verb in the Arguments property. For this example, the 
command-line argument is -print "%1 ". The -print value is a command-line 
switch that tells your program it should print a file. Windows Explorer replaces 



412 Part Ill Deployment, Help, and Advanced Projects 

the %1 token with the file path of the image that is to be printed. This token 
should be surrounded by double quotes. If it isn't and the file path has an 
embedded space, two or more strings will be passed as the filename to the pro
gram's command line arguments, not just one, thereby confusing the program 
that handles the verb. Next, in the Properties window, type the name of the 
verb, Print, in the Verb property. For the purposes of this example, you should 
also repeat the process to create another verb, using the verb Edit in place of 
Print where appropriate. 

Now you need to tell the setup project which program to run when the 
user selects one of these verbs. Select the file type node you created under
neath the File Types On Target Machine node, and then open the Properties 
window. The Command property specifies the program that will run when the 
verb is invoked; you can set the target of the verb to any file that's been added 
to the File System editor, including project output such as the primary output. 
To specify an extension that is associated with the program, type one or more 
extensions, separated by semicolons, in the Extensions property. For this sam
ple, type myimage; a period preceding the extension isn't required. If you 
want to use a custom icon for your file format when the file is viewed in Win
dows Explorer, you can add an icon to the File System editor and then browse 
to that icon using the Icon property. 

The last step is to modify your program to accept the command-line 
parameters passed to the program. If your program is a Windows Forms appli
cation and the main form in the program is called Forml, you can add the fol
lowing constructor to the Forml class: 

public Forml(string [Jargs) 
{ 

InitializeComponent(); 
if(args.Length == 1) 
{ 

pictureBoxl.Image = System.Drawing.Bitmap.FromFile(args[0]); 
this.Text = this.Text + " - " + 

System.IO.Path.GetFileName(args[0]); 

else if Cargs.Length == 2) 

//The two command line switches that are recognized: 
string printCommand = "-print"; 
string editCommand = "-edit"; 
if(System.String.CompareCprintCommand, args[0], true) == 0) 
{ 

//We were asked to print the image. Load the image, then use 
II the PrintDocument class to print 
pictureBoxl.Image = System.Drawing.Bitmap.FromFile(args[l]); 
PrintDocument printDocument =new PrintDocument(); 
printDocument.PrintPage += new 

PrintPageEventHandler(printDocument_PrintPage); 



Chapter 13 Designing Setup Projects 413 

printDocument.Print(); 
System.Diagnostics.Process.GetCurrentProcess().Kill (); 

else if(System.String.Compare(editCommand, args[0], true) == 0) 
{ 

//We were asked to edit the image. 
//Spawn off to MSPaint to edit: 
System.Diagnostics.Process.Start("mspaint.exe", "\"" 

+ args[l] + "\""); 

System.Diagnostics.Process.GetCurrentProcess().Kill(); 

Next, change the Main function to the following: 

static void Main(string []args) 
{ 

Application.Run(new Forml(args)); 

When the Edit or Print verbs are invoked, the command line to the pro
gram is -edit filename or -print filename. This code examines the parameters, 
and if -print or -edit is specified, it takes the appropriate action, either printing 
the image or calling to mspaint.exe to display the image passed on the com
mand line, and then it exits. If neither verb is specified and the user wants to 
view the image, the image file is loaded and displayed on the form. The 
MylmageViewer sample contains the complete source code for a .myimage 
viewer and a setup project that includes the settings to register a file extension. 

User Interface Editor 
When an .msi file is installed, a setup wizard walks the user through the install 
process. The wizard's dialog boxes do little more than tell the user which pro
gram he's installing, ask for the name of the folder on disk in which to install 
the program, and provide feedback during installation. Using the setup tools 
built into Visual Studio .NET, you can add dialog boxes that ask for more infor
mation about how to configure your program's installation. 

You can customize any dialog box within a setup project by modifying 
two properties in its Properties window: BannerText and BannerBitmap. Ban
nerText specifies the text in the banner at the top of the dialog box, which 
describes that step of the setup wizard. BannerBitmap specifies a bitmap file to 
show along the top of the dialog box; you must add this bitmap to the File Sys
tem editor before you can browse to it, and it must be 496 pixels wide and 68 
pixels high. The bitmap can look any way you want, but keep in mind that the 
value of the BannerText property will appear on top of the bitmap; you should 
use a color that will allow this text to be visible. 



414 Part Ill Deployment, Help, and Advanced Projects 

In the User Interface editor, you'll notice two branches of a tree, Install 
and Administrative Install. The Install branch is where you do most of the 
work to design the user interface of a setup project. The dialog boxes shown 
in this branch make up the user interface that most users see; they walk users 
through the steps of setting up your application. The Administrative Install 
branch, as its name suggests, is for system administrators. If a network admin
istrator runs an .msi file with the -a switch on a command line, such as 
msiexec.exe -a msifile.msi, the files contained in the .msi file are installed so 
the users of the network can perform a network installation of the program. 
Only a subset of the dialog boxes available in the Install branch can be used 
in the Administrative Install branch. In most situations, you don't need to 
make changes to the Administrative Install branch of the User Interface editor; 
Windows Installer handles all the details of an administrative install for you. 

Splash Screen 
The purpose of a splash screen page is simply to display an image to users that 
identifies what program they're installing. The image must be a bitmap or ]PG 
file that's 480 pixels wide and 320 pixels high. To set the image to display in this 
dialog box, first add the image to an appropriate folder in the File System editor, 
select the Splash dialog box in the User Interface editor, and then set the Splash
Bitmap property in the Properties window to the image file you just added to 
the File System. Figure 13-2 shows a splash screen of a setup project with the 
cover of this book used as the image. 

Figure 13-2 A splash screen for a setup project showing the Inside 
Microsoft Visual Studio .NET book cover 



Chapter 13 Designing Setup Projects 415 

Options Dialog Boxes 
The options dialog boxes-RadioButtons (2 Buttons), RadioButtons (3 But
tons), RadioButtons (4 Buttons), Checkboxes (A), Checkboxes (B), and Check
boxes (C)-give you a way to offer users installation options. The 
RadioButtons dialog boxes display 2, 3, or 4 option buttons that the user can 
choose from, respectively; the Checkboxes dialog boxes display between 0 and 
4 check boxes. (See Figure 13-3.) 

ii Setup f-1 [X] 

Banner Text 

D Checkbo.<1 

0Checkbo"2 

0Checkbo>!3 

0Checkbo•4 

Cancel I ! < .!l.ack I c··N~~i > .. 

Figure 13-3 One of the Checkboxes dialog boxes 

You can manipulate the settings for each option button and check box in 
these dialog boxes in the Properties window. You can set an option's default 
state (selected or unselected, checked or unchecked), installer property name, 
and label. The most interesting value is the installer property name, which is 
denoted in the Properties window as ButtonProperty for RadioButtons dialog 
boxes and CheckBoxXProperty (where Xis a number from 1 to 4) for Check
boxes dialog boxes. You can use the value of these properties in other editors, 
such as the Registry editor, as key names, value names, or values, just as you 
would for the installer properties listed earlier in Table 13-1. 

You can use the value of an option in a RadioButtons dialog box (shown 
in Figure 13-4) in the Registry editor in the same way you use a check box value. 
Only one option can be selected at a time, so only one property is available for 
each dialog box; the value of ButtonXValue is used when the installer populates 
the system registry. For example, the RadioButtons (2 Buttons) dialog box has 
two value properties, Buttonl Value and Button2Value, which are set to 1 and 2, 



416 Part Ill Deployment, Help, and Advanced Projects 

respectively. The property name of these buttons is BUTTON2, so in the Registry 
editor you can use the value [BUTTON2] for a registry key name, value name, or 
value. If the first radio button (Buttonl) is selected, the data placed into the reg
istry is 1; if the second button (Button2) is selected, the data is 2. 

• 
1 Setup 1- I l~I 

Banner Text 

Figure 13-4 The RadioButtons (4 Buttons) dialog box 

Later in this chapter, we'll discuss how you can use the options dialog 
boxes to conditionally install the registry keys and files you place in the Registry 
and File System editors. 

Data Entry Dialog Boxes 
You use the data entry dialog boxes-Textboxes (A), Textboxes (B), and Text
boxes (C)-to ask the user for text data. Figure 13-5 shows one of these dialog 
boxes. Each data entry dialog box has four text boxes. For example, if you need 
to show only two of the text boxes, you can hide the other two text boxes by 
selecting the appropriate data entry dialog box in the User Interface editor and 
then, in the Properties window, setting the EditXVisible property (where Xis 
the edit box number) to False. Each text box in a dialog box has a name, and 
this name is listed in the Properties window using the EditXProperty property. 
You can use the value of this property, surrounded by square brackets, in the 
Registry Editor just as you use the other installer properties. For example, the 
first text box in the Textboxes (A) dialog box has the value EDITA1 for the 



Chapter 13 Designing Setup Projects 417 

EditlProperty property, so you can enter the registry key name, value name, or 
the value [EDITAJ} to represent what the user typed in the text box. 

,:;~ Setup ~ · f'XI 
BannerText 

BodyTe<t 

Edit1: 

Edit2: 

Edit3: 

Edit4: 

Figure 13-5 One of the TextBoxes dialog boxes 

Customer Information Dialog Box 
You use the Customer Information dialog box to gather information from users 
such as their name, the company they work for, and optionally a serial number 
for the program. To verify that a user has entered a correct serial number, a val
idation algorithm is performed on the serial number, with the algorithm being 
based on the value of the SerialNumberTemplate property in the Properties 
window. The value of the SerialNumberTemplate property creates the user 
interface for the serial number in the Customer Information dialog box and ver
ifies that the serial number entered is valid. To define the serial number that the 
user can enter, you string together a special set of tokens to create a template. 
This template is surrounded by the less-than and greater-than symbols. 
Between these two characters, you can place any number of the characters #, 
%, ?, A, and-. The# and% symbols are placeholders for digits, and? and A are 
placeholders for alphanumeric characters, with A denoting an uppercase char
acter. When a dash character is encountered within the template, a new text 
box is created in the dialog box. The dialog box determines whether the serial 
number entered is valid by adding all the numbers appearing in place of% in 
the template and dividing by seven. (The dialog box ignores all other charac
ters in the template.) If the remainder is 0, the number entered by the user is 
considered valid and the user is allowed to continue installing the application; 



418 Part Ill Deployment, Help, and Advanced Projects 

otherwise, an error message is shown and the user must either reenter the 
serial number to continue or exit the installation program. The dialog box 
shown in Figure 13-6 uses the default serial number template of <###

%%%%%%%>; the number entered is invalid because the sum of the numbers 
4, 5, 6, 7, 8, 9, and 9 is 48, which is not evenly divisible by 7. Once the serial 
number has been validated, the value of the serial number entered is stored in 
the installer ProductID property. 

Customer Information 

" . 
Ehilli,YOtir~"lli!i ~ Q(Q(~intiie~ba he.Jn.~• "lill,~$~lhl*JnfQr~Jtm .. 
fol1ub.ll~in3~ •. •. • .... ; ... · '/ >'· 

Figure 13-6 The Customer Information dialog box 

License Agreement and Read Me Dialog Boxes 
Just about every software program comes with some legal restrictions on how the 
program can and cannot be used. These restrictions, in the form of a license 
agreement, generally inform the user that the software cannot be illegally copied, 
cannot be reverse-engineered, and so forth. You can use the License Agreement 
dialog box to display license information to the user; unless the user selects an 
option to accept the license agreement, the user cannot continue installing the 
software. The options for accepting or not accepting the terms of the license 
agreement are shown in Figure 13-7. If the user selects the I Do Not Agree option, 
the Next button is disabled. Selecting the I Agree option is legally binding; a user 
who accepts the license agreement can continue installing the program. 

To create the text to display in the License Agreement dialog box, you 
must create a rich text format (RTF) text file. You can use tools such as 
Microsoft Word or even WordPad, the better-than-Notepad text editor installed 



Chapter 13 Designing Setup Projects 419 

with Windows, to create an RTF file. After creating this file, you can add it to the 
File System editor and then set the text to appear in the License Agreement dia
log box by first adding and then selecting the License Agreement dialog box in 
the User Interface editor and then in the Properties window browsing to the 
RTF file with the LicenseFile property. 

License Agreement 

Please toke • moment to read the ficenoe OQ'1Mmenl now. If ~ou accept the terms below, click "I 
Agree". then ''Next". Otherwise click "Cancer'. 

~his is some license text. Because the text displayed here is in RTF format, 
you can use different formatting options, such as 

Bulleted lists 
Bold or Italics 
color (this is red, although you will not be able to see the color since 
this screen capture is in black in white) 
md even different fonts 

@I !lo Not AgJ1!e 0 lllgree 

Cancel j [ < flack 

Figure 13-7 The License Agreement dialog box with richly formatted text 

The Read Me dialog box looks and works much like the License Agree
ment dialog box, except it doesn't have I Do Not Agree and I Agree options. 
Text in the Read Me dialog box, like that in the License Agreement dialog box, 
is defined using an RTF file, so it can contain text that's formatted with colors, 
fonts, and styles. 

Register User Dialog Box 
Many software packages ask users for personal information such as name and 
e-mail address so when new versions or bug fixes are available, the software 
company can send them upgrade information. You can add the Register User 
dialog box, shown in Figure 13-8, to your setup program to gather this informa
tion. This dialog box doesn't contain entries for users to type their name, e-mail 
address, land-based address, or other data; instead, it contains a simple button 
that, when clicked, invokes any executable program that has been added to the 
File System editor of your setup project. 



420 Part Ill Deployment, Help, and Advanced Projects 

•F Setup r~ I l:lii:I 

Register Setup 

l'IE«i•e. t)!g(.ter iiOUl'.OOpy Of Relji;tEilU•erS etup. 
Click ''RegioterNQW'' tQ S!art lh• regi$t~npro~. oi diOk ''Nem"l)IOU do.~·W<ll'l!to regimer t'IOW, . . . . . . . . . . . . 

r fiegister Now ... 

Figure 13-8 The Register User dialog box 

To associate your registration program with the Register Now button, you 
must first create a registration program and add the primary output of this pro
gram to your setup project's File System editor. Next, select the Register User 
dialog box in the User Interface editor, and in Visual Studio .NET's Properties 
tool window, browse to the executable using the Executable property. 

Creating the registration program isn't complicated-you can simply run 
the C# Windows Application Wizard and use the executable file-but you can 
find the source code for a registration project among the book's sample files. 
This project, RegisterUser, gathers the appropriate information from the user. 
Another sample project, called ProductRegistration, is a .NET Web application 
that you can install on a Web server. When the RegisterUser program is run and 
the user clicks the Register Online button, the information entered is packaged 
up into a HTTP request header and then posted to the ProductRegistration Web 
application. The Web application then unpacks this information from the 
request header and sends a message back to the RegisterUser project that can 
be displayed to the user. 

To use the RegisterUser and ProductRegistration samples, install the Pro
ductRegistration sample onto your Web server and add the output of the Regis
terUser project to your setup program. Within the ProductRegistration code, 
open the code-behind file for the ProductRegistration.aspx file and find the 
TODO comment toward the end of this file. You should replace this comment 
with custom code to store the user's information for later use, such as within a 



Chapter 13 Designing Setup Projects 421 

database. You can also modify the text message returned to the user, customiz
ing the message to suit your needs. The second step is to modify the Register
User Forml.cs file to point to the server containing the ProductRegistration Web 
application. To do this, search for the string localbost and change it to point to 
the server and virtual directory where the ProductRegistration Web application 
is installed. 

Custom Actions 
Windows Installer offers a lot of functionality to help you install your applica
tion, but at times you might need to run code during an installation to help get 
your program onto the user's computer. This helper code is called a custom 
action. We looked briefly at a custom action in Chapter 7 to help create and 
remove commands for Visual Studio .NET, but you can create a custom action 
to do anything you want. You can build three types of custom actions for a 
setup project: .NET Custom Actions, Script Custom Actions, and Win32 Custom 
Actions. The samples for this book include the CustomActions sample, which 
demonstrates creating and using each of these custom action types. 

You add custom actions to the Custom Actions editor by first adding the 
primary output of the project implementing the custom action to the File System 
editor and then right-clicking on the appropriate installation action in the Cus
tom Actions editor and browsing to the project output. Four installation actions 
are defined: Install, Commit, Rollback, and Uninstall. Which one you add your 
custom action to will depend on the work your custom action performs. An 
Install custom action is called when an .msi file is being installed. If an error 
occurs during installation, custom actions in the Rollback group are called. A 
Rollback custom action is run when an error occurs during installation; it can be 
used to repair a computer, removing data such as files or registry keys created 
within the Install action. If the installation completed successfully, custom 
actions in the Commit group are called, allowing you to complete setup on the 
computer. When a program is uninstalled, custom actions in the Uninstall group 
are called, giving your custom action the chance to clean up any data that might 
have been left behind by your program . 

. NET Custom Actions 
You can build custom actions by using the .NET Framework with an executable 
program, such as a Windows Forms application or a console application, or 
with a .NET class library that derives from a class found in the .NET base class 
libraries. Choosing which type of custom action to create is a tradeoff between 
how your user interacts with your custom action and how easy it is for you to 
develop and test your custom action. 



422 Part Ill Deployment, Help, and Advanced Projects 

If you want your custom action to display a user interface, the best option 
is to create a Windows Forms custom action. You simply add a Windows Forms 
application to your solution, add the output of this project first to your setup 
application's File System editor and then to the Custom Actions editor, and then 
select the appropriate installation stage in which the custom action should be 
run. When that stage is run, the custom action program is called, allowing the 
user to interact with the user interface the custom action displays. Creating a 
Windows Forms custom action is also a good choice for ease of developing and 
testing your custom action. Because a Windows Forms custom action is a pro
gram, you can run, test, and debug the custom action without needing to build 
and install the .msi file; this increases your productivity. Creating a custom 
action with a Windows Forms application is not the best choice if you don't 
intend to display a user interface because the form will block the install 
progress until dismissed, and you don't want to display a dialog box to the user 
that simply says "Click me to continue installing"-that's just poor style. 

The second option is to create a console application custom action. This 
custom action type offers the benefits of a Windows Forms custom action in 
terms of the ease of testing and debugging, and it displays a user interface to 
the user. Depending on what your custom action does, the user interface can be 
either a blessing or a curse. Users don't like seeing console windows-they're 
not pretty to look at and are hard to use. If the custom action you're creating 
does its job quickly, the screen will flash with a console application, causing the 
user to question what the installer is doing to his computer. However, if you 
need to display text information such as the output of another console applica
tion, a console custom action is a good choice. If you've created a custom 
action using either a Windows Forms or console application using a language 
supported by the .NET Framework, you must change the InstallerClass property 
in the Properties window from True to False when the custom action is selected 
in the Custom Actions editor. If this property is False, Windows Installer knows 
it should invoke the custom action as a program. If this property is True, Win
dows Installer searches the program for a class with a specific attribute, which 
is used by the third type of .NET custom action-a .NET class library. 

A .NET class library is a good choice if your custom action should run 
silently in the background without any user interaction. A custom action of this 
type is more complicated to test and debug because a class library isn't a free
standing executable that you can run without a hosting application. To create a 
class library custom action, you create a class library using your favorite .NET
enabled programming language, right-dick on that project in Solution Explorer, 
choose Add I Add New Item, and then add an Installer Class item to the project. 
The item added is a class that derives from the class System.Configura-



Chapter 13 Designing Setup Projects 423 

tion.lnstall.Jnstaller and uses the attribute Runlnstaller. When the .msi project is 
run and starts to run custom actions, it examines all classes within an assembly 
that implement the custom action; if it finds a class with the Runlnstaller attribute, 
the class is instantiated and a proper method of the class is called. The class Sys
tem. Configuration .Install.Installer defines four methods you can override that 
are called during certain actions of the install process: Commit, Install, Rollback, 
and Uninstall. You can add these to the class from the Class View window. 

Script Custom Actions 
Creating a custom action by using script code involves little more than creating 
a VBScript or ]Script file, adding that file to the File System editor, and then add
ing it as a custom action in the Custom Actions editor. A script custom action is 
just a list of commands that the ActiveX Scripting engine loads and runs. When 
these script custom actions start running, one global variable of type Session 
named Session is created so you can find out information about the currently 
installing .msi file. Listing 13-1 shows a simple VBScript custom action, and List
ing 13-2 shows its ]Script equivalent. The custom action does little more than 
show a message box to the user containing these custom actions. 

VBScriptCustomAction. vbs 
'Can use the object Session to peek into the MSI 
• file being installed. See the MSDN topic located at 
' ms-help:llMS.VSCC.2003/MS.MSDNQTR.2003FEB.10331msilvref_8xis.htm 
• for information about how to use this object. 
msgbox("VBScript Custom Action") 

Listing 13-1 Source code for a VBScript custom action 

JScri ptCustomAction.js 
//Can use the object Session to peek into the MSI 
II file being installed. See the MSDN topic located at 
II ms-he1p://MS.VSCC.2003/MS.MSDNQTR.2003FEB.10331msi/vref_8xis.htm 
II for information about how to use this object. 
var wshShell =new ActiveXObjectC"WScript.Shell"l: 
wshShell .PopupC"JScript Custom Action"); 

Listing 13-2 Source code for a JScript custom action 

You might choose to create a script custom action rather than another type 
of custom action for a couple reasons. First, you might have built up a library 
of scripts written using VBScript or ]Script to help configure a computer. Rather 
than rewriting these into a .NET custom action, you can simply add the scripts 
to the setup project and run them. Another reason you might want to create a 
custom action using script is ease of development. Scripts are lines of text that 



424 Part Ill Deployment, Help, and Advanced Projects 

are interpreted, which ,means you don't need to compile them. To create and 
test a script custom action, you simply open any text editor (even Notepad), 
write code, and then run that script code by double-clicking on the file in Win
dows Explorer. 

Win32 Custom Actions 
If the software you're trying to install is not a .NET application and the user 
doesn't have the .NET Framework installed on his computer, your choices are 
either script or Win32 custom actions. Script custom actions are easy to write 
but don't have full access to the Windows API and therefore might not be an 
option. The only remaining choice is to use a language such as Visual C++ to 
create a Win32 custom action. To create a Win32 custom action, you must first 
create a Visual C++ Win32 DLL and export a function that uses the _stdcall 
calling convention. This exported function must return a value of type unsigned 
int, which is a status code. If the custom action returns anything other than 
ERROR_SUCCESS, Windows Installer thinks it failed and rolls back the installa
tion. The exported function takes as its only argument a value of type MS/HAN
DLE that can be used to query the setup project for information. To let 
Windows Installer know which exported function it should call within a DLL 
when a custom action is run, you must set the EntryPoint property in the Prop
erties window when the custom action is selected in the Custom Actions editor. 
If you were to write a custom action like that shown in Listing 13-3, for exam
ple, you would enter Install for the EntryPoint property because that's the 
exported function for handling the custom action invocation. 

Win32CustomActlon.cpp 
#include "stctafX.h" 
Iii nc.l ude <tchar. h> 
#i.m;l ude <ms i , ti> 

. /#include <Msiquery.ti> 

BOOL APif:NTRY 

( 

return TRUE; 
} 

MessageBo~( NYLI.., "CustamActfoni•. • 
return ERROR_SUCCESS ( 

Listing 13-3 Source code for a Win32 custom action 



Chapter 13 Designing Setup Projects 425 

Lab: Debugging Custom Actions 
Debugging a custom action when it's running inside an .msi file isn't as 
simple as it might seem. An .msi file doesn't run code-it's a collection of 
compressed files with data describing how those files should be installed. 
To debug a custom action, you must start installing the .msi file and attach 
the debugger at just the right time-after the code has started executing 
but before the code you want to debug has run. As you can guess, getting 
the timing just right can be nearly impossible. A trick I use to debug cus
tom actions is to place a message box inside the custom action just before 
the code that I want to debug and then build and install the .msi file. 
When the message box appears, I know I can attach the debugger to that 
code and start debugging. Execution of the custom action stops while the 
message box is shown, so I know I'm connecting the debugger at the cor
rect time. But what program do you attach the debugger to? It depends on 
which type of custom action you created. If the custom action is a .NET 
class library and you open the debugger's Processes dialog box, you'll see 
that three msiexec.exe processes are nmning that you can attach to. One 
of these processes will have the word .NET in the Type column of this dia
log box. This is the process to attach to because it has the .NET Frame
work loaded and is executing your custom action. 

If the custom action you created is a .NET Windows Forms applica
tion or a .NET console application, you'll see the programs listed in the 
Processes dialog box by their executable names; you can attach to those 
processes without attaching to the msiexec.exe process. To debug a Win32 
DLL custom action, you must look in the Processes dialog box for an 
msiexec.exe process that has the same title you used for your message box 
in the Title column. Currently, there's no way to debug a script custom 
action; you have to use an alternative method of debugging, such as dis
playing a message box with information so you can trace through the code. 

When you're done debugging, don't forget to remove your message 
boxes; otherwise, the user will see them when installing an .msi file. 

Launch Conditions Editor 
Sometimes the software you create will have special requirements for running. 
For instance, suppose you take advantage of the latest technology in Windows 
XP and therefore the user must run that operating system to run your program. 



426 Part Ill Deployment, Help, and Advanced Projects 

Or suppose your program is an add-in and therefore cannot run without Visual 
Studio .NET installed on the computer. You could write a custom action that 
checks for these requirements during install time, but it's better to let the .msi 
file ensure that these requirements are met before the files are placed on the 
user's computer. 

You can define the requirements in a setup project with a launch condi
tion in the Launch Conditions editor. To add a launch condition, open the 
Launch Conditions editor, right-click on the Launch Conditions node, and 
choose Add Launch Condition. In the Properties window, you can type an 
expression in the Condition property that must evaluate to true for the .msi file 
to install. If this expression doesn't evaluate to true, the user cannot install your 
program and sees the error message contained in the Message property. If the 
InstallURL property for the condition is set to anything other than an empty 
string and the condition evaluates to false, the user has the option to go to a 
Web page to find more information about why installation failed. A condition 
expression must use a special syntax, or condition algebra, in order for Win
dows Installer to be able to evaluate the expression. 

Condition Algebra 
To define a condition, you must use a Visual Basic .NET-like syntax to define 
an expression. The variables you can use in an expression are the same installer 
properties listed earlier in Table 13-1 or those found in the various dialog boxes 
in the User Interface editor. However, when you define a condition, you don't 
need to include the brackets around the installer property names as you do in 
other editor windows. 

Table 13-2 lists the operators you can use in an expression. These opera
tors, when combined with string or integral constants (floating-point compari
sons aren't supported) and installer property names, create the algebra you use 
to create a condition. 

Table 13-2 Condition Algebra Operators 

Operator 

Not 

And 

Or 

Xor 

Eqv 

Description 

Logically negates the term. 

True if the two terms evaluate to True, False otherwise. 

True if one of the two terms is True. 

True if only one of the two terms is True. 

Logical equivalence operator. True if both terms are True or both are 
False. 



Chapter 13 Designing Setup Projects 427 

Table 13-2 Condition Algebra Operators (continued) 

Operator 

Imp 

<> 

> 

>= 

< 

<= 

>< 

>< 

<< 

<< 

>> 

>> 

Description 

Implication operator. True if the left term is False or the right term is 
True. 

Equality operator. True if both terms are equal; otherwise evaluates to 
False. 

True if the two terms are not equivalent. 

True if the left term is greater than the right term. 

True if the left term is greater than or equal to the right term. 

True if the left term is less than the right term. 

True if the left term is less than or equal to the right term. 

Bitwise And operator. True if any bits in the two terms match. 

String comparison operator. True if the left string contains the right 
string. 

Bitwise comparison operator. True if the high 16 bits of the left integer 
term equal the right term integer. 

String comparison operator. True if the left string starts with the right 
string. 

Bitwise comparison operator. True if the low 16 bits of the left integer 
term equal the right term integer. 

String comparison operator. True if the left string ends with the right 
string. 

Here are some examples of using these operators and installer Properties 
in the Condition property: 

• Not Privileged True if the user isn't running under elevated privi
leges. 

• (VersionNT= 501) And (ServicePackLevel = 1) True if the .msi 
file is being installed on Windows XP (version 501) and with Service 
Pack 1 installed. 

• (VersionNT = 500) Or (VersionNT = 501) True if the .msi file is 
being installed on Windows 2000 (version 500) or Windows XP (ver
sion 501). 

• (ScreenX >= 800) And (ScreenY >= 600) True if the user is run
ning at a screen resolution of 800 x 600 or greater. 



428 Part Ill Deployment, Help, and Advanced Projects 

• PhysicalMemory > 128 True if the computer has more than 128 
MB of memory installed. 

• PhysicalMemory >= 128 True if the computer has 128 MB or 
more of memory installed. 

• "Hello World" >< "Hello" True if the string on the right is con
tained in the first string. 

• "Hello World" << "Hello" True if the string on the left starts with 
the string on the right. 

• "Hello World" >> "World" True if the string on the left ends with 
the string on the right. 

• Intel> 4 True if the computer's processor is an Intel Pentium or 
later. This rule is useful if your software is compiled to use only the 
Pentium (or compatible) processor instruction set. 

• Intel = ''5" True if the computer's processor is an Intel Pentium. 
This expression is similar to the previous one, except with the num
ber 5 is surrounded by quotes, the greater-than operator cannot be 
used because you cannot evaluate a string that includes a numerical 
operator. 

• BU1TON2 = 1 True if you added the RadioButtons (2 Buttons) dia
log box to the User Interface editor and the user has selected the first 
option button in that dialog box. 

Defining Custom Installer Properties 
You've seen the use of installer properties in the Registry, Launch Conditions, 
User Interface, and File System editors. However, these installer properties, 
defined by either Windows Installer or dialog boxes added to the setup project, 
might not always meet your needs. Using the Launch Conditions editor, you can 
create custom installer properties to use wherever installer properties are 
allowed. To create a custom installer property, right-dick on the Search Target 
Machine node in the Launch Conditions editor and choose File Search or Reg
istry Search. 

A File Search installer property searches the computer for a file, and if the 
file is found, the property is set to the path of that file. To specify the file to 
search for, add a File Search launch condition and then set the folder in which 
to start the search and the file to search for (in the Properties window's Folder 
and FileName properties, respectively). If you know that the file to search for is 



Chapter 13 Designing Setup Projects 429 

somewhere in one of the subfolders of the folder specified, you can set the 
Depth property to the number of folder levels into the folder hierarchy that 
should be searched. 

For example, suppose you need to set an installer property to the path of 
the file dte.olb, which contains the type library for the Visual Studio .NET object 
model. Because Visual Studio .NET installs this file in the Program Files folder, 
you set the FolderName property of a file search launch condition to [Program
FilesFolder}, the File property to dte.olb, and the Depth property to 20 (an arbi
trary value that will ensure that all the necessary folders are searched). If the 
installer property name of the file search launch condition is FILEEXISTSI (the 
default installer property name of the first file search launch condition created), 
you can use the installer property FILEEXISTSI in the File System editor, Regis
try editor, or any other place that installer properties can be used where the 
path to dte.olb is needed. 

A Registry Search launch condition works much like a File Search launch 
condition, except it searches the system registry rather than the user's disk 
drive, and an installer property is set to a registry value rather than a file path. 
For example, suppose you want to verify that Visual Studio .NET 2003 is 
installed before you try to install an add-in. You can do this by using a Registry 
Search condition. First, create a Registry Search condition by right-clicking on 
the Search Target Machine node, choosing Add Registry Search, and typing a 
name for the condition. In the Properties window, type the registry key hive 
for Visual Studio .NET in the RegKey property, which is SOFT
WARE\Microsoft\ VisualStudio \ 7 .1, and type InstallDir as the Value prop
erty. The lnstal!Dir registry value holds the location on disk where Visual 
Studio .NET has been installed. The other values can be left as their defaults, 
but you should note the value of the Property property. This is the installer 
property you'll use for creating the condition. (By default, this value is 
REGISTRYVALUEI for the first registry search condition.) Next, create a condi
tion by right-clicking on the Launch Conditions node in the Launch Conditions 
editor and choosing Add Launch Condition. Open the Properties window, type 
REGISTRYVALUEl <>""for the Condition property, and type any message 
you want in the Message and lnstallURL properties. When the .msi file for the 
Add-in is run, it creates an installer property called REGJSTRYVALUEI that's set 
to the installation location of Visual Studio .NET. If this installer property is 
anything other than an empty string, the expression is True and setup contin
ues; otherwise, a message is shown to the user with the value you entered in 
the Message property. 



430 Part Ill Deployment, Help, and Advanced Projects 

Installing an Assembly in the PublicAssemblies Folder 
As we've said a couple times in this book, if you build an assembly that 
you want to call from a macro, you must put the assembly into a specific 
folder so you can add a reference to that assembly in the Macros editor. If 
you use the default installation location of Visual Studio .NET, which is 
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\Pub
licAssemblies, you cannot assume it's correct because the user might have 
selected a different installation location for Visual Studio .NET. You can 
use the custom Registry Search installer property we just described to ver
ify that Visual Studio .NET is installed, and then install the assembly in the 
correct location so it can be used by a macro. 

To place the assembly in the correct place, open the File System edi
tor, right-click on the File System On Target Machine node, and choose 
Add Special Folder I Custom Folder. In the Properties window for this 
custom folder, type the name of the custom Registry Search installer prop
erty surrounded by square brackets (in this case, [REGISTRYVALUEJ}), and 
then type \PublicAssemblies in the DefaultLocation property. Then add 
the primary output of the assembly to the custom folder. When the .msi 
file is installed, it places the assembly in the correct location so it can be 
referenced in the Macros editor. 

Conditions 
If you looked closely at the Properties window while working with the File Sys
tem, Registry, Custom Actions, or File Types editors, you might have noticed 
the Condition property. This property controls whether a project output, regis
try key, or file type is installed on the computer or if a custom action is run. You 
can use the same condition algebra you use to create a launch condition to set 
the Condition property. For example, suppose you want to give the user the 
option of installing the source code for an add-in that you created. To do this, 
you run the Add-in Wizard to completion, and after the source files have been 
generated, you open the User Interface editor for the setup project. Insert a 
RadioButtons (2 Buttons) dialog box into the User Interface editor, open the 
Properties window, and set the ButtonlLabel property to Yes, install source 
code and set the Button2Label property to No, do not install source code. 
Make note of the installer property name of this dialog box, BUITON2, and the 
values of the buttons in the dialog box, 1 and 2. 



Chapter 13 Designing Setup Projects 431 

Next, open the File System editor for the setup project, right-click on the 
Application Folder node, choose Add I Folder, and then enter source. This cre
ates the folder to hold the source files for the add-in. To add the source files 
output, right-click on the source folder, choose Add I Project Output, and select 
the Source Files output. If you build and install the .msi file for the add-in after 
making these changes, the source files are always installed because the condi
tion on the source files output isn't connected to the option the user selects in 
the RadioButtons (2 Buttons) dialog box. To connect the dialog box to the 
source files folder you created, select the source folder in the File System editor, 
and in the Properties window enter the expression BUTTON2 = 1 in the Con
dition property. Now if you install the .msi file and if the user selects the first 
option button, the sources are installed in a folder called sources. But if the user 
selects the second option button-the one that corresponds to the value 2-
the expression BUTTON2 = 1 evaluates to False and the source folder isn't cre
ated. Because the source file output is contained in the source folder, that 
project output is also not installed. You could place the condition BUTTON2 = 

1 on the source file project output so that if the user selects the second option 
button, the source files are not installed, but the source folder will have been 
created, leaving an empty folder on the user's computer. The samples for this 
book contain the setup project for the SourceFilesAddin sample, which demon
strates how you can optionally install the source code to an add-in project. 

Merge Modules 
When creating software for the Windows operating system, developers com
monly place code into DLLs so it can be shared among multiple applications. 
To distribute software to your customers, you could install the DLLs you create 
with a .msi setup project, but this would be a less-than-ideal way to install the 
code. Suppose you've built a .NET user control library that you want to sell; 
your customers can use this library to build their own applications. How can 
customers redistribute this library to their own customers? You could provide 
detailed instructions that explain to your users how to include the component 
in their own .msi setup. However, this could be problematic because if they 
don't install your component properly, other software that uses your compo
nent might stop functioning. Alternatively, you could create a setup project that 
installs and uninstalls your library, but that's not a good option because your 
users would have to give their customers two .msi files and make sure they 
were installed in the correct order. 

To make installing your library easy and reduce the risk of a user incor
rectly installing and uninstalling a component, you can store your library in a 



432 Part Ill Deployment, Help, and Advanced Projects 

merge module (.msm file). Merge modules are like the DLLs of a setup project. 
You can use a DLL to store code shared among different applications; a merge 
module contains installation logic shared among many .msi files. Merge module 
projects are similar to setup projects, except you cannot use the User Interface 
and Launch Conditions editors. One other difference between a setup project 
and a merge module project is that with a merge module project, the File Sys
tem editor adds the folders Web Custom Folder and Module Retargetable 
Folder. If you place files in these folders, the user consuming your merge mod
ule can choose which location on disk to place the files. The user can change 
the installation path of the merge module contents by selecting the merge mod
ule in Solution Explorer and modifying the ModuleRetargetableFolder property 
in the Properties window. Consuming a merge module in a setup project is 
easy; you select the setup project in Solution Explorer and choose Project I Add 
I Merge Module. 

Setup for .NET Programs 
Suppose you're taking the setup-building capabilities of Visual Studio .NET out 
for a spin, trying out the various features. You've built a .NET application, 
added the project output to a setup project, built the solution, and tested the 
.msi file by installing the project. Everything has installed perfectly, and you 
were able to run your application. Being the good developer you are, and 
because you want to be sure your program works in all scenarios, you try 
installing the same .msi file on a clean computer-a computer with nothing 
more than the base operating system installed. When you run the setup project 
on the clean computer, you're presented with the dialog box shown in Figure 
13-9. What went wrong, and why did it work fine on the development com
puter but not the clean computer? Visual Studio .NET cannot run without the 
.NET Framework installed, and the clean computer, with only the operating sys
tem installed, doesn't have the .NET Framework. 

Figure 13-9 The error message you see when you try to install a .NET 
program on a computer that doesn't have the .NET Framework installed 



Chapter 13 Designing Setup Projects 433 

When you add output from a C# or Visual Basic .NET project to the File 
System editor, Visual Studio .NET automatically adds a condition to the Launch 
Conditions editor that verifies that the .NET Framework is installed. Because the 
clean computer doesn't have the .NET Framework installed, the launch condi
tion was not satisfied and an error was displayed to the user to that effect. 

To run an .msi file that contains components that use the .NET Frame
work, you have two options. The option you choose will depend on how you 
plan on distributing your software. The first option is to let the user click the 
Yes button in the dialog box shown in Figure 13-9 and then install the .NET 
Framework manually. This option is best if you're distributing your software on 
the Internet or using a limited-size medium such as a floppy disk that doesn't 
have enough room to hold the .NET Framework redistributable files. 

If you're shipping your program on a large media format such as a CD, 
another option is better. You store the .NET Framework redistributable files on 
the CD, and use a bootstrapping program to install the .NET Framework and 
then your .msi file. A bootstrap program is a small bit of code that takes care of 
getting the installation up and running. The bootstrap program makes sure the 
.NET Framework is installed and then starts installing the .msi file. To install a 
program, you should run the bootstrap program but not run the .msi file. By 
default, when you build a setup project, a bootstrap program named Setup.exe 
is generated and placed in the output folder for your setup project. This boot
strap program only makes sure that the Windows Installer program is installed, 
and not the .NET Framework. You don't need to redistribute this bootstrap pro
gram if you're trying to install the .NET Framework because the setup program 
for the .NET Framework installs the .msi installer if it isn't on the user's com
puter, and you can turn off generating this bootstrap file in the setup project 
Properties dialog box. · 

When you first add a .NET component to a setup project, a dependency to 
the merge module dotnetfxredist_x86.msm is added to your project and is 
marked to be excluded. You might assume that you can include this merge 
module in your setup project (instead of exclude it) to set up the .NET Frame
work if needed, but this is not what this merge module does. This merge mod
ule contains assemblies that are part of the .NET Framework-such as 
System.XML, System.Web, and so forth-and should be on the user's computer 
if the use has the .NET Framework installed. This merge module doesn't contain 
files that make up the common language runtime (CLR), so if you were to 
include this merge module in your setup project, you'd be including many 
assemblies that the user should already have installed but not everything the 
user needs to run a .NET program. 



434 Part Ill Deployment, Help, and Advanced Projects 

To make installing the .NET Framework with your program easier, you can 
use the Bootstrapper sample, which is included with the samples for this book. 
This sample, written using Visual C++, performs a couple of steps when it first 
runs. First, it checks to make sure another instance of the bootstrapping pro
gram isn't running because if one is already running, errors can arise if the other 
instance is started. To ensure that another instance is not running, the bootstrap 
program creates a mutex; mutexes are shared across process boundaries, so an 
error is generated if the mutex has already been created by another instance of 
the bootstrap program. This error condition signals that another instance is run
ning; a message is displayed to the user and then the bootstrap program exits. 
The second step the bootstrap program performs is to read a file called 
Setup.ini, which needs to be located in the same folder as the bootstrap execut
able. This file describes to setup where it can find, among other things, the 
.NET Framework redistributable file. An example Setup.ini file is shown here: 

[Setup] 
InstallName=Setup 
FrameworkVersionRequired=vl.1 
UselocaleForFindingRedist=l 
FrameworkRedistName=DotNetfx 
FrameworklnstallPath=FrameworkRedist 
MS!FilePath=Setup.msi 

All the values in this INI file are optional; if a particular key and value 
aren't found, the value as shown in this example is used. The meanings of these 
values are: 

• InstallName The name of the product being installed. The value 
defaults to Setup if a name is not supplied. This string is used to dis
play the name of your program in the user interface of the bootstrap 
program. 

• FrameworkVersionRequired The version of the .NET Frame
work in use by the program being installed. If a currently installed 
.NET Framework with the version that matches this string is found, 
installation of the .NET Framework is skipped. This value can be 
vl .0 (the letter v must precede the version number, and the trailing 0 
is required) or vl.1. vl.O is the version of the .NET Framework 
installed with Visual Studio .NET 2002, and v 1.1 is the version of the 
.NET Framework installed with Visual Studio .NET 2003. 

• FrameworkRedistName The name of the executable file (with
out the .exe filename extension) that holds the .NET Framework 



Chapter 13 Designing Setup Projects 435 

redistributable file. The name of this executable is always DotNetfx, 
so in most situations you don't need to specify this value. 

• UseLocaleForFindingRedist If this value is 1, the bootstrap pro
gram attempts to find and install a localized version of the .NET 
Framework redistributable from the CD. Up to this point, the .NET 
Framework has been localized into nine languages: English, French, 
German, Italian, Japanese, Spanish, Chinese Traditional, Chinese 
Simplified, and Korean. If a localized version needs to be installed, 
the bootstrap program retrieves the language used by the operating 
system and uses this language, or locale, when searching for the 
redistributable. If this value is 0, the bootstrap program doesn't use 
the operating system language when searching for the redistributable 
file. If your program is not localized into different languages, you 
should distribute the localized version of the .NET Framework that 
your user customer would use and set this value to 0. 

• FrameworklnstallPath The path relative to the bootstrap pro
gram where the .NET Framework redistributable file can be found. 
Suppose you have the bootstrap code in the folder D:\MyProgram
Setup and the FrameworklnstallPath value is set to its default value, 
FrameworkRedist. The bootstrap program will look for the .NET 
Framework redistributable file in the path C: \MyProgramSetup \ 
FrameworkRedist\DotNetfx.exe. If the value of UseLocaleForFinding
Redist is set to 1, the language identifier is inserted into this path 
between the value for FrameworklnstallPath and the FrameworkRe
distName value. Table 13-3 shows the language identifiers for the var
ious languages used; if the language is English, for example, the 
redistributable is searched for at D:\MyProgramSetup\FrameworkRe
dist\9\DotNetfx.exe. If the redistributable is not found in the path 
with the language identifier or if a language being used by the oper
ating system is not supported, the path without the language identifier 
is searched. If all the search options have been exhausted and the 
redistributable hasn't been found, an error is given and setup exits. 

• MSIFilePath The path relative to the bootstrap program where 
the setup .msi file can be found. If the bootstrap program is in the 
folder D:\MyProgramSetup and the default value of Setup.msi is 
used for this key, the path searched is D:\MyProgram
Setup \Setup.msi. 



436 Part Ill Deployment, Help, and Advanced Projects 

Table 13-3 Languages and Their Identifiers 

Language 

English 

French 

German 

Italian 

Japanese 

Spanish 

Chinese 

Korean 

Language Identifier 

9 

12 

7 

16 

17 

10 

If the operating system is using Chinese Traditional, the lan
guage identifier is 1228. Otherwise, Chinese Simplified is used, 
which is language ID 2052. 

18 

Installing the proper language version of the .NET Framework 
is important because although it might seem that only the program 
being installed will be affected, your users have to live with the lan
guage of the .NET Framework you install unless they uninstall and 
then install a new version of the language they want to use. 

Creating a Setup CD 
Today, most computers have a CD burner installed, and you can find blank CDs 
at your local discount store for well under 50 cents each. The availability of CD 
burners, cheap media, and the setup development tools available with Visual 
Studio .NET make distributing your software programs easy. To create a CD 
with your .msi file on it, you must combine the bootstrap program, the .msi file 
to install your program, and a few other files to make installation as seamless as 
possible for your users. 

If you intend to place the .NET Framework redistributable on 
the CD for your program or make it available for download from a non
Microsoft Web site, you must read and agree to the Microsoft .NET 
Framework SDK end user license agreement (EULA) before redistrib
uting the .NET Framework. 



Chapter 13 Designing Setup Projects 437 

The Windows operating system simplifies installing software on a CD with 
AutoPlay. When a CD is inserted into the computer's CD drive, Windows exam
ines the root folder of the CD, and if it finds a file called autorun.inf, it reads, 
parses, and then does the work as described in that file. Here's an example 
autorun.inf file that you can place in the root folder of a CD to automatically 
start running the bootstrap program when the CD is inserted into the drive: 

[autorun] 
open=setup.exe 
i con=setup. i co 
label=My Setup 
shell\launch\command=Setup.exe 
shell\launch=&Install this program 

The meanings of each entry in this file are: 

• open When the CD is inserted into the CD drive, this is the path to 
a file (without the drive letter) that will be run. If you're using the 
bootstrap program to install the .NET Framework and your program, 
you should give the path to the bootstrap program; otherwise, you 
can specify the relative path to the .msi file. 

• icon The path to an icon on the disk (without the drive letter) 
that's displayed in Windows Explorer for the CD. The path can 
point to an .ico file or to an executable or DLL file. If the path is to 
an executable or DLL file, the path should be followed by a comma 
and then the zero-based index of an icon within the resources of 
that file. 

• label The text to display as a label next to the CD drive in Win
dows Explorer. 

• shell\verbname If the user right-clicks on the CD drive in Win
dows Explorer, the text following this entry is shown on the shortcut 
menu. The text verbname is arbitrary and can be any string, as long 
as it contains only alphanumeric characters. The text following this 
key name can contain any character, and if the ampersand character 
is used, the accelerator key follows; use a double ampersand if you 
want the string to contain the ampersand character. 

• shell\verbname\command If the user right-clicks on the CD 
drive in Windows Explorer and chooses the command specified in 
the shell\verbname line, the program pointed to by the path spec
ified is run. The verbname string here is also arbitrary, but it 



438 Part Ill Deployment, Help, and Advanced Projects 

should match the name used in the previous line. The autorun.inf 
file can contain any number of these shell\verbname pairs 
(including 0 entries), with each item appearing on the CD drive 
shortcut menu, but each pair of items should use a matching but 
unique pair. 

Once you create your autorun.inf file, you must gather all the files that will 
be placed on the CD; this requires you to download the .NET redistributable 
files from Microsoft's Web site. Because the redistributable file is over 20 MB in 
size, this file (or files, if you intend to offer your users localized versions of the 
redistributable files) is not included with the samples for this book. Figure 13-10 
shows the layout of the CD with the typical components necessary to install 
your program. This layout (without the .NET Framework redistributable files) 
can be found among the samples for this book in the folder SetupCD. To build 
a setup CD, you simply copy your .msi file into this folder, burn its contents to 
a writable CD, and you're done! You've just created a professional setup for 
your software. 

Figure 13-10 The directory structure of a setup CD if you offer localized 
versions of the .NET Framework (left) and a nonlocalized setup (right) 



Chapter 13 Designing Setup Projects 439 

Setting Up the Book's Samples 
If you downloaded and installed the sample files that accompany this 
book, you ran an .msi file that was built with the setup tools in Visual Stu
dio .NET. This setup .msi file was built using many of the concepts 
described in this chapter, including installer properties, custom actions, 
the Registry editor, Web setup projects, and more. The source code for the 
setup project and the custom actions used can be found in the folder 
InsideVSNetSetup. For details about how to rebuild the Inside Visual Stu
dio .NET 2003 samples .msi file, consult the Readme.htm file in the 
InsideVSNetSetup folder. 

Looking Ahead 

All users, regardless of their skill level, sometimes need help completing a task. 
Visual Studio .NET provides a full-featured help system to display MSDN con
tents. In the next chapter, we'll look at how you can use that system and how 
you can customize it to include your own help topics. 





Visual Studio .NET Help 
The MSDN Library that ships with Microsoft Visual Studio .NET contains a huge 
amount of data that developers can use in building their solutions in the IDE. It 
contains so much data, in fact, that finding what you're looking for can be a 
chore. Fortunately, the Help facility in Visual Studio .NET is extremely extensi
ble. You can customize it to improve search performance and to ensure you're 
getting the exact information you need. You can also use it to publish context
sensitive help for your own libraries, assemblies, and add-ins and have that 
information available to developers from within the IDE. You can even add 
your documentation to the Visual Studio .NET Help Table of Contents, Search, 
and Index windows, making it extremely easy for other programmers to access 
your information. 

In this chapter, we'll spend some time describing how to customize the 
Help facility in Visual Studio .NET and how to build your own Help collections 
in Visual Studio .NET. 

Navigating the Help System 
The Help system in Visual Studio .NET is one of the best features of the IDE. It's 
context-sensitive, well indexed, and completely searchable. It covers the entire 
MSDN Library, which includes some 1.5 GB of data. In fact, the Help system is 
so big that it's worth discussing how you can customize it to get just the data 
you're looking for. 

As part of the multistep Visual Studio .NET installation process, you have 
the opportunity to install the MSDN documentation that ships with the product. 
Installing this documentation is a separate step because it allows developers to 
install the latest MSDN Library from Microsoft. (If you're an MSDN subscriber, 

441 



442 Part Ill Deployment, Help, and Advanced Projects 

be sure to check for the latest MSDN Library if you're installing Visual Studio 
.NET 2003 soon after its release.) 

If you have multiple Help collections installed, you can choose the one 
you want in the Options dialog box. The default Help collection for Visual Stu
dio .NET 2003 is called the Visual Studio .NET 2003 Combined Help Collection. 
This is the recommended Help collection because it includes extra documenta
tion to help you with certain add-in features and miscellaneous other features in 
the product. 

You can see the Help page in the Environment folder in the Options dia
log box in Figure 14-1. Notice that you can set a preferred language along 
with the collection you want as the default. You must have the specific lan
guage documentation installed on your machine to get an alternative choice 
for this setting. 

di 
BBi 

Documents ~! 
Dynamic Help ;~j 
Fonts and Colors ~2§1 

•• ff3j' 
International Setting''! 
Keyboard ;~J 
Projects and Solution ~I 

Task List ~] 
Web Browser ~j 

ti 

jEnglish 

Visual Studio .NET 2003 Combined Help Collection 

l,nt~rn<!lhe)p .. 
(' E:PrMthe!P. 

Figure 14-1 You can set the preferred Help collection in the Visual Stu
dio .NET Options dialog box. 

A final setting you can specify is whether to display help internally or 
externally. If you choose to display it internally, you'll see the help information 
inside the IDE. If you choose the external option, help will be displayed in a 
window outside the IDE. The external option makes a lot of sense if you're 
working in a multimonitor environment. Using an external window, you can 
keep the help open in one screen and your IDE open in another. 



Chapter 14 Visual Studio .NET Help 443 

Help Windows 
Whether you use help that's integrated into the IDE or you use the standalone 
viewer, you need to be familiar with three organizational windows. The Con
tents window contains a hierarchical display of the available help topics. The 
Index window contains a list of the index terms found in the Help collection. 
And the Search window lets you perform a search of the entire help system for 
a particular term or phrase. The results of searches are displayed in the Search 
Results window. Searches have a limit of 500 returns, so it pays to narrow your 
searches whenever possible. Figure 14-2 shows the Microsoft Document 
Explorer window, which contains all these same features. You can open this 
window by clicking the Microsoft Visual Studio .NET 2003 Documentation link 
in the Microsoft Visual Studio .NET 2003 folder on the Start menu. 

Figure 14-2 Visual Studio .NET 2003 Help as displayed in Document 
Explorer 

The Document Explorer features don't require a lot of explanation. 
They're pretty straightforward and they've been part of Visual Studio and MSDN 
for years. As we mentioned, though, the documentation collection is quite large 
and you can use some techniques and settings to make your searches and 
index lookups more efficient. 



444 Part Ill Deployment, Help, and Advanced Projects 

Search and Index Options 
What you select as the Filtered By option in the Search window (as shown in Fig
ure 14-3) has a major effect on what information is presented when you enter a 
string in the Look For box. For example, typing CString while the Visual Studio 
Macros filter is activated returns the DataSet Class item from the .NET Framework 
Class Library as the first hit in the Search Results window. If Visual C++ is the 
active filter, the first hit returned is the CString Operation Relating To C-Style 
Strings topic from Visual C++ Concepts. With no filter at all, these two items 
appear in the list together, with no real contextual information. Both results are 
valid, but the filter helps you pinpoint the specific topic you're searching for. 

Match t•lated words 
Search Jn r;i.reVious resi.Hts 

17 Highlight search hit; (in topics) 

Figure 14-3 You should set the filter value to the topic you're interested 
in to obtain better search results. 

The Search In Titles Only option limits returns to terms found only in the 
document titles. You can put this option to good use if you're looking for top
level documentation on a particular subject. Match Related Words causes your 
search terms to be matched to variations of those terms. For example, searching 
for link with the Match Related Words option selected might return linked, link
ing, and linker. The Search In Previous Results option causes your search to be 
confined to the results of the last search. This lets you drill down in your list of 
current results. 

When you select the Highlight Search Hits (In Topics) option, the terms 
you're searching for are highlighted in the document window when you view 
a topic in the search results. This is a fantastic option that helps you easily find 
the term you're looking for. The highlighting can get annoying when you want 
to just read the document you're looking at, however, so to clear the docu
ment of highlighted search items, deselect this option and refresh the window 



Chapter 14 Visual Studio .NET Help 445 

by clicking the Refresh button on the Web toolbar. Alternatively, you can just 
double-click the item again in the Search Results window. 

Narrowing Search Results 
The Search window lets you enter words, phrases, and logical operators to help 
find the information you're seeking. You can also use certain wildcard charac
ters to refine your search. 

Let's take a minute to go through some of the general rules regarding help 
searches. We'll assume that you generally know what you're looking for but 
that you don't want to sift through hundreds of hits to get the information you 
need. To search for a string consisting of multiple terms, you should enclose 
your search phrases in quotes. Doing so will return an exact match for the 
phrase you're searching for. For example, searching for CString returns 500 
matches (the maximum number returned from any search). Searching for 
"CString object" returns just over 170 hits. Knowing just what you're looking for 
and making your searches more specific has obvious advantages. 

You can use logical operators to include or exclude certain types of 
results. For example, you're probably aware that placing an OR between your 
search terms returns all pages that include either term .in the search. Table 14-1 
lists the logical operators you can use to narrow searches in Visual Studio .NET. 

Table 14-1 Logical Search Operators 

Operator Description 

AND Returns all pages that include both search terms. 

OR Returns pages that include either search term. 

NOT Returns pages that include the term on the left only if the term on the 
right is not in the same document. 

NEAR Returns pages where the term on the left appears within eight words 
of the word on the right. 

THRU Returns pages that contain terms that are part of a numeric range. 

One of the more interesting logical operators is the THRU operator. Using 
this operator, you can search for a range of numbered terms. You might use this 
operator to search for a range of constants or a s~t of error values. Note that 
numeric searches using the THRU operator tend to take a long time, especially 
if you combine that search with a second operator. 

You can broaden or narrow your searches by employing wildcards-for 
example, to search for terms that might have different spellings or extensions. 
Table 14-2 lists the two available wildcard characters. 



446 Part Ill Deployment, Help, and Advanced Projects 

Table 14-2 Wildcard Search Characters 

Character Description 

Broadens the results of your search to words that contain a prefix or suf
fix in place of the character. For example, *String returns string, CString, 
and ToString, among others. 

Used as a substitute for any single character in a search. For example, 
?String returns aString, bString, and CString but not ToString (which has 
a prefix length outside the search parameter). Using ??String returns 
ToString but not the others. 

Creating Custom Help Filters 
If you find yourself searching for related terms from different help topics, you 
might want to create a custom help filter. For example, if you plan to work with 
both COM and .NET in a solution you're creating, you might find it easier to 
create a custom filter that returns hits from these two topics rather than creating 
a more specific help string under a broader search filter. 

To create a custom help filter, open the Edit Help Filters window by typ
ing Help.EditFilters in the Command Window or by choosing the Edit Filters 
command from the Help menu. You can see the Edit Help Filters window in 
Figure 14-4. 

Figure 14-4 You create custom Help filters in the Edit Help Filters window. 



Chapter 14 Visual Studio .NET Help 447 

In the Filter Definition box, you can enter a set of attributes that narrows 
the list of items returned in an index or a search. You can enter search attributes 
that specify the language, product, target operating system, or even the technol
ogy you want to search. The possible attributes are listed in the List Of Available 
Attributes And Their Values box at the bottom of the Edit Help Filters window. 
Attributes are grouped using parentheses, and you can use logical operators to 
specify the type of inclusion in the string. 

To create a simple COM/.NET subset, we can string together two DocSet 
attributes with two Technology attributes: 

("DocSet"="NETFramework" OR "DocSet" = 
"NETFrameworkExtender") or("Technology"="COMt" OR "Technology"="COMt" ) 

You have a large number of attributes to choose from when you create 
attributes. For the most part, you'll probably want to string together document 
sets, languages, and technologies, but other attributes are available. You can 
click on individual attributes in the List Of Available Attributes window and 
they'll be added to the currently open set automatically. 

As you create the list of attributes you want to use, click the Calculate 
button to see how many topics will show up in your new list. You can use 
this number to determine whether your attributes are too broad or exclusive 
to be useful. 

Searching from the Command Window 
A feature that will be popular with programmers who are used to the Vim editor 
is the ability to search for a help topic from the Command Window. The 
Help.F1Help command is aliased to help by default in the Command Window. 
The F1Help command takes one argument-a string representing the Fl key
word you want to search for. If the term you're searching for is an Fl keyword, 
you get the specific help topic for that keyword when you type >help term in 
the Command Window, where term is the word you're searching for. If the term 
you're searching for is not an Fl keyword, the term is placed in the Index win
dow and the index results are displayed. 

If you're looking for help on a named command in Visual Studio .NET, the 
Fl keyword for that command is usually the command itself, so if you know the 
command name, you can easily get to the help topic. For example, to get help 
on the Find command, you type >help Edit.Find in the Command Window. 
You can try this with any of the named commands you've worked with in this 
book, and you should immediately get the topic you're searching for. The terms 
you might search for include: 



448 Part Ill Deployment, Help, and Advanced Projects 

• Edit.ReplacelnFiles 

• Help.Index 

• File.NewFile 

• Debug.Start 

If you start to get used to this function and you're curious about how to 
determine the Fl keywords for particular help topics, you can turn on debug
ging in the Dynamic Help window by adding an entry to the registry. The key is: 

HKCU\Software\Microsoft\VisualStudio\7.1\Dynamic Help 

To turn on debugging, you must add the string key "Display Debug Output 
in Retail" if it doesn't exist and set its value to "Yes". Figure 14-5 shows the 
Dynamic Help window after debugging has been enabled. Keep in mind that 
only topics assigned to Fl help work this way. Other search terms open the 
Index window. 

Figure 14-5 Turning on debugging in the Dynamic Help window 

Customizing the Dynamic Help Window 
You can do a couple of things to customize the way the Dynamic Help Window 
presents data. First, you can control what data is presented through the 
Dynamic Help page of the Options dialog box (shown in Figure 14-6). All the 
options for the Dynamic Help window are turned on by default; you won't get 
extra information by setting options, but you can get more focused on what you 



Chapter 14 Visual Studio .NET Help 449 

want. Also, because the Dynamic Help window is small, you can make sure 
you can see the important information without having to scroll up or down. For 
example, deselecting the Samples option moves the Getting Started topic just 
below the Help topic (as shown in Figure 14-7). 

t:;) Environment <!\., 

General 
Documents 

$> Dy·namic Help 

Fonts and Colors 
Help 

International Setting~ 
Keyboard 

Projects and Solution 
Task List 
Web Browser 

' D Source Control 
Text Editor 

Show linl<s for: 

;2election only 

Ac~ive UI etements 

\. Show ;iJl links 

b,imit number of links per category: 

Figure 14-6 Setting the options for Dynamic Help in the Options dialog 
box 

Code and Text Editor 
Coding Techniques and Programming Practices ,-:~1 

(l;lJ Getting Started 
Creating and Acce~~sing XML Web Services Walkt ;~ ; 

Installing Help for Visual Studio 

Customizing Dynamic Help 

Visual Studio .NET 
l/v'hat's New in Visual Studio .NET 

Introducing l/isua! Studio . NET 

()] Inside Yisual Studio .NET 
Macro Information 

V•leb Page 

Figure 14-7 The Dynamic Help window with the Samples topic filtered out 

The second way you can customize Dynamic Help is by adding your own 
custom links to the Dynamic Help window through the XML Help Provider ser
vice, which we'll discuss next. 



450 Part Ill Deployment, Help, and Advanced Projects 

Using the XML Help Provider Service 
The dynamic links that you display can open any kind of help, including plain 
text, HTML, and even Microsoft Word documents, so this can be an effective 
alternative to creating the more complex help that we'll discuss later in the 
chapter. 

To add your own links to the Dynamic Help window, you must create an 
XML file and place it in the appropriate folder. The next instance of Visual Stu
dio .NET 2003 that you open will display your information when the specified 
context criteria are met. You have to meet just a few requirements to have your 
information displayed properly. Let's go over these one at a time. 

Location 
Your XML file can be named anything you want, but it must be placed in the 
folder C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\ 
HTML\XMLLinks\1033. If you install Visual Studio .NET to another folder or if 
you're using Visual Studio 2002, your path will be a little different, but the 
Common7\IDE\HTML\XMLLinks\1033 path is the one that's important. The 
file must have an .xml extension. 

In Windows, 1033 is the code for U.S. English. If your copy of 
Visual Studio .NET is localized for another region, the folder you copy 
your XML file to will have a different code number. 

In the 1033 folder, you'll find at least one existing XML file. This file, Con
text.xml, contains the link groups that have been set up in advance for Visual 
Studio .NET. You can add your own link groups by editing this file or by spec
ifying them in your own XML file. 

Schema 
The XML Help that you add to the Dynamic Help window requires a specific 
schema in order to work properly in the IDE. This schema looks like the fol
lowing: 

<DynamicHelp xmlns="http://msdn.microsoft.com/vsdata/xsd/vsdh.xsd" 
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" 
xsi :schemalocation="http://msdn.microsoft.com/vsdata/xsd/vsdh.xsd"> 



Chapter 14 Visual Studio .NET Help 451 

link Groups 
Link groups are the groupings of topics in the Dynamic Help window. You can 
create your own link groups or you can add your help links to one or more of 
the existing help groups. You specify link groups using the LJNKGROUP tag. In 
this example, we'll create a new link group with an ID of "lnsideVSNET" and a 
Title value of "Inside Visual Studio .NET". The ID value will be used when we 
create a link to some information. 

<LINKGROUP ID="lnsideVSNET" Title="Inside Visual Studio .NET" 
Priority="300"> 
<GLYPH Collapsed="l" Expanded="2" I> 

<ILINKGROUP> 

The Priority is a number that's added to other scored attributes to move a 
link higher or lower in the list of links in the Dynamic Help window. You can 
see these scores if you look at the debug output shown earlier in Figure 14-5. 

The GLYPH tag lets you specify the icons that are displayed for your link 
group. You can specify one icon for the collapsed view and another for the 
expanded view of your group. Table 14-3 shows the built-in icons. 

Table 14-3 Link Group Icons 

Index Icon 

1 

" 2 ID 

3 r¥ 
4 ~ 

5 ++:+ 
CJ~ 

6 +•:t-i 
CJ' 

7 "-. 
8 9+-. 



452 Part Ill Deployment, Help, and Advanced Projects 

Table 14-3 Link Group Icons (continued) 

Index Icon 

9 [§]+ 

10 [§]+.' 

11 [j+ 

12 [ji) 

13 a• 
14 't:t 

Context 
The Context tag contains the body of the information you're adding to Dynamic 
Help. This tag contains all the other context-related tags for your information, 
so it's essentially the body of the information you want to present. The rest of 
the tags we'll discuss in this section are found in the Context tag. 

Inside the Context tags are two tags that determine what gets shown in 
Dynamic Help. The Keywords and Attributes tags contain Kltem and Altem sub
tags, respectively, which let you specify when a particular topic comes into con
text. The item tags in these sections are weighted based on factors such as the 
type of project currently open or the window that has focus. The online docu
mentation has some information about these tags and how they're scored, but 
we suggest you use the debug output to determine what's going on. 

We'll keep our example really simple. Because we want the information to 
be available to the user in all circumstances, we'll use the "VS.Ambient" Kltem 
value. This value displays a topic at all times, as opposed to something like the 
"VS.SolutionExplorer" Kltem, which displays a topic only when Solution 
Explorer gets the focus. You can see the code for this item here: 

<Keywords> 
<!-- Kitems contain keywords for a topic.--> 
<Kitem Name="VS.Ambient" I> 

<!Keywords> 

The final thing we need to do is to create some links. These are held in the 
Links tag using L!tem tags, as shown here: 



Chapter 14 Visual Studio .NET Help 453 

<Links> 
<!-- Lltems contain links to the topics you wish to display.--> 
<Litem URL="file:///C:\InsideVSNET\Info.htm" 
LinkGroup="InsideVSNET">Macro Information</Litem> 
<Litem URL="http://www.microsoft.com/mspress/books/6425.asp" 
LinkGroup="InsideVSNET">Web Page</Litem> 
<Litem URL="http://www.microsoft.com/mspress/support/" 
LinkGroup="InsideVSNET">Support</Litem> 

<!Links> 

Each Lltem contains a number of attributes. The URL attribute is the link to 
the help topic you want to display. The LinkGroup attribute contains the ID of 
the LinkGroup under which you want to display the link. In this case, we cre
ated three links. The first is a link to a file on the C: drive. The second and third 
links are to this book's Web page and to the Microsoft Press Support Web site. 

Listing 14-1 shows the file lnsideVSNET.xml, which is in the 1033 folder, as 
mentioned earlier. 

lnsideVSNET.xml 
<?xml version="l.0" encoding="utf-8" ?> 

. <!-- These schema are required for Dynamic Help.-•> 
<DynamicHelp xmlns="http://msdn.microsoft.com/vsdata/xsd/vsdh.xsd" 

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema·instance" 
xsi:schemaLocatfon="http://msdn.microsoft.com/vsdata/xsd/vsdh.xsd"> 
<!-- Create a link group in which to display our in.formation.--> 
<LINKGROUP I'D="InsideVSNET" Title="Inside Visua.l Studio .NET" 

Priority="500"> 
<GLYPH Collapsed="l" Expanded="2" I> 

<ILINKGROUP> 
<Context> 

<Keywords> 
<!-· Kitems contain keywords for a topic.--> 
<Kitem Name="VS.Ambient" I> 

<!Keywords> 
<Links> 

.<!-- Litems contain links to the topics you wish to display .• --> 
<Litem URL="file~///C:\InsideVSNET\Info.htm" 

LinkGroup="InsideVSNET">Macro Information</Litem> 
<Litem URL="http://www.microsoft.com/mspress/books/6425.asp" 

LinkGroup="InsideVSNET">Web Page</Litem> 
<Litem URL="http://www.microsoft.com/mspress/support/" 

LinkGroup="InsideVSNET">Support</Litem> 
<!Links> 

(/Context> 
</DynamicHelp> 

Listing 14-1 Adding links to Dynamic Help 



454 Part Ill Deployment, Help, and Advanced Projects 

Figure 14-8 shows Visual Studio .NET after you link to the book's Web 
page from the Dynamic Help window. 

Published 02/12/2003 

!$1)}! 0•7356·1$74•7 

Figure 14-8 Linking to custom information from the Dynamic Help window 

Creating Custom Help Files 
This section serves as an introduction to creating help. To do this, you must 
install the Visual Studio .NET Help Integration Kit (VSIK) 2003, which you 
should be able to download from MSDN around the time Visual Studio .NET 
2003 launches. 

In this example, we'll create a simple Help file and integrate it into Visual 
Studio .NET 2003. In a way, creating help is much like using a new program
ming language, so we'll leave out some of the creation details in favor of the 
integration details. 

After you install the Visual Studio .NET Help Integration Kit 2003, you'll 
find a new project category in the Visual Studio .NET New Project dialog box. 
The Help Projects category provides templates for new Help projects, Help 
conversion, and Help decompilation. You can see the new project templates in 
Figure 14-9. 



Chapter 14 Visual Studio .NET Help 455 

New Project . !l'J 
E.roject Types: 

[iame: 

Visual J# Projects 
Visual C ++ Projects 
Setup and Deployment Projects 
Other Projects 

kocation: 

Iemplates: 

Convert 1.x Convert 1.x 
. chm File Project 

Project will be created at C:\Documents and Settings\Brian\Desktop\INSIDE\chap14\Code\lnsideVSNET. 

I:'. Mor~ OK 

Figure 14-9 Help project templates in Visual Studio .NET 2003 

One of the best features of the Help Integration Kit is that it lets you work 
on your Help project files from within Visual Studio .NET and therefore take 
advantage of the editors and the Help system in the IDE as you work. 

The version of Help we'll use in this section is Microsoft Help 2. A number 
of files are used to organize an average Help 2 project. These files generally 
have an .Hx? extension, where ? represents a letter specific to the work that the 
file does. For example, the Help collection definition file extension is .HxC and 
the Help include file extension is .HxF. In Visual Studio .NET, Help 2 projects 
have an .HWProj extension. You can add a help project to any solution you cre
ate. Table 14-4 lists the extensions you should be familiar with. 

Table 14-4 File Extensions Used in Microsoft Help 2 

Extension 

.HxS 

.HxC 

.HxF 

.HxT 

.HxK 

.HxA 

.HxE 

.html, .htm, .txt, and others 

Description 

The compiled Help file 

Help collection file 

Help include file 

Help table of contents file 

Help index file 

Help attribute file 

Help sample definition file 

Help topic files and content 



456 Part Ill Deployment, Help, and Advanced Projects 

When you create a new project, you start with an .HxC (collection) file 
and an .HxF (include) file. If you were building these files by hand, you'd nor
mally edit them yourself, but in Visual Studio .NET you can do this using the 
project's Property Pages dialog box, as shown in Figure 14-10. 

Generai N~vigation Appeqianoe PreCOll!pile 

Figure 14-10 A Help project Property Pages dialog box 

Templates for the file types you can add to a project are available in the 
Add New Item dialog box, as shown in Figure 14-11. You normally want to add 
a least one .HxT (TOC) file and one .HxK (Index) file. 

!;ategories: 

MelP worl<Shop Project Items 
Help Workshop Topic Items 

Keyword Samples 
Index Definition 

Virtual Topic 
Definition 

Figure 14-11 The Add New Item dialog box 



Chapter 14 Visual Studio .NET Help 457 

Once you've added an .HxT file and an .HxK file to your project, you use 
the project's Property Pages dialog box to set a couple of important options. On 
the Navigation tab of the dialog box, select the TOC and Index files you want 
to use in your project from their respective drop-down lists, as shown in Figure 
14-12. Then you can add some content to the project. 

ln~ideVSNET Property Pages - - l.J 
Compile I Poslcompile I 

General Navigation I Appearance 
Launch 

Precompile 

Figure 14-12 Setting the navigation options for the project 

Next, we'll use the Add New Item dialog box to add an .htm file named 
Intro.htm. We'll use this file as the default page for the project. You can see in 
Figure 14-13 how our project stands. We have the .htm page open in the editor, 
and the files we've created are all listed in the Project Explorer window. At this 
point, we can add nearly any content that we want to the project and make it 
available through the TOC. 

After you create and save a number of content files, you can add them to 
the TOC by dragging and dropping them. Figure 14-14 shows the open TOC 
file. You can drag your content files to the tree and set their order by using the 
arrows on the toolbar or by using the context menu for the individual items. In 
this case, we've added a second TOC to the Global TOC. 

Notice that in addition to the compiled content, you can add links in the 
TOC to external Web sites and to file system items. In this case, we added a link 
to the book's home page and set the Icon property to 22 to display a Web icon. 
You can customize the icon for any topic in the TOC in the Properties window 
for each topic. There are 45 icons available for use in the TOC, so you can get 
pretty specific with your content. To see the complete list, search on Def a ult 
TOC Icons in VSHIK Help. 



458 Part Ill Deployment, Help, and Advanced Projects 

Figure 14-13 Visual Studio .NET with a help topic open for editing 

Figure 14-14 Working with the TOC in Visual Studio .NET 

We now need to add some code to the file to get it to do some specific 
things. First, we want a default page to show up when we open our new Help 
file. If we don't set one, we'll just get our default Microsoft Internet Explorer 



Chapter 14 Visual Studio .NET Help 459 

Web page, which isn't what we want. We also want to add the appropriate help 
topics to the Index. To do both of these things, we need to add some code to 
the .HxK (Index) file. 

First, let's talk about what we need to do to get a default page up and run
ning. To get a default page to show up in help, you must create a Keyword 
index entry with a particular keyword and point that ent1y at the file you want 
to make the default. The Keyword for the default page in a Help file is "Home
Page ". The code to set this keyword in the .HxK (Index) file is shown here: 

<Keyword Term = "HomePage"> 
<Jump Url = "HomePage.htm"/> 

<!Keyword> 

To add topics to the index, you can use the Keyword syntax we just 
described or add XML data to your topics, which adds them to the index auto
matically. Our example is short, so we just added a few entries to the Index file. 
The complete listing for the Indexl.HxK is shown in Listing 14-2. 

lndex1.HxK 
<?xm1 version="l.0"?> 
<lDOCTYPE Help!ndex SYSTEM "ms-help:l/hx/resources/Helplndex .. DTD"> 

<Helplndex DTDVersion="l.0" Name="K"> 
<!-- Insert keywords here --> 
<Keyword Term = "Macros"> 

<Jump Url = "Macros.htm"/> 
<!Keyword> 

<Keyword Term= "Web Site"> 
<Jump Url = "http://www.microsoft.com/mspress/books/6425.asp"/> 

</Keyword> 

<Keyword Term = "About"> 
<Jump Url = "About.htm"/> 

<!Keyword> 

<Keyword Term= "Add-Ins"> 
<Jump Url = "Addlns.htm"/> 

<!Keyword> 

<Keyword Term = "HomePage"> 
<Jump Url = "HomePage.htm"/> 

<!Keyword> 

</Helplndex> 

Listing 14-2 Help index file 



460 Part Ill Deployment, Help, and Advanced Projects 

With all that in place, running the project should result in a complete Help 
collection like the one shown in Figure 14-15. You can compile and launch a 
Help collection by issuing the Debug.Stan command from the Command Win
dow or by pressing F5. This runs the compiler that creates the .HxS file and 
then starts a copy of Document Explorer (Dexplorer.exe) using the arguments 
supplied on the Launch page of the Project Properties dialog box. 

Figure 14-15 The compiled Help collection in Document Explorer 

Registering Your Help Collection 
Before the help topic can be addressed by Dexplorer, it must be registered. 
There are a couple ways to register your Help collection so it can be viewed. 
The recommended way is to set up a Windows Installer package. This involves 
a fairly complicated set of steps that requires you to edit a merge module with 
the Orea tool from the Windows SDK. This method is described in a document 
that ships with the Help 2 SDK entitled Visual Studio .NET Help Integration. 
Here we'll describe an alternative method of registering a Help collection using 
the HxReg.exe utility for testing purposes. 

To register the Help collection we just created, we need to run the 
HxReg.exe utility, specifying the namespace of the collection (-n), the name of 
the collection file ( -c), and a description of the namespace (-d). To accomplish 
this, you probably need to add the Help 2 SDK to your path (C:\Program 



Chapter 14 Visual Studio .NET Help 461 

Files\Microsoft Help 2.0 SDK). To run the registration commands, navigate to the 
folder containing the .HxS file and run the following commands from the Com
mand Window. The first one registers a namespace for your Help collection: 

HxReg.exe -n MS.InsideVSNET.1033 -c InsideVSNET.HxC 
-d "Inside Visual Studio .NET Help Sample" 

Next, you register the compiled Help file: 

HxReg.exe -n MS.InsideVSNET.1033 -i InsideVSNET 
-s InsideVSNET.HxS -1 1033 

Notice that we wrapped the namespace with MS. And .1033. The convention 
for namespaces in this regard is (Company).Namespace.(Language). 

Finally, to create a link to the newly registered Help file, create a shortcut 
that contains the following path in the Target text box: 

"C :\Program Fi 7es\Common Fi 7 es\Mi crosoft Shared\ He 7 p\dexpl ore. exe" 

!he7pco7 ms-help:! /MS. InsideVSNET.1@33 

You can also use the topics in your Help file from within Dynamic Help. 
To do this, just add the URL to the topic you want to display in the Lltem tag 
that we discussed earlier. For the Macro topic in the help sample, the XML for 
the link would look something like this: 

<Lltem URL="ms-help://MS.InsideVSNET.1033/InsideVSNET/Macros.htm" 
LinkGroup="InsideVSNET">Macro Information</Lltem> 

This won't integrate your Help collection into Visual Studio .NET. You 
must create an installer and edit the appropriate merge module to do that. But 
this gives you enough information so you can test your help topics from the 
Web toolbar and from Dynamic Help. 

Looking Ahead 

In the next chapter, the last one in the book, we'll revisit projects and solutions 
and discuss using Visual Studio .NET from the command line and how you can 
secure your source using Microsoft Visual SourceSafe. 





Advanced Projects in 
Visual Studio .NET 

'el 1'ril 11'ie: 
••i11tli1li 

1 1 1 i • e e' 1 • e e i" 
• ' •• 1 1 1 • 1 1 l Q, 

1 , • ,9 e t 1 1 1 t 1 1 1 e 
1 e e e e 1 1 ! t l 1 1 e, 

Understanding the concept of projects and solutions is central to success with 
Microsoft Visual Studio .NET. We presented these concepts in Chapter 2 and then 
moved on to discuss other features of the IDE and how to extend the IDE 
through macros and add-ins. In this chapter, we'll look at how to customize and 
use projects and solutions in advanced scenarios. We'll build projects and solu
tions from the command line, and we'll talk about using Microsoft Visual Source
Safe (VSS) for source code management. 

Visual Studio .NET from the Command Line 
You can use Visual Studio .NET from the command line to build solutions and 
projects in much the same way that you might have used NMake.exe to build 
make files in the past. By using Visual Studio .NET from the command line, you 
can conveniently build your projects without opening the IDE. The obvious 
benefit of this approach is that you can automate your build processes through 
scripting and batch files. 

The easiest way to use Visual Studio .NET from the command line is to 
place the path to Devenv.exe into your PATH environment variable or to do 
your work from the Visual Studio .NET 2003 Command Prompt window. By 
default, the PATH, INCLUDE, LIBPATH, and LIB environment variables are the 
ones set in the IDE, but you can set Visual Studio .NET to use the current vari
ables by specifying the \useenv option on your command line. 

463 



464 Part Ill Deployment, Help, and Advanced Projects 

Building Projects and Solutions from the Command Line 
Building a solution or project from the command line is fairly straightforward, 
but it's worth reviewing the options you need to specify to do this correctly. To 
build a solution from the command line, open a command window with 
Devenv.exe set in the path and navigate to the folder containing the solution 
file. Then execute the Devenv.exe command on the solution file by using the 
/build switch followed by the name of the build type you want to run. In most 
cases, this will be debug or release. If you've created custom build types as 
described in Chapter 2, you can specify one of these. A typical debug build 
command for a solution looks something like this: 

devenv SCTestVCSl.sln /build debug 

Build information is returned to the command window, but you can also 
send that output to a build log. To do so, specify the lout option with a file
name. To review the output of the build process, open the output file in Note
pad or run the Type command as shown in Figure 15-1. 

Figure 15-1 The Type command lets you take a quick look at the build 
output file you've created. 

To perform a build of a particular project within a solution, use the /project 
switch. To build a single project that's part of a multiproject solution, your com
mand line might look like the following: 

devenv SCTestVCSl.sln /project JSConsoleApp /build debug 

In this case, the solution has multiple projects, but only the specified project file 
is built. If you want to open a solution in the IDE to a particular project config
uration, you can specify the configuration using the /projectconfig switch. 
Opening the IDE in this way lets you get straight into a project and configura
tion within a p.articular solution. 



Chapter 15 Advanced Projects in Visual Studio .NET 465 

You should note a couple of idiosyncrasies when you work with 
Devenv.exe from the command line. First, you should specify the solution or 
project file before the other switches in the command. In some cases, you can 
specify the switches first, but that doesn't work for all switches, so it's easier to 
just get the solution specification out of the way. Second, you must place any 
paths with spaces within quotation marks. 

The build switches work just like the named commands do in the IDE. The 
/rebuild switch performs a clean operation on the target folder before the build 
or forces all the targets to be rebuilt, depending on the language. The /clean 
switch runs the Build. CleanSolution command on the solution. The behavior of 
the clean command is dependent on the implementer of the language. It works 
well for Visual C++ projects, but Visual Studio .NET 2003 doesn't support clean
ing the other included project types. As with the build command, you need to 
specify the build type that you want to clean at the command line: 

devenv SCTestVCSl.sln /clean debug /out clean.txt 

Here's the output of this command on a solution with multiple project 
types. (In this case, only one project actually performs the clean command.) 

------ Clean started: Project: CPPConsoleNet, 
Configuration: Debug Win32 ------

Deleting intermediate files and output files for project 
'CPPConsoleNet', configuration 'DebuglWin32'. 

- - - - - - - - - - - - - - - - - - - - - - Done - - - - - - - - - - - - - - - - - - - - - -

Clean: 1 succeeded, 0 failed, 0 skipped 

If you want to run the target file that your solution or project creates, use 
the /run option. This option opens the IDE and runs your program as if you 
had run the Debug.Start command. If you set a breakpoint that gets hit when 
your application runs, program execution stops at the breakpoint. This fact can 
be useful if you find yourself opening and closing the IDE a lot and you want 
to get straight back to the point where you left off while debugging. 

To take a quick look at the output from a particular solution, you can use 
the /runexit option. This option opens the IDE in a minimized state and runs 
your executable. The minimized IDE closes automatically when the target pro
cess exits. Debugging isn't enabled in the /runexit scenario, so if you have 
breakpoints set in your code, they're ignored. 



466 Part Ill Deployment, Help, and Advanced Projects 

The command line for a solution that you want to run within the IDE will 
look something like this: 

devenv VBWinApp.sln /run 

If your solution contains a deployment project, you can use the /deploy 
option to build the solution and run the deployment. This switch has two 
requirements. First, you must have a deployment project in your solution. Sec
ond, you must add your deployment project to the configuration you want to 
build with. The default for new deployment projects added to projects is to 
have the project's Build check box cleared. To use the /deploy command, you 
must open the Configuration Manager dialog box by choosing Configuration 
Manager from the Build menu. Figure 15-2 shows the dialog box with the 
appropriate check box selected in the Release configuration for the solution. 

Figure 15-2 Selecting the Setup project in the Configuration Manager 
dialog box 

To build and deploy a solution like this, close the IDE and enter your 
command with the /deploy switch, like this: 

devenv VBWinApp.sln /deploy release 

This should start the deployment program you've created. 
One command-line switch you'll find valuable as an add-in developer or 

macro writer is the /command switch. This switch lets you run a named com
mand as you open the IDE. For example, if you want to open the Code Model 
Add-in from Chapter 12 when you start the IDE, you simply enter a command 
line that looks something like this: 

devenv /command CMEAddln.Connect.CMEAddln 



Chapter 15 Advanced Projects in Visual Studio .NET 467 

It's not that easy to remember CMEAdd!n.Connect.CMEAddin, but one 
useful feature of this switch is that you can use an alias in place of that named 
command, making it a lot easier to enter your command. To alias the CME
Add!n line (assuming you have it installed), in the IDE press Ctrl+Alt+A to open 
the Visual Studio .NET Command Window and then enter the following: 

alias cme CMEAddln.Connect.CMEAddln 

You can then run the add-in from the Windows command line by entering 
the following: 

devenv /command cme 

If you have a command that takes arguments, you can place the command 
within quotes and it will usually be executed correctly. The following command 
line executes the help alias with the term command as the argument: 

devenv /command "help command" 

The /command switch works equally well for running macros and aliases 
to macros. As you can imagine, this gives you access to quite a bit of function
ality from the command line. You can use this switch for testing add-ins and 
macros, for performing operations on solutions, and for setting up batch files 
that give you access to your own custom IDE setups. 

The /debugexe switch opens an executable file in the Visual Studio .NET 
debugger as a new solution. To run the executable and attach to the process, 
you can execute the Debug.Start command. At this point, you're prompted to 
save a new solution and the executable is run in the debugger. You can then 
break into the source or disassembly for the executable, depending on whether 
you're debugging a release or debug version of the executable and whether 
Visual Studio .NET can find the source code for the executable and dependent 
files. The command line for opening an executable in Visual Studio .NET will 
look something like the following: 

devenv /debugexe VBWinApp.exe 

If the last build on this file was a debug build, Visual Studio .NET should 
have no trouble breaking into the source for the file. If the build was a release 
build, you can break only into disassembly. The build type is usually a little eas
ier to determine in Visual C# and Visual C++ because the outputs are placed in 
debug or release folders, depending on the build. 

Finally, the /useenv switch is specific to Visual C++. It lets you direct the 
IDE to use the environment variable set for the command session from which 
Devenv.exe is run. The setting is helpful if you want to create builds with spe
cific versions of the installed runtime libraries. For example, you might want to 
use files from a particular version of the Windows SOK or you might want to 



468 Part Ill Deployment, Help, and Advanced Projects 

test beta versions of the DirectX libraries. The /useenv switch lets you do this 
without having to set these options in the IDE. 

Table 15-1 contains a list of the Devenv.exe command-line build options. 

Table 15-1 Devenv.exe Command-Line Build Options 

Option Description 

/build <build> 

I clean <build> 

I command <command> 

I debugexe <exename> 

/deploy 

I out <filename> 

/project <project> 

/projectconfig <projectcon
figuration> 

/rebuild <build> 

/run 

/runexit 

/useenv 

Specifies the build type to use. 

For project types that support this option, build outputs 
of the specified build type are deleted. 

Specifies a named command, a macro, or a Command 
Window alias to run when the IDE is started. 

Specifies an executable to be debugged in the IDE. 

For solutions that have associated deployment projects, 
the application is deployed after the targets are built. 

Specifies a log file to use to get information about com
mand-line builds. 

Specifies the project within a solution to open or build. 

Specifies the project configuration when you open a 
project within a solution. 

For projects that support the clean command, the 
projects are cleaned before a build is done. Otherwise, 
all project targets are rebuilt. 

The output of a solution is run from within the IDE. 

The IDE is opened minimized and the solution outputs 
are run. 

For Visual C++ builds, this option lets you specify that 
the environmental variables set in the command session 
be used by the IDE. 

Setting GUI Options at the Command Line 
The GUI options let you change some of the settings of the IDE from the com
mand line. Some of these might not seem particularly useful at first, but you can 
use them to test tool windows that you build in your add-ins under different 
GUI scenarios. 

The /mdi and /mditabs switches let you toggle between the use of MDI 
windows or tabs for document windows in the IDE. Keep in mind that your 
choice sticks with the IDE, so if you're playing with /mdi and you forget to run 
Devenv.exe with the /mditabs switch, your tabs will go missing the next time 
you open the IDE. 



Chapter 15 Advanced Projects in Visual Studio .NET 469 

There are two font switches, but these affect only the IDE itself and not 
the document windows. The Ifs switch lets you specify the point size for the 
text displayed in the IDE. The !Jn switch lets you specify a particular font name 
if you want. Again, these settings are sticky, so you should use them with care; 
you can make the IDE quite unusable if you specify unreasonable values. Fig
ure 15-3 shows the IDE with the !Jn. switch set to 14. 

Elle tdlt !le'N lools - t1'iP 
l.il·. &;i;!;,it:J -~". • t# Connect 

To~x .; X: Start Pa~ I 
Cfipb.cJard R_ing 
General ,, ' Rl'6J&~ Online RiasouN:e1> 

.·-
'' -

Open an Existing Project 

CSWinApp 
CSWinApp 
CSWinApp 
MFCApp1 

Y. 
Y iiitS '.!Jcll!lilR,"'f rtl!.«f~S 
9:~H.ij;' .• 

•l.l!JHelp 
Solution Explorer 
Managing Solutions. Proi< 

'IC ;.ii'Samples 
Visual Studio Samples 

r.tll Getting Started 
Creating New Solutions a . ,. 

,.,.~~""', 

Figure 15-3 Don't try this at home: Devenv.exe /fn 14 

Finally the /LCID switch lets you run the IDE with a specified language. 
This switch can be helpful if you're localizing your add-ins. You must have the 
version of Visual Studio .NET specific to the language you want to use installed 
on the machine on which you're running the IDE. You can use this option to 
test your add-ins in different languages without having to set up a bunch of dif
ferent test machines. MSDN Universal subscribers will have access to these dif
ferent Visual Studio .NET builds. 

Table 15-2 lists the different command-line GUI options. 

Table 15-2 Devenv.exe Command-Line GUI Options 

Option 

/mditabs 

/mdi 

!Jn <fontname> 

Description 

Opens the IDE with tabbed document windows 

Opens the IDE with MDI windows 

Uses the specified font in the IDE 



470 Part Ill Deployment, Help, and Advanced Projects 

Table 15-2 Devenv.exe Command-line GUI Options (continued) 

Option 

Ifs 

/migratesettings 

Description 

Uses the specified font size in the IDE 

Migrates some user settings from an earlier version of Visual 
Studio .NET 

!LCID <languageID> Opens the IDE in the specified language 

VSIP Options 
The remaining options are used by Microsoft Visual Studio Integration Program 
(VSIP) partners to test their VSIP solutions. They won't do you much good with
out access to this program, but we've listed them in Table 15-3 for the sake of 
completeness. 

Table 15-3 Devenv.exe Command-Line Environment Options 

Option 

/noVSIP 

/safemode 

/resetskippkgs 

Description 

Turns off the VSIP license key for testing purposes 

Loads a stable default environment for testing 

Reenables packages that were flagged to be skipped in the IDE 

Source Control with Visual SourceSafe 
Visual Studio .NET ships with support for VSS, and the Enterprise Developer 
and Enterprise Architect editions of Visual Studio .NET ship with the bits 
required to set up a VSS server. 

In this section, we'll talk about getting up and running with a VSS server 
and how you can put your projects under source control for versioning and 
protection and to help manage team development. 

Setting Up VSS 
Even if you're a single developer, you should try to set up a VSS server on a 
machine separate from your workstation. That way, even if your workstation 
hard drive dies, you have a fairly recent version of your project under source 
control on another server. 



Chapter 15 Advanced Projects in Visual Studio .NET 471 

Placing Files Under Source Control 
To use VSS with Visual Studio .NET, you should set up the version of VSS that 
ships with Visual Studio .NET. Here we'll assume that you've set up your VSS 
database properly and that you want to access that database using the tools 
built into Visual Studio .NET 2003. 

When you first run Visual Studio .NET on a workstation, you'll notice that 
the Source Control menu items are grayed out. To take advantage of the VSS 
features built into Visual Studio .NET, you must first install the VSS client on the 
workstation. You can usually install the client from the share containing the 
server. Look for the file Netsetup.exe in the shared VSS folder on the server. 
Run this file to install the client. 

You can use the VSS client to do your initial setup with VSS. First open the 
VSS database that you'll be using to maintain your code. After installing the VSS 
client, you'll find a link to the executable in the Microsoft Visual SourceSafe 
folder on the Start menu. Open the client and press Ctrl+P to display the Open 
SourceSafe Database dialog box. Browse to your VSS database share and open 
the srcsafe.ini file there. Figure 15-4 shows how this dialog box looks after you 
specify the appropriate file. 

available databases: 

Name Path 

1,!sername: 

P .Qpen this database neKI lime I run Visual Sources afe 

Figure 15-4 The Open SourceSafe Database dialog box after you 
select the appropriate database 

When prompted, enter the username and password that you or your 
administrator have set up, and you should be in business. Figure 14-5 shows a 
VSS database set up to help manage the code and chapters written for this 
book. At this point, you can close the VSS client application. From here, we'll 
do most our work in Visual Studio .NET. 



472 Part Ill Deployment, Help, and Advanced Projects 

Figure 15-5 A VSS database open in the VSS client application 

Once your database is set up and you have access from your workstation, 
you can start putting solutions and projects under source control. First open a 
solution in the IDE or create a new solution. On the Visual Studio .NET File 
menu, choose Source Control and then choose Add Solution To Source Control, 
as shown in Figure 15-6 . 

. Figure 15-6 Adding a solution to VSS through the Visual Studio .NET 
Source Control menu 



Chapter 15 Advanced Projects in Visual Studio .NET 473 

You'll see the Visual SourceSafe Login dialog box, followed by the Add To 
SourceSafe Project dialog box (shown in Figure 15-7), which lets you select or 
create a folder for the project. 

Add to SourceSafe Project ~I 

El-ti lit; 
Hil Chapters rfil Labs 
l±f·ril Samples 

OK 

Cancel 

!;reate 

l:!elp 

Figure 15-7 The Add To SourceSafe Project dialog box 

· Placing a solution under source control results in the solution being 
added to the VSS server. The solution you started with is now considered a 
working copy, and you must check out the files from VSS to make changes. 
You can see the Solution Explorer window for a project under source control 
in Figure 15-8. The lock icons in Solution Explorer indicate that the files are 
copied locally but aren't checked out for editing. A checked out file has a 
check mark next to its name. 

Solution Explorer - VBWmApp ~ 

@] ikjl:~ 
·i;r-s-;,Tu~;;v8W;;;;>.µ;;;(2P,~!e~isf·--------~--- ------·-·· 
1~+•mmmn 

\ti · Gil References 
'· .aE[j Assemblylnfo.vb 
··llili!ll Forml.vb 

;?.tiijl Setup 
ct: · G3 Detected Dependencies 

:. · · ~ Primary output from VBWinApp (Active) 

Figure 15-8 A solution under source control 



474 Part Ill Deployment, Help, and Advanced Projects 

Working with Files Under Source Control 
Once you place a solution under source control, you and your team members 
can access the solution through Visual Studio .NET. On the machine where 
the initial solution was created, the files added to VSS become the working 
copy for that particular developer. Alternatively, you can delete the local 
folder and open the VSS version of the solution, copying it to a new location 
on the workstation. 

To open a project from a VSS server, from the File menu choose Source 
Control and then choose Open From Source Control, or enter File.OpenFrom
SourceControl in the Command Window. This opens a Visual SourceSafe 
Login dialog box, where you can enter your credentials and select the VSS data
base you want to access. After logging in, you're presented with a Create Local 
Project From SourceSafe dialog box like the one shown in Figure 15-9. 

,_crea._. i_e. •_n_ew_P1_oi_•c1_. in_ih_~Jo_.lder._. _. __ . •. . .. . •. . J · DK 

.§ro,..e..,I 

· sauroes~te ~cuo dQwnloiid' 
$/Sampleo~p1 l:l{l;SW'~p. 

Iii Chap07 
Iii Chap08 
Iii Chap09 
Iii Chap10 
Iii Chap11 
Iii Chap12 
Iii Chap13 
Iii Chap14 

EHiil Chap15 
f-iif.111111111 
l±l-lil VBWinl\pp.root 

Figure 15-9 Selecting a project from a VSS database 

Select a project and click OK, and you'll see a Browse Folder dialog box that 
lets you select the working folder for the solution. The program adds the folder 
you select to the Create A New Project In The Folder box. Click OK a second time 
to copy the solution files to your local machine and display the Open Solution 
dialog box, which contains the .sln file for your solution. Select the .sln file from 
this dialog box, and you'll be working with the local copy of the solution. 

Note You can set a network share as your working folder for the solu
tion. With VSS, it's often easiest to map a network share to a drive let
ter and use that when you work with older-style common dialog boxes. 



Chapter 15 Advanced Projects in Visual Studio .NET 475 

Working with files under source control is fairly straightforward. When 
you begin to edit a file, you lock that file on the server so no other developer 
can make changes at the same time. This is the "control" in source control. 

Let's look at what happens when two developers work on a single solu
tion using source control. Both developers have the solution open through VSS 
to a local folder or network share and are working on these projects in Visual 
Studio .NET. Let's say Marc is in the process of adding a button to a dialog box. 
When he attempts to make a change to the file, a Check Out For Edit dialog box 
(shown in Figure 15-10) appears and gives him the opportunity to add a note 
about what he's doing before checking out the file. 

Figure 15-10 Checking a file out of VSS for editing 

Keep in mind that both developers are working in Visual Studio .NET the 
whole time and are prompted to check out files as they work. Almost every
thing about working with VSS databases in Visual Studio .NET is automatic, so 
you don't have to go hunting for files using the VSS client. 

At this point, Brian wants to make a change to the form that Marc has 
checked out. Marc hasn't checked in his changes yet, and he still has exclusive 
access to the files. This means Brian can't make a change until that file is 
checked in. When Brian tries to check out this file for editing, he's prompted 
with the cancellation dialog box shown in Figure 15-11. 

Figure 15-11 The message that appears if you try to check out a file 
that's been checked out by another user 



476 Part Ill Deployment, Help, and Advanced Projects 

If Brian really needs this file, he can ask Marc to check it in. Small teams 
can work informally in this way, but with larger teams, you most likely won't 
touch each other's code. As you can see, though, the source control features 
make it clear who has control of the source file at any given moment and that 
changes aren't permitted on that file until the person who has control of that file 
checks it back into the database. 

Let's say Marc has made his changes to the file and is ready to check the 
changes back in. He can check the files in by right-clicking on the checked out 
files in Solution Explorer and choosing Check In from the shortcut menu. This 
opens the Check In dialog box shown in Figure 15-12. Here, he can enter a 
comment about the files that he's checking in. This comment can be directed to 
the program manager or to other developers on the project. 

Content 12/11/200211:22:36 PM 

@splay slent check In command In melillS 

Figure 15-12 Checking a file back in to VSS 

At this point, Brian is working with an out-of-date copy of the source 
files. What happens if he tries to edit the old form on his machine? The 
answer is that when VSS checks out the file for editing, it replaces the out
dated version of the file on Brian's machine with the updated file from the 
database. 

To update the files on a local machine to the latest available in the data
base, you use the File.GetLatestVersion command. This command is also avail
able from the shortcut menu in Solution Explorer. If you've made changes to a 
file that you've checked out, you can either merge those changes back into the 



Chapter 15 Advanced Projects in Visual Studio .NET 477 

database or you can keep working without merging your changes back in. In 
either case, changes checked in by other developers are applied to the source 
files in your solution. 

A couple of VSS features that are available from within Visual Studio .NET 
are worth noting. The first is the History command (File.History). This com
mand works on a file-by-file basis; you access it from the Source Control sub
menu of the File menu or from the Command Window. The History command 
opens a dialog box (shown in Figure 15-13) that lists who has checked out a file. 
and when. You can double-dick on any of the versions listed to display the His
tory Details dialog box shown in Figure 15-14, which contains any notes that 
were added when the file was checked in. 

1211210212:3111 
12J11/021122p 
12111/02 fr16p 

Ched<od~$1S"""""'°"'15/CSW
Ched<od ~ $1S...,e>ICNo15/CSWi"'°" 
c......i 

Figure 15-13 Viewing the history of a file in VSS 

File: $/ . ..ICSWiri6.pp/Form1 .c; 

Version: 3 
Date: 12/12102 12:31a 

Usei: Marc 
Label: ....----------

jChecked in $/Sampleo/Chap15/CSWin<l.pp 

Comment 

Close 

frevious I 
J:ielp 

l1ve added the second button per the new spec. :. 

Figure 15-14 The details of a particular version of a file 



478 Part Ill Deployment, Help, and Advanced Projects 

Another interesting feature is the Pending Checkins tool window (shown 
in Figure 15-15). This <lockable window is available only when you have files 
currently checked out. You can access this dialog box through the Source Con
trol submenu of the File menu or through the shortcut menu in Solution 
Explorer. This tool window offers some features that aren't as easy to find in the 
other available dialog boxes. For example, you can click the Option button on 
the Pending Checkins toolbar to keep a file checked out while you check a ver
sion in. You can thus make changes available to others while ensuring that you 
keep control of the file. 

Pendmg Cneckins I~ 
~---~· --- - ~- - - ~ ~ -~ ~ ~"""~~= 

llli!,~lhCilcO!l)int!rtsUil•it~!ill!~l§jB~ . ' · 
"-;·-~·:--····-. -~--·~-::.C"~,::c~ .. ~'."ltii-ang;~Z"~~.,.,.,_-,_,,..~-.. -.. --:-~;:--.. -, 
li'J P Ill Items below solution 'CSWinApp' 

f----S P' ~ Files below project 'CSWinApp' 
i ! ................ P' lrJ forml.cs Content 

L.s P' ~Files below project 'CSClasslibrary' 

L. ........ P'~-- -

IU Command Window Search Results ! 
______________________________ .. 

Figure 15-15 The Pending Checkins tool window 

Lab: Cleaning Up Source Control 
When you download a solution that someone has uploaded to the Web, 
you might find error messages reporting that the solution has been under 
source control. Opening a zipped solution that someone has had under 
source control can be an annoying experience, but you can easily remove 
source control from a solution through the Source Control submenu of the 
Visual Studio .NET File menu. 

Open the CSWinApp solution in the Chapter 15 folder of the book's 
companion content. You'll see a couple of dialog boxes informing you 
that the files in the solution have been under source control. To get rid of 
these messages, you must unbind the solution and projects from the 
source control they were under. To do that, press Ctrl+Alt+A to display the 
Command Window and enter File.ChangeSourceControl This com
mand opens the Change Source Control dialog box shown here: 



Chapter 15 Advanced Projects in Visual Studio .NET 479 

Change Source Control CSWmApp sin ~" 

Soltlbon: CSWrnApp.sln 

CSWinApp 

F:\Insidel/SNET 

F:\JnsidelJSNET 

ll""""'IChap!Sf• W V,Jid 
$/Samp!e5JChap15/1 P° Valid 

To unbind the solution, select the components listed and click the 
Unbind button. You'll get a message telling you that after you unbind the 
solution, these files will no longer be under source control. Click OK, save 
the solution, and the annoying source control messages will be gone. You 
can do this with any such solutions you come across on the Web. If you 
share source code, remember to unbind source control yourself before 
you pass it on. The developers you share your code with will appreciate it. 

Planning Your Solutions Carefully 
When you work with more complex, multiproject solutions in VSS, it's impor
tant to plan your solutions carefully before checking them in for the first time. 
This planning can save you a lot of grief later on. The most important thing to 
remember before performing that initial check-in is to keep your main solution 
file in a parent folder that contains individual folders for each of the projects in 
your solution. For example, say you want to create a solution that contains 
three separate components. It has a GUI of some sort written in Visual Basic 
.NET. It has a class library written in Visual C#, and it has a COM component 
written in Visual C++. (We talked a bit about combining these types of projects 
in a single solution in Chapter 2.) 

To combine all of these project types into a single solution, you should 
first create a folder to hold the solution. You can do this by creating an empty 
solution in some convenient location. From there, you should add new projects 
to the blank solution and place the folders for these projects in the same folder 
that contains the main solution file. 



480 Part Ill Deployment, Help, and Advanced Projects 

Once you have all your projects in place in your solution, you can check 
that solution into VSS, as described earlier in the chapter. Now it will be a little 
easier for VSS to maintain the links within your project, and it will be easier for 
developers assigned to the different components in the solution to maintain 
their own projects under source control. 

For those planning to do a lot of large-team development under 
VSS, Microsoft has an excellent document with a lot of great information 
about how to plan solutions, builds, and source control. The document 
is titled "Team Development with Visual Studio .NET and Visual Source
Safe" and is available on MSDN at http:!lmsdn.microsoft.com/library/ 
default.asp?url=llibrary/en-us/dnbdalhtmlltdlg_rm.asp. 

Don't Break the Build 
One of the most important things about source control is that it helps you per
form regular builds so you can continually run and test the product. These 
kinds of builds should be performed as often as is reasonable given the size 
and scope of the overall project and the size of the project team. To that end, 
you should make sure that your new code builds before you add it to source 
control. 

The idea behind source control is that you keep a good version of the 
product going all the time. If code that you check in to the VSS database breaks 
the build, it might interfere with the efforts of the other development teams 
working on components. You therefore shouldn't check in code until it's in a 
state where it can be compiled into the product without causing problems. 
Source control in a multideveloper scenario shouldn't be used as the backup 
repository for your ongoing work. Rather, you should back up the projects on 
your workstation nightly and check in code when it's ready to run. 



Chapter 15 Advanced Projects in Visual Studio .NET 481 

Looking Ahead 

In this book, we've presented a range of topics related to the use and custom
ization of Visual Studio .NET. As you explore this amazing tool and the automa
tion object model, you'll probably start to see completely new and exciting 
ways that you can customize and automate the IDE. We sincerely hope that 
we'll start seeing solutions that have in some way been helped along by the 
ideas and topics discussed here. 





" I 

Code Model Reference 

Chapter 12 gave you a peek at the Visual Studio .NET code model but left out 
the troublesome details. Here, we'll provide those details in an up-to-date ref
erence of all the code model objects, properties, and methods. 

Code Model Objects 
This section explains the workings of the code model objects and their proper
ties. We'll defer an examination of the code model methods until the section 
titled "Generating Code." 

FileCodeModel and CodeModel 
The FileCodeModel object and the CodeModel object are the two entryways into 
the code model; each contains a collection of top-level code elements in addi
tion to methods that allow you to add, delete, and modify those code elements. 
Table A-1 lists the FileCodeModel properties. 

Table A-1 FileCodeModel Properties 

Property 

CodeElements 

DTE 

Language 

Parent 

Description 

Returns a collection of top-level CodeElement objects defined in 
the associated source file 

Returns the DTE object 

Returns a GUID representing the source file's programming lan
guage 

Returns the Project!tem object for the associated source file 

A FileCodeModel object always belongs to a specific source file in a 
project. You retrieve the FileCodeModel object by using the FileCodeModel 
property of the Projectltem object that wraps the source file; once you have a 

483 



484 Appendix: Code Model Reference 

FileCodeModel object, you can use its Parent property to get back to the parent 
Projectltem. The most important FileCodeModel property in terms of the code 
model is CodeElements, which gives you access to the top-level code elements 
in the corresponding source file. 

The Language property returns a GUID that represents the programming 
language of the source file. The EnvDTE.CodeModelLanguageConstants enu
meration defines constants for the Visual Basic, Visual C#, and Visual C++ 
GUIDs. (The enumeration leaves out the Visual J# GUID: E6FDF8BF-F3Dl-
11D4-8576-0002A516ECE8.) If you have trouble remembering which GUID 
goes with which language, you can use code like the following to translate the 
Language GUIDs into English: 

string LanguageFromGUID(string langGuid) 
[ 

string language= String.Empty; 

switch ClangGuid.ToUpper()) 

case CodeModellanguageConstants.vsCMLanguageCSharp: 
language= "Visual C#"; 
break; 

case CodeModellanguageConstants.vsCMLanguageVB: 
language= "Visual Basic"; 
break; 

case "[E6FDF8BF-F3Dl-11D4-8576-0002A516ECE8}": 
language = "Visual J#"; 

break; 

case CodeModellanguageConstants.vsCMLanguageVC: 
1 anguage = "Visual C++"; 
break; 

default: 
language "Other"; 
break; 

return language; 



Appendix: Code Model Reference 485 

You can't just open an arbitrary source file in Visual Stu
dio .NET and access its code elements through the code model. (For 
example, you can't get a FileCodeModel object from a source file in 
the Solution Items folder.) Only if you assign the source file to a project 
of the same language does the code model get built for the source file. 

Table A-2 lists the FileCodeModel methods. We'll cover the Addxxx meth
ods and the Remove method in the section titled "Generating Code"; for a com
plete treatment of the CodeElementFromPoint method, see the section titled 
"Getting a CodeElement from a Point Object" in Chapter 12. 

Table A-2 FileCodeModel Methods 

Method 

AddAttribute 

Add Class 

AddDelegate 

AddEnum 

AddFunction 

Addlnterface 

AddNamespace 

AddStrnct 

Add Variable 

CodeElementFromPoint 

Remove 

Description 

Creates a new top-level attribute 

Creates a new top-level class 

Creates a new top-level delegate 

Creates a new top-level enumeration 

Creates a new top-level function 

Creates a new top-level interface 

Creates a new top-level namespace 

Creates a new top-level structure 

Creates a new top-level variable 

Returns the code element containing the given Text
Point object 

Removes the specified code element 

The CodeModel object returned by the Project.CodeModel property pro
vides a more comprehensive view than does the FileCodeModel object. For one 
thing, the CodeModel operates at the project level instead of at the project item 
level, so you can expect to see a greater number of top-level source code ele
ments in its CodeElements collection than you'd see in the typical FileCode
Model.CodeElements collection. Also, depending on the project type, the 
CodeModel object reveals information that isn't included by the FileCodeModel 
object, such as assembly-level attributes and external namespaces. The Code
Model properties are shown in Table A-3. 



486 Appendix: Code Model Reference 

Table A-3 CodeModel Properties 

Property 

CodeElements 

DTE 

JsCaseSensitive 

Language 

Parent 

Description 

Returns a collection of top-level CodeElement objects 
defined in the associated project 

Returns the DTE object 

Returns whether the project's programming language is 
case-sensitive 

Returns a GUID representing the project's programming 
language 

Returns the parent Project object 

Most of the CodeModel properties mirror those of the FileCodeModel 
object but provide project-level information. This higher-level perspective 
comes in handy sometimes; the CodeModel.Language analogue, for example, 
can tell you the project's programming language even when the project has no 
files (and, therefore, has no FileCodeModel). The IsCaseSensitive property is 
unique to CodeModel; this property allows you to determine the case-sensitivity 
of the project's programming language, which can make all the difference 
when you have to generate a new code element name. 

The CodeModel methods are listed in Table A-4. We'll postpone a closer 
examination of the Add.xxx and Remove methods until the section titled "Gen
erating Code." 

Table A-4 CodeModel Methods 

Method Description 

AddAttribute Creates a new top-level attribute 

AddClass Creates a new top-level class 

AddDelegate Creates a new top-level delegate 

AddEnum Creates a new top-level enumeration 

AddFunction Creates a new top-level function 

Addlnterface Creates a new top-level interface 

AddNamespace Creates a new top-level namespace 

AddStruct Creates a new top-level structure 

AddVariable Creates a new top-level variable 

CodeTypeFromFullName Returns a CodeType object representing the given code 
element 



Appendix: Code Model Reference 487 

Table A-4 CodeModel Methods (continued) 

Method 

CreateCodeTypeRef 

IsValidJD 

Remove 

Description 

Returns a CodeTypeRef object representing the type of the 
fully qualified name 

Returns whether a specified name is a valid programmatic 
identifier for the current language 

Removes the specified code element from the source file 

The CodeTypeFromFullName method allows you to retrieve a CodeType 
object for a particular code element, given its fully qualified name. 

The CreateCodeTypeRef method lets you create a CodeTypeRef object 
based on a fully qualified name or a vsCMTypeRef enumeration value. (See 
Table A-5.) All of the languages except Visual Basic support this method. 

Finally, the IsValidID method lets you check whether a given identifier is 
valid for a particular language. All of the languages implement this method. 

Table A-5 The vsCMTypeRef Enumeration 

Constant 

vsCMTypeRefOther 

vsCMTypeRefCodeType 

vsCMTypeRefArray 

vsCMTypeRejVoid 

vsCMTypeRejPointer 

vsCMTypeRefString 

vsCMTypeRefObject 

vsCMTypeRejByte 

vsCMTypeRefChar 

vsCMTypeRejShort 

vsCMTypeReftnt 

vsCMTypeReflong 

vsCMTypeRejFloat 

vsCMTypeRejDouble 

vsCMTypeRejDecimal 

vsCMTypeRejBool 

vsCMTypeRefVariant 

Description 

Data type not in this table 

Code Type 

Array 

Void 

Pointer 

String 

Object 

Byte 

Character 

Short integer 

Integer 

Long integer 

Floating point 

Double-precision floating point 

Decimal 

Boolean 

Variant 



488 Appendix: Code Model Reference 

Code Element 
The CodeElement object serves as a kind of "base class" for the other code 
model objects by providing a set of properties common to all of the kinds of 
programming constructs. Table A-6 lists the CodeElement properties. 

Table A-6 CodeE/ement Properties 

Property 

Children 

Collection 

DTE 

EndPoint 

Extender· 

ExtenderCATJD 

ExtenderNames 

FullName 

Infolocation 

JsCodeType 

Kind 

Language 

Name 

Projectltem 

StartPoint 

Description 

Returns a collection of all CodeElement objects related to 
this code element 

Returns the parent CodeElements collection 

Returns the DTE object 

Returns a TextPoint object that marks the end of the code 
element definition 

Returns the requested extender object 

Returns the extender category ID 

Returns the names of the available extender objects 

Returns the fully qualified name of the code element 

Returns a vsCM!nfolocation value that describes where the 
code element is defined 

Returns whether the code element is a CodeType 

Returns a vsCMElement value that describes the specific type 
of the code element 

Returns the programming language used to create the code 
element 

Sets or returns the name of the code element 

Returns the Projectltem that contains the code element 

Returns a TextPoint object that marks the beginning of the 
code element definition 

• C# won't allow you to reference this property using property syntax because its get accessor takes a 
parameter. Use an explicit call to the get accessor instead. 

The three most important CodeElement properties are Name, Ful!Name, 
and Kind. The Name property-CodeElement's only read/write property
allows you to retrieve and change the code element's name programmatically. 
(Visual Basic doesn't implement the Name property's write functionality.) Note, 
however, that you can't always change the name of a code element-for exam
ple, you can't change the name of a constructor because a constructor must 
have the same name as its parent class. The Ful!Name property returns the code 



Appendix: Code Model Reference 489 

element's fully qualified name. The Kind property returns a vsCMElement value 
that identifies the underlying code construct. The vsCMElement enumeration 
has 40 constants representing the most common code constructs you'll encoun
ter (as well as some of the more obscure ones that we hope you'll never have 
to deal with). 

The Children property returns a CodeElements collection that contains all 
the code elements related to this one. Languages aren't required to support this 
property-and most languages don't support it. Of the four languages that 
come in the Visual Studio .NET box, only Visual C++ uses the Children prop
erty. 

Note As you learn more about the code model, you'll find that Visual 
C++ contributes to many of its idiosyncrasies. When Visual Studio 
.NET invited the different language groups to join the code model 
party, Visual C++ showed up with a code model of its own. For the 
most part, Visual C++ did its job implementing the Visual Studio .NET 
code model (by way of its own code model, of course), but some 
accommodations were made in the Visual Studio .NET code model to 
allow more access to the Visual C++ native code model. The result is 
the occasional oddball property, such as Code Element. Children, and 
the overrepresentation of Visual C++ in different areas of the code 
model, such as the constants in the vsCME/ement enumeration. 

The InfoLocation property returns a value from the vsCMinfoLocation 
enumeration that lets you know where to find the code construct. Table A-7 
lists the vsCMinfoLocation constants. 

Table A-7 vsCM/nfoLocation Constants 

Constant 

vsCMinfoLocationProject 

vsCMinfoLocationExternal 

vsCMinfolocation Virtual 

vsCMinfoLocationNone 

Description 

Code element lives in a project file. 

Code element lives in an external file. 

This constant isn't used in Visual Studio .NET 2003. 
Code model is unable to determine the location of the 
code element. 



490 Appendix: Code Model Reference 

When the InfoLocation value is vsCMinfoLocationProject, the StartPoint 
and EndPoint properties return TextPoint objects that delimit the code element 
in the source file. 

The Extender, ExtenderCA11D, and ExtenderNames properties allow you 
to access the extender objects related to the code element. (Extender objects let 
you add, hide, or replace properties of the underlying code element when you 
view them in the integrated development environment [IDE].) 

The Language and Projectltem properties are equivalent to the FileCode
Model.Language and FileCodeModel.Parent properties, respectively. The Col
lection property returns the parent CodeElements collection. The IsCodeType 
property returns true when the CodeElement object also supports the CodeType 
interface. (You'll learn all about CodeType later in this chapter.) 

Table A-8 lists the CodeElement methods. 

Table A-8 CodeE/ement Methods 

Method 

GetEndPoint 

GetStartPoint 

Description 

Returns a TextPoint object that marks the end of the code ele
ment definition 

Returns a TextPoint object that marks the beginning of the 
code element definition 

The GetStartPoint and GetEndPoint methods return a TextPoint object that 
marks the start or end, respectively, of some aspect of the code element defini
tion. You specify which aspect to return by passing a vsCMPart enumeration 
value to the appropriate method. (See Table A-9.) The GetStartPoint and 
GetEndPoint methods offer more flexibility than do their StartPoint and End
Point counterparts; in fact, CodeElement.StartPoint and CodeElement.EndPoint 
are equivalent to CodeElement. GetStartPoint( vsCMPart Whole WithAttributes) 
and CodeElement. GetEndPoint( vsCMPart Whole WithAttributes), respectively. 
You can see for yourself how just how flexible the GetStartPoint and GetEnd
Point methods are by running the Chapter12\CodeDiscovery\TextFrom
StartAndEndPoints macro, which calls the two methods with each of the 
vsCMPart values and displays the results. 



Appendix: Code Model Reference 491 

Table A-9 The vsCMPart Enumeration 

Constant Returns 

vsCMPartName The name of the code construct 

vsCMPartAttributes The attributes that apply to the code construct, 
minus the attribute delimiters 

vsCMPartHeader The header of the code construct 

vsCMPartWhole The entire code construct 

vsCMPartBody The body of the code construct, minus the body 
delimeters 

vsCMPartNavigate The location in the source code to which the caret 
moves when you double-click on an element in 
Class View 

vsCMPartAttributesWithDelimiter The applicable attributes and the attribute 
delimiters 

vsCMPartBody WithDelimiter The body of the code construct and its delimiters 

vsCMPartHeaderWithAttributes The code construct's header and its attributes 

vsCMPartWholeWithAttributes The entire code construct and its attributes 

Specialized Code Model Objects 
This section describes the various objects that correspond directly to specific 
code constructs. Each of these objects aggregates its specific members with the 
CodeElement members, which makes for pretty long member lists in the Help 
files. In the following tables, we factored out the common CodeElement mem
bers so we could concentrate on the members specific to each type. We also 
factored out the properties in Table A-10---they're not part of the CodeElement 
properties, but they're common to all the types described in this section. 

Table A-10 Properties Common to All Code Model Types 

Property 

Comment 

DocComment 

Parent 

Description 

Sets or returns the comment associated with the code 
element 

Sets or returns the code element's document com
ments 

Returns the parent CodeElements collection 



492 Appendix: Code Model Reference 

The DocComment property allows you to create XML docutnent com
ments for languages that support them (such as C# andJ#). The string you pass 
to DocComment must contain valid XML enclosed within <doc></doc> ele
ments. 

The Comment property creates normal, run-of-the-mill comments. (C# 
and J#, however, implement the write functionality of their Comment properties 
by turning a normal string into a <summary> XML document comment.) 

CodeNamespace 
The CodeNamespace object corresponds to a .NET namespace construct (pack
age in J#, namespace in C# and C++, and Namespace in Visual Basic). Code
Namespace includes the properties listed in Table A-11. 

Table A-11 CodeNamespace Properties 

Property Description 

CodeElement properties See Table A-6. 

Other common properties See Table A-10. 

Members Returns the top-level code elements contained by the 
namespace. 

As you can see from Table A-11, the only property specific to Code
Namespace is Members, which lets you access the namespace's top-level code 
elements. 

Table A-12 shows the CodeNamespace methods, which are discussed in 
detail in the section titled "Generating Code." 

Table A-12 CodeNamespace Methods 

Method 

CodeElement methods 

Add Class 

AddDelegate 

AddEnum 

Addlnterface 

AddNamespace 

AddStruct 

Remove. 

Description 

See Table A-7. 

Creates a new class within the namespace. 

Creates a new delegate within the namespace. 

Creates a new enumeration within the namespace. 

Creates a new interface within the namespace. 

Creates a new namespace within the namespace. 

Creates a new structure within the namespace. 

Removes the specified code element. 



Appendix: Code Model Reference 493 

Code Type 
The CodeType object is a kind of generic object, like CodeElement, that corre
sponds roughly to what would be a type in the .NET Framework. The CodeType 
object allows you to treat certain code model types-CodeClass, CodeStruct, 
CodeDelegate, Codelnterface, and CodeEnum-as if they were the sarrie kind of 
object. Table A-13 lists the CodeType properties. 

Table A-13 Code Type Properties 

Property 

CodeElement properties 

Other common properties 

Access 

Attributes 

Bases 

Derived Types 

JsDerivedFrom· 

Members 

Namespace 

Description 

See Table A-6. 

See Table A-10. 

Sets or returns the access modifiers. 

Returns a collection of attributes. 

Returns a collection of base types. 

Returns a collection of derived types. 

Returns whether this type has another type as a base. 

Returns a collection of top-level code elements con
tained by this type. 

Returns a CodeNamespace object representing the par
ent namespace. 

• C# won't allow you to reference this property using property syntax because its get accessor takes a 
parameter. Use an explicit call to the get accessor instead. 

The Access property sets or returns a vsCMAccess value that determines 
the code element's access (such as public, private, and so on). Be aware that 
the CodeType.Access write functionality doesn't work for Visual C++ and Visual 
Basic. Table A-14 lists the vsC.MA.ccess enumeration constants. 

Table A-14 The vsCMAccess Enumeration 

Constant Description 

vsCMAccessPublic Public access 

vsCMAccessPrivate Private access 

vsCMAccessProject Project access 

vsCMAccessProtected Protected access 

vsCMAccessProjectOrProtected Combination of project and protected access 

vsCMAccessDefault Default access 

vsCMAccessAssemblyOrFamily Assembly or family access 

vsCMAccessWithEvents WithEvents access 



494 Appendix: Code Model Reference 

The Attributes property returns a collection of CodeElement objects of type 
CodeAttribute, one for each attribute that applies to the CodeType. The Bases 
property returns a collection of CodeElement objects of type CodeClass; each 
CodeClass represents a base class of the CodeType. 

The IsDerivedFrom property lets you discover whether the CodeType has 
another code element from the current project as one of its bases. Currently, the 
Visual C++ implementation works correctly for both class and interface bases, 
the C# and J# implementations work correctly for classes only, and the Visual 
Basic implementation doesn't work at all. 

The DerivedTypes property returns a collection of CodeElement objects 
that specify which other code constructs in the current project derive from this 
object. Currently, none of the languages implements DerivedTypes. 

The Members property returns a collection of CodeElement objects repre
senting the top-level code constructs contained by the CodeType. Finally, the 
Namespace property returns the parent namespace. 

Table A-15 shows the CodeType methods, which are explained in the sec
tion titled "Generating Code." 

Table A-15 CodeType Methods 

Method 

CodeElement methods 

AddAttribute 

AddBase 

RemoveBase 

RemoveMember 

Description 

See Table A-7. 

Creates a new attribute. 

Adds a new base type. 

Removes a base type. 

Removes a member code element. 

CodeC/ass and CodeStruct 
The CodeClass and CodeStrnct objects represent classes and structures, respec
tively. In the C family of programming languages, classes and structures are inti
mately related-beginning C++ programming books often introduce the class 
construct as a strnct whose members are private by default. The code model 
also treats the CodeClass and CodeStrnct similarly; in fact, the two objects share 
exactly the same properties and methods, which is why we group them 
together here, beginning with Table A-16. 



Appendix: Code Model Reference 495 

Table A-16 CodeClass and CodeStruct Properties 

Property 

CodeElement properties 

CodeType properties 

Other common properties 

Implementedlnterjaces 

lsAbstract 

Description 

See Table A-6. 

See Table A-11. 

See Table A-10. 

Returns a collection of implemented interfaces. 

Sets or returns whether this item is abstract. 

The Implementedlnterf aces property returns a CodeElements collection 
that contains the interfaces implemented by the class or structure. C#, ]#, and 
Visual Basic implement the Implementedlnterfaces property correctly; Visual 
C++ includes its implemented interfaces in its Bases collection, so its Imple
mentedlnterf aces property always returns an empty collection. 

The IsAbstract property returns whether the object is an abstract class or 
structure. All of the languages implement the read functionality of IsAbstract; 
only C# and J# implement the write functionality. 

Table A-17 lists the CodeClass and CodeStruct methods, which are 
explained in the section titled "Generating Code." 

Table A-17 CodeC/ass and CodeStruct Methods 

Method 

CodeE!ement methods 

CodeType methods 

Add Class 

AddDelegate 

AddEnum 

AddFunction 

Add!mplementedlnterface 

AddProperty 

AddStruct 

AddVariable 

Removelnter:face · 

Description 

See Table A-7. 

See Table A-12. 

Creates a new class within the class or structure. 

Creates a new delegate within the class or structure. 

Creates a new enumeration within the class or struc
ture. 

Creates a new function within the class or structure. 

Adds an implemented interface to the class or struc
ture. 

Creates a new property within the class or structure. 

Creates a new structure within the class or structure. 

Creates a new variable within the class or structure. 

Removes an implemented interface from the class or 
structure. 



496 Appendix: Code Model Reference 

Codelnterface 
The Codelnterface object encapsulates an interface code construct. Table A-18 
shows the Codelnterface properties; as you can see from the table, Codelnter
f ace doesn't define any interface-specific properties. 

Table A-18 Codelnterface Properties 

Property 

CodeElement properties 

CodeType properties 

Other common properties 

Description 

See Table A-6. 

See Table A-11. 

See Table A-10. 

The Codelnterface methods are shown in Table A-19. You can find an 
explanation of the Addxxx methods in the section titled "Generating Code." 

Table A-19 Codelnterface Methods 

Method 

CodeElement methods 

CodeType methods 

AddFunction 

AddProperty 

CodeEnum 

Description 

See Table A-7. 

See Table A-12. 

Creates a new function within the interface. 

Creates a new property within the interface. 

The CodeEnum object represents an enumeration code construct. CodeEnum 
doesn't define any enumeration-specific properties, as you can see from Table 
A-20. 

Table A-20 CodeEnum Properties 

Property 

CodeElement properties 

CodeType properties 

Other common properties 

Description 

See Table A-6. 

See Table A-11. 

See Table A-10. 

The CodeEnum methods, shown in Table A-21, have explanations in the 
"Generating Code" section. 



Appendix: Code Model Reference 497 

Table A-21 CodeEnum Methods 

Method Description 

CodeElement methods 

CodeType methods 

AddMember 

CodeDe/egate 

See Table A-7. 

See Table A-12. 

Creates a new enumeration constant. 

The CodeDelegate object represents a delegate code construct. Table A-22 lists 
the CodeDelegate properties. 

Table A-22 CodeDelegate Properties 

Property 

CodeElement properties 

CodeType properties 

Other common properties 

BaseClass 

Parameters 

Prototype' 

Type 

Description 

See Table A-6. 

See Table A-11. 

See Table A-10. 

Returns a CodeClass object that represents the dele
gate's base class. 

Returns a CodeElements collection containing the del
egate's parameters. 

Returns the delegate's prototype. 

Sets or returns a CodeTypeRef object representing the 
delegate's type. 

* C# won't allow you to reference this property using property syntax because its get accessor takes a 
parameter. Use an explicit call to the get accessor instead. 

The BaseClass property always returns a CodeClass object that represents 
System.Delegate. Every language except Visual C++ implements the BaseClass 
property. 

The Parameters property returns a collection of CodeElement objects that 
contains an item for each parameter of the delegate; Visual C++ doesn't imple
ment this property. 

The Prototype property returns the delegate's prototype as a string. The 
Prototype property accepts values from the vsCMPrototype enumeration that 
determine which aspects of the prototype to return. The vsCMPrototype con
stants listed in Table A-23 are bit flags, so you can combine them to customize 
the string returned by Prototype. For example, the combination of vsCMProto
typeFullname, vsCMPrototypeType, vsCMPrototypeParamNames, and vsCMPro
totypeParamTypes would return all information about a particular delegate. All 
of the languages except Visual C++ implement this property. 



498 Appendix: Code Model Reference 

Table A-23 The vsCMPrototype Enumeration 

Constant 

vsCMPrototypeFullname 

vsCMPrototypeNoName 

vsCMPrototypeClassName 

vsCMPrototypeParamTypes 

vsCMPrototypeParamNames 

vsCMPrototypeParamDefaultValues 

vsCMPrototypeUniqueSignature 

vsCMPrototypeType 

vsCMPrototypelnitExpression 

Description 

Returns the fully qualified name 

Omits the name 

Returns the name and class prefix 

Returns the parameter types 

Returns the parameter names 

Returns the parameter default values 

Returns a unique string based on the proto
type 

Returns the type 

Returns the initialization expression 

Finally, the Type property lets you read or write a CodeTypeRefvalue that 
represents the delegate's type. Currently, none of the Type property's write 
implementations works, and read works only for C#, ]#, and Visual Basic. 

The CodeDelegate methods are shown in Table A-24; you can find expla
nations for them in the section titled "Generating Code." 

Table A-24 CodeDelegate Methods 

Method 

CodeElement methods 

CodeType methods 

AddParameter 

RemoveParameter 

Code Variable 

Description 

See Table A-7. 

See Table A-12. 

Creates a new delegate parameter. 

Removes a delegate parameter. 

A CodeVariable object represents a variable declaration. Table A-25 lists the 
Code Variable properties. 



Appendix: Code Model Reference 499 

Table A-25 CodeVariable Properties 

Property 

CodeElement properties 

Other common properties 

Access 

Attributes 

InitExpression 

IsConstant 

IsShared 

Prototype' 

Type 

Description 

See Table A-6. 

See Table A-10. 

Sets or returns the variable's access modifiers. 

Returns a collection of the variable's attributes. 

Sets or returns the variable's initialization code. 

Sets or returns whether the variable is constant. 

Sets or returns whether the variable is a shared class 
variable. 

Returns the variable's declaration. 

Sets or returns a CodeTypeRef object representing the 
variable's type. 

' C# won't allow you to reference this property using property syntax because its get accessor takes a 
parameter. Use an explicit call to the get accessor instead. 

The Access property is similar to the CodeType.Access property and takes 
the same vsCMAccess values found in Table A-14. All languages implement the 
Access property's read functionality; only C# and J# implement the write func
tionality. 

The Attributes property returns a CodeElements collection that contains an 
item of type CodeAttribute for each attribute of the variable. 

The lnitExpression property lets you read or write the variable's initializa
tion expression. All languages support the lnitExpression read functionality, 
and all languages but Visual Basic support the lnitExpression write functional
ity. The expression you pass to the lnitExpression property shouldn't contain an 
initialization operator because the correct operator is supplied by the language. 
Also, be aware that lnitExpression won't validate the expression you specify. 

The JsConstant property lets you read or write whether the variable is 
declared as a constant. All languages implement the JsConstant read function
ality, but the J# implementation always returns False. Every language except 
Visual Basic implements the lsConstant write functionality. 

The JsShared property lets you read or write whether a variable is a class 
shared variable (True) or a class instance variable (False). The read functionality 
of lsShared works for all languages and the write functionality works for C# and 
]#. 



500 Appendix: Code Model Reference 

The Prototype property returns a string that represents the variable's dec
laration. This property works the same way as the CodeDelegate.Prototype 
property-you pass it a combination of values from the vsCMPrototype enumer
ation (listed in Table A-23), and it returns those parts of the declaration that you 
request. Unlike the InitE:xpression property, the Prototype property returns the 
initialization operator along with the initialization expression when passed a 
value of vsCMPrototypelnitExpression. All languages implement this property. 

The Type property sets or returns a CodeTypeRef object that represents the 
variable's type. All languages implement the Type property's read functionality, 
but only Visual C++ implements the write functionality. 

Table A-26 lists the CodeVariable methods. You can find an explanation of 
these methods in the section titled "Generating Code." 

Table A·26 Code Variable Methods 

Method 

CodeElement methods 

AddAttribute 

Code Property 

Description 

See Table A-7. 

Creates a new attribute for the variable. 

The CodeProperty object represents a property code construct. Table A-27 lists 
the CodeProperty properties. Note that the]# implementation doesn't recognize 
property declarations-instead, J# interprets the property's get_xxx and set_xxx 
methods as CodeFunction objects. Consequently, the explanations that follow 
Table A-27 won't include mention of]#. 

Table A-27 CodeProperty Properties 

Property 

CodeElement properties 

Other common properties 

Access 

Attributes 

Getter 

Prototype 

Setter 

Type 

Description 

See Table A-6. 

See Table A-10. 

Sets or returns the property's access modifiers. 

Returns a collection of the property's attributes. 

Sets or returns a CodeFunction object representing the 
property's getter function. 

Returns the property's prototype. 

Sets or returns a CodeFunction object representing the 
property's setter function. 

Sets or returns a CodeTypeRef representing the prop
erty's type. 



Appendix: Code Model Reference 501 

The Access property allows you to read or write the access modifiers of 
the property. (See Table A-14.) All of the languages implement the read func
tionality, but only C# implements the write functionality-Visual Basic returns 
"not implemented" and Visual C++ only allows properties to have public 
access, so it always returns "read-only". 

The Attributes property returns a CodeElements collection containing an 
item of type CodeAttribute for each attribute that applies to the property. 

The Getter and Setter properties let you read or write the property getter 
and setter, respectively. Getter and Setter each take or return a CodeFunction 
object that represents the corresponding getter or setter of the property code 
construct. C# and Visual Basic implement the read functionality of these prop
erties. None of the languages implements the write functionality, but you can 
achieve the same effect in some of the languages by retrieving the CodeFunc
tion object for the getter or the setter and making changes through the Code
Function methods. 

The Prototype property returns the property's prototype as a string. This 
property takes a combination of values from the vsCMPrototype enumeration 
(listed in Table A-23) and returns the requested information about the proto
type. Note that CodeProperty.Prototype returns information about the property 
declaration only and doesn't include prototype information about the prop
erty's getter and setter functions. All the languages implement the Prototype 
property. 

The Type property allows you to read or write a CodeTypeRefvalue that 
represents the property's type. All of the languages implement the Type prop
erty's read functionality, and none of the languages implements the write func
tionality. However, although you can't change a Visual C++ property's type 
directly, you can change it indirectly by changing the types of the underlying 
getter and setter functions. 

Table A-28 lists the CodeProperty methods, which are explained in the 
section titled "Generating Code." 

Table A-28 CodeProperty Methods 

Method 

CodeElement methods 

AddAttribute 

CodeAttribute 

Description 

See Table A-7. 

Creates a new attribute for the property. 

The CodeAttribute object corresponds to an attribute as defined by the .NET 
Framework. Table A-29 shows the CodeAttribute properties. 



502 Appendix: Code Model Reference 

Table A-29 CodeAttribute Properties 

Property 

CodeElement properties 

Other common properties 

Value 

Description 

See Table A-6. 

See Table A-10. 

Sets or returns the attribute's value. 

The Value property lets you read or write the attribute's value. All the lan
guages implement the read functionality, but]# returns the wrong information 
if the attribute has more than one parameter. Only Visual C++ implements the 
write functionality. 

Table A-30 shows the CodeAttribute methods, which are explained in the 
section titled "Generating Code." 

Table A-30 CodeAttribute Methods 

Method 

CodeElement methods 

Delete 

CodeFunction 

Description 

See Table A-7. 

Removes the attribute. 

The CodeFunction object represents a function or sub procedure code con
struct. Table A-31 lists the CodeFunction properties. 

Table A-31 CodeFunction Properties 

Property Description 

CodeElement properties 

Other common properties 

Access 

Attributes 

Can Override 

FunctionKind 

/sOverloaded 

/sShared 

Mustlmplement 

Overloads 

See Table A-6. 

See Table A-10. 

Sets or returns the function's access modifiers. 

Returns a collection of the function's attributes. 

Sets or returns whether the function can be overridden. 

Returns a vsCMFunction enumeration value that 
describes what kind of function the function is. 

Returns whether this function is overloaded. 

Sets or returns whether the function is statically 
defined. 

Sets or returns whether the function is abstract. 

Returns a CodeElements collection containing the· func
tion's overloads. 



Appendix: Code Model Reference 503 

Table A-31 CodeFunction Properties (continued) 

Property 

Parameters 

Prototype' 

Type 

Description 

Returns a CodeElements collection containing the func
tion's parameters. 

Returns the function's declaration. 

Sets or returns a CodeTypeRef representing the func
tion's type. 

' C# won't allow you to reference this property using property syntax because its get accessor takes a 
parameter. Use an explicit call to the get accessor instead. 

The Access property lets you read or write the function's access modifiers. 
(See Table A-14.) All languages implement the read functionality, and all lan
guages but Visual Basic implement the write functionality. 

The Attributes property returns a CodeElements collection containing an 
item of type CodeAttribute for each attribute that applies to the function. 

The CanOverride property lets you read or write whether the function is 
overridable. All the languages implement the read functionality, but Visual C++ 
always returns True. C# and J# implement the write functionality; however, J# 
will only let you change from a nonoverridable (final) function to an overrid
able function. 

The FunctionKind property returns one of the vsCMFunction values from 
Table A-32. Every language implements this property. 

Table A-32 The vsCMFunction Enumeration 

Constant Description 

vsCMFunctionOther A kind of function not listed in this table 

vsCMFunctionConstructor A constructor 

vsCMFunctionPropertyGet A property getter 

vsCMFunctionPropertyLet A property letter 

vsCMFunctionPropertySet A property setter 

vsCMFunctionPutRef A put reference 

vsCMFunctionPropertyAssign A property assign 

vsCMFunctionSub A Sub procedure 

vsCMFunctionFunction A function 

vsCMFunctionTopLevel A top-level function 

vsCMFunctionDestructor A destructor 



504 Appendix: Code Model Reference 

Table A-32 The vsCMFunction Enumeration (continued) 

Constant 

vsCMFunctionOperator 

vsCMFunction Virtual 

vsCMFunctionPure 

vsCMFunctionConstant 

vsCMFunctionShared 

vsCMFunctionlnline 

Description 

An operator 

A virtual function 

A pure virtual function 

A constant 

A shared function 

An inline function 

The IsOverloaded property returns whether the function is overloaded. 
When IsOverloaded returns True, the Overloads property returns a collection 
that contains the function's overloads. Note that the C# and]# Overloads prop
erties hold overloads only, whereas the Visual C++ and Visual Basic Overloads 
properties include the function in addition to its overloads. 

The JsShared property lets you read or write whether a member function 
is a class shared function (True) or a class instance function (False). The read 
functionality of IsShared works for all languages, and the write functionality 
works for Visual C++, C#, and]#. 

The Mustlmplement property lets you read or write whether the function 
is abstract. All languages support the read functionality. Visual C++ implements 
the write functionality fully, but C# and]# only allow you to convert an abstract 
function into a real function. 

The Parameters property returns a collection that contains an item for 
each parameter of the function. All of the languages support this property. 

The Prototype property returns a string that represents the function's pro
totype. This property accepts a combination of values from the vsCMPrototype 
enumeration in Table A-23 and returns the requested parts of the function's 
declaration. All of the languages implement this property. 

The Type property allows you to read and write a CodeTypeRefvalue that 
represents the function's return type. All of the languages implement the read 
functionality, but only Visual C++ implements the write functionality. 

Table A-33 lists the CodeFunction methods, which are explained in the 
section titled "Generating Code." 



Appendix: Code Model Reference 505 

Table A-33 CodeFunction Methods 

.Method 

CodeElement methods 

AddAttribute 

AddParameter 

RemoveParameter 

CodeParameter 

Description 

See Table A-7. 

Creates a new attribute. 

Creates a new parameter. 

Removes a parameter. 

The CodeParameter object represents a parameter of a function, sub procedure, 
or delegate. Table A-34 lists the CodeParameter properties. 

Table A-34 CodeParameter Properties 

Property 

CodeElement properties 

Other common properties 

Attributes 

Type 

Description 

See Table A-6. 

See Table A-10. 

Returns a collection of the parameter's attributes. 

Sets or returns a CodeTypeRef representing the parame
ter's type. 

The Attributes property returns a CodeElements collection containing an 
item for each attribute that applies to the parameter. C#, J#, and Visual Basic 
implement this property. 

The Type property allows you to read or write a CodeTypeRef value that 
represents the parameter's type. All of the languages implement the read func
tionality, but only Visual C++ implements the write functionality. 

Table A-35 lists the CodeParameter methods, which are explained in the 
section titled "Generating Code." 

Table A-35 CodeParameter Methods 

Method 

CodeElement methods 

AddAttribute 

Description 

See Table A-7. 

Creates a new attribute. 



506 Appendix: Code Model Reference 

CodeTypeRef 
The CodeTypeRef object represents the type of a function, delegate, property, 
variable, or parameter. Table A-36 lists the CodeTypeRef properties. 

Table A-36 CodeTypeRef Properties 

Property 

AsFul!Name 

AsString 

Code Type 

DTE 

ElementType 

Parent 

Rank 

TypeKind 

Description 

Returns the type's fully qualified name 

Returns the language's keyword for the type 

Sets or returns the CodeType associated with the type 

Returns the DTE object 

Sets or returns the type of the array's elements 

Returns the parent CodeElement 

Sets or returns the number of dimensions of the array 

Returns the base type 

The AsFullName property returns the type's fully qualified name. All of the 
languages support this property, but the Visual C++ implementation returns the 
same value as the AsString property. 

The AsString property returns the language's keyword that corresponds to 
the type. (For example, in C#, AsString returns int for System.Int32.) All of the 
languages support this property, but the Visual Basic implementation returns 
the same value as the type name part of the AsFul/Name property. 

The CodeType property returns a CodeType object that represents the type. 
C#, ]#, and Visual Basic support this property, although Visual Basic always 
returns a vsCMElementOther CodeType. 

When the CodeTypeRef represents an array, the ElementType property sets 
or returns the type of the array's elements, and the Rank property sets or 
returns the number of dimensions of the array. Currently, none of the languages 
implements either of these properties. 

When the CodeTypeRef represents a CodeElement in a source file, the Par
ent property returns that CodeElement. All of the languages implement this 
property. 

The TypeKind property returns a vsCMTypeRefvalue from Table A-5 that 
signifies the type of the CodeTypeRef All of the languages implement this 
property. 



Appendix: Code Model Reference 507 

Generating Code 
In this section, we'll explore the active side of the code model-generating 
code. In most uses of the code model, code discovery isn't an end unto itself; 
instead, finding a source code element is just the first step toward changing that 
code element in some way. Conceptually, generating code with the code model 
is simplicity itself: you find the code element you want to modify, and then you 
call the appropriate Addxxx method to add a child code element or call a 
Removexxx method to delete a child code element. The devil is in the disassem
bly, however, and the code-generating methods have quirks to spare in each of 
the language implementations. The rest of this section provides an up-to-date 
reference on what does and doesn't work. 

The documentation claims that all the code model languages 
recognize fully qualified type names that use the dot (.) operator; in 
truth, the Visual C++ implementation understands only type names 
that use the double-colon [::] scope resolution operator. As a rule, if 
you pass a type name that uses the dot operator to a Visual C++ code 
model Addxxx method, Visual C++ adds the name as is, which results 
in syntactically incorrect source code. 

Common Parameters 
Most of the Addxxx methods have a few parameters in common. To not repeat 
each of these parameters in the following sections, we'll list the parameters 
most often used and give each a generic description. We'll refer to these param
eters in the following sections only if there's additional information specific to 
the method being discussed. 

• Name A string value that represents the name of the code con
struct. The Visual C++ implementation verifies the legality of the 
names you use, but the other languages use the name as is, which 
means it's up to you to make sure the name is valid. You can validate 
a name for a particular language by using the CodeModel.JsValidID 
method. 

• Type The Type parameter governs the new code construct's 
type. This value takes either a CodeTypeRef object or a vsCMTypeRef 
enumeration value and sometimes a string containing a fully qualified 



508 Appendix: Code Model Reference 

type name. Be aware that some implementations substitute aliases 
for the types you give. For example, in the AddFunction method, 
even if you specify a function's return value as "System.Int32" or 
"System.Boolean", C# generates a return type of int or boo!, 
respectively. 

• Position The Position parameter determines where the new code 
element is placed in the source file relative to its sibling code ele
ments. A value of 0 indicates that the new code element appears 
before any other sibling code elements, and a value of -1 indicates 
that the new code element appears after all other sibling code ele
ments. To place a new code element after a particular sibling code 
element, you either pass in the sibling's CodeElements index or pass 
in a CodeElement that represents the sibling code element. (As of this 
version of Visual Studio .NET, none of the languages supports pass
ing a CodeElement to the Position parameter.) 

• Access The Access parameter controls the accessibility of the new 
code element. This parameter takes on one of the vsC.MAccess enu
meration values listed in Table A-14. The different implementations 
won't verify the appropriateness of the access you give a code ele
ment, so it's up to you to do so. 

CodeModel Variations 
If you skim the Visual Studio .NET Help, you'll notice that the Addxxx methods 
come in two flavors, which Help calls Variantl and Variant2. A better descrip
tion would be to call one set the "CodeModel variants"-the CodeModel object 
isn't associated with any particular source file, so the CodeModel Addxxx meth
ods have an extra Location parameter that specifies which file receives the gen
erated code. 

The name you pass to the Location parameter doesn't have to reference 
an existing file; if the file can't be foµnd, a new one is created, so long as the 
name isn't an invalid filename. The most important thing to remember about 
the Location value is that it has to specify a correct source file for whatever lan
guage you're working with. (For example, "myfile.cpp" for Visual C++, 
"myfile.cs" for C#, and so on.) We'll ignore the CodeModel variants in the sec
tions that follow. 



Appendix: Code Model Reference 509 

Main Add Methods 
This section describes the behavior of the code model methods that create the 
most basic code constructs, such as namespaces, classes, functions, and so on. 

AddNamespace 
The AddNamespace method applies to the CodeModel, FileCodeModel, and 
CodeNamespace objects and has the following prototype: 

CodeNamespace AddNamespace( 
string Name, 
object Position 

); 

Note that you can create nested namespaces only by using the Code
Namespace object; the CodeModel and FileCodeModel objects can create top
level namespaces only. Otherwise, there's not really anything more to say
AddNamespace is about as straightforward a method as you'll find in the code 
model. Be thankful. 

AddC/ass and AddStruct 
The AddClass and AddStruct methods apply to the CodeModel, FileCodeModel, 
CodeNamespace, CodeClass, and CodeStruct objects and have the following 
prototypes: 

CodeClass AddClass( 
string Name, 
object Position, 
object Bases, 

); 

object Implementedinterfaces, 
vsCMAccess Access 

CodeStruct AddStruct( 
string Name, 
object Position, 
object Bases, 

) ; 

object Implementedinterfaces, 
vsCMAccess Access 

The Bases parameter allows you to specify one or more base types for the 
new class or structure by passing in a 1-based array of CodeClass objects repre
senting the bases. (The Visual C++ implementation also allows you to pass in 
an array of strings containing type names.) Of course, the common language 
runtime (CLR) doesn't support multiple implementation inheritance, so if you're 



510 Appendix: Code Model Reference 

generating managed code, you'll want to restrict yourself to a single base type. 
Currently, only the Visual C++ implementation supports the Bases parameter. 

The Implementedlnterjaces parameter lets you add one or more interfaces 
to the class or structure's list of inherited types. Implementedlnterfaces takes a 
1-based array of Codelnterface objects representing the interfaces to imple
ment. As with the Bases parameter, the Visual C++ implementation also allows 
an array of strings representing type names. Only Visual C++ supports the 
Implementedlnterf aces parameter. 

Add Interface 
The Addlnterface method applies to the CodeModel, FileCodeModel, and Code
Namespace objects and has the following prototype: 

Codeinterface Addinterface( 
string Name, 

) ; 

object Pas it ion, 
object Bases, 
vsCMAccess Access 

The Bases parameter adds one or more interfaces to the new interface's 
list of inherited types. Bases takes a 1-based array of Codelnterface objects or 
strings representing the interfaces to implement. None of the implementations 
supports the Bases parameter, but you can achieve the same functionality in 
some of the implementations by using the Codelnterjace.AddBase method. 

AddDe/egate 
The AddDelegate method applies to the CodeModel, FileCodeModel, Code
Namespace, CodeClass, and CodeStruct objects and has the following proto
type: 

CodeDelegate AddDelegate( 
string Name, 

) ; 

object Type, 
object Pas it ion, 
vsCMAccess Access 

Currently, only C# implements this method. 



Appendix: Code Model Reference 511 

Add Function 
The AddFunction method applies to the CodeModel, FileCodeModel, CodeClass, 
CodeStruct, and Codelnterjace objects and has the following prototype: 

CodeFunction AddFunction( 
string Name, 
vsCMFunction Kind, 
object Type, 

) ; 

object Position, 
vsCMAccess Access, 

The Name parameter controls the name of the function, except in the case 
of constructors and destructors (which take the name of the class to which they 
belong). 

The Kind parameter determines what kind of function to create, such as a 
constructor or pure virtual function. This parameter takes one or more of the 
constants from the vsCMFunction enumeration, which are listed in Table A-32. 
Not every combination of vsCMFunction values is meaningful; even so, some 
implementations do their best to create a "getter constructor" when asked, so 
it's up to you to ensure that the value you pass to AddFunction makes sense. 

-AddProperty 
The AddProperty method applies to the CodeClass, Codelnterjace, and Code
Struct objects and has the following prototype: 

CodeProperty AddProperty( 
string GetterName, 
string PutterName, 
object Type, 

) ; 

object Position, 
vsCMAccess Access, 
object Location 

Currently, only the C# AddProperty implementation works. The Getter
Name and PutterName parameters represent the names of the property getter 
and property setter, respectively. For a C# read/write property, the GetterName 
and PutterName values must be the same. You can create a read-only property 
by passing null to the PutterName parameter and create a write-only property 
by passing null to the GetterName parameter. 

The Location parameter allows you to specify a new file into which this 
property will go; it has the same semantics as the CodeModel-variant Location 
parameters. (See the section titled "CodeModel Variations.") The C# implemen
tation ignores this parameter. 



512 Appendix: Code Model Reference 

AddEnum 
The AddEnum method applies to the CodeModel, FileCodeModel, Code
Namespace, CodeClass, and CodeStruct objects and has the following proto
type: 

CodeEnum AddEnum( 
string Name, 
object Position, 
object Bases, 
vsCMAccess Access 

) ; 

The Bases parameter takes a 1-based array of CodeType objects or strings 
representing the underlying type of the enumeration. None of the implementa
tions uses the Bases parameter. 

AddVariable 
The AddVariable method applies to the CodeModel, FileCodeModel, CodeClass, 
and CodeStruct objects and has the following prototype: 

CodeVariable AddVariable( 
string Name, 

) ; 

object Type, 
object Position, 
vsCMAccess Access 

The AddVariable method works for all implementations, but because C# 
and J# don't allow top-level variable declarations, the CodeModel.AddVariable 
and FileCodeModel.AddVariable methods for these languages throw excep
tions. 

AddAttribute 
The AddAttribute method applies to the CodeModel, FileCodeModel, CodeClass, 
CodeDelegate, CodeEnum, CodeFunction, Codelnterface, CodeParameter, 
CodeProperty, CodeStruct, CodeVariable, and CodeType objects (did we leave 
any out?) and has the following prototype: 

CodeAttribute AddAttribute( 
string Name, 
string Value, 
object Position 

) ; 

Currently, C# and J# don't implement AddAttribute. The Visual C++ 
CodeDelegate and CodeProperty objects are read-only and won't allow you to 
add an attribute. Of the writable Codexxx objects that Visual C++ supports, only 
the CodeParameter object doesn't implement AddAttribute. 



Appendix: Code Model Reference 513 

Other Add Methods 
This section describes the remainder of the code model add methods, which 
allow you to flesh out the basic constructs created by the add methods in the 
previous section. 

Add Base 
The AddBase method applies to the CodeClass, CodeStruct, CodeDelegate, 
Codelnterface, CodeEnum, and CodeType objects and has the following proto
type: 

CodeElement AddBaseC 
object Base, 
object Position 

); 

The Base parameter represents the new base type for the particular object; 
in the case of a C# CodeEnum, the Base parameter represents the underlying 
type of the enumeration. (Currently, the C# CodeEnum.AddBase implementa
tion is broken.) 

Each of the languages implements AddBase in its own special way; Table 
A-37 summarizes the combinations of language, object, and base type. (It 
doesn't make sense to add a new base to a delegate, so you won't find an 
implementation of CodeDelegate.AddBase in any of the languages.) 



514 Appendix: Code Model Reference 

TableA-37 Valid Types for the AddBase Method's Base Parameter 

VisualC++ VisualC# Visual]# 

CodeClass.AddBase 

CodeClass No Yes Yes 

Codelnterface No No No 

CodeTypeRef No Yes Yes 

Code Type No Yes Yes 

Fully qualified name Yes Yes Yes 

CodeStruct.AddBase 

CodeClass No No NIA 
Codelnterface No Yes NIA 
CodeTypeRef No No NIA 
Code Type No No NIA 
Fully qualified name Yes Yes NIA 

Codelnterface.AddBase 

CodeClass No No NIA 
Codelnterface No Yes NIA 
CodeTypeRef No Yes NIA 
Code Type No Yes NIA 
Fully qualified name Yes Yes NIA 

CodeEnum.AddBase 

CodeClass NIA NIA NIA 
Codelnterface NIA NIA NIA 
CodeTypeRef NIA NIA NIA 
Code Type NIA NIA NIA 
Fully qualified name NIA NIA NIA 

Addlmplementedlnterface 
The Add!mplementedlnterface method applies to the CodeClass and CodeStrnct 
objects and has the following prototype: 

Codelnterface Addlmplementedlnterface( 
object Base, 
object Position 

); 



Appendix: Code Model Reference 515 

The Base parameter takes either a Codelnterface object or a string with a 
fully qualified type name representing the interface that the class or structure 
will implement. Only J# implements this method. 

AddMember 
The AddMember method applies to the CodeEnum object and has the following 
prototype: 

CodeVariable AddMember( 
string Name, 

); 

object Value, 
object Position 

You use this method to add a new member to an enumeration. The Name 
parameter becomes the name of the new member, and the Value parameter 
becomes the initial value of the member. You can pass a numeric value to the 
Value parameter using either a string or an object and the method will insert the 
correct operator for the member's initialization; however, it's up to you to 
ensure the validity of the member's value. 

AddParameter 
The AddParameter method applies to the CodeDelegate and CodeFunction 
objects and has the following prototype: 

CodeParameter AddParameter( 
string Name, 
object Type, 
object Position 

); 

The AddParameter method doesn't allow you to create optional parame-
ters. 

CreateArrayType 
The CreateArrayType method applies to the CodeTypeRef object and has the fol
lowing prototype: 

CodeTypeRef CreateArrayType( 
int Rank 

); 

This method returns a CodeTypeRef that you can use to create an array. 
The Rank parameter determines the number of dimensions in the array 
described by the new CodeTypeRef Here's an example of how to use this 



516 Appendix: Code Model Reference 

method to create a new array (assuming you have a CodeModel reference in the 
cdeModel variable and a CodeClass reference in the cdeClass variable): 

Dim cdeVariable As CodeVariable 
Dim cdeTypeRef As CodeTypeRef 
Dim cdeTypeRefArray As CodeTypeRef 

' Create a reference to an int type 
cdeTypeRef = cdeModel .CreateCodeTypeRef(vsCMTypeRef .vsCMTypeRefint) 

' Turn the reference into an int array type 
cdeTypeRefArray = cdeTypeRef.CreateArrayType() 

' Create a new int array variable within a class 
cdeVariable = cdeClass.AddVariable("mylntArray", cdeTypeRefArray) 

Currently, none of the languages supports this method. 

Remove Methods 
This section describes the code model methods that allow you to rid your 
source code of unwanted code constructs. 

Delete 
The Delete method applies to the CodeAttribute object and has the following 
prototype: 

void Delete(); 

None of the languages supports this method. 

Remove 
The Remove method applies to the CodeModel, FileCodeModel, and Code
Namespace objects and has the following prototype: 

void Remove( 
object Element 

); 

The Element parameter takes either a CodeElement or CodeType. The C# 
and J# implementations remove the corresponding source code from the file; 
the Visual C++ implementation takes a more conservative approach and simply 
comments out the code element-the one exception being the CodeParameter 
object, which Visual C++ deletes. 



Appendix: Code Model Reference 517 

In C# and]#, only the identifier of a Code Variable is deleted, which can be 
a little awkward when all that's left of your declaration is object;. 

RemoveBase 
The RemoveBase method applies to the CodeClass, CodeDelegate, CodeEnum, 
Codelnterf ace, CodeStruct, and Code Type objects and has the following proto
type: 

void RemoveBase( 
object Element 

); 

The RemoveBase method is the inverse of the AddBase method. The Ele
ment parameter takes a CodeElement representing the base to remove. (The C# 
implementation also allows a CodeType for this parameter.) Note that Remove
Base won't let you remove System. Object if it's the only base class. 

For C# enumerations, CodeEnum.RemoveBase works-but barely. As with 
the AddBase method, the C# CodeEnum.RemoveBase method takes a 1-based 
array of CodeType or CodeTypeRef objects that represents the underlying type of 
the enumeration. 

Removelnterface 
The Removelnterface method applies to the CodeClass and CodeStruct objects 
and has the following prototype: 

void Removelnterface( 
object Element 

); 

The Element parameter takes a Codelnterface object representing the 
interface to remove from the Implementedlnterf aces collection. Only J# imple
ments this method. 

RemoveMember 
The RemoveMember method applies to the CodeClass, CodeDelegate, CodeEnum, 
Codelnterf ace, CodeStruct, and Code Type objects and has the following proto
type: 

void RemoveMember( 
object Element 

) ; 



518 Appendix: Code Model Reference 

The Element parameter takes a CodeElement representing the child code 
construct to remove. A RemoveMember has no meaning for the CodeDelegate 
object because a delegate never has elements in its Members collection. 

RemoveParameter 
The RemoveParameter method applies to the CodeDelegate and CodeFunction 
objects and has the following prototype: 

void RemoveParameter( 
object Element 

); 

The Element parameter takes a CodeParameter object representing the 
parameter to remove from the corresponding delegate or function. Only C# and 
J# implement this method. 



Index 

Symbols 
• (asterisk), 91, 446 
# (pound sign), 91 
? (question mark), 86, 91, 446 
[) (wildcard), 91 
[!] (wildcard), 91 

A 
AbsoluteCharOffset property, 354 
abstract classes, 495 
access modifiers, 493, 499, 501, 503, 508 
Acme Setup, 398 
ActivePane property, 343 
ActivePoint property, 355, 358 
ActiveWindow property, 351 
ActiveX controls 

shim controls, 325-328 
Toolbox, adding to, 301-303 

Add-in Manager 
displaying add-ins, 157 
defined, 135 
list population, 157 
OnAddlnsUpdate events, 159 

Add-in Wizard 
access privileges, 127 
advantages of, 125-126 
Class Library project creation, 127 
debugging settings, 136 
disappearing interface problem, 197-198 
files generated by, 127 
host applications, 126 
loading at startup, 127 
loading options, 134 
menu item creation, 127 
naming add-ins, 127 
opening, 126 
placing commands in menus, 194 
programming language selection, 126 
solution add-ins using, 223 
unattended build safety, 127 
using statements generated by, 132 
.vsz file storage, 265 

add-ins 
AboutBox registry values, 178-180 
access privileges, 127 

Add-in Manager, 135, 157, 159 
Addlns collection, 166, 169 
administrative, 157 
advantages of, 25-26, 125 
Assembly Registry utility with, 155 
automatic loading of, 171 
automation object model, interaction with, 133 
Basic.cs example, 152 
calls to, 158 
Class Library projects for, 127 
class required for, 151 
classes, accessing, 163 
CLSIDs, 154-155 
COM compatibility, 153-155, 161 
command creation, 186-188 
command handlers, finding, 191 
CommandLineSafe registry value, 175-176 
CommandLoad registry value, 171-174 
compiling, 152-153 
Connect.cs sample file, 128-132 
connection statuses, determining, 169 
connectMode parameter, 165 
creating from scratch, 151-153, 161-162 
custom actions, 203-205 
debugging, 136-137 
deleting commands, 203-206 
Description registry value, 178 
disappearing command problem, 197-198 
DLL nature of, 127 
DTE interface types, accessing, 164 
DTE references, 138 
entry point for code, 152 
EnvDTE namespace, 163-165 
events, 142-144, 158-162 
ext_DisconnectMode values, 171 
Extensibility namespace, 153 
files generated for, 127 
FriendlyName registry value, 178 
FUIDs, 155-156 
GUIDs, 155-156 
host applications, 136 
IDTExtensibility2 interface. See 

IDTExtensibility2 interface 
Installer Class, 203-204 
installing, 134 

519 



520 Add Item wizards 

add-ins, (continued) 
LifeCycle.cs example, 160-162 
LoadBehavior registry value, 174-175 
loading, 127, 134-135, 171 
LoadUnload.cs, 167-170 
localization, 176-178 
macros, building from, 118-120 
Macros IDE, debugging in, 136 
memory leaks, 144 
menu creation, 127, 133-134 
MSI files, 134 
namespaces for, 132, 162 
naming, 127 
OnAddlnsUpdate event, 158, 160, 166-170 
OnBeginShutdown method, 170 
OnConnection method, 133, 144, 158, 164-165 
OnDisconnection method, 170-171 
OnStartupComplete method, 165 
performance issues, 202 
persisting data to solution files, 257-258 
PreloadAddinState registry value, 171-17 4 
preloading, 172-174 
ProgIDs, 155, 157, 171 
registering, 153-158 
registering with solution files, 224 
registry entries for, 153, 155-157 
registry named values, 171-180 
samples, location of, 25 
satellite DLLs, 176-178 
sequence of events, 158 
setup project, deleting, 223 
solutions containing, 223-224 
startup, loading at, 127 
unattended build safety, 127 
uninstalling, 203-206 
unsubscribing from events, 144 
user, 157 

Add Item wizards, 284 
Add Macro Project dialog box, 101 
Add methods 

Access parameter, 508 
AddAttribute method, 512 
AddBase method, 513-514 
AddClass method, 509-510 
AddDelegate method, 510 
AddEnum method, 512 
AddFunction method, 511 
Addlmplementedlnterface method, 514 
Addlnterface method, 510 
AddMember method, 515 
AddNamespace method, 509 
AddParameter method, 515 
AddProperty method, 511 

AddStruct method, 509-510 
AddVariable method, 512 
defined, 389 
Location parameter, 508 
Name parameter, 507 
namespaces, 492 
Position parameter, 508 
tables of, 485-486 
Type parameter, 507 
Variantl vs. Variant2, 508 

Add New Item dialog box, 230 
Add New Item wizards 

ContextParams argument, 262 
defined, 260 
directory structure for, 267-268 
GUIDs, 262 
raw templates, 274-275 

AddAttribute method, 512 
AddBase method, 513-514 
AddClass method, 509-510 
AddDelegate method, 510 
AddEnum method, 512 
AddFunction method, 511 
Addlmplementedlnterface method, 514 
Addlnterface method, 510 
AddMember method, 515 
AddNamespace method, 509 
AddParameter method, 515 
AddProperty method, 511 
AddStruct method, 509-510 
AddVariable method, 512 
administrative add-ins, 157 
Administrative Install branch, 414 
aliases 

Command Window with, 87-88 
creating, 77 
macros, launching, 88 

AnchorPoint property, 355, 358 
AND operator, 445 
API of Visual Studio .NET. See code model 
Application folder, 401 
application installation. See setup projects 
architecture of .NET, 4-5 
arrays 

CreateArrayType method, 515-516 
dimensions of, 506 

assemblies 
macros containing, 112-113 
macros for testing, 112 
project dependencies settings, 56 
references to, 232 

Assembly Registry utility, 155 
AtEndOfDocument property, 354 



AtEndOfl.ine property, 354 
ATL functionality, 9 
AtStartOfDocument property, 354 
AtStartOfl.ine property, 354 
attributes 

AddAttribute method, 512 
CodeAttribute objects, 501-502 
CodeType object, property of, 493 
creating for variables, 500 
Delete method, 502 
returning for variables, 499 

AutoHideAll command, 13 
automation events 

add-ins, connecting to, 142-144 
build events, 142 
connecting to, 140 
delegates for, 142-143 
DTE.Events object, 139 
DTE.Events property, 140-142 
event handler creation, 143 
filtered events, 146-148 
language specific events, 140, 149 
late-bound events, 149 
macro event handlers, 144-146 
memory leaks, 144 
project-specific, 149 
signatures for, 142-143 
subscribing to, 142 
unfiltered vs. filtered, 148 
unsubscribing from, 144-145 
variables, defining, 145-146 
wiring up the event handlers, 143-144 

automation mechanisms, types of, 24 
automation object model 

B 

collections, 139 
DTE object, 138-139 
events. See automation events 
flexibility of, 137 
focus, setting, 140 
guidelines for objects, 139-140 
macros with, 106 
objects in, 138 
root object of, 163 
top node of, 138 
types of objects in, 138 
window visibility, 140 

BannerBitmap property, 413 
BannerText property, 413 
base classes, AddBase method, 513-514 
base types, 493 

buttons 521 

BASIC programming language. See Visual Basic 
.NET 

Basic.cs add-in example, 152 
Batch Build dialog box, 58 
bitmaps, 196-197 
bootstrapping program, 433 
BottomPoint property, 355, 358 
brace matching, 84-85 
breaking the build, 480 
buffer overrun checks, 7-8 
build configurations 

Activate method, 245 
BuildDependency objects, 249-251 
ConfigurationManager object, 251-253 
creating new, 253 
cyclic dependency, 248 
debug, 244, 254 
finding project configurations, 252-253 
Multiple Startup Projects option button, 247 
naming solution configurations, 244 
OnBuildProjConfigBegin event, 255 
platforms supported, 251 
project configurations, 244, 251-255 
project dependencies, 247-251 
project properties, 254-255 
propagating solution configurations, 244 
release, 244, 254 
root object for, 243 
selecting by name, 245 
setup projects, 253 
ShouldBuild property, 246 
solution settings, 244-251 
SolutionConfiguration objects, 244-246 
SolutionContexts property, 245 
startup projects, 246-247 

builds 
Batch Build dialog box, 58 
breaking, 480 
build events, 255-257 
/build switch, 464 
cleaning output files, 58 
configurations. See build configurations 
/doc, 46 
events, adding, 48-49 
Incremental Build, 46 
project output types, 402 
scenarios, configuring for, 57-58 
Visual C++ options, 47 

buttons 
adding to command bars, 194-196 
bitmaps for, 187, 196-197 
text for, 186-187 



522 C programming language 

c 
C programming language 

build events, adding, 48-49 
formatting, braces, 72-73 
slanted style, 72 

C++. See Visual C++; Visual C++ .NET 
C# 

code comments, adding, 84 
compiling add-ins, 153 
configuration properties, 44-46 
debugging settings, 45 
DLL offsets, 46 
formatting, braces, 72-73 
Output Path property, 44 
project events, 243 
project user option files, 54 
tab formatting default, 71 
VSProject. See VSProject projects 

case sensitivity, 486 
CDs, setup, 436 
chaining Custom wizards, 277-279 
ChangeSourceControl command (VSS), 478 
Checkbox dialog boxes for installation, 415 
class libraries 

Visual C++ .NET, 8-9 
custom action, 422 

Class Name combo box, 61 
Class View window 

opening, 63 
defined, 16 

classes 
AddBase method, 513-514 
AddClass method, 509-510 
CodeClass objects, 494-495 
generating with code model, 392-393 
methods for, 495 

ClasslDs, 264 
/clean switch, 465 
cleaning up source control, 478 
CleanSolution command, 465 
Clipboard Ring, 66, 298 
Close method 

Document, 352 
UndoContext, 362 

closing documents, 352 
CLR (common language runtime) 

advantages of, 5 
interoperability, 10 
purpose of, 4 

CLS (Common Language Specification), 5 
CLSIDs, 154-155 

code analysis tools, 303 
code discovery 

child elements, 386 
CME add-in, 385-387 
code hierarchy, navigating, 378-387 
CodeElement objects, 376-389 
CodeType interfaces, 382-384 
defined, 375 
iterating through CodeElements collection, 

380-382 
point objects for, 388-389 
querying CodeElement objects, 379 
source file constructs, 375-377 
TestCodeElement macros, 388-389 
top-level elements, 378 

Code Editor 
Class Name combo box, 61 
Code Panes, 61 
colors, syntactic, 73-76 
components of, 60, 62 
importance of, 15, 59, 63 
line numbering, 77 
Margin Indicator Bar, 62 
MDI view, 62 
Members drop-down list, 61 
Method Name combo box, 61 
Navigation Bar, 61 
new features, 60 
outlining feature, 61, 79, 81 
selection margin, 61 
shortcuts, 64-69 
tabbed view, 62 
Text Editor, compared to, 60 
Types drop-down list, 61 

code formatting. See formatting 
code generation 

Access parameter, 508 
Add methods, 389, 485-486, 492 
AddAttribute method, 512 
AddBase method, 513-514 
AddClass method, 509-510 
AddDelegate method, 510 
AddEnum method, 512 
AddFunction method, 511 
Addlmplementedlnterface method, 514 
Addlnterface method, 510 
AddMember method, 515 
AddNamespace method, 509 
AddParameter method, 515 
AddProperty method, 511 
AddStruct method, 509-510 



AddVariable method, 512 
bugs in, 393 
building source files, 389-393 
child element creation, 390-391 
class creation, 392-393 
common parameters, 507-508 
CreateArrayType method, 515-516 
Delete method, 516 
element creation, 390 
enumeration creation, 391 
function type parameter, 392 
goals of, 389, 507 
interface creation, 391 
Location parameter, 508 
Name parameter, 507 
namespace creation, 390 
Position parameter, 508 
Remove method, 516 
RemoveBase method, 517 
Removeinterface method, 517 
RemoveMember method, 517 
RemoveParameter method, 518 
structure creation, 391 
Type parameter, 507 

code model 
access modifiers, 493, 499, 501, 503, 508 
Add methods, 389, 485, 486, 492, 509-515 
AddAttribute method, 512 
AddBase method, 513-514 
AddClass method, 509-510 
AddDelegate method, 510 
AddEnum method, 512 
AddFunction method, 511 
Addimplementedinterface method, 514 
Addinterface method, 510 
AddMember method, 515 
AddNamespace method, 509 
AddParameter method, 515 
AddProperty method, 511 
AddStruct method, 509-510 
AddVariable method, 512 
arrays, 506, 515-516 
attributes, 501-502, 512 
base class for, 488 
base classes, 513-514 
bugs in code generation, 393 
child element creation, 386, 390-391, 488-489 
classes, 392-393, 494--495, 509-510 
CME add-in, 385-387 
CodeAttribute objects, 501-502 
CodeClass objects, 494--495 

code model 523 

CodeElement objects, 376-389, 484-485, 
488-491 

CodeFunction objects, 502-505 
Codeinterface objects, 496 
CodeModel objects, 483, 485-487, 508 
CodeNamespace interfaces, 379, 383 
CodeNamespace objects, 492 
CodeParameter objects, 505 
CodeProperty objects, 500-501 
CodeType interfaces, 382-384 
CodeType objects, 486, 487, 493-494 
CodeTypeRef objects, 487, 506, 515-516 
CodeVariable objects, 498--500 
comments, 491-492 
common properties, 491 
creating code. See code generation 
defined, 375 
delegates, 497-498, 510 
Delete method, 516 
deleting code elements, 485 
document comments, 491 
element creation, 390 
entryways into, 483 
enumeration objects, 391, 496-497, 512 
extender objects, 488, 490 
FileCodeModel object, 483-485 
function type parameter, 392 
functions, 502-505, 511 
generating code. See code generation 
GetEndPoint method, 490 
GetStartPoint method, 490 
goals of, 375 
InfoLocation property, 489, 490 
interactive feature creation, 388 
interface creation, 391 
interface management, 382-384 
interfaces, 379, 496, 510, 514, 517 
iterating through CodeElements collection, 

380-382 
members, 515, 517 
methods, CodeElement, 490-491 
names of elements, 488, 489 
namespaces, 492, 509 
navigation of hierarchy, 378--387 
parameters, 505, 515, 518 
Parent property, 491 
point objects, retrieving from, 388--389 
project assignment requirement, 485 
project level, 485 
properties, 511 
properties, common, 491 



524 Code Model Explorer add-in 

code model, (continued) 
properties of CodeElement, 488-490 
properties of CodeModel, 485-486 
properties of CodeProperty, 500-501 
querying with object interfaces, 379 
Remove method, 516 
RemoveBase method, 517 
Removelnterface method, 517 
RemoveMember method, 517 
RemoveParameter method, 518 
removing code elements, 485, 487, 516-517 
source file constructs, 375-377 
structures, 391, 494-495, 509 
sub procedures, 502-505 
top-level creation methods, 485 
top-level elements, 378, 484 
type creation, 493-494 
type representation, 506 
variables, 498-500, 512 
Visual C++ idiosyncrasies, 489 
vsCMAccess enumeration, 493 
vsCMinfoLocation constants, 489-490 
vsCMPart enumeration values, 490-491 
vsCMTypeRef enumeration, 487 

Code Model Explorer (CME) add-in, 385-387 
CodeAttribute objects, 501-502 
CodeClass objects, 494-495 
CodeDelegate objects, 497-498 
CodeElement objects, 376-390, 484, 488-491 
CodeEnum objects, 496-497 
CodeFunction objects, 502-505 
Codelnterface objects, 496 
CodeModel objects, 483, 485-487, 508 
CodeNamespace objects, 492 
CodeParameter objects, 505 
CodeProperty objects, 500-501 
CodeStruct objects, 494-495 
CodeType methods, 494 
CodeType objects, 493-494 
CodeTypeRef objects, 506, 515-516 
CodeVariable objects, 498-500 
coding 

Code Editor. See Code Editor 
generating code. See code generation 
Text Editor. See Text Editor 

collections 
automation object model, 139 
Windows, 287-290 

coloring for code, 73-76 

COM compatibility 
add-ins requiring, 153-155, 161 
EnvDTE namespace, 164 
references to COM objects, 233 

command bars 
bitmaps for, 196-197 
button objects, 192 
buttons, adding to, 194-196 
controls, adding to, 194-196 
controls collection, 192-193 
deleting commands, 203-206 
indexes of controls, 195 
main menu bar item collection, 193-194 
main menu bar object collection, 194 
main point of access to objects, 192 
new, creating, 195-196 
object model, 192-193 
popup controls, 193 
re-creating commands, 199-202 
saving, 197-198 
separators, 195 

Command command, creating, 23 
command line 

building projects and solutions, 463-470 
CommandLineSafe values, 175-176 
Devenv. See Devenv.exe 
environmental variables for builds, 22 
GUI options, 468 
references, adding, 153 
registry values for builds, 175-176 
settings, 45 
VSIP options, 470 

command prompt 
Find combo box for, 88 
placement of, 23 

command state, 189-191 
I command switch, 466 
Command Window 

aliases with, 87-88 
Command Mode, 86-87 
defined, 19-20 
expression evaluation with, 86 
GUID constant for, 291 
help searches from, 448 
Immediate Mode, 86-87 
modes of operation, 86 
named commands in, 87 
object type of, 291 
question mark(?), 86 
searches with, 94-95 



CommandLineSafe values, 175-176 
commands 

add-in commands, creating, 186-188 
add-on programs, routing to, 181 
aliases, 77 
buttons, adding to command bars, 194-196 
collection for, 182-183 
Command Windows execution of, 185 
creating add-in commands, 186-188 
custom. See commands, custom 
custom keyboard shortcuts for, 67-69 
defined, 181 
deleting, 203-206 
determining command state, 190 
disabling, 189-191 
disappearing interface problem, 197-198 
DTE.ExecuteCommand method, 185 
editing, 66 
enabling, 189-191 
enumerating, 182 
execution methods, 185 
file operations, 64-65 
GUIDs of, 182-183, 187 
handling custom, 188--189, 191 
identification of, 182 
IDs of, 182-183, 187 
independence from user interface, 182 
invoking, 185 
Item method, 183 
keyboard shortcuts for, 207-211 
latched state, 189-191 
line for entering. See command line 
listing in Options box, 184 
locating, 182-183 
macro names as, 98 
macros for executing, 185-186 
nameless, 185 
names of, 183-185 
notification method, 181 
passing data to, 189 
printing list of shortcuts, 211-212 
prompt for. See command prompt 
QueryStatus method, 189-190 
registration, resetting, 199-202 
restoring, 197-202 
routing, 181-182 
running, 185 
state of, 189-191 
switching command bars for, 202 
transposition, 66-67 
user interface. See command bars 

compiling 525 

commands, custom 
add-in handlers, finding, 191 
AddNamedCommand method, 186-187 
availability state, 187 
button text for, 186-187 
buttons for, 194-196 
deleting, 203-206 
demand loading of, 188 
disappearing problem, 197-198 
error loading message, 191 
Exec method arguments, 188--189 
graphic for button, 187 
GUIDs of, 187 
handling, 188--189 
IDs of, 187 
interface for invoking, 188 
invoking, 188 
keyboard shortcuts for, 207-211 
naming, 186 
parameters of, 206-207 
passing data to, 189 
performance issues, 202 
placing in command bars, 194 
registration, resetting, 199-202 
restoring, 197-202 
state of, 189-191 
target for, 186 
tooltip for, 187 

Commands collection 
enumerating, 182 
Item method, 183 

comments 
returning for elements, 491-492 
searching with Task List, 312-315 

common file shortcuts, 64-65 
Common Files folder, 399 
common language runtime. See CLR 
Common Language Specification (CLS), 5 
Common Properties folder, 34-35, 42, 44 
Common User Accessibility (CUA) shortcuts, 64 
compiling 

add-ins, 152-153 
buffer overrun checks, 7-8 
builds, configuring, See build configurations 
/GL switch, 7 
/GS switch, 7-8 
options, 7-8 
/RTCn switch, 8 
run-time error checks, 8 
setting options, 8 
Visual C++ .NET options, 7-8 



526 condition algebra 

condition algebra, 426-428 
Condition property, 430 
Configuration Manager, 42, 57 
configuration properties 

for projects, 42, 44-50 
for solutions, 35 

Configuration Properties folder, 44-50 
ConfigurationManager object, 251-253 
configurations 

builds. See build configurations 
project. See project configuration 
solutions, 35 

configuring application installation. See setup 
projects 

Connect.cs sample add-in code, 128-132 
console application custom actions, 422 
constants, 499 
content files (project output type), 402 
Context tag (XML Help Provider Service), 453 
controls 

command bar type, 192 
finding existing in forms, 320-321 
finding properties, 321 
forms, adding to, 319-320 
Parent property, 320 
properties collection, 320 
shim controls, 325-328 
Toolbox, adding to, 301-303 

CreateArrayType method, 515-516 
CreateEditPoint method, 353, 357 
CUA (Common User Accessibility) shortcuts, 64 
CurrentTab property, 344 
CurrentTabObject property, 344 
custom actions during installation, 421-425 
custom commands 

add-in handlers, finding, 191 
AddNamedCommand method, 186-187 
availability state, 187 
button text for, 186-187 
buttons for, 194-196 
deleting, 203-206 
demand loading of, 188 
disappearing problem, 197-198 
error loading message, 191 
Exec method arguments, 188-189 
graphic for button, 187 
GU!Ds of, 187 
handling, 188-189 
IDs of, 187 
interface for invoking, 188 
invoking, 188 
keyboard shortcuts for, 207-211 
naming, 186 

parameters of, 206-207 
passing data to, 189 
performance issues, 202 
placing in command bars, 194 
registration, resetting, 199-202 
restoring, 197-202 
state of, 189-191 
target for, 186 
tooltip for, 187 

custom tool windows 
add-in sponsor for, 323 
bitmaps for tabs, 329 
captions, 323 
CreateToolWindow method, 323-325 
GU!Ds, 323 
parent window requirements, 324 
ProgID of control, 323 
programmable objects, 323 
Properties window with, 329-330 
purpose of, 322 
shim controls, 325-328 
tab-linking of, 329 
VSMediaPlayer sample project, 323-325 
Web servers for user controls, 328 

Custom wizards 
calling, 276 
chaining, 277-279 
context parameters, 276, 278-279 
creating, 276 
defined, 260 
GUIDs, 276 
LaunchWizard method, 276-277 
purpose of, 275 
running programmatically, 276-277 
throwaway wizards, 278-279 

Customer Information, collecting at installation, 
417 

cyclic dependencies, 248 

D 
data entry dialog boxes for installation, 416 
debug symbols (project output type), 402 
I debugexe switch, 467 
debugging 

add-ins, 136-137 
custom actions, 425 

delegates 
AddDelegate method, 510 
automation events, 142-143 
CodeDelegate objects, 497-498 
vsCMPrototype enumeration, 497-498 

Delete method, 516 



dependencies 
dependency graphs, 248 
including in installation, 402 
project, 34, 247-251 

I deploy switch, 466 
deployment. See setup projects 
derived types, 493 
Design Time Extensibility (DTE), 164 
designers, 15-16 
desktop folder, 400 
development of Visual Studio .NET, 3--4 
Devenv.exe 

accessing, 23 
command-line options, 463--468 
GUI options, 468 
/setup switch, 198 
VSIP options, 470 

dialog boxes 
main windows as parents, 292 
showing during installation, 413--421 

discovering code 
child elements, 386 
CME add-in, 385-387 
code hierarchy, navigating, 378-387 
CodeElement objects, 376-389 
CodeType interfaces, 382-384 
defined, 375 
iterating through CodeElements collection, 

380-382 
point objects for, 388-389 
querying CodeElement objects, 379 
source file constructs, 375-377 
TestCodeElement macros, 388-389 
top-level elements, 378 

distributed Internet environment, 4 
DLLs 

compiling add-ins as, 153 
offset property, 46 
satellite DLLs, 176--178 
for setup projects, 431 

I doc option, 46 
Dockable property, 60 
docking tool windows, 60 
document windows 

defined, 11, 59 
NewWindow method, 350 
tabbed windows, 59 
tool windows as, 60 

documentation files, 402 
documents 

ActiveWindow property, 351 
comments, returning, 491 
Document objects, 348-352 

Document property, 349 
inserting text, 108 

enumerations 527 

macros for text manipulation, 107-108 
NewWindow method, 350 
ReadOnly property, 351 
Redo method, 351 
Save method, 352 
SaveAll method, 352 
Saved property, 352 
TextDocument objects, 107, 353 
TextPoint objects, 107 
Undo method, 351 
windows for. See document windows 

DTE objects 
code model, returning with, 488 
DTE.Documents collection, 349 
DTE.Events properties, 140-142, 147 
DTE.ExecuteCommand method, 185 
DTE.Windows property, 287 
extensibility of, 24 
macros, references from, 138 
Solution property, 213 

Dynamic Help, 85-86, 449--454 

E 
Edit.Find command, 87-88, 94-95 
editing text 

Document objects, 348-352 
documents, 348-353 
editor windows, 341-347 
EditPoint objects, 357-360 
HTMLWindow objects, 343 
LineChanged event, 366--372 
multiple handlers for, 371-372 
point objects, 353--357 
shortcuts for, 66 
stack linkage, 365 
TextDocument objects, 353 
TextPane objects, 345-347 
TextPoint objects, 353 
TextSelection objects, 357-360 
TextWindow, 343 
undo contexts, 360-365, 368 
VirtualPoint objects, 354-356 
Window objects, 342 

editors. See Code Editor; Text Editor 
EditPoint objects, 357-360, 388 
EndPoint property, 353-354 
enumerations 

AddEnum method, 512 
CodeEnum objects, 496--497 



528 EnvDTE namespace 

EnvDTE namespace 
add-ins, objects used in, 163-165 
COM compatibility, 164 
Events properties, 140-142 
IDTWizard interface, 260 
Solution object, 213 

Environment folder, 73, 75, 84 
environmental variables, 22-23 
Equals method, 333-335 
EqualTo method, 354 
event handlers 

automation events, 143-144 
macros, for, 113-115 

events 
add-ins called by, 158-162 
automation object model. See automation 

events 
build events, 255-257 
filtered, 146-148 
garbage collector problem, 222 
handling. See event handlers 
late-bound, 149 
LifeCycle.cs example, 160-162 
LoadUnload.cs example, 167-170 
lost, 222 
macros, firing with, 113-116 
OnAddinsUpdate, 166-170 
OnBeginShutdown, 170 
OnBuild events, 255-256 
OnDisconnection, 170-171 
OnStartupComplete, 165 
projects firing, 241-243 
security with macros, 116 
solution events, 217-222 
SolutionEvents.cs, 218-222 
Task List, 310-312 

evolution of Visual Studio .NET, 3-4 
Explorer windows. See UI hierarchy windows 
ext_DisconnectMode values, 171 
extender objects, 488, 490 
extensibility 

add-ins, 25-26 
API for, 11 
DTE object, 24 
IDE folder shortcut, creating, 22 
macros, 24 
objects, calling, 297 
wizards, 26 

Extensibility namespace, 153 
Extensibility.IDTExtensibility2 interface. See 

IDTExtensibility2 interface 

F 
Fl key, 81, 448 
Favorites folder, 400 
Favorites window, GUID for, 289 
file associations, assigning, 411-413 
file command shortcuts, 64-65 
file management utility projects, 238-241 
File Search installer property, 428 
File System editor 

installation folder, choosing, 399 
project output, 401-403 

File Types editor, 411-413 
FileCodeModel object, 483-485 
files 

creating new, 65 
default paths for, 21 
management utilities, 238-241 
project, arrangement of, 225 
under source control, 470-480 

Filtered By option, 444 
filtered events, 146-148 
filters for help searches, 446 
Find command, 87-88, 94-95 
Find dialog box 

command lines in, 88 
regular expressions in, 92-94 
searches with, 89-90 
wildcards, 90-92 

Find In Files dialog box, 90 
finding. See searching 
finding code. See code discovery 
/fn switch, 469 
folders 

installation, 399 
projects with, 225 

fonts 
Fonts And Colors page, 73, 75, 84 
Fonts folder, 400 
formatting options with, 74 

Form Layout window, 321-322 
formatting 

Block option, 70 
braces options, 72-73 
colors by syntax, 73-76 
fonts, 74 
Formatting page, 71 
language specific, 71, 73 
None option, 70 
options, setting, 70-71 
overall look, 74 
printer output, 75-76 



saving settings in Registry, 76-77 
Smart option, 70 
tabs vs. spaces, 71 
white space, viewing, 71 

Forms designer 
Control objects for, 318-319 
control properties collection, 320 
controls, adding to forms, 319-320 
controls, Parent property, 320 
finding control properties, 321 
finding existing controls, 320-321 
Form Layout example, 321-322 
IDesignerHost interface, 318-319 
macro incompatibility, 319 
object model for, 318 
object type of, 291 
purpose of, 318 
System.Windows.Forms assembly, 318 

Ifs switch, 469 
FUIDs, add-ins with, 155-156 
FullName property, 488-489 
functions 

G 

abstract, 504 
AddFunction method, 511 
CodeFunction methods, 504 
CodeFunction objects, 502-505 
shared, 504 
vsCMFunction enumeration, 503-504 

GAC (global assembly cache), 401 
garbage collector, 222 
generating code 

Access parameter, 508 
Add methods, 389, 485-486, 492 
AddAttribute method, 512 
AddBase method, 513-514 
AddClass method, 509-510 
AddDelegate method, 510 
AddEnum method, 512 
AddFunction method, 511 
Addlmplementedlnterface method, 514 
Addlnterface method, 510 
AddMember method, 515 
AddNamespace method, 509 
AddParameter method, 515 
AddProperty method, 511 
AddStruct method, 509-510 
AddVariable method, 512 
bugs in, 393 
building source files, 389-393 
child element creation, 390-391 
class creation, 392-393 

Help system 529 

common parameters, 507-508 
CreateArrayType method, 515-516 
Delete method, 516 
element creation, 390 
enumeration creation, 391 
function type parameter, 392 
goals of, 389, 507 
interface creation, 391 
Location parameter, 508 
Name parameter, 507 
namespace creation, 390 
Position parameter, 508 
Remove method, 516 
RemoveBase method, 517 
Removelnterface method, 517 
RemoveMember method, 517 
RemoveParameter method, 518 
structure creation, 391 
Type parameter, 507 

GetEndPoint method, 490 
GetLatestVersion command (VSS), 476 
GetStartPoint method, 490 
/GL switch, 7 
global assembly cache (GAC), 401 
GreaterThan method, 354 
/GS switch, 7--8 
GUI option, Devenv.exe, 468 
GUIDs 

H 

add-ins using, 155-156 
Custom wizards using, 276 
of programming languages, 484, 486 
of windows objects, 289-290 
of wizards, 262, 267, 276 

HACK tokens, 313 
help features 

brace matching, 84--85 
Dynamic Help, 85--86 
Fl key, 81, 448 
IntelliSense, 81--85 
member lists, 82-83 
parameter information, 83 
statement completion, 81--83 
ToolTips, 84 
word completion, 84 

Help system 
custom filters, 446 
custom help files, 455-462 
Dynamic Help Window, customizing, 449-454 
navigating, 441-448 
searching, 443-448 
wildcards and logical operators, 445 



530 Highlight Search Hits option 

Highlight Search Hits option, 444 
History command, 477 
history of Visual Studio .NET, 3-4 
HTML designer, 291 
HTMLWindow objects, 343-344 

Icon Browser utility, 180 
icons, adding to Task List, 306--308 
IDEs (integrated development environments) 

advantages of .NET, 10 
folder for, 22 
interoperability, 10 
macros. See Macros IDE 
windows, 11 

IDL-style attributes, 9 
IDTExtensibility2 interface 

add-ins, required for, 151 
Connect.cs example, 128--132 
connectMode parameter, 165 
custom parameters, 165 
EnvDTE namespace, 163-165 
events, calling, 158, 160 
LifeCycle.cs example, 160 
methods of, 127, 164--171 
OnAddinsUpdate method, 127, 166-170 
OnBeginShutdown method, 127, 170 
OnConnection method, 127, 164--165 
OnDisconnection method, 127, 170, 171 
OnStartupComplete method, 127, 165 
purpose of, 127, 162 

Immediate mode, 19 
Imports statements 

macros, within, 112 
VSProject.Imports, 235, 237 

Incremental Build option, 46 
incremental searching, 95-96 
Initial Directory, setting, 23 
inline functions, 7 
Install branch, 414 
installer properties, 406--410, 428-431 
installing 

add-ins, 134 
default folder for, 21 
.NET Framework, 432-438 
projects. See installing projects 
VSS (Visual SourceSafe), 471 

installing projects 
CDs for, 436 

condition algebra, 426-428 
creating setup projects, 397--439 
custom actions, 421--424 
debugging, 425 
File System editor for, 399-403 
File Types editor for, 411--413 
installation folder, choosing, 399 
installer properties, 406--410, 428-431 
Launch Conditions editor, 425-431 
merge modules, 431 
.NET programs, 432-438 
project output, 401--403 
Registry editor for, 404--410 
setup projects, creating, 397--439 
User Interface editor for, 413-421 
User/Machine Hive, 405 
Windows Installer, 397 

integrated development environments. See IDEs 
IntelliDoc files, 402 
IntelliSense, 81-85, 231 
Interface Definition Language (IDL)-style 

attributes, 9 
interfaces 

Addimplementedinterface method, 514 
Addinterface method, 510 
CodeClass property for returning, 495 
Codeinterface objects, 496 
generating with code model, 391 
Removeinterface method, 517 
removing, 495 

interoperability of programming languages 
CLR for, 6, 10 
code model for. See code model 
designers, 15 
IDE for, 10 

Is operator, 333-335 
IsActiveEndGreater property, 358 
IsEmpty method, 358 
IsOpen property, 362 
Item Foreground color, 74 
Item method, Solution object, 215 
ItemOperations object 

J 

Add methods, 228--230 
creating documents with, 349 
PromptToSave property, 214 

]Script custom actions, 423 
J# property declarations, 500 



K 
K&R style, 72 
keybindings, 207-211 
Keybindings Table add-in, 69-70 
keyboard shortcuts 

Code Editor, 64-69 
commands, binding to, 207-211 
creating custom, 67, 69 
determining assignments of, 69-70 
Dynamic Help, 85 
editing, 66 
file command, 64-65 
Keybindings Table add-in, 69-70 
keys, 208-209 
macros using, 77 
modifier keys, 20&-209 
modifying bindings, consequences of, 209-210 
navigation, 65-66 
outlining, 80-81 
overwriting, 68 
printing list of, 211-212 
profiles, selecting with, 13 
Replace command, 90 
scope, 208 
searches, 90 
selecting, 65-66 
transpositions, 66-67 

Kind property, 488-489 

L 
language interoperability. See interoperability of 

programming languages 
language-specific project objects 

Object property for, 231 
purpose of, 231 
references, 231-233 
VSProject projects, 231 
Web references, 233-234 

late-bound events, 149 
Launch Conditions editor 

condition algebra, 426-428 
custom installer properties, 428-431 
purpose of, 425 

/LCID switch, 469 
LessThan method, 354 
license agreement, showing at installation, 418 
LifeCycle.cs example, 160-162 
line numbering, 77-79 
Line property, 353 
LineChanged event, 366-372 

macros 531 

LineChangec!AndUndoContexts macro, 368 
LineCharOffset property, 354 
link groups, 451 
linker options, 47 
LoadBehavior values, 174-175 
loading add-ins, 127, 134-135, 171 
LoadUnload.cs, 167-170 
localization of add-ins, 176-178 
localized resources, 402 
logical operators in help searches, 445 
Look In dialog box, 90 

M 
Macro Explorer 

defined, 20 
deleting projects, 101 
GUID constant for, 291 
naming projects, 101-102 
navigating, 101 
object type of, 291 
organizing with, 102 
project commands, 101-102 
project representation, 101 
purpose of, 100 
Run command, 101 
shortcut menu, launching, 101 
top-level node, finding, 293-294 

macro recording, 9&-100 
ItemOperations objects with, 229 
UIHierarchy object, 293 

macros 
accessing, 98, 105 
add-ins from, 106, 11&-120 
aliasing, 88, 105 
arguments, taking, 207 
assemblies in, 112-113 
automation object model with, 106 
combining, 103 
command creation for, 105 
commands, running from, 185-186 
creating new projects, 103 
creation options, 98 
deleting projects, 101 
displaying messages, 109-111 
DTE reference, 138 
editing in IDE, 102-105 
EnvironmentEvents module, 144-146 
event handlers, 113-115 
events, connecting to, 144-146 
events for firing, 113-116 
exporting modules, 116 



532 Macros IDE 

macros, (continued) 
extensibility with, 24 
file creation example, 105-106 
file extension for, 97, 117 
focus, default, 98 
Form designer incompatibility, 319 
generated code example, 100 
IDE. See Macros IDE 
Imports statements, 106, 112 
keyboard shortcuts for, 69, 77 
launching Macros IDE, 101 
line numbering, 77 
Macro icon, 101 
managing, 100-102 
menus, adding to, 78 
naming projects, 101 
New Macro Project dialog box, 101 
New Module dialog box, 101 
opening Macros IDE, 13 
organizing, 102 
parameters for commands, 207 
persisting data to solution files, 257-258 
playing back, 100 
profiles in, 13-14 
programming language functionality, 112 
project commands, 101-102 
project events, connecting to, 242-243 
projects, 101, 103 
projects, sharing, 117 
Property Page settings, 49-50 
recording, 98-100 
referencing assemblies, 104-105, 112 
running, methods for, 98 
sample, location of, 21 
Samples project, pre-defined, 102 
saving, 99-100 
security issues, 116-117 
sharing, 116-118 
source code, sharing, 116 
stopping recording, 99 
storage, folder for, 97 
structure of, 101 
text manipulation, 107-108 
text-based projects, 117 
TextDocument objects, 107 
.vb file extension, 117 
Visual Basic .NET basis of, 97 
.vsmacros file extension, 97 
window management with, 109-112 

Macros IDE 
add-ins, debugging in, 136 

creating new projects, 103 
default features of projects, 103 
editing macros in, 102-105 
file creation example, 105-106 
IntelliSense in, 102 
launching, 101-102 
multiple macros in projects, 103 
opening, 24 
References folder, 103 
referencing assemblies, 104-105, 112 
registering add-ins for, 156 
shortcut to, 101 
toggling with VS .NET IDE, 104 

main menu bar 
command bar object model, 192 
CommandBar object for, 193-194 
retrieving items programmatically, 193-194 

main window 
add-ins with, 292 
dialog boxes with, 292 
DTE.MainWindow, 291 
Handle property, 292-293 
HWind property, 292 
IWin32Window, 292-293 
macros with, 293 
methods, irregular, 291-292 
parent window, setting as, 292 
programmatic control of, 291-293 

MakeReplacements macro, 272 
managed environments, 5 
managing macros, 100-102 
managing projects. See project management 
Margin Indicator Bar, 62 
Match Related Words option, 444 
/mdi switch, 468 
/mditabs switch, 468 
members 

AddMember method, 515 
listing, 82-83 
RemoveMember method, 517 

Members drop-down list, 61 
memory leaks, 144 
menus 

command interface. See command bars 
deleting custom commands, 203-206 
macros, adding to, 78 
main. See main menu bar 
popup, 193, 196 

merge modules, 431 
messages, macros for displaying, 109-111 
Method Name combo box, 61 



methods 
Add methods, code model. See Add methods 
code comments, adding, 84 
CodeElement methods, 490-491 
CodeFunction, 504 
CodeType,494 
IDTExtensibility2, 127, 164-171 
Main window, 291-292 
Output window, 318 
parameter information, 83 
selection methods, 357-360 
UI hierarchy windows, 296-297 

Microsoft Intermediate Language (MSIL), 5 
Microsoft Outlook, synchronizing to, 304 
Microsoft policy on customization, 76 
Microsoft Visual Basic .NET 

Imports statement, 235, 237 
project events, 243 
VSProject. See VSProject projects 

Microsoft Visual C++ 
build options, 47 
code model with, 489 
compiler options, 47 
Custom wizards, 275 
development of, 3 
dot (.) operator, 507 
link options, 47 
macros written in, 112 
MIDL options, 47 
.NET version. See Visual C++ .NET 
Post-Build Event properties, 48 
project files, 40, 229 
project properties, setting, 46-48 
project source files, 50-51 
resource options, 47 
unmanaged code, 6-9 
Web services options, 47 

Microsoft Visual C++ .NET. See also Microsoft 
Visual C++ 

attributes, 9 
buffer overrun checks, 7-8 
class libraries, 8--9 
code optimization switch, 7 
compiler options, 7-8 
run-time error checks, 8 
standards conformance, 9 

Microsoft Visual. C# 
code comments, adding, 84 
compiling add-ins, 153 
configuration properties, 44-46 
debugging settings, 45 

New Module dialog box 533 

DLL offsets, 46 
formatting, braces, 72, 73 
Output Path property, 44 
project events, 243 
project user option files, 54 
tab formatting default, 71 
VSProject. See VSProject projects 

Microsoft Visual J#, 243 
Microsoft Windows Installer. See setup projects 
MIDL compile options, 47 
/migratesettings switch, 470 
Miscellaneous Files projects, 238--240 
miscellaneous solution files, 32 
MSI (Microsoft Windows Installer). See setup 

projects 
MSI files, 134 
MSIL (Microsoft Intermediate Language), 5 
.msm files, 431 
Multiple Startup Projects option button, 247 
My Profile tab 

N 

purpose of, 12 
startup settings, 15 

Name property, 488--489 
name spaces 

Add methods, 492 
add-ins using, 132, 162 
AddNamespace method, 509 
code model object for, 492 
CodeType object property for returning, 493 
creating from code model, 390 
Members property, 492 

navigating 
help system, 441-448 
shortcuts for, 65--66 
windows, between, 63 

Navigation Bar, Code Editor, 61 
NEAR operator, 445 
.NET Framework 

advantages of, 4 
architecture, 4--5 
class library custom action, 422 
CLR,4--5, 10 
CLS, 5 
components of, 4, 6 
custom actions, 421-423 
installing, 432-438 
programs, setting up, 432-438 

New Macro Project dialog box, 101 
New Module dialog box, 101 



534 New Project Configuration dialog 

New Project Configuration dialog, 42 
New Project wizards 

ContextParams argument, 261-262 
defined, 259 
directory structure for, 265-267 
GUIDs, 262 
library variables, 283 
solution file names, 271 

NewFile method, 349 
NewWindow method, 350 
nonstrict stack linkage, 365 
NOT operator (help searches), 445 
nshtml namespace, 344 

0 
omitted code, finding, 312 
OnAddinsUpdate event, 158, 160, 166-170 
OnBeginShutdown method, 170 
OnConnection method, 133, 144, 158, 164-165 
OnDisconnection method, 170-171 
OnStartupComplete method, 165 
Open method, UndoContext, 362 
OpenFromSourceControl command, 474 
optimization, /GL switch, 7 
Options dialog box 

ActiveX controls for custom settings, 337 
categories, 330 
changing existing settings, 330-333 
comparison operations, 333-335 
configuring programmatically, 330-339 
custom settings for, 335-339 
enumerating items, 331-332 
GetProperties method, 339 
IDTToolsOptionsPage interface, 338 
installation using, 415 
Item method of Properties collections, 331 
items, finding, 331 
lifetimes of pages, 338 
OptionsPage Wizard sample, 337-339 
page creation, 335 
ProgIDs for custom settings, 337 
Properties collections, 330-331, 334, 339 
Property object, exposing, 339 
registry keys for custom settings, 335-336 
Text Editor category, 331 
tree view control of, 330 
user controls not compatible with, 337 
walking property names, 331-333 

OptionsPage Wizard sample, 337-339 
OR operator, 445 
outlining feature, 79, 81 
outlining indicator, 61 

Outlook, Microsoft, synchronizing to, 304 
Output Path property, 44 
Output window 

p 

Activate method, 318 
adding new panes, 316 
adding text, 317-318 
Clear method, 318 
defined, 316 
enumerating panes, 316 
GUID constant for, 291 
methods for, 318 
object for, 316 
object type of, 291 
OutputString method, 318 
OutputWindow object, 316 
OutputWindowPaneEx class library, 316 
panes, 316-318 
TextDocument method, 318 

panes in editor windows, 345-347 
Panes property, 343 
parameters 

AddParameter method, 515 
CodeParameter objects, 505 
custom commands with, 206-207 
RemoveParameter method, 518 

Parent property (Document), 350 
parents, 483-484, 486, 491, 506 
paths, default, 21 
Pending Checkins tool (VSS), 478 
performance of add-in commands, 202 
persisting data across IDE sessions, 257-258 
Personal Data folder, 400 
point objects 

CodeElement object retrieval, 388-389 
EditPoint objects, 357, 359 
TextPoint objects. See TextPoint objects 
VirtualPoint objects, 388, 354-356 

popup menus 
command bar object model, place in, 193 
new, creating, 196 

primary output, 402 
printing, formatting options for code, 75-76 
procedures, CodeFunction objects, 502-505 
profiles 

default, 13 
defined, 12 
Help Filter settings, 15 
keyboard shortcuts, 13 
macros, using in, 13-14 



ProgIDs 
add-ins with, 155, 157, 171 
wizards with, 264 

Program Files folder, 400 
programming languages 

case sensitivity, testing for, 486 
GUIDs, 484, 486 
identifier type validity tests, 487 
interoperability of. See interoperability of 

programming languages 
Programs menu, 400 
project configuration 

defined, 35 
metadata, 41 
properties, 42, 44-50 
settings, manipulating, 251 

Project Dependencies setting, 34, 56-57 
project management 

IDE's role in, 59 
organizing levels, 29 
reuse of projects, 31 
solutions as basic unit of, 213 
templates, creating with, 30 
tools for, 29 

/project switch, 464 
/projectconfig switch, 464 
Projectltems objects, 349 
projects 

Add New Item dialog box, 230 
adding items, 228-230 
adding to solutions, 31 
build configurations, 244, 251-255 
code model object for, 485 
command-line properties, 45 
common properties, 42, 44 
components of, 40-41 
configuration. See project configuration 
debugging settings, 45 
defined, 29, 39 
deleting items in, 230 
dependencies, 247-251 
enumerating items, 225-228 
enumerating within solutions, 215-216 
events, firing, 241-243 
file creation method, 229 
file items, 40-41 
files in, enumerating, 225-228 
finding items in, 228 
folders in, 225 
Item events, 242 
ItemOperations object, 228-230 

items, adding, 228-230 
items collections, 225-228 
links to files, 40-41 
macro, 101-103 

properties 535 

macros for Property Pages, 49-50 
managed applications properties, 42 
membership in multiple solutions, 30-31 
membership in solutions, 31 
Miscellaneous Files projects, 238-240 
multiple, startup order, 34 
New Project Configuration dialog, 42 
object model, 225-228 
options, setting programmatically, 237-238 
Output Path property, 44 
persisting data, 257-258 
programming languages, associated items for, 

40 
Project Dependencies setting, 34 
Projectltems objects, 225-228 
Projects property of solutions, 216 
properties, build configurations, 254-255 
properties, setting, 41-50 
properties, setting programmatically, 237-238 
references, adding, 56 
references to, 232 
removing items in, 230 
Solution Items, 240 
under source control, 470-480 
source file extensions, 50 
startup, configuring, 246-247 
startup, setting, 34 
unique names of, 215 
unmodeled, 241 
user option files, 54 
utility, 238-241 
Visual C++ properties, 46-48 

prompt, command 
Find combo box for, 88 
placement of, 23 

properties 
AddProperty method, 511 
CodeProperty objects, 500-501 
command-line settings, 45 
debugging settings, 45 
getters, 501 
macros used in Property Pages, 49-50 
of projects, setting, 41-50 
prototypes, 501 
setters, 501 
of solutions, 33-35 
Visual C++ projects, 46-48 



536 Properties window 

Properties window 
custom windows with, 329-330 
defined, 17 
selection of windows, 329 

PublicAssemblies folder, 430 

Q 
question mark(?), 86, 91, 446 

R 
RadioButtons dialog boxes for installation, 415 
raw templates, 274-275 
Read Me text, showing at installation, 418 
ReadOnly property, 351 
/rebuild switch, 465 
Recorder toolbar, 98 
recording macros, 98-100 
Redo method, 351 
references 

adding, 153, 231 
to assemblies, 232 
to COM objects, 233 
to projects, 232 
purpose of, 231 
References object, 232 
VSProject projects, 231-233 
to Web services, 233-235 

registering. See also registry 
add-ins, 153-158 
help collections, 461 
requesting at installation, 419 

registry 
AboutBox value, 178-180 
add-ins, entries for, 153, 155-157 
add-ins subkey, 171-180 
CommandLineSafe value, 175-176 
CommandLoad value, 171-174 
Description value, 178 
formatting settings, saving to, 76-77 
FriendlyName value, 178 
LoadBehavior value, 174-175 
manipulating with .NET attributes, 199-202 
PreloadAddinState value, 171-174 
SatelliteDLL named values, 176-178 
solution add-in keys, 223 

Registry Editor 
add-ins, 157 
custom installers, 428-431 
installer properties, 406-410 
purpose of, 404 
User/Machine Hive, 405 

regular expressions, 92-95 
Remove method, 516 
RemoveBase method, 517 
Removelnterface method, 517 
RemoveMember method, 517 
RemoveParameter method, 518 
Replace dialog box 

opening, 89 
regular expressions in, 92-94 
wildcards, 90-92 

Replace In Files dialog box, 90 
resource options, 47 
/RTCn switch, 8 
/runswitch, 465 
/runexit, 465 
run-time error checks, 8 

s 
satellite DLLs, 176-178, 196 
Save method, 352 
SaveAll method, 352 
Saved property, 352 
saving documents, 352 
scheduling tools, 303 
schema for XML Help Provider Service, 451 
script custom actions, 423 
SDK, .NET, installation path, 21 
searching 

Command Windows for, 94-95 
custom filters, Help system, 446 
for documents, 349 
Find combo box, 88 
Find dialog box, 89-90 
Find In Files dialog box, 90 
Help system, within, 443-448 
incremental, 95-96 
logical operators, 445 
Look In dialog box, 90 
regular expressions for, 92-94 
Replace dialog box, 89 
Replace In Files dialog box, 90 
shortcut keys, 90 
for TextPane objects, 345 
wildcards, 90-92, 445 

security 
buffer overrun checks, 7-8 
macro event handlers, 116 
macros, 117 

selecting code, Code Editor, 61 
Selection property, 345, 353, 359 
selection shortcuts, 65-66 



Send To menu, 400 
separators, command indexes, effects on, 195 
Server Explorer 

defined, 17 
GUID constant for, 291 
object type of, 291 

SetAbort method of UndoContext, 362 
setup CDs, creating, 436 
setup projects 

condition algebra, 426-428 
creating, 398-399 
custom actions, 421-424 
debugging, 425 
File System editor for, 399-403 
File Types editor for, 411-413 
installer properties, 406-410, 428-431 
installation folder, choosing, 399 
Launch Conditions editor, 425-431 
merge modules, 431 
.NET programs, 432-438 
project output, 401-403 
Registry editor for, 404-410 
User Interface editor for, 413-421 
User/Machine Hive, 405 
Windows Installer, 397 

shared variables, 499 
shim controls, 325-328 
shortcut menus, command bar, 192 
shortcuts, keyboard 

Code Editor, 64-69 
commands, binding to, 207-211 
creating custom, 67, 69 
determining assignments of, 69-70 
Dynamic Help, 85 
editing, 66 
file command, 64-65 
Keybindings Table add-in, 69-70 
keys, 208-209 
macros using, 77 
modifier keys, 208-209 
modifying bindings, consequences of, 209-210 
navigation, 65--66 
outlining, 80--81 
overwriting, 68 
printing list of, 211-212 
profiles, selecting with, 13 
Replace command, 90 
scope, 208 
searches, 90 
selection, 65--66 
transpositions, 66--67 

signatures, event, 142-143 

slanted style, 72 
.sin files, 35-39 
smart device applications, 243 
Solution Explorer 

solutions 537 

Common Properties folder, 34-35 
Configuration Manager, 35, 57 
described, 16, 30 
file paths for source files, 35 
GUID constant for, 291 
Miscellaneous Files folder, 32-33, 238 
Multiple Startup Projects option, 34 
object type of, 291 
opening, 30 
opening source files with, 63 
Project Dependencies setting, 34, 56-57 
project references, adding, 56 
Property Pages dialog, 41-50 
showing all project files, 40 
Solution Property Pages, 33-35 
Startup Project option, 34 
startup projects, setting from, 246 

Solution Items project, 240 
SolutionEvents.cs, 218--222 
solutions 

active project selection, 216 
adding projects to, 31 
adding templates to, 269 
add-ins, creating for, 223-224 
AfterClosing event, 218 
always open nature of, 214 
BeforeClosing event, 218 
build configuration, 244-251 
build scenario configuration, 57-58 
Close method, 215 
closing, 217-218 
common properties, 34-35 
components of, 32-33 
configuration properties, 35 
Create method, 214 
creating, 31 
creating programmatically, 213-215 
cyclic dependencies, 248 
default storage folders, 30 
defined, 29, 31, 213 
EnvDTE.Solution object representation of, 213 
events for, 217-222 
events lost, 222 
file paths for source files, 35 
installing. See installing projects 
Item method, 215 
loading, 223 
miscellaneous files, viewing, 32-33 



538 source control with VSS 

solutions, (continued) 
object model, place in, 213 
Open method, 214-215 
Opened event, 217 
persisting data, 257-258 
project dependencies, 247-251 
Project Dependencies setting, 34 
project enumeration, 215-216 
ProjectAdded event, 217 
ProjectRemoved event, 217 
ProjectRenamed event, 217 
Projects property, 216 
PromptToSave property, 214 
properties of, 33-35 
QueryCloseSolution event, 217 
registering add-ins with, 224 
Renamed event, 217 
saving programmatically, 214 
Solution objects, 213 
Solution property of DTE object, 213 
solution user option files, 39 
SolutionEvents.cs, 218-222 
source files, 35-39 
startup project configuration, 246-247 
startup project property, 34 
utility projects, 238-241 

source control with VSS, 470-480 
source files 

building from code model, 389-393 
code model, accessing through, 485 
constructs in, 375-377 
extensions, language-specific, 50 
FileCodeModel objects, 483 
navigating code hierarchies, 378-387 
programming language of, returning, 484, 486 
project output type, 402 
Projectltem objects, 483 
wrapper objects, 483 

splash screens, 414 
Split method, 347 
stack linkage for undo, 365 
StackLinkage macro, 366 
Start menu, 400 
Start Page 

defined, 12 
My Profile tab, 12-13 
startup options, 15 

StartPoint property, 353-354 
Startup folder, 400 
statement completion, 81-83 
strict stack linkage, 365-366 

structures 
AddStruct method, 509-510 
CodeStruct objects, 494-495 

sub procedures, 502-505 
.suo files, 39 
SwapAnchor method for text selection, 358 
syntax coloring, 73-76 
System folder, 400 

T 
tabbed windows, 59 
Task List 

adding items to, 303-304 
CanUserDelete parameter, 308 
categories, 304-305 
check boxes in, 308 
comment tokens, 312-315 
deleting items, 309 
descriptions, 305 
Enter key, simulating, 310 
events, 310-312 
File column, 308 
Flushltem parameter, 308 
GUID constant for, 291 
icons for, 306-308 
items, modifying, 309-310 
items collection, 303 
Line column, 308 
Microsoft Outlook, synchronizing to, 304 
Navigate method, 310 
object for, 303 
Object property for, 290 
object type of, 291 
Priority argument, 305 
subcategories, 304-305 
Task Navigate event, 310 
Taskltem object, 309-310 
TaskLisk object, 290 
tokens, 312-315 

TaskNavigate event, 310 
Template folder, 400 
templates 

AddFromTemplate method, 269-271 
adding to solutions, 269 
defined, 268 
deleting text between tokens, 273 
destinations, 269 
exclusive parameter, 269 
folder, Template, 400 
MakeReplacements macro, 272 



paths to, 269-270 
project name argument, 269 
raw, 274-275 
replacements, 271-274 
storing, locations for, 270 
tokens, text, 271-274 

TerraServer, 234 
TestCodeElement macros, 388-389 
text, editing programmatically 

buffer-based selection, 360 
Document objects, 348-352 
documents, 348-353 
editor windows, 341-347 
EditPoint objects, 357, 359 
HTMLWindow objects, 343 
LineChanged event, 366-372 
multiple handlers for, 371-372 
point objects, 353-357 
selection methods, 357-360 
shortcuts for, 66 
stack linkage, 365 
TextDocument objects, 353 
TextPane objects, 345-347 
TextPoint objects, 353 
TextSelection objects, 357-360 
TextWindow, 343 
undo contexts, 360-365, 368 
VirtualPoint objects, 354-356 
Window objects, 342 

Text Editor 
color coding in, 73-76 
defined,60 
formatting options, 70 
line numbering, 77 
object type of, 291 
outlining feature, 79, 81 
overall look, 74 

TextDocument objects, 107, 353 
TextPane objects, 345-347 
TextPoint objects 

AbsoluteCharOffset property, 354 
AtEndOIDocument property, 354 
AtEndOfLine property, 354 
AtStartOIDocument property, 354 
AtStartOfLine property, 354 
CodeElement object retrieval, 388, 485 
defined, 353 
EqualTo method, 354 
GetEndPoint method, 490 
GetStartPoint method, 490 
GreaterThan method, 354 
LessThan method, 354 
Line property, 353 
LineCharOffset property, 354 

transposition shortcuts 539 

TextSelection objects 
ActivePoint property, 355, 358 
AnchorPoint property, 355, 358 
BottomPoint property, 355, 358 
Document objects with, 352 
EditPoint, compared to, 359 
IsActiveEndGreater property, 358 
IsEmpty method, 358 
methods of, 359-360 
purpose of, 357 
retrieving TextPane objects, 345 
Selection property, 359 
SwapAnchor method, 358 
TopPoint property, 355, 358 
VirtualPoint objects with, 355, 358 

TextWindow objects, 343 
THRU operator for help searches, 445 
TODO tokens, 313 
tokens, Task List, 312-315 
tool windows 

custom. See custom tool windows 
defined, 11 
docking, 60 
types of, 16-21 

tool bars 
command interface. See command bars 
new, creating, 196 

Toolbox 
ActiveX controls, storing in, 301-303 
adding items, 299-303 
adding tabs, 298 
Clipboard Ring, 298 
collection of tabs, 298 
collections of items, 299-303 
components, .NET, adding to, 301-303 
controls, storing in, 301-303 
defined, 18 
deleting items, 299 
enumerating contents of, 299 
finding items, 299 
finding programmatically, 298 
GAC controls, 302 
GUID constant for, 291, 298 
HTML text, storing in, 300-301 
items, 299-303 
object type of, 291 
objects held by, 299 
purpose of, 298 
tabs, 298-299 
text, storing in, 300 
XML, storing in, 301 

ToolTips, 84 
TopPoint property of TextSelection, 355, 358 
transposition shortcuts, 66-67 



540 types 

types 

u 

CodeType objects, 493-494 
CodeTypeRef objects, 506 
DerivedTypes property, 494 
IsDerivedFrom property, 494 
Types drop-down list, 61 
variables, returning for, 499-500 
vsCMAccess enumeration, 493 
vsCMTypeRef enumeration, 487 

UI hierarchy windows 
defined,293 
DoDefaultActions method, 297 
extensibility objects, calling, 297 
finding nodes in, 295-296 
Getltem method, 295-296 
Select methods, 296-297 
Selecteditems property, 296 
UIHierarchy object, 293-297 
UIHierarchy object tree, 293-295 
UIHierarchyitem object, 297-298 
UIHierarchyitems object, 293-297 

undoing changes 
documents, in, 351 
IsOpen property of UndoContext, 362 
LineChanged events for, 368 
Open method of UndoContext, 362 
SetAbort method of UndoContext, 362 
stack linkage, 365 
undo contexts, 360-365 
Undo method, Document object, 351 
UndoContextTimer macro, 362 
unstrict stack linkage, 365-366 

UNDONE tokens, 313 
unmanaged code 

Visual C++ for, 6-9 
Visual Studio .NET, 153 

unmodeled projects, 241 
UnresolvedMergeConflict tokens, 313 
unstrict stack linkage, 365-366 
/useenv switch, 467 
user add-ins, 157 
user controls, 325-328 
user interfaces 

User Interface editor, 413-421 
user interface hierarchy windows. See UI 

hierarchy windows 
wizards, of, 279-282 

user registration, requesting at installation, 419 

User/Machine Hive, 405 
User's Application Data folder, 400 
User's Desktop folder, 400 
User's Favorites folder, 400 
User's Personal Data folder, 400 
User's Programs menu, 400 
User's Send To menu, 400 
User's Start menu, 400 
User's Startup folder, 400 
User's Template folder, 400 
utility projects 

v 

Miscellaneous Files project, 238-240 
purpose of, 238 
Solution Items projects, 240 

variables 
AddAttribute method, 500 
AddVariable method, 512 
CodeVariable objects, 498-500 
initialization, 499 

VBScript custom actions, 423 
view state, text selection methods, 360 
virtual space, 354-357 
VirtualPoint objects 

CodeElement object retrieval, 388 
use of, 354-356 
Virtua!CharOffset property, 356 

Visual Basic .NET 
Imports statement, 235, 237 
project events, 243 
VSProject. See VSProject projects 

Visual C++ 
build options, 47 
code model with, 489 
compiler options, 47 
Custom wizards, 275 
development of, 3 
dot (.) operator, 507 
link options, 47 
macros written in, 112 
MIDL options, 47 
.NET version. See Visual C++ .NET 
Post-Build Event properties, 48 
project files, 40, 229 
project properties, setting, 46-48 
project source files, 50-51 
resource options, 47 
unmanaged code, 6-9 
Web services options, 47 



Visual C++ .NET. See also Visual C++ 
attributes, 9 
buffer overrun checks, 7-8 
class libraries, 8-9 
code optimization switch, 7 
compiler options, 7-8 
run-time error checks, 8 
standards conformance, 9 

Visual C# 
code comments, adding, 84 
compiling add-ins, 153 
configuration properties, 44-46 
debugging settings, 45 
DLL offsets, 46 
formatting, braces, 73 
Output Path property, 44 
project events, 243 
project user option files, 54 
tab formatting default, 71 
VSProject. See VSProject projects 

Visual J# project events, 243 
Visual SourceSafe (VSS), 470-480 
Visual Studio, reasons to migrate from, 4 
Visual Studio Integration Program. See VSIP 
vsCMAccess enumeration, 493 
vsCMFunction enumeration, 503-504 
vsCMinfoLocation constants, 489-490 
vsCMPart enumeration values, 490-491 
vsCMPrototype enumeration, 497-498 
vsCMTypeRef enumeration, 487 
vslnsertFlags constants, 108 
VSIP (Visual Studio Integration Program) 

defined, 26 
Devenv.exe command-line options, 470 

.vsmacros file extension, .97 
VSMediaPlayer sample project, 323-325 
VSProject projects 

Imports collection, 235, 237 
purpose of, 231 
references, 231-233 
Web references, 234-235 

VSS (Visual SourceSafe), 470-480 
vsTextChanged enumeration, 367 
.vsz file extension, 264-268 

w 
Web Application folder, 401 
Web browser window, 291 
Web server user controls in tool windows, 328 

wizards 541 

Web services 
chaining wizards to implement, 277-278 
project configuration properties, 47 
references to, 233-235 
TerraServer, 234 
using, 234-235 

white space, 71 
wildcards, 90-92, 445 
Win32 custom actions, 424 
windows. See also specific windows 

accessing Window objects, 287 
commands in. See Command Window 
comparison operations, 333-335 
constants for, 289 
custom. See custom tool windows 
Document property, 349 
enumerating collection of, 287-288 
Form Layout example, 321-322 
GUID constants, table of, 290 
GUIDs for finding, 289-290 
indexing, 288 
macros for managing, 109-112 
main. See main window 
navigating between, 63 
object models for, 290 
Object property of Window objects, 290-291 
object types, table of, 290 
output. See Output window 
Split method, 347 
tab-linking of, 329 
title indexes, problems with, 289 
tool. See tool windows 
typical setup, 11 
UI hierarchy. See UI hierarchy windows 
Window objects, 287, 290-291, 342 
Windows collection, 287-290 

Windows folder, 401 
Windows Forms custom actions, 422 
Windows Installer. See setup projects 
Windows Installer files. See MSI files 
Windows Media Player, 324 
Windows.AutoHideAll command, 13 
wizards 

Add New Item wizard. See Add New Item 
wizards 

AddFromTemplate method, 269-271 
advantages of, 259 
Application argument, 260 
chaining Custom, 277-279 
ClasslDs, 264 



542 word completion feature 

wizards, (continued) 
COM object nature of, 260 
ContextParams argument, 261-262, 271 
creating wizard objects, 260-262 
Custom wizards, 260, 275-279 
CustomParams argument, 261 
deleting text between tokens, 273 
Execute method, 260-261 
extensibility with, 26 
folder hierarchy, 264-268 
GUIDs, 262, 267, 276 
helper methods, 285 
hwndOwner argument, 260 
icons for, 267 
IDTWizard interface, 260 
installation failure, 403 
for installation process, 413-421 
interface for, 260 
IWizardPage sample interface, 280-282 
LaunchWizard method, 276-277 
library helper methods, 285 
library variables, 283-284 
MakeReplacements macro, 272 
New Project wizard. See New Project wizards 
OptionsPage Wizard example, 337-339 
overview, 259 
Param tokens, 264-265 
paths to, 266-267 
ProgIDs, 264 
purpose of, 259 
raw templates, 274, 275 
replacements, 271-274 
saving .vsz files, 265-268 
solution file names, 271 
steps in creation, 260 
templates for, 268-275 

text files, adding, 274-275 
throwaway wizards, 278-279 
titles for dialog boxes, 282 
tokens, text, 271-274 
types of, 259 
user defined data, 264-265 
user interfaces for, 279-282 
variables, 283-285 
.vsz files, 264-268 
WizardBuilder sample, 285-286 
Wizard.cs example, 263-264 
WizardLibrary, 279-285 

word completion feature, 84 

x 
XML comment creation, 492 
XML Help Provider Service, 450-454 
XML Toolbox, storing in, 301 
XML Web services. See Web services 



About the Authors 

Left to right, Brian Johnson, Craig Skibo, and Marc Young 

Brian Johnson works as a programming editor at Microsoft Press. He lives in 
Redmond, Washington, with his wife, Kathryn, and their three children, Will, 
Hunter, and Buffy. He was a technical editor for Microsoft Office and VEA 
Developer magazine and has written for MSDN and Microsoft Visual]++ Infor
mant magazines. He is a former Marine Corps combat correspondent and a 
graduate of the University of Wisconsin. 

Craig Skibo, a resident of Redmond,Washington, has worked at Microsoft for 
seven years on the programmability features of Visual Studio. He often lectures 
at industry conferences about the Visual Studio automation model and consults 
with developers to help them learn how to use the latest Visual Studio technol
ogies. He is a graduate of Penn State University. 

Marc Young has worked as a programming editor at Microsoft Press for nearly a 
decade. He has worked on programming titles covering the gamut of Microsoft 
and Microsoft-related technologies-everything from VGA video systems in the 
MS-DOS world to the latest in .NET server-side components. Marc lives in Seattle 
with his beautiful wife, cute-as-a-button son, and two wretched cats. 



Muffler clamp 

An automobile's exhaust system carries exhaust gases from the engine's combustion 
chamber to the atmosphere and reduces, or muffles, engine noise. The conventional muf
fler is an enclosed metal tube packed with sound-deadening material. Most conventional 
mufflers are round or oval-shaped with an inlet and outlet pipe at either end. Some contain 
partitions to help reduce engine noise. A muffler clamp holds the muffler on the tailpipe.* 

At Microsoft Press, we use tools to illustrate our books for software developers and IT profes
sionals. Tools very simply and powerfully symbolize human inventiveness. They're a meta
phor for people extending their capabilities, precision, and reach. From simple calipers and 
pliers to digital micrometers and lasers, these stylized illustrations give each book a visual 
identity, and a personality to the series. With tools and knowledge, there's no limit to creativity 
and innovation. Our tag line says it all: the tools you need to put technology to work. 

*Microsoft Encarta Reference Library 2002. © 1993-2001 Microsoft Corporation. All rights reserved. 

The manuscript for this book was prepared and galleyed using Microsoft Word. Pages were 
composed by Microsoft Press using Adobe FrameMaker+SGML for Windows, with text in 
Garamond and display type in Helvetica Condensed. Composed pages were delivered to 
the printer as electronic prepress files. 

Cover Designer: 

Interior Graphic Designer: 

Principal Compositor: 

Interior Artist: 

Copy Editor: 

Proofreader: 

Indexer: 

Methodologie, Inc. 

James D. Kramer 

Kerri Devault 

Michael Kloepfer 

Ina Chang 

nSight, Inc. 

Bill Meyers 



\_~ ---

how to develop so are at your 
proven Microsoft STEP BY STEP 

Microsoft• Visual Basic• 
.NET Step by Step 
ISBN: 0-7356-137 4-5 
U.S.A. $39.99 
Canada $57.99 

Web Database 
Development Step by 
Step .NET Edition 
ISBN: 0-7356-1637-X 
U.S.A. $39.99 
Canada $57.99 

Microsoft Visual C#™ 
.NET Step by Step 
ISBN: 0-7356-1289-7 
U.S.A. $39.99 
Canada $57.99 

Microsoft Visual C++• 
.NET Step by Step 
ISBN: 0-7356-1567-5 
U.S.A. $39.99 
Canada $57.99 

Learn core programming skills with these hands-on, tutorial-based guides-all of them designed to walk any developer 

through the fundamentals of Microsoft's programming languages. Work through every lesson to complete the full course, 

or do just the lessons you want to learn exactly the skills you need. Either way, you receive professional development 

training at your own pace, with real-world examples and practice files to help you master core skills with the world's most 

popular programming languages and technologies. Throughout, you'll find insightful tips and expert explanations for rapid 

application development, increased productivity, and more powerful results. 

Microsoft Press has other STEP BY STEP titles to help you master core programming skills: 

Microsoft ASP.NET Step by Step 
ISBN: 0-7356-1287-0 

Microsoft ADO.NET Step by Step 
ISBN: 0-7356-1236-6 

Microsoft .NET XML Web Services 
Step by Step 
ISBN: 0-7356-1720-1 

OOP with Microsoft Visual Basic .NET and 
Microsoft Visual C# Step by Step 
ISBN: 0-7356-1568-3 

XML Step by Step, Second Edition 
ISBN: 0-7356-1465-2 

Microsoft Visual Basic 6.0 Professional 
Step by Step, Second Edition 
ISBN: 0-7356-1883-6 

Microsoft Excel 2002 Visual Basic for 
Applications Step by Step 
ISBN: 0-7356-1359-1 

Microsoft Access 2002 Visual Basic for 
Applications Step by Step 
ISBN: 0-7356-1358-3 

To learn more about the full line of Microsoft Press® products for developers, please visit us at: 

microsoft.com/mspress/ developer 

Microsoft Press products are available worldwide wherever quality computer books are sold. For more information, contact your book or computer retailer, software reseller, or local 
Microsoft Sales Office, or visit our Web site at microsoft.com/mspress. To locate your nearest source for Microsoft Press products, or to order directly, ca!l 1-800-MSPRESS in the United 
States. (in Canada, call 1-800·268-2222). 



\ __ _ 

build dynamic, scalable 
Web applications with ASP.N 

Designing Microsoft• ASP.NET Applications 
ISBN 0-7356-1348-6 

Get expert guidance on how to use the powerful new functionality of ASP.NET! ASP.NET, the next 
generation of Active Server Pages, provides a new programming model based on the Microsoft .NET 
Framework for writing Web applications. Learn about ASP.NET development-with reusable code 
samples in languages such as Microsoft Visual Basic• .NET and Microsoft Visual C#'"-in DESIGNING 
MICROSOFT ASP.NET APPLICATIONS. This book provides an in-depth look at how to create ASP.NET 
applications and how they work under the covers. You'll learn how to create Web Forms and reusable 
components, and how to develop XML Web services. You'll also learn how to create database-enabled 
ASP.NET applications that use XML (Extensible Markup Language) and ADO.NET (the next generation 
of Microsoft ActiveX® Data Objects). 

Building Web Solutions with ASP.NET and ADO.NET 
ISBN 0-7356-1578-0 

Take your Web programming skills to the next level. Most Web applications follow a simple "3F" 
pattern: fetch, format, and forward to the browser. With this in-depth guide, you'll take your ASP.NET 
and ADO.NET skills to the next level and learn key techniques to develop more functional Web 
applications. Discover how to build applications for ad hoc and effective Web reporting, applications 
that work disconnected from the data source and use XML to communicate with non-. NET systems, 
and general-purpose applications that take advantage of the data abstraction of ADO.NET. Along the 
way, you'll learn how to take advantage of code reusability, user controls, code-behind, custom Web 
controls, and other timesaving techniques employed by ASP.NET experts. 

Microsoft ASP.NET Step by Step 
ISBN 0-7356-1287-0 

Master ASP.NET with the proven Microsoft STEP BY STEP learning method. Get a solid handle on 
this revolutionary new programming framework and its underlying technologies with this accessible, 
modular primer. You'll quickly learn how to put together the basic building blocks to get working in 
ASP.NET and find examples drawn from the real-world challenges that both beginning and 
experienced developers face every day. Easy-to-grasp instructions help you understand fundamental 
tools and technologies such as the common language runtime, Web Forms, XML Web services, and 
the Microsoft .NET Framework. Throughout the book, you'll find insightful tips about best practices to 
follow while using ASP.NET to create scalable, high-performance Web applications. 

Microsoft Press has many other titles to help you put development tools and technologies to work. 
To learn more about the full line of Microsoft Press® products for developers, please visit: 

microsoft.com/mspress/ developer 
Microsoft Press products are available worldwide wherever quality computer books are sold. For more information, contact your book or computer retailer, software reseller, or local Microsoft 
Sales Office, or visit our Web site at microsoft.com/mspress. To locate your nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in the U.S. (In Canada, call 
1-800-268-2222). 



The road to .NET 
starts with the 

coreMCAD 
self-paced training kits! 

Get the training you need to build the broadest range of applications quickly-and get industry recognition, 

access to inside technical information, discounts on products, invitations to special events, and more-with 

the new Microsoft Certified Application Developer (MCAD) credential. MCAD candidates must pass two core 

exams and one elective exam. The best way to prepare is with the core set of MCAD/MCSD TRAINING K1rs. 

Each features a comprehensive training manual, lab exercises, reusable source code, and sample exam 

questions. Work through the system of self-paced lessons and hands-on labs to gain practical experience 

with essential development tasks. By the end of each course, you're ready to take the corresponding exams 

for MCAD or MCSD certification for Microsoft .NET. 

MCAD/MCSD Self-Paced Training Kit: Developlng 
Wlndows"-Based Appllcatlons with Microsoft" Vlsual 
Basic" .NET and Microsoft Vlsual C#~ .NET 
Preparation for exams 70-306 and 70-316 
U.S.A. $69.99 
Canada $99.99 
ISBN: 0-7356-1533-0 

MCAD/MCSD Self-Paced Training Kit: 
Developlng Web Appllcatlons with Microsoft 
Vlsual Basic .NET and Microsoft Visual C# .NET 
Preparation for exams 70-305 and 70-315 
U.S.A. $69.99 
Canada $99.99 
ISBN: 0-7356-1584-5 

Microsoft Press® products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft'" Sales Office, or visit 
our Web site at microsoft.com/mspress. To locate your nearest source for 
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the 
United States (in Canada, call 1-800-268-2222). 

Prices and availability dates are subject to change. 

MCAD/MCSD Self-Paced Training Kit: Developlng XML 
Web Services and Server Components with Microsoft 
Visual Basic .NET and MicrosoftVlsual C# .NET 
Preparation for exams 70-310 and 70-320 
U.S.A. $69.99 
Canada $99.99 
ISBN: 0-7356-1586-1 

Micl'OSoft'" 
microsoft.com/mspress 



Find out how to fine-tune Vlsual Studio .NET 2003 to take 
your programming skllls to the next level. 

Learn how to put all the built-in power of Microsoft Visual Studio .NET 2003 to work 

with this comprehensive, in-depth programming guide. It drills down into the internal 

workings of Visual Studio .NET to help you get the most out of its features, editors, and 

project-management capabilities. You'll see how to extend this rich integrated 

development environment to maximize your productivity for 

where you are in the development cycle-or which language 

how to use macros and add-ins to simplify your work. Code 

show you exactly what to do. 

lL.O!Qi. matter 

II I II I I II I llllll II llll 111 111 Ill 
DBL132302 

Topics covered Include: 

Visual Studio .NET as a development tool 

> The evolution of Visual Studio .NET 

> Project-management tools 

> Editors and the IDE 

> Macros 

Extending Visual Studio .NET 

> The add-in architecture, the add-in wizard, 

and the automation object model 

> Add-in Manager Plus, which helps you 

manage add-ins and associated registry 

entries 

> Commands 

> Managing solutions and projects 

programmatically 

> Wizards 

> Programming the user interface 

> Text-editing objects and events 

> The code model and Code Model Explorer, 

which lets you browse your project's code 

model view 

Deployment, help, 'and advanced projects 

> Designing setup projects 

> Visual Studio .NET 2003 Help 

> Advanced projects 

7 Defmmg Solution Coding; 
'; Technical Design Implementing Deployment • 
::... _ ~· ~- . ... Architecture ... ,,,,._,;,,: _,...'};:.·, "-..!·::... :-. ... ~~l:.)iL~:L,..•.' 

00 

"' "' "' ~ 
0 
x 
ci z 
t:'. 
g: 7 90145 18747 

ISBN 0-7356-1874-7 

9 780735 618749 

U.S.A. $49.99 
Canada $72.99 

[Recommended) 

Programming/Microsoft 
Visual Studio .NET 


