

Fundamentals of Microsoft®
.NET Programming

MiCtOSoft·

Rod Stephens

Published with the authorization of Microsoft Corporation by:
O'Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 by Rod Stephens
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6168-4

1 2 3 4 5 6 7 8 9 LSI 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com//earning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about//egal/en/us/lntel/ectua/Property/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product. domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O'Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Jasmine Perez

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Debbie Timmins

Indexer: WordCo Indexing Services, Inc.

Cover: Valerie DeGiulio

Contents at a Glance

Introduction xiii

CHAPTER 1 Computer Hardware 1
CHAPTER 2 Multiprocessing 15
CHAPTER 3 Programming Environments 25
CHAPTER 4 Windows Program Components 33
CHAPTER 5 Controls 49
CHAPTER 6 Variables 71
CHAPTER 7 Control Statements 91
CHAPTER 8 Operators 105
CHAPTER 9 Routines 119
CHAPTER 10 Object-Oriented Programming 141
CHAPTER 11 Development Techniques 167
CHAPTER 12 Globalization 183
CHAPTER 13 Data Storage 191
CHAPTER 14 .NET Libraries 209

Glossary 215

Index 227

About the Author 241

Contents

Introduction .. xiii

Chapter 1 Computer Hardware 1

Types of Computers ... 2

Personal Computers ... 2

Desktops, Towers, and Workstations 2

Laptops, Notebooks, Netbooks, and Tablets 3

Minis, Servers, and Mainframes 4

Hand held Computers .. 5

Comparing Computer Types 6

Computer Speed .. 6

Data Storage ... 8

RAM ... 9

Flash Drives ... 9

Hard Drives .. 10

Blu-ray, DVD, and CD Drives 10

Working with Files .. 10

Networks ... 11

Summary .. 13

Chapter 2 Multiprocessing 15

Multitasking ... 16

Multiprocessing .. 16

Multithreading ... 17

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

4 m"•)t.w'm'd'.~.··.·'. *.fi· .. Cj·%W;· .. ·WJ if!o/€'•o'", 't¥%W;\'P'ilE@fW1Wlfil'~~~ .. ;-·?11ffp'i/!"11ctcrsofi:bo·niJ'learnTn9,.o~g~~EJlv'1Y!l~

v

Problems with Parallelism ... 18

Contention for Resources 18

Race Conditions .. 18

Locks .. 19

Deadlocks ... 20

Looking for Parallelism .. 21

Distributed Computing ... 22

Task Parallel Library .. 23

Summary .. 24

Chapter 3 Programming Environments 25

From Software to Hardware 25

Programming Environments 28

Visual Studio .. 29

Summary .. 31

Chapter 4 Windows Program Components 33

Menus .. 34

Use Ellipses .. 34

Provide Accelerators .. 34

Provide Shortcuts ... 35

Use Standard Menu Items 36

Don't Hide Commands 38

Use Shallow Menu Hierarchies 39

Keep Menus Short .. 39

A Menu Example ... 40

Context Menus40

Toolbars and Ribbons .. .42

Dialog Boxes .. 43

User Interface Design .. .44

Control Order44

Group Related Controls44

The Rule of Seven .. .46

vi Contents

Don't Allow Mistakes47

Provide Hints .. .47

Summary48

Chapter 5 Controls 49

Using Controls ... 51

Windows Forms Controls 52

WPF Controls .. 57

Properties ... 60

Windows Forms Properties 60

WPF Properties ... 63

Methods .. 66

Events .. 67

Summary .. 69

Chapter 6 Variables 71

Fundamental Data Types .. 71

Strings .. 74

Program-Defined Data Types 74

Arrays ... 75

Enumerations .. 75

Structures .. 76

Classes .. 77

Value and Reference Types .. 78

Type Conversion ... 82

Explicit Conversion .. 82

Implicit Conversion ... 83

Scope, Accessibility, and Lifetime 85

Scope ... 85

Accessibility .. 87

Lifetime ... 88

Summary .. 89

Contents vii

Chapter 7 Control Statements 91

Pseudocode ... 92

Looping Statements .. 93

For Loops .. 93

For Each Loops ... 94

Do While Loops .. 95

While Loops .. 95

Until Loops .. 95

Conditional Statements ... 96

If ... 96

If Else 97

Else If .. 97

Case .. 97

Jumping Statements .. 99

Go To ... 99

Exit .. 101

Continue 101

Return 102

Jumping Guidelines ... 102

Error Handling .. 103

Summary ... 103

Chapter 8 Operators 105

Precedence ... 106

Operators .. 106

Parentheses ... 107

Operator Precedence 108

Operator Overloading ... 114

Operator Overloading
Overload ... 115

Conversion Operators 116

Summary ... 116

viii Contents

Chapter 9 Routines 119

Types of Routines ... 120

Advantages of Routines .. 120

Reducing Duplicated Code 121

Reusing Code ... 121

Simplifying Complex Code 122

Hiding Implementation
Details .. 122

Dividing Tasks Among
Programmers ... 122

Making Debugging Easier 123

Calling Routines ... 123

Writing Good Routines .. 125

Perform a Single, Well-Defined
Task .. 125

Avoid Side Effects .. 126

Use Descriptive Names 126

Keep It Short .. 126

Use Comments .. 127

Parameters ... 128

Optional Parameters 129

Parameter Arrays .. 130

Parameter-Passing Methods 130

Reference and Value Types 132

Arrays .. 134

Routine Overloading 135

Routine Accessibility .. 136

Recursion .. 137

Summary ... 139

Chapter 10 Object-Oriented Programming 141

Classes ... 142

Class Benefits ... 142

Contents ix

Properties, Methods, and Events 143

Properties .. 143

Methods .. 145

Events .. 146

Shared Versus Instance
Members ... 146

Inheritance ... 147

Polymorphism .. 148

Overriding Members .. 149

Shadowing Members .. 151

Inheritance Diagrams .. 152

Abstraction and Refinement 154

Abstraction ... 154

Refinement ... 156

"ls-A" Versus "Has-A" .. 158

Multiple Inheritance and Interface
Implementation .. 158

Constructors and Destructors 161

Constructors .. 161

Constructors in the Same Class 162

Destructors ... 163

Summary ... 165

Chapter 11 Development Techniques 167

Comments ... 167

Types of Comments .. 169

XML Comments ... 170

Naming Conventions .. 173

DevelopmentTechniques .. 175

Data-centric Viewpoint 175

User-centric Viewpoint 176

Agile Development .. 177

x Contents

Extreme Programming 178

Test-driven Development : 179

Summary ... 181

Chapter 12 Globalization 183

Terminology .. 184

Culture Codes .. 184

Locale-Specific Text and Symbols 184

Localizing User Interfaces in

Visual Studio ... 185

Locale-Specific Formats .. 186

Culture-Aware Functions
in .NET .. 187

Summary ... 189

Chapter 13 Data Storage 191

Files ... 192

Text Files ... 192

Random Access Files 193

INI Files ... 193

XML Files ... 194

Config Files ... 197

The System Registry ... 199

Relational Databases .. 200

Other Databases .. 202

Spreadsheets .. 202

Object Stores .. 203

Object-Relational Database 203

Hierarchical Databases 203

Network Databases .. 205

Temporal Databases 206

Summary ... 206

Contents xi

xii Contents

Chapter 14 .NET Libraries 209

Microsoft Namespaces ... 210

System Namespaces ... 210

Summary ... 213

Glossary

Index

About the Author

What do you think of this book? We want to hear from you!

215

227

241

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief on line survey, please visit:

Introduction

rogramming languages do one very simple thing: they allow you to write programs

that tell the computer what to do. You can tell a computer to read a value from the

keyboard, add two numbers, save a result in a file on the hard disk, or draw a smiley

face on the screen.

No matter what programming language you use, the underlying commands that

the computer can execute are exactly the same. Whether you use Java, C#, Microsoft

Visual Basic, COBOL, LISP, or any other language, you can make the computer perform

roughly the same tasks. Two languages may have very different syntaxes, and some

languages make some tasks easier than others, but the fundamental operations they

can perform are the same. All these languages can carry out numeric calculations and

manipulate files; unfortunately, none of them can reliably pick lottery winners. (If you

write a program that can, let me know!)

At a more conceptual level, programming concepts have been refined over the years

until most modern languages share a common set of fundamental concepts, such as

variables, classes, objects, forms, menus, files, and multiprocessing. Don't worry if you

don't know what these are-the purpose of this book is to provide more information

about such terms and concepts.

Because programming languages share so many operations and concepts,

programming books tend to cover the same topics as well. Books about databases

or graphics cover these specialized topics in great detail. Different authors may place

emphasis on different subjects, but there's a lot of overlap, particularly in beginning

and general "how to program" books. Every one of these books explains what a variable

is, how to create objects, and what a text file contains.

All this means that if you want to learn more than one programming language

(a practice that I highly recommend), you're going to encounter much of the same

material repeatedly. Even if you skim the familiar sections, you still have to pay for the

content. You may start with a 600-page book about Visual Basic programming. Later,

when you buy a 500-page C# book, you'll discover that 200 of those pages cover things

you already know. Next, when your boss decides you need to learn LISP, you'll find that

your new 550-page book contains 100 pages that you already know. (There are a lot of

differences between LISP and the other two languages, so there will be less overlap if

you shift to that language.)

xiii

This edition of the Start Here! series changes all that. Rather than making each Start

Here! book cover the exact same topics, those common topics have been moved into

this volume for easy reference. Now if you read Start Here! Learn Microsoft Visual C#

2010 Programming or Start Here! Learn Microsoft Visual Basic Programming, you won't

need to rehash the exact same topics. Instead, those books refer you to this one for

background information, such as how disk buffering works, freeing the other books to

focus on language-specific issues.

There still will be some overlap between any books about different languages.

For example, Visual Basic and C# both let you read and write disk files. Although Start

Here! Fundamentals of .NET Programming explains in general what disk files are and

how programs interact with them, the other books still need to explain the syntax for

the code that their respective languages use to read and write files.

Note that this book doesn't necessarily cover every last detail of each background

topic. It just gives you the information you need to understand how programs fit into

a larger context so that you can get the most out of them. For example, this book

explains some important programming issues relating to disk drives, but it doesn't

explain in detail how disk drives work.

Moving underlying common topics into this separate book provides several benefits,

including the following:

xiv Introduction

111 Other Start Here! books can spend less time on the background material

covered in this book and more time on language-specific issues. Those books

can rely on and refer to this book to provide extra detail as needed.

1111 This book provides more room for, and spends more time on, basic concepts

that beginning programming books often must gloss over to make room for

language-specific concepts.

1111 This book provides a single location for learning about general computer

topics, without focusing on a particular language. This is important because

it can give you a broader understanding of what you can make computers do

easily and what might be difficult to make a computer do, regardless of which

programming language you choose.

111 This book can act as an enhanced glossary, giving you a place to look for

explanations of common computer terms. A normal glossary briefly defines key

terms, but in addition, the rest of the book provides much more detail about

important concepts.

Who Should Read This Book

This book is for anyone who wants a basic understanding of computers and the

environments in which programs operate. It provides background information that is

useful when you are trying to learn to use any programming language. It also provides

information that can help you understand how programs work in general. For example,

it explains what multithreading is and why multi-core computers may not always

perform much better than single-core systems.

Assumptions
This book does not assume that you have any previous programming experience.

In fact, it doesn't even assume that you have a computer! Instead, this book is about

understanding computers and programs in general, and Microsoft Windows and .NET

concepts in particular, not about writing programs in a specific language.

This book is intended for two main audiences: those who want to learn a new

programming language, particularly those who are reading one of the other books in

the Start Here! series, and those who want a better overall understanding of computers.

Although the content of this book is as general as possible, it is not primarily in

tended as a stand-alone work; instead, it's intended as an accompanying volume for

use with other Start Here! books, which cover a range of languages and technologies.

Most of the information you'll find here applies to computers and programs running

Windows, but many of the concepts also apply to other operating systems, such as

Unix, Linux, or OS X. Sometimes, however, specificity aids clarity, so in some places this

book is targeted toward Windows.

Who Should Not Read This Book

If you're interested in general programming-particularly non-Windows and

non-Microsoft .NET Framework programming-this book is not for you. Much of the

information in this book applies to programming in general, but a substantial portion

of the information applies to .NET Framework topics, and this book does not make any

particular effort to distinguish between general and Windows- or .NET Framework

specific information.

Introduction xv

What You Need to Use This Book

If you want to use this book, all you'll need is this book. No computer, no software,

no programming language, and no programming experience is required!

Organization of This Book

If you just want a better understanding of computers and programming concepts, you

can simply read the book.

If you're reading this book along with one of the other Start Here! books, you can take

a couple of different approaches. First, you can use this book as a reference for the other.

When you reach the part of Start Here! Learn Microsoft Visual C# 2010 Programming that

discusses operators, you may want to read this book's chapter on operators for additional

background. Start Here! Learn Microsoft Visual C# 2010 Programming may also explicitly

refer to places in this book where you can get additional information on a topic.

Another approach to using this book with another Start Here! book would be to

read this one at odd moments when it's hard to read the other one. For example, I like

to use my computer to work through examples and experiment with the code as I'm

learning a new language. That makes it hard for me to work through a book like Start

Here! Learn Microsoft Visual C# 2010 Programming on the bus, waiting at the dentist's

office, or while sunning myself on the beach. In contrast, Start Here! Fundamentals of

Microsoft .NET Programming doesn't require a computer, so it's easy to read just about

anywhere (although at the beach, I'd rather play volleyball anyway).

This book is divided into 14 chapters plus a glossary. The chapters are independent,

so you can read them in any order. In fact, many of the sections in the chapters are

independent, so you can jump around within a chapter to suit your interests and needs.

xvi Introduction

111 Chapter 1, "Computer Hardware,'' briefly describes the hardware of

a computer system. It explains terms such as computer processing unit

(CPU), graphics processing unit (GPU), random access memory (RAM), and

multi-core, and explains why those terms are important to programmers. It

explains how memory, disk accesses, and other hardware issues can affect

a program's performance.

111 Chapter 2, "Multiprocessing,'' summarizes some of the challenges that face

programmers writing multiprocessing programs. It explains how the future of

programming is likely to be highly parallel and summarizes the Task Parallel

Library (TPL) that makes programming for multi-core systems easier.

• Chapter 3, "Programming Environments," explains what a programming

environment is and describes some of the features that make Microsoft Visual

Studio one of the best programming environments available. It explains how

a program's code must be compiled and how a programming environment can

make that code transparent to the programmer.

• Chapter 4, "Windows Program Components," describes the pieces of

a Windows program from the user's point of view. It describes menus, content

menus, accelerators, shortcuts, and dialog boxes. It also mentions several design

considerations that beginning programmers should understand if they want to

make programs easier to use.

• Chapter 5, "Controls," describes in general terms what controls and

components are and how they are used. It also mentions some common

properties, such as Dock and Anchor, which make using many controls easier for

the programmer.

• Chapter 6, "Variables," explains the concept of a variable. It explains variable

concepts such as data types, conversions, strong and weak type checking, value

versus reference types, scope, and accessibility.

111 Chapter 7, "Control Statements," describes control statements, such as If Then

and For Each, which a program uses to manage a program's flow. It describes

these statements in general terms, provides some examples in pseudocode, and

shows a few simple examples in Visual Basic and C# for comparison.

111 Chapter 8, "Operators," explains operators. It discusses precedence rules

and operator overloading.

• Chapter 9, "Routines," explains what routines are and how they are useful

in programming. It describes different kinds of routines, such as methods,

subroutines, and functions. It also defines parameters and explains the confusing

topic of parameters passed by value or passed by reference.

111 Chapter 10, "Object-Oriented Programming," provides an introduction to

object-oriented programming. It explains classes, constructors, and destructors.

It describes non-deterministic finalization.

11 Chapter 11, "Development Techniques," describes basic programming

techniques such as using comments, naming conventions, interfaces,

and generic classes.

Introduction xvii

111 Chapter 12, "Globalization," explains how to localize a program in Visual Studio

so that it works in multiple places. It explains several localization issues, such as

different date, number, and currency formats.

111 Chapter 13, "Data Storage," describes different methods for storing data such

as using the registry, configuration files, and files on disk. It explains different

kinds of files, such as Extensible Markup Language (XML) files and databases,

and mentions some of the classes that a program would use to work with

different kinds of files.

111 Chapter 14, ".NET Libraries," summarizes some of the libraries that are most

useful in writing NET programs. These libraries let a program encrypt and

decrypt information, work with data structures such as stacks and queues,

interrogate objects and types to learn about them, and work with multiple

threads of execution.

111 The glossary provides a brief summary of key terms to remind you of their

meaning. (In a sense, the whole book acts as a glossary for use by the other

Start Here! books.) It summarizes key concepts in one or two sentences.

Conventions and Features in This Book

To help you get the most from the text and keep track of what's happening, I've used

several conventions throughout the book.

Splendid Sidebars
Sidebars such as this one contain additional information and side topics.

Warning Boxes with a Warning icon like this one hold important, not-to-be
forgotten information that is directly relevant to the surrounding text.

Note The Note icon indicates notes and asides to the current discussion.

They are offset and placed in a box like this.

xviii Introduction

Tip The Tip icon indicates tips, bits and pieces of advice on effective
programming. They are offset and placed in a box like this.

More Info The More Info icon indicates somewhere you can go to learn for
more information on a particular topic, such as a webpage. They are offset
and placed in a box like this.

As for styles in the text:

• New terms and important words are italicized when they are introduced. You

can also find many of them in the glossary at the end of the book.

• Keyboard keystrokes look like this: Ctrl+A. The plus sign means that you should

hold down the Ctrl key and then press the A key.

• Uniform Resource Locators (URLs), code, and email addresses within

the text are shown in italics, as in http://www.vb-helper.com, x = 10,
and RodStephens@vb-helper.com.

Separate code examples use a monofont type with no highlighting.
Bold text emphasizes code that's particularly important in the current
context.

\ .•...

Note The code editor in Visual Studio provides a rich color scheme to indicate
various parts of code syntax such as variables, comments, and Visual Basic
keywords. The code editor and the lntellisense feature of Visual Studio are
excellent tools to help you learn language features in the editor and help you
prevent mistakes as you code. However, the colors that you can see in Visual
Studio don't show up in the code in this book.

Source Code

Because this book covers concepts that are independent of any particular programming

language, it also includes little source code from any particular language. You'll find

occasional bits of source code used to contrast the syntaxes of different languages;

but more often, this book uses pseudocode to demonstrate programming constructs.

Pseudocode is an informal high-level "language" that looks sort of like a programming

Introduction xix

language, but isn't really. It's intended to describe a situation sufficiently so that you

could implement the actual code in whatever language you are using.

For example, the following code shows a for loop in pseudocode, which repeats

a particular operation a specific number of times:

For <variable> From 1 To 100
Do something

This pseudocode says the program should make a variable (however you create

-a variable in the language you're using) and then loop starting at value 1 and finishing

at value 100. For each trip through the loop, the program should "Do something."

Contrast this with the following C# code:

for (int i = 1; i <= 100; i++)
{

DoSomething();
}

This code does the same thing as the previous pseudocode, but its syntax

makes understanding the code harder-unless, of course, you know C# (or some

related language, such as C++ or Java). If you don't know C#, you may have trouble

understanding the point that this code is illustrating.

Acknowledgments

Thanks to Russell Jones, Diane Kohnen, Dan Fauxsmith, Jasmine Perez, and all the

others at O'Reilly Media and Microsoft Press who worked so hard to make this book

possible. Also thanks to John Mueller, Evangelos Petroutsos, and authors of the

language-centric books in this Start Here! series. Between us I think we've put together

a great set of resources!

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion

content. Any errors that have been reported since this book was published are listed

on our Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=230431

xx Introduction

If you find an error that is not already listed, you can report it to us through

the same page.

If you need additional support, email Microsoft Press Book Support

at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through

the addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most

valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in

advance for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress.

Other Resources

You can find more information about this book at http://www.vb-helper.com/start_here_

fundamentals.html or at http://www.CSharpHelper.com/start_here_fundamentals.html.
Both of these pages provide links to updates, addenda, and other information related

to this book.

If you're interested, subscribe to one of my Visual Basic newsletters

at www.vb-helper.com/newsletter.html or visit my C# blog at blog.CSharpHelper.com.

If you have questions, comments, or suggestions, please feel free to email me at

RodStephens@vb-helper.com or RodStephens@CSharpHelper.com. I can't promise to

solve all your problems, but I do promise to try to help.

Introduction xxi

Computer Hardware

In this chapter:

111 What the different kinds of computers are and how the type of computer being used

influences the performance of various kinds of programs

111 How to assess the speed of a computer and look for potential bottlenecks for different

kinds of programs

111 The strengths and weaknesses of different data storage devices

111 How to ensure that data written to a file is saved and not discarded when a program

ends or crashes

111 What networks and protocols are

THE MOST ELEGANTLY WRITTEN PROGRAM IN the world is pointless (except as an esoteric work
of art) if it doesn't eventually run on some sort of physical device. Often, that device is an ordinary

desktop or laptop computer. Having identified the target platform, you might think you don't have to

worry about hardware.

To some extent that's true, and-depending on your program-you may be able to ignore much

of the computer's hardware. If you have a simple, self-contained, single-user desktop application, you

also may be able to ignore the computer's power supply, fans, universal serial bus (USB) ports, Blu-ray

drive, Wi-Fi antenna, sound card, microphone, and many other pieces of hardware.

Most programming languages provide high-level access to hardware such as the computer's disk

drives, memory, keyboard, and mouse, so you don't necessarily need to know exactly how they work.

For example, you usually don't need to know how many disk heads a disk drive has or how many

revolutions per second its disks turn to read and write files.

Even though you don't always need to know all these hardware details, you should at leasthave

some understanding of what's going on behind the scenes. For example, if you don't understand how

memory use relates to paging, poor memory use can drag your entire system to a grinding halt.

1

This chapter explains fundamental hardware concepts that can help you get the most out of your

programs. This information can help you avoid problems that can be difficult to solve after they occur.

Types of Computers

In the 1960s, computers were warehouse-sized monstrosities costing millions of dollars. The acolytes

who worked with these behemoths were engineers who dealt as much with hardware as they did

software, so they generally knew what equipment was present.

Today, computers can be small and inexpensive, and they are just about everywhere: on your desk,

in your dentist's office, under the hood of your car, and in your phone. Despite being millions of times

smaller than the now-ancient computers of SO years ago, these new devices are millions of times

more powerful.

Note The Intel 4004 processor introduced in 1971 could perform 0.07 million instruc

tions per second (MIPS). The fastest processors today are cooled by liquid nitrogen. The

IBM z196 processor, which is currently not for sale, reportedly can execute up to SO billion

instructions per second (that is, S0,000 MIPS). The Chinese Tianhe-lA supercomputer can

execute 2.S7 petaflops (quadrillion floating-point operations per second), although it

fit on your desktop. See http://www.topSOO.org for the latest information about the world's

fastest supercomputers.

When you design a program, you need to consider the device that will run it so you know what

kinds of capabilities are likely to be present. The following sections summarize common types of

computers that are available today.

Personal Computers
Personal computer (PC) is a general term for a computer intended to be used by a single person at

one time, although multiple users may use it at different times. It includes other categories such as

desktops, laptops, and personal digital assistants (PDAs).

Desktops, Towers, and Workstations
A desktop computer is intended to sit on or beside your desk and not be portable, although most

are small enough these days that you can easily pick one up. Because they are not intended to be

portable, they typically don't have batteries and integrated screens or keyboards.

The all-in-.one style desktop has an integrated screen or, to look at it in another way, the computer

is attached to a monitor.

A tower is similar to a desktop computer, but in a larger case. Its larger size makes it easier to add

new hardware, although it may make it hard to fit on a desk.

2 Start Here! Fundamentals of .NET Programming

A workstation is a more powerful desktop or tower that may have extra features, such as extra

memory and disk space, multiple screens, and fancy graphics hardware for quickly performing three

dimensional (3-D) rendering.

Desktops, towers, and workstations can be quite powerful. They can have fast processors, lots of

memory, big hard drives, and large monitors so they can tackle almost any task. If they are connected

to a fast network, they also can provide access to centralized databases and servers. Their main disad

vantages are that they are not portable, and they may be needlessly expensive for some applications,

such as web browsing.

Laptops, Notebooks, Netbooks, and Tablets
A laptop is a computer that is intended to be portable and is used just about anywhere (except in

the swimming pool). You can literally use a laptop on your lap while you are riding a bus or airplane

(legroom permitting).

Because they are intended to run anywhere, laptops have integrated screens and keyboards. They

often run on batteries, so power use and battery quality is very important. Heavy use of some pieces

of hardware such as the graphics processing unit (GPU) and DVD drives can quickly drain the batteries.

Laptop disk and Blu-ray/DVD/CD-ROM drives are often slower and smaller than those in desktop

systems, so programs that use disk files heavily may run more slowly on a laptop. Often, a desktop is

faster than a laptop with the same clock speed because of the performance of devices such as these.

Laptops usually have a touch pad, pointing stick, trackball, or other pointing device. Many people find

these devices harder to use than a mouse, so they add an external mouse connected to the computer.

Notebooks are basically stripped-down laptops that trade power for portability. They are thin, have

relatively small screens, and are ultra-light. They rarely have DVD or CD-ROM drives, and they have

fairly limited graphics capabilities.

Because they have no external media such as DVD drives, they typically have integrated network

connection hardware so you can load software onto them. Network hardware also means you can use

them to access the Internet.

Netbooks are even more stripped down than notebooks. They typically have less powerful proces

sors and are intended primarily for use with networked applications such as web browsers, where

most of the processing occurs on a remote server.

Note Other terms for these portable computers include subnotebook, ultraportable, and

mini notebook. Many people use all these terms interchangeably.

Computer Hardware 3

A tablet computer is a portable computer similar to a laptop that uses a touchscreen or stylus as its

primary input device. Tablets may display virtual keyboards on their screens and may use handwriting

recognition for text input.

Laptops and tablets can have most of the same features as desktop systems (such as fast proces

sors, lots of memory, and big hard drives) so they can handle many application needs.

Some applications can take advantage of a tablet's touchscreen, and in fact. the lack of a keyboard

can be an advantage in some environments, for example at dusty construction sites, where a key

board might let dirt into the system.

Laptops and tablets tend to be a bit more expensive than desktop systems, and some users don't

like their smaller keyboards and lack of a mouse. You can overcome those limitations by adding

an external keyboard and mouse if you like, although that adds further to the cost, and of course,

reduces portability.

Notebooks and netbooks are often not as powerful as laptops and tablets. They are intended to

be both ultra-portable and less expensive. They are often intended for running networked applica

tions, such as web browsers. However, they do include keyboards, making them more suitable than

tablets for people who need to type a lot of information.

Minis, Servers, and Mainframes
Mainframes are large centralized computers that can serve hundreds or even thousands of users

simultaneously. Each user connects to the mainframe via a "dumb" terminal that has little or no

processing power; the terminal simply serves as an input device and displays results generated by the

mainframe.

A recent innovation that is similar to mainframe computing is cloud computing, where applications,

data storage, collaboration services, and other key tools are stored on a centralized server that users

access remotely, often through a browser. The users typically connect to the cloud services with a

desktop, laptop, or other computer instead of a "dumb" terminal.

The centralized services provided by the mainframe and cloud computing allow a business to

upgrade tools without modifying the users' computers. For example, a business can add more disk

space or an upgrade to a centralized application on the central servers with no changes to the users'

computers.

A mini or minicomputer is basically a small mainframe that can serve a dozen to a few hundred

users simultaneously. Typically, a mainframe might fill a room, whereas a mini might be the size of a

filing cabinet.

Supercomputer is a fairly broad term used to describe only the fastest computers. A supercom

puter may act as a mainframe and support many simultaneous users, but its focus is on running one

program or a few huge programs extremely quickly, rather than on performing many smaller tasks for

many users. Typical mainframe applications include massive simulations for weather prediction, fluid

dynamics calculations, and nuclear energy research.

4 Start Here! Fundamentals of .NET Programming

Often, a supercomputer uses other computers as "front-ends." Users prepare programs for execu

tion on a second computer. When the program's code and data is ready, it is transferred to the super

computer for execution. The results are then returned to the secondary computer for analysis.

Server is a generic term for any computer that supports multiple users or client applications

simultaneously, so supercomputers, mainframes, and minis are all servers. Mainframes are sometimes

called enterprise servers.

Minis, servers, and mainframes are useful for applications that have large centralized databases

and other resources. For example, suppose you have 100 customer service representatives who may

need to interact with any customer's records. In that case, it makes sense to store all the customer

information on a server. The users can either use desktop systems to access the information and work

with it on their local machines, or "dumb" terminals to work directly on a mainframe.

It's worth noting that there are ways to attach dumb terminals to less powerful servers than main

frames as well.

Handheld Computers
Handhe/d computers are, as the name implies, computers that you can hold in your hand. These range

in size from about the size of a brick to the size of a deck of playing cards.

These devices typically have small screens and may use touchscreens alone or touchscreens with a

stylus for input. Some even have integrated barcode scanners and printers.

Palmtops or pocket computers are small handheld devices, usually with limited graphics and com

puting power. They are typically used to store simple information such as contact information, phone

numbers, and appointment calendars.

PDAs are similar to palmtops but typically use a stylus and various forms of handwriting recogni

tion for input.

Smartphones running the Windows Phone 7 operating system, iPhone OS (iOS), or Android are

basically very small, general-purpose computers with integrated telephone features.

Some of the more powerful palmtops include other features, such as networking capabilities and

may even act as music players and phones. Overall, the division between cell phones and palmtops is

becoming blurred because many modern cell phones include all the features previously provided by

PDAs-and even more.

Handheld computers are useful when portability is essential. For example, a telephone technician

would have trouble juggling a laptop at the top of a telephone pole. They also are handy for carrying

information that you want available throughout the day, such as phone numbers and appointment

calendars. These devices tend to have tiny screens and keyboards, so tasks such as entering data on

large forms or viewing large amounts of data can be difficult. More and more these days, smart

phones have surprisingly fast processors and good graphics capabilities, however.

CHAPTER 1 Computer Hardware 5

Comparing Computer Types
A program's use and needs influence the type of computers you should run it on. Consider the pro

gram's processing speed, network bandwidth, and screen size requirements and compare them to the

features provided by different computer types.

Conversely, a computer's specific hardware can influence the kinds of programs that you can build

effectively. For example, if your company has 75 users who all carry only small hand held computers,

your program can't display large forms containing dozens of menus.

Computer Speed

Many people use clock speed as a measure of a computer's total computing power, but that term can

be very misleading for a couple of reasons. To really understand why this is so, you need to know a

little about how the computer processes commands.

The computer keeps all its devices synchronized by using its clock. This isn't a regular clock-it's

a "clock in a chip," which keeps highly accurate time and ticks much more rapidly than a wall clock.

The faster the computer's clock ticks, the more quickly the device can move on to a new task. The

central processing unit (CPU), the computer's main processor, needs a certain number of clock ticks

to execute each of its instructions. Therefore, the faster the clock ticks (that is, the "clock speed"), the

more instructions the CPU can execute per second.

However, that's not the end of the story. Different processors use different instruction sets, each of

which can require a different number of ticks. That means different kinds of processors may execute

different numbers of instructions per second, even if they have the same clock speed. You can use

clock rate to compare two of the same kinds of processor (for example, a 2.93-gigahertz (GHz) Intel

Pentium 4 and a 3.0-GHz Intel Pentium 4) but not as an accurate comparison between two processors

of different types (for example, a 3.0-GHz Intel Pentium 4 and a 3.0-GHz AMD Athlon II).

Even if you could figure out which processor executes more instructions per second, that figure

alone doesn't necessarily tell you which computer will be faster for your program. Many programs

most, in fact-are limited by factors other than sheer processor speed, including amount and speed

of memory, disk space, network speed, graphics or floating-point processor speeds, and bus speed.

Note The bus is the part of the computer that transfers data between the computer's dif

ferent components such as its processor and disk drives. The USB lets a computer connect

to all sorts of external devices, such as hard drives, DVD drives, keyboards, mice, graphics

tablets, flash drives, cameras, and much more.

Many modern computers have multiple processors or multiple cores (execution areas within a

processor}, so they can perform more than one task at the same time. Whether the computer gets a

significant benefit from multiple cores depends on whether the tasks it is performing can be easily

6 Start Here! Fundamentals of .NET Programming

split into separate pieces-and whether the program was written to take advantage of multi-core

hardware.

Many programs are limited by disk drive speed. Disk drives spin at anywhere from 3,000 RPM to

15,000 RPM (speeds between 4,200 RPM and 7,200 RPM are most typical), so the time it takes to read

and write data can vary dramatically.

Which of these factors is most important for your application depends on what that applica-

tion does. If your program uses a local database (that is, one stored on a hard disk attached to the

computer) heavily, disk speed will be a big factor. If the database is on a remote server accessed via a

network, then the speed of the server and the network's speed are probably bigger performance fac

tors for your application than the speed of your local CPU.

The best way to determine how a computer will perform for a given program is to run that

program on the computer. Unfortunately, it's often too late to fix problems after you've written the

program and bought the computer.

To get an idea of how well the program will run ahead of time, focus on the system's overall per

formance, running a wide variety of tests rather than looking just at clock speed. To look at one set of

tests in the most recent versions of Microsoft Windows, open the computer's Start menu, right-click

the Computer entry, and select Properties to see the basic information display shown in Figure 1-1.

(You can also right-click the Computer entry in Windows Explorer and select Properties.) The Win

dows Experience Index gives you a rough idea of the computer's overall performance.

Vi£.w basic information about your computer

Windows edition

Wind~ Visti'"' Ultim~te:

Copyright g; 100i MicrO'Jaft Corporation. Alt right:s rese:rve.d.

Service Pack.l

S.yrlem

Rating:

Prcce:s<;or: lntel(R) Co•c(TM)2 CPU 15000 ® l.83GHz 1.83 GH:

Memory (RA.M): 2.00 GB

S-{Ste:mtype~ 32-bit Operating System

Computer name, domain, and workgroup s.rtting-s

Computer name: Serenity

Full computer n.:ime. Serenity

Ccmputcr description:

Workgroup:: WORKGROUP

FIGURE 1-1 The Windows Experience Index gives an overview of the computer's performance.

CHAPTER 1 Computer Hardware 7

To get more detail, click the Windows Experience Index link to see the display shown in Figure 1-2.

This display shows performance scores for several different system features.

Component

~
f4i:\O-i;ylllAlll):
~.

What is rated

Cak.ulations per second

Memol)' operations per second

~ perfoonaru:e lor Windows Aero

30 business and-gaming graphics
perf oonaru:e

Disk data transfer rate

last rating: 8124/2007 9:09<17 PM

FIGURE 1-2 This display shows how well the computer performs on various tests.

On the system shown in Figures 1-1and1-2, the graphics scores are the lowest, so this system may

not give the best performance for high-end graphics programs, such as three-dimensional games.

But the processor, random access memory (RAM), and disk scores are higher, so this computer may

be just fine for applications that are not graphics-intensive. (In fact, this computer works just fine for

me on a wide range of applications.)

The Windows Experience Index still doesn't consider your program's particular needs. For example,

it doesn't know what kinds of instructions your program will perform the most (such as integer cal

culations, floating-point calculations, string operations, and so on) and it doesn't consider network

bandwidth, but at least it provides a reasonably consistent value that can help you compare different

systems. Start there, and then consider the bottlenecks that your program is likely to encounter.

Data Storage

A program can store data in several places, including RAM, flash drives, hard drives, Blu-ray, DVDs,

and CDs. The following sections describe the advantages and disadvantages of each so you can match

them to your program's needs.

8 Start Here! Fundamentals of .NET Programming

RAM
RAM is extremely fast, but relatively expensive. Moving data between RAM and the processor is

lightning-fast, so it's the best place to store frequently used data. Data stored in program variables is

generally stored in RAM, which gives them the best performance.

Unfortunately, RAM is also fairly expensive, so computers often have a limited supply. A typical

computer might have 2 GB of RAM. That may seem like a lot (and it is), but you need to remember

that your program isn't the only one using the RAM. Every program currently running on the system,

including the operating system itself, shares it. In fact, the commands that make up the executing

programs themselves also take up space in RAM.

Data must move from RAM to the processor and back for anything to occur, so what happens if

the programs use up all the RAM? To work around this problem, the computer can page memory to

disk.

When paging occurs, the computer copies a chunk of its memory onto a hard disk and frees that

memory for use by other programs. Later, when a program needs to access the data in the chunk of

memory that was copied to the hard disk, the computer pages it back into memory, possibly moving

other data to disk to make room in RAM.

Paging lets the computer continue running even if it runs out of RAM-but that capability comes

at a heavy performance price. Disk drives are much slower than RAM, so moving data to and from the

disk slows the system down greatly.

This is a particular problem with programs that use huge amounts of memory. Suppose you have

some complex data analysis program that loads a lot of data into memory. It then jumps around the

data, performing comparisons, calculating averages, and so forth. Because the data doesn't all fit in

memory at any one time, as the program jumps around in the data, it may cause very frequent pag

ing. (This is sometimes called thrashing.) When this happens, you often can hear the disk drive work

ing like crazy, and the computer's performance drops to a crawl.

You can reduce paging and thrashing by buying a computer that has lots of memory (or by adding

more memory later). And you can reduce the chances of thrashing by structuring programs so they

don't need to jump back and forth across huge amounts of data as often-or at all. If you can rede

sign a program so it uses the data in chunks, processing one chunk at a time before moving on to the

next one, the program may page, but it won't thrash.

Another possibility is to free up chunks of data after using them by disposing of the variables hold

ing the data. That makes their memory available for use by new data. In this case, the program may

not page at all.

Flash Drives
Flash drives store data in solid-state memory. They have no moving parts and are non-volatile, mean

ing they don't require power to retain their data. (In contrast, RAM loses its data if it loses power.)

There are two main varieties of flash drives: USB flash drives and solid-state hard drives.

CHAPTER 1 Computer Hardware 9

USB flash drives are small and removable. They can fit easily in your pocket, so they are great for

quick backups and transferring data from one computer to another. In many ways, USB flash drives

(also called USB keys) have taken the place of older floppy drives. Flash drives may last a long time,

but people generally use Blu-ray, DVD, and CD drives for permanent storage instead.

Solid-state flash drives are similar to regular disk drives but use flash memory to store data instead

of spinning disks. Because they have no moving parts, they are less vulnerable to vibration and shock.

Flash drives also have faster access times than hard drives. Unfortunately, they're still considerably

more expensive per gigabyte than regular disk drives.

Hard Drives
Normal hard drives store data in spinning magnetic disks. They are generally slower than flash drives,

although they may be faster at transferring large blocks of data. They also have latency, a period of

time that the computer must wait while the drive is positioning itself to read a particular block of

data.

Disk drives have the distinct advantage of being significantly cheaper than flash drives on a per

gigabyte basis. For example, a 240-GB solid-state drive might cost more than $500, whereas a 1-TB

normal disk drive might cost only $65.

Because these drives are relatively inexpensive and can be quite large (I've seen up to 3-TB drives),

they are the most common form of storage in computers today.

Blu-ray, DVD, and CD Drives
Blu-ray, DVD, and CD devices use removable spinning discs to store data. Although they're less expen

sive per gigabyte than USB flash drives (typically by a few cents per gigabyte), getting data back from

them can be much slower than from either flash drives or hard drives.

The storage capacity of these discs varies depending on the recording format, but typical values

are 700 MB for CDs, 4.7 GB for DVDs, and 25 GB for Blu-ray.

Their low cost, high capacity, durability, and removability makes these drive types well suited for

backup and long-term storage of large amounts of data.

Working with Files
Before leaving the topic of data storage, I want to briefly mention an important issue related to work

ing with files.

Disk drives naturally read and write data in large blocks. It takes just as much time to read or write

an entire block as it does to read or write a single byte. To improve performance, disk drives buffer

their data.

10 Start Here! Fundamentals of .NET Programming

If you tell a program to read a few bytes from a file, the disk drive actually reads an entire block

and stores it in a buffer (a temporary holding location) in memory. As you request other bytes from

the same file, they may already be in memory, so the program doesn't need to fetch the new data

from the comparatively slow drive.

Similarly, when you write data into a file, the drive actually stores it in a memory buffer until it has

enough data to be worth writing to the physical disk.

Because the drive buffers data, it's not obvious when the drive actually writes the data to the disk.

An important consequence of this is that you could lose data if a program ends or crashes before the

drive has gotten around to writing the data.

To prevent this kind of data loss, your programs should always close files when you're done writing

into them. (Closing input files from which the program is reading data is less critical, but still good

practice.)

Networks

Computer networks-especially the Internet-play a huge role in many computer applications. Even

a typical household may have its own small network connecting computers, printers, and scanners.

There isn't room to cover computer networking in great depth here, but it is useful to understand

some basic computer terminology.

A computer network is a series of connected devices that allow computers to communicate. Those

devices include:

111 Network interface card (NIC) Connects a computer to a network and provides the

necessary electronics to send and receive the network's electrical signals. NICs are also

called network interface controllers, network adapters, LAN adapters, and other similar

terms.

1111 Hub A device with several ports that takes the signals that it receives and rebroadcasts

them to all the ports other than the one on which it received the signal. Hubs connect

multiple computers in a very simple way.

111 Bridge Similar to a two-port hub, but with more intelligence. A bridge inspects incom

ing information packets from one port and forwards them to its other port only if the

destination of the packet is on the other side of the bridge. This reduces unnecessary

traffic on the network.

1111 Switch Similar to a bridge, but with more than two ports. Instead of forwarding signals

to every port, they forward signals only to the device that should receive them.

1111 Router Similar to a switch except it can connect multiple networks, possibly using dif

ferent protocols. The most common routers connect a home computer with an Internet

service provider's network via a cable or modem.

Computer Hardware 11

Networks are sometimes categorized by their size. Two of the most common terms used to

describe networks are local area network (LAN) and wide area network (WAN).

Wi-Fi is the trademarked name of a standard for connecting devices wirelessly. Ethernet similarly

connects devices using wires or cables.

The Internet is a global system of connected computer networks. It is the largest WAN, cov

ering the entire world. Often, people use the terms Internet and World Wide Web (or just web)
interchangeably, but the World Wide Web (WWW) is only the collection of all hypertext webpages

available on the Internet. The Internet contains lots of other information as well, including email,

Voice over Internet Protocol (VoIP), and files that are available for download but that are not part of

the World Wide Web.

Communication over a network is controlled by various communication protocols. A communica
tion protocol is a formal description of the formats and rules for passing information across a network.

Protocols often include several layers. The bottommost layers deal with physical signaling and the way

the network uses electrical signals to send information. Higher-level layers determine how informa

tion is translated to and from electrical signals. Still-higher levels deal with error correction and how

to determine whether a message has been received correctly.

The Internet uses the Internet Protocol Suite to define how traffic should work. This suite of pro

tocols is also called TCP/IP, named after the two most important protocols it contains: Transmission

Control Protocol (TCP) and Internet Protocol (IP). TCP provides reliable delivery of a stream of bytes

from one computer to another. IP provides addressing that lets a network route data packets called

datagrams to the appropriate destination.

Two of the most common high-level protocols used on the Internet are HTTP and FTP. Hypertext

Transfer Protocol (HTTP) is a protocol for hypertext documents that contain links that lead to other

documents. This is the protocol that your computer uses when you open a webpage in a browser by

using an address that begins with http://.

File Transfer Protocol (FTP) is a protocol used to transfer files between computers over a network

such as the Internet. This is the protocol that your computer uses when you open a file in a browser

by using an address that begins with ftp://. Often people use special file transfer programs to upload

and download files with the FTP protocol. Addresses that begin with http.// or ftp.// are examples of

Uniform Resource Locators (URLs).

A Uniform Resource Name (URN) is similar to a URL, but it is intended to be a permanent name for

a resource even if the resource is not currently available. The difference between a URL and a URN is

minor, and many people use the terms interchangeably.

More Info For more information on networking topics, search online websites such as

Wikipedia and About.com, or consult a book on networking.

12 Start Here! Fundamentals of .NET Programming

Summary

This chapter discussed some of the hardware issues that you should consider when you're designing

and building an application. It explained how you can use the Windows Experience Index to compare

computers running Windows. It also explained how you should match the needs of an application

with the capabilities of a particular kind of computer.

For example, if you need to support many users on a centralized database, you might want to plan

to use desktop or laptop systems connected to a server on a high-speed network. In contrast, if you

want a small, special-purpose calculator to perform calculations throughout the day, you might be

better off using a handheld computer or smartphone.

This chapter also described different kinds of storage hardware and explains their strengths and

weaknesses. For example, hard drives are slower than RAM, but they are still reasonably quick and

much cheaper, so they are a good choice for storing large amounts of data. DVDs are removable and

even less expensive, so they're a good choice for backups and long-term storage.

This chapter explained how disk drives buffer input and output, meaning that to prevent data loss,

you should always close files when you are done writing into them.

Finally, this chapter briefly explained some common networking concepts and terminology. It

won't make you an expert on networks, but it should help you understand normal network discus

sions, particularly when you deal with networks from the high-level perspective that programmers

usually have when writing computer programs.

This chapter also briefly mentioned multi-core systems: systems with processors that have more

than one core capable of executing commands. Multi-core systems have greatl90tential to increase

performance without requiring faster processors, something that is becoming increasingly difficult

to achieve. The next chapter contains more information about multi-core systems in particular and

multiprocessing in general.

CHAPTER 1 Computer Hardware 13

In this chapter:

• What multiprocessing is and how modern computers can provide it

• The difference between multiprocessing and multitasking

111 What processes and threads are

111 How to design programs that can take advantage of multiprocessing

MOORE'S LAW, NAMED AFTER INTEL COFOUNDER Gordon E. Moore, says that the number of

transistors that can be placed on a chip roughly doubles every two years, and that leads directly to an

increase in computer speed. The law has held up remarkably well for more than 40 years and is pre

dicted to continue to hold for at least a few more years, but chip manufacturers are starting to reach

the physical limitations of what's possible using current chip fabrication techniques. This might spell

the end to large speed improvements for individual chips, but it doesn't necessarily mean the end of

performance gains for computers.

Note For more information on Moore's Law, see http.//en.wikipedia.org/wiki/Moore%27s_

law.

Other techniques, such as writing better code and leaner operating systems, can make a computer

faster without changing its underlying hardware. One particularly promising approach to improving

computer performance is multiprocessing.

This chapter describes multiprocessing and explains how you can take advantage of it to get the

best performance possible.

15

Multitasking

Even the slowest computers are much faster than their human users. A typical computer spends prac

tically all its time sitting around twiddling its electronic thumbs waiting for the user to do something.

When the user presses a button or clicks the mouse, the computer springs into action, performs a

task, and then goes back to waiting.

For example, the world record for fastest typing was set by Barbara Blackburn at 212 words per

minute, or about 18 characters per second. Not even the world's fastest typists can keep up with a

computer that can execute millions of instructions per second.

To make better use of the computer's blinding speed, modern operating systems multitask. In mul
titasking, the computer runs several tasks (known as processes) in turn. The operating system lets one

process execute for a while so it can perform calculations, update its display on the screen, respond to

user events such as button clicks, and so on. The operating system then pauses that process and lets

another one take a turn. It continues rotating through the processes so they each get to execute.

So long as the operating system can switch the processes quickly enough, they appear to the user

as if they are all executing simultaneously, although they are really just taking turns. This works well

so long as the system doesn't have too many intensive processes, but if some of the processes are

performing really heavy-duty calculations, the computer may have trouble maintaining the illusion

that it's running simultaneous tasks.

This is where multiprocessing enters the picture. Multitasking fosters the illusion that the computer

is performing several tasks at once. In multiprocessing, the computer really is doing several things

simultaneously.

Multiprocessing

In multiprocessing, a computer uses multiple execution elements to perform several tasks at the

same time. Those elements could be separate processors running on separate chips or, as is increas

ingly common these days, they can be separate cores within the same processor. A core is the part

of a processor that actually executes commands. By putting more than one core on the same chip, a

computer can greatly increase its potential computing power.

Today, two or four core computers are common, processors with six or eight cores are also avail

able, and one experimental processor contains more than 1,000 cores! (To learn more about this

innovative computer, see http://www.physorg.com/news/2011-0l-scientists-cores-chip.html.)

With the end of Moore's Law looming over the horizon, these sorts of multi-core systems offer a

potential road to increased performance, but multiple cores do not guarantee that applications will

run faster. The operating system itself may be able to run different programs on different cores, but a

single program could become stuck on a single core and have limited performance. You can allow a

single program to run on multiple cores by using multiple threads.

16 Start Here! Fundamentals of .NET Programming

.
Multithreading

A process is an instance of a program running on a computer. (Note that you could have multiple

instances of the same program running. For example, you might have two browsers open or two

instances of Word Pad running.) A thread is a sequence of instructions within a single process that

may execute in parallel with other threads. Sometimes you can execute multiple threads within the

same process at the same time. Each thread keeps track of its position within the program's code and

can move through the code as it needs to without interfering with the other threads. This is called

multithreading.

For example, suppose you write a program that takes a stock's historical prices, performs some sort

of complex statistical calculation, and predicts the stock's future price. (If you can get that last part to

work reliably, let me know!) Now suppose you want to perform the same task for several stocks. You

could have the program perform the calculations sequentially, one after another. If each calculation

takes about 30 seconds and you want to predict prices for 10 stocks, the total time will be around 300

seconds, or 5 minutes.

Another approach would be to start 10 threads, one for each stock. A thread would perform the

statistical calculation for its stock and display the result.

A single-CPU system will multitask, switching quickly back and forth between the threads to give

the illusion that they are all executing at the same time. There is still only one CPU, however, so the

total time will still be around 5 minutes. In fact, there is a little bit of overhead in switching between

threads so the total run time may be slightly longer.

In contrast, a computer with multiple cores may truly be able to execute more than one thread

at a time. In that case, the total time will be roughly the original total time of 5 minutes divided by

the number of cores, plus some overhead for setting up the threads and keeping track of what they

are all doing. A two-core system might require about 2.5 minutes, whereas a four-core system might

need only around 1.25 minutes to finish the calculations.

Unfortunately this speed improvement isn't automatic or free. In addition to a small (but signifi

cant) amount of overhead to set up threads, a program may pay a large performance penalty if the

threads interfere with each other. Interference can take the form of several different potential prob

lems with parallelism.

Note Some compilers may be able to detect pieces of code that can always execute safely

in parallel and in that case you may gain some benefit from multiple cores without any

additional work. To get the full benefit, however, you need to structure your program

properly.

Multiprocessing 17

Problems with Parallelism

At a high level, running threads in parallel is easy to understand. When you look closely at specific

tasks, however, you can encounter several problems. Some of these include contention for resources,

races, and deadlocks.

Contention for Resources
Sometimes multiple threads need to use the same resources. Consider again the stock calculator ex

ample. Suppose the program .starts 10 threads to perform calculations for 10 stocks. The first task that

each thread must perform is using the Internet to get its stock's price data. If your network bandwidth

is limited, this will be a big bottleneck as each thread demands access to the network. Even if your

network has plenty of bandwidth, the website that you access to get the stock prices needs to process

all the requests and, if it's a slow website, that may cause a bottleneck.

Similarly, multiple threads may need to access the same disk drive, CD or DVD drive, or other lim

ited resource, and performance can be limited as a result. It's bad enough that these sorts of conten

tion can limit performance, but they can also cause incorrect behavior. The most common example of

this kind of error is called a race condition.

Race Conditions
A race condition occurs when the result of a calculation depends on the exact sequence or timing of

execution in multiple threads.

For example, suppose you want to compute the total of 2 million numbers. You could loop

through the numbers and add them up one at a time, but you want to save time with multithread

ing, so you break the task into two pieces and solve each piece in a separate thread. The first thread

adds the first million numbers to a value called total and the second thread adds the second million

numbers to total. The basic algorithm for each thread looks like this:

For i = start To finish
Get tota7
Calculate resu7t = tota7 + va7ue[i]
Save resu7t In tota7

This code enters a loop where the looping variable i starts at the value start and runs to the value

finish. In other words, it takes the values start, start + 1, start + 2, .. ., finish.

The values start and finish represent the indices of the values that a thread should process. In this

example, the first thread's values for start and finish would be 1 and 1,000,000, and the values for the

second thread would be 1,000,001 and 2,000,000. The two threads run exactly the same code; only

the values' start and finish are different for the two threads.

18 Start Here! Fundamentals of .NET Programming

Inside the loop, each thread reads the current value of the total variable, adds the value pointed to

by the current value of i to total, and saves the new result in total.

If you're running a single thread to process all the values, this code works perfectly. However, if you

use two threads running at the same time, they can enter a race condition. Consider this sequence of

events as the two threads execute inside their loops.

Thread 1: Get tota7
Thread 2: Get tota7
Thread 1: Calculate resu 7t = tot a 7 + va7ue[i]
Thread 1: Save resu7t In tota7
Thread 2: Calculate resu7t = tota7 + va7ue[i]
Thread 2: Save resu7t In tota7

In this case, both threads start by reading the value total. Because thread 1 does this right after

thread 2 does it, both threads get the same value.

Next, thread 1 adds a value to total and saves the result back in the value total. Then thread 2 does

the same. Because thread 2 still has the original value for total, it overwrites the new value saved by

thread 1.

For a concrete example, suppose total starts with the value 100 and the two threads are adding the

values 20 and 30, respectively. Both start by reading the value 100. Thread 1 then adds 20 and saves

the result 120 in the value total. Next, thread 2 adds 30 to the value that it originally read (100), gets

the result 130, and saves it in the value total. Instead of holding the correct result 150, total now holds

130.

Warning Race conditions can be extremely difficult to detect because bugs appear only

when events occur in exactly the right order. If the sequence of events that leads to the er

ror is unlikely, you may run a program thousands of times before you encounter the error.

When the error does occur, you may be unable to reproduce the exact sequence of events

in multiple threads that caused it.

One way to prevent a race condition is to use a lock on the critical section of code.

Locks
A lock guarantees that a thread has exclusive access to a piece of code, memory, or other item that

it needs to prevent a race condition or other bug. In the previous example, a thread could use a lock

to gain exclusive access to the variable total while performing its calculation. The new code looks like

this:

CHAPTER 2 Multiprocessing 19

For.i =start To finish
Lock tota7

Get tota7
Calculate resu1t = tota1 + va1ue[i]
Save resu1t In tota7

Now, if two threads are running at the same time, one cannot read the value of total while the oth

er has it locked so it cannot interfere with the other thread. Instead, it waits until the lock is released,

and then it locks the total value and performs its own calculation without interference.

Unfortunately, locks add considerable overhead to a program because making multiple threads

coordinate in this way makes them much slower. The more locks a program must make and release,

the more slowly the program will execute. In this example, the threads must lock and unlock the value

total for each of the 2 million numbers that should be totaled.

In this particular program, the problem is even worse because each thread performs calculations

only while it's running code inside the lock; therefore, no two threads can be doing anything sig

nificant at the same time, which eliminates all the benefits of multithreading. The result is that this

program really performs its calculations one at a time sequentially, just spread across multiple threads

in a complicated way using 2 million locks. All those locks guarantee that this program will be much

slower than the original single-threaded program, which didn't need to use any locks.

Locks solve one problem but sometimes cause another: deadlocks.

Deadlocks
A deadlock occurs when two threads are waiting for resources held by each other. For example, sup

pose thread 1 has resource A locked and is waiting for resource B, but thread 2 has resource Blocked

and is waiting for resource A. Neither thread can get the second lock it needs, so it cannot continue.

Because of this, neither thread will release the lock that it already holds, so they're both stuck.

In this example, the deadlock is simple and easy to avoid by making both threads lock resource A

before locking resource B. Then, if thread 1 locks resource A, thread 2 cannot lock resource B until it

first locks resource A.

Detecting and breaking deadlocks in more general situations can be harder. If a program has many

threads that need exclusive access to lots of resources in complex combinations, it can be difficult to

prevent deadlocks.

20 Start Here! Fundamentals of .NET Programming

Looking for Parallelism

Some problems have naturally parallel solutions. For example, consider the Mandelbrot set shown in

Figure 2-1. To produce this image, the program considers each pixel in the result separately. For that

pixel, it performs a series of calculations that do not involve the other pixels in any way. This program

can make as many threads as it wants, and each can work independently to calculate a color for its

own pixel.

The only place where the threads need to interact is when they copy their results into the single

final image. Even there, the threads don't need to use locks because each thread works with a differ

ent pixel and doesn't need to look at or modify the other pixels.

FIGURE 2-1 Displaying the Mandelbrot set is an embarrassingly parallel task.

This kind of algorithm, which is naturally parallel, is sometimes called embarrassingly parallel. Other

embarrassingly parallel problems include ray tracing, generating frames for an animated movie (which

may also involve ray tracing), some artificial intelligence approaches such as genetic algorithms, and

random heuristics where the program picks a random solution and evaluates its effectiveness.

Even if a problem isn't embarrassingly parallel, you may be able to come up with a workable paral

lel solution. For example, consider the earlier problem of adding up 2 million numbers. The simple

solution of making two threads each add up half of the numbers doesn't work because they spend a

huge amount of time competing for access to the value total.

Multiprocessing 21

However, suppose each thread added up its own subtotal and only copied the result into total

when it was finished. The new thread code looks like this:

subtotal = 0
For i = start To finish

Get subtota 7

Calculate resu7t = subtota7 + va7ue[i]
Save resu7t In subtota7

Lock total
Get tota7
Calculate resu7t = tota7 + subtota7
Save resu7t In tota7

In this version of the program, the loop where most of the work occurs contains no locks, so the

threads can work independently. Only at the end do the threads need to lock the value total. The

previous version of the program required 2 million locks, and those locks prevented the threads from

running in parallel. This version uses only two locks and the threads can execute the vast majority of

their calculations in parallel, so this version will be much faster.

Note This code was written with the assumption that the threads can access the values

they are adding without interfering with each other, and that may not always be the case.

If the values are stored on a disk drive, reading one value may move the disk heads, so it

takes longer to read other values. If the values are all together on the disk, however, the

program can probably read them all into memory at once, and then the threads can work

in parallel without disk contention.

This example shows how the approach you use can determine whether a program will benefit from

multithreading. The key to making this solution work is avoiding locks. A good multithreaded ap

plication doesn't use too many locks, avoids making threads contend for other scarce resources such

as disk drives, and generally keeps calculations as separate as possible, as long as possible. Often, a

thread's contribution to the overall solution is used at the end of the thread's calculations.

Distributed Computing

In distributed computing, multiple computers linked by a network work together to perform a task.

You can think of distributed computing as similar to multithreading except that the "threads" run on

different computers.

Although coordination among threads on the same computer can be cumbersome, communica

tion among computers in a distributed application is much slower. That means distributed computing

is most useful when the problem is embarrassingly parallel. For example, several computers could be

assigned the task of generating separate frames for an animated movie. Those computers could then

use multithreaded ray tracing programs to calculate the pixels in each frame.

22 Start Here! Fundamentals of .NET Programming

Other examples of distributed computing are "grid computing" applications, which use idle com

puters scattered across the Internet to perform CPU-intensive calculations while their users aren't

using them. Some of these efforts involve thousands of (or even millions of) computers. Examples

include SETl@home, which tries to detect alien signals in vast amounts of radio signal data; Folding@

home, which simulates protein folding and molecular dynamics to study diseases; and the Great Inter

net Mersenne Prime Search (GIMPS), which tries to find Mersenne primes of the form 2P - 1 for some

number p.

: Note Currently, only 27 Mersenne primes are known. The largest known prime of any kind
is the Mersenne prime 243,112,609 - 1.

Distributed computing is a specialized subtopic in a specialized field, but some of its basic ideas

can be very useful when designing multithreaded (or even single-threaded) programs. One of the

most important of those ideas is that each of the cooperating programs should be as independent as

possible. If thousands of computers need to communicate frequently with each other or with a central

computer, the network's communications needs will quickly outweigh any potential benefits.

Similarly, keeping each thread as separate as possible (avoiding direct communication between

them and avoiding locks) makes threads faster, easier to debug, and more scalable so you can easily

add more if necessary.

Even if your computer has only a single core, breaking operations up into independent pieces

makes writing and debugging the pieces easier. If the pieces are self-contained, then you can debug

one without worrying as much about how changes to it will affect other pieces of code.

Keeping the pieces as separate as possible also can help you rewrite the program later if you de

cide to spread it across multiple threads.

Task Parallel Library

How you create multiple threads depends on the operating system and language you are using.

Microsoft's Task Parallel Library (TPL) is a specific library of tools that makes running parallel threads

relatively easy for Microsoft .NET applications.

The following list summarizes the main tools provided by the TPL:

11 Parallel.Invoke Executes several pieces of code at the same time.

11 Parallel.For Executes the same pieces of code several times in parallel, with different

numbers as parameters. For example, it might invoke some code to produce frames in

an animated movie where the parameters 1, 2, 3, and so on are passed to the code so it

knows which frame number to generate.

CHAPTER 2 Multiprocessing 23

• Parallel.ForEach Executes the same pieces of code several times in parallel, with

different arbitrary values as parameters. This is similar to Parallel.For except that the

code receives arbitrary values specified by the program as inputs rather than numbers

in a sequence. For example, the program could pass each thread a separate image

to manipulate. The threads could then perform image processing techniques on the

images, creating embossed images.

These three TPL operations provide a relatively simple way for a program to use multiple threads.

These may not handle every scenario that you can imagine, and threads still may run into race, lock,

deadlock, and other parallel issues, but these are fairly easy to use.

The TPL is also designed to use multiple cores, if they are available, without imposing too much

overhead on single-core systems, so you can run the same program on different computers and

expect reasonable performance, whether the computer has 1 core or 16.

Summary

This chapter discussed multiprocessing and the ways modern computers provide parallel computing,

or at least an illusion of it. All modern computers provide multitasking, quickly switching back and

forth among applications to make it seem as if they are all running at the same time.

Some computers have more than one element that can execute instructions, and those computers

can perform multiprocessing, truly executing multiple tasks at the same time. Those computers may

have multiple processors, or they may have multiple cores within the same processor.

Multi-core systems are becoming increasingly common. To get the best performance from your

programs, you need to consider parallel programming issues as you write your programs. If you keep

the individual parts of a program as separate as possible, you may be able to execute them on differ

ent threads running on separate cores, which will improve performance.

Even if you don't plan to run a program across multiple threads, keeping the various elements of

your programs as separate as possible makes them easier to write and debug.

Chapter l, "Computer Hardware," described a range of computer hardware that you might use,

such as desktops, laptops, and smartphones. This chapter described topics in parallel programming

that you can use to make computer software take advantage of the processors and cores provided

by the computer's hardware. The next chapter bridges the gap between the topics of hardware and

software, explaining how programming environments translate the software that you write into com

mands that the hardware can actually execute.

24 Start Here! Fundamentals of .NET Programming

.,
rogrammrng

Environments

In this chapter:

11 How a computer runs a program

11 How programs are converted into machine language that a program can understand

11 What features typically are included in a development environment

11 What features the Microsoft Visual Studio development environment provides

IN THEORY, YOU COULD WRITE COMPUTER programs using any text editor, but in practice, that

would be difficult. Programming languages are extremely picky, so one missing or misplaced charac

ter can make a program useless.

To make it easier to write programs that are at least syntactically correct, programming languages

typically come with programming environments that include tools to help you design, write, run, test,

and debug programs.

This chapter describes some of the basic tools that typically come with a programming

environment. It also briefly describes the Visual Studio programming environment.

From Software to Hardware

People transfer information using spoken and written languages such as English, Spanish, and even

Klingon (at certain gaming conventions, at least). The computer's processor is very different. It reads

a series of Os and ls and produces a new series of Os and ls. For example, the following machine

code tells an x86/IA-32 processor to copy the value 01100001 into the AL register (a special memory

location for values that the process will later manipulate):

1011000001100001

25

Because this machine code is largely incomprehensible to humans, programmers write programs

in higher-level programming languages. Later, another program converts the high-level program into

machine code.

Assembly language is a low-level language that uses mnemonics to make machine language more

readable. For example, the following assembly statement is equivalent to the previous machine code:

MOV AL, 61h ; Copy the value 61h into AL.

A program called an assembler translates this assembly code directly into machine code that can

execute on the processor. (The text after the semicolon is a comment, intended for programmers, that

the assembler ignores.)

Assembly language closely mimics the instructions that the processor can understand, so a carefully

written assembly program can execute extremely quickly. Unfortunately, the commands are also very

basic, so it's quite difficult to write and debug programs in assembly language.

Higher-level programming languages, such as Fortran, Pascal, and C++, include more complex

statements that work at a more abstract level than assembly language. A compiler then translates the

high-level program into machine language for execution. Figure 3-1 shows the process graphically.

C++ Compiler

Fortran Compiler

FIGURE 3-1 A compiler converts high-level languages such as Fortran or C++ into machine code.

Some languages, such as Java, C#, and Microsoft Visual Basic, insert another step in the translation

process to make programs more portable. Instead of compiling directly to machine code, these

languages' compilers convert the high-level code into an intermediate language sometimes called

bytecode. Then, at run time, the intermediate code is compiled into machine code for execution. This

step from intermediate code to machine code occurs at the last instant before the code is executed, so it

is called Just-In-Time (JIT) compilation.

For Microsoft.NET-compatible languages, such as C# and Visual Basic, the intermediate representation

is called Common Intermediate Language (CIL), and the run-time component that converts it into machine

language is called Common Language Runtime (CLR).

26 Start Here! Fundamentals of .NET Programming

In Java, the intermediate language is called Java bytecode, and the run-time component that

converts it into machine language is the Java Virtual Machine (JVM).

Figure 3-2 shows the translation from high-level language to intermediate language and then to

machine language graphically.

C# Compiler

Visual Basic
Compiler

Java Compiler

FIGURE 3-2 Languages such as Visual Basic, C#, and Java compile programs into intermediate languages before
eventually converting them into machine code.

Note Actually, the Java specification is somewhat relaxed about exactly how code is
executed, so some versions of the JVM may interpret bytecode instructions and carry them
out directly rather than compiling the bytecode into machine code.

You might think that adding the extra step of producing intermediate code would slow the process

down. That's true, but only to a small extent. The first time you run a piece of code, the CLR or JVM

must compile the intermediate code into machine code, so there is a tiny slowdown. However, once

compiled, the code stays compiled, so the next time the program needs to run that particular piece

of code, it is already in compiled form and doesn't need to be compiled again. In fact, the compiled

code is often cached, so it doesn't need to be recompiled even if you close the program and open it

again later.

The advantage of using an intermediate language is portability. If you write a program on one

computer, then any other computer that has the correct run-time environment (CLR or the JVM) can

execute that program, even if that computer uses different machine language instructions. The other

computer's CLR or JVM converts the intermediate language code into machine language just in time,

and the program runs.

CHAPTER 3 Programming Environments 27

Design Time and Run Time
Design time is the time when you are building a program. Run time is the time when the

program is running. For example, instructions for building an example may tell you to "Add a

text box to the form at design time" or to "Enter the customer's name in the text box at run time."

A few unusual kinds of code may have other less obvious time designations. For example,

if you build a new tool to add to a development environment, it is in a special run time while

you are using it in the environment that is different from when you built it (though probably

in the same environment).

Custom controls, such as special dials and buttons, are an even stranger case. When you

build the control, you work with it at design time. When you later add the control to another

program, its code may be running in a special control run time to provide feedback to the

development environment. For example, the control may need to change its appearance when

it is enabled and disabled. Finally, when the program containing the control executes, the

control's code runs in the end program's run time. The fact that controls may have two different

kinds of run time can be confusing.

Programming Environments

To make writing and debugging programs easier, programming environments include several useful

tools. Some of the tools that a given programming environment might include are:

111 Code editor A special-purpose text editor that helps you create working code. Typical

special features of code editors include automatic text coloring to differentiate kinds of code

(such as variables, keywords, literal values, and comments), parenthesis matching (so you can

easily see find an open parenthesis' matching closing parenthesis, and vice versa), and syntax

error highlighting.

111 Debugger Often integrated with the code editor, the debugger lets you step through the

program one statement at a time to see what it does while running. Debuggers usually let

you stop the program at a particular line of code, follow execution from one piece of code

to another, and examine and change variable values. Some even let you change the program

code and continue running the program from that point.

111 Compiler As described in the previous section, the compiler converts the source code into

machine code or intermediate code.

111 Build automation tools These tools allow you to customize compilation. For example,

a tool might notice that a particular module has been modified, recompile it, and then

recompile any other modules that rely on that one so they are all up to date.

28 Start Here! Fundamentals of .NET Programming

• Testing tools These tools let you automatically perform a series of tests on a program to

see if a feature works or to see if recent changes to the code have broken existing features

(regression testing). Reports tell you if the program failed any of the tests.

• Source code management tools These tools track changes to the source code and keep

the code in a safe repository. Many of these tools allow you to compare two versions of the

code to see what has changed.

• Object-oriented tools These tools make it easier to understand how classes relate to each

other. They may include a class browser, an object inspector, and a class hierarchy editor.

An integrated development environment (IDE) includes tools for performing some or all of these

tasks. For example, when you modify a source code file, the IDE may automatically check that file

out of a source code management system so that your changes are archived. Later, you can view the

differences between old and new versions of the code and remove the changes if they were incorrect.

IDEs typically let you build large projects that may contain dozens or even hundreds of files.

A project may include lots of different kinds of files, such as source code files, code files automatically

generated by the IDE, image files, and even documentation about the project.

The IDE can include integrated tools for working with these files. For example, some versions of

Visual Studio can create new icon files and add them to a project. If you double-click an icon file, the

IDE opens an integrated icon editor that lets you create images of different sizes inside the same icon

file (so that other applications can display it appropriately at different sizes}, modify the icon's pixels,

and make parts of the icon transparent.

The IDE also may let you create hierarchical entities at a higher level. Visual Studio lets you

create a "solution" that contains related projects. For example, suppose you are writing a client/

server application where one program (the client) requests services provided by another program

(the server) across a network. In that case, you might build a solution containing the client and server

programs, in addition to programs that test the two separately.

Visual Studio

Visual Studio is an IDE available from Microsoft. Visual Studio provides support for several languages,

including C#, Visual Basic, C/C++, and F#. Although it is possible to write and compile programs in

those languages without Visual Studio, it's a lot of work without a lot of benefit. If you're using a

Start Here! book to learn how to use one of these languages, then you will be using Visual Studio

extensively.

Visual Studio provides support for building console applications (those that read and write text

from a simple text window), Microsoft Windows services that run in the background even if no user

is logged in, Windows Forms applications (similar to those you typically see on Windows systems),

websites, web applications, and web services (for another program to call across the web). It even

supports development for some devices other than typical computers, such as the Xbox 360 game

platform and phones running the Windows Phone 7 operating system.

CHAPTER 3 Programming Environments 29

Different versions of Visual Studio include most of the tools listed in the previous section. Every

version includes source code editors and a debugger. The compiler and build automation tools are

built in so seamlessly that you rarely notice they're present.

Only the more expensive versions of Visual Studio include some advanced items, such as team

coordination and testing tools. If you work as part of a large development team, those tools can be

useful. If you're working by yourself, as you almost certainly are while you're learning to program, you

won't need those tools as much.

Some other specific features that the Visual Studio IDE provides include:

111 Customizable menus and toolbars You can rearrange, create, and hide these items easily.

You can add and remove commands to make it easier to find the tools that you use the most.

For example, if you often edit Extensible Markup Language (XML) data files, you can display

the XML Editor toolbar to make editing those files easier. You can even add menu items

and toolbar buttons to perform new actions such as opening a web page, sending email, or

executing code that you have written.

111 Customizable windows You can decide which windows (code editors, toolbars, data views,

and so forth) are visible and where they are positioned. You can make windows become tabs

in a single window, give each window its own area, or make a window float above others.

111 Auto-hiding windows If you want, you can make windows shrink to small headers when

you are not using them and then pop back out when you float the mouse over the header.

Doing this gives you more space for whatever task you are performing, while hiding windows

that you don't need at the moment. You also can "pin" windows so they are always visible if

you prefer.

11 lntelliSense This is an auto-completion feature provided by the code editor. If you type part

of the name of a variable, function, or other program symbol, lntelliSense lists the symbols

that might match your choice. For example, if you type "FirstN," lntelliSense would list the

control name FirstNameTextBox (if that control is on the form). When you open a parameter

list for a function call, lntelliSense also lists the parameter names and their descriptions so it's

easier to see what values you must pass to the function.

11 Call stack The call stack window shows the sequence of function calls that lead to the

current point of execution.

11 Sequence diagrams and dependency graphs These tools, which are available only in

Visual Studio Professional and higher, provide information about how functions call each other.

Tip Although you can move windows into completely new arrangements, you might want

to leave the most basic windows where they are originally, so others who look at your sys

tem are not completely mystified. For example, if you hide all your toolbars, you (or some

one else) may have trouble finding them.

30 Start Here! Fundamentals of .NET Programming

Summary

This chapter described programming environments and some of the features they provide, giving

some extra attention to the I DE in Visual Studio. You can use a programming environment to create

user interfaces and write the code that lies behind them.

The next chapter discusses common standard types of features that you might want to put in a

user interface, such as menus, accelerators, and shortcuts. Such features make your programs faster

and easier to learn and use.

Programming Environments 31

iif!tt:&:f*~p_:;;:
:_'::·-_.:\':'C>f: .. -,_'.

Windows Program
Components

In this chapter:

1111 What menus are and how to use them

1111 What context menus are and how to use them

1111 How to use toolbars and ribbons

1111 How to use dialog boxes

1111 General tips on user-interface design

MICROSOFT WINDOWS PROGRAMS HAVE CERTAIN STANDARD features that are familiar to users

and that users have come to expect. Users feel more comfortable with applications that use those

features. They feel safer experimenting with the program, knowing how the features will act.

For example, a menu item's caption ends in an ellipsis (...) to indicate that the item displays a

dialog box or some other Windows form and does not immediately perform a task. The user can

safely click that item without performing any irrevocable action.

This chapter describes these sorts of standard features provided by Windows applications. It

explains how to make menus, context menus, and dialog boxes as useful as possible. It also gives

some tips about user interface design to make other parts of an application easier to use.

Note The ideas discussed here apply only to Windows applications. The conventions for

programs running on other operating systems such as Unix or Macintosh computers may

be different. Just because something makes sense to Windows users, that doesn't mean it

will make sense to Unix users. Similarly, just because something looks cool on a Macintosh

system, that doesn't mean it will help users in a Windows application.

33

Menus
·----·------------------·---·-·----·· ·---·----

Programs have been using menus for a long time, and users have come to expect certain standard

behavior from them. For example, the File menu belongs on the left and contains commands to open,

close, save, and create files.

The File menu also contains an Exit command, which closes the application. This doesn't really

make intuitive sense, but it's been the case for so long that users expect to find the Exit command

on the File menu. If you move the Exit command to a different menu, you will confuse and frustrate

users. Even after users know where the command is, every time they use it, they will probably think

"This is stupid," and you don't want your program to make that impression.

The following sections describe some tips for building usable menu systems.

Use Ellipses
If a menu item displays a dialog box or other form instead of immediately performing an action, end

its caption with an ellipsis. This tells the user that it is safe to select the item and that there won't be

irreversible consequences.

For example, the Save As command on the File menu displays a dialog box where the user can

select or enter a file name. The user can click the dialog box's Cancel button to cancel the operation,

so this command ends with an ellipsis, as shown in Figure 4-1.

In contrast, the Save command immediately saves the file using its current file name. The user has

no chance to cancel this operation, so the command doesn't end with an ellipsis.

Provide Accelerators
Accelerators are keys associated with menu items that let you use the Alt key to navigate the menus

quickly. For example, pressing Alt+F opens the File menu for most applications. Experienced users

quickly memorize the accelerators for common operations. For example, an experienced user can

press Alt+F, A to invoke the Save As command from the File menu immediately.

A menu item indicates its accelerator by displaying an underscore below the character. For

example, the File menu is typically displayed as Eile to indicate that F is its accelerator. (Note that

recent versions of Windows don't display the underscore until the user presses Alt.)

Note Different development environments use different methods to let you specify a

menu item's accelerator. For example, when you're building a C# or Microsoft Visual Basic

application in Microsoft Visual Studio, you precede the accelerator with an ampersand

when setting the item's caption. For example, you would set the File menu's caption to

&File. However, when you build a Windows Presentation Foundation (WPF) application in

Visual Studio, you precede the accelerator with an underscore, such as _File.

34 Start Here! Fundamentals of .NET Programming

Open ...

Save

Save As ...

From ~:canner or Camer<:i ...

Print Preview

Page Setup ...

Print ...

: Send ...

Set As Bilckgrmmd (Tiled)

:}et As Background {Centered)

Set As Dackgrotind (Stretched}.

1 howto;_pickoyer_popcorn2.ptig

2 howto_pickover_popcorn2,png

3 PlayTime06.jpg

: 4 lvana07.jpg

: Exit

Ctrl+O

Ctrl+S

Ctrl+P

Alt+F4

FIGURE 4-1 If a command displays a dialog box before taking action, end its caption with an ellipsis.

All menu items should have accelerators. No two items in the same menu should have the same

accelerator, although two items in different menus can have the same accelerator. For example, the

Save As command on the File menu and the Select All command on the Edit menu might both use

the accelerator A.

Provide Shortcuts
Accelerators make it easier to navigate through a menu hierarchy using the keyboard. Shortcuts

immediately invoke a menu item that may be far down the menu hierarchy without requiring

navigation.

CHAPTER 4 Windows Program Components 35

For example, you can use the accelerators Alt+F, Alt+S to save a file. You can also use the shortcut

Ctrl+S to save the file without opening the File menu. These two methods for invoking the same

command let you find the command in different ways. You can use accelerators to browse through

the menus looking for an item, or you can use shortcuts to execute a command immediately if you

know its shortcut.

Because shortcuts immediately invoke a command that could be in any menu, no two commands

can have the same shortcut, even if they are in different menus.

You should provide accelerators for every menu command, but you should provide shortcuts only

for the most frequently used commands. If you provide shortcuts for infrequently used commands,

the user is more likely to use the shortcut accidentally.

Note Different development environments use different methods to let you specify a

menu item's shortcut keys. The Properties window in Visual Studio provides the shortcut

editor shown in Figure 4-2. Use the check boxes to indicate whether the shortcut uses the

Ctrl, Shift, or Alt key. Then use the drop-down menu to select the key.

FIGURE 4-2 In Visual Studio, you set a menu item's shortcut by using an editor.

Use Standard Menu Items
Use a standard menu structure whenever possible so that users know where to look for standard

commands. For example, don't create a Document menu and place commands in it that are usually

in the File menu.

Some programs hide menus, display them only with cryptic icons, or change their positions. This

makes it hard to find standard commands that should be easily accessible, which frustrates users. For

example, Internet Explorer 7 hides its standard menus entirely until you press Alt. (This may be

different in other versions of the browser.) This doesn't provide much benefit but can be confusing.

A user shouldn't need to use Google to learn how to find the program's version. (This information can

be found in the About command on the Help menu, where it is in most programs; it's just not obvious

how to display the Help menu.)

36 Start Here! Fundamentals of .NET Programming

You can learn the standard menu structure by looking at almost any popular application, such as

Microsoft Word or Notepad.

When you use standard menus and items, give those items standard accelerators and shortcuts

whenever possible. Experienced Windows users know the standard accelerators and shortcuts very

well, so if you change them in your program, they will probably use them incorrectly. For example,

if you use the Ctrl+S shortcut for the Save and Exit command, users will probably close the application

by accident when they are just trying to save a file.

The following list shows some standard menus, items, accelerators, and shortcuts. The lines of

dashes represent separators in the menus to group related commands.

file

New

Qpen ...

.$.ave

Save As ...

Page Setup ...

Print Preyiew ...

frint

Eis.it

.Edit

Ctrl+N

Ctrl+O

Ctrl+S

Ctrl+A

Ctrl+P

.Undo Ctrl+Z

Redo Ctrl+Y

Cu! Ctrl+X

.Copy Ctrl+C

faste Ctrl+V

D.elete Del

Select All Ctrl+A

find Ctrl+F

Find and Replace Ctrl+H

Yiew

D.ata

CHAPTER 4 Windows Program Components 37

r-· -··-···-·-··-- ····--··············-·--··
Tools
i-==-~--~-····
Window

rch ...

lndex ...

About ...

The contents of the View, Data, and Tools menus will depend on your application. For example,

a three-dimensional computer-aided design (CAD) program's View menu might include Left, Right,

Top, and 3D commands to let the user view a model from different angles.

If your program doesn't need a menu, leave it out.

The About command on the Help menu should display version information about the program.

It may also include contact information such as email addresses, phone numbers, and web links so

that the user can get information about support and product registration. Alternatively, you can place

commands to send email or visit a website in the Help menu.

Don't Hide Commands
If a command or menu isn't available at a given moment, disable it instead of hiding it. Hiding a

menu or command can be disorienting to the user. The user may go looking for the command and be

unable to find it, thinking, "I know it's here somewhere," when the command is actually missing. If you

leave the command visible but disabled, the user can at least find it and realize that it's not available

at that time.

Many programs that have extremely large menu hierarchies violate this rule to save space and

make the menus simpler. The idea seems reasonable but can still lead to confusion and wasted effort

as the user searches in vain for missing features. A better solution is to move pieces of the menu

system into upper-level menus or cascading submenus that the program can then disable.

For example, suppose a program lets you edit customers and orders, and you want the appropriate

tools to be available only based on what the user is doing. If the user is editing an order, for example,

the program should provide order editing tools, not customer editing tools.

You could put all the tools in the Edit menu and then enable and disable them as needed. But

if the two features use a lot of tools, the menu will be uncomfortably large and full of disabled

entries.

Another approach is to create upper-level Customer and Order menus and place their respective

commands in them. Now, when the user is editing an order, the program can simply disable the

Customer menu completely.

38 Start Here! Fundamentals of .NET Programming

Use Shallow Menu Hierarchies
Shallow menu hierarchies are less confusing than very deep hierarchies. Try to use as few submenus as

possible, use sub-submenus only when absolutely necessary, and try not to go any deeper than that.

For example, the menu sequence Data > Sort is ideal. The Data menu contains a Sort command

that the user can find easily. The sequence Data > Sort > Sales Figures is a bit more cumbersome but

still manageable.

In contrast, the sequence Data > Sort > Sales Figures > Current Year is pushing the limit of easy

navigation. So long as the menu and submenu names make logical sense, the user may be able to

find a command, but remembering exactly where it is may be tricky. And the sequence Data > Sort >

Sales Figures > Current Year > 1st Quarter is getting silly. Even if the user can remember the sequence

of menus, navigating that many layers of menus is awkward.

One way to flatten a deep menu hierarchy is to redistribute some of the bottom levels into higher

levels. In this example, you could move the bottom level of entries up one level by using the following

commands:

1111 Data > Sort > Sales Figures > Current Year Q 1

1111 Data > Sort > Sales Figures > Current Year Q 2

1111 Data > Sort > Sales Figures > Current Year Q 3

1111 Data > Sort > Sales Figures > Current Year Q 4

If the menu needs to hold commands for several years, this could produce a big, cumbersome

submenu.

A better solution in this case is to create a dialog box that lets the user select parameters that

encompass all the lower levels of the hierarchy. In this example, the Data > Sort > Sales Figures

command could display a dialog box where the user could select the year and quarter and then press

OK to generate a report. Instead of using five levels of menus, the new version uses only three levels

plus a dialog box.

The dialog box also would be more flexible than a menu hierarchy because the user could select

any year available in the database instead of just picking from a few listed in a menu. If the database

holds records for 20 years, picking the year from a combo box would be easier than selecting from

among 20 menu entries.

Keep Menus Short
In addition to avoiding deep menu hierarchies, you should avoid making menus too long. The user

can find a command easily in a menu containing a half-dozen entries, but a menu containing

100 entries will be practically impossible to use.

You can make it easier to use long menus by adding separators to create some structure. For

example, a typical Edit menu might contain a lot of entries, but they generally are grouped naturally

CHAPTER 4 Windows Program Components 39

into categories such as action (Undo and Redo), clipboard (Copy, Cut, and Paste), selection (Select All),

and searching (Find, Find Next, and Replace). The Edit menu design shown earlier in this chapter uses

separators to group the commands in each of these categories.

If you need to fit a lot of commands into a menu structure, it can be tricky to strike a balance

between creating a deep hierarchy and creating one that has numerous items in each menu.

Removing levels of the hierarchy may mean adding more items to the higher-level menus. When a

menu hierarchy is too full, consider moving some of the commands to a dialog box, as described in

the previous section. Often a dialog box can simplify the menu hierarchy and increase flexibility at the

same time.

A Menu Example
Figure 4-3 shows the Edit menu used by Microsoft Paint 6.0. I opened the menu by pressing Alt+E, so

the menu is showing accelerators. It also shows its shortcut keys.

FIGURE 4-3 The Edit menu in Paint demonstrates many useful concepts, including accelerators, shortcuts,
standard menu commands, and disabled commands.

This menu contains standard Edit menu commands, although it has changed the name of the

Delete command to Clear Selection.

The menu places ellipses after the Copy To and Paste From commands because they display dialog

boxes.

Finally, the menu shown in Figure 4-3 has several commands disabled (not hidden) because they

are not currently available. For example, when I took this screenshot, there was no current selection,

so the program could not execute the commands Copy, Cut, Clear Selection, Invert Selection, or Copy

To. Therefore, those commands are disabled and appear dimmed.

Context Menus
---------------------------·····-·····

Context menus appear when the user right-clicks an object in the user interface to provide commands

that are appropriate for the object that the user clicked. They are called context menus because their

commands make sense in the context of the item that is clicked. (They are also sometimes called

pop-up menus.)

40 Start Here! Fundamentals of .NET Programming

For example, Figure 4-4 shows the context menu displayed by Word 2007 when you right-click a

picture. Some of these commands, such as Change Picture ... and Format Picture ... , make sense only

if you are right-clicking a picture.

'{~ ,!;;opy

_;~ f1nte:

FIGURE 4-4 Word 2007 displays this context menu when you right-click a picture.

Compare this to Figure 4-5, which shows the context menu that Word displays when you right-click

text. Many of these commands, such as Font... and Paragraph ... , make sense only if you are right

clicking text.

~ segoe ~)1:s··· ~··A~ A.~ Ar ..J
j B" ·I······~··~· .a ' ijl: ~~ ::: •

~opy

faste

f.ont ..

loo,kUp ...

S:r:nonyms

TrAnslate

FIGURE 4-5 Word 2007 displays this context menu when you right-click text.

The general rules for making context menus are similar to those for making normal top-of-the-form

menus. The biggest difference, however, is that context menus don't have upper-level menus. For

example, a form might have upper-level menus called File, Edit, View, and so forth. A context menu skips

that level and displays commands directly.

As you can see in Figures 4-4 and 4-5, context menus can contain accelerators, cascading

submenus, and ellipses to indicate dialog boxes.

Notice, though, that the context menus shown in Figures 4-4 and 4-5 do not contain shortcut keys.

Shortcuts go only in main menus, not context menus; but the commands in context menus often

duplicate those in main menus, and those commands can have shortcuts. For example, a form's Edit

menu often contains Copy, Cut, and Paste commands, and those commands can have shortcuts.

CHAPTER 4 Windows Program Components 41

Toolbars and Ribbons

Toolbars let users access the most commonly used commands without opening a menu or context

menu. They should contain buttons representing the commands that users will need the most.

Often, toolbar commands aren't amenable to shortcuts for some reason. For example, Figure 4-6

shows the Toolbox window that Visual Studio displays when the Windows Form Designer is open.

It's unlikely that you could assign shortcuts for all 67 of these tools that the user could remember.

''1'¥-W®BMlli!l~ril:

WJ:;JJ'i!!!~lt1Ll0\!11~1!'l

fil 49 ~.~.'.! ® 1\1! 1ij A ~. ~}) ~,~~

•;::.. ::1 mm~ a1 l£l a Eil \iii

ililGi~iA!lil~'".1tff®%1
ililP''ifil•l•6C:•li!!'!()
,,. 1:l !b ,... ·~·:. ~ El

FIGURE 4-6 The Toolbox in Visual Studio contains controls that you can put on a form.

The ribbon used by recent versions of some Microsoft products such as Word, Access, Excel,

WordPad, and Paint is a combination of a menu and a toolbar. Tabs across the top let you pick a

category of tool much as upper-level menus do. When you click a tab, that category's tools appear

below it, much as the tools in a toolbox do.

Figure 4-7 shows the ribbon in Word 2007. The tabs include Home, Insert, Page Layout, and so

forth. In this screenshot, the Home tab is selected, so the tab's tools include more or less generic ways

to modify text, such as choosing the font, changing the color of the text, aligning paragraphs, and

making lists.

FIGURE 4-7 The ribbon in Word provides tabs that display various tools.

It's a good idea to give the user many ways to perform the same command·. The us~l
uld be able to invoke the most commonly used commands through menus, context I
nus, accelerators, shortcuts, and toolbars or ri~bons. "'' ·-·www·~~-j

42 Start Here! Fundamentals of .NET Programming

Dialog Boxes

A dialog box, or dialog, is a form that is displayed to give information to the user or to get input from

the user. Dialog boxes can be either modal or modeless.

A modal dialog box keeps the application's focus and won't let the user interact with any other

part of the application until it is closed. Many common dialog boxes, such as those that let you select

files, fonts, colors, or printers, are modal. Modal dialog boxes are usually displayed for a relatively

short time because they prevent the user from doing anything with the rest of the application while

they are visible.

A mode/ess dialog box allows the user to interact with other parts of the application while it is still

visible. This kind of dialog box may be used as a toolbox or status area. Because the user can interact

with other parts of the application while a modeless dialog box is still visible, these dialog boxes may

be displayed for long periods of time. For example, a program might use modeless dialog boxes to let

the user view and edit several customers, inventories, and other pieces of data at the same time.

Modeless dialog boxes behave more or less like normal forms, and they can have any characteristics

that a typical form has. In contrast, modal dialog boxes in Windows applications have certain standard

features.

Modal dialog boxes are often not resizable. They perform a single, fairly restricted function, so the

program can often size them appropriately. They are usually visible for only a short time, so the user

won't want to waste time resizing them anyway.

Modal dialog boxes often have an Accept button that automatically fires when the user presses the

Enter key. That behavior can change depending on the button that the focus is on, so many dialog

boxes appear with the focus initially on the Accept button when Enter is pressed. Often, this button is

labeled OK or some other value that indicates the dialog box's primary function, such as Accept, Save,

or Open.

Similarly, dialog boxes often have a Cancel button that automatically fires when the user presses

the Esc key. This button often is labeled Cancel or Close.

Finally, modal dialog boxes can return a result to the code that displays them to indicate which

button the user clicked. This value isn't visible to the user, but it is very useful to the program because

it allows the program to take appropriate action.

Tip In a C# or Visual Basic application, you can use the Properties window to set a form's

AcceptButton and Cance/Button properties to the buttons that you want to fire when the

user presses Enter or Esc.

You can also set a button's DialogResult property to indicate the value that the dialog box

should return when the user clicks that button. If the user clicks the button, the form

automatically closes, returning the selected result.

Windows Program Components 43

User Interface Design

User interface design is a complex topic, and we won't be getting into detail here. But there are a few

basic principles worth mentioning. These ideas can make your programs easier to understand and

easier to use, making the user less likely to make errors caused by confusion and missed information.

Control Order
The most natural arrangement of controls, at least in most Western cultures, is top-to-bottom and

left-to-right. You can help the user find information and fill out forms easily and with fewer mistakes

by arranging controls in this order. Place the most important controls in the form's upper-left corner

and position the fields that the user should read or fill in so they flow down and to the right.

Some types of controls come in natural groups, and keeping them in those groups also will help

the user. For example, many forms ask the user to fill out first name, last name, street address, city,

state, and postal code. Users expect those fields to be provided in that order, so don't rearrange

them. If you switch the order of the Name and Street fields, you're likely to have users entering their

names in the Street field and vice versa. Even if the user isn't tripped up by this unusual order, the

arrangement will slow the user down and make your application seem strange and annoying.

Group Related Controls
You can help the user better understand a form by grouping related controls. This helps the user see

connections among the fields, and that helps the user fill out fields correctly. For example, if a group

of fields contains address information, the user can focus on address concepts such as street and

postal code, and that makes filling in the fields easier.

Grouping related controls also helps with form navigation. If you set up the controls' tab order

correctly, the user can fill in a field and tab to the next one in the group. After filling in one group of

fields (such as the address fields), the user can tab to the next group.

There are several ways you can group controls, including the following:

1111 Placing related controls inside a group box, frame, or table

1111 Placing related controls on a background that has a different color

1111 Aligning controls vertically or horizontally

1111 Adding blank space, lines, or other separators between groups

1111 Indenting controls in a group below a heading label

Figure 4-8 shows a badly designed form. The fields are presented in an unexpected order and are

not grouped in meaningful ways. In addition, the right edges of the fields don't line up, making a

jarring transition as the user's eye moves across the form.

44 Start Here! Fundamentals of .NET Programming

Counl:rJI

Fm Name:

Last Name·

Emot

Street

Ci\11:

Stole:

Postal Code:

Fa~:

Website:

User ID:

Special
lnstiuctiom:

B&Sic(Fiee) ~

Prolessional($19.95)

Delu11e(t29!l'i) (.

OK

FIGURE 4-8 This form doesn't let the user's eye flow naturally from top to bottom and left to right.

The lack of grouping in Figure 4-8 also makes the tab order of the fields unnatural. There are two

obvious strategies for tab order in this example. First, the tab order can jump from the left fields to

the right ones as needed. For example, the tab order might begin with Country, First Name, Last

Name, User ID, Password, or Email. In that case, there's no reason to expect the tab to move from

Last Name to User ID. When that jump occurs, the user will have to mentally switch gears from name

information to user ID and password information. The jump back to Email is just as jarring.

A second approach would be to make the user fill in all the fields in the left column before visiting

any of the fields in the right column. This is less jarring but ignores the natural left-to-right flow.

Figure 4-9 shows a better design for this form. Here, fields are grouped with others that have a similar

purpose. The tab order moves through the groups in the top-to-bottom, left-to-right order: Login,

Address, Other Contact Information, Account. Within each group, the tab order moves top to bottom.

User ID:

Pi!!Ssword.

First Name

Last Name:

Other Conlacl lnfc.malion

Phone:

Fa~:

Emait

Addreu

Street:

C>y

Stalo

Postal Code·

Countly

Accouri

Type: ~, Basic{Free]

Daluwe{$2995)

Noles:

FIGURE 4-9 This form has much better grouping and flow than the previous version.

This form also makes the following improvements over the previous one:

1111 The most important information is in the first group and highlighted with a colored

background to indicate that it is required.

1111 The groups are aligned vertically and horizontally, even when one group might contain more

fields than another.

CHAPTER 4 Windows Program Components 45

• Fields are aligned vertically and horizontally, even across different groups.

• Fields have the same lengths, so they line up nicely even if one field might need to hold a

longer value than another.

• Related fields are displayed in their customary order (Country is after Postal Code, and Email is

grouped with other electronic contact methods).

• The buttons are in the lower-right corner, as is customary for a dialog box.

• The Account Type option buttons have their select circles aligned.

Many of these changes may seem cosmetic, but they help give the user context while filling out

the fields, and that reduces the chance of mistakes.

The Rule of Seven
Most people can hold about seven items {plus or minus two) in short-term memory at one time. That

means if you display too many choices all at once, the user won't be able to keep them all in mind at

the same time. This leads to a common user interface design rule that lists of choices should contain

no more than seven options.

This may seem like a significant restriction, but it's really about the informational content of the

choices rather than the number of choices themselves. For example, suppose you're in the United

States and you want to let the user select a state from a list. There are 50 states, so a strict application

of the Rule of Seven might say you can't build such a list. In this case, however, the user doesn't need

to hold all 50 choices in mind at the same time. The user only needs to pick one choice and doesn't

care about the others. Even so, finding the correct choice could be a difficult task if the states are

arranged randomly. Fortunately, if you add extra structure by listing the states alphabetically, the user

can find the right choice easily.

The reason this example works is that the user needs to make only one selection, understands

the choices well, and the list is sorted so that it contains all the structure the user needs to find the

desired choice.

If a list doesn't have a simple structure that users can understand easily, you can make things

simpler by imposing more structure on it. For example, suppose you want to let a user select one

of the 27 cities where your company has offices. A single list containing all those cities would be

imposing, even if the choices are sorted alphabetically. Unless the user knew exactly which choice to

select, finding the right one would be tricky. For example, to find the closest office, the user would

need to look at every choice and decide which was in the nearest city.

You could add structure to this list by grouping the cities geographically instead of alphabetically. For

example, the user might first select a state and then see a list of only the cities in that state. Hopefully,

after the user has narrowed down the search by state, the resulting list would contain closer to the

desired seven items.

46 Start Here! Fundamentals of .NET Programming

Don't Allow Mistakes
If your application gives users a chance to enter incorrect data, someone eventually)Nill. That means

you need to write extra error-handling code to catch errors. It also means that you need to let users

know about any mistakes and force them to fix them. That process slows the user data-entry process

down and can be frustrating sometimes.

Often, you can prevent errors in the first place by using the right kind of control. For example,

instead of letting the user type one of a series of choices, offer users a selection from a drop-down

list or a series of option buttons. Similarly, instead of letting users enter a numeric value, let them pick

a value from a track bar.

Unfortunately, in some cases it's difficult to provide methods for letting the user pick values

instead of filling them in. For example, if a user must provide a number from a huge range (such as

1 to 1,000,000) or a non-integer number (such as 75.317 or $17.34), you can't use a track bar easily.

In those cases, you may be stuck letting users type the values and then performing extra error

checking.

Figure 4-10 shows two track bars. The first lets the user select a value between 1 and 10 and shows

tickmarks below the slider. Track bars handle this situation well.

Pick a value between 1 and 10.

Pick a value between 1 and 1 million.

786096, I

FIGURE 4-10 Track bars work well when selecting from a small number of choices (top), but not when selecting
from a large number of choices (bottom).

The second track bar lets the user select a value between 1 and 1 million. On this control, the

tickmarks are so close together that they look like a thick line. The user cannot use the slider to select

a specific value easily, making the track bar much harder to use. Also note that track bars cannot

handle non-integer values.

Provide Hints
An application should provide hints to help confused users and to explain what's wrong when an

error occurs. Hints should be unobtrusive enough that they don't interfere with or condescend to

experienced users but still provide aid to beginners. For example, a tooltip can give users a hint about

CHAPTER 4 Windows Program Components 47

what is expected in a field. If a user presses Fl while focus is on a field, context-sensitive help can give

more information about that field.

Finally, if there's an error, the form can flag the offending field and display an error message

indicating what went wrong. Be sure the error message gives the user enough information to fix the

problem. Saying "Input string was not in a correct format" doesn't help most users as much as saying

"Please enter the number of items purchased.''

Summary

This chapter described some of the standard features of Windows programs. It paid particular

attention to menus, context menus, toolbars and ribbons, and dialog boxes. It also briefly described

some user interface design recommendations. Unfortunately, user interface design is a major topic,

so only a few guidelines have been presented here. For more information on user interface design,

consult a book specifically about that topic or search online. For example, the following links provide

interesting facts about form design in different scenarios:

• Best Practices for Form Design:

http://www.lukew.com/resources/articles/WebForms_LukeWpdf

• Web Form Design Guidelines: An Eyetracking Study:

http://www.cxpartners.eo.uk/cxinsights/web_forms_design_guidelines_an_eyetracking_study.htm

• Sensible Forms: A Form Usability Checklist:

http://www.alistapart.com/articles/sensibleforms

This chapter mentioned a few kinds of controls that let the user enter values. For example, it

briefly mentioned group boxes, drop-down lists, and track bars. The next chapter describes some of

the controls that you can use to build a Windows application and explains what they are for. It also

explains some of the properties that Windows Forms controls support and tells how you can use them

in C# and Visual Basic applications.

48 Start Here! Fundamentals of .NET Programming

Controls

In this chapter:

111 What controls are and what some common controls are

111 What properties are and what some common properties are

111 What methods are and what some common methods are

111 What events are and what some common events are

A CONTROL IS A PROGRAM OBJECT that represents a visible feature in a Microsoft Windows

program. The object includes features that let the program manage the control to make it do things

(such as making a drop-down menu open) or change the control's appearance (such as changing a

label's text or color).

Windows programs are made up of controls. Controls include labels, text boxes, menus, combo

boxes, sliders, scroll bars, and everything else you see on a form. In fact, the form itself is a control.

In addition to controls, many programs have components. A component is similar to a control

except it has no visible presence of its own on the form at run time.

For example, a timer component allows the program to perform some task at regular intervals.

(A clock program might use a timer to update its display every second to show the current time.)

Some components do display something at run time under certain circumstances. For example,

the ErrorProvider component can display an error symbol next to a field, but it does so only if the

program marks the field as an error, and it displays the symbol on the form rather than on the

ErrorProvider. (It's a fairly small distinction, so the line between control and component can be a bit

fuzzy. Usually, it's more important to understand what an object does than to know whether it's

technically a control or a component.)

This chapter describes some of the most useful controls that you can use to build Windows

applications. Different development environments may use different controls or controls with slightly

49

different features, but the general purposes of the controls will be similar. (After all, a text box is for

entering text, so how different can it be, even in different programs?)

Microsoft provides two sets of controls: one for use in Windows Forms applications and one for

use in Windows Presentation Foundation (WPF) and Silverlight applications.

Windows Forms applications use controls and graphical methods that have been around for

years. In contrast, WPF controls use a newer graphical subsystem that has been available since the

Microsoft .NET Framework version 3.0 and that is more closely integrated into the DirectX libraries

that include high-performance graphics routines. That allows WPF controls to take better advantage

of the computer's graphics hardware, giving them a richer appearance and better performance. WPF

provides many benefits, including the following:

11 More efficient use of graphics hardware

11 Property binding to provide property animation

1111 Property inheritance to promote a consistent appearance

11 Styles to give controls a consistent appearance

11 Templates to give controls new behaviors

11 A richer control-containment model

11 Declarative programming

The details about how WPF works is outside the scope of this book, so it isn't covered here. For

more information, search online or read a book about WPF programming, such as my book WPF
Programmer's Reference (Wrox, 2010).

In addition to the controls provided by Microsoft, many third-party vendors make controls that

you can buy and add to your applications. These include controls to draw graphs, plot points on

maps, display tool ribbons, display hierarchical data in trees, provide editors, and perform many other

functions.

This chapter provides only a summary of the most useful controls provided for use with Microsoft

Visual Studio and their purposes so that you know what tools are available to you. For more

information about a control's specific features, search online for help.

Tip You can find Microsoft's web page for a particular Windows Forms control by replac
ing "textbox" with the control's name in the following link:

http://msdn.microsoft.com/library/system.windows.forms.textbox.aspx.

Similarly, you can find the page for a WPF control by replacing "textbox" with the control's

name in the following link:

http://msdn.microsoft.com/Jibrary/system.windows.controls.textbox.aspx.

50 Start Here! Fundamentals of .NET Programming

This chapter concludes by describing some useful properties that you can use to arrange controls

on a form.

Using Controls

At some point, a Windows program must use code to create the controls that make up its user

interface. The program's code can then use the control objects to interact with the user.

Fortunately, you usually don't need to worry about the code that creates the controls. Instead, you

can use a form editor to build the form interactively. You can use dragging to place controls on the

form, resize the controls, move the controls around, and set their properties intuitively at design time.

Figure 5-1 shows Visual Studio designing a form.

FIGURE 5-1 Visual Studio lets you add Windows Forms controls to a form interactively.

The Toolbox in the upper-left corner of Figure 5-1 contains controls and components that you can

put on the form. You can click one to select it and then click and drag to position a new control on

the form.

In Figure 5-1, the button is selected. You can click and drag the grab handles to resize the control,

or you can click and drag the control ltself to move it. The Properties window on the lower right lets

you easily change the control's properties. For example, you can type a new caption for the button to

display in its Text property.

One particularly important property, which is scrolled off the top of the Properties window in

Figure 5-1, is Name. If you set a control's Name property, your program's code can use that name to

refer to the control at run time.

CHAPTER 5 Controls 51

You'll learn much more about how to create and manipulate controls when you read other books

such as Start Here! Learn Microsoft Visual C# 2010 Programming or Start Here! Learn Microsoft Visual

Basic Programming. For now, take a look at the following sections to see what kinds of controls are

available and to get an idea of what they can do.

Windows Forms Controls
Table 5-1 summarizes the most useful Windows Forms controls and components. The names of com

ponents are followed by asterisks.

TABLE 5-1 Useful Windows Forms Controls and Components

DateTimePicker

Lets the user select one or more items from a list.

: Displays a color selection dialog box.

· Displays a context menu when the user right-clicks something.

Displays a data source in rows and columns. This control provides features
· for letting the user navigate through the data if the data source is a

database.

i An in-memory represe~tation of t~ble-like data.

Lets the user select a date and time.

! Represents a node in an Active Directory Domain Services (AD DS)
i hierarchy.
I

52 Start Here! Fundamentals of .NET Programming

lc:.on

f~.~j

CJ
(TI]

t!IlJl

A

ee!
!~

Control/Component

DomainUpDown

ErrorProvider *

Eventlog *

FileSystemWatcher *

FlowLayoutPanel

FolderBrawserDialog *

FontDia/og *

GroupBox

HelpProvider *

HScrol/Bar

lmagelist *

Label

Linklabel

ListBox

List View

MaskedTextBox

MenuStrip

Description

Lets the user click up and down arrows to move through a list of choices.

Displays error messages for fields that have errors.

Lets the program interact with event logs.

Notifies the program of changes to the file system.

Arranges the controls that it contains in rows or columns, wrapping to
a new row or column when necessary.

Displays a folder selection dialog box.

Displays a font selection dialog box.

Displays a caption and a border around other controls.

Provides context-sensitive help or online help for other controls.

Displays a horizontal scrollbar.

Holds images for use by other controls.

Displays text that the user cannot modify.

Displays text with links. When the user clicks a link, the program can act.

Displays a list of items that the user can select. Different modes let the user
select one or more items.

Displays a series of items with subitems. The result is similar to the different
displays provided by Windows Explorer for files.

A text box that displays a mask to help the user enter formatted values.
For example, a 10-digit U.S. phone number might have the mask(_ __)_ __ -
---so that when a user types in the numbers, it goes into that format
automatically.

Provides a form's main menu.

CHAPTER 5 Controls 53

OpenFileDialog *

PrintPreviewDialog

Process*

RadioButton

Displays an icon in the task bar's notification area. The program can change
the icon to indicate its status. The icon also can provide a menu to let the
user control the application.

Lets the user click up and down.arrows to select a number.

Displays a dialog box for opening a file.

Displays a dialog box that lets the user control the printer's page settings.

Contains other controls. You can change the appearance of the Panel to
group the controls and the Panel can display scroll bars if its contents don't
fit its current size.

Lets the program interact with performance counters.

An object that represents a printout. A program uses this object to generate
output to send to the printer or to a print preview.

Displays a preview of a printout in a control that you can integrate into your
forms.

Lets the user select exactly one choice from among the RadioButton controls
in a group. If the user clicks one RadioButton, the others in the group clear.

54 Start Here! Fundamentals of .NET Programming

SaveFileDialog *

Serio/Port*

ServiceController *

SplitContainer

StatusStrip

TabControl

TableLayoutPanel

TextBox

Timer*

Too/Strip

Too/StripContainer

Too/Tip *

VScrol/Bar

WebBrowser

A text box that can display text in multiple colors, fonts, and styles at the
same time, as opposed to a TextBox, which displays all text in a single color,
font, and style.

Displays a dialog box for selecting a file to save into.

Lets the program interact with the computer's serial ports.

Lets the program interact with Windows services. (A Windows service is a
special program that can run when the system is running even if no user is
logged in.)

Holds two child controls and provides a splitter between them. The user
can drag the splitter back and forth to make one child bigger and the other
smaller. The child controls are often containers, such as Panel controls that
hold other controls.

Displays an area, usually at the bottom of the form, where a program can
display labels and other status information. (For example, Windows Explorer
can display a status strip showing such items as the number of files selected
and their total size.)

Displays a series of tabs that hold other controls.

Arranges its child controls into rows and columns, similar to a table.

Lets the user enter text. A TextBox can use only one color, font, and style at
a time.

Lets the program take action at periodic intervals.

Displays a control that functions like a toolbar and can contain buttons,
drop-down menus or lists, and other tool controls.

Lets the user move Too/Strip controls and dock them on the edges of the
form.

Displays pop-up windows containing help and status information for other
controls.

Displays a slider that users can drag back and forth to select an integer value.

A vertical scrollbar.

A control that can display web pages. (This is like putting a browser inside
your form.)

CHAPTER Controls SS

Figure 5-2 shows many of the typical Windows Forms controls. Labels give the types of the

controls where it's not obvious.

CheckedListBO~''ii~~··1····

CheckedListBoll Item 2
CheckedlistBO>! Item 3
CheckedlistBm! Item 4
CheckedlistBO>! Item 5

TrackBar:

FlovoJLayoulPanel:

gioupBoi<l

This is a lri.Labet Oicl, here
to do something.

Te><t8ox:
s~~·;·t~~i·····

PictweBoK:

TreeView:

Animals
?: .. Mammals

' , Dog
·Cat
Ho1se

.:f}Fish
i.:;;1. Birds

Penguin

Ostrich
lh· Amphibians

FIGURE 5-2 This form contains many Windows Forms controls.

June, 2011

Sun Mon Tue: Wed Thu
29 3\l Ji
5 6 7

12 13 14
19 20 21
26 27 28

Panel:

radioButtonl

C9J radio8utton2

1
a

15
21
29

•Multiple fonts
• Mi.iitiple ::x·lcr~;
•Much more

9
16
23
30

Some of the most interesting items in Figure 5-2 are the following:

Fri
3

10
17
24
1

1111 MenuStrip, which displays the form's main menus at the top of the form.

4
ll
18
25

111 Too/Strip, below MenuStrip, which contains three buttons that hold copy, cut, and paste

images.

1111 ErrorProvider, next to the CheckBox, which displays an error icon.

111 FlowlayoutPanel, which contains three buttons. The first two are arranged in a row. The third

button didn't fit in the row, so the control moved it to a second row.

111 GroupBox, which contains a Linklabel. You have to look closely to see the GroupBox control's

light inset border.

111 StatusStrip, at the bottom of the form, which contains a label and a progress bar.

56 Start Here! Fundamentals of .NET Programming

WPF Controls
Just as Windows Forms has a set of controls, WPF does as well. Many of these are functionally similar

to Windows Forms controls, but some are new, and many of the controls-even the common ones

are somewhat different, either in appearance, in functionality, or both. Table 5-2 summarizes the most

useful WPF controls.

Note The thing you normally call a form in a Windows Forms program is called a window in

a WPF application.

TABLE 5-2 The Most Useful WPF Controls

Icon Control

Border

Button

Canvas

CheckBox

Combo Box

DocumentViewer

Ellipse

Expander

Frame

Grid

GridSplitter

GroupBox

Des(ription

Displays a border around a child control.

Lets the program act in a defined way when the user clicks the control.

Contains other controls positioned by setting left, top, bottom, and right
properties.

Lets the user select or clear an item.

Displays a drop-down list from which the user can make a selection.

Lets you dock contained controls to the DockPanel control's left, top, right, and
bottom edges.

Displays a fixed document, which is a document containing contents that the
user cannot move.

Draws an ellipse.

Displays a button that the user can click to expand or hide a content panel.

Provides page-oriented navigation, somewhat similar to the way a web browser
lets you navigate between pages.

Displays a caption and a border around other controls.

S Controls 57

Label

ListBox

List View

Media Element

Menu

Password Box

ProgressBar

RadioButton

Rectangle

RichTextBox

Scro// Bar

Separator

Slider

Status Bar

Displays a series of items with subitems. The result is similar to the different
displays provided by Windows Explorer for files.

Plays audio or video.

a window's main menu.

A text box that displays a password character for each character typed.

Lets the user select exactly one choice from among the RadioButton controls in
a group. If the user clicks one RadioButton, the others in the group clear.

Draws a rectangle.

A text box that can display text in multiple colors, fonts, and styles at the same
time, as opposed to a TextBox, which displays all text in a single color, font, and
style.

A horizontal or vertical scroll bar.

Displays an area, usually at the bottom of the window, where a program can
display labels and other status information. (For example, Windows Explorer
can display a status bar showing such things as the number of files selected and
their total size.)

58 Start Here! Fundamentals of .NET Programming

TextB/ock

TextBox

Too/Bar

Tree View

Lets the user enter text. A TextBox can use only one color, font,
and style at a time.

A control that scales its contents.

Arranges the controls that it contains into rows or columns, wrapping to a new
row or column when necessary.

Figure S-3 shows many of the typical WPF controls. Labels give the types of the controls where it's

not obvious.

list.B::ixltem

~vied!:aEiem~nt:

A scaled Label

Rad~oButton i

-<r Re:.d\c.Button 2

Rec.tan-gle

FIGURE 5-3 This window contains many WPF controls.

A T extBlcd: can (.Onta·in
infrne5 that support diffe~ent

font styles, etc

TextB.ox;

Somt: text

" klammals
Dog
Cat
Hors-t

fi·5h
~ Birds.

Peng';,;i·~

Ost6ch
Amphibian;

Controls 59

The following list mentions some points of interest in Figure 5-3:

1111 A Menu at the top of the window is displaying the window's main menus.

111 The Too/Bar below the Menu contains three buttons that hold copy, cut, and paste images.

111 The Border control contains a Button.

1111 The Expander contains a single Label that says "Expander Contents." If you click the button in the

Expander control's upper-left corner, the content area disappears, leaving just the Expander

control's button and header.

1111 The MediaE/ement is in the middle is playing a video file.

1111 The TabContro/'s first tab page contains a TextB/ock.

1111 The StatusStrip, at the bottom of the window, contains a Label and a ProgressBar.

If you compare the lists of Windows Forms controls and WPF controls, you'll find some overlap.

You can see a summary of Windows Forms controls and their rough WPF equivalents at http://msdn

.microsoft.com//ibrary/ms750559.aspx.

Properties

Typically, programs interact with controls by using the controls' properties, methods, and events.

These are described more generally and more completely in Chapter 10, "Object-Oriented

Programming."

This chapter doesn't explain in detail how you can use properties, methods, and events because

the details depend on the programming language you are using. Different controls also provide a

wide variety of features, so an exhaustive description of them all in this book is simply impossible.

The following sections do describe properties, methods, and events generally to give you an idea about

what is possible in your programs. You can also find much more detail and examples of using controls in

the companion books Start Here! Learn Microsoft Visual Basic Programming and Start Here! Learn

Microsoft Visual C# 2010 Programming, or by searching MSDN for the particular control you're

interested in.

Windows Forms Properties
Properties are attributes that determine a control's appearance or behavior. For example, a Label

control's Text property determines the text displayed by the control. For an example of a property

determining a control's behavior, the ListBox control's Sorted property determines whether the control

sorts its items.

Windows Forms and WPF controls support thousands of properties, so this chapter can't describe

them all here. Some are so control-specific that you won't care what they do unless you are using a

particular control for a specific purpose.

60 Start Here! Fundamentals of .NET Programming

However, many properties are shared by lots of controls, so it's worth listing a few of the most

common ones so that you have an idea about what they do.

There are some big differences between Windows Forms and WPF properties, so they are

summarized separately here. Table 5-3 summarizes some of the most useful Windows Forms control

properties.

TABLE 5-3 Useful Windows Forms Control Properties

Anchor

AutoSize

BackColor

Backgroundlmage

BorderStyle

ContextMenu

Cursor

Checked

Dock

Enabled

Font

ForeColor

Image

Items

Location

MaximumSize

MinimumSize

MultiColumn

Multi Line

Scro// Bars

SelectionMode

Selected Index

Size

Description

Determines whether a control's left, right, top, and bottom edges are attached to those of
the control containing it.

Determines whether a control resizes to fit its content. (This is particularly useful for Labels.)

Determines a control's background color.

Determines the image displayed by a control.

Determines the type of border (if any) that a control displays.

Determines the ContextMenuStrip that is automatically displayed when the user right-clicks
a control.

Determines the cursor that a control displays.

Determines whether a control is selected, for controls such as CheckBox and RadioButton.

Determines whether a control docks itself to one of the edges of the control that contains it.

Determines whether a control will interact with the user. For example, if a Button control's
Enabled property has the value False, then the user can see the Button, but it is dimmed and
the user cannot click it.

Determines the font that a control uses to draw text.

Determines a control's foreground color.

Determines the image displayed by a control.

For lists, determines the items displayed by a control.

Determines the position of a control within the control that contains it.

Determines the largest size a control will be even if its Anchor or Dock property tries to
make it bigger.

Determines the smallest size a control will be even if its Anchor or Dock property tries to
make it smaller.

For lists, determines whether a control displays items in multiple columns.

For TextBox and RichTextBox controls, indicates whether the control accepts multi line input.

For TextBox and RichTextBox controls, determines which scroll bars (horizontal or vertical), if
any, are visible.

For lists, determines whether the user can select one item or multiple items.

For lists, determines the index of the currently selected item.

Determines a control's size. The final actual size may also depend on the Anchor, AutoSize,
Dock, MinimumSize, and MaximumSize properties.

Controls 61

Tablndex

Tag

Text

Value

Visible

Determines the position of a control in the tab order.

This property can hold anything you want. For example, a program could store a text value
here to indicate the name of the picture in a PictureBox control.

Determines the text displayed by a control. Many Windows Forms controls, such as TextBox,
Button, and Label, display simple text (and sometimes images) and this property sets that
text.

Determines the value of a numeric control, such as a HScrol/Bar, VScrol/Bar, ProgressBar,
TrackBar, or NumericUpDown control.

Determines whether a control is visible.

In Windows Forms, the Anchor and Dock properties play key roles in arranging controls. The Dock

property keeps a control attached to one of the edges of the control that contains it. For example, a

MenuStrip typically docks to the top edge of a form and a StatusStrip typically docks to the bottom

edge. Other controls fill the center of the form.

The Anchor property determines which of the control's edges remain a fixed distance from the

corresponding edges of the control that contains it. A "normal" control that doesn't move or resize

when its container resizes is attached to the top and left of the container. In other words, its top and

left edges remain a fixed distance from the container's top and left edges.

A common strategy is to anchor TextBox controls that should stretch horizontally on the top, left,

and right. You also can place one control that can usefully stretch vertically at the bottom of a form

and anchor it on the top, left, right, and bottom.

Figure 5-4 shows a form with TextBox controls for First Name, Last Name, and Email anchored

on the top, left, and right. When the form's size changes horizontally, those controls stretch to take

advantage of the available space. The multiline TextBox at the bottom of the form is anchored on the

top, left, right, and bottom, so it stretches horizontally and vertically to use any available space.

FIGURE 5-4 The Anchor property lets Windows Forms controls resize when their containers resize.

62 Start Here! Fundamentals of .NET Programming

WPF Properties
Table 5-4 summarizes the most useful properties provided by WPF controls.

TABLE 5-4 WPF Control Properties

.·Propert~.

Background

BorderBrush

BorderThickness

Content

FontFamily

Font Size

FontStyle

FontWeight

Foreground

Height

LayoutTransform

Margin

MaxHeight

MaxWidth

MinHeight

MinWidth

Render Transform

Visibility

Width

The brush that a control uses to draw its background. (A brush defines the drawing
characteristics of a filled area, such as its color, tile pattern, or color gradient.)

The brush that a control uses to draw its border.

The thickness of a control's border.

Determines a control's content.

The name of a control's font family, such as Seqoe UI or Times New Roman.

The size of a control's font.

Determines whether a font is italicized.

Determines whether a font is bold.

The brush that a control uses to draw foreground elements such as text.

Determines a control's height.

A transformation that rotates, translates, or scales a control before the control is
arranged by the program.

The distances between a control's edges and those of its parents. For example, the value
10, 8, 6, 0 would make the control remain 10 pixels from its parent's left edge, 8 pixels
from its parent's top edge, 6 pixels from its parent's right edge, and 0 pixels from its
parent's bottom edge.

The tallest size a control can be.

The widest size a control can be.

The shortest size a control can be.

The narrowest size a control can be.

A transformation that rotates, translates, or scales a control after the control is arranged
by the program but before it is displayed.

Determines whether a control is visible.

Determines a control's width.

There are many differences between Windows Forms controls and WPF controls, the most

important of which are described in the following paragraphs.

WPF controls use brushes to determine their appearance. Those brushes can be simple solid colors

such as red or blue, or they can be more complex objects, such as gradients that shade from one

color to another or repeated patterns.

For example, Figure 5-5 shows a window filled with an lmageBrush that repeats a diamond pattern.

The window contains a Label that draws its text with a LinearGradientBrush control that shades from

lime green at the top to dark green at the bottom.

Controls 63

FIGURE 5-5 WPF controls use brushes to determine their colors.

As is the case with Windows Forms controls, the actual size of a WPF control depends on several

properties. For WPF controls, those properties include Height, Width, and Margin. Often, the Height

or Width property is set to Auto to make the control pick the size that is most appropriate. Depending on

the specific control, this may be the minimum size needed to hold the control's contents (for example,

with a Label), or it may be the largest size possible within the control's container (for example, with a

StackPanel).

WPF programs rely heavily on container controls to arrange the controls that they contain.

Container controls include DockPanel, Grid, StackPanel, UniformGrid, and WrapPanel. To control the

layout of other controls on the form, WPF programs use these container controls more often than

they use control properties, such as the properties that are similar to the Windows Forms controls'

Anchor and Dock properties.

WPF properties are different from Windows Forms properties in several respects, one of which is

that a WPF control can provide attached properties for the controls that it contains. For example, a

Grid control divides the area that it occupies into rows and columns. When you place child controls

into the Grid, it attaches Grid.Row and Grid.Column properties so that those controls can indicate their

positions.

Figure 5-6 shows a Grid control containing two Button controls whose Grid.Row and Grid.Column

properties determine where the Button controls are positioned.

FIGURE 5-6 The Button controls' Grid.Row and Grid.Column attached properties determine the controls' rows and
columns.

Many WPF controls use a Content property instead of a simple Text property so that they can display

much more complex content than Windows Forms controls. For example, a Windows Forms Button can

display only text and an image, but a WPF Button can display practically anything. For instance, a Grid

contains Label, ComboBox, and Image controls, and even MediaElement controls playing videos.

64 Start Here! Fundamentals of .NET Programming

The last difference between Windows Forms and WPF programs described here is the way that the

two approaches define controls. When you build a Windows Forms application, you use a form editor,

and Visual Studio generates code behind the scenes to create the controls.

In contrast, when you build a WPF application, Visual Studio builds an Extensible Application

Markup Language (XAML) file that declares the controls and their properties. In addition to using

the Visual Studio editor to modify the WPF controls, you can edit the WPF text directly. The following

XAML code defines the window shown in Figure 5-6.

<Window x:Class="GridRowsAndColumns.Windowl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="GridRowsAndColumns" Height="lSO" Width="250">
<Window.Background>

<RadialGradientBrush>
<GradientStop Offset="O" Color="White"/>
<GradientStop Offset="!" Color="Red"/>

</RadialGradientBrush>
</Window.Background>
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="*"/>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="*"/>
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>
<Button Margin="lO" Grid.Row="O" Grid.Column="O" Content="Button l"/>
<Button Margin="lO" Grid.Row="!" Grid.Column="!" Content="Button 2"/>

</Grid>
</Window>

Don't worry too much about how the preceding code works. If you decide to study WPF, you'll

learn a lot more about XAML code, but for now, some features of this XAML code that are worth

mentioning include the following:

11 The window's background is a Radia/GradientBrush control that shades from white in the

center to red at the edges.

1111 The Grid control defines two rows of equal height and two columns of equal width.

1111 The Button controls use Grid.Row and Grid.Column attached properties to indicate their rows

and columns.

• The Button controls have a Margin property equal to 10, so they adjust their edges to be 10

pixels from the edges of the Grid cells that hold them.

11 The Eutton controls have Content properties set to simple strings.

This section barely scratches the surface of all the possible properties that Windows Forms and

WPF controls might provide. Some are specific to particular controls, and you won't need them except

CHAPTER 5 Controls 65

under very particular circumstances. However, at this point, you should have some idea of the range

of available possibilities.

Methods

A method is a piece of code that you can call to make a control do something. A simple example is the

TextBox control's Clear method, which makes the control clear its contents. The exact syntax for call

ing these methods depends on the programming language you're using.

Methods tend to be more closely related to particular controls than properties. For example, most

controls expose Location and Size properties that determine their size and positioning; however, only

those that allow users to select data (such as controls that contain text) can reasonably provide Copy,
Cut, and Paste methods.

Still, it's worth mentioning a few of the most frequently used methods so that you have an idea of

the sorts of things that are possible. Table 5-5 lists and describes some common methods provided by

Windows Forms controls.

TABLE 5-5 Common Windows Forms Control Methods

AppendText Adds text to the end of a TextBox.

Clear Clears a TextBox.

Copy Copies the current selection in a TextBox.

Cut Cuts the current selection in a TextBox.

DrawToBitmap Makes the control draw itself onto a bitmap.

Focus Sets focus to the control.

Invalidate Flags the control's image as invalid so that it is redrawn during the next paint operation.

Paste

PointToClient

PointToScreen

Redo

Refresh

Scrol/ToCaret

Select

SelectAll

Undo

Pastes the clipboard's contents into the current selection in a TextBox.

Converts a point from screen coordinates to the control's coordinate system.

Converts a point from the control's coordinate system to screen coordinates.

Redoes the last undone change in a TextBox.

Makes the control redraw itself immediately.

Scrolls a TextBox so that the current insertion position is visible.

Selects some of the text in a TextBox.

Selects all the text in a TextBox.

Undoes the last change in a TextBox.

WPF controls support many of the same methods. In particular, the WPF TextBox provides many of

the same methods as the Windows Forms version.

66 Start Here! Fundamentals of .NET Programming

Many components also provide methods that let you make the component perform an action.

These methods tend to be very specific to particular components. For example, the ErrorProvider
component's SetError method sets an error for a control. The ErrorProvider is the only component that

sets errors for controls, so it makes sense that other components don't provide a SetError method.

Table 5-6 summarizes a few useful component methods.

TABLE 5-6 Useful Component Methods

FindAll

Find One

GetError

Get Too/Tip

Kill

RunWorkerAsync

SetError

Set Too/Tip

Start

Start

Stop

WoitForExit

Makes a DirectorySeorcher perform a search.

Makes a DirectorySeorcher perform a search and return the first result it finds.

Makes an ErrorProvider return the error associated with a control.

Returns the tooltip that a Too/Tip has associated with a control.

Makes a Process component immediately terminate its process.

Makes a BackgroundWorker start running asynchronously.

Makes an ErrorProvider associate an error with a control.

Makes a Too/Tip associate a tooltip with a control.

Makes a Process component run a process.

Starts a Timer.

Stops a Timer.

Makes a Process component wait until its process exits.

Although these lists don't describe every method that the Windows Forms and WPF controls pro

vide, they do give you an idea of the sorts of things you can do with methods. When you start writing

programs and are working with a particular control or component, you can learn about that object's

methods and use them in your code.

Events

A program uses properties to determine a control's appearance and behavior and uses methods

to make it perform some action. A third way that a program can interact with a control is by using

events. An event is a mechanism that lets a control tell the program that something interesting has

occurred.

When something interesting occurs, a control raises the event. The program can catch or handle
the event and take whatever action is appropriate. It might display new output to the user, start

performing some task, or close the application. The code that processes the event is called an event
handler.

Probably the most common event is the Click event, which is raised by buttons and menu items

when the user clicks them. For example, when the user clicks the Exit item on the File menu, the menu

Controls 67

item control raises a Click event. The program catches the event and exits, possibly saving changes

and closing files in the process.

Windows Forms and WPF controls provide a huge number of events, most of which you will

never need to use. For example, most controls provide a whole slew of mouse events, including

MouseCaptureChanged, MouseC/ick, MouseDown, MouseEnter, MouseHover, Mouseleave, MouseMove,

and MouseUp to let the program know exactly what the mouse is doing with the control. These events

may be useful for a drawing application, but it's unusual for a program to catch these messages for simple

controls such as Label and Button.

The following list summarizes some of the most useful events provided by Windows Forms controls.

TABLE 5-7 Useful Windows Forms Events

Click

DoubleC/ick

Drag Drop

Drag Enter

Drag Leave

DragOver

Enter

FormC/ased

Form Closing

KeyDown

KeyPress

KeyUp

Leave

Load

MouseClick

Mouse Down

MouseHover

MouseLeave

MouseMave

MouseUp

The user clicked the control.

The user double-clicked the control.

A drag operation has ended in a drop on the control.

A drag operation has entered the control.

A drag operation has left the control.

A drag operation is moving over the control.

The control received the input focus.

A form has closed.

A form is about to close. Code in the event handler can still cancel the close.

The user pressed a key down while the control had focus.

The user pressed and released a key while the control had focus.

The user released a key while the control had focus.

The control lost the input focus.

A form is loaded and ready for display but is not yet visible.

The user clicked the mouse over the control. This is similar to Click, but it includes
the mouse's X and Y position.

The user pressed the mouse down over the control.

The mouse is sitting still over the control.

The mouse left the control.

The user moved the mouse over the control.

The user released the mouse over the control.

68 Start Here! Fundamentals of .NET Programming

Event

Resize

ResizeBegin

ResizeEnd

Scroll

SelectedlndexChanged

TextChanged

ValueChanged

. Description

The control has resized.

The control is starting to resize.

The control has finished resizing.

For value selection controls such as TrackBar and Scral/Bar, the control's slider
moved.

For selection controls such as ListBox and TabControl, the current selection changed.

The text in a control, such as a TextBox, has changed.

For value selection controls such as TrackBar and Scrol/Bor, the control's value
changed.

WPF controls support many of the same (or similar) events provided by Windows Forms controls.

Summary

This chapter provided a brief summary of controls. It explained that controls are the components

that make up the user interface in a Windows Forms or WPF application. It also explained that

components are similar to controls, except that there is no visible piece on the form.

This chapter's main purpose was to give you an idea about some of the things that controls and

components can do. It listed some of the most common Windows Forms and WPF controls and

summarized their purposes. It also summarized the most common properties, methods, and events

that those controls and components provide to let programs interact with them. When you study

Windows Forms or WPF application development in detail, you'll learn a lot more about controls and

how to use them in your programs.

Controls and components define a program's user interface. In addition to a user interface, most

programs have extensive code behind the scenes to provide the program's functionality. For example,

a simple drawing program would need code to save and load files, change drawing tools, modify the

current drawing, and ensure that changes are saved before closing.

The next chapter describes a simple but very important part of the code that sits behind the user

interface: variables. A variable holds data that the program can manipulate. The next chapter explains

what a variable is and describes fundamental variables concepts, such as data type, type checking,

scope, and accessibility.

Controls 69

Variables

In this chapter:

111 What data types are and what the fundamental data types are

111 How strings are implemented in .NET

111 What program-defined data types are

111 How value and reference types differ

111 How a program can convert data from one type to another

111 How scope, accessibility, and lifetime affect what code can use a variable

TO MOST USERS, A PROGRAM IS a collection of buttons, labels, and text boxes stuck on a form. Be

hind the scenes, however, programs are all about data. Pieces of data hold the text displayed on the

labels, the text entered by the user, the numeric values used to make calculations, and the size and

positions of controls. Even the programs themselves are data at some level. If you open an executable

program in an editor such as WordPad, you can see the data that represents the program (although it

looks like gibberish to human eyes).

A variable is a named piece of memory that can hold a piece of data so that the program can

manipulate it. This chapter describes variables at a high level. It explains how programs can use

variables, what kinds of data they can contain, and programming concepts that make using variables

easier to use and less error-prone.

Fundamental Data Types

Users and programmers think of data values in high-level terms. They think of strings of text, pictures,

video files, and numbers. At its lowest level, however, the computer represents everything as Os

and ls. It's only when you interpret a collection of Os and ls in a particular way that you can give it

higher-level meaning.

71

Note Each 0 or 1 is called a bit. A byte is a group of 8 bits. Bytes are grouped into words.
The number of bytes in a word is chosen so that a particular computer and operating
system can manipulate words efficiently. For example, there may be 4 or 8 bytes in a word.

For instance, a piece of memory that holds the binary value 1000001 might represent the character A if

you know that that piece of memory holds character data. If the memory holds something else, such as a

number or a piece of an image, the value 1000001 might represent something else entirely. For example,

as a number, this value represents 65; and as an image, it might represent the red component of a single pixel.

A variable is a named piece of memory that can hold data of a specific type so the program can

manipulate it. The variable's data type tells the program how to interpret the data. In this example, it

indicates whether 10000001 is a character, a number, or something else.

Typically, a program declares the variable's data type when it declares the variable. The program

can put values only with that data type in the variable. For example, if a program declares a variable

to hold an integer, it cannot put a string such as "hello" in it.

Note There are ways to convert from one data type to another, however. For example,
you might want to convert the number 13 into a string containing the characters 13, or vice
versa. "Type Conversion," discusses conversion in more detail.

You can think of a variable as an envelope of a certain size and shape that can hold only
values that have the matching size and shape. You can't fit a long, skinny string in an envelope
that is sized to hold short, fat integers.

The following statement shows how a Microsoft Visual Basic .NET program would declare a

variable named customers that can hold an integer.

Dim customers As Integer

Here, the keyword Dim stands for dimension and indicates that the statement is declaring a

variable. The next word, customers, gives the name of the variable. The final piece of the statement,

As Integer, means that the variable should be able to hold an integer value. In Visual Basic .NET, an

integer uses 4 bytes and can hold values between -2,147,483,648 and 2,147,483,647.

The following code shows the equivalent declaration for a variable in C#:

int customers;

This does exactly the same thing as the previous code, just using a different programming

language.

Table 6-1 summarizes the most common data types in .NET programming. The size indicates the

number of bytes that a variable of the type occupies in memory.

72 Start Here! Fundamentals of .NET Programming

TABLE 6-1 .NET Programming Data Types

Type

Boolean

Byte

Char

Date

Decimal

Double

Integer

Long

Object

SByte

Short

Single

String

Ulnteger

Ulong

UShort

Size

2

1

2

8

16

8

4

8

4

1

2

4

Varies

4

8

2

Range

True or False

Oto 255

A Unicode character

0:00:00 on January l, 0001 through 11:59:59 PM on December 31, 9999.

Numbers with roughly 29 digits of precision

Roughly -l.8e308 to l.8e308, with 17 digits of precision

-2,147,483,648 to 2,147,483,647

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Can hold any data type

-128 to 127

-32, 768 to 32, 767

Roughly -3.4e38 to 3.4e38, with 8 digits of precision

A string with 0 to roughly 2 billion Unicode characters

Oto 4,294,967,295

Oto 18,446,744,073,709,551,615

Oto 65,535

Note An e or E in the notation for the Single, Double, and Decimal data types means that

an exponent follows. For example, l.2e4 means 1.2 x 104, which is equivalent to 12,000.

The signed integer data types SByte, Short, Integer, and Long have unsigned versions Byte, UShort,

Ulnteger, and Ulong.

The floating point types Single and Double store a certain number of significant digits
and an exponent. For example, a Single can store positive values between 1.401298e-45 and
3.4028235e38. For values close to 0, the significant digits are far to the left of the decimal point.
For large numbers, the significant digits are far to the right.

No data type can store digits very far to the left and right of the decimal point accurately at
the same time. For example, if you add the Single values le30 and le-40, the result will drop the
least significant digits, resulting in le30.

The Decimal data type stores a total of 29 digits to the left and right of the decimal point so it
can store values as large as roughly 7.9e28 and as close to 0 as le-28. This gives Decimal a more
restricted range than Single and Double, but it has more digits of precision. That makes Decimal

the preferred choice for working with currency values where precision is important and values are
unlikely to exceed they data type's range.

Strings are an odd special case that deserve a section of their own, so let's get to it.

CHAPTER 6 Variables 73

Strings

Different programming languages handle strings in very different ways. In some languages such as

C++, a string is a null-terminated series of characters. In other words, it's a byte array with each byte

holding the code for a single character plus a final byte holding the value 0 to mark the end of the

string.

In the .NET languages Visual Basic and C#, a string is more complicated. In those languages, a

string includes some header information describing the string, plus a reference pointing to a buffer

that holds the actual null-terminated string somewhere else in memory.

The characters in a string are stored as Unicode, a system that uses 2 bytes to represent each

character. Only 1 byte is necessary to store the characters on a standard Western keyboard (A, 8, 3,

&, and so forth) but 2 bytes are needed to represent characters from other alphabets such as Arabic,

Chinese, and Cyrillic.

To make matters more confusing, strings in .NET are immutable. That means once a string is

defined, its value can never change. When a program modifies a string, such as by appending a letter

to it, the string is actually replaced by a completely new string holding the new value.

One consequence of string immutability is that it is relatively inefficient to build large strings

incrementally. For example, suppose you wanted to build a string containing the names of thousands

of customers concatenated together. You could make the program loop through the names, adding

each one to an ever-growing string. Unfortunately, each time you added a new name, the program

would create a new string, copy the old value plus the new name into it, and discard the old string.

For relatively small strings where the program is only concatenating a few dozen pieces, you

probably won't experience serious performance problems. If you need to combine many more pieces,

you can use .NET's StringBuilder class. This class allocates a buffer and lets its string grow into it. If the

string grows too big, the class allocates a bigger buffer with empty space so that the string can grow

some more. This is more efficient than creating entirely new strings every time you add a new piece

to the string.

Strings share an intern pool that holds all the string values that are currently in use. If two strings

contain the same value, their buffers actually point to the same location in the intern pool.

This may all seem fairly confusing. Fortunately, you can usually ignore most of the details and treat

String as a simple data type similar to Integer or Decimal. You'll need to worry about the details only if

your program does a lot of string manipulation.

Program-Defined Data Types

In addition to using the "simple" data types described earlier in this chapter, such as Integer, Decimal,

and Boolean, a program can define new data types. The most common kinds of data types that a

program can define are arrays, enumerations, structures, and classes.

74 Start Here! Fundamentals of .NET Programming

Arrays
An array is a series of values with the same data type stored in a single chunk of memory. When a

variable is an array, its name refers to the array as a whole, and an integer called index in the array lets

the program select a particular value inside it.

As an analogy, you can think of an array as similar to the mailboxes in an apartment building. The

building has a street address (the array's name) that all the mailboxes share. Each mailbox has a different

apartment number (the index) that differentiates them.

In Visual Basic and C#, arrays always have 0 as the smallest index, so if an array contains 10 items,

the indexes are 0 through 9.

The syntax for declaring and using arrays varies greatly among different languages. The following

C# code declares an array named salaries holding 100 Decimal values. It sets the first entry's value to

10,000 and then sets the second entry equal to the first.

double[] salaries= new decimal[lOO];
salaries[O] 10000;
salaries[!] = salaries[O];

The following code shows comparable Visual Basic code:

Dim salaries(99) As Decimal
salaries(O) 10000
salaries(!) = salaries(O)

Arrays can have more than one dimension. For example, you could declare a two-dimensional

array and use two indexes to address the items it contained. As a concrete example, you could use a

two-dimensional array to store information about which piece is occupying the squares on a chessboard.

An array can contain items that are of the fundamental data types such as Integer or String, or it can

contain items from some other program-defined data type, such as enumerations or classes (described

next). An array can even contain items that are themselves arrays, or structures containing arrays as fields.

Enumerations
An enumeration is a type that defines a list of allowed values. A variable of this type can take only one

of the defined values.

For example, a program could define a Meo/Type data type that allowed the values Breakfast,

Lunch, and Dinner. The following code shows how a Visual Basic program could define this data type:

Enum MealType
Breakfast
Lunch

Dinner
End Enum

Variables 75

Having defined the enumeration, the program can declare variables of that type. The following

Visual Basic code declares a variable of type Mea/Type and then sets it equal to the value Breakfast:

Dim meal As MealType
meal = MealType.Breakfast

Internally, variables of the enumeration's type are stored using an integral data type such as Integer or

Long. Different languages may provide ways to specify which integer is used to represent some or all

the values, and a language may allow more than one value to represent the same integer.

For example, the following C# code also defines a Mea/Type enumeration:

enum MealType
{

}

None = -1,
Breakfast 1,
Lunch,
Dinner,
Supper = Dinner

This code explicitly sets the numeric value of None to -1 and the value of Breakfast to 1. The Lunch

and Dinner values take default numeric values equal to 1 more than the previous values, so they are

stored as 2 and 3, respectively. The final line in the enumeration defines the value Supper and sets it

equal to Dinner so that the program can use the two values interchangeably.

You could use Integers to store values instead of using an enumeration and then just remember that -1
means no meal, 1 means breakfast, and so forth, but the enumeration makes the code much easier

to read. It also allows the programming environment to check values so that the code can't

make nonsensical assignments accidentally, such as setting a meal type to 10, a meal type that

doesn't exist.

Note You can still mess up enumeration assignments if you use explicit data type

conversion to convert an integral value into an enumerated value. The section "Explicit

Conversion,'' later in this chapter, says more about data type conversion.

Structures
A structure is a named group of related fields. For example, if a program frequently needs to

manipulate customer address data, it could define an Address structure that includes fields for Street,

City, State, and Zip. Then the program could declare a variable of type Address and set the individual

fields within that variable.

76 Start Here! Fundamentals of .NET Programming

The following code shows how a C# program could define the Address data type. In this example,

the Street, City, State, and Zip fields are all strings:

struct Address
{

string Street, City, State, Zip;
}

The following code shows one way a C# program could declare a variable of type Address and

initialize its fields:

Address customerAddress;
customerAddress.Street = "1337 Leet St";
customerAddress.City = "Bugsville";
customerAddress.State = "MA";
customerAddress.Zip = "02167";

A structure makes it easy to keep related pieces of data together. For example, an Address object

can hold the address information for a particular customer and routines can pass the information

back and forth. (Chapter 9, "Routines," has more to say about routines.)

In another example, an array of structures can hold information about a group of customers. The

program could let the user select a customer's name from a list. It could then use the corresponding

array entry to get that customer's address information.

In some languages, including Visual Basic and C#, a structure can also define methods to perform

actions related to the data. For example, an Address structure might have a PrintEnvelope method that

a program could invoke to print an envelope for the address.

Classes
A class is very similar to a structure (at least in languages that allow structures to define methods). It

defines a package that can contain fields and methods that represent some kind of object.

The syntax for declaring and using structures and classes is also very similar. The following code

shows how a C# program might define an Address class:

class Address
{

public string Street, City, State, Zip;
}

The only difference between this code and the previous code is that this version uses the keyword

class instead of struct.

Variables 77

After you create a variable of type Address, you can use the same code shown earlier to initialize

the variable's fields:

customerAddress.Street = "1337 Leet St";
customerAddress. City = "Bugsvi 11 e";
customerAddress.State = "MA";
customerAddress.Zip = "02167";

There are two main differences between structures and classes.

The first difference is philosophical. Some developers think of a structure as a relatively simple

piece of data that doesn't really perform any actions of its own. A structure's values may not change

much while it exists, and it may have a limited lifetime.

In contrast, a class defines something more complicated that may need to perform complex

actions. An object defined by a class may have a long lifetime, perhaps even being stored in a

database so that it can be re-created the next time the program runs, and may change frequently

during its lifetime.

At http://msdn.microsoft.com/library/ms229017.aspx, Microsoft recommends that you use a struc

ture when instances typically have short lifetimes and satisfy all the following conditions:

1111 It represents a single logical value.

1111 It is smaller than 16 bytes.

1111 It is immutable.

1111 The program will seldom need to convert the instance to and from another object type.

These requirements are rather hard to satisfy, particularly the size restriction. After all, a single

String variable uses more than 16 bytes to store its header information, even if it contains only a blank

string.

The immutability requirement also seems strange. What difference can it make if you change the

value of a structure after it has been defined?

Both of these requirements make some sense after you understand the difference between value

types and reference types. This is an important and confusing enough topic that it is explained in the

following section.

Value and Reference Types

A value type is a data type where a variable stores the actual value of the data. For example, an

Integer uses 4 bytes to hold the value of a number. When you define a variable of type Integer, the

variable's memory location holds the value.

78 Start Here! Fundamentals of .NET Programming

In contrast, a reference type is a data type where a variable holds a reference pointing to some

other location in memory that holds the actual data. String is a reference type because a String

variable doesn't actually hold the characters in the string. Instead, it holds a reference to a position in
memory that holds the characters.

Classes are also reference types. That means a variable with a class type actually holds only a reference

to a piece of memory that holds the object's data.

Structures, in contrast, are value types. When you declare a variable of a structure type, that variable

actually contains the structure's field values themselves.

Figure 6-1 shows the difference graphically. The structure variable on the left (a value type) contains the

structure's fields. The class variable on the right (a reference type) contains a reference that points to

another piece of memory that holds the data.

Structure Variable Class Variable

FIGURE 6-1 Class variables store a reference to data that is in some other part of memory.

The difference between value and reference types has several important consequences.

First, when you declare a value variable, the program allocates memory for it as soon as the variable

exists. For example, if the variable holds an Address structure, that variable's Street, City, State, and Zip

fields all exist as soon as the variable exists. Initially, those fields all hold blank strings, but they exist.

The following code shows how a C# program might create an Address structure:

Address customerAddress;

However, when a program declares a reference variable, the variable only allocates the reference

(the single rectangle under the words "Class Variable" in Figure 6-1). The piece of memory that holds

the actual data (represented by the stack of four rectangles on the right) isn't yet allocated.

A Visual Basic or C# program needs to use the New or new keyword, respectively, to allocate the

memory to hold the data. For example, the following code shows how a C# program might create an

Address object:

Address customerAddress =new Address();

A second important consequence of the nature of value and reference types involves assignment.

If you set one value type variable equal to a second one, the first variable contains a copy of the

values in the second.

Variables 79

In contrast, if you assign one reference type variable to a second, the first now points to the same

data as the second. The two variables now point to the same data, not to separate copies that happen

to hold the same values.

Figure 6-2 shows the difference graphically.

Value Variables Reference Variables

FIGURE 6-2 Assigning one reference variable to another makes them both point to the same data.

This can cause confusion to programmers who are inexperienced with reference types. For example,

suppose that a program has two variables named customerl and customer2. They represent people

who live in the same household, so they would have the same address and phone number. For this

example, they even have the same last name. In that case, you might like to set customer2 equal to

customerl and then change the FirstName field for customer2. The following code shows how a Visual

Basic program could do this:

customer2 = customerl
customer2.FirstName = "Amy"

Here's where the confusion occurs. If the Customer data type is a structure, then these are value

type variables, so setting customer2 equal to customerl makes customer2 contain a copy of the data,

as shown on the left in Figure 6-2. Changing the FirstName field in customer2 works as expected, and

everything's fine.

Now, suppose that Customer is a class (a reference type) instead of a structure. In that case, setting

customer2 equal to customerl makes the two variables point to the same piece of memory, as shown

on the right in Figure 6-2. Now, when the code changes the FirstName field in customer2, it changes

the name in the only copy of the data around, so the change also appears in customerl.

This is probably not what a beginning programmer expects. To make matters worse, the code will

run just fine, and the programmer can even inspect the new values in customer2 without noticing

anything wrong. The error may only surface sometime in the future, in a piece of code far away from

the code that did the copying.

To understand further the difference between structures and classes, suppose that you want

to store employee information that includes name, contact information, next of kin, a full resume,

biography, and senior thesis. If you store the data in a structure, then anytime you declare a variable

80 Start Here! Fundamentals of .NET Programming

of that type, you allocate a lot of memory. Declaring one or two such structures won't be a problem,

but what if you want to make an array containing an entry for each of your 10,000 employees? In that

case, the amount of memory required would be huge.

Copying that much memory around could also be time-consuming. Using structures makes it easy

to copy values by setting one variable equal to another. That may be what you want to do, but using

structures also makes it easier to do this accidentally. If a program uses a lot of structure variables,

frequently setting one equal to another or passing them back and forth between different pieces of

code, it may end up spending a lot of time copying values from one structure to another.

Now, suppose that you store the information in a class instead of a structure. In that case, variables

of the class occupy very little memory themselves. It's the data to which they point that takes up a lot

of memory. (See Figure 6-1 again.)

An array containing 10,000 entries of this type occupies only about 40,000 bytes (4 bytes per entry).

The array isn't very big, so allocating it is relatively fast. It's only when you initialize all the values in the

array that you allocate big chunks of memory, and that may take a while. If you need to use only a few of

the entries, then you may be able to load only those entries and save a lot of time and memory. (If you

need to use every entry, then you're stuck loading them all, whether you use a structure or a class.)

Classes also make it easier to pass objects around without copying them. For example, suppose that

you need to schedule a tennis tournament and you have an array of Player objects representing the

participants. The program could perform some sort of calculation and come up with pairs of Player

objects representing players who should play against each other. The variables representing the

players in a match would reference the same data as the array, so the program would not need to

copy the players' data or move it around as it performs its calculations.

Now that you have a better understanding of the difference between value and reference types,

it's worth revisiting some of the rules Microsoft proposed for using a structure instead of a class. Two

of the rules said you should use a structure in the following situations:

ill It is smaller than 16 bytes.

ill It is immutable.

The first rule makes some sense because value types carry their data around with them. If a structure

is large, then setting one variable equal to another or passing the data around to different pieces of

code can be slow and use a lot of memory. If you store the data in a class, only a r~ference to the data

moves.

The second rule makes some sense if you think of the variable rather than the data it represents.

Suppose that you have a Player variable named opponent and Player is a structure. If the program sets

opponent once and leaves it alone, there's no problem. However, suppose that in calculating the next

opponent for a match, the program must set and reset opponent many times. Because Player is a structure,

each of those modifications makes a new copy of all the data contained in a Player structure, and that

can be time-consuming. Now, suppose that Player is a class. In that case, the program can reassign

opponent as often as necessary without shuffling large amounts of data back and forth.

Variables 81

The bottom line is that structures and classes are both useful so long as you keep their differences

in mind. Sometimes a structure is handy because declaring a structure variable automatically allocates

the variable's fields and it's easy to copy one variable's values to another. Other times, it's handy to

use a class so that a program can move references to the data without moving the data itself.

Tip To make a copy of a structure, you can simply set one variable equal to another, but

that doesn't work for classes. Sometimes, however, a program must make a copy of a class

variable's data.

In that case, the program must create a new instance of the class using the New (Visual

Basic) or new (C#) keyword and then copy each of the object's fields.

To make copying objects easier, many classes define a Clone method, which makes an

object create a copy of itself. For example, the following Visual Basic code shows how

a program might make a copy of a Customer object, assuming that the Customer class

provides a Clone method:

customer2 = customerl.Clone()

In addition to the fundamental differences between value and reference types, programming

languages place practical restrictions on structures and classes. For example, in C# and Visual

Basic, structures cannot inherit, but classes can. These kinds of restrictions are described further in

Chapter 10, "Object-Oriented Programming."

Type Conversion

Programs often need to convert values from one type to another. For example, if the user types the

value 10 into a text box, the program might want to convert that string value into the number 10.

Although the string value 10 is obviously a number to a human, the difference between the string 10

and the number 10 is critical to a computer program. The program cannot perform arithmetic opera

tions, such as addition and multiplication, on the value unless it has a numeric type.

Similarly, a program cannot treat a numeric value as if it were a string. For example, it could not

extract the last character in the number 1337 because 1337 is not a string. The program would first

need to convert the value from a number into a string before it tried to apply string operations such

as finding a substring.

Programming languages let you perform conversions in two ways: explicitly or implicitly.

Explicit Conversion
In an explicit conversion, you use programming language syntax or a function call to convert a value

from one data type to another. For example, suppose input is a variable holding a textual value

entered by the user and total is an integer variable. The following code shows how a Visual Basic

program might convert the value from text to Integer:

total = Cint(input)

82 Start Here! Fundamentals of .NET Programming

In this example, the code uses Visual Basie's Clnt function to convert the string into an Integer.

The following code shows another way that a Visual Basic program could convert the string into an

integer:

total = Integer.Parse(input)

This code uses the Integer class's Parse method to read the string value and return an integer

result.

The following code shows the C# equivalent of the previous code:

total = int.Parse(input);

Explicit conversions make it clear exactly what your code is doing. In contrast, implicit conversions

can happen automatically and, unless you are paying close attention, it may not be clear when they

occur.

""····~;e~~x~li~i~~~o~v:rti"n~··a· ~~I~:~=~--~~~-~~~~ t~;e to ~n~;~~·~s·s~m.eti~~~- c·~l~d -~· ~·";
oerc1on.
=~= h~h=~~=N =hNh,..,.h_MW,,..,,..,.,N._-.W.--~~""=~ "-··=~··= ":,,,,,N•W•"°'''"""'''""''''""''"''')

Implicit Conversion
Many programming languages, including C# and Visual Basic, perform automatic type conversion

under certain circumstances. Generally, a program will try to perform implicit conversion if it is

combining data of different types or if the result variable has a different type than the arguments of

the calculation.

For example, suppose quantity is an Integer, and unitPrice and subtotal are Decimals. Now consider

the following C# calculation:

subtotal = quantity * unitPrice;

The program cannot multiply quantity by unitPrice because they have different data types. To

solve this problem, it promotes quantity to a Decimal. Now it can multiply the two values to get a

Decimal result and save it in the Decimal variable subtotal.

In another example, suppose that numPlayers is an Integer and tota/Time is a Double. Then

consider the following Visual Basic statement:

totalTime = numPlayers

In this example, the program implicitly converts the Integer value numPlayers into a Double before

saving it in the variable tota/Time.

CHAPTER 6 Variables 83

Implicit type conversion also can occur when the result of a calculation requires a new data type.

For example, suppose totalSickDays and numEmployees are both Integers. If you divide two integers,

the result is not always an integer (for example, 1 I 4 = 0.25) so the program cannot store the result

totalSickDays I numEmployees in an Integer. To handle this problem, the program automatically promotes

the result to a Double, which the program could then store in a Double variable.

Whether an implicit type conversion can succeed depends on whether the conversion is a

widening or narrowing conversion. In a widening conversion, a value is converted from one data type

to another data type that is guaranteed to be able to hold the value without losing any precision.

For example, any Integer value can fit in a Decimal, so converting an Integer into a Decimal is a

widening conversion. That's why the earlier statement subtota 1 = quantity * uni tPri ce works.

In a narrowing conversion, a value is converted from one data type to another data type that may

not be able to hold the value without losing precision.

Tip If you think of variables as envelopes of different sizes, you can use the terms widening

and narrowing literally. A narrow value will fit inside a wide envelope, so the value can fit

in a widening conversion without losing precision. In contrast, a wide value will not fit in a

narrow envelope, so the value cannot fit in a narrowing conversion without losing precision.

For example, suppose that totalSickDays and numEmployees are both Integers, so, as was explained

earlier, totalSickDays I numEmployees is a Double. Now, suppose that averageSickDays is an Integer.
When it executes the following statement, the program tries to implicitly convert the Double result

into an Integer to store it in the variable averageSickDays:

averageSickDays = totalSickDays I numEmployees

This is a narrowing conversion, so it may fail depending on the programming language. By default,

Visual Basic will refuse to compile this code because it performs an implicit narrowing conversion. In

contrast, C# will compile this code. At run time, it performs the calculation and then truncates the

result to fit in an Integer. For example, if totalSickDays is 7 and numEmployees is 4, the value

totalSickDays I numEmployees is 1.75, which the program truncates to 1.

Note that a program can use an explicit conversion to performing narrowing conversions even in

languages such as Visual Basic that won't perform them implicitly. For example, the following Visual

Basic code divides totalSickDays by numEmployees and then uses the Clnt conversion function to

explicitly convert the result into an Integer:

averageSickDays = Cint(totalSickDays I numEmployees)

This code is not exactly the same as the C# version because Clnt rounds to the nearest Integer
instead of truncating. The Int function in Visual Basic truncates, but it returns a Double rather than an

Integer. Therefore, the code would need an explicit conversion, as in the following:

averageSickDays = Cint(Int(totalSickDays I numEmployees))

84 Start Here! Fundamentals of .NET Programming

Scope, Accessibility, and Lifetime

Scope, accessibility, and lifetime are closely related topics that deal with the situation when a variable

(or routine, program-defined type or other programming item) exists and is usable by the program's

other pieces of code.

Scope
An item's scope includes the code that can use the item. To make programs manageable, code can be

divided in several ways. For example, different structures or classes can contain methods that contain code.

In Visual Basic, at least, a code module also can contain routines that exist outside of any structure or class.

The scope of a program item (variable, routine, method, and so forth) is generally determined by

the level at which it is defined. For example, if a variable is declared inside a routine, then its scope is

the routine and only code inside that routine after the variable's declaration can use the variable. This

is called routine scope (or method scope, procedure scope, and so on, depending on what term you use

to name a routine).

Inside a routine, certain code constructions may create their own scopes. For example, a for loop

makes a program repeat a series of statements a specified number of times. If the program declares a

variable inside the loop, only code inside the loop can access it. This is called block scope. This kind of

block may be nested so that one block might contain another one that defines its own block scope.

At a higher level, a program can define routines, variables, types, and other items inside a structure,

class, or code module, but not inside any routine. In that case, all the code in the structure, class, or

code module can use the item. This is called structure scope, class scope, or module scope. For example, the

Person class might define a FirstName field that sits outside any of the class's methods. In that case, all

the code inside the class can use the FirstName field.

For example, the following code shows a simple but complete Employee class written in C#. Don't

worry about exactly how the code works or how the main program would create and use Employee
objects. Just focus on scope:

using System;

namespace SalesFigures
{

class Employee
{

public string FirstName, LastName;
public string[] Years;
public decimal[] Sales;
private decimal Bonuses;

II Return the Employee's name.
public override string ToString()

CHAPTER 6 Variables 85

}

}

{

}

string result = FirstName + " " + LastName;
return result;

II Display the employee's sales figures in the output window.
private void ShowSales()
{

}

for (int = O; i < Sales.Length; i++)
{

}

string entry= Years[i] + ": "+ Sales[i].ToString();
Console.Writeline(entry);

The class begins by declaring several fields: FirstName, LastName, Years, Sales, and Bonuses. These

are all declared inside the class but outside of any method, so they have class scope.

The methods ToString and ShowSales are also declared outside of any method (C# doesn't let you

define a method inside another method), so they also have a class scope.

All the class scope items are usable by any code inside the class. They also may be usable by code

outside the class, depending on their accessibility (described shortly).

The ToString method declares a string variable named result. This variable is declared inside the

ToString method, so it has method scope. It is visible to code inside the method, but not to any other

code.

The ShowSales method use a for loop. The loop itself declares a looping variable named i and uses

it to control the loop. That variable is considered to be inside the loop, so it has block scope and is

usable only to code inside the loop.

Inside the loop, the code also declares a string variable named entry. That variable also has block

scope, so it is visible only to code inside the loop.

A language may or may not allow two items with overlapping scope to have the same name. For

example, classes in C# and Visual Basic can declare variables with the same name at the class and

method level. For example, in the previous code, the ToString method could declare a new variable

named FirstName. If the code does nothing to differentiate between the two names (in C#, the code

could use this.FirstName to indicate the class-scope version), it uses the more tightly scoped variable.

Neither Visual Basic nor C# allows two variables to have the same name inside a routine if their

scopes overlap. For example, a routine cannot declare a routines-scoped variable named number and

then create another variable with the same name inside a block within the routine. The code could

create two variables with the same name inside different blocks within the same routine if neither

block contains the other.

86 Start Here! Fundamentals of .NET Programming

Accessibility
A code item's accessibility determines what code (if any) outside the item's scope can access the item.

For example, a public method declared inside a class can be called by code outside the class.

Items with structure, class, and code module scope can have accessibilities that provide access to

pieces of code outside their scope. A programming language lets the code use accessibility keywords

to determine how accessible the code is.

Routine and block scope items always have accessibility limited to their scope. In other words, code

outside of a block can never use a variable declared inside the block. Because those items always have

limited accessibility, the program does not need to use an accessibility keyword to determine what

code can use them.

Table 6-2 summarizes the accessibility keywords used by C# and Visual Basic.

TABLE 6-2 Accessibility Keywords

private Private

protected Protected

internal Friend

protected internal Protected Friend

The item is usable only by code in the same structure,
class, or code module.

The item is usable only by code in the same structure
or class, or in a derived class. (Chapter 10 explains
derived classes.)

The item is usable only by code in the same assembly.

The item is both protected (usable only by code in the
same structure or class, or a derived class) and internal/
friend (usable only in the same assembly).

The internal (or Protected) keyword makes an item usable only to code in the same assembly.

In .NET applications, an assembly is the smallest self-contained unit of compiled code. An assembly

can be a complete application or a library that can be called by other applications.

For example, if the Employee class is defined in a library and its ShowSales method is declared

with the internal (or Protected) keyword, then the code in a main program that uses the library

could not call the ShowSales method.

Note Private accessibility means that only code in the same structure, class, or code module

can use the item, but it does not mean that the code must be running in the same instance of

the structure or class. For example, suppose that the Employee class's ShowSales method has

private accessibility. Then, any instance of the Employee class can call the ShowSales method for

any instance of the Employee class. In other words, if a/ice and bob are Employee objects, then

code running in the a/ice object can call bob's ShowSales method.

Variables 87

Lifetime

A variable's lifetime is the time during which it is available for use. A variable's lifetime is usually closely

related to its scope. Table 6-3 summarizes the lifetimes for typical variables.

TABLE 6-3 Variable Lifetimes

routine

structure, class

While the block is executing after the variable has been declared

While the instance of the structure or class exists

When a variable's lifetime ends, the variable is no longer available to the program and the

variable may be destroyed. (The program doesn't necessarily free the variable's memory right

away, however. It can do that whenever it is convenient, but the variable is no longer accessible

to the program.)

If the variable's lifetime occurs again, a new instance of the variable is created. For example,

when a routine executes, it creates instances of the routine-scope variables that it defines. When

the routine exits, those variables are no longer accessible. If the routine executes again, it creates

new instances of the variables.

There are two exceptions to these lifetime rules. First, a program can make all instances of
a structure or class share the same variable. For example, the Employee class might define a

SalesGoal variable to store the company's total sales goal. That value would be the same for all

employees, so the class can make all instances of the Employee class share the same value. That

means if any instance of the class changes the value, it changes for all instances. It also means

the value's lifetime includes all the time that the program is running.

Note C# programs make instances share a code item in this way by using the static

keyword. Visual Basic uses the Shared keyword.

The second lifetime exception allows a routine to declare a persistent variable that retains its

value between calls to the routine. For example, suppose that the LogMessage routine displays

an incrementing message number and a message in the console window. The routine could declare

a persistent variable named messageNumber. During each call, the routine would increment

messageNumber and display a message. The persistent variable messageNumber would keep its

values between calls to LogMessage so that the numbers would not reset every time the method

was called.

The following code shows how this routine might work in Visual Basic:

' Display a message with an incrementing message number.
Private Sub LogMessage(ByVal message As String)

88 Start Here! Fundamentals of .NET Programming

Static messageNumber As Integer 0
messageNumber += 1
Console.Writeline(messageNumber & ''· " & message)

End Sub

Note C# does not allow a routine to declare persistent variables. To get a similar effect, you

can simply make the routine store its information in a variable with structure or class scope.

Summary

This chapter explained variables. A variable is a named section of memory that can hold data of a

specific data type. It also summarized the most common data types used by .NET applications, which

include fundamental data types, strings, and program-defined types such as enumerations, structures,

and classes. Chapter 10 discusses structures and classes in more detail.

This chapter also discussed the difference between value and reference types. Not understanding

this difference can lead to some very confusing behavior and bugs in intermediate and advanced

applications.

Finally, this chapter listed the three features that determine when and where a program can access

code items such as variables, structures, and classes: scope, accessibility, and lifetime.

The block scope described in this chapter is created by a code block within a routine. For

example, a for loop creates a block. Variables declared within that block are inaccessible outside of

the loop. The next chapter explains other control statements, such as the for loop that manages a

program's flow of execution. Such statements let a program repeat groups of statements or take

different actions depending on program conditions.

Variables 89

In this chapter:

1111 What pseudocode is

1111 Statements that a program can use to execute code repeatedly

111 Statements that a program can use to take different actions depending on circumstances

111 Statements that a program can use to jump to new lines of code

YOU CAN WRITE COMPUTER PROGRAMS TO do all sorts of things. A simple billing application might

add up charges for each customer, print monthly invoices, list the customers with the largest outstand

ing balances, and disconnect service for customers who haven't paid their bills in several months.

To do all those things, the program must manage its flow of execution. It cannot simply step

through a series of commands one at a time, from start to finish. For example, a billing program can't

use a separate line of code to print an invoice for each customer. If it did, it would take 100,000 lines

of code to print invoices for 100,000 customers. That would be hard to write, debug, and maintain,

particularly as new customers signed up for service and old ones left.

To make this kind of processing possible, a program needs a way to execute the same pieces of

code repeatedly in slightly different ways. It needs to contain a single chunk of code that can print an

invoice and then use that same code for every customer.

A program also needs the ability to take different actions depending on the circumstances. For

example, in addition to printing invoices, the program might need to examine each customer and

decide whether that customer's account should be suspended for nonpayment.

This chapter describes statements that let a program control its flow of execution. It explains

looping statements that the program can use to repeat a group of statements. It also describes

conditional statements that let a program perform different actions depending on the circumstances.

Before you learn about looping and conditional statements, however, you should learn a bit about

pseudocode.

91

Pseudocode

Pseudocode uses English-like words to describe computer algorithms without relying on any particular

programming language. The statements are similar to those used in a real programming language,

but the syntax is more flexible and intuitive so that developers using any programming language can

understand what they mean.

So far in this book, you've seen occasional code snippets in Microsoft Visual Basic and C# that

illustrate or clarify the ideas in the text, but in general, the exact details of the code weren't important.

This chapter deals more directly with program statements, so it's worth using pseudocode to make the

concepts easy to understand, whether you'll eventually be using Visual Basic, C#, C++, or some other

programming language.

For example, the following code shows a simple For loop in Visual Basic:

For i As Integer = 1 To 10
Do something ...

Next i

The following code shows the equivalent C# code:

for (int i = 1; i <= 10; i++)
{

Do something ...
}

These pieces of code do the same thing, but their syntax differs sufficiently to be confusing. The

following code shows the equivalent pseudocode:

For i From 1 to 10
Do something ...

In this example, a variable i starts at the value 1 and increments each time through the loop until

it reaches the value 10. Indentation indicates the statements that should be executed for each trip

through the For loop. These statements would create a scope block in a real programming language.

Pseudocode is informal, so the exact syntax doesn't matter so long as it's easy to understand the

meaning, although when writing pseudocode yourself, you should try to be as consistent with the

syntax as possible.

Depending on the level of detail you want in a particular piece of pseudocode, the code might

include English statements that describe what the code should do at a high level. For example, the

following pseudocode explains how a program might print invoices for customers with ID numbers

1 through 10:

For i From 1 to 10
Print an invoice for customer i

92 Start Here! Fundamentals of .NET Programming

This overview level of pseudocode probably isn't refined enough to let a programmer implement

the pseudocode directly in a programming language, so you may need to create a more detailed

version later.

The following sections describe program control statements using pseudocode, with occasional

examples in C# or Visual Basic so you can get a feel for what they might look like in a real programming

language.

Looping Statements

To allow you to use a series of statements repeatedly, programming languages provide looping

statements. Usually a variable or some other factor changes as the loop progresses so that the

statements inside the loop don't do exactly the same thing every time the loop repeats. For example,

a loop to print 100,000 copies of a single customer's invoice would be a lot less useful than a loop that

prints different invoices for each of 100,000 customers.

Once in a while, you might want a program to enter a loop that never ends (for example, a program

that runs continuously while the computer is running), but usually a loop should stop at some point.

To ensure that a program doesn't get stuck in an infinite loop, you should examine the code carefully

and make sure it eventually reaches a stopping condition.

The four kinds of loops described here are For loops, For Each loops, Do While loops, and While Do
loops.

For Loops
A For loop repeats a series of steps a given number of times. The basic pseudocode looks like this:

For <variable> From <first value> To <last value> By <increment>
Do something ...

This code initializes the control variable indicated by <vari ab 7 e> to the value <first va 7 ue>.

It then executes the code in the indented code block. Each time it finishes the code block, it adds

the value <increment> to the variable. When the variable's value equals <last va 7 ue>, the block

executes one final time and then exits.

Note that the looping variable may never reach <7ast va7ue> if <increment> is set incorrectly.

For example, the following loop never ends because <increment> causes the value of <vari ab 7 e>

to move away from < 7 ast va 7 ue>.

For i From 1 To 10 By -5
Do something ...

CHAPTER 7 Control Statements 93

In this example, the variable i starts at the value 1. Each subsequent pass through the loop

subtracts 5 from i, so in the second through fourth passes through the loop, i holds the values -4, -9,

-13, and so on, and will never reach the stopping value 10.

Usually a For loop uses simple numeric values to control its loop, but that need not always be the

case. In some programming languages, the syntax that initializes the control variable, increments

the variable, and checks for the loop's ending condition can contain all sorts of code. For example,

the following code shows a simple For loop in C#:

for (int i = 1; i <= 10; i++)
{

Do something ...
}

The following code shows a less typical example:

for (int x = 0, y = l; x < y; x += y, y += x)
{

Do something ...
}

This loop initializes two variables x and y to the values 0 and 1, respectively. The loop then

continues as long as x < y is true. After each trip through the loop's code block, the loop modifies

both x and y by adding y to x and then adding the new value of x toy.

This loop is so different from a typical For loop that it may be confusing to programmers who try

to read and debug it later. It might make more sense to use a different kind of loop to avoid confusion.

We will do that now.

For Each Loops
A For loop executes a block of code while a control variable ranges over a set of values defined by

cfi rst va 7 ue>, < 7 ast va 7 ue>, and ci ncrement>. A For Each loop executes a block of code while

a control variable ranges over the values in an array, list, or some other group of values.

The pseudocode for a For Each loop is the following:

For Each cvariab7e> In <va7ues>
Do something ...

For example, suppose that Customers is an array containing information about all your company's

customers. The following pseudocode describes how a program might print customer invoices:

For Each customer In Customers
Print an invoice for customer

94 Start Here! Fundamentals of .NET Programming

A programming language may not guarantee the order in which the items in the <Va 7 ues> group

are visited, although in practice, the items are typically visited in their natural order from first to last in

the group. To ensure that the items are visited in order, you can use the items' indexes in the array or

list, as in the following pseudocode:

For i From 1 To <number of customers> By 1
Print an invoice for customer i

Do While Loops
A Do While loop does something as long as a condition is true. The following shows the pseudocode

for a Do While loop:

Do
Do something ...

While <condition>

This loop executes its code block. Then, as long as <condition> is true, it executes the code block

again. Note that this code always executes its code block at least once because its stopping test occurs

at the end of the loop.

While Loops
A While loop is similar to a Do While loop except it performs its stopping test before it executes its

loop. The following shows the pseudocode for a While Do loop:

While <condition>
Do something ...

This loop starts by checking its stopping condition. As long as <condition> is true, it executes its

code block and repeats.

Note that this loop does not execute its code block even once if <condition> is initially false.

Until Loops
Some programming languages also provide Until loops. These loops are variations on While and Do

While loops that execute until a condition is true (or while a condition is false, if you prefer) rather

than while a condition is true.

The following shows the pseudocode for a Do Until loop:

Do
Do something ...

Until <condition>

7 Control Statements 95

The following shows the pseudocode for an Until loop:

Until <Condition>
Do something ...

An Until loop is equivalent to a While loop with a negated stopping condition. For example, the

following two loops are equivalent:

While (x < 7)
Do something ...

Until (x >= 7)

Do something ...

Similarly, a Do Until loop is equivalent to a Do While loop with a negated stopping condition, so the

following two loops are equivalent:

Do
Do something ...

While (x < 7)

Do
Do something ...

Until (x >= 7)

Conditional Statements

Conditional statements let a program take different actions depending on the circumstances. These

statements include several versions of If statements. Most languages also include a Case statement,

which is a simpler way of writing a series of If statements.

If
The simple If statement executes a code block only if some condition is true. The following shows the

If statement's pseudocode:

If <condition>
Do something ...

If <Condi ti on> is true, the program executes the code block. If <Condi ti on> is false, the

program skips the code block and executes the code that follows.

96 Start Here! Fundamentals of .NET Programming

If Else
The If Else statement executes one of two code blocks depending on a condition's value. The following

shows the If Else statement's pseudocode:

If <condition>
Do something ...

Else
Do something else

If <Condition> is true, the program executes the first code block. If <Condition> is false, the

program executes the second code block.

Else If
The Else If statement is really a new If statement following an If Else statement. A program can use any

number of Else If statements to make the code follow many different paths of execution depending

on the values of several conditions.

The following pseudocode shows an example that uses two Else If statements:

If <Condition 1>
Do something 1 ...

Else If <condition 2>
Do something 2 ...

Else If <condition 3>
Do something 3 ...

Else
Do something else ...

If <Condition 1> is true, the program executes the first code block. If <condition 1> is false

but <Condition 2> is true, the program executes the second code block.

The program continues evaluating conditions until it finds one that is true, and then it executes the

corresponding code block. If none of the conditions are true, the program executes the Else block.

Note The Else block is optional. If it is missing and none of the conditions is true, the
program skips to the end of the last Else If block and executes the code that follows.

Case
A Case statement, which is sometimes called a multi-way branch, lets the program take one of

several actions based on the value of an expression. The following shows the pseudocode for a Case
statement:

CHAPTER 1 Control Statements 97

Case <variab1e>
Value <va1ue 1>

Do something 1 ...
Value <va1ue 2>

Do something 2 ...
Value <va1ue 3>

Do something 3 ...
Else

Do something else ...

The Case statement is followed by several Value statements that provide comparison values.
The program compares <vari ab 7 e> with each value. When it finds a match, the program executes
the corresponding code block and then either continues with the next comparison value or skips

to the end of the Case statement, depending on the particular language in use. If the program
doesn't match any of the comparison values, it executes the Else code block.

Note The Else code block is optional. If it is missing and the variable matches none of the
values, the program does not execute any of the code blocks.

The syntax for the Case statement varies more between languages than the syntax for other
conditional statements. For example, suppose a program has defined a UserType enumeration. The
following code shows a Case statement in Visual Basic to take action depending on the value of the
user variable:

Select Case (user)
Case UserType.Customer

MessageBox.Show("Sorry, you are not authorized to use this feature")
Case UserType.SalesClerk, UserType.Supervisor

MessageBox.Show("You are authorized to use this feature")
Case Else

MessageBox.Show("Unknown user type")
End Select

The following code shows a C# version:

switch (user)
{

case UserType.Customer:
MessageBox.Show("Sorry, you are not authorized to use this feature");
break;

case UserType.SalesClerk:
case UserType.Supervisor:

MessageBox.Show("You are authorized to use this feature");
break;

default:

98 Start Here! Fundamentals of .NET Programming

}

MessageBox.Show("Unknown user type");
break;

Different languages provide different features for listing the comparison values. Visual Basic has

a flexible syntax that lets you list values separated by commas, use a range of values, or indicate

that the tested value must be greater than or less than another value. For example, the following

statement tests for the values 1 and 5, any value between 10 and 20, and any value greater than 100:

Case 1, 5, 10 To 20, Is > 100

Tip You can always rewrite a Case statement as a series of If and Else If statements. You
should pick the version that makes the code easiest to read.

Jumping Statements

The control statements described so far make a program jump to various pieces of code. Depending

on conditions, the program may jump to a particular code block or jump over other code blocks.

The statements are intuitive, so the jumps are easy to understand-and in fact, it's easy to

understand a While loop without even thinking about the fact that the loop makes the program jump

from the end of the loop to the beginning.

Many programming languages provide a few less structured ways to let a program jump from one

place to another. The least structured of these is the Go To statement.

Go To
The Go To statement makes the program immediately jump to an arbitrary line of code. The pseudocode

for a Go To statement looks like the following:

Go To <label>
Do something ...

<label>:
Do something else ...

Here, I've added an extra level of indentation so that labels can stand out on the left.

When the program reaches the Go To statement, it jumps to the line of code identified by < 7 abe 7 >

and continues execution from there.

7 Control Statements 99

This example is a bit unrealistic because there's no way for the program to execute the code in the

first code block-in other words, the first Do something ... code would never execute. The following

code shows a more realistic example:

If <condition>
Go To label!

Go To label2
label!:

Do something ...
Go To label3

label 2:
Do something else ...

label3:

If <Condi ti on> is true, the code jumps to 1abe11. If <Condi ti on> is false, the code continues
reaches the next Go To statement and jumps to 1abe12.

If it goes to 1abe11, the program executes a code block and then jumps to 1abe13, skipping the

second code block.

If it goes to 1abe12, the program executes a second code block and then continues executing the

code after 1abe13.

This code does the same thing as a simple If Else statement, but it's a lot messier. Figuring out

exactly where the program goes and when can be tricky, particularly if the code blocks are long.

Even still, matters could be much worse. A program could use Go To statements to make the code

jump all over the place, including backward to earlier code. (A loop does that implicitly.)

Note In practice, languages do place some restrictions on the Go To statement. For
example, a language may not allow the program to jump into a For loop because that
would bypass the code that initializes the loop's control variable. Languages also typically
don't let you jump from inside one routine to the middle of another, or from a method in
one class to a method in another class.

Unrestricted use of Go To can lead to something called "spaghetti code"-code that's so

convoluted it's extremely difficult to figure out how it works. To prevent confusion, the vast majority

of programmers use the Go To statement as little as possible. Many even prohibit its use entirely. You

can always rewrite code so that it uses conditional and looping statements instead, so you don't really

need the Go To statement anyway. (I've seen examples that programmers have created to show that

the Go To statement is sometimes simpler, but I've never really been convinced.)

Even if you don't use the Go To statement, there are times when it's useful to break the normal

rules for If, If Else, While, and the other control statements. To make programs more flexible without

requiring the use of the overly flexible Go To statement, some languages provide Continue, Exit, and

Return statements.

100 Start Here! Fundamentals of .NET Programming

Exit
An Exit statement makes the code break out of an enclosing loop and continue executing after the
loop's code block. It provides a way to end a loop early.

Note In Visual Basic, the Exit statement is followed by the kind of loop that you want to
exit, such as Exit For. This allows the program to exit a specific loop if the code contains
multiple nested loops. If the nested loops include more than one loop of the same kind, the
program exits the innermost loop-the one closest to the Exit statement.

In C#, the equivalent keyword is break.

The following pseudocode searches the Employees array for an employee that can handle a certain
job. When the code finds an employee that can do the job, it assigns the job to the employee and
ends the loop:

For Each employee In Employees
If employee can handle the problem

Assign the job to employee
Exit

Continue
The Continue statement makes the program skip the rest of a code block inside the surrounding loop
and continue with the next iteration of the loop. For and For Each loops update their control variables
before starting the next trip through the code block.

Note In Visual Basic, the Continue statement is followed by the kind of loop that you want to
continue, such as Continue For. This allows the program to continue a specific loop if the code
contains multiple nested loops. If the nested loops include more than one loop of the same
kind, the program continues the innermost loop-the one closest to the Continue statement.

For example, the following pseudocode checks customers and disconnects those who owe $100 or
more:

For Each customer In Customers
If customer balance < $100

Continue
Disconnect the customer
Send a disconnect notice email
Print a disconnect notice letter

The code uses a For Each loop to examine each customer in the Customers array. If the customer
has a balance under $100, the code uses a Continue statement to skip the rest of the loop's code

CHAPTER 7 Control Statements 101

block and continue the loop with the next customer. Otherwise, the code continues to disconnect the

customer and send email and letter notifications.

Note It would be easy to rewrite this example without the Continue statement by using
an If statement that disconnects the customer only if the balance is at least $100. You may
want to take a moment to figure out how you would do that.

Return
The Return statement makes the program immediately exit the routine that it is currently executing.

If the routine returns a value, the Return statement takes a parameter that indicates which value to

return.

Note Visual Basic also has Exit Sub and Exit Function statements that let a program exit
subroutines and functions early. Using the Return statement seems more consistent to me,
but which you decide to use is a matter of personal programming style.

Jumping Guidelines

All jumping statements break the normal flow of an application, so they make the code harder to

understand. To avoid confusion, you should use them as little as possible.

Of these statements, the Return statement seems the least confusing. It exits a routine so that a

programmer reading the code doesn't need to look at that routine anymore.

Despite its relative simplicity, some developers never use Return. Instead, they write code that

always exits a routine by executing the last line of code. The thought is that having a single exit point

makes it easier to figure out where the routine is exiting.

The Exit and Continue statements are the next least confusing. Their general ideas aren't too

complicated, but a programmer reading them must figure out which enclosing loop is affected and

find its start or end.

The Go To statement can create unreadable code that's nearly impossible to debug, so many
developers never use it. (I've never needed one in many years of experience programming in several

languages.)

102 Start Here! Fundamentals of .NET Programming

Error Handling
-----· -·------·----------------·-··---·----···--···-····- ········-···-·--··--·····---------··---------

No matter how well-designed and implemented a program is, errors will occur eventually. These

may be caused by incorrect code or by circumstances outside the program's control, such as the user

entering incorrect values or a printer not being connected to the network.

Different languages handle errors in different ways, but Visual Basic, C#, C++, and Java use a

similar approach. The basic syntax in pseudocode is as follows:

Try

statements ...
Catch <exception>

statements ...
Finally

statements ...

The statements after the Try keyword are the ones that might cause an error.

If an error occurs, the program executes the statements after the Catch keyword. (If no error occurs,

the program skips those statements.) The variable <exception> gives the program information about

the error. For example, this might include an error code, detailed information about the error, and a

message describing the error. The program can use this information to try to fix the problem or at

least tell the user what has gone wrong.

After the Try and Catch blocks have finished, the program executes the statements after the Finally

keyword. It executes those statements no matter how the code exits the error handling code, whether

or not it executes the statements in the Catch block. It even executes the Finally block if the code

jumps out of the error handling code by using an Exit, Continue, or Return statement. Often, programs

place code in this block to perform cleanup actions that should occur whether or not the code succeeded,

such as closing files or disconnecting from databases.

Note Handling an error by using a Try Catch Finally block is called catching the error.
Because you catch an error, causing an error to happen is called throwing an error.

Summary
---·-·-------··-·-----------------------------·--·------··-···---····------------·

Programming languages provide several statements to let you control the flow of execution. Looping

statements, such as the For Each and While statements, cause a program to execute the same code

many times. Conditional statements, such as the If and Case statements, let a program take different

actions depending on the circumstances.

Many languages also provide other statements that let you break the normal flow of control

provided by the standard control statements. Examples include the Return statement, which causes

CHAPTER 7 Control Statements 103

execution to exit a routine early, and the Exit and Continue statements, which end or repeat a loop

early. Very few programmers use the Go To statement regularly.

This chapter described each of these statements using pseudocode, an English-like way to describe

algorithms without assuming that you are using a specific programming language.

The looping statements described in this chapter let programs reuse code blocks. For example, a

For loop can let a program execute the same piece of code many times in a single block.

Another way to reuse code is to place it in a routine and let other pieces of code call the routine

as needed. Placing code in a loop lets you call the code repeatedly from one location in the program.

Placing it in a routine lets you call code as many times as necessary from other locations in the

program.

The next chapter describes routines. It explains the different kinds of routines a program can

define and explains how to call a routine. A routine not only allows different parts of the program to

invoke the same piece of code, but it breaks the code up into chunks of manageable size.

104 Start Here! Fundamentals of .NET Programming

Operators

In this chapter:

11 Precedence and how it determines the order of evaluation in mathematical expressions

11 What operators are and what the most common operators are in C# and Microsoft Visual

Basic

11 How you can overload operators to define new actions for them

COMPUTERS ARE EXTREMELY GOOD AT PERFORMING mathematical calculations. A typical com

puter can perform millions of calculations per second without ever getting bored or making mistakes.

As you probably remember from math classes in school, an operator is a symbol that a program

uses to tell the computer how to combine values to produce a result. An operand is one of the values

combined by an operator.

A programming language could use any symbols to represent operators, but fortunately,

mathematics has a very long history, so many of the basic symbols are determined by common usage, the

same in most programming languages, and generally intuitively obvious. For example, the + symbol

means addition, and the - symbol means subtraction.

This chapter describes the most common operators provided by programming languages. It

explains what they do and the syntax for using them in languages such as C#, Microsoft Visual Basic,

C++, and Java.

It also explains precedence rules that tell a program which operators to apply first. Finally, this

chapter explains operator overloading, which lets you redefine operators so that they can perform

new operations, such as combining two non-numeric objects.

105

Precedence

When faced with a statement such as 1 + 2 * 3 - 4, a program must determine the order in

which it should evaluate the +, -, and * (which means multiplication) operators. For example, it could

evaluate the operators in left-to-right order to get the following:

1 + 2 * 3 - 4 =
3 * 3 - 4 =

9 - 4
5

Alternatively, the program could evaluate the operators in right-to-left order to get the following:

1 + 2 * 3 - 4 =
1+2* -1=
1 + - 2 =

- 1

As you can see, different orders of evaluation can give very different results.

Programming languages use precedence to make it clear how to evaluate expressions. Precedence

determines which operators are evaluated before others.

For example, multiplication and division (*and/) have a higher precedence than addition and

subtraction (+ and-), so they are evaluated first. Operators with the same precedence, such as

addition and subtraction, are applied in left-to-right order.

Applying those rules means the previous equation is correctly evaluated as follows:

1 + 2 * 3 - 4 =
1 + 6 - 4 =

7 - 4 =
3

The following sections contain tables listing various operators in their order of precedence. Operators

shown in one row in each table are evaluated before those that come in later rows. Operators on the

same row in a table have the same precedence and are evaluated from left to right in an expression.

Operators
---·-------

Almost all programming languages use the same symbols for the most common operators. For

example, + means addition, - means subtraction, and I means division.

A few differences, however, and different languages may also give slightly different precedence

to the various operators. The following section explains how you can use parentheses to override the

normal precedence and change the evaluation order. The sections after that summarize the most

common operators used in C# and Visual Basic.

106 Start Here! Fundamentals of .NET Programming

Parentheses
After you study the precedence tables that follow, you can come up with some interesting puzzles

in figuring out how to evaluate expressions. For example, you can try to figure out the value of the

following expression:

1 + 2 A 3 * 4 I 2

Tip The answer actually depends on the language that you are using because the" operator

means different things in C# and Visual Basic.

Although this sort of puzzle can be entertaining, it has no place in an actual program. In real code,

clarity is essential, so if an equation is at all confusing, you should rewrite it to prevent mistakes.

You can use parentheses to change the order in which operators are evaluated in an expression.

The program will evaluate the operators inside a matched set of parentheses and then use the result

in whatever operators lie outside of the parentheses.

For example, the previous equation is normally evaluated in Visual Basic in the following order:

1 + (((2 A 3) * 4) I 2)

First, Visual Basic evaluates the expression within the innermost parentheses: 2 A 3. In Visual Basic,

the " operator means exponentiation, so this results in 2A3 = 23 = 8.

Next, that result is multiplied by the value 4 (the next matched pair of parentheses), yielding 8 * 4 32.

This result is then divided by 2, resulting in 32 I 2 = 16.

Finally, that result is added to 1, which results in a final answer of 1 + 16 = 17.

Contrast that result with the result of the following equation, which uses parentheses to change

the order in which the operators are evaluated:

((1 + 2) A (3 * 4)) I 2

In this version, the innermost expressions are 1 + 2 = 3 and 3 * 4 = 12, so they are evaluated

first. The next level of parentheses combines those two results with the " operator, giving 3 A 12

312 = 531, 441. Finally, the equation divides by 2, yielding 531, 441 I 2 = 265, 720. 5, a result

considerably different from the previous one.

Unless an expression's value is completely obvious, use parentheses to make it easy to figure out.

CHAPTER 8 Operators 107

Operator Precedence
The precedence of basic arithmetic operators is similar in all the programming languages I've

encountered, but there are slight differences. Some languages also provide operators that others

don't. For example, Visual Basic uses the A symbol to represent exponentiation, but C# doesn't have

an exponentiation symbol.

Table 8-1 summarizes the precedence of the most common operators in C# and Visual Basic, with

differences between the two languages noted. Several of these operators are rather confusing, so

they are described further after the table.

TABLE 8-1 Operator Precedence in C# and Visual Basic

Primary A.B Accessing an object member

F(x) Method call

A[i] Array access C#

A(i) Array access VB

x++ Post-increment C#,l

x-- Post-decrement C#,1

Unary + Positive (identity)

Negative

Logical negation C#

Bitwise negation C#

w.==w-www..,,.,N'=='~ ~ N~Y-www'~~---www

Not Bitwise or logical negation VB

++x Pre-increment C#, 1

- -x Pre-decrement C#, 1

Multiplicative * Multiplication

I Floating-point or integer division C#

I Floating-point division VB

% ModulusC#

Integer division \ Integer division VB

108 Start Here! Fundamentals of .NET Programming

Modulus Mod Modulus VB

Additive + Addition

Subtraction

+ String concatenation

Concatenation & String concatenation VB

Bit shift << Left-shift

>> Right-shift

Comparison < Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

Equality Equals C#

"•= 'W"Yh=~=="'

Equals VB

!= Does not equal C#

<> Does not equal VB

Logical & Logical And C#

&& Conditional logical And C#

And Logical And VB

AndAlso Conditional logical And VB

A Logical Xor C#

Xor Logical Xor VB

".h ~~.wv • • .w.o=v 'w=,·=·w="v""

Logical Or C#

11 Conditional logical Or C#

Or Logical Or VB

OrElse Conditional logical Or VB

mw.w·=w"•w=•w•N• •.w '

Conditional ?: For detailed information on this, see the
section "Conditional," later in this chapter.

=mm-no.we-,

CHAPTERS Operators 109

Assignment Equals

+= Add and assign

Subtract and assign

*= Multiply and assign

I= Divide and assign

\= Integer divide and assign VB

Modulus and assign C#,1

And and assign C#

&= Concatenate and assign VB

I= Or and assign C#

A= Xor and assign C#

A= Exponentiation and assign VB

<<= Left shift and assign

>>= Right shift and assign

c•. This operator is available only in C#.

vs. This operator is available only in Visual Basic.

1- Visual Basic has no operators for ++x, --x, x++, x--, I=, or%=.

The following sections give further information about some of the more confusing operators.

Post- and Pre-Increment and Decrement

These operators add or subtract 1 from a variable and return a result. The "pre" operators update

the variable before returning the result, whereas the "post" operators return the variable's value first,

and then update the variable. Both of these operators have very high precedence, so they take effect

before the other arithmetic operators.

For example, suppose that the variable x holds the value 5. In that case, the expression ++x adds 1
to x and returns the result 6. In contrast, the expression x++ returns the value 5 and then updates x so

that it contains the new value, 6.

For a more complete example, consider the following statements:

x = 5;
result 3 * x++;

110 Start Here! Fundamentals of .NET Programming

The first line initializes x to 5. In the next line, the post-increment operator returns the value of x

(which is 5) and then adds 1 to x. The statement multiplies the returned value (5) by 3 to get 15. After

the statements are done, xis 6 and result is 15.

Now consider the following statements:

x = 5;
result = 3 * ++x;

As before, the first line initializes x to 5. This time, the second line increments x before returning its

value so the equation multiplies 3 by 6 instead of 5. After the statements are done, xis 6 and result is

18.

Table 8-2 shows the results returned by these operators and the new values for x, assuming x starts

with the value 5.

TABLE 8-2 Results and Values for x

x-- 5 4

Note You can always rewrite a statement to avoid using these operators if you find them
confusing. For example, you can rewrite the statement result = 3 "' ++x by using the
following two lines of code:

x = x + 1;
result = 3 * x;

Bitwise Operators

The bitwise operators ", -, «, », L and & operate on an integral variable's bits. For example,

suppose the byte variable x holds the value 90, which is represented as 01011010 in binary code. The

- operators negates (switches) the bits in its operand, so -x is 10100101, which is -91 in binary.

Table 8-3 summarizes the bitwise operators.

TABLE 8-3 Bitwise Operators

Complement. Switches 1 to 0 and vice versa.

Exclusive or. A bit is 1 if one but not both of the operands
have a 1 in that position.

-11110000 =
00001111

10101010 A

11110000
01011010

Operators 111

<< Bit shift left. Bits are shifted to the left by the indicated 11110000 « 2
number of positions. New bits on the right are 0. 11000000

>> Bit shift right. Bits are shifted to the right by the indicated 00001111 » 2

&

number of positions. If the value is signed, new bits 00000011
on the left duplicate the sign bit, the leftmost bit that
indicates the number's sign. If the value is unsigned,
new bits are 0.

Or. A bit is set in the result if the corresponding bit is
set in either of the two operands.

10101010 I
11110000 =
11111010

And. A bit is set in the result if the corresponding bit is 10101010 I
set in both of the two operands. 11110000 =

10100000

Modulus and Division
The modulus operator% returns the remainder after division. For example, 20 % 3 is 2 because 20 =

3 * 6 + 2.

When you divide two integers in C#, the program treats it as integer division, truncates the result,

and discards any remainder. For example, 20 / 3 gives the value 6. Together, the two operators modulus

and integer division give you all the information about how two integers divide.

If either of the operands in a division is of a floating-point type, the other is promoted to the same

type and the division is performed on floating-point values. For example, to evaluate the expression

20 / 3.0, the program promotes 20 to the floating-point value 20.0, performs floating-point division,

and gets the result 6.67 (approximately).

Conditional And and Or
The conditional logical operators, also called short-circuit or shortcut operators, perform the same

functions as their nonconditional counterparts, but they evaluate operands only when necessary.

For example, consider the following expression using the Or operator:

result = A I B;

This statement evaluates A and 8, and makes result true if either A or 8 is true.

The following statement performs a similar calculation, but using the conditional Or operator:

result = A 11 B;

This statement evaluates A. If A is true, then the result A II 8 must be true, whether or not 8 is true.

In that case, the program assigns the value true to result and doesn't bother evaluating 8.

In this example, the difference in performance is small, but suppose that instead of simple variables

A and 8, the values being combined were returned by functions that took a long time to evaluate.

In the following statement, for instance, suppose that A and 8 are functions that can take several

seconds to execute:

112 Start Here! Fundamentals of .NET Programming

result= A() I I B();

In this case, the conditional operator can save the program several seconds by not evaluating 8.

There is one drawback to the conditional operators, however. If the function 8 performs a task that

has an effect outside its own code, then you cannot tell after the statement is executed whether the

task was performed. For example, suppose that the function B opens a connection to a database and

leaves it open. After the previous statement executes, you cannot tell whether the connection is open

because you don't know whether function B was executed.

An unexpected effect, such as this one that lasts outside a routine, is called a side effect of the

routine. Side effects are often confusing and lead to subtle bugs, so it's best if you make every routine

perform a well-defined task without side effects.

The conditional Or operator doesn't need to evaluate its second operand if the first has the value

true. The conditional And operator doesn't need to evaluate its second operand if the first has the

value false. Because the And operator returns false if either operand is false, the operators already

knows that the result will be false if the first operand is false.

Conditional

The conditional operator ?:, also sometimes called the ternary operator, takes three operands. It

evaluates the first and then returns the second or third, depending on whether the first is true or false.

For example, the following code sets the value of the variable greeting to "Good morning" if ti me
< noon and sets it equal to "Good afternoon" otherwise:

greeting = time < noon ? "Good morning" : "Good afternoon";

The conditional operator can be confusing, so many programmers use If statements instead. For

example, the following code is equivalent to the previous statement:

if (time < noon)
{

}
else
{

}

greeting= "Good morning";

greeting "Good afternoon";

This version is longer but easier to read.

Note The /IF function in Visual Basic is similar to the conditional ?: operator in C#.

CHAPTER Operators 113

Compound Assignment Operators

The operators +=, -=, *=, /=, %=, &=, I=, A=, <<=, and >>= take the place of an equal sign. They take

a variable on the left, modify it using the appropriate operation and the value on the right, and save

the result in the variable on the left.

For example, the following simple statement adds 10 to the value x and saves the result in x:

x += 10;

The other compound assignment operators work similarly using their underlying operators.

Concatenation Operators

C# has a single concatenation operator, +, that combines two strings. Visual Basic can use either the +

or & operator to concatenate strings.

In both languages, the + operator combines its operands using whatever data type it thinks

appropriate, but the two languages sometimes differ on what they consider appropriate. If a program

is adding two integers, the result is an integer. If the program is combining two strings, the result is a

string. So far, that makes sense.

If one of the operands of the + operator is a string and the other is numeric; however, the result

can be confusing. In this case, Visual Basic converts the string into a numeric value (if possible) and

adds the result to the other operand. For example, to evaluate the expression 1 + "2", the program

would promote the string value "2" to a double precision floating-point value. It would then promote

the integer value 1 to a double precision floating-point value, add the 2, and get the double precision

floating-point result 3.0.

C# takes a different approach. If one operand is a string and the other is numeric, C# assumes that

it cannot convert the string into a number, so it converts the number into a string and then concatenates

the result. For the expression 1 + "2 ", a C# program converts the 1 into "1" and concatenates it with

the "2" to get "12".

The & operator in Visual Basic always concatenates strings even if some of the operands are not

strings. For example, to evaluate the expression 1 & 2, the program converts both values to strings,

concatenates them, and produces the result "12", much as C# does with its + operator.

To avoid confusion in Visual Basic programs, you should use the & operator when you want to

concatenate strings and the + operator when you want to add numeric values.

Operator Overloading

Modern programming languages such as Visual Basic and C# allow a program to overload routines by

creating multiple routines with the same name but different signatures. A routine's signature includes

its parameters and their data types. (Parameters are values that you pass to a routine to give it

114 Start Here! Fundamentals of .NET Programming

information. For example, you might pass to the Printlnvoice routine the name of the customer whose

invoice the routine should print. Chapter 9, "Routines," covers routines and their parameters in detail.)

For example, a program could create multiple versions of the Printlnvoice routine so long as

no two versions took exactly the same types of parameters. Three different versions might take as

parameters a customer ID (an integer), a customer name (a string), or a Customer object (an object).

You couldn't make a fourth version that took an order number (an integer) as a parameter because

the program couldn't tell the difference between that version and the one that takes a customer ID as

a parameter. If the code tried to call Printlnvoice and pass it an integer, the program wouldn't know

which version to use.

In addition to overloading routines, a program can overload operators to make them work with

data types for which they are not already defined. For example, you could overload the + operator so

that the program could use it to combine an Order object and an Order/tern object, where Order and

Order/tern are two classes that the program defines. In this example, the + operator might add the

Order/tern to the Order, effectively adding a new item to an existing order.

Note You cannot overload an operator to make it work differently on data types for which
it is already defined. For example, you cannot redefine how the + operator combines a
string and an integer. That would probably lead to confusion anyway.

Operator Overloading Overload
Just because you can overload an operator doesn't mean you should. For example, it might make

sense to overload the + operator to allow a program to add an Order/tern object to an Order object

because the meaning of that operation is reasonably intuitive. Someone who sees code adding an

object to an order will probably have no trouble figuring out what that means, at least if they ever

knew about the overloaded operator. For example, the following statement shows how a C# program

might add an Order/tern object named pencils to an Order object named newOrder:

newOrder += pencils;

Alternatively, you could give the Order class an Add/tern method and make the code really obvious.

The following code shows this approach:

newOrder.Additem(pencils);

In any case, it probably doesn't make sense to define the I operator so it operates on Order/tern

and Order objects. What would such an operator do? It's unlikely that the program could actually

divide the Order object by the Order/tern object.

In cases where it's not intuitively obvious what an operator would mean, it is usually better to

make a method instead so that the method's name can spell out its purpose.

3 Operators 115

Conversion Operators
One type of operator overload that is often overlooked is the conversion operator, which converts

one data type to another. For example, many languages can implicitly convert a value from an integer

to a floating-point value (if necessary) to perform a calculation.

Similarly, you can define conversion operators to convert from one class to another. For example,

you could define a conversion operator to convert a Person object into a Student object. Then the

program could take any Person object and convert it into a Student object.

As another example, consider one of the classic examples in operator overloading: the

ComplexNumber class. This class represents a complex number of the form A + 8 * i, where i is the

irrational number representing the square root of -1. Using simple mathematics, you can define the+,

-, *,and/ operators for combining two ComplexNumber objects.

However, the real number R is also a complex number of the form R + 0 * i, so those operators

should be able to combine floating-point numbers and ComplexNumbers. Unfortunately, if you want

a program to be able to do that, you must overload the operators again to work with floating-point

numbers and ComplexNumbers. Worse still, you would need to overload the operators a third time

to work with ComplexNumbers and floating-point numbers (where the ComplexNumber is on the left

side of the operator). You would need to overload each operator three times.

The situation is much simpler if you define a conversion operator that can convert a floating-point

number to a ComplexNumber. Now, if the program encounters an expression that uses a floating-point

number and a ComplexNumber, it can promote the floating-point number to a ComplexNumber

automatically and then use the original overloaded operators.

Summary

This chapter explained precedence, operators, and operator overloading.

In an expression, a program uses precedence rules to determine the order in which operations are

evaluated. For example, *has a higher precedence than + and-, so the expression 1 + 2 * 3 - 4

equals 3 rather than 5, -3, or some other value.

The operator tables in this chapter summarized the most common operators available in C# and

Visual Basic and listed them in order of precedence. By using those tables, you can determine exactly

how any expression will be evaluated by a program.

You can use parentheses to change an expression's evaluation order and make the program

perform operations in a different order than the one dictated by the precedence rules. You also can

use parentheses to make it easier to understand how an expression will be evaluated, even if it does

follow the normal rules. Although parentheses don't help the program understand how to follow

the precedence rules, they can make it much easier for programmers to understand exactly what an

expression means.

116 Start Here! Fundamentals of .NET Programming

The final section in this chapter described operator overloading. It explained how you can give

new meaning to existing operators.

You can perform complex calculations by using operators, but what if you need to perform the

same calculations for a large number of similar items? For example, suppose you need to calculate

the monthly bills for hundreds or thousands of customers. You might be able to perform those

calculations in one of the loops described in Chapter 7, "Control Statements," but what if you need to

perform similar calculations in many different parts of the program?

Routines let you package a piece of code such as a calculation so that you can use it from any

number of other code locations. The next chapter describes routines. It explains what they are and

what benefits they provide. It also discusses how you can pass values into routines to give them some

context, so they don't need to perform exactly the same operations every time.

CHAPTER 8 Operators 117

In this chapter:

111 Different types of routines

111 Advantages and disadvantages of routines

1111 How the call stack works

1111 Writing good routines

1111 How parameters work

1111 Passing values by value or by reference

111 Understanding value types and reference types

OFTEN, A PROGRAM MUST PERFORM THE same task in several different places. For example, a

point-of-sale application might print a customer invoice as soon as a sale is complete. Each week, it

might reprint invoices that are more than 30 days overdue. It might also allow you to select a cus

tomer and reprint that customer's past invoices. In all three cases, the program does the same thing: it

prints an invoice.

You could duplicate the code needed to print an invoice in all three places, but that would require

you to write, debug, and maintain three different copies of essentially the same code.

To avoid this kind of duplication, programming languages allow you to define routines. A routine is

a named piece of code that other pieces of code can invoke to perform a useful task.

This chapter discusses routines. It explains their benefits, details what happens when a program

calls a routine, and describes different kinds of routines. It also explains parameters and the ways

a program can pass parameters to a routine, a topic that can often cause confusion for beginning

programmers.

119

Types of Routines

I've defined the term routine as "any named piece of code that other pieces of code can invoke,'' but

routines are often called subroutines, procedures, subprocedures, and sometimes subprograms.

A routine provided by a class is often called a method. In C#, every routine must be part of a class

or structure, so many C# programmers always call routines methods. In contrast, a Microsoft Visual

Basic program can define routines that are not part of any class. These are usually called subroutines
or functions, depending on whether they return a value.

Some routines return a value to the calling code. A routine that returns a value in this way is often

called a function. For example, suppose a program defines a Factorial function that takes an integer

parameter and returns the parameter's factorial. (If the number is N, then its factorial is written mathematically

as N! and is given by 1 * 2 * 3 * ... * N.) In that case, the following C# statement sets the variable value
equal to 6!:

value= Factorial(6);

In this example, the Factorial function takes the value 6 as a parameter and returns 6!. The section

"Parameters," later in this chapter, explains how to pass parameters to routines.

Note To simplify the terminology, this book uses the term routine most of the time, but it
uses the term method to emphasize routines provided by a class. Finally, this book uses the
term function when a routine returns a value.

Advantages of Routines

The following list summarizes some of the advantages of using routines:

1111 Reducing duplicated code

1111 Reusing code

1111 Simplifying complex code

1111 Hiding implementation details

Ill! Dividing tasks among programmers

1111 Making debugging easier

The only major disadvantage to using routines is that doing so adds some overhead to the program.

When a piece of code invokes a routine, the program must prepare the routine for execution, and it

must store some information so that it can return to the correct location in the code that called the

routine after the routine finishes. This overhead is usually small, so it doesn't cause much of a problem

unless a program calls a routine a very large number of times.

120 Start Here! Fundamentals of .NET Programming

For example, suppose that a program contains a loop that calls a routine to perform a simple

calculation several million times. In that case, the program may run somewhat faster if you copy the

calculation into the loop to avoid the overhead of making the routine call. Usually this isn't a problem,

however, so you are better off using routines to gain their advantages and then removing them later

if you discover that calling the routine is truly causing problems.

The following sections explain the advantages of using routines in greater detail.

Reducing Duplicated Code
Avoiding code duplication is probably the most obvious advantage to using routines. When a program

contains the same (or similar) code in several places, programmers must write and debug the code

several times, which requires duplicated effort. In contrast, when you move the duplicated code into a

routine, you need to write and debug it only once, and then the program can use it in as many places

as you like.

This not only saves you time when testing the code, but it also allows you to invest some of the

saved time in testing the routine more thoroughly. The result is less code, and the code that is there is

more reliable.

Reduced duplication also makes maintaining the program easier. If you later decide you need to

change how this code works, you typically need to modify only the routine itself, not all the places

that call it. This not only saves you work, but it also helps you avoid mistakes. In contrast, when you

need to update duplicated code in several places, you must be sure to change it in every place that

it occurs and debug each instance of the code. If you change it in one place but forget to change it

in another, the program may produce inconsistent results, resulting in bugs that can be very hard to

track down.

Reusing Code
If you write a robust, well-tested routine in one program, you can reuse it in other programs without

having to rewrite the routine again from scratch.

Of course, if you simply copy the code into a new program, you have created duplicate code in

multiple programs, and you get all the drawbacks of duplicated code. To solve that problem,

programming environments let you compile routines into libraries that you can then share among

multiple programs. If you modify the code in the library, all the programs sharing it get the benefits

of the change. (Note, however, that you may need to recompile the programs before they can use the

new version of the code.)

Routines 121

Simplifying Complex Code
A person can keep only so many ideas in mind at the same time. As code becomes more complex, it

also becomes more difficult to keep track of all the details simultaneously. When a piece of code is

very long, you won't be able to see it all on your computer's screen at one time, which makes it harder

to understand the code's flow.

If you break the code into routines, each routine can perform a well-defined part of the total task.

The main program can then call each of the routines instead of including all the code in one big pile.

In this case, routines don't necessarily reduce or eliminate duplication; they simply give the code extra

structure to make it easier to understand.

Breaking the code into pieces in this way may also let you debug the pieces separately. It is often

easier to debug a series of self-contained routines than a long chunk of code.

Hiding Implementation Details
To get the greatest benefit, each routine should hide its implementation details from outside code.

If a routine doesn't hide the details about how it works, then a programmer trying to use the routine

needs to keep track of those extra details, and that can make programming and debugging harder.

For example, suppose that a piece of wde must perform three tasks:

1111 Determine whether a customer's service should be disconnected for lack of payment

1111 Disconnect the customer

111 Send the customer a letter explaining the disconnection

Ideally, the code calling the three routines that perform these tasks shouldn't need to know how

they work. When you write that code, you can simply call the routines and not worry about the details.

In C#, this code might look like the following, where customerld is a variable holding a customer's ID:

if (CustomerShouldBeDisconnected(customerid))
{

}

DisconnectCustomer(customerid);
PrintDisconnectletter(customerid);

At this level, the code is quite easy to understand. All the complexity is hidden in the three routines

CustomerShouldBeDisconnected, DisconnectCustomer, and PrintDisconnectLetter.

Dividing Tasks Among Programmers
If you break a complex piece of code into several routines, different programmers can write them.

Sometimes the programmers can write and debug their routines at the same time, allowing you to

finish the project sooner.

122 Start Here! Fundamentals of .NET Programming

Dividing routines among programmers also lets you assign trickier pieces of code to the

more experienced programmers and simpler routines to the less experienced programmers. In

contrast, if you kept all the code in a single piece, you would need to assign it to a programmer

experienced enough to handle the trickiest parts. Splitting the code apart lets you take better

advantage of everyone's skill levels.

Making Debugging Easier
When a program contains duplicated code and there's a problem with that code, you won't always

know which piece of code is causing the problem. But if the code is in a single routine, then you know

exactly where to look.

For example, suppose that a program uses several pieces of code to search for a particular

employee. If the program sometimes finds the wrong employee, you won't know which piece of code

is causing the problem. However, if the program uses a single FindEmployee routine, you only need to

look in that routine for the problem.

Many programming environments, such as Microsoft Visual Studio, include a debugger that lets

you set breakpoints in the code and step through the code as it executes so that you can see what it's

doing. If the problem code is in a single routine, you can simply set a breakpoint there to see what's

going wrong.

Calling Routines

When a program invokes a routine, execution jumps from the calling code into the routine. The

routine performs its task, and then execution returns to the point where the routine was called. Often,

execution resumes with the calling code's next statement, but sometimes, if the call to a routine is

part of a complex statement, the same statement may continue to perform more tasks.

For example, if a program has defined the Factorial function described previously, then the

following statement calculates S! times 6!:

value= Factorial(S) * Factorial(6);

In this example, execution passes to the Factorial function to calculate 5!. When that function call

returns, the code calls the function again to calculate 6!. When the second call returns, the statement

multiplies the two results and saves the result in the variable value.

Programs use a call stack to manage these routine calls. The call stack is a chunk of memory where

the program can store information about each routine call.

When a routine call begins, the program creates a stack frame on the call stack to represent the

call. The stack frame contains information about the routine call, including the routine's local variables

and the program location where execution should resume after the routine finishes.

9 Routines 123

After a routine finishes executing, the program sets a return value if the routine is a function,

prepares to resume execution at the routine's return point (as given by the stack frame), and then

removes the routine's stack frame from the call stack.

Development environments, such as Visual Studio, provide a call stack window that lets you see

the series of routine calls that lead to a particular execution point. Figure 9-1 shows the state of

execution in a simple program.

c•
ChooseScmeObjects.exe!ChooseSomeObjects.FormLForml_Load(object sender= {ChooseSomeob;ects.Formt, Text: Formt}, SY5tem.EventArgs e = {System.EventArgs}) Line 48 + Oxf C#

FIGURE 9-1 The Call Stack window shows you the series of routine calls that lead to a point of execution.

The call stack window in Figure 9-1 shows the most recent routine calls at the top. The program

began execution in code that is external to the program, shown at the bottom in Figure 9-1. That

external code is what started the main program.

The second-to-last line in Figure 9-1 shows that the external code called the program's Main

routine. The parts of this line provide the program (ChooseSomeObjects.exe), the namespace

containing the routine (ChooseSomeObjects), the class that defines the routine (Program), and the

routine (Main). This line indicates that the program is paused at line 18 of the Main routine.

In a C# program, this line is actually in code that was automatically generated by the development

environment and not in the code that I wrote for this example. It calls other external code that displays

the main form. The next line up in Figure 9-1 shows that call to the external code.

The fourth line up in Figure 9-1 indicates that a Forml object's Forml_Load routine is executing.

This routine is an event handler that automatically fires when the program's main form is loaded. This

line indicates that the routine's parameters are named sender and e (parameters are described in the

section "Parameters," later in this chapter), and that the routine paused while executing line 48.

That line of code (line 48) in Forml_Load called the routine SelectObjects. Its execution paused on

line 52, which is where the SelectObjects routine called the Choose routine, passing it the parameters n

= 4 and m = 5. The Choose routine paused at line 132 because it called the Factorial routine, passing it

the value n = 4. The program is currently paused in that routine at line 122.

In Visual Studio, you can double-click one of the lines in the Call Stack window to make the code

editor go to that line and show you the code that is currently executing. Using the Call Stack window

is an excellent way to help you figure out how a program got into its current state.

124 Start Here! Fundamentals of .NET Programming

Writing Good Routines

The following list summarizes some of the rules you should follow to make routines as useful as

possible:

1111 Perform a single, well-defined task

1111 Avoid side effects

1111 Use descriptive names

11 Keep it short

11 Use comments

The following sections describe these concepts.

Perform a Single, Well-Defined Task
If a routine performs a single, well-defined task, it is easy for programmers to understand what it

does and use it correctly. If a routine performs more than one task, programmers may be unable to

perform one of the tasks without performing the other. They also may confuse the tasks and not use

them properly.

If a piece of code performs multiple unrelated tasks, break it into separate routines, each of which

will perform a single task. The code can then call each of the pieces separately.

For example, suppose that a program performs the following bookkeeping chores at the end of

each day:

1111 Print new order summaries for the day.

1111 Check inventory levels and reorder if necessary.

1111 Check for overdue accounts and email reminders to customers.

1111 Move orders that are more than one year old into a long-term storage database.

You could write a single piece of code to perform all these tasks, but the code would be long and

poorly focused. While writing and debugging the code, a programmer would need to keep track of

lots of unrelated ideas at the same time.

A better approach would be to write an EndOfDayC/oseout routine to orchestrate all these

activities. That routine performs a single logical task: taking all the actions necessary at the end of

the day. At a high level, that's all a programmer needs to know about that routine.

The EndOfDayC/oseout routine would simply call several other routines to do the real work. It

would contain little if any nontrivial code, so it would be easy to read and understand.

Routines 125

Other routines named PrintDailyOrderSummaries, Checklnventorylevels, CheckForOverdueAccounts,

and ArchiveO!dOrders would do all the real work. Each of those routines has a simple, well-defined

purpose.

Avoid Side Effects
As discussed in Chapter 8, "Operators," a side effect occurs when a routine does something that isn't

obvious and that affects code outside the routine.

For example, suppose that the lnitializeData routine looks up some data in a database to get a

program ready to run. That's its main purpose, but it also leaves a connection to the database open

for later use. This is a side effect. It's not obvious from the routine's name that it leaves a database

connection open, and that could cause problems later. A programmer who doesn't realize that there's

an open connection might create other connections instead of reusing the open one. That wastes the

system's resources, which could be a problem if the number of allowed connections is limited.

To make routines safer and easier to use, you should avoid side effects whenever possible. If a

routine must perform a task that has a long-lasting effect, such as leaving a database connection

open, make the routine's name indicate what it is doing.

Part of the problem in this example is that the routine doesn't perform a single, well-defined task

because fetching data and opening the database are two related but different tasks. A better solution

might be to break the code into two routines named OpenDatabase and Loadlnitia!Data that will

perform the tasks separately. Then, the OpenDatabase routine would open the database as its only

function, not as a side effect.

Use Descriptive Names
Giving a routine a descriptive name makes it easier for programmers to understand its purpose and

to use it correctly. If a routine has a vague name such as DoStuff, programmers will need to look at it

more closely to figure out what it does. A programmer who doesn't correctly figure out the routine's

true purpose may use it incorrectly, creating a bug.

Keep It Short
If a routine is too long, it is hard to see all its code at once and to keep all the routine's key ideas in

mind at the same time. If a routine is long, consider breaking it into several smaller routines that the

main routine can call.

Different developers use different rules of thumb for deciding when to break a routine into smaller

pieces, but many recommend 100 to 200 lines as a maximum length. Other developers recommend

keeping routines to no more than 20 or 30 lines. I prefer to keep routines short enough that I can see

all the code and comments in a routine at the same time on the screen.

In general, use as many lines as it takes to perform the routine's single, well-defined task. If a

complex algorithm takes 200 lines to implement and you can't break it into self-contained parts in a

126 Start Here! Fundamentals of .NET Programming

reasonable way, make the routine 200 lines long. It is better to have a slightly longer routine than to

break it into pieces that don't really make sense independently.

Use Comments
Short routines with descriptive names tend to be easy to understand, but if there's any chance of

confusion, use comments to make the code easy to understand. The compiler ignores comments, so

you can use them to give the reader extra information to make understanding the code easier.

The C#, C++, C, and Java languages use //to indicate the beginning of a single-line comment. Any

text after the// to the end of the current line is a comment. Visual Basic uses the ' character for the

same purpose.

Many languages, including C#, C++, C, and Java (but not Visual Basic), also have multi-line

comments. In C#, C++, C, and Java, a multi-line comment begins with/* and ends with *I

The following C# code contains multi-line and single-line comments:

I* Sort the array by using the radixsort algorithm.
*For information on bucketsort, see ...
,·,1

public void Bucketsort(int[] items, int numBuckets)
{

II Create the buckets.

}

Note Programmers often begin the second and subsequent lines in a multi-line comment
with the *character to make it obvious that those lines are part of a comment.

Many languages also have a special comment syntax that indicates the comment is intended for

documentation purposes. You can extract those comments to build help files or other documentation to

describe the program. In C#, documentation comments begin with/// In Visual Basic, they begin with "'.

Use a comment before the routine to describe its purpose, inputs, and outputs. Use comments

within the routine to explain what the routine is doing.

If the code is easy to understand, it will be easy to debug and modify in the future. If the code is

hard to understand, changes will probably break the code and require extensive debugging.

Some developers recommend that you use comments only when absolutely necessary and that

you should not use comments if you can figure out what the code does. Unfortunately, what may

seem obvious today (or to you) may not seem obvious tomorrow (or to another programmer).

I've read thousands of lines of code that probably seemed obvious to the programmers who wrote

it, but a year later, it was very difficult to figure out how the code worked. I worked on one project

where making even the smallest change could take a week or more because the code was so confusing.

Routines 127

I even worked on one project that failed because the developers had removed comments that they

thought were unnecessary and then later couldn't figure out how the code worked.

The goal is to make it easy to debug and modify the code, not to make understanding the code an

IQ test. There is a limit to how many comments you can reasonably add to the code, however. Don't

add side issues and unnecessary commentary that makes it hard to keep the code's main purpose and

method in mind. Also, try not to add so many comments that viewing the code is a chore. If a routine

contains 10 lines of code, don't add so many comments that you can't see them all on the screen at

the same time.

If you need to add a lot of really long comments (perhaps a description of a particularly tricky

algorithm), put the information in a separate document. Then, include a reference to that document

in the code so that programmers who read the code later can refer to it if necessary.

Parameters
-------·-------------- ---------·-------------·~··--------·-------~-~

To make a routine more flexible, you can pass parameters to the routine to give it extra information

that it can use to perform its task. For example, suppose that you write a routine to print a student's

course schedule. You could make the routine receive a parameter that gives the ID of the student

whose schedule it should print.

Giving the routine a parameter makes it much more flexible. In this example, it allows one routine

to print the schedule for any number of students instead of just one.

Exactly how you define a routine's parameters depends on the language you are using, but the

idea is the same in every language. The routine's declaration includes declarations for any parameters

that it will take.

For example, the following code shows a Factorial function written in Visual Basic:

' Calculate N!.
Public Function Factorial(ByVal N As Long) As Long

Dim result As Long = 1
For i As Long = 2 To N

result *= i
Next i

Return result
End Function

This function takes as a parameter a long integer. Inside the function, the parameter's name is N.

The function creates a variable named result and initializes it to 1. It then uses a loop to multiply

result by each of the integers between 2 and N. It finishes by returning the final value of result.

The following code shows how a program might call the Factorial function:

Dim input As Long = 13
Dim total As Long= Factorial(input)

128 Start Here! Fundamentals of .NET Programming

This code declares a variable named input and initializes it to the value 13. It then declares another

variable named total and sets it equal to the result returned by the Factorial function when its parameter

is set to input.

The value that is passed into the function, in this case input, is called an argument. (However, many

programmers use the terms parameter and argument interchangeably.)

Notice that the function's declaration creates a local name for the value in the parameter that has

nothing to do with whatever value is passed into the function. The function's code calls the value N

whether the calling code passes in the value of the variable input, a variable with some other name, a

constant such as 12, or even the result of an expression such as 3 + 5.

A routine can take more than one parameter. For example, the following C# function calculates the

greatest common divisor (GCD) of its two parameters a and b:

II Return the greatest common divisor (GCD) of a and b.
public long Gcd(long a, long b)
{

}

whi 1 e (true)
{

}

long remainder = a % b;
if (remainder == 0) return b;
a = b;
b = remainder;

This code calculates the remainder after dividing a by b. If the remainder is zero, the GCD is b, so

the function returns it. If the remainder is not zero, the function sets a equal to b and b equal to the re

mainder, and then repeats. The loop repeats until the remainder is zero. (This clever algorithm is called

the Euclidean algorithm or Euclid's algorithm. For more information, including a proof that the loop

eventually stops and that the code actually works, see http://en.wikipedia.org/wiki/Euc/idean_algorithm.)

In theory, a routine could take any number of parameters, but in practice, routines that take too

many parameters are confusing to use.

Different languages may support additional parameter passing features, such as optional

parameters. The following sections describe some of the most common of these features.

Optional Parameters
Some languages allow you to declare a parameter as optional. In Visual Basic, optional parameters

must come last in the parameter list and must specify a default value that the parameter takes if it is

omitted in the calling code. The following routine takes the required parameters ex, cy. and radius and

the optional parameter filled. If the code that calls this routine omits the final parameter, filled takes

the default value false.

' Draw a ci rel e centered at (ex,. cy) with
' radius given by paramete radius.
' If filled is true, fill the circle.

CHAPTER 9 Routines 129

Public Sub DrawCircle(ByVal ex As Integer, ByVal cy As Integer,
ByVal radius As Integer, Optional ByVal filled As Boolean = False)

End Sub

In this example, the method would draw the circle and then fill it if the parameter filled is true. If
the calling code omits the final argument, the filled parameter takes the default value false and the

routine does not fill the circle.

Some languages, including C#, do not support optional parameters, although C# does allow you

to declare nullable parameters (or variables). Nullable parameters can take the special value null,

which essentially means it has no value. (Visual Basic also supports nullable parameters, but optional
parameters make the code simpler and easier to read.)

Parameter Arrays
Some languages allow a routine to take a variable number of arguments. In C# and Visual Basic, the

routine's final parameter can be an array holding the variable number of arguments passed into the

routine by the calling code.

For example, the following C# code shows a SendEmails routine. It takes two required parameters

named subject and body. It also takes a parameter array named recipients.

II Send an email message to the indicated recipients.
public void SendEmails(string subject, string body, params string[] recipients)
{

}

foreach (string recipient in recipients)
{

SendEmail(subject, body, recipient);
}

This routine loops through the values in the recipients array, calling the SendEmails routine for each.

The following code shows how the program could call this routine, passing it two email addresses:

SendEmails("School closed Friday",
"Note that the school will be closed this Friday.",
"RodStephens@CSharpHelper.com",
"RodStephens@vb-helper.com");

Note that the program could pass no arguments for the parameter array.

Parameter-Passing Methods
There are two ways you can pass an argument to a routine: by value and by reference. These two
methods determine how the parameter relates to the argument that you pass into the routine. You

can pass an argument by value or by reference.

130 Start Here! Fundamentals of .NET Programming

The syntax for indicating that a variable should be passed by value or reference varies by language.

In Visual Basic, you use the keywords ByVal and ByRef In C#, you use the keyword ref to pass a value

by reference. (In C#, you also can use the out keyword, which will be described shortly.)

When you pass a value by value, the parameter receives a copy of the argument so that if the

routine changes the value of the parameter, the argument does not change.

For example, the following Visual Basic code shows a new version of the Factorial function shown

previously:

' Calculate N!.
Public Function Factorial(ByVal N As Long) As Long

Dim result As Long = 1
Do While N > 1

result ''= N
N -= 1

Loop

Return result
End Function

This version initializes the variable result to 1. Then as long as the parameter N is greater than 1, it

multiplies result by N and subtracts 1 from N. When the loop finishes, result has been multiplied by N,

N - 1, N - 2, and so on down to 2, giving the factorial.

Because this code declares the parameter N using the ByVal keyword, the argument is passed by

value. Even though the routine modifies N and leaves it holding the value 2, the argument used by

the calling code remains unchanged.

For example, the following code initializes the variable input to 10 and then calls the Factorial function,

passing it the variable input. Because the argument is passed by value, the value of the variable input is

still 13 when the call to Factorial returns:

Dim input As Long 13
Dim total As Long Factorial(input)

When you pass a value by reference, the routine receives the address in memory of the argument

and makes the parameter refer to that address. Inside the routine, the parameter looks just like any

other variable, but it actually refers to the same value used for the argument. The result is that any

changes that the routine makes to the parameter also affect the argument in the calling code.

The SwapValues routine shown in the following Visual Basic code takes two parameters passed by

reference and swaps their values:

' Swap the two values.
Public Sub SwapValues(ByRef value! As Integer, ByRef value2 As Integer)

Dim temp As Integer = value!
valuel value2
value2 temp

End Sub

CHAPTER 9 Routines 131

Because these parameters are declared using the ByRef keyword, the changes made to the values in

the routine are reflected in the arguments passed into the routine.

The C# language also provides the keyword out to indicate that an argument should be passed by

reference and that its initial value is not used by the routine. In other words, this is an output variable

only. The argument is treated like a normal argument passed by reference except the compiler won't

raise a warning if the calling code doesn't initialize the argument before passing it into the routine.

Passing arguments by reference can be confusing, so you should pass arguments by value whenever

possible. If you need a routine to return a result, it's better to make the routine a function and have it

return the result through its return value instead of using an argument passed by reference.

Note In Visual Basic, the calling code gives no indication that a variable is passed by

reference, so a programmer calling a routine might not even know that the arguments will

be modified.

In C#, the calling code must use the ref or out keyword to make it clear that an argument is
being passed by reference.

Reference and Value Types
Chapter 6, "Variables,'' discusses the difference between value types and reference types. Briefly, value

types contain their data, while reference types contain a reference to the data stored elsewhere. Most

simple data types such as integer, floating-point, and dates, are value types. Instances of classes are

reference types.

Whether a routine's parameter is a value type or a reference type plays an important role in how

changes to the parameter affect the corresponding argument.

If a parameter is a value type, then changes to the parameter are reflected in the argument only if

the argument is passed by reference.

If a parameter is a reference type, then changes to the parameter's data are always reflected in the

argument's data. Changes to the parameter itself are reflected in the argument only if the parameter

is passed by reference.

For example, consider the following C# routine:

II Set the Student's Name equal to the current user's name.
public void SetStudentUserName(Student student)
{

student.Name= Environment.UserName;
}

This routine takes a Student object as a parameter passed by value. The Student class is a reference

type, so changes to the parameter's data (the student's Name property, in this example) are reflected

in the argument.

132 Start Here! Fundamentals of .NET Programming

The following code shows how a program might call the SetStudentUserName routine:

Student rod= new Student();
SetStudentUserName(rod);

After the call to SetStudentUserName returns, the rod object's Name property has been set to the

current user's name.

If you pass a reference type argument into a routine by reference, then the routine not only can

update the argument's data, but it also can update the argument itself. For example, the following

routine takes a Student object as a parameter passed by reference:

II Create a new Student.
public void InitializeStudent(ref Student student)
{

}

student= new Student();
student.Name= Environment.UserName;

This routine sets the parameter equal to a new Student object. Because the argument is passed by

reference, the argument in the calling code is updated to refer to the new object. The code then sets

the new object's Name property as before.

Structures are an odd case because they are similar to classes in most respects, but they are value

types rather than reference types. That means, for example, that if you set one structure variable

equal to another, the first contains a copy of the second. In contrast, if you set a class variable equal

to another, both then point to the same object. (If this is a bit unclear, you may want to review the

section "Value and Reference Types" in Chapter 6.)

The fact that structures are value types affects how they act as arguments to routines. If you pass

a structure into a routine by value, the parameter receives a completely new copy of the structure, so

any changes to its data are not reflected in the argument.

For example, the following routine is similar to the SetStudentUserName routine shown previously,

except that it takes a structure as a parameter instead of a class instance:

II Set the Person's Name equal to the current user's name.
public void SetPersonUserName(Person person)
{

person.Name = Environment.UserName;
}

Because this routine's structure parameter is passed by value, the parameter contains a separate

copy of the data, so changes to its data are not reflected in the argument. In this example, that means

the routine doesn't work as expected because it does not update the Name property in the calling

code's Person structure.

Routines 133

Note Passing a structure by value also has a slight performance penalty because the

program must make a new copy of the structure. This usually isn't much of an issue unless

the structure is quite large.

The following version of the routine passes its structure by reference:

II Set the Person's Name equal to the current user's name.
public void SetPersonUserName(ref Person person)
{

person= new Person();
person.Name = Environment.UserName;

}

In this example, the parameter contains a reference to the Person argument, so changes to it and

its data are reflected in the argument. The code sets the parameter equal to a new Person structure

and then sets its Name property. Both of those changes are reflected in the calling code's argument.

Arrays
Like classes, arrays are reference types. That means if you pass an array into a routine by value, the

routine can change the array's elements but cannot make the corresponding argument point to a

completely new array.

The following routine fills an existing array with squares:

II Fill the array with squares.
public void FillArrayWithSquares(int[] squares)
{

}

for (int i = O; i < squares.Length; i++)
{

squares[i] = i * i;
}

This code loops through the entries in the array, placing the value i * i in entry i. The array is passed

by value, so the routine can change its entries but. cannot make the argument point to a new array.

The following routine makes a new array that holds 100 items and sets their values to the first 100

squares. Because the parameter is passed by reference, the calling code's argument refers to the new

array after the routine returns.

II Fill the array with 100 squares.
public void FillArrayWithlOOSquares(out int[) squares)
{

}

squares= new int[lOO];
for (int i = O; i < squares.Length; i++)
{

squares[i] = i * i;
}

134 Start Here! Fundamentals of .NET Programming

Routine Overloading
Chapter 8 explained how to overload operators such as *and/ so they can work with new data types,

such as program-defined classes. Similarly, you can overload routines to create more than one version

of the same routine.

The only restriction is that each version of the routine must have a different signature, meaning

that the number and types of the routines' parameter lists must be different so that the program

can tell them apart. For example, if you create two routines named FindEmp/oyee that both take an

integer as a parameter-one that takes an employee's ID and one that takes the employee's phone

extension-the program wouldn't know which version to use.

Tip The parameter lists of different versions of a routine must have different numbers or
types of parameters. They cannot simply differ in parameter name. For example, a program
could not define two versions of the Find Employee routine, both taking a single integer
as a parameter but with one calling its parameter employeeld and the other calling its
parameter employeeExtension.

For example, the following two Visual Basic routines search for an employee. The first takes as

parameters the employee's first and last names, whereas the second takes employee ID as a param

eter. Because they have different parameter lists, the program can define both versions of the routine.

' Find an employee by first and last name.
Public Function FindEmployee(ByVal firstName As String, ByVal lastName As String)

As Employee

End Function

' Find an employee by ID.
Public Function FindEmployee(ByVal id As Integer) As Employee

End Function

Visual Basic will not let you make two versions of a routine that differ only in optional parameters.

For example, if one version of a routine takes an integer as a parameter, and a second version takes

an integer and an optional string as parameters, Visual Basic will display an error message because it

cannot tell which version to use if you omit the optional parameter. (On the other hand, C# doesn't

allow optional parameters at all.)

However, both Visual Basic and C# will allow a program to define multiple versions of a routine

that differ only in a parameter array. For example, a Visual Basic program can define the following

versions of the lnitializeValues routine:

Public Function InitializeValues() As Integer

End Function

CHAPTER 9 Routines 135

Public Function InitializeValues(ByVal values As Integer) As Integer

End Function

Public Function InitializeValues(ByVal ParamArray values() As Integer) As Integer

End Function

Versions of the routine that do not use the parameter array have priority, so if the program calls

lnitializeValues and passes it no arguments, the program uses the first version of the routine instead

of the third. Similarly, if the program calls lnitializeValues and passes it one argument, the program

uses the second version of the routine instead of the third. If the first and second versions didn't exist,

the program would call the third version in both cases.

Making routines that differ only by parameter arrays could be confusing, so you shouldn't do it

even if the language will let you.

Routine Accessibility

The section "Scope, Accessibility, and Lifetime," in Chapter 6, discussed when a variable exists and

what pieces of code can access it. Similar concepts apply to routines.

For example, if a class defines a routine and gives it the private accessibility keyword, then it is

visible only to code within the class.

Table 9-1 summarizes the accessibility keywords used by C# and Visual Basic.

TABLE 9-1 Accessibility Keywords

public Public

private Private

protected Protected

internal Friend

protected internal Protected Friend

The routine is usable by any code.

The routine is usable only by code in the
same structure, class, or code module.

The routine is usable only by code in the
same structure or class, or in a derived
class. (Chapter 10, "Object-Oriented
Programming," explains derived classes.)

The routine is usable only by code in the
same assembly.

Both protected and internal/Friend (the
routine is usable only by code in the
same structure or class or in a derived
class, and only in the same assembly).

The internal (or Protected) keyword makes an item usable only to code in the same assembly. In

.NET applications, an assembly is the smallest self-contained unit of compiled code. An assembly can

be a complete application or a library that can be called by other applications.

136 Start Here! Fundamentals of .NET Programming

Recursion

Recursion occurs when a routine calls itself. Recursion can be a confusing topic because people don't

normally think recursively, but some problems are naturally recursive, and in those cases, it can be

useful to design routines that match the problem's recursive structure.

For example, earlier in this chapter, I defined the factorial of the number N, written as N! and given by

1 * 2 * 3 * ... * N. You can also define the factorial function recursively as N! = N * (N - 1)!. The following

C# code shows a recursive implementation of this function:

II Calculate n! recursively.
public long Factorial(long n)
{

if (n <= 1) return 1;
return n * Factorial(n - 1);

}

If the parameter is 1 or less, the function simply returns 1. (The value O! is 1 by definition.) If the

parameter is greater than 1, the function returns n times the factorial of n - 1.

Like the Do, While, and Until loops described in Chapter 7, "Control Statements," it is very

important that a recursive routine has a stopping condition. If the routine doesn't eventually stop, it

will continue calling itself forever, or at least until it uses up all the program's stack space and crashes.

The previous version of the Factorial function stops recursion when its parameter has the value of 1 or

smaller.

Roughly speaking, a fractal is a geometric shape or curve that is self-similar, having pieces that

look somewhat like the whole. For example, the binary tree shown in Figure 9-2 begins with a single

vertical branch at its root. At each level of recursion, it turns left and right and draws a smaller version

of the tree.

Depth:

Length:

Length Scale:

DTheta:

FIGURE 9-2 This binary tree fractal is naturally recursive.

Routines 137

Many kinds of fractals are naturally recursive. The routine that draws a branch in a binary tree calls

itself recursively to draw smaller trees sticking off the end of the current branch.

The program shown in Figure 9-2 lets the user set parameters that determine the number of

levels of recursion, the length of the root branch, the factor by which each branch is shorter than the

previous one, and the angles between the branches.

Other fractals also use recursion. The Sierpinski curve shown in Figure 9-3 starts by drawing the

shape on the left. For each level of recursion, it replaces the horizontal and vertical line segments with

combinations of other line segments.

FIGURE 9-3 This Sierpinski curve is naturally recursive.

Figure 9-4 shows how the Sierpinski curve replaces upper horizontal line segments to get from

the first level of recursion to the second. It replaces the upper horizontal line segment on the left in

Figure 9-3 with the series of curves A, B, D, and A (shown in Figure 9-4) to get the middle picture in

Figure 9-3.

FIGURE 9-4 The Sierpinski curve replaces upper horizontal segments with the connected series of curves A, B, D,
and A.

The Sierpinski curve uses other combinations of curves to replace lower horizontal, left vertical,

and right vertical segments when it moves to deeper levels of recursion.

More Info You can find C# programs that draw these and other fractals on my website,

http://www.CSharpHelper.com. You can find Visual Basic versions at

http://www.vb-helper.com.

138 Start Here! Fundamentals of .NET Programming

Summary

This chapter explained routines, which are named pieces of code that other pieces of code can invoke

to perform specific tasks. Routines make programming easier and less error-prone by:

• Reducing duplicated code

• Reusing code

111 Simplifying complex code

• Hiding implementation details

• Dividing tasks among programmers

• Making debugging easier

The only real drawback to routines is that a routine call requires some overhead. Because they

have many advantages and only one small disadvantage, routines are part of most programs.

Writing and using routines is relatively easy. The only really complicated part is understanding how

value and reference types behave when you pass them to a routine by value or by reference. Table

9-2 summarizes the combinations.

TABLE 9-2 Value and Reference Type Behavior

n'"''"f~o
11:1·.·
Value type

Value type

Reference type

Reference type

By value

By reference

By value

By reference

... cannot modify the argument

... can modify the argument

... can modify the argument's properties, but not
the argument itself

... can modify the argument's properties and the
argument itself

Be sure to remember that arrays are reference types and structures are value types.

So far, this book has dealt with classes only in passing, as constructs that contain fields and

routines. There's actually more to classes than just variables and code. For example, inheritance

hierarchies allow classes to reuse each other's code and provide simple logical models of different

kinds of related objects.

The next chapter discusses object-oriented programming. It explains classes in greater detail and

covers some of their most important features, such as inheritance, constructors, and destructors.

CHAPTER 9 Routines 139

Object-Oriented
Programming

In this chapter:

• The benefits of classes

• Polymorphism

• Properties, methods, and events

• Shared and instance members

• Inheritance

• Overriding and shadowing members

• Abstraction and refinement

• Multiple inheritance and interfaces

• Constructors and destructors

IN A MODERN OBJECT-ORIENTED LANGUAGE, A program consists of a group of objects working

together to perform a task. One object interacts with the others by reading and setting the other

objects' properties, calling the other objects' methods, and responding to the other objects' events.

In a well-defined program, the objects represent more-or-less intuitive entities, and their behaviors

are easy to understand. For example, a Customer object would provide customer-related properties

such as Name, PhoneNumber, Adddress, and Customerld. It would provide methods such as

PrintAccountHistory and DisconnectFromService. It would also provide events such as NewOrderP/aced
and PaymentReceived to let other parts of the program know when something significant happened

to the object.

141

This chapter provides an overview of object-oriented programming (OOP). It explains classes,

their benefits, and the features that most programming languages provide for object-oriented

development.

Classes

In essence, a class is a very special kind of data type. Like other data types, after you define a class,

you can use it to create any number of instances of it. A program can make any number of strings

or integers. Similarly, if a program defines a Vehicle class, then it can make any number of Vehicle
objects.

An object of a class's type is called an instance of the class, and the act of creating the object in

code at run time is called instantiating it.

Because you can use a class to make any number of instances, some programmers think of a class

as a blueprint for making instances. After you define the blueprint, you can use it to make as many

copies as you like.

All the instances of a class have the same basic configuration. They all have the same properties,

methods, and events (which will be described in detail shortly), although the properties may have

different values. For example, cars all share certain properties such as color, estimated mileage, and

number of cup holders. All cars have those properties, but different cars may have different values

for the properties. (For example, some are red and some are blue; some have cup holders, and some

do not.)

Class Benefits
·--·------·-------------·--------

The biggest benefit of classes is encapsulation, the ability to group the class's properties and methods

in a convenient package. A class groups the features that define a single object or concept, such as

Customer, Student, or Annua/Report.

A well-designed class encapsulates the features needed to control its main concept and nothing

else. For example, a Student class should store information about a student. Although it should

provide a way to see what courses the student is taking, it should not store detailed information

about those courses-that would be the job of a Course class.

Strong encapsulation hides the details of how the class works from outside code. It isolates the rest

of the program from those details, so a programmer working on another part of the program can use

the class's properties and methods without needing to know exactly how they work. This feature of

classes is sometimes called information hiding or abstraction.

Classes promote code reuse by allowing every instance of a class to use the class's code. They also

allow code reuse through inheritance. If a child class inherits from a parent class, then the child class

also inherits the parent's code. (Inheritance is covered in detail shortly.)

142 Start Here! Fundamentals of .NET Programming

A final benefit to classes is polymorphism. This concept, which is described in more detail later in

this chapter, means that a program can treat an object as if it were from another class if it inherits

from that class.

For example, suppose the Student class inherits from the Person class. Then, the program should be

able to treat a Student as if it were a Person because a student is a person.

Polymorphism allows code reuse because it lets a single routine work with multiple classes. For

example, suppose that the AddressEnvelope method prints an address on an envelope for a Person
object. Then the same method should work for Student, Instructor, and Administrator objects

(assuming that those classes also inherit from Person) because those are all different kinds of people.

The sections that follow describe some of the most important characteristics of classes in greater

detail.

Properties, Methods, and Events

A class's data and behaviors are determined by three features: properties, methods, and events. These

features allow objects to interact with other parts of the program.

Together, properties, methods, and events are referred to as the class's members.

Properties
Properties are data values associated with the class. For example, a Person class might have properties

such as FirstName, LastName, Street, City, State, and Zip.

Different properties can have different accessibility levels. For example, some properties could be

private (available only to code inside the class) and others could be public (available to all the code in

the program).

Different languages may provide properties in different ways. The simplest method is to give the

class a public variable. Then, any code can read and set the value. A property implemented in this way

is often called a field.

Unfortunately, this technique allows any piece of code to modify the value in completely unrestricted

ways. For example, suppose that an Orderltem class represents a single item in a customer's order. It might

provide a Quantity property to specify the number of items that the customer wants to order. If you

implement this value as a field, other pieces of code could set Quantity to a nonsensical value, such as -1

or 1 billion.

A generally better approach is to use special methods to let other pieces of code get and set the

property's value. Many programming languages provide standard approaches for making these

methods.

Object-Oriented Programming 143

In Microsoft Visual Basic, the two methods are called the property get method and the property set
method. In C# and some other languages, these methods are sometimes called the getter and setter.
In several languages, these methods are called accessors.

If you use these accessor methods, then the methods can perform validation, conversion, and

other tasks. For example, the Quantity property's setter could verify that the new value is between 1

and some reasonable upper limit and flag an error if the code tried to set the value to 1 billion.

One common technique for building properties is to store the property's value in a private

field and then provide accessors to let code outside of the class modify it. In this case, the field is

sometimes called the backing field.

The following C# code shows one way that you could implement a Quantity property:

II Implement a Quantity property.
private int _Quantity;
public int Quantity
{

}

set
{

}
get
{

}

if (value < 0 I I value > 1000)
{

}

throw new ArgumentOutOfRangeException(
"Quantity",
"Quantity must be between 1 and 1000");

_Quantity = value;

return _Quantity;

The code starts by declaring the backing field _Quantity.

In C#, the setter receives the property's new value through a special variable named value. In this

example, the setter validates the new value and throws an exception if it is out of range so that the

programmer can fix the code that is trying to set the property or provide a notification if the property

can be set through user input. Otherwise, when the new value is within the allowed range, the setter

saves it in the backing field.

The getter simply returns the value of the backing field.

Using accessor methods has a couple of advantages in addition to allowing you to add validation

code. First, if the way the value is stored must be changed, you can modify the getter and setter to

handle the change without modifying the rest of the program. For example, if you decided to store

item quantities in dozens instead of single units, you could modify the getter and setter to convert

between dozens and units. (I can't imagine actually needing to make that change, but you never

know.)

144 Start Here! Fundamentals of .NET Programming

Another benefit of accessors is that they give you a place to set breakpoints. If you know that an

object's Quantity value is getting messed up somewhere, but you don't know which piece of code is

at fault, you can set a breakpoint in the debugger to stop execution in the setter. Then, anytime the

program modifies a Quantity, you can use the debugger to see what's happening. If you used a public

field instead of accessors, you would need to find every place where other code changed the Quantity
property to hunt down the problem.

Tip The most recent versions of Visual Basic and C# provide auto-implemented properties,
where the development environment creates a backing field for you. This makes the syntax

a little easier if you don't need to add code to the accessors. If you decide to add code later,

you can convert the property to one that is not auto-implemented.

Methods
A method is a routine that makes an object do something. It could make the object generate a

printout, reset the object's properties, connect to a database, or just about anything else.

Like any other routine, a method can take parameters. The method can return values to the calling

code through parameters passed by reference, although it's generally better to make the method a

function and return information to the calling code through its return value.

Different object-oriented languages provide different methods for referring to the object that is

currently executing the code. For example, suppose the Customer class has a Printlnvoice method.

If you invoke a particular Customer object's Printlnvoice method, that object can access its own

properties and methods directly, but sometimes it might like to know which of the many Customer
objects it is. Visual Basic calls the currently executing object Me. C++ and C# call the currently

executing object this.

For example, the following Visual Basic code executes when the user clicks a button named

btnClose:

' Close the form.
Private Sub btnClose_Click() Handles btnClose.Click

Me.Close()
End Sub

The code uses Me to refer to the form that is currently running the code and calls that form's Close
method, making the form close.

If an object refers to one of the properties or methods defined by its class and it doesn't specify an

object, the program assumes that it should use the current object. That means the following code is

equivalent to the preceding version:

' Close the form.
Private Sub btnClose_Click() Handles btnClose.Click

Close()
End Sub

CHAPT£R HI Object-Oriented Programming 145

Events
An object raises an event to notify other objects that something significant has happened. Other

objects that care about the event can catch or handle it and take some action in response. The code

that handles the event is called an event handler. Zero, one, or more objects can handle the same

event as necessary.

A class may define many events, many of which are not handled by the program because they are

uninteresting. For example, in Windows Forms, the Button control defines more than 50 events, such

as DragDrop, HelpRequested, KeyPress, MouseMove, and Resize. Despite the availability of all these

events, the only Button event of any real interest in the vast majority of programs is the Click event,

which occurs when a user clicks the Button. When a user clicks the Button, an event handler catches

it and does whatever is appropriate for that particular Button.

Shared Versus Instance Members
Normally, a class's members apply to a particular instance of the class. For example, a Student object's

EmailSchedule method emails that student's course schedule to that particular student. It does not

email one student's schedule to another student.

Sometimes, however, it's convenient to make a property or method that all instances of the class

can share. As an example of a shared method, consider a common design pattern called a factory
method. A factory method is a class method that returns an instance of the class. Factory methods

usually take parameters that help determine how to create the object.

Suppose that the Student class's CreateStudent method takes a student ID as a parameter, looks

up the student's record in a database, and creates a Student object using the information retrieved

from the database. If CreateStudent were a normal instance method, the program would first need to

create an instance of the class; only then could it call CreateStudent. It seems silly to create an instance

of the class just to be able to call the method designed to create instances of the class. However,

if you make CreateStudent a shared method, then the program can call it without creating an instance

of the class first.

The syntax for making and using shared members is different in different languages. The following

code shows how you can define a simple shared method in Visual Basic:

Public Class Student
Public Shared Function CreateStudent(ByVal id As String) As Student

Return New Student()
End Function

End Class

The Shared keyword indicates that this is a shared method. (In this example, the CreateStudent
method shown here doesn't look up the student in a database. It simply returns a new Student
object.)

146 Start Here! Fundamentals of .NET Programming

The following code shows how a Visual Basic program could invoke this shared method:

Dim newStudent As Student = Student.CreateStudent("12345")

Notice how in its call to CreateStudent, the code uses the class's name instead of an instance.

The following code shows how a C# program could define a shared method:

public class Student
{

}

public static Student CreateStudent(string id)
{

return new Student();
}

In 'C#, the code uses the static keyword to indicate a shared method.

The following code shows how a C# program can invoke the shared CreateStudent method:

Student newStudent = Student.CreateStudent("1234");

As in the C# example, the code uses the class's name instead of an instance in its call to

CreateStudent.

Note If you access a shared member from an instance variable in Visual Basic, for example

in newStudent = newStudent.CreateStudent("12345''}, Microsoft Visual Studio warns you at

compile time, does not evaluate the instance variable, and calls the class's shared method

anyway.

If you access a shared member from an instance variable in C#, Visual Studio flags the

statement as an error and refuses to run the program.

In addition to shared members, you can define shared fields, properties, and events. Code using

these items can access them by using the class's name, just as the previous examples used the Student
class's name to access the CreateStudent method.

Inheritance

Inheritance is a method for allowing one class to reuse the properties, methods, and events of

another. The first class is called the parent, base, or super class. The class that inherits from the parent

class is called the child class, derived class, or subclass. The act of making a new class that inherits from

an existing class is called subclassing or deriving.

When one class inherits from another, the child class gains the benefits of the parent's

properties, methods, and events. (You can place restrictions on how a child class can inherit

the parent's members. You'll learn more about that shortly.)

CHAPTER 10 Object-Oriented Programming 147

For example, suppose the Person class has FirstName, lastName, Street, City, State, and Zip
properties, and you derive the Student class from Person. Immediately, the Student class automatically

inherits the FirstName, lastName, Street, City, State, and Zip properties defined for the Person class, all

without requiring you to add any new code.

Note Inheriting members from the parent class is a form of code reuse. It lets more than

one class use the same code.

In addition to the inherited properties, methods, and events, the child class can add new features.

For example, the Student class might add a Studentld property and an Emai/Schedule method. Those

items would be available to Student objects, but not to Person objects.

The syntax for deriving one class from another varies widely in different languages. The following

code shows how a Visual Basic program can derive the Student class from the Person class:

Public Class Student
Inherits Person

Public Studentid As Integer
End Class

In this code, the Inherits keyword indicates that Student inherits from Person.

The following code shows how a C# program can derive the Student class from the Person class:

public class Student : Person
{

public int Studentid;
}

Here, the code : Person indicates that Student inherits from Person.

Polymorphism

Polymorphism is the ability for an object to act as if it were a parent class. For example, suppose that

you have an Employee class derived from a Person. In that case, the program should be able to treat

an Employee object as if it were a Person. That makes intuitive sense because an employee is a kind of

person.

If a program has a routine that takes a Person as a parameter, the code should be able to pass that

routine an Employee object. An Employee object has all the properties, methods, and events that a

Person object does (plus possibly more), so the routine should be able to use the Employee object in

the same way that it would use a Person object.

As a specific example, suppose that the Person class defines the FirstName, lastName, Street, City,
State, and Zip properties, and the PrintEnvelope routine uses those properties to print an address

148 Start Here! Fundamentals of .NET Programming

on an envelope for a person object. Because the Employee class inherits those properties, the

PrintEnve/ope routine can still use them to print an address for an Employee object.

Polymorphism is another form of code reuse because it lets one piece of code handle multiple

kinds of objects so long as their classes can provide the necessary support.

This simple example of polymorphism is useful, but polymorphism becomes truly amazing when

you override class members, as will be discussed next.

Overriding Members

When a child class overrides a member, it defines a new version for a member that is already defined

in the parent class.

For example, suppose that you have defined the Person and Employee classes described in the previous

section, and that the Person class defines the AddressEnve/ope method. Now, suppose that you add a new

Mai/Stop property to the Employee class. In that case, you can override the AddressEnve/ope method in the

Employee class so that it prints the address with the Mai/Stop added.

Now, if the code calls AddressEnvelope for a Person object, the original version of the method executes.

If the code calls AddressEnvelope for an Employee object, the new version of the method executes.

The really amazing thing about overridden members is that the object knows which version of

the method to call, even if the program's code is using polymorphism to refer to the object using

a parent class. For example, suppose that you create an Employee object. Because an Employee

is a kind of Person, polymorphism lets the program store a reference to the object in a variable

of type Person. If the code calls the object's AddressEnve/ope method, the program will use the

version of the method defined in the Employee class, even if you use the Person variable.

The following Visual Basic code demonstrates this:

Dim anEmployee As Employee = New Employee()
Dim aPerson As Person = anEmployee

aPerson.AddressEnvelope()

The code first creates an Employee object. It then makes a Person variable and sets it equal to the

Employee object. Polymorphism allows this because an Employee is a type of Person.

The code then calls the Person object's AddressEnvelope method. Even though the program uses

a Person variable to refer to the object, the object knows that it is really an Employee, so it calls the

Employee class's version of AddressEnvelope.

The syntax for overriding a member varies from language to language. In C#, the parent class must

declare the parent class member with the virtual keyword, as in the following code. (Some languages,

such as C# and C++, call a method that can be overridden virtual.)

CHA?HR 10 Object-Oriented Programming 149

public class Person
{

}

string FirstName, LastName, Street, City, State, Zip;

public virtual void AddressEnvelope()
{

MessageBox.Show("Person");
}

In C#, the child class must declare the member with the override keyword, as in the following code:

public class Employee : Person
{

}

public string MailStop;

public override void AddressEnvelope()
{

MessageBox.Show("Employee");
}

Note In this example, the AddressEnvelope methods wwwdwwwiswwwpwwwlawwwy-~wwweswwwswwwagwww:~-ox-::wwwra-t~e.wwwr wwwthwwwa_n_ ~l
[print envelopes, so you c~.n tell which version of the method is executing. _____ WWWJ

In Visual Basic, the parent class must declare the member with the Overridable keyword, as in the
following code:

Public Class Person
Public FirstName, LastName, Street, City, State, Zip As String

Public Overridable Sub AddressEnvelope()
MessageBox.Show("Person.AddressEnvelope")

End Sub
End Class

In Visual Basic, the child class must declare the new version of the member with the Overrides

keyword, as in the following code:

Public Class Employee
Inherits Person

Public MailStop As String

Public Overrides Sub AddressEnvelope()
MessageBox.Show("Employee.AddressEnvelope")

End Sub
End Class

150 Start Here! Fundamentals of .NET Programming

Tip Programming languages provide syntax for accessing specific versions of an
overridden method. For example, the code for an Employee object could access
the Person class's version of the AddressEnvelope method if necessary. A Visual Basic
program would use the syntax MyBase.AddressEnvelope(), and a C# program would
use the syntax base.AddressEnvelope().

Sometimes it is useful for a class to declare a member but not provide an implementation, forcing

child classes to override the member. This lets the class define the syntax of a member without

providing a specific implementation. This kind of member is called abstract.

Because the class doesn't include an implementation for the abstract member, the program cannot

make an instance of the class. Otherwise, what would the program do if the code tried to call the

abstract member for an object? Because the code cannot make an instance of the class, the class itself

is also abstract. Any class that is not abstract is called concrete.

Tip You also can mark a class abstract if you don't want to allow the program to instantiate

it directly, even if it doesn't contain any abstract members.

In C#, you declare a member or class to be abstract by using the abstract keyword, as shown in the

following code:

public abstract class Person
{

string FirstName, LastName, Street, City, State, Zip;

public abstract void AddressEnvelope();
}

In Visual Basic, you use the MustOverride and Mustlnherit keywords to declare members and

classes as abstract, as shown in the following code:

Public Mustinherit Class Person
Public FirstName, LastName, Street, City, State, Zip As String

Public MustOverride Sub AddressEnvelope()
End Class

Shadowing Members

A member can shadow another member in a parent class if it has the same signature (name and

parameters, if any). In that case, the new member supersedes the old version. This is very similar to

the way a class can override a parent class member, but shadowing changes the way polymorphism

works. When a member shadows another version, a variable of the parent class that refers to an

object of a subclass does not use the subclass's version of the member.

CHAPTER 10 Object-Oriented Programming 151

Note Overriding is more common than shadowing.

In C#, you use the new keyword to indicate that a new version of a member shadows another.

For example, consider the following Employee class:

public class Employee : Person
{

}

public string MailStop;

public new void AddressEnvelope()
{

MessageBox.Show("Employee");
}

This version of the AddressEnvelope method shadows the version defined by the Person class.

Suppose that two variables, a Person and an Employee, both refer to the same Employee object.

If the program calls the Employee object's AddressEnvelope method, the Employee class's version of

that method executes. However, if the program calls the Person object's AddressEnvelope method, the

Person class's version executes.

A Visual Basic program uses the Shadows keyword to indicate that a new version of a member

shadows an existing version, as shown in the following code:

Public Class Employee
Inherits Person

Public MailStop As String

Public Shadows Sub AddressEnvelope()
MessageBox.Show("Employee")

End Sub
End Class

Tip In addition to overriding and shadowing methods, you can overload methods by

creating new versions with different parameters.

Inheritance Diagrams

An inheritance diagram is a drawing that makes it easy to visualize the inheritance relationships

among classes. The normal convention uses rectangles to represent classes. A line ending in an

arrowhead, with the arrowhead pointing to the parent class, indicates an inheritance relationship.

If space permits, child classes are usually drawn below parent classes to make the direction of the

inheritance clearer.

152 Start Here! Fundamentals of .NET Programming

Figure 10-1 shows a simple inheritance diagram. In this example, the CheckingAccount and

SavingsAccount classes both inherit from the BankAccount parent class. The OverdraftAccount class

inherits from CheckingAccount.

CheckingAccount SavingsAccount

OverdraftAccount

FIGURE 10-1 Inheritance diagrams, such as this one, show the inheritance relationships among classes.

This simple inheritance diagram is easy to draw and easy to understand, so it's quite useful.

Sometimes people place additional information inside the class rectangles to give more

information about the classes, such as their properties, methods, and events. Figure 10-2 shows

the previous inheritance hierarchy with some additional detail.

BankAccount

AccountNumber: Integer
Balance: Decimal
TransactionHistory: array of Transaction

Credit(amount: Decimal)
Debit(amount: Decimal)
virtual Print()
TransferTo(toAccount: BankAccount)

l ~
CheckingAccount SavingsAccount

shared CheckFee: Decimal MinimumBalance: Decimal

virtual ProcessCheck(check Check) overrides Print()
overrides Print()

l
OverdraftAccount

shared OverdraftFee: Decimal
OverdraftCharges: array of Fee

overrides ProcessCheck(check Check)
overrides Print()

FIGURE 10-2 You can add extra detail to an inheritance diagram to provide more information about the classes.

CHAPTER 10 Object-Oriented Programming 153

In this diagram, I've tried to include useful information without cluttering the result too much and

without relying on special symbols. (Also, note that I've probably omitted a lot of information that

a real banking application would need to include.) For example, this diagram uses keywords such as

shared, virtual, and overrides as needed.

You can use many styles when drawing inheritance diagrams. A widely used standard for object

oriented design is the Universal Modeling Language (UML), which defines more than a dozen dif

ferent kinds of diagrams for modeling object-oriented systems. You can use UML's class diagram to

model inheritance, in addition to many other relationships among classes.

UML class diagrams use many special symbols for representing classes and their relationships.

For example, they can use the symbols +, #, -, and - to flag members as public, protected, private,

and package. Hollow arrowheads indicate inheritance, and other kinds of arrowheads indicate other

relationships such as aggregation (one object is part of another, as in a Wheel is part of a Car). Other

symbols indicate the number of objects in a relationship (1 car can be associated with 4 or 5 tires,

counting an optional spare tire).

UML in general, and even class diagrams in particular, are too complicated to cover in detail

here. For a brief introduction to UML, see http://en.wikipedia.org/wiki/Unified_Modeling_Language.
UML was created and is managed by the Object Management Group (OMG). You can find more

information about OMG at www.omg.org, and you can see their introduction to UML at

http,//www.omg.org/gettingstarted/what_is_uml.htm.

Abstraction and Refinement

Abstraction and refinement are two ways to think about building inheritance hierarchies. Abstraction

lets you build a hierarchy from the bottom up, using concrete classes to build parent classes.

Refinement lets you build a hierarchy from the top down, using more general classes to build more

specific classes.

Abstraction
In abstraction, or generalization, you analyze two or more related classes and extract their common

features into a parent class.

For example, suppose that you are writing a role-playing game and you know you want a Dragon
class and a Goblin class. You want the Dragon class to have properties HitsToKill and Speed, and

you want it to have methods Bite and BreathFire. You want the Goblin class to have HitsToKill and

Movement properties and an Attack method.

Note This is a simplified model. To write a real role-playing game, you would probably

need a lot more information.

154 Start Here! Fundamentals of .NET Programming

It takes only a moment to realize that both classes have a HitsToKill property. You can avoid writing
code to handle this property twice if you generalize the two classes to make a parent class, such as
Monster. The Monster class can implement HitsToKill, and the Dragon and Goblin classes can inherit from it.

With a little more thought, you might decide that the Dragon class's Speed property is really the
same as the Goblin class's Movement property, but with a different name. Similarly, the Dragon class's
Bite method is the same as the Goblin class's Attack method. To save more code, you can move the
Bite property and Attack method into the Monster class and let the other classes inherit them.

Figure 10-3 shows the inheritance hierarchy for the revised classes.

Breath Fire()

HitsToKill: Integer
Movement: Integer

Attack()

Goblin

FIGURE 10-3 The Monster class is an abstraction of the Dragon and Goblin classes.

Abstraction is a good technique for reducing code, but it has one danger: overabstraction or
(overgeneralization). In overabstraction, you abstract more features from existing classes to create
classes that aren't necessary for the program.

In this example, you might look at the Dragon and Goblin classes and, realizing that they are both
animals, abstract them to form an Animal class. You could then move the HitsToKill and Movement

properties into the new class, resulting in the inheritance diagram shown in Figure 10-4.

HitsToKill: Integer
Movement: Integer

FIGURE 10-4 Overabstraction leads to tall, thin inheritance hierarchies.

Object-Oriented Programming 155

Although the model shown in Figure 10-4 can be considered a more accurate representation, the

extra Animal class isn't really useful. It provides an extra level of detail, but the model worked just fine

when the members of the Animal and Monster classes were contained in a single Monster class.

One clue that the new class is unnecessary is the fact that adding the class didn't add any new

properties or methods, and that all the classes that you actually instantiate (Dragon and Goblin) have

the same properties and methods they did before the change. Functionally, nothing has changed.

Unless the program needs to distinguish between animals and monsters (for example, if you add

non-monster animals such as horses and kittens to the game), the Animal class complicates things

unnecessarily.

In general, you should avoid tall, thin inheritance hierarchies. Short, wide hierarchies are usually

simpler and more effective. If you notice a class that has only one child, such as the Animal class in

Figure 10-4, you should ask yourself whether that class is really necessary.

Refinement
In refinement, you look at a class and think of different variations of that class. You then make child

classes to represent the different behaviors.

To continue the role-playing example, you might decide that you want to create two kinds of

dragons: red dragons that cast spells, and spiny dragons that use their spiked tails to carry out an

extra attack. In that case, you could add RedDragon and SpinyDragon classes as children of the

Dragon class, as shown in Figure 10-5.

Rec!Qragon

CastSpell()

HitsToKill: Integer
Movement: Integer

Attack()

SpinyOragon

AttackWithTail()

FIGURE 10-5 Refinement adds new child classes to a model.

156 Start Here! Fundamentals of .NET Programming

Just as you can use too much abstraction in a model, you also can use too much refinement.

For example, suppose that you decide you want to break the Goblin class into MountainGoblin and

SwampGoblin classes to get the hierarchy shown in Figure 10-6.

Monster

Attack()

Dragon Goblin

Breath Fire()

Red Dragon SpinyDragon MountainGoblin SwampGoblin

CastSpell() AttackWithTail()

FIGURE 10-6 Classes such as MountainGoblin and SwampGoblin, which are functionally the same, may be
unnecessary.

If you look at Figure 10-6, you can see that the MountainGoblin and SwampGoblin classes don't

add any new properties or methods, so they are functionally the same as their parent class. The only

reason to create them is so the program can tell them apart and provide more detail for the user. For

example, the program can add variety by telling the user "The mountain goblin attacks."

Because the two new classes don't add any real functionality, they are probably unnecessary.

In this example, it would probably be better to add a new Name property somewhere in the

hierarchy, perhaps in the Monster class, to provide this extra information. Then, the program can

use the Name property to tell the user what kind of monster is attacking.

As another example, suppose that you wanted to add white dragons to the game, which are similar

to red dragons except they breathe ice instead of fire. You could add a new Spel/CastingDragon class

that inherits from the Dragon class, and then make the RedDragon and WhiteDragon classes inherit

from the new class.

As is the case with the MountainGoblin and SwampGoblin classes, however, the RedDragon and

WhiteDragon classes would be virtually identical. A better solution would be to add a new BreathType

property to the Dragon class. Then, the program could look up the monster's name and the breath

weapon's name to give the user information such as "The white dragon breathes ice at you."

Note that the different inheritance hierarchies, with various combinations of the Animal,

MountainGoblin, SwampGoblin, Spel/CastingDragon, and WhiteDragon classes, do work; they just

contain more classes than necessary. In most cases, if some classes are present only so that the

program can differentiate among different kinds of objects, you probably can merge the classes

and use a property to differentiate the objects instead. That makes the object model smaller and

makes it easier to write one set of methods to handle all the different cases. In general, there may

CHAPHR 10 Object-Oriented Programming 157

be many models that will work for a given application, however, so there aren't always right and

wrong answers.

"ls-A" Versus "Has-A"

Two common concepts in object-oriented design are "ls-A" and "Has-A."

An ls-A relationship; more formally called a subclass or parent-child relationship, is when one kind

of object is a type of some other kind of object. For example, a Customer is a Person.

You can model ls-A relationships by using subclassing. For example, you can derive the Customer

class from the Person class. The Person class includes all the properties and methods that are generally

applicable to persons, and the Customer class adds those that apply only to customers. (Note that

using two classes would be overrefinement if Person has no other child classes, such as Employee.)

A Has-A relationship, more formally called composition, is when one kind of object contains or is

composed of another kind of object. For example, a CustomerOrder is (partly) composed of Orderltems.

You can model a Has-A relationship by giving one class a property that has the type of the other

class. For example, the CustomerOrder class could have an Orderltems property that has an array of

Orderltem objects.

Multiple Inheritance and Interface Implementation

Some programming languages allow multiple inheritance, where a class can inherit from more than

one parent class. For example, suppose that you have a Domicile class and a Vehicle class. You might

want a HouseBoat class or a MotorHome class to inherit from both those classes.

Unfortunately neither Visual Basic nor C# allows multiple inheritance. In fact, most object-oriented

languages support only single inheritance. You can, however, gain some of the benefits of inheritance

from multiple parent classes by using interfaces and composition.

In Visual Basic and C#, you can define an interface. An interface defines a set of members that a

class can provide. A class that implements the interface must provide those members.

In some ways, an interface acts as a parent class. In particular, a program can use interfaces

polymorphically. For example, suppose you create an /Vehicle interface (by convention, interface

names begin with /) that defines the SeatingCapacity and MaxSpeed properties. Several classes, such

as Car, Truck, and MotorHome, implement the interface. Then, a routine could take as a parameter an

/Vehicle object. No matter which class the object actually is (Car, Truck, or MotorHome), the routine

knows that the object will provide SeatingCapacity and MaxSpeed properties so that the routine can

use them. This makes the code easier to read and lets the development environment perform type

checking (however, it would not allow a generic untyped object to use those properties).

158 Start Here! Fundamentals of .NET Programming

Interface implementation provides half the solution to the HouseBoat/MotorHome problem.
Instead of making these classes inherit from the Domicile and Vehicle classes, you can make them
inherit from the Domicile class and then implement the !Vehicle interface.

That provides the polymorphism; now, the classes can act as either Domiciles or Vehicles.

Unfortunately, interface implementation does not provide code reuse the way inheritance does.
In this example, if the Domicile class defines a SquareFeet property, both the HouseBoat and

MotorHome classes inherit that property, but if the !Vehicle interface defines a MaxSpeed property,
each of the two classes must implement that property separately.

One solution to this problem is to create a separate Vehicle class in addition to the !Vehicle

interface. This class would implement the !Vehicle interface and provide code to handle the MaxSpeed

and whatever other properties are defined in the interface.

Now, the HouseBoat and MotorBoat classes can include a property that is an instance of the
Vehicle class. To implement the members defined by the !Vehicle interface, they invoke the members
of their Vehicle objects.

The following Visual Basic code shows a simple !Vehicle interface that defines the MaxSpeed

property:

Public Interface IVehicle
Property MaxSpeed() As Integer

End Interface

The following Visual Basic code shows a Vehicle class that implements the !Vehicle interface:

Public Class Vehicle
Implements IVehicle

' Implement IVehicle.
Private _MaxSpeed As Integer
Public Property MaxSpeed() As Integer Implements IVehicle.MaxSpeed

Get
Return _MaxSpeed

End Get
Set(ByVal value As Integer)

_MaxSpeed value
End Set

End Property
End Class

Notice the Implements statement that indicates that Vehicle implements /Vehicle. Also, notice the
Implements !Vehicle.MaxSpeed syntax that indicates that the MaxSpeed method implements the
!Vehicle interface's MaxSpeed property.

The following code shows a simple Domicile class that provides the single field SquareFeet. (You
could implement SquareFeet as a property instead of a field, but this code is slightly shorter and
works just as well for this example.)

Object-Oriented Programming 159

Public Class Domicile
Public SquareFeet As Integer

End Class

Finally, the following code shows the HouseBoat class that inherits from Domicile and implements

/Vehicle:

Public Class HouseBoat
Inherits Domicile
Implements !Vehicle

' Delegate !Vehicle members.
Private MyVehicle As New Vehicle()
Public Property MaxSpeed() As Integer Implements IVehicle.MaxSpeed

Get
Return MyVehicle.MaxSpeed

End Get
Set(ByVal value As Integer)

MyVehicle.MaxSpeed = value
End Set

End Property
End Class

This may seem a bit roundabout. The class includes a private Vehicle object named MyVehicle

and then delegates the /Vehicle members to that object, when the HouseBoat class could have just

implemented them directly. In this example, adding the extra layer doesn't save any code and even

makes things a bit more complex. However, this approach lets other classes that "inherit" from both

the Domicile and Vehicle classes, such as MotorHome and Camper, use the same Vehicle class. They

would each need to provide code to delegate to a Vehicle object, but if you needed to make changes

to the Vehicle code, you could make those changes in the Vehicle class and the HouseBoat, Mo

torHome, and Camper classes would "inherit" the changes automatically.

The following code shows how a Visual Basic program could treat a HouseBoat object as a Vehicle

and as a Domicile:

Dim houseBoat As New HouseBoat()
houseBoat.MaxSpeed = 10
houseBoat.SquareFeet = 150

The first statement declares and instantiates a HouseBoat object. The next statement sets the

object's MaxSpeed property as defined by the /Vehicle interface, and the last statement sets the
SquareFeet field as inherited from the Domicile class.

The HouseBoat class doesn't really inherit from two parent classes, but in many ways, it acts like it

does.

Note The code needed to build these classes and the interface in C# is a bit more

cumbersome than the Visual Basic version because of the syntax that C# uses for interfaces,

but the basic idea still works.

160 Start Here! Fundamentals of .NET Programming

Constructors and Destructors

You can define all sorts of methods for a class, but there are two kinds of methods that have a very
special place in an object's lifetime: constructors and destructors.

Constructors
A constructor is a method that is called automatically when the program creates a new instance of a
class. When part of the program creates a new instance of the class, the system calls the appropriate
constructor before it returns the new object to the code that created it.

You can use a constructor to initialize the object's properties and fields, get data for the object from a
database, open resources, such as files, that the object will use, and generally prepare the object for use.

The syntax for constructors differs from language to language. In Visual Basic, a constructor is a
subroutine (that returns no value) with the special name New. You can overload the constructor to

create several versions, all named New, with different parameter lists.

Note A constructor that takes no parameters is called a parameterless constructor or
sometimes an empty constructor.

The following Visual Basic code shows a simple Person class with two constructors-one that takes no
parameters and one that takes two:

Public Class Person
Public FirstName, LastName As String

' Initialize the Person.
Public Sub New()

Fi rstName = ""
LastName

End Sub

' Initialize the Person with the indicated values.
Public Sub New(ByVal newFirstName As String, ByVal newlastName As String)

FirstName = newFirstName
LastName = newlastName

End Sub
End Class

A constructor that uses its parameters to initialize the new object's fields, as the second
constructor shown here does, is sometimes called an initializing constructor.

In C#, a constructor is a method that has the same name as the class, but which has no return type
(not even void). The following code shows a C# version of this class:

public class Person
{

public string FirstName, LastName;

CHAPTER 10 Object-Oriented Programming 161

}

II Initialize the Person.
public Person()
{

}

FirstName =
LastName =

""· '
""·

'

II Initialize the Person with the indicated values.
public Person(string firstName, string lastName)
{

}

FirstName = firstName;
LastName = lastName;

Both Visual Basic and C# provide syntax that lets a child class's constructor invoke a constructor in

the parent class or to invoke another constructor in the same class.

Note Neither Visual Basic nor C# allows a constructor to invoke more than one other

constructor.
~~~~-~~-

Constructors in the Same Class 

l 
J 

In Visual Basic, a constructor can use the MyC/ass keyword to invoke another constructor in the same 

class. The following code shows how a constructor that takes no parameters can invoke a constructor 

that takes first and last names as parameters: 

' Initialize the Person. 
Public Sub New() 

MyClass.New("", "") 
End Sub 

Tip Making one constructor call another in this way lets you r~use the code in the called 

constructor. 

In C#, you can use the this keyword to invoke another constructor in the same class. The following 

code shows a C# version of the previous Visual Basic code: 

II Initialize the Person. 
public Person() 

{ 
} 

: this(""' 111
') 

162 Start Here! Fundamentals of .NET Programming 



Constructors in the Parent Class 

In Visual Basic, a constructor can use the MyBase keyword to invoke a constructor in the parent class. The 

following code shows how a Student class constructor can invoke a constructor in the Person parent class: 

' Initialize the Student with the indicated values. 
Public Sub New(ByVal newFirstName As String, ByVal newlastName As String) 

' Invoke the parent class's constructor. 
MyBase.New(newFirstName, newlastName) 

End Sub 

In C#, you can use the base keyword to invoke a parent class constructor. The following code 

shows a C# version of the previous Visual Basic code: 

II Initialize the Student with the indicated values. 
public Student(string firstName, string lastName) 

{ 
} 

: base(firstName, lastName) 

Destructors 
Constructors are executed when a new object is created. Destructors are executed when a new object 

is destroyed. 

An object can be destroyed when the last referring variable stops referring to it. For example, 

a routine might create an Invoice object and work with it for a while. When the routine ends, the 

variable referring to the object no longer exists, so no variable points to the object. At that point, the 

object could be destroyed, and its destructor would execute. 

Because the code that you write doesn't explicitly call the destructor, there's no way to pass 

parameters to it, so the destructor cannot take parameters. That also means you cannot overload 

the destructor for a class because any two destructors would need to have the same parameter list 

containing no parameters. 

In Visual Basic, a destructor is a special routine named Finalize. It overrides a protected method 

that is predefined for the class, so you need to use the keyword Protected Overrides in the declaration. 

The following code shows a destructor that displays a message in the output window: 

' Free resources. 
Protected Overrides Sub Finalize() 

MessageBox.Show("Person destroyed") 
End Sub 

In C#, the destructor is a method named after the class with a tilde character(-) in front of it. 

The following code shows a destructor similar to the previous Visual Basic version: 

-Person() 
{ 

Console.Writeline("Person destroyed"); 

Object-Oriented Programming 163 



You may have noticed that earlier in the chapter, I said, "An object can be destroyed when the 

last referring variable stops referring to it," I didn't say that the object would be destroyed. An object 

with no variables referring to it is destroyed immediately in some languages, but in .NET, it's not clear 

when the object is actually destroyed because .NET uses a garbage collection scheme. 

Garbage Collection 
When a program creates an object and then releases the variables pointing to it, the program loses 

the ability to refer to the memory that the object occupied. That memory becomes lost, and in .NET, 

the program cannot reuse that memory. 

After a while, the program may have lost a lot of memory in this way and may have trouble 

allocating memory for new objects. When the available memory becomes low enough, the garbage 

collector (GC) runs to reclaim the lost memory. 

The GC first marks all the memory that could be available for use, including the "lost" memory, 

as not in use. It then examines all the variables currently accessible to the program and marks their 

memory as in use. When the GC finishes this process, any memory that is still marked as not in use 

really is not in use, so the GC reclaims it (that is, makes it available again so that the program can use 

it to create new objects). 

Because you can't predict when garbage collection will occur, you don't know exactly when 

unused objects will be destroyed. The idea that you don't know when objects will truly be destroyed 

or finalized is called non-deterministic finalization. 

I Disposable 
For many objects, non-deterministic finalization isn't a problem. The program loses access to an 

object, and the object's memory sits around "lost" until garbage collection eventually occurs. This can 

cause problems, however, if the object allocates scarce resources that must be freed. For example, 

if an object opens a file and keeps it open, other processes may have trouble writing into the file or 

deleting it. 

You might try to free the resources in the class's destructor. Unfortunately, due to non-deterministic 

finalization, you don't know when the object will really be destroyed and its destructor executed. If the 

program doesn't use a lot of memory, the object may not be destroyed until the program ends. 

To work around this problem, you can make a class implement the /Disposable interface. This interface 

requires the class to implement one method, Dispose, that should free the object's resources. 

Calling Dispose isn't automatic, however. The program should call an object's Dispose method 

before losing access to the object. If the program doesn't call Dispose, it's not the end of the world. It 

just means that the object's resources aren't freed until it is finally destroyed. 

That raises one final complication: the destructor must be able to release the object's resources if 

Dispose wasn't called, but it should not release the resources a second time if Dispose already released 

them. 

164 Start Here! Fundamentals of .NET Programming 



To summarize: 

1111 When memory runs low, the GC runs to reclaim lost memory. 

1111 You don't know when the GC will run (non-deterministic finalization). 

• An object's destructor isn't called until it is finally destroyed. Due to non-deterministic 

finalization, you don't know when that will be, so you cannot rely on the destructor alone to 

free resources. 

• To allow the program to free resources, you should make the class implement the /Disposable 
interface. The Dispose method should free the resources. 

1111 The destructor should free resources if and only if the Dispose method did not. 

Of course, none of this is an issue if the class doesn't control scarce resources that must be freed. 

More Info For more information on the !Disposable interface, see http://msdn.microsoft 
.com/library/system.idisposab/e.aspx. 

Summary 

This chapter explained the basics of classes and OOP. It listed some of the benefits of OOP, such as 

encapsulation, code reuse, and polymorphism, and described the members of classes, properties, 

methods, and events. The chapter covered how inheritance allows a child class to inherit members 

from a parent class. It also explained how a child class can modify inherited members by overriding or 

shadowing them. 

Although most object-oriented languages, including C# and Visual Basic, do not allow multiple 

inheritance, this chapter showed how you can gain many of the same benefits by using interfaces and 

composition. Finally, this chapter covered constructors that execute when an object is created and 

destructors that execute when an object is destroyed. 

OOP is a big topic, and this chapter covers only the basics. However, with a little study, this should 

be enough information to get you started and to give you the background you need to understand 

other books and online information about object-oriented design and programming. 

Classes and objects provide some important benefits, such as code reuse and inheritance, but 

there are other, non-object-oriented techniques that also can make programs easier to write, 

debug, and maintain. The next chapter describes some of those techniques, such as using comments 

effectively, following naming conventions, and building generic classes. 

CHAPTER 10 Object-Oriented Programming 165 





In this chapter: 

111 The benefits of comments 

111 Extensible Markup Language (XML) comments in .NET and lntelliSense support 

111 Naming conventions 

Iii! Development techniques 

111 Agile, extreme, and test-driven development 

MANY FACTORS DETERMINE THE QUALITY OF a finished application. These include everything 

from the quality of the development environment to the quality of the programmers. Some of these 

factors are out of your control. For example, the development platform and staff are often assumed 

before the project really gets started. 

However, you do have some control over other factors, such as the quality of the comments you 

write and what development approach you use. 

This chapter discusses some of these issues. It explains good commenting and naming conventions 

and some popular development approaches that you can use to increase the quality of your programs. 

Comments 

Ironically, one of the most important programming statements is a statement that doesn't make the 

computer do anything: the comment. 

This makes perfect sense if you think about programs as written for programmers rather than 

for the computer. The computer doesn't care whether you write a program using nicely formatted 

for loops and well-defined classes or a tangled mess of go to statements. In fact, the computer can't 

really execute a program the way you write it anyway. The computer first must convert the program 

into machine code before executing it. If the goal were to make programs easy for the computer to 

execute, you would write in machine code. 

167 



High-level programming languages, such as C++, C#, and Microsoft Visual Basic, are designed 

to make it easy for programmers to understand a program. They include elements such as for each 

loops, routines, and classes that make it easier to write code that a programmer can understand. 

When you write a particular piece of code, it is essential that you understand how it is supposed to 

work. When you debug or modify code later (or someone else does), understanding the code is even 

more critical. If you don't completely understand the code, you are much more likely to introduce 

new bugs as you modify it. 

Studies have shown that a programmer is more likely to introduce a bug while editing old code 

than while writing new code. That old code was once new code, so why should it suddenly have become 

more fragile? That isn't it, actually; it's that the programmer doesn't have the same rich understanding 

of the code that the original author had. Even if you're modifying code that you originally wrote, you 

probably don't have the full picture in mind when you're editing the code. It's very common to move 

right to a piece of code that contains a bug or that needs modification and not bother to rediscover 

all the intricacies of the rest of the surrounding code. 

You can help later programmers (even if it turns out to be you) understand the code more completely 

by using explanatory comments. If you use good, descriptive names for objects and variables, code 

can be relatively self-documenting, but you can make it a lot easier to understand the code if you add 

instructive comments. 

Comments should not simply repeat the code. For example, the comment for the statement x += 

1 should not simply say "Increment x.'' That is obvious from the statement itself. Instead, the comment 

should explain why the statement is incrementing x. For example, a better comment might say "Move 

to the next X position in the data to plot the next point on the graph.'' 

Some developers believe you should include a comment only if it is absolutely necessary to 

understand the code. I disagree with this philosophy. The idea is to make it as easy as possible for 

programmers to understand the code, not to conserve space. This idea also encourages programmers 

to use fewer comments than they should. While you are writing a piece of code, you have a good 

understanding of it, so naturally you don't need many comments to know how it works. When 

another programmer looks at the code, or when you look at it much later, you don't have all this 

background knowledge in your head, and it's much harder to figure out what the code is doing. 

Instead of including comments only where absolutely necessary, I include comments unless they 

are absolutely unnecessary. You shouldn't fill the code with so many comments that it's hard to read, 

but you should include enough information so a less-experienced programmer can figure out quickly 

what the code does. 

In my many years of programming, I have never worked on a project where too many comments 

hurt the project, but I have worked on several where too few comments caused a lot of harm. 

On one C project, our team wrote an algorithm containing several thousand lines of code. We used 

a first tier of comments in the code to explain in general what the program was doing. Off to the right 

of the code, we included even more comments explaining what individual lines of code were doing. 

You didn't even see those comments unless you wanted to and scrolled to the right. After we finished 

168 Start Here! Fundamentals of .NET Programming 



the project, we transferred it to another part of the company for maintenance. The people in this area 

had a policy that comments were prohibited unless they were absolutely essential, so they removed 

most of our comments. A few months later, though, they couldn't maintain the code because they 

couldn't figure out how it worked. 

In a second project, I helped maintain a Visual Basic program containing more than 50,000 lines of 

code and around 500 comments. The comments were so sparse that they could give only a general 

idea of what the routines did and couldn't give any help in understanding how they worked. On that 

project, it was common for a developer to spend a week or more trying to understand how a piece of 

code worked before making a simple change in one or two lines of code. Often, what seemed like a 

simple change in one piece of code would cause unexpected consequences in another piece of code 

so the programmer would need to study other routines to figure out what they did and how they 

worked. Much of that extra work could have been avoided if the code had contained more comments. 

Types of Comments 
There are several levels at which you might need to understand a piece of code, and there are 

comments appropriate for each of those levels. To decide whether you need to use a class and to 

understand how the classes work together, you need only a high-level overview of the class. For 

example, to use the Obstacle class in a puzzle program, you need to know generally what an Obstacle 
represents. 

The same applies to code modules, libraries, and any other high-level grouping of routines. To use 

the Crypt library, you need to know that it contains classes and routines for performing cryptography. 

To make it easy to understand classes, code modules, and libraries, each should begin with a 

block comment explaining the purpose and general ideas behind it. For example, the Crypt library's 

comment should explain that it is a cryptography library and give an overview of how to use it. If this 

requires a lengthy explanation, you can move it into an external document and then refer to it in the 

comment. 

To use a routine or class member effectively, you need an overview of that item. You need to know 

what parameters to pass into the routine, what the routine does, and what value it returns, if any. 

To provide this information, begin each routine or class member with a brief comment explaining 

what it does and describing parameters and return values. If the code makes assumptions, such as an 

input array already being sorted or a parameter being greater than zero, spell that out in the comment. 

To debug or modify a routine or class member, you need a much more in-depth understanding of 

what the routine does and how it works. Add comments within the code to explain what the code is 

doing. Also, explain why the code does what it does. A good programmer can eventually figure out 

what the code does, but figuring out why it does what it does can be a difficult, time-consuming, and 

sometimes frustrating process. 

CHAPTER 11 Development Techniques 169 



XML Comments 
Microsoft Visual Studio allows you to add a special kind of comment to code: Extensible Markup Language 

(XML) comments. These are special comments that contain XML tokens indicating the meaning of 

various parts of the comments. The comments are indicated by three comment characters: "'in Visual 

Basic or Ill in C#. 

For example, the following code shows the declaration for a simple factory method that uses a 

student's first and last names to create a new Student object: 

Ill <summary> 
Ill Returns a Student object populated from the database. 
Ill </summary> 
/II <param name="firstName">The first name of the student to find.</param> 
/II <param name="lastName">The last name of the student to find.</param> 
/II <returns>A Person object initialized from the database.</returns> 
public static Student FindStudent(string firstName, string lastName) 
{ 

} 

(Note that the comments shown here aren't particularly informative. I kept them short mostly so 

that the tooltips shown in Figures 11-1and11-2 wouldn't be too long and would fit reasonably well in 

the book.) 

XML comments have two benefits: they support lntelliSense and they support automatic 

documentation. 

lntelliSense Support 
The first benefit of XML comments is that they allow the lntelliSense feature in Visual Studio to give 

programmers extra information when writing code that uses a method. For example, when you highlight 

a method in the code editor, lntelliSense displays the text in a summary XML comment, as shown in 

Figure 11-1. 

pr..i.vate void Form1_Load(object sender, E·\.'"'::·nt:Ar.g;:;i e) 

5r.u.,l.::r~c stud.ent "" 2)t;•r.t•.rnt,. Fi_~_ctj 

'$ Eq~ols 

::1!!~uols ·-··-·······~~~~i;;i~~d;;~~~;;:.-~~~·:::i~~-~~;=:~1 
FIGURE 11-1 lntelliSense describes a method by displaying the text in a summary XML comment. 

When you need to enter parameters, lntelliSense displays the text in the corresponding param 

XML comment, as shown in Figure 11-2. 

170 Start Here! Fundamentals of .NET Programming 



pri.Vti.".'>?:': vo:Ld Fon'r'll_Load(c:b.)e:.~·t, sender, e) 

FIGURE 11-2 lntelliSense describes parameters by displaying the text in param XML comments. 

lntelliSense tooltips such as these can be extremely helpful to programmers who are using classes 

and routines that they didn't write. 

Automatic Documentation 

The second benefit to XML comments is that you can extract them to create documentation. Visual 

Studio can extract the comments automatically for you if you set it up correctly. 

To make Visual Studio extract comments, right-click the project in Solution Explorer and select 

Properties. Select the Build tab and scroll down until you can see the XML Documentation File check 

box. Select that box and enter the name and path for the resulting XML file, as shown in Figure 11-3. 

y x 

,Sup pre is W<frning.s: 

Treatwarnings·:as errors 

Spedfic warrlings: 

A!I 

bin\Deb1.Jg\\11/indowsForrns.!l..pplicationlXlv1L 

G~nerote serialization insembly: 

FIGURE 11-3 Use the property page on the Build tab to specify where Visual Studio should put extracted XML 
comments. 

The resulting XML file contains your comments, along with information about other automatically 

generated symbols defined by the program. Now, you can use other programs to pull the information 

that you want from this file and turn it into documentation. For example, you could use an Extensible 

Stylesheet Language Transformation (XSLT) program to convert the XML file into a formatted document. 

XML and XSLT are outside the scope of this book. For more information on them, search on line or 

look for books about XML. 

Development Techniques 171 



Creating XML Comments 

To create XML comments in Visual Studio, create the method's declaration and then place three comment 

characters on a blank line before the method. When you add the third character, Visual Studio creates 

an XML comment with places where you can fill in summary, parameter, and return information. 

The comment includes only sections that are relevant to the declaration that you have written. This 

example includes two parameters, so the comment initially included two param tags to describe the 

parameters. (Visual Basic also includes a remarks tag, which isn't included in C#.) 

Supported XML Comments 

XML comments include two types of tags: primary tags and supporting tags. 

Primary tags can sit by themselves and cannot be contained by other tags. Table 11-1 summarizes 

the primary tags supported by Visual Studio. 

TABLE 11-1 Primary Tags in Visual Studio 

example 

exception 

include 

pa ram 

permission 

seealso 

summary 

Example showing usage. 

Exceptions that the code may throw. 
,v ,-,.---,-- .. •v•• 

Indicates documentation should include an external file here. 

Describes a parameter. 

Permission-relatedinformatio·n:riiis could .. be.a 11 accessibility value such aspub1ic.or.frienc{or 
it could indicate necessaryuserpermissions. 

larifying remarks. 

Supporting tags provide extra formatting information within a primary tag. For example, a list tag 

could indicate that items inside a remarks section should be formatted as a list. The following table 

summarizes Visual Studio's supporting tags. 

TABLE 11-2 Supporting Tags in Visual Studio 

c 

code 

description 

list 

listheader 

item 

para 

paramref 

Marks a piece of text as code, often inline. 
,,,,. 1·--~_,,,,,,, ~,,., 

Marks multiple lines of text as code. 
'"'" ~'"" ~"""""''~~• • m ·• ,~,~-•-• 

Gives the description of a term. Must be contained within an item tag. 

\Defilles a 1i5i. Oseslisti1eaC!e~7iem, a11d term tags to detille.the1ist;sitems. ··· · 

r~:fines ~.list's he:~e,r ...•........••.•.•.•..••.•. · .................................................................... · .... · ........ . 
Defines an item in a list. May contain term and description tags. 

•·'- ""'""· ~.m 

Defines a paragraph. 
>o ~ o mN'--'N 

Used to refer to a parameter defined by a param tag. 

172 Start Here! Fundamentals of .NET Programming 



see 

term 

· f specifies a tiyperlinl<. ····· 
' ! Gives the name ofa term. Must be contained within an item tag. 
1 

value [ Describes the meaning of a property. 

More Info For more information on XML comments, see http://msdn.microsoft.com/library/ 

b2s063fZaspx and http://msdn.microsoft.com/magazine/dd722812.aspx. 

Naming Conventions 

Back in the old days, some programming languages restricted variable names to no more than six 

characters. But modern languages let you use very long names, so it's easy nowadays to give descriptive 

names to classes, routines, properties, and other programming items. For example, instead of naming 

a variable PCSTNO, you can name it PreferredCustomerNumber. 

Development environments such as Visual Studio also provide name completion features that let 

you enter long names quickly without a lot of extra typing. In Visual Studio, when you start typing 

a name, lntelliSense displays a list of possible matches. If you select the one you want and press the 

Tab key, lntelliSense fills in the rest for you. This kind of feature lets you use longer, more descriptive 

names without taking you more time to type. 

Naming conventions make it easier for developers on a project to create similar names. That makes 

reading the code easier, which increases comprehension and decreases bugs. 

Different programming groups and programmers using different languages tend to have different 

naming conventions, and it's impossible to say that any particular one is the best. A few general 

guidelines, however, are worth mentioning. 

Some common naming conventions (many recommended by Microsoft) include: 

11 Use natural word ordering; for instance, NextPlayer instead of PlayerNext. 

11 Use descriptive names, not short ones. 

11 Do not use underscores, hyphens, or other non-alphanumeric characters. 

1111 Do not use Hungarian notation (using a prefix to give extra information about a variable). 

1111 Do not use names that are also keywords in widely used languages such as C, C++, C#, or 

Visual Basic, such as Function, Sub, or For. 

11 Do not use abbreviations or contractions. 

11 Only use acronyms that are widely accepted. 

CHAPTER 11 Development Techniques 173 



111 Begin method names with verbs; for instance, PrintReport and FindStudent. 

111 Begin class, structure, module, and property names with a noun; for instance, Student and 

ltemCost. 

111 Begin interface names with I followed by a noun; for instance, /Vehicle and /Sortable. 

111 Begin event handler names with a noun followed by EventHandler; for instance, 

MouseDownEventHandler. 

111 Avoid using the same name in different scopes, such as creating a variable named PlayerNum 

at the class level and another variable named PlayerNum inside a method. 

111 Use forms of the verb "to be" (is, was, will be, and so on) for Boolean values; for instance, 

lsDisconnected and WasShipped. 

111 For public members, use Pascal casing, where every word is capitalized; for instance, 

GenerateSalesReport. 

111 For private members (including variables inside routines), use camel casing, where every word 

except the first is capitalized; for instance, generateSa/esReport. 

111 For property backing fields, use a leading underscore, for instance, _numEmployees. 

Not all developers follow these rules. For example, some use underscores instead of Pascal casing, 

as in customer_last_overdue_bill_date instead of CustomerlastOverdueBil/Date. 

When a program works with a value entered in a control on a form, it must have some way 

to distinguish between the control and the variable holding the control's value. You can't name 

both FirstName. Some developers distinguish between the two by using control prefix notation to 

give the type of a control. For example, a TextBox holding a customer's first name might be called 

txtFirstName. This also makes it easier to find the control in lntelliSense. (This is not quite the same 

as Hungarian notation, which uses prefixes to identify a variable's data type and scope to make type 

checking easier.) 

Some purists think that it shouldn't matter whether a customer's name is typed by the user in a 

TextBox, selected from a ListBox, or automatically populated in a Label control, so the control's name 

should indicate that it is a control, but not what kind. Some developers use ui (for "User Interface") or 

ux (for "User Experience") for all control types. 

Many C++ and C# developers and developers at Microsoft use a control postfix, as in 

FirstNameTextBox. 

C# developers usually use Pascal and camel casing, no underscores, and control name postfixes. 

Visual Basic developers, particularly with older code, often use Pascal casing for public class 

members, lowercase with underscores for private members, and control prefixes in all cases. This may 

change over time, particularly if Microsoft continues to recommend the (#-style conventions. 

174 Start Here! Fundamentals of .NET Programming 



You should decide which conventions make the most sense to you and try to use them consistently. 

Using whatever naming convention you pick consistently will make your code easy to read and 

understand. It's more important that you pick a convention and stick to it rather than picking any 

particular convention. 

For more detailed conventions recommended by Microsoft, see these links: 

11 http.//msdn.microsoft.com/library/ms229002.aspx 

11 http://msdn.microsoft.com/library/ms229045.aspx 

11 http://msdn.microsoft.com//ibrary/Ob283bse.aspx 

Development Techniques 

There are many approaches to designing and building applications. One thing they all have in common is 

that they put design first. Often, it is tempting to sit down and start cranking out code without first 

creating a well-defined plan. For very simple programs that won't be used for very long, that may be 

good enough. For anything but the most trivial program, however, it's a huge mistake. 

A solid design can help you better understand the application and how its pieces fit together. The 

better you understand the code, the less likely you are to make mistakes. 

This issue is compounded when many developers work together. If different developers have 

different ideas about how the application (or even parts of it) should work, they are likely to write 

code that is incompatible, resulting in bugs that often can be quite subtle and hard to track down. 

Although it is tempting to just start writing code, it's worth taking the time to plan things out 

beforehand. Over the lifetime of a project, fixing bugs can take up a large fraction of the project's 

total cost, so spending some extra time up front to reduce the number of bugs in the system is always 

worth the expense. 

The following sections describe several approaches for designing and implementing applications. 

Even if you don't adopt one of these, you may find some of the concepts useful. 

Data-centric Viewpoint 
Most commercial applications involve data to one extent or another. In fact, many applications are 

little more than user interfaces for manipulating a database. For example, a customer order and 

inventory system might be built around a database holding customer orders and inventory data. 

Forms would allow users to create new orders, add and remove items from orders, and track orders 

through the system as they are filled, sent to customers, and billed. 

For this kind of application, it is often useful to design the database first. You can think about the 

kinds of information that the application needs and how it should be arranged to make an efficient 

and robust database. My book Beginning Database Design Solutions (Wrox, 2008) explains how to 

design efficient and robust databases. 

CHAPTER U Development Techniques 175 



After you know what tables the database will contain, you can design forms to let the user work with the 

tables. One-to-one relationships between tables often indicate data that you can include on the same form. 

One-to-many relations often indicate that you need a scrolling control that can hold any number of items. 

For example, suppose that the Order table contains basic information about an order, such as the 

Custornerld (linking to the Custornertable), Orderld, and other fields such as OrderedDate, ShippedDate, 
and PaidDate. The Order/tern table contains records describing the items in an order. This table also 

has an Orderld field that links to the Order table. The Order/tern records for an Order are those having 

the same Orderld. 

In this example, an order form could contain labels or text boxes to hold the order's dates. It also 

could display the customer's name, address, phone number, and other relevant information. 

Because one Order record could correspond to any number of Orderltem records, the form 

couldn't have a single entry (or even a fixed number of entries) for order items. Instead, it can display 

item information in a ListBox, ListView, or other scrollable control. 

User-centric Viewpoint 
An alternative to the data-centric design approach is to focus on the needs of the user, design a user 

interface to meet those needs, and then build a database to support the design. 

In an order tracking example, the user would need a form that lets him or her enter order information 

(dates), customer information (contact information and addresses), and information about the items 

ordered. Buttons also would be needed to add and remove items and to accept or cancel the order. 

Figure 11-4 shows one possible result. This form uses multiple tabs to display groups of information 

about the order (the dates) and the customer (contact information and various addresses). 

Street: Leet St 

C~y: 

State: 

241·3 
251·2 
378·0 

NY ,,. ZIP: . . 23456" 

987-654·3210 

. Description 

Pencils. dozen 
Notepad. college rule. 1 BO sheets 
Paperclips 

Price Each Quantity 

$1.14 3 
$0.85 10 
$1.17 1 

Total . 

$3.42 
$8.50 
$1.17 ,_ 

Grand Total: $27.90 

FIGURE 11-4 The data-centric and user-centric approaches often arrive at a similar solution. 

176 Start Here! Fundamentals of .NET Programming 



Data-centric and user-centric approaches often lead to a similar solution, but sometimes one 

approach picks up some detail that the other misses. In this example, taking a user-centric viewpoint 

might make you realize that the user needs Add and Remove buttons, while you might not think of 

that using a data-centric viewpoint. 

Sometimes the two viewpoints can arrive at very different solutions where the user interface 

converts the data in a major way. For example, the user interface might display a graph or bar chart 

showing data stored in the database. 

To get the greatest benefit, it's often useful to look at a problem from both viewpoints, at least 

briefly. 

Agile Development 
Agile software development is an approach that focuses on building projects incrementally, using 

frequent builds, to ensure that the project works at some level almost continually. 

The 12 principles of agile development are summarized in the following list: 

l. Satisfy customers by rapidly delivering useful software with frequent incremental improvements. 

2. Handle changing requirements at all stages of development. 

3. Deliver working software frequently. 

4. Require close daily interaction between businesspeople and developers. 

5. Give motivated individuals the tools and environments they need to do the work, and then 

trust them to do it. 

6. Communicate with face-to-face conversations. 

1. Measure progress with the delivery of working software. 

8. Work at a sustainable pace (no 60-hour weeks to meet deadlines). 

9. Pay constant attention to technical excellence and good design. 

10. Keep things simple. 

11. Use self-organizing teams. 

12. Regularly reflect on progress and make adjustments to improve future progress. 

Many agile teams perform weekly builds so that the project can run at least once a week. Frequent 

builds help reveal bugs as quickly as possible so developers can't go too far down an incorrect path 

before being caught and corrected. 

Development Techniques 177 



I have heard some agile developers say that you're not using agile methods unless you follow all 

12 of the principles. Whether you call your development process agile or not, incorporating some 

of these principles can probably help increase the success of your projects. For example, performing 

frequent builds as the project incrementally approaches its goals will reduce bugs in any development 

effort. 

More Info For more information on agile development, see http://en.wikipedia.org/wiki/ 
Agile_ development and agilemanifesto.org. 

Extreme Programming 
Extreme programming uses some of the same general ideas as agile development. The central ideas 

include creating frequent small releases that gradually approach the project's goals. A representative 

customer must be available at all times to answer questions, programmers are highly motivated, 

and-if they get the tools they need-work progresses at a sustainable pace. 

Some of the other techniques used by extreme programming are worth mentioning because they 

can benefit many projects. 

For example, extreme programming encourages programmers to code to the specific problem, not 

a general solution. Many traditional development groups plan far ahead and try to make solutions to 

specific problems as general as possible. That may be useful later, but the general solution often isn't 

all that helpful for later projects and must be modified before it can be reused. Programmers sometimes 

spend far too much time perfecting extremely flexible code that is never fully used. In extreme 

programming, developers solve the problem at hand and nothing more. Only later, if you discover 

that a tool must be reused, should you generalize the software. 

Another extreme programming tool is pair programming. Here, one programmer, called the 

"driver," writes code and explains what he is doing while another programmer watches and studies the 

code. Every now and then, the programmers switch roles. Having two people focused on the same 

piece of code often can catch mistakes and incorrect assumptions that a single programmer would 

miss. With some practice (and this method does require practice), two programmers working together 

can write almost as much code as they would separately in a given timeframe, but with much higher 

quality. 

More Info For more information on extreme programming, see http://www 
.extremeprogramming.org, http://www.extremeprogramming.org/rules.html, and 

http://en. wi kiped ia. org/wiki/Extreme_ P rog ramming. 

One particularly useful technique used by extreme programming that has gained popularity in 

many other development approaches is test-driven development. 

178 Start Here! Fundamentals of .NET Programming 



Test-driven Development 
In test-driven development, programmers write testing routines to determine whether a piece of 

software satisfies its requirements before writing the software itself. They then write the software and 

validate it against the tests. If the software doesn't pass the tests, it is improved until it does. Fixing 

the software may uncover other special cases that require new tests. The process repeats until the 

software passes all the tests. 

Ideally, tests are performed on the smallest pieces of code possible. For example, before you write 

a new routine, you write tests for it, so when it is finished, you have a high-quality routine that has 

already been thoroughly tested before you plug it into the rest of the project. As larger pieces of the 

project are assembled, you write tests for them, too, and improve the code until it passes all its tests. 

Test-driven development has several important benefits. First, frequent testing helps reveal bugs 

quickly, before they become deeply embedded in the system. Bugs are much easier to fix if they are 

found shortly after they are introduced. Ideally, test-driven development will find most bugs right 

after they are written so that they can't contaminate other code with incorrect assumptions. 

A second benefit of test-driven development is that it requires programmers to write lots of tests, 

something they are often reluctant to do. After you write a piece of code, it's natural to assume that it 

is correct. After all, if you knew there was a problem in your code, you would fix it. Making programmers 

write tests before writing the code encourages them to write more tests. 

Writing tests before writing code also helps programmers write the tests without preconceptions about 

how the code works so that they don't avoid testing cases that they "know" the code can handle. You 

can decrease preconceptions further if different programmers write the tests and the code being 

tested. 

Finally, test-driven development produces a lot of tests. With little extra work, you can incorporate 

those tests into an automated testing tool so that you can rerun the tests later to see if recent changes 

have broken any of the older code. If you can rerun the tests easily, you are more likely to run them 

frequently. Doing so allows you to find and fix bugs quickly, while they are still relatively easy to find. 

One particularly useful kind of test that is also easy to implement is an assertion. An assertion is 

a statement about the state of the program that the code claims to be true. If it is not true, then the 

program throws an error, so you can look into the code and see what's wrong. 

In .NET, the Diagnostics namespace contains a Debug class, which has an Assert method that makes 

it easy to make assertions. The method's first parameter is a Boolean statement. If the statement is 

false at run time, the method throws an exception. Other parameters let you specify messages to 

display when the method throws an exception. 

The following code shows part of a SortEmployees method that includes some input and output 

assertions: 

Public Function SortEmployees(ByVal employees() As Employee) As Employee() 
' Input assertions. 
Debug.Assert(employees IsNot Nothing, _ 

"So rt Emp 1 oyees: Parameter emp 1 oyees is missing") 

Development Techniques 179 



Debug.Assert(employees.Length > 1, _ 
"SortEmployees: Too few employees") 

Debug.Assert(employees.Length < 100, _ 
"SortEmployees: Too many employees ") 

' Sort the employees. 
Dim result(O To employees.Length - 1) As Employee 
' 

' Output assertions. 
For i As Integer = 1 To employees.Length - 1 

Debug.Assert(result(i).Employeeid > result(i - l).Employeeid, _ 
"SortEmployees: Sorting error.") 

Next i 

' Return the result. 
Return result 

End Function 

When the code starts, it uses Debug.Assert to verify that the array of Employee objects that it 

should sort is present (not Nothing), holds at least 2 objects, and contains fewer than 100 objects. 

If the first test fails, the program contains a bug that should be fixed. If one of the other two tests 

fails, the code calling this method might contain a bug because the number of objects is outside the 

expected range. After investigation, if you determine that the number of objects should be allowed, 

you can change the tests to be more lenient. 

When you make a debug build of the program, the Debug.Assert statements check their conditions 

and throws exceptions if appropriate. When you make a release build, the Debug.Assert statements 

are removed from the project. That means that you can add as many of these as you like without 

hurting the performance of the final released project. It also means that you must ensure that the 

program can run even if an assertion fails. 

In this example, if testing doesn't find a special case where the program passes SortEmployees an 

empty array, the program should be able to run anyway without crashing. The idea that code should 

be able to run even under unexpected conditions is called defensive programming. 

The main ideas behind defensive programming are that it reduces bugs and that it makes the code 

run more consistently under unexpected conditions. Unfortunately, defensive programming actually 

hides bugs rather than reducing them. Making the SortEmployees method robust is good for that 

method, but if another piece of code is passing it an empty array, then that other code probably contains 

a bug. If you make SortEmployees silently continue and return a reasonable result, you hide the bug in 

the other code and make it harder to find. It may only be much later, in a completely different piece 

of code, that the incorrect result surfaces and you notice that something is wrong. 

The best solution is to use the combination of assertions and robust code that can keep running 

even if there is an error. When you are testing the program, the assertions uncover bugs quickly. 

When you give the user a release build, the program won't crash even if an assertion fails. 

180 Start Here! Fundamentals of .NET Programming 



Summary 

This chapter discussed some techniques that you can use to improve the quality of your software. 

It explained how to use comments and naming conventions to make reading and understanding code 

easier. It also provided brief introductions to several popular development approaches, including 

agile, extreme, and test-driven development. 

Even if you don't adopt one of those approaches in its entirety, some of the ideas they use are 

worth adopting. For example, frequent incremental releases, focusing on immediate needs instead of 

overgeneralizing code, and input and output assertions can make your code more effective, reliable, 

and maintainable. 

Design and development are huge topics, however, and this chapter barely scratched the surface, 

so you should spend some time looking into this topic further. Many books and websites are 

dedicated to different design methodologies, and the more you learn about them, the better. Even 

if you have no control over the methodology that your programming team uses, you may be able to 

pick up some useful techniques that you can add to your code. 

When programmers think of bugs, they usually think of code that crashes the program or that 

produces incorrect results, but if you write applications used in different parts of the world, a program 

may produce correct results that are displayed incorrectly. 

For example, suppose that a program adds up some costs and displays the value in dollars: 

$1,234.56. The number may be correct, but users in Germany will expect to see 1.234,56 €, and users 

in Great Britain will expect to see £1,234.56. 

The next chapter discusses globalization: the process of making an application work correctly in 

multiple locales. It discusses some of the issues involved in globalization and explains how to globalize 

applications in .NET. 

CHAPTER 11 Development Techniques 181 





In this chapter: 

111 Globalization terminology 

111 Culture codes 

111 Locale-specific text and symbols 

1111 Localizing user interfaces in Microsoft Visual Studio 

1111 Locale-specific formats 

m Culture-aware .NET functions 

IN RECENT YEARS, PARTICULARLY WITH THE exponential growth of the Internet, the world is much 

smaller than it used to be. A program that you write and post on line today can be in use all over the 

world in a matter of hours. 

Some applications are really usable only locally, but for many applications, it makes sense to create 

versions that can run globally. Sometimes it takes only a little extra work to make a program usable in 

many countries. If you post such an application and there is enough demand for it in a particular region, 

you can spend more effort making your program available there and possibly open up a whole new 

market. 

This chapter discusses some of the issues that you face when you try to write a program for use in 

other parts of the world. It explains some of the most important regional differences and ways that 

you can handle them, particularly in .NET applications. 

183 



Terminology 

Several terms are used to describe different aspects of globalization. Some of the terms have 

similar meanings, and although many developers use them interchangeably, it's useful to know the 

differences. 

A locale identifies a country and region. As far as a program is concerned, it identifies the cultural 

conventions used in a particular area, including such things as language and fonts, and formats for 

such values as dates, times, numbers, and currency values. 

Every computer has a defined locale that tells the operating system how to format values. For 

example, if your system is set up for a French locale, it will format numbers using spaces for thousands 

separators and commas for decimal separators, as in 1 234,45 (1,234.45 in American format). 

Localization is the process of making a program support a single, specific locale. That includes 

using an appropriate font, text in the locale's language, images and icons that make sense for that 

locale, and appropriate formatting for times, dates, numbers, and other values. 

According to Microsoft, globalization is the process of making a program support multiple locales. 

Some developers use the term internationalization to mean the process of making a program capable 

of easily supporting different locales and the term globalization to mean both internationalization 

and localization. (At this level, the difference seems like splitting hairs.) 

Culture Codes 
---------·-··------~----·-· 

In .NET programming, you set a program's locale by specifying a culture. A neutral culture is 

associated with a language, but not a particular country or region. A specific culture is a neutral 

culture, together with a country or region. 

For example, en-US has the neutral culture code "en," meaning English and the country code "US," 

meaning the United States. So the specific culture code en-US means English as used in the United 

States. There are more than a dozen other English culture codes, including English as used in Australia 

(en-AU), Belize (en-BZ), Jamaica (en-JM), Great Britain (en-GB), and Trinidad and Tobago (en-TD. 

More Info For a list containing more than 100 culture codes, see http://msdn.microsoft 
.com/library/ee825488.aspx. 

Locale-Specific Text and Symbols 
-·----------------------------·-----------·---

The most obvious change needed to localize a program is its text. Any text that the program displays, 

either on forms or in dialog boxes, must be changed for the new locale. The program also needs to 

understand text typed by the user in the locale's language. 

184 Start Here! Fundamentals of .NET Programming 



Sometimes developers overlook the fact that text doesn't always take up the same space in 

different languages. Something that may be easy to say in a few words in one language may take 

many words in another language. When you design a program to be localized, you must be sure that 

you leave enough room for whatever text is required in every locale that you will support. (More 

likely, you will go back and rearrange controls to add room where necessary as you begin localizing 

an application.) 

In addition to text, you may need to change icons, symbols, and other graphics so that they make 

sense in the new locale. For example, in the United States, a picture of a dog can symbolize loyalty, 

playfulness, security (a guard dog}, or the ability to fetch something. In many parts of the world, 

however, dogs are not kept as pets or service animals. They may be considered sneaky, dangerous, 

or vicious. If you want to localize a program for those parts of the world, you will need to pick other 

symbols. 

Thinking of a symbol's name as representing something else with a similar name often can cause 

trouble when localizing an application. This is particularly true when the symbol represents a pun or 

play on words that doesn't translate well into other languages. 

For example, suppose a program has a button that makes a bell ring. A picture of a diamond ring 

(the kind that goes on your finger) would probably be a bad symbol for that button. It makes some 

sense in English and is even mildly amusing (although many people don't like that sort of pun), but it 

relies on the fact that the word ring has multiple meanings in English, and this joke would probably 

make no sense in many other languages. A better symbol would be a picture of a small bell ringing. 

That would not be as interesting, and you might need to change it if a different kind of bell were 

common in a particular locale, but at least you'd have some chance that users would understand the 

symbol without needing to figure out a pun. 

Localizing User Interfaces in Visual Studio 

Modifying the controls on a form at run time to support the user's locale can be a lot of work. For 

different languages, you might need to change the text displayed by the controls, change control 

sizes and positions, and switch graphics so that they make sense to the user. Microsoft Visual Studio 

provides some features to make it much easier to display different user interfaces for different locales. 

To give a program multiple user interfaces for different locales, start by building the application 

as you usually would to create a default user interface. The program will use this interface if it doesn't 

have a more specific interface for the user's locale. For example, if you write a program in English and 

then localize it for German and Spanish, the program will default to English if the user's locale is Russian. 

Next, in the Form Designer, set the form's Localizable property to true, and then set the form's 

Language property to the locale that you want to support, as shown in Figure 12-1. You can see in 

Figure 12-1 that Visual Studio lists five specific German locales in addition to the generic German 

locale. It also supports 17 Arabic locales, 7 Chinese locales, 17 English locales, 21 Spanish locales, and 

many others, for a total of more than 100 locales. 

12 Globalization 185 



FIGURE 12-1 Visual Studio lets you select many locations, including six German locales. 

Now, change the properties of the form and its controls to support the new locale. Change any 

displayed text and rearrange controls, if necessary, to make them fit into the new language. 

Start with less specific locales and then add more specific ones as necessary. For example, start 

with German and then add German (Austria) later if necessary. 

When the program runs, it will automatically select the most specific localization that matches. If 

the user's computer is set for the German (Austria) locale, the program will pick that localization. If the 

user's computer is set for the German (Luxembourg) locale and you have not included that localization, 

the program will pick the more generic German locale as the next best choice. If the user's computer 

is set for Italian (Italy) and you have no localizations for Italian, the program will pick the default 

locale that you built initially. 

Unfortunately, Visual Studio does not localize every property-just the ones that Microsoft 

thought you would be most likely to need to localize, such as Font, Text, Size, and Location. In particular, 

the PictureBox control's Image property is not automatically localizable, so if you want to display 

different images for different locales, you'll need to write some code to do so. 

Locale-Specific Formats 

In addition to text and symbols, different cultures use different formats for values such as numbers, 

currency, percentage, date, and time. 

A program must be able to both read and display values in the appropriate format. 

Table 12-1 shows examples of some values for the United States (en-US), Great Britain (en-GB), 

Germany (de-DE), France (fr-FR), and Greece (el-GR). 

186 Start Here! Fundamentals of .NET Programming 



TABLE 12-1 Culture-Specific Values 

Percentage 

Short Date 

Long Date 

el-GR 

en-US 

en-GB 

de-DE 

fr-FR 

el-GR 

1:46 PM 

13:46 

13:46 

13:46 

1:46 µµ 

If you look closely at the table, you'll find a variety of different currency symbols, thousands 

separators, decimal separators, and the positioning of those symbols. 

Dealing with all the possible formats for even these few cultures could be a lot of work. 

Fortunately, .NET provides several culture-aware functions, which will be discussed next. 

Culture-Aware Functions in .NET 

To work correctly in different locales, a program must be able to parse and display values correctly 

for each locale. For example, if the user enters the date 4/1/12, the program should treat the value as 

April 1 if it is running in Chicago, and January 4 if it is running in London. 

Knowing how to parse and format values in each locale could be a lot of work. Fortunately, the 

Microsoft .NET Framework provides several methods that handle these differences automatically. The 

most important methods for reading locale-formatted values are the Parse methods and the Convert 

class's conversion methods. The most important methods for producing formatted output are the 

data types' ToString methods and the String.Format method. 

CHAPTER 12 Globalization 187 



Each of the standard data types has a Parse method that converts a string into a value of that 

type. For example, DateTime.Parse takes a date string as a parameter and returns the corresponding 

DateTime value. For example, the statement DateTime.Parse("4/1/12'') returns a DateTime variable 

representing April 1 if the computer is running in the en-US locale, and January 4 is the computer is 

running in the en-GB locale. 

The Convert class provides locale-aware shared methods for converting values from one type 

to another. For example, the statement Convert.ToDateTime("4/1/12'') returns the same values as 

Date Time.Parse. 

Each data type defines a ToString method that converts a value into a string. For example, if the 

variable dueDate holds a date, then dueDate. ToString() returns a string representing the date that has 

been formatted properly for the computer's locale. 

Similarly, the String.Format method produces strings formatted for the computer's locale. For 

example, if the variable dueDate holds a date, then String.Format("{O}, dueDate) returns a string 

representing the date, formatted for the computer's locale. 

Note that the ToString and String.Format methods can take formatting strings as parameters to 

indicate how a value should be formatted. For example, the statement dueDate. ToString("M/d/yy'') 

returns a date in the format month/day/year even if that is not appropriate for the computer's locale. 

To prevent incorrect results, you should not use custom time, date, and numeric formats unless there's 

some special reason why you must. Instead, omit the format string or use standard formats such as d 
(short date), D (long date), t (short time), T (long time), and C (currency). 

Some data types also provide conversion methods that convert their values into strings. For 

example, the DateTime data type has ToShortDateString, ToShortTimeString, TolongDateString, and 

TolongTimeString methods that return strings in different locale-correct formats. 

To summarize: 

11 Do not parse strings by reading the pieces of the string and trying to interpret them in code. 

11 Use a data type's Parse method or a shared Convert method, such as Convert. ToDateTime, to 

convert strings into values. 

11 Do not use custom format strings or try to build your own formatted strings in code. 

11 Use locale-aware string creation methods, such as ToString, String.Format, TolongDateString, 

and ToShortTimeString. 

11 Do not use custom formatting strings such as M/d/yy. 

11 Use standard formatting strings, such as d, T, or C. 

188 Start Here! Fundamentals of .NET Programming 



More Info For more information on formatting characters, see: 

111 Standard Date and Time Format Strings 

http://msdn.microsoft.com/library/az4se3kl.aspx 

111 Custom Date and Time Format Strings 

http://msdn.microsoft.com/library/8kb3ddd4.aspx 

• Standard Numeric Format Strings 
http://msdn.microsoft.com/library/dwhawy9k.aspx 

• Custom Numeric Format Strings 

http://msdn.microsoft.com//ibrary/Oc899ak8.aspx 

Summary 

This chapter discussed several issues that you should consider when you localize a program. A program 

may need to display different fonts, text, pictures, and symbols for different locales. In addition, it 

may need to rearrange controls to make everything fit in a new locale. Visual Studio makes this sort of 

customization for different locales relatively easy and automatic. 

In addition to rearranging the user interface, a localized program needs to parse and display 

values in the correct formats. For example, a program should display April 1, 2012, as 4/1/12 in the 

United States, 01/04/12 in Great Britain, and 01.04.2012 in Greece. 

The data types' Parse methods (such as Integer.Parse) and Convert class's conversion methods 

(such as Convert. ToDateTime) let a program parse values in different locales. 

The data types' ToString methods and String.Format can convert values into strings that are properly 

formatted for a locale so long as you use only standard formats. Some data types also provide their 

own culture-aware formatting methods, such as the DateTime data type's ToShortDateString method. 

If you localize the interface for different cultures and use only the locale-aware parsing and 

formatting methods, you'll be well on your way to making a program usable around the world. 

One last thing you should do before you release your program to millions of unsuspecting users, 

however, is to have a native of each locale test the program to ensure that it makes sense. Instruction 

manuals and signs that have been poorly translated into English have been entertaining (and frustrating) 

English speakers for decades. Unless you want your program to be the target of local ridicule, and 

maybe even mocked worldwide on the web, have it checked by someone who lives in the area you 

are targeting. 

CHAPTER 12 Globalization 189 



Truly globalized applications are a relatively new but growing phenomenon. One type of application 

that is not at all new is the database application. The idea of relational databases is at least 40 years 

old, and some estimates indicate that as many as 80 percent of all Microsoft Visual Basic applications 

involve a database. The percentage may be lower for other programming languages, but it's clear 

that databases play a vital role in modern business programming. 

The next chapter discusses databases and data storage more generally. It describes different methods 

for storing different kinds of data and explains when different techniques are appropriate. 

190 Start Here! Fundamentals of .NET Programming 



In this chapter: 

1111 Files as databases 

1111 INI and config files, and the registry 

1111 Extensible Markup Language (XML) files and related tools such as XML Schema Definition 

(XSD), Extensible Stylesheet Language for Transformations (XSLT), and XML Path (XPath) 

1111 Relational databases 

1111 Spreadsheets, object stores, and object-relational databases 

1111 Hierarchical and network databases 

WHEN MANY PEOPLE THINK ABOUT DATA storage, they think about large relational databases, but 

there are many other ways a program can store data. It can store data in formatted text files, comma

delimited files, configuration files, the system registry, or plain old text files. 

Each method has advantages and disadvantages. For example, although a relational database 

provides powerful searching and reporting features, it comes with significant overhead and requires 

a special code to access. If your program simply needs to load a set of values when it starts, a simple 

configuration file will be easier. 

This chapter describes some of the ways a program can store and retrieve data. It explains several 

of the most useful methods, their strengths and weaknesses, and how you can decide which is best 

for your application. 

191 



Files 

One of the simplest ways to store data is in a file. The program can use file system tools to create, 

read, update, and delete files. The file may be a text file that you can read and edit with any text editor, or 

it may contain binary data that only your program can read and write correctly. You can even encrypt 

the file if you want to make it hard for others to read. 

Although a file can contain any kind of data, standard programming tools make it easier to work 

with files that have standard formats. The following sections describe some kinds of files that a 

program might use for data storage. 

Text Files 
A plain text file can store anything you want. Unless the file contains a block of text, the data is usually 

separated by some sort of delimiter, such as a tab, comma, semicolon, or new line. 

File manipulation classes provide methods that make it easy to read and write the lines in a file and 

to split strings containing delimiters. 

For example, suppose that you want to store student test scores. Each line might contain a 

student's name followed by a comma-delimited list of test scores, as in the following: 

Able,100,90,94,97 
Baker,89,92,96,100 
Carter,100,98,100,96 
Davis,76,79,65,72 

A program could read this file, split it into lines, and then use the commas to split the lines into 

fields. 

Because this kind of file contains values separated by commas, it is called a comma-separated value 
(CSV) file. 

The simplest type of text file contains a single data value on each line. Although this makes the 

file seem very large in an editor, it doesn't really take up much more space than any other kinds of 

delimited file because the newline character occupies only a couple of bytes in the file. 

These kinds of text files have the advantage that you can read and modify them in a text editor. 

This is very important if there is a problem in the data and you need to see what values are in the file. 

These files have the disadvantage that they normally contain only text. For example, you cannot 

easily store an image or sound file in such a file. They also have the drawback that a program cannot 

modify them in the middle. The program may be able to append data to the end of the file, but to 

make changes in the middle, it must rewrite the entire file. This usually happens fast, so it may not be 

a problem unless the file is very large or multiple programs need to access and modify the file at the 

same time. 

Although plain text files seem very low-tech, they can be very useful. 

192 Start Here! Fundamentals of .NET Programming 



Random Access Files 
The reason that a program cannot modify the middle of a plain text file easily is that the pieces of 

data it contains don't necessarily have the same lengths. For example, consider the following line from 

the previous test scores file: 

Baker,89,92,96,100 

Now suppose you wanted to change Baker's second test score from 92 to 100. If the program 

simply overwrote the bytes at that position in the file, it would replace the following comma with 0, 
giving this erroneous result: 

Baker,89,10096,100 

A random access file allows a program to modify an arbitrary part of the file by assigning a fixed 

amount of space to each record that it holds. The following text shows a fixed-length record version 

of the original test scores file: 

Able 
Baker 
Carter 
Davis 

100 90 94 97 
89 92 96 100 

100 98 100 96 
76 79 65 72 

Each record allows 10 characters for each student's name and then 4 entries for test scores, each 

stored in 4 characters. 

To update Baker's second test score, a program would use the length of the records to calculate the position 

in the file where that value is stored. It would then change the value without updating the rest of the file. 

Random access files have the advantage that you can find an arbitrary record in the file if you 

know where it is. For example, you can find the second record without reading and parsing the rest 

of the file. It also has the advantage that you can modify a record in the middle of the file without 

rewriting the whole file. 

These files have the disadvantage that they take up extra space. In this example, every record must 

have the same length even though the students' names have different lengths. If you plan to use the 

file to store 10 test scores for each student, you also need to create the file initially with enough space 

for all the scores, even though that space won't be used right away. 

These files also have the disadvantage that they are relatively complex to use. You need to figure 

out where the record you want is. The tools for working with these files also tend to be more primitive 

than those used to work with relational databases. 

INI Files 
An INI file (the name comes from initialization file) is simply a text file with a special format. The file 

can contain sections delimited by section names surrounded by brackets. Each section contains item 

names and values separated by an equal sign. The file can contain comments started with semicolons 

to make reading the file easier. 

CH.APTER 1.3 Data Storage 193 



The following text shows a simple INI file: 

[User] 
LastUserName=Rod Stephens 
LastUsedDate=04/0l/2012 
[Config] 
Top=lOO 
Left=250 
Width=300 
Height=200 

This file contains two sections named User and Con{ig. The User section contains the name of the 

last user to run the program and the date it was last run. The Con{ig section stores the program's 

position when it closed so the program can restore itself to the same position when it runs again. 

Typically, a program reads an INI file to initialize itself when it starts. You can change the way that a 

program behaves by modifying the INI file and restarting the program. 

Programming tools make reading and writing INI files reasonably easy. Like plain text files, the 

program must rewrite the entire file to make any changes. 

In recent years, INI files have fallen out of favor. It is more common to use config files, described 

shortly, to hold this sort of initialization data. 

XML Files 
An Extensible Markup Language (XML) file is another form of text file that has a special format. 

Because of its usefulness and popularity, XML and its associated technologies have grown very 

powerful and complicated, so there's no room to do more than briefly summarize them here. For 

more information, search online or see a book about using XML. 

The basic rules for creating an XML file are reasonably simple, however, so this section provides a 

brief introduction to XML. 

XML files are hierarchical, with a single root element. Each element begins with a token consisting 

of a name enclosed in pointy brackets(<>) and ends with a corresponding token that also includes a 

slash (/) character. You can make these names up as you go along. They can be just about anything 

that makes sense to you, but they can't contain any special characters, such as < or#. 

Between the start and end token, an element can contain data, which may include text or other elements. 

The following text shows a simple XML file containing the previous test score data: 

<TestScores> 
<Student> 

<Name>Able</Name> 
<Score>100</Score> 
<Score>90</Score> 
<Score>94</Score> 
<Score>97</Score> 

</Student> 

194 Start Here! Fundamentals of .NET Programming 



<Student> 
<Name>Baker</Name> 
<Score>89</Score> 
<Score>92</Score> 
<Score>96</Score> 
<Score>l00</Score> 

</Student> 
<Student> 

<Name>Carter</Name> 
<Score>l00</Score> 
<Score>98</Score> 
<Score>l00</Score> 
<Score>96</Score> 

</Student> 
<Student> 

<Name>Davis</Name> 
<Score>76</Score> 
<Score>79</Score> 
<Score>65</Score> 
<Score>72</Score> 

</Student> 
</TestScores> 

This file's root element is named TestScores. It contains a series of Student elements, each holding a 

series of Score elements. The Score elements contain their values. 

Figure 13-1 shows the same data graphically so that it's easy to see its hierarchical structure . 

. ·. ~afii~. ·· I 
:J 

FIGURE 13-1 XML files contain hierarchical data. 

There are lots of other rules for building XML files. For example, as a shortcut, if an element contains no 

data, you can begin and end it with a single token that includes a slash character before the closing 

bracket. For example, the element <Present></Present> is equivalent to <Present/>. 

CHAPTER B Data Storage 195 



You can also give an element attributes to give additional information about the element. In the 

previous test score example, you might decide to make Name be an attribute of the Student element 

instead of a separate element. You could also make a Score element include its value as an attribute 

instead of as a separate element. The following text shows the file with those changes: 

<TestScores> 
<Student Name="Able"> 

<Score Value="lOO"/> 
<Score Value="90"/> 
<Score Value="94"/> 
<Score Value="97"/> 

</Student> 
<Student Name="Baker"> 

<Score Value="89"/> 
<Score Value="92"/> 
<Score Value="96"/> 
<Score Value="lOO"/> 

</Student> 
<Student Name="Carter"> 

<Score Value="lOO"/> 
<Score Value="98"/> 
<Score Value="lOO"/> 
<Score Value="96"/> 

</Student> 
<Student Name="Davis"> 

<Score Value="76"/> 
<Score Value="79"/> 
<Score Value="65"/> 
<Score Value="72"/> 

</Student> 
</TestScores> 

Although an XML file can hold any hierarchical data, using files that have a very irregular structure 

can be confusing. They often work best for holding data that is naturally hierarchical, such as a company's 

organizational structure or a horse's ancestry. They can also be useful for holding recordlike data, as 

in the previous test scores example. 

Several libraries are available that make reading and writing XML files easier. Document ob-

ject model (DOM) is used to load an XML file into an in-memory data structure that mimics the 

arrangement of the data. The program can manipulate the data structure's objects to change the data 

and then write the result back into the file. 

DOM methods are reasonably intuitive but require all the data to be loaded into memory at the 

same time. If the XML file is extremely large, that may be impractical. In that case, you can use other 

methods that let the program process one element before moving to others. This method is generally 

more confusing, but it lets the program skip large chunks of data if they are not needed and keeps 

less data in memory at one time. 

One disadvantage to XML files is that, like other text files, a program cannot update them in the middle. For 

example, if you want to change a particular test score value, you need to rewrite the entire XML file. 

196 Start Here! Fundamentals of .NET Programming 



Binary formats for XML files are defined, but the text version is much more common. Text XML files 

can even use text encoding techniques to store binary data such as image, audio, or video files. 

In recent years, XML has become very popular for storing and transmitting data. The following list 

summarizes several other kinds of files that have been defined to make XML more useful. 

• Schemas Document Type Definition (DTD) and XML Schema Definition (XSD) 

files are schema files that define the types of data that an XML file can hold. For 

example, they might require that the file hold a TestScores root element that contains 

a series of Student elements, each having a Name attribute and a collection of 

Score elements. A program can use schema files to validate data and learn more 

about the kinds of data that an XML file should hold. 

• XSLT eXtensible Stylesheet Language for Transformations (XSLT) is a programming 

language that you can use to write programs that transform XML files into a new 

format. For example, an XSLT program can transform XML data into a new XML 

file with a different arrangement of elements, a plain text file holding a report, or 

a CSV file containing some of the data. 

• XPath The XML Path (XPath) language specifies how to select elements in an 

XML file. For example, an XPath expression might select all Student elements that 

contain a Score element with Value attribute less than 70. 

• SOAP Simple Object Access Protocol (SOAP) is a protocol for exchanging 

information between programs and web services. 

• Web service A web service is a program running on a network that another 

program can call for service. For example, a web service might allow a program to 

look up product prices or place an order with a company. 

Config Files 
In general, configuration files (also called config files) are files that contain information that a program 

can use to initialize itself when it starts. As is the case with INI files, you can change the way a program 

behaves by modifying the config file and restarting the program. 

In .NET programming, configuration files are XML files with a specific format. Programs 

automatically load config file information, so it is easily available to the program. 

The easiest way to work with config file settings in C# and Microsoft Visual Basic is to open the 

project in Microsoft Visual Studio, open the Project menu, and select Properties. Then click the Settings 

tab to see a settings page similar to the one shown in Figure 13-2. 

CHAPTER B Data Storage 197 



FIGURE 13-2 The project's Settings tab lets you add values to the application's config file. 

On this page, you can add, modify, and remove settings. Enter a name for the setting in the left 

column. In the second column, either select from more than 20 predefined data types, such as string, 
int, Color, or Point, or browse for new data types. 

You can set the scope to User, so that each user has a separate setting value, or Application, to 

make all users share the same value. 

The intent is that application settings let you configure the program for all users. The program's 

code cannot modify application settings while the program is running. 

The user settings let the program save configuration information such as color preferences, form 

layouts, and query history separately for each user. The program can update user settings. 

The following code shows how a C# program could use these settings to display a greeting and 

the user's type in two labels: 

private void Forml_Load(object sender, EventArgs e) 
{ 

} 

greetinglabel.Text =Properties.Settings.Default.Greeting; 
userTypeLabel.Text ="You are logged in as a"+ 

Properties.Settings.Default.UserType; 

198 Start Here! Fundamentals of .NET Programming 



This code sets the greetinglabel control's Text property to the value of the Greeting setting. It 

makes the userTypelabel control's Text property include the value of the UserType setting. 

The following code shows comparable Visual Basic code: 

Private Sub Forml_Load() Handles MyBase.Load 
greetinglabel.Text =My.Settings.Greeting 
userTypelabel.Text ="You are logged in as a'' & My.Settings.UserType 

End Sub 

Config files are similar to INI files in many ways, although they are easier to use and they support 

values with application and user scope. 

The System Registry 

The system registry is a hierarchical database that Microsoft Windows uses to hold configuration 

information for the operating system and many of the programs installed on the system. It holds 

information such as the various locations of important executable programs, which programs to associate 

with which kinds of files, and the locations of libraries. 

Note The registry is extremely important for the operating system to run correctly. If you 

fool around in there and break something, you can do serious damage to the system, 

possibly making it unbootable, so make any changes carefully. Also, you may want to save 

a copy of the part of the registry that you're changing, just in case. For example, the File 

menu of the RegEdit tool contains an Export command which can copy part of the registry 

into a text file. 

Microsoft calls the top-level branches from the root of the registry hives. The registry uses separate 

hives for classes, the current user, the local computer, all users, and the current configuration. 

Many applications store shared settings in the HKEY_LOCAL_MACHINE\Software branch of the 

registry. For example, Microsoft Word stores some settings in HKEY_LOCAL_MACHINE\SOFTWARE\ 

Microsoft\Of{ice\12.0\Word\Document lnspectors\Comments And Revisions. 

The registry automatically makes a separate HKEY_CURRENT_USER hive for each user, so many 

programs store user-specific settings there. For example, Word stores a user's option settings in 

H KEY_ CUR RENT_ USER\Software\M icrosoft\ Of{ice\12. 0\ Word\Options. 

A .NET program can use the Microsoft.Win32.Registry class to manipulate the registry. Visual 

Basic programs also can use the GetSetting and SaveSetting functions to get and save values in 

the HKEY_CURRENT_USER\Software\VB and VBA Program Settings part of the registry. 

Because the registry is hierarchical, you can make branches inside other branches to store data, 

much as you can in an XML file. The registry isn't really intended for building complex data hierarchies 

or for storing huge amounts of data. It's a handy place to store small bits of information, such as user 

CHAPTER 13 Data Storage 199 



preferences and configuration data, but it's not a good place to store customer, order tracking, or 

student data. Those kinds of data are better kept in a relational database, which provides much better 

reporting features. 

Relational Databases 

Without getting too technical, a relational database contains tables that hold records. Each record 

holds fields containing data for that record. 

For example, a test scores database might have a Student table. Each record holds the same data 

about a specific student: Studentld, FirstName, and LastName. 

Different tables are linked by using common values in their fields. For example, the TestScore table 

would contain information about test scores: Studentld, TestNumber, and Score. In this example, the 

Student table's Studentld field links to the TestScore table's Studentld field. To find the scores for a 

particular student, you would look up that student's Student record, find the Studentld, and then find 

all the TestScore records with the same Studentld. 

Figure 13-3 shows these tables graphically. Arrows connect corresponding Student and TestScore 
records. 

FIGURE 13-3 In a relational database, tables are linked by fields holding the same values. 

In this example, the TestScore table holds four test scores for Kim Abercrombie, one test score for 

Terrence Philip, and one test score for Jay Hamlin. 

200 Start Here! Fundamentals of .NET Programming 



Note Figure 13-3 shows the records in the TestScore table in order so that they match up 

nicely with the records in the Student table, However, in general, you cannot assume that 

the records are stored physically in that order in the database. When you select data from 

the tables, you can use an ORDER BY clause to order the results in whatever way is most 

convenient at the time. 

Relational databases use sophisticated indexing methods to make it fast and easy to search for 

particular records and to find matching records in other tables. That makes it very easy to build complex 

reports, such as a list of the students in each class and their test scores, or a list of students with failing 

average scores for each class. 

These sorts of queries make relational databases powerful and flexible, so they are preferable for 

most applications that work with any significant amount of data. Databases in Microsoft SQL Server 

are particularly common in .NET applications, although .NET programs can use other databases, such 

as MySQL, Oracle, PostgreSQL, Sybase, and DB2. 

Note Microsoft also offers SQL Server Express, a free edition that works just like SQL Server 

but with a few restrictions, such as limiting the number of CPUs and the amount of memory 

that the database can use, and limiting the total size of the database. Many developers start 

with SQL Server Express and then move to the full (non-free) version of SQL Server if the 

database grows enough so that the free version cannot handle it. 

Relational databases have many advantages, such as the following: 

• They let you perform complex queries to select data from many tables. 

• They use index structures to make finding a particular piece of data quick and easy. 

• They let you update a piece of data without rewriting the entire database. 

• Some support multiple users simultaneously. 

• Some provide transactions to ensure that the operations in a sequence are either all performed or 

all canceled. 

• Some provide backup and mirroring features to protect against data loss. 

• They can enforce data constraints, such as the requirement that test scores are integers 

between 0 and 100. 

• They can enforce relational constraints, such as the requirement that the program cannot 

create a TestScore record without a corresponding Student record. 

• They allow you to associate a single piece of data (such as a Student record) with any number 

of other pieces of data (such as many TestScore records). 

CHAPTER 13 Data Storage 201 



• Some support multiple views so that specified groups of users can see only some of the 

data in a table or query result. For example, a mailroom clerk may be able to see contact 

information in the Customer table but not see the customer's billing information. 

• They are flexible enough to let you perform queries that you didn't know you would need 

when you built the database. 

• They are very common, so there is a lot of information and a large number of books about 

them. 

Relational databases do impose some overhead so they are not perfect for storing small amounts 

of information that would fit more naturally in a config file. You also will need to spend some time 

learning how to use a relational database before you can get the greatest benefit. 

Relational databases are a big topic. For more information, search online or see one of the many 

books on this topic. For information about designing flexible and robust relational databases, see my 

book Beginning Database Design Solutions (Wrox, 2008). 

Other Databases 

Flat files and relational databases are the most common ways that programs store large amounts 

of data, but sometimes other options are useful when you need to work with data that has special 

characteristics. The following sections describe some of these specialized databases. 

Spreadsheets 
Spreadsheet programs such as Microsoft Excel hold rows and columns of data in a way that is 

somewhat similar to the way that tables in a relational database hold data. They allow the user to 

enter formulas to perform calculations on the values stored on a sheet, and they automatically update 

the results if any of the values change. Some spreadsheets also can display graphs and charts of the 

data. 

More advanced formulas can refer to entries on other worksheets within the same workbook. 

Formulas can even select particular values if a condition is true, so they act a bit like the select 
statements supported by relational databases. 

However, spreadsheets are not really relational databases, and they do not perform the same 

tasks. They cannot join data from multiple worksheets easily, do not automatically perform data 

integrity to ensure that the user doesn't enter incorrect or duplicate values, and provide only the typical, 

gridlike interface. 

Still, spreadsheets have their place. Many users are comfortable with them, know how to enter values 

into them, and know how to modify their formulas. Sometimes that lets users perform additional data 

analysis without requiring you to write extra code. 

202 Start Here! Fundamentals of .NET Programming 



Sometimes you also can mix a spreadsheet with normal Windows code. For example, a program 

could use a Windows form to take inputs, perform some calculations, and then place outputs in a 

spreadsheet for the user to view and analyze. 

Object Stores 
An object store is a database that holds objects. It provides methods for creating, extracting, updating, 

and deleting objects from the database. 

For example, suppose that you build an order-tracking application that uses Customer, Order, 

and Orderltem classes. In that case, the program would be able to pass the data store some search 

parameters, and then the database would use them to create the appropriate Customer object for the 

program to use. An object store also may provide concurrency support so that it can refuse to let two 

users modify the same Customer object at the same time. 

Many applications use a relational database in the place of an object store and include routines for 

moving objects in and out of the database. This usually works well when done correctly, although the 

code must handle issues such as concurrency support. 

Object-Relational Database 
An object-relational database provides several features that make creating objects from data easier. It 

can execute the same complicated queries that a relational database can. 

A closely related concept is an object-relational mapping system, which provides a connecting layer 

between a relational database and an object-oriented program's code. This gives some separation so 

that developers working on the relational database and developers working on the object-oriented 

code can work separately. 

Hierarchical Databases 
A hierarchical database stores data that naturally has levels within its structure, such as a company's 

organizational chart, the files on a computer's hard disk, or a list of components that are made up of 

other components. 

Hierarchical data has a treelike structure. Each node in the tree has a single parent node (except 

the root node, which has no parent) and can have child nodes. A node that has no child nodes is 

called a leaf node. A node that is not a leaf node is called an internal node. 

Figure 13-4 shows a simple organizational chart for a company. All the nodes, except the Executive 

Director root node, have a parent node. The blue nodes at the bottom of the tree are leaf nodes. 

Data Storage 203 



FIGURE 13-4 A company's organizational chart contains hierarchical data. 

The links between nodes in a hierarchical data structure cannot contain any loops because that 

would create a node that has more than one parent. For example, if the Chief Marketing Officer had 

the Sales department as a child, then Sales would have two parents: the Chief Marketing Officer and 

the Chief Financial Officer. 

A hierarchical database provides methods for searching the data and manipulating its treelike 

structure. For example, it provides methods for adding, moving, and deleting branches at any point 

in the hierarchy. It also may provide methods for iterating through the hierarchy in different orders 

and for looping through the children of a node in the hierarchy. However, hierarchical databases may 

not provide good tools for comparing data across multiple levels of the hierarchy, an operation that is 

easy with a relational database. 

XML files store hierarchical data, but they are simply text files; they don't provide any tools for 

data validation, searching, or manipulating the data. Other tools, such as schemas, XSLT, and XPath, 

help provide some of these capabilities, but the result isn't integrated as closely as a true hierarchical 

database. For more information, see the section "XML," earlier in this chapter. 

You can store hierarchical data in a relational database, but a relational database is not really 

designed to hold hierarchical data, so manipulating the data can be slow and awkward. 

204 Start Here! Fundamentals of .NET Programming 



Note I once worked on a project that stored hierarchical data in an Excel workbook. It took 
as long as 20 minutes to load some of the larger data sets. One test program I wrote could 
load similar data from an XML file in less than 80 seconds. Using a type of database that 
was not designed to handle hierarchical data killed the application's performance. 

More Info For more information on hierarchical databases, see http.//en.wikipedia.org/wiki/ 
Hierarchical_ database_ model. 

Network Databases 
In a hierarchical database, each node has one parent, so the links that connect nodes cannot form loops. 

In a network, nodes are connected by any number of entering and editing links. Network data can represent all 

sorts of things, including telephone lines, computer networks, airline or bus routes, and streets. 

Often, both nodes and links have associated data. For example, in a street network, the nodes 

might represent intersections and store latitude and longitude. The links would represent the streets 

connecting intersections, and they might store information about the street, such as its name, number of 

lanes, surface type (asphalt, concrete, gravel), and speed limit or driving time. 

Figure 13-5 shows a small street network. The links are labeled with the time it takes to drive 

across them. 

49 60 
A B 

55 62 

35 45 57 42 

D 
40 E 40 

37 45 51 42 

G 
40 

H 
40 

FIGURE 13-5 A network database stores nodes and links information for building networks. 

A network database provides features that make it easy to load, edit, modify, and save networks. 

For example, it might provide methods to add new nodes to the network and connect them to exist

ing nodes with links. 

A network database also may provide methods for performing special network calculations, such as 

finding the shortest path between two nodes and finding the shortest route that connects several nodes. 

Some XML files can store network data, although they don't include any functionality for 

manipulating the data. 

Data Storage 205 



More Info Network databases are rather exotic, so they're not described further here. For 

more information, see http://en.wikipedia.org/wiki/Network_database. 

Temporal Databases 
A temporal database is one that has a built-in notion of time. For example, it may store the time during 

which a piece of data is valid. In a sales database, that could be useful for determining a product's 

price as it changes over time. 

It's usually not too hard to add temporal data to some other form of database. For example, in 

a relational database, a product's record normally holds a single price. To add temporal data, you 

instead could link products to a Price table that holds each product's price and the date on which that 

price became effective. Adding temporal data to a relational database adds extra complexity, so it's 

not worth the effort unless you will need that data frequently. 

More Info Like network databases, temporal databases are rather exotic, so they're not 
described further here. For more information, see http.//en.wikipedia.org/wiki/Temporal_ 
database. 

Summary 

This chapter discussed several different kinds of databases. Many applications need databases, but 

not all databases are suitable for all purposes. Certain types of database are appropriate for some 

kinds of data but not others. By picking the right database type, you can make your application faster, 

more efficient, and easier to program. 

The following list summarizes some of the issues that you should consider when deciding what 

kind of database to use: 

11 Plain text files are suitable for storing simple values, although they do not provide concurrency 

features, and to update values, you need to rewrite the entire file. 

11 Random access files let you find and update records in the middle of the file without rewriting 

the entire file. Support for them is relatively weak, however, and they do not provide 

concurrency features. 

1111 INI files can hold initialization values. If each user has a separate INI file in a different directory, 

each user can have separate settings. In .NET applications, INI files have been superseded by 

config files. 

206 Start Here! Fundamentals of .NET Programming 



1111 XML files are good for storing hierarchical data, and they also can be useful for storing simple, 

tablelike data values. They are common enough that they are useful for transferring data from 

one application to another. 

1111 Config files can hold shared and individual configuration settings. They are easy to use in .NET. 

1111 The registry can hold shared and individual configuration information and small pieces of 

data. The registry is fairly easy to use in .NET, but viewing it requires special editors, such as 

the RegEdit tool, so it is not as easy to modify as config or INI files. Installing values into the 

registry also takes more work than simply copying a configuration file onto a computer. 

The previous points summarize simpler alternatives to more powerful database solutions. These are 

really just data storage techniques and do not provide data integrity, searching, sorting, reporting, 

concurrency, or other database features. 

The following list summarizes some of the more powerful database options: 

1111 Relational databases hold tables that contain records. They can provide type checking, 

constraints between tables, sorting, searching, filtering, combining data from different tables, 

concurrency control, backups and mirroring, the ability to update only pieces of data, indexing 

to make queries faster, transactions, and multiple views of tables and query results. They are 

flexible enough to allow you to execute queries that you didn't know you would need when 

you built the database. This is the most common type of database used in large applications. 

1111 Spreadsheets are useful when the data has a fairly simple, tablelike structure and you don't 

need a full relational database. They can perform complex analysis of the values entered and 

automatically update results if the values change. They can generate graphs and charts, and 

many users are also familiar with them, so sometimes you can avoid extra programming by 

giving the data to the user to study. 

11 Data stores and object-relational databases make it relatively easy to store and retrieve objects. 

11 Hierarchical databases are useful when the data has natural levels within its structure. XML files 

can store this kind of information, but you need other tools to provide database features. 

1111 Network databases are useful when the data naturally forms networks. They are very specialized 

but extremely useful for some applications. 

By carefully reviewing your data needs and comparing them to the features provided by various 

database options, you can pick the best solution for your application. 

Up to now, the chapters in this book have been somewhat independent of .NET programming. 

The code examples are taken from Visual Basic and C#, but many of the general ideas apply whether 

you're using C# in Windows or Fortran in Unix. For example, your database options are similar no 

matter what language and operating system you use. 

CHAPTER H Data Storage 207 



The next chapter moves away from that approach and covers a topic that applies only to .NET 

developers: the Microsoft .NET Framework. It summarizes the most useful parts of the enormous 

.NET Framework libraries to give you an idea of what's available when programming for .NET. It won't 

explain everything there is to know about the .NET Framework. Rather, it's intended to give you 

the "big picture," so when you need the advanced features the .NET Framework provides, you will 

remember what it contains that you can use. 

208 Start Here! Fundamentals of .NET Programming 



.NET Libraries 

In this chapter: 

1111 Namespaces for C#, Microsoft Visual Basic, and Microsoft Windows theme tools 

1111 System namespaces containing numerous tools for collections, data, diagnostics, 

globalizations, input/output (10), Language Integrated Query (LINQ), and many more 

MOST OF THE GENERAL TOPICS DISCUSSED so far have applied to some extent to many program

ming environments. For example, the most commonly used programming languages today have for 

loops, while loops, and classes. 

This chapter deals with a topic that applies only to .NET programming: the Microsoft .NET 

Framework libraries. These libraries provide all sorts of useful tools that can save you a huge amount 

of programming time and lines of code, but they are available only in .NET. so they won't do you 

much good if you're programming in C++ in Unix. 

The .NET Framework contains hundreds (if not thousands) of classes, each with myriad properties, 

methods, and events that can make programming easier. Thus, there isn't enough room here to cover 

them all in any depth. The intent of this chapter is to familiarize you with the libraries so you have 

some idea of what they contain, rather than to provide a complete reference. If you later need to 

perform a task covered by one of the libraries, such as encrypting a file or building a multithreaded 

application, hopefully you will remember that the .NET Framework contains classes that can help you, 

and you can search online for more information. 

The most useful namespaces in the .NET Framework are divided into two main categories: 

Microsoft namespaces and System namespaces. 

209 



Microsoft Namespaces 

The Microsoft namespaces generally contain tools that are more Microsoft-specific than the System 

namespaces. They deal mostly with specific languages such as C# and Microsoft Visual Basic, and the 

operating system. 

The following list summarizes the most useful Microsoft namespaces in the .NET Framework: 

111 Microsoft.CSharp Contains items that support the compilation of C# code. The 

Microsoft.CSharp.CSharpCodeProvider class provides access to the C# code generator 

and compiler that you can use to compile source code programmatically. For example, 

you could use this ability to make a program that lets the user write and compile code. 

For more information, see "How to programmatically compile code using C# compiler," 

at http.//support.microsoft.com/kb/304655. 

111 Microsoft.Visual Basic Contains items that support compilation of Visual Basic code 

in addition to extra Visual Basic features, such as the My namespace and Visual Basic 6 

compatibility features. The Microsoft. Visual Basic. Visua!BasicCodeProvider class provides 

access to the Visual Basic code generator and compiler that you can use to programmatically 

compile source code. For example, you could use this ability to make a program that 

lets the user write and compile code. For more information, see "How to programmatically 

compile code by using the Visual Basic .NET or Visual Basic 2005 compiler," at http://support 

.microsoft.com/kb/304654. 

111 Microsoft.Win32 Contains types that handle events raised by the operating system 

and that manipulate the registry. This namespace also defines common file dialog 

boxes. 

111 Microsoft.Windows.Themes Provides access to Windows Presentation Foundation 

(WPF) themes, which provide default appearances for controls and other elements in a 

WPF application. 

System Namespaces 

The System namespaces contain more basic classes that might be useful in languages other than C# 

and Visual Basic (if such languages were defined for .NET). They provide additional tools that would 

be useful for many programs, such as collection types, web tools, and globalization classes. 

The following list summarizes the most useful System namespaces in the .NET Framework: 

111 System Provides fundamental classes and data types for use by programs. 

Sub-namespaces provide more specialized features, such as collections, cryptography, 

and diagnostic tools. 

210 Start Here! Fundamentals of .NET Programming 



1111 System.CodeDom Provides classes that can represent various code elements. 

You can use the classes to model the structure of a code document in a 

language-independent way. For information on using System.CodeDom to generate and 

compile code, see "Dynamic Source Code Generation and Compilation," at http://msdn 
.microsoft.com/library/650ax5cx.aspx. 

1111 System.Collections Defines a variety of collection classes representing stacks, 

queues, lists, hash tables, dictionaries, and more. Sub-namespaces include System. 
Collections.Concurrent (for applications where multiple threads access a collection 

concurrently), System.Collections.Generic (collections that can hold any type of data 

while using strong typing), and System.Collections.Specialized (specialized collections 

such as HybridDictionary, ListDictionary. NameValueCollection, and StringCollection). 

1111 System.ComponentModel Defines classes that implement the behavior of 

components and controls. Includes classes used to implement attributes and type converters. 

1111 System.Configuration Contains classes for working with configuration data. 

1111 System.Data Contains classes for working with data using ADO.NET data 

access. Defines the classes that a program uses to manipulate ADO.NET data, 

such as Constraint, DataColumn, DataRe/ation, DataRow, Dataset, DataTable, 
ForeignKeyConstraint, and many others. Sub-namespaces, such as System.Data.Odbc, 
System.Data.Oledb, System.Data.Sq/, and System.Data.OracleC/ient, provide classes to 

support different types of relational databases. 

1111 System.Deployment Provides tools for customizing installation behavior for 

ClickOnce applications. 

1111 System.Device.location Provides tools to let a program determine the computer's 

location using various location providers. 

1111 System.Diagnostics Contains classes for working with various diagnostic tools, such 

as event logs and performance counters. The System.Diagnostics.Debug class provides 

some particularly useful debugging features, such as the ability to display debugging 

messages and make code assertions. (This namespace is included automatically in 

Visual Basic applications by default, but you must include it explicitly in C# programs.) 

1111 System.DirectoryServices Provides tools for working with Active Directory 

directory service. 

1111 System.Drawing Provides classes that support GDJ+ drawing. These are the classes 

that you use to draw lines, ellipses, rectangles, polygons, images, and other objects in 

a drawing surface such as a Bitmap. 

1111 System.Globalization Contains classes that define culture-specific information. 

CHAPTE~ 14 .NET Libraries 211 



1111 System.10 Contains classes for performing input/output (10) operations. The classes 
can read and write data in streams, search and manipulate files and directories, 
compress stream data, use pipes, and interact with serial ports. 

1111 System.Linq Contains classes that support Language Integrated Query (LINQ) 
extensions, which let a program perform queries on data sources such as arrays and lists. 

111 System.Management Contains classes that provide access to system management 
information. This includes information about the system, devices, disks, applications, 
and services. 

1111 System.Media Contains classes that play sound files and system-defined sounds. 

111 System.Messaging Contains classes for working with message queues on a network. 

111 System.Net Contains classes that provide interfaces for several network protocols. 
The WebRequest and WebResponse classes let a program easily interact with websites. 
The System.Net.Mail sub-namespace contains classes that send email. The System.Net. 
Networklnformation sub-namespace provides access to network information, such as 
traffic data and network address information. System.Net.Security provides streams for 
secure network communication. 

1111 System.Numerics Contains the Big Integer class, which represents arbitrarily large 
integers, and the Complex class, which represents complex numbers. 

111 System.Printing Contains classes for working with print servers, queues, and jobs. 

1111 System.Reflection Contains classes that can interrogate objects and types to 
learn more about them. For example, given a variable of type object, the tools in this 
namespace let a program find out what methods the object has at run time and invoke 
them. Similarly, a program could learn about the object's properties and read or set 
their values. (This is a very powerful technique, but it can be rather confusing.) 

1111 System.Resources Contains tools for manipulating a program's culture-specific 
resources. 

111 System.Runtime Contains tools that allow a program to interact with the common 
language runtime to affect caching, serialization and deserialization, advanced 
exception handling, and distributed applications. 

1111 System.Security Contains tools for working with application security, permissions, 
authentication, and cryptography. 

1111 System.ServiceProcess Contains types that let you install and control Windows services. 

1111 System.Speech Contains classes for generating and recognizing speech. 

212 Start Here! Fundamentals of .NET Programming 



111 System.Text Contains tools for working with text. It includes encoders and decoders for 

moving characters in and out of sequences of bytes. The System.Text.RegularExpressions 
namespace contains classes for performing regular expression matching and replacements. 

111 System.Threading Contains classes for working with threads and tasks. It includes 

classes for working with timers, semaphores, mutexes, threads, and thread pools. The 

System. Threading. Thread.CurrentThread property gives access to the currently running 

thread. The System. Threading. Thread.Sleep method makes the current thread sleep for 

a specified amount of time. 

111 System.Timers Contains the Timer component. 

111 System.Transactions Contains classes that support transactions, which lets multiple 

distributed programs participate in transactions so that either all operations in a 

transaction occur or they are all canceled. 

111 System.Web Contains classes that support browser and server communication. 

111 System.Windows Contains classes used by WPF and Windows Forms applications. The 

System.Windows.Controls sub-namespace contains WPF controls. The System.Windows. 
Forms sub-namespace contains Windows Forms controls. 

1111 System.Xaml Contains classes used to read and write Extensible Application Markup 

Language (XAML) code for WPF applications. 

1111 System.Xml Contains classes for programming Extensible Markup Language 

(XML). This includes classes for LINO to XML, XML serialization, XML Path (XPath), and 

Extensible Stylesheet Language for Transformations (XSLT). See the section "XML Files," 

in Chapter 13, "Data Storage," for more information about XML, XPath, and XSLT. 

More Info For more information on the .NET Framework class library namespaces, see the 

article ".NET Framework Class Library," at http://msdn.microsoft.com/library/gg145045.aspx. 

Summary 

This chapter briefly summarized almost three dozen .NET Framework namespaces, and it should 

illustrate how you might approach further learning about the .NET Framework. Most of these tools 

contain many classes, each of which may have numerous properties, methods, and events, so there's 

no room in this book to describe any of them in much depth. 

Some of these classes are so specialized that you may never need them; however, if you do find 

that you need to use the features provided by one of these namespaces, I hope you'll remember that 

these tools are available and search on line for more information about them. Using some of these 

namespaces can save you many hours of work. 

.NET Libraries 213 





Glossary 

A 
abstract class A class that cannot be instantiated 
directly. You can only instantiate concrete child 
classes. A class that contains an abstract member 
is abstract. You also can mark a class as abstract 
even if it contains no abstract members. In 
contrast, a concrete class is any class that is not 
abstract. 

abstract member A parent class member that 
must be overridden in a child class. 

abstraction The process of moving common 
members from two or more classes into a new 
parent class. See also information hiding. 

accelerator A key that a user can press with the 
Alt key to navigate through the menu hierarchy. 
For example, Alt+F typically opens the File menu. 

accept button In a modal dialog box, the button 
that fires when the user presses the Enter key. 

accessibility A modifier that determines what 
code (if any) outside an item's scope can use the 
item. For example, a public method inside a class 
can be called by code outside the class. 

accessor A method that gets or sets a property 
or other value. 

agile development A development approach 
that focuses on building projects incrementally 
using frequent builds. 

all-in-one A desktop computer where the 
computer is integrated into the monitor. 

argument The value passed into a routine 
through a parameter. 

array A variable that holds a series of values with 
the same data type. An index into the array lets 
the program select a particular value. 

assembler A program that converts assembly 
mnemonic code into machine language for 
execution. 

assembly In .NET applications, the smallest 
self-contained unit of compiled code. An assembly 
can be a complete application, or a library that 
can be called by other applications. 

assertion A statement about a program that 
the code claims to be true. 

attached property In Windows Presentation 
Foundation (WPF), a property that is provided by 
the parent of a control. For example, a Grid control 
provides the Grid. Row property for the controls 
that it contains. 

B 
base class See parent class. 

bit A single 0 or 1 value. 

block scope A scope that is limited to a block of 
code within a routine, such as a for loop. 

Blu-ray A system that stores data on removable 
discs with a typical capacity of 50 GB. 

ByRef See pass by reference. 

215 



byte A group of 8 bits. 

ByVal See pass by value. 

c 
cache v. To store information or a program in 
memory for quick use later. n. A location where a 
program saves information for quicker use later. 

CAD See computer-aided design (CAD). 

call stack A chunk of memory where a program 
stores information about routine calls. 
See also stack frame. 

camel case A naming convention where each 
word is capitalized, as in generateSa/esReport. 

cancel button In a modal dialog box, 
the button that fires when the user presses 
the Esc key. 

CD See compact disc (CD). 

central processing unit (CPU) The computer's 
main processor, which performs normal 
programming commands. Other processing 
units include the graphics processing unit 
and floating~point unit. 

child class A class that is derived from a parent 
class. Also called a sub class or derived class. 

CIL See Common Intermediate Language (CIL). 

class A program-defined data type that stores 
data and methods to represent a type of object. 
In many ways, a class is similar to a structure, but 
classes are reference types, whereas structures 
are value types. 

class scope The scope for items defined inside 
a class but not inside any of its methods. 

cloud computing A business model where 
programs, data storage, collaboration services, 
and other key business tools are stored on 
a centralized server that users access remotely, 
often through a browser. 

CLR See Common Language Runtime (CLR). 

code module scope The scope for items defined 
inside a code module but not inside any of its 
routines. 

216 Glossary 

coercion Converting a value explicitly from 
one data type to another. 

comma-separated value (CSV) file A text 
file where records are written on separate lines 
and the fields within a record are separated 
by commas. 

comment A line of source code that doesn't 
make the computer do anything placed there to 
help programmers understand the code. 

Common Intermediate Language 
(CIL) Formerly called Microsoft Intermediate 
Language (MSIL), this is a pseudo-assembly 
language into which Microsoft Visual Studio 
programs are compiled. They are then compiled 
into machine code during execution. 

Common Language Runtime 
(CLR) The run-time component that converts 
a .NET program's Common Intermediate 
Language (CIL) into machine code and executes it. 

communication protocol A formal description 
of the formats and rules for passing information 
across a network. 

compact disc (CD) A system that stores data 
on removable CD discs with a typical capacity 
of 700 MB. 

compiler A program that converts high-level 
language code into a lower-level language. 
It may convert directly to machine language 
for execution, or it may convert the high-level 
program into an intermediate language, such as 
Common Intermediate Language (CIL) or Java 
bytecode instructions for running on a virtual 
machine. 

component A program object similar to 
a control, but without a visible presence on 
the form at run time. 

composition When one object contains another 
kind of object. For example, a CustomerOrder is 
(partly) composed of Orderltems. 

computer-aided design (CAD) Using a 
program to assist in designing something, such as 
an architectural drawing. 

concrete class A class that is not abstract. 
See also abstract class. 



conditional operator An operator that evaluates 
its first operand and returns either its second 
or third operand, depending on whether the first 
operand is true or false. 

config file See configuration file. 

configuration file (config file) A file containing 
information that a program can use to initialize 
itself when it starts. In .NET programs, config files 
are Extensible Markup Language (XML) files that 
programs can load automatically, making the 
values easy for the program to use. 

constructor A method that is called 
automatically when the program creates 
a new instance of a class. 

context menu A menu that pops up when 
the user right-clicks a particular part of the user 
interface. 

control A program object that represents a visible 
feature in a Microsoft Windows program. 

control prefix notation Using a prefix to 
identify control types or the fact that a variable is 
a control. 

control run time The time when a control's code 
runs in the development environment to provide 
feedback. This is different from just run time, 
when the program containing the control executes 
and the control's code also runs. 

control variable A variable used to control 
a for loop. 

core The part of a processor that actually 
executes instructions. Multi-core processors have 
more than one core, so they can execute multiple 
instructions at the same time. 

CPU See central processing unit (CPU). 

CSV file See comma-separated value 
(CSV) file. 

D 
data-centric viewpoint A project design that 
focuses on the data that the user must process 
and how to support it in the user interface. 

datagram A basic unit of data transfer consisting 
of a header that includes addressing information 
and a data area. 

defensive programming The idea that code 
should be able to run even under unexpected 
conditions. 

derive To make a new class that inherits from 
another. 

derived class See child class. 

design time The time when you build a program 
in a development environment. 

desktop A computer intended to sit on or near 
your desk and not be portable. 

destructor A method that is called when 
an object is destroyed. 

dialog See dialog box. 

dialog box A (usually modal) form that lets 
the user make selections before performing 
an action. 

distributed computing When multiple 
computers connected by a network work to 
solve a single problem. The large communication 
overhead means that distributed computing 
is usually effective only when the problem is 
embarrassingly parallel. 

document object model (DOM) An in-memory 
representation of a document such as 
an XML file. 

Document Type Definition (DTD) file A type of 
schema definition file. See also schema. 

DOM See document object model (DOM). 

OTO See Document Type Definition (DTD) file. 

DVD Stands for "digital versatile disc" or 
"digital video disc," a system that stores data on 
removable discs with a typical capacity of 4.7 GB. 

E 
embarrassingly parallel A problem that has 
a naturally parallel solution, such as displaying 
fractals or 3-D ray tracing. 

Glossary 217 



empty constructor See parameterless 
constructor. 

encapsulation The ability of a class to group 
properties and methods in a well-defined 
package. 

enterprise server Another term for mainframe. 

Ethernet A set of technologies for connecting 
devices using wires or cables. 

event A mechanism that lets a control tell 
the program that something interesting has 
occurred. 

event handler Code that catches or handles 
an event. 

explicit type conversion When code 
includes statements that convert from one data 
type to another. See also implicit type 
conversion. 

Extensible Application Markup Language 
(XAML) The window-definition language 
used to define a Windows Presentation 
Foundation (WPF) application's user 
interface. 

Extensible Markup Language 
(XML) A specification for creating text files 
that contain hierarchical data. 

Extensible Stylesheet Language 
Transformations (XSLT) A programming 
language that allows a program to translate 
an Extensible Markup Language (XML) file into 
a file with some other format, such as an XML file 
with a different structure, a plain text file, 
or a comma-separated value (CSV) file. 

extreme programming A development 
approach that focuses on building projects 
incrementally using frequent builds. It includes 
techniques such as coding to the specific problem 
rather than a general one, paired programming, 
and test-driven development. 

F 
factory method A class method that returns 
an instance of the class. 

218 Glossary 

flash drive A device that stores data in 
nonvolatile, solid-state memory. 

floating-point unit (FPU) A processor designed 
for performing mathematical operations. Also 
known as a math coprocessor. 

flops Stands for "floating-point operations." 
For example, a 1-megaflop computer can execute 
1 million floating-point operations per second. 

FPU See floating-point unit (FPU). 

function A routine that returns a value. 

G 
garbage collection A task performed 
periodically to reclaim lost memory so the 
program can use it again. 

garbage collector (GC) The process that 
performs garbage collection. 

GB See gigabyte (GB). 

GC See garbage collector (GC}. 

generalization See abstraction. 

getter A method that returns a property's value. 

gigabyte (GB) A unit of measure equal to 1,024 MB. 

globalization The process of making a program 
support multiple locales. Sometimes used to 
mean the combination of internationalization 
and localization. 

GPU See graphics processing unit (GPU). 

graphical user interface (GUI) An interface 
characterized by the windows, menus, and 
controls typical in a Microsoft Windows 
application. GU ls usually are easiest to use with 
a mouse or other pointing device, although 
sometimes they include shortcuts for mouse-free 
use that are particularly useful for the visually 
impaired. 

graphics processing unit A processor specialized 
for executing graphical commands such as 
managing the screen and generating 
3-D graphics. 

GUI See graphical user interface (GUI). 



H 
handheld computer A programmable device 
that is small enough for you to carry in 
your hand. 

handle To take action when the event occurs. 

Has-A relationship See composition. 

hierarchical database A database that 
stores data that is naturally structured, such as 
a company's organizational chart or the files on 
a computer's disk. 

Hungarian notation Using a prefix to give 
information, such as a variable's data type and 
scope. 

IDE See integrated development 
environment (IDE). 

immutable A variable whose value does not 
change after it is assigned. (For example, strings 
are immutable.) 

implement To implement an interface, a class 
must provide the members that the interface 
defines. 

implicit type conversion When a programming 
language automatically converts a value from 
one data type to another. See also explicit type 
conversion. 

index Determines which entry in an array is to be 
manipulated by the code. 

information hiding The ability of a class to hide 
the details about how it works from outside code. 

inheritance diagram A drawing that makes it 
easy to visualize the inheritance relationships 
among classes. 

INI file See initialization (INI) file. 

initialization (INI) file A file containing sections 
given by names surrounded by brackets, each 
containing name and value pairs. 

initializing constructor A constructor that takes 
as parameters values to assign to the new object's 
fields and properties. 

instance A specific object that is of a class 
type. For example, RodStephens is an instance of 
the class Author. 

instance member A class member that applies 
to instances of the class as opposed to the class 
as a whole. Instance members are referred to by 
using an instance of the class, as in newStudent. 
EmailSchedule() where newStudent is an instance 
of the class. See also shared member. 

instantiation The process of creating an instance 
of a class. 

integrated development environment 
(IDE) A single large application that includes 
programming tools that let you write, build, run, 
test, and debug programs. 

interface Defines a set of members that a class 
can provide. 

Intermediate Language (IL) See Common 
Intermediate Language (CIL). 

intern pool A pool of memory where string 
values are stored. Strings that contain the same 
textual value share the same buffer in the intern 
pool. 

internationalization The process of making 
a program capable of easily supporting multiple 
locales. 

Internet A global system of connected computer 
networks. The Internet uses the Internet Protocol 
Suite to define how traffic should work. 

Internet Protocol (IP) A set of procedures that 
provides addressing to let a network route data 
packets called datagrams to the appropriate 
destination. 

Internet Protocol Suite The suite of protocols 
used by the Internet. Also called TCP/IP for the 
two most important protocols that it contains: 
Transmission Control Protocol (TCP) and Internet 
Protocol (IP). 

Glossary 219 



ls-A relationship Subclassing or a parent-child 
relationship; when one kind of object is a type 
of some other kind of object. For example, 
an Employee is a Person. 

J 
Java Virtual Machine (JVM} The run-time 
component that converts a Java program's 
bytecode into machine code and executes it. 

JIT See just-in-time (JIT). 

just-in-time (JIT} JIT compilers convert bytecode 
into machine code just before it is executed. 

JVM See Java Virtual Machine (JVM). 

K 
KB See kilobyte (KB). 

kilobyte (KB} A unit of measure equal to 1,024 
bytes. 

L 
laptop A computer with an integrated screen 
and keyboard that is intended to be carried 
around easily and used just about anywhere. 

latency A period of time that the computer must 
wait while a disk drive is positioning itself to read 
a particular block of data. 

lifetime The time during which a variable is 
available for use. 

locale An identification of a country and region 
and the cultural conventions used there, including 
such things as font, language, and formats for 
dates, times, currency, and other values. 

localization The process of making a program 
support a specific locale. 

lock A mechanism that grants exclusive access 
to a resource for one thread in a multithreaded 
application. Locks can prevent race conditions. 

looping variable See control variable. 

220 Glossary 

M 
mainframe A large centralized computer that 
can serve hundreds or even thousands of users 
simultaneously. 

MB See megabyte (MB). 

Me In Visual Basic, a keyword that refers to the 
object currently executing code. 

megabyte (MB} A unit of measure equal to 
1,024 KB. 

member A property, method, or event belonging 
to a class. 

method (1) A piece of code provided by 
an object, such as a control, that a program can 
call to make the object do something. 
(2) A routine (that may or may not return a value) 
provided by a class. 

Microsoft Intermediate Language 
(MSIL} See Common Intermediate Language (CIL). 

millions of instructions per second 
(MIPS) A measurement of a computer's speed. 

MIPS See millions of instructions per second 
(MIPS). 

modal A dialog box is modal if it keeps the 
application's focus so that the user cannot interact 
with other parts of the application until it is closed. 

modeless A dialog box is modeless if it allows the 
user to interact with other parts of the application 
while it is still visible. 

modulus The operator, represented by the 
symbol %, that returns the remainder after 
division. For example, 20 % 3 is 2 because 20 
divided by 3 is 6 with a remainder of 2. 

multiple inheritance When a child class 
inherits from more than one parent class. Neither 
Microsoft Visual Basic nor C# allows multiple 
inheritance. 

multitasking Executing multiple processes 
quickly in turn to make them appear to all be 
running simultaneously. 



multithreading Executing multiple threads 
within a single process, either multitasking 
on a single central processing unit (CPU) 
or simultaneously on multiple cores. 

N 
narrowing conversion When a value is 
converted from one data type to another that 
may not be able to hold the value without losing 
precision. 

netbook A laptop that's even more stripped 
down than a notebook. They often are intended 
for using network applications such as web 
browsers where most of the processing occurs on 
a remote server. See also laptop and notebook. 

neutral culture A culture such as en or fr that is 
associated with a language, but not a particular 
country or region. See also specific culture. 

non-deterministic finalization The idea that 
you can't predict when garbage collection will 
occur, and thus when unused objects will be 
destroyed or finalized. 

non-volatile Not requiring power to retain data. 

notebook A stripped-down laptop that trades 
power for portability. These typically don't include 
external devices such as DVD or CD drives. 
See also laptop. 

nullable Indicates that a parameter or variable 
can take the special value null, which means it has 
no meaningful value. 

0 
object store A database designed to store 
and retrieve objects. 

object-oriented programming (OOP) Writing 
programs that use classes and objects as a major 
part of their design. 

object-relational database A database that 
provides extra features to make storing and 
retrieving objects easier. 

object-relational mapping Provides a layer 
between a relational database and a program's 
object-oriented code. This gives a separation 

between developers working on the two pieces of 
the application so they can work more efficiently. 

OOP See object-oriented programming (OOP). 

operand One of the values combined by 
an operator. 

operator A symbol, such as + or/, that a program 
uses to tell the computer how to combine values 
to produce a result. 

overabstraction Using abstraction too much, 
resulting in very abstract classes that are not 
necessary for the program. 

overgeneralization See overabstraction. 

overridable In Microsoft Visual Basic, refers to 
a class member that a child class can replace with 
new functionality. 

override A child class can override a member 
defined by the parent class by defining a new 
version. 

p 
paging When the computer moves data between 
random access memory (RAM) and the hard disk 
to free up memory. Paging can greatly reduce 
a program's execution speed. 

pair programming A coding technique where 
one programmer (the driver) writes code and 
explains what he or she is doing, while another 
watches and looks for problems. 

palmtop A handheld computer with limited 
graphics and computing power typically used 
to store simple information, such as contact 
information and phone numbers. 

parameter A value that can be passed to 
a routine to give it information that it can use 
in performing its task. 

parameterless constructor A constructor that 
takes no parameters. 

parent class A class from which other classes 
are derived. 

Pascal case A naming convention where each 
word is capitalized, as in GenerateSalesReport. 

Glossary 221 



pass by reference A reference to an argument 
is passed into a routine's parameter. Changes to 
the parameter are reflected as changes tQ the 
argument. In Visual Basic, arguments passed by 
reference use the ByRefkeyword. 

pass by value A copy of an argument's value 
is passed into a routine's parameter. Changes to 
the parameter are not reflected as changes to 
the argument. In Visual Basic, arguments passed 
by value use the ByVal keyword. 

PC See personal computer (PC). 

PDA See personal digital assistant (PDA). 

personal computer (PC) A computer intended 
to be used by a single person at one time. 

personal digital assistant (PDA) A handheld 
computer similar to a palmtop. Most of these use 
a stylus for input. Some of the more powerful of 
these include networking capabilities. 

pocket computer See palmtop. 

polymorphism The ability of a program to treat 
an object as if it were from a parent class. 

pop-up menu See context menu. 

precedence Used to define the order in which 
operators are evaluated in an expression. 
For example, *and/ have higher precedence 
than (and are therefore performed before) 
+and-. 

procedure See routine. 

process An executing instance of a program. 

programming environment A set of tools that 
help you design, write, build, run, test, and debug 
programs. 

property A value associated with an object. 

property get method A method that returns 
a property's value. 

property set method A method that sets 
a property's value. 

pseudocode A method that uses statements 
similar to a programming language for describing 
computer algorithms. 

222 Glossary 

R 
race condition A problem in parallel computing 
where the result depends on the exact sequence 
or timing of the processes. 

raise An object raises an event. 

RAM See random access memory (RAM). 

random access file A file with fixed-length 
records so that a program can jump to a particular 
record and update one record without rewriting 
the entire file. 

random access memory (RAM) A memory 
device where data is stored while a program is 
using it. Ideally, all variables are stored in RAM 
while the program is running, but if all the RAM is 
full, the program may need to use paging to free 
some memory. When the computer is turned off, 
RAM loses its data. 

read-only memory (ROM) Similar to RAM, 
except that the computer can only read the 
memory and cannot change the data it contains. 
Unlike RAM, ROM retains its data when the 
computer is turned off. See also random access 
memory (RAM). 

reference type A data type where a variable 
contains a reference to the value stored 
elsewhere in memory. Classes are reference 
types. 

registry A hierarchical database used by 
Microsoft Windows to store configuration 
information for the operating system and many 
of the programs installed on the system. 

regression testing Testing a program to see 
if recent changes to the code have broken any 
existing features. 

relational database A database where tables 
hold records containing fields. Fields holding 
the same values link related tables. 

ROM See read-only memory (ROM). 

routine A named piece of code that other pieces 
of code can invoke to perform some useful task. 
Routines are also called subroutines, procedures, 
subprocedures, subprograms, functions, or 
methods. 



routine scope A scope limited to the code within 
a routine after a variable's declaration. 

run time The time when the compiled program 
is executing. 

s 
schema A file that determines the kinds of values 
allowed in an Extensible Markup Language (XML) 
file. For example, it might require that the file have 
a TestScores root element containing a series of 
Student elements. Types of schema files include 
Document Type Definition (DTD) and XML Schema 
Definition (XSD) files. 

semicolon-delimited file A text file where 
records are written on separate lines and the 
fields within a record are separated by 
semicolons. 

server A generic term for a computer that 
serves multiple users or client applications 
simultaneously. 

setter A method that sets a property's value. 

shared member A class member that is shared 
by alt instances of the class. Shared members are 
referred to using the class itself. as in Student. 
CreateStudent(). See also instance member. 

short-circuit operator See conditional operator. 

shortcut A key sequence that immediately 
invokes a command. For example, Ctrl+S might 
save the file that a program is editing. 

shortcut operator See conditional operator. 

side effect An unexpected effect that occurs 
outside a routine. For example, if a function that 
returns a value also leaves a database connection 
open. Side effects can be confusing, so they often 
lead to bugs. 

spaghetti code Code that's so convoluted that 
it's extremely difficult to figure out how it works. 
The unrestrained use of Go To statements can lead 
to spaghetti code. 

specific culture A neutral culture plus a 
particular country or region, as in en-US or de-DE. 
See also neutral culture. 

spreadsheet A program that stores data in 
gridlike pages. Typically, spreadsheets allow 
the user to enter formulas and display charts 
and graphs. 

stack frame A piece of memory allocated on 
the call stack to hold information about a routine 
call, such as its local variables and the program 
location where execution should resume when 
the routine exits. See also call stack. 

structure A program-defined data type that 
keeps related fields together. In C# 
and Microsoft Visual Basic, a structure 
also may contain methods. 

structure scope The scope for items defined 
inside a structure but not inside any of its 
methods. 

subclass The act of making a subclass from 
a parent class. See also child class. 

subprocedure See routine. 

subprogram See routine. 

subroutine See routine. 

super class See parent class. 

T 
tab-delimited file A text file where records are 
written on separate lines and the fields within 
a record are separated by tab characters. 

Task Parallel Library (TPL) A library in the 
Microsoft .NET Framework containing tools for 
executing multithreaded tasks in parallel 
relatively easily. 

TB See terabyte (TB). 

TCP See Transmission Control Protocol (TCP). 

TCP/IP See Internet Protocol Suite. 

terabyte (TB) A unit of measure equal to 
1,024 gigabytes. 

ternary operator See conditional operator. 

test-driven development A development 
approach where programmers build tests to 

Glossary 223 



evaluate software before writing the software. 
After the software is written, the developers use 
the tests to evaluate it. 

this In C# or C++, a keyword that refers to 
the object currently executing code. 

thrashing When a program causes frequent paging. 

thread A sequence of executing instructions 
within a process that may execute in parallel with 
other threads. 

tower A desktop computer with a larger case, 
making it easier to add new hardware but making 
it hard to fit on a desk (so it often sits on the floor). 

TPL See Task Parallel Library (TPL). 

Transmission Control Protocol 
(TCP) A protocol that provides reliable delivery of 
a stream of bytes from one computer to another. 
TCP provides reliable delivery of a stream of bytes 
from one computer to another. 

type conversion Transforming a value from one 
data type to another. 

u 
user-centric viewpoint A project design that 
focuses on the tasks that the user must perform 
and building a user interface that supports those 
tasks. 

v 
value type A data type where a variable contains 
the value itself. Examples include the Integer, 
Decimal types, enumerations, and structures. 

variable A named piece of memory that can hold 
data of a specific type so that the program can 
manipulate it. 

virtual In C#, refers to a class member that 
a child class can replace with new functionality. 

224 Glossary 

w 
web service A program running on a network 
that another program can call for service. 

Wi-Fi A standard for connecting devices 
wirelessly. 

widening conversion When a value is converted 
from one data type to another that is guaranteed 
to be able to hold the value without losing any 
precision. 

Windows Forms A development technology 
used in building Microsoft Windows applications 
that uses Windows Forms controls. See also 
Windows Presentation Foundation (WPF). 

Windows Presentation Foundation 
(WPF) A development technology used in 
building Microsoft Windows applications. WPF 
controls use graphics hardware more directly than 
Windows Forms controls, so they provide better 
graphic performance and additional features, such 
as control transformations. See also Windows Forms. 

word A group of bytes. The number of bytes in 
a word is chosen so a particular computer and 
operating system can manipulate words efficiently. 
For example, there may be 8 or 16 bytes in a word. 

workstation A powerful desktop or tower that 
has extra hardware features, such as multiple 
screens or more powerful graphics processors. 

WPF See Windows Presentation Foundation (WPF). 

x 
XAML See Extensible Application Markup 
Language (XAML). 

XML See Extensible Markup Language (XML). 

XML comment A special comment containing 
Extensible Markup Language (XML) code that 
the code editor in Microsoft Visual Studio can 
understand. These can also be extracted to use in 
making documentation. 



XML Path (XPath) language A language for 
specifying how to select elements in an XML file. 

XML Schema Definition (XSD) file A type of 
schema definition file. See schema. 

XPath See XML Path (XPath) language. 

XSD See XML Schema Definition (XSD) file. 

XSLT See Extensible Stylesheet Language 
Transformations (XSLT). 

Glossary 225 





Index 

Symbols 
" operator, 107, 109, 111 
"= operator, 110 
- operator, 108 
-= operator, 110 
! operator, 108 
! = operator, 109 
? operator, 113 
?: operator, 109 
* operator, 108 
*= operator, 110 
I operator, 108 
/= operator, 110 
\operator, 108 
\= operator, 110 
& operator, 109, 112 
&& operator, 109 
&= operator, 110 
% operator, 108 
%= operator, 110 
+ operator, 108 
+ = operator, 110 
< operator, 109 
« operator, 109, 112 
<<= operator, 110 
< = operator, 109 
< > operator, 109 
= operator, 109 
= = operator, 109 
> operator, 109 
>= operator, 109 
» operator, 109, 112 
»= operator, 110 
I operator, 109, 112 
I= operator, 110 
II operator, 109 

- operator, 108, 111 
--x operator, 108, 111 
++x operator, 108, 111 

A 
A.B operator, 108 
About command, 38 
abstract classes, 151 
abstraction, 154-156 
accelerators (with menus}, 34-35 
Accept button, 43 
accessibility, 87-89 

of routines, 136 
accessors, 144 
addition, 106 
additive operators, 109 
agile development, 177-178 
A(i) operator, 108 
A[i] operator, 108 
AL register, 25 
Alt key, 34 
Anchor property, 61, 62 
AndAlso operator, 109 
And operator, 109 
AppendText method, 66 
arrays, 75 
arrays, parameter, 130, 134 
artificial intelligence, 21 
assemblers, 26 
assembly language, 26 
Assert method, 179 
Assignment operators, 110 
auto-hiding windows, 30 
automatic documentation from, 171 
AutoSize property, 61 

227 



BackColor property 

B 
BackColor property, 61 
Backgroundlmage property, 61 
Background property, 63 
BackgroundWorker control, 52 
backing field, 144 
BindingNavigator control, 52 
BindingSource control, 52 
bits, 72 
bit shift operators, 109 
bitwise operators, 111-112 
Blackburn, Barbara, 16 
block comments, 169 
Blu-ray, 10 
Boolean data type, 73 
BorderBrush property, 63 
Border control, 57, 60 
BorderStyle property, 61 
BorderThickness property, 63 
break keyword (C#), 101 
bridges, 11 
buffer, memory, 11 
build automation tools, 28 
bus, 6 
Button control, 52, 57 
bytecode, 26 
Byte data type, 73 
bytes, 72 

c 
C#, 26 

arrays in, 75 
auto-implemented properties in, 145 
break keyword in, 101 
comments in, 127 
concatenation operators in, 114 
enumerations in, 76 
For loop in, 92 
getter/setter methods in, 144 
hiding implementation details in, 122 
implicit conversion in, 83 
operator overloading in, 114 
parameter arrays in, 130 
parameter-passing methods in, 131 
persistent variables in, 89 
routines in, 120 
structures in, 77 

228 Index 

C++, 26 
comments in, 127 

calling (of routines), 123-124 
call stack, 123 
call stack window (Visual Studio), 30 
Cancel button, 43 
Canvas control, 57 
Case statement, 97-99 
catching the error, 103 
Catch keyword, 103 
C, comments in, 127 
CD drives, 10 
central processing unit (CPU), 6 
Char data type, 73 
CheckBox control, 52, 57 
CheckedlistBox control, 52 
Checked property, 61 
CIL. See Common Intermediate Language 
Clnt function (Visual Basic), 83 
class(es), 77-78, 142 

constructors in parent, 163 
as reference types, 79 
structures vs., 78 

Clear method, 66 
Click event, 67, 68 
clock speed, 6 

cloud computing, 4 
CLR. See Common Language Runtime 
code 

reducing duplicated, 121 
reusing, 121 
simplifying complex, 122 

code editors, 28 
code reuse 

inheritance as, 148 
polymorphism as, 149 

code tag (Visual Studio), 172 
coercion, 83 
ColorDialog control, 52 
ComboBox control, 52, 57 
commands 

disabling vs. hiding, 38 
multiple ways to invoke, 42 
separators between, 40 

comma-separated value (CSV) files, 192 
comments, 167-173 

block, 169 
for routines, 127-128 
types of, 169 
XML, 170-173 



Common Intermediate Language (CIL), 26 
Common Language Runtime (CLR), 26 
communication protocols, 12 
comparison operators, 109 
compilers, 28 
ComplexNumber class, 116 
components, program, 49 
compound assignment operators, 114 
computer-aided design (CAD), 38 
computer hardware, 1-14 

and data storage, 8-11 
and networks, 11-12 
and speed, 6-8 
types of computers, 2-6 

computers, 2-6 
comparing types of, 6 
desktops, 2-3 
handheld, 5 
laptops, 3-4 
mainframes, 4-5 
minis, 4-5 
netbooks, 3-4 
notebooks, 3-4 
personal computers, 2 
servers, 4-5 
tablets, 3-4 
towers, 2-3 
workstations, 2-3 

computer speed, 6-8, 16 
concatenation operator, 109 
concatenation operators, 114 
conditional logical operators, 112-113 
conditional operator, 109 
conditional operators, 113 
conditional statements, 96-99 

Case statement, 97-99 
Else If statement, 97 
If Else statement, 97 
If statement. 96 

configuration files (config files}, 197-199 
constructors, 161-162 
container controls, 64 
Content property, 63, 64 
ContextMenu property, 61 
context menus, 40-41 
ContextMenuStrip control, 52 
Continue statement, 101-102, 102 
controls, 49-70 

custom, 28 

events used with, 67-69 
grouping related, 44-46 
methods used with, 66-67 
order of, 44 
properties of, 60-66 
using, 51-52 
for Windows Forms, 52-56 
WPF, 57-60 

control statements, 91-104 
conditional statements, 96-99 
and error handling, 103 
jumping statements, 99-102 
looping statements, 93-96 
and pseudocode, 92-93 

conversion, data type, 82-84 
conversion operators, 116 
Convert class, 188 
copying structures, 82 
Copy method, 66 
cores, 6 

multiprocessing and, 16 
CPU. See central processing unit 
CSV. See comma-separated value files 
c tag (Visual Studio), 172 
culture codes, 184 
currency, culture-specific values for, 187 
Cursor property, 61 
custom controls, 28 
Cut method, 66 

D 
databases 

and computer speed, 7 
hierarchical, 203-205 
network, 205-206 
object-relational, 203 
object stores, 203 
relational, 200-202 
spreadsheets, 202-203 
temporal, 206 

data-centric viewpoint, 175-176 
DataGridView control, 52 
Dataset control, 52 
data storage, 8-11, 191-208 

Blu-ray, 10 
CD drives, 10 
DVDs, 10 
files, 192-199 

data storage 

Index 229 



data storage (continued) 

230 Index 

data storage (continued) 
flash drives, 9-10 
hard drives, 10 
hierarchical databases, 203-205 
network databases, 205-206 
object-relational databases, 203 
object stores, 203 
RAM, 9 
relational databases, 200-202 
spreadsheets, 202-203 
system registry, 199-200 
temporal databases, 206 
and working with files, 10 

data type (of variable), 72 
data types 

conversion of, 82-84 
fundamental, 71-73 
program-defined, 74-78 

Date data type, 73 
DateTimePicker control, 52 
deadlocks, 20 
Debug class, 179 
debuggers, 28 
debugging, 123 

comments and, 127 
Decimal data type, 73 
declarations, 72 
dependency graphs (Visual Studio), 30 
deriving, 147 
description tag (Visual Studio), 172 
design time, 28 
desktop computers, 2-3 
destructors, 163-165 
development techniques, 167-182 

agile development, 177-178 
comments, role of, 167-173 
data-centric, 175-176 
extreme programming, 178 
naming conventions, 173-175 
test-driven development, 179-180 
user-centric, 176-177 

Diagnostics namespace, 179 
dialog boxes, 43 

menu hierarchies vs., 39 
DirectoryEntry control, 52 
DirectorySearcher control, 52 
disk drives 

reading from and writing to, 10 
speed of, 7 

distributed computing, 22-23 

division, 106 
division operator, 112 
DockPanel control, 57 
Dock property, 61, 62 
documentation, automatic, 171 
document object model (DOM), 196 
Document Type Definition (OTO). 197 
DocumentViewer control, 57 
DOM. See document object model 
DomainUpDown control, 53 
DoubleClick event, 68 
Double data type, 73 
Do While loops, 95 
DragDrop event, 68 
DragEnter event, 68 
Dragleave event, 68 
DragOver event, 68 
DrawToBitmap method, 66 
DTD. See Document Type Definition 
dumb terminals, 5 
duplicated code, 121 
DVDs, 10 

E 
Ellipse control, 57 
ellipses (in menus), 34 
Else block, 97 
Else If block, 97 
Else If statement, 97 
embarrassingly parallel algorithms, 21 
Enabled property, 61 
encapsulation, 142 
Enter event, 68 
enumerations, 75-77 
equality operators, 109 
error handling, in control statements, 103 
ErrorProvider component, 49 
ErrorProvider control, 53, 56 
errors, 103. See also user errors 
event handlers, 67 
Eventlog control, 53 
events, 67-69, 146 
example tag (Visual Studio), 172 
exception tag (Visual Studio), 172 
Exit command, 34 
Exit Function statement, 102 
Exit statement, 101, 102 
Exit Sub Function statement, 102 



Expander control, 57, 60 
explicit conversion, 82-83 
exponentiation, 108 
Extensible Application Markup language 

(XAML), 65, 213 
Extensible Markup language (XML), 170. See 
also XML comments 

file editing in, 30 
eXtensible Stylesheet language for Transformations 

(XSLT), 197 
external keyboard, 4 

extreme programming, 178 

F 
factory methods, 146 
fields, 143 
File menu, 34 
files, 192-199 

config, 197-199 
INI, 193-194 
random access, 193 
text, 192 
working with, 10 
XML, 194-197 

FileSystemWatcher control, 53 
File Transfer Protocol (FTP), 12 
Finalize routine, 163 
FindAll method, 67 

FindOne method, 67 
flash drives, 9-10 
floating point data types, 73 
FlowlayoutPanel control, 53, 56 
Focus method, 66 

FolderBrowserDialog control, 53 
Folding@home, 23 
FontDialog control, 53 
FontFamily property, 63 
Font property, 61 
FontSize property, 63 
FontStyle property, 63 
FontWeight property, 63 
For Each loops, 94-95 
ForeColor property, 61 
Foreground property, 63 
For loops, 93 

C#, 92 
pseudocode for, 92 
Visual Basic, 92 

HelpProvider control 

formats, locale-specific, 186-187 
FormClosed event, 68 
FormClosing event, 68 
forms 

control order in, 44 
designing, with Visual Studio, 51 
error flags in, 48 
grouping related controls in, 44 

Fortran, 26 
fractals, 137 
Frame control, 57 
Friend keyword, 87, 136 
FTP. See File Transfer Protocol 

functions, 120 
F(x) operator, 108 

G 
garbage collector (GC), 164 
GetError method, 67 

getter method, 144 
GetToolTip method, 67 
GIMPS. See Great Internet Mersenne Prime Search 

global issues, 183-190 
culture-aware functions in .NET, 187-189 
culture codes, 184 
formats, locale-specific, 186-187 
terminology, 184 
text/symbols, locale-specific, 184-185 
Visual Studio, user interfaces in, 185-186 

Go To statement, 99-100, 102 
restrictions on, 100 

Great Internet Mersenne Prime Search (GIMPS), 23 
"grid computing" applications, 23 
Grid control, 57, 64 
Grid Splitter control, 57 
GroupBox control, 53, 56, 57 

H 
handheld computers, 5 

hard drives, 10 
hardware. See computer hardware 

Has-A relationships, 158 
Height property, 63 
Help menu, 38 
HelpProvider control, 53 

Index 231 



hierachies, menu 

hierachies, menu, 39 
hierarchical databases, 203-205 
hints, providing, 47-48 
HScrollBar control, 53 
HTTP. See Hypertext Transfer Protocol 
hubs, 11 
Hypertext Transfer Protocol (HTTP), 12 

IBM z196 processor, 2 
icons, 36 
!Disposable interface, 164 
If Else statement. 97 
If statement, 96 

Continue statement vs., 102 
Image control, 58 
lmagelist control, 53 
Image property, 61 
immutability, 78 
implementation details, hiding, 122 
implicit conversion, 83-84 
include tag (Visual Studio), 172 
inheritance diagrams, 152-154 
inheritance(s), 147-148 

multiple, 158-160 
INI files, 193-194 
instance members, 146-147 
instance (of a class), 142 
instantiation, 142 
Integer data type, 73 
integer division operators, 108 
integrated development environments (IDEs), 29. 
See also Visual Studio 
Intel 4004 processor, 2 
lntelliSense, 30, 170-171 
interfaces 

localization of, in Visual Studio, 185-186 
multiple, 158-160 

internal keyword, 87, 136 
internationalization, 184 
Internet. 12 
Internet Explorer 7 

menus in, 36 
Internet Protocol (IP), 12 
Internet Protocol Suite, 12 

intern pool, 74 
Invalidate method, 66 

232 Index 

IP. See Internet Protocol 
irrational numbers, 116 
ls-A relationships, 158 
Items property, 61 
item tag (Visual Studio), 172 

J 
Java, 26 

comments in, 127 
Java bytecode., 27 
Java Virtual Machine (JVM), 27 
jumping statements, 99-102 

Continue statement, 101-102 
Exit statement, 101 
Go To statement, 99-100 
Return statement, 102 

Just-In-Time (JIT) compilation, 26 
JVM. See Java Virtual Machine 

K 
keyboards, external, 4 
KeyDown event, 68 
KeyPress event, 68 
KeyUp event, 68 
Kill method, 67 

L 
Label control, 53, 58 
LAN adapters, 11 
LANs. See local area networks 
laptops, 3-4 
layout (of forms), 44 
LayoutTransform property, 63 
Leave event, 68 
lifetime, 88-89 
LinkLabel control, 53 
ListBox control, 53, 58 
listheader tag (Visual Studio), 172 
lists, Rule of Seven for, 46 
list tag (Visual Studio), 172 
ListView control, 53, 58 
Load event, 68 
local area networks (LANs), 12 
locales, 184 



localization, 184 
formats, locale-specific, 186-187 
text/symbols, locale-specific, 184-185 
Visual Studio, user interfaces in, 185-186 

Location property, 61 
locks, 19-20 
logical operators, 109 
Long data type, 73 
long date, culture-specific values for, 187 
looping statements, 93-96 

Do While loops, 9S 
For Each loops, 94-9S 
For loops, 93 
Until loops, 9S-96 
While loops, 9S 

loops, variables in, 94 

M 
mainframes, 4-S 
Mandelbrot set, 21 
Margin property, 63 
MaskedTextBox control, S3 
MaxHeight property, 63 
MaximumSize property, 61 
MaxWidth property, 63 
MediaElement control, S8, 60 
members 

overriding, 149-lSl 
shadowing, 1Sl-1S2 

memory 
copying and, 81 
paging of. 9 

memory buffer, 11 
Menu control, S8 
menus, 34-40 

accelerators with, 34-3S 
context, 40-41 
disabling vs. hiding commands in, 38 
ellipses with, 34 
example, 40 
length of, 39-40 
pop-up, 40 
shallow hierarchies for, 39 
shortcuts with, 3S-36, 41 
standard menu items, 36-38 
in Visual Studio, 30 

MenuStrip control, S3, S6 
Mersenne primes, 23 

MessageQueue control, S4 
methods, 66-67 

in object-oriented programming, 14S 
routines vs., 120 

method scope, 8S 
Microsoft, SO 
Microsoft.CSharp, 210 
Microsoft namespaces, 210 
Microsoft .NET Framework version 3.0, SO 
Microsoft.VisualBasic, 210 
Microsoft.Win32, 210 
Microsoft.Windows.Themes, 210 
million instructions per second (MIPS), 2 
MinHeight property, 63 
minicomputers, 4-5 
MinimumSize property, 61 
mini notebooks, 3 
MinWidth property, 63 
MIPS. See million instructions per second 
modal dialog boxes, 43 
modeless dialog boxes, 43 
Mod operator, 109 
modulus operator, 108, 109 
MonthCalendar control, S4 
Moore, Gordon E., lS 
Moore's Law, lS 
mouse, 3 
MouseClick event, 68 
MouseDown event, 68 
MouseEnter event, 68 
MouseHover event, 68 
MouseLeave event, 68 
MouseMove event, 68 
MouseUp event, 68 
MultiColumn property, 61 
multi-core systems, 13, 16 
multi-line comments, 127 
Multiline property, 61 
multiplication, 106 
multiplicative operators, 108 
multiprocessing, lS-24 

about, 16 
and distributed computing, 22-23 
multitasking vs., 16 
multithreading, 17 
and parallel solutions, 21-22 
and problems with parallelism, 18-20 
Task Parallel Library and, 23-24 

multitasking, 16 
multithreading, 17 

multithreading 

Index 233 



multi-way branch 

multi-way branch, 97 
Mustlnherit keyword, 151 
MustOverride keyword, 151 
MyBase keyword, 163 
MyClass keyword, 162 

N 
Name property, 51 
names (for routines), 126 
namespaces 

Microsoft, 210 
System, 210-213 

naming conventions, 173-175 
narrow values, 84 
netbooks, 3-4 
.NET Framework libraries, 209-214 

Microsoft namespaces in, 210 
System namespaces in, 210-213 

network adapters, 11 
network connection hardware, 3 
network databases, 205-206 
network interface card (NIC), 11 
network interface controllers, 11 
networks, 11-12 
New (new) keyword, 79 
NIC. See network interface card 
notebooks, 3-4 
Notifylcon control, 54 
Not operator, 108 
NumericUpDown control, 54 
numeric values, converting, 82 

0 
Object data type, 73 
Object Management Group (OMG), 154 
object-oriented programming (OOP), 141-166 

abstraction in, 154-156 
classes in, 142 
constructors in, 161-162 
destructors in, 163-165 
events in, 146 
inheritance diagrams in, 152-154 
inheritance in, 147-148 
ls-A vs. Has-A relationships in, 158 
methods in, 145 
multiple inheritances/interfaces in, 158-160 

234 Index 

overriding members in, 149-151 
polymorphism in, 148-149 
properties in, 143-145 
refinement in, 156-158 
shadowing members in, 151-152 
shared vs. instance members in, 146-147 

object-oriented tools, 29 
object-relational databases, 203 
object stores, 203 
OMG. See Object Management Group 
OOP. See object-oriented programming 
OpenFileDialog control, 54 
operating system, multitasking by, 16 
operators, 105-118 

bitwise, 111-112 
compound assignment, 114 
concatenation, 114 
conditional, 113 
conditional logical, 112-113 
conversion, 116 
division, 112 
modulus, 112 
overloading of, 114-116 
parentheses with, 107 
post- and pre-increment, 110-111 
precedence of. 106, 108-110 

OrElse operator, 109 
Or operator, 109 
overloading, operator, 114-116 
overloading, routine, 135-136 

p 
PageSetupDialog control, 54 
paging, 9 
Paint event, 68 
pair programming, 178 
palmtops, 5 
Panel control, 54 
Parallel.ForEach tool, 24 
Parallel.For tool, 23 
Parallel.Invoke tool, 23 
parallelism 

problems with, 18-20 
solutions using, 21-22 

parameters 
and routine overloading, 135-136 
arrays, 130, 134 
optional, 129-130 



passing methods, 130-132 
reference types, 132-134 
for routines, 128-136 
value types, 132-134 

paramref tag (Visual Studio), 172 
param tag (Visual Studio), 172 
para tag (Visual Studio), 172 
parent class, constructors in, 163 
parentheses (with operators), 107 
Parse method, 188 
Pascal, 26, 174 
passing methods (parameters), 130-132 
PasswordBox control, 58 
Paste method, 66 
PCs. See personal computers 
PDAs, 5 
percentage, culture-specific values for, 187 
PerformanceCounter control, 54 
permission tag (Visual Studio), 172 
persistent variables, 89 
personal computers (PCs), 2 
petaflops (quadrillion floating-point operations per 
second), 2 
PictureBox control, 54 
pocket computers, 5 
pointing stick, 3 

PointToClient method, 66 
PointToScreen method, 66 
polymorphism, 143, 148-149 
pop-up menus, 40 
post-increment operators, 110-111 
precedence, operator, 106, 108-110 
pre-increment operators, 110-111 
primary operators, 108 
primary tags (XML comments), 172-173 
PrintDialog control, 54 
PrintDocument control, 54 
PrintPreviewControl, 54 
PrintPreviewDialog control, 54 
private accessibility, 87 
Private (private) keyword, 87, 136 
procedure scope, 85 
Process control, 54 
processes, 16 
processors 

IBM z196 processor, 2 
Intel 4004 processor, 2 

program-defined data types, 74-78 
arrays, 75 

classes, 77-78 
enumerations, 75-77 
structures, 76-77 

programmers, dividing tasks among, 122-123 
programming environments, 25-32 

languages in, 25-28 
tools included in, 28-29 
Visual Studio, 29-30 

ProgressBar control, 54, 58 
properties, 60-66, 143-145 

Name, 51 
Windows Forms, 60-62 
WPF, 63-66 

Properties window, 43 
property get method, 144 
PropertyGrid control, 54 
property set method, 144 
Protected Friend keyword, 87, 136 
protected internal keyword, 87, 136 
Protected (protected) keyword, 87, 136 
pseudocode, 92-93 
Public (public) keyword, 87, 136 

R 
race conditions, 18-19 
RadialGradientBrush control, 65 
RadioButton control, 54, 58 
RAM, 9 
random access files, 193 
random heuristics, 21 
ray tracing, 21 
Rectangle control, 58 
recursion, 137-138 
Redo method, 66 
reference types, 78-82, 132-134 
refinement, 156-158 
Refresh method, 66 
regression testing, 29 
relational databases, 200-202 
remarks tag (Visual Studio), 172 
RenderTransform property, 63 
ResizeBegin event, 69 
ResizeEnd event, 69 
Resize event, 69 
resources, parallelism and contention for, 18 
returns tag (Visual Studio), 172 
Return statement, 102 
ribbons, 42 

ribbons 

Index 235 



RichTextBox control 

RichTextBox control, 55, 58 
routers, 11 
routine overloading, 135-136 
routines, 119-140 

accessibility of, 136 
advantages of, 120-123 
calling, 123-124 
dividing, among programmers, 123 
parameters for, 128-136 
recursion with, 137-138 
separating out, 125 
types of, 120 
writing good, 125-128 

routine scope, 85 
Rule of Seven, 46 
run time, 28 
RunWorkerAsync method, 67 

s 
Save As command, 34 
Save command, 34 
SaveFileDialog control, 55 
SByte data type, 73 
scope, 85-86 
scope blocks, 92 
ScrollBar control, 58 
ScrollBars property, 61 
Scroll event, 69 
ScrollToCaret method, 66 
ScrollViewer control, 58 
seealso tag (Visual Studio), 172 
see tag (Visual Studio), 173 
SelectAll method, 66 
SelectedlndexChanged event, 69 
Selectedlndex property, 61 
SelectionMode property, 61 
Select method, 66 
Separator control, 58 
separators (between commands), 40 
sequence diagrams (Visual Studio), 30 
Serial Port control, 55 
servers, 4-5 
ServiceController, 55 
SetError method, 67 
SETl@home, 23 
setter method, 144 
SetToolTip method, 67 

236 Index 

Shared keyword, 88, 146 
shared members, 146-147 
shortcuts, menu, 35-36, 41 
Short data type, 73 
short date, culture-specific values for, 187 
side effects, avoiding, 126 
Sierpinski curve, 138 
signed integer data types, 73 
Silverlight, 50 
Simple Object Access Protocol (SOAP), 197 
Single data type, 73 
Size property, 61 
sizing/resizing (of modal dialog boxes), 43 
Slider control, 58 
smartphones, 5 
SOAP. See Simple Object Access Protocol 
solid-state hard drives, 9 
source code management tools, 29 
spaghetti code, 100 
speed, computer, 6-8, 16 
SplitContainer control, 55 
spreadsheets, 202-203 
SQL Server Express, 201 
stack frame, 123 
StackPanel control, 58 
Start method, 67 
statements, 72 

indentation in, 92 
rewriting, 111 

static keyword, 88 
StatusBar control, 58 
StatusStrip control, 55, 56, 60 
Stop method, 67 
StringBuilder class, 74 
String data type, 73 
String.Format method, 188 
strings, 74 

type conversion with, 82 
structures, 76-77 

classes vs., 78 
copying, 82 
passing, by value, 134 
as value types, 79 

subclassing, 147 
subnotebooks, 3 
subtraction, 106 
summary tag (Visual Studio), 172 
supercomputers, 2, 4 
supporting tags (XML comments), 172-173 



switches, 11 
symbols, locale-specific, 184-18S 
System.CodeDom namespace, 211 
System.Collections namespace, 211 
System.ComponentModel namespace, 211 
System.Configuration namespace, 211 
System.Data namespace, 211 
System.Deployment namespace, 211 
System.Device.Location namespace, 211 
System.Diagnostics namespace, 211 
System.DirectoryServices namespace, 211 
System.Drawing namespace, 211 
System.Globalization namespace, 211 
System.IQ namespace, 212 
System.Linq namespace, 212 
System.Management namespace, 212 
System.Media namespace, 212 
System.Messaging namespace, 212 
System namespace, 210 
System namespaces, 210-213 
System.Net namespace, 212 
System.Numerics namespace, 212 
System.Printing namespace, 212 
System.Reflection namespace, 212 
system registry, 199-200 
System.Resources namespace, 212 
System.Runtime namespace, 212 
System.Security namespace, 212 
System.ServiceProcess namespace, 212 
System.Speech namespace, 212 
System.Text namespace, 213 
System.Threading namespace, 213 
System.Timers namespace, 213 
System.Transactions namespace, 213 
System.Web namespace, 213 
System.Windows namespace, 213 
System.Xaml namespace, 213 
System.Xml namespace, 213 

T 
TabControl, SS 
TabControl control, S9, 60 
Tablndex property, 62 
TablelayoutPanel control, SS 
tablets, 3-4 
Tag property, 62 
Task Parallel Library (TPL), 23-24 
tasks, performing single, well-defined, 12S-126 

TCP. See Transmission Control Protocol 
TCP/IP, 12 
temporal databases, 206 
term tag (Visual Studio), 173 
ternary operator, 113 
test-driven development, 179-180 
testing, regression, 29 
testing tools, 29 
TextBlock control, S9 
TextBox control. SS, S9, 62 
TextChanged event, 69 
text files, 192 
text, locale-specific, 184-185 
Text property, 62, 64 
thrashing, 9 
threads, 17 

distributed computing, 22 
Tianhe-lA supercomputer, 2 
time, culture-specific values for, 187 
timer components, 49 
Timer control, 55 
ToolBar control, S9 
toolbars, 42 

in Visual Studio, 30 
ToolStripContainer control, S5 
ToolStrip control, SS, 56 
ToolTip control, 55 
tooltips, 47 
ToString method, 86, 188 
touchpad, 3 
touchscreens, 4 
towers, 2-3 
TPL. See Task Parallel Library 
trackball, 3 
TrackBar control, 55 
track bars, 47 
Transmission Control Protocol (TCP), 12 
TreeView control, 59 
Try Catch Finally block, 103 
Try keyword, 103 
type conversion 

u 

explicit conversion, 82-83 
implicit conversion, 83-84 

Ulnteger data type, 73 
Ulong data type, 73 
ultraportables, 3 

ultraportables 

Index 237 



UML. See Universal Modeling Language 

UML. See Universal Modeling Language 
unary operators, 108 
Undo method, 66 
Unicode, 74 
UniformGrid control, 59 
Uniform Resource Locators (URLs), 12 
Uniform Resource Names (URNs), 12 
Universal Modeling Language (UML), 154 
Until loops, 95-96 
URLs. See Uniform Resource Locators 
URNs. See Uniform Resource Names 
USB, 6 
USB flash drives, 9 
user-centric viewpoint, 176-177 
user errors, preventing, 47 
user interface design, 44-48 

control order in, 44 
grouping related controls in, 44-46 
hints, providing, 47-48 
Rule of Seven and, 46 
user errors, preventing, 47 

UShort data type, 73 

v 
ValueChanged event, 69 
Value property, 62 
value tag (Visual Studio), 173 
value types, 78-82, 132-134 
variables, 71-90 

and accessibility, 87-89 
defined, 72 
and fundamental data types, 71-73 
lifetime of, 88-89 
loop, 94 
persistent, 89 
and program-defined data types, 74-78 
and scope, 85-86 
and strings, 74 
and type conversion, 82-84 
and value/reference types, 78-82 

Viewbox control, 59 
Visibility property, 63 
Visible property, 62 
Visual Basic, 26 

arrays in, 75 
auto-implemented properties in, 145 
comments in, 127 

238 Index 

Continue statement in, 101 
destructors in, 163 
Exit Function statement in, 102 
Exit statement in, 101 
Exit Sub Function statement in, 102 
expression evaluation in, 107 
For loop in, 92 
implicit conversion in, 83 
operator overloading in, 114 
optional parameters in, 129 
parameter arrays in, 130 
parameter-passing methods in, 131 
property get/property set methods in, 144 
routines in, 120 
structures in, 77 

Visual Studio, 29-30 
accelerators in, 34 
call stack window in, 124 
debugger in, 123 
designing forms with, 51 
localization of user interfaces in, 185-186 
shortcut editor in, 36 
Toolbox window in, 42 
XML comments in, 170 

VScrollBar control, 55 

w 
WaitForExit method, 67 
WANs. See wide area networks 
WebBrowser control, 55 
web service, 197 
While loops, 95 
wide area networks (WANs), 12 

wide values, 84 
Width property, 63 
Wi-Fi, 12 
windows, in Visual Studio, 30 
Windows Experience Index link, 8 
Windows Forms 

about, 50 
Button control in, 146 
controls in, 52-56, 63 
events, 68 
methods, 66 
properties of, 60-62 

Windows Phone 7 operating system, 29 



XSL T. See eXtensible Stylesheet Language for Transformations 

Windows Presentation Foundation (WPF), 34, 210 

about, 50 
controls in, 57-60, 63 

properties of, 63-66 

Windows program components, 33-48 
context menus, 40-41 

dialog boxes, 43 
menus, 34-40 

ribbons, 42 

toolbars, 42 
user interface design, 44-48 

Word 2007, ribbon in, 42 

words., 72 
workstations, 2-3 

World Wide Web (WWW), 12 
WPF. See Windows Presentation Foundation 
WrapPanel control, 59 

x 
XAML. See Extensible Application Markup Language 

Xbox 360 game platform, 29 
XML. See Extensible Markup Language 

XML comments, 170-173 

automatic documentation from, 171 
creating, 172 

and lntelliSense, 170-171 
primary and supporting tags with, 172-173 

XML files, 194-197 

XML Path (XPath), 197 
XML Schema Definition (XSD), 197 

x-- operator, 108, 111 

x++ operator, 108, 111 
Xor operator, 109 

XSLT. See eXtensible Stylesheet Language for 
Transformations 

Index 239 





About the Author 

Rod Stephens started out as a mathematician, but while 

studying at MIT, he discovered the joys of algorithms and has 

been programming professionally ever since. During his career, 

he has worked on an eclectic assortment of applications in such 

diverse fields as telephone switching, billing, repair dispatching, 

tax processing, wastewater treatment, photographic 

processing, vision diagnostics, cartography, and training for 

professional football players. Rod has spoken at programming conferences and user's 

group meetings, and is an experienced instructor. 

A Visual Basic Microsoft Most Valuable Professional (MVP}, Rod has written 

24 books that have been translated into half a dozen different languages, and more 

than 250 magazine articles covering C#, Visual Basic, Visual Basic for Applications, 

Delphi, and Java. Rod's popular VB Helper website (http://www.vb-helper.com) 
receives several million hits per month and contains thousands of pages of tips, 

tricks, and example code for Visual Basic programmers. His new C# Helper website 

(http://www.csharphelper.com) contains similar tips, tricks, and examples for C# 

developers. 

Sign up for his Visual Basic newsletters at http://www.vb-helper.com/news/etter.html, 
visit his blog at http://blog.csharphelper.com, or contact him at RodStephens@vb-helper. 
com or RodStephens@csharphelper.com. 



What do 
you think of 
this book? 
We want to hear from you! 

To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey 

Tell us how well this book meets your needs-what works effectively, and what we can 
do better. Your feedback will help us continually improve our books and learning 
resources for you. 

Thank you in advance for your input! 



CPSIA information can be obtained at www.ICGtesting.com 
Printed in the USA 
BVOW05093624101 I 

274321 BV00002B/l!P 
II I II llll II lllll II I Ill II II 

9 780735 661684 



Ready to learn programming? 

H
Start1. ere. 

Get ready to learn Microsoft .NET programming by exploring the 
basic concepts that drive all .NET-based languages. If you have 
absolutely no previous experience, no problem-simply start here! 
This book introduces must-know concepts and techniques through 
easy-to-follow explanations, examples, and exercises. 

Here's where you start learning how software works 
• Understand how the .NET development environment helps 

you design and run programs 

• Delve into basic object-oriented concepts such as properties, 
methods, and events 

• Learn how programs store data in files, object stores, and 
databases 

• Dig into controls-labels, text boxes, menus, scroll bars 

• See how programs take advantage of multicore processors 

• Get an extensive glossary of key programming terms 

NOTE: This t itle is included as a free companion eBook for the 
Start Here! books for Microsoft Visual Basic• and Visual (#•. This print 
edition is available for sale for anyone interested in .NET fundamenta ls. 

9 780735 661684 

U.S.A. $19.99 
Canada $20.99 

[Recommended] 

Programming/ Microsoft Visual Studio 

•Beginner-level instruction 

• Easy to follow explanations and examples 

• Exercises to build your first projects 

Step by Step 

• For experienced developers learning a 
new topic 

•Focus on fundamental techniques and tools 

~(1 2010 

•Hands-on tutorial with practice files plus '-!!oii!!~ 
eBook 

Developer Reference 

•Professional developers; intermediate to 
advanced 

• Expertly covers essential topics and 
techniques , 

• Features extensive, adaptable code examples 

Focused Topics 

•For programmers who develop complex 
or advanced solutions 

•Specialized topics; narrow focus; deep 
coverage 


