
Designed for

Microsoft
Windows NT·
Windows·95

Complete documentation for
Microsoft Visual C++ version 5.0

Run-lime Ubrary Reference

Microsoft Press

iostream Class
Library Reference

Run-Time Ubrary Reference

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Corporation.

Microsoft Visual C++ Run-Time Library Reference / Microsoft
Corporation

p. cm.
Includes index.
ISBN 1-57231-520-2
1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Title.
QA76.73.CI53M498 1997
005.26'8--dc21

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 2 1 0 9 8 7

97-2405
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Macintosh and Power Macintosh are registered trademarks of Apple Corporation, Inc. Intel is a
registered trademark of Intel Corporation. Microsoft, Microsoft Press, MS, MS-DOS, Visual C++,
Win 32, Windows, Windows NT, and XENIX are registered trademarks of Microsoft Corporation.
Other product and company names mentioned herein may be the trademarks of their respective
owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Introduction v
About This Book v

Chapter 1 iostream Programming 1
What a Stream Is 1

Input/Output Alternatives 1

The iostream Class Hierarchy 2

Output Streams 2

Constructing Output Stream Objects 3

Using Insertion Operators and Controlling Format 4

Output File Stream Member Functions 7

The Effects of Buffering 10

Binary Output Files 10

Overloading the « Operator for Your Own Classes 11

Writing Your Own Manipulators Without Arguments 12

Input Streams 13

Constructing Input Stream Objects 13

Using Extraction Operators 14

Testing for Extraction Errors 14

Input Stream Manipulators 15

Input Stream Member Functions 15
Overloading the» Operator for Your Own Classes 18

Input/Output Streams 18

Custom Manipulators with Arguments 19

Output Stream Manipulators with One Argument (int or long) 19

Other One-Argument Output Stream Manipulators 20

Output Stream Manipulators with More Than One Argument 21

Custom Manipulators for Input and Input/Output Streams 22

Using Manipulators with Derived Stream Classes 22
Deriving Your Own Stream Classes 22

The streambuf Class 23

Why Derive a Custom streambuf Class? 23

A streambuf Derivation Example 23

Contents

iii

iv

Chapter 2 Alphabetic Microsoft iostream Class Library Reference 29
iostream Class Hierarchy Diagram 29

iostream Class List 30

Index 113

Introduction

Microsoft Visual C++® contains the C++ iostream class library, which supports
object-oriented input and output. This library follows the syntax that the authors of
the C++ language originally established and thus represents a de facto standard for
C++ input and output.

About This Book
Chapter 1, iostream Programming, provides information you need to get started
using iostream classes. After reading this material, you will begin to understand how
to write programs that process formatted text character streams and binary disk files
and how to customize the library in limited ways. The chapter includes advanced
information on how to derive iostream classes and create custom multiparameter
"manipulators." These topics will get you started on extending the library and doing
specialized formatting. You will also learn about the relationship between the iostream
classes and their subsidiary buffer classes. You can then apply some of the iostream
library design principles to your own class libraries.

Chapter 2, Alphabetic Microsoft iostream Class Library Reference, begins with
a detailed class hierarchy diagram. The iostream class library reference follows,
arranged by classes in alphabetic order. Each class description includes a summary
of each member, arranged by category, followed by alphabetical listings of member
functions (public and protected), overloaded operators, data members, and
manipulators.

Public and protected class members are documented only when they are normally
used in application programs or derived classes. See the class header files for a
complete listing of class members.

v

CHAPTER 1

iostream Programming

This chapter begins with a general description of the iostream classes and then
describes output streams, input streams, and input/output streams. The end of the
chapter provides information about advanced iostream programming.

What a Stream Is
Like C, C++ does not have built-in input/output capability. All C++ compilers,
however, come bundled with a systematic, object-oriented I/O package, known as the
iostream classes. The "stream" is the central concept of the iostream classes. You can
think of a stream object as a "smart file" that acts as a source and destination for bytes.
A stream's characteristics are determined by its class and by customized insertion and
extraction operators.

Through device drivers, the disk operating system deals with the keyboard, screen,
printer, and communication ports as extended files. The iostream classes interact with
these extended files. Built-in classes support reading from and writing to memory with
syntax identical to that for disk I/O, which makes it easy to derive stream classes.

Input/Output Alternatives
This product provides several options for I/O programming:

• C run-time library direct, unbuffered I/O

• ANSI C run-time library stream I/O

• Console and port direct I/O

• The Microsoft Foundation Class Library

• The Microsoft iostream Class Library

The iostream classes are useful for buffered, formatted text I/O. They are also useful
for unbuffered or binary I/O if you need a C++ programming interface and decide not
to use the Microsoft Foundation classes. The iostream classes are an object-oriented
I/O alternative to the C run-time functions.

iostream Class Library Reference

You can use iostream classes with the Microsoft® Windows® operating system. String
and file streams work without restrictions, but the character-mode stream objects cin,
cont, cerr, and clog are inconsistent with the Windows graphica,l user interface. You
can also derive custom stream classes that interact directly with the Windows
environment. If you link with the QuickWin library, however, the cin, cont, cerr, and
clog objects are assigned to special windows because they are connected to the
predefined files stdin, stdont, and stderr.

You cannot use iostream classes in tiny-model programs because tiny-model programs
cannot contain static objects such as cin and cont.

The iostream Class Hierarchy
The class hierarchy diagram at the beginning of Chapter 2 shows some relationships
between iostream classes. There are additional "member" relationships between the
ios and streambnf families. Use the diagram to locate base classes that provide
inherited member functions for derived classes.

Output Streams

2

An output stream object is a destination for bytes. The three most important output
stream classes are ostream, of stream , and ostrstream.

The ostream class, through the derived class ostream_ withassign, supports the
predefined stream objects:

• coot standard output

• cerr standard error with limited buffering

• clog similar to cerr but with full buffering

Objects are rarely constructed from ostream or ostream_ withassign; predefined
objects are generally used. In some cases, you can reassign predefined objects after
program startup. The ostream class, which can be configured for buffered or
unbuffered operation, is best suited to sequential text-mode output. All functionality
of the base class, ios, is included in ostream. If you construct an object of class
ostream, you must specify a streambnf object to the constructor.

The of stream class supports disk file output. If you need an output-only disk,
construct an object of class of stream. You can specify whether of stream objects
accept binary or text-mode data before or after opening the file. Many formatting
options and member functions apply to of stream objects, and all functionality of
the base classes ios and ostream is included.

If you specify a filename in the constructor, that file is automatically opened when
the object is constructed. Otherwise, you can use the open member function after
invoking the default constructor, or you can construct an of stream object based on
an open file that is identified by a file descriptor.

Chapter 1 iostream Programming

Like the run-time function sprintf, the ostrstream class supports output to in-memory
strings. To create a string in memory using liD stream formatting, construct an object
of class ostrstream. Because ostrstream objects are write-only, your program must
access the resulting string through a pointer to char.

Constructing Output Stream Objects
If you use only the predefined COllt, cerr, or clog objects, you don't need to construct
an output stream. You must use constructors for:

• File streams

• String streams

Output File Stream Constructors
You can construct an output file stream in one of three ways:

• Use the default constructor, then call the open member function.

of stream myFile; II Static or on the stack
myFil e. open ("fil ename". i osmode);

ofstream* pmyFile = new of stream; liOn the heap
pmyFi 1 e ->open ("fi 1 ename". i osmode);

• Specify a filename and mode flags in the constructor call.

of s t rea m my F i 1 e (" f i 1 en a me". i 0 s mod e);

• Specify an integer file descriptor for a file already open for output. You can specify
unbuffered output or a pointer to your own buffer.

int fd = _open("filename". dosmode);
ofstream myFilel(fd); II Buffered mode (default)
ofstream myFile2(fd. NULL. 0); II Unbuffered mode of stream
myFile3(fd. pch. buflen); II User-supplied buffer

Output String Stream Constructors
To construct an output string stream, you can use one of two ostrstream constructors.
One dynamically allocates its own storage, and the other requires the address and size
of a preallocated buffer.

• The dynamic constructor is used like this:

char* sp;
ostrstream myString;
mystring « "this is a test" « ends;
sp = myString.str(); II Get a pointer to the string

The ends "manipulator" adds the necessary terminating null character to the string.

• The constructor that requires the preallocated buffer is used like this:

char s[32J;
ostrstream myString(s. sizeof(s));
myString « "this is a test" « ends; II Text stored in s

3

iostream Class Library Reference

U sing Insertion Operators and Controlling Format

4

This section shows how to control format and how to create insertion operators for
your own classes. The insertion «<) operator, which is preprograrruned for all
standard C++ data types, sends bytes to an output stream object. Insertion operators
work with predefined "manipulators," which are elements that change the default
format of integer arguments.

Output Width
To align output, you specify the output width for each item by placing the setw
manipulator in the stream or by calling the width member function. This example
right aligns the values in a column at least 10 characters wide:

#include <iostream.h>

void main()
{

double values[] - { 1.23, 35.36, 653.7, 4358.24 }:
for(int i - 0: i < 4: i++)
{

cout.w;dth(10) :
cout « values[i] « '\n':

The output looks like this:

1.23
35.36
653.7

4358.24

Leading blanks are added to any value fewer than 10 characters wide.

To pad a field, use the fill member function, which sets the value of the padding
character for fields that have a specified width. The default is a blank. To pad the
column of numbers with asterisks, modify the previous for loop as follows:

for(int i - 0: i < 4: i++)
{

cout.width(10):
cout.fill('*'):
cout « values[;] « endl

The endl manipulator replaces the newline character (' \ n '). The output looks like
this:

******1.23
*****35.36
*****653.7
***4358.24

Chapter 1 iostream Programming

To specify widths for data elements in the same line, use the setw manipulator:

#include <iostream.h>
#include <iomanip.h>

void main()
{

double values[] - { 1.23, 35.36, 653.7, 4358.24 }:
char *names[] - { "Zoot", "Jimmy", "Al" , "Stan" }:
for(int i - 0: i < 4: i++)

cout « setw(6) «names[i]
« setw(10) « values[i] « endl:

The width member function is declared in IOSTREAM.H. If you use setw or any
other manipulator with arguments, you must include IOMANIP.H. In the output,
strings are printed in a field of width 6 and integers in a field of width 10:

Zoot
Jimmy

Al
Stan

1. 23
35.36
653.7

4358.24

Neither setw nor width truncates values. If formatted output exceeds the width, the
entire value prints, subject to the stream's precision setting. Both setw and width
affect the following field only. Field width reverts to its default behavior (the
necessary width) after one field has been printed. However, the other stream format
options remain in effect until changed.

Alignment
Output streams default to right-aligned text. To left align the names in the previous
example and right align the numbers, replace the for loop as follows:

for (int i =- 0: i < 4: i++)
cout « setiosflags(ios::left

« setw(6) «names[i]
« resetiosflags(ios::left
« setw(10) « values[i] « endl;

The output looks like this:

Zoot
Jimmy
Al
Stan

1. 23
35.36
653.7

4358.24

The left-align flag is set by using the setiosflags manipulator with the ios::left
enumerator. This enumerator is defined in the ios class, so its reference must include
the ios:: prefix. The resetiosflags manipulator turns off the left-align flag. Unlike
width and setw, the effect of setiosflags and resetiosflags is permanent.

5

iostream Class Library Reference

6

Precision
The default value for floating-point precision is six. For example, the number
3466.9768 prints as 3466.98. To change the way this value prints, use the setprecision
manipulator. The manipulator has two flags, ios::fixed and ios::scientific. If
ios::fixed is set, the number prints as 3466.976800. If ios::scientific is set, it prints
as 3.4669773+003.

To display the floating-point numbers shown in Alignment with one significant digit,
replace the for loop as follows:

for (int i "'" 0: i < 4: i++)
cout « setiosflags(ios::left

« setw(6)
« names[i]
« resetiosflags(ios::left
« setw(10)
« setprecision(1)
« values[i]
« endl:

The program prints this list:

Zoot
Jimmy
Al
Stan

1
4e+001
7e+002
4e+003

To eliminate scientific notation, insert this statement before the for loop:

cout « setiosflags(ios::fixed):

With fixed notation, the program prints with one digit after the decimal point.

Zoot
Jimmy
Al
Stan

1.2
35.4

653.7
4358.2

If you change the ios::fixed flag to ios::scientific, the program prints this:

Zoot 1.2e+000
Jimmy 3.5e+001
Al 6.5e+002
Stan 4.4e+003

Again, the program prints one digit after the decimal point. If either ios::fixed or
ios: : scientific is set, the precision value determines the number of digits after the
decimal point. If neither flag is set, the precision value determines the total number
of significant digits. The resetiosflags manipulator clears these flags.

Chapter 1 iostream Programming

Radix
The dec, oct, and hex manipulators set the default radix for input and output. For
example, if you insert the hex manipulator into the output stream, the object correctly
translates the internal data representation of integers into a hexadecimal output format.
The numbers are displayed with digits a through f in lowercase if the ios::uppercase
flag is clear (the default); otherwise, they are displayed in uppercase. The default radix
is dec (decimal).

Output File Stream Member Functions
Output stream member functions have three types: those that are equivalent to
manipulators, those that perform unformatted write operations, and those that
otherwise modify the stream state and have no equivalent manipulator or insertion
operator. For sequential, formatted output, you might use only insertion operators and
manipulators. For random-access binary disk output, you use other member functions,
with or without insertion operators.

The open Function for Output Streams
To use an output file stream (of stream) , you must associate that stream with a specific
disk file in the constructor or the open function. If you use the open function, you can
reuse the same stream object with a series of files. In either case, the arguments
describing the file are the same.

When you open the file associated with an output stream, you generally specify an
open_mode flag. You can combine these flags, which are defined as enumerators in
the ios class, with the bitwise OR (I) operator.

Flag

ios::app

ios::ate

ios::in

ios::out

ios: :nocreate

ios: :noreplace

ios::trunc

ios::binary

Function

Opens an output file for appending.

Opens an existing file (either input or output) and seeks the end.

Opens an input file. Use ios::in as an open_mode for an of stream file
to prevent truncating an existing file.

Opens an output file. When you use ios::out for an of stream object
without ios::app, ios::ate, or ios::in, ios::trunc is implied.

Opens a file only if it already exists; otherwise the operation fails.

Opens a file only if it does not exist; otherwise the operation fails.

Opens a file and deletes the old file (if it already exists).

Opens a file in binary mode (default is text mode).

Three common output stream situations involve mode options:

• Creating a file. If the file already exists, the old version is deleted.

ostream ofile("FILENAME"); II Default is ios::out
of stream ofile("FILENAME", ios::out); 1/ Equivalent to above

7

iostream Class Library Reference

8

• Appending records to an existing file or creating one if it does not exist.

of stream ofile("FILENAME", ios::app);

• Opening two files, one at a time, on the same stream.

ofstream ofile();
ofile.open("FILEl" , ios::in);
II Do some output
ofile.close(); II FILE1 closed
ofile.open("FILE2", ios::in);
II Do some more output
ofile.close(); II FILE2 closed
II When ofile goes out of scope it is destroyed.

The put Function
The put function writes one character to the output stream. The following two
statements are the same by default, but the second is affected by the stream's format
arguments:

cout.put('A'); II Exactly one character written
cout « 'A'; II Format arguments 'width' and 'fill' apply

The write Function
The write function writes a block of memory to an output file stream. The length
argument specifies the number of bytes written. This example creates an output file
stream and writes the binary value of the Da te structure to it:

#include <fstream.h>

struct Date
{

int mo, da, yr;
} ;

void main()
{

Date dt = { 6, 10, 92 };
of stream tfile("date.dat" , ios::binary);
tfile.write((char *) &dt, sizeof dt);

The write function does not stop when it reaches a null character, so the complete
class structure is written. The function takes two arguments: a char pointer and a
count of characters to write. Note the required cast to char* before the address of
the structure object.

The seekp and tellp Functions
An output file stream keeps an internal pointer that points to the position where data
is to be written next. The seekp member function sets this pointer and thus provides
random-access disk file output. The tellp member function returns the file position.
For examples that use the input stream equivalants to seekp and tellp, see "The seekg
and tellg Functions" on page 17.

Chapter 1 iostream Programming

The close Function for Output Streams
The close member function closes the disk file associated with an output file stream.
The file must be closed to complete all disk output. If necessary, the of stream
destructor closes the file for you, but you can use the close function if you need to
open another file for the same stream object.

The output stream destructor automatically closes a stream's file only if the
constructor or the open member function opened the file. If you pass the constructor
a file descriptor for an already-open file or use the attach member function, you
must close the file explicitly.

Error Processing Functions
Use these member functions to test for errors while writing to a stream:

Function

bad

fail

good

eof

clear

rdstate

Return value

Returns TRUE if there is an unrecoverable error.

Returns TRUE if there is an unrecoverable error or an "expected" condition,
such as a conversion error, or if the file is not found. Processing can often
resume after a call to clear with a zero argument.

Returns TRUE if there is no error condition (unrecoverable or otherwise)
and the end-of-file flag is not set.

Returns TRUE on the end-of-file condition.

Sets the internal error state. If called with the default arguments, it clears
all error bits.

Returns the current error state. For a complete description of error bits,
see the Microsoft Foundation Class Library Reference.

The ! operator is overloaded to perform the same function as the fail function. Thus
the expression

if(!cout) ...

is equivalent to

if(cout.fail()) ...

The void*O operator is overloaded to be the opposite of the! operator; thus the
expression

if(cout) ...

is equal to

if(!cout.fail()) ...

The void*O operator is not equivalent to good because it doesn't test for the end of file.

9

iostream Class Library Reference

The Effects of Buffering
The following example shows the effects of buffering. You might expect the program
to print plea s e wa it, wait 5 seconds, and then proceed. It won't necessarily work
this way, however, because the output is buffered.

#include <iostream.h>
#include <time.h>

void maine)
{

time_t tm = time(NULL) + 5;
cout « "Please wait ... ";
while (time(NULL) < tm)

cout « "\nA 11 done" « endl;

To make the program work logically, the cout object must empty itself when the
message is to appear. To flush an ostream object, send it the flush manipulator:

cout « "Please wait ... " « flush;

This step flushes the buffer, ensuring the message prints before the wait. You can also
use the endI manipulator, which flushes the buffer and outputs a carriage return/line
feed, or you can use the cin object. This object (with the cerr or clog objects) is
usually tied to the cout object. Thus, any use of cin (or of the cerr or clog objects)
flushes the cout object.

Binary Output Files

10

Streams were originally designed for text, so the default output mode is text. In text
mode, the newline character (hexadecimal 10) expands to a carriage returnlline feed
(16-bit only). The expansion can cause problems, as shown here:

#include <fstream.h>
int iarray[2] = { 99, 10 };
void maine)
{

of stream os("test.dat");
os.write((char *) iarray, sizeof(iarray));

You might expect this program to output the byte sequence { 99,0,10, ° }; instead, it
outputs { 99,0, 13, 10, ° }, which causes problems for a program expecting binary
input. If you need true binary output, in which characters are written untranslated, you
have several choices:

Chapter 1 iostream Programming

• Construct a stream as usual, then use the setmode member function, which changes
the mode after the file is opened: \

of stream ofs ("test.dat");
ofs.setmode(filebuf::binary);
ofs.write(char*iarray. 4); II Exactly 4 bytes written

• Specify binary output by using the of stream constuctor mode argument:

#include <fstream.h>
#i ncl ude <fcntl. h>
#include <io.h>
int iarray[2] = { 99. 10 };
void main()
(

of stream os("test.dat". ios::binary);
ofs.write(iarray. 4); II Exactly 4 bytes written

• Use the binary manipulator instead of the setmode member function:

ofs « bi na ry;

Use the text manipulator to switch the stream to text translation mode.

• Open the file using the run-time _open function with a binary mode flag:

fi 1 edesc fd = _open ("test. dat" .
_O_BINARY I _O_CREAT I 0 WRONLY);

of stream ofs(fd);
ofs.write((char*) iarray. 4); II Exactly 4 bytes written

Overloading the « Operator for Your Own Classes
Output streams use the insertion «<) operator for standard types. You can also
overload the « operator for your own classes.

The write function example showed the use of a D ate structure. A date is an ideal
candidate for a C++ class in which the data members (month, day, and year) are
hidden from view. An output stream is the logical destination for displaying such a
structure. This code displays a date using the cout object:

Date dt (1. 2. 92);
cout « dt;

To get cout to accept a Date object after the insertion operator, overload the insertion
operator to recognize an ostream object on the left and a Date on the right. The
overloaded« operator function must then be declared as a friend of class Date so it
can access the private data within a Da te object.

11

iostream Class Library Reference

#include <iostream.h>

class Date
{

int mo, da, yr;
public:

} ;

Date(int m, int d, int y)
{

mo - m; da - d; yr - y;

friend ostream& operator« (ostream& os, Date& dt);

ostream& operator« (ostream& os, Date& dt)
{

os « dt.mo « 'I' « dt.da « 'I' « dt.yr;
return os;

void maine)
{

Date dt(5, 6, 92);
cout « dt;

When you run this program, it prints the date:

5/6/92

The overloaded operator returns a reference to the original ostream object, which
means you can combine insertions:

cout « "The date is" « dt « flush;

Writing Your Own Manipulators Without Arguments

12

Writing manipulators that don't use arguments requires neither class derivation nor
use of complex macros. Suppose your printer requires the pair < ESC> [to enter bold
mode. You can insert this pair directly into the stream:

cout « "regular" « '\033' « '[' « "boldface" « endl;

Or you can define the bo 1 d manipulator, which inserts the characters:

ostream& bold(ostream& os) {
return os « '\033' « '[';

cout « "regular" « bold « "boldface" « endl;

Chapter 1 iostream Programming

The globally defined bo 1 d function takes an ostream reference argument and returns
the ostream reference. It is not a member function or a friend because it doesn't
need access to any private class elements. The bo 1 d function connects to the stream
because the stream's « operator is overloaded to accept that type of function, using
a declaration that looks something like this:

ostream& ostream::operator« (ostream& (*_f)(ostream&)); (
(*_f)(*this);
return *this;

You can use this feature to extend other overloaded operators. In this case, it is
incidental that bo 1 d inserts characters into the stream. The function is called when it
is inserted into the stream, not necessarily when the adjacent characters are printed.
Thus, printing could be delayed because of the stream's buffering.

Input Streams
An input stream object is a source of bytes. The three most important input stream
classes are istream, ifstream, and istrstream.

The istream class is best used for sequential text-mode input. You can configure
objects of class istream for buffered or unbuffered operation. All functionality of the
base class, ios, is included in istream. You will rarely construct objects from class
istream. Instead, you will generally use the predefined cin object, which is actually an
object of class istream_ withassign. In some cases, you can assign cin to other stream
objects after program startup.

The ifstream class supports disk file input. If you need an input-only disk file,
construct an object of class ifstream. You can specify binary or text-mode data. If
you specify a filename in the constructor, the file is automatically opened when the
object is constructed. Otherwise, you can use the open function after invoking the
default constructor. Many formatting options and member functions apply to ifstream
objects. All functionality of the base classes ios and istream is included in ifstream.

Like the library function sscanf, the istrstream class supports input from in-memory
strings. To extract data from a character array that has a null terminator, allocate and
initialize the string, then construct an object of class istrstream.

Constructing Input Stream Objects
If you use only the cin object, you don't need to construct an input stream. You must
construct an input stream if you use:

• File stream

• String stream

13

iostream Class Library Reference

Input File Stream Constructors
There are three ways to create an input file stream:

• Use the void-argument constructor, then call the open member function:

ifstream myFile; lIOn the stack
myFile.open("filename", iosmode);

ifstream* pmyFile - new ifstream; lIOn the heap
pmyFile->open("filename", iosmode);

• Specify a filename and mode flags in the constructor invocation, thereby opening
the file during the construction process:

ifstream myFile("filename", iosmode);

• Specify an integer file descriptor for a file already open for input. In this case you
can specify unbuffered input or a pointer to your own buffer:

int fd - _open("filename", dosmode);
ifstream myFile1(fd); II Buffered mode (default)
ifstream myFile2(fd, NULL, 0); II Unbuffered mode
ifstream myFile3(fd, pch, buflen); II User-supplied buffer

Input String Stream Constructors
Input string stream constructors require the address of preallocated, preinitialized
storage:

char s[] - "123.45";
double amt;
istrstream myString(s);
myString » amt; II Amt should contain 123.45

U sing Extraction Operators
The extraction operator (»), which is preprogrammed for all standard C++ data
types, is the easiest way to get bytes from an input stream object.

Formatted text input extraction operators depend on white space to separate incoming
data values. This is inconvenient when a text field contains multiple words or when
commas separate numbers. In such a case, one alternative is to use the unformatted
input member function getline to read a block of text with white space included, then
parse the block with special functions. Another method is to derive an input stream
class with a member function such as GetNextToken, which can call istream
members to extract and format character data.

Testing for Extraction Errors

14

Output error processing functions, discussed in "Error Processing Functions" on page 9,
apply to input streams. Testing for errors during extraction is important. Consider this
statement:

cin » n;

Chapter 1 iostream Programming

If n is a signed integer, a value greater than 32,767 (the maximum allowed value,
or MAX_INT) sets the stream's fail bit, and the cin object becomes unusable. All
subsequent extractions result in an immediate return with no value stored.

Input Stream Manipulators
Many manipulators, such as setprecision, are defined for the ios class and thus apply
to input streams. Few manipulators, however, actually affect input stream objects. Of
those that do, the most important are the radix manipulators, dec, oct, and hex, which
determine the conversion base used with numbers from the input stream.

On extraction, the hex manipulator enables processing of various input formats. For
example, c, e, Oxc, oxe, OXc, and oxe are all interpreted as the decimal integer 12.
Any character other than 0 through 9, A through F, a through f, x, and X terminates
the numeric conversion. Thus the sequence "124n5" is converted to the number 124
with the ios: : fail bit set.

Input Stream Member Functions
Input stream member functions are used for disk input. The member functions
include:

• The open Function

• The get Function

• The getline Function

• The read Function

• The seekg and tellg Functions

• The close Function

The open Function for Input Streams
If you are using an input file stream (ifstream), you must associate that stream with a
specific disk file. You can do this in the constructor, or you can use the open function.
In either case, the arguments are the same.

You generally specify an open_mode flag when you open the file associated with an
input stream (the default mode is ios::in). For a list of the open_mode flags, see "The
open Function for Output Streams" on page 70. The flags can be combined with the
bitwise OR (I) operator.

To read a file, first use the fail member function to determine whether it exists:

istream ifile("FILENAME", ios::nocreate);
if (ifile.fail())
II The file does not exist

15

iostream Class Library Reference

16

The get Function
The unformatted get member function works like the » operator with two exceptions.
First, the get function includes white-space characters, whereas the extractor excludes
white space when the ios::skipws flag is set (the default). Second, the get function is
less likely to cause a tied output stream (cout, for example) to be flushed.

A variation of the get function specifies a buffer address and the maximum number of
characters to read. This is useful for limiting the number of characters sent to a specific
variable, as this example shows:

#include <iostream.h>

void maine)
{

cha r 1 i ne[25];
cout « " Type a line terminated by carriage return\n>";
cin.get(line. 25);
cout « ' , « line;

In this example, you can type up to 24 characters and a terminating character. Any
remaining characters can be extracted later.

The getline Function
The getline member function is similar to the get function. Both functions allow a
third argument that specifies the terminating character for input. The default value
is the newline character. Both functions reserve one character for the required
terminating character. However, get leaves the terminating character in the stream
and getline removes the terminating character.

The following example specifies a terminating character for the input stream:

#include <iostream.h>

void main()
{

char line[100];
cout « " Type a line terminated by 't'" « endl;
cin.getline(line. 100. 't');
cout « line;

The read Function
The read member function reads bytes from a file to a specified area of memory. The
length argument determines the number of bytes read. If you do not include that
argument, reading stops when the physical end of file is reached or, in the case of a
text-mode file, when an embedded EOF character is read.

Chapter 1 iostream Programming

This example reads a binary record from a payroll file into a structure:

#include <fstream.h>
#include <fcntl.h>
f/include <io.h>

void main()
{

struct
{

double salary;
char name[23];

employee;

ifstream is("payroll", ios::binary I ios::nocreate);
if(is) { II ios::operator void*()

is.read((char *) &employee, sizeof(employee));
cout « employee.name « ' , « employee.salary « endl;

else {
cout « "ERROR: Cannot open file 'payroll'." « endl;

The program assumes that the data records are formatted exactly as specified by the
structure with no terminating carriage return or line feed characters.

The seekg and tellg Functions
Input file streams keep an internal pointer to the position in the file where data is to be
read next. You set this pointer with the seekg function, as shown here:

#include <fstream.h>

void main()
{

}

char ch;

ifstream tfile("payroll", ios::binary I ios::nocreate);
if (t fil e) {

tfile.seekg(8);
while (tfile.good()

tfile.get(ch);

II Seek 8 bytes in (past salary)
{ II EOF or failure stops the reading

if(!ch) break; /I quit on null
cout « ch;

else
cout « "ERROR: Cannot open file 'payroll'." « endl;

To use seekg to implement record-oriented data management systems, mUltiply the
fixed-length record size by the record number to obtain the byte position relative to
the end of the file, then use the get object to read the record.

17

iostream Class Library Reference

The tellg member function returns the current file position for reading. This value is
of type streampos, a typedef defined in 10STREAM.H. The following example reads
a file and displays messages showing the positions of spaces.

#include <fstream.h>

void main()
{

char ch;
ifstream tfile("payroll". ios::binary I ios::nocreate);

if(tfile) {
while (tfile.good()) {

else

streampos here = tfile.tellg();
tfile.get(ch);
if (ch ")

cout « "\nPosition " « here « " is a space";

cout « "ERROR: Cannot open fi 1 e 'payroll'." « endl;

The close Function for Input Streams
The close member function closes the disk file associated with an input file stream and
frees the operating system file handle. The ifstream destructor closes the file for you
(unless you called the attach function or passed your own file descriptor to the
constructor), but you can use the close function if you need to open another file for the
same stream object.

Overloading the» Operator for Your Own Classes
Input streams use the extraction (») operator for the standard types. You can write
similar extraction operators for your own types; your success depends on using white
space precisely.

Here is an example of an extraction operator for the 0 ate class presented earlier:

istream& operator» (istream& is. Oate& dt)
{

is » dt.mo » dt.da » dt.yr;
return is;

Input/Output Streams

18

An iostream object is a source and/or a destination for bytes. The two most important
I/O stream classes, both derived from iostream, are fstream and strstream. These
classes inherit the functionality of the istream and ostream classes described previously.

Chapter 1 iostream Programming

The fstream class supports disk file input and output. If you need to read from and
write to a particular disk file in the same program, construct an fstream object. An
fstream object is a single stream with two logical substreams, one for input and one
for output. Although the underlying buffer contains separately designated positions
for reading and writing, those positions are tied together.

The strstream class supports input and output of in-memory strings.

Custom Manipulators with Arguments
This section describes how to create output stream manipulators with one or more
arguments, and how to use manipulators for non-output streams.

• Output Stream Manipulators with One Argument (int or long)

• Other One-Argument Output Stream Manipulators

• Output Stream Manipulators with More Than One Argument

• Custom Manipulators for Input and Input/Output Streams

• Using Manipulators with Derived Stream Classes

Output Stream Manipulators with One Argument
(int or long)

The iostream class library provides a set of macros for creating parameterized
manipulators. Manipulators with a single int or long argument are a special case. To create
an output stream manipulator that accepts a single int or long argument (like setw), you
must use the OMANIP macro, which is defined in IOMANIP.H. This example defines a
fill b 1 an k manipulator that inserts a specified number of blanks into the stream:

#include <iostream.h>
#include <iomanip.h>

ostream& fb(ostream& os, int 1)
(

fore int i=0; i < 1; i++)
os « ' '.

return os;

OMANIP(int) fillblank(int 1)
(

return OMANIP(int) (fb, 1);

void maine)
(

cout« "10 blanks follow"« fillblank(10) «".\n";

19

iostream Class Library Reference

The IOMANIP.H header file contains a macro that expands OMANIP(int) into a
class, _OMANIP _int, which includes a constructor and an overloaded ostream
insertion operator for an object of the class. In the previous example, the fill b 1 an k
function calls the _OMANIP _int constructor to return an object of class
_ OMANIP _int. Thus, fill b 1 an k can be used with an ostream insertion operator.
The constructor calls the f b function. The expression OMANIP(long) expands to
another built-in class, _OMANIP _long, which accommodates functions with a long
integer argument.

Other One-Argument Output Stream Manipulators

20

To create manipulators that take arguments other than int and long, you must use the
IOMANIPdeclare macro, which declares the classes for your new type, as well as the
OMANIP macro.

The following example uses a class money, which is a long type. The setpi c
manipulator attaches a formatting "picture" string to the class that can be used by the
overloaded stream insertion operator of the class m 0 n ey. The picture string is stored as
a static variable in the money class rather than as data member of a stream class, so
you do not have to derive a new output stream class.

#include <iostream.h>
#include <iomanip.h>
#include <string.h>

typedef char* charp;
IOMANIPdeclare(charp);

class money (
private:

long value;
static char *szCurrentPic;

public:

} ;

money(long val) { value'" val; }
friend ostream& operator « (ostream& os, money m) (

II A more complete function would merge the picture
II with the value rather than simply appending it
os « m.value « '[' « money::szCurrentPic « ']';
return os;

friend ostream& setpic(ostream& os, char* szPic) (
money::szCurrentPic - new char[strlen(szPic) + 1];
strcpy(money::szCurrentPic, szPic);
return os;

char *money::szCurrentPic; II Static pointer to picture

Chapter 1 iostream Programming

OMANIP(charp) setpic(charp c)
{

return OMANIP(charp) (setpic. c);

void main()
{

money amt ~ 35235.22;
cout « setiosflags(ios::fixed);
cout « setpi c ("/lflf!. 111111.111111 ./lff") « "amount = " < < amt « end 1 ;

Output Stream Manipulators with More Than One
Argument

The following example shows how to write a manipulator, fill, to insert a specific
number of a particular character. The manipulator, which takes two arguments, is
similar to setpi c in the previous example. The difference is that the character pointer
type declaration is replaced by a structure declaration.

lIinclude <iostream.h>
lIinclude <iomanip.h>

struct fi 11 pai r
char ch;

int cch;
} ;

IOMANIPdeclare(fillpair);

ostream& fp(ostream& os. fillpair pair
{

for (int c = 0; c < pair.cch; c++)
os « pair.ch;

return os;

OMANIP(fillpair) fill(char ch. int cch)
{

fi11pair pair;

pair.cch = cch;
pair.ch = ch;
return OMANIP (fillpair)(fp. pair);

void main()
{

cout « "10 dots coming" « fill(10) « "done" « endl;

21

iostream Class Library Reference

This example can be rewritten so that the manipulator definition is in a separate
program file. In this case, the header file must contain these declarations:

struct fillpair

} ;

char ch;
int cch;

IOMANIPdeclare(fillpair);
ostream& fp(ostream& 0, fillpair pair);
OMANIP(fillpair) fill(char ch, int cch);

Custom Manipulators for Input and Input/Output
Streams

The OMANIP macro works with ostream and its derived classes. The SMANIP,
IMANIP, and IOMANIP macros work with the classes ios, istream, and iostream,
respectively.

Using Manipulators with Derived Stream Classes
Suppose you define a manipulator, xstream, that works with the ostream class. The
manipulator will work with all classes derived from ostream. Further suppose you
need manipulators that work only with xs t ream. In this case, you must add an
overloaded insertion operator that is not a member of ostream:

xstream& operator« (xstream& xs, xstream& (*_f)(xstream&)) {
(*_f) (xs);
return xs;

The manipulator code looks like this:

xstream& bold(xstream& xs) {
return xs « '\033' « '[';

If the manipulator needs to access xst ream protected data member functions, you can
declare the bol d function as a friend of the xstream class.

Deriving Your Own Stream Classes

22

Like any C++ class, a stream class can be derived to add new member functions, data
members, or manipulators. If you need an input file stream that tokenizes its input
data, for example, you can derive from the ifstream class. This derived class can
include a member function that returns the next token by calling its base class's public
member functions or extractors. You may need new data members to hold the stream
object's state between operations, but you probably won't need to use the base class's
protected member functions or data members.

Chapter 1 iostream Programming

For the straightforward stream class derivation, you need only write the necessary
constructors and the new member functions.

The streambuf Class
Unless you plan to make major changes to the iostream library, you do not need to
work much with the streambuf class, which does most of the work for the other
stream classes. In most cases, you will create a modified output stream by deriving
only a new streambuf class and connecting it to the ostream class.

Why Derive a Custom streambuf Class?
Existing output streams communicate to the file system and to in-memory strings. You
can create streams that address a memory-mapped video screen, a window as defined
by Microsoft Windows, a new physical device, and so on. A simpler method is to alter
the byte stream as it goes to a file system device.

A streambuf Derivation Example
The following example modifies the cout object to print in two-column landscape
(horizontal) mode on a printer that uses the PCL control language (for example,
Hewlett-Packard LaserJet printer). As the test driver program shows, all member
functions and manipulators that work with the original cout object work with the
special version. The application programming interface is the same.

The example is divided into three source files:

• HSTREAM.H-the LaserJet class declaration that must be included in the
implementation file and application file

• HSTREAM.CPP-the LaserJet class implementation that must be linked with the
application

• EXIOS204.CPP-the test driver program that sends output to a LaserJet printer

HSTREAM.H contains only the class declaration for hstreambuf, which is derived
from the filebuf class and overrides the appropriate filebuf virtual functions.

II hstream.h - HP LaserJet output stream header
#include <fstream.h> II Accesses filebuf class
#include <string.h>
#include <stdio.h> II for sprintf

class hstreambuf public filebuf
{

public:
hstreambuf(int filed);
virtual int sync();
virtual int overflow(int ch);
-hstreambuf();

23

iostream Class Library Reference

24

private:
int column, line, page:
char* buffer:
void convert(long cnt):
void newline(char*& pd, int& jj):
void heading(char*& pd, int& jj):
void pstring(char* ph, char*& pd, int& jj):

} :
ostream& und(ostream& os):
ostream& reg(ostream& os):

HSTREAM.CPP contains the hstreambuf class implementation.

II hstream.cpp - HP LaserJet output stream
If inc 1 u de" h s t rea m . h"

const int REG = 0x01: II Regular font code
const int UNO = 0x02: II Underline font code
const int CR "" 0x0d: II Carriage return character
const int NL = 0x0a: II Newline character
const int FF 0x0c: II Formfeed character
const int TAB "" 0x09: II Tab character
const int LPP ... 57: II Lines per page
const int TABW - 5 : II Tab width

II Prolog defines printer initialization (font, orientation,
char prolog[]
{ 0xlB, 0x45, II Reset printer

etc.

0xlB, 0x28, 0x31, 0x30, 0x55, II IBM PC char
0xlB, 0x26, 0x6C, 0x31, 0x4F, II Landscape
0xlB, 0x26, 0x6C, 0x38, 0x44, II 8 lines per inch
0xlB, 0x26, 0x6B, 0x32, 0x53}: II Lineprinter font

II Epilog prints the final page and terminates the output
char epilog[] - { 0x0C, 0xlB, 0x45}: II Formfeed, reset

char uon[] = { 0xlB, 0x26, 0x64, 0x44, 0 }: II Underline on
char uoff[] "" { 0xlB, 0x26, 0x64, 0x40, 0 }:II Underline off

hstreambuf::hstreambuf(int filed) : filebuf(filed)
{

column"" line = page"" 0:
int size = sizeof(prolog):
setp(prolog, prolog + size):
pbump(size): II Puts the prolog in the put area
filebuf::sync(): II Sends the prolog to the output file
buffer = new char[1024]: II Allocates destination buffer

set

Chapter 1 iostream Programming

hstreambuf::-hstreambuf()
{

sync(): II Makes sure the current buffer is empty
delete buffer: II Frees the memory
int size - sizeof(epilog):
setp(epilog, epilog + size):
pbump(size): II Puts the epilog in the put area
filebuf::sync(): II Sends the epilog to the output file

int hstreambuf::sync()
{

}

long count - out_waiting():
if (count) {

convert(count):

return filebuf::sync():

int hstreambuf::overflow(int ch
{

}

long count - out_waiting():
if (count) {

convert(count):

return filebuf::overflow(ch):

II The following code is specific to the HP LaserJet printer

II Converts a buffer to HP, then writes it
void hstreambuf::convert(long cnt)
{

char *bufs, *bufd: II Source, destination pointers
int j - 0:

bUfs - pbase():
bufd - buffer:
if(page -- 0)

newline(bufd, j):

fore int i - 0: i < cnt:
char c - *(bufs++):
i f(c >_ I I) {

* (bufd++) - c:
j++:
column++:

i++) {
II Gets character from source buffer
II Character is printable

25

iostream Class Library Reference

26

else if(c == NL) {
*(bufd++)
j++;
line++;

c;
II Moves down one line

II Passes character through

newline(bufd. j); II Checks for page break. etc.
}

else if(c == FF) { II Ejects paper on formfeed
line = line - line % LPP + LPP;
newline(bufd. j); II Checks for page break. etc.

else if(c == TAB
do {

*(bufd++
j++;
column++;

, ' . .
II Expands tabs

while (column % TABW);

else if(c == UNO) { II Responds to und manipulator
pstring(uon. bufd. j);

else if(c == REG) { II Responds to reg manipulator
pstring(uoff. bufd. j);

setp(buffer. buffer + 1024); II Sets new put area
pbump(j); II Tells number of characters in the dest buffer

II simple manipulators - apply to all ostream classes
ostream& und(ostream& os) II Turns on underscore mode
{

os « (char) UNO; return os;

ostream& reg(ostream& os) II Turns off underscore mode
{

os « (char) REG; return os;

void hstreambuf::newline(char*& pd. int& jj) {
II Called for each newline character

column = 0;
if ((line % (LPP*2)) == 0) { II Even page

page++;
pstring("\033&a+0L". pd. jj); II Set left margin to zero
heading(pd. jj); II Print heading
pstring("\033*p0x77Y". pd. jj);11 Cursor to (0.77) dots

if (((1 i ne % LPP) 0) && (line % (LPP*2)) 1= 0) {

II Odd page; prepare to move to right column
page++;
pstring("\033*p0x77Y" • pd. jj) ; II Cursor to (0.77) dots
pstring("\033&a+88L". pd. jj) ; II Left margin to col 88

Chapter 1 iostream Programming

void hstreambuf::heading(char*& pd. int& jj) II Prints heading
{

char hdg[20];
i nt i;

if(page > 1 {
*(pd++) ~ FF;
jj++;

pstring("\033*p0x0Y".
pstring(uon. pd. jj) ;

pd.

sprintf(hdg. "Page %-3d".
pstring(hdg. pd. jj) ;

fore i-0; i < 80; i++) {

*(pd++) - , , .
jj++;

jj) ; II
II

page) ;

II

sprintf(hdg. "Page %-3d". page+l)
pstring(hdg. pd. jj);

Top of page
Underline on

Pads with blanks

fore i-0; i < 80; i++) { II Pads with blanks
* (pd++) = ' '.
jj++;

pstring(uoff. pd. jj); II Underline off
}

II Outputs a string to the buffer
void hstreambuf::pstring(char* ph. char*& pd, int& jj
{

int len = strlen(ph);
strncpy(pd. ph. len);
pd += len;
jj += len;

EXIOS204.CPP reads text lines from the do object and writes them to the modified
cout object.

II exios204.cpp
II hstream Driver program copies cin to cout until end of file
4Finclude "hstream.h"

hstreambuf hsb(4); II 4=stdprn

void main()
{

char line[200];
cout = &hsb; II Associates the HP LaserJet streambuf to cout
while(1) {

cin.getline(line. 200);
if(!cin.good()) break;
cout « line « endl;

27

iostream Class Library Reference

28

Here are the main points in the preceding code:

• The new class h s t rea mb u f is derived from filebuf, which is the buffer class for
disk file I/O. The filebuf class writes to disk in response to commands from its
associated ostream class. The hstreambuf constructor takes an argument that
corresponds to the operating system file number, in this case 1, for stdout. This
constructor is invoked by this line:

hstreambuf hsb(1):

• The ostream_withassign assignment operator associates the hstreambuf object
with the cout object:

ostream& operator -(streambuf* sbp):

This statement in EXIOS204.CPP executes the assignment:

cout - &hsb:

• The h s t rea mb u f constructor prints the prolog that sets up the laser printer, then
allocates a temporary print buffer.

• The destructor outputs the epilog text and frees the print buffer when the object
goes out of scope, which happens after the exit from main.

• The streambuf virtual overflow and sync functions do the low-level output. The
hstreambuf class overrides these functions to gain control of the byte stream. The
functions call the private convert member function.

• The convert function processes the characters in the hstreambuf buffer and
stores them in the object's temporary buffer. The filebuf functions process the
temporary buffer.

• The details of convert relate more to the PCL language than to the iostream
library. Private data members keep track of column, line, and page numbers.

• The und and reg manipulators control the underscore print attribute by inserting
codes Ox02 and Ox03 into the stream. The convert function later translates these
codes into printer-specific sequences.

• The program can be extended easily to embellish the heading, add more formatting
features, and so forth.

• In a more general program, the hstreambuf class could be derived from the
streambuf class rather than the filebuf class. The filebuf derivation shown gets the
most leverage from existing iostream library code, but it makes assumptions about
the implementation of filebuf, particularly the overflow and sync functions. Thus
you cannot necessarily expect this example to work with other derived streambuf
classes or with filebuf classes provided by other software publishers.

CHAPTER 2

Alphabetic Microsoft iostream Class
Library Reference

iostream Class Hierarchy Diagram
ios

istream

istrstream

istream_withassign

ifstream

ostream

of stream

ostream_withassign

ostrstream

iostream

t fstream

strstream

stdiostream

streambuf lostreamjnit

t filebuf

strstreambuf

stdiobuf

29

iostream Class Library Reference

iostream Class List
Abstract Stream Base Class

ios

Input Stream Classes
istream

ifstream

istream_ withassign

istrstream

Output Stream Classes
ostream

of stream

ostream_ with assign

ostrstream

Input/Output Stream Classes
iostream

fstream

strstream

stdiostream

Stream Buffer Classes
streambuf

filebuf

strstreambuf

stdiobuf

Predefined Stream Initializer Class
Iostream_init

30

Stream base class.

General-purpose input stream class and base class for other
input streams.

Input file stream class.

Input stream class for cin.

Input string stream class.

General-purpose output stream class and base class for other
output streams.

Output file stream class.

Output stream class for cout, cerr, and clog.

Output string stream class.

General-purpose input/output stream class and base class for
other input/output streams.

Input/output file stream class.

Input/output string stream class.

Input/output class for standard 110 files.

Abstract stream buffer base class.

Stream buffer class for disk files.

Stream buffer class for strings.

Stream buffer class for standard 110 files.

Predefined stream initializer class.

class filebuf

#include <fstream.h>

The filebuf class is a derived class of streambuf that is specialized for buffered disk
file 110. The buffering is managed entirely within the Microsoft iostream Class
Library. filebuf member functions call the run-time low-level 110 routines (the
functions declared in lO.H) such as _sopen, _read, and _write.

The file stream classes, of stream, ifstream, and fstream, use filebuf member
functions to fetch and store characters. Some of these member functions are virtual
functions of the streambuf class.

The reserve area, put area, and get area are introduced in the streambuf class
description. The put area and the get area are always the same for filebuf objects.
Also, the get pointer and put pointers are tied; when one moves, so does the other.

Construction/Destruction-Public Members
filebuf Constructs a filebuf object.

-filebuf Destroys a filebuf object.

Operations-Public Members
open Opens a file and attaches it to the filebuf object.

close Flushes any waiting output and closes the attached file.

setmode Sets the file's mode to binary or text.

attach Attaches the filebuf object to an open file.

Statusllnformation-Public Members
fd Returns the stream's file descriptor.

is_open Tests whether the file is open.

See Also: ifstream, of stream, streambuf, strstreambuf, stdiobuf

Member Functions
filebuf: : attach

filebuf* attach(filedescfd);

Attaches this filebuf object to the open file specified by fd.

filebuf: : attach

31

filebuf: :c1ose

Return Value
The function returns NULL when the stream is already attached to a file; otherwise it
returns the address of the filebuf object.

Parameter
Jd A file descriptor as returned by a call to the run-time function _open or _sopen.

filedesc is a typedef equivalent to int.

filebuf: :close
filebuf* closeO;

Flushes any waiting output, closes the file, and disconnects the file from the filebuf
object.

Return Value
If an error occurs, the function returns NULL and leaves the filebuf object in a closed
state. If there is no error, the function returns the address of the filebuf object and
clears its error state.

See Also: filebuf::open

filebuf: :fd
filedesc fdO const;

Returns the file descriptor associated with the filebuf object; filedesc is a typedef
equivalent to int.

Return Value
The value is supplied by the underlying file system. The function returns EOF if the
object is not attached to a file.

See Also: filebuf: :attach

filebuf: :filebuf
filebufO;

filebuf(filedescJd);

filebuf(filedescJd, char* pr, int nLength);

Parameters

32

Jd A file descriptor as returned by a call to the run-time function _sopen. filedesc is a
typedef equivalent to int.

Remarks

pr Pointer to a previously allocated reserve area of length nLength.

nLength The length (in bytes) of the reserve area.

The three filebuf constructors are described as follows:

filebufO Constructs a filebuf object without attaching it to a file.

filebuf(filedesc) Constructs a filebuf object and attaches it to an open file.

filebuf(filed esc, char*, int) Constructs a filebuf object, attaches it to an open file,
and initializes it to use a specified reserve area.

filebuf:: -filebuf
-filebufO;

Remarks
Closes the attached file only if that file was opened by the open member function.

filebuf: : is_open
int is_openO const;

Return Value
Returns a nonzero value if this filebuf object is attached to an open disk file identified
by a file descriptor; otherwise O.

See Also: filebuf::open

filebuf: : open
filebuf* open(const char* szName, int nMode, int nProt = filebuf::openprot);

Opens a disk file and attaches it with this filebuf object.

Return Value
If the file is already open, or if there is an error while opening the file, the function
returns NULL; otherwise it returns the filebuf address.

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See the of stream constructor for a list of
the enumerators.

filebuf: :open

33

filebuf: :setmode

nProt The file protection specification; defaults to the static integer
filebuf::openprot, which is equivalent to the operating system default
(filebuf::sh_compat for MS-DOS). The possible values of nProt are:

• filebuf::sh_compat Compatibility share mode (MS-DOS only).

• filebuf::sh_none Exclusive mode-no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

You can combine the filebuf::sh_read and filebuf::sh_write modes with the
logical OR (II) operator.

See Also: filebuf: :is_open, filebuf: :close, filebuf: :-filebuf

filebuf: : setmode
int setmode(int nMode = filebuf::text);

Parameter
nMode An integer that must be one of the static filebuf constants. The nMode

parameter must have one of the following values:

• filebuf::text Text mode (newline characters translated to and from carriage
return/line feed pairs under MS-DOS).

• filebuf::binary Binary mode (no translation).

Return Value

Remarks

The previous mode if there is no error; otherwise O.

Sets the binary/text mode of the stream's filebuf object.

See Also: ios binary manipulator, ios text manipulator

class fstream

34

#include <fstream.h>

The fstream class is an iostream derivative specialized for combined disk file input
and output. Its constructors automatically create and attach a filebuf buffer object.

See filebuf class for information on the get and put areas and their associated pointers.
Although the filebuf object's get and put pointers are theoretically independent, the
get area and the put area are not active at the same time. When the stream's mode
changes from input to output, the get area is emptied and the put area is reinitialized.
When the mode changes from output to input, the put area is flushed and the get area
is reinitialized. Thus, either the get pointer or the put pointer is null at all times.

Construction/Destruction-Public Members
fstream Constructs an fstream object.

-fstream Destroys an fstream object.

Operations-Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.

close Flushes any waiting output and closes the stream's file.

setbuf Attaches the specified reserve area to the stream's filebuf object.

setmode Sets the stream's mode to binary or text.

attach Attaches the stream (through the filebuf object) to an open file.

StatuslInformation-Public Members
rdbuf Gets the stream's filebuf object.

fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream's file is open.

See Also: ifstream, of stream, strstream, stdiostream, filebuf

Member Functions
fstream::attach

void attach(filedescjd);

Attaches this stream to the open file specified by jd.

Parameter

Remarks

jd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream's error state.

See Also: filebuf::attach, fstream::fd

fstrcam::attach

35

fstream::c1ose

fstream: :close

Remarks

void closeO;

Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream's error state is cleared unless the call to filebuf::close fails.

See Also: filebuf::close, fstream::open, fstream::is_open

fstream: :fd

Remarks

filed esc fdO const;

Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also: filebuf::fd, fstream::attach

fstream: :fstream
fstreamO;

fstream(const char* szName, int nMode, int nProt = filebuf::openprot);

fstream(filedescJd);

fstream(filedescJd, char* pch, int nLength);

Parameters

36

szName The name of the file to be opened during construction.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (I) operator. The nMode parameter must have one
of the following values:

• ios::app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream: :seekp function.

• ios: :ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

Remarks

• ios::in The file is opened for input. The original file (if it exists) will not be
truncated.

• ios::out The file is opened for output.

• ios::trunc If the file already exists, its contents are discarded. This mode is
implied if ios::out is specified, and ios::ate, ios::app, and ios:in are not
specified.

• ios::nocreate If the file does not already exist, the function fails.

• ios: :noreplace If the file already exists, the function fails.

• ios::binary Opens the file in binary mode (the default is text mode).

Note that there is no ios::in or ios::out default mode for fstream objects. You must
specify both modes if your fstream object must both read and write files.

nProt The file protection specification; defaults to the static integer
filebuf::openprot, which is equivalent to the operating system default,
filebuf::sh_compat, under MS-DOS. The possible nProt values are as follows:

• filebuf::sh_compat Compatibility share mode (MS-DOS only).

• filebuf: :sh_none Exclusive mode-no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

The filebuf: :sh_read and filebuf: :sh_ write modes can be combined with the
logical OR (II) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen.
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

The four fstream constructors are:

• fstreamO Constructs an fstream object without opening a file.

• fstream(const char*, int, int) Contructs an fstream object, opening the
specified file.

• fstream(filedesc) Constructs an fstream object that is attached to an open file.

• fstream(filedesc, char*, int) Constructs an fstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

fstream: :fstream

37

fstream::-fstream

All fstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

fstream:: ~fstream
-fstreamO;

Remarks
Flushes the buffer, then destroys an fstream object, along with its associated filebuf
object. The file is closed only if it was opened by the constructor or by the open
member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

fstream: : is_open
int is_openO const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also: filebuf::is_open, fstream::open, fstream::close

fstream:: open
void open(const char* szName, int nMode, int nProt = filebuf::openprot);

Opens a disk file and attaches it to the stream's filebuf object.

Parameters

Remarks

38

szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See the fstream constructor for a list of the
enumerators. There is no default; a valid mode must be specified.

nProt The file protection specification; defaults to the static integer
filebuf::openprot. See the fstream constructor for a list of the other allowed
values.

If the filebuf object is already attached to an open file, or if a filebuf call fails, the
ios::failbit is set. If the file is not found, then the ios::failbit is set only if the
ios::nocreate mode was used.

See Also: filebuf::open, fstream::fstream, fstream::close, fstream::is_open

fstream: :rdbuf

Remarks

filebuf* rdbufO const;

Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

fstream: : setbuf
streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream's filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

fstream::setmode
int setmode(int nMode = filebuf::text);

Sets the binary/text mode of the stream's filebuf object. It can be called only after the
file is opened.

Return Value
The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter
nMode An integer that must be one of the following static filebuf constants:

• filebuf::text Text mode (newline characters translated to and from carriage
returnlline feed pairs).

• filebuf::binary Binary mode (no translation).

See Also: ios binary manipulator, ios text manipulator

fstream: :setmode

39

ifstream: : attach

class ifstream

#include <fstream.h>

The ifstream class is an istream derivative specialized for disk file input. Its
constructors automatically create and attach a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the get area and the get pointer are active for the ifstream class.

Construction/Destruction-Public Members
ifstream Constructs an ifstream object.

-ifstream Destroys an ifstream object.

Operations-Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.

close Closes the stream's file.

setbuf Associates the specified reserve area to the stream's filebuf object.

setmode Sets the stream's mode to binary or text.

attach Attaches the stream (through the filebuf object) to an open file.

Status/Information-Public Members
rdbuf Gets the stream's filebuf object.

fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream's file is open.

See Also: filebuf, streambuf, of stream, fstream

Member Functions
ifstream: : attach

void attach(filedesc fd);

Attaches this stream to the open file specified by fd.

Parameter

40

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

Remarks
The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream's error state.

See Also: filebuf: :attach, ifstream: :fd

ifstream: : close

Remarks

void closeO;

Calls the close member function for the associated filebuf object. This function, in
tum, closes the file and disconnects the file from the filebuf object. The filebuf object
is not destroyed.

The stream's error state is cleared unless the call to filebuf::close fails.

See Also: filebuf::close, ifstream::opeo, ifstream::is_opeo

ifstream: :fd
filedesc fdO coost;

Return Value
Returns the file descriptor associated with the stream; filedesc is a typedef equivalent
to iot. Its value is supplied by the underlying file system.

See Also: filebuf::fd, ifstream::attach

ifstream: :ifstream
ifstreamO;

ifstream(coost char* szName, iot nMode = ios::io, iot nProt = filebuf::opeoprot);

ifstream(filedescJd);

ifstream(filedescJd, char* pch, iot nLength);

Parameters
szName The name of the file to be opened during construction.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (I) operator. The nMode parameter must have one
of the following values:

• ios::io The file is opened for input (default).

• ios::oocreate If the file does not already exist, the function fails.

ifstream: :ifstream

41

ifstream: :-ifstream

Remarks

• ios::binary Opens the file in binary mode (the default is text mode).

Note that the ios::nocreate flag is necessary if you intend to test for the file's
existence (the usual case).

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

• filebuf: :sh_compat Compatibility share mode.

• filebuf::sh_none Exclusive mode-no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf: :sh_ write Write sharing allowed.

To combine the filebuf: :sh_read and filebuf: :sh_ write modes, use the logical
OR (II) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

The four ifstream constructors are:

• ifstreamO Constructs an ifstream object without opening a file.

• ifstream(const char*, int, int) Contructs an ifstream object, opening the
specified file.

• ifstream(filedesc) Constructs an ifstream object that is attached to an open file.

• ifstream(filedesc, char*, int) Constructs an ifstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

All ifstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area.

ifstream: : --ifstream

Remarks

42

-ifstreamO;

Destroys an ifstream object along with its associated filebuf object. The file is closed
only if it was opened by the constructor or by the open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

ifstream: :is_open
int is_openO const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also: filebuf::is_open, ifstream::open, ifstream::ciose

ifstream: :open
void open(const char* szName, int nMode = ios::in, int nProt = filebuf::openprot);

Parameters

Remarks

szName The name of the file to be opened during construction.

nMode An integer containing bits defined as ios enumerators that can be combined
with the OR (I) operator. See the ifstream constructor for a list of the
enumerators. The ios: :in mode is implied.

nProt The file protection specification; defaults to the static integer filebuf::openprot.
See the ifstream constructor for a list of the other allowed values.

Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios: :failbit is set. If the
file is not found, then the ios::failbit is set only if the ios::nocreate mode was used.

See Also: filebuf: :open, ifstream: :ifstream, ifstream: :ciose, ifstream: :is_open,
ios::flags

ifstream: :rdbuf
filebuf* rdbufO const;

Return Value
Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

ifstream: : setbuf
streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream's filebuf object.

ifstream::setbuf

43

ifstream::setmode

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf, which is cast as a streambuf. The reserve
area will not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

ifstream: : setmode
int setmode(int nMode = filebuf::text);

Return Value
The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

Parameters

Remarks

nMode An integer that must be one of the following static filebuf constants:

• filebuf::text Text mode (newline characters translated to and from carriage
return/line feed pairs).

• filebuf::binary Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be called
only after the file is opened.

See Also: ios binary manipulator, ios text manipulator

class ios

44

#include <iostream.h>

As the iostream class hierarchy diagram shows, ios is the base class for all the
input/output stream classes. While ios is not technically an abstract base class, you will
not usually construct ios objects, nor will you derive classes directly from ios. Instead,
you will use the derived classes istream and ostream or other derived classes.

Even though you will not use ios directly, you will be using many of the inherited
member functions and data members described here. Remember that these inherited
member function descriptions are not duplicated for derived classes.

Data Members (static)-Public Members
basefield Mask for obtaining the conversion base flags (dec, oct, or hex).

adjustfield Mask for obtaining the field padding flags (left, right, or internal).

floatfield Mask for obtaining the numeric format (scientific or fixed).

Construction/Destruction-Public Members
ios Constructor for use in derived classes.

-ios Virtual destructor.

Flag and Format Access Functions-Public Members
flags Sets or reads the stream's format flags.

setf Manipulates the stream's format flags.

unsetf Clears the stream's format flags.

fill Sets or reads the stream's fill character.

precision Sets or reads the stream's floating-point format display precision.

width Sets or reads the stream's output field width.

Status-Testing Functions-Public Members
good Indicates good stream status.

bad Indicates a serious 110 error.

eof Indicates end of file.

fail Indicates a serious 110 error or a possibly recoverable 110 formatting error.

rdstate Returns the stream's error flags.

clear Sets or clears the stream's error flags.

User-Defined Format Flags-Public Members
bitalloc Provides a mask for an unused format bit in the stream's private flags

variable (static function).

xalloc Provides an index to an unused word in an array reserved for special-purpose
stream state variables (static function).

iword Converts the index provided by xalloc to a reference (valid only until the next
xalloc).

pword Converts the index provided by xalloc to a pointer (valid only until the next
xalloc).

Other Functions-Public Members
delbuf Controls the connection of streambuf deletion with ios destruction.

rdbuf Gets the stream's streambuf object.

class ios

45

ios::bad

sync_ with_stdio Synchronizes the predefined objects cin, cout, cerr, and clog with
the standard VO system.

tie Ties a specified ostream to this stream.

Operators-Public Members
operator void* Converts a stream to a pointer that can be used only for error

checking.

operator! Returns a nonzero value if a stream VO error occurs.

ios Manipulators
dec Causes the interpretation of subsequent fields in decimal format (the default

mode).

hex Causes the interpretation of subsequent fields in hexadecimal format.

oct Causes the interpretation of subsequent fields in octal format.

binary Sets the stream's mode to binary (stream must have an associated filebuf
buffer).

text Sets the stream's mode to text, the default mode (stream must have an associated
filebuf buffer).

Parameterized Manipulators
(#include <iomanip.h> required)

setiosflags Sets the stream's format flags.

resetiosflags Resets the stream's format flags.

setfill Sets the stream's fill character.

setprecision Sets the stream's floating-point display precision.

setw Sets the stream's field width (for the next field only).

See Also: istream, ostream

Member Functions
ios::bad

int badO const;

Return Value

46

Returns a nonzero value to indicate a serious 110 error. This is the same as setting the
badbit error state. Do not continue 110 operations on the stream in this situation.

See Also: ios::good, ios::fail, ios::rdstate

ios::bitalloc
static long bitallocO;

Remarks
Provides a mask for an unused format bit in the stream's private flags variable (static
function). The ios class currently defines 15 format flag bits accessible through flags
and other member functions. These bits reside in a 32-bit private ios data member and
are accessed through enumerators such as ios: :left and ios: :hex.

The bitalloc member function provides a mask for a previously unused bit in the data
member. Once you obtain the mask, you can use it to set or test the corresponding
custom flag bit in conjunction with the ios member functions and manipulators listed
under "See Also."

See Also: ios::flags, ios::setf, ios::unsetf, ios setiosflags manipulator, ios
resetiosflags manipulator

ios: :clear
void clear(int nState = 0);

Parameter

Remarks

nState If 0, all error bits are cleared; otherwise bits are set according to the following
masks (ios enumerators) that can be combined using the bitwise OR (I) operator.
The nState parameter must have one of the following values:

• ios::goodbit No error condition (no bits set).

• ios: :eofbit End of file reached.

• ios::failbit A possibly recoverable formatting or conversion error.

• ios::badbit A severe I/O error.

Sets or clears the error-state flags. The rdstate function can be used to read the
current error state.

See Also: ios::rdstate, ios::good, ios::bad, ios::eof

ios::delbuf
void delbuf(int nDelFlag);

int delbufO const;

ios::delbuf

47

ios::eof

Parameter

Remarks

nDelFlag A nonzero value indicates that -ios should delete the stream's attached
streambuf object. A 0 value prevents deletion.

The first overloaded delbuf function assigns a value to the stream's buffer-deletion
flag. The second function returns the current value of the flag.

This function is public only because it is accessed by the Iostream_init class. Treat it
as protected.

See Also: ios: :rdbuf, ios: :-ios

ios: :eof
int eoro const;

Return Value
Returns a nonzero value if end of file has been reached. This is the same as setting the
eofbit error flag.

ios: : fail
int failO const;

Return Value
Returns a nonzero value if any I/O error (not end of file) has occurred. This condition
corresponds to either the badbit or fail bit error flag being set. If a call to bad returns
0, you can assume that the error condition is nonfatal and that you can probably
continue processing after you clear the flags.

See Also: ios::bad, ios::clear

ios: : fill
char fill(char cFill);

char fillO const;

Return Value

48

The first overloaded function sets the stream's internal fill character variable to cFill
and returns the previous value. The default fill character is a space.

The second fill function returns the stream's fill character.

Parameter
cFill The new fill character to be used as padding between fields.

See Also: ios setfill manipulator

ios: :flags
long flags(long IFlags);

long flagsO const;

Return Value
The first overloaded flags function sets the stream's internal flags variable to IFlags
and returns the previous value.

The second function returns the stream's current flags.

Parameter
IFlags The new format flag values for the stream. The values are specified by the

following bit masks (ios enumerators) that can be combined using the bitwise OR
(I) operator. The IFlags parameter must have one of the following values:

• ios::skipws Skip white space on input.

• ios::left Left-align values; pad on the right with the fill character.

• ios::right Right-align values; pad on the left with the fill character (default
alignment).

• ios: : internal Add fill characters after any leading sign or base indication, but
before the value.

• ios::dec Format numeric values as base 10 (decimal) (default radix).

• ios: :oct Format numeric values as base 8 (octal).

• ios::hex Format numeric values as base 16 (hexadecimal).

• ios::showbase Display numeric constants in a format that can be read by the
C++ compiler.

• ios::showpoint Show decimal point and trailing zeros for floating-point
values.

• ios::uppercase Display uppercase A through F for hexadecimal values and E
for scientific values.

• ios::showpos Show plus signs (+) for positive values.

• ios::scientific Display floating-point numbers in scientific format.

ios::flags

49

ios::good

• ios::fixed Display floating-point numbers in fixed format.

• ios::unitbuf Cause ostream::osfx to flush the stream after each insertion. By
default, cerr is unit buffered.

• ios: :stdio Cause ostream: :osfx to flush stdout and stderr after each insertion.

See Also: ios::setf, ios::unsetf, ios setiosflags manipulator, ios resetiosflags
manipulator, ios: :adjustfield, ios:: basefield, ios: :floatfield

ios::good
int goodO const;

Return Value
Returns a nonzero value if all error bits are clear. Note that the good member function
is not simply the inverse of the bad function.

See Also: ios::bad, ios::fail, ios::rdstate

ios: :init
Protected ~

void init(streambuf* psb);

END Protected

Parameter

Remarks

. .

psb A pointer to an existing streambuf object.

Associates an object of a streambuf-derived class with this stream and, if necessary,
deletes a dynamically created stream buffer object that was previously associated. The
init function is useful in derived classes in conjunction with the protected default
istream, ostream, and iostream constructors. Thus, an ios-derived class constructor
can construct and attach its own predetermined stream buffer object.

See Also: istream: :istream, ostream: :ostream, iostream: :iostream

lOS: :lOS

ios(streambuf* psb);

Parameter
psb A pointer to an existing streambuf object.

50

Remarks
Constructor for ios. You will seldom need to invoke this constructor except in derived
classes. Generally, you will be deriving classes not from ios but from istream,
ostream, and iostream.

. .
lOS: : ""lOS

virtual-iosO;

Remarks
Virtual destructor for ios.

ios::iword
long& iword(int nlndex) const;

Parameters

Remarks

nlndex An index to a table of words that are associated with the ios object.

The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a 32-bit word.

See Also: ios::xalloc, ios::pword

. . .
lOS: :preC1S10n

int precision(int np);

int precisionO const;

Return Value
The first overloaded precision function sets the stream's internal floating-point
precision variable to np and returns the previous value. The default precision is six
digits. If the display format is scientific or fixed, the precision indicates the number of
digits after the decimal point. If the format is automatic (neither floating point nor
fixed), the precision indicates the total number of significant digits.

The second function returns the stream's current precision value.

Parameter
np An integer that indicates the number of significant digits or significant decimal

digits to be used for floating-point display.

See Also: ios setprecision manipulator

ios: :precision

51

ios::pword

ios::pword
void*& pword(int nlndex) const;

Parameter

Remarks

nlndex An index to a table of words that are associated with the ios object.

The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a pointer to a 32-bit word.

See Also: ios: :xalloc, ios: :iword

ios::rdbuf
streambuf* rdbufO const;

Return Value
Returns a pointer to the streambuf object that is associated with this stream. The
rdbuf function is useful when you need to call streambuf member functions.

ios: :rdstate
int rdstateO const;

Return Value
Returns the current error state as specified by the following masks (ios enumerators):

• ios::goodbit No error condition.

• ios::eofbit End of file reached.

• ios::failbit A possibly recoverable formatting or conversion error.

• ios::badbit A severe 110 error or unknown state.

The returned value can be tested against a mask with the AND (&) operator.

See Also: ios::clear

ios: :setf
long setf(long IFlags);

long setf(long IFlags, long IMask);

52

Return Value
The first overloaded setf function turns on only those format bits that are specified by
Is in IFlags. It returns a long that contains the previous value of all the flags.

The second function alters those format bits specified by Is in IMask. The new values
of those format bits are determined by the corresponding bits in IFlags. It returns a
long that contains the previous value of all the flags.

Parameters
IFlags Format flag bit values. See the flags member function for a list of format

flags. To combine these flags, use the bitwise OR (I) operator.

IMask Format flag bit mask.

See Also: ios::flags, ios::unsetf, ios setiosflags manipulator

ios: : sync _ with_stdio

Remarks

static void sync_ with_stdioO;

Synchronizes the C++ streams with the standard I/O system. The first time this
function is called, it resets the predefined streams (cin, cout, cerr, clog) to use a
stdiobuf object rather than a filebuf object. After that, you can mix I/O using these
streams with I/O using stdin, stdout, and stderr. Expect some performance decrease
because there is buffering both in the stream class and in the standard I/O file system.

After the call to sync_ with_stdio, the ios: :stdio bit is set for all affected predefined
stream objects, and cout is set to unit buffered mode.

ios: :tie
ostream* tie(ostream* pos);

ostream* tieO const;

Return Value
The first overloaded tie function ties this stream to the specified ostream and returns
the value of the previous tie pointer or NULL if this stream was not previously tied. A
stream tie enables automatic flushing of the ostream when more characters are
needed, or there are characters to be consumed.

By default, cin is initially tied to cout so that attempts to get more characters from
standard input may result in flushing standard output. In addition, cerr and clog are
tied to cout by default.

ios::tie

53

ios::unsetf

The second function returns the value of the previous tie pointer or NULL if this
stream was not previously tied.

Parameter
pos A pointer to an ostream object.

ios::unsetf
long unsetf(long IFlags);

Return Value
Clears the format flags specified by Is in IFlags. It returns a long that contains the
previous value of all the flags.

Parameter
IFlags Format flag bit values. See the flags member function for a list of format

flags.

See Also: ios::flags, ios::setf, ios resetiosflags manipulator

ios::width
int width(int nw);

int widthO const;

Return Value
The first overloaded width function sets the stream's internal field width variable to
nw. When the width is ° (the default), inserters insert only the number of characters
necessary to represent the inserted value. When the width is not 0, the inserters pad
the field with the stream's fill character, up to nw. If the unpadded representation of
the field is larger than nw, the field is not truncated. Thus, nw is a minimum field
width.

The internal width value is reset to ° after each insertion or extraction.

The second overloaded width function returns the current value of the stream's width
variable.

Parameter
nw The minimum field width in characters.

See Also: ios setw manipulator

54

ios: :xalloc
static int xallocO;

Return Value
Provides extra ios object state variables without the need for class derivation. It does
so by returning an index to an unused 32-bit word in an internal array. This index can
subsequently be converted into a reference or pointer by using the iword or pword
member functions.

Any call to xalloc invalidates values returned by previous calls to iword and pword.

ios::iword, ios::pword

Operators
ios::operator void*

operator void* 0 const;

An operator that converts a stream to a pointer that can be compared to o.
Return Value

The conversion returns 0 if either failbit or badbit is set in the stream's error state.See
rdstate for a description of the error state masks. A nonzero pointer is not meant to be
dereferenced.

See Also: ios::good, ios::fail

ios: : operator !
int operator !O const;

Return Value
Returns a nonzero value if either failbit or badbit is set in the stream's error state. See
rdstate for a description of the error state masks.

See Also: ios::good, ios::fail

ios: :adjustfield
static const long adjustfield;

Remarks
A mask for obtaining the padding flag bits (left, right, or internal).

ios: :adjustfield

55

ios:: basefield

Example
extern ostream os;
if((os.flags() & ios::adjustfield) == ios::left)

See Also: ios::flags

ios: : basefield
static const long basefield;

Remarks
A mask for obtaining the current radix flag bits (dec, oct, or hex).

Example
extern ostream os;
if((os.flags() & ios::basefield) == ios::hex)

See Also: ios: :flags

ios: :floatfield
static const long floatfield;

Remarks
A mask for obtaining floating-point format flag bits (scientific or fixed).

Example
extern ostream os;
if((os.flags() & ios: :floatfield) ios::scientific)

See Also: ios::flags

Manipulators
ios& binary

Remarks

56

binary

Sets the stream's mode to binary. The default mode is text.

The stream must have an associated filebuf buffer.

See Also: ios text manipulator, ofstream::setmode, ifstream::setmode,
filebuf: :setmode

ios& dec
dec

Remarks
Sets the format conversion base to 10 (decimal).

See Also: ios hex manipulator, ios oct manipulator

ios& hex

Remarks

hex

Sets the format conversion base to 16 (hexadecimal).

See Also: ios dec manipulator, ios oct manipulator

ios& oct
oct

Remarks
Sets the format conversion base to 8 (octal).

See Also: ios dec manipulator, ios hex manipulator

resetiosfiags
SMANIP(long) resetiosflags(long IFlags);

#include <iomanip.h>

Parameter

Remarks

IFlags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (I) operator.

This parameterized manipulator clears only the specified format flags. This setting
remains in effect until you change it.

setfill
SMANIP(int) setfill(int nFill);

#include <iomanip.h>

setfill

57

setiosflags

Parameter

Remarks

nFill The new fill character to be used as padding between fields.

This parameterized manipulator sets the stream's fill character. The default is a space.
This setting remains in effect until the next change.

setiosflags
SMANIP(long) setiosflags(long IFlags);

#include <iomanip.h>

Parameter

Remarks

IFlags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (I) operator.

This parameterized manipulator sets only the specified format flags. This setting
remains in effect until the next change.

setprecision
SMANIP(int) setprecision(int np);

#include <iomanip.h>

Parameter

Remarks

setw

np An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

This parameterized manipulator sets the stream's internal floating-point precision
variable to np. The default precision is six digits. If the display format is scientific or
fixed, then the precision indicates the number of digits after the decimal point. If the
format is automatic (neither floating point nor fixed), then the precision indicates the
total number of significant digits. This setting remains in effect until the next change.

SMANIP(int) setw(int nw);

#include <iomanip.h>

Parameter
nw The field width in characters.

58

Remarks
This parameterized manipulator sets the stream's internal field width parameter. See
the width member function for more information. This setting remains in effect only
for the next insertion.

ios& text

Remarks

text

Sets the stream's mode to text (the default mode).

The stream must have an associated filebuf buffer.

See Also: ios binary manipulator, ofstream::setmode, ifstream::setmode,
filebuf: :setmode

class iostream

#include <iostream.h>

The iostream class provides the basic capability for sequential and random-access
110. It inherits functionality from the istream and ostream classes.

The iostream class works in conjunction with classes derived from streambuf (for
example, filebuf). In fact, most of the iostream "personality" comes from its attached
streambuf class. You can use iostream objects for sequential disk 110 if you first
construct an appropriate filebuf object. More often, you will use objects of classes
fstream and strstream.

Derivation
For derivation suggestions, see the istream and ostream classes.

Public Members
iostream Constructs an iostream object that is attached to an existing streambuf

object.

-iostream Destroys an iostream object.

Protected Members
iostream Acts as a void-argument iostream constructor.

See Also: istream, ostream, fstream, strstream, stdiostream

ios& text

59

iostream: :iostream

Member Functions
iostream: :iostream

Public~

iostream(streambuf* psb);

END Public

Protected ~

iostream();
END Protected

Parameter

Remarks

psb A pointer to an existing streambuf object (or an object of a derived class).

Constructs an object of type iostream.

See Also: ios::init

iostream: : -iostream
virtual-iostreamO;

Remarks
Virtual destructor for the iostream class.

class Iostream init

#include <iostream.h>

The Iostream_init class is a static class that initializes the predefined stream objects
cin, cout, cerr, and clog. A single object of this class is constructed "invisibly" in
response to any reference to the predefined objects. The class is documented for
completeness only. You will not normally construct objects of this class.

Public Members
Iostream_init A constructor that initializes cin, cout, cerr, and clog.

-Iostream_init The destructor for the Iostream_init class.

60

Iostream_init:: - Iostream_init

Member Functions
Iostream_init: : Iostream_init

Remarks

Iostream_initO;

Iostream_init constructor that initializes cin, cout, cerr, and clog. For internal use
only.

Iostream_init::,...; Iostream_init
- Iostream_initO;

Remarks
Iostream_init destructor. For internal use only.

class istream

#include <iostream.h>

The istream class provides the basic capability for sequential and random-access
input. An istream object has a streambuf-derived object attached, and the two classes
work together; the istream class does the formatting, and the streambuf class does
the low-level buffered input.

You can use istream objects for sequential disk input if you first construct an
appropriate filebuf object. More often, you will use the predefined stream object cin
(which is actually an object of class istream_ withassign), or you will use objects of
classes ifstream (disk file streams) and istrstream (string streams).

Derivation
It is not always necessary to derive from istream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated in "Deriving Your Own
Stream Classes" on page 22. The ifstream and istrstream classes are examples of
istream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new extraction operators for a derived istream class, then the rules of C++
dictate that you must reimplement all the base class extraction operators. See the
"Derivation" section of class ostream for an efficient reimplementation technique.

61

istream: :eatwhite

Construction/Destruction - Public Members
istream Constructs an istream object attached to an existing object of a

streambuf-derived class.

-istream Destroys an istream object.

Prefix/Suffix Functions - Public Members
ipfx Check for error conditions prior to extraction operations (input prefix function).

isfx Called after extraction operations (input suffix function).

Input Functions - Public Members
get Extracts characters from the stream up to, but not including, delimiters.

getline Extracts characters from the stream (extracts and discards delimiters).

read Extracts data from the stream.

ignore Extracts and discards characters.

peek Returns a character without extracting it from the stream.

gcount Counts the characters extracted in the last unformatted operation.

eatwhite Extracts leading white space.

Other Functions - Public Members
putback Puts characters back to the stream.

sync Synchronizes the stream buffer with the external source of characters.

seekg Changes the stream's get pointer.

tellg Gets the value of the stream's get pointer.

Operators - Public Members
operator» Extraction operator for various types.

Protected Members
istream Constructs an istream object.

Manipulators
ws Extracts leading white space.

See Also: streambuf, ifstream, istrstream, istream_ with assign

Member Functions
istream: :eatwhite

void eatwhiteO;

62

Remarks
Extracts white space from the stream by advancing the get pointer past spaces
and tabs.

See Also: istream ws manipulator

istream: :gcount

Remarks

int gcountO const;

Returns the number of characters extracted by the last unformatted input function.
Formatted extraction operators may call unformatted input functions and thus reset
this number.

See Also: istream::get, istream::getline, istream::ignore, istream::read

istream: : get
int getO;&

istream& get(char* pch, int nCount, char delim = '\0');

istream& get(unsigned char* puch, int nCount, char delim = '\0');

istream& get(signed char* psch, int nCount, char delim = '\0');

istream& get(char& rch);

istream& get(unsigned char& ruch);

istream& get(signed char& rsch);

istream& get(streambuf& rsb, char delim = '\0');

Parameters
pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).

rch, ruch, rsch A reference to a character.

rsb A reference to an object of a streambuf-derived class.

istream::get

63

istream: :getline

Remarks
These functions extract data from an input stream as follows:

Variation

getO;

get(char*, int, char);

get(char&);

get(streambuf&, char);

Description

Extracts a single character from the stream and returns it.

Extracts characters from the stream until either delim is
found, the limit nCount is reached, or the end of file is
reached. The characters are stored in the array followed by a
null terminator.

Extracts a single character from the stream and stores it as
specified by the reference argument.

Gets characters from the stream and stores them in a
streambuf object until the delimiter is found or the end of
the file is reached. The ios::failbit flag is set if the
streambuf output operation fails.

In all cases, the delimiter is neither extracted from the stream nor returned by the
function. The getline function, in contrast, extracts but does not store the delimiter.

See Also: istream::getline, istream::read, istream::ignore, istream::gcount

istream:: getline
istream& getline(char* pch, int nCount, char delim = '\0');

istream& getline(unsigned char* puch, int nCount, char delim = '\0');

istream& getline(signed char* psch, int nCount, char delim = '\0');

Parameters

Remarks

64

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).

Extracts characters from the stream until either the delimiter delim is found, the limit
nCount-l is reached, or end of file is reached. The characters are stored in the
specified array followed by a null terminator. If the delimiter is found, it is extracted
but not stored.

The get function, in contrast, neither extracts nor stores the delimiter.

See Also: istream::get, istream::read

istream: : ignore
istream& ignore(int nCount = 1, int de lim = EOF);

Parameters

Remarks

nCount The maximum number of characters to extract.

delim The delimiter character (defaults to EOF).

Extracts and discards up to nCount characters. Extraction stops if the delimiter delim
is extracted or the end of file is reached. If delim = EOF (the default), then only the
end of file condition causes termination. The delimiter character is extracted.

istream: :ipfx
int ipfx(int need = 0);

Return Value
A nonzero return value if the operation was successful; 0 if the stream's error state is
nonzero, in which case the function does nothing.

Parameter

Remarks

need Zero if called from formatted input functions; otherwise the minimum number
of characters needed.

This input prefix function is called by input functions prior to extracting data from the
stream. Formatted input functions call ipfx(0), while unformatted input functions
usually call ipfx(1).

Any ios object tied to this stream is flushed if need = 0 or if there are fewer than need
characters in the input buffer. Also, ipfx extracts leading white space if ios: :skipws
is set.

See Also: istream::isfx

istream: :isfx
void isfxO;

Remarks
This input suffix function is called at the end of every extraction operation.

istream: :isfx

65

istream: :istream

istream: :istream
Public ~

istream(streambuf* psb);

END Public

Protected ~

istream();

END Protected

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

Constructs an object of type istream.

See Also: ios: :init

istream: : --istream
virtual-istreamO;

Remarks
Virtual destructor for the istream class.

istream: :peek
int peekO;

Return Value
Returns the next character without extracting it from the stream. Returns EOF if the
stream is at end of file or if the ipfx function indicates an error.

istream: :putback
istream& putback(char ch);

Parameter

Remarks

66

ch The character to put back; must be the character previously extracted.

Puts a character back into the input stream. The putback function may fail and set the
error state. If ch does not match the character that was previously extracted, the result
is undefined.

istream: :read
istream& read(char* pch, int nCount);

istream& read(unsigned char* puch, int nCount);

istream& read(signed char* psch, int nCount);

Parameters

Remarks

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to read.

Extracts bytes from the stream until the limit nCount is reached or until the end of file
is reached. The read function is useful for binary stream input.

See Also: istream::get, istream::getline, istream::gcount, istream::ignore

istream: : seekg
istream& seekg(streampos pos);

istream& seekg(streamoff off, ios::seek_dir dir);

Parameters

Remarks

pos The new position value; streampos is a typedef equivalent to long.

off The new offset value; streamoff is a typedef equivalent to long.

dir The seek direction. Must be one of the following enumerators:

• ios::beg Seek from the beginning of the stream.

• ios::cur Seek from the current position in the stream.

• ios::end Seek from the end of the stream.

Changes the get pointer for the stream. Not all derived classes of istream need
support positioning; it is most often used with file-based streams.

See Also: istream::tellg, ostream::seekp, ostream::tellp

istream: : sync
int syncO;

Synchronizes the stream's internal buffer with the external source of characters.

istream::sync

67

istream: :tellg

Return Value

Remarks

EOF to indicate errors.

Synchronizes the stream's internal buffer with the external source of characters. This
function calls the virtual streambuf: :sync function so you can customize its
implementation by deriving a new class from streambuf.

See Also: streambuf: :sync

istream: :tellg
streampos tellgO;

Gets the value for the stream's get pointer.

Return Value
A streampos type, corresponding to a long.

See Also: istream::seekg, ostream::tellp, ostream::seekp

Operators
istream::operator »

68

istream& operator »(char* psz);

istream& operator »(unsigned char* pusz);

istream& operator »(signed char* pssz);

istream& operator »(char& rch);

istream& operator »(unsigned char& ruch);

istream& operator »(signed char& rsch);

istream& operator »(short& s);

istream& operator »(unsigned short& us);

istream& operator »(int& n);

istream& operator »(unsigned int& un);

istream& operator »(long& 1);

istream& operator »(unsigned long& ul);

istream& operator »(float&j);

Remarks

istream& operator »(double& d);

istream& operator »(long double& ld); (16-bit only)

istream& operator »(streambuf* psb);

istream& operator »(istream& (*fcn)(istream&));

istream& operator »(ios& (*fcn)(ios&));

These overloaded operators extract their argument from the stream. With the last two
variations, you can use manipulators that are defined for both istream and ios.

Mani pulators
istream& ws

Remarks

ws

Extracts leading white space from the stream by calling the eatwhite function.

See Also: istream: :eatwhite

class istream_withassign

#include <iostream.h>

The istream_ withassign class is a variant of istream that allows object assignment.
The predefined object cin is an object of this class and thus may be reassigned at run
time to a different istream object. For example, a program that normally expects input
from stdin could be temporarily directed to accept its input from a disk file.

Predefined Objects
The cin object is a predefined object of class ostream_ withassign. It is connected to
stdin (standard input, file descriptor 0).

The objects cin, cerr, and clog are tied to cout so that use of any of these may cause
cout to be flushed.

Construction/Destruction-Public Members
istream_ withassign Constructs an istream_ withassign object.

-istream_ withassign Destroys an istream_ withassign object.

istream& ws

69

istream_ withassign: :istream_ withassign

Operators-Public Members
operator = Indicates an assignment operator.

See Also: ostream_ withassign

Member Functions
istream_ withassign: :istream_ withassign

istream_withassign(streambuf* psb);

istream_ withassignO;

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

The first constructor creates a ready-to-use object of type istream_ withassign,
complete with attached streambuf object.

The second constructor creates an object but does not initialize it. You must
subsequently use the second variation of the istream_ withassign assignment operator
to attach the streambuf object, or use the first variation to initialize this object to
match the specified istream object.

See Also: istream_ withassign: :operator =

istream_ withassign:: -istream_ withassign
-istream_ withassignO;

Remarks
Destructor for the istream_ withassign class.

Operators
istream_ withassign: : operator =

Remarks

70

istream& operator =(const istream& ris);

istream& operator =(streambuf* psb);

The first overloaded assignment operator assigns the specified istream object to this
istream_ withassign object.

istream_ withassign: : operator =

Example

Example

The second operator attaches a streambuf object to an existing istream_ with assign
object, and it initializes the state of the istream_ withassign object. This operator is
often used in conjunction with the void-argument constructor.

char buffer[100];
class xistream; II A special-purpose class derived from istream
extern xistream xin; II An xistream object constructed elsewhere

cin - xin; II cin is reassigned to xin
cin » buffer; II xin used instead of cin

char buffer[100];
extern filedesc fd; II A file descriptor for an open file
filebuf fb(fd); II Construct a filebuf attached to fd

cin - &fb; II fb associated with cin
cin » buffer; II cin now gets its intput from the fb file

See Also: istream_ withassign: :istream_ withassign

class istrstream

#include <strstrea.h>

The istrstream class supports input streams that have character arrays as a source.
You must allocate a character array before constructing an istrstream object. You can
use istream operators and functions on this character data. A get pointer, working in
the attached strstreambuf class, advances as you extract fields from the stream's
array. Use istream::seekg to go backwards. If the get pointer reaches the end of the
string (and sets the ios: :eof flag), you must call clear before seekg.

Construction/Destruction-Public Members
istrstream Constructs an istrstream object.

-istrstream Destroys an istrstream object.

Other Functions-Public Members
rdbuf Returns a pointer to the stream's associated strstreambuf object.

str Returns a character array pointer to the string stream's contents.

See Also: strstreambuf, streambuf, strstream, ostrstream

71

istrstream: :istrstream

Member Functions
istrstream: :istrstream

istrstream(char* psz);

istrstream(char* pch, int nLength);

Parameters

Remarks

psz A null-terminated character array (string).

pch A character array that is not necessarily null terminated.

nLength Size (in characters) of pch. If 0, then pch is assumed to point to a
null-terminated array; if less than 0, then the array length is assumed to be
unlimited.

The first constructor uses the specified psz buffer to make an istrstream object with
length corresponding to the string length.

The second constructor makes an istrstream object out of the first nLength characters
of the pch buffer.

Both constructors automatically construct a strstreambuf object that manages the
specified character buffer.

istrstream: : ~istrstream

Remarks

-istrstreamO;

Destroys an istrstream object and its associated strstreambuf object. The character
buffer is not released because it was allocated by the user prior to istrstream
construction.

istrstream: :rdbuf
strstreambuf* rdbufO const;

Return Value

72

Returns a pointer to the strstreambuf buffer object that is associated with this stream.
Note that this is not the character buffer itself; the strstreambuf object contains a
pointer to the character area.

See Also: istrstream: :str

istrstream: : str
char* strO;

Return Value
Returns a pointer to the string stream's character array. This pointer corresponds to the
array used to construct the istrstream object.

See Also: istrstream: :istrstream

class ofstream

#include <fstream.h>

The of stream class is an ostream derivative specialized for disk file output. All of its
constructors automatically create and associate a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the put area and the put pointer are active for the of stream class.

Construction/Destruction-Public Members
of stream Constructs an of stream object.

-of stream Destroys an of stream object.

Operations-Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.

close Flushes any waiting output and closes the stream's file.

setbuf Associates the specified reserve area to the stream's filebuf object.

setmode Sets the stream's mode to binary or text.

attach Attaches the stream (through the filebuf object) to an open file.

Status/lnformation-Public Members
rdbuf Gets the stream's filebuf object.

fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream's file is open.

See Also: filebuf, streambuf, ifstream, fstream

istrstream: :str

73

of stream: : attach

Member Functions
of stream: : attach

void attach(filedescjd);

Parameter

Remarks

jd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

Attaches this stream to the open file specified by jd. The function fails when the
stream is already attached to a file. In that case, the function sets ios: :failbit in the
stream's error state.

See Also: filebuf: :attach, of stream: :fd

of stream: :close

Remarks

void closeO;

Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream's error state is cleared unless the call to filebuf::close fails.

See Also: filebuf::close, ofstream::open, ofstream::is_open

of stream: :fd
filedesc fdO const;

Return Value

74

Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also: filebuf: :fd, of stream: : attach

of stream: :is_open
int is_openO const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise O.

See Also: filebuf::is_open, ofstream::open, ofstream::close

of stream: : of stream
ofstreamO;

ofstream(const char* szName, int nMode = ios::out, int nProt = filebuf::openprot);

ofstream(filedescJd);

ofstream(filedescJd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (I) operator. The nMode parameter must have one
of the following values:

• ios: :app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream: :seekp function.

• ios: :ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

• ios::in If this mode is specified, then the original file (if it exists) will not be
truncated.

• ios::out The file is opened for output (implied for all of stream objects).

• ios: :trunc If the file already exists, its contents are discarded. This mode is
implied if ios::out is specified and ios::ate, ios::app, and ios:in are not
specified.

• ios: :nocreate If the file does not already exist, the function fails.

• ios: :noreplace If the file already exists, the function fails.

• ios::binary Opens the file in binary mode (the default is text mode).

of stream: :ofstream

75

of stream: :-ofstream

Remarks

nProt The file protection specification; defaults to the static integer
filebuf: :openprot that is equivalent to filebuf: :sh_compat. The possible nProt
values are:

• filebuf: :sh_compat Compatibility share mode.

• filebuf::sh_none Exclusive mode; no sharing.

• filebuf: :sh_read Read sharing allowed.

• filebuf::sh_write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical
OR (II) operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

The four of stream constructors are:

Constructor

ofstreamO

ofstream(const char*, int, int)

ofstream(filedesc)

ofstream(filedesc, char*, int)

Description

Constructs an of stream object without opening a file.

Contructs an of stream object, opening the specified file.

Constructs an of stream object that is attached to an
open file.

Constructs an of stream object that is associated with a
filebuf object. The filebuf object is attached to an open
file and to a specified reserve area.

All of stream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

of stream: : ~ofstream

Remarks

76

-ofstreamO;

Flushes the buffer, then destroys an of stream object along with its associated filebuf
object. The file is closed only if was opened by the constructor or by the open
member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

of stream: : open
void open(const char* szName, int nMode = ios::out, int nProt = filebuf::openprot);

Parameters

Remarks

szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See the of stream constructor for a list of the
enumerators. The ios::out mode is implied.

nProt The file protection specification; defaults to the static integer filebuf::openprot.
See the of stream constructor for a list of the other allowed values.

Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If the
file is not found, the ios::failbit is set only if the ios::nocreate mode was used.

See Also: filebuf: :open, of stream: : of stream , of stream: :close, of stream: :is_open

of stream: :rdbuf
filebuf* rdbufO const;

Return Value

Example

Returns a pointer to the filebuf buffer object that is associated with this stream.
(Note that this is not the character buffer; the filebuf object contains a pointer to
the character area.)

extern of stream ofs;
int fd ~ ofs.rdbuf()-)fd(); II Get the file descriptor for ofs

of stream: : setbuf
streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream's filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

of stream: : setbuf

77

of stream: : setmode

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL

value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

of stream: : setmode
int setmode(int nMode = filebuf::text);

Return Value
The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter

Remarks

nMode An integer that must be one of the following static filebuf constants:

• filebuf::text Text mode (newline characters translated to and from carriage
returnlline feed pairs).

• filebuf:: binary Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be called
only after the file is opened.

See Also: ios binary manipulator, ios text manipulator

class ostream

78

#include <iostream.h>

The ostream class provides the basic capability for sequential and random-access
output. An ostream object has a streambuf-derived object attached, and the two
classes work together; the ostream class does the formatting, and the streambuf class
does the low-level buffered output.

You can use ostream objects for sequential disk output if you first construct an
appropriate filebuf object. (The filebuf class is derived from streambuf.) More often,
you will use the predefined stream objects cout, cerr, and clog (actually objects of
class ostream_withassign), or you will use objects of classes of stream (disk file
streams) and ostrstream (string streams).

All of the ostream member functions write unformatted data; formatted output is
handled by the insertion operators.

Derivation
It is not always necessary to derive from ostream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated on page 22 in "Deriving
Your Own Stream Classes." The of stream and ostrstream classes are examples of
ostream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new insertion operators for a derived ostream class, then the rules of
C++ dictate that you must reimplement all the base class insertion operators. If,
however, you reimplement the operators through inline equivalence, no extra code
will be generated.

Construction/Destruction-Public Members
ostream Constructs an ostream object that is attached to an existing streambuf

object.

-ostream Destroys an ostream object.

Prefix/Suffix Functions-Public Members
opfx Output prefix function, called prior to insertion operations to check for error

conditions, and so forth.

osfx Output suffix function, called after insertion operations; flushes the stream's
buffer if it is unit buffered.

Unformatted Output-Public Members
put Inserts a single byte into the stream.

write Inserts a series of bytes into the stream.

Other Functions-Public Members
flush Flushes the buffer associated with this stream.

seekp Changes the stream's put pointer.

tellp Gets the value of the stream's put pointer.

Operators-Public Members
operator« Insertion operator for various types.

Manipulators
endl Inserts a newline sequence and flushes the buffer.

ends Inserts a null character to terminate a string.

flush Flushes the stream's buffer.

See Also: streambuf, of stream, ostrstream, cout, cerr, clog

class ostream

79

ostream: :flush

Example
class xstream : public ostream
{

public:

} ;

II Constructors, etc.
I I
inline xstream& operator « (char ch) II insertion for char
{

return (xstream&)ostream::operator « (ch);
}

I I
II Insertions for other types

Member Functions
ostream: : flush

Remarks

ostream& flushO;

Flushes the buffer associated with this stream. The flush function calls the sync
function of the associated streambuf.

See Also: ostream flush manipulator, streambuf::sync

ostream::opfx
int opfxO;

Return Value

Remarks

If the ostream object's error state is not 0, opfx returns ° immediately; otherwise it
returns a nonzero value.

This output prefix function is called before every insertion operation. If another
ostream object is tied to this stream, the opfx function flushes that stream.

ostream: : osfx

Remarks

80

void osfxO;

This output suffix function is called after every insertion operation. It flushes the
ostream object if ios: :unitbuf is set, or stdout and stderr if ios: :stdio is set.

ostream: : ostream
Public ~

ostream(streambuf* psb);

END Public

Protected ~

ostream();

END Protected

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

Constructs an object of type ostream.

See Also: ios: :init

ostream: : "'0 stream

Remarks

virtual-ostreamO;

Destroys an ostream object. The output buffer is flushed as appropriate. The attached
streambuf object is destroyed only if it was allocated internally within the ostream
constructor.

ostream: :put
ostream& put(char ch);

Parameter
ch The character to insert.

Remarks
This function inserts a single character into the output stream.

ostream: : seekp
ostream& seekp(streampos pos);

ostream& seekp(streamoff off, ios::seek_dir dir);

ostream::seekp

81

ostream: :tellp

Parameters

Remarks

pos The new position value; streampos is a typedef equivalent to long.

off The new offset value; streamoff is a typedef equivalent to long.

dir The seek direction specified by the enumerated type ios::seek_dir, with values
including:

• ios:: beg Seek from the beginning of the stream.

• ios::cur Seek from the current position in the stream.

• ios: :end Seek from the end of the stream.

Changes the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the beginning
of the file; for string streams, it is the byte offset from the beginning of the string.

See Also: ostream::tellp, istream::seekg, istream::tellg

ostream: :tellp
streampos tellpO;

Return Value

Remarks

A streampos type that corresponds to a long.

Gets the position value for the stream. Not all derived classes of ostream need support
positioning. For file streams, the position is the byte offset from the beginning of the
file; for string streams, it is the byte offset from the beginning of the string. Gets the
value for the stream's put pointer.

See Also: ostream::seekp, istream::tellg, istream::seekg

ostream: : write
ostream& write(const char* pch, int nCount);

ostream& write(const unsigned char* puch, int nCount);

ostream& write(const signed char* psch, int nCount);

Parameters
pch, puch, psch A pointer to a character array.

nCount The number of characters to be written.

82

Remarks
Inserts a specified number of bytes from a buffer into the stream. If the underlying file
was opened in text mode, additional carriage return characters may be inserted. The
write function is useful for binary stream output.

Operators
ostream: : operator «

Remarks

ostream& operator «(char ch);

ostream& operator «(unsigned char uch);

ostream& operator «(signed char sch);

ostream& operator «(const char* psz);

ostream& operator «(const unsigned char* pusz);

ostream& operator «(const signed char* pssz);

ostream& operator «(short s);

ostream& operator «(unsigned short us);

ostream& operator «(int n);

ostream& operator «(unsigned int un);

ostream& operator «(long I);

ostream& operator «(unsigned long uZ);

ostream& operator «(floatf);

ostream& operator «(double d);

ostream& operator «(long double Zd); (16-bit only)

ostream& operator «(const void* pv);

ostream& operator «(streambuf* psb);

ostream& operator «(ostream& (*fcn)(ostream&));

ostream& operator «(ios& (*fcn)(ios&));

These overloaded operators insert their argument into the stream. With the last two
variations, you can use manipulators that are defined for both ostream and ios.

ostream::operator «

83

ostream& endl

Manipulators
ostream& endl

Remarks

endl

This manipulator, when inserted into an output stream, inserts a newline character and
then flushes the buffer.

ostream& ends

Remarks

ends

This manipulator, when inserted into an output stream, inserts a null-terminator
character. It is particularly useful for ostrstream objects.

ostream& flush

Remarks

flush

This manipulator, when inserted into an output stream, flushes the output buffer by
calling the streambuf: :sync member function.

See Also: ostream: :flush, streambuf: :sync

class ostream_withassign

#include <iostream.h>

The ostream_ withassign class is a variant of ostream that allows object assignment.
The predefined objects cout, cerr, and clog are objects of this class and thus may be
reassigned at run time to a different ostream object. For example, a program that
normally sends output to stdout could be temporarily directed to send its output to
a disk file.

Predefined Objects
The three predefined objects of class ostream_ withassign are connected as follows:

cout Standard output (file descriptor 1).

84

ostream_ withassign: :-ostream_ withassign

cerr Unit buffered standard error (file descriptor 2).

clog Fully buffered standard error (file descriptor 2).

Unit buffering, as used by cerr, means that characters are flushed after each insertion
operation. The objects cin, cerr, and clog are tied to cout so that use of any of these
will cause cout to be flushed.

Construction/Destruction - Public Members
ostream_ withassign Constructs an ostream_ withassign object.

-ostream_ withassign Destroys an ostream_ withassign object.

Operators - Public Members
operator = Assignment operator.

See Also: istream_ withassign

Member Functions
o stream_ withassign: : o stream_ withassign

ostream_ withassign(streambuf* psb);

ostream_ withassignO;

Parameter

Remarks

psb A pointer to an existing object of a streambuf-derived class.

The first constructor makes a ready-to-use object of type ostream_withassign,
with an attached streambuf object.

The second constructor makes an object but does not initialize it. You must
subsequently use the streambuf assignment operator to attach the streambuf
object, or use the ostream assignment operator to initialize this object to match
the specified object.

See Also: ostream_ withassign: :operator =

o stream_ withassign: : ~ostream_ withassign
-ostream_ withassignO;

Remarks
Destructor for the ostream_ withassign class.

85

ostream_ withassign: : operator =

Operators
o stream_ withassign: : operator

Remarks

Example

ostream& operator =(const ostream&_os);

ostream& operator =(streambuf* _sp);

The first overloaded assignment operator assigns the specified ostream object to this
ostream_ withassign object.

The second operator attaches a streambuf object to an existing ostream_ withassign
object, and initializes the state of the ostream_ withassign object. This operator is
often used in conjunction with the void-argument constructor.

filebuf fb("test.dat"); II Filebuf object attached to "test.dat"
cout = &fb; II fb associated with cout
cout « "testing"; II Message goes to "test.dat" instead of stdout

See Also: ostream_ withassign: :ostream_ withassign, cout

class ostrstream

#include <strstrea.h>

The ostrstream class supports output streams that have character arrays as a
destination. You can allocate a character array prior to construction, or the constructor
can internally allocate an expandable array. You can then use all the ostream
operators and functions to fill the array.

Be aware that there is a put pointer working behind the scenes in the attached
strstreambuf class. This pointer advances as you insert fields into the stream's array.
The only way you can make it go backward is to use the ostream: :seekp function. If
the put pointer reaches the end of user-allocated memory (and sets the ios::eof flag),
you must call clear before seekp.

Construction/Destruction-Public Members
ostrstream Constructs an ostrstream object.

-ostrstream Destroys an ostrstream object.

Other Functions-Public Members
pcount Returns the number of bytes that have been stored in the stream's buffer.

rdbuf Returns a pointer to the stream's associated strstreambuf object.

86

ostrstream:: -ostrstream

str Returns a character array pointer to the string stream's contents and freezes
the array.

See Also: strstreambuf, streambuf, strstream, istrstream

Member Functions
ostrstream: : ostrstream

ostrstreamO;

ostrstream(char* pch, int nLength, int nMode = ios::out);

Parameters

Remarks

pch A character array that is large enough to accommodate future output stream activity.

nLength The size (in characters) of pch. If 0, then pch is assumed to point to a null
terminated array and strlen(pch) is used as the length; if less than 0, the array is
assumed to have infinite length.

nMode The stream-creation mode, which must be one of the following enumerators
as defined in class ios:

• ios: :out Default; storing begins at pch.

• ios: :ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

• ios::app Same as ios::ate.

The first constructor makes an ostrstream object that uses an internal, dynamic buffer.

The second constructor makes an ostrstream object out of the first nLength characters of
the pch buffer. The stream will not accept characters once the length reaches nLength.

ostrstream: : --ostrstream

Remarks

-ostrstreamO;

Destroys an ostrstream object and its associated strstreambuf object, thus releasing
all internally allocated memory. If you used the void-argument constructor, the
internally allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously frozen
by an str or strstreambuf: : freeze function call.

See Also: ostrstream::str, strstreambuf::freeze

87

ostrstream: :pcount

ostrstream: :pcount
int pcountO const;

Return Value
Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

ostrstream: :rdbuf
strstreambuf* rdbufO const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also: ostrstream: :str

ostrstream::str
char* strO;

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, str freezes the array. You must not send characters to
a frozen stream, and you are responsible for deleting the array. You can, however,
subsequently unfreeze the array by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also: ostrstream: :ostrstream, ostrstream: :rdbuf, strstreambuf: : freeze

class stdiobuf

88

#include <stdiostr.h>

The run-time library supports three conceptual sets of I/O functions: iostreams
(C++ only), standard I/O (the functions declared in STDIO.H), and low-level I/O
(the functions declared in IO.H). The stdiobuf class is a derived class of streambuf
that is specialized for buffering to and from the standard I/O system.

Because the standard I/O system does its own internal buffering, the extra buffering
level provided by stdiobuf may reduce overall input/output efficiency. The stdiobuf
class is useful when you need to mix iostream I/O with standard I/O (printf and
so forth).

You can avoid use of the stdiobuf class if you use the filebuf class. You must also use
the stream class's ios::flags member function to set the ios::stdio format flag value.

Construction/Destruction-Public Members
stdiobuf Constructs a stdiobuf object from a FILE pointer.

-stdiobuf Destroys a stdiobuf object.

Other Functions-Public Members
stdiofile Gets the file that is attached to the stdiofile object.

See Also: stdiostream, filebuf, strstreambuf, ios::flags

Member Functions
stdiobuf:: stdiobuf

stdiobuf(FILE* fp);

Parameter

Remarks

fp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).

Objects of class stdiobuf are constructed from open standard I/O files, including
stdin, stdout, and stderr. The object is unbuffered by default.

stdiobuf: : --stdiobuf

Remarks

-stdiobufO;

Destroys a stdiobuf object and, in the process, flushes the put area. The destructor
does not close the attached file.

stdiobuf: : stdiofile
FILE* stdiofileO;

Remarks
Returns the standard I/O file pointer associated with a stdiobuf object.

stdiobuf: :stdiofile

89

stdiostream: :rdbuf

class stdiostream

#include <stdiostr.h>

The stdiostream class makes I/O calls (through the stdiobuf class) to the standard
I/O system, which does its own internal buffering. Calls to the functions declared in
STDIO.H, such as printf, can be mixed with stdiostream 110 calls.

This class is included for compatibility with earlier stream libraries. You can avoid use
of the stdiostream class if you use the ostream or istream class with an associated
filebuf class. You must also use the stream class's ios::flags member function to set
the ios: :stdio format flag value.

The use of the stdiobuf class may reduce efficiency because it imposes an extra level
of buffering. Do not use this feature unless you need to mix iostream library calls with
standard I/O calls for the same file.

Construction/Destruction-Public Members
stdiostream Constructs a stdiostream object that is associated with a standard

I/O FILE pointer.

-stdiostream Destroys a stdiostream object (virtual).

Other Functions-Public Members
rdbuf Gets the stream's stdiobuf object.

See Also: stdiobuf, ios::flags

Member Functions
stdiostream: :rdbuf

stdiobuf* rdbufO const;

Return Value
Returns a pointer to the stdiobuf buffer object that is associated with this stream.
The rdbuf function is useful when you need to call stdiobuf member functions.

stdiostream: : stdiostream
stdiostream(FILE* fp);

90

stdiostream: :-stdiostream

Parameter

Remarks

Example

fp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).
Could be stdin, stdout, or stderr.

Objects of class stdiostream are constructed from open standard I/O files. An
unbuffered stdiobuf object is automatically associated, but the standard I/O system
provides its own buffering.

stdiostream myStream(stdout);

stdiostream: : --stdiostream

Remarks

-stdiostreamO;

This destructor destroys the stdiobuf object associated with this stream; however, the
attached file is not closed.

class streambuf

#include <iostream.h>

All the iostream classes in the ios hierarchy depend on an attached streambuf class
for the actual I/O processing. This class is an abstract class, but the iostream class
library contains the following derived buffer classes for use with streams:

• filebuf Buffered disk file I/O.

• strstreambuf Stream data held entirely within an in-memory byte array.

• stdiobuf Disk I/O with buffering done by the underlying standard I/O system.

All streambuf objects, when configured for buffered processing, maintain a fixed
memory buffer, called a reserve area, that can be dynamically partitioned into a get
area for input, and a put area for output. These areas mayor may not overlap. With the
protected member functions, you can access and manipulate a get pointer for character
retrieval and a put pointer for character storage. The exact behavior of the buffers and
pointers depends on the implementation of the derived class.

The capabilities of the iostream classes can be extended significantly through the
derivation of new streambuf classes. The ios class tree supplies the programming
interface and all formatting features, but the streambuf class does the real work. The
ios classes call the streambuf public members, including a set of virtual functions.

91

class streambuf

The streambuf class provides a default implementation of certain virtual member
functions. The "Default Implementation" section for each such function suggests
function behavior for the derived class.

Character Input Functions-Public Members
in_avail Returns the number of characters in the get area.

sgetc Returns the character at the get pointer, but does not move the pointer.

snextc Advances the get pointer, then returns the next character.

sbumpc Returns the current character, and then advances the get pointer.

stossc Moves the get pointer forward one position, but does not return a character.

sputbackc Attempts to move the get pointer back one position.

sgetn Gets a sequence of characters from the streambuf object's buffer.

Character Output Functions-Public Members
oue waiting Returns the number of characters in the put area.

sputc Stores a character in the put area and advances the put pointer.

sputn Stores a sequence of characters in the streambuf object's buffer and advances
the put pointer.

Construction/Destruction-Public Members
-streambuf Virtual destructor.

Diagnostic Functions-Public Members
dbp Prints buffer statistics and pointer values.

Virtual Functions-Public Members
sync Empties the get area and the put area.

setbuf Attempts to attach a reserve area to the streambuf object.

seekoff Seeks to a specified offset.

seekpos Seeks to a specified position.

overflow Empties the put area.

underflow Fills the get area if necessary.

pbackfail Augments the sputbackc function.

Construction/Destruction-Protected Members
streambuf Constructors for use in derived classes.

Other Protected Member Functions-Protected Members

92

base Returns a pointer to the start of the reserve area.

ebuf Returns a pointer to the end of the reserve area.

bien Returns the size of the reserve area.

pbase Returns a pointer to the start of the put area.

pptr Returns the put pointer.

epptr Returns a pointer to the end of the put area.

eback Returns the lower bound of the get area.

gptr Returns the get pointer.

egptr Returns a pointer to the end of the get area.

setp Sets all the put area pointers.

setg Sets all the get area pointers.

pbump Increments the put pointer.

gbump Increments the get pointer.

setb Sets up the reserve area.

unbuffered Tests or sets the streambuf buffer state variable.

allocate Allocates a buffer, if needed, by calling doalloc.

doallocate Allocates a reserve area (virtual function).

See Also: streambuf: :doallocate, streambuf: : unbuffered

Member Functions
streambuf: : allocate

Protected ~

int allocateO;
END Protected

Return Value
Calls the virtual function doallocate to set up a reserve area. If a reserve area already
exists or if the streambuf object is unbuffered, allocate returns O. If the space
allocation fails, allocate returns EOF.

See Also: streambuf: :doallocate, streambuf: : unbuffered

streambuf: : base
Protected ~

char* baseO const
END Protected

streambuf:: base

93

streambuf::blen

Return Value
Returns a pointer to the first byte of the reserve area. The reserve area consists of
space between the pointers returned by base and ebuf.

See Also: streambuf::ebuf, streambuf::setb, streambuf::blen

streambuf: : bIen
Protected ~

int blenO const;
END Protected

Return Value
Returns the size, in bytes, of the reserve area.

See Also: streambuf::base, streambuf::ebuf, streambuf::setb

streambuf: :dbp

Remarks

Example

void dbpO;

Writes ASCII debugging information directly on stdout. Treat this function as part of
the protected interface.

STREAMBUF DEBUG INFO: this = 00E7:09DC
base()=00E7:0A0C. ebuf()-00E7:0C0C. blen()=512
eback()=0000:0000. gptr()=0000:0000. egptr()=0000:0000
pbase()=00E7:0A0C. pptr()=00E7:0A22. epptr()=00E7:0C0C

streambuf: :doailocate
Protected ~

virtual int doallocateO;
END Protected

Return Value

Remarks

94

Called by allocate when space is needed. The doallocate function must allocate a
reserve area, then call setb to attach the reserve area to the streambuf object. If the
reserve area allocation fails, doallocate returns EOF.

By default, this function attempts to allocate a reserve area using operator new.

See Also: streambuf::allocate, streambuf::setb

streambuf: :eback
Protected ~

char* ebackO const;
END Protected

Return Value
Returns the lower bound of the get area. Space between the eback and gptr pointers is
available for putting a character back into the stream.

See Also: streambuf::sputbackc, streambuf::gptr

streambuf: :ebuf
Protected ~

char* ebufO const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the reserve area. The reserve area
consists of space between the pointers returned by base and ebuf.

See Also: streambuf::base, streambuf::setb, streambuf::blen

streambuf: :egptr
Protected ~

char* egptrO const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the get area.

See Also: streambuf::setg, streambuf::eback, streambuf::gptr

streambuf: :epptr
Protected ~

char* epptrO const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the put area.

See Also: streambuf: :setp, streambuf: :pbase, streambuf: :pptr

streambuf: :epptr

95

streambuf::gbump

streambuf: : gbump
Protected ~

void gbump(int nCount);

END Protected

Parameter

Remarks

Count The number of bytes to increment the get pointer. May be positive or negative.

Increments the get pointer. No bounds checks are made on the result.

See Also: streambuf: :pbump

streambuf: : gptr
Protected ~

char* gptrO const;
END Protected

Return Value
Returns a pointer to the next character to be fetched from the streambuf buffer. This
pointer is known as the get pointer.

See Also: streambuf: :setg, streambuf: :eback, streambuf: :egptr

streambuf: : in_avail
int in_availO const;

Return Value
Returns the number of characters in the get area that are available for fetching. These
characters are between the gptr and egptr pointers and may be fetched with a
guarantee of no errors.

streambuf: : out_waiting
int oue waitingO const;

Return Value

96

Returns the number of characters in the put area that have not been sent to the final
output destination. These characters are between the pbase and pptr pointers.

streambuf: : overflow
virtual int overflow(int nCh = EOF) = 0;

Return Value
EOF to indicate an error.

Parameter

Remarks

nCh EOF or the character to output.

The virtual overflow function, together with the sync and underflow functions,
defines the characteristics of the streambuf-derived class. Each derived class might
implement overflow differently, but the interface with the calling stream class is the
same.

The overflow function is most frequently called by public streambuf functions like
sputc and sputn when the put area is full, but other classes, including the stream
classes, can call overflow anytime.

The function "consumes" the characters in the put area between the pbase and pptr
pointers and then reinitializes the put area. The overflow function must also consume
nCh (if nCh is not EOF), or it might choose to put that character in the new put area
so that it will be consumed on the next call.

The definition of "consume" varies among derived classes. For example, the filebuf
class writes its characters to a file, while the strsteambuf class keeps them in its
buffer and (if the buffer is designated as dynamic) expands the buffer in response to a
call to overflow. This expansion is achieved by freeing the old buffer and replacing it
with a new, larger one. The pointers are adjusted as necessary.

Default Implementation
No default implementation. Derived classes must define this function.

See Also: streambuf::pbase, streambuf::pptr, streambuf::setp, streambuf::sync,
streambuf: :underflow

streambuf: :pbackfail
virtual int pbackfail(int nCh);

Return Value
The nCh parameter if successful; otherwise EOF.

Parameter
nCh The character used in a previous sputbackc call.

streambuf: :pbackfail

97

streambuf: :pbase

Remarks
This function is called by sputbackc if it fails, usually because the eback pointer
equals the gptr pointer. The pbackfail function should deal with the situation, if
possible, by such means as repositioning the external file pointer.

Default implementation
Returns EOP.

See Also: streambuf: :sputbackc

streambuf: :pbase
Protected ~

char* pbaseO const;
END Protected

Return Value
Returns a pointer to the start of the put area. Characters between the pbase pointer and
the pptr pointer have been stored in the buffer but not flushed to the final output
destination.

See Also: streambuf::pptr, streambuf::setp, streambuf::ouCwaiting

streambuf: :pbump
Protected ~

void pbump(int nCount);

END Protected

Parameter

Remarks

nCount The number of bytes to increment the put pointer. May be positive or
negative.

Increments the put pointer. No bounds checks are made on the result.

See Also: streambuf: :gbump, streambuf: :setp

streambuf: :pptr

98

Protected ~

char* pptrO const;
END Protected

Return Value
Returns a pointer to the first byte of the put area. This pointer is known as the put
pointer and is the destination for the next character(s) sent to the streambuf object.

See Also: streambuf: :epptr, streambuf: :pbase, streambuf: :setp

streambuf: : s bumpc
int sbumpcO;

Return Value
Returns the current character, then advances the get pointer. Returns EOF if the get
pointer is currently at the end of the sequence (equal to the egptr pointer).

See Also: streambuf::epptr, streambuf::gbump

streambuf: : seekoff

streambuf:: seekoff

virtual streampos seekoff(streamoff off, ios::seek_dir dir, int nMode = ios::in I ios::out);

Return Value
The new position value. This is the byte offset from the start of the file (or string). If
both ios::in and ios::out are specified, the function returns the output position. If the
derived class does not support positioning, the function returns EOF.

Parameters

Remarks

off The new offset value; streamoff is a typedef equivalent to long.

dir One of the following seek directions specified by the enumerated type seek_dir:

• ios::beg Seek from the beginning of the stream.

• ios: :cur Seek from the current position in the stream.

• ios: :end Seek from the end of the stream.

nMode An integer that contains a bitwise OR (I) combination of the enumerators
ios::in and ios::out.

Changes the position for the streambuf object. Not all derived classes of streambuf
need to support positioning; however, the filebuf, strstreambuf, and stdiobuf classes
do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

99

streambuf: :seekpos

Default Implementation
Returns EOF.

See Also: streambuf::seekpos

streambuf: : seekpos
virtual streampos seekpos(streampos pos, int nMode = ios::in I ios::out);

Return Value
The new position value. If both ios::in and ios::out are specified, the function returns
the output position. If the derived class does not support positioning, the function
returns EOF.

Parameters

Remarks

pos The new position value; streampos is a typedef equivalent to long.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the OR (I) operator. See ofstream::ofstream for a listing of the
enumerators.

Changes the position, relative to the beginning of the stream, for the streambuf
object. Not all derived classes of streambuf need to support positioning; however, the
filebuf, strstreambuf, and stdiobuf classes do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

Default Implementation
Calls seekoff((streamoff) pos, ios::beg, nMode). Thus, to define seeking in a
derived class, it is usually necessary to redefine only seekoff.

See Also: streambuf: :seekoff

streambuf: : setb
Protected ~

void setb(char* pb, char* peb, int nDelete = 0);
END Protected

Parameters

100

pb The new value for the base pointer.

peb The new value for the ebuf pointer.

nDelete Flag that controls automatic deletion. If nDelete is not 0, the reserve area
will be deleted when: (1) the base pointer is changed by another setb call, or (2) the
streambuf destructor is called.

Remarks
Sets the values of the reserve area pointers. If both pb and peb are NULL, there is no
reserve area. If pb is not NULL and peb is NULL, the reserve area has a length of O.

See Also: streambuf::base, streambuf::ebuf

streambuf: : setbuf
virtual streambuf* setbuf(char* pr, int nLength);

Return Value
A streambuf pointer if the buffer is accepted; otherwise NULL.

Parameters

Remarks

pr A pointer to a previously allocated reserve area of length nLength. A NULL value
indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

Attaches the specified reserve area to the streambuf object. Derived classes mayor
may not use this area.

Default Implementation
Accepts the request if there is not a reserved area already.

streambuf: : setg
Protected ~

void setg(char* peb, char* pg, char* peg);

END Protected

Parameters

Remarks

peb The new value for the eback pointer.

pg The new value for the gptr pointer.

peg The new value for the egptr pointer.

Sets the values for the get area pointers.

See Also: streambuf::eback, streambuf::gptr, streambuf::egptr

streambuf:: setg

101

streambuf: :setp

streambuf: : setp
Protected ~

void setp(char* pp, char* pep);

END Protected

Parameters
pp The new value for the pbase and pptr pointers.

pep The new value for the epptr pointer.

Remarks
Sets the values for the put area pointers.

See Also: streambuf::pptr, streambuf::pbase, streambuf::epptr

streambuf:: sgetc

Remarks

int sgetcO;

Returns the character at the get pointer. The sgetc function does not move the get
pointer. Returns EOF if there is no character available.

See Also: streambuf: :sbumpc, streambuf: :sgetn, streambuf: :snextc,
streambuf: :stossc

streambuf:: sgetn
int sgetn(char* pch, int nCount);

Return Value
The number of characters fetched.

Parameters

Remarks

102

pch A pointer to a buffer that will receive characters from the streambuf object.

nCount The number of characters to get.

Gets the nCount characters that follow the get pointer and stores them in the area
starting at pch. When fewer than nCount characters remain in the streambuf object,
sgetn fetches whatever characters remain. The function repositions the get pointer to
follow the fetched characters.

See Also: streambuf: :sbumpc, streambuf: :sgetc, streambuf: :snextc,
streambuf: :stossc

streambuf:: snextc
int snextcO;

Return Value
First tests the get pointer, then returns EOF if it is already at the end of the get area.
Otherwise, it moves the get pointer forward one character and returns the character
that follows the new position. It returns EOF if the pointer has been moved to the end
of the get area.

See Also: streambuf: :sbumpc, streambuf: :sgetc, streambuf: :sgetn,
streambuf: :stossc

streambuf: : sputbackc
int sputbackc(char ch);

Return Value
EOF on failure.

Parameter

Remarks

ch The character to be put back to the streambuf object.

Moves the get pointer back one character. The ch character must match the character
just before the get pointer.

See Also: streambuf: :sbumpc, streambuf: :pbackfail

streambuf: : sputc
int sputc(int nCh);

Return Value
The number of characters successfully stored; EOF on error.

Parameter

Remarks

nCh The character to store in the streambuf object.

Stores a character in the put area and advances the put pointer.

This public function is available to code outside the class, including the classes
derived from ios. A derived streambuf class can gain access to its buffer directly
by using protected member functions.

See Also: streambuf: :sputn

streambuf::sputc

103

streambuf: :sputn

streambuf: : sputn
int sputn(const char* pch, int nCount);

Return Value
The number of characters stored. This number is usually nCount but could be less if
an error occurs.

Parameters

Remarks

pch A pointer to a buffer that contains data to be copied to the streambuf object.

nCount The number of characters in the buffer.

Copies nCount characters from pch to the streambuf buffer following the put pointer.
The function repositions the put pointer to follow the stored characters.

See Also: streambuf::sputc

streambuf: :stossc

Remarks

void stosscO;

Moves the get pointer forward one character. If the pointer is already at the end of the
get area, the function has no effect.

See Also: streambuf: :sbumpc, streambuf: :sgetn, streambuf: :snextc,
streambuf: :sgetc

streambuf: : streambuf
Protected ~

streambufO;
streambuf(char* pr, int nLength);

END Protected

Parameters

104

pr A pointer to a previously allocated reserve area of length nLength. A NULL value
indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

streambuf: :unbuffered

Remarks
The first constructor makes an uninitialized streambuf object. This object is not
suitable for use until a setbuf call is made. A derived class constructor usually calls
setbuf or uses the second constructor.

The second constructor initializes the streambuf object with the specified reserve area
or marks it as unbuffered.

See Also: streambuf::setbuf

streambuf:: --streambuf

Remarks

Protected ~

virtual-streambufO;

END Protected

The streambuf destructor flushes the buffer if the stream is being used for output.

streambuf: : sync
virtual int syncO;

Return Value

Remarks

EOF if an error occurs.

The virtual sync function, with the overflow and underflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
sync differently, but the interface with the calling stream class is the same.

The sync function flushes the put area. It also empties the get area and, in the process,
sends any unprocessed characters back to the source, if necessary.

Default Implementation
Returns 0 if the get area is empty and there are no more characters to output;
otherwise, it returns EOF.

See Also: streambuf::overflow

streambuf: : unbuffered
Protected ~

void unbuffered(int nState);
int unbufferedO const;

END Protected

105

streambuf: :underflow

Parameter

Remarks

nState The value of the buffering state variable; 0 = buffered, nonzero = unbuffered.

The first overloaded unbuffered function sets the value of the streambuf object's
buffering state. This variable's primary purpose is to control whether the allocate
function automatically allocates a reserve area.

The second function returns the current buffering state variable.

See Also: streambuf: :allocate, streambuf: :doallocate

streambuf: : underflow

Remarks

mfvirtual int underflowO = 0;

The virtual underflow function, with the sync and overflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
underflow differently, but the interface with the calling stream class is the same.

The underflow function is most frequently called by public streambuf functions like
sgetc and sgetn when the get area is empty, but other classes, including the stream
classes, can call underflow anytime.

The underflow function supplies the get area with characters from the input source. If
the get area contains characters, underflow returns the first character. If the get area is
empty, it fills the get area and returns the next character (which it leaves in the get
area). If there are no more characters available, then underflow returns EOF and
leaves the get area empty.

In the strstreambuf class, underflow adjusts the egptr pointer to access storage that
was dynamically allocated by a call to overflow.

Default Implementation
No default implementation. Derived classes must define this function.

class strstream

106

#include <strstrea.h>

The strstream class supports I/O streams that have character arrays as a source and
destination. You can allocate a character array prior to construction, or the constructor
can internally allocate a dynamic array. You can then use all the input and output
stream operators and functions to fill the array.

Be aware that a put pointer and a get pointer are working independently behind the
scenes in the attached strstreambuf class. The put pointer advances as you insert
fields into the stream's array, and the get pointer advances as you extract fields. The
ostream::seekp function moves the put pointer, and the istream::seekg function
moves the get pointer. If either pointer reaches the end of the string (and sets the
ios: :eof flag), you must call clear before seeking.

Construction/Destruction-Public Members
strstream Constructs a strstream object.

-strstream Destroys a strstream object.

Other Functions-Public Members
pcount Returns the number of bytes that have been stored in the stream's buffer.

rdbuf Returns a pointer to the stream's associated strstreambuf object.

str Returns a pointer to the string stream's character buffer and freezes it.

See Also: strstreambuf, streambuf, istrstream, ostrstream

Member Functions
strstream: :pcount

int pcountO const;

Return Value
Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

strstream: :rdbuf
strstreambuf* rdbufO const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also: strstream: :str

strstream: :rdbuf

107

strstream::str

strstream: : str
char* strO;

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, then str freezes the array. You must not send characters to
a frozen stream, and you are responsible for deleting the array. You can unfreeze the
the stream by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also: strstreambuf: :freeze, strstream: :rdbuf

strstream: : strs tream
strstreamO;

strstream(char* pch, int nLength, int nMode);

Parameters

Remarks

108

pch A character array that is large enough to accommodate future output stream
activity.

nLength The size (in characters) of pch. If 0, pch is assumed to point to a
null-terminated array; if less than 0, the array is assumed to have infinite length.

nMode The stream creation mode, which must be one of the following enumerators
as defined in class ios:

• ios: :in Retrieval begins at the beginning of the array.

• ios: :out By default, storing begins at pch.

• ios::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

• ios: :app Same as ios: :ate.

The use of the ios::in and ios::out flags is optional for this class; both input and
output are implied.

The first constructor makes an strstream object that uses an internal, dynamic buffer
that is initially empty.

The second constructor makes an strstream object out of the first nLength characters
of the psc buffer. The stream will not accept characters once the length reaches
nLength.

strstream: : -strstream

Remarks

-strstreamO;

Destroys a strstream object and its associated strstreambuf object, thus releasing all
internally allocated memory. If you used the void-argument constructor, the internally
allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously frozen
by calling rdbuf->freeze(0).

See Also: strstream: :rdbuf

class strstreambuf

#include <strstrea.h>

The strstreambuf class is a derived class of streambuf that manages an in-memory
character array.

The file stream classes, ostrstream, istrstream, and strstream, use strstreambuf
member functions to fetch and store characters. Some of these member functions are
virtual functions defined for the streambuf class.

The reserve area, put area, and get area were introduced in the streambuf class
description. For strsteambuf objects, the put area is the same as the get area, but the
get pointer and the put pointer move independently.

Construction/Destruction-Public Members
strstreambuf Constructs a strstreambuf object.

-strstreambuf Destroys a strstreambuf object.

Other Functions-Public Members
freeze Freezes a stream.

str Returns a pointer to the string.

See Also: istrstream, ostrstream, filebuf, stdiobuf

strstream:: -strstream

109

strstreambuf: :freeze

Member Functions
strstreambuf: : freeze

void freeze(int n = 1);

Parameter

Remarks

n A 0 value permits automatic deletion of the current array and its automatic growth
(if it is dynamic); a nonzero value prevents deletion.

If a strstreambuf object has a dynamic array, memory is usually deleted on
destruction and size adjustment. The freeze function provides a way to prevent that
automatic deletion. Once an array is frozen, no further input or output is permitted.
The results of such operations are undefined.

The freeze function can also unfreeze a frozen buffer.

See Also: strstreambuf: :str

strstreambuf: : str
char* strO;

Return Value
Returns a pointer to the object's internal character array. If the strstreambuf object
was constructed with a user-supplied buffer, that buffer address is returned. If the
object has a dynamic array, str freezes the array. You must not send characters to
a frozen strstreambuf object, and you are responsible for deleting the array. If a
dynamic array is empty, then str returns NULL.

Use the freeze function with a 0 parameter to unfreeze a strstreambuf object.

See Also: strstreambuf: : freeze

strstreambuf: : strstreambuf

110

strstreambufO;

strstreambuf(int nBytes);

strstreambuf(char* pch, int n, char* pstart = 0);

strstreambuf(unsigned char* puch, int n, unsigned char* pustart = 0);

strstreambuf(signed char* psch, int n, signed char* psstart = 0);

strstreambuf(void* (*falloc)(long), void (*ffree)(void*));

strstreambuf:: strstreambuf

Parameters

Remarks

llBytes The initial length of a dynamic stream buffer.

pch, puch, psch A pointer to a character buffer that will be attached to the object.
The get pointer is initialized to this value.

11 One of the following integer parameters:

• positive 11 bytes, starting at pch, is used as a fixed-length stream buffer.

• 0 The pch parameter points to the start of a null-terminated string that
constitutes the stream buffer (terminator excluded).

• negative The pch parameter points to a stream buffer that continues
indefinitely.

• pstart, pustart, psstart The initial value of the put pointer.

falloc A memory-allocation function with the prototype void * falloc(long). The
default is new.

ffree A function that frees allocated memory with the prototype void ffree(void *).
The default is delete.

The four streambuf constructors are described as follows:

Constructor

strstreambufO

strstreambuf(int)

strstreambuf(char*, int, char*)

strstreambuf(void*(*), void(*))

Description

Constructs an empty strstreambuf object with
dynamic buffering. The buffer is allocated internally
by the class and grows as needed, unless it is frozen.

Constructs an empty strstreambuf object with a
dynamic buffer n bytes long to start with. The buffer
is allocated internally by the class and grows as
needed, unless it is frozen.

Constructs a strstreambuf object from
already-allocated memory as specified by the
arguments. There are constructor variations for both
unsigned and signed character arrays.

Constructs an empty strstreambuf object with
dynamic buffering. The faUoe function is called for
allocation. The long parameter specifies the buffer
length and the function returns the buffer address. If
the faUoe pointer is NULL, operator new is used. The
ffree function frees memory allocated by faUoe. If the
ffree pointer is NULL, the operator delete is used.

111

strstreambuf:: -strstreambuf

strstreambuf: : -strstreambuf

Remarks

112

-strstreambufO;

Destroys a strstreambuf object and releases internally allocated dynamic memory
unless the object is frozen. The destructor does not release user-allocated memory.

«(insertion operator) 4, 11-12
ostream class 83

= (assignment operator)
istream class 70
ostream class 86

» (extraction operator) 14, 18
istream class 68

A
adjustfield data member, ios class 55
allocate member function, streambuf class 93
Arguments, inserting into streams,

ostream::operator« 83
Arrays

internal character, returning pointer to,
ostrstream::str 88

strstreambuf objects, preventing memory deletion,
strstreambuf: : freeze 110

Assignment operator
istream class 70
ostream class 86

attach member function
filebuf class 31
fstream class 35
ifstream class 40
of stream class 74

Attaching

B

filebuf objects to specified open file,
filebuf:: attach 31

streams
to already open file, ostream::attach 74
to specified open file, ifstream::attach 40
to specified open, filefstream: : attach 35

bad member function
ios class 46
of stream class 9

badbit member function, ios class, ios::rdstate 52
base member function, streambuf class 93
basefield data member, ios class 56

Index

beg, (beg, operator), ios class, streambuf::seekpos 100
Binary output files, output streams 10-11
Binary/text mode, setting

filebuf objects, filebuf::setmode 34
stream's filebuf object, ifstream::setmode 44
streams, ios& binary 56
streams,ofstream::setmode 78

bitalloc member function, ios class 47
bIen member function, streambuf class 94
Book, overview v
Buffer-deletion flags, assigning value for stream,

ios::delbuf 47
Buffering

output streams, effects 10
state, setting for streambuf object,

stream::unbuffered 105
Buffers, flushing, ostream;;flush 80
Bytes, extracting from streams, istream 67

c
c++ synchronizing streams with standard C stdio

streams, ios::sync_with_stdio 53
Changing position

relative to stream beginning,
streambuf::seekpos 100

relative to stream beginning,streambuf::seekpos 100
streambuf objects, streambuf::seekoff 99
streams,ostream::seekp 81

Character arrays, returning pointer to string stream's,
istrstream: :str 73

Characters
extracting

from stream, discarding, istream: : ignore 65
putting back into stream, istream: :putback 66

fill, setting for stream, setfill 57
inserting into output stream, ostream: :put 81
newline, inserting into output streams,

ostream& end I 84
null-terminator, inserting into output streams,

ostream& ends 84

113

Index

114

Characters (continued)
returning number extracted by last unformatted input

function, istream::gcount 63
returning without extracting, istream: :peek 66

clear member function
ios class 47
of stream class 9

Clearing
error-bits, ios::clear 47
format flags

ios: :unsetf 54
streams 57

close member function
filebuf class 32

ifstream::close 41
ofstream::close 74

ifstream class 41
input streams 18
of stream class 9, 74

Closing files
associated with filebuf object, fstream::close 74
attached to filebuf object, filebuf::close 32
filebuf objects, ifstream: :close 41

Constructors
filebuf 32
fstream 36
ifstream 41
ios 50
iostream 60
istream 66
istrstream 72
of stream 75
ostream 81
ostrstream 87
stdiobuf 89
stdiostream 90
streambuf 104
strstream 108
strstreambuf 110

Counting bytes stored in stream buffers,
ostrstream: :pcount 88

Creating
filebuf objects to specified open file,

filebuf::filebuf 32
fstream objects, fstream::fstream 36
ifstream objects, ifstream::ifstream 41
Iostream_init objects,

Iostream_init: :Iostream_init 61
istream objects, istream::istream 66

Creating (continued)
istream_ withassign objects,

istream_ withassign: :istream_ withassign 70
istrstream objects, istrstream: :istrstream 72
of stream objects, of stream: :ofstream 75
ostream objects

iostream: :iostream 60
ostream::ostream 81

ostream_ withassign objects,
ostream_ withassign: :ostream_ withassign 85

ostrstream objects, ostrstream::ostrstream 87
output file streams 3
stdiobuf objects, stdiobuf::stdiobuf 89
stdiostream objects, stdiostream::stdiostream 90
streambuf objects, streambuf::streambuf 104
strstream objects, strstream::strstream 108
strstreambuf objects, strstreambuf: :strstreambuf 110

Customizing output stream manipulators 12

D
Data members, ios class 55
Data, extracting from streams, istream::get 63-64
dbp member function, streambuf class 94
Debugging using stdout, streambuf::dbp 94
delbuf member function, ios class 47
Destroying

fstream objects, fstream::-fstream 38
ifstream objects, ifstream::-ifstream 42
iostream objects, iostream::-iostream 60
Iostream_init objects,

Iostream_init:: - Iostream_init 61
istream objects, istream::-istream 66
istream_ withassign objects,

istream_ withassign: :-istream_ withassign 70
istrstream objects, istrstream::-istrstream 72
of stream objects, ofstream::-ofstream 76
strstreambuf objects,

strstreambuf::-strstreambuf 112
Destroying

ostream objects, ostream::-ostream 81
ostream_ withassign objects,

ostream_ withassign:: -ostream_ withassign 85
ostrstream objects, ostrstream::-ostrstream 87
stdiobuf objects, stdiobuf::-stdiobuf 89
stdiostream objects, stdiostream::-stdiostream 91
streambuf objects, streambuf::-streambuf 105
strstream objects, strstream::-strstream 109

Destructors
-filebuf 33
-fstream 38
-ifstream 42
-ios 51
-iostream 60
-Iostream_init 61
-istream 66
-istream_ withassign 70
-istrstream 72
-of stream 76
-ostream 81
-ostream_ withassign 85
-ostrstream 87
-stdiobuf 89
-stdiostream 91
-streambuf 105
-strstream 109
-strstreambuf 112

doallocate member function, streambuf class 94

E
eatwhite member function, istream class 62
eback member function, streambuf class 95
ebuf member function, streambuf class 95
egptr member function, streambuf class 95
eof member function

ios class 48
of stream class 9

eofbit member function, ios class, ios::rdstate 52
epptr member function, streambuf class 95
Error bits

setting or clearing, ios::clear 47
testing if clear, ios::good 50

Errors
extraction 14
110, testing for serious, ios::bad 46
processing, of stream class member functions 9
testing 110, ios::fai1 48

Extracting white space from streams, istream& ws 69
Extraction operators

input streams 14
istream class 68
overloading, input streams 18
testing for 14
using 14

Index

F
fail member function

ios class 48
of stream class 9

failbit member function
fstream::open 38
ifstream::attach 40
ifstream: :open 43
ios::rdstate 52
istream::get 63
ofstream::attach 74
ofstream::open 77

failbit member function, ios class, fstream::attach 35
fd member function

filebuf class 32
fstream class 36
ifstream class 41
of stream class 74

File descriptors
associated with stream, returning, ifstream::fd 41
associated with streams, returning, fstream::fd 36
returning for filebuf object, filebuf::fd 32
streams, returning, ofstream::fd 74

filebuf class
consume defined 97
described 31
member functions

-filebuf 33
attach 31
close 32,41, 74
fd 32
filebuf 32
is_open 33
open 33
setmode 34

filebuf constructor 32
-filebuf destructor 33
filebuf objects

attaching reserve area, fstream: :setbuf 39
attaching specified reserve area to stream

ifstream::setbuf 43 '
buffer associated with stream, returning pointer,

ifstream: :rdbuf 43
closing and disconnecting, ifstream::close 41
closing connected file, filebuf::-filebuf 33
connecting to specified open file, filebuf: : attach 31
constructors, ifstream: :ifstream 41
creating, filebuf::filebuf 32
destroying, ifstream::-ifstream 42

115

Index

116

filebuf objects (continued)
disconnecting file and flushing, filebuf: :close 32
fstream constructors, fstream: :fstream 36
opening disk file for stream, ifstream::open 43
returning associated file descriptor, filebuf::fd 32
setting binary/text mode

filebuf::setmode 34
fstream::setmode 39

streams
attaching specified reserve area,

ofstream::setbuf 77
closing,ofstream::close 74
opening file for attachment, of stream: :open 77
returning pointer to associated,

ofstsream::rdbuf 77
testing for connection to open disk file,

filebuf::is_open 33
Files

closing, filebuf objects, filebuf::-filebuf 33
disconnecting from filebuf object, filebuf::close 32
end of, testing, ios: :eof 48
name to be opened during construction,

filebuf::open 33
open

testing streams, ofstream::is_open 75
testing to attach to stream, ifstream: :is_open 43

opening, attach to stream's filebuf object,
fstream::open 38

testing for
connection to open, filebuf::is_open 33
stream attachment, fstream::is_open 38

fill member function, ios class 48
Flags

buffer-deletion, assigning value for stream,
ios::delbuf 47

error-state, setting or clearing, ios::clear 47
format clearing, ios::unsetf 54
format flag bits, defining, ios::bitalloc 47
output file stream 7-8
setting specified format bits, ios::setf 52
stream's internal variable, setting, ios::flags 49

flags member function, ios class 49
floatfield data member, ios class 56
Floating point

format flag bits, obtaining, ios::floatfield 56
precision variable

setting for stream, setprecision 58
setting, ios: :precision 51

flush member function, ostream class 80

Flushing
output buffers, ostream& flush 84
stream buffers, ostream: :flush 80

Format
bits, setting, ios::setf 52
conversion base, setting to 10, ios& dec 57
conversion base, setting to 16, ios& hex 57
conversion base, setting to 8, ios& oct 57
flag bits, defining, ios::bitalloc 47

Format flags
clearing, ios::unsetf 54
streams

clearing specified, resetiosflags 57
setting, setiosflags 58

freeze destructor, 87
freeze member function, strstreambuf class 110
fstream class

constructor 36
described 18,34
member functions

-fstream 38
attach 35
fd 36
fstream 36
is_open 38
open 38
rdbuf 39
setbuf 39
setmode 39

-fstream destructor 38
fstream objects, creating, fstream::fstream 36

G
gbump member function, streambuf class 96
gcount member function, istream class 63
Get areas

returning
lower bound, streambuf: :eback 95
number of character available for fetching,

streambuf::in_avail 96
pointer to byte after last, streambuf::egptr 95

setting pointer values, streambuf::setg 101
get member function

input streams 16
istream class 63

Get pointers
advancing after returning current character,

streambuf::sbumpc 99
following fetched characters, streambuf::sgetn 102
getting value of, istream: :tellg 68
incrementing, streambuf::gbump 96
moving

back, streambuf::sputbackc 103
forward one character, streambuf::stossc 104

returning
character at, streambuf::sgetc 102
to next character to be fetched from streambuf,

streambuf::gptr 96
testing, streambuf::snextc 103

getline member function
input streams 16
istream class 64

Getting stream position, ostream: :tellp 82
good member function

ios class 50
of stream class 9

goodbit member function, ios class, ios::rdstate 52
gptr member function, streambuf class 96

H
hex member function, ios class, ios::bitalloc 47
HR manipulator

ios class 56-57
istream class 69
ostream class 84

HR manipulator
ios class 57

I/O
called before insert operations, ostream::opfx 80
clearing format flags, ios::unsetf 54
errors

determining if error bits are set, ios::operator
!O 55

returning current specified error state,
ios: :rdstate 52

testing for serious, ios::bad 46
testing if error bits are clear, ios::good 50
testing, ios::fail 48

fill character, setting, setfill 57

Index

I/O (continued)
format flags

clearing specified, resetiosflags 57
setting, setiosflags 58

insert operations, called after, ostream::osfx 80
masks, padding flag bits, ios::adjustfield 55
obtaining floating-point format flag bits,

ios::floatfield 56
obtaining radix flag bits, ios::basefield 56
ostream objects, creating, iostream::iostream 60
providing object state variables without providing

class derivation, ios::xalloc 55
setting

floating-point precision variable,
ios: :precision 51

specified format bits, ios::setf 52
stream's mode to text, ios& text 59

streams
setting internal floating-point precision variable,

setprecision 58
synchronizing C++ with standard C stdio,

ios::sync_with_stdio 53
tying to specified ostream, ios::tie 53

testing for end-of-file, ios::eof 48
virtual overflow function, streambuf::overflow 97

I/O stream buffers, returning number of bytes stored in,
ostrstream: :pcount 88

I/O stream classes See iostream classes
I/O streams

assigning istream object to istream_ withassign
object, istream_withassign::operator = 70

attaching to specified open file, fstream::attach 35
called

after extraction operations, istream::isfx 65
before extraction operations, istream: :ipfx 65

changing get pointer,istream::seekg 67
extracting

bytes from streams,istream::read 67
data from, istream::get 63,64
white space from, istream: :eatwhite 62
discarding characters, istream::ignore 65

extraction operators, istream::operator» 68
getting value of get pointer, istream::tellg 68
manipulators, custom 22
putting extracted character back into stream,

istream::putback 66
returning character without extracting,

istream: :peek 66

117

Index

118

I/O streams (continued)
setting internal field width variable 54
synchronizing internal buffer with external character

source, istream::sync 67
ifstream class

described 13,40
member functions

-ifstream 42
attach 40
close 41
fd 41
ifstream 41
is_open 43
open 43
rdbuf 43
setbuf 43
setmode 44

ifstream constructor 41
-ifstream destructor 42
ifstream objects

creating, ifstream::ifstream 41
destroying, ifstream::-ifstream 42

ignore member function, istream class 65
in member function, ios class

streambuf::seekoff 99
streambuf::seekpos 100

in_avail member function, streambuf class 96
init member function, ios class 50
Input streams

described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
manipulators 15
manipulators, custom 22
objects, constructing

input file stream constructors 13
input string stream constructors 14

Inserting
arguments into streams, ostream::operator« 83
characters into output stream, ostream: :put 81

insertion operators
ostream class 83
overloading 11-12
using 4

Internal character arrays
returning pointer from stream, ostrstream::str 88
strstream class, returning pointer, strstream::str 108

Internal field width variable, setting, ios::width 54
Internal fill character variable, setting, ios::fill 48
ios class

constructor, ios::ios 50
data members

adjustfield 55
basefield 56
floatfield 56
operator 55

described 44
manipulators, HR 56
member functions

-ios 51
bad 46
badbit 52
bitalloc 47
clear 47
delbuf 47
eof 48
eofbit 52
fail 48
failbit 35, 38, 40, 43, 52, 63, 74, 77
fill 48
flags 49
good 50
goodbit 52
hex 47
in 99-100
init 50
ios 50
iword 51
left 47
nocreate 38,43, 77
out 99-100
precision 51
pword 52
rdbuf 52
rdstate 52
setf 52
stdio 53, 80
sync_ with_stdio 53
tie 53
unitbuf 80
unsetf 54
width 54
xalloc 55

ios class (continued)
operators 55
virtual destructor, ios: :-ios 51

ios constructor 50
-ios destructor 51
ios enumerators 52
iostream class

described 59
member functions

-iostream 60
-Iostream_init 61
iostream 60
Iostream_init 61

output streams, manipulators 21
iostream class library 20-23
iostream classes

flags 7-8
fstream class 18
hierarchy 2
input streams 15

described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
member functions 15-18
objects, constructing 13-14

output streams
binary output files 10-11
buffering, effects 10
deriving 23-24,26-28
format control 4-7
insertion operator, overloading 11-12
insertion operators 4
manipulators 19-20,22
manipulators, custom 12
objects, constructing 3
of stream class 2
ofstream class member functions 7-9
ostream class 2
ostrstream class 3

strstream class 18
use 1

iostream constructor 60
-iostream destructor 60
iostream objects, destroying, iostream::-iostream 60

Iostream_init class
described 60
member function, iostream class 61

- Iostream_init destructor 61
Iostream_init objects

constructor, Iostream_init: :Iostream_init 61
destructor,Iostream_init::-Iostream_init 61

ipfx member function, istream class 65
is_open member function

filebuf class 33
fstream class 38
ifstream class 43
of stream class 75

isfx member function, istream class 65
istream class

described 13,61
extraction operators, istream::operator» 68
manipulators, HR 69
member functions

-istream 66
-istream_ withassign 70
close 18
eatwhite 62
gcount 63
get 16,63
getline 16, 64
ignore 65
ipfx 65
isfx 65
istream 66
istream_ withassign 70
open 15
peek 66
putback 66
read 16-17,67
seekg 17-18,67
sync 67
tellg 17-18,68

operators 68, 70
istream constructor 66
-istream destructor 66
istream objects

assigning to istream_ withassign object,
istream_withassign::operator = 70

creating, istream: :istream 66
destroying, istream::-istream 66

istream_ withassign class described 69
-istream_ withassign destructor 70

Index

istream_ withassign member function, istream class 70

119

Index

120

istream_ withassign objects
creating, istream_ withassign: :istream_ withassign 70
destroying,

istream_ withassign: :-istream_ withassign 70
istrstream class

described 13, 71
member functions

-istrstream 72
istrstream 72
rdbuf 72
str 73

istrstream constructor 72
-istrstream destructor 72
istrstream objects

creating, istrstream::istrstream 72
destroying, istrstream::-istrstream 72

iword member function, ios class 51

L
left member function, ios class, ios::bitalloc 47

M
Manipulators

argument, more than one 21
custom, input streams 22
derived stream classes, using with 22
input streams 15
ios class 56
istream class 69
ostream class 84
output stream, custom 12
with one argument 19,21
with one parameter 20

Masks
current radix flag bits, ios::basefield 56
floating-point format flag bits, ios::floatfield 56
padding flag bits, ios::adjustfield 55

Member functions
filebuf class 31-34
fstream class 35-36, 38-39
ifstream class 40-44
ios class 46-55
iostream class 60-61
Iostream_init class 61
istream class 62-68, 70, 72

close 18
get 16
getline 16

Member functions (continued)
istream class 62 - 68, 70, 72 (continued)

open 15
read 16-17
seekg 17-18
tellg 17-18

istrstream class 72-73
of stream class 74-78

bad 9
clear 9
close 9
described 7
eof 9
fail 9
good 9
put 8
rdstate 9
seekp 8
tellp 8
write 8

ostream class 80-82, 85
ostream class 80, 85
ostrstream class 87-88
stdiobuf class 89
stdiostream class 90-91
streambuf class 93-106
strstream class 107-109
strstreambuf class 110-112

Memory allocation, preventing memory deletion for
strstreambuf object with dynamic array,
strstreambuf: : freeze 110

Microsoft Windows and iostream programming 2

N
nocreate member function ios class

fstream::open 38
ifstream::open 43
ofstream::open 77

o
of stream class

described 2, 73
flags 7-8
member functions

-of stream 76
attach 74
bad 9
clear 9

of stream class (continued)
member functions (colltinued)

close 9, 74
described 7
eof 9
fail 9
fd 74
good 9
is_open 75
of stream 75
open 7, 77
put 8
rdbuf 77
rdstate 9
seekp 8
setbuf 77
setmode 78
tellp 8
write 8

of stream constructor 75
-of stream destructor 76
of stream objects

creating,ofstream::ofstream 75
destroying, fstream::-fstream 38
destroying,ofstream::-ofstream 76

open member function
filebuf class 33
fstream class 38
ifstream class 43
input streams 15
of stream class 7, 77

Opening files
for attachment to stream's filebuf object,

ifstream::open 43
for attachment to stream's filebuf,

ofstream::open 77
to attach to stream filebuf object, fstream::open 38

operator data member, ios class 55
Operators

assignment operator
istream class 70
ostream class 86

extraction, istream class 68
extraction operators, overloading 18
insertion operators, overloading 11-12
ios class 55
void* operator, ios class 55

opfx member function, ostream class 80
osfx member function, ostream class 80

Index

-ost ream destructor 81

121

Index

122

ostream class
described 2, 78
manipulators, HR 84
member functions

-ostream 81
-ostream_ withassign 85
flush 80
opfx 80
osfx 80
ostream 81
ostream_withassign 85
put 81
seekp 81
tellp 82
write 82

operators 83, 86
ostream classes described 2
ostream constructor 81
ostream objects

assigning to ostream_ withassign object,
ostream_ withassign: :operator= 86

creating
iostream: :iostream 60
ostream: :ostream 81

destroying, ostream:: -ostream 81
ostream, tying stream to, ios::tie 53
ostream_ withassign class, described 84
-ostream_ withassign destructor 85
ostream_ withassign member function

ostream class 85
ostream_ withassign objects

assigning specified ostream object to,
ostream_withassign::operator= 86

creating,
ostream_ withassign: :ostream_ withassign 85

destroying,
ostream_ withassign:: -ostream_ withassign 85

ostrstream class
described 3, 86
member functions

-ostrstream 87
ostrstream 87
pcount 88
rdbuf 88
str 88

returning pointer to internal character array,
ostrstream: :str 88

ostrstream constructor 87
-ostrstream destructor 87

ostrstream objects
creating,ostrstream::ostrstream 87
destroying,ostrstream::-ostrstream 87

out member function, ios class
streambuf::seekoff 99
streambuf:: seekpos 100

out_waiting member function, streambuf class 96
Output streams

binary output files 10-11
buffering, effect 10
buffering, effects 10
constructing 3
deriving, streambuf class 23-24,26-28
format control 4-7
insertion operators 11-12
manipulators

argument, more than one 21
custom 12
with one argument 19,21
with one parameter 20

member functions, good 9
objects, constructing

output file stream constructors 3
output string stream constructors 3

of stream class flags 7-8
of stream member functions

bad 9
clear 9
close 9
described 7
eof 9
fail 9
open 7
put 8
rdstate 9
seekp 8
tellp 8
write 8

ostream class 2
ostrstream class 3

overflow member function, streambuf class 97
Overloading

extraction operators 18
insertion operators 11-12

Overview of book v

p
pbackfail member function, streambuf class 97
pbase member function, streambuf class 98
pbump member function, streambuf class 98
pc aunt member function

ostrstream class 88
strstream class 107

peek member function, istream class 66
Pointers

get
advancing past spaces, tabs, istream::eatwhite 62
changing for stream, istream: :seekg 67
getting value, istream::tellg 68
incrementing, streambuf: :gbump 96

put, incrementing, streambuf: :pbump 98
repositioning external file pointer,

streambuf::pbackfail 97
returning stdiobuf object associated with stream,

stdiostream::rdbuf 90
returning to

filebuf buffer object associated with stream,
of stream: :rdbuf 77

filebuf object, fstream::rdbuf 39
internal character array from stream,

ostrstream::str 88
streambuf objects associated with stream,

ios::rdbuf 52
strstreambuf buffer object, ostrstream::rdbuf 88
stream's filebuf buffer object, ifstream::rdbuf 43

pptr member function, streambuf class 98
precision member function, ios class 51
Predefined output stream object

cerr 2
clog 2
cout 2

Put areas
returning

first byte of, streambuf::pptr 98
number of characters available for fetching,

streambuf: :ouc waiting 96
pointer to byte after last, streambuf::epptr 95
pointer to start of, streambuf: :pbase 98

setting pointer values, streambuf::setp 102
storing character, streambuf::sputc 103

put member function
of stream class 8
ostream class 81

Index

Put pointers
following stored characters, streambuf::sputn 104
incrementing, streambuf: :pbump 98

putback member function, istream class 66
pword member function, ios class 52

R
rdbuf member function

fstream class 39
ifstream class 43
ios class 52
istrstream class 72
of stream class 77
ostrstream class 88
stdiostream class 90
strs tream class 107
strstream class 107

rdstate member function
ios class 52
of stream class 9

read member function
input streams 16-17
istream class 67

Reserve areas
allocating, streambuf: :doallocate 94
attaching to

streambuf object, streambuf::setbuf 101
stream's filebuf object, ifstream::setbuf 43

returning
pointer to byte after last, streambuf::ebuf 95
pointer, streambuf::base 93
size in bytes, streambuf:: bIen 94

setting position values with, streambuf::setb 100
setting up, streambuf: : allocate 93

Run-time, returning file pointer associated with stdiobuf
object, returning file pointer associated with stdiobuf
object 89

s
Sample programs, stream derivation 23-24,26-28
sbumpc member function, streambuf class 99
seekg member function

input streams 17-18
istream class 67

seekoff member function, streambuf class 99

123

Index

124

seekp member function
of stream class 8
ostream class 81
ostream class 81

seekpos member function, streambuf class 100
setb member function, streambuf class 100
setbuf member function

fstream class 39
ifstream class 43
of stream class 77
streambuf class 101

setf member function, ios class 52
setg member function, streambuf class 101
setmode member function

filebuf class 34
fstream class 39
ifstream class 44
of stream class 78

setp member function, streambuf class 102
Setting

binary/text mode
filebuf objects, filebuf::setmode 34
stream's filebuf object, fstream::setmode 39
stream's filebuf object, ifstream::setmode 44
streams, ios& binary 56
streams, ofstream::setmode 78

error-bits, ios::clear 47
format flags, streams, setioflags 58
streambuf object's buffering state,

streambuf: : unbuffered 105
stream's internal flags, ios::flags 49
streams

fill character, setfill 57
format conversion base to 10, ios& dec 57
format conversion base to 16, ios& hex 57
format conversion base to 8, ios& oct 57
internal field width parameter, setw 58
internal field width variable, ios::width 54
internal floating-point precision variable,

setprecision 58
sgetc member function, streambuf class 102
sgetn member function, streambuf class 102
snextc member function, streambuf class 103
Special-purpose words table, providing index into

ios::iword 51
ios::pword 52

sputbackc member function, streambuf class 103
sputc member function, streambuf class 103
sputn member function, streambuf class 104

stdio member function, ios class
ios: :sync_ with_stdio 53
ostream::osfx 80

stdiobuf class
described 88
member functions

-stdiobuf 89
stdiobuf 89
stdiofile 89

stdiobuf constructor 89
-stdiobuf destructor 89
stdiobuf objects

creating, stdiobuf::stdiobuf 89
destroying, stdiobuf::-stdiobuf 89
returning C run-time file pointer,

stdiobuf::stdiofile 89
returning pointers, stdiostream::rdbuf 90

stdiofile member function, stdiobuf class 89
stdiostream class

described 90
member functions

-stdiostream 91
rdbuf 90
stdiostream 90

stdiostream constructor 90
-stdiostream destructor 91
stdiostream objects

creating, stdiostream::stdiostream 90
destroying, stdiostream::-stdiostream 91

stossc member function, streambuf class 104
str member function

istrstream class 73
ostrstream class 88
strstream class 108
strstreambuf class 110

Stream classes, deriving 22
Stream derivation sample program 23-24,26-28
streambuf class

consume defined 97
custom, deriving 23
defining characteristics of derived class

streambuf: :underflow 106
defining derived class characteristics 97

streambuf::sync 105
described 91
get area

returning lower bound, streambuf: :eback 95
returning number of character available for

fetching, streambuf::in_avail 96

streambuf class (continued)
get area (continued)

returning pointer to byte after last,
streambuf: :epptr 95

setting pointer values, streambuf::setg 101
get pointer

following fetched characters,
streambuf::sgetn 102

incrementing, streambuf::gbump 96
moving back, streambuf::sputbackc 103
moving forward one character,

streambuf::snextc 103
moving forward one character,

streambuf::stossc 104
returning character at, streambuf::sgetc 102
returning to next character to be fetched,

streambuf::gptr 96
testing, streambuf::snextc 103

member functions
allocate 93
base 93
bIen 94
dbp 94
doallocate 94
eback 95
ebuf 95
egptr 95
epptr 95
gbump 96
gptr 96
in_avail 96
oue waiting 96
overflow 97
pbackfail 97
pbase 98
pbump 98
pptr 98
sbumpc 99
seekoff 99
seekpos 100
setb 100
setbuf 101
setg 101
setp 102
sgetc 102
sgetn 102
snextc 103
sputbackc 103
sputc 103

Index

streambuf class (continued)
member functions (continued)

sputn 104
stossc 104
-streambuf 105
streambuf 104
sync 67,84,105
unbuffered 105
underflow 106

output streams, deriving 23-24, 26-28
put area

returning first byte, streambuf::pptr 98
returning pointer to start, streambuf: :pbase 98
setting pointer values, streambuf::setp 102
storing character, streambuf::sputc 103

put pointer
following stored characters,

streambuf::sputn 104
incrementing, streambuf::pbump 98

repositioning external file pointer,
streambuf: :pbackfail 97

reserve area
attaching to object, streambuf::setbuf 101
returning pointer to byte after last,

streambuf::ebuf 95
returning pointer, streambuf::base 93
returning size in bytes, streambuf::blen 94
setting position values, streambuf::setb 100
setting up, streambuf::allocate 93

returning
current character and advancing get pointer,

streambuf: :sbumpc 99
number of characters available for fetching,

streambuf: :out_ waiting 96
pointer to byte after last, streambuf::egptr 95

virtual
overflow function, streambuf::overflow 97
sync function, streambuf::sync 105
underflow function, streambuf: :underflow 106

writing debugging information on stdout,
streambuf: :dbp 94

streambuf constructor 104
-streambuf destructor 105
Streambuf objects

associated with stream, returning pointer to,
ios::rdbuf 52

associating with stream, ios: :init 50
changing position relative to stream beginning,

streambuf::seekpos 100

125

Index

126

Streambuf objects (continued)
changing position, streambuf::seekoff 99
creating, streambuf::streambuf 104
reserve area, allocating, streambuf: :doallocate 94
setting buffering state, streambuf::unbuffered 105
virtual destructor, streambuf::-streambuf 105

Streams
assigning istream object to istream_ withassign

object, istream_ withassign: : operator = 70
associating streambuf object with, ios::init 50
attaching

to already open file, ofstream::attach 74
to specified open file, ifstream::attach 40

buffer-deletion flag, assigning value to,
ios::delbuf 47

buffers
flushing,ostream::flush 80
returning number of bytes stored in,

ostrstream::pcount 88
returning pointer to strstreambuf buffer object 88

C++, synchronizing with standard C stdio streams,
ios::sync_with_stdio 53

changing position value, ostream::seekp 81
characters

inserting into output, ostream::put 81
returning next without extracting,

istream: :peek 66
returning number extracted by last unformatted

input function, istream::gcount 63
synchronizing internal buffer with external

character source, istream::sync 67
clearing format flags, ios::unsetf 54
defined 1
determining if error bits are set, ios::operator!o 55
errors

determining if error bits are set, ios: : operator
!o 55

if error bits are clear, ios::good 50
returning current specified error state,

ios: :rdstate 52
extracting

and discarding characters, istream: : ignore 65
data, istream::get 63,64
white space, istream& ws 69
white space, istream::eatwhite 62

extraction operations
called after, istream::isfx 65
called before, istream::ipfx 65

Streams (continued)
extraction operations (continued)

operators, istream::operator» 68
specified number of bytes, istream::read 67

file descriptor, returning, ofstream::fd 74
filebuf objects

attaching specified reserve area,
fstream::setbuf 39

attaching specified reserve area,
ifstream::setbuf 43

attaching specified reserve area,
ofstream::setbuf 77

closing,ofstream::close 74
opening file and attaching, fstream::open 38
opening for attachment, ofstream::open 77
returning pointer to associated,

of stream: :rdbuf 77
returning pointer to, ifstream::rdbuf 43
setting binary/text mode, fstream::setmode 39
setting binary/text mode, ofstream::setmode 78

flushing output buffer, ostream& flush 84
get pointers

changing, istream::seekg 67
getting value, istream::tellg 68

getting position value, ostream: :tellp 82
input, putting character back into,

istream: :putback 66
insert operations

called after, ostream::osfx 80
called before, ostream::opfx 80

inserting
arguments into, ostream::operator« 83
bytes, ostream: : write 82
newline character and flushing buffer, ostream&

endl 84
null-terminating character, ostream& ends 84

internal flags variable, setting, ios::flags 49
istream objects

creating, istream: :istream 66
destroying, istream::-istream 66

masks
current radix flag bits, ios::basefield 56
floating-point format flag bits, ios::floatfield 56

object state variables, providing without class
derivation, ios::xalloc 55

opening file and attaching to filebuf object,
ifstream: :open 43

padding flag bits, obtaining, ios::adjustfield 55

Streams (continued)
returning associated file descriptor

fstream: :fd 36
ifstream::fd 41

returning pointer to associated filebuf object,
fstream: :rdbuf 39

setting
binary/text mode, ifstream::setmode 44
fill character, setfill 57
floating-point precision variable,

ios: :precision 51
format conversion base to 10, ios& dec 57
format conversion base to 16, ios& hex 57
format conversion base to 8, ios& oct 57
internal field width parameter, setw 58
internal field width variable, ios::width 54
internal fill character variable, ios: : fill 48
internal floating-point precision variable,

setprecision 58
mode to text, ios& text 59
specified format bits, ios::setf 52
text to binary mode, ios& binary 56

special-purpose words table, providing index into
ios::iword 51
ios::pword 52

streambuf objects, returning pointer to, ios::rdbuf 52
synchronizing internal buffer with external character

source, istream::sync 67
testing end-of-file, ios::eof 48
testing for attachment to open file

disk file, fstream::is_open 38
ifstream::is_open 43
ofstream::is_open 75

testing for serious 110 errors, ios::bad 46
tying to ostream, ios::tie 53
virtual overflow function, streambuf::overflow 97

Strings, streams, returning pointer to character array,
istrstream: :str 73

strstream class
buffer, returning number of bytes,

strstream::pcount 107
described 18, 106
member functions

-strstream 109
pcount 107
rdbuf 107
str 108
strstream 108

strstream class (continued)
returning

Index

number of bytes in buffer, strstream: :pcount 107
pointer to internal character array,

strstream:: str 108
pointer to strstreambuf object,

strstream::rdbuf 107
strstream constructor 108
-strstream destructor 109
strstream objects

creating, strstream::strstream 108
destroying, strstream::-strstream 109
returning pointer, strstream::rdbuf 107

strstreambuf class
described 109
member functions

-strstreambuf 112
freeze 87, 110
str 110
strstreambuf 110

preventing automatic memory deletion,
strstreambuf: : freeze 110

returning pointer to internal character array,
strstreambuf::str 110

strstreambuf constructor 110
-strstreambuf destructor 112
strstreambuf objects

creating, strstreambuf::strstreambuf 110
destroying, strstreambuf::-strstreambuf 112
returning pointer from associated stream,

ostrstream::rbuf 88
returning pointer to internal character array,

strstreambuf::str 110
sync member function

istream class 67
streambuf class 105

istream::sync 67
ostream: :HR 84

sync_ with_stdio member function, ios class 53
Synchronizing C++ streams with standard C stdio

streams, ios: :sync_ with_stdio 53

T
tellg member function

input streams 17 -18
istream class 68

127

Index

128

tellp member function
of stream class 8
ostream class 82

Testing for extraction operators 14
Text streams, setting mode to, ios& text 59
tie member function, ios class 53
Tiny-model programs and iostream programming 2

u
unbuffered member function, streambuf class 105
underflow member function, streambuf class 106
unitbuf member function, ios class, ostream::osfx 80
unsetf member function, ios class 54

v
Variables

floating-point precision, setting, ios: :precision 51
internal field width, setting, ios::width 54
internal fill character, setting, ios::fill 48
object state, providing without class derivation,

ios::xalloc 55
Virtual

sync function, streambuf class, streambuf::sync 105
underflow function, streambuf class,

streambuf: : underflow 106
Void* operator, ios class 55,57

w
Width

internal field variable, setting, ios::width 54
streams, setting internal field parameter, setw 58

width member function, ios class 54
write member function

of stream class 8
ostream class 82

x
xalloc member function, ios class 55

Contributors to iostream Class Library Reference

Richard Carlson, Index Editor

David Adam Edelstein, Art Director

Roger Haight, Editor

Marilyn Johnstone, Writer

Seth Manheim, Writer

WASSER Studios, Production

Microsoft the
Visual C++

in both hands.
This four-volume collection is the complete printed product documentation for Microsoft Visual C++

version 5.0, the development system for Win32~ In book form, this information is portable, easy to access
and browse, and a comprehensive alternative to the substantial online help system in Visual C+t-. The
volumes are numbered as a set-but you can buy any or all of the volumes, any time you need them. So
take hold of all the power. Get the MICROSOFT VISUAL C-t+ 5.0 PROGRAMMER'S REFERENCE SET.

Volume 1 of the 4-volume
Visual C++ 5.0 Programmer's
Reference Set

f\1jc.r,psoft' .C
VISUal ++'
MFC Ubrary Reference, j
Part 1 ;

~_~llljiWI··i!il.I .. '
Microsoft® Visual C++® MFC
Library Reference, Part 1
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-518-0

Volume 2 of the 4-volume
Visual C++ 5.0 Programmer's
Reference Set

f\1jc.r,psoft·
VISUal C++
MFC Ubrary Reference,
Part 2

Microsoft® Visual C++® MFC
Library Reference, Part 2
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-519-9

Volume 3 of the 4-volume
Visual C++ 5.0 Programmer's
Reference Set

f\1jc.r,psoft' I C
VISUa ++
Run-lime Ubrary Reference

iibttw'"
Microsoft® Visual C++®
Run-Time Library Reference
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-520-2

Volume 4 of the 4-volume
Visual C++ 5.0 Programmer's
Reference Set

f\1jc.r,psoft'I
VISUa C++
Language Reference

ilff-Mit.!,
Microsoft® Visual C++®
Language Reference
U.S.A. $29.99
U.K. £27.49
Canada $39.99
ISBN 1-57231-521-0

Microsoft Press® products are available worldwide wherever quality computer books are sold. For more information, contact your book retailer, computer
reselier, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/mspressl. or call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

Quick.
Explain COM,

OLE and

U.S.A. $22.95
U.K. £20.99
Canada $30.95
ISBN 1-57231-216-5

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book
retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www.microsoft.com/mspress/. or call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

ActiveX'~
When it comes to strategic technologies such as

these, what decision makers need first is a good
explanation-one that gives them a quick, clear
understanding of the parts and the greater whole.
And that's exactly what UNDERSTANDING ACTiVE)(AND
OLE does. Here you'll learn the strategic significance
of the Component Object Model (COM) as the
foundation for Microsoft's object technology. You'll
understand the evolution of OLE. You'll discover the
powerful ActiveX technology for the Internet. In all
these subjects and more, this book provides a firm
conceptual grounding without extraneous details or
implementation specifics. UNDERSTANDING ACTiVE)(AND
OLE is also easy to browse, with colorful illustrations
and "fast track" margin notes. Get it quick. And get
up to speed on a fundamental business technology.

The Strategic Technology series is for
executives, business planners, software
designers, and technical managers who
need a quick, comprehensive introduction
to important technologies and their impli
cations for business.

81 ueRri nt for
excellence.

CODE
COMPLETE

STEVE McCONNELL

U.S.A. $35.00
UK £29.95
Canada $44.95
ISBN 1-55615-484-4

Rfracllc~

ILmDmiOf

So/IUJile

ConsInJcHon

This classic from Steve McConnell is a practical guide to the art
and science of constructing software. Examples are provided in C,
Pascal, Basic, Fortran, and Ada, but the focus is on successful
programming techniques. CODE COMPLETE provides a larger per
spective on the role of construction in the software development
process that will inform and stimulate your thinking about your own
projects-enabling you to take strategic action rather than fight the
same battles again and again.

Get all of the Best Practices books.

Rapid Development
Steve McConnell
U.S.A. $35.00 ($46.95 Canada; £32.49 U.K.)
ISBN 1-55615-900-5

"Very few books I have encountered in the last few years have
given me as much pleasure to read as this one."
-Ray Duncan

''The definitive book on software construction. This is a book that belongs on every Writing Solid Code
Steve Maguire software developer's bookshelf."

-Warren Keuffel,
Software Development

"I cannot adequately express how good this book really is ... a work of brilliance."
-Jeff Duntemann,

PC Techniques

"If you are or aspire to be a professional programmer, this may be the wisest $35
investment you'll ever make."

-IEEE Micro

Microsoft Press<l!> products are available worldwide wherever quality computer books are sold.
For more information, contact your book retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/mspress/.
or call 1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

U.S.A. $24.95 ($32.95 Canada; £21.95 U.K.)
ISBN 1-55615-551-4

"Every working programmer should own this book."
-IEEE Spectrum

Debugging the Development Process
Steve Maguire
U.S_A. $24.95 ($32.95 Canada; £21.95 U.K.)
ISBN 1-55615-650-2

"A milestone in the game of hitting milestones."
-ACM Computing Reviews

Dynamics of Software Development
Jim McCarthy
U.S.A. $24.95 ($33.95 Canada; £22.99 U.K.)
ISBN 1-55615-823-8

"I recommend it without reservation to every developer."
-Jesse Berst, editorial director, Windows Watcher Newsletter

Learn to create programmable
32-bit applications

Automation

If you program for Microsoft® Windows~ OLE Auto

mation gives you real power-to create applications
whose objects can be manipulated from external
applications, to develop tools that can access and
manipulate objects, and more. And the OLE AUTOMA
TION PROGRAMMER'S REFERENCE gives you the power
to put OLE Automation to work. Everything is covered,
from designing applications that expose and access
OLE Automation Objects to creating type libraries.
So tap the power of OLE Automation. Make the
OLE AUTOMATION PROGRAMMER'S REFERENCE your
essential guide.

Microsoft Pressli> products are available worldwide wherever quality computer
books are sold. For more information, contact your book retailer, computer
reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www.microsoft.com/msoress/. or call 1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

U.S.A. $24.95
U.K. £22.99
Canada $33.95
ISBN 1-55615-851-3

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada: M'iC~~~ott® D~ess
1-800-667-1115 or 416-293-8464). .1 • ~' ri •
Prices and availability dates are subject to change.

Run-Time
Library Reference

Run-lime Library Reference

Introduction ix
C Run-Time Libraries ix

Building the Run-Time Libraries xi

Compatibility xi

ANSI C Compliance xi

UNIX xii

Win32 Platforms xii

Backward Compatibility xii

Required and Optional Header Files xiii

Choosing Between Functions and Macros xiii

Type Checking xv

Chapter 1 Run-Time Routines by Category 1
Argument Access 1

Buffer Manipulation 2

Byte Classification 2

Character Classification 3

Data Conversion 4

Debug Routines 6

Directory Control 9

Error Handling 9
Exception Handling Routines 10

File Handling 10

Floating-Point Support 11

Long Double 13

Input and Output 14

Text and Binary Mode File I/O 15
TM

Unicode Stream I/O in Text and Binary Modes 15

Stream I/O 16

Low-level I/O 18

Console and Port I/O 19

Contents

iii

Contents

iv

Internationalization 20

Locale 20

Code Pages 22

Interpretation of Multibyte-Character Sequences 23

Single-byte and Multibyte Character Sets 23

SBCS and MBCS Data Types 24

Unicode: The Wide-Character Set 24

Using Generic-Text Mappings 25

A Sample Generic-Text Program 27

Using TCHAR.H Data Types with _MBCS 29

Memory Allocation 31

Process and Environment Control 32

Searching and Sorting 34

String Manipulation 35

System Calls 37

Time Management 37

Chapter 2 Global Variables and Standard Types 39
Global Variables 39

_amblksiz 39

_daylight, _timezone, and _tzname 40

_doserrno, errno, _sys_errlist, and _sys_nerr 41

_environ, _ wenviron 42

_fileinfo 43

_fmode 43

_osver, _ winmajor, _ winminor, _ winver 44

_pgmptr, _ wpgmptr 44

Control Flags 45

_CRTDBG_MAP _ALLOC 45

_DEBUG 46

_crtDbgFlag 46

Standard Types 46

Chapter 3 Global Constants 49
BUFSIZ 50

CLOCKS_PER_SEC, CLK_TCK 50

Commit-To-Disk Constants 50

Data Type Constants 51

EOF, WEOF 53

ermo Constants 53

Exception-Handling Constants 54

EXIT_SUCCESS, EXIT_FAILURE 55

File Attribute Constants 55

File Constants 56

File Permission Constants 56

File ReadlWrite Access Constants 57

File Translation Constants 58
FILENAME_MAX 58

FOPEN_MAX, _SYS_OPEN 58

_FREEENTRY, _USEDENTRY 59

fseek, _lseek Constants 59

Heap Constants 59

_HEAP _MAXREQ 60

HUGE_VAL 60

_LOCAL_SIZE 60

Locale Categories 61

_locking Constants 61

Math Error Constants 62

MB_CUR_MAX 62

NULL 63

Path Field Limits 63

RAND_MAX 63

setvbuf Constants 64

Sharing Constants 64

signal Constants 64

Contents

v

Contents

vi

signal Action Constants 65
_spawn Constants 65

_stat Structure sCmode Field Constants 66
stdin, stdout, stderr 66
TMP _MAX, L_tmpnam 67

Translation Mode Constants 67
_WAIT_CHILD, _WAIT_GRANDCHILD 68
32-bit Windows TimelDate Formats 68

Chapter 4 Debug Version of the C Run-Time Library 69
_ASSERT, _ASSERTE Macros 69
_calloc_dbg 72
_ CrtCheckMemory 74

_CrtDbgReport 79
_ CrtDoForAllClientObjects 85

_CrtDumpMemoryLeaks 89
_ Crtls ValidHeapPointer 90

_CrtlsMemoryBlock 92

_CrtlsValidPointer 94
_CrtMemCheckpoint 96
_ CrtMemDifference 97

_CrtMemDumpAllObjectsSince 98
_CrtMemDumpStatistics 108

_CrtSetAllocHook 109
_CrtSetBreakAlloc 110
_CrtSetDbgFlag 112

_ CrtSetDumpClient 115
_CrtSetReportFile 117
_ CrtSetReportHook 121

_CrtSetReportMode 126
_expand_dbg 130
_free_dbg 133
_malloc_dbg 134

_msize_dbg 135

_realloc_dbg 137
_RPT, _RPTF Macros 139

About the Alphabetic Reference 143

Appendixes
Appendix A Language and Country Strings 673
Language and Country Strings 673

Language Strings 673

Country Strings 675

Appendix B Generic-Text Mappings 677
Data Type Mappings 677

Constant and Global Variable Mappings 678

Routine Mappings 678

Index 683

Tables
Table R.1 Hexadecimal Values 191

Table R.2 Equivalence of iswctype(c, desc) to Other isw Testing Routines 329

Table R.3 printf Type Field Characters 464

Table RA Flag Characters 465

Table R.5 How Precision Values Affect Type 467

Table R.6 Size Prefixes for printf and wprintf Format-Type Specifiers 468

Table R.7 Type Characters for scanf functions 496

Table R.8 Size Prefixes for scanf and wscanf Format-Type Specifiers 498

Contents

vii

Introduction

The Microsoft run-time library provides routines for programming for the
Microsoft Windows NT and Windows 95 operating systems. These routines
automate many common programming tasks that are not provided by the
C and C++ languages.

C Run-Time Libraries
The following table lists the release versions of the C run-time library files,
along with their associated compiler options and environment variables. Prior to
Visual C++ 4.2, the C run-time libraries contained the iostream library functions.
In Visual C++ 4.2, the old iostream library functions have been removed from
LIBC.LIB, LIBCMT.LIB, and MSVCRT.LIB. (This change was made because
the Standard C++ library has been added to Visual C++, and it contains a new set
of iostream libraries. Thus, two sets of iostream functions are now included in
Visual C++.) The old iostream functions now exist in their own libraries: LIBCI.LIB,
LIBCIMT.LIB, and MSVCIRT.LIB. The new iostream functions, as well as many
other new functions, exist in the Standard C++ libraries: LIBCP.LIB, LIBCPMT.LIB,
and MSVCPRT.LIB.

The Standard C++ library and the old iostream library are incompatible, and only
one of them can be linked with your project. See "Port to the Standard C++ Library"
and the "Standard C++ Library Overview" for details.

When you build a release version of your project, one of the basic C run-time
libraries (LIBC.LIB, LIBCMT.LIB, and MSVCRT.LIB) is linked by default,
depending on the compiler option you choose (single-threaded, multithreaded,
or DLL). Depending on the headers you use in your code, a library from the
Standard C++ libraries or one from the old iostream libraries may also be linked:

ix

Run-Time Library Reference

x

• If you include a "Standard C++ library header" in your code, a Standard
C++ library will be linked in automatically by Visual C++ at compile time.
For example:

Iii ncl ude <i os>

• If you include an "old iostream library header" an old iostream library will be
linked in automatically by Visual C++ at compile time. For example:

#include <ios.h>

Note that headers from the Standard C++ library and the old iostream library
cannot be mixed.

Headers determine whether a Standard C++ library, an old iostream library, or neither
will be linked. Compiler options determine which of the libraries to be linked is the
default (single-threaded, multithreaded, or DLL). When a specific library compiler
option is defined, that library is considered to be the default and its environment
variables are automatically defined.

C Run-Time Library Characteristics Option Defined
(without iostream)

LIBC.LIB Single threaded, static link IML

LIBCMT.LIB Multithreaded, static link IMT
MSVCRT.LIB Multithreaded, dynamic link (import IMD

library for MSVCRT.DLL)

Standard C++ Library Characteristics Option Defined

LIBCP.LIB Single threaded, static link IML

LIBCPMT.LIB Multithreaded, static link IMT
MSVCPRT.LIB Multithreaded, dynamic link (import IMD

library for MSVCRT.DLL)

Old lostream Library Characteristics Option Defined

LIBCI.LIB Single threaded, static link IML

LIBCIMT.LIB Multithreaded, static link IMT
MSVCIRT.LIB Multithreaded, dynamic link (import IMD

library for MSVCIRT.DLL)

To build a debug version of your application, the _DEBUG flag must be defined and
the application must be linked with a debug version of one of these libraries. For more
information about using the debug versions of the library files, see "C Run-Time
Debug Libraries."

Building the Run-Time Libraries
There are two batch files provided for building the C run-time libraries from the
source code included with Visual C++:

• \Program Files\DevStudio\Vc\CRT\SRC\BLDWIN95.BAT, used when building
on Windows 95

• \Program Files\DevStudio\ V c\CRT\SRC\BLDNT.CMD, used when building on
Windows NT

When using either BLDNT.CMD or BLDWIN95.BAT, set the V5TOOLS environment
variable to the root of the Visual C++ installation (such as C:\Program Files\DevStudio
\ V c\Bin). If this environment variable is not set, an error message will be displayed
and the batch file will exit.

Compatibility
The Microsoft run-time library supports American National Standards Institute (ANSI)
C and UNIX C. In this book, references to UNIX include XENIX, other UNIX-like
systems, and the POSIX subsystem in Windows NT and Windows 95. The description
of each run-time library routine in this book includes a compatibility section for these
targets: ANSI, Windows 95 (listed as Win 95), and Windows NT (Win NT). All run
time library routines included with this product are compatible with the Win 32 API.

ANSI C Compliance
The naming convention for all Microsoft-specific identifiers in the run-time
system (such as functions, macros, constants, variables, and type definitions) is
ANSI-compliant. In this book, any run-time function that follows the ANSIIISO C
standards is noted as being ANSI compatible. ANSI -compliant applications should
only use these ANSI compatible functions.

The names of Microsoft-specific functions and global variables begin with a single
underscore. These names can be overridden only locally, within the scope of your
code. For example, when you include Microsoft run-time header files, you can still
locally override the Microsoft-specific function named _open by declaring a local
variable of the same name. However, you cannot use this name for your own global
function or global variable.

The names of Microsoft-specific macros and manif~st constants begin with two
underscores, or with a single leading underscore immediately followed by an
uppercase letter. The scope of these identifiers is absolute. For example, you
cannot use the Microsoft-specific identifier _UPPER for this reason.

Introduction

xi

Run-Time Library Reference

UNIX
If you plan to transport your programs to UNIX, follow these guidelines:

• Do not remove header files from the SYS subdirectory. You can place the SYS
header files elsewhere only if you do not plan to transport your programs to UNIX.

• Use the UNIX-compatible path delimiter in routines that take strings representing
paths and filenames as arguments. UNIX supports only the forward slash (I) for
this purpose, whereas Win 32 operating systems support both the backslash (\) and
the forward slash (I). Thus this book uses UNIX-compatible forward slashes as
path delimiters in #include statements, for example. (However, the Windows NT
and Windows 95 command shell, CMD.EXE, does not support the forward slash
in commands entered at the command prompt.)

• Use paths and filenames that work correctly in UNIX, which is case sensitive. The file
allocation table (FAT) file system in Win 32 operating systems is not case sensitive;
the installable Windows NT file system (NTFS) of Windows NT preserves case for
directory listings but ignores case in file searches and other system operations.

Note In this version of Visual C++, UNIX compatibility information has been removed from the
function descriptions.

Win32 Platforms
The C run-time libraries support Windows 95 and Windows NT, but not Win 32s.
Windows 95 and Windows NT support the Win32 Application Programming
Interface (API), but only Windows NT provides full Unicode support. In addition,
any Win 32 application can use a multibyte character set (MBCS).

Backward Compatibility

xii

The compiler views a structure that has both an old name and a new name as two
different types. You cannot copy from an old structure type to a new structure type.
Old prototypes that take struct pointers use the old struct names in the prototype.

For compatibility with Microsoft C professional development system version 6.0
and earlier Microsoft C versions, the library OLDNAMES.LIB maps old names
to new names. For instance, open maps to _open. You must explicitly link with
OLDNAMES.LIB only when you compile with the following combinations of
command-line options:

• /Zl (omit default library name from object file) and /Ze (the default-use
Microsoft extensions)

• /link (linker-control), /NOD (no default-library search), and /Ze

For more information about compiler command-line options, see "Compiler
Reference" in the Visual C++ Programmer's Guide.

Required and Optional Header Files
The description of each run-time routine in this book includes a list of the required
and optional include, or header (.H), files for that routine. Required header files need
to be included to obtain the function declaration for the routine or a definition used
by another routine called internally. Optional header files are usually included to take
advantage of predefined constants, type definitions, or inline macros. The following
table lists some examples of optional header file contents:

Definition

Macro definition

Manifest constant

Type definition

Example

If a library routine is implemented as a macro, the macro definition
may be in a header file other than the header file for the original
routine. For instance, the toupper macro is defined in the header file
CTYPE.H, while the function toupper is declared in STDLIB.H.

Many library routines refer to constants that are defined in header
files. For instance, the _open routine uses constants such as
_O_CREAT, which is defined in the header file FCNTL.H.

Some library routines return a structure or take a structure as an
argument. For example, stream input/output routines use a structure
of type FILE, which is defined in STDIO.H.

The run-time library header files provide function declarations in the ANSIIISO C
standard recommended style. The compiler performs "type checking" on any routine
reference that occurs after its associated function declaration. Function declarations
are especially important for routines that return a value of some type other than int,
which is the default. Routines that do not specify their appropriate return value in
their declaration will be considered by the compiler to return an int, which can
cause unexpected results. See "Type Checking" for more information.

Introduction

Choosing Between Functions and Macros
Most Microsoft run-time library routines are compiled or assembled functions, but
some routines are implemented as macros. When a header file declares both a function
and a macro version of a routine, the macro definition takes precedence, because it
always appears after the function declaration. When you invoke a routine that is
implemented as both a function and a macro, you can force the compiler to use the
function version in two ways:

xiii

Run-Time Library Reference

xiv

• Enclose the routine name in parentheses.

#include <ctype.h)
a - toupper(a);
a - (toupper)(a);

Iluse macro version of toupper
Ilforce compiler to use function version of toupper

• "Undefine" the macro definition with the #Undef directive:

#include <ctype.h)
#undef toupper

If you need to choose between a function and a macro implementation of a library
routine, consider the following trade-offs:

• Speed versus size. The main benefit of using macros is faster execution time.
During preprocessing, a macro is expanded (replaced by its definition) inline each
time it is used. A function definition occurs only once regardless of how many
times it is called. Macros may increase code size but do not have the overhead
associated with function calls.

• Function evaluation. A function evaluates to an address; a macro does not. Thus
you cannot use a macro name in contexts requiring a pointer. For instance, you
can declare a pointer to a function, but not a pointer to a macro.

• Macro side effects. A macro may treat arguments incorrectly when the macro
evaluates its arguments more than once. For instance, the toupper macro is
defined as:

#define toupper(c) ((islower(c» ? _toupper(c): (c)

In the following example, the toupper macro produces a side effect:

#include <ctype.h)

inta-'m';
a = toupper(a++);

The example code increments a when passing it to toupper. The macro evaluates
the argument a++ twice, once to check case and again for the result, therefore
increasing a by 2 instead of 1. As a result, the value operated on by islower differs
from the value operated on by toupper.

• Type-checking. When you declare a function, the compiler can check the
argument types. Because you cannot declare a macro, the compiler cannot check
macro argument types, although it can check the number of arguments you pass
to a macro.

Type Checking
The compiler performs limited type checking on functions that can take a variable
number of arguments, as follows:

Function Call

_cprintf, _cscanf, printf, scanf

fprintf, fscanf, sprintf, sscanf

_snprintf

_execl, _execle, _execlp, _execlpe

_spawnl, _spawnle, _spawnlp, _spawnlpe

Type-Checked Arguments

First argument (format string)

First two arguments (file or buffer and format
string)

First three arguments (file or buffer, count, and
format string)

First two arguments (path and _open flag)

First three arguments (path, _open flag, and
sharing mode)

First two arguments (path and first argument
pointer)

First three arguments (mode flag, path, and first
argument pointer)

The compiler performs the same limited type checking on the wide-character
counterparts of these functions.

Introduction

xv

C HAP T E R

Run-Time Routines by Category

This chapter lists and describes Microsoft run-time library routines by category.
For reference convenience, some routines are listed in more than one category.
Multibyte-character routines and wide-character routines are grouped with
single-byte-character counterparts, where they exist.

The main categories of Microsoft run-time library routines are:

Argument access

Buffer manipulation

Byte classification

Character classification

Data conversion

Debug

Directory control

Error handling

Exception handling

File handling

Floating-point support

Input and output

Internationalization

Memory allocation

Process and environment control

Searching and sorting

String manipulation

System calls

Time management

Argument Access
The va_arg, va_end, and va_start macros provide access to function arguments
when the number of arguments is variable. These macros are defined in STDARG.H
for ANSI C compatibility, and in VARARGS.H for compatibility with UNIX
System V.

Run-Time Library Reference

Argument-Access Macros

Macro

va_arg

va_end

va_start

Use

Retrieve argument from list

Reset pointer

Set pointer to beginning of argument list

Buffer Manipulation
Use these routines to work with areas of memory on a byte-by-byte basis.

Buffer-Manipulation Routines

Routine

_memccpy

memchr

memcmp

memcpy

_memicmp

memmove

memset

_swab

Use

Copy characters from one buffer to another until given character or given
number of characters has been copied

Return pointer to first occurrence, within specified number of characters,
of given character in buffer

Compare specified number of characters from two buffers

Copy specified number of characters from one buffer to another

Compare specified number of characters from two buffers without regard
to case

Copy specified number of characters from one buffer to another

Use given character to initialize specified number of bytes in the buffer

Swap bytes of data and store them at specified location

When the source and target areas overlap, only memmove is guaranteed to copy the
full source properly.

Byte Classification

2

Each of these routines tests a specified byte of a multibyte character for satisfaction
of a condition. Except where specified otherwise, the test result depends on the
multibyte code page currently in use.

Note By definition, the ASCII character set is a subset of all multibyte-character sets.
For example, the Japanese katakana character set includes ASCII as well as non-ASCII
characters.

The manifest constants in the following table are defined in CTYPE.H:

Chapter 1 Run-Time Routines by Category

Multibyte-Character Byte-Classification Routines

Routine

isleadbyte

_ismbbalnum

_ismbbalpba

_ismbbgrapb

_ismbbkalnum

_ismbbkana

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

_ismbslead

_ismbstrail

_mbbtype

_mbsbtype

Byte Test Condition

Lead byte; test result depends on LC_CTYPE category setting of
current locale

isalnum \I _ismbbkalnum

isalpba \I _ismbbkalnum

Same as _ismbbprint, but _ismbbgrapb does not include the space
character (Ox20)

Non-ASCII text symbol other than punctuation. For example, in code
page 932 only, _ismbbkalnum tests for katakana alphanumeric

Katakana (OxAI-OxDF), code page 932 only

Non-ASCII text or non-ASCII punctuation symbol. For example, in
code page 932 only, _ismbbkprint tests for katakana alphanumeric or
katakana punctuation (range: OxAl- OxDF).

Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

First byte of multibyte character. For example, in code page 932 only,
valid ranges are Ox81-0x9F, OxEO-OxFC.

isprint II _ismbbkprint. ismbbprint includes the space character (Ox20)

ispunct II _ismbbkpunct

Second byte of multibyte character. For example, in code page 932 only,
valid ranges are Ox40-0x7E, Ox80-0xEC.

Lead byte (in string context)

Trail byte (in string context)

Return byte type based on previous byte

Return type of byte within string

The MB_LEN_MAX macro, defined in LIMITS.H, expands to the maximum length in
bytes that any multibyte character can have. MB_CUR_MAX, defined in STDLIB.H,
expands to the maximum length in bytes of any multibyte character in the current locale.

Character Classification
Each of these routines tests a specified single-byte character, wide character, or multibyte
character for satisfaction of a condition. (By definition, the ASCII character set is a
subset of all multibyte-character sets. For example, Japanese katakana includes ASCII
as well as non-ASCII characters.) Generally these routines execute faster than tests you
might write. For example, the following code executes slower than a call to isalpba(c):

if «c)= 'A') && (c <= 'Z')) I I «c)= 'a') && (c <= 'z'))
return TRUE;

3

Run-Time Library Reference

Character-Classification Routines

Routine

isalnum, iswalnum, _ismbcalnum

isalpha, iswalpha, _ismbcalpha

_isascii, iswascii

iscntrl, iswcntrl

_iscsym

_iscsymf

is digit, iswdigit, _ismbcdigit

isgraph, iswgraph, _ismbcgraph

islower, iswlower, _ismbclower

_ismbchira

_ismbckata

_ismbclegal

_ismbclO

_ismbcll

_ismbcl2

_ismbcsymbol

isprint, iswprint, _ismbcprint

ispunct, iswpunct, _ismbcpunct

isspace, iswspace, _ismbcspace

isupper, iswupper, _ismbcupper

iswctype

isxdigit, iswxdigit

mblen

Character Test Condition

Alphanumeric

Alphabetic

ASCII

Control

Letter, underscore, or digit

Letter or underscore

Decimal digit

Printable other than space

Lowercase

Hiragana

Katakana

Legal multi byte character

Japan-level 0 multibyte character

Japan-level 1 multibyte character

Japan-level 2 multibyte character

Non-alphanumeric multibyte character

Printable

Punctuation

White-space

Uppercase

Property specified by desc argument

Hexadecimal digit

Return length of valid multi byte character; result depends
on LC_CTYPE category setting of current locale

Data Conversion

4

These routines convert data from one form to another. Generally these routines
execute faster than conversions you might write. Each routine that begins with a
to prefix is implemented as a function and as a macro. See "Choosing Between
Functions and Macros" on page xiii for information about choosing an
implementation.

Data-Conversion Routines

Routine

abs

atof

Use

Find absolute value of integer

Convert string to float

Data-Conversion Routines (continued)

Routine

atoi, _atoi64

atol

_eevt

_fevt

_gevt

_itoa, _i64toa, _itow, _i64tow

labs

_Itoa, _Itow

_rnbbtornbe

_rnbejistojrns

_rnbejrnstojis

_rnbetohira

_rnbetokata

_rnbetornbb

rnbstowes

rnbtowe

strtod, westod

strtol, westol

strtoul, westoul

strxfrrn, wesxfrrn

_toascii

tolower, towlower, _rnbetolower

_tolower

toupper, towupper, _rnbetoupper

_toupper

_ultoa, _ultow

westornbs

Chapter 1 Run-Time Routines by Category

Use

Convert string to int

Convert string to long

Convert double to string of specified length

Convert double to string with specified number of
digits following decimal point

Convert double number to string; store string in buffer

Convert int to string

Find absolute value of long integer

Convert long to string

Convert I-byte multibyte character to corresponding
2-byte multibyte character

Convert Japan Industry Standard (nS) character to
Japan Microsoft OMS) character

Convert JMS character to ns character

Convert multi byte character to I-byte hiragana code

Convert multibyte character to I-byte katakana code

Convert 2-byte multibyte character to corresponding
I-byte multibyte character

Convert sequence of multibyte characters to
corresponding sequence of wide characters

Convert multi byte character to corresponding wide
character

Convert string to double

Convert string to long integer

Convert string to unsigned long integer

Transform string into collated form based on
locale-specific information

Convert character to ASCII code

Test character and convert to lowercase if currently
uppercase

Convert character to lowercase unconditionally

Test character and convert to uppercase if currently
lowercase

Convert character to uppercase unconditionally

Convert unsigned long to string

Convert sequence of wide characters to corresponding
sequence of multibyte characters

(continued)

5

Run-Time Library Reference

Data-Conversion Routines (continued)

Routine

wctomb

_wtoi

_wtol

Use

Convert wide character to corresponding multi byte
character

Convert wide-character string to int

Convert wide-character string to long

Debug Routines

6

With this version, Visual C++ introduces debug support for the C run-time library.
The new debug version of the library supplies many diagnostic services that make
debugging programs easier and allow developers to:

• Step directly into run-time functions during debugging

• Resolve assertions, errors, and exceptions

• Trace heap allocations and prevent memory leaks

• Report debug messages to the user

To use these routines, the _DEBUG flag must be defined. All of these routines do
nothing in a retail build of an application.

Debug Versions of the C Run-time Library Routines

Routine

_ASSERT

_ASSERTE

_ CrtCheckMemory

_ CrtDbgReport

_ CrtDoFor AIIClientObjects

_ CrtDumpMemoryLeaks

_ Crtls ValidHeapPointer

_ CrtlsMemoryBlock

Use

Evaluate an expression and generates a debug report
when the result is FALSE

Similar to _ASSERT, but includes the failed
expression in the generated report

Confirm the integrity of the memory blocks allocated
on the debug heap

Generate a debug report with a user message and send
the report to three possible destinations

Call an application-supplied function for all
_CLIENT_BLOCK types on the heap

Dump all of the memory blocks on the debug heap
when a significant memory leak has occurred

Verify that a specified pointer is in the local heap

Verify that a specified memory block is located within
the local heap and that it has a valid debug heap block
type identifier

Chapter 1 Run-Time Routines by Category

Debug Versions of the C Run-time Library Routines (continued)

Routine

_ CrtIs ValidPointer

_ CrtMemCheckpoint

_ CrtMemDifference

_ CrtMemDumpAllObjectsSince

_ CrtMemDumpStatistics

_ CrtSetAllocHook

_ CrtSetBreakAlloc

_ CrtSetDbgFlag

_ CrtSetDumpClient

_ CrtSetReportFile

_ CrtSetReportHook

_ CrtSetReportMode

_RPT[O,1,2,3,4]

_RPTF[O,1,2,3,4]

Use

Verify that a specified memory range is valid for
reading and writing

Obtain the current state of the debug heap and store it
in an application-supplied _ CrtMemState structure

Compare two memory states for significant differences
and return the results

Dump information about objects on the heap since a
specified checkpoint was taken or from the start of
program execution

Dump the debug header information for a specified
memory state in a user-readable form

Install a client-defined allocation function by hooking
it into the C run-time debug memory allocation process

Set a breakpoint on a specified object allocation order
number

Retrieve or modify the state of the _crtDbgFlag flag
to control the allocation behavior of the debug heap
manager

Install an application-defined function that is called
every time a debug dump function is called to dump
_CLIENT_BLOCK type memory blocks

Identify the file or stream to be used as a destination
for a specific report type by _ CrtDbgReport

Install a client-defined reporting function by hooking it
into the C run-time debug reporting process

Specify the general destination(s) for a specific report
type generated by _CrtDbgReport

Track the application's progress by generating a debug
report by calling _CrtDbgReport with a format string
and a variable number of arguments. Provides no
source file and line number information.

Similar to the _RPTn macros, but provides the source
file name and line number where the report request
originated

Allocate a specified number of memory blocks on the
heap with additional space for a debugging header and
overwrite buffers

Resize a specified block of memory on the heap by
expanding or contracting the block

(continued)

7

Run-Time Library Reference

8

Debug Versions of the C Run-time Library Routines (continued)

Routine

_free_dbg

_rnalloc_dbg

_rnsize_dbg

_reaUoc_dbg

Use

Free a block of memory on the heap

Allocate a block of memory on the heap with additional
space for a debugging header and overwrite buffers

Calculate the size of a block of memory on the heap

Reallocate a specified block of memory on the heap by
moving and/or resizing the block

The debug routines can be used to step through 'the source code for most of the other
C run-time routines during the debugging process. However, Microsoft considers
some technology to be proprietary and, therefore, does not provide the source code
for these routines. Most of these routines belong to either the exception handling
or floating-point processing groups, but a few others are included as well. The
following table lists these routines:

C Run-time Routines that are Not Available in Source Code Form

acos

asin

atan, atan2

_cabs

ceil

_chgsign

_clear87, _clearfp

_controI87, _controlfp

_copysign

cos

cosh

exp

fabs

_finite

floor

frnod

_fpclass

_fpieee_flt

_fpreset

frexp

_hypot

_isnan

-.i0
-.il
-.in
Idexp

log

log10

_10gb

longjrnp

_rnatherr

rnodf

_nextafter

pow

printf, wprintfi

_scalb

scanf, wscanfi

setjrnp

sin

sinh

sqrt

_status87, _statusfp

tan

tanh

-yO

-yl

-yn

i Although source code is available for most of this routine, it makes an internal call to another routine for
which source code is not provided.

Some C run-time functions and C++ operators behave differently when called from
a debug build of an application. (Note that a debug build of an application can be
done by either defining the _DEBUG flag or by linking with a debug version of the
C run-time library.) The behavioral differences usually consist of extra features or
information provided by the routine to support the debugging process. The following
table lists these routines:

Chapter 1 Run-Time Routines by Category

Routines that Behave Differently in a Debug Build of an Application

C abort routine

C assert routine

c++ delete operator

C++ new operator

For more information about using the debug versions of the C++ operators in the
preceding table, see "Using the Debug Heap from C++."

Directory Control
These routines access, modify, and obtain information about the directory structure.

Directory-Control Routines

Routine

_chdir, _ wchdir

_chdrive

_getcwd, _ wgetcwd

_getdcwd, _ wgetdcwd

_getdrive

_mkdir, _ wmkdir

_rmdir, _ wrmdir

_searchenv, _ wsearchenv

Use

Change current working directory

Change current drive

Get current working directory for default drive

Get current working directory for specified drive

Get current (default) drive

Make new directory

Remove directory

Search for given file on specified paths

Error Handling
Use these routines to handle program errors.

Error-Handling Routines

Routine

assert macro

_ASSERT, _ASSERTE
macros

dearerr

_eof

feof

ferror

_RPT, _RPTF macros

Use

Test for programming logic errors; available in both the release
and debug versions of the run-time library

Similar to assert, but only available in the debug versions of
the run-time library

Reset error indicator. Calling rewind or closing a stream also
resets the error indicator.

Check for end of file in low-level I/O

Test for end of file. End of file is also indicated when _read
returns o.
Test for stream I/O errors

Generate a report similar to printf, but only available in the
debug versions of the run-time library

9

Run-Time Library Reference

Exception Handling Routines
Use the C++ exception-handling functions to recover from unexpected events during
program execution.

Exception-Handling Functions

Function

seCterminate

seCunexpected

terminate

unexpected

Use

Handle Win32 exceptions (C structured exceptions) as C++ typed
exceptions

Install your own termination routine to be called by terminate

Install your own termination function to be called by unexpected

Called automatically under certain circumstances after exception
is thrown. The terminate function calls abort or a function you
specify using seCterminate

Calls terminate or a function you specify using seCunexpected.
The unexpected function is not used in current Microsoft C++
exception-handling implementation

File Handling

10

Use these routines to create, delete, and manipulate files and to set and check
file-access permissions.

The C run-time libraries have a preset limit for the number of files that can be open at
anyone time. The limit for applications that link with the single-thread static library
(LIBC.LIB) is 64 file handles or 20 file streams. Applications that link with either
the static or dynamic multithread library (LIBCMT.LIB or MSVCRT.LIB and
MSVCRT.DLL), have a limit of 256 file handles or 40 file streams. Attempting to
open more than the maximum number of file handles or file streams causes
program failure.

The following routines operate on files designated by a file handle:

File-Handling Routines (File Handle)

Routine

_chsize

_filelength

_fstat, _fstati64

_isatty

_locking

_setmode

Use

Change file size

Get file length

Get file-status information on handle

Check for character device

Lock areas of file

Set file-translation mode

Chapter 1 Run-Time Routines by Category

The following routines operate on files specified by a path or filename:

File-Handling Routines (Path or Filename)

Routine

_access, _ waccess

_chmod, _ wchmod

_fullpath, _ wfullpath

_gcCostbandle

_makepath, _ wmakepath

_mktemp, _ wmktemp

_open_ostbandle

remove, _ wremove

rename, _ wrename

_splitpath, _ wsplitpath

_stat, _stati64, _ wstat,
_wstati64

_umask

_unlink,_wunlink

Use

Check file-permission setting

Change file-permission setting

Expand a relative path to its absolute path name

Return operating-system file handle associated with existing
stream FILE pointer

Merge path components into single, full path

Create unique filename

Associate C run-time file handle with existing
operating-system file handle

Delete file

Rename file

Parse path into components

Get file-status information on named file

Set default permission mask for new files created by program

Delete file

Floating -Point Support
Many Microsoft run-time library functions require floating-point support from a
math coprocessor or from the floating-point libraries that accompany the compiler.
Floating-point support functions are loaded only if required.

When you use a floating-point type specifier in the format string of a call to a function
in the printf or scanf family, you must specify a floating-point value or a pointer to a
floating-point value in the argument list to tell the compiler that floating-point support
is required. The math functions in the Microsoft run-time library handle exceptions
the same way that the UNIX V math functions do.

The Microsoft run-time library sets the default internal precision of the math
coprocessor (or emulator) to 64 bits. This default applies only to the internal precision
at which all intermediate calculations are performed; it does not apply to the size of
arguments, return values, or variables. You can override this default and set the chip
(or emulator) back to 80-bit precision by linking your program with LIBIFPIO.OBJ.
On the linker command line, FPIO.OBJ must appear before LIBC.LIB, LIBCMT.LIB,
or MSVCRT.LIB.

11

Run-Time Library Reference

12

Floating-Point Functions

Routine

abs

acos

asin

atan, atan2

atof

Bessel functions

_cabs

ceil

_chgsign

_clear87, _clearfp

_ control87, _ controlfp

_copysign

cos

cosh

difftime

div

_ecvt

exp

fabs

_fcvt

floor

fmod

_fpclass

_fpieee_flt

_fpreset

frexp

_gcvt

_hypot

_is nan

labs

ldexp

Use

Return absolute value of int

Calculate arccosine

Calculate arcsine

Calculate arctangent

Convert character string to double-precision floating-point value

Calculate Bessel functions -.iO, -.it, -.in, -yO, -yt, -yn

Find absolute value of complex number

Find integer ceiling

Reverse sign of double-precision floating-point argument

Get and clear floating-point status word

Get old floating-point control word and set new control-word
value

Return one value with sign of another

Calculate cosine

Calculate hyperbolic cosine

Compute difference between two specified time values

Divide one integer by another, returning quotient and remainder

Convert double to character string of specified length

Calculate exponential function

Find absolute value

Convert double to string with specified number of digits
following decimal point

Determine whether given double-precision floating-point value
is finite

Find largest integer less than or equal to argument

Find floating-point remainder

Return status word containing information on floating-point class

Invoke user-defined trap handler for IEEE floating-point
exceptions

Reinitialize floating-point math package

Calculate exponential value

Convert floating-point value to character string

Calculate hypotenuse of right triangle

Check given double-precision floating-point value for not a
number (NaN)

Return absolute value of long

Calculate product of argument and 2 to specified power

Chapter 1 Run-Time Routines by Category

Floating-Point Functions (continued)

Routine

Idiv

log

loglO

_10gb

_Irotl, _Irotr

_matherr

_max

_min

modf

_nextafter

pow

printf, wprintf

rand

_rotl, _rotr

_scalb

scanf, wscanf

sin

sinh

sqrt

srand

_status87, _statusfp

strtod

tan

tanh

Long Double

Use

Divide one long integer by another, returning quotient and
remainder

Calculate natural logarithm

Calculate base-l 0 logarithm

Extract exponential value of double-precision floating-point
argument

Shift unsigned long int left Clrotl) or right Clrotr)

Handle math errors

Return larger of two values

Return smaller of two values

Split argument into integer and fractional parts

Return next representable neighbor

Calculate value raised to a power

Write data to stdout according to specified format

Get pseudorandom number

Shift unsigned int left Crotl) or right Crotr)

Scale argument by power of 2

Read data from stdin according to specified format and write data
to specified location

Calculate sine

Calculate hyperbolic sine

Find square root

Initialize pseudorandom series

Get floating-point status word

Convert character string to double-precision value

Calculate tangent

Calculate hyperbolic tangent

Previous 16-bit versions of Microsoft C/C++ and Microsoft Visual C++ supported
the long double, 80-bit precision data type. In Win32 programming, however, the
long double data type maps to the double, 64-bit precision data type. The Microsoft
run-time libraI)' provides long double versions of the math functions only for
backward compatibility. The long double function prototypes are identical to the
prototypes for their double counterparts, except that the long double data type
replaces the double data type. The long double versions of these functions should
not be used in new code.

13

Run-Time Library Reference

Double Functions and Their Long Double Counterparts

Long Double Long Double
Function Counterpart Function Counterpart

acos acosl frexp frexpl

asin asinl _hypot _hypotl

atan atanl ldexp ldexpl

atan2 atan21 log logl

atof _atold loglO loglOl

Bessel functions jOl, jll, jnl _matherr _matherrl
jO,jl,jn

Bessel functions yOl, yll, ynl modf modfl
yO,yl,yn

_cabs - cabsl pow powl

ceil ceill sin sinl

cos cosl sinh sinhl

cosh coshl sqrt sqrtl

exp expl strtod _strtold

fabs fabsl tan tanl

floor floorl tanh tanhl

fmod fmodl

Input and Output

14

The 110 functions read and write data to and from files and devices. File 110
operations take place in text mode or binary mode. The Microsoft run-time library has
three types of 110 functions:

• Stream I/O functions treat data as a stream of individual characters.

• Low-level I/O functions invoke the operating system directly for lower-level
operation than that provided by stream 110.

• Console and port I/O functions read or write directly to a console (keyboard and
screen) or an 110 port (such as a printer port).

Warning Because stream functions are buffered and low-level functions are not, these two
types of functions are generally incompatible. For processing a particular file, use either stream
or low-level functions exclusively.

Chapter 1 Run-Time Routines by Category

Text and Binary Mode File 1/0
File I/O operations take place in one of two translation modes, text or binary,
depending on the mode in which the file is opened. Data files are usually processed in
text mode. To control the file translation mode, you can:

• Retain the current default setting and specify the alternative mode only when you
open selected files.

• Change the default translation mode directly by setting the global variable _fmode
in your program. The initial default setting of _fmode is _O_TEXT, for text mode.

When you call a file-open function such as _open, fopen, freopen, or _fsopen,
you can override the current default setting of _fmode by specifying the appropriate
argument to the function. The stdin, stdout, and stderr streams always open in text
mode by default; you can also override this default when opening any of these files.
Use _setmode to change the translation mode using the file handle after the file is
open.

Unicode™ Stream 1/0 in Text and Binary Modes
When a Unicode stream I/O routine (such as fwprintf, fwscanf, fgetwc, fputwe,
fgetws, or fputws) operates on a file that is open in text mode (the default), two kinds
of character conversions take place:

• Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-I/O
function operates in text mode, the source or destination stream is assumed to be a
sequence of multibyte characters. Therefore, the Unicode stream-input functions
convert multibyte characters to wide characters (as if by a call to the mbtowe
function). For the same reason, the Unicode stream-output functions convert wide
characters to multibyte characters (as if by a call to the we tomb function).

• Carriage return-linefeed (CR-LF) translation. This translation occurs before the
MBCS-Unicode conversion (for Unicode stream input functions) and after the
Unicode-MBCS conversion (for Unicode stream output functions). During input,
each carriage return -linefeed combination is translated into a single linefeed
character. During output, each linefeed character is translated into a carriage return
-linefeed combination.

However, when a Unicode stream-I/O function operates in binary mode, the file is
assumed to be Unicode, and no CR-LF translation or character conversion occurs
during input or output.

15

Run-Time Library Reference

Stream I/O

16

These functions process data in different sizes and formats, from single characters
to large data structures. They also provide buffering, which can improve performance.
The default size of a stream buffer is 4K. These routines affect only buffers created by
the run-time library routines, and have no effect on buffers created by the operating
system.

Stream I/O Routines

Routine

clearerr

fclose

_fcloseall

_fdopen, wfdopen

feof

ferror

fflush

fgetc, fgetwc

_fgetchar, _fgetwchar

fgetpos

fgets, fgetws

_fileno

_flushall

fopen, _ wfopen

fprintf, fwprintf

fputc, fputwc

_fputchar, _fputwchar

fputs, fputws

fread

freopen, _ wfreopen

fscanf, fwscanf

fseek

fsetpos

_fsopen, _ wfsopen

ftell

fwrite

Use

Clear error indicator for stream

Close stream

Close all open streams except stdin, stdout, and stderr

Associate stream with handle to open file

Test for end of file on stream

Test for error on stream

Flush stream to buffer or storage device

Read character from stream (function versions of getc and
getwc)

Read character from stdin (function versions of getchar and
getwchar)

Get position indicator of stream

Read string from stream

Get file handle associated with stream

Flush all streams to buffer or storage device

Open stream

Write formatted data to stream

Write a character to a stream (function versions of putc and
putwc)

Write character to stdout (function versions of putchar and
putwchar)

Write string to stream

Read unformatted data from stream

Reassign FILE stream pointer to new file or device

Read formatted data from stream

Move file position to given location

Set position indicator of stream

Open stream with file sharing

Get current file position

Write unformatted data items to stream

Chapter 1 Run-Time Routines by Category

Stream 1/0 Routines (continued)

Routine

getc, getwc

getchar, getwchar

gets, getws

_getw

printf, wprintf

putc, putwc

putchar, putwchar

puts, _putws

_putw

rewind

_rmtmp

scanf, wscanf

setbuf

_setmaxstdio

setvbuf

_snprintf, _snwprintf

sprintf, swprintf

sscanf, swscanf

_tempnam, _ wtempnam

tmpfile

tmpnam, _ wtmpnam

ungetc, ungetwc

vfprintf, vfwprintf

vprintf, vwprintf

_ vsnprintf, _ vsnwprintf

vsprintf, vswprintf

Use

Read character from stream (macro versions of fgetc and fgetwc)

Read character from stdin (macro versions of fgetchar and
fgetwchar)

Read line from stdin

Read binary int from stream

Write formatted data to stdout

Write character to a stream (macro versions of fputc and
fputwc)

Write character to stdout (macro versions of fputchar and
fputwchar)

Write line to stream

Write binary int to stream

Move file position to beginning of stream

Remove temporary files created by tmpfile

Read formatted data from stdin

Control stream buffering

Set a maximum for the number of simultaneously open files at
the stream 110 level.

Control stream buffering and buffer size

Write formatted data of specified length to string

Write formatted data to string

Read formatted data from string

Generate temporary filename in given directory

Create temporary file

Generate temporary filename

Push character back onto stream

Write formatted data to stream

Write formatted data to stdout

Write formatted data of specified length to buffer

Write formatted data to buffer

When a program begins execution, the startup code automatically opens several
streams: standard input (pointed to by stdin), standard output (pointed to by stdont),
and standard error (pointed to by stderr). These streams are directed to the console
(keyboard and screen) by default. Use freopen to redirect stdin, stdont, or stderr to
a disk file or a device.

17

Run-Time Library Reference

Files opened using the stream routines are buffered by default. The stdout and stderr
functions are flushed whenever they are full or, if you are writing to a character
device, after each library call. If a program terminates abnormally, output buffers
may not be flushed, resulting in loss of data. Use fflush or _flushall to ensure that the
buffer associated with a specified file or all open buffers are flushed to the operating
system, which can cache data before writing it to disk. The commit-to-disk feature
ensures that the flushed buffer contents are not lost in the event of a system failure.

There are two ways to commit buffer contents to disk:

• Link with the file COMMODE.OB] to set a global commit flag. The default setting
of the global flag is n, for "no-commit."

• Set the mode flag to c with fopen or _fdopen.

Any file specifically opened with either the c or the n flag behaves according to the
flag, regardless of the state of the global commit/no-commit flag.

If your program does not explicitly close a stream, the stream is automatically closed
when the program terminates. However, you should close a stream when your
program finishes with it, as the number of streams that can be open at one time is
limited. See _setmaxstdio for information on this limit.

Input can follow output directly only with an intervening call to mush or to a
file-positioning function (fseek, fsetpos, or rewind). Output can follow input without
an intervening call to a file-positioning function if the input operation encounters the
end of the file.

Low-level 110

18

These functions invoke the operating system directly for lower-level operation than
that provided by stream I/O. Low-level input and output calls do not buffer or
format data.

Low-level routines can access the standard streams opened at program startup using
the following predefined handles:

Stream

stdin

stdout

stderr

Handle

o
1

2

Low-level I/O routines set the errno global variable when an error occurs. You must
include STDIO.H when you use low-level functions only if your program requires a
constant that is defined in STDIO.H, such as the end-of-file indicator (EOF).

Chapter 1 Run-Time Routines by Category

Low-Level 110 Functions

Function

_close

_commit

_creat, _ wcreat

_dup

_dup2

_eof

_Iseek, _lseeki64

_open, _ wopen

_read

_sopen, _ wsopen

_tell, _te1li64

_umask

_write

Use

Close file

Flush file to disk

Create file

Return next available file handle for given file

Create second handle for given file

Test for end of file

Reposition file pointer to given location

Open file

Read data from file

Open file for file sharing

Get current file-pointer position

Set file-permission mask

Write data to file

_dup and _dup2 are typically used to associate the predefined file handles with
different files.

Console and Port I/O
These routines read and write on your console or on the specified port. The console
I/O routines are not compatible with stream I/O or low-level I/O library routines. The
console or port does not have to be opened or closed before I/O is performed, so there
are no open or close routines in this category. In Windows NT and Windows 95, the
output from these functions is always directed to the console and cannot be redirected.

Console and Port 110 Routines

Routine

_cgets

_cprintf

_cputs

_cscanf

~etch

~etche

_inp

_inpd

_inpw

_kbhit

Use

Read string from console

Write formatted data to console

Write string to console

Read formatted data from console

Read character from console

Read character from console and echo it

Read one byte from specified I/O port

Read double word from specified I/O port

Read 2-byte word from specified I/O port

Check for keystroke at console; use before attempting to read from console

(continued)

19

Run-Time Library Reference

Console and Port 110 Routines (continued)

Routine

_outp

_outpd

_outpw

_putch

_ungetch

Use

Write one byte to specified I/O port

Write double word to specified I/O port

Write word to specified I/O port

Write character to console

"Unget" last character read from console so it
becomes next character read

Internationalization
The Microsoft run-time library provides many routines that are useful for creating
different versions of a program for international markets. This includes locale-related
routines, wide-character routines, multibyte-character routines, and generic-text
routines. For convenience, most locale-related routines are also categorized in this
reference according to the operations they perform. In this chapter and in this book's
alphabetic reference, multibyte-character routines and wide-character routines are
described with single-byte-character counterparts, where they exist.

Locale

20

Use the setlocale function to change or query some or all of the current program
locale information. "Locale" refers to the locality (the country and language) for
which you can customize certain aspects of your program. Some locale-dependent
categories include the formatting of dates and the display format for monetary values.
For more information, see "Locale Categories" on page 61 in Chapter 3.

Locale-Dependent Routines

setlocale Category
Routine Use Setting Dependence

atof, atoi, atol Convert character to floating-point, LC_NUMERIC
integer, or long integer value, respectively

is Routines Test given integer for particular condition. LC_CTYPE

isleadbyte Test for lead byte 0 LC_CTYPE

localeconv Read appropriate values for formatting LC_MONETARY,
numeric quantities LC_NUMERIC

MB_CUR_MAX Maximum length in bytes of any multi byte LC_CTYPE
character in current locale (macro defined
in STDLIB.H)

_mbccpy Copy one multi byte character LC_CTYPE

Locale-Dependent Routines (continued)

Routine

mblen

_mbstrlen

mbstowes

mbtowe

printf functions

seanf functions

setioeale,
_ wsetloeale

streoll, weseoll

_stricoll, _ wesieoll

_strneoll, _ wesneoll

_strnicoll,
_wesnicoll

strftime, wesftime

_strlwr

strtod, westod,
strtol, westol,
strtoul, westoul

_strupr

strxfrm, wesxfrm

tolower, towlower

Use

Return length, in bytes, of given
multi byte character

Validate and return number of bytes in
multibyte character

For multibyte-character strings: validate
each character in string; return string
length

Convert sequence of multi byte characters
to corresponding sequence of wide
characters

Convert multi byte character to
corresponding wide character

Write formatted output

Read formatted input

Select locale for program

Compare characters of two strings

Compare characters of two strings
(case insensitive)

Compare first 11 characters of two strings

Compare first 11 characters of two strings
(case insensitive)

Format date and time value according to
suppliedformat argument

Convert, in place, each uppercase letter
in given string to lowercase

Convert character string to double, long,
or unsigned long value

Convert, in place, each lowercase letter
in string to uppercase

Transform string into collated form
according to locale

Convert given character to corresponding
lowercase character

Chapter 1 Run-Time Routines by Category

setlocale Category
Setting Dependence

LC_NUMERIC
(determines radix
character output)

LC_NUMERIC
(determines radix
character recognition)

Not applicable

LC_COLLATE

LC_COLLATE

LC_COLLATE

LC_COLLATE

LC_NUMERIC
(determines radix
character recognition)

LC_CTYPE

LC_CTYPE

(continued)

21

Run-Time Library Reference

Locale-Dependent Routines (continued)

Routine

to upper, towupper

wcstombs

wctomb

_ wtoi, _ wtol

Use

Convert given character to corresponding
uppercase letter

Convert sequence of wide characters to
corresponding sequence of multibyte
characters

Convert wide character to corresponding
multi byte character

Convert wide-character string to int
or long

setlocale Category
Setting Dependence

Code Pages

22

A code page is a character set, which can include numbers, punctuation marks, and
other glyphs. Different languages and locales may use different code pages. For
example, ANSI code page 1252 is used for American English and most European
languages; OEM code page 932 is used for Japanese Kanji.

A code page can be represented in a table as a mapping of characters to single-byte
values or multibyte values. Many code pages share the ASCII character set for
characters in the range OxOO-Ox7F.

The Microsoft run-time library uses the following types of code pages:

• System-default ANSI code page. By default, at startup the run-time system
automatically sets the multibyte code page to the system-default ANSI code page,
which is obtained from the operating system. The call

setlocale (LC_ALL. ""):

also sets the locale to the system-default ANSI code page.

• Locale code page. The behavior of a number of run-time routines is dependent
on the current locale setting, which includes the locale code page. (For more
information, see "Locale-Dependent Routines.") By default, all locale-dependent
routines in the Microsoft run-time library use the code page that corresponds to
the "c" locale. At run-time you can change or query the locale code page in use
with a call to setlocale.

• Multibyte code page. The behavior of most of the multibyte-character routines
in the run-time library depends on the current multibyte code page setting. By
default, these routines use the system-default ANSI code page. At run-time you
can query and change the multibyte code page with _getmbcp and _setmbcp,
respectively.

Chapter 1 Run-Time Routines by Category

• The "C" locale is defined by ANSI to correspond to the locale in which C
programs have traditionally executed. The code page for the "C" locale ("C" code
page) corresponds to the ASCII character set. For example, in the "C" locale,
islower returns true for the values Ox61-0x7 A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

Interpretation of Multibyte-Character Sequences
Most multibyte-character routines in the Microsoft run-time library recognize
multi byte-character sequences according to the current multibyte code page setting.
The following multibyte-character routines depend instead on the locale code page
(specifically, on the LC_CTYPE category setting of the current locale):

Locale-Dependent Multibyte Routines

Routine

mblen

_mbstrlen

mbstowcs

mbtowc

wcstombs

wctomb

Use

Validate and return number of bytes in multi byte character

For multibyte-character strings: validate each character in string; return
string length

Convert sequence of multi byte characters to corresponding sequence of
wide characters

Convert multi byte character to corresponding wide character

Convert sequence of wide characters to corresponding sequence of
multi byte characters

Convert wide character to corresponding multibyte character

Single-byte and Multibyte Character Sets
The ASCII character set defines characters in the range Oxoo -Ox7F. There are a
number of other character sets, primarily European, that define the characters within
the range OxOO-Ox7F identically to the ASCII character set and also define an
extended character set from Ox80-OxFF. Thus an 8-bit, single-byte.maracter set
(SBCS) is sufficient to represent the ASCII character set as well as the character sets
for many European languages. However, some non-European character sets, such as
Japanese Kanji, include many more characters than can be represented in a single-byte
coding scheme, and therefore require multibyte-character set (MBCS) encoding.

Note Many SBCS routines in the Microsoft run-time library handle multibyte bytes, characters,
and strings as appropriate. Many multibyte-character sets define the ASCII character set as a
subset. In many multibyte character sets, each character in the range OxOO-Ox7F is identical to
the character that has the same value in the ASCII character set. For example, in both ASCII
and MBCS character strings, the one-byte NULL character ('\0') has value OxOO and indicates
the terminating null character.

23

Run-Time Library Reference

A multibyte character set may consist of both one-byte and two-byte characters.
Thus a multibyte-character string may contain a mixture of single-byte and double
byte characters. A two-byte multibyte character has a lead byte and a trail byte. In a
particular multi byte-character set, the lead bytes fall within a certain range, as do the
trail bytes. When these ranges overlap, it may be necessary to evaluate the context to
determine whether a given byte is functioning as a lead byte or a trail byte.

SBCS and MBCS Data Types
Any Microsoft MBCS run-time library routine that handles only one multibyte
character or one byte of a multibyte character expects an unsigned int argument
(where OxOO <= character value <= OxFFFF and OxOO <= byte value <= OxFF).
An MBCS routine that handles multibyte bytes or characters in a string context
expects a multibyte-character string to be represented as an unsigned char pointer.

Caution Each byte of a multibyte character can be represented in an 8-bit char. However, an
SBCS or MBCS single-byte character of type char with a value greater than Ox7F is negative.
When such a character is converted directly to an int or a long, the result is sign-extended by
the compiler and can therefore yield unexpected results.

Therefore it is best to represent a byte of a multibyte character as an 8-bit unsigned
char. Or, to avoid a negative result, simply convert a single-byte character of type
char to an unsigned char before converting it to an int or a long.

Because some SBCS string-handling functions take (signed) char* parameters, a type
mismatch compiler warning will result when _MBCS is defined. There are three ways
to avoid this warning, listed in order of efficiency:

1. Use the "type-safe" inline function thunks in TCHAR.H. This is the default behavior.

2. Use the "direct" macros in TCHAR.H by defining _MB_MAP _DIRECT on the
command line. If you do this, you must manually match types. This is the fastest
method, but is not type-safe.

3. Use the "type-safe" statically linked library function thunks in TCHAR.H. To do
so, define the constant _NO_INLINING on the command line. This is the slowest
method, but the most type-safe.

Unicode: The Wide-Character Set

24

A wide character is a 2-byte multilingual character code. Any character in use in
modem computing worldwide, including technical symbols and special publishing
characters, can be represented according to the Unicode specification as a wide
character. Developed and maintained by a large consortium that includes Microsoft,

Chapter 1 Run-Time Routines by Category

the Unicode standard is now widely accepted. Because every wide character is always
represented in a fixed size of 16 bits, using wide characters simplifies programming
with international character sets.

A wide character is of type wchar_t. A wide-character string is represented as a
wchar_t[] array and is pointed to by a wchar_t* pointer. You can represent any
ASCII character as a wide character by prefixing the letter L to the character. For
example, L'\O' is the terminating wide (16-bit) NULL character. Similarly, you can
represent any ASCII string literal as a wide-character string literal simply by prefixing
the letter L to the ASCII literal (L"Hello").

Generally, wide characters take up more space in memory than multibyte characters
but are faster to process. In addition, only one locale can be represented at a time in
multibyte encoding, whereas all character sets in the world are represented
simultaneously by the Unicode representation.

Using Generic-Text Mappings
Microsoft Specific ~

To simplify code development for various international markets, the Microsoft
run-time library provides Microsoft-specific "generic-text" mappings for many data
types, routines, and other objects. These mappings are defined in TCHAR.H. You can
use these name mappings to write generic code that can be compiled for any of the
three kinds of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a
manifest constant you define using a #define statement. Generic-text mappings are
Microsoft extensions that are not ANSI compatible.

Preprocessor Directives for Generic-Text Mappings

#define

_UNICODE

_MBCS

None (the default:
neither _UNICODE
nor _MBCS defined)

Compiled Version

Unicode (wide-character)

Multibyte-character

SBCS (ASCII)

Example

_tcsrev maps to _ wcsrev

_tcsrev maps to _mbsrev

_tcsrev maps to strrev

For example, the generic-text function _tcsrev, defined in TCHAR.H, maps to
mbsrev if MBCS has been defined in your program, or to _wcsrev if _UNICODE
has been defined. Otherwise _tcsrev maps to strrev.

The generic-text data type _TCHAR, also defined in TCHAR.H, maps to type char
if _MBCS is defined, to type wchar_t if _UNICODE is defined, and to type char if
neither constant is defined. Other data type mappings are provided in TCHAR.H for
programming convenience, but _TCHAR is the type that is most useful.

25

Run-Time Library Reference

26

Generic-Text Data Type Mappings

Generic-Text Data SBCS LUNICODE, _MBCS
Type Name Not Defined) - MBCS Defined - UNICODE Defined

TCHAR char - char wchar_t

_TINT int int winet

- TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

-TXCHAR char unsigned char wchar_t

- Tor _TEXT No effect (removed by No effect (removed L (converts
preprocessor) by preprocessor) following

character or string
to its Unicode
counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects,
see Appendix B, "Generic-Text Mappings," on page 677.

The following code fragments illustrate the use of _ TCHAR and _tcsrev for mapping
to the MBCS, Unicode, and SBCS models.

_TCHAR *RetVal. *szString;
RetVal = _tcsrev(szString);

If MBCS has been defined, the preprocessor maps the preceding fragment to the
following code:

char *RetVal. *szStri ng;
RetVal = _mbsrev(szString);

If _UNICODE has been defined, the preprocessor maps the same fragment to the
following code:

wchar_t *RetVal. *szString;
RetVal = _wcsrev(szString);

If neither _MBCS nor _UNICODE has been defined, the preprocessor maps the
fragment to single-byte ASCII code, as follows:

char *RetVal. *szString;
RetVal = strrev(szString);

Thus you can write, maintain, and compile a single source code file to run with
routines that are specific to any of the three kinds of character sets.

See Also: A Sample Generic-Text Program

Chapter 1 Run-Time Routines by Category

A Sample Generic-Text Program
The following program, GENTEXT.C, provides a more detailed illustration of the use
of generic-text mappings defined in TCHAR.H:

1*
* GENTEXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
*1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>
#include <errno.h>
#include <tchar.h>

int __ cdecl _tmain(int argc. _TCHAR **argv. _TCHAR **envp)
{

_TCHAR buff[_MAX_PATH];
_TCHAR *str ... _T("Astring");
char *amsg 0= "Reversed";
wchar_t *wmsg - L"Is";

flifdef _UN I CODE
printf("Unicode version\n");

#else 1* _UNICODE *1
#ifdef _MBCS

printf("MBCS version\n");
#else

printf("SBCS version\n");
#endif
#endif 1* _UNICODE *1

}

if (_tgetcwd(buff. _MAX_PATH) -- NULL)
printf("Can't Get Current Directory - errno-%d\n". errno);

else
_tpri ntf(_T("Current Di rectory is '%s' \n"). buff);

_tprintf(_T("'%s' %hs %ls:\n"). str. amsg. wmsg);
_tprintf(_T('''%s' \n"). _tcsrev(str));
return 0;

If _MBCS has been defined, GENTEXT.C maps to the following MBCS program:

1*
* MBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* MBCS version of GENTEXT.C
*1

#include <stdlib.h>
#include <direct.h>

27

Run-Time Library Reference

28

int __ cdecl main(int argc, char **argv, char **envp)
{

char buff[_MAX_PATH];
char *str = "Astring";
char *amsg == "Reversed";
wchar_t *wmsg == L"Is";

printf("MBCS version\n");

if (_getcwd(buff, _MAX_PATH) == NULL) {
printf("Can't Get Current Directory - errno=%d\n", errno);

else {
pri ntf("Current Di rectory is '%s' \n", buff);

printf("'%s' %hs %ls:\n", str, amsg, wmsg);
printf("'%s'\n", _mbsrev(str»;
return 0;

If _UNICODE has been defined, GENTEXT.C maps to the following Unicode
version of the program. For more information about using wmain in Unicode
programs as a replacement for main, see "Using wmain" in C Language Reference.

1*
* UNICGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Unicode version of GENTEXT.C
*1

#include <stdlib.h>
#include <direct.h>

int __ cdecl wmain(int argc, wchar_t **argv, wchar_t **envp)
{

wchar_t buff[_MAX_PATH];
wchar_t *str == L"Astring";
char *amsg == "Reversed";
wchar_t *wmsg = L"Is";

printf("Unicode version\n");

if (_wgetcwd(buff, _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n", errno);

else {
wpri ntf(L"Current Di rectory is '%s' \n", buff);

wprintf(L"'%s' %hs %ls:\n", str, amsg, wmsg);
wprintf(L"'%s'\n", wcsrev(str»;
return 0;

Chapter 1 Run-Time Routines by Category

If neither _MBCS nor _UNICODE has been defined, GENTEXT.C maps to
single-byte ASCII code, as follows:

/*
* SBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program
* Single-byte (SBCS) Ascii version of GENTEXT.C
*/

#include <stdlib.h>
#include <direct.h>

int __ cdecl main(int argc. char **argv. char **envp)
{

char buff[_MAX_PATH];
char *str ~ "Astring";
char *amsg - "Reversed";
wchar_t *wmsg = L"Is";

printf("SBCS version\n");

if (_getcwd(buff. _MAX_PATH) =~ NULL) {
printf("Can't Get Current Directory - errno=%d\n". errno);

else {
printf("Current Directory is '%s'\n". buff);

printf("'%s' %hs %ls:\n". str. amsg. wmsg);
printf("'%s'\n". strrev(str));
return 0;

See Also: Appendix B, Generic-Text Mappings; Using Generic-Text Mappings

Using TCHAR.H Data Types with _MBCS
As the table of generic-text routine mappings indicates (see Appendix B, "Generic
Text Mappings"), when the manifest constant _MBCS is defined, a given generic-text
routine maps to one of the following kinds of routines:

• An SBCS routine that handles multibyte bytes, characters, and strings appropriately.
In this case, the string arguments are expected to be of type char*. For example,
_tprintf maps to printf; the string arguments to printf are of type char*. If you use
the _TCHAR generic-text data type for your string types, the formal and actual
parameter types for printf match because _ TCHAR * maps to char*.

29

Run-Time Library Reference

30

• An MBCS-specific routine. In this case, the string arguments are expected to be of
type unsigned char*. For example, _tcsrev maps to _mbsrev, which expects and
returns a string of type unsigned char*. Again, if you use the _TCHAR generic-text
data type for your string types, there is a potential type conflict because _ TCHAR
maps to type char.

Following are three solutions for preventing this type conflict (and the C compiler
warnings or C++ compiler errors that would result):

• Use the default behavior. TCHAR.H provides generic-text routine prototypes for
routines in the run-time libraries, as in the following example.

char *_tcsrev(char *);

In the default case, the prototype for _tcsrev maps to _mbsrev through a thunk
in LIBC.LIB. This changes the types of the _mbsrev incoming parameters and
outgoing return value from _TCHAR * (i.e., char *) to unsigned char *. This
method ensures type matching when you are using _ TCHAR, but it is relatively
slow because of the function call overhead.

• Use function inlining by incorporating the following preprocessor statement in
your code.

Hdefine _USE_INLINING

This method causes an inline function thunk, provided in TCHAR.H, to map the
generic-text routine directly to the appropriate MBCS routine. The following code
excerpt from TCHAR.H provides an example of how this is done.

__ inline char *_tcsrev(char *_s1)
{return (char *)_mbsrev«unsigned char *)_s1);}

If you can use inlining, this is the best solution, because it guarantees type matching
and has no additional time cost.

• Use "direct mapping" by incorporating the following preprocessor statement in
your code.

Hdefine _MB_MAP_DIRECT

This approach provides a fast alternative if you do not want to use the default
behavior or cannot use inlining. It causes the generic-text routine to be mapped by
a macro directly to the MBCS version of the routine, as in the following example
from TCHAR.H.

Hdefine _tcschr _mbschr

When you take this approach, you must be careful to ensure that appropriate data
types are used for string arguments and string return values. You can use type casting
to ensure proper type matching or you can use the _TXCHAR generic-text data type.
_TXCHAR maps to type char in SBCS code but maps to type unsigned char in
MBCS code. For more information about generic-text macros, see Appendix B,
"Generic-Text Mappings."

END Microsoft Specific

Chapter 1 Run-Time Routines by Category

Memory Allocation
Use these routines to allocate, free, and reallocate memory.

Memory-Allocation Routines

Routine

_alloca

calloc

_calloc_dbg

_expand

_expand_dbg

_heapadd

_heapchk

_heapmin

_heapset

_heapwalk

malloc

_malloc_dbg

_msize

_msize_dbg

_query _new_handler

_query _new_mode

realloc

_realloc_dbg

_seCnew _mode

_seCsbh_threshold

Use

Allocate memory from stack

Allocate storage for array, initializing every byte in allocated block to 0

Debug version of calloc; only available in the debug versions of the
run-time libraries

Expand or shrink block of memory without moving it

Debug version of _expand; only available in the debug versions of the
run-time libraries

Free allocated block

Debug version of free; only available in the debug versions of the
run-time libraries

Return the upper limit for the size of a memory allocation that will be
supported by the small-block heap

Add memory to heap

Check heap for consistency

Release unused memory in heap

Fill free heap entries with specified value

Return information about each entry in heap

Allocate block of memory from heap

Debug version of malloc; only available in the debug versions of the
run-time libraries

Return size of allocated block

Debug version of _msize; only available in the debug versions of the
run-time libraries

Return address of current new handler routine as set by _seCnew _handler

Return integer indicating new handler mode set by _seCnew _mode for
malloc

Reallocate block to new size

Debug version of realloc; only available in the debug versions of the
run-time libraries

Enable error-handling mechanism when new operator fails (to allocate
memory) and enable compilation of Standard Template Libraries (STL)

Set new handler mode for malloc

Set the upper limit for the size of a memory allocation that will be
supported by the small-block heap

31

Run-Time Library Reference

Process and Environment Control

32

Use the process-control routines to start, stop, and manage processes from within a
program. Use the environment-control routines to get and change information about
the operating-system environment.

Process and Environment Control Functions

Routine

abort

assert

_ASSERT,
_ASSERTE macros

atexit

_begin thread,
_beginthreadex

_cexit

_cwait

_end thread,
_endthreadex

_execI, _ wexecl

_execIe, _ wexecle

_execIp, _wexecIp

_execIpe, _ wexeclpe

_execv, _wexecv

_execve,_wexecve

_execvp, _ wexecvp

_execvpe,
_wexecvpe

exit

getenv, _wgetenv

~etpid

Use

Abort process without flushing buffers or calling functions registered
by atexit and _onexit

Test for logic error

Similar to assert, but only available in the debug versions of the
run-time libraries

Schedule routines for execution at program termination

Create a new thread on a Windows NT or Windows 95 process

Perform exit termination procedures (such as flushing buffers), then
return control to calling program without terminating process

Perform _exit termination procedures, then return control to calling
program without terminating process

Wait until another process terminates

Terminate a Windows NT or Windows 95 thread

Execute new process with argument list

Execute new process with argument list and given environment

Execute new process using PATH variable and argument list

Execute new process using PATH variable, given environment, and
argument list

Execute new process with argument array

Execute new process with argument array and given environment

Execute new process using PATH variable and argument array

Execute new process using PATH variable, given environment, and
argument array

Call functions registered by atexit and _onexit, flush all buffers, close
all open files, and terminate process

Terminate process immediately without calling atexit or _onexit or
flushing buffers

Get value of environment variable

Get process ID number

Chapter 1 Run-Time Routines by Category

Process and Environment Control Functions (continued)

Routine

longjmp

_onexit

_pclose

perror, _wperror

_pipe

_popen, _ wpopen

_putenv, _wputenv

raise

setjmp

signal

_spawnl, _ wspawnl

_spawnle,
_wspawnle

_spawnlp,
_wspawnlp

_spawnlpe,
_wspawnlpe

_spawnv, _ wspawnv

_spawnve,
_wspawnve

_spawnvp,
_wspawnvp

_spawnvpe,
_wspawnvpe

system, _ wsystem

Use

Restore saved stack environment; use it to execute a nonlocal goto

Schedule routines for execution at program termination; use for
compatibility with Microsoft C/C++ version 7.0 and earlier

Wait for new command processor and close stream on associated pipe

Print error message

Create pipe for reading and writing

Create pipe and execute command

Add or change value of environment variable

Send signal to calling process

Save stack environment; use to execute nonlocal go to

Handle interrupt signal

Create and execute new process with specified argument list

Create and execute new process with specified argument list and
environment

Create and execute new process using PATH variable and specified
argument list

Create and execute new process using PATH variable, specified
environment, and argument list

Create and execute new process with specified argument array

Create and execute new process with specified environment and
argument array

Create and execute new process using PATH variable and specified
argument array

Create and execute new process using PATH variable, specified
environment, and argument array

Execute operating-system command

In Windows NT and Windows 95, the spawned process is equivalent to the spawning
process. Therefore, the OS/2® wait function, which allows a parent process to wait for
its children to terminate, is not available. Instead, any process can use _cwait to wait
for any other process for which the process ID is known.

The difference between the _exec and _spawn families is that a _spawn function can
return control from the new process to the calling process. In a _spawn function, both
the calling process and the new process are present in memory unless _P _OVERLAY
is specified. In an _exec function, the new process overlays the calling process, so
control cannot return to the calling process unless an error occurs in the attempt to
start execution of the new process.

33

Run-Time Library Reference

The differences among the functions in the _exec family, as well as among those in
the _spawn family, involve the method of locating the file to be executed as the new
process, the form in which arguments are passed to the new process, and the method
of setting the environment, as shown in the following table. Use a function that passes
an argument list when the number of arguments is constant or is known at compile
time. Use a function that passes a pointer to an array containing the arguments when
the number of arguments is to be determined at run time. The information in the
following table also applies to the wide-character counterparts of the _spawn and
_exec functions.

_spawn and _exec Function Families

Use PATH Argument-
Variable to Passing

Functions Locate File Convention Environment Settings

_exeel, _spawnl No List Inherited from calling process

_exeele, _spawnle No List Pointer to environment table
for new process passed as last
argument

_exeelp, _spawnlp Yes List Inherited from calling process

_exeelpe, _spawnlpe Yes List Pointer to environment table
for new process passed as last
argument

_execv, _spawnv No Array Inherited from calling process

_execve, _spawnve No Array Pointer to environment table
for new process passed as last
argument

_execvp, _spawnvp Yes Array Inherited from calling process

_execvpe, _spawnvpe Yes Array Pointer to environment table
for new process passed as last
argument

Searching and Sorting

34

Use the following functions for searching and sorting:

Searching and Sorting Functions

Function

bsearch

_lfind

_lsearch

qsort

Search or Sort

Binary search

Linear search for given value

Linear search for given value, which is added to array if not found

Quick sort

Chapter 1 Run-Time Routines by Category

String Manipulation
These routines operate on null-terminated single-byte character, wide-character, and
multibyte-character strings. Use the buffer-manipulation routines, described in Buffer
Manipulation, to work with character arrays that do not end with a null character.

String-Manipulation Routines

Routine

_mbscoll, _mbsicoll, _mbsncoll,
_mbsnicoll

_mbsdec, _strdec, _ wcsdec

_mbsinc, _strinc, _ wcsinc

_mbslen

_mbsnbcat

_mbsnbcmp

_mbsnbcnt

_mbsnbcpy

_mbsnbicmp

_mbsnbset

_mbsnccnt

_mbsnextc, _strnextc,
_wcsnextc

_mbsninc. _strninc, _ wcsninc

_mbsspnp, _strspnp, _ wcsspnp

_mbstrlen

strcat, wcscat, _mbscat

strchr, wcschr, _mbschr

strcmp, wcscmp, _mbscmp

Use

Compare two multi byte-character strings using multibyte
code page information Cmbsicoll and _mbsnicoll are
case-insensiti ve)

Move string pointer back one character

Advance string pointer by one character

Get number of multi byte characters in multibyte-character
string; dependent upon OEM code page

Append, at most, first n bytes of one multibyte-character
string to another

Compare first n bytes of two multibyte-character strings

Return number of multi byte-character bytes within
supplied character count

Copy n bytes of string

Compare n bytes of two multi byte-character strings,
ignoring case

Set first n bytes of multi byte-character string to specified
character

Return number of multibyte characters within supplied
byte count

Find next character in string

Advance string pointer by n characters

Return pointer to first character in given string that is not
in another given string

Get number of multibyte characters in multibyte-character
string; locale-dependent

Append one string to another

Find first occurrence of specified character in string

Compare two strings

(continued)

35

Run-Time Library Reference

String-Manipulation Routines (continued)

36

Routine

strcolI, wcscolI, _stricolI,
_ wcsicolI, _strncoll, _ wcsncoll,
_strnicolI, _ wcsnicoll

strcpy, wcscpy, _mbscpy

strcspn, wcscspn, _mbscspn,

_strdup, _ wcsdup, _mbsdup

strerror

_strerror

strftime, wcsftime

_stricmp, _ wcsicmp, _mbsicmp

strlen, wcslen, _mbslen,
_mbstrlen

_strlwr, _wcslwr, _mbslwr

strncat, wcsncat, _mbsncat

strncmp, wcsncmp, _mbsncmp

strncpy, wcsncpy, _mbsncpy

_strnicmp, _wcsnicmp,
_mbsnicmp

_strnset, _ wcsnset, _mbsnset

strpbrk, wcspbrk, _mbspbrk

strrchr, wcsrchr,_mbsrchr

_strrev, _ wcsrev ,_mbsrev

_strset, _ wcsset, _mbsset

strspn, wcsspn, _mbsspn

strstr, wcsstr, _mbsstr

strtok, wcstok, _mbstok

_strupr, _wcsupr, _mbsupr

strxfrm,wcsxfrm

Use

Compare two strings using current locale code page
information CstricolI, _ wcsicolI, _strnicoll, and
_wcsnicoll are case-insensitive)

Copy one string to another

Find first occurrence of character from specified character
set in string

Duplicate string

Map error number to message string

Map user-defined error message to string

Format date-and-time string

Compare two strings without regard to case

Find length of string

Convert string to lowercase

Append characters of string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard to case

Set first n characters of string to specified character

Find first occurrence of character from one string in
another string

Find last occurrence of given character in string

Reverse string

Set all characters of string to specified character

Find first substring from one string in another string

Find first occurrence of specified string in another string

Find next token in string

Convert string to uppercase

Transform string into collated form based on
locale-specific information

Chapter 1 Run-Time Routines by Category

System Calls
The following functions are Windows NT and Windows 95 operating-system calls:

System Call Functions

Function

_find close

_findfirst, _findfirsti64,
_ wfindfirst, _ wfindfirsti64

_find next, _findnexti64,
_ wfindnext, _ wfindnexti64

Use

Release resources from previous find operations

Find file with specified attributes

Find next file with specified attributes

Time Management
Use these functions to get the current time and convert, adjust, and store it as
necessary. The current time is the system time.

The _ftime and localtime routines use the TZ environment variable. If TZ is not set,
the run-time library attempts to use the time-zone information specified by the
operating system. If this information is unavailable, these functions use the default
value of PST8PDT. For more information on TZ, see _tzset; also see _daylight,
timezone, and _tzname.

Time Routines

Function

asctime, _ wasctime

clock

ctime, _ wctime

difftime

_ftime

_futime

gmtime

localtime

mktime

Use

Convert time from type struct tm to character string

Return elapsed CPU time for process

Convert time from type time_t to character string

Compute difference between two times

Store current system time in variable of type struct
_timeb

Set modification time on open file

Convert time from type time_t to struct tm

Convert time from type time_t to struct tm with local
correction

Convert time to calendar value

(continued)

37

Run-Time Library Reference

38

Time Routines (continued)

Function

_strdate, _ wstrdate

strftime, wcsftime

_strtime, _ wstrtime

time

_tzset

_utime, _ wutime

Use

Return current system date as string

Format date-and-time string for international use

Return current system time as string

Get current system time as type time_t

Set external time variables from environment time
variable TZ

Set modification time for specified file using either
current time or time value stored in structure

Note In all versions of Microsoft C/C++ except Microsoft C/C++ version 7.0, and in all versions
of Microsoft Visual C++, the time function returns the current time as the number of seconds
elapsed since midnight on January 1, 1970. In Microsoft C/C++ version 7.0, time returned the
current time as the number of seconds elapsed since midnight on December 31, 1899.

CHAPTER 2

Global Variables and Standard Types

The Microsoft run-time library contains definitions for global variables, control flags,
and standard types used by library routines. Access these variables, flags, and types by
declaring them in your program or by including the appropriate header files.

Global Variables
The Microsoft run-time library provides the following global variables:

Variable

_amblksiz

daylight, _timezone,
_tzname

_doserrno, errno,
_sys_errlist, _sys_nerr

_environ, _ wenviron

_fileinfo

_fmode

_osver, _winmajor,
_winminor, _winver

_pgmptr, _ wpgmptr

_amblksiz

Description

Controls memory heap granularity

Adjust for local time; used in some date and time functions

Store error codes and related information

Pointers to arrays of pointers to strings that constitute process
environment

Specifies whether information regarding open files of a process
is passed to new processes

Sets default file-translation mode

Store build and version numbers of operating system

Initialized at program startup to value such as program name,
filename, relative path, or full path

_amblksiz controls memory heap granularity. It is declared in MALLOC.H as

extern unsigned int _amblksiz;

39

Run-Time Library Reference

The value of _amblksiz specifies the size of blocks allocated by the operating system
for the heap. The initial requested size for a segment of heap memory is just enough to
satisfy the current allocation request (for example, a call to malloc) plus memory
required for heap manager overhead. The value of _amblksiz should represent a
trade-off between the number of times the operating system is to be called to increase
the heap to required size and the amount of memory potentially wasted (available but
not used) at the end of the heap.

The default value of _amblksiz is 8K. You can change this value by direct assignment
in your program. For example:

_amblksiz = 2045;

If you assign a value to _amblksiz, the actual value used internally by the heap
manager is the assigned value rounded up to the nearest whole power of 2. Thus, in
the previous example, the heap manager would reset the value of _amblksize to 2048.

_daylight, _timezone, and _tzname

40

_daylight, _timezone, and _tzname are used in some time and date routines to make
local-time adjustments. They are declared in TIME.H as

extern int _daylight;
extern long _timezone;
extern char * _tzname[2];

On a call to _ftime, localtime, or _tzset, the values of _daylight, _timezone, and
_tzname are determined from the value of the TZ environment variable. If you do not
explicitly set the value of TZ, _tzname[O] and _tzname[l] contain empty strings, but
the time-manipulation functions Ctzset, _ftime, and localtime) attempt to set the
values of _daylight and _timezone by querying the operating system for the default
value of each variable. The time-zone global variable values are as follows:

Variable

_daylight

_timezone

_tzname[O]

_tzname[l]

Value

Nonzero if daylight-saving-time zone (DST) is specified in TZ; otherwise,
O. Default value is 1.

Difference in seconds between coordinated universal time and local time.
Default value is 28,800.

Three-letter time-zone name derived from TZ environment variable.

Three-letter DST zone name derived from TZ environment variable.
Default value is PDT (Pacific daylight time). If DST zone is omitted from
TZ, _tzname[l] is empty string.

Chapter 2 Global Variables and Standard Types

These global variables hold error codes used by the perror and strerror functions
for printing error messages. Manifest constants for these variables are declared in
STDLIB.H as follows:

extern int _doserrno;
extern int errno;
extern char * _sys_errlist[];
extern int _sys_nerr;

errno is set on an error in a system-level call. Because errno holds the value for
the last call that set it, this value may be changed by succeeding calls. Always check
errno immediately before and after a call that may set it. All errno values, defined as
manifest constants in ERRNO.H, are UNIX-compatible. The values valid for 32-bit
Windows applications are a subset of these UNIX values.

On an error, errno is not necessarily set to the same value as the error code returned by
a system call. For 1/0 operations only, use _doserrno to access the operating-system
error-code equivalents of errno codes. For other operations the value of _doserrno
is undefined.

Each errno value is associated with an error message that can be printed using perror
or stored in a string using strerror. perror and strerror use the _sys_errlist array
and _sys_nerr, the number of elements in _sys_errlist, to process error information.

Library math routines set errno by calling _matherr. To handle math errors
differently, write your own routine according to the _matherr reference description
and name it _matherr.

The following errno values are compatible with 32-bit Windows applications. Only
ERANGE and EDOM are specified in the ANSI standard.

Constant System Error Message Value

E2BIG Argument list too long 7

EACCES Permission denied 13

EAGAIN No more processes or not enough memory or 11
maximum nesting level reached

EBADF Bad file number 9

ECHILD No spawned processes 10

EDEADLOCK Resource deadlock would occur 36

EDOM Math argument 33

EEXIST File exists 17

EINVAL Invalid argument 22

EMFILE Too many open files 24

(continued)

41

Run-Time Library Reference

(continued)

Constant

ENOENT
ENOEXEC
ENOMEM
ENOSPC
ERANGE
EXDEV

System Error Message

No such file or directory

Exec format error

Not enough memory

No space left on device

Result too large

Cross-device link

. .

Value

2

8

12

28

34

18

_enVIrOn, _ WenVIrOn

42

The _environ variable is a pointer to an array of pointers to the multibyte-character
strings that constitute the process environment. _environ is declared in STDLIB.H as

extern char ** _environ;

In a program that uses the main function, _environ is initialized at program startup
according to settings taken from the operating-system environment. The environment
consists of one or more entries of the form

ENVVARNAME=string

getenv and _putenv use the _environ variable to access and modify the environment
table. When _putenv is called to add or delete environment settings, the environment
table changes size. Its location in memory may also change, depending on the program's
memory requirements. The value of _environ is automatically adjusted accordingly.

The _wenviron variable, declared in STDLIB.H as extern wchar_t ** _wenviron;, is
a wide-character version of _environ. In a program that uses the wmain function,
_ wenviron is initialized at program startup according to settings taken from the
operating-system environment.

In a program that uses main, _ wenviron is initially NULL, because the environment
is composed of multibyte-character strings. On the first call to _ wgetenv or _ wputenv,
a corresponding wide-character string environment is created and is pointed to by
_wenviron.

Similarly, in a program that uses wmain, _environ is initially NULL because the
environment is composed of wide-character strings. On the first call to _getenv or
_putenv, a corresponding wide-character string environment is created and is pointed
to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a
program, the run-time system must maintain both copies, resulting in slower execution
time. For example, whenever you call_putenv, a call to _wputenv is also executed
automatically, so that the two environment strings correspond.

Chapter 2 Global Variables and Standard Types

Caution In rare instances, when the run-time system is maintaining both a Unicode version
and a multibyte version of the environment, these two environment versions may not correspond
exactly. This is because, although any unique multibyte-character string maps to a unique
Unicode string, the mapping from a unique Unicode string to a multibyte-character string is not
necessarily unique. Therefore, two distinct Unicode strings may map to the same multibyte string.

The following pseudocode illustrates how this can happen:

int i. j;
= _wputenv("env_var_x=stringl");

j = _wputenv("env_var-y=string2");

II results in the implicit call:
II putenv ("env_var_z=stringl")
II also results in implicit call:
II putenv("env_var_z=string2")

In the notation used for this example, the character strings are not C string literals;
rather, they are placeholders that represent Unicode environment string literals in
the _ wputenv call and multibyte environment strings in the putenv call. The
character-placeholders 'x' and 'y' in the two distinct Unicode environment strings
do not map uniquely to characters in the current MBCS. Instead, both map to some
MBCS character 'z' that is the default result of the attempt to convert the strings.

Thus in the multibyte environment the value of "env_var _z" after the first implicit call
to putenv would be "stringl", but this value would be overwritten on the second
implicit call to putenv, when the value of "env_var _z" is set to "string2". The
Unicode environment (in _ wenviron) and the multibyte environment (in _environ)
would therefore differ following this series of calls.

_fileinfo
The _fileinfo variable determines whether information about the open files of a
process is passed to new processes by functions such as _spawn. _fileinfo is declared
in STDLIB.H as

extern int _fileinfo;

If _fileinfo is 0 (the default), information about open files is not passed to new
processes; otherwise the information is passed. You can modify the default value of
_fileinfo by setting the _fileinfo variable to a nonzero value in your program.

_fmode
The _fmode variable sets the default file-translation mode for text or binary
translation. It is declared in STDLIB.H as

extern int _fmode;

43

Run-Time Library Reference

The default setting of _fmode is _O_TEXT for text-mode translation. _O_BINARY
is the setting for binary mode.
You can change the value of _fmode in either of two ways:

• Link with BINMODE.OBJ. This changes the initial setting of _fmode to
_O_BINARY, causing all files except stdin, stdout, and stderr to be opened in
binary mode.

• Change the value of _fmode directly by setting it in your program.

.
_osver, _ WlllmaJOr, _ WlllmlllOr, _ WlllVer

These variables store build and version numbers of the 32-bit Windows operating
systems. Declarations for these variables in STDLIB.H are as follows:

extern unsigned int _osver;
extern unsigned int _ winmajor;
extern unsigned int _ winminor;
extern unsigned int _ winver;

These variables are useful in programs that run in different versions of Windows NT
or Windows 95.

Variable

_osver

_winmajor

_winminor

_winver

Description

Current build number

Major version number

Minor version number

Holds value of _ winmajor in high byte and value of _ winminor in low byte

_pgmptr, _ wpgmptr

44

When a program is run from the command interpreter (CMD.EXE), _pgmptr is
automatically initialized to the full path of the executable file. For example, if
HELLO.EXE is in C:\BIN and C:\BIN is in the path, _pgmptr is set to
C:\BIN\HELLO.EXE when you execute

C> hello

When a program is not run from the command line, _pgmptr may be initialized to the
program name (the file's base name without the extension), or to a filename, a relative
path, or a full path.

_ wpgmptr is the wide-character counterpart of _pgmptr for use with programs that
use wmain. _pgmptr and _ wpgmptr are declared in STDLIB.H as

extern char * _pgmptr;
extern wchar _t * _pgmptr;

Chapter 2 Global Variables and Standard Types

The following program demonstrates the use of _pgmptr.

/*
* PGMPTR.C: The following program demonstrates the use of _pgmptr.
*/

#include <stdio.h>
#include <stdlib.h>
void main(void)
{

printf("The full path of the executing program is %Fs\n",
_pgmptr);

Control Flags
The debug version of the Microsoft C run-time library uses the following flags to
control the heap allocation and reporting process.

Flag

_crtDbgFlag

Description

Maps the base heap functions to their debug version
counterparts

Enables the use of the debugging versions of the run-time
functions

Controls how the debug heap manager tracks allocations

These flags can be defined with a ID command-line option or with a #define directive.
When the flag is defined with #define, the directive must appear before the header file
include statement for the routine declarations.

When the _CRTDBG_MAP _ALLOC flag is defined in the debug version of an
application, the base version of the heap functions are directly mapped to their debug
versions. This flag is declared in CRTDBG.H. This flag is only available when the
_DEBUG flag has been defined in the application.

45

Run-Time Library Reference

_DEBUG
The compiler defines _DEBUG when you specify the /MTd or /Mdd option. These
options specify debug versions of the C run-time library.

_crtDbgFlag
The _crtDbgFlag flag consists of five bit fields that control how memory allocations
on the debug version of the heap are tracked, verified, reported, and dumped. The bit
fields of the flag are set using the _ CrtSetDbgFlag function. This flag and its bit
fields are declared in CRTDBG.H. This flag is only available when the _DEBUG flag
has been defined in the application.

Standard Types

46

The Microsoft run-time library defines the following standard types.

Type

clock_t structure

_complex structure

_dey _t short or unsigned
integer

div _t, ldiv _t structures

_exception structure

FILE structure

_finddata_t, _ wfinddata_t,
_ wfinddatai64_t structures

Description

Stores time values; used by clock.

Stores real and imaginary parts of
complex numbers; used by _cabs.

Represents device handles.

Store values returned by div and ldiv,
respectively.

Stores error information for _matherr.

Stores information about current state
of stream; used in all stream I/O
operations.

_finddata_t stores file-attribute
information returned by _findfirst and
_findnext. _ wfinddata_t stores
file-attribute information returned by
_ wfindfirst and _ wfindnext.
_ wfinddatai64_t stores file-attribute
information returned by
_ wfindfirsti64 and _ wfindnexti64.

Declared In

TIME.H

MATH.H

SYS\TYPES.H

STDLIB.H

MATH.H

STDIO.H

_finddata_t: 10.H
_ wfinddata_t:
IO.H, WCHAR.H
_ wfinddatai64_t:
IO.H, WCHAR.H

(continued)

Type

_FPIEEE_RECORD
structure

fpos_t
(long integer, _int64, or
structure, depending on the
target platform)

_HEAPINFO structure

Iconv structure

_ofCt long integer

_onexiCt pointer

_PNH pointer to function

ptrdifCt integer

si!Latomic_t integer

size_t unsigned integer

_stat structure

time_t long integer

_timeb structure

tm structure

_utimbuf structure

Chapter 2 Global Variables and Standard Types

Description

Contains information pertaining to
IEEE floating-point exception; passed
to user-defined trap handler by
3pieee_flt.

Used by fgetpos and fsetpos to record
information for uniquely specifying
every position within a file.

Contains information about next heap
entry for _heapwalk.

Used by setjmp and longjmp to save
and restore program environment.

Contains formatting rules for numeric
values in different countries.

Represents file-offset value.

Returned by _onexit.

Type of argument to
_seCnew _handler.

Result of subtraction of two pointers.

Type of object that can be modified
as atomic entity, even in presence of
asynchronous interrupts; used with
signal.

Result of size of operator.

Declared In

FPIEEE.H

STDIO.H

MALLOC.H

SETJMP.H

LOCALE.H

SYS\TYPES.H

STDLIB.H

NEW.H

STDDEF.H

SIGNAL.H

STDDEF.H and
other include files

Contains file-status information SYS\STA T.H
returned by _stat and _fstat.

Represents time values in mktime and TIME.H
time.

Used by _ftime to store current system SYS\TIMEB.H
time.

Used by asctime, gmtime, localtime,
mktime, and strftime to store and
retrieve time information.

Stores file access and modification
times used by _utime to change
file-modification dates.

TIME.H

SYS\UTIME.H

(continued)

47

Run-Time Library Reference

48

(continued)

Type

va_list structure

wchar _t internal type of a
wide character

wctrans_t integer

wctype_t integer

winet integer

Description

U sed to hold information needed by
va_arg and va_end macros. Called
function declares variable of type
va_list that can be passed as argument
to another function.

Useful for writing portable programs
for international markets.

Represents locale-specific character
mappings.

Can represent all characters of any
national character set.

Type of data object that can hold any
wide character or wide end-of-file
value.

Declared In

STDARG.H

STDDEF.H,
STDLIB.H

WCTYPE.H

WCHAR.H

WCHAR.H

CHAPTER 3

Global Constants

The Microsoft run-time library contains definitions for global constants used by
library routines. To use these constants, include the appropriate header files as
indicated in the description for each constant. The global constants are listed in
the following table:

BUFSIZ

CLOCKS_PER_SEC, CLK_TCK

Commit-To-Disk Constants

Data Type Constants

EOF, WEOF

errno

Exception-Handling Constants

EXIT_SUCCESS, EXIT_FAILURE

File Attribute Constants

File Constants

File Permission Constants

File ReadlWrite Access Constants

File Translation Constants

FILENAME_MAX

FOPEN_MAX, _SYS_OPEN

_FREEENTRY,_USEDENTRY

fseek, _Iseek

Heap Constants

_HEAP _MAXREQ

HUGE_VAL

_LOCAL_SIZE

Locale Categories

_locking Constants

Math Error Constants

MB_CUR_MAX

NULL

Path Field Limits

RAND_MAX

setvbuf Constants

Sharing Constants

signal Constants

signal Action Constants

_spawn Constants

_stat Structure sCmode Field Constants

stdin, stdout, stderr

TMP _MAX, L_tmpnam

Translation Mode Constants

_WAIT_CHILD,
_WAIT_GRANDCHILD

32-bit Windows TimelDate Formats

49

Run-Time Library Reference

BUFSIZ
#include <strlio.h>

Remarks
BUFSIZ is the required user-allocated buffer for the setvbuf routine.

CLOCKS_PER_SEC, CLK_TCK

Remarks

#include <time.h>

The time in seconds is the value returned by the clock function, divided by
CLOCKS_PER_SEC. CLK_TCK is equivalent, but considered obsolete.

See Also: clock

Commit-To-Disk Constants

Remarks

50

Microsoft Specific --7

#include <strlio.h>

These Microsoft-specific constants specify whether the buffer associated with the
open file is flushed to operating system buffers or to disk. The mode is included in the
string specifying the type of read/write access ("r", "w", "a", "r+", "w+", "a+").

The commit-to-disk modes are as follows:

c Writes the unwritten contents of the specified buffer to disk. This commit-to-disk
functionality only occurs at explicit calls to either the fflush or the _flush all
function. This mode is useful when dealing with sensitive data. For example, if
your program terminates after a call to fflush or _flushall, you can be sure that
your data reached the operating system's buffers. However, unless a file is opened
with the c option, the data might never make it to disk if the operating system also
terminates.

n Writes the unwritten contents of the specified buffer to the operating system's
buffers. The operating system can cache data and then determine an optimal time to
write to disk. Under many conditions, this behavior makes for efficient program
behavior. However, if the retention of data is critical (such as bank transactions or
airline ticket information) consider using the c option. The n mode is the default.

Note The c and n options are not part of the ANSI standard for fopen, but are Microsoft
extensions and should not be used where ANSI portability is desired.

Chapter 3 Global Constants

Using the Commit-ta-Disk Feature with Existing Code
By default, calls to the fflush or _flushalllibrary functions write data to buffers
maintained by the operating system. The operating system determines the optimal time
to actually write the data to disk. The commit-to-disk feature of the run-time library
lets you ensure that critical data is written directly to disk rather than to the operating
system's buffers. You can give this capability to an existing program without rewriting
it by linking its object files with COMMODE.OBJ.

In the resulting executable file, calls to fflush write the contents of the buffer directly
to disk, and calls to _flushall write the contents of all buffers to disk. These two
functions are the only ones affected by COMMODE.OBJ.

END Microsoft Specific

See Also: _fdopen, fopen

Data Type Constants
Remarks

Data type constants are implementation-dependent ranges of values allowed for
integral data types. The constants listed below give the ranges for the integral data
types and are defined in LIMITS.H.

Note The /J compiler option changes the default char type to unsigned.

Constant Value Meaning

SCHAR_MAX 127 Maximum signed char value

SCHAR_MIN -128 Minimum signed char value

UCHAR_MAX 255 Maximum unsigned char value
(Oxff)

CHAR_BIT 8 Number of bits in a char

USHRT_MAX 65535 Maximum unsigned short value
(Oxffff)

SHRT_MAX 32767 Maximum (signed) short value

SHRT_MIN -32768 Minimum (signed) short value

UINT_MAX 4294967295 Maximum unsigned int value
(Oxffffffff)

ULONG_MAX 4294967295 Maximum unsigned long value
(Oxffffffff)

INT_MAX 2147483647 Maximum (signed) int value

INT_MIN -2147483647-1 Minimum (signed) int value

LONG_MAX 2147483647 Maximum (signed) long value

(continued)

51

Run-Time Library Reference

52

(continued)

Constant

LONG_MIN

CHAR_MAX

Value

-2147483647-1

127
(255 if /J option used)

-128
(0 if /J option used)

2

Meaning

Minimum (signed) long value

Maximum char value

Minimum char value

Maximum number of bytes in
multibyte char

The following constants give the range and other characteristics of the double and
float data types, and are defined in FLOAT.H:

Constant Value Description

DBL_DIG 15 # of decimal digits of precision

DBL_EPSILON 2.2204460492503131e-016 Smallest such that
1.0+DBL_EPSILON !=1.0

DBL_MANT_DIG 53 # of bits in mantissa

DBL_MAX 1. 7976931348623158e+ 308 Maximum value

DBL_MAX_IO_EXP 308 Maximum decimal exponent

DBL_MAX_EXP 1024 Maximum binary exponent

DBL_MIN 2.2250738585072014e-308 Minimum positive value

DBL_MIN_IO_EXP (-307) Minimum decimal exponent

DBL_MIN_EXP (-1021) Minimum binary exponent

_DBL_RADIX 2 Exponent radix

-DBL_ROUNDS 1 Addition rounding: near

FLT_DIG 6 Number of decimal digits of
precision

FLT_EPSILON 1. 192092896e-07F Smallest such that
1.0+FLT_EPSILON !=1.0

FLT_MANT_DIG 24 Number of bits in mantissa

FLT_MAX 3 A02823466e+ 3 8F Maximum value

FLT_MAX_IO_EXP 38 Maximum decimal exponent

FLT_MAX_EXP 128 Maximum binary exponent

FLT_MIN 1. 175494351e-38F Minimum positive value

FLT_MIN_IO_EXP (-37) Minimum decimal exponent

FLT_MIN_EXP (-125) Minimum binary exponent

FLT_RADIX 2 Exponent radix

FLT_ROUNDS Addition rounding: near

Chapter 3 Global Constants

EOF, WEOF
Remarks

EOF is returned by an 110 routine when the end-of-file (or in some cases, an error) is
encountered.

WEOF yields the return value, of type winet, used to signal the end of a wide stream,
or to report an error condition.

See Also: putc, ungetc, scanf, fflush, _fcloseall, _ungetch, _putch, _isascii

errno Constants

Remarks

#include <errno.h>

The errno values are constants assigned to errno in the event of various error conditions.

ERRNO.H contains the definitions of the errno values. However, not all the definitions
given in ERRNO.H are used in 32-bit Windows operating systems. Some of the values
in ERRNO.H are present to maintain compatibility with the UNIX family of operating
systems.

The errno values in a 32-bit Windows operating system are a subset of the values for
errno in XENIX systems. Thus, the errno value is not necessarily the same as the actual
error code returned by a Windows NT or Windows 95 system call. To access the actual
operating system error code, use the _doserrno variable, which contains this value.

The following errno values are supported:

ECHILD No spawned processes.

EAGAIN No more processes. An attempt to create a new process failed because there
are no more process slots, or there is not enough memory, or the maximum nesting
level has been reached.

E2BIG Argument list too long.

EACCES Permission denied. The file's permission setting does not allow the specified
access. This error signifies that an attempt was made to access a file (or, in some
cases, a directory) in a way that is incompatible with the file's attributes.

For example, the error can occur when an attempt is made to read from a file that is
not open, to open an existing read-only file for writing, or to open a directory instead
of a file. Under MS-DOS operating system versions 3.0 and later, EACCES may
also indicate a locking or sharing violation.

The error can also occur in an attempt to rename a file or directory or to remove an
existing directory.

53

Run-Time Library Reference

EBADF Bad file number. There are two possible causes: 1) The specified file handle
is not a valid file-handle value or does not refer to an open file. 2) An attempt was
made to write to a file or device opened for read-only access.

EDEADLOCK Resource deadlock would occur. The argument to a math function is
not in the domain of the function.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that already exists.
For example, the _O_CREAT and _O_EXCL flags are specified in an _open call,
but the named file already exists.

EINVAL Invalid argument. An invalid value was given for one of the arguments to a
function. For example, the value given for the origin when positioning a file pointer
(by means of a call to fseek) is before the beginning of the file.

EMFILE Too many open files. No more file handles are available, so no more files
can be opened.

ENOENT No such file or directory. The specified file or directory does not exist or
cannot be found. This message can occur whenever a specified file does not exist
or a component of a path does not specify an existing directory.

ENOEXEC Exec format error. An attempt was made to execute a file that is not
executable or that has an invalid executable-file format.

ENOMEM Not enough core. Not enough memory is available for the attempted
operator. For example, this message can occur when insufficient memory is
available to execute a child process, or when the allocation request in a _getcwd
call cannot be satisfied.

ENOSPC No space left on device. No more space for writing is available on the
device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large, resulting in
partial or total loss of significance in the result. This error can also occur in other
functions when an argument is larger than expected (for example, when the buffer
argument to ~etcwd is longer than expected).

EXDEV Cross-device link. An attempt was made to move a file to a different device
(using the rename function).

Exception-Handling Constants
Remarks

54

The constant EXCEPTION_CONTINUE_SEARCH,
EXCEPTION_CONTINUE_EXECUTION, or
EXCEPTION_EXECUTE_HANDLER is returned when an exception

Chapter 3 Global Constants

occurs during execution of the guarded section of a try-except statement. The
return value determines how the exception is handled. For more information, see
"The Try-except Statement" in the C Language Reference.

EXIT_SUCCESS, EXIT_FAILURE

Remarks

#include <stdlih.h>

These are arguments for the exit and _exit functions and the return values for the
atexit and _onexit functions.

See Also: atexit, exit, _onexit

File Attribute Constants

Remarks

#include <io.h>

These constants specify the current attributes of the file or directory specified by the
function.

The attributes are represented by the following manifest constants:

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
command. Value: Ox20

_A_HIDDEN Hidden file. Not normally seen with the DIR command, unless the
I AH option is used. Returns information about normal files as well as files with this
attribute. Value: Ox02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
OxOO

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: OxO 1

_A_SUBDIR Subdirectory. Value: OxlO

_A_SYSTEM System file. Not normally seen with the DIR command, unless the
I AS option is used. Value: Ox04

Multiple constants can be combined with the OR operator (I).

See Also: _find Functions

55

Run-Time Library Reference

File Constants

Remarks

#include <fcntl.h>

The integer expression formed from one or more of these constants determines the
type of reading or writing operations permitted. It is formed by combining one or
more constants with a translation-mode constant.

The file constants are as follows:

_O_APPEND Repositions the file pointer to the end of the file before every write
operation.

_O_CREAT Creates and opens a new file for writing; this has no effect if the file
specified by filename exists.

_O_EXCL Returns an error value if the file specified by filename exists. Only
applies when used with _O_CREAT.

_O_RDONLY Opens file for reading only; if this flag is given, neither _O_RDWR
nor _0_ WRONLY can be given.

_O_RDWR Opens file for both reading and writing; if this flag is given, neither
_O_RDONLY nor _0_ WRONLY can be given.

_O_TRUNC Opens and truncates an existing file to zero length; the file must have
write permission. The contents of the file are destroyed. If this flag is given, you
cannot specify _O_RDONLY.

0 WRONLY Opens file for writing only; if this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

See Also: _open, _sopen

File Permission Constants

Remarks

56

#include <sys/stat.h>

One of these constants is required when _O_CREAT Lopen, _sopen) is specified.

The pmode argument specifies the file's permission settings as follows:

Constant

_S_IREAD

_S_IWRITE

_S_IREAD I _S_IWRITE

Meaning

Reading permitted

Writing permitted

Reading and writing permitted

When used as the pmode argument for _umask, the manifest constant sets the
permission setting, as follows:

Constant

_S_IREAD

_S_IWRITE

_S_IREAD I _S_IWRITE

Meaning

Writing not permitted (file is read-only)

Reading not permitted (file is write-only)

Neither reading nor writing permitted

See Also: _open, _sopen, _umask, _stat structure

Chapter 3 Global Constants

File ReadlWrite Access Constants

Remarks

#include <stdio.h>

These constants specify the access type ("a", "r", or "w") requested for the file. Both
the translation mode ("b" or "t") and the commit-to-disk mode ("c" or "n") can be
specified with the type of access.

The access types are described below.

"a" Opens for writing at the end of the file (appending); creates the file first if it
does not exist. All write operations occur at the end of the file. Although the file
pointer can be repositioned using fseek or rewind, it is always moved back to the
end of the file before any write operation is carried out.

"a+" Same as above, but also allows reading.

"r" Opens for reading. If the file does not exist or cannot be found, the call to open
the file will fail.

"r+" Opens for both reading and writing. If the file does not exist or cannot be
found, the call to open the file will fail.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

When the "r+", "w+", or "a+" type is specified, both reading and writing are allowed
(the file is said to be open for "update"). However, when you switch between reading
and writing, there must be an intervening fflush, fsetpos, fseek, or rewind operation.
The current position can be specified for the fsetpos or fseek operation.

See Also: _fdopen, fopen, freopen, _fsopen, _popen

57

Run-Time Library Reference

File Translation Constants

Remarks

#include <stdio.h>

These constants specify the mode of translation ("b" or "t"). The mode is included in
the string specifying the type of access ("r", "w", "a", "r+", "w+", "a+").

The translation modes are as follows:

t Opens in text (translated) mode. In this mode, carriage-retumllinefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated into CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading or reading/writing,
fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file ending with
CTRL+Z may cause fseek to behave improperly near the end of the file.

Note The t option is not part of the ANSI standard for topen and treopen. It is a Microsoft
extension and should not be used where ANSI portability is desired.

b Opens in binary (untranslated) mode. The above translations are suppressed.

If tor b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. For more information about using text and binary modes, see
"Text and Binary Mode File I/O" on page 15 in Chapter 1.

See Also: _fdopen, fopen, freopen, _fsopen

FILENAME MAX

Remarks

#include <stdio.h>

This is the maximum permissible length for filename.

See Also: Path Field Limits

FOPEN_MAX, SYS OPEN - -

Remarks

58

#include<stdio.h>

This is the maximum number of files that can be opened simultaneously.
FOPEN_MAX is the ANSI-compatible name. _SYS_OPEN is provided for
compatibility with existing code.

Chapter 3 Global Constants

_FREEENTRY, USEDENTRY

Remarks

#include <malloc.h>

These constants represent values assigned by the _heapwalk routines to the _useflag
element of the _HEAPINFO structure. They indicate the status of the heap entry.

See Also: _heapwalk

fseek, _lseek Constants

Remarks

#include <stdio.h>

The origin argument specifies the initial position and can be one of the manifest
constants shown below:

Constant

SEEK_END

SEEK_CUR

SEEK_SET

Meaning

End of file

Current position of file pointer

Beginning of file

See Also: fseek, _lseek, _lseeki64

Heap Constants

Remarks

#include <malloc.h>

These constants give the return value indicating status of the heap.

Constant
_HEAPBADBEGIN

_HEAPBADNODE

_HEAPBADPTR

_HEAPEMPTY

_HEAPEND

_HEAPOK

Meaning
Initial header information was not found or was invalid.

Bad node was found, or heap is damaged.

_pen try field of _HEAPINFO structure does not contain valid
pointer into heap Cheapwalk routine only).

Heap has not been initialized.

End of heap was reached successfully Cheapwalk routine only).

Heap is consistent Cheapset and _heapchk routines only). No
errors so far; _HEAPINFO structure contains information about
next entry Cheapwalk routine only).

See Also: _heapchk, _heapset, _heapwalk

59

Run-Time Library Reference

_HEAP_MAXREQ

Remarks

#include <malloc.h>

The maximum size of a user request for memory that can be granted.

See Also: malloc, calloc

HUGE VAL

Remarks

#include <math.h>

HUGE_VAL is the largest representable double value. This value is returned by many
run-time math functions when an error occurs. For some functions, -HUGE_VAL is
returned.

_LOCAL_SIZE
Remarks

60

The compiler provides a symbol, _LOCAL_SIZE, for use in the inline assembler
block of function prolog code. This symbol is used to allocate space for local
variables on the stack frame in your custom prolog code.

The compiler determines the value of _LOCAL_SIZE. Its value is the total number
of bytes of all user-defined locals as well as compiler-generated temporary variables.
_LOCAL_SIZE can be used as an immediate operand; it cannot be used in an
expression. You must not change or redefine the value of this symbol. For example:

mov
mov

eax, __ LOCAL_SIZE
eax, [ebp - __ LOCAL_SIZE]

;Immediate operand
;Expression

The following is a example of a naked function containing custom prolog and epilog
sequences using the _LOCAL_SIZE symbol in the prolog sequence:

__ declspec (naked) func()
{

i nt i;
i nt j:

asm
{

push
mov
sub
}

/* prolog */

ebp
ebp, esp
esp, __ LOCAL_SIZE

Chapter 3 Global Constants

/* Function body */

asm /* epilog */
{

mov esp, ebp
pop ebp
ret
}

For related information, see naked in the Language Quick Reference.

Locale Categories

Remarks

#include <locale.h>

Locale categories are manifest constants used by the localization routines to specify
which portion of a program's locale information will be used. The locale refers to the
locality (or country) for which certain aspects of your program can be customized.
Locale-dependent areas inc~ude, for example, the formatting of dates or the display
format for monetary values.

Locale Category

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MAX

LC_MIN

LC_MONETARY

LC_NUMERIC

Parts of Program Affected

All locale-specific behavior (all categories)

Behavior of strcoll and strxfrm functions

Behavior of character-handling functions (except isdigit, isxdigit,
mbstowcs, and mbtowc, which are unaffected)

Same as LC_TIME

Same as LC_ALL

Monetary formatting information returned by the localeconv function

Decimal-point character for formatted output routines (for example,
printf), data conversion routines, and nonmonetary formatting
information returned by localeconv function

Behavior of strftime function

See Also: localeconv, setlocale, strcoll Functions, strftime, strxfrm

_locking Constants

Remarks

#include <sysllocking.h>

The mode argument in the call to the _locking function specifies the locking action to
be performed.

61

Run-Time Library Reference

The mode argument must be one of the following manifest constants:

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the function
tries again after one second. If, after ten attempts, the bytes cannot be locked, the
function returns an error.

_LK_RLCK Same as _LK_LOCK.

_LK_NBLCK Locks the specified bytes. If bytes cannot be locked, the function
returns an error.

_LK_NBRLCK Same as _LK_NBLCK.

_LK_UNLCK Unlocks the specified bytes. (The bytes must have been previously
locked.)

See Also: _locking

Math Error Constants

Remarks

#include <math.h>

The math routines of the run-time library can generate math error constants.

These errors, described as follows, correspond to the exception types defined in
MATH.H and are returned by the _matherr function when a math error occurs.

Constant

_DOMAIN

_OVERFLOW

_PLOSS

_SING

_TLOSS

_UNDERFLOW

See Also: _matherr

Meaning

Argument to function is outside domain of function.

Result is too large to be represented in function's return type.

Partial loss of significance occurred.

Argument singularity: argument to function has illegal value. (For
example, value 0 is passed to function that requires nonzero value.)

Total loss of significance occurred.

Result is too small to be represented.

MB CUR MAX - -
#include <stdlih.h>

Context: ANSI multibyte- and wide-character conversion functions

62

Chapter 3 Global Constants

Remarks
The value of MB_CUR_MAX is the maximum number of bytes in a multibyte
character for the current locale.

See Also: mblen, mbstowcs, mbtowc, wchar_t, wcstombs, wctomb, Data Type
Constants

NULL
Remarks

NULL is the null-pointer value used with many pointer operations and functions.

Path Field Limits

Remarks

#include <stdlib.h>

These constants define the maximum length for the path and for the individual fields
within the path:

Constant

_MAX_DIR

_MAX_DRIVE

_MAX_EXT

_MAX_FNAME

_MAX_PATH

Meaning

Maximum length of directory component

Maximum length of drive component

Maximum length of extension component

Maximum length of filename component

Maximum length of full path

The sum of the fields should not exceed _MAX_PATH.

RAND MAX

Remarks

#include <stdlib.h>

The constant RAND_MAX is the maximum value that can be returned by the
rand function. RAND_MAX is defined as the value Ox7fff.

See Also: rand

63

Run-Time Library Reference

setvbuf Constants

Remarks

#include <stdio.h>

These constants represent the type of buffer for setvbuf.

The possible values are given by the following manifest constants:

Constant

_IOLBF

_IONBF

See Also: setbuf

Meaning

Full buffering: Buffer specified in call to setvbuf is used and its size is
as specified in setvbuf call. If buffer pointer is NULL, automatically
allocated buffer of specified size is used.

Same as _IOFBF.

No buffer is used, regardless of arguments in call to setvbuf.

Sharing Constants

Remarks

#include <share.h>

The shflag argument determines the sharing mode, which consists of one or more
manifest constants. These can be combined with the oflag arguments (see "File
Constants").

The constants and their meanings are listed below:

Constant

_SH_COMPAT

_SH_DENYRW

_SH_DENYWR

_SH_DENYRD

_SH_DENYNO

Meaning

Sets compatibility mode

Denies read and write access to file

Denies write access to file

Denies read access to file

Permits read and write access

See Also: _sopen, _fsopen

signal Constants

Remarks

64

#include <signal.h>

The sig argument must be one of the manifest constants listed below (defined in
SIGNAL.H).

Chapter 3 Global Constants

SIGABRT Abnormal termination. The default action terminates the calling program
with exit code 3.

SIGFPE Floating-point error, such as overflow, division by zero, or invalid
operation. The default action terminates the calling program.

SIGILL Illegal instruction. The default action terminates the calling program.

SIGINT CTRL+C interrupt. The default action issues INT 23H.

SIGSEGV Illegal storage access. The default action terminates the calling program.

SIGTERM Termination request sent to the program. The default action terminates
the calling program.

See Also: signal, raise

signal Action Constants

Remarks

#include <signal.h>

The action taken when the interrupt signal is received depends on the value OfJUllC.

The JUIlC argument must be either a function address or one of the manifest constants
listed below and defined in SIGNAL.H.

SIG_DFL Uses system-default response. If the calling program uses stream 110,
buffers created by the run-time library are not flushed.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE,
since the floating-point state of the process is left undefined.

See Also: signal

_spawn Constants

Remarks

#include <process.h>

The mode argument determines the action taken by the calling process before and
during a spawn operation. The following values for mode are possible:

Constant Meaning

Overlays calling process with new process, destroying calling process
(same effect as _exec calls).

Suspends calling thread until execution of new process is complete
(synchronous _spawn).

(continued)

65

Run-Time Library Reference

(continued)

Constant

_P _NOW AIT or
_P_NOWAITO

_P_DETACH

Meaning

Continues to execute calling process concurrently with new process
(asynchronous _spawn, valid only in 32-bit Windows applications).

Continues to execute calling process; new process is run in background
with no access to console or keyboard. Calls to _cwait against new
process will fail. This is an asynchronous _spawn and is valid only in
32-bit Windows applications.

See Also: _spawn Functions

stat Structure st mode Field Constants -- --
Remarks

#include <sys/stat.h>

These constants are used to indicate file type in the sCmode field of the
_stat structure.

The bit mask constants are described below:

Constant

_S_IFMT

_S_IFDIR

_S_IFCHR

_S_IFREG

_S_IREAD

_S_IWRITE

_S_IEXEC

Meaning

File type mask

Directory

Character special (indicates a device if set)

Regular

Read permission, owner

Write permission, owner

Execute/search permission, owner

See Also: _stat, _fstat, Standard Types

stdin, stdout, stderr

Remarks

66

FILE *stdin;
FILE *stdout;
FILE *stderr;

#include <stdio.h>

These are standard streams for input, output, and error output.

Chapter 3 Global Constants

By default, standard input is read from the keyboard, while standard output and
standard error are printed to the screen.

The following stream pointers are available to access the standard streams:

Pointer

stdin

stdout

stderr

Stream

Standard input

Standard output

Standard error

These pointers can be used as arguments to functions. Some functions, such as
getchar and putchar, use stdin and stdout automatically.

These pointers are constants, and cannot be assigned new values. The freopen
function can be used to redirect the streams to disk files or to other devices. The
operating system allows you to redirect a program's standard input and output at the
command level.

See Also: Stream I/O

TMP_MAX, L_tmpnam

Remarks

#include <stdio.h>

TMP _MAX is the maximum number of unique filenames that the tmpnam function
can generate. L_tmpnam is the length of temporary filenames generated by tmpnam.

Translation Mode Constants

Remarks

#include <fcntl.h>

The _O_BINARY and _O_TEXT manifest constants determine the translation mode
for files Copen and _sopen) or the translation mode for streams Csetmode).

The allowed values are:

_O_TEXT Opens file in text (translated) mode. Carriage retum-linefeed (CR-LF)
combinations are translated into a single linefeed (LF) on input. Linefeed characters
are translated into CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading and reading/writing,
fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file ending with
CTRL+Z may cause fseek to behave improperly near the end of the file.

67

Run-Time Library Reference

_O_BINARY Opens file in binary (untranslated) mode. The above translations are
suppressed.

_O_RAW Same as _O_BINARY. Supported for C 2.0 compatibility.

For more information, see "Text and Binary Mode File I/O" and "File Translation."

See Also: _open, _pipe, _sopen, _setmode

_WAIT_CHILD, WAIT GRANDCHILD - -

Remarks

#include <process.h>

The _cwait function can be used by any process to wait for any other process (if the
process ID is known). The action argument can be one of the following values:

Constant

_WAIT_CHILD

_WAIT_GRANDCHILD

See Also: _cwait

Meaning

Calling process waits until specified new process terminates.

Calling process waits until specified new process, and all
processes created by that new process, terminate.

32-bit Windows Time/Date Formats
Remarks

68

The file time and the date are stored individually, using unsigned integers as bit fields.
File time and date are packed as follows:

Time

Bit Position: 0 1 234 56789A B C D E F

Length: 5 6 5

Contents: hours minutes 2-second increments

Value Range: 0-23 0-59 0-29 in 2-second intervals

Date

Bit Position: o 1 2 3 456 7 8 9 A BCD E F

Length: 7 4 5

Contents: year month day

Value Range: 0-119 1-12 1-31

(relative to 1980)

CHAPTER 4

Debug Version of the
C Run-Time Library

Visual C++ has extensive debug support for the C run-time library, letting
you step directly into run-time functions when debugging an application.
The library also provides a variety of tools to keep track of heap allocations,
locate memory leaks, and track down other memory-related problems. This
chapter is an alphabetic reference of the debug functions and macros
available for these purposes.

_ASSERT, _ASSERTE Macros
Evaluate an expression and generate a debug report when the result is
FALSE (debug version only).

_ASSERT(booleanExpression);
_ASSERTE(booleanExpression);

Macro

_ASSERT

_ASSERTE

Required Header

<crtdbg.h>

<crtdbg.h>

Compatibility

Win NT, Win 95

Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Although _ASSERT and _ASSERTE are macros and are obtained by
including CRTDBG.H, the application must link with one of the libraries
listed above because these macros call other run-time functions.

Return Value
None

69

Run-Time Library Reference

Parameter

Remarks

70

booleanExpression Expression (including pointers) that evaluates to nonzero or O.

The _ASSERT and _ASSERTE macros provide an application with a clean and
simple mechanism for checking assumptions during the debugging process. They are
very flexible because they do not need to be enclosed in #ifdef statements to prevent
them from being called in a retail build of an application. This flexibility is achieved
by using the _DEBUG macro. _ASSERT and _ASSERTE are only available when
_DEBUG is defined. When _DEBUG is not defined, calls to these macros are
removed during preprocessing.

_ASSERT and _ASSERTE evaluate their booleanExpression argument and when
the result is FALSE (0), they print a diagnostic message and call _ CrtDbgReport to
generate a debug report. The _ASSERT macro prints a simple diagnostic message,
while _ASSERTE includes a string representation of the failed expression in the
message. These macros do nothing when booleanExpression evaluates to nonzero.

Because the _ASSERTE macro specifies the failed expression in the generated report,
it enables users to identify the problem without referring to the application source code.
However, a disadvantage exists in that every expression evaluated by _ASSERTE must
be included in the debug version of your application as a string constant. Therefore, if
a large number of calls are made to _ASSERTE, these expressions can take up a
significant amount of space.

_CrtDbgReport generates the debug report and detennines its destination(s), based
on the current report mode(s) and file defined for the _CRT_ASSERT report type.
By default, assertion failures and errors are directed to a debug message window.
The _ CrtSetReportMode and _ CrtSetReportFile functions are used to define the
destination(s) for each report type.

When the destination is a debug message window and the user chooses the Retry
button, _CrtDbgReport returns 1, causing the _ASSERT and _ASSERTE macros
to start the debugger, provided that "just-in-time" (JIT) debugging is enabled. See
"Debug Reporting Functions of the C Run-Time Library" for an example of an assert
message box under Windows NT.

For more infonnation about the reporting process, see the _ CrtDbgReport function.

The _RPT, _RPTF debug macros are also available for generating a debug report,
but they do not evaluate an expression. The _RPT macros generate a simple report
and the _RPTF macros include the source file and line number where the report
macro was called, in the generated report. In addition to the _ASSERTE macros,
the ANSI assert routine can also be used to verify program logic. This routine is
available in both the debug and release versions of the libraries.

Example

Chapter 4 Debug Version of the C Run-Time Library

/*
* DBGMACRO.C
* In this program. calls are made to the _ASSERT and _ASSERTE
* macros to test the condition 'stringl =- string2'. If the
* condition fails. these macros print a diagnostic message.
* The RPTn and _RPTFn group of macros are also exercised in
* this program. as an alternative to the printf function.
*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{

char *pl. *p2;

/*
* The Reporting Mode and File must be specified
* before generating a debug report via an assert
* or report macro.
* This program sends all report types to STDOUT
*/

_CrtSetReportMode(_CRT_WARN. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pointer variables
*/

pI = malloc(10);
strcpy(pl. "I am pIli);
p2 = malloc(10);
strcpy(p2. "I am p2");

/*
* Use the report macros as a debugging
* warning mechanism. similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails. _ASSERTE will
* include a string representation of the

71

Run-Time Library Reference

Output

* failed expression in the report.
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN. "\n\n Use the assert macros to evaluate the expression
... pI == p2. \n");
_RPTF2(_CRT_WARN. "\n Will _ASSERT find '%s' '%s' ?\n". pl. p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s'
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n '%s' != '%s' \n", pI, p2);

free(p2);
free (pI) ;

return 0;

'%s' ?\nfl, pI, p2);

Use the assert macros to evaluate the expression pI == p2.

dbgmacro.c(54) Will _ASSERT find 'I am pI' == 'I am p2' ?
dbgmacro.c(55) Assertion failed

dbgmacro.c(57)
dbgmacro.c(58)

Will _ASSERTE find 'I am pI'
Assertion failed: pI == p2

'I am pI' ! = 'I am p2'

See Also: _RPT, _RPTF

'I am p2' ?

_calloc_dbg

72

Allocates a number of memory blocks in the heap with additional space for a
debugging header and overwrite buffers (debug version only).

void * _calloc_dbg(size_t num, size_t size, int blockType, const char *filename,
... int linenumber);\

Routine Required Header Compatibility

<crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Chapter 4 Debug Version of the C Run-Time Library

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRTD.DLL, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion
of the last allocated memory block, calls the new handler function, or returns NULL.
See the following Remarks section for a complete description of the return behavior.
See the calloc function for more information on how the new handler function is used.

Parameters

Remarks

Example

num Requested number of memory blocks

size Requested size of each memory block (bytes)

blockType Requested type of memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linen umber Line number in source file where allocation operation was requested or
NULL

The filename and linenumber parameters are only available when _calloc_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

_calloc_dbg is a debug version of the calloc function. When _DEBUG is not defined,
calls to _calloc_dbg are removed during preprocessing. Both calloc and _calloc_dbg
allocate num memory blocks in the base heap, but _calloc_dbg offers several
debugging features: buffers on either side of the user portion of the block to test for
leaks, a block type parameter to track specific allocation types, and filenamellinenumber
information to determine the origin of allocation requests.

_calloc_dbg allocates each memory block with slightly more space than the requested
size. The additional space is used by the debug heap manager to link the debug
memory blocks together and to provide the application with debug header information
and overwrite buffers. When the block is allocated, the user portion of the block is
filled with the value OxeD and each of the overwrite buffers are filled with OxFD.

1*
* CALLOCD.C
* This program uses _calloc_dbg to allocate space for
* 40 long integers. It initializes each element to zero.
*/

#include <stdio.h>
#include <malloc.h>
#include <crtdbg.h>

73

Run-Time Library Reference

Output

void main(void
{

long *bufferN. *bufferC;

/*
* Call _calloc_dbg to include the filename and line number
* of our allocation request in the header and also so we can
* allocate CLIENT type blocks specifically
*/

bufferN = (long *)_calloc_dbg(40. sizeof(long). _NORMAL_BLOCK •
... _FILE_. _LINE_);
bufferC = (long *)_calloc_dbg(40. sizeof(long). _CLIENT_BLOCK •
... _FILE_. _LINE_);
if(bufferN != NULL && bufferC != NULL)

printf("Allocated memory successfully\n");
else

pri ntf("Probl em all ocati ng memory\n");

/*
* _free_dbg must be called to free CLIENT type blocks
*/

free(bufferN);
_free_dbg(bufferC. CLIENT_BLOCK);

Allocated memory successfully

See Also: calloc, _malloc_dbg, _DEBUG

_CrtCheckMemory

74

Confirms the integrity of the memory blocks allocated in the debug heap (debug
version only).

int _CrtCheckMemory(void);

Routine Required Header Compatibility

_ CrtCheckMemory <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

Return Value

Remarks

Example

If successful, _CrtCheckMemory returns TRUE; otherwise, the function returns FALSE.

The _ CrtCheckMemory function validates memory allocated by the debug heap
manager by verifying the underlying base heap and inspecting every memory block.
If an error or memory inconsistency is encountered in the underlying base heap, the
debug header information, or the overwrite buffers, _CrtCheckMemory generates a
debug report with information describing the error condition. When _DEBUG is not
defined, calls to _ CrtCheckMemory are removed during preprocessing.

The behavior of _ CrtCheckMemory can be controlled by setting the bit fields
of the _crtDbgFlag flag using the _ CrtSetDbgFlag function. Turning the
_CRTDBG_CHECK_ALWAYS_DF bit field ON results in _CrtCheckMemory
being called every time a memory allocation operation is requested. Although this
method slows down execution, it is useful for catching errors quickly. Turning the
_CRTDBG_ALLOC_MEM_DF bit field OFF causes _CrtCheckMemory to not
verify the heap and immediately return TRUE.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if corruption is detected in the heap:

_ASSERTE(_CrtCheckMemory());

1***
* EXAMPLE *
* This simple program illustrates the basic debugging features *
* of the C runtime libraries. and the kind of debug output *
* that these features generate. *
***1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

II This routine place comments at the head of a section of debug output
void OutputHeading(const char * explanation)
(

_RPT1(_CRT_WARN. "\n\n%s:\n**************************************\
************************************\n". explanation);
}

II The following macros set and clear. respectively. given bits
II of the C runtime library debug flag. as specified by a bitmask.
#ifdef DEBUG
#define SET_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag«a) I _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))
#define CLEAR_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag(~(a) & _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

75

Run-Time Library Reference

76

!lelse
!ldefine SET_CRT_DEBUG_FIELD(a) «void) 0)
!ldefine CLEAR_CRT_DEBUG_FIELD(a) «void) 0)
!lendif

void main()
{

char *pl. *p2;
_CrtMemState sl. s2. s3;

II Send all reports to STDOUT
_CrtSetReportMode(_CRT_WARN. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDOUT);

II Allocate 2 memory blocks and store a string in each
pI - malloc(34);
strcpy(pl. "This is the pI string (34 bytes).");

p2 - malloc(34);
strcpy(p2. "This is the p2 string (34 bytes).");

OutputHeading(
"Use _ASSERTE to check that the two strings are identical");

_ASSERTE(strcmp(pl. p2) -= 0);

OutputHeading(
"Use a RPT macro to report the string contents as a warning");

_RPT2(_CRT_WARN. "pI points to '%s' and \np2 points to '%s'\n". pl. p2);

OutputHeading(
"Use _CRTMemDumpAllObjectsSince to check the pI and p2 allocations");

_CrtMemDumpAllObjectsSince(NULL);

free(p2);

OutputHeading(
"Having freed p2. dump allocation information about pI only");

_CrtMemDumpAllObjectsSince(NULL);

II Store a memory checkpoint in the sl memory-state structure
_CrtMemCheckpoint(&sl);

II Allocate another block. pointed to by p2
p2 = malloc(38);
strcpy(p2. "This new p2 string occupies 38 bytes.");

II Store a 2nd memory checkpoint in s2
_CrtMemCheckpoint(&s2);

}

Chapter 4 Debug Version of the C Run-Time Library

OutputHeading(
"Dump the changes that occurred between two memory checkpoints");

if (_CrtMemDifference(&s3. &sl. &s2))
_CrtMemDumpStatistics(&s3);

II Free p2 again and store a new memory checkpoint in s2
free(p2);
_CrtMemCheckpoint(&s2);

OutputHeading(
"Now the memory state at the two checkpoints is the same");

if (_CrtMemDifference(&s3. &sl. &s2))
_CrtMemDumpStatistics(&s3);

strcpy(pl. "This new pI string is over 34 bytes");
OutputHeading("Free pI after overwriting the end of the allocation");
free(pI);

II Set the debug-heap flag so that freed blocks are kept on the
II linked list. to catch any inadvertent use of freed memory
SET_CRT_DEBUG_FIELD(_CRTDBG_DELAY_FREE_MEM_DF);

pI - malloc(10);
free(pI);
strcpy(pl. "Oops");

OutputHeading("Perform a memory check after corrupting freed memory");
_CrtCheckMemory();

II Use explicit calls to _malloc_dbg to save file name and line number
II information. and also to allocate Client type blocks for tracking
pI - _malloc_dbg(40. _NORMAL_BLOCK. __ FILE __ • __ LINE __);
p2 - _malloc_dbg(40. _CLIENT_BLOCK. __ FILE __ . __ LINE __);
strcpy(pl. "pI points to a Normal allocation block");
strcpy(p2. "p2 poi nts to a Cl i ent a 11 ocati on block");

II You must use _free_dbg to free a Client block
OutputHeading(

"Using free() to free a Client block causes an assertion failure");
free(pI);
free(p2);

pI = malloc(10);
OutputHeading("Examine outstanding allocations (dump memory leaks)");
_CrtDumpMemoryLeaks();

II Set the debug-heap flag so that memory leaks are reported when
II the process terminates. Then. exit.
OutputHeading("Program exits without freeing a memory block");
SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF);

77

Run-Time Library Reference

Output

78

Use _ASSERTE to check that the two strings are identical:
**
C:\DEV\EXAMPLE1.C(56) : Assertion failed: strcmp(pI, p2) == 0

Use a _RPT macro to report the string contents as a warning:
**
pI points to 'This is the pI string (34 bytes).' and
p2 points to 'This is the p2 string (34 bytes).'

Use _CRTMemDumpAllObjectsSince to check the pI and p2 allocations:
**
Dumping objects ->
{I3} normal block at 0x00660B5C, 34 bytes long

Data: <This is the p2 s> 54 68 69 73 20 69 73 20 74 68 65 20 70 32 20 73
{12} normal block at 0x00660B10, 34 bytes long

Data: <This is the pI s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73
Object dump complete.

Having freed p2, dump allocation information about pI only:
**
Dumping objects ->
{I2} normal block at 0x00660B10. 34 bytes long

Data: <This is the pI s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73
Object dump complete.

Dump the changes that occurred between two memory checkpoints:
**
o bytes in 0 Free Blocks.
38 bytes in 1 Normal Blocks.
o bytes in 0 CRT Blocks.
o bytes in 0 IgnoreClient Blocks.
o bytes in 0 (null) Blocks.
Largest number used: 4 bytes.
Total allocations: 38 bytes.

Now the memory state at the two checkpoints is the same:
**

Free pI after overwriting the end of the allocation:
**
memory check error at 0x00660B32 = 0x73. should be 0xFD.
memory check error at 0x00660B33 = 0x00, should be 0xFD.
DAMAGE: after Normal block (#12) at 0x00660B10.

Chapter 4 Debug Version of the C Run-Time Library

Perform a memory check after corrupting freed memory:
**
memory check error at 0x00660B10 ~ 0x4F, should be 0xDD.
memory check error at 0x00660Bll = 0x6F, should be 0xDD.
memory check error at 0x00660B12 - 0x70, should be 0xDD.
memory check error at 0x00660B13 = 0x73, should be 0xDD.
memory check error at 0x00660B14 = 0x00, should be 0xDD.
DAMAGE: on top of Free block at 0x00660B10.
DAMAGED located at 0x00660B10 is 10 bytes long.

Using free() to free a Client block causes an assertion failure:
**
dbgheap.c(1039) : Assertion failed: pHead->nBlockUse == nBlockUse

Examine outstanding allocations (dump memory leaks):
**
Detected memory leaks!
Dumping objects ->
{18} normal block at 0x00660BE4, 10 bytes long
Data: < > CD CD CD CD CD CD CD CD CD CD

Object dump complete.

Program exits without freeing a memory block:
**
Detected memory leaks!
Dumping objects ->
{18} normal block at 0x00660BE4, 10 bytes long
Data: < > CD CD CD CD CD CD CD CD CD CD

Object dump complete.

See Also: _crtDbgFlag, _ CrtSetDbgFlag

_CrtDbgReport
Generates a report with a debugging message and sends the report to three possible
destinations (debug version only).

int _CrtDbgReport(int reportType, const char *filename, int linenumber,
... const char *moduleName, const char *format [, argument] ...);

Routine Required Header Compatibility

_ CrtDbgReport <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

79

Run-Time Library Reference

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
For all report destinations, _ CrtDbgReport returns -1 if an error occurs and 0 if no
errors are encountered. However, when the report destination is a debug message
window and the user chooses the Retry button, _CrtDbgReport returns 1. If the
user chooses the Abort button in the debug message window, _ CrtDbgReport
immediately aborts and does not return a value.

The _ASSERT[E] and _RPT, _RPTF debug macros call _ CrtDbgReport to
generate their debug report. When _ CrtDbgReport returns 1, these macros start
the debugger, provided that "just-in-time" (JIT) debugging is enabled.

Parameters

Remarks

80

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

filename Pointer to name of source file where assert/report occurred or NULL

linenumber Line number in source file where assert/report occured or NULL

moduleName Pointer to name of module (.EXE or .DLL) where assert/report
occurred

format Pointer to format-control string used to create the user message

argument Optional substitution arguments used by format

The _CrtDbgReport function is similar to the printf function, as it can be used to
report warnings, errors, and assert information to the user during the debugging
process. However, this function is more flexible than printf because it does not need
to be enclosed in #ifdef statements to prevent it from being called in a retail build of
an application. This is achieved by using the _DEBUG flag: When _DEBUG is not
defined, calls to _ CrtDbgReport are removed during preprocessing.

_ CrtDbgReport can send the debug report to three different destinations: a debug
report file, a debug monitor (the Visual C++ debugger), or a debug message window.
Two configuration functions, _ CrtSetReportMode and _ CrtSetReportFile, are used
to specify the destination(s) for each report type. These functions allow the reporting
destination(s) for each report type to be separately controlled. For example, it is
possible to specify that a reportType of _CRT_WARN only be sent to the debug
monitor, while a reportType of _CRT_ASSERT be sent to a debug message window
and a user-defined report file.

_CrtDbgReport creates the user message for the debug report by substituting the
argument[n] arguments into the format string, using the same rules defined by the

Example

Chapter 4 Debug Version of the C Run-Time Library

printf function. _ CrtDbgReport then generates the debug report and determines the
destination(s), based on the current report modes and file defined for reportType.
When the report is sent to a debug message window, the filename, lineNumber, and
moduleName are included in the information displayed in the window.

The following table lists the available choices for the report mode(s) and file and the
resulting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBG.H.

Report Mode

CRTDBG
MODE_DEBUG

CRTDBG
MODE_WNDW

CRTDBG
MODE_FILE

CRTDBG
MODE_FILE

CRTDBG
MODE_FILE

Report File _CrtDbgReport Behavior

Not applicable Writes message to Windows OutputDebugString
API.

Not applicable Calls Windows MessageBox API to create message
box to display the message along with Abort,
Retry, and Ignore buttons. If user selects Abort,
_CrtDbgReport immediately aborts. If user selects
Retry, it returns 1. If user selects Ignore, execution
continues and _CrtDbgReport returns O. Note that
choosing Ignore when an error condition exists often
results in "undefined behavior."

_HFILE Writes message to user-supplied HANDLE, using
the Windows WriteFile API, and does not verify
validity of file handle; the application is responsible
for opening the report file and passing a valid file
handle.

CRTDBG- Writes message to stderr.
FILE_STDERR

CRTDBG- Writes message to stdout.
FILE_STDOUT

The report may be sent to one, two, or three destinations, or no destination at all.
For more information about specifying the report mode(s) and report file, see the
_ CrtSetReportMode and _ CrtSetReportFile functions.

If your application needs more flexibility than that provided by _ CrtDbgReport,
you can write your own reporting function and hook it into the C run-time library
reporting mechanism by using the _ CrtSetReportHook function.

1*
* REPORT.C:
* In this program, calls are made to the _CrtSetReportMode,
* _CrtSetReportFile, and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails, these macros print a diagnostic message
* and call _CrtObgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The RPTn and RPTFn group of macros are also exercised in

81

Run-Time Library Reference

82

* this program. as an alternative to the printf function.
* When these macros are called. the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

#define FALSE 0
#define TRUE !FALSE

/*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*/

int gl_num_asserts=0;
int OurReportingFunction(int reportType. char *userMessage. int *retVal)
(

/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*/

fprintf(stdout. "Inside the client-defined reporting function.\n");
fflush(stdout);

/*
* When the report type is for an ASSERT.
* we'll report some information. but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR.
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*/

if (reportType == _CRT_ASSERT)
(

gl_num_asserts++;
fprintf(stdout. "This is the number of Assertion failures that
... have occurred: %d \n". gl_num_asserts);
ffl ush(stdout);
fprintf(stdout. "Returning TRUE from the client-defined reporting
... functi on. \n");
ffl ush(stdout);
return(TRUE) ;

else {

Chapter 4 Debug Version of the C Run-Time Library

1*

fprintf(stdout, "This is the debug user message: %s \n", userMessage);
ffl ush(stdout);
fprintf(stdout, "Returning FALSE from the client-defined reporting
... function. \n");
fflush(stdout);
return(FALSE);

* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.
*1

retVal - 0;

int maine)
{

char *pl, *p2;

1*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction);

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are gOing to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to stdout.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);
/*
* Allocate and assign the pointer variables
*/

pI = malloc(10);
strcpy(pl, "I am pI");
p2 -= mall oc(10);
strcpy(p2, "I am p2");

83

Run-Time Library Reference

Output

84

/*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
*" If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
... pI == p2. \n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' '%s' ?\n", pI, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n", pI, p2);
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n '%s' != '%s' \n", pI, p2);

free(p2);
free(pl) ;

return 0;

Inside the client-defined reporting function.
This is the debug user message: Use the assert macros to evaluate
... the expression pI == p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
... 'I am pI' == 'I am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: I
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) Will _ASSERTE find
... 'I am pI' == 'I am p2' ?

Chapter 4 Debug Version of the C Run-Time Library

Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pI' != 'I am p2'
Returning FALSE from the client-defined reporting function.

See Also: _CrtSetReportMode, _CrtSetReportFile, printf, _DEBUG

_CrtDoForAllClientObjects
Calls an application-supplied function for all_CLIENT_BLOCK types in the heap
(debug version only).

void _CrtDoForAllClientObjects(void (*pfn)(void *, void *), void *context);

Routine Required Header Compatibility

_CrtDoForAIlCIientObjects <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
None

Parameters

Remarks

void (*pfn)(void *, void *) Pointer to the application-supplied function to call

context Pointer to the application-supplied context to pass to the application-supplied
function

The _CrtDoForAllClientObjects function searches the heap's linked list for memory
blocks with the _CLIENT_BLOCK type and calls the application-supplied function
when a block of this type is found. The found block and the context parameter are
passed as arguments to the application-supplied function. During debugging, an
application can track a specific group of allocations by explicitly calling the debug
heap functions to allocate the memory and specifying that the blocks be assigned the
_CLIENT_BLOCK block type. These blocks can then be tracked separately and
reported on differently during leak detection and memory state reporting.

85

Run-Time Library Reference

Example

86

If the _CRTDBG_ALLOC_MEM_DF bit field of the _crtDbgFlag flag is not
turned on, _CrtDoForAIlClientObjects immediately returns. When _DEBUG is not
defined, calls to _CrtDoForAIlClientObjects are removed during preprocessing.

/*
* DFACOBJS.C
* This program allocates some CLIENT type blocks of memory
* and then calls _CrtDoForAllClientObjects to print out the contents
* of each client block found on the heap.
*/

#include <crtdbg.h>
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

/*
* My Memory Block linked-list data structure
*/

typedef struct MyMemoryBlockStruct
(

struct MyMemoryBlockStruct *NextPtr:
int blockType:
int allocNum:

aMemoryBlock:
aMemoryBlock *HeadPtr:
aMemoryBlock *TailPtr:

/*
* CreateMemoryBlock
* allocates a block of memory, fills in the data structure
* and adds the new block to the linked list
* Returns 1 if successful, otherwise 0
*/

int CreateMemoryBlock(
int allocNum,
int blockType
)

aMemoryBlock *blockPtr:
size_t size:

size = sizeof(struct MyMemoryBlockStruct):
if (blockType -- _CLIENT_BLOCK)

blockPtr - (aMemoryBlock *) _malloc_dbg(size, _CLIENT_BLOCK,
.. _FILE_, _LINE_):

else

Chapter 4 Debug Version of the C Run-Time Library

/*

blockPtr = (aMemoryBlock *) _malloc_dbg(size. _NORMAL_BLOCK .
... _FILE_. _LINE_);

if (blockPtr == NULL)
return(0);

blockPtr->allocNum - allocNum;
blockPtr->blockType = blockType;

blockPtr->NextPtr - NULL;
if (HeadPtr == NULL)

HeadPtr - blockPtr;
else

TailPtr->NextPtr - blockPtr;
TailPtr - blockPtr;
return(1);

* RestoreMemoryToHeap
* restores all of the memory that we allocated on the heap
*/

void RestoreMemoryToHeap()
{

/*

aMemoryBlock *blockPtr;

if (!HeadPtr)
return;

while (Headptr->NextPtr != NULL
{

blockptr = HeadPtr->NextPtr;
if (HeadPtr->blockType == _CLIENT_BLOCK

_free_dbg(HeadPtr. CLIENT_BLOCK);
else

_free_dbg(HeadPtr. _NORMAL_BLOCK);

HeadPtr = blockPtr;

* MyClientObjectHook
* A hook function for performing some action on all
* client blocks found on the heap - In this case. print
* out the value stored at each memory address.
*/

void _cdecl MyClientObjectHook(
void * pUserData.
void * ignored
)

87

Run-Time Library Reference

88

aMemoryBlock *blockPtr;
long allocReqNum;
int success;

blockptr - (aMemoryBlock *) pUserData;

1*
* Let's retrieve the actual object allocation order request number
* and see if it's different from the allocation number we stored
* in our data structure.
*1

success = _CrtIsMemoryBlock«const void *) blockPtr.
(unsigned int) sizeof(struct MyMemoryBlockStruct).
&allocReqNum. NULL. NULL);

if (success)
printf("Block #%d \t Type: %d \t Allocation Number: %d\n".

blockPtr->allocNum. blockPtr->blockType. allocReqNum);
else
{

printf("ERROR: not a valid memory block.\n");
exit(1);

void main(void)
{

div_t div_result;
int i. success. tmpFlag;

1*
* Set the _crtDbgFlag to turn debug type allocations.
* This will enable us to specify that blocks of type
* CLIENT_BLOCK can be allocated and tracked separately.
* Turn off checking for internal CRT blocks.
*1

tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpFlag 1= _CRTDBG_ALLOC_MEM_DF;
tmpFlag &= _CRTDBG_CHECK_CRT_DF;
_CrtSetDbgFlag(tmpFlag);

1*
* We're going to allocate 22 blocks and every other block is
* going to be of type _CLIENT_BLOCK.
* Blocks numbered 2. 4. 6. 8. 10. 12. 14. 16. 18. 20. and 22
* should all be _CLIENT_BLOCKS.
*1

HeadPtr = NULL;
printf("Allocating the memory");
for (i=l; i < 23; i++)
{

div_result = div(i. 2);
if div_result.rem > 0)

success = CreateMemoryBlock(i. _NORMAL_BLOCK);

Output

Chapter 4 Debug Version of the C Run-Time Library

else
success = CreateMemoryBlock(i. _CLIENT BLOCK);

if !success)
{

pri ntf(" ERROR. \n");
exit(1);

else
printf(".");

pri ntf(" done. \n");

/*
* We're going to call _CrtDoForAllClientObjects to make sure that
* only blocks numbered 2. 4. 6. 8. 10. 12. 14. 16. 18. 20. and 22
* got allocated as _CLIENT_BLOCKS.
*/

_CrtDoForAllClientObjects(MyClientObjectHook. NULL);

/*
* Restore the memory to the heap
*/

RestoreMemoryToHeap();
ex it (0);

The instruction at "0x00401153" referenced memory at "0x00000004".
The memory could not be "read".

See Also: _ CrtSetDbgFlag

_CrtDumpMemory Leaks
Dumps all of the memory blocks in the debug heap when a memory leak has occurred
(debug version only).

iot _CrtDumpMemoryLeaks(void);

Routine Required Header Compatibility

_ CrtDumpMemoryLeaks <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

89

Run-Time Library Reference

Return Value

Remarks

Example

_CrtDumpMemoryLeaks returns TRUE if a memory leak is found; otherwise, the
function returns FALSE.

The _CrtDumpMemoryLeaks function determines whether a memory leak has
occurred since the start of program execution. When a leak is found, the debug header
information for all of the objects in the heap is dumped in a user-readable form. When
_DEBUG is not defined, calls to _CrtDumpMemoryLeaks are removed during
preprocessing.

_CrtDumpMemoryLeaks is frequently called at the end of program execution to verify
that all memory allocated by the application has been freed. The function can be called
automatically at program termination by turning on the _CRTDBG_LEAK_CHECK_DF
bit field of the _crtDbgFlag flag using the _ CrtSetDbgFlag function.

_CrtDumpMemoryLeaks calls _CrtMemCheckpoint to obtain the current state of the
heap and then scans the state for blocks that have not been freed. When an unfreed block
is encountered, _CrtDumpMemoryLeaks calls _CrtMemDumpAllObjectsSince to
dump information for all of the objects allocated in the heap from the start of program
execution.

By default, internal C run-time blocks LCRT_BLOCK) are not included in
memory dump operations. The _ CrtSetDbgFlag function can be used to tum on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks in the
leak detection process.

See Example 1 on page 75.

_CrtIs ValidHeapPointer

90

Verifies that a specified pointer is in the local heap (debug version only).

int _CrtIsValidHeapPointer(const void *userData);

Routine Required Header Compatibility

_ CrtIsVaIidHeapPointer <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

Return Value
_CrtIsValidHeapPointer returns TRUE if the specified pointer is in the local heap;
otherwise, the function returns FALSE.

Parameter

Remarks

Example

userData Pointer to the beginning of an allocated memory block

The _ CrtIs ValidHeapPointer function is used to ensure that a specific memory
address is within the local heap. The "local" heap refers to the heap created and
managed by a particular instance of the C run-time library. If a dynamically linked
library (DLL) contains a static link to the run-time library, then it has its own instance
of the run-time heap, and therefore its own heap, independent of the application's
local heap. When _DEBUG is not defined, calls to _CrtIsValidHeapPointer are
removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the specified address is not
located within the local heap:

_ASSERTE(_CrtIsValidHeapPointer(userData));

1*
* ISVALID.C
* This program allocates a block of memory using _malloc_dbg
* and then tests the validity of this memory by calling _CrtIsMemoryBlock.
* _CrtIsValidPointer. and _CrtIsValidHeapPointer.
*1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

#define TRUE 1
#define FALSE 0

void maine void
{

char *my_pointer;

1*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header information
*1

my_pointer = (char *)_malloc_dbg(sizeof(char) * 10. _NORMAL_BLOCK .
... _FILE_. _LINE_);

91

Run-Time Library Reference

Output

/*
* Ensure that the memory got allocated correctly
*/

_CrtIsMemoryBlock«const void *)my_pointer. sizeof(char) * 10 .
... NULL. NULL. NULL);

/*
* Test for read/write accessibility
*/

if (_CrtIsValidPointer«const void *)my_pointer. sizeof(char) * 10. TRUE))
printf("my_pointer has read and write accessibility.\n");

else
printf("my_pointer only has read access.\n");

/*
* Make sure my_pointer is within the local heap
*/

if (_CrtIsValidHeapPointer«const void *)my_pointer))
printf("my_pointer is within the local heap.\n");

else
printf("my_pointer is not located within the local heap.\n");

free(my_pointer);

my_pointer has read and write accessibility.
my_pointer is within the local heap.

_CrtIsMemoryBlock

92

Verifies that a specified memory block is in the local heap and that it has a valid
debug heap block type identifier (debug version only).

int _CrtIsMemoryBlock(const void *userData, unsigned int size,
10+ long *requestNumber, char **filename, int *linenumber);

Routine Required Header Compatibility

_ CrtIsMemoryBlock <crtdbg.h> Win NT, Win 95

For additional compatibility infonnation, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

Return Value
_CrtIsMemoryBlock returns TRUE if the specified memory block is located within
the local heap and has a valid debug heap block type identifier; otherwise, the
function returns FALSE.

Parameter

Remarks

Example

userData Pointer to the beginning of the memory block to verify

size Size of the specified block (bytes)

requestNumber Pointer to the allocation number of the block or NULL

filename Pointer to name of source file that requested the block or NULL

linen umber Pointer to the line number in the source file or NULL

The _ CrtIsMemory Block function verifies that a specified memory block is located
within the application's local heap and that it has a valid block type identifier. This
function can also be used to obtain the object allocation order number and source file
namenine number where the memory block allocation was originally requested.
Passing non-NULL values for the requestNumber,filename, and/or linenumber
parameters causes _CrtIsMemoryBlock to set these parameters to the values in the
memory block's debug header, if it finds the block in the local heap. When _DEBUG
is not defined, calls to _CrtIsMemoryBlock are removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the specified address is not located
within the local heap:

_ASSERTE(_CrtIsMemoryBlock(userData, size, &requestNumber, &filename,
... & 1 i nenumber));

1*
* ISVALID.C
* This program allocates a block of memory using _malloc_dbg
* and then tests the validity of this memory by calling _CrtlsMemoryBlock,
* _CrtlsValidPointer, and _CrtlsValidHeapPointer.
*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

#define TRUE 1
#define FALSE 0

void main(void
{

char *my_pointer;

93

Run-Time Library Reference

Output

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header information
*/

my_pointer - (char *)_malloc_dbg(sizeof(char) * 10,
~_NORMAL_BLOCK, __ FILE __ , __ LINE __);

/*
* Ensure that the memory got allocated correctly
*/

_CrtIsMemoryBlock((const void *)my_pointer, sizeof(char) * 10,
~NULL, NULL, NULL);

/*
* Test for read/write accessibility
*/

if (_CrtIsValidPointer((const void *)my_pointer, sizeof(char) * 10, TRUE))
printf("my_pointer has read and write accessibility.\n");

else
pri ntf("my_poi nte r on 1 y ha s read acces s. \n") :

/*
* Make sure my_pointer is within the local heap
*/

if (_CrtIsValidHeapPointer((const void *)my_pointer))
printf("my_pointer is within the local heap.\n");

else
p r i n t f ("my _p 0 i n t e r i s not 1 0 cat e d wit h i nth e 1 0 cal he a p . \ n ") ;

free(my_pointer);

my_pointer has read and write accessibility.
my_pointer is within the local heap.

CrtIs ValidPointer

94

Verifies that a specified memory range is valid for reading and writing (debug
version only).

int _CrtIsValidPointer(const void *address, unsigned int size, int access);

Routine Required Header Compatibility

_ Crtls ValidPointer <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Chapter 4 Debug Version of the C Run-Time Library

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
_CrtIsValidPointer returns TRUE if the specified memory range is valid for the
specified operation(s); otherwise, the function returns FALSE.

Parameter

Remarks

Example

address Points to the beginning of the memory range to test for validity

size Size of the specified memory range (bytes)

access ReadiWrite accessibility to determine for the memory range

The _CrtIsValidPointer function verifies that the memory range beginning at
address and extending for size bytes, is valid for the specified accessibility
operation(s). When access is set to TRUE, the memory range is verified for both
reading and writing. When address is FALSE, the memory range is only validated
for reading. When _DEBUG is not defined, calls to _CrtIsValidPointer are
removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the memory range is not valid
for both reading and writing operations:

_ASSERTE(_CrtIsValidPointer(address. size. TRUE));

1*
* ISVALID.C
* This program allocates a block of memory using _malloc_dbg
* and then tests the validity of this memory by calling _CrtIsMemoryBlock.
* _CrtlsValidPointer. and _CrtIsValidHeapPointer.
*1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

#define TRUE 1
#define FALSE 0

void main(void
{

char *my_pointer;

95

Run-Time Library Reference

Output

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header information
*/

my_pointer = (char *)_malloc_dbg(sizeof(char) * 10, _NORMAL_BLOCK,
.. _FILE_, _LINE_);

/*
* Ensure that the memory got allocated correctly
*/

_CrtlsMemoryBlock«const void *)my_pointer, sizeof(char) * 10,
.. NULL, NULL, NULL);

/*
* Test for read/write accessibility
*/

if (_CrtlsValidPointer«const void *)my_pointer, sizeof(char) * 10, TRUE))
pri ntf("my_poi nter has read and write access i bil ity. \n") ;

else
printf("my_pointer only has read access.\n");

/*
* Make sure my_pointer is within the local heap
*/

if (_CrtlsValidHeapPointer«const void *)my_pointer))
printf("my_pointer is within the local heap.\n");

else
printf("my_pointer is not located within the local heap.\n");

free(my_pointer);

my_pointer has read and write accessibility.
my_pointer is within the local heap.

_CrtMemCheckpoint

96

Obtains the current state of the debug heap and stores in an application-supplied
_CrtMemState structure (debug version only).

void _CrtMemCheckpoint(_CrtMemState *state);

Routine Required Header Compatibility

_ CrtMemCheckpoint <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Chapter 4 Debug Version of the C Run-Time Library

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRTD.DLL, debug version

Return Value
None

Parameter

Remarks

Example

state Pointer to _ CrtMemState structure to fill with the memory checkpoint

The _CrtMemCheckpoint function creates a snapshot of the current state of the
debug heap at any given moment, which can be used by other heap state functions
to help detect memory leaks and other problems. When _DEBUG is not defined,
calls to _ CrtMemState are removed during preprocessing.

The application must pass a pointer to a previously allocated instance of the
_CrtMemState structure, defined in CRTDBO.H, in the state parameter. If
_CrtMemCheckpoint encounters an error during the checkpoint creation, the
function generates a _CRT_WARN debug report describing the problem.

See Example 1 on page 75.

CrtMemDifference
Compares two memory states and returns their differences (debug version only).

int _CrtMemDifference(_CrtMemState *stateDiff, const _CrtMemState *oldState,
.. const _CrtMemState *newState);

Routine Required Header Compatibility

_ CrtMemDifference <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

Return Value

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRTD.DLL, debug version

If the memory states are significantly different, _CrtMemDifference returns TRUE;
otherwise, the function returns FALSE.

97

Run-Time Library Reference

Parameters

Remarks

Example

stateDif.f Pointer to a _ CrtMemState structure that will be used to store the
differences between the two memory states (returned)

oldState Pointer to an earlier memory state C CrtMemState structure)

newState Pointer to a later memory state C CrtMemState structure)

The _ CrtMemDifference function compares oldState and newState and stores
their differences in stateDiff, which can then be used by the application to detect
memory leaks and other memory problems. When _DEBUG is not defined, calls
to _ CrtMemDifference are removed during preprocessing.

newState and oldState must each be a valid pointer to a _CrtMemState structure,
defined in CRTDBG.H, that has been filled in by _CrtMemCheckpoint before
calling _CrtMemDifference. stateDif.fmust be a pointer to a previously allocated
instance of the _ CrtMemState structure.

_ CrtMemDifference compares the _ CrtMemState field values of the blocks in
oldState to those in newState and stores the result in stateDiJf. When the number
of allocated block types or total number of allocated blocks for each type differs
between the two memory states, the states are said to be significantly different.
The difference between the two states' high water count and total allocations is
also stored in stateDiJf.

By default, internal C run-time blocks CCRT_BLOCK) are not included in
memory state operations. The _ CrtSetDbgFlag function can be used to turn on
the _CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks
in leak detection and other memory state operations. Freed memory blocks
CFREE_BLOCK) do not cause _CrtMemDifference to return TRUE.

See Example 1 on page 75.

See Also: _crtDbgFlag

_CrtMemDumpAllObjectsSince

98

Dumps information about objects in the heap from the start of program execution or
from a specified heap state (debug version only).

void _CrtMemDumpAIIObjectsSince(const _CrtMemState *state);

Routine

_ CrtMemDumpAlI
ObjectsSince

Required Header

<crtdbg.h>

Compatibility

Win NT, Win 95

Chapter 4 Debug Version of the C Run-Time Library

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
None

Parameter

Remarks

Example

state Pointer to the heap state to begin dumping from or NULL

The _CrtMemDumpAllObjectsSince function dumps the debug header information
of objects allocated in the heap in a user-readable form. The dump information can
be used by the application to track allocations and detect memory problems. When
_DEBUG is not defined, calls to _CrtMemDumpAllObjectsSince are removed
during preprocessing.

_CrtMemDumpAllObjectsSince uses the value of the state parameter to determine
where to initiate the dump operation. To begin dumping from a specified heap state,
the state parameter must be a pointer to a _CrtMemState structure that has been
filled in by _CrtMemCheckpoint before _CrtMemDumpAllObjectsSince was
called. When state is NULL, the function begins the dump from the start of program
execution.

If the application has installed a dump hook function by calling _ CrtSetDumpClient,
then every time _ CrtMemDumpAllObjectsSince dumps information about a
_ CLIENT_BLOCK type of block, it calls the application-supplied dump function as
well. By default, internal C run-time blocks CCRT_BLOCK) are not included in
memory dump operations. The _ CrtSetDbgFlag function can be used to tum on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks. In addition,
blocks marked as freed or ignored CFREE_BLOCK, _IGNORE_BLOCK) are not
included in the memory dump.

1***
* EXAMPLE 2
*

*
*

* This program illustrates several ways to use debugging hook *
* functions with the new debug versions of the C runtime *
* libraries. To add some realism. it has a few elements of an *
* actual application. including two bugs. *
* *
* The program stores birthdate information in a linked list *
* of Client blocks. A Client-dump hook function validates the *
* birthday data and reports the contents of the Client blocks. *
* An allocation hook function logs heap operations to a text *

99

Run-Time Library Reference

100

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

file. and the report hook function logs reports to the same
text fil e.

NOTE: The allocation hook function explicitly excludes CRT
blocks (the memory allocated internally by the C
runtime library) from its log. It is important to
understand why! The hook function uses fprintf() to
write to the log file. and fprintf() allocates a CRT
block. If CRT blocks were not excluded in this case.
an endless loop would be created in which fprintf()
would cause the hook function to be called. and the
hook would in turn call fprintf(). which would cause
the hook to be called again. and so on. The moral is:

--> IF YOUR ALLOCATION HOOK USES ANY C RUNTIME FUNCTION
THAT ALLOCATES MEMORY. THE HOOK MUST IGNORE CRT-TYPE
ALLOCATION OPERATIONS!

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

HINT: If you want to be able to report CRT-type blocks in *
your allocation hook. use Windows API functions for *
formatting and output. instead of C runtime functions. *
Since the Windows APIs do not use the CRT heap. they *
will not trap your hook in an endless loop. *

BUGS: There are two bugs in the program below. which the
debug heap features identify in several ways. One bug
is that the birthDay.Name field is not large enough
to hold several of the test names. The field should
be larger. and strncpy() should be used in place of
strcpy(). The second bug is that the while() loop
in the printRecords() function should not end until
HeadPtr itself == NULL. This bug results not only in
an incomplete display of birthdays. but also in a
memory leak. In addition to these two bugs. Gauss'
birthday data is out of range (April 30. not 32).

*
*
*
*
*
*
*
*
*
*
*
*
*

***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <time.h>
#include <crtdbg.h>

/***
* DATA DECLARATIONS AND DEFINES *
***/

II The following arrays provide test data for the example program:
const char * Names[] =
{

"George Washington".
"Thomas Jefferson".

Chapter 4 Debug Version of the C Run-Time Library

"Carl Friedrich Gauss".
"Ludwig van Beethoven".
"Thomas Carlyle"

const int Dates[] -
{

1732. 2. 11.
1743. 4. 13.
1777. 4. 32.
1795. 12. 4.
1770. 12. 16

#define TEST_RECS 5
II A generic sort of linked-list data structure. in this case for birthdays:
typedef struct BirthdayStruct
{

struct BirthdayStruct * NextRec;
int Year;
int Month;
int Day;
char Name[20];

birthDay;

birthDay * HeadPtr;
birthDay * Tail Ptr;

#define FI LE_IO_ERROR
Iidefi ne OUT_OF_MEMORY

#define TRUE
#define FALSE

0
1

7
0

II Macros for setting or clearing bits in the CRT debug flag
Iii fdef _DEBUG
#define SET_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag«a) I
~_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

#define CLEAR_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag(-(a) &
~_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

lie 1 se
#define SET_CRT_DEBUG_FIELD(a) «void) 0)
#define CLEAR_CRT_DEBUG_FIELD(a) «void) 0)
Ilend if

1***
* SPECIAL-PURPOSE ROUTINES *
***1

1* ERROR HANDLER

Handling serious errors gracefully is a real test of craftsmanship.
This function is just a stub; it doesn't really handle errors.

101

Run-Time Library Reference

102

*1
void FatalError(int ErrType)
{

exit (1);

1* MEMORY ALLOCATION FUNCTION

*1

The createRecord function allocates memory for a new birthday record,
fills in the structure members, and then adds the record to a linked list.
In debug builds, it makes these allocations in Client blocks. If memory
is not available, it calls the error handler.

void createRecord(
const int Year,
const int Month,
const int Day,
const char * Name

lIifdef _DEBUG
const unsigned char * szFileName, int nLine

lIendif
)

birthDay * ptr;
size_t n;

n = sizeof(struct BirthdayStruct);
ptr = (birthDay *) _malloc_dbg(n, _CLIENT_BLOCK, szFileName, nLine);
if(ptr == NULL)

FatalError(OUT_OF_MEMORY);
ptr->Year = Year;
ptr->Month = Month;
ptr->Day - Day;
strcpy(ptr->Name, Name);
ptr->NextRec = NULL;
if (HeadPtr == NULL II If this is the first record in the linked list

HeadPtr = ptr;
else

TailPtr->NextRec ptr;
TailPtr = ptr;

1* BIRTHDAY DISPLAY FUNCTION

*1

This function traverses the linked list, displays the birthday data,
and then frees the memory blocks used to store the birthdays.

void printRecords(
{

birthDay * ptr;
char *months[] = {

"", "January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December" };

Chapter 4 Debug Version of the C Run-Time Library

if (HeadPtr -- NULL)
return;

II Do nothing if list is empty

printf("\n\nThis is the birthday list:\n");
while (HeadPtr->NextRec 1- NULL)
{

pri ntf(" %s was born on %s %d, %d. \n",
HeadPtr->Name, months[HeadPtr->Month], HeadPtr->Day, HeadPtr->Year);

ptr - HeadPtr->NextRec;
_free_dbg(HeadPtr, CLIENT_BLOCK);
HeadPtr - ptr;

1***
* DEBUG C RUNTIME LIBRARY HOOK FUNCTIONS AND DEFINES *
***1

Ifi fdef _DEBUG
#define createRecord(a, b, c, d) \

createRecord(a, b, c, d, __ FILE __ , __ LINE __)
FILE *logFile; II Used to log allocation information
const char lineStr[] = { "---------------------------------------\
- \n" };

1* CLIENT DUMP HOOK FUNCTION

*1

A hook function for dumping a Client block usually reports some
or all of the contents of the block in question. The function
below also checks the data in several ways, and reports corruption
or inconsistency as an assertion failure.

void __ cdecl MyDumpClientHook(
void * pUserData,
size_t nBytes
)

birthDay * bday;

bday - (birthDay *) pUserData;

_RPT4(_CRT_WARN," The birthday of %s is %d/%d/%d.\n",
bday->Name, bday->Month, bday->Day, bday->Year);

_ASSERTE((bday->Day > 0) && (bday->Day < 32));
_ASSERTE((bday->Month > 0) && (bday->Month < 13));
_ASSERTE((bday->Year > 0) && (bday->Year < 1996));

1* ALLOCATION HOOK FUNCTION

An allocation hook function can have many, many different
uses. This one simply logs each allocation operation in a file.

*1

103

Run-Time Library Reference

104

int cdecl MyAllocHook(
int nAllocType,
void * pvData,
size t nSize,
int nBlockUse,
long lRequest,
const unsigned char * szFileName,
int nLine
)

char *operation[]
char *blockType[]

"allocating", "re-allocating", "freeing" };
"Free", "Normal", "CRT", "Ignore", "Client" };

if (nBlockUse == CRT_BLOCK
.. library allocations

return(TRUE);

_ASSERT<
_ASSERT(

nAllocType > 0 &&
nBlockUse >= 0 &&

fprintf(10gFile,

II Ignore internal C runtime

nAllocType < 4));
nBlockUse < 5));

"Memory operation in %s, line %d: %s a %d-byte
.. '%s' block (ff %ld)\n",
szFileName, nLine, operation[nAllocType], nSize,
blockType[nBlockUse], lRequest);

if pvData!= NULL)
fprintf(10gFile, " at %X", pvData);

return(TRUE); II Allow the memory operation to proceed

1* REPORT HOOK FUNCTION

*1

Again, report hook functions can serve a very wide variety of purposes.
This one logs error and assertion failure debug reports in the
log file, along with 'Damage' reports about overwritten memory.

By setting the retVal parameter to zero, we are instructing _CrtDbgReport
to return zero, which causes execution to continue. If we want the
function to start the debugger, we should have _CrtDbgReport return one.

int MyReportHook(
int nRptType,
char *szMsg,
int *retVal
)

char *RptTypes[J = { "Warning", "Error", "Assert" };

if (nRptType > 0) II (strstr(szMsg, "DAMAGE"))
fprintf(10gFile, "%s: %s", RptTypes[nRptTypeJ. szMsg);

Chapter 4 Debug Version of the C Run-Time Library

retVal = 0;

return(TRUE); II Allow the report to be made as usual

}

#endif II End of #ifdef _DEBUG

1***
* MAIN FUNCTION *
***1

void main()
{

int i. j;

#ifdef DEBUG
CrtMemState checkPt1;

char timeStr[10]. dateStr[10]; II Used to set up log file

II Send all reports to STDOUT. since this example is a console app
_CrtSetReportMode(_CRT_WARN. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR. _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDOUT);

II Set the debug heap to report memory leaks when the process terminates.
II and to keep freed blocks in the linked list.
SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF I CRTDBG_DELAY_FREE_MEM_DF);

II Open a log file for the hook functions to use
10gFile = fopen("MEM-LOG.TXT". "w");
if (10gFile == NULL)

FatalError(FILE_IO_ERROR);
_strtime(timeStr);
_strdate(dateStr);
fprintf(10gFile.

"Memory Allocation Log File for Example Program.
run at %s on %s.\n". timeStr. dateStr);

fputs(lineStr. 10gFile);

II Install the hook functions
_CrtSetDumpClient(MyDumpClientHook);
_CrtSetAllocHook(MyAllocHook);
_CrtSetReportHook(MyReportHook);

#endif II End of #ifdef DEBUG

HeadPtr NULL;

II Create a trial birthday record.
createRecord(1749. 3. 23. "Pierre de Laplace");

105

Run-Time Library Reference

Output

106

II Check the debug heap, and dump the new birthday record. --Note that
II debug C runtime library functions such as _CrtCheckMemory() and
II _CrtMemDumpAllObjectsSince() automatically disappear in a release build.
_CrtMemDumpAllObjectsSince(NULL);
_CrtCheckMemory();
_CrtMemCheckpoint(&checkPtl);

II Since everything has worked so far, create more records
for (i = 0, j = 0; i < TEST_RECS; i++, j+=3)

createRecord(Dates[j], Dates[j+l], Dates[j+2], Names[i]);

II Examine the results
_CrtMemDumpAllObjectsSince(&checkPtl);
_CrtMemCheckpoint(&checkPtl);
_CrtMemDumpStatistics(&checkPtl);
_CrtCheckMemory();

II This fflush needs to be removed ...
fflush(10gFile);

II Now try displaying the records, which frees the memory being used
pri ntRecords ();

II OK, time to go. Did I forget to turn out any lights? I could
II check explicitly using _CrtDumpMemoryLeaks(), but I have set
II _CRTDBG_LEAK_CHECK_DF, so the C runtime library debug heap will
II automatically alert me at exit of any memory leaks.

/lifdef _DEBUG
fclose(10gFile);

flendi f
}

Screen output:

Dumping objects -)
C:\DEV\EXAMPLE2.C(327) : {13} client block at 0x00661B38, subtype 0,
... 36 bytes long:

The birthday of Pierre de Laplace is 3/23/1749.
Object dump complete.
Dumping objects -)
C:\DEV\EXAMPLE2.C(338) : {18} client block at 0x00661CB4, subtype 0,
... 36 bytes long:

The birthday of Thomas Carlyle is 12/16/1770.
C:\DEV\EXAMPLE2.C(338) : {17} client block at 0x00661C68, subtype 0,
... 36 bytes long:

The birthday of Ludwig van Beethoven is 12/4/1795.
C:\DEV\EXAMPLE2.C(338) : {16} client block at 0x00661CIC, subtype 0,
... 36 bytes long:

The birthday of Carl Friedrich Gauss is 4/32/1777.
C:\DEV\EXAMPLE2.C(219) Assertion failed: (bday-)Day) 0) &&
... (bday-)Day < 32)
C:\DEV\EXAMPLE2.C(338) {IS} client block at 0x00661BD0, subtype 0,
... 36 bytes long:

The birthday of Thomas Jefferson is 4/13/1743.

Chapter 4 Debug Version of the C Run-Time Library

C:\DEV\EXAMPLE2.C(338) : {14} client block at 0x00661B84. subtype 0 •
... 36 bytes long:

The birthday of George Washington is 2/11/1732.
Object dump complete.
o bytes in 0 Free Blocks.
o bytes in 0 Norma 1 Blocks.
6442 bytes in 12 CRT Blocks.
o bytes in 0 IgnoreClient Blocks.
216 bytes in 6 (null) Blocks.
Largest number used: 6658 bytes.
Total allocations: 6658 bytes.
memory check error at 0x00661C8C ~ 0x00. should be 0xFD.
DAMAGE: after (null) block (#17) at 0x00661C68.
(null) allocated at file C:\DEV\EXAMPLE2.C(338).
(null) located at 0x00661C68 is 36 bytes long.
memory check error at 0x00661C40 - 0x00. should be 0xFD.
DAMAGE: after (null) block (#16) at 0x00661CIC.
(null) allocated at file C:\DEV\EXAMPLE2.C(338).
(null) located at 0x00661CIC is 36 bytes long.
memory check error at 0x00661C40 - 0x00. should be 0xFD.
DAMAGE: after (null) block (#16) at 0x00661CIC.
memory check error at 0x00661C8C = 0x00. should be 0xFD.
DAMAGE: after (null) block (#17) at 0x00661C68.

This is the birthday list:
Pierre de Laplace was born on March 23. 1749.
George Washington was born on February 11. 1732.
Thomas Jefferson was born on April 13. 1743.
Carl Friedrich Gauss was born on April 32. 1777.
Ludwig van Beethoven was born on December 4. 1795.

Detected memory leaks!
Dumping objects -)
C:\DEV\EXAMPLE2.C(338) : {18} client block at 0x00661CB4. subtype 0 .
... 36 bytes long:

The birthday of Thomas Carlyle is 12/16/1770.
Object dump complete.

Log file output:

Memory Allocation Log File for Example Program. run at 14:11:01 on 04/28/95.

Memory operation in C:\DEV\EXAMPLE2.C. line 327:
allocating a 36-byte 'Client' block (/1 13)

Memory operation in C:\DEV\EXAMPLE2.C. line 338:
allocating a 36-byte 'Client' block (fI 14)

Memory operation in C:\DEV\EXAMPLE2.C. line 338:
allocating a 36-byte 'Client' block (fI 15)

Memory operation in C:\DEV\EXAMPLE2.C. line 338:
allocating a 36-byte 'Client' block (fI 16)

Memory operation in C:\DEV\EXAMPLE2.C. line 338:
allocating a 36-byte 'Client' block (/1 17)

Memory operation in C:\DEV\EXAMPLE2.C. line 338:
allocating a 36-byte 'Client' block (/1 18)

107

Run-Time Library Reference

Assert: C:\DEV\EXAMPLE2.C(219) : Assertion failed:
(bday-)Day) 0) && (bday-)Day < 32)

Warning: DAMAGE: after (null) block (#17) at 0x00661C68.
Warning: DAMAGE: after (null) block (#16) at 0x00661CIC.
Memory operation in (null), line 0: freeing a 0-byte 'Client' block (# 0)
at 661B38Memory operation in (null). line 0:

freeing a 0-byte 'Client' block (# 0)
at 661B84Memory operation in (null). line 0:

freeing a 0-byte 'Client' block (# 0)
at 661BD0Memory operation in (null). line 0:

freeing a 0-byte 'Client' block (# 0)
at 661CICError: DAMAGE: after (null) block (#16) at 0x00661CIC.

Memory operation in (null). line 0: freeing a 0-byte 'Client' block (# 0)
at 661C68Error: DAMAGE: after (null) block (#17) at 0x00661C68.

See Also: _crtDbgFlag

_CrtMemDumpStatistics
Dumps the debug header information for a specified heap state in a user-readable form
(debug version only).

void _CrtMemDumpStatistics(const _CrtMemState *state);

Routine Required Header Compatibility

_ CrtMemDumpStatistics <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
None

Parameter

Remarks

108

state Pointer to the heap state to dump

The _ CrtMemDumpStatistics function dumps the debug header information for a
specified state of the heap in a user-readable form. The dump statistics can be used
by the application to track allocations and detect memory problems. The memory
state may contain a specific heap state, or the difference between two states. When
_DEBUG is not defined, calls to _CrtMemDumpStatistics are removed during
preprocessing.

Chapter 4 Debug Version of the C Run-Time Library

:xample

The state parameter must be a pointer to a _ CrtMemState structure that has been
filled in by _CrtMemCheckpoint or returned by _CrtMemDifference before
_ CrtMemDumpStatistics is called.

See Example I on page 75.

CrtSetAllocHook
Installs a client-defined allocation function by hooking it into the C run-time debug
memory allocation process (debug version only).

_CRT_ALLOC_HOOK _CrtSetAllocHook(_CRT_ALLOC_HOOK allocHook);

Routine Required Header Compatibility

_ CrtSetAllocHook <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
_ CrtSetAllocHook returns the previously defined allocation hook function.

Parameter

Remarks

allocHook New client-defined allocation function to hook into the C run-time debug
memory allocation process

_ CrtSetAllocHook allows an application to hook its own allocation function into the
C run-time debug library memory allocation process. As a result, every call to a debug
allocation function to allocate, reallocate, or free a memory block triggers a call to the
application's hook function. _CrtSetAllocHook provides an application with an easy
method for testing how the application handles insufficient memory situations, the
ability to examine allocation patterns, and the opportunity to log allocation information
for later analysis. When _DEBUG is not defined, calls to _CrtSetAllocHook are
removed during preprocessing.

The _CrtSetAllocHook function installs the new client-defined allocation function
specified in allocHook and returns the previously defined hook function. The following
example demonstrates how a client-defined allocation hook should be prototyped:

int YourAllocHook(int allocType. void *userData. size_t size. int blockType.
long requestNumber. const unsigned char *filename. int lineNumber);

109

Run-Time Library Reference

Example

The a 11 ocType argument specifies the type of allocation operation CHOOK_ALLOC,
_HOOK_REALLOC, _HOOK_FREE) that triggered the call to the allocation's hook
function. When the triggering allocation type is _HOOK_FREE, userData is a pointer
to the user data section of the memory block about to be freed. However, when the
triggering allocation type is _HOOK_ALLOC or _HOOK_REALLOC, userData
is NULL because the memory block has not been allocated yet.

s i z e specifies the size of the memory block in bytes, b 1 0 c k Ty P e indicates the type
of the memory block, reques tNurnbe r is the object allocation order number of the
memory block, and if available, fi 1 en arne and 1 i neNurnber specify the source file
name and line number where the triggering allocation operation was initiated.

After the hook function has finished processing, it must return a Boolean value, which
tells the main C run-time allocation process how to continue. When the hook function
wants the main allocation process to continue as if the hook function had never been
called, then the hook function should return TRUE. This causes the original triggering
allocation operation to be executed. Using this implementation, the hook function can
gather and save allocation information for later analysis, without interfering with the
current allocation operation or state of the debug heap.

When the hook function wants the main allocation process to continue as if the
triggering allocation operation was called and it failed, then the hook function should
return FALSE. Using this implementation, the hook function can simulate a wide
range of memory conditions and debug heap states to test how the application handles
each situation.

See Example 2 on page 99.

CrtSetBreakAlloc

110

Sets a breakpoint on a specified object allocation order number (debug version only).

long _CrtSetBreakAlloc(long IBreakAlloc);

Routine Required Header Compatibility

_ CrtSetBreakAlloc <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

leturn Value
_CrtSetBreakAlloc returns the previous object allocation order number that had a
breakpoint set.

)arameter

lemarks

:xample

lBreakAlioc Allocation order number, for which to set the breakpoint

_ CrtSetBreakAlloc allows an application to perform memory leak detection by
breaking at a specific point of memory allocation and tracing back to the origin of the
request. The function uses the sequential object allocation order number assigned to
the memory block when it was allocated in the heap. When _DEBUG is not defined,
calls to _ CrtSetBreakAlloc are removed during preprocessing.

The object allocation order number is stored in the !Request field of the
_CrtMemBlockHeader structure, defined in CRTDBG.H. When information about a
memory block is reported by one of the debug dump functions, this number is
enclosed in curly brackets; for example, {36}.

1*
* SETBRKAL. C
* In this program. a call is made to the _CrtSetBreakAlloc routine
* to verify that the debugger halts program execution when it reaches
* a specified allocation number.
*1

#include <malloc.h>
#include <crtdbg.h>

void main(
{

long allocReqNum;
char *my_pointer;

1*
* All ocate "my_poi nter" for the fi rst
* time and ensure that it gets allocated correctly
*1

my_pointer = malloc(10);
_CrtIsMemoryBlock(my_pointer. 10. &allocReqNum. NULL. NULL);
1*
* Set a breakpoint on the allocation request
* number for "my_pointer"
*1

_CrtSetBreakAlloc(allocReqNum+2);
crtBreakAlloc = allocReqNum+2;

1*
* Alternate freeing and reallocating "my_pointer"
* to verify that the debugger halts program execution
* when it reaches the allocation request

111

Run-Time Library Reference

Output

*/
free(my_pointer);
my_pointer = malloc(10);
free(my_pointer);
my_pointer = malloc(10);
free(my_pointer);

The exception Breakpoint
A breakpoint has been reached.
(0x0000003) occurred in the application at location 0x00401255.

_CrtSetDbgFlag
Retrieves and/or modifies the state of the _crtDbgFlag flag to control the allocation
behavior of the debug heap manager (debug version only).

int _CrtSetDbgFlag(int newFlag);

Routine Required Header Compatibility

_ CrtSetDbgFlag <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

_ CrtSetDbgFlag returns the previous state of _crtDbgFlag.

Parameter

Remarks

112

newFlag New state for the _crtDbgFlag

The _CrtSetDbgFlag function allows the application to control how the debug heap
manager tracks memory allocations by modifying the bit fields of the _crtDbgFlag
flag. By setting the bits (turning on), the application can instruct the debug heap
manager to perform special debugging operations, including checking for memory
leaks when the application exits and reporting if any are found, simulating low
memory conditions by specifying that freed memory blocks should remain in the
heap's linked list, and verifying the integrity of the heap by inspecting each memory
block at every allocation request. When _DEBUG is not defined, calls to
_CrtSetDbgFlag are removed during preprocessing.

Chapter 4 Debug Version of the C Run-Time Library

The following table lists the bit fields for _crtDbgFlag and describes their behavior.
Because setting the bits results in increased diagnostic output and reduced program
execution speed, most of the bits are not set (turned off) by default. For more
information about these bit fields, see "Using the Debug Heap."

Bit field

-CRTDBG_ALLOC-

- MEM_DF

- CRTDBG_CHECK-
_ALWAYS_DF

-CRTDBG_CHECK-

- CRT_DF

- CRTDBG_DELA Y-

- FREE_MEM_DF

- CRTDBG_LEAK-

- CHECK_DF

Default

ON

OFF

OFF

OFF

OFF

Description

ON: Enable debug heap allocations and use of memory
block type identifiers, such as _CLIENT_BLOCK.
OFF: Add new allocations to heap's linked list, but set
block type to _IGNORE_BLOCK.

ON: Call _ CrtCheckMemory at every allocation and
deallocation request.
OFF: _CrtCheckMemory must be called explicitly.

ON: Include _CRT_BLOCK types in leak detection
and memory state difference operations.
OFF: Memory used internally by the run-time library is
ignored by these operations.

ON: Keep freed memory blocks in the heap's linked
list, assign them the _FREE_BLOCK type, and fill
them with the byte value OxDD.
OFF: Do not keep freed blocks in the heap's linked list.

ON: Perform automatic leak checking at program exit
via a call to _CrtDumpMemoryLeaks and generate an
error report if the application failed to free all the
memory it allocated.
OFF: Do not automatically perform leak checking at
program exit.

newFlag is the new state to apply to the _crtDbgFlag and is a combination of the
values for each of the bit fields. To change one or more of these bit fields and create a
new state for the flag, follow these steps:

1. Call_CrtSetDbgFlag with newFlag equal to _CRTDBG_REPORT_FLAG to
obtain the current _crtDbgFlag state and store the returned value in a temporary
variable.

2. Turn on any bits by OR-ing the temporary variable with the corresponding
bitmasks (represented in the application code by manifest constants).

3. Turn off the other bits by AND-ing the variable with a bitwise NOT of the
appropriate bitmasks.

4. Call_CrtSetDbgFlag with newFlag equal to the value stored in the temporary
variable to set the new state for _crtDbgFlag.

The following lines of code demonstrate how to simulate low memory conditions
by keeping freed memory blocks in the heap's linked list and prevent
_ CrtCheckMemory from being called at every allocation request:

113

Run-Time Library Reference

Example

114

II Get the current state of the flag
II and store it in a temporary variable
int tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

II Turn On (OR) - Keep freed memory blocks in the
II heap's linked list and mark them as freed
tmpFlag 1= _CRTDBG_DELAY_FREE_MEM_DF;

II Turn Off (AND) - prevent _CrtCheckMemory from
II being called at every allocation request
tmpFlag &= ~_CRTDBG_CHECK_ALWAYS_DF;

II Set the new state for the flag
_CrtSetDbgFlag(tmpFlag);

1*
* SETDFLAG.C
* This program concentrates on allocating and freeing memory
* blocks to test the functionality of the _crtDbgFlag flag ..
*1

#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

void main(
(

char *pl. *p2;
int tmpDbgFlag:

1*
* Set the debug-heap flag to keep freed blocks in the
* heap's linked list - This will allow us to catch any
* inadvertent use of freed memory
*1

tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpDbgFlag 1= _CRTDBG_DELAY_FREE_MEM_DF;
tmpDbgFlag 1= _CRTDBG_LEAK_CHECK_DF;
_CrtSetDbgFlag(tmpDbgFlag);

1*
* Allocate 2 memory blocks and store a string in each
*1

pI - (char *) malloc(34);
p2 = (char *) malloc(38);
strcpy(pl. "pI points to a Normal allocation block");
strcpy(p2. "p2 points to a Client allocation block"):

1*
* Free both memory blocks
*1

free(p2);
free(pI);

Chapter 4 Debug Version of the C Run-Time Library

Output

1*
* Set the debug-heap flag to no longer keep freed blocks in the
* heap's linked list and turn on Debug type allocations (CLIENT)
*1

tmpDbgFlag - _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpDbgFlag 1- _CRTDBG_ALLOC_MEM_DF;
tmpDbgFlag &- _CRTDBG_DELAY_FREE_MEM_DF;
_CrtSetDbgFlag(tmpDbgFlag);

1*
* Explicitly call _malloc_dbg to obtain the filename and line number
* of our allocation request and also so we can allocate CLIENT type
* blocks specifically for tracking
*1

pI - (char *) _malloc_dbg(40. _NORMAL_BLOCK. __ FILE __ •
p2 - (char *) _malloc_dbg(40. _CLIENT_BLOCK. __ FILE __ .
strcpy(pI. "pI points to a Normal allocation block");
strcpy(p2. "p2 points to a Client allocation block");

1*
* _free_dbg must be called to free the CLIENT block
*1

_free_dbg(p2. CLIENT_BLOCK);
free(pI);

1*

LI NE __);
LINE __);

* Allocate pI again and then exit - this will leave unfreed
* memory on the heap
*1

pI = (char *) malloc(10);

Debug Error!
Program: C:\code\setdflag.exe
DAMAGE: after Normal block (#31) at 0x002D06A8.
Press Retry to debug the application.

See Also: _crtDbgFlag, _CrtCheckMemory

_CrtSetDumpClient
Installs an application-defined function to dump _CLIENT_BLOCK type memory
blocks (debug version only).

_CRT_DUMP _CLIENT _CrtSetDumpClient(_CRT_DUMP _CLIENT dump Client);

Routine Required Header Compatibility

_ CrtSetDumpClient <crtdbg.h> Win NT, Win 95

115

Run-Time Library Reference

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
_ CrtSetDumpClient returns the previously defined client block dump function.

Parameter

Remarks

Example

116

dumpClient New client-defined memory dump function to hook into the C run-time
debug memory dump process

The _CrtSetDumpClient function allows the application to hook its own function
to dump objects stored in _CLIENT_BLOCK memory blocks into the C run-time
debug memory dump process. As a result, every time a debug dump function such
as _CrtMemDumpAIlObjectsSince or _CrtDumpMemoryLeaks dumps a
_CLIENT_BLOCK memory block, the application's dump function will be called
as well. _ CrtSetDumpClient provides an application with an easy method for
detecting memory leaks in and validating or reporting the contents of data stored
in _CLIENT_BLOCK blocks. When _DEBUG is not defined, calls to
_CrtSetDumpClient are removed during preprocessing.

The _CrtSetDumpClient function installs the new application-defined dump
function specified in dump Client and returns the previously defined dump function.
An example of a client block dump function is as follows:

void DumpClientFunction(void *userPortion, size_t blockSize);

The use r P 0 r t ion argument is a pointer to the beginning of the user data portion of
the memory block and bloc kS i ze specifies the size of the allocated memory block
in bytes. The client block dump function must return void. The pointer to the
client dump function that is passed to _ CrtSetDumpClient is of type
_CRT_DUMP _CLIENT, as defined in CRTDBG.H:

typedef void (__ cdecl *_CRT_DUMP_CLIENT)(void *, size_t);

See Example 2 on page 99.

Chapter 4 Debug Version of the C Run-Time Library

_CrtSetReportFile
Identifies the file or stream to be used by _CrtDbgReport as a destination for a
specific report type (debug version only).

_HFILE _CrtSetReportFile(int reportType, _HFILE reportFile);

Routine Required Header Compatibility

_ CrtSetReportFile <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
Upon successful completion, _CrtSetReportFile returns the previous report file
defined for the report type specified in reportType. If an error occurs, the report file
for reportType is not modified and_ CrtSetReportFile returns
_CRTDBG_HFILE_ERROR.

Parameters

Remarks

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

reportFile New report file for reportType, see the following table

_CrtSetReportFile is used in conjunction with the _CrtSetReportMode function
to define the destination(s) for a specific report type generated by _CrtDbgReport.
When _CrtSetReportMode has been called to assign the _CRTDBG_MODE_FILE
reporting mode for a specific report type, _ CrtSetReportFile should then be called
to define the specific file or stream to use as the destination. When _DEBUG is not
defined, calls to _ CrtSetReportFile are removed during preprocessing.

The _CrtSetReportFile function assigns the new report file specified in reportFile to
the report type specified in reportType and returns the previously defined report file
for reportType. The following table lists the available choices for reportFile and the
resulting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBG.H.

117

Run-Time Library Reference

Example

118

Report File

_CRTDBG_FILE_STDERR

_CRTDBG_FILE_STDOUT

_CRTDBG_REPORT_FILE

_CrtDbgReport Behavior

_CrtDbgReport writes the message to a user-supplied
HANDLE and does not verify the validity of the file
handle. The application is responsible for opening and
closing the report file and passing a valid file handle.

_CrtDbgReport writes message to stderr.

_CrtDbgReport writes message to stdout.

_CrtDbgReport is not called and the report file for
reportType is not modified. _CrtSetReportFile simply
returns the current report file for reportType.

When the report destination is a file, _ CrtSetReportMode is called to set the file
bit-flag and _CrtSetReportFile is called to define the specific file to use. The
following code fragment demonstrates this configuration:

_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDERR);

The report file used by each report type can be separately controlled. For example,
it is possible to specify that a reportType of _CRT_ERROR be reported to stderr,
while a reportType of _CRT_ASSERT be reported to a user-defined file handle
or stream.

1*
* REPORT. C:
* In this program. calls are made to the _CrtSetReportMode.
* _CrtSetReportFile. and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails. these macros print a diagnostic message
* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program. as an alternative to the printf function.
* When these macros are called. the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

1*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*1

Chapter 4 Debug Version of the C Run-Time Library

int gl_num_asserts=0:
int OurReportingFunction(int reportType. char *userMessage. int *retVal)
{

/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*/

fprintf("Inside the client-defined reporting function.\n". STDOUT):
ffl us h (STDOUT) :
/*
* When the report type is for an ASSERT.
* we'll report some information. but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR.
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*/

if (reportType =~ _CRT_ASSERT)
{

gl_num_asserts++:
fprintf("This is the number of Assertion failures that have occurred:
... %d \n". gl_num_asserts. STDOUT):
ffl us h (STDOUT) :
fprintf("Returning TRUE from the client-defined reporting
... functi on. \n". STDOUT):
ffl us h (STDOUT) :
return(TRUE) :

else {

/*

fprintf("This is the debug user message: %s \n". userMessage. STDOUT);
ffl ush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting
... function. \n". STDOUT):
ffl ush(STDOUT):
return(FALSE);

* By setting retVal to zero. we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger. we would set
* retVal to one.
*/

retVal = 0;

int main()
{

char *pl. *p2:

119

Run-Time Library Reference

120

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction);

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are going to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pointer variables
*/

pI = malloc(10);
strcpy(pI, "I am pI");
p2 = mall oc(10);
strcpy(p2, "I am p2");

/*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
.. pI == p2. \n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' '%s' ?\n", pI, p2);
_ASSERT(pI == p2);

_RPTF2 (_CRT_WARN, "\n \n Will _ASSERTE fi nd '%s' == '%s' ?\n", pI, p2);
_ASSERTE(pI == p2);

Chapter 4 Debug Version of the C Run-Time Library

Output

_RPT2(_CRT_ERROR, "\n \n '%s' !~ '%s'\n", pI, p2);

free(p2);
free (pl) ;

return 0;

Inside the client-defined reporting function.
This is the debug user message: Use the assert macros to evaluate the
.. expressi on pI == p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
.. 'I am pI' == 'I am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 1
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
.. 'I am pI' == 'I am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
This is the debug user message: 'I am pI' != 'I am p2'
Returning FALSE from the client-defined reporting function.

See Also: _ CrtDbgReport

_CrtSetReportHook
Installs a client-defined reporting function by hooking it into the C run-time debug
reporting process (debug version only).

_CRT_REPORT_HOOK _CrtSetReportHook(_CRT_REPORT_HOOK rep 0 rtHo ok);

Routine Required Header Compatibility

_ CrtSetReportHook <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

121

Run-Time Library Reference

Return Value
_CrtSetReportHook returns the previous client-defined reporting function.

Parameter

Remarks

Example

122

reportHook New client-defined reporting function to hook into the C run-time debug
reporting process

_ CrtSetReportHook allows an application to use its own reporting function into the
C run-time debug library reporting process. As a result, whenever _ CrtDbgReport is
called to generate a debug report, the application's reporting function is called first.
This functionality enables an application to perform operations such as filtering debug
reports so it can focus on specific allocation types or send a report to destinations not
available by using _CrtDbgReport. When _DEBUG is not defined, calls to
_CrtSetReportHook are removed during preprocessing.

The _CrtSetReportHook function installs the new client-defined reporting function
specified in reportHook and returns the previous client-defined hook. The following
example demonstrates how a client-defined report hook should be prototyped:

int YourReportHook(int reportType, char *message, int *returnValue);

where reportType is the debug report type CCRT_ WARN, _CRT_ERROR,
_CRT_ASSERT), message is the fully assembled debug user message to be contained
in the report, and returnVal ue is the value specified by the client-defined reporting
function that should be returned by _ CrtDbgReport. See the _ CrtSetReportMode
function for a complete description of the available report types.

If the client-defined reporting function completely handles the debug message such
that no further reporting is required, then the function should return TRUE. When the
function returns FALSE, _CrtDbgReport will be called to generate the debug report
using the current settings for the report type, mode, and file. In addition, by specifying
the _CrtDbgReport return value in returnVal ue, the application can also control
whether a debug break occurs. See _CrtSetReportMode, _CrtSetReportFile, and
_CrtDbgReport for a complete description of how the debug report is configured
and generated.

/*
* REPORT. C:
* In this program, calls are made to the _CrtSetReportMode,
* _CrtSetReportFile, and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails, these macros print a diagnostic message
* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
* When these macros are called, the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*/

Chapter 4 Debug Version of the C Run-Time Library

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

1*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*1

int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)
{

1*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*1

fprintf("Inside the client-defined reporting function.\n", STDOUT);
ffl ush(STDOUT);

1*
* When the report type is for an ASSERT,
* we'll report some information, but we also
* want _CrtDbgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR,
* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -
* so we'll return FALSE.
*1

if (reportType =- _CRT_ASSERT)
{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have
... occurred: %d \n", gl_num_asserts, STDOUT);
ffl us h (STDOUT) ;
fprintf("Returning TRUE from the client-defined reporting
... funct ion. \n", STDOUT);
ffl us h (STDOUT) ;
return (TRUE) ;

else {
fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
ffl ush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting
... function.\n", STDOUT);
ffl ush(STDOUT);
return(FALSE);

123

Run-Time Library Reference

124

/*
* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.
*/

retVal "" 0;

int main()
{

cha r *pl, *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction);

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case, we are going to
* generate a report for every report type: _CRT_WARN,
* _CRT_ERROR, and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pointer variables
*/

pI "" malloc(10);
strcpy(pI, "I am pI");
p2 = malloc(10);
strcpy(p2, "I am p2");

/*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*

Output

Chapter 4 Debug Version of the C Run-Time Library

* If the expression fails. _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* _ASSERT does not include the
* expression in the generated report.
*/

_RPT0(_CRT_WARN. "\n\n Use the assert macros to evaluate the expression
... pI -= p2. \n");
_RPTF2(_CRT_WARN. "\n Will _ASSERT find '%s' '%s' ?\n". pI. p2);
_ASSERT(pl -= p2);

_RPTF2(_CRT_WARN. "\n\n Will _ASSERTE find '%s' === '%s' ?\n". pI. p2);
_ASSERTE(pl -= p2);

_RPT2<-CRT_ERROR. "\n \n '%s' 1- '%s'\n". pl. p2);

free(p2);
free(pl) ;

return 0;

Inside the client-defined reporting function.
This is the debug user message: Use the assert macros to evaluate the
... expressi on pI == p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
... 'I am pI' == 'I am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred:
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
... 'I am pI' =- '1 am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pI' 1= 'I am p2'
Returning FALSE from the client-defined reporting function.

125

Run-Time Library Reference

_CrtSetReportMode
Specifies the general destination(s) for a specific report type generated by
_CrtDbgReport (debug version only).

int _CrtSetReportMode(int reportType, int reportMode);

Routine Required Header Compatibility

_ CrtSetReportMode <crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
Upon successful completion, _CrtSetReportMode returns the previous report
mode(s) for the report type specified in reportType. If an error occurs, the report
mode(s) for reportType are not modified and_CrtSetReportMode returns -1.

Parameters

Remarks

126

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

reportMode New report mode(s) for reportType, see the table in the Remarks section

_CrtSetReportMode is used in conjunction with the _CrtSetReportFile function to
define the destination(s) for a specific report type generated by _CrtDbgReport. If
_ CrtSetReportMode and _ CrtSetReportFile are not called to define the reporting
methodes) for a specific report type, then _CrtDbgReport generates the report type
using default destinations: Assertion failures and errors are directed to a debug message
window, warnings from Windows applications are sent to the debugger, and warnings
from console applications are directed to stderr. When _DEBUG is not defined, calls
to _CrtSetReportMode are removed during preprocessing.

The following table lists the report types defined in CRTDBG.H.

Report Type Description

Warnings, messages, and information that does not need immediate
attention.

Errors, unrecoverable problems, and issues that require immediate
attention.

Assertion failures (asserted expressions that evaluate to FALSE).

Example

Chapter 4 Debug Version of the C Run-Time Library

The _ CrtSetReportMode function assigns the new report mode specified in
reportMode to the report type specified in reportType and returns the previously
defined report mode for reportType. The following table lists the available choices for
reportMode and the resulting behavior of _CrtDbgReport. These options are defined
as bit-flags in CRTDBG.H.

Report Mode

_CRTDBG_MODE_DEBUG

_CRTDBG_MODE_FILE

_CrtDbgReport Behavior

Writes the message to an output debug string.

Writes the message to a user-supplied file handle.
_ CrtSetReportFile should be called to define the
specific file or stream to use as the destination.

Creates a message box to display the message along
with the Abort, Retry, and Ignore buttons.

It is not called, and the report mode for reportType is
not modified. _CrtSetReportMode simply returns the
current report mode for reportType.

Each report type may be reported using one, two, or three modes, or no mode at all.
Therefore, it is possible to have more than one destination defined for a single report
type. For example, the following code fragment causes assertion failures to be sent to
both a debug message window and to stderr:

_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE I _CRTDBG_MODE_WNDW);
_CrtSetReportFile(_CRT_ASSERT. _CRTDBG_FILE_STDERR);

In addition, the reporting mode(s) for each report type can be separately controlled.
For example, it is possible to specify that a reportType of _CRT_WARN be sent to an
output debug string, while _CRT_ASSERT be displayed using a a debug message
window and sent to stderr, as illustrated above.

1*
* REPORT. C:
* In this program. calls are made to the _CrtSetReportMode.
* _CrtSetReportFile. and _CrtSetReportHook functions.
* The _ASSERT macros are called to evaluate their expression.
* When the condition fails. these macros print a diagnostic message
* and call _CrtDbgReport to generate a debug report and the
* client-defined reporting function is called as well.
* The _RPTn and _RPTFn group of macros are also exercised in
* this program. as an alternative to the printf function.
* When these macros are called. the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.
*1

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

127

Run-Time Library Reference

128

/*
* Oefine our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Oefine a global int to keep track of
* how many assertion failures occur.
*/

int gl_num_asserts=0;
int OurReportingFunction(int reportType. char *userMessage. int *retVal)
{

/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*/

fprintf("Inside the client-defined reporting function.\n", STOOUT);
ffl us h (STOOUT) ;

/*
* When the report type is for an ASSERT.
* we'll report some information. but we also
* want _CrtObgReport to get called -
* so we'll return TRUE.
*
* When the report type is a WARNing or ERROR,
* we'll take care of all of the reporting. We don't
* want _CrtObgReport to get called -
* so we'll return FALSE.
*/

if (reportType == _CRT_ASSERT)
{

gl_num_asserts++;
fprintf{"This is the number of Assertion failures that have
'+ occurred: %d \n", gl_num_asserts. STOOUT);
ffl us h (STOOUT) ;
fprintf{"Returning TRUE from the client-defined reporting
'+ functi on. \n", STOOUT);
ffl ush(STOOUT);
retu rn (TRU E) ;

else {

/*

fprintf{"This is the debug user message: %s \n", userMessage. STOOUT);
ffl ush(STOOUT);
fprintf("Returning FALSE from the client-defined reporting
'+ functi on. \n". STOOUT);
ffl us h (STOOUT) ;
return(FALSE);

* By setting retVal to zero. we are instructing _CrtObgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtObgReport to start the debugger, we would set
* retVal to one.
*/

Chapter 4 Debug Version of the C Run-Time Library

retVal = 0:

int main()
{

char *pl. *p2:

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report. our function will get called first.
*/

_CrtSetReportHook(OurReportingFunction):

/*
* Define the report destination(s) for each type of report
* we are going to generate. In this case. we are going to
* generate a report for every report type: _CRT_WARN.
* _CRT_ERROR. and _CRT_ASSERT.
* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.
* This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN. _CRTDBG_MODE_FILE):
_CrtSetReportFile(_CRT_WARN. _CRTDBG_F1LE_STDOUT):
_CrtSetReportMode(_CRT_ERROR. _CRTDBG_MODE_FILE):
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT. _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*
* Allocate and assign the pointer variables
*/

pl = malloc(10);
strcpy(pl. "I am pl");
p2 = malloc(10);
strcpy(p2. "I am p2"):

/*
* Use the report macros as a debugging
* warning mechanism. similar to printf.
*
* Use the assert macros to check if the
* pl and p2 variables are equivalent.
*
* If the expression fails. _ASSERTE will
* include a string representation of the
* failed expression in the report.
*
* ASSERT does not include the
* expression in the generated report.
*/

129

Run-Time Library Reference

Output

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the
... expression pI == p2.\n");
_RPTF2<-CRT_WARN, "\n Will _ASSERT find '%s' '%s' ?\n", pI, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n", pI, p2);
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n '%s' != '%s'\n", pI, p2);

free(p2);
free(pl) ;

return 0;

Inside the client-defined reporting function.
This is the debug user message: Use the assert macros to evaluate the
... expression pI == p2
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
... 'I am pI' == 'I am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: I
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed
Inside the client-defined reporting function.
This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
... 'I am pI' == 'I am p2' ?
Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.
This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pI == p2
Inside the client-defined reporting function.
Thi sis the debug user message: 'I am pI' != 'I am p2'
Returning FALSE from the client-defined reporting function.

_exp and_db g

130

Resizes a specified block of memory in the heap by expanding or contracting the
block (debug version only).

void * _expaod_dbg(void *userData, size_t newSize, iot blockType,
.. coost char *filename, iot linenumber);

Routine Required Header Compatibility

<crtdbg.h> Win NT, Win 95

Chapter 4 Debug Version of the C Run-Time Library

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRTD.DLL, debug version

Return Value
Upon successful completion, _expand_dbg returns a pointer to the resized memory
block, otherwise it returns NULL.

Parameters

Remarks

userData Pointer to the previously allocated memory block

newSize Requested new size for block (bytes)

blockType Requested type for resized block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested expand operation or NULL

linenumber Line number in source file where expand operation was requested or
NULL

The filename and linen umber parameters are only available when _expand_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

The _expand_dbg function is a debug version of the _expand function. When
_DEBUG is not defined, calls to _expand_dbg are removed during preprocessing.
Both _expand and _expand_dbg resize a memory block in the base heap, but
_expand_dbg accommodates several debugging features: buffers on either side of
the user portion of the block to test for leaks, a block type parameter to track specific
allocation types, andfilenamellinenumber information to determine the origin of
allocation requests.

_expand_dbg resizes the specified memory block with slightly more space than the
requested newSize. newSize may be greater or less than the size of the originally
allocated memory block. The additional space is used by the debug heap manager to
link the debug memory blocks together and to provide the application with debug
header information and overwrite buffers. The resize is accomplished by either
expanding or contracting the original memory block. _expand_dbg does not move
the memory block, as does the _realloc_dbg function.

When newSize is greater than the original block size, the memory block is expanded.
During an expansion, if the memory block cannot be expanded to accommodate the
requested size, the block is expanded as much as possible. When newSize is less than
the original block size, the memory block is contracted until the new size is obtained.

131

Run-Time Library Reference

Example

Output

132

/*
* EXPANDD.C
* This program allocates a block of memory using _malloc_dbg
* and then calls _msize_dbg to display the size of that block.
* Next, it uses _expand_dbg to expand the amount of
* memory used by the buffer and then calls _msize_dbg again to
* display the new amount of memory allocated to the buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void main(void)
{

long *buffer;
size_t size;

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header
*/

buffer - (long *)_malloc_dbg(40 * sizeof(long), _NORMAL_BLOCK,
... _FILE_, _LINE_);
if(buffer -- NULL)

exit(1);

/*
* Get the size of the buffer by calling _msize_dbg
*/

size = _msize_dbg(buffer, _NORMAL_BLOCK);
pri ntf("Si ze of block after _mall oc_dbg of 40 longs: %u\n", si ze);

/*
* Expand the buffer using _expand_dbg and show the new size
*/

buffer = _expand_dbg(buffer, size + (40 * sizeof(long», _NORMAL_BLOCK,
... _FILE_, _LINE_);

if(buffer -= NULL
exit(1);

size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _expand_dbg of 40 more longs: %u\n", size);

free(buffer);
ex it (0);

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _expand_dbg of 40 more longs: 320

See Also: '_malloc_dbg

Chapter 4 Debug Version of the C Run-Time Library

_free_dbg
Frees a block of memory in the heap (debug version only).

void _free_dbg(void *userData, int blockType);

Routine Required Header Compatibility

<crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
None

Parameters

Remarks

Example

userData Pointer to the allocated memory block to be freed

blockType Type of allocated memory block to be freed: _CLIENT_BLOCK,
_NORMAL_BLOCK, or _IGNORE_BLOCK

The _free_dbg function is a debug version of the free function. When _DEBUG is not
defined, calls to _free_dbg are removed during preprocessing. Both free and _free_dbg
free a memory block in the base heap, but _free_dbg accommodates two debugging
features: the ability to keep freed blocks in the heap's linked list to simulate low
memory conditions and a block type parameter to free specific allocation types.

_free_dbg performs a validity check on all specified files and block locations
before performing the free operation - the application is not expected to provide this
information. When a memory block is freed, the debug heap manager automatically
checks the integrity of the buffers on either side of the user portion and issues an error
report if overwriting has occurred. If the _CRTDBG_DELAY_FREE_MEM_DF bit
field of the _crtDbgFlag flag is set, the freed block is filled with the value OxDD,
assigned the _FREE_BLOCK block type, and kept in the heap's linked list of
memory blocks.

See Example 2 on page 99.

See Also: _malloc_dbg

133

Run-Time Library Reference

_malloc_dbg
Allocates a block of memory in the heap with additional space for a debugging header
and overwrite buffers (debug version only).

void * _malloc_dbg(size_t size, int blockType, const char *filename, int linenumber);

Routine Required Header Compatibility

<crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSYCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSYCRTD.DLL, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion
of the allocated memory block, calls the new handler function, or returns NULL. See
the following Remarks section for a complete description of the return behavior. See
the malloc function for more information on how the new handler function is used.

Parameters

Remarks

134

size Requested size of memory block (bytes)

blockType Requested type of memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linenumber Line number in source file where allocation operation was requested or
NULL

The filename and linenumber parameters are only available when _malloc_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

_malloc_dbg is a debug version of the malloc function. When _DEBUG is not
defined, calls to _malloc_dbg are removed during preprocessing. Both malloc and
_malIoc_dbg allocate a block of memory in the base heap, but _malIoc_dbg offers
several debugging features: buffers on either side of the user portion of the block
to test for leaks, a block type parameter to track specific allocation types, and
filenamellinenumber information to determine the origin of allocation requests.

Chapter 4 Debug Version of the C Run-Time Library

Example

_malloc_dbg allocates the memory block with slightly more space than the requested
size. The additional space is used by the debug heap manager to link the debug
memory blocks together and to provide the application with debug header information
and overwrite buffers. When the block is allocated, the user portion of the block is
filled with the value OxCD and each of the overwrite buffers are filled with OxFD.

See Example 1 on page 75.

_ffisize_dbg
Calculates the size of a block of memory in the heap (debug version only).

size_t _msize_dbg(void *userData, int hlockType);

Routine Required Header Compatibility

<crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
Upon successful completion, _msize_dbg returns the size (bytes) of the specified
memory block, otherwise it returns NULL.

Parameters

Remarks

userData Pointer to the memory block for which to determine the size

blockType Type of the specified memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

_msize_dbg is a debug version of the _msize function. When _DEBUG is not defined,
calls to _msize_dbg are removed during preprocessing. Both _msize and _msize_dbg
calculate the size of a memory block in the base heap, but _msize_dbg adds two
debugging features: It includes the buffers on either side of the user portion of the memory
block in the returned size, and it allows size calculations for specific block types.

135

Run-Time Library Reference

Example

Output

136

/*
* REALLOCD. C
* This program allocates a block of memory using _malloc_dbg
* and then calls _msize_dbg to display the size of that block.
* Next. it uses _realloc_dbg to expand the amount of
* memory used by the buffer and then calls _msize_dbg again to
* display the new amount of memory allocated to the buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void maine void)
{

long *buffer;
size_t size;

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header
*/

buffer = (long *)_malloc_dbg(40 * sizeof(long). _NORMAL_BLOCK .
... _FILE_. _LINE_);
if(buffer == NULL)

exit(1);
/*
* Get the size of the buffer by calling _msize_dbg
*/

size = _msize_dbg(buffer. _NORMAL_BLOCK);
printf("Size of block after _malloc_dbg of 40 longs: %u\n". size);

/*
* Reallocate the buffer using _realloc_dbg and show the new size
*/

buffer = _realloc_dbg(buffer. size + (40 * sizeof(long» .
... _NORMAL_BLOCK. _FILE_. _LINE_);
if(buffer == NULL)

exit(1);
size = _msize_dbg(buffer. _NORMAL_BLOCK);
printf("Size of block after _realloc_dbg of 40 more longs:
... %u\n". size);

free(buffer);
exit(0);

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _realloc_dbg of 40 more longs: 320

Chapter 4 Debug Version of the C Run-Time Library

_realloc_dbg
Reallocates a specified block of memory in the heap by moving and/or resizing the
block (debug version only).

void * _realloc_dbg(void *userData, size_t newSize, int blockType,
~ const char *filename, int linen umber);

Routine Required Header Compatibility

<crtdbg.h> Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion of
the reallocated memory block, calls the new handler function, or returns NULL. See the
following Remarks section for a complete description of the return behavior. See the
realloc function for more information on how the new handler function is used.

Parameters

Remarks

userData Pointer to the previously allocated memory block

newSize Requested size for reallocated block (bytes)

blockType Requested type for reallocated block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested realloc operation or NULL

linen umber Line number in source file where realloc operation was requested or
NULL

The filename and linenumber parameters are only available when _realloc_dbg has
been called explicitly or the _CRTDBG_MAP _ALLOC environment variable has
been defined.

_realloc_dbg is a debug version of the realloc function. When _DEBUG is not
defined, calls to _realloc_dbg are removed during preprocessing. Both realloc
and _realloc_dbg reallocate a memory block in the base heap, but _realloc_dbg
accommodates several debugging features: buffers on either side of the user portion
of the block to test for leaks, a block type parameter to track specific allocation types,
andfilenamellinenumber information to determine the origin of allocation requests.

137

Run-Time Library Reference

Example

138

_realloc_dbg reallocates the specified memory block with slightly more space than
the requested newSize. newSize may be greater or less than the size of the originally
allocated memory block. The additional space is used by the debug heap manager to
link the debug memory blocks together and to provide the application with debug
header information and overwrite buffers. The reallocation may result in moving the
original memory block to a different location in the heap, as well as changing the size
of the memory block. If the memory block is moved, the contents of the original block
are copied over.

/*
* REALLOCD.C
* This program allocates a block of memory using _malloc_dbg
* and then calls _msize_dbg to display the size of that block.
* Next. it uses _realloc_dbg to expand the amount of
* memory used by the buffer and then calls _msize_dbg again to
* display the new amount of memory allocated to the buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void maine void)
{

long *buffer;
size_t size;
/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header
*/

buffer = (long *)_malloc_dbg(40 * sizeof(long). _NORMAL_BLOCK •
.. _FILE_. _LINE_);
if(buffer == NULL)

exit(1);

/*
* Get the size of the buffer by calling _msize_dbg
*/

size = _msize_dbg(buffer. _NORMAL_BLOCK);
printf("Size of block after _malloc_dbg of 40 longs: %u\n". size);

/*
* Reallocate the buffer using _realloc_dbg and show the new size
*/

buffer = _realloc_dbg(buffer. size + (40 * sizeof(long» •
.. _NORMAL_BLOCK. _FILE_. _LINE_);
if(buffer == NULL)

exit(1);
size = _msize_dbg(buffer. _NORMAL_BLOCK);
printf("Size of block after _realloc_dbg of 40 more longs:
.. %u\n". size);

Chapter 4 Debug Version of the C Run-Time Library

Output

free(buffer);
exit(0);

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _realloc_dbg of 40 more longs: 320

See Also: _malloc_dbg

_RPT, RPTF Macros
Track an application's progress by generating a debug report (debug version only).

_RPTO(reportType,jormat);
_RPTl(reportType,jormat, argl);
_RPT2(reportType,jormat, arg 1, arg2);
_RPT3(reportType,jormat, arg 1, arg2, arg3);
_RPT4(reportType,jormat, argl, arg2, arg3, arg4);
_RPTFO(reportType,format);
_RPTFl(reportType,jormat, argl);
_RPTF2(reportType,format, argl, arg2);
_RPTF3(reportType,jormat, argl, arg2, arg3);
_RPTF4(reportType,jormat, argl, arg2, arg3, arg4);

Macro

_RPT macros

_RPTF macros

Required Header

<crtdbg.h>

<crtdbg.h>

Compatibility

Win NT, Win 95

Win NT, Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCD.LIB

LIBCMTD.LIB

MSVCRTD.LIB

Single thread static library, debug version

Multithread static library, debug version

Import library for MSVCRTD.DLL, debug version

Although these are macros and are obtained by including CRTDBG.H, the application
must link with one of the libraries listed above because these macros call other
run-time functions.

Return Value
None

Parameters
reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

jormat Format-control string used to create the user message

arg 1 Name of first substitution argument used by format

139

Run-Time Library Reference

Remarks

Example

140

arg2 Name of second substitution argument used by format

arg3 Name of third substitution argument used by format

arg4 Name of fourth substitution argument used by format

All of these macros take the reportType and format parameters. In addition, they might
also take arg 1 through arg4, signified by the number appended to the macro name. For
example, _RPTO and _RPTFO take no additional arguments, _RPTI and _RPTFI take
argl, _RPT2 and _RPTF2 take argl and arg2, and so on.

The _RPT and _RPTF macros are similar to the printf function, as they can be used
to track an application's progress during the debugging process. However, these
macros are more flexible than printf because they do not need to be enclosed in #ifdef
statements to prevent them from being called in a retail build of an application. This
flexibility is achieved by using the _DEBUG macro. The _RPT and _RPTF macros
are only available when the _DEBUG flag is defined. When _DEBUG is not defined,
calls to these macros are removed during preprocessing.

The _RPT macros call the _CrtDbgReport function to generate a debug report with
a user message. The _RPTF macros create a debug report with the source file and line
number where the report macro was called, in addition to the user message. The user
message is created by substituting the arg[n] arguments into the format string, using
the same rules defined by the printf function.

_CrtDbgReport generates the debug report and determines its destination(s), based
on the current report modes and file defined for reportType. The _CrtSetReportMode
and _CrtSetReportFile functions are used to define the destination(s) for each report
type.

When the destination is a debug message window and the user chooses the Retry
button, _CrtDbgReport returns 1, causing these macros to start the debugger,
provided that "just-in-time" (JIT) debugging is enabled.

Two other macros exist that generate a debug report. The _ASSERT macro
generates a report, but only when its expression argument evaluates to FALSE.
_ASSERTE is exactly like _ASSERT, but includes the failed expression in the
generated report.

/*
* DBGMACRO.C
* In this program, calls are made to the _ASSERT and _ASSERTE
* macros to test the condition 'stringl == string2'. If the
* condition fails, these macros print a diagnostic message.
* The RPTn and _RPTFn group of macros are also exercised in
* this program, as an alternative to the printf function.
*/

Chapter 4 Debug Version of the C Run-Time Library

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{

char *pl, *p2;

1*
* The Reporting Mode and File must be specified
* before generating a debug report via an assert
* or report macro.
* This program sends all report types to STDOUT
*1

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

1*
* Allocate and assign the pointer variables
*1

pI"" malloc(10);
strcpy(pl. "1 am pI");
p2 - malloc(10);
strcpy(p2, "1 am p2");

1*
* Use the report macros as a debugging
* warning mechanism, similar to printf.
*
* Use the assert macros to check if the
* pI and p2 variables are equivalent.
*
* If the expression fails, _ASSERTE will
* include a string representation of the
* failed expression in the report.
* _ASSERT does not include the
* expression in the generated report.
*1

_RPT0(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
.. pI -- p2. \n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' '%s' ?\n", pI, p2);
_ASSERT(pl -- p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n", pI, p2);
_ASSERTE(pl -- p2);

141

Run-Time Library Reference

Output

142

_RPT2<-CRT_ERROR, "\n \n '%s' !~ '%s'\n", pI, p2):

free(p2):
free(pl):

return 0:

Use the assert macros to evaluate the expression pI == p2.

dbgmacro.c(54)
dbgmacro.c(55)

dbgmacro.c(57)
dbgmacro.c(58)

Will ASSERT find 'I am pI' -= 'I am p2' ?
Assertion failed

Will _ASSERTE find 'I am pI' == 'I am p2' ?
Assertion failed: pI == p2

'I am pI' != 'I am p2'

About the Alphabetic Reference
The following topics describe, in alphabetical order, the functions and macros in the
Microsoft run-time library. In some cases, related routines are clustered in the same
description. For example, the standard, wide-character, and multibyte versions of
strchr are discussed in the same place, as are the various forms of the exec functions.
Differences are noted where appropriate. To locate any function that does not appear
in the expected position within the alphabetic reference, choose Search from the Help
menu and type the name of the function you are looking for.

abort
Aborts the current process and returns an error code.

void abort(void);

Routine Required Header Compatibility

abort <process.h> or <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Aeturn Value

Aemarks

abort does not return control to the calling process. By default, it terminates the
current process and returns an exit code of 3.

The abort routine prints the message "abnormal program term; nat; on" and then
calls raise(SIGABRT). The action taken in response to the SIGABRT signal depends
on what action has been defined for that signal in a prior call to the signal function.
The default SIGABRT action is for the calling process to terminate with exit code 3,
returning control to the calling process or operating system. abort does not flush
stream buffers or do atexitl_onexit processing.

abort determines the destination of the message based on the type of application that
called the routine. Console applications always receive the message via stderr. In a
single or multithreaded Windows application, abort calls the Windows MessageBox
API to create a message box to display the message along with an OK button. When
the user selects OK, the program aborts immediately.

abort

143

abs

Example

Output

abs

144

When the application is linked with a debug version of the run-time libraries, abort
creates a message box with three buttons: Abort, Retry, and Ignore. If the user selects
Abort, the program aborts immediately. If the user selects Retry, the debugger is called
and the user can debug the program if Just-In-Time (JIT) debugging is enabled. If the
user selects Ignore, abort continues with its normal execution: creating the message
box with the OK button.

/* ABORT.C: This program tries to open a
* file and aborts if the attempt fails.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

FILE *stream;

if((stream = fopen("NOSUCHF.ILE", "r" »
{

perror("Coul dn' t open fi 1 e");
abort();

else
fclose(stream);

Couldn't open file: No such file or directory

abnormal program termination

NULL)

See Also: _exec Function Overview, exit, raise, signal, _spawn Function Overview,
_DEBUG

Calculates the absolute value.

int abs(int n);

Routine

abs

Required Header

<stdlib.h> or <math.h>

Compatibility

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The abs function returns the absolute value of its parameter. There is no error return.

Parameter

Example

Output

Il Integer value

1* ABS.C: This program computes and displays
* the absolute values of several numbers.
*1

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void maine void)
{

int ix "" -4, iy:
long lx "" -41567L, ly:
double dx = -3.141593, dy:

iy = abs(ix) :
printf("The absolute value of %d

ly = labs(lx) :

is %d\n", ix, i y) :

printf("The absolute value of %ld is %ld\n", 1 x, 1 y) :

dy = fabs(dx) :
printf("The absolute value of %f is %f\n", dx, dy) :

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

See Also: _cabs, fabs, labs

abs

145

_access, _ waccess

_access, waccess
Determine file-access permission.

int _access(const char * path, int mode);
int _waccess(const wchar_t *path, int mode);

Routine

_access

_waccess

Required Header

<io.h>

<wchar.h> or <io.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns 0 if the file has the given mode. The function returns
-1 if the named file does not exist or is not accessible in the given mode; in this case,
errno is set as follows:

EACCES Access denied: file's permission setting does not allow specified access.

ENOENT Filename or path not found.

Parameters

Remarks

146

path File or directory path

mode Permission setting

When used with files, the _access function determines whether the specified file exists
and can be accessed as specified by the value of mode. When used with directories,
_access determines only whether the specified directory exists; in Windows NT, all
directories have read and write access.

mode Value

00

02

04

06

Checks File For

Existence only

Write permission

Read permission

Read and write permission

Example

Output

_ waccess is a wide-character version of _access; the path argument to _ waccess is a
wide-character string. _ waccess and _access behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H
Routine

_taccess

_UNICODE & _MBCS
Not Defined

_access

_MBCS Defined

_access

/* ACCESS.C: This example uses _access to check the
* file named "ACCESS.C" to see if it exists and if
* writing is allowed.
*/

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main(void
{

/* Check for existence */
if(<-access("ACCESS.C", 0 » != -1)
{

printf("File ACCESS.C exists\n");
/* Check for write permission */
if((_access("ACCESS.C", 2)) !- -1

_UNICODE Defined

_waccess

printf("File ACCESS.C has write permission\n");

File ACCESS.C exists
File ACCESS.C has write permission

See Also: _chmod, _fstat, _open, _stat

acos
Calculates the arccosine.

double acos(double x);

Routine Required Header Optional Headers Compatibility

acos <math.h> <errno.h> ANSI, Win 95, Win NT

acos

147

acos

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The acos function returns the arccosine of x in the range 0 to 1t radians. If x is less
than -lor greater than 1, acos returns an indefinite (same as a quiet NaN). You can
modify error handling with the _matherr routine.

Parameter

Example

Output

148

x Value between -1 and 1 whose arccosine is to be calculated

/* ASINCOS.C: This program prompts for a value in the range
* -1 to 1. Input values outside this range will produce
* DOMAIN error messages.If a valid value is entered, the
* program prints the arcsine and the arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void
{

double x, y;

pri ntf("Enter a real number between -1 and 1: ");
scanf("%1 f", &x);
y = asin(x);
printf("Arcsine of %f = %f\n", x, y);
Y .,. acos(x);
printf("Arccosine of %f = %f\n", x, y);

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

See Also: asin, atan, cos, _math err, sin, tan

alloca
Allocates memory on the stack.

void * _alloca(size_t size);

Routine Required Header Compatibility

<malloc.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIB CMT. LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The _alloca routine returns a void pointer to the allocated space, which is guaranteed
to be suitably aligned for storage of any type of object. To get a pointer to a type other
than char, use a type cast on the return value. A stack overflow exception is generated
if the space cannot be allocated.

Parameter

Remarks

size Bytes to be allocated from stack

_alloca allocates size bytes from the program stack. The allocated space is automatically
freed when the calling function exits. Therefore, do not pass the pointer value returned
by _alloca as an argument to free.

There are restrictions to explicitly calling _alloca in an exception handler (EH). EH
routines that run on x86-class processors operate in their own memory "frame": They
perform their tasks in memory space that is not based on the current location of the
stack pointer of the enclosing function. The most common implementations include
Windows NT structured exception handling (SEH) and C++ catch clause expressions.
Therefore, explicitly calling _alloca in any of the following scenarios results in
program failure during the return to the calling EH routine:

• Windows NT SEH exception filter expression: _except (allocaO)

• Windows NT SEH final exception handler: _finally { allocaO }

• C++ EH catch clause expression

However, _alloca can be called directly from within an EH routine or from an
application-supplied callback that gets invoked by one of the EH scenarios listed
above.

See Also: calloc, malloc, realloc

149

asctime, _ wasctime

asctime, wasctime
Converts a tm time structure to a character string.

char *asctime(const struct tm *timeptr);
wchar_t * _wasctime(const struct tm *timeptr);

Routine

asctime

_wasctime

Required Header

<time.h>

<time.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIB CMT. LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
asctime returns a pointer to the character string result; _ wasctime returns a pointer to
the wide-character string result. There is no error return value.

Parameter

Remarks

150

timeptr Time/date structure

The asctime function converts a time stored as a structure to a character string. The
timeptr value is usually obtained from a call to gmtime or iocaltime, which both
return a pointer to a tm structure, defined in TIME.H.

timeptr Field

tm_hour

tm_isdst

tm_mday

tm_min

tm_mon

tm_sec

tm_wday

tm-yday

tm-year

Value

Hours since midnight (0-23)

Positive if daylight saving time is in effect; 0 if daylight saving time is
not in effect; negative if status of daylight saving time is unknown. The
C run-time library assumes the United States's rules for implementing
the calculation of Daylight Saving Time (DST).

Day of month (1-31)

Minutes after hour (0-59)

Month (0-11; January = 0)

Seconds after minute (0-59)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Year (current year minus 1900)

Example

Output

The converted character string is also adjusted according to the local time zone
settings. See the time, _ftime, and localtime functions for information on configuring
the local time and the _tzset function for details about defining the time zone
environment and global variables.

The string result produced by asctime contains exactly 26 characters and has the form
Wed Jan 02 02:03:55 1980\n\0.A24-hourc1ockisused.Allfieldshaveaconstant
width. The newline character and the null character occupy the last two positions of
the string. asctime uses a single, statically allocated buffer to hold the return string.
Each call to this function destroys the result of the previous call.

_ wasctime is a wide-character version of asctime. _ wasctime and asctime behave
identically otherwise.

Generic-Text Routine Mapping:

TCHAR.H Routine

_tasctime

_UNICODE & _MBCS
Not Defined

asctime

_MBCS Defined

asctime

1* ASCTIME.C: This program places the system time
* in the long integer aclock. translates it into the
* structure newtime and then converts it to string
* form for output. using the asctime function.
*1

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t aclock;

void maine void
{

_UNICODE Defined

_wasctime

time(&aclock); 1* Get time in seconds *1

newtime = localtime(&aclock); 1* Convert time to struct */
1* tm form *1

1* Print local time as a string *1
printf("The current date and time are: %s". asctime(newtime));

The current date and time are: Sun May 01 20:27:01 1994

See Also: ctime, _ftime, gmtime, localtime, time, _tzset

asctime, _wasctime

151

asin

aSln
Calculates the arcsine.

double asiDe double x);

Routine Required Header Compatibility

asin <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The asiD function returns the arcsine of x in the range -TC12 to TCI2 radians. If x is less
than -lor greater than 1, asiD returns an indefinite (same as a quiet NaN). You can
modify error handling with the _matherr routine.

Parameter

Example

152

x Value whose arcsine is to be calculated

/* ASINCOS.C: This program prompts for a value in the range
* -1 to 1. Input values outside this range will produce
* DOMAIN error messages.If a valid value is entered, the
* program prints the arcsine and the arccosine of that value.
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void maine void
{

double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("%1 f", &x);
y = asin(x);
printf("Arcsine of %f ~ %f\n", x, y);
y = acos(x);
printf("Arccosine of %f = %f\n", x, y);

Output
Enter a rea 1 number between -1 and 1: .32696
Arcsine of 0.326960 - 0.333085
Arccosine of 0.326960 - 1.237711

See Also: acos, atan, cos, _matherr, sin, tan

assert
Evaluates an expression and when the result is FALSE, prints a diagnostic message
and aborts the program.

void assert(int expression);

Routine Required Header Compatibility

assert <assert.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

expression Expression (including pointers) that evaluates to nonzero or 0

The ANSI assert macro is typically used to identify logic errors during program
development, by implementing the expression argument to evaluate to false only
when the program is operating incorrectly. After debugging is complete, assertion
checking can be turned off without modifying the source file by defining the identifier
NDEBUG. NDEBUG can be defined with a /D command-line option or with a
#define directive. If NDEBUG is defined with #define, the directive must appear
before ASSERT.H is included.

assert prints a diagnostic message when expression evaluates to false (0) and calls
abort to terminate program execution. No action is taken if expression is true
(nonzero). The diagnostic message includes the failed expression and the name
of the source file and line number where the assertion failed.

The destination of the diagnostic message depends on the type of application that
called the routine. Console applications always receive the message via stderr. In a

assert

153

assert

Example

154

single- or multithreaded Windows application, assert calls the Windows MessageBox
API to create a message box to display the message along with an OK button. When
the user chooses OK, the program aborts immediately.

When the application is linked with a debug version of the run-time libraries, assert
creates a message box with three buttons: Abort, Retry, and Ignore. If the user selects
Abort, the program aborts immediately. If the user selects Retry, the debugger is called
and the user can debug the program if Just-In-Time (JIT) debugging is enabled. If the
user selects Ignore, assert continues with its normal execution: creating the message
box with the OK button. Note that choosing Ignore when an error condition exists can
result in "undefined behavior."

The assert routine is available in both the release and debug versions of the C
run-time libraries. Two other assertion macros, _ASSERT and _ASSERTE, are also
available, but they only evaluate the expressions passed to them when the _DEBUG
flag has been defined.

/* ASSERT.C: In this program, the analyze_string function uses
* the assert function to test several conditions related to
* string and length. If any of the conditions fails, the program
* prints a message indicating what caused the failure.
*/

#include <stdio.h>
#include <assert.h>
#include <string.h>

void analyze_string(char *string); /* Prototype */

void maine void)
{

char testl[] = "abc", *test2 = NULL, test3[] "".

printf ("Analyzing string '%s'\n", testl
analyze_string(testl) ;
printf ("Analyzing string '%s' \n", test2
analyze_string(test2) ;

printf ("Analyzing string '%s'\n", test3
analyze_string(test3) ;

/* Tests a string to see if it is NULL, */
/* empty, or longer than 0 characters */
void analyze_string(char * string)
{

) ;

) ;

) ;

assert(string != NULL);
assert(*string != '\0');
assert(strlen(string) > 2);

/* Cannot be NULL */
/* Cannot be empty */
/* Length must exceed 2 */

Output
Analyzing string 'abc'
Analyzing string '(null)'
Assertion failed: string !- NULL, file assert.c, line 24

abnormal program termination

See Also: abort, raise, signal, _ASSERT, _ASSERTE, _DEBUG

atan, atan2
Calculates the arctangent of x (atan) or the arctangent of y/x (atan2).

double atan(double x);
double atan2(double y, double x);

Routine

atan

atan2

Required Header

<math.h>

<math.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
atan returns the arctangent of x. atan2 returns the arctangent of y/x. If x is 0, atan
returns 0. If both parameters of atan2 are 0, the function returns O. You can modify
error handling by using the _matherr routine. atan returns a value in the range -rc/2
to rc/2 radians; atan2 returns a value in the range -rc to rc radians, using the signs of
both parameters to determine the quadrant of the return value.

Parameters

Remarks

x, y Any numbers

The atan function calculates the arctangent of x. atan2 calculates the arctangent of
y/x. atan2 is well defined for every point other than the origin, even if x equals ° and
y does not equal O.

atan, atan2

155

atexit

Example

Output

/* ATAN.C: This program calculates
* the arctangent of 1 and -1.
*/

#include <math.h>
#include <stdio.h>
#include <errno.h>

void maine void)
{

double xl, x2, y;

printf("Enter a real number: ");
scanf(''%If'', &x1);
y - atan(xl);
printf("Arctangent of %f: %f\n", xl, y);
printf("Enter a second real number: ");
scanf(''%If'', &x2);
y = atan2(xl, x2);
printf("Arctangent of %f / %f: %f\n", xl, x2, y);

Enter a real number: -862.42
Arctangent of -862.420000: -1.569637
Enter a second real number: 78.5149
Arctangent of -862.420000 / 78.514900: -1.480006

See Also: acos, asin, cos, _matherr, sin, tan

atexit

156

Processes the specified function at exit.

int atexit(void (_cdecl *func)(void));

Routine Required Header Compatibility

atexit <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

To generate an ANSI-compliant application, use the ANSI-standard atexit function
(rather than the similar _onexit function).

Return Value
atexit returns 0 if successful, or a nonzero value if an error occurs.

Parameter

Remarks

Example

June Function to be called

The atexit function is passed the address of a function (June) to be called when the
program terminates normally. Successive calls to atexit create a register of functions
that are executed in LIFO (last-in-first-out) order. The functions passed to atexit
cannot take parameters. atexit and _onexit use the heap to hold the register of
functions. Thus, the number of functions that can be registered is limited only by
heap memory.

/* ATEXIT.C: This program pushes four functions onto
* the stack of functions to be executed when atexit
* is called. When the program exits, these programs
* are executed on a "last in, first out" basis.
*/

#include <stdlib.h>
#include <stdio.h>

void fnl(void), fn2(void), fn3(void), fn4(void);

void main(void)
{

atexit(fnl);
atexit (fn2);
atexit (fn3);
atexit(fn4);
printf("This is executed first.\n");

void fnl()
{

pri ntf("next. \n");

void fn2()
{

printf("executed");

void fn3()
{

printf("is");

atexit

157

atof, atoi, _atoi64, atol

Output

void fn4()
{

pri ntf("Thi s ");

This is executed first.
This is executed next.

See Also: abort, exit, _onexit

atof, atoi, _atoi64, atol
Convert strings to double (atof), integer (atoi, _atoi64), or long (atol).

double atof(const char *string);
int atoi(const char *string);
_int64 _atoi64(const char *string);
long atol(const char *string);

Routine Required Header Compatibility

atof <math.h> and <stdlib.h> ANSI, Win 95, Win NT

atoi <stdlib.h> ANSI, Win 95, Win NT

atoi64 - <stdlib.h> Win 95, Win NT

atol <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each function returns the double, int, _int64 or long value produced by interpreting
the input characters as a number. The return value is 0 (for atoi and _atoi64), OL (for
atol), or 0.0 (for atof) if the input cannot be converted to a value of that type. The
return value is undefined in case of overflow.

Parameter

Remarks

158

string String to be converted

These functions convert a character string to a double-precision floating-point value
(atof), an integer value (atoi and _atoi64), or a long integer value (atol). The input

Example

atof, atoi, _atoi64, atol

string is a sequence of characters that can be interpreted as a numerical value of the
specified type. The output value is affected by the setting of the LC_NUMERIC
category in the current locale. For more information on the LC_NUMERIC category,
see setlocale. The longest string size that atof can handle is 100 characters. The
function stops reading the input string at the first character that it cannot recognize as
part of a number. This character may be the null character ('\0') terminating the string.

The string argument to atof has the following form:

[whitespace] [sign] [digits] [.digits] [{d I Die I E }[sign]digits]

A whitespace consists of space and/or tab characters, which are ignored; sign is either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the decimal point, at least one must appear after the decimal point. The decimal
digits may be followed by an exponent, which consists of an introductory letter (d, D,
e, or E) and an optionally signed decimal integer.

atoi, _atoi64, and atol do not recognize decimal points or exponents. The string
argument for these functions has the form:

[whitespace] [sign]digits

where whitespace, sign, and digits are exactly as described above for atof.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

atoi

atol

_MBCS Defined

atoi

atol

1* ATOF.C: This program shows how numbers stored
* as strings can be converted to numeric values
* using the atof, atoi, and atol functions.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *s; double x; inti; long 1;

s =-" -2309.12E-15"; 1* Test of atof *1
x = atof(s);

_UNICODE Defined

_wtoi

_wtol

printf("atof test: ASCII string: %s\tfloat: %e\n", s, x);

s =- "7. 8912654773d210"; 1* Test of atof *1
x == atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n", s, x);

159

_beginthread, _beginthreadex

s =" -9885 pigs"; /* Test of atoi */
i - atoi(s);
printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s,);

s -= "98854 dollars"; /* Test of atol */
1 ." atol (s);
printf("atol test: ASCII string: %s\t\tlong: %ld\n", s, 1);

Output
atof test: ASCII string: -2309.12E-15 float: -2.309120e-012
atof test: ASCII string: 7.8912654773d210 float: 7.891265e+210
atoi test: ASCII string: -9885 pigs integer: -9885
atol test: ASCII string: 98854 dollars long: 98854

See Also: _ecvt, _fcvt, _gcvt, setlocale, strtod, wcstol, strtoul

_beginthread, _beginthreadex
Create a thread.

unsigned long _beginthread(void(_cdecl *starCaddress)(void *),
"+ unsigned stack_size, void *arglist);

unsigned long _beginthreadex(void *security, unsigned stack_size,
"+ unsigned (_stdcall *starcaddress)(void *), void *arglist, unsigned initflag,
"+ unsigned *thrdaddr);

Routine

_beginthread

_beginthreadex

Required Header

<process.h>

<process.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCMT.LlB

MSVCRT.LlB

Multithread 3static library, retail version

Import library for MSVCRT.DLL, retail version

To use _beginthread or _beginthreadex, the application must link with one of the
multithreaded C run-time libraries.

Return Value

160

If successful, each of these functions returns a handle to the newly created thread.
_beginthread returns -Ion an error, in which case errno is set to EAGAIN if there
are too many threads, or to EINVAL if the argument is invalid or the stack size is
incorrect. _beginthreadex returns 0 on an error, in which case errno and doserrno
are set.

_beginthread, _beginthreadex

Parameters

Remarks

starcaddress Start address of routine that begins execution of new thread

stack_size Stack size for new thread or °
argUst Argument list to be passed to new thread or NULL

security Security descriptor for new thread; must be NULL for Windows 95
applications

initjlag Initial state of new thread (running or suspended)

thrdaddr Address of new thread

The _beginthread function creates a thread that begins execution of a routine at
starcaddress. The routine at starcaddress must use the _cdecl calling convention
and should have no return value. When the thread returns from that routine, it is
terminated automatically.

_beginthreadex resembles the Win32 CreateThread API more closely than does
_beginthread. _beginthreadex differs from _beginthread in the following ways:

• _beginthreadex has three additional parameters: initjlag, security, threadaddr.
The new thread can be created in a suspended state, with a specified security
(Windows NT only), and can be accessed using thrdaddr, which is the thread
identifier.

• The routine at starcaddress passed to _beginthreadex must use the _stdcall
calling convention and must return a thread exit code.

• _beginthreadex returns ° on failure, rather than -1.

• A thread created with _beginthreadex is terminated by a call to _endthreadex.

You can call_endthread or _endthreadex explicitly to terminate a thread; however,
_endthread or _endthreadex is called automatically when the thread returns from
the routine passed as a parameter. Terminating a thread with a call to endthread or
_endthreadex helps to ensure proper recovery of resources allocated for the thread.

_endthread automatically closes the thread handle (whereas _endthreadex does not).
Therefore, when using _beginthread and _endthread, do not explicitly close the
thread handle by calling the Win32 CloseHandle API. This behavior differs from the
Win32 ExitThread API.

Note For an executable file linked with LlBCMT.LlB, do not call the Win32 ExitThread API;
this prevents the run-time system from reclaiming allocated resources. _endthread and
_endthreadex reclaim allocated thread resources and then call ExitThread.

The operating system handles the allocation of the stack when either _begin thread or
_beginthreadex is called; you do not need to pass the address of the thread stack to
either of these functions. In addition, the stack_size argument can be 0, in which case
the operating system uses the same value as the stack specified for the main thread.

161

_begin thread, _beginthreadex

Example

162

argUst is a parameter to be passed to the newly created thread. Typically it is the
address of a data item, such as a character string. argUst may be NULL if it is not
needed, but _beginthread and _beginthreadex must be provided with some value to
pass to the new thread. All threads are terminated if any thread calls abort, exit, _exit,
or ExitProcess.

1* BEGTHRD.C illustrates multiple threads using functions:
*
*
*
*

_beginthread endthread

* This program requires the multithreaded library. For example,
* compile with the following command line:
* Cl IMT ID "_X86 " BEGTHRD.C
*
* If you are using the Visual C++ development environment, select the
* Multi-Threaded runtime library in the compiler Project Settings
* dialog box.
*
*1

#include <windows.h>
#include <process.h>
#include <stddef.h>
#include <stdlib.h>
#include <conio.h>

void Bounce(void *ch);

1* _beginthread, endthread *1

void CheckKey(void *dummy);

1* GetRandom returns a random integer between min and max. *1
#define GetRandom(min, max) «rand() % (int)«(max) + 1) - (min») + (min»

BOOl repeat = TRUE; 1* Global repeat flag and video variable *1
HANDLE hStdOut; 1* Handle for console window *1
CONSOlE_SCREEN_BUFFER_INFO csbi; 1* Console information structure *1

void main()
{

CHAR ch = 'A';

hStdOut = GetStdHandle(STD_OUTPUT_HANDlE);

1* Get display screen's text row and column information. *1
GetConsoleScreenBufferInfo(hStdOut, &csbi);

1* launch CheckKey thread to check for terminating keystroke. *1
_beginthread(CheckKey, 0, NUll);

_beginthread,_beginthreadex

1* loop until CheckKey terminates program. *1
while(repeat)
{

1* On first loops, launch character threads. *1
_beginthread(Bounce, 0, (void *) (ch++));

1* Wait one second between loops. *1
Sleep(1000l);

1* CheckKey - Thread to wait for a keystroke, then clear repeat flag. *1
void CheckKey(void *dummy)
{

_getch();
repeat - 0; 1* _endthread implied *1

1* Bounce - Thread to create and and control a colored letter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*1

void Bounce(void *ch
{

1* Generate letter and color attribute from thread argument. *1
char blankcell - 0x20;
char blockcell = (char) ch;
BOOl first = TRUE;

COORD oldcoord, newcoord;
DWORD result;

1* Seed random number generator and get initial location. */
srand(_threadid);
newcoord.X = GetRandom(0, csbi .dwSize.X - 1);
newcoord.Y = GetRandom(0, csbi .dwSize.Y - 1);
while(repeat)
{

1* Pause between loops. *1
Sleep(100l);

1* Blank out our old position on the screen, and draw new letter. *1
if(first)

first = FALSE;
else
WriteConsoleOutputCharacter(hStdOut, &blankcell, 1, oldcoord, &result);
WriteConsoleOutputCharacter(hStdOut, &blockcell, 1, newcoord, &result);

163

Bessel Functions

/* Increment the coordinate for next placement of the block. */
oldcoord.X = newcoord.X;
oldcoord.Y - newcoord.Y;
newcoord.X +- GetRandom(-1, 1);
newcoord.Y +- GetRandom(-1, 1);

/* Correct placement (and beep) if about to go off the screen. */
if(newcoord.X < 0)

newcoord.X = 1;
else if(newcoord.X == csbi .dwSize.X

newcoord.X - csbi.dwSize.X - 2;
else if(newcoord.Y < 0)

newcoord.Y ... 1;
else if(newcoord.Y -- csbi .dwSize.Y

newcoord.Y ... csbi .dwSize.Y - 2;

/* If not at a screen border, continue, otherwise beep. */
else

continue;
Beep(«char) ch - 'A') * 100,175);

/* _endthread given to terminate */
_endthread();

See Also: _eodthread, abort, exit

Bessel Functions

Example

164

The Bessel functions are commonly used in the mathematics of electromagnetic
wave theory .

.JO, .Jl,.Jo These routines return Bessel functions of the first kind: orders 0, 1,
and n, respectively.

--yO, --yl, --yo These routines return Bessel functions of the second kind: orders
0, 1, and n, respectively.

/* BESSEL.C: This program illustrates Bessel functions,
* including: _j0 _j1 _jn -y0 -Y1 -yn
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

double x ... 2.387;
int n ... 3, c;

Output

printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n");
printf("First\t\t0\t_j0(x)\t%f\n", _j0(x));
printf("First\t\t1\t_jl(x)\t%f\n", _j1(x));
for(c = 2; c < 5; c++)

printf(" First\t\t%d\t_jn(n, x)\t%f\n", c, _jn(c, x));
printf("Second\t0\t-y0(x)\t%f\n", -y0(x));
pri ntf(" Second\ t1 \ t-yl(x) \ t%f\n", -yl(x));
for(c = 2; c < 5; c++)

printf(" Second\t%d\t-yn(n, x)\t%f\n", c, -yn(c, x));

Bessel functions for x = 2.387000:
Kind Order Function Result

Fi rst 0 _j0(x) 0.009288
Fi rst 1 _jl(x) 0.522941
First 2 _jn(n, x) 0.428870
First 3 _jn(n, x) 0.195734
Fi rst 4 _jn(n, x) 0.063131
Second 0 -y0(x) 0.511681
Second 1 -yl(x) 0.094374
Second 2 -yn(n, x) -0.432608
Second 3 -yn(n, x) -0.819314
Second 4 -yn(n, x) -1. 626833

See Also: _math err

Bes~el Functions: jO, jl, jn
Compute the Bessel function.

double --.iO(double x);

double --.il(double x);

double --.in(int n, double x);

Routine

--.i0
--.il
--.in

Required Header

<math.h>

<math.h>

<math.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.UB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Bessel Functions

165

Bessel Functions

Return Value
Each of these routines returns a Bessel function of x. You can modify error handling
by using _matherr.

Parameters

Remarks

Example

Output

166

x Floating-point value

n Integer order of Bessel function

The -.iO, -.iI, and -.in routines return Bessel functions of the first kind: orders 0, 1,
and n, respectively.

/* BESSEL.C: This program illustrates Bessel functions,
* including: _j0 _j1 _jn -y0 -y1 -yn
*/

#include <math.h>
#include <stdio.h>

void maine void)
{

double x = 2.387;
i nt n = 3, c;

printf("Bessel functions for x ... %f:\n", x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n");
p r i n t f(" Fir s t \ t \ t 0 \ t _j 0 (x) \ t % f\ n", _j 0 (x));
p r i n t f (" Fir s t \ t \ t 1 \ t _j l(x) \ t % f \ n", _j1 (x));
fore c = 2; c < 5; c++)

printf(" First\t\t%d\t_jn(n, x)\t%f\n", c, _jn(c, x));
printf(" Second\t0\t-y0(x)\t%f\n", -y0(x));
printf(" Second\t1 \t-yl(x)\t%f\n", -yl(x));
fore c = 2; c < 5; c++)

printf(" Second\t%d\t-yn(n, x)\t%f\n", c, _yn(c, x));

Bessel functions for x = 2.387000:
Kind Order Function Result

First 0 _j0(x) 0.009288
First 1 _j 1 (x) 0.522941
First 2 _jn(n, x) 0.428870
First 3 _jn(n, x) 0.195734
First 4 _jn(n, x) 0.063131
Second 0 -y0(x) 0.511681
Second 1 -yl(x) 0.094374
Second 2 -yn(n, x) -0.432608
Second 3 -yn(n, x) -0.819314
Second 4 -yn(n, x) -1. 626833

See Also: _matherr

Bessel Functions: _yO, _yl, _yn
Compute the Bessel function.

double .sO(double x);
double .sl(double x);
double .sn(int 11, double x);

Routine Required Header

<math.h>

<math.h>

<math.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a Bessel function of x. If x is negative, the routine sets
errno to EDOM, prints a _DOMAIN error message to stderr, and returns
_HUGE_VAL. You can modify error handling by using _matherr.

Parameters

Remarks

Example

x Floating-point value

11 Integer order of Bessel function

The .sO, .sl, and .sn routines return Bessel functions of the second kind: orders
0, I, and n, respectively.

/* BESSEL.C: This program illustrates Bessel functions.
* including: _j0 _jl _jn -y0 -Yl -yn
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 2.387;
int n - 3. c;

Bessel Functions

167

bsearch

Output

printf("Bessel functions for x = %f:\n". x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n");
printf("First\t\t0\t_j0(x)\t%f\n". _j0(x));
printf(" First\t\tl\t_jl(x)\t%f\n". _jl(x));
fore c = 2; c < 5; c++)

p r i n t f (" Fir s t \ t \ t % d \ t _j n (n. x) \ t % f \ n". c. _j n (c. x));
printf(" Second\t0\t-y0(x)\t%f\n". -y0(x));
pri ntf(" Second\ t1 \ t_yl(x) \ t%f\n". -yl(x));
fore c = 2; c < 5; c++)

printf(" Second\t%d\t-yn(n. x)\t%f\n". c. -yn(c. x));

Bessel functions for x = 2.387000:
Kind Order Function Result

First 0 _j0(x) 0.009288
First 1 _jl(x) 0.522941
First 2 _jn(n. x) 0.428870
First 3 _jn(n. x) 0.195734
First 4 _jn(n. x) 0.063131
Second 0 -y0(x) 0.511681
Second 1 -yl(x) 0.094374
Second 2 -yn(n. x) -0.432608
Second 3 -yn(n. x) -0.819314
Second 4 -yn(n. x) -1. 626833

See Also: _matherr

bsearch
Performs a binary search of a sorted array.

void *bsearch(const void *key, const void *base, size_t num, size_t width,
int (_cdecl *compare) (const void *eleml, const void *elem2));

Routine Required Header Compatibility

bsearch <stdlib.h> and <search.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

168

bsearch returns a pointer to an occurrence of key in the array pointed to by base. If
key is not found, the function returns NULL. If the array is not in ascending sort order
or contains duplicate records with identical keys, the result is unpredictable.

Parameters

Remarks

Example

key Object to search for

base Pointer to base of search data

num Number of elements

width Width of elements

compare Function that compares two elements: eleml and elem2

eleml Pointer to the key for the search

eiem2 Pointer to the array element to be compared with the key

The bsearch function performs a binary search of a sorted array of l1um elements,
each of width bytes in size. The base value is a pointer to the base of the array to be
searched, and key is the value being sought. The compare parameter is a pointer to a
user-supplied routine that compares two array elements and returns a value specifying
their relationship. bsearch calls the compare routine one or more times during the
search, passing pointers to two array elements on each call. The compare routine
compares the elements, then returns one of the following values:

Value Returned by compare Routine

<0

o
>0

Description

elem} less than elem2

elem} equal to elem2

elem} greater than elem2

/* BSEARCH.C: This program reads the command-line
* parameters, sorting them with qsort, and then
* uses bsearch to fi nd the word "cat."
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int comparee char **argl, char **arg2); /* Declare a function for compare */

void maine int argc, char **argv)
{

char **result;
char *key = "cat";
i nt i;

/* Sort using Quicksort algorithm: */
qsort((void *)argv, (size_t)argc, sizeof(char *), (int (*)(const
void*, const void*»compare);

fore i = 0; i < argc; ++i)
printf("%s ", argv[i]);

/* Output sorted list */

bsearch

169

Output

/* Find the word "cat" using a binary search algorithm: */
result = (char **)bsearch((char *) &key. (char *)argv. argc.

sizeof(char *). (int (*)(const void*. const void*»compare):
if(result)

printf("\n%s found at %Fp\n". *result. result):
else

pri ntf("\nCat not found! \n"):

int comparee char **argl. char **arg2
{

/* Compare all of both strings: */
return _strcmpi(*argl. *arg2):

[C:\work]bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 00200008

See Also: _Ifind, _lsearch, qsort

cabs
Calculates the absolute value of a complex number.

double _cabs(struct _complex z);

Routine Required Header Compatibility

<math.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_cabs returns the absolute value of its argument if successful. On overflow _cabs returns
HUGE_VAL and sets errno to ERANGE. You can change error handling with _matherr.

Parameter

Remarks

170

z Complex number

The _cabs function calculates the absolute value of a complex number, which must be
a structure of type _complex. The structure z is composed of a real component x and
an imaginary component y. A call to _cabs produces a value equivalent to that of the
expression sqrt(z.x*z.x + z.y*z.y).

Example

Output

/* CABS.C: Using _cabs, this program calculates
* the absolute value of a complex number.
*/

#include <math.h>
#include <stdio.h>

void maine void)
{

struct _complex number - { 3.0, 4.0 };
double d;

d ~ _cabs(number);
printf("The absolute value of %f + %fi is %f\n",

number.x, number.y, d);

The absolute value of 3.000000 + 4.000000i is 5.000000

See Also: abs, fabs, labs

calloc
Allocates an array in memory with elements initialized to O.

void *calloc(size_t num, size_t size);

Routine Required Header Compatibility

calloc <stdlib.h> and <malloc.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

calloc returns a pointer to the allocated space. The storage space pointed to by the
return value is guaranteed to be suitably aligned for storage of any type of object. To
get a pointer to a type other than void, use a type cast on the return value.

Parameters
num Number of elements

size Length in bytes of each element

calloc

171

ceil

Remarks

Example

Output

ceil

172

The calloc function allocates storage space for an array of num elements, each of
length size bytes. Each element is initialized to O.

calloc calls malloc in order to use the C++ _set_new _mode function to set the new
handler mode. The new handler mode indicates whether, on failure, malloc is to call
the new handler routine as set by _set_new_handler. By default, malloc does not call
the new handler routine on failure to allocate memory. You can override this default
behavior so that, when calloc fails to allocate memory, malloc calls the new handler
routine in the same way that the new operator does when it fails for the same reason.
To override the default, call

_set_new_mode(l)

early in your program, or link with NEWMODE.OBJ.

When the application is linked with a debug version of the C run-time libraries, calloc
resolves to _calloc_dbg.

/* CALLOC.C: This program uses calloc to allocate space for
* 40 long integers. It initializes each element to zero.
*/

#include <stdio.h>
#include <malloc.h>

void maine void)
{

long *buffer;

buffer = (long *)calloc(40, sizeof(long));
if(buffer != NULL)

printf("Allocated 40 long integers\n");
else

pri ntf("Can't all ocate memory\n");
free(buffer);

Allocated 40 long integers

See Also: free, malloc, realloc

Calculates the ceiling of a value.

double ceil(double x);

Routine Required Header Compatibility

ceil <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The ceil function returns a double value representing the smallest integer that is
greater than or equal to x. There is no error return.

Parameter

Example

Output

x Floating-point value

/* FLOOR.C: This example displays the largest integers
* less than or equal to the floating-point values 2.8
* and -2.8. It then shows the smallest integers greater
* than or equal to 2.8 and -2.8.
*/

#include <math.h>
#include <stdio.h>

void main(void
{

double y;

y - floor(2.8);
printf("The floor of 2.8 is %f\n", y);
y .,. floor(-2.8);
printf("The floor of -2.8 is %f\n", y);

y .,. ceil(2.8);
pri ntf("The cei 1 of 2.8 is %f\n", y);
y .,. ceil(-2.8);
printf("The ceil of -2.8 is %f\n", y);

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

See Also: floor, fmod

ceil

173

_cexit, c exit
Perform cleanup operations and return without terminating the process.

void _cexit(void);
void _c_exit(void);

Routine Required Header

<process.h>

<process.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Remarks
The _cexit function calls, in last-in-first-out (LIFO) order, the functions registered by
atexit and _onexit. Then _cexit flushes all I/O buffers and closes all open streams
before returning. _c_exit is the same as _exit but returns to the calling process without
processing atexit or _onexit or flushing stream buffers. The behavior of exit, _exit,
_cexit, and _c_exit is as follows:

Function

exit

Behavior

Performs complete C library termination procedures, terminates
process, and exits with supplied status code

Performs "quick" C library termination procedures, terminates process,
and exits with supplied status code

Performs complete C library termination procedures and returns to
caller, but does not terminate process

Performs "quick" C library termination procedures and returns to caller,
but does not terminate process

See Also: abort, atexit, _exec Functions, exit, _onexit, _spawn Functions, system

_cgets

174

Gets a character string from the console.

char * _cgets(char *buffer);

Routine Required Header Compatibility

<conio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_cgets returns a pointer to the start of the string, at buffer[2]. There is no error return.

Parameter

Remarks

Example

buffer Storage location for data

The _cgets function reads a string of characters from the console and stores the string
and its length in the location pointed to by buffer. The buffer parameter must be a
pointer to a character array. The first element of the array, buffer[O], must contain the
maximum length (in characters) of the string to be read. The array must contain enough
elements to hold the string, a terminating null character ('\0'), and two additional bytes.
The function reads characters until a carriage-return-linefeed (CR-LF) combination
or the specified number of characters is read. The string is stored starting at buffer[2].
If the function reads a CR-LF, it stores the null character ('\0'). _cgets then stores the
actual length of the string in the second array element, buffer [1]. Because all editing
keys are active when _cgets is called, pressing F3 repeats the last entry.

/* CGETS.C: This program creates a buffer and initializes
* the first byte to the size of the buffer: 2. Next, the
* program accepts an input string using _cgets and displays
* the size and text of that string.
*/

#include <conio.h>
#include <stdio.h>

void maine void)
{

char buffer[82] ~ { 80}; /* Maximum characters in 1st byte */
char *result;

printf("Input line of text, followed by carriage return:\n");
result = _cgets(buffer); /* Input a line of text */
printf("\nLine length - %d\nText - %s\n", buffer[l], result);

175

_chdir, _wchdir

Output
Input line of text. followed by carriage return:
This is a line of text

Line length ~ 22
Text = This is a line of text.

See Also: _getch

_chdir, wchdir
Change the current working directory.

int _chdir(const char *dirname);
int _wchdir(const wchar_t *dirname);

Routine

_chdir

_wchdir

Required Header

<direct.h>

<direct.h> or <wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a value of 0 if successful. A return value of -1 indicates that
the specified path could not be found, in which case errno is set to ENOENT.

Parameter

Remarks

176

dirname Path of new working directory

The _chdir function changes the current working directory to the directory specified by
dirname. The dirname parameter must refer to an existing directory. This function can
change the current working directory on any drive and if a new drive letter is specified
in dirname, the default drive letter will be changed as well. For example, if A is the
default drive letter and \BIN is the current working directory, the following call changes
the current working directory for drive C and establishes C as the new default drive:

_chdir("c:\\temp");

When you use the optional backslash character (\) in paths, you must place two
backslashes (\\) in a C string literal to represent a single backslash (\).

_ wchdir is a wide-character version of _chdir; the dirname argument to _ wchdir is a
wide-character string. _ wchdir and _chdir behave identically otherwise.

Example

Output

Generic-Text Routine Mapping:

TCHAR.H Routine

_tchdir

_UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_wchdir

/* CHGDIR.C: This program uses the chdir function to verify
* that a given directory exists.
*/

#include <direct.h>
#include <stdio.h>
#include <stdlib.h>

void maine int argc. char *argv[])
{

if(_chdir(argv[1]))
printf("Unable to locate the directory: %s\n". argv[1]);

else
system("dir *.wri");

Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\write

04/21/95
04/21/95

01:06p
01:06p

2 File(s)

3.200 ERRATA.WRI
2.816 README.WRI
6.016 bytes

71.432.116 bytes free

See Also: _mkdir, _rmdir, system

chdrive
Changes the current working drive.

int _chdrive(int drive);

Routine Required Header Compatibility

_chdrive <direct.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_chdrive

177

_chdrive

Return Value
_chdrive returns a value of 0 if the working drive is successfully changed. A return value
of -1 indicates an error.

Parameter

Remarks

Example

178

drive Number of new working drive

The _chdrive function changes the current working drive to the drive specified by drive.
The drive parameter uses an integer to specify the new working drive (1=A, 2=B, and so
forth). This function changes only the working drive; _chdir changes the working
directory.

1* GETDRIVE.C illustrates drive functions including:
* _getdrive chdrive _getdcwd
*/

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

void main(void)
(

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

while(1)
(

pri ntf("\nType dri ve 1 etter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;
if(isalpha(ch))

_putch(ch);
if(_getdcwd(toupper(ch) - 'A' + 1. path. _MAX_PATH) != NULL

printf("\nCurrent directory on that drive is %s\n". path);

/* Restore original drive.*/
_chdrive(curdrive);
pri ntf("\n");

Output
Available drives are:
A: B: C: L: M: 0: U: V:
Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\CODE

Type drive letter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:

See Also: _chdir, _fullpath, _getcwd, _getdrive, _mkdir, _rmdir, system

_chgsign
Reverses the sign of a double-precision floating-point argument.

double _chgsign(double x);

Routine Required Header Compatibility

_chgsign <float.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_chgsign returns a value equal to its double-precision floating-point argument x, but
with its sign reversed. There is no error return.

Parameter
x Double-precision floating-point value to be changed

See Also: fabs, _copysign

_chmod, _wchmod
Change the file-permission settings.

int _chmod(const char *filename, int pmode);
int _wchmod(const wchar_t *filename, int pmode);

_chmod, _ wchmod

179

3hmod, _ wchmod

Routine Required Header Optional Headers Compatibility

<io.h> <sys/types.h>, Win 95, Win NT
<sys/stat.h>, <errno.h>

_wchmod <io.h> or <wchar.h> <sys/types.h>, Win NT
<sys/stat.h>, <errno.h>

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns 0 if the permission setting is successfully changed. A
return value of -1 indicates that the specified file could not be found, in which case
errno is set to ENOENT.

Parameters

Remarks

180

filename N arne of existing file

pmode Permission setting for file

The _chmod function changes the permission setting of the file specified by filename.
The permission setting controls read and write access to the file. The integer
expression pmode contains one or both of the following manifest constants, defined
in SYS\STAT.H:

_S_IWRITE Writing permitted

_S_IREAD Reading permitted

_S_IREAD I_S_IWRITE Reading and writing permitted

Any other values for pmode are ignored. When both constants are given, they are
joined with the bitwise-OR operator (I). If write permission is not given, the file is
read-only. Note that all files are always readable; it is not possible to give write-only
permission. Thus the modes _S_IWRITE and _S_IREAD I_S_IWRITE are
equivalent.

_ wchmod is a wide-character version of _chmod; the filename argument to _ wchmod
is a wide-character string. _ wchmod and _chmod behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tchmod

_UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_wchmod

Example

Output

/* CHMOD.C: This program uses chmod to
* change the mode of a file to read-only.
* It then attempts to modify the file.
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main(void
(

/* Make file read-only: */
if(_chmod("CHMOD.C", _S_IREAD -- -1)

perror("Fil e not found\n");
else

printf("Mode changed to read-only\n");
system("echo /* End of fil e * / » CHMOD. C");

/* Change back to read/write: */
if(_chmod("CHMOD.C", _S_IWRITE) == -1)

perror("File not found\n");
else

printf("Mode changed to read/write\n");
system("echo /* End of fil e * / » CHMOD. C");

Mode changed to read-only
Access is denied
Mode changed to read/write

See Also: _access, _creat, _fstat, _open, _stat

chsize
Changes the file size.

int _chsize(int handle, long size);

Routine Required Header Optional Headers Compatibility

_chsize <io.h> <errno.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_chsize

181

_chsize

Return Value
_chsize returns the value 0 if the file size is successfully changed. A return value of
-1 indicates an error: errno is set to EACCES if the specified file is locked against
access, to EBADF if the specified file is read-only or the handle is invalid, or to
ENOSPC if no space is left on the device.

Parameters

Remarks

Example

Output

182

handle Handle referring to open file

size New length of file in bytes

The _chsize function extends or truncates the file associated with handle to the length
specified by size. The file must be open in a mode that permits writing. Null
characters ('\0') are appended if the file is extended. If the file is truncated, all data
from the end of the shortened file to the original length of the file is lost.

1* CHSIZE.C: This program uses _filelength to report the size
* of a file before and after modifying it with _chsize.
*1

If inc 1 u d e < i 0 • h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

void main(void)
{

int fh, result:
unsigned int nbytes .,. BUFSIZ:

1* Open a file *1
if((fh.,. _open("data", _O_RDWR I _O_CREAT, S IREAD

I _S_IWRITE» != -1)

printf("File length before: %ld\n", _filelength(fh)):
if((result.,. _chsize(fh, 329678)) =- 0)

printf("Size successfully changed\n"):
else

printf("Problem in changing the size\n"):
printf("File length after: %ld\n", _filelength(fh)):
_close(fh):

File length before: 0
Size successfully changed
File length after: 329678

See Also: _close, _creat, _open

_clear87, _clearfp
Get and clear the floating-point status word.

unsigned int _clear87(void);
unsigned int _clearfp(void);

Routine

_clear87

_clearfp

Required Header

<float.h>

<float.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

The bits in the value returned indicate the floating-point status before the call to
_clear87 or _clearfp. See FLOAT.H for a complete definition of the bits returned by
_clear87. Many of the math library functions modify the 8087/80287 status word,
with unpredictable results. Return values from _clear87 and _status87 become more
reliable as fewer floating-point operations are performed between known states of
the floating-point status word.

The _clear87 function clears the exception flags in the floating-point status word,
sets the busy bit to 0, and returns the status word. The floating-point status word is
a combination of the 8087/80287 status word and other conditions detected by the
8087/80287 exception handler, such as floating-point stack overflow and underflow.

_clearfp is a platform-independent, portable version of the _clear87 routine. It is
identical to _clear87 on Intel® (x86) platforms and is also supported by the MIPS®
and ALPHA platforms. To ensure that your floating-point code is portable to MIPS or
ALPHA, use _clearfp. If you are only targeting x86 platforms, you can use either
_clear87 or _clearfp.

1* CLEAR87.C: This program creates various floating-point
* problems. then uses _clear87 to report on these problems.
* Compile this program with Optimizations disabled (/Od).
* Otherwise the optimizer will remove the code associated with
* the unused floating-point values.
*1

#include <stdio.h>
#include <float.h>

_clearS7, _clearfp

183

clearerr

Output

void main(void)
{

double a = le-40, b;
float x, Y;

printf("Status: %.4x - clear\n", _clear87());

/* Store into y is inexact and underflows: */
y = a;
printf("Status: %.4x - inexact, underflow\n", _clear87());

/* y is denormal: */
b = y;
pri ntf("Status: %. 4x - denorma 1 \n", _cl ea r87 ());

Status: 0000 - clear
Status: 0003 - inexact, underflow
Status: 80000 - denormal

See Also: _controI87, _status87

clearerr
Resets the error indicator for a stream

void clearerr(FILE *stream);

Routine Required Header Compatibility

clearerr <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

184

stream Pointer to FILE structure

The clearerr function resets the error indicator and end-of-file indicator for stream.
Error indicators are not automatically cleared; once the error indicator for a specified
stream is set, operations on that stream continue to return an error value until clearerr,
fseek, fsetpos, or rewind is called.

Example

Output

/* CLEARERR.C: This program creates an error
* on the standard input stream. then clears
* it so that future reads won't fail.
*/

#include <stdio.h>

void main(void)
(

int c;
/* Create an error by writing to standard input. */
putc('c'. stdin);
if(ferror(stdin))
(

perror("Wri te error");
clearerr(stdin);

/* See if read causes an error. */
pri ntf("Wi 11 input cause an error? ");
c = getc(stdin);
if(ferror(stdin)
(

perror("Read error");
clearerr(stdin);

Write error: No error
Will input cause an error? n

See Also: _eof, feof, ferror, perror

clock
Calculates the processor time used by the calling process.

clock_t clock(void);

Routine Required Header Compatibility

clock <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

clock

185

clock

Return Value

Remarks

Example

186

clock returns the number of clock ticks of elapsed processor time. The returned value
is the product of the amount of time that has elapsed since the start of a process and
the value of the CLOCKS_PER_SEC constant. If the amount of elapsed time is
unavailable, the function returns -1, cast as a clock_t.

The clock function tells how much processor time the calling process has used.
The time in seconds is approximated by dividing the clock return value by the value
of the CLOCKS_PER_SEC constant. In other words, clock returns the number
of processor timer ticks that have elapsed. A timer tick is approximately equal to
l/CLOCKS_PER_SEC second. In versions of Microsoft C before 6.0, the
CLOCKS_PER_SEC constant was called CLK_TCK.

/* CLOCK.C: This example prompts for how long
* the program is to run and then continuously
* displays the elapsed time for that period.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void sleep(clock_t wait);

void maine void)
{

long i = 600000L;
clock t start, finish;
double duration;

/* Delay for a specified time. */
printf("Delay for three seconds\n");
sleep((clock_t)3 * CLOCKS_PER_SEC);
printf("Done!\n");

/* Measure the duration of an event. */
printf("Time to do %ld empty loops is ", i);
start = clock();
wh il e (i - -)

finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);

Output

1* Pauses for a specified number of milliseconds. *1
void sleep(clock_t wait)
(

clock_t goal;
goal - wait + clock();
while(goal> clock())

Delay for three seconds
Done!
Time to do 600000 empty loops is 0.1 seconds

See Also: difftime, time

close
Closes a file.

int _close(int handle);

Routine Required Header Optional Headers Compatibility

<io.h> <errno.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_close returns 0 if the file was successfully closed. A return value of -1 indicates
an error, in which case errno is set to EBADF, indicating an invalid file-handle
parameter.

Parameter

Remarks

Example

handle Handle referring to open file

The _close function closes the file associated with handle.

1* OPEN.C: This program uses _open to open a file
* named OPEN.C for input and a file named OPEN.OUT
* for output. The files are then closed.
*1

187

30mmit

Output

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>

void main(void)
{

i nt fhl, fh2;

fh1 - _open("OPEN.C", _O_RDONLY);
if(fh1 == -1)

perror("open failed on input file");
else
{

printf("open succeeded on input file\n");
_close(fh1);

fh2 ... _open("OPEN.OUT", _O_WRONLY I _O_CREAT, _S_IREAD
_S_IWRITE);

if(fh2 ""- -1)
perror("Open failed on output file");

else
{

printf("Open succeeded on output file\n");
_close(fh2);

Open succeeded on input file
Open succeeded on output file

See Also: _chsize, _creat, _dup, _open, _unlink

commit

188

Flushes a file directly to disk.

int _commit(int handle);

Routine Required Header

<io.h>

Optional Headers Compatibility

<ermo.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_commit returns 0 if the file was successfully flushed to disk. A return value of -1
indicates an error, and errno is set to EBADF, indicating an invalid file-handle
parameter.

Parameter

Remarks

Example

handle Handle referring to open file

The _commit function forces the operating system to write the file associated with
handle to disk. This call ensures that the specified file is flushed immediately, not at
the operating system's discretion.

1* COMMIT.C illustrates low-level file 1/0 functions including:
*
*
*
* This is example code; to keep the code simple and readable
* return values are not checked.
*1

If inc 1 u d e < i 0 • h>
#include <stdio.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>

#define MAXBUF 32

int log_receivable(int);

void main(void
{

int fhandle;
fhandle == _open("TRANSACT.LOG", _a_APPEND

a BINARY
log_receivable(fhandle);
_close(fhandle);

int log_receivable(int fhandle)
{

_O_CREAT I
a RDWR);

1* The log_receivable function prompts for a name and a monetary
* amount and places both values into a buffer (buf). The _write
* function writes the values to the operating system and the
* commit function ensures that they are written to a disk file.
*1

i nt i;
char buf[MAXBUF];

_commit

189

_control 87 , _controlfp

memset(buf. '\0'. MAXBUF);
/* Begin Transaction. */
printf("Enter name: ");
gets(buf);
for(i = 1; buf[i] != '\0'; i++);
/* Write the value as a '\0' terminated string. */
_write(fhandle. buf. i+1);
pri ntf("\n");

memset(buf. '\0'. MAXBUF);
printf("Enter amount: $");
gets(buf);
for(i = 1; buf[i] != '\0'; i++);
/* Write the value as a '\0' terminated string. */
_write(fhandle. buf, i+1);
pri ntf("\n");

/* The commit function ensures that two important pieces of
* data are safely written to disk. The return value of the
* commit function is returned to the calling function.
*/

return _commit(fhandle);

See Also: _creat, _open, _read, _write

_controI87, _controlfp
Get and set the floating-point control word.

unsigned int _controI87(unsigned int new, unsigned int mask);
unsigned int _controlfp(unsigned int new, unsigned int mask);

Routine

_controlS7

_controlfp

Required Header

<float.h>

<float.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

190

The bits in the value returned indicate the floating-point control state. See FLOAT.H
for a complete definition of the bits returned by _controI87.

_controI87, _controlfp

Parameters

Remarks

new New control-word bit values

mask Mask for new control-word bits to set

The _control87 function gets and sets the floating-point control word. The floating
point control word allows the program to change the precision, rounding, and infinity
modes in the floating-point math package. You can also mask or unmask floating-point
exceptions using _controI87. If the value for mask is equal to 0, _control87 gets the
floating-point control word. If mask is nonzero, a new value for the control word is set:
For any bit that is on (equal to 1) in mask, the corresponding bit in new is used to update
the control word. In other words,fpcntrl = (lfpcntrl & -mask) I (new & mask)) where
fpcntrl is the floating-point control word.

Note The run-time libraries mask all floating-point exceptions by default.

_controlfp is a platform-independent, portable version of _controI87. It is nearly identical
to the _control87 function on Intel (x86) platforms and is also supported by the MIPS and
ALPHA platforms. To ensure that your floating-point code is portable to MIPS or ALPHA,
use _controlfp. If you are targeting x86 platforms, use either _control87 or _controlfp.

The only other difference between _control87 and _controlfp is that _controlfp does
not interfere with the DENORMAL OPERAND exception mask. The following
example demonstrates the difference:

_contro187(_EM_INVALID. _MCW_EM); II DENORMAL is unmasked by this call
_controlfp(_EM_INVALID. _MCW_EM); II DENORMAL exception mask remains unchanged

The possible values for the mask constant (mask) and new control values (new) are shown
in Table R.t. Use the portable constants listed below CMCW _EM, _EM_INVALID,
and so forth) as arguments to these functions, rather than supplying the hexadecimal
values explicitly.

Table R.1 Hexadecimal Values

Mask

_MeW_EM
(Interrupt
exception)

Hex Value

Ox0008001F

Constant

_EM_INV ALID

_EM_DENORMAL

_EM_ZERODIVIDE

_EM_OVERFLOW

_EM_UNDERFLOW

_EM_INEXACT

Hex Value

OxOOOOOOlO

Ox00080000

Ox00000008

Ox00000004

Ox00000002

OxOOOOOOOl

(continued)

191

_controI87, _controlfp

Example

192

Table R.1 Hexadecimal Values (continued)

Mask

_MCW_IC
(Infinity control)

_MCW_RC
(Rounding control)

_MCW_PC
(Precision control)

Hex Value

Ox00040000

Ox00000300

Ox00030000

Constant

_IC_AFFINE

_IC_PROJECTIVE

_RC_CHOP

_RC_UP

_RC_DOWN

_RC_NEAR

_PC_24 (24 bits)

_PC_53 (53 bits)

_PC_64 (64 bits)

Hex Value

Ox00040000

OxOOOOOOOO

Ox00000300

Ox00000200

OxOOOOOlOO

OxOOOOOOOO

Ox00020000

OxOOOlOOOO

OxOOOOOOOO

/* CNTRL87.C: This program uses contro187 to output the control
* word, set the precision to 24 bits, and reset the status to
* the default.
*/

#include <stdio.h>
#include <float.h>

void maine void)
{

double a = 0.1;

/* Show original control word and do calculation. */
printf("Original: 0x%.4x\n", _contro187(0, 0));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

/* Set precision to 24 bits and recalculate. */
printf("24-bit: 0x%.4x\n", _contro187(_PC_24, MCW_PC));
printf("%l.lf * %l.lf = %.15e\n", a, a, a * a);

/* Restore to default and recalculate. */
printf("Default: 0x%.4x\n",

_contro187(_CW_DEFAULT, 0xfffff);
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

Output
Original: 0x9001f
0.1 * 0.1 = 1.000000000000000e-002
24-bit: 0xa00lf
0.1 * 0.1 = 9.999999776482582e-003
Default: 0x00lf
0.1 * 0.1 = 1.000000000000000e-002

See Also: _clear87, _status87

_copyslgn
Return one value with the sign of another.

double _copysign(double x, double y);

Routine Required Header

_copysign <float.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

_copysign returns its double-precision floating point argument x with the same sign as
its double-precision floating-point argument y. There is no error return.

Parameters
x Double-precision floating-point value to be changed

y Double-precision floating-point value

See Also: fabs, _chgsign

cos,cosh
Calculate the cosine (cos) or hyperbolic cosine (cosh).

double cos(double x);
double cosh(double x);

Routine

cos

cosh

Required Header

<math.h>

<math.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

cos, cosh

193

cos, cosh

For additional compatibility information, see "Compatihi1ity" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of x.
If x is greater than or equal to 263

, or less than or equal to _263
, a loss of significance in

the result of a call to cos occurs, in which case the function generates a _TLOSS error
and returns an indefinite (same as a quiet NaN).

If the result is too large in a cosh call, the function returns HUGE_VAL and sets
errno to ERANGE. You can modify error handling with _matherr.

Parameter

Example

Output

194

x Angle in radians

/* SINCOS.C: This program displays the sine, hyperbolic
* sine, cosine, and hyperbolic cosine of pi / 2.
*/

#include <math.h>
#include <stdio.h>

void maine void)
{

double pi - 3.1415926535;
double x, y;

x - pi / 2;
y = sine x);
printf("sine %f) = %f\n", x, y);
y .,. sinh(x);
printf("sinh(%f) = %f\n",x, y);
y = cos(x);
printf("cos(%f) == %f\n", x, y);
y == cosh(x);
printf("cosh(%f) = %f\n",x, y);

sine 1.570796) == 1.000000
sinh(1.570796) = 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) == 2.509178

See Also: acos, asin, atan, _matherr, sin, tan

_cprintf
Formats and prints to the console.

int _cprintf(const char *format [, argument] ...);

Routine Required Header Compatibility

_cprintf <conio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_cprintf returns the number of characters printed.

Parameters

Remarks

Example

format Format-control string

argument Optional parameters

The _cprintf function formats and prints a series of characters and values directly to
the console, using the _putch function to output characters. Each argument (if any) is
converted and output according to the corresponding format specification informat.
The format has the same form and function as the format parameter for the printf
function. Unlike the fprintf, printf, and sprintf functions, _cprintf does not translate
linefeed characters into carriage return-linefeed (CR-LF) combinations on output.

1* CPRINTF.C: This program displays
* some variables to the console.
*1

#include <conio.h>

void main(void
{

int i = -16, h 29;
unsigned u = 62511;
char c = 'A' ;
char s[] = "Test";

1* Note that console output does not translate \n as
* standard output does. Use \r\n instead.
*1

_cprintf("%d %.4x %u %c %s\r\n", i, h, u, c, s);

_cprintf

195

Output
-16 001d 62511 A Test

See Also: _cscanf, fprintf, printf, sprintf, vfprintf

_cputs
Puts a string to the console.

int _cputs(const char *string);

Routine Required Header Compatibility

<conio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
If successful, _cputs returns a O. If the function fails, it returns a nonzero value.

Parameter

Remarks

Example

196

string Output string

The _cputs function writes the null-terminated string pointed to by string directly to
the console. A carriage return-linefeed (CR-LF) combination is not automatically
appended to the string.

1* CPUTS.C: This program first displays
* a string to the console.
*1

#include <conio.h>

void maine void
{

1* String to print at console.
* Note the \r (return) character.
*1

char *buffer = "Hello world (courtesy of _cputs)!\r\n";

_cputs(buffer);

Output
Hello world (courtesy of _cputs)!

See Also: _putch

_creat, wcreat
Creates a new file.

int _creat(const char *filename, int pmode);
int _ wcreat(const wchar_t *filename, int pmode);

Routine Required Header Optional Headers Compatibility

- creat <io.h> <sys/types.h>, Win 95, Win NT
<sys/stat.h>, <errno.h>

_wcreat <io.h> or <sys/types.h>, Win NT
<wchar.h> <sys/stat.h>, <errno.h>

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

UBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions, if successful, returns a handle to the created file. Otherwise
the function returns -1 and sets errno as follows:

errno Setting

EACCES

EMFILE

ENOENT

Description

Filename specifies an existing read-only file or specifies a directory
instead of a file

No more file handles are available

The specified file could not be found

Parameters

Remarks

filename Name of new file

pmode Permission setting

The _creat function creates a new file or opens and truncates an existing one.
_ wcreat is a wide-character version of _creat; the filename argument to _ wcreat
is a wide-character string. _ wcreat and _creat behave identically otherwise.

_creat, _ were at

197

_creat, _ wcreat

Example

198

Generic-Text Routine Mappings

TCHAR.H Routine

_tcreat

_UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_wcreat

If the file specified by filename does not exist, a new file is created with the given
permission setting and is opened for writing. If the file already exists and its permission
setting allows writing, _creat truncates the file to length 0, destroying the previous
contents, and opens it for writing. The permission setting, pmode, applies to newly
created files only. The new file receives the specified permission setting after it is
closed for the first time. The integer expression pmode contains one or both of the
manifest constants _S_IWRITE and _S_IREAD, defined in SYS\STAT.H. When
both constants are given, they are joined with the bitwise-OR operator (I). The
pmode parameter is set to one of the following values:

_S_IWRITE Writing permitted

_S_IREAD Reading permitted

_S_IREAD I _S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. All files are always readable;
it is impossible to give write-only permission. Thus the modes _S_IWRITE and
_S_IREAD I _S_IWRITE are equivalent. Files opened using _creat are always
opened in compatibility mode (see _sopen) with _SH_DENYNO.

_creat applies the current file-permission mask to pmode before setting the
permissions (see _umask). _creat is provided primarily for compatibility with
previous libraries. A call to _open with _O_CREAT and _O_TRUNC in the
oflag parameter is equivalent to _creat and is preferable for new code.

1* CREAT.C: This program uses _creat to create
* the file (or truncate the existing file)
* named data and open it for writing.
*1

#include <sys/types.h>
#include <sys/stat.h>
iIi ncl ude <i o. h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int fh;

Output

fh - _creat ("data". _S_1 READ I S 1WRITE):
if (fh == -1)

perror("Couldn't create data file"):
else
{

pri ntf("Created data fil e. \n"):
_close(fh):

Created data file.

See Also: _chmod, _chsize, _close, _dup, _open, _sopen, _umask

cscanf
Reads formatted data from the console.

int _cscanf(const char *format [, argument] ...);

Routine Required Header Compatibility

_cscanf <conio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_cscanf returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return
value is EOF for an attempt to read at end of file. This can occur when keyboard input
is redirected at the operating-system command-line level. A return value of 0 means
that no fields were assigned.

Parameters
format Format-control string

argument Optional parameters

_cscanf

199

ctime, _ wctime

Remarks

Example

Output

The _cscanf function reads data directly from the console into the locations given by
argument. The _getche function is used to read characters. Each optional parameter
must be a pointer to a variable with a type that corresponds to a type specifier in
format. The format controls the interpretation of the input fields and has the same
form and function as the format parameter for the scanf function. While _cscanf
normally echoes the input character, it does not do so if the last call was to _ungetch.

/* CSCANF.C: This program prompts for a string
* and uses cscanf to read in the response.
* Then cscanf returns the number of items
* matched, and the program displays that number.
*/

#include <stdio.h>
#include <conio.h>

void main(void)
{

int result, i[3];

_cprintf("Enter three integers: ");
result = _cscanf("%i %i %i", &i[0], &i[1], &i[2]);
_cprintf("\r\nYou entered");
while(result--)

_cpri ntf("%i" i [result]);
_cprintf("\r\n");

Enter three integers: 1 2 3
You entered 3 2 1

See Also: _cprintf, fscanf, scanf, sscanf

ctime, wctime

200

Convert a time value to a string and adjust for local time zone settings.

char *ctime(const time_t *timer);
wchar_t * _ wctime(const time_t *timer);

Routine

ctime

_wctime

Required Header

<time.h>

<time.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the character string result. If time
represents a date before midnight, January 1, 1970, UTC, the function
returns NULL.

Parameter

Remarks

timer Pointer to stored time

The ctime function converts a time value stored as a time_t structure into a character
string. The timer value is usually obtained from a call to time, which returns the
number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated
universal time (UTC). The string result produced by ctime contains exactly 26
characters and has the form:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The newline character
('\n') and the null character ('\0') occupy the last two positions of the string.

The converted character string is also adjusted according to the local time zone
settings. See the time, _ftime, and loealtime functions for information on
configuring the local time and the _tzset function for details about defining
the time zone environment and global variables.

A call to ctime modifies the single statically allocated buffer used by the gmtime
and loealtime functions. Each call to one of these routines destroys the result of
the previous call. ctime shares a static buffer with the asetime function. Thus,
a call to ctime destroys the results of any previous call to asetime, loealtime,
or gmtime.

_ wetime is a wide-character version of ctime; _ we time returns a pointer to a
wide-character string. _ wetime and ctime behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H
Routine

_tctime

_UNICODE & _MBCS Not
Defined

ctime

_MBCS Defined _UNICODE Defined

ctime _wctime

ctime, _ wctime

201

3wait

Example

Output

1* CTIME.C: This program gets the current
* time in time_t form, then uses ctime to
* display the time in string form.
*1

#include <time.h>
#include <stdio.h>

void main(void)
{

time_t ltime;

time (& It i me);
printf("The time is %s\n", ctime(<ime));

The time is Fri Apr 29 12:25:12 1994

See Also: asctime, _ftime, gmtime, localtime, time

cwait
Waits until another process terminates.

int _cwait(int *termstat, int procHandle, int action);

Routine Required Header Optional Headers Compatibility

<process.h> <errno.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

202

When the specified process has "successfully" completed, _cwait returns the handle
of the specified process and sets termstat to the result code returned by the specified
process. Otherwise, _cwait returns -1 and sets errno as follows:

Value

ECHILD

EINVAL

Description

No specified process exists, procHandle is invalid, or the call to the
GetExitCodeProcess or WaitForSingleObject API failed

action is invalid

Parameters

Remarks

Example

terms tat Pointer to a buffer where the result code of the specified process will be
stored, or NULL

procHandle Handle to the current process or thread

action NULL: Ignored by Windows NT and Windows 95 applications; for other
applications: action code to perform on procHandle

The _cwait function waits for the termination of the process ID of the specified
process that is provided by procHandle. The value of procHandle passed to _cwait
should be the value returned by the call to the _spawn function that created the
specified process. If the process ID terminates before _cwait is called, _cwait
returns immediately. _cwait can be used by any process to wait for any other
known process for which a valid handle (procHandle) exists.

termstat points to a buffer where the return code of the specified process will be
stored. The value of termstat indicates whether the specified process terminated
"normally" by calling the Windows NT ExitProcess API. ExitProcess is called
internally if the specified process calls exit or _exit, returns from main, or reaches
the end of main. See GetExitCodeProcess for more information regarding the
value passed back through termstat. If _cwait is called with a NULL value for
termstat, the return code of the specified process will not be stored.

The action parameter is ignored by Windows NT and Windows 95 because
parent-child relationships are not implemented in these environments. Therefore,
the OS/2 wait function, which allows a parent process to wait for any of its
immediate children to terminate, is not available.

/* CWAIT.C: This program launches several processes and waits
* for a specified process to finish.
*/

#include <windows.h>
#include <process.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* Macro to get a random integer within a specified range */
#define getrandom(min. max) « rand() % (int)«(max) + 1
... - (mi n ») + (mi n »

struct PROCESS
{

int nPid;
char name[40];

3wait

203

Output

204

} process[4]"" { {0, "Ann"}. {0, "Beth"}. {0, "Carl"}.
1+ { 0, "Dave" } };

void maine int argc, char *argv[])
{

}

int termstat, c;

srand((unsigned)time(NULL»; 1* Seed randomizer *1
1* If no arguments, this is the calling process *1
if(a rgc 1)
{

1* Spawn processes in numeric order *1
fore c - 0; c < 4; c++){

_flushall();
process[c].nPid spawnl(_P_NOWAIT, argv[0], argv[0],

process[c].name, NULL);

1* Wait for randomly specified process, and respond when done *1
c getrandom(0, 3);
printf("Come here, %s.\n", process[c].name);
_cwait(&termstat, process[c].nPid, _WAIT_CHILD);
printf("Thank you, %s.\n", process[c].name);

1* If there are arguments, this must be a spawned process *1
else
{

1* Delay for a period determined by process number *1
Sleep((argv[1][0] - 'A' + 1) * 1000L);
printf("Hi, Dad. It's %s.\n", argv[1]);

Hi, Dad. It's Ann.
Come here, Ann.
Thank you, Ann.
Hi, Dad. It's Beth.
Hi, Dad. It's Carl.
Hi, Dad. It's Dave.

See Also: _spawn Functions

difftime
Finds the difference between two times.

double difftime(time_t timerl, time_t timerO);

Routine Required Header Compatibility

difftime <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
difftime returns the elapsed time in seconds, from timerO to timer 1. The value
returned is a double-precision floating-point number.

Parameters

Remarks

Example

timer1 Ending time

timerO Beginning time

The difftime function computes the difference between the two supplied time values
timerO and timerl.

1* DIFFTIME.C: This program calculates the amount of time
* needed to do a floating-point multiply 10 million times.
*1

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void main(void)
{

time_t start. finish;
long loop;
double result. elapsed_time;

printf("Multiplying 2 floating point numbers 10 million times ... \n");

difftime

205

div

Output

div

time(&start):
for(loop = 0: loop < 10000000: loop++)

result = 3.63 * 5.27:
time (& fin ish):

elapsed_time = difftime(finish, start):
printf("\nProgram takes %6.0f seconds.\n", elapsed_time):

Multiplying 2 floats 10 million times ...

Program takes 2 seconds.

See Also: time

Computes the quotient and the remainder of two integer values.

div _t div(int numer, int denom);

Routine Required Header Compatibility

div <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
div returns a structure of type div _t, comprising the quotient and the remainder. The
structure is defined in STDLIB.H.

Parameters

Remarks

206

numer Numerator

denom Denominator

The div function divides numer by denom, computing the quotient and the remainder.
The div _t structure contains int quot, the quotient, and int rem, the remainder. The
sign of the quotient is the same as that of the mathematical quotient. Its absolute value
is the largest integer that is less than the absolute value of the mathematical quotient.
If the denominator is 0, the program terminates with an error message.

Example

Output

/* DIV.C: This example takes two integers as command-line
* arguments and displays the results of the integer
* division. This program accepts two arguments on the
* command line following the program name, then calls
* div to divide the first argument by the second.
* Finally, it prints the structure members quot and rem.
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main(int argc, char *argv[])
(

int x,y;
div_t div_result;

x = atoi(argv[1]);
y = atoi(argv[2]);

printf("x is %d, y is %d\n", x, y);
div_result = div(x, y);
printf("The quotient is %d, and the remainder is %d\n",

div_result.quot, div_result.rem);

x is 876, y is 13
The quotient is 67, and the remainder is 5

See Also: ldiv

_dup,_dup2
Create a second handle for an open file Cdup), or reassign a file handle Cdup2).

int_dup(int handle);
int _dup2(int handle 1 , int handle2);

Routine Required Header

<io.h>

<io.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

207

Return Value
_dup returns a new file handle. _dup2 returns 0 to indicate success. If an error occurs,
each function returns -1 and sets errno to EBADF if the file handle is invalid, or to
EMFILE if no more file handles are available.

Parameters

Remarks

Example

208

handle, handlel Handles referring to open file

handle2 Any handle value

The _dup and _dup2 functions associate a second file handle with a currently open
file. These functions can be used to associate a predefined file handle, such as that for
stdout, with a different file. Operations on the file can be carried out using either file
handle. The type of access allowed for the file is unaffected by the creation of a new
handle. _dup returns the next available file handle for the given file#. _dup2 forces
handle2 to refer to the same file as handlel. If handle2 is associated with an open file
at the time of the call, that file is closed.

Both _dup and _dup2 accept file handles as parameters. To pass a stream (FILE *)
to either of these functions, use _fileno. The fileno routine returns the file handle
currently associated with the given stream. The following example shows how to
associate stderr (defined as FILE * in STDIO.H) with a handle:

cstderr = _dup(_fileno(stderr));

/* DUP.C: This program uses the variable old to save the original
* stdout. It then opens a new file named new and forces stdout to
* refer to it. Finally, it restores stdout to its original state.
*/

#include <io.h>
#include <stdlib.h>
#include <stdio.h>

void main(void
{

int old;
FILE *new;

old = _dup(1) ; /* "old" now refers

i f(
{

/* Note: file handle
old == -1)

perror("_dup(1) fai 1 ure");
exit(1);

1
to "stdout"
== "stdout"

write(old, "This goes to stdout first\r\n", 27);
if((new = fopen("data", "w ..)) == NULL)
{

puts("Can't open file 'data'\n");
exit(1);

*/
*/

Output

1* stdout now refers to file "data" *1
if(-1 == _dup2(_fileno(new), 1))
{

perror("Can't _dup2 stdout");
ex it (1);

puts("This goes to file 'data'\r\n");

1* Flush stdout stream buffer so it goes to correct file *1
fflush(stdout);
fclose(new);

1* Restore original stdout *1
_dup2(old, 1);
puts("This goes to stdout\n");
puts("The file 'data' contains:");
system("type data");

This goes to stdout first
This goes to file 'data'

This goes to stdout

The file 'data' contains:

This goes to file 'data'

See Also: _close, _creat, _open

ecvt
Converts a double number to a string.

char * _ecvt(double value, int count, int *dec, int *sign);

Function Required Header Compatibility

<stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSYCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

_ecvt returns a pointer to the string of digits. There is no error return.

209

Parameters

Remarks

Example

Output

210

value Number to be converted

count Number of digits stored

dec Stored decimal-point position

sign Sign of converted number

The _eevt function converts a floating-point number to a character string. The value
parameter is the floating-point number to be converted. This function stores up to
count digits of value as a string and appends a null character ('\0'). If the number of
digits in value exceeds count, the low-order digit is rounded. If there are fewer than
count digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of
value can be obtained from dec and sign after the call. The dec parameter points to an
integer value giving the position of the decimal point with respect to the beginning of
the string. A 0 or negative integer value indicates that the decimal point lies to the left
of the first digit. The sign parameter points to an integer that indicates the sign of the
converted number. If the integer value is 0, the number is positive. Otherwise, the
number is negative.

_eevt and _fevt use a single statically allocated buffer for the conversion. Each call
to one of these routines destroys the result of the previous call.

1* ECVT.C: This program uses _ecvt to convert a
* floating-point number to a character string.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

int
char

decimal.
*buffer;

sign;

int preclslon = 10;
double source = 3.1415926535;

buffer = _ecvt(source. precision. &decimal. &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n".

source. buffer. decimal. sign);

source: 3.1415926535 buffer: '3141592654' decimal: 1 sign: 0

See Also: atof, _fevt, _gevt

_endthread, endthreadex
void _endthread(void);
void _endthreadex(unsigned retval);

Function

_endthread

_endthreadex

Required Header

<process.h>

<process.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCMT.LIB

MSVCRT.LIB

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

retval Thread exit code

The _endthread and _endthreadex functions terminate a thread created by
_beginthread or _beginthreadex, respectively. You can call_endthread or
_endthreadex explicitly to terminate a thread; however, _end thread or
_endthreadex is called automatically when the thread returns from the routine
passed as a parameter to _begin thread or _beginthreadex. Terminating a thread
with a call to endthread or _endthreadex helps to ensure proper recovery of
resources allocated for the thread.

Note For an executable file linked with LlBCMILlB, do not call the Win32 ExitThread
API; this prevents the run-time system from reclaiming allocated resources. _endthread
and _endthreadex reclaim allocated thread resources and then call ExitThread.

_endthread automatically closes the thread handle. [This behavior differs from
the Win32 ExitThread API.) Therefore, when you use _beginthread and
_endthread, do not explicitly close the thread handle by calling the Win32
CloseHandle API.

Like the Win32 ExitThread API, _endthreadex does not close the thread
handle. Therefore, when you use _beginthreadex and _endthreadex, you
must close the thread handle by calling the Win32 CloseHandle API.

_endthread, _endthreadex

211

_endthread, _endthreadex

Example

212

1* BEGTHRD.C illustrates multiple threads using functions:
*
*
*
*

_beginthread _endthread

* This program requires the multithreaded library. For example.
* compile with the following command line:
* Cl IMT 10 "_X86_" BEGTHRD.C
*
* If you are using the Visual C++ development environment. select the
* Multi-Threaded runtime library in the compiler Project Options dialog
* box.
*
*1

#include <windows.h>
#include <process.h>
#include <stddef.h>
#include <stdlib.h>
#include <conio.h>

1* _beginthread. endthread *1

void Bounce(void *ch);
void CheckKey(void *dummy);

1* GetRandom returns a random integer between min and max. *1
#define GetRandom(min. max) «rand() % (int)«(max) + 1) - (min») + (min»

BOOl repeat = TRUE; 1* Global repeat flag and video variable *1
HANDLE hStdOut; 1* Handle for console window *1
CONSOlE_SCREEN_BUFFER_INFO csbi; 1* Console information structure *1

void main()
{

CHAR ch = 'A';

hStdOut = GetStdHandle(STD_OUTPUT_HANDlE);

1* Get display screen's text row and column information. *1
GetConsoleScreenBufferInfo(hStdQut. &csbi);

1* launch CheckKey thread to check for terminating keystroke. *1
_beginthread(CheckKey. 0. NUll);

1* loop until CheckKey terminates program. *1
whil e (repeat)
{

1* On first loops. launch character threads. *1
_beginthread(Bounce. 0. (void *) (ch++));

1* Wait one second between loops. *1
Sleep(1000l);

_endthread,_endthreadex

1* CheckKey - Thread to wait for a keystroke, then clear repeat flag. *1
void CheckKey(void *dummy)
{

_getch();
repeat - 0; 1* endthread implied *1

1* Bounce - Thread to create and and control a colored letter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*1

void Bounce(void *ch
{

1* Generate letter and color attribute from thread argument. *1
char blankcell - 0x20;
char blockcell - (char) ch;
BOOl first - TRUE;
COORD oldcoord, newcoord;
DWORD result;

1* Seed random number generator and get initial location. *1
srand(_threadid);
newcoord.X = GetRandom(0, csbi.dwSize.X - 1);
newcoord.Y - GetRandom(0, csbi.dwSize.Y - 1);
while(repeat)
{

1* Pause between loops. *1
Sleep(100l);

1* Blank out our old position on the screen, and draw new letter. *1
if(first)

first = FALSE;
else
WriteConsoleOutputCharacter(hStdOut, &blankcell, 1, oldcoord, &result);
WriteConsoleOutputCharacter(hStdOut, &blockcell, 1, newcoord, &result);

1* Increment the coordinate for next placement of the block. *1
oldcoord.X - newcoord.X;
oldcoord.Y = newcoord.Y;
newcoord.X += GetRandom(-1, 1);
newcoord.Y += GetRandom(-1, 1);

1* Correct placement (and beep) if about to go off the screen. *1
if(newcoord.X < 0)

newcoord.X = 1;
else if(newcoord.X == csbi .dwSize.X

newcoord.X = csbi .dwSize.X - 2;
else if(newcoord.Y < 0)

newcoord.Y = 1;
else if(newcoord.Y == csbi .dwSize.Y

newcoord.Y = csbi .dwSize.Y - 2;

213

/* If not at a screen border. continue. otherwise beep. */
else

continue;
Beep(((char) ch - 'A') * 100. 175);

/* endthread given to terminate */
_endthread();

See Also: _beginthread

eof
Tests for end-of-file.

int _eof(int handle);

Function Required Header Optional Headers Compatibility

<io.h> <errno.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_eof returns 1 if the current position is end of file, or 0 if it is not. A return value of -1
indicates an error; in this case, errno is set to EBADF, which indicates an invalid file
handle.

Parameter

Remarks

Example

214

handle Handle referring to open file

The _eof function determines whether the end of the file associated with handle has
been reached.

/* EOF.C: This program reads data from a file
* ten bytes at a time until the end of the
* file is reached or an error is encountered.
*/

/linclude <io.h>
/linclude <fcntl.h>
/linclude <stdio.h>
/linclude <stdlib.h>
void maine void)

_exec, _ wexec Functions

Output

int fh, count, total - 0;
char buf[10];
if((fh - _open("eof.c", _O_RDONLY)) == - 1)
{

perror("Open failed");
exit(1);

/* Cycle until end of file reached: */
while(!_eof(fh))
{

/* Attempt to read in 10 bytes: */
if((count = _read(fh, buf, 10)) == -1)
{

perror("Read error");
break;
}

/* Total actual bytes read */
total += count;

pri ntf("Number of bytes read = %d\n", tot a 1);
_close(fh);

Number of bytes read = 754

See Also: clearerr, feof, ferror, perror

_exec, wexec Functions
Each of the functions in this family loads and executes a new process.

_exeel, _ wexeel

_exeele, _ wexeele

_exeelp, _wexeelp

_exeelpe, _ wexeelpe

_execv, _wexecv

_execve, _ wexecve

_execvp, _ wexecvp

_execvpe, _ wexecvpe

The letter(s) at the end of the function name determine the variation.

_exec Function
Suffix

e

p

v

Description

envp, array of pointers to environment settings, is passed to new process.

Command-line arguments are passed individually to _exec function.
Typically used when number of parameters to new process is known in
advance.

PATH environment variable is used to find file to execute.

argv, array of pointers to command-line arguments, is passed to _exec.
Typically used when number of parameters to new process is variable.

215

_exec, _ wexec Functions

Remarks

216

Each of the _exec functions loads and execute a new process. All _exec functions
use the same operating-system function. The _exec functions automatically handle
multibyte-character string arguments as appropriate, recognizing multibyte-character
sequences according to the multibyte code page currently in use. The _ wexec
functions are wide-character versions of the _exec functions. The _ wexec functions
behave identically to their _exec family counterparts except that they do not handle
multibyte-character strings.

Generic-Text Routine Mappings:

TCHAR.H Routine UNICODE & MBCS MBCS Defined UNICODE Defined - - -
Not Defined

texecl execl execl wexecl - - - -

texecle execle execle wexecle - - - -

_texeclp _execlp _execlp _wexeclp

_texeclpe _execlpe _execlpe _wexeclpe

- texecv _execv - execv - wexecv

_texecve _execve _execve - wexecve

_texecvp _execvp _execvp _wexecvp

_texecvpe _execvpe _execvpe _wexecvpe

When a call to an _exec function is successful, the new process is placed in the
memory previously occupied by the calling process. Sufficient memory must be
available for loading and executing the new process.

The cmdname parameter specifies the file to be executed as the new process. It can
specify a full path (from the root), a partial path (from the current working directory),
or a filename. If cmdname does not have a filename extension or does not end with a
period (.), the _exec function searches for the named file. If the search is unsuccessful,
it tries the same base name with the .COM extension and then with the .EXE, .BAT,
and .CMD extensions. If cmdname has an extension, only that extension is used in the
search. If cmdname ends with a period, the _exec function searches for cmdname with
no extension. _execlp, _execlpe, _execvp, and _execvpe search for cmdname (using
the same procedures) in the directories specified by the PATH environment variable.
If cmdname contains a drive specifier or any slashes (that is, if it is a relative path), the
_exec call searches only for the specified file; the path is not searched.

Parameters are passed to the new process by giving one or more pointers to character
strings as parameters in the _exec call. These character strings form the parameter list
for the new process. The combined length of the inherited environment settings and
the strings forming the parameter list for the new process must not exceed 32K bytes.
The terminating null character ('\0') for each string is not included in the count, but
space characters (inserted automatically to separate the parameters) are counted.

_exec, _ wexec Functions

The argument pointers can be passed as separate parameters (in _execl, _execle,
_execlp, and _execlpe) or as an array of pointers (in _execv, _execve, _execvp, and
_execvpe). At least one parameter, argO, must be passed to the new process; this
parameter is argv[O] of the new process. Usually, this parameter is a copy of
c11ldna11le. (A different value does not produce an error.)

The _execl, _execle, _execlp, and _execlpe calls are typically used when the number
of parameters is known in advance. The parameter argO is usually a pointer to
cmdllame. The parameters arg 1 through argn point to the character strings forming
the new parameter list. A null pointer must follow argn to mark the end of the
parameter list.

The _execv, _execve, _execvp, and _execvpe calls are useful when the number of
parameters to the new process is variable. Pointers to the parameters are passed as an
array, argv. The parameter argv[O] is usually a pointer to c11ldna11le. The parameters
argv[1] through argv[n] point to the character strings forming the new parameter
list. The parameter argv[n+l] must be a NULL pointer to mark the end of the
parameter list.

Files that are open when an _exec call is made remain open in the new process. In
_execl, _execlp, _execv, and _execvp calls, the new process inherits the environment
of the calling process. _execle, _execlpe, _execve, and _execvpe calls alter the
environment for the new process by passing a list of environment settings through the
envp parameter. envp is an array of character pointers, each element of which (except
for the final element) points to a null-terminated string defining an environment
variable. Such a string usually has the form NAME=value where NAME is the name
of an environment variable and value is the string value to which that variable is set.
(Note that value is not enclosed in double quotation marks.) The final element of the
ellVp array should be NULL. When ellVp itself is NULL, the new process inherits the
environment settings of the calling process.

A program executed with one of the _exec functions is always loaded into memory as
if the "maximum allocation" field in the program's .EXE file header were set to the
default value of OxFFFFH. You can use the EXEHDR utility to change the maximum
allocation field of a program; however, such a program invoked with one of the
_exec functions may behave differently from a program invoked directly from the
operating-system command line or with one of the _spawn functions.

The _exec calls do not preserve the translation modes of open files. If the new process
must use files inherited from the calling process, use the _setmode routine to set the
translation mode of these files to the desired mode. You must explicitly flush (using
fflush or _flushall) or close any stream before the _exec function call. Signal settings
are not preserved in new processes that are created by calls to _exec routines. The
signal settings are reset to the default in the new process.

217

_exec, _ wexec Functions

Example

218

/* EXEC.C illustrates the different versions of exec including:
* execl execle _execlp _execlpe
* execv execve _execvp _execvpe
*
* Although EXEC.C can exec any program, you can verify how
* different versions handle arguments and environment by
* compiling and specifying the sample program ARGS.C. See
* SPAWN.C for examples of the similar spawn functions.
*/

#include <stdio.h>
#include <conio.h>
#include <process.h>

char *my_env[] =
{

/* Environment for exec?e */

} ;

"THIS=environment will be",
"PASSED=to new process by",
"the EXEC=functions",
NULL

void main()
{

char *args[4], prog[80];
int ch;

printf("Enter name of program to exec: ");
gets(prog);
pri ntf("1. execl 2. _execl e 3. _execl p 4. _execl pe\n");
printf(" 5. _execv 6. execve 7. _execvp 8. _execvpe\n");
printf("Type a number from 1 to 8 (or 0 to quit): ");
ch = _getche();
if((ch < '1') II (ch > '8'))

exit(1);
printf("\n\n");

/* Arguments for _execv? */
args[0] = prog;
args[1] "exec??";
args[2] "two";
args[3] NULL;

switch (ch
{

case '1':
_execl(prog, prog, "_execl", "two", NULL);
break;

case '2':
_execle(prog, prog, "_execle", "two", NULL, my_env);
break;

case '3':
_execlp(prog, prog, "_execlp", "two", NULL);
break;

_exec, _ wexec Functions

case '4':
_execlpe(prog, prog, "_execlpe", "two", NULL, my_env):
break:

case '5':
_execv(prog, args):
break:

case '6':
_execve(prog, args, my_env):
break:

case '7':
_execvp(prog, args):
break:

case '8':
_execvpe(prog, args, my_env):
break:

default:
break:

/* This point is reached only if exec fails. */
printf("\nProcess was not execed."):
exit(0):

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

_execl, _ wexecl
Load and execute new child processes.

int _execl(const char *cmdname, const char *argO, ... const char *argn, NULL);
int _ wexecl(const wchar_t *cmdname, const wchar_t *argO, ...

... const wchar_t *argn, NULL);

Function

_execl

_wexecl

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

219

_exec, _ wexec Functions

errno Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

Example

cmdname Path of file to be executed

argO, ... argn List of pointers to parameters

Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

See Example on page 218.

_execle, _ wexecle

220

Load and execute new child processes.

int _execle(const char *cmdname, const char *argO, ... const char *argn,
.. NULL, const char *const *envp);

int _wexecle(const wchar_t *cmdname, const wchar_t *argO, ...
.. const wchar_t *argn, NULL, const char *const *envp);

Function

_execle

_wexecle

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_exec, _ wexec Functions

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES
EMFILE

ENOENT
ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters .

Remarks

Example

cmdname Path of file to execute

argO, ... argn List of pointers to parameters

envp Array of pointers to environment settings

Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter and also passing an array of pointers to environment
settings.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

See Example on page 218.

_execlp, _ wexeclp
Load and execute new child processes.

int _execlp(const char *cmdname, const char *argO, ... const char *argn, NULL);
int _wexeclp(const wchar_t *cmdname, const wchar_t *argO, ...

... const wchar_t *argn, NULL);

Function Required Header Optional Headers Compatibility

_execlp <process.h> <errno.h> Win 95, Win NT

_wexeclp <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see "Compatibility" in the Introduction.

221

_exec, _wexec Functions

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES
EMFILE

ENOENT
ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

Example

cmdname Path of file to execute

argO, ... argn List of pointers to parameters

Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter and using the PATH environment variable to find
the file to execute.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

See Example on page 218.

_execlpe, _ wexeclpe

222

Load and execute new child processes.

int _execlpe(const char *cmdname, const char *argO, ... const char *argn,
... NULL, const char *const *envp);

int _wexeclpe(const wchar_t *cmdname, const wchar_t *argO, ...
... const wchar_t *argn, NULL, const wchar_t *const *envp);

_exec, _ wexec Functions

Function

_execlpe

_wexeclpe

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT
ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

Example

cmdname Path of file to execute

argO, ... argn List of pointers to parameters

envp Array of pointers to environment settings

Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter and also passing an array of pointers to environment
settings. These functions use the PATH environment variable to find the file to
execute.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

See Example on page 218.

223

_exec, _ wexec Functions

_execv, _ wexecv
Load and execute new child processes.

int _execv(const char *cmdname, const char *const *argv);
int _wexecv(const wchar_t *cmdname, const wchar_t *const *argv);

Function

_execv

_wexecv

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT
ENOEXEC

ENOMEM

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

Example

224

cmdname Path of file to execute

argv Array of pointers to parameters

Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

See Example on page 218.

_exec, _ wexec Functions

_execve, wexecve
Load and execute new child processes.

int _execve(const char *cmdname, const char *const *argv, const char *const *envp);
int _wexecve(const wchar_t *cmdname, const wchar_t *const *argv,

... const wchar_t *const *envp);

Function

_execve

_wexecve

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LlBC.LlB

LlBCMT.LlB

MSVCRT.LlB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG

EACCES
EMFILE

ENOENT
ENOEXEC

ENOMEM

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

cmdname Path of file to execute

argv Array of pointers to parameters

envp Array of pointers to environment settings

Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments and an array of pointers to environment settings.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

225

_exec, _wexec Functions

Example
See Example on page 218.

Load and execute new child processes.

int _execvp(const char *cmdname, const char *const *argv);
int _wexecvp(const wchar_t *cmdname, const wchar_t *const *argv);

Function

_execvp

_wexecvp

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters

Remarks

226

cmdname Path of file to execute

argv Array of pointers to parameters

Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments and using the PATH environment variable to find the file
to execute.

_exec, _ wexec Functions

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

_execvpe, _ wexecvpe
Load and execute new child processes.

int _execvpe(const char *cmdname, const char *const *argv, const char *const *envp);
int _ wexecvpe(const wchar_t *cmdname, const wchar_t *const *argv,

... const wchar_t *const *envp);

Function

_execvpe

_wexecvpe

Required Header

<process.h>

<process.h> or
<wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value

E2BIG

EACCES

EMFILE

ENOENT

ENOEXEC

ENOMEM

Parameters

Description

The space required for the arguments and environment settings
exceeds 32K.

The specified file has a locking or sharing violation.

Too many files open (the specified file must be opened to determine
whether it is executable).

File or path not found.

The specified file is not executable or has an invalid executable-file
format.

Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

cmdname Path of file to execute

argv Array of pointers to parameters

envp Array of pointers to environment settings

227

exit, _exit

Remarks

Example

Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments and an array of pointers to environment settings. These
functions use the PATH environment variable to find the file to execute.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

See Example on page 218.

exit, exit
Terminate the calling process after cleanup (exit) or immediately (_exit).

void exit(int status);
void _exit(int status);

Function

exit

_exit

Required Header

<process.h> or <stdlib.h>

<process.h> or <stdlib.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

228

status Exit status

The exit and _exit functions terminate the calling process. exit calls, in last-in
first-out (LIFO) order, the functions registered by atexit and _onexit, then flushes
all file buffers before terminating the process. _exit terminates the process without
processing atexit or _onexit or flushing stream buffers. The status value is typically
set to 0 to indicate a normal exit and set to some other value to indicate an error.

Although the exit and _exit calls do not return a value, the low-order byte of status
is made available to the waiting calling process, if one exists, after the calling process
exits. The status value is available to the operating-system batch command
ERRORLEVEL and is represented by one of two constants: EXIT_SUCCESS,
which represents a value of 0, or EXIT_FAILURE, which represents a value of 1.
The behavior of exit, _exit, _cexit, and _c_exit is as follows:

Example

exp

Function

exit

Description

Performs complete C library termination procedures, terminates the
process, and exits with the supplied status code.

Performs "quick" C library termination procedures, terminates the
process, and exits with the supplied status code.

Performs complete C library termination procedures and returns
to the caller, but does not terminate the process.

Performs "quick" C library termination procedures and returns
to the caller, but does not terminate the process.

/* EXITER.C: This program prompts the user for a yes
* or no and returns an exit code of 1 if the
* user answers Y or y; otherwise it returns 0. The
* error code could be tested in a batch file.
*/

#include <conio.h>
#include <stdlib.h>

void main(void)
{

int ch;

_cputs("Yes or no? ");
ch ... _getch();
_cputs("\r\n");
if(toupper(ch) -- 'Y')

exit(1):
else

exit(0):

See Also: abort, atexit, _cexit, _exec Function Overview, _onexit, _spawn
Function Overview, system

Calculates the exponential.

double exp(double x);

Function Required Header Compatibility

exp <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

exp

229

_expand

Return Value
The exp function returns the exponential value of the floating-point parameter, x,
if successful. On overflow, the function returns INF (infinite) and on underflow,
exp returns o.

Parameter

Example

Output

x Floating-point value

/* EXP.C */

#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 2.302585093, y;

y = exp(x);
printf("exp(%f) = %f\n", x, y);

exp(2.302585) = 10.000000

See Also: log

_expand
Changes the size of a memory block.

void * _expand(void *memblock, size_t size);

Function Required Header Compatibility

_expand <malloc.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

230

_expand returns a void pointer to the reallocated memory block. _expand, unlike
realloc, cannot move a block to change its size. Thus, if there is sufficient memory
available to expand the block without moving it, the memblock parameter to _expand
is the same as the return value.

_expand returns NULL if there is insufficient memory available to expand the block
to the given size without moving it. The item pointed to by memblock is expanded as
much as possible in its current location.

The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To check the new size of the item, use _msize. To get a
pointer to a type other than void, use a type cast on the return value.

Parameters

Remarks

Example

Output

memblock Pointer to previously allocated memory block

size New size in bytes

The _expand function changes the size of a previously allocated memory block by
trying to expand or contract the block without moving its location in the heap. The
memblock parameter points to the beginning of the block. The size parameter gives
the new size of the block, in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes. memblock can also point to a block that has been freed,
as long as there has been no intervening call to calloc, _expand, malloc, or realloc. If
memblock points to a freed block, the block remains free after a call to _expand.

When the application is linked with a debug version of the C run-time libraries,
_expand resolves to _expand_dbg.

/* EXPAND.C */

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{

char *bufchar;
printf("Allocate a 512 element buffer\n");
if((bufchar = (char *)calloc(512, sizeof(char))) NULL)

exit(1);
pri ntf("Allocated %d bytes at %Fp\n",

_msize(bufchar), (void *)bufchar);
if((bufchar = (char *)_expand(bufchar, 1024)) NULL)

printf("Can't expand");
else

pri ntf("Expanded block to %d bytes at %Fp\n",
_msize(bufchar), (void *)bufchar);

/* Free memory */
free(bufchar);
exit(0);

Allocate a 512 element buffer
Allocated 512 bytes at 002C12BC
Expanded block to 1024 bytes at 002C12BC

_expand

231

fabs

See Also: calloc, free, malloc, _msize, realloc

fabs
Calculates the absolute value of the floating-point argument.

double fabs(double x);

Function Required Header Compatibility

fabs <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
fabs returns the absolute value of its argument. There is no error return.

Parameter
x Floating-point value

Example

Output

232

/* ABS.C: This program computes and displays
* the absolute values of several numbers.
*/

#include
#include
#include

<stdio.h>
<math.h>
<stdlib.h>

void main(void)
{

int ix -4, iy;
long 1 x -41567L, ly;
double dx -3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

ly = labs(lx);
printf("The absolute value of %ld is %ld\n", lx, ly);

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

See Also: abs, _cabs, labs

fclose, fcloseall
Closes a stream (fclose) or closes all open streams CfcloseaIl).

int fclose(FILE *stream);
int _fcloseall(void);

Function

fclose

_fcloseall

Required Header

<stdio.h>

<stdio.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fclose returns 0 if the stream is successfully closed. _fcloseall returns the total number
of streams closed. Both functions return EOF to indicate an error.

Parameter

Remarks

Example

stream Pointer to FILE structure

The fclose function closes stream. _fcloseall closes all open streams except stdin,
stdout, stderr (and, in MS-DOS®, _stdaux and _stdprn). It also closes and deletes
any temporary files created by tmpfile. In both functions, all buffers associated with
the stream are flushed prior to closing. System-allocated buffers are released when the
stream is closed. Buffers assigned by the user with setbuf and setvbuf are not
automatically released.

/* FOPEN.C: This program opens files named "data"
* and "data2".It uses fclose to close "data" and
* fcloseall to close all remaining files.
*/

#include <stdio.h)

FILE *stream, *stream2;

void main(void)
{

int numclosed;

fclose, _fcloseall

233

Output

/* Open for read (will fail if file "data" does not exist) */
if((stream = fopen("data", "r" » == NULL)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n");

/* Open for write */
i f((s t rea m 2 = fop e n (" d a t a 2", "w+" » == NUL L)

pri ntf("The fi 1 e 'data2' was not opened\n");
else

pri ntf("The fil e 'data2' was opened\n");

/* Close stream */
if(fclose(stream

printf("The file 'data' was not closed\n");

/* All other files are closed: */
numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numclosed);

The file 'data' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

See Also: _close, _fdopen, fflush, fopen, freopen

fcvt
Converts a floating-point number to a string.

ehar * _fevt(double value, int count, int *dec, int *sign);

Function Required Header Compatibility

<stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_fevt returns a pointer to the string of digits. There is no error return.

Parameters
value Number to be converted

count Number of digits after decimal point

234

Remarks

Example

Output

dec Pointer to stored decimal-point position

sign Pointer to stored sign indicator

The _fcvt function converts a floating-point number to a null-terminated character
string. The value parameter is the floating-point number to be converted. _fcvt stores
the digits of value as a string and appends a null character ('\0'). The count parameter
specifies the number of digits to be stored after the decimal point. Excess digits are
rounded off to count places. If there are fewer than count digits of precision, the string
is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of
value can be obtained from dec and sign after the call. The dec parameter points to an
integer value; this integer value gives the position of the decimal point with respect to
the beginning of the string. A zero or negative integer value indicates that the decimal
point lies to the left of the first digit. The parameter sign points to an integer indicating
the sign of value. The integer is set to 0 if value is positive and is set to a nonzero
number if value is negative.

_ecvt and _fcvt use a single statically allocated buffer for the conversion. Each call to
one of these routines destroys the results of the previous call.

1* FCVT.C: This program converts the constant
* 3.1415926535 to a string and sets the pointer
* *buffer to point to that string.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

int decimal, sign;
char *buffer;
double source = 3.1415926535;

buffer = _fcvt(source, 7, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",

source, buffer, decimal, sign);

source: 3.1415926535 buffer:' 31415927'

See Also: atof, _ecvt, _gcvt

decimal: 1 sign: 0

235

_fdopen, _ wfdopen

_fdopen, _wfdopen
Associate a stream with a file that was previously opened for low-level 1/0.

FILE * _fdopen(int handle, const char *mode);
FILE * _ wfdopen(int handle, const wchar _t *mode);

Function Required Header Compatibility

_fdopen

_wfdopen

<stdio.h>

<stdio.h> or <wchar.h>

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the open stream. A null pointer value
indicates an error.

Parameters

Remarks

236

handle Handle to open file

mode Type of file access

The _fdopen function associates an 110 stream with the file identified by handle, thus
allowing a file opened for low-level 110 to be buffered and formatted. _wfdopen is
a wide-character version of _fdopen; the mode argument to _ wfdopen is a
wide-character string. _ wfdopen and _fdopen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tfdopen 3dopen _fdopen _wfdopen

The mode character string specifies the type of file and file access.

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the fopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending); creates the file first if it
doesn't exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it doesn't exist.

When a file is opened with the "a" or "a+" access type, all write operations occur
at the end of the file. The file pointer can be repositioned using fseek or rewind, but
is always moved back to the end of the file before any write operation is carried out.
Thus, existing data cannot be overwritten. When the "r+", "w+", or "a+" access
type is specified, both reading and writing are allowed (the file is said to be open for
"update"). However, when you switch between reading and writing, there must be an
intervening fflush, fsetpos, fseek, or rewind operation. The current position can be
specified for the fsetpos or fseek operation, if desired.

In addition to the above values, the following characters can be included in mode to
specify the translation mode for newline characters:

t Open in text (translated) mode. In this mode, carriage return-linefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated to CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading/writing, fopen
checks for a CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file that ends
with a CTRL+Z may cause fseek to behave improperly near the end of the file.

b Open in binary (untranslated) mode; the above translations are suppressed.

c Enable the commit flag for the associated filename so that the contents of the
file buffer are written directly to disk if either fflush or _flushall is called.

n Reset the commit flag for the associated filename to "no-commit." This is the
default. It also overrides the global commit flag if you link your program with
COMMODE.OBJ. The global commit flag default is "no-commit" unless you
explicitly link your program with COMMODE.OBJ.

The t, c, and n mode options are Microsoft extensions for fopen and _fdopen and
should not be used where ANSI portability is desired.

If tor b is not given in mode, the default translation mode is defined by the global
variable _fmode. If t or b is prefixed to the argument, the function fails and
returns NULL. For a discussion of text and binary modes, see "Text and Binary
Mode File I/O."

_fdopen, _ wfdopen

237

_fdopen, _ wfdopen

Example

238

Valid characters for the mode string used in fopen and _fdopen correspond to oflag
arguments used in _open and _sopen, as follows:

Characters in
mode String Equivalent of/ag Value for _openLsopen

a

a+

r

r+

w

w+

b

c

n

0 WRONLY I_O_APPEND
(usually _O_WRONLY I_O_CREAT I_O_APPEND)

_O_RDWR I _O_APPEND
(usually _O_RDWR I_O_APPEND I_O_CREAT)

_O_RDONLY

_O_RDWR

_O_WRONLY (usually _O_WRONLY I_O_CREAT I_O_TRUNC)

_O_RDWR (usually _O_RDWR I_O_CREAT I_O_TRUNC)

_O_BINARY

_O_TEXT

None

None

1* FDOPEN.C: This program opens a file using low
* level 1/0. then uses _fdopen to switch to stream
* access. It counts the lines in the file.
*1

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

void maine void
{

FILE *stream;
int fh. count = 0;
cha r i nbuf[128] ;

1* Open a file handle. *1
if((fh = _open("_fdopen.c". _O_RDONLY » == -1)

exit(1);

1* Change handle access to stream access. *1
if((stream"" _fdopen(fh. "r" » == NULL)

exit(1);

while(fgets(inbuf. 128. stream) != NULL)
count++;

Output

/* After _fdopen. close with fclose. not close. */
fclose(stream);
printf("Lines in file: %d\n". count);

Lines in file: 32

See Also: _dup, fclose, fopen, freopen, _open

feof
Tests for end-of-file on a stream.

int feof(FILE *stream);

Function Required Header Compatibility

feof <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The feof function returns a nonzero value after the first read operation that attempts to
read past the end of the file. It returns 0 if the current position is not end of file. There
is no error return.

Parameter

Remarks

Example

stream Pointer to FILE structure

The feof routine (implemented both as a function and as a macro) determines whether
the end of stream has been reached. When end of file is reached, read operations
return an end-of-file indicator until the stream is closed or until rewind, fsetpos,
fseek, or clearerr is called against it.

1* FEOF.C: This program uses feof to indicate when
* it reaches the end of the file FEOF.C. It also
* checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

feof

239

ferror

Output

void main(void)
{

int count. total 0;
char buffer[100];
FILE *stream;
if((stream = fopen("feof.c". "r"))

exit(1);

/* Cycle until end of file reached: */
while(!feof(stream))
{

/* Attempt to read in 10 bytes: */

NULL)

count = fread(buffer. sizeof(char). 100. stream);
if(ferror(stream)) {

perror("Read error");
break;

/* Total up actual bytes read */
total += count;

pri ntf("Number of bytes read %d\n". total);
fclose(stream);

Number of bytes read = 745

See Also: ciearerr, _eof, ferror, perror

ferror
Tests for an error on a stream.

int ferror(FILE *stream);

Function Required Header Compatibility

ferror <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If no error has occurred on stream, ferror returns O. Otherwise, it returns a
nonzero value.

240

Parameter

Remarks

Example

Output

stream Pointer to FILE structure

The ferror routine (implemented both as a function and as a macro) tests for a reading
or writing error on the file associated with stream. If an error has occurred, the error
indicator for the stream remains set until the stream is closed or rewound, or until
clearerr is called against it.

/* FEOF.C: This program uses feof to indicate when
* it reaches the end of the file FEOF.C. It also
* checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

int count, total 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r"))
exit(1);

/* Cycle until end of file reached: */
while(!feof(stream))
(

/* Attempt to read in 10 bytes: */

NULL)

count = fread(buffer, sizeof(char), 100, stream);
if(ferror(stream)) (

perror("Read error");
break;

/* Total up actual bytes read */
total += count;

pri ntf("Number of bytes read %d\n", total);
fclose(stream);

.Number of bytes read = 745

See Also: clearerr, _eof, feof, fopen, perror

ferror

241

fflush

fflush
Flushes a stream.

int fflush(FILE *stream);

Function Required Header Compatibility

fflush <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fflush returns 0 if the buffer was successfully flushed. The value 0 is also returned in
cases in which the specified stream has no buffer or is open for reading only. A return
value of EOF indicates an error.

Note If fflush returns EOF, data may have been lost due to a write failure. When setting up a
critical error handler, it is safest to turn buffering off with the setvbuf function or to use low-level
I/O routines such as _open, _close, and _write instead of the stream 110 functions.

Parameter

Remarks

242

stream Pointer to FILE structure

The fflush function flushes a stream. If the file associated with stream is open for output,
fflush writes to that file the contents of the buffer associated with the stream. If the
stream is open for input, fflush clears the contents of the buffer. fflush negates the effect
of any prior call to ungetc against stream. Also, fflush(NULL) flushes all streams
opened for output. The stream remains open after the call. fflush has no effect on an
unbuffered stream.

Buffers are normally maintained by the operating system, which determines the
optimal time to write the data automatically to disk: when a buffer is full, when a stream
is closed, or when a program terminates normally without closing the stream. The
commit-to-disk feature of the run-time library lets you ensure that critical data is
written directly to disk rather than to the operating-system buffers. Without rewriting an
existing program, you can enable this feature by linking the program's object files with
COMMODE.OBJ. In the resulting executable file, calls to _flushall write the contents
of all buffers to disk. Only _flush all and fflush are affected by COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see "Stream I/O" on
page 16 in Chapter 1, fopen, and _fdopen.

Example

Output

/* FFLUSH.C */

#include <stdio.h>
#include <conio.h>

void maine void
{

int integer:
char string[81];

/* Read each word as a string. */
printf("Enter a sentence of four words with scanf: "):
fore integer - 0: integer < 4: integer++)
{

scanf("%s", string):
pri ntf("%s\n", stri ng):

/* You must flush the input buffer before using gets. */
fflush(stdin):
printf("Enter the same sentence with gets: ");
gets (stri ng):
printf("%s\n", string);

Enter a sentence of four words with scanf: This is a test
This
is
a
test
Enter the same sentence with gets: This is a test
This is a test

See Also: fclose, _flushall, setvbuf

fgetc, fgetwc, _fgetchar, _fgetwchar

fgetc, fgetwc, _fgetchar, _fgetwchar
Read a character from a stream (fgetc, fgetwc) or stdin Lfgetchar, _fgetwchar).

int fgetc(FILE *stream);
wint_t fgetwc(FILE *stream);
int _fgetchar(void);
wint_t _fgetwchar(void);

Function Required Header Compatibility

fgetc <stdio.h> ANSI, Win 95, Win NT

fgetwc <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

_fgetchar <stdio.h> Win 95, Win NT

_fgetwchar <stdio.h> or <wchar.h> Win 95, Win NT

243

fgetc, fgetwc, jgetchar, jgetwchar

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fgetc and _fgetchar return the character read as an int or return EOF to indicate an
error or end of file. fgetwc and _fgetwchar return, as a wint_t, the wide character
that corresponds to the character read or return WEOF to indicate an error or end of
file. For all four functions, use feof or ferror to distinguish between an error and an
end-of-file condition. For fgetc and fgetwc, if a read error occurs, the error indicator
for the stream is set.

Parameter

Remarks

244

stream Pointer to FILE structure

Each of these functions reads a single character from the current position of a file; in
the case of fgetc and fgetwc, this is the file associated with stream. The function then
increments the associated file pointer (if defined) to point to the next character. If the
stream is at end of file, the end-of-file indicator for the stream is set. Routine-specific
remarks follow.

Routine

fgetc

fgetwc

_fgetchar

_fgetwchar

Remarks

Equivalent to getc, but implemented only as a function, rather than as a
function and a macro.

Wide-character version of fgetc. Reads c as a multi byte character or a
wide character according to whether stream is opened in text mode or
binary mode.

Equivalent to fgetc(stdin). Also equivalent to getchar, but
implemented only as a function, rather than as a function and a macro.
Microsoft-specific; not ANSI-compatible.

Wide-character version of _fgetchar. Reads c as a multibyte character
or a wide character according to whether stream is opened in text mode
or binary mode. Microsoft-specific; not ANSI-compatible.

For more information about processing wide characters and multibyte characters in text
and binary modes, see "Unicode Stream I/O in Text and Binary Modes" on page 15.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & MBCS MBCS Defined UNICODE Defined - - - -
Not Defined

jgettc fgetc fgetc fgetwc

_fgettchar fgetchar fgetchar jgetwchar

Example

Output

1* FGETC.C: This program uses getc to read the first
* 80 input characters (or until the end of input)
* and place them into a string named buffer.
*1

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

FILE *stream;
char buffer[81];
int i. ch;

1* Open file to read line from: *1
if((stream"" fopen("fgetc.c". "r")) == NULL)

exit (0);

1* Read in first 80 characters and place them in "buffer": *1
ch "" fgetc(stream);
fore i=0; (i < 80) && (feof(stream) == 0); i++)
{

buffer[i] = (char)ch;
ch = fgetc(stream);

1* Add null to end string *1
buffer[i] = '\0';
printf("%s\n". buffer);
fclose(stream);

1* FGETC.C: This program uses getc to read the first
* 80 input characters (or

See Also: fputc, getc

fgetpos
Gets a stream's file-position indicator.

int fgetpos(FILE *stream, fpos_t *pos);

Function Required Header Compatibility

fgetpos <stdio.h> ANSI, Win 95, Win NT

fgetpos

245

fgetpos

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, fgetpos returns o. On failure, it returns a nonzero value and sets errno
to one of the following manifest constants (defined in STDIO.H): EBADF, which
means the specified stream is not a valid file handle or is not accessible, or EINVAL,
which means the stream value is invalid.

Parameters

Remarks

Example

246

stream Target stream

pos Position-indicator storage

The fgetpos function gets the current value of the stream argument's file-position
indicator and stores it in the object pointed to by pos. The fsetpos function can later
use information stored in pos to reset the stream argument's pointer to its position at
the time fgetpos was called. The pos value is stored in an internal format and is
intended for use only by fgetpos and fsetpos.

1* FGETPOS.C: This program opens a file and reads
* bytes at several different locations.
*1

#include <stdio.h>

void main(void)
{

FILE *stream:
fpos_t pos:
char buffer[20]:

if((stream = fopen("fgetpos.c", "rb")) == NULL)
pri ntf("Troubl e openi ng fil e\n"):

else
{

1* Read some data and then check the position. *1
fread(buffer, sizeof(char), 10, stream):
if(fgetpos(stream, &pos) !- 0)

perror("fgetpos error"):
else
{

fread(buffer, sizeof(char), 10, stream):
printf("10 bytes at byte %ld: %.10s\n", pos, buffer):

}

Output

1* Set a new position and read more data *1
pos = 140;
if(fsetpos(stream, &pos) 1= 0)

perror("fsetpos error");

fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %ld: %.10s\n", pos, buffer);
fclose(stream);
}

10 bytes at byte 10: .C: This p
10 bytes at byte 140:
{

FIL

See Also: fsetpos

fgets, fgetws
Get a string from a stream.

char *fgets(char *string, int n, FILE *stream);
wchar_t *fgetws(wchar_t *string, int n, FILE *stream);

Function

fgets

fgetws

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns string. NULL is returned to indicate an error or an
end-of-file condition. Use feof or ferror to determine whether an error occurred.

Parameters
string Storage location for data

n Maximum number of characters to read

stream Pointer to FILE structure

fgets, fgetws

247

fgets, fgetws

Remarks

Example

248

The fgets function reads a string from the input stream argument and stores it in
string. fgets reads characters from the current stream position to and including the
first newline character, to the end of the stream, or until the number of characters read
is equal to n- L whichever comes first. The result stored in string is appended with a
null character. The newline character, if read, is included in the string.

fgets is similar to the gets function; however, gets replaces the newline character with
NULL. fgetws is a wide-character version of fgets.

fgetws reads the wide-character argument string as a multi byte-character string or a
wide-character string according to whether stream is opened in text mode or binary
mode, respectively. For more information about using text and binary modes in
Unicode and multibyte stream-I/O, see "Text and Binary Mode File 1/0" and
"Unicode Stream I/O in Text and Binary Modes" on page 15.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

fgets

_MBCS Defined

fgets

1* FGETS.C: This program uses fgets to display
* a line from a file on the screen.
*1

#include <stdio.h>

void main(void)
{

FILE *stream;
char line[100];

if((stream = fopen("fgets.c", "r" » 1= NULL
{

if(fgets(line, 100, stream) == NULL)
printf("fgets error\n");

else
printf("%s", line);

fclose(stream);

_UNICODE Defined

fgetws

_filelength, _filelengthi64

Output
/* FGETS.C: This program uses fgets to display

See Also: fputs, gets, puts

_filelength, _filelengthi64
Get the length of a file.

long _filelength(int handle);
_int64 _filelengthi64(int handle);

Function

_filelength

_filelengthi64

Required Header

<io.h>

<io.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Both _filelength and _filelengthi64 return the file length, in bytes, of the target file
associated with handle. Both functions return a value of -lL to indicate an error, and
an invalid handle sets errno to EBADF.

Parameter

Example

handle Target file handle

/* CHSIZE.C: This program uses _filelength to report the size
* of a file before and after modifying it with chsize.
*/

lIinclude <io.h>
lIinclude <fcntl.h>
lIinclude <sys/types.h>
lIinclude <sys/stat.h>
lIinclude <stdio.h>

void main(void)
{

int fh, result;
unsigned int nbytes BUFSIZ;

249

Output

/* Open a file */
if((fh = _open("data", _O_RDWR I _O_CREAT, S IREAD

I _S_IWRITE)) 1= -1)

printf("File length before: %ld\n", _filelength(fh));
if((result = _chsize(fh, 329678)) == 0)

printf("Size successfully changed\n");
else

printf("Problem in changing the size\n");
printf("File length after: %ld\n", _filelength(fh));
_close(fh);

File length before: 0
Size successfully changed
File length after: 329678

See Also: _chsize, _fileno, _fstat, _fstati64, _stat, _stati64

fileno
Gets the file handle associated with a stream.

int _fiIeno(FILE *stream);

Function Required Header Compatibility

<stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_fileno returns the file handle. There is no error return. The result is undefined if
stream does not specify an open file.

Parameter

Remarks

250

stream Pointer to FILE structure

The _fiIeno routine returns the file handle currently associated with stream. This
routine is implemented both as a function and as a macro. For details on choosing
either implementation, see "Choosing Between Functions and Macros" on page xiii.

Example

Output

1* FILENO.C: This program uses fileno to obtain
* the file handle for some standard C streams.
*1

#include <stdio.h>

void main(void
{

pri ntf("The fil e handle for
pri ntf("The file handle for
pri ntf("The fil e handle for

The file handle for stdin is 0
The file handle for stdout is 1
The file handle for stderr is 2

stdin is %d\n",
stdout is %d\n",
stderr is %d\n",

See Also: _fdopen, _filelength, fopen, freopen

_find, _ wfind Functions

fil eno (stdin)) :
_fileno(stdout)) :
_fileno(stderr)) :

_find, wfind Functions

Remarks

These functions search for and close searches for specified filenames.

• _findclose

• _findnext, _findnexti64, _ wfindnext, _ wfindnexti64

• _findfirst, _findfirsti64, _ wfindfirst, _ wfindfirsti64

The _findfirst function provides information about the first instance of a filename
that matches the file specified in the filespec argument. Any wildcard combination
supported by the host operating system can be used in filespec. File information is
returned in a _finddata_t structure, defined in IO.H. The _finddata_t structure
includes the following elements:

unsigned attrib File attribute

time_t time_create Time of file creation (-lL for FAT file systems)

time_t time_access Time of last file access (-lL for FAT file systems)

time_t time_write Time of last write to file

_fsize_t size Length of file in bytes

char name[_MAX_FNAME] Null-terminated name of matched file/directory,
without the path

In file systems that do not support the creation and last access times of a file, such as
the FAT system, the time_create and time_access fields are always -1L.

251

_find, _ wfind Functions

Example

252

_MAX_FNAME is defined in STDLIB.H as 256 bytes.

You cannot specify target attributes (such as _A_RDONLY) by which to limit the find
operation. This attribute is returned in the attrib field of the _finddata_t structure and
can have the following values (defined in IO.H).

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
connnand. Value:Ox20

_A_HIDDEN Hidden file. Not normally seen with the DIR connnand, unless the
f AH option is used. Returns information about normal files as well as files with
this attribute. Value: Ox02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
OxOO

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: OxOl

_A_SUBDIR Subdirectory. Value: OxlO

_A_SYSTEM System file. Not normally seen with the DIR connnand, unless the
fA or fA:S option is used. Value: Ox04

_find next finds the next name, if any, that matches the filespec argument specified in
a prior call to _findfirst. The file info argument should point to a structure initialized
by a previous call to _findfirst. If a match is found, the file info structure contents are
altered as described above. _findclose closes the specified search handle and releases
all associated resources. The handle returned by _findfirst must first be passed to
_findclose, before modification operations such as deleting can be performed on the
directories that form the path passed to _findfirst.

The _find functions allow nested calls. For example, if the file found by a call to
_findfirst or _findnext is a subdirectory, a new search can be initiated with another
call to _findfirst or _findnext.

_ wfindfirst and _ wfindnext are wide-character versions of _findfirst and _findnext.
The structure argument of the wide-character versions has the _ wfinddata_t data
type, which is defined in IO.H and in WCHAR.H. The fields of this data type are the
same as those of the _finddata_t data type, except that in _ wfinddata_t the name
field is of type wchar_t rather than type char. Otherwise _ wfindfirst and _ wfindnext
behave identically to _findfirst and _findnext. Functions _findfirsti64, _findnexti64,
_ wfindfirsti64, and _ wfindnexti64 also behave identically except they use and
return 64-bit file lengths.

1* FFIND.C: This program uses the 32-bit _find functions to print
* a list of all files (and their attributes) with a .C extension
* in the current directory.
*1

Output

#include <stdio.h>
#include <io.h>
#include <time.h>

void maine void)
{

struct _finddata t c_file;
long hFile;

1* Find first .c file in current directory *1
if((hFile - _findfirst("*.c", &c_file » =~ -1L)

printf("No *.c files in current directory!\n");
else
{

pri ntf("Listing of . c files\n\n") ;

_find, _ wfind Functions

pri ntf("\ n ROO HID SYS ARC FILE DATE %25c SIZE\n", , ,
) ;

pri ntf(" - - - - -- -- - - - -
printf(c file.attrib & _A_ RDONLY ? " Y
pri ntf(c fil e. attri b & _A_ SYSTEM ? " Y -
pri ntf(c fil e. attri b & _A_HIDDEN ? " Y -
pri ntf(c fil e. attri b & _A_ARCH) ? " Y
pri ntf(" %-12s %.245 %9ld\n",

c_file.name, ctime(&(c_file.time_write

1* Find the rest of the .c files *1
while(_findnext(hFile, &c_file) == 0)
{

printf(c fil e. attri b & _A_ RDONLY
printf(c file.attrib & _A_SYSTEM -
pri ntf(c_fil e. attri b & _A_HIDDEN
pri ntf(c file.attrib & _A_ARCH) -
printf(" %-12s %.24s %9ld\n",

?
?
?
?

%25c

)) ,

" Y
" Y
" Y
" Y

c_file.name, ctime(&(c - file. time_write)

_findclose(hFile);

Listing of . c fil es

ROO HID SYS ARC FILE DATE

N N N Y CWAIT .C Tue Jun 01 04:07:26 1993
N N N Y SPRINTF.C Thu May 27 04:59:18 1993
N N N Y CABS.C Thu May 27 04:58:46 1993
N N N Y BEGTHRD.C Tue Jun 01 04:00:48 1993

----\n", , ,
) ;

" N ") ;

" N ") ;

" N ") ;
" N ") ;

c file.size) ;

" N ") ;

" N ") ;

" N ") ;

" N ") ;

) , c file.size) ;

SIZE

1611
617
359

3726

253

_find, _ wfind Functions

_findclose
Closes the specified search handle and releases associated resources.

int _findclose(long handle);

Function Required Header Compatibility

_findclose <io.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, _findclose returns O. Otherwise, it returns -1 and sets errno to
ENOENT, indicating that no more matching files could be found.

Parameter
handle Search handle returned by a previous call to _findfirst

_findfirst, _findfirsti64, _ wfindfirst, _ wfindfirsti64

254

Provides information about the first instance of a filename that matches the file
specified in the filespec argument.

long _findfirst(char *filespec, struct _finddata_t *fileinfo);
_int64 _findfirsti64(char *filespec, struct _finddata_t *fileinfo);
long _ wfindfirst(wchar_t *filespec, struct _ wfinddata_t *fileinfo);
_int64 _wfindfirsti64(wchar_t *filespec, struct _wfinddata_t *fileinfo);

Function Required Header Compatibility

_findfirst <io.h> Win 95, Win NT

- findfirsti64 <io.h> Win 95, Win NT

wfindfirst <io.h> or <wchar.h> Win NT -

wfindfirsti64 <io.h> or <wchar.h> Win NT -

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_find, _ wfind Functions

Return Value
If successful, _findfirst and _ wfindfirst return a unique search handle identifying
the file or group of files matching the filespec specification, which can be used in a
subsequent call to _findnext or _ wfindnext, respectively, or to _findclose. Otherwise,
_findfirst and _ wfindfirst return -1 and set errno to one of the following values:

ENOENT File specification that could not be matched

EINVAL Invalid filename specification

Parameters
filespec Target file specification (may include wildcards)

file info File information buffer

Generic-Text Routine Mappings

TCHAR.H Routine

_tfindfirst

_tfindfirsti64

_UNICODE & _MBCS
Not Defined

_findfirst

_findfirsti64

_MBCS Defined

_findfirst

_findfirsti64

_UNICODE Defined

_ wfindfirst

_ wfindfirsti64

_findnext, _findnexti64, _ wfindnext, _ wfindnexti64
Find the next name, if any, that matches the filespec argument in a previous call to
_findfirst, and then alters the file info structure contents accordingly.

int _findnext(long handle, struct _finddata_t *fileinfo);
_int64 _findnexti64(long handle, struct _finddata_t *fileinfo);
int _ wfindnext(long handle, struct _ wfinddata_t *fileinfo);
_int64 _wfindnexti64(long handle, struct _wfinddata_t *fileinfo);

Function Required Header Compatibility

- findnext <io.h> Win 95, Win NT

_findnexti64 <io.h> Win 95, Win NT

wfindnext <io.h> or <wchar.h> Win NT -

wfindnexti64 <io.h> or <wchar.h> Win NT -

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, _findnext and _ wfindnext return O. Otherwise, they return -1 and set
errno to ENOENT, indicating that no more matching files could be found.

255

Parameters
handle Search handle returned by a previous call to _findfirst

file info File information buffer

Generic-Text Routine Mappings

TCHAR.H Routine

_tfindnext

_tfindnexti64

finite

_UNICODE & _MBCS
Not Defined

3indnext

_findnexti64

_MBCS Defined

_findnext

_findnexti64

_UNICODE Defined

_wfindnext

_ wfindnexti64

Determines whether given double-precision floating point value is finite.

int _finite(double x);

Function Required Header Compatibility

<float.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_finite returns a nonzero value (TRUE) if its argument x is not infinite, that is,
if -INF < x < +INF. It returns 0 (FALSE) if the argument is infinite or a NaN.

Parameter
x Double-precision floating-point value

See Also: _isnan, _fpclass

floor
Calculates the floor of a value.

double floor(double x);

Function Required Header Compatibility

floor <math.h> ANSI, Win 95, Win NT

256

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The floor function returns a floating-point value representing the largest integer that is
less than or equal to x. There is no error return.

Parameter

Example

Output

x Floating-point value

/* FLOOR.C: This example displays the largest integers
* less than or equal to the floating-point values 2.8
* and -2.8. It then shows the smallest integers greater
* than or equal to 2.8 and -2.8.
*/

#include <math.h>
#include <stdio.h>

void maine void
{

double y;

y = floor(2.8);
pri ntf("The floor of 2.8 is %f\n", y);
y = fl 00 r (-2.8);
printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);
printf("The ceil of 2.8 is %f\n", y);
y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", y);

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

See Also: ceil, fmod

floor

257

_flushall

flu shall
Flushes all streams; clears all buffers.

int _flushall(void);

Function Required Header Compatibility

_flushall <stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

258

_flushall returns the number of open streams (input and output). There is no error
return.

By default, the _flush all function writes to appropriate files the contents of all buffers
associated with open output streams. All buffers associated with open input streams
are cleared of their current contents. (These buffers are normally maintained by the
operating system, which determines the optimal time to write the data automatically to
disk: when a buffer is full, when a stream is closed, or when a program terminates
normally without closing streams.)

If a read follows a call to _flushall, new data is read from the input files into the
buffers. All streams remain open after the call to _flushall.

The commit-to-disk feature of the run-time library lets you ensure that critical data is
written directly to disk rather than to the operating system buffers. Without rewriting
an existing program, you can enable this feature by linking the program's object files
with COMMODE.OBJ. In the resulting executable file, calls to _flushall write the
contents of all buffers to disk. Only _flushall and fflush are affected by
COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see "Stream I/O",
fopen, and _fdopen.

1* FLUSHALL.C: This program uses _flushall
* to flush all open buffers.
*1

#include <stdio.h>

Output

void maine void)
{

int numflushed;

numflushed - _flushall();
pri ntf("There were %d streams fl ushed\n". numfl ushed);

There were 3 streams flushed

See Also: _commit, fclose, fflush, _flushall, setvbuf

fmod
Calculates the floating-point remainder.

double fmod(double x, double y);

Function Required Header Compatibility

fmod <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fmod returns the floating-point remainder of x / y. If the value of y is 0.0, fmod
returns a quiet NaN. For information about representation of a quiet NaN by the
printf family, see printf.

Parameters

Remarks

Example

x, y Floating-point values

The fmod function calculates the floating-point remainder f of x / y such that x = i * y
+ f, where i is an integer, fhas the same sign as x, and the absolute value off is less
than the absolute value of y.

/* FMOD.C: This program displays a
* floating-point remainder.
*/

#include <math.h>
#include <stdio.h>

fmod

259

fopen, _ wfopen

Output

void maine void)
(

double w = -10.0, x ~ 3.0, y - 0.0, z;

z = fmod(x, y);
printf("The remainder of %.2f / %.2f is %f\n", w, x, z);
printf("The remainder of %.2f / %.2f is %f\n", x, y, z);

The remainder of -10.00 / 3.00 is -1.000000

See Also: ceil, fabs, floor

fopen, _wfopen
Open a file.

FILE *fopen(const char *filename, const char *mode);
FILE * _wfopen(const wchar_t *filename, const wchar_t *mode);

Function

fopen

_wfopen

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

The c, n, and t mode options are Microsoft extensions for fopen and _fdopen and
should not be used where ANSI portability is desired.

Return Value
Each of these functions returns a pointer to the open file. A null pointer value
indicates an error.

Parameters

Remarks

260

filename Filename

mode Type of access permitted

The fopen function opens the file specified by filename. _ wfopen is a wide-character
version of fopen; the arguments to _ wfopen are wide-character strings. _ wfopen and
fop en behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tfopen

_UNICODE & _MBCS
Not Defined

fopen

_MBCS Defined _UNICODE Defined

fopen _wfopen

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the fopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending) without removing the EOF
marker before writing new data to the file; creates the file first if it doesn't exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; the appending operation includes the
removal of the EOF marker before new data is written to the file and the EOF
marker is restored after writing is complete; creates the file first if it doesn't exist.

When a file is opened with the "a" or "a+" access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After
appending has occurred, the MS-DOS TYPE command only shows data up to the
original EOF marker and not any data appended to the file. The "a+" mode does
remove the EOF marker before appending to the file. After appending, the MS-DOS
TYPE command shows all data in the file. The "a+" mode is required for appending
to a stream file that is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are
allowed (the file is said to be open for "update"). However, when you switch between
reading and writing, there must be an intervening fflush, fsetpos, fseek, or rewind
operation. The current position can be specified for the fsetpos or fseek operation,
if desired.

In addition to the above values, the following characters can be included in mode to
specify the translation mode for newline characters:

t Open in text (translated) mode. In this mode, CTRL+Z is interpreted as an end-of
file character on input. In files opened for reading/writing with "a+", fopen checks
for a CTRL+Z at the end of the file and removes it, if possible. This is done because

fopen, _ wfopen

261

fopen, _ wfopen

262

using fseek and ftell to move within a file that ends with a CTRL+Z, may cause
fseek to behave improperly near the end of the file.

Also, in text mode, carriage return-linefeed combinations are translated into single
linefeeds on input, and linefeed characters are translated to carriage return-linefeed
combinations on output. When a Unicode stream-I/O function operates in text mode
(the default), the source or destination stream is assumed to be a sequence of
multibyte characters. Therefore, the Unicode stream-input functions convert multibyte
characters to wide characters (as if by a call to the mbtowc function). For the same
reason, the Unicode stream-output functions convert wide characters to multibyte
characters (as if by a call to the wctomb function).

b Open in binary (untranslated) mode; translations involving carriage-return and
linefeed characters are suppressed.

If tor b is not given in mode, the default translation mode is defined by the global
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL.

For more information about using text and binary modes in Unicode and multibyte
stream-I/O, see "Text and Binary Mode File I/O" and "Unicode Stream I/O in Text
and Binary Modes" on page 15.

c Enable the commit flag for the associated filename so that the contents of the file
buffer are written directly to disk if either fflush or _flushall is called.

n Reset the commit flag for the associated filename to "no-commit." This is the
default. It also overrides the global commit flag if you link your program with
COMMODE.OBI. The global commit flag default is "no-commit" unless you
explicitly link your program with COMMODE.OBl.

Valid characters for the mode string used in fopen and _fdopen correspond to oflag
arguments used in _open and _sopen, as follows:

Characters
in mode
String

a

a+

r

r+

w

w+

b

c

n

Equivalent o(lag Value for _open/_sopen

_O_WRONLY I_O_APPEND (usually _O_WRONLY I_O_CREAT I_O_APPEND)

_O_RDWR I_O_APPEND (usually _O_RDWR I_O_APPEND I_O_CREAT)

_O_RDONLY

_O_RDWR

_O_WRONLY (usually _O_WRONLY I_O_CREAT I_O_TRUNC)

_O_RDWR (usually _O_RDWR I_O_CREAT I_O_TRUNC)

_O_BINARY

_O_TEXT

None

None

Example

Output

1* FOPEN.C: This program opens files named "data"
* and "data2".It uses fclose to close "data" and
* fcloseall to close all remaining files.
*1

#include <stdio.h>

FILE *stream, *stream2;

void main(void)
{

}

int numclosed;

1* Open for read (will fail if file "data" does not exist) *1
if((stream = fopen("data", "r")) == NULL)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n");

1* Open for write *1
if((stream2 =- fopen("data2", "w+")) == NULL)

printf("The file 'data2' was not opened\n");
else

pri ntf("The fil e 'data2' was opened\n");

1* Close stream */
if(fclose(stream

printf("The file 'data' was not closed\n");

1* All other files are closed: *1
numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numclosed);

The file 'data' was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

See Also: fclose, _fdopen, ferror, _fileno, freopen, _open, _setmode

_fpclass
Returns status word containing infonnation on floating-point class.

int _fpclass(double x);

Function Required Header Compatibility

_fpclass <float.h> Win 95, Win NT

_fpc1ass

263

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_fpclass returns an integer value that indicates the floating-point class of its argument
x. The status word may have one of the following values, defined in FLOAT.H.

Value

_FPCLASS_SNAN

_FPCLASS_QNAN

_FPCLASS_NINF

_FPCLASS_NN

_FPCLASS_ND

_FPCLASS_NZ

_FPCLASS_PZ

_FPCLASS_PD

_FPCLASS_PN

_FPCLASS_PINF

Meaning

Signaling NaN

Quiet NaN

Negative infinity (-INF)

Negative normalized non-zero

Negative denormalized

Negative zero (-0)

Positive 0 (+0)

Positive denormalized

Positive normalized non-zero

Positive infinity (+INF)

Parameter
x Double-precision floating-point value

See Also: _isnan

_fpieee_flt

264

Invokes user-defined trap handler for IEEE floating-point exceptions.

int _fpieee_flt(unsigned long exc_code, struct _EXCEPTION_POINTERS *exc_info,
.. int handlerLFPIEEE_RECORD *));

Function Required Header Compatibility

<fpieee.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
The return value of _fpieee_flt is the value returned by handler. As such, the IEEE
filter routine may be used in the except clause of a structured exception-handling
(SEH) mechanism.

Parameters

Remarks

Example

exc_code Exception code

exc_info Pointer to the Windows NT exception information structure

handler Pointer to user's IEEE trap-handler routine

The _fpieee_flt function invokes a user-defined trap handler for IEEE floating-point
exceptions and provides it with all relevant information. This routine serves as an
exception filter in the SEH mechanism, which invokes your own IEEE exception
handler when necessary.

The _FPIEEE_RECORD structure, defined in FPIEEE.H, contains information
pertaining to an IEEE floating-point exception. This structure is passed to the
user-defined trap handler by _fpieee_flt.

_FPIEEE_RECORD Field

unsigned int
RoundingMode,
unsigned int Precision

unsigned int Operation

FPIEEE VALUE
OperandI,
FPIEEE VALUE
Operand2,
FPIEEE V ALUE Result

Description

These fields contain information on the floating-point
environment at the time the exception occurred.

Indicates the type of operation that caused the trap. If the type is
a comparison CFpCodeCompare), you can supply one of the
special_FPIEEE_COMPARE_RESULT values (as defined
in FPIEEE.H) in the Result.Value field. The conversion type
CFpCodeConvert) indicates that the trap occurred during a
floating-point conversion operation. You can look at the
OperandI and Result types to determine the type of
conversion being attempted.

These structures indicate the types and values of the proposed
result and operands:
OperandValid Flag indicating whether the responding value
is valid.
Format Data type of the corresponding value. The format type
may be returned even if the corresponding value is not valid.
Value Result or operand data value.

/* FPIEEE.C: This program demonstrates the implementation of
* a user-defined floating-point exception handler using the
* _fpieee_flt function.
*/

#include <fpieee.h>
#include <excpt.h>
#include <float.h>
int fpieee_handler(FPIEEE_RECORD *);

265

266

int fpieee_handler(_FPIEEE_RECORD *pieee)
{

II user-defined ieee trap handler routine:
II there is one handler for all
II IEEE exceptions

II Assume the user wants all invalid
II operations to return 0.

if «pieee->Cause.InvalidOperation) &&
(pieee->Result.Format == _FpFormatFp32»

pieee->Result.Value.Fp32Value = 0.0F;

return EXCEPTION_CONTINUE_EXECUTION;

else
return EXCEPTION_EXECUTE_HANDLER;

#define EXC_MASK \
_EM_UNDERFLOW + \
_EM_OVERFLOW + \
_EM_ZERODIVIDE + \

EM INEXACT

void maine void
{

I I ...

_try {
II unmask invalid operation exception
_controlfp(_EXC_MASK, _MCW_EM);

II code that may generate
II fp exceptions goes here

_except (_fpieee_flt(GetExceptionCode(),
GetExceptionInformation(),
fpieee_handler)){

II code that gets control

II if fpieee_handler returns
II EXCEPTION_EXECUTE_HANDLER goes here

II

See Also: _controlS7

_fpreset
Resets the floating-point package.

void _fpreset(void);

Function Required Header Compatibility

_fpreset <float.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Remarks

Example

The _fpreset function reinitializes the floating-point math package. _fpreset is usually
used with signal, system, or the _exec or _spawn functions. If a program traps floating
point error signals (SIGFPE) with signal, it can safely recover from floating-point
errors by invoking _fpreset and using longjmp.

/* FPRESET.C: This program uses signal to set up a
* routine for handling floating-point errors.
*/

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>

#pragma warning(disable

jmp_buf mark;
int fperr;

4113) /* C4113 warning expected */

/* Address for long jump to jump to */
/* Global error number */

void __ cdecl fphandler(int sig. int num);
void fpcheck(void);

/* Prototypes */

void main(void)
{

double nl. n2. r;
int jmpret;

_fpreset

267

_fpreset

268

1* Unmask all floating-point exceptions. *1
_contro187(0. _MCW_EM);

1* Set up floating-point error handler. The compiler
* will generate a warning because it expects
* signal-handling functions to take only one argument.
*1
if(signal(SIGFPE. fphandler) == SIG_ERR

fprintf(stderr. "Couldn't set SIGFPE\n");
abort(); }

1* Save stack environment for return in case of error. First
* time through. jmpret is 0. so true conditional is executed.
* If an error occurs. jmpret will be set to -1 and false
* conditional will be executed.
*1

jmpret - setjmp(mark);
if(jmpret == 0)
{

printf("Test for invalid operation - ");
pri ntf("enter two numbers: ");
scanf(''%If %If''. &n1. &n2);
r = n1 I n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g I %4.3g "" %4.3g\n". nl. n2. r);

r = n1 * n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g * %4.3g - %4.3g\n". n1. n2. r);

else
fpcheck();

1* fphandler handles SIGFPE (floating-point error) interrupt. Note
* that this prototype accepts two arguments and that the
* prototype for signal in the run-time library expects a signal
* handler to have only one argument.
*
* The second argument in this signal handler allows processing of
* _FPE_INVALID. _FPE_OVERFLOW. _FPE_UNDERFLOW. and
* _FPE_ZERODIVIDE. all of which are Microsoft-specific symbols
* that augment the information provided by SIGFPE. The compiler
* will generate a warning. which is harmless and expected.

*1
void fphandler(int sig. int num)
{

1* Set global for outside check since we don't want
* to do 1/0 in the handler.
*1

Output

fperr - num;
1* Initialize floating-point package. *1
_fpreset();
1* Restore calling environment and jump back to setjmp. Return
* -1 so that setjmp will return false for conditional test.
*1

longjmp(mark. -1);

void fpcheck(void
(

char fpstr[30];
switch(fperr)
(

case FPE_INVALID:
strcpy(fpstr. "Invalid number");
break;

case FPE_OVERFLOW:
strcpy(fpstr. "Overflow");

break;
case FPE_UNDERFLOW:

strcpy(fpstr. "Underflow");
break;

case FPE_ZERODIVIDE:
strcpy(fpstr. "Divide by zero");
break;

default :
strcpy(fpstr. "Other floating point error");
brea k;

pri ntf("Error %d: %s\n". fperr. fpstr);

Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

See Also: _exec Function Overview, signal, _spawn Function Overview, system

fprintf, fwprintf
Print formatted data to a stream.

int fprintf(FILE *stream, const char *format [, argument] ...);
int fwprintf(FILE *stream, const wchar_t *format [, argument] ...);

Function

fprintf

fwprintf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

fprintf, fwprintf

269

fprintf, fwprintf

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fprintf returns the number of bytes written. fwprintf returns the number of wide
characters written. Each of these functions returns a negative value instead when
an output error occurs.

Parameters

Remarks

Example

270

stream Pointer to FILE structure

format Format-control string

argument Optional arguments

fprintf formats and prints a series of characters and values to the output stream. Each
function argument (if any) is converted and output according to the corresponding
format specification informat. For fprintf, the format argument has the same syntax
and use that it has in printf.

fwprintf is a wide-character version of fprintf; in fwprintf,jormat is a
wide-character string. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

jtprintf

_UNICODE & _MBCS
Not Defined

fprintf

_MBCS Defined

fprintf

For more information, see "Format Specifications" on page 463.

_UNICODE Defined

fwprintf

1* FPRINTF.C: This program uses fprintf to format various
* data and print it to the file named FPRINTF.OUT. It
* then displays FPRINTF.OUT on the screen using the system
* function to invoke the operating-system TYPE command.
*1

#include <stdio.h>
#include <process.h>

FILE *stream;

void maine void
{

int i = 10;
double fp = 1.5;

fputc, fputwc, _fputchar, _fputwchar

Output

char s[] = "this is a string";
char c = '\n';

stream = fopen("fprintf.out". "w");
fprintf(stream, "%s%c", s, c);
fprintf(stream, "%d\n", i);
fprintf(stream, "%f\n", fp);
fclose(stream);
system("type fprintf.out");

this is a string
10
1.500000

See Also: _cprintf, fscanf, sprintf

fputc, fputwc, _fputchar, _fputwchar
Writes a character to a stream (fputc, fputwc) or to stdout Lfputchar, _fputwchar).

int fputc(int c, FILE *stream);
winet fputwc(wint_t c, FILE *stream);
int _fputchar(int c);
wint_t _fputwchar(wint_t c);

Function Required Header

fputc <stdio.h>

fputwc <stdio.h> or <wchar.h>

_fputchar <stdio.h>

_fputwchar <stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns the character written. For fputc and _fputchar, a
return value of EOF indicates an error. For fputwc and _fputwchar, a return value
of WEOF indicates an error.

Parameters
c Character to be written

stream Pointer to FILE structure

271

fputc, fputwc, _fputchar, jputwchar

Remarks

Example

272

Each of these functions writes the single character c to a file at the position indicated
by the associated file position indicator (if defined) and advances the indicator as
appropriate. In the case of fputc and fputwc, the file is associated with stream. If the
file cannot support positioning requests or was opened in append mode, the character
is appended to the end of the stream. Routine-specific remarks follow.

Routine Remarks

fputc Equivalent to putc, but implemented only as a function, rather than as a
function and a macro.

fputwc Wide-character version of fputc. Writes c as a multibyte character or a wide
character according to whether stream is opened in text mode or binary mode.

_fputchar Equivalent to fputc(stdout). Also equivalent to putchar, but implemented
only as a function, rather than as a function and a macro. Microsoft-specific;
not ANSI-compatible.

_fputwchar Wide-character version of _fputchar. Writes c as a multibyte character or a
wide character according to whether stream is opened in text mode or binary
mode. Microsoft-specific; not ANSI-compatible.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & MBCS MBCS Defined - - -
Not Defined

jputtc fputc fputc

_fputtchar _fputchar jputchar

/* FPUTC.C: This program uses fputc and _fputchar
* to send a character array to stdout.
*/

#include <stdio.h>

void main(void)
{

char strptrl[]
char strptr2[]
char *p;

"This is a test of fputc!!\n";
"This is a test of _fputchar!!\n";

/* Print line to stream using fputc. */
p = strptrl;

UNICODE Defined -

fputwc

_fputwchar

while((*p != '\0') && fputc(*(p++), stdout != EOF)

/* Print line to stream using _fputchar. */
p = strptr2;
while((*p != '\0') && _fputchar(*(p++)) != EOF)

See Also: fgetc, putc

fputs, fputws
Write a string to a stream.

iot fputs(coost char *string, FILE *stream);
iot fputws(coost wchar_t *string, FILE *stream);

Function

fputs

fputws

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a nonnegative value if it is successful. On an error,
fputs returns EOF, and fputws returns WEOF.

Parameters

Remarks

Example

string Output string

stream Pointer to FILE structure

Each of these functions copies string to the output stream at the current position.
fputws copies the wide-character argument string to stream as a multi byte-character
string or a wide-character string according to whether stream is opened in text mode
or binary mode, respectively. Neither function copies the terminating null character.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

fputs

_MBCS Defined

fputs

/* FPUTS.C: This program uses fputs to write
* a single line to the stdout stream.
*/

#include <stdio.h>

void main(void)
(

fputs("Hello world from fputs.\n", stdout);

_UNICODE Defined

fputws

fputs, fputws

273

fread

Output
Hello world from fputs.

See Also: fgets, gets, puts, _putws

fread
Reads data from a stream.

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

Function Required Header Compatibility

fread <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fread returns the number of full items actually read, which may be less than count if
an error occurs or if the end of the file is encountered before reaching count. Use the
feof or ferror function to distinguish a read error from an end-of-file condition. If size
or count is 0, fread returns 0 and the buffer contents are unchanged.

Parameters

Remarks

274

buffer Storage location for data

size Item size in bytes

count Maximum number of items to be read

stream Pointer to FILE structure

The fread function reads up to count items of size bytes from the input stream and
stores them in buffer. The file pointer associated with stream (if there is one) is
increased by the number of bytes actually read. If the given stream is opened in text
mode, carriage return-linefeed pairs are replaced with single linefeed characters.
The replacement has no effect on the file pointer or the return value. The file-pointer
position is indeterminate if an error occurs. The value of a partially read item cannot
be determined.

Example

Output

1* FREAD.C: This program opens a file named FREAD.OUT and
* writes 25 characters to the file. It then tries to open
* FREAD.OUT and read in 25 characters. If the attempt succeeds.
* the program displays the number of actual items read.
*1

#include <stdio.h>

void maine void)
{

FILE *stream;
char list[30];
int i. numread. numwritten;

1* Open file in text mode: *1
if((stream'" fopen("fread.out", "w+t" » != NULL)
{

for (i - 0; i < 25; i++)
list[i] - (char)('z' - i);

1* Write 25 characters to stream */
numwritten - fwrite(list. sizeof(char), 25. stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

else
printf("Problem opening the file\n");

if((stream"" fopen("fread.out", "r+t" » !- NULL)
(

1* Attempt to read in 25 characters *1
numread = fread(list, sizeof(char), 25, stream);
pri ntf("Number of i terns read = %d\n", numread);
printf("Contents of buffer"" %.25s\n", list);
fclose(stream);

else
printf("File could not be opened\n");

Wrote 25 items
Number of items read - 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

See Also: fwrite, _read

fread

275

free

free
Deallocates or frees a memory block.

void free(void *memblock);

Function

free

Required Header

<stdlib.h> and
<malloc.h>

Compatibility

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

Example

276

memblock Previously allocated memory block to be freed

The free function deallocates a memory block (memblock) that was previously
allocated by a call to ealloe, malloe, or realloe. The number of freed bytes is
equivalent to the number of bytes requested when the block was allocated (or
reallocated, in the case of realloe). If memblock is NULL, the pointer is ignored
and free immediately returns. Attempting to free an invalid pointer (a pointer to a
memory block that was not allocated by ealloe, malloe, or realloe) may affect
subsequent allocation requests and cause errors.

After a memory block has been freed, _heapmin minimizes the amount of free
memory on the heap by coalescing the unused regions and releasing them back to
the operating system. Freed memory that is not released to the operating system is
restored to the free pool and is available for allocation again.

When the application is linked with a debug version of the C run-time libraries, free
resolves to _free_dbg. For more information about how the heap is managed during
the debugging process, see "Using C Run-Time Library Debugging Support."

1* MALLOC.C: This program allocates memory with
* malloc, then frees the memory with free.
*1

II

Output

include <stdlib.h>
#include <stdio.h>
#include <malloc.h>
void maine void)

1* For MAX_PATH definition *1

{

char *string;

1* Allocate space for a path name *1
string = malloc(_MAX_PATH);
if(string -- NULL)

printf("Insufficient memory available\n");
else
{

printf("Memory space allocated for path name\n");
free(stri ng);
printf("Memory freed\n");

Memory space allocated for path name
Memory freed

See Also: _alloca, calloc, malloc, realloc, _free_dbg, _heapmin

freopen, _wfreopen
Reassign a file pointer.

FILE *freopen(const char *path, const char *mode, FILE *stream);
FILE * _wfreopen(const wchar_t *path, const wchar_t *mode, FILE *stream);

Function

freopen

_wfreopen

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns a pointer to the newly opened file. If an error occurs,
the original file is closed and the function returns a NULL pointer value.

freopen, _ wfreopen

277

freopen, _ wfreopen

Parameters

Remarks

278

path Path of new file

mode Type of access permitted

stream Pointer to FILE structure

The freopen function closes the file currently associated with stream and reassigns
stream to the file specified by path. _ wfreopen is a wide-character version of
_freopen; the path and mode arguments to _ wfreopen are wide-character strings.
_ wfreopen and _freopen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tfreopen freopen freopen _wfreopen

freopen is typically used to redirect the pre-opened files stdin, stdont, and stderr to
files specified by the user. The new file associated with stream is opened with mode,
which is a character string specifying the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the freopen
call fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending) without removing the EOF
marker before writing new data to the file; creates the file first if it does not exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; the appending operation includes the
removal of the EOF marker before new data is written to the file and the EOF
marker is restored after writing is complete; creates the file first if it does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations take
place at the end of the file. Although the file pointer can be repositioned using fseek
or rewind, the file pointer is always moved back to the end of the file before any write
operation is carried out. Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After
appending has occurred, the MS-DOS TYPE command only shows data up to the
original EOF marker and not any data appended to the file. The "a+" mode does

Example

remove the EOF marker before appending to the file. After appending, the MS-DOS
TYPE command shows all data in the file. The "a+" mode is required for appending
to a stream file that is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are
allowed (the file is said to be open for "update"). However, when you switch between
reading and writing, there must be an intervening fsetpos, fseek, or rewind operation.
The current position can be specified for the fsetpos or fseek operation, if desired. In
addition to the above values, one of the following characters may be included in the
mode string to specify the translation mode for new lines.

t Open in text (translated) mode; carriage return-linefeed (CR-LF) combinations are
translated into single linefeed (LF) characters on input; LF characters are translated
to CR-LF combinations on output. Also, CTRL+Z is interpreted as an end-of-file
character on input. In files opened for reading or for writing and reading with
"a+", the run-time library checks for a CTRL+Z at the end of the file and removes
it, if possible. This is done because using fseek and ftell to move within a file may
cause fseek to behave improperly near the end of the file. The t option is a
Microsoft extension that should not be used where ANSI portability is desired.

b Open in binary (untranslated) mode; the above translations are suppressed.

If t or b is not given in the mode string, the translation mode is defined by the default
mode variable _fmode.

For a discussion of text and binary modes, see "Text and Binary Mode File I/O"
on page 15 in Chapter 1.

1* FREOPEN.C: This program reassigns stderr to the file
* named FREOPEN.OUT and writes a line to that file.
*1

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

void main(void
{

1* Reassign "stderr" to "freopen.out": *1
stream = freopen("freopen.out", "w", stderr);

if(stream == NULL)
fprintf(stdout. "error on freopen\n");

else
{

freopen, _ wfreopen

279

frexp

Output

fprintf(stream. "This will go to the file 'freopen.out'\n"):
fprintf(stdout. "successfully reassigned\n");
fclose(stream);

system("type freopen.out"):

successfully reassigned
This will go to the file 'freopen.out'

See Also: fclose, _fdopen, _fileno, fopen, _open, _setmode

frexp
Gets the mantissa and exponent of a floating-point number.

double frexp(double x, int *expptr);

Function Required Header Compatibility

frexp <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.LIB

UBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
frexp returns the mantissa. If x is 0, the function returns 0 for both the mantissa and
the exponent. There is no error return.

Parameters

Remarks

Example

280

x Floating-point value

expptr Pointer to stored integer exponent

The frexp function breaks down the floating-point value (x) into a mantissa (m) and an
exponent (n), such that the absolute value of m is greater than or equal to 0.5 and less
than 1.0, and x = m*2n. The integer exponent n is stored at the location pointed to by
expptr.

1* FREXP.C: This program calculates frexp(16.4. &n)
* then displays y and n.
*1

#include <math.h>
#include <stdio.h>

Output

void maine void
{

double x. y;
int n;

x = 16.4;
y = frexp(x. &n);
printf("frexp(%f. &n) = %f. n = %d\n". x. y. n);

frexp(16.400000. &n) = 0.512500. n = 5

See Also: ldexp, modf

fscanf, fwscanf
Read formatted data from a stream.

int fscanf(FILE *stream, const char *format [, argument] ...);
int fwscanf(FILE *stream, const wchar_t *format [, argument] ...);

Function

fscanf

fwscanf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned.
A return value of 0 indicates that no fields were assigned. If an error occurs, or if the
end of the file stream is reached before the first conversion, the return value is EOF
for fscanf or WEOF for fwscanf.

Parameters
stream Pointer to FILE structure

format Format-control string

argument Optional arguments

fscanf, fwscanf

281

fscanf, fwscanf

Remarks

Example

282

The fscanf function reads data from the current position of stream into the locations
given by argument (if any). Each argument must be a pointer to a variable of a type
that corresponds to a type specifier informat.format controls the interpretation of the
input fields and has the same form and function as the format argument for scanf; see
scanf for a description offormat. If copying takes place between strings that overlap,
the behavior is undefined.

fwscanf is a wide-character version of fscanf; the format argument to fwscanf is a
wide-character string. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

jtscanf

_UNICODE & _MBCS
Not Defined

fscanf

_MBCS Defined _UNICODE Defined

fscanf fwscanf

For more information, see "Format Specification Fields - scanf functions and wscanf
functions" on page 495.

1* FSCANF.C: This program writes formatted
* data to a file. It then uses fscanf to
* read the various data back from the file.
*1

#include <stdio.h>

FILE *stream:

void maine void
{

long 1:
float fp:
char s[81]:
char c:

stream = fopen("fscanf.out", "w+"):
if(stream == NULL)

printf("The file fscanf.out was not opened\n"):
else
{

fprintf(stream, "%s %ld %f%c", "a-string",
65000, 3.14159, 'x'):

1* Set pointer to beginning of file: *1
fseek(stream, 0L, SEEK_SET):

1* Read data back from file: *1
fscanf(stream, "%s", s):
fscanf(stream, "%1 d", &1):

Output

fscanf(stream, "%f" , &fp);
fscanf(stream, "%c", &c);
/* Output data read: */
printf("%s\n", s);
printf("%ld\n", 1);
printf("%f\n", fp);
pri ntf("%c\n", c);

fclose(stream);

a-string
65000
3.141590
x

See Also: _cscanf, fprintf, scanf, sscanf

fseek
Moves the file pointer to a specified location.

int fseek(FILE *stream, long offset, int origin);

Function Required Header Compatibility

fseek <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.UB

MSVCRT.UB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, fseek returns O. Otherwise, it returns a nonzero value. On devices
incapable of seeking, the return value is undefined.

Parameters
stream Pointer to FILE structure

offset Number of bytes from origin

origin Initial position

fseek

283

fseek

Remarks

Example

284

The fseek function moves the file pointer (if any) associated with stream to a new
location that is offset bytes from origin. The next operation on the stream takes place
at the new location. On a stream open for update, the next operation can be either a
read or a write. The argument origin must be one of the following constants, defined
in STDIO.H:

SEEK_CUR Current position of file pointer

SEEK_END End of file

SEEK_SET Beginning of file

You can use fseek to reposition the pointer anywhere in a file. The pointer can also
be positioned beyond the end of the file. fseek clears the end-of-file indicator and
negates the effect of any prior ungetc calls against stream.

When a file is opened for appending data, the current file position is determined by
the last I/O operation, not by where the next write would occur. If no I/O operation
has yet occurred on a file opened for appending, the file position is the start of
the file.

For streams opened in text mode, fseek has limited use, because carriage return
linefeed translations can cause fseek to produce unexpected results. The only fseek
operations guaranteed to work on streams opened in text mode are:

• Seeking with an offset of 0 relative to any of the origin values.

• Seeking from the beginning of the file with an offset value returned from a call
to ftell.

Also in text mode, CTRL+Z is interpreted as an end-of-file character on input. In files
opened for reading/writing, fopen and all related routines check for a CTRL+Z at the
end of the file and remove it if possible. This is done because using fseek and ftell to
move within a file that ends with a CTRL+Z may cause fseek to behave improperly
near the end of the file.

/* FSEEK.C: This program opens the file FSEEK.OUT and
* moves the pointer to the file's beginning.
*/

#include <stdio.h>

void main(void)
{

FILE *stream;
char line[81];
int result;

Output

stream - fopen("fseek.out", "w+");
if(stream -- NULL)

printf("The file fseek.out was not opened\n");
else

{

fprintf(stream, "The fseek begins here: "
"This is the file 'fseek.out'.\n");

result - fseek(stream, 23L, SEEK_SET);
if(result)

perror("Fseek failed");
else
{

printf("File pointer is set to middle of first line.\n");
fgets(line, 80, stream);
printf("%s", line);

fclose(stream);

File pointer is set to middle of first line.
This is the file 'fseek.out'.

See Also: ftell, _lseek, rewind

fsetpos
Sets the stream-position indicator.

int fsetpos(FILE *stream, const fpos_t *pos);

Function Required Header Compatibility

fsetpos <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, fsetpos returns O. On failure, the function returns a nonzero value
and sets errno to one of the following manifest constants (defined in ERRNO.H):
EBADF, which means the file is not accessible or the object that stream points
to is not a valid file handle; or EINVAL, which means an invalid stream value
was passed.

fsetpos

285

fsetpos

Parameters

Remarks

Example

286

stream Pointer to FILE structure

pos Position-indicator storage

The fsetpos function sets the file-position indicator for stream to the value of pos,
which is obtained in a prior call to fgetpos against stream. The function clears the
end-of-file indicator and undoes any effects of ungetc on stream. After calling
fsetpos, the next operation on stream may be either input or output.

/* FGETPOS.C: This program opens a file and reads
* bytes at several different locations.
*/

#include <stdio.h>

void main(void)
{

FILE *stream:
fpos_t pos:
char buffer[20]:

if((stream = fopen("fgetpos.c", "rb" » -- NULL)
pri ntf("Troubl e openi ng fil e\n"):

else
{

/* Read some data and then check the position. */
fread(buffer, sizeof(char), 10, stream):
if(fgetpos(stream, &pos) 1- 0)

perror("fgetpos error"):
else
{

fread(buffer, sizeof(char), 10, stream):
printf("10 bytes at byte %ld: %.10s\n", pos, buffer):

/* Set a new position and read more data */
pos = 140:
if(fsetpos(stream, &pos) 1- 0)

perror("fsetpos error"):

fread(buffer, sizeof(char), 10, stream):
printf("10 bytes at byte %ld: %.10s\n", pos, buffer):
fclose(stream):
}

Output
10 bytes at byte 10: .C: This p
10 bytes at byte 140:
(

FIL

See Also: fgetpos

_fsopen, _wfsopen
Open a stream with file sharing.

FILE * _fsopen(const char *filename, const char *mode, int shflag);
FILE *_wfsopen(const wchar_t ~:filename, const wchar_t *mode, int shflag);

Function

_fsopen

_wfsopen

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

1 For manifest constant for shflag parameter.

Optional Headers

<share.h>1

<share.h>1

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the stream. A NULL pointer value
indicates an error.

Parameters

Remarks

filename N arne of file to open

mode Type of access permitted

shflag Type of sharing allowed

The _fsopen function opens the file specified by filename as a stream and prepares the
file for subsequent shared reading or writing, as defined by the mode and shflag
arguments. _ wfsopen is a wide-character version of _fsopen; the filename and mode
arguments to _ wfsopen are wide-character strings. _ wfsopen and _fsopen behave
identically otherwise.

_fsopen, _ wfsopen

287

_fsopen, _ wfsopen

288

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tfsopen _fsopen

_MBCS Defined _UNICODE Defined

_fsopen _wfsopen

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the _fsopen call
fails.

"w" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending); creates the file first if it
does not exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it does not exist.

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus existing data cannot be overwritten. When the "r+", "w+", or "a+" access
type is specified, both reading and writing are allowed (the file is said to be open for
"update"). However, when switching between reading and writing, there must be an
intervening fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired. In addition to the above values, one of
the following characters can be included in mode to specify the translation mode for
new lines:

t Opens a file in text (translated) mode. In this mode, carriage return-linefeed
(CR-LF) combinations are translated into single linefeeds (LF) on input and
LF characters are translated to CR-LF combinations on output. Also, CTRL+Z
is interpreted as an end-of-file character on input. In files opened for reading or
reading/writing, _fsopen checks for a CTRL+Z at the end of the file and removes
it, if possible. This is done because using fseek and ftell to move within a file
that ends with a CTRL+Z may cause fseek to behave improperly near the end
of the file.

b Opens a file in binary (untranslated) mode; the above translations are suppressed.

Example

Output

If tor b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL. For a discussion of text and binary modes, see "Text and Binary Mode
File 1/0."

The argument shflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H:

_SH_COMPAT Sets Compatibility mode for 16-bit applications

_SH_DENYNO Permits read and write access

_SH_DENYRD Denies read access to file

_SH_DENYRW Denies read and write access to file

_SH_DENYWR Denies write access to file

/* FSOPEN.C:
*/

#include <stdio.h>
#include <stdlib.h>
#include <share.h>

void maine void)
{

FILE *stream;

/* Open output file for writing. Using _fsopen allows us to
* ensure that no one else writes to the file while we are
* writing to it.
*/

i f((stream = _fsopen("outfi 1 e", "wt", _SH_DENYWR » 1= NULL
{

fprintf(stream, "No one else in the network can write"
"to this file until we are done. \n");

fclose(stream);

/* Now others can write to the file while we read it. */
system("type outfile");

No one else in the network can write to this file until we are done.

See Also: fclose, _fdopen, ferror, _fileno, fopen, freopen, _open, _setmode, _sopen

_fsopen, _ wfsopen

289

_fstat, _fstati64

_fstat, fstati64
Get information about an open file.

int _fstat(int handle, struct _stat *buffer);
_int64 _fstati64(int handle, struct _stat *buffer);

Function

_fstat

_fstati64

Required Header

<sys/stat.h> and <sys/types.h>

<sys/stat.h> and <sys/types.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_fstat and _fstati64 return 0 if the file-status information is obtained. A return value of -
1 indicates an error, in which case errno is set to EBADF, indicating an invalid file
handle.

Parameters

Remarks

290

handle Handle of open file

buffer Pointer to structure to store results

The _fstat function obtains information about the open file associated with handle and
stores it in the structure pointed to by buffer. The _stat structure, defined in
SYS\STAT.H, contains the following fields:

st_atime Time of last file access.

st_ctime Time of creation of file.
st_dev If a device, handle; otherwise O.

st_mode Bit mask for file-mode information. The _S_IFCHR bit is set if handle
refers to a device. The _S_IFREG bit is set if handle refers to an ordinary file.
The read/write bits are set according to the file's permission mode. _S_IFCHR
and other constants are defined in SYS\STAT.H.

st_mtime Time of last modification of file.

st_nUnk Always 1 on non-NTFS file systems.

st_rdev If a device, handle; otherwise O.

st_size Size of the file in bytes.

Example

Output

If handle refers to a device, the sCatime, sCctime, and sCmtime and sCsize fields
are not meaningful.

Because STAT.H uses the _dev_t type, which is defined in TYPES.H, you must
include TYPES.H before STAT.H in your code.

1* FSTAT.C: This program uses _fstat to report
* the size of a file named F_STAT.OUT.
*1

1finclude <io.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void maine void
{

struct _stat buf;
int fh, result;
char buffer[] =- "A line to output";

if((fh =0 _open("f_stat.out", _O_CREAT I 0 WRONLY
_O_TRUNC » == -1)

_write(fh, buffer, strlen(buffer));

1* Get data associated with "fh": *1
result = _fstat(fh, &buf);
1* Check if statistics are valid: *1
if(result 1= 0)

printf("Bad file handle\n");
else
(

printf("File size %ld\n", buf.st_size);

printf("Time modified %s", ctime(&buf.st_ctime));
}

_close(fh);

File size : 0
Time modified: Tue Mar 21 15:23:08 1995

See Also: _access, _chmod, _filelength, _stat

_fstat, _fstati64

291

ftell

ftell
Gets the current position of a file pointer.

long ftell(FILE *stream);

Function Required Header

ftell <stdio.h>

Optional Headers Compatibility

<errno.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
ftell returns the current file position. The value returned by ftell may not reflect the
physical byte offset for streams opened in text mode, because text mode causes carriage
return-linefeed translation. Use ftell with fseek to return to file locations correctly. On
error, ftell returns -lL and errno is set to one of two constants, defined in ERRNO.H.
The EBADF constant means the stream argument is not a valid file-handle value or
does not refer to an open file. EINVAL means an invalid stream argument was passed
to the function. On devices incapable of seeking (such as terminals and printers), or
when stream does not refer to an open file, the return value is undefined.

Parameter

Remarks

292

stream Target FILE structure

The ftell function gets the current position of the file pointer (if any) associated with
stream. The position is expressed as an offset relative to the beginning of the stream.

Note that when a file is opened for appending data, the current file position is
determined by the last 110 operation, not by where the next write would occur. For
example, if a file is opened for an append and the last operation was a read, the file
position is the point where the next read operation would start, not where the next
write would start. (When a file is opened for appending, the file position is moved to
end of file before any write operation.) If no 110 operation has yet occurred on a file
opened for appending, the file position is the beginning of the file.

In text mode, CTRL+Z is interpreted as an end-of-file character on input. In files
opened for reading/writing, fopen and all related routines check for a CTRL+Z at the
end of the file and remove it if possible. This is done because using ftell and fseek to
move within a file that ends with a CTRL+Z may cause ftell to behave improperly
near the end of the file.

Example

Output

1* FTELL.C: This program opens a file named FTELL.C
* for reading and tries to read 100 characters. It
* then uses ftell to determine the position of the
* file pointer and displays this position.
*1

#include <stdio.h>

FILE *stream;

void maine void
{

long position;
char list[100];
if((stream - fopen("ftell.c", "rb" » !- NULL)
{

1* Move the pointer by reading data: *1
fread(list, sizeof(char), 100, stream);
1* Get position after read: *1
position = ftell(stream);
printf("Position after trying to read 100 bytes: %ld\n",

position);
fclose(stream);

Position after trying to read 100 bytes: 100

See Also: fgetpos, fseek, _lseek, _tell

ftime
Gets the current time.

void _ftime(struct _timeb *timeptr);

Function Required Header Compatibility

<sys/types.h> and <sys/timeb.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ftime does not return a value, but fills in the fields of the structure pointed to by timeptr.

293

Parameter

Remarks

Example

Output

294

timeptr Pointer to _timeb structure

The _ftime function gets the current local time and stores it in the structure pointed to
by timeptr. The _timeb structure is defined in SYS\TIMEB.H. It contains four fields:

dstflag Nonzero if daylight savings time is currently in effect for the local time zone.
(See _tzset for an explanation of how daylight savings time is determined.)

millitm Fraction of a second in milliseconds.

time Time in seconds since midnight (00:00:00), January 1, 1970, coordinated
universal time (UTC).

timezone Difference in minutes, moving westward, between UTC and local time. The
value of timezone is set from the value of the global variable _timezone (see _tzset).

1* FTIME.C: This program uses _ftime to obtain the current
* time and then stores this time in timebuffer.
*1

#include <stdio.h>
#include <sys/timeb.h>
#include <time.h>

void maine void).
{

struct _timeb timebuffer:
char *timeline:

_ftime(&timebuffer):
timeline = ctime(& (timebuffer.time)):

printf("The time is %.19s.%hu %s". timeline. timebuffer.millitm .
... &timeline[20]):

The time is Tue Mar 21 15:26:41.341 1995

See Also: asctime, ctime, gmtime, localtime, time

_fullpath, _ wfullpath

_fullpath, _wfullpath
Create an absolute or full path name for the specified relative path name.

char * _fullpath(char *absPath, const char *reIPatlz, size_t maxLength);
wchar_t * _wfullpath(wchar_t *absPath, const wchar_t *reIPath, size_t maxLength);

Function

_fullpath

_wfullpath

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to a buffer containing the absolute path name
(absPath). If there is an error (for example, if the value passed in relPath includes a
drive letter that is not valid or cannot be found, or if the length of the created absolute
path name (absPath) is greater than maxLength) the function returns NULL.

Parameters

Remarks

absPath Pointer to a buffer containing the absolute or full path name

relPath Relative path name

maxLength Maximum length of the absolute path name buffer (absPath). This length
is in bytes for _fullpath but in wide characters (wchar_t) for _wfullpath.

The _fullpath function expands the relative path name in relPath to its fully qualified
or "absolute" path, and stores this name in absPath. A relative path name specifies a
path to another location from the current location (such as the current working
directory: "."). An absolute path name is the expansion of a relative path name that
states the entire path required to reach the desired location from the root of the
filesystem. Unlike _makepath, _fullpath can be used to obtain the absolute path name
for relative paths (reIPath) that include "./" or " . ./" in their names.

For example, to use C run-time routines, the application must include the header
files that contain the declarations for the routines. Each header file include statement
references the location of the file in a relative manner (from the application's working
directory) :

#include <stdlib.h>

295

jullpath, _wfullpath

Example

296

when the absolute path (actual file system location) of the file may be:

\\machine\shareName\msvcSrc\crt\headerFiles\stdlib.h

_fullpath automatically handles multi byte-character string arguments as appropriate,
recognizing multi byte-character sequences according to the multibyte code page
currently in use. _ wfullpath is a wide-character version of _fullpath; the string
arguments to _ wfullpath are wide-character strings. _ wfullpath and _fullpath behave
identically except that _ wfullpath does not handle multibyte-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine

_tfullpath

_UNICODE & _MBCS
Not Defined

_fullpath

_MBCS Defined _UNICODE Defined

_fullpath _wfullpath

If the absPath buffer is NULL, _fullpath calls malloe to allocate a buffer of size
_MAX_PATH and ignores the maxLength argument. It is the caller's responsibility to
deallocate this buffer (using free) as appropriate. If the relPath argument specifies a
disk drive, the current directory of this drive is combined with the path.

/* FULLPATH.C: This program demonstrates how _fullpath
* creates a full path from a partial path.
*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <direct.h>

void maine void
{

while(1)
{

printf("Enter partial path or ENTER to quit: ");
gets (pa rt);
if(part[0] == 0)

break;

if(_fullpath(full. part. _MAX_PATH) != NULL
printf("Full path is: %s\n". full);

else
printf("Invalid path\n");

See Also: _getewd, _getdewd, _makepath, _splitpath

futime
Sets modification time on an open file.

int _futime(int handle, struct _utimbuf *filetime);

Function Required Header Optional Headers Compatibility

3utime <sys/utime.h> <errno.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_futime returns 0 if successful. If an error occurs, this function returns -1 and errno
is set to EBADF, indicating an invalid file handle.

Parameters

Remarks

Example

handle Handle to open file

file time Pointer to structure containing new modification date

The _futime routine sets the modification date and the access time on the open file
associated with handle. _futime is identical to _utime, except that its argument is the
handle to an open file, rather than the name of a file or a path to a file. The _utimbuf
structure contains fields for the new modification date and access time. Both fields
must contain valid values.

/* FUTIME.C: This program uses futime to set the
* file-modification time to the current time.
*/

#include <stdio.h>
#include <stdlib.h>
1f inc 1 u d e < fen t 1 . h>
#include <io.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/utime.h>

void maine void)
{

int hFile:

_futime

297

fwrite

Output

/* Show file time before and after. */
system("dir futime.c");

h Fil e = _open ("fut i me. c". _O_RDWR);

if(_futime(hFile. NULL) == -1
perror("_futime failed\n");

else
printf("File time modified\n");

close (hFile);

system("dir futime.c");

Volume in drive C is CDRIVE
Volume Serial Number is 1D37-7A7A

Directory of C:\code

05/03/95 01:30p 601 futime.c
1 File(s) 601 bytes

16.269.312 bytes free
Volume in drive C is CDRIVE
Volume Serial Number is 1D37-7A7A

Directory of C:\code

05/03/95 01:36p 601 futime.c
1 File(s) 601 bytes

16.269.312 bytes free
File time modified

fwrite

298

Writes data to a stream.

size_t fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

Function Required Header Compatibility

fwrite <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
fwrite returns the number of full items actually written, which may be less than
count if an error occurs. Also, if an error occurs, the file-position indicator cannot
be determined.

Parameters

Remarks

Example

buffer Pointer to data to be written

size Item size in bytes

count Maximum number of items to be written

stream Pointer to FILE structure

The fwrite function writes up to count items, of size length each, from buffer to the
output stream. The file pointer associated with stream (if there is one) is incremented
by the number of bytes actually written. If stream is opened in text mode, each
carriage return is replaced with a carriage-return-linefeed pair. The replacement has
no effect on the return value.

1* FREAD.C: This program opens a file named FREAD.OUT and
* writes 25 characters to the file. It then tries to open
* FREAD.OUT and read in 25 characters. If the attempt succeeds.
* the program displays the number of actual items read.
*1

#include <stdio.h>

void main(void)
{

FILE *stream;
char list[30];
int i. numread. numwritten;
1* Open file in text mode: *1
if((stream = fopen ("fread. out". "w+t" » != NULL)
{

for (i = 0; i < 25; i ++)
list[i] = (char)('z' - i);

1* Write 25 characters to stream *1
numwritten = fwrite(list. sizeof(char). 25. stream);
printf("Wrote %d items\n". numwritten);
fclose(stream);

else
printf("Problem opening the file\n");

fwrite

299

~cvt

Output

i f ((s t rea m = fop e n ("f rea d . 0 u t", " r+t ")) ! = NUL L)
{

1* Attempt to read in 25 characters *1
numread = fread(list, sizeof(char), 25, stream);
printf("Number of items read ... %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream);

else
pr:intf("File could not be opened\n");

Wrote 25 items
Number of items read ... 25
Contents of buffer'" zyxwvutsrqponmlkjihgfedcb

See Also: fread, _write

_gcvt
Converts a floating-point value to a string, which it stores in a buffer.

char * _gcvt(double value, int digits, char *buffer);

Routine Required Header Compatibility

<stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_gcvt returns a pointer to the string of digits. There is no error return.

Parameters

Remarks

300

value Value to be converted

digits Number of significant digits stored

buffer Storage location for result

The _gcvt function converts a floating-point value to a character string (which
includes a decimal point and a possible sign byte) and stores the string in buffer. The
buffer should be large enough to accommodate the converted value plus a terminating
null character, which is appended automatically. If a buffer size of digits + 1 is used,

Example

Output

getc, getwc, getchar, getwchar

the function overwrites the end of the buffer. This is because the converted string
includes a decimal point and can contain sign and exponent information. There is no
provision for overflow. ~evt attempts to produce digits digits in decimal format. If it
cannot, it produces digits digits in exponential format. Trailing zeros may be
suppressed in the conversion.

1* _GCVT.C: This program converts -3.1415e5
* to its string representation.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

}

char buffer[50];
double source ~ -3.1415e5;
_9cvt(source. 7. buffer);
pri ntf("source: %f buffer: '%s' \n". source. buffer);
_9cvt(source. 7. buffer);
pri ntf("source: %e buffer: '%s' \n". source. buffer);

source: -314150.000000 buffer: '-314150.'
sou r c e: -3 . 141500 e+0 05 b u f fer: '- 314150. '

See Also: atof, _eevt, _fevt

getc, getwc, getchar, getwchar
Read a character from a stream (gete, getwe), or get a character from stdin (getehar, getwehar).

int gete(FILE * stream);
winCt getwe(FILE *stream);
int getehar(void);
winCt getwehar(void);

Routine Required Header Compatibility

getc <stdio.h> ANSI, Win 95, Win NT

getwc <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

getchar <stdio.h> ANSI, Win 95, Win NT

getwchar <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

301

getc, getwc, getchar, getwchar

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the character read. To indicate an read error or end-of
file condition, getc and getchar return EOF, and getwc and getwchar return WEOF.
For getc and getchar, use ferror or feof to check for an error or for end of file.

Parameter

Remarks

Example

302

stream Input stream

Each of these routines reads a single character from a file at the current position and
increments the associated file pointer (if defined) to point to the next character. In the
case of getc and getwc, the file is associated with stream (see "Choosing Between
Functions and Macros" on page xiii). Routine-specific remarks follow.

Routine

getc

getwc

getchar

getwchar

Remarks

Same as fgetc, but implemented as a function and as a macro.

Wide-character version of getc. Reads a multibyte character or a
wide character according to whether stream is opened in text mode or
binary mode.

Same as _fgetchar, but implemented as a function and as a macro.

Wide-character version of getchar. Reads a multibyte character or a
wide character according to whether stream is opened in text mode or
binary mode.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

~ettc

_gettchar

getc

getchar

_MBCS Defined

getc

getchar

_UNICODE Defined

getwc

getwchar

/* GETC.C: This program uses getchar to read a single line
* of input from stdin, places this input in buffer, then
* terminates the string before printing it to the screen.
*/

#include <stdio.h>

void main(void)
{

Output

char buffer[81];
i nt i. ch;
printf("Enter a line: ");

/* Read in single line from "stdin": */
for(i = 0; (i < 80) && «ch = getchar(» 1= EOF)

&& (ch 1= '\n'); i++)
buffer[i] = (char)ch;

/* Terminate string with null character: */
buffer[i] = '\0';
pri ntf("%s \n". buffer);

Enter a line: This is a test
This is a test

See Also: fgetc, _getch, putc, ungetc

_getch, _getche
Get a character from the console without echo Cgetch) or with echo Cgetche).

int _getch(void);
int _getche(void);

Routine

_getch

_getche

Required Header

<conio.h>

<conio.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Both _getch and _getche return the character read. There is no error return.

The _getch function reads a single character from the console without echoing.
_getche reads a single character from the console and echoes the character read.
Neither function can be used to read CTRL+C. When reading a function key or
an arrow key, _getch and _getche must be called twice; the first call returns ° or
OxEO, and the second call returns the actual key code.

-£etch, -£etche

303

_getcwd, _ wgetcwd

Example

Output

1* GETCH.C: This program reads characters from
* the keyboard until it receives a 'Y' or 'y'.
*/

#include <conio.h>
#include <ctype.h>

void maine void)
(

int ch;

_cputs("Type 'Y' when finished typing keys: ");
do
(

ch = _getch();
ch = toupper(ch);

while(ch != 'Y');

_putch(ch);
_putch('\r');
_putch('\n');

1* Carriage return *1
/* Line feed */

Type 'Y' when finished typing keys: Y

See Also: _cgets, getc, _ungetch

_getcwd, _wgetcwd

304

Get the current working directory.

char * _getcwd(char *buffer, int maxlen);
wchar_t * _wgetcwd(wchar_t *buffer, int maxlen);

Routine

_getcwd

_wgetcwd

Required Header

<direct.h>

<direct.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to buffer. A NULL return value indicates
an error, and errno is set either to ENOMEM, indicating that there is insufficient
memory to allocate maxlen bytes (when a NULL argument is given as buffer), or
to ERANGE, indicating that the path is longer than maxlen characters.

Parameters

Remarks

Example

buffer Storage location for path

maxlen Maximum length of path

The _getewd function gets the full path of the current working directory for the
default drive and stores it at buffer. The integer argument maxlen specifies the
maximum length for the path. An error occurs if the length of the path (including the
terminating null character) exceeds maxlen. The buffer argument can be NULL; a
buffer of at least size maxlen (more only if necessary) will automatically be allocated,
using malloe, to store the path. This buffer can later be freed by calling free and
passing it the _getewd return value (a pointer to the allocated buffer).

_getewd returns a string that represents the path of the current working directory. If
the current working directory is the root, the string ends with a backslash (\). If the
current working directory is a directory other than the root, the string ends with the
directory name and not with a backslash.

_ wgetewd is a wide-character version of _getewd; the buffer argument and return
value of _ wgetewd are wide-character strings. _ wgetewd and _getewd behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tgetcwd

I I GETCWD.C

_UNICODE & _MBCS
Not Defined

_getcwd

_MBCS Defined _UNICODE Defined

_getcwd _wgetcwd

1* This program places the name of the current directory in the
* buffer array, then displays the name of the current directory
* on the screen. Specifying a length of _MAX PATH leaves room
* for the longest legal path name.
*1

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void maine void)
{

_getcwd, _ wgetcwd

305

_getdcwd, _ wgetdcwd

Output

/* Get the current working directory: */
if(_getcwd(buffer, _MAX_PATH) == NULL

perror("_getcwd error");
else

printf("%s\n", buffer);

C:\code

See Also: _chdir, _mkdir, _rmdir

_getdcwd, _wgetdcwd
Get full path name of current working directory on the specified drive.

char * _getdcwd(int drive, char *buffer, int maxlen);
wchar_t * _wgetdcwd(int drive, wchar_t *buffer, int maxlen);

Routine

~etdcwd

_wgetdcwd

Required Header

<direct.h>

<direct.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns buffer. A NULL return value indicates an error, and
errno is set either to ENOMEM, indicating that there is insufficient memory to
allocate maxlen bytes (when a NULL argument is given as buffer), or to ERANGE,
indicating that the path is longer than maxlen characters.

Parameters

Remarks

306

drive Disk drive

buffer Storage location for path

maxlen Maximum length of path

The _getdcwd function gets the full path of the current working directory on the
specified drive and stores it at buffer. An error occurs if the length of the path
(including the terminating null character) exceeds maxlen. The drive argument
specifies the drive (0 = default drive, 1 = A, 2 = B, and so on). The buffer argument

Example

~etdcwd, _ wgetdcwd

can be NULL; a buffer of at least size maxlen (more only if necessary) will
automatically be allocated, using malloe, to store the path. This buffer can later be
freed by calling free and passing it the _getdewd return value (a pointer to the
allocated buffer).

_getdewd returns a string that represents the path of the current working directory. If
the current working directory is set to the root, the string ends with a backslash (\).
If the current working directory is set to a directory other than the root, the string ends
with the name of the directory and not with a backslash.

_ wgetdewd is a wide-character version of ~etdewd; the buffer argument and return
value of _ wgetdewd are wide-character strings. _ wgetdewd and _getdewd behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tgetdcwd

_UNICODE & _MBCS
Not Defined

~etdcwd

_MBCS Defined

~etdcwd

1* GETDRIVE.C illustrates drive functions including:
* _getdrive chdrive _getdcwd
*/

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

void maine void)
{

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
fore drive = 1; drive <= 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

while(1)
{

_UNICODE Defined

_wgetdcwd

printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;

307

~etdrive

Output

if(isalpha(ch))
_putch(ch);

if(_getdcwd(toupper(ch) - 'A' + 1. path. _MAX_PATH) 1- NULL
printf("\nCurrent directory on that drive is %s\n". path);

/* Restore original drive.*/
_chdrive(curdrive);
pri ntf("\n");

Available drives are:
A: B: C: L: M: 0: U: V:
Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\CODE

Type drive letter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:

See Also: _chdir, ~etcwd, _getdrive, _mkdir, _rmdir

_getdrive
Gets the current disk drive.

int _getdrive(void);

Routine Required Header Compatibility

_getdrive <direct.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_getdrive returns the current (default) drive (l=A, 2=B, and so on). There is no
error return.

Example
/* GETDRIVE.C illustrates drive functions including:
* _getdrive _chdrive _getdcwd
*/

308

Output

#include <stdio.h>
#include <conio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

void main(void)
{

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive - _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
for(drive - I; drive <- 26; drive++)

if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

whil e(1)
{

printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;
if(isalpha(ch))

_putch(ch);
if(_getdcwd(toupper(ch) - 'A' + 1, path, _MAX_PATH) !- NULL

printf("\nCurrent directory on that drive is %s\n", path);

/* Restore original drive.*/
_chdrive(curdrive);
pri ntf("\n");

Available drives are:
A: B: C: L: M: 0: U: V:
Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\CODE

Type drive letter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:

See Also: _chdrive, _getcwd, _getdcwd

~etdrive

309

getenv, _wgetenv

getenv, _wgetenv
Get a value from the current environment.

char *getenv(const char *vamame);
wchar_t * _wgetenv(const wchar_t *vamame);

Routine

getenv

_wgetenv

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the environment table entry containing
vamame. It is not safe to modify the value of the environment variable using the
returned pointer. Use the _putenv function to modify the value of an environment
variable. The return value is NULL if vamame is not found in the environment table.

Parameter

Remarks

310

vamame Environment variable name

The getenv function searches the list of environment variables for vamame. getenv
is not case sensitive in Windows NT and Windows 95. getenv and _putenv use the
copy of the environment pointed to by the global variable _environ to access the
environment. getenv operates only on the data structures accessible to the run-time
library and not on the environment "segment" created for the process by the operating
system. Therefore, programs that use the envp argument to main or wmain may
retrieve invalid information.

_ wgetenv is a wide-character version of getenv; the argument and return value
of _ wgetenv are wide-character strings. The _ wenviron global variable is a
wide-character version of _environ.

In an MBCS program (for example, in an SBCS ASCII program), _ wenviron is
initially NULL because the environment is composed of multibyte-character strings.
Then, on the first call to _wputenv, or on the first call to _wgetenv if an (MBCS)
environment already exists, a corresponding wide-character string environment is
created and is then pointed to by _ wenviron.

Example

Similarly in a Unicode C wmain) program, _environ is initially NULL because
the environment is composed of wide-character strings. Then, on the first call to
_putenv, or on the first call to getenv if a (Unicode) environment already exists, a
corresponding MBCS environment is created and is then pointed to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously
in a program, the run-time system must maintain both copies, resulting in slower
execution time. For example, whenever you call _putenv, a call to _ wputenv is
also executed automatically, so that the two environment strings correspond.

Caution In rare instances, when the run-time system is maintaining both a Unicode version
and a multibyte version of the environment, these two environment versions may not
correspond exactly. This is because, although any unique multibyte-character string maps to
a unique Unicode string, the mapping from a unique Unicode string to a multibyte-character
string is not necessarily unique. For more information, see "_environ, _wenviron."

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tgetenv getenv

_MBCS Defined _UNICODE Defined

getenv _wgetenv

To check or change the value of the TZ environment variable, use getenv,
_putenv and _tzset as necessary. For more information about TZ, see tzset and
see "_daylight, timezone, and _tzname."

/* GETENV.C: This program uses getenv to retrieve
* the LIB environment variable and then uses
* _putenv to change it to a new value.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
(

char *libvar;

/* Get the value of the LIB environment variable. */
1 i bvar = getenv("LIB");

if(libvar 1= NULL)
printf("Original LIB variable is: %s\n", libvar);

/* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*/

_putenv("LIB=c:\\mylib;c:\\yourlib");

getenv, _wgetenv

311

_getmbcp

Output

/* Get new value. */
1; bvar = getenv("LIB");

if(libvar != NULL)
printf("New LIB variable is: %s\n", libvar);

Original LIB variable is: C:\progra~l\devstu~l\vc\lib
New LIB variable is: c:\mylib;c:\yourlib

See Also: _putenv

_getmbcp
int _getmbcp(void);

Routine Required Header Compatibility

_getmhcp <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_getmbcp returns the current multibyte code page. A return value of 0 indicates that a
single byte code page is in use.

See Also: _setmbcp

_get_osfhandle

312

Gets operating-system file handle associated with existing stream FILE pointer.

long _geCosfhandle(intfilehandle);

Routine Required Header Compatibility

_geCosfuandle <io.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
If successful, _geCosfhandle returns an operating-system file handle corresponding
to filehandle. Otherwise, it returns -1 and sets errno to EBADF, indicating an invalid
file handle.

Parameter

Remarks

filehandle User file handle

The _geCosfhandle function returns filehandle if it is in range and if it is internally
marked as free.

See Also: _close, _creat, _dup, _open

_getpid
Gets the process identification.

int _getpid(void);

Routine Required Header Compatibility

_getpid <process.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

_getpid returns the process ID obtained from the system. There is no error return.

The _getpid function obtains the process ID from the system. The process ID
uniquely identifies the calling process.

/* GETPIO.C: This program uses _getpid to obtain
* the process 10 and then prints the 10.
*/

#include <stdio.h>
#include <process.h>

void maine void)
{

/* If run from command line, shows different 10 for
* command line than for operating system shell.
*/

printf("\nProcess id: %d\n", _getpid());

_getpid

313

Output
Process id: 193

See Also: _mktemp

_get_s bh_threshold
Returns the upper limit for the size of a memory allocation that will be supported
by the small-block heap.

size_t ~et_sbh_threshold(void);

Routine Required Header Compatibility

<malloc.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

This function returns the upper limit for the size of a memory allocation that will
be supported by the small-block heap.

Call this function to get the current threshold value for the small-block heap.
The default threshold size is 480 bytes for Windows 95 and all Windows NT
platforms except the DEC Alpha platforms, and 896 bytes for DEC Alpha
Platforms.

See Also: _seCsbh_threshold

gets, _getws

314

Get a line from the stdin stream.

char *gets(char *buffer);
wchar_t * _getws(wchar_t *buffer);

Routine

gets

_getws

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.UB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns its argument if successful. A NULL pointer
indicates an error or end-of-file condition. Use ferror or feof to determine
which one has occurred.

Parameter

Remarks

Example

Output

buffer Storage location for input string

The gets function reads a line from the standard input stream stdin and stores it in
buffer. The line consists of all characters up to and including the first newline
character ('\n'). gets then replaces the newline character with a null character ('\0')
before returning the line. In contrast, the fgets function retains the newline character.
_getws is a wide-character version of gets; its argument and return value are
wide-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine

~etts

/* GETS.C */

#include <stdio.h>

void main(void)
{

char 1 ine[81];

_UNICODE & MBCS
Not Defined

gets

printf("Input a string: ");
gets(line);

_MBCS Defined

gets

pri ntf("The 1 i ne entered was: %s\n". 1 i ne);

Input a string: Hello!
The line entered was: Hello!

See Also: fgets, fputs, puts

_UNICODE Defined

gets, ~etws

315

~etw

_getw
Gets an integer from a stream.

int _getw(FILE * stream);

Routine Required Header Compatibility

~ctw <stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
~etw returns the integer value read. A return value of EOF indicates either an error
or end of file. However, because the EOF value is also a legitimate integer value, use
feof or ferror to verify an end-of-file or error condition.

Parameter

Remarks

Example

316

stream Pointer to FILE structure

The _getw function reads the next binary value of type int from the file associated
with stream and increments the associated file pointer (if there is one) to point to the
next unread character. _getw does not assume any special alignment of items in the
stream. Problems with porting may occur with _getw because the size of the int type
and the ordering of bytes within the int type differ across systems.

1* GETW.C: This program uses _getw to read a word
* from a stream, then performs an error check.
*1

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

FILE *stream;
i nt i;

if((stream = fopen("getw.c", "rb" » == NULL)
pri ntf("Coul dn' t open fil e\n");

else
{

/* Read a word from the stream: */
i = _getw(stream);

Output

/* If there is an error ... */
if(ferror(stream))
{

printf("_getw failed\n");
clearerr(stream);

else
printf("First data word in file: 0x%.4x\n".);

fclose(stream);

First data word in file: 0x47202a2f

See Also: _putw

gmtime
Converts a time value to a structure.

struct tm *gmtime(const time_t *timer);

Routine Required Header Compatibility

gmtime <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

gmtime returns a pointer to a structure of type tm. The fields of the returned structure
hold the evaluated value of the timer argument in UTC rather than in local time. Each
of the structure fields is of type int, as follows:

tm_sec Seconds after minute (0-59)

tm_min Minutes after hour (0-59)

tm_hour Hours since midnight (0-23)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)

tm-year Year (current year minus 1900)

tm_ wday Day of week (0-6; Sunday = 0)

gmtime

317

gmtime

tmJday Day of year (0-365; January 1 = 0)

tm_isdst Always 0 for gmtime

The gmtime, mktime, and localtime functions use the same single, statically
allocated structure to hold their results. Each call to one of these functions destroys the
result of any previous call. If timer represents a date before midnight, January 1, 1970,
gmtime returns NULL. There is no error return.

Parameter

Remarks

Example

Output

318

timer Pointer to stored time. The time is represented as seconds elapsed since
midnight (00:00:00), January 1, 1970, coordinated universal time (UTe).

The gmtime function breaks down the timer value and stores it in a statically
allocated structure of type tm, defined in TIME.H. The value of timer is usually
obtained from a call to the time function.

Note The target environment should try to determine whether daylight savings time is in effect.
The C run-time library assumes the United States's rules for implementing the calculation of
Daylight Savings Time (DST).

/* GMTIME.C: This program uses gmtime to convert a long
* integer representation of coordinated universal time
* to a structure named newtime, then uses asctime to
* convert this structure to an output string.
*/

#include <time.h>
#include <stdio.h>

void main(void)
{

struct tm *newtime;
long ltime;

time(<ime);

/* Obtain coordinated universal time: */
newtime = gmtime(<ime);
printf("Coordinated universal time is %s\n",

asctime(newtime));

Coordinated universal time is Tue Mar 23 02:00:56 1993

See Also: asctime, ctime, _ftime, localtime, mktime, time

_heapadd
Adds memory to the heap.

int _heapadd(void *memblock, size_t size);

Routine Required Header Optional Headers Compatibility

_heapadd <malloc.h> <errno.h> None

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, _heapadd returns 0; otherwise, the function returns -1 and sets errno
to ENOSYS.

Parameters

Remarks

memblock Pointer to heap memory

size Size in bytes of memory to add

Beginning with Visual C++ Version 4.0, the underlying heap structure was moved to the
C run-time libraries to support the new debugging features. As a result, _heapadd is no
longer supported on any Win32 platform and will immediately return -1 when called from
an application of this type.

See Also: free, _heapehk, _heapmin, _heapset, _heapwalk, malloe, realloe

_heapchk
Runs consistency checks on the heap.

int _heapehk(void);

Routine Required Header

_heapchk <malloc.h>

Optional Headers Compatibility

<errno.h> Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

_heapchk

319

_heapchk

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

320

_heapchk returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information is bad or cannot be found

_HEAPBADNODE Bad node has been found or heap is damaged

_HEAPBADPTR Pointer into heap is not valid

_HEAPEMPTY Heap has not been initialized

_HEAPOK Heap appears to be consistent

In addition, if an error occurs, _heapchk sets errno to ENOSYS.

The _heapchk function helps debug heap-related problems by checking for minimal
consistency of the heap.

Note In Visual C++ Version 4.0, the underlying heap structure was moved to the C run-time
libraries to support the new debugging features. As a result, the only Win32 platform that is
supported by _heapchk is Windows NT. The function returns _HEAPOK and sets errno to
ENOSYS, when it is called by any other Win32 platform.

1* HEAPCHK.C: This program checks the heap for
* consistency and prints an appropriate message.
*1

#include <malloc.h>
#include <stdio.h>

void main(void)
{

int heapstatus;
char *buffer;

1* Allocate and deallocate some memory *1
if((buffer = (char *)malloc(100)) != NULL

free(buffer);

1* Check heap status *1
heapstatus = _heapchk();
switch(heapstatus)
{

Output

case _HEAPOK:
printf(" OK heap is fine\n");
break;

case _HEAPEMPTY:
printf(" OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:
pri ntf("ERROR - bad node in heap\n");
break;

OK - heap is fine

See Also: _heapadd, _heapmin, _heapset, _heapwalk

_heapmin
Releases unused heap memory to the operating system.

int _heapmin(void);

Routine Required Header Optional Headers

_heapmin <malloc.h> <errno.h>

Compatibility

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

If successful, _heapmin returns 0; otherwise, the function returns -1 and sets errno
toENOSYS.

The _heapmin function minimizes the heap by releasing unused heap memory to the
operating system.

Note In Visual C++ Version 4.0, the underlying heap structure was moved to the C run-time
libraries to support the new debugging features. As a result, the only Win32 platform that is
supported by _heapmin is Windows NT. The function returns -1 and sets errno to ENOSYS,
when it is called by any other Win32 platform.

See Also: free, _heapadd, _heapchk, _heapset, _heapwalk, malloc

_heapmin

321

_heapset

_heap set
Checks heaps for minimal consistency and sets the free entries to a specified value.

int _heapset(unsigned intfill);

Routine Required Header Optional Headers Compatibility

_heapset <malloc.h> <errno.h> Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_heap set returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information invalid or not found

_HEAPBADNODE Heap damaged or bad node found

_HEAPEMPTY Heap not initialized

_HEAPOK Heap appears to be consistent

In addition, if an error occurs, _heapset sets errno to ENOSYS.

Parameter

Remarks

322

fill Fill character

The _heapset function shows free memory locations or nodes that have been
unintentionally overwritten.

_heapset checks for minimal consistency on the heap, then sets each byte of
the heap's free entries'to thefill value. This known value shows which
memory locations of the heap contain free nodes and which contain data that
were unintentionally written to freed memory.

Note In Visual C++ Version 4.0, the underlying heap structure was moved to the
C run-time libraries to support the new debugging features. As a result, the only Win32
platform that is supported by _heapset is Windows NT. The function returns _HEAPOK
and sets errno to ENOSYS, when it is called by any other Win32 platform.

Example

Output

1* HEAPSET.C: This program checks the heap and
* fills in free entries with the character 'Z'.
*1

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int heapstatus;
char *buffer;

if((buffer ~ malloc(1)) NULL)
ex it (0);

heapstatus = _heapset('Z');
switch(heapstatus)
{

case HEAPOK:
printf("OK heap is fine\n");
break;

case HEAPEMPTY:
printf("OK - heap is empty\n");
break;

case HEAPBADBEGIN:

1* Make sure heap is *1
1* initialized *1
1* Fill in free entries *1

printf("ERROR - bad start of heap\n");
break;

case HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

free(buffer);

OK - heap is fine

See Also: _heapadd, _heapchk, _heapmin, _heapwalk

_heapwalk
Traverses the heap and returns information about the next entry.

int _heapwalk(_HEAPINFO *entryinfo);

Routine Required Header Optional Headers

_heapwalk <malloc.h> <errno.h>

Compatibility

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

_heapwalk

323

_heapwalk

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_heapwalk returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information invalid or not found

_HEAPBADNODE Heap damaged or bad node found

_HEAPBADPTR _peotry field of _HEAPINFO structure does not contain valid
pointer into heap

_HEAPEND End of heap reached successfully

_HEAPEMPTY Heap not initialized

_HEAPOK No errors so far; _HEAPINFO structure contains information about
next entry.

In addition, if an error occurs, _heapwalk sets erroo to ENOSYS.

Parameter

Remarks

324

entryinfo Buffer to contain heap information

The _heapwalk function helps debug heap-related problems in programs. The
function walks through the heap, traversing one entry per call, and returns a pointer to
a structure of type _HEAPINFO that contains information about the next heap entry.
The _HEAPINFO type, defined in MALLOC.H, contains the following elements:

iot * _peotry Heap entry pointer

size_t _size Size of heap entry

iot _llseflag Flag that indicates whether heap entry is in use

A call to _heapwalk that returns _HEAPOK stores the size of the entry in the _size
field and sets the _llseflag field to either _FREEENTRY or _USED ENTRY (both
are constants defined in MALLOC.H). To obtain this information about the first entry
in the heap, pass _heapwalk a pointer to a _HEAPINFO structure whose _peotry
member is NULL.

Note Beginning with Visual C++ Version 4.0, the underlying heap structure was moved to the
C run-time libraries to support the new debugging features. As a result, the only Win32 platform
that is supported by _heapwalk is Windows NT. When it is called by any other Win32 platform,
_heapwalk returns _HEAPEND and sets errno to ENOSYS.

Example
/* HEAPWALK.C: This program "walks" the heap, starting
* at the beginning (_pentry "" NULL). It prints out each
* heap entry's use, location, and size. It also prints
* out information about the overall state of the heap as
* soon as _heapwalk returns a value other than _HEAPOK.
*/

#include <stdio.h>
#include <malloc.h>

void heapdump(void):

void maine void)
{

char *buffer:

heapdump():
if((buffer"" malloc(59 » !- NULL)
{

heapdump():
free(buffer);

}
heapdump();

void heapdump(void
{

_HEAPINFO hinfo:
int heapstatus:
hinfo._pentry - NULL;
while((heapstatus "" _heapwalk(&hinfo)) ""~ _HEAPOK)
{printf("%6s block at %Fp of size %4.4X\n",

(hinfo._useflag -- _USEDENTRY ? "USED" : "FREE"),
hinfo._pentry, hinfo._size);

switch(heapstatus)
{
case _HEAPEMPTY:

printf("OK - empty heap\n"):
break:

case HEAPEND:
printf("OK - end of heap\n"):
break;

case _HEAPBADPTR:
pri ntf("ERROR - bad poi nter to heap\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n"):
break:

case HEAPBADNODE:
printf("ERROR - bad node in heap\n"):
break;

_heap walk

325

_hypot

Output
USED block at 002C0004 of size 0014
USED block at 002C001C of size 0054
USED block at 002C0074 of size 0024
USED block at 002C009C of size 0010
USED block at 002C00B0 of size 0018
USED block at 002C00CC of size 000C
USED block at 002C000C of size 001C
USED block at 002C00FC of size 0010
USED block at 002C0110 of size 0014
USED block at 002C0128 of size 0010
USED block at 002C013C of size 0028
USED block at 002C0168 of size 0088
USED block at 002C01F4 of size 001C
USED block at 002C0214 of size 0014
USED block at 002C022C of size 0010
USED block at 002C0240 of size 0014
USED block at 002C0258 of size 0010
USED block at 002C026C of size 000C
USED block at 002C027C of size 0010
USED block at 002C0290 of size 0014
USED block at 002C02A8 of size 0010
USED block at 002C02BC of size 0010
USED block at 002C0200 of size 1000
FREE block at 002C1204 of size ED2C

OK - end of heap

See Also: _heapadd, _heapchk, _heapmin, _heapset

_hypot
Calculates the hypotenuse.

double _hypot(double x, double y);

Routine Required Header Compatibility

_hypot <math.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIB CMT. LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

326

_hypot returns the length of the hypotenuse if successful or INF (infinity) on
overflow. The errno variable is set to ERANGE on overflow. You can modify error
handling with _matherr.

Parameters

Remarks

Example

Output

x, y Floating-point values

The _hypot function calculates the length of the hypotenuse of a right triangle, given
the length of the two sides x and y. A call to _hypot is equivalent to the square root
of x2 + y2.

1* HYPOT.C: This program prints the
* hypotenuse of a right triangle.
*1

#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 3.0, y = 4.0;

printf("If a right triangle has sides %2.lf and %2.lf, "
"its hypotenuse is %2.1f\n", x, y, _hypot(x, Y);

If a right triangle has sides 3.0 and 4.0, its hypotenuse is 5.0

See Also: _cabs, _matherr

_inp, _inpw, _inpd
Input a byte Cinp), a word Cinpw), or a double word Cinpd) from a port.

int _inp(unsigned short port);
unsigned short _inpw(unsigned short port);
unsigned long _inpd(unsigned short port);

Routine Required Header Compatibility

_inp <conio.h> Win 95

_inpw <conio.h> Win 95

_inpd <conio.h> Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

327

is, isw Routines

Return Value
The functions return the byte, word, or double word read from port. There is no error
return.

Parameter

Remarks

port Port number

The _inp, _inpw, and _inpd functions read a byte, a word, and a double word,
respectively, from the specified input port. The input value can be any unsigned
short integer in the range 0-65,535.

See Also: _outp

IS, isw Routines

Remarks

328

isalnum, iswalnum

isalpha, iswalpha

_isascii, iswascii

iscntrl, iswcntrl

_iscsym, _iscsymf

isdigit, iswdigit

isgraph, iswgraph

islower, iswlower

isprint, iswprint

ispunct, iswpunct

isspace, iswspace

isupper, iswupper

isxdigit, iswxdigit

iswctype

These routines test characters for specified conditions.

The is routines produce meaningful results for any integer argument from -1 (EOF) to
UCHAR_MAX (OxFF), inclusive. The expected argument type is int.

Warning For the is routines, passing an argument of type char may yield unpredictable
results. An SBCS or MBCS single-byte character of type char with a value greater than Ox7F
is negative. If a char is passed, the compiler may convert the value to a signed int or a signed
long. This value may be sign-extended by the compiler, with unexpected results.

The isw routines produce meaningful results for any integer value from -1 (WEOF)
to OxFFFF, inclusive. The wint_t data type is defined in WCHAR.H as an unsigned
short; it can hold any wide character or the wide-character end-of-file (WEOF) value.

For each of the is routines, the result of the test for the specified condition depends
on the LC_CTYPE category setting of the current locale; see setlocale for more
information. In the "C" locale, the test conditions for the is routines are as follows:

isalnum Alphanumeric (A-Z, a-z, or 0-9)

isalpha Alphabetic (A-Z or a-z)

_isascii ASCII character (OxOO-Ox7F)

iscntrl Control character (OxOO-OxIF or Ox7F)

_iscsym Letter, underscore, or digit

_iscsymf Letter or underscore

is digit Decimal digit (0-9)

isgraph Printable character except space ()

is lower Lowercase letter (a-z)

isprint Printable character including space (Ox20-0x7E)

ispunct Punctuation character

isspace White-space character (Ox09-0xOD or Ox20)

isupper Uppercase letter (A-Z)

isxdigit Hexadecimal digit (A-F, a-f, or 0-9)

For the isw routines, the result of the test for the specified condition is independent of
locale. The test conditions for the isw functions are as follows:

iswalnum iswalpha or iswdigit

iswalpha Any wide character that is one of an implementation-defined set for which
none of iswcntrl, iswdigit, iswpunct, or iswspace is true. iswalpha returns true
only for wide characters for which iswupper or iswlower is true.

iswascii Wide-character representation of ASCII character (OxOOOO-Ox007F).

iswcntrl Control wide character.

iswctype Character has property specified by the desc argument. For each valid
value of the desc argument of iswctype, there is an equivalent wide-character
classification routine, as shown in the following table:

Table R.2 Equivalence of iswctype(c, desc) to Other isw Testing Routines

Value of desc Argument

_ALPHA

_ALPHA I _DIGIT

_CONTROL

_DIGIT

_ALPHA I_DIGIT I_PUNCT

_LOWER

_ALPHA I _BLANK I _DIGIT I _PUNCT

_PUNCT

_SPACE

_UPPER

_HEX

iswctype(c, desc) Equivalent

iswalpha(c)

iswalnum(c)

iswcntrl(c)

iswdigit(c)

iswgraph(c)

iswlower(c)

iswprint(c)

iswpunct(c)

iswspace(c)

iswupper(c)

iswxdigit(c)

is, isw Routines

329

is, isw Routines

Example

330

iswdigit Wide character corresponding to a decimal-digit character.

iswgraph Printable wide character except space wide character (L' ').

iswlower Lowercase letter, or one of implementation-defined set of wide characters
for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true. iswlower
returns true only for wide characters that correspond to lowercase letters.

iswprint Printable wide character, including space wide character (L' ').

iswpunct Printable wide character that is neither space wide character (L' ') nor wide
character for which iswalnum is true.

iswspace Wide character that corresponds to standard white-space character or is
one of implementation-defined set of wide characters for which iswalnum is false.
Standard white-space characters are: space (L' '), formfeed (L'\f), newline (L'\n'),
carriage return (L'\r'), horizontal tab (L'\t'), and vertical tab (L'\v').

iswupper Wide character that is uppercase or is one of an implementation-defined
set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace
is true. iswupper returns true only for wide characters that correspond to uppercase
characters.

iswxdigit Wide character that corresponds to a hexadecimal-digit character.

/* ISFAM.C: This program tests all characters between 0x0
* and 0x7F, then displays each character with abbreviations
* for the character-type codes that apply.

* Editor's note: the following output is significantly
* shortened with the use of ellipses. This full output
* is too long and repetitive.
*/

#include <stdio.h>
#include <ctype.h>

void maine void)
{

int ch;
fore ch = 0; ch <= 0x7F; ch++
{

pri ntf("%.2x " ch) ; ,
pri ntf(" %c", isprint(ch
pri ntf("%4s", isalnum(ch
pri ntf("%3s", isalpha(ch
pri ntf("%3s", _isascii(
pri ntf("%3s", iscntrl(ch

ch
)

pri ntf("%3s", _iscsym(ch
pri ntf("%3s", _ i scsymf(ch
pri ntf("%3s", isdigit(ch)

pri ntf("%3s", isgraph(ch)

pri ntf("%3s", islower(ch)

)

)

? ch '\0 ') ;

? "AN" "") ;

? "A" "n) ;

? "AS" : "") ;

? "C" "") ;

? "CS " : "") ;

? "CSF" : "n) ;

? "D") ;

? "G") ;

? "L") ;

is, isw Routines

pri ntf("%3s" , ispunet(eh) ? "PU") ;

pri ntf("%3s" , isspaee(eh) ? "S") ;

pri ntf("%3s" , isprint(eh) ? "PR") ;

pri ntf("%3s" , isupper(eh) ? "un) ;
pri ntf("%3s" , isxdigit(eh) ? "X") ;

pri ntf("\n") ;

Output
00
01
02
03
04
05
06
07
08
09
0a
0b
0e
0d
0e
0f
10
11
12
13
14
15
16
17
18
19
la
Ib
Ie
Id
Ie
If
20 AS S PR
21 AS G PU PR
22 AS G PU PR
23 /I AS G PU PR
24 $ AS G PU PR
25 % AS G PU PR
26 & AS G PU PR
27 AS G PU PR
28 AS G PU PR
29 AS G PU PR
2a * AS G PU PR
2b + AS G PU PR

331

is, isw Routines

332

2c
2d
2e
2f /
30 0 AN
31 1 AN
32 2 AN
33 3 AN
34 4 AN
35 5 AN
36 6 AN
37 7 AN
38 8 AN

39 9 AN
3a
3b
3c <
3d

3e >
3f ?
40 @

41 A
42 B
43 C
44 0
45 E
46 F
47 G
48 H
49 I
4a J
4b K
4c L
4d M
4e N
4f a
50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
Sa Z
5b [

AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
AN

AS
AS
AS
AS
AS CS
AS CS
AS CS
AS CS
AS CS
AS CS
AS CS
AS CS
AS CS

AS CS
AS
AS
AS
AS

AS
AS
AS

A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF
A AS CS CSF

AS

G
G
G
G

0 G
0 G
0 G
0 G
0 G
0 G
0 G
0 G
0 G

o G
G
G
G
G

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

PU
PU
PU
PU

PU
PU
PU
PU

PU
PU
PU

PU

PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR

PR
PR
PR
PR
PR

PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR

X
X
X
X
X
X
X
X
X

X

U X
U X
U X
U X
U X
U X
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

is, isw Routines

5c \ AS G PU PR
5d] AS G PU PR
5e AS G PU PR
5f - AS CS CSF G PU PR
60 AS G PU PR
61 a AN A AS CS CSF G L PR X
62 b AN A AS CS CSF G L PR X
63 c AN A AS CS CSF G L PR X
64 d AN A AS CS CSF G L PR X
65 e AN A AS CS CSF G L PR X
66 f AN A AS CS CSF G L PR X
67 9 AN A AS CS CSF G L PR
68 h AN A AS CS CSF G L PR
69 AN A AS CS CSF G L PR
6a j AN A AS CS CSF G L PR
6b k AN A AS CS CSF G L PR
6c 1 AN A AS CS CSF G L PR
6d m AN A AS CS CSF G L PR
6e n AN A AS CS CSF G L PR
6f 0 AN A AS CS CSF G L PR
70 P AN A AS CS CSF G L PR
71 q AN A AS CS CSF G L PR
72 r AN A AS CS CSF G L PR
73 s AN A AS CS CSF G L PR
74 t AN A AS CS CSF G L PR
75 u AN A AS CS CSF G L PR
76 v AN A AS CS CSF G L PR
77 w AN A AS CS CSF G L PR
78 x AN A AS CS CSF G L PR
79 y AN A AS CS CSF G L PR
7a z AN A AS CS CSF G L PR
7b { AS G PU PR
7c I AS G PU PR
7d } AS G PU PR
7e AS G PU PR
7f

See Also: setlocale, to Function Overview

isalnum, iswalnum
int isalnum(int c);
int iswalnum(winet c);

Each of these routines returns true if c is a particular representation of an
alphanumeric character.

Routine Required Header Compatibility

isalnum <ctype.h> ANSI, Win 95, Win NT

iswalnum <ctype.h> or <wchar.h> ANSI, Win 95, Win NT

333

is, isw Routines

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
isalnum returns a non-zero value if either isalpha or isdigit is true for c, that is, if c
is within the ranges A-Z, a-z, or 0-9. iswalnum returns a non-zero value if either
iswalpha or iswdigit is true for c. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the isalnum function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswalnum, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istalnum

_UNICODE & _MBCS
Not Defined

isalnum

_MBCS Defined _UNICODE Defined

_ismbcalnum iswalnum

isalpha, iswalpha

334

int isalpha(int c);
int iswalpha(wint_t c);

Each of these routines returns true if c is a particular representation of an alphabetic
character.

Routine

isalpha

iswalpha

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
is alpha returns a non-zero value if c is within the ranges A-Z or a-z. iswalpha
returns a non-zero value only for wide characters for which iswupper or iswlower is
true, that is, for any wide character that is one of an implementation-defined set for
which none of iswcntrl, iswdigit, iswpunct, or iswspace is true. Each of these
ro'utines returns 0 if c does not satisfy the test condition.

The result of the test condition for the isalpha function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswalpha, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istalpha

. .

_UNICODE & _MBCS
Not Defined

isalpha

_lSaSCll, lSWaSCll

int _isascii(int c);
int iswascii(winet c);

_MBCS Defined _UNICODE Defined

_ismbcalpha iswalpha

Each of these routines returns true if c is a particular representation of an ASCII
character.

Routine

_isascii

iswascii

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_isascii returns a non-zero value if c is an ASCII character (in the range OxOO-Ox7F).
iswascii returns a non-zero value if c is a wide-character representation of an ASCII
character. Each of these routines returns 0 if c does not satisfy the test condition.

The result of the test condition for the _isascii function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For iswascii,
the result of the test condition is independent of locale.

is, isw Routines

335

is, isw Routines

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istascii

_UNICODE & _MBCS
Not Defined

_isascii

_MBCS Defined UNICODE Defined

_is ascii iswascii

iscntrl, iswcntrl
int iscntrl(int c);
int iswcntrl(winet c);

Each of these routines returns true if c is a particular representation of a control
character.

Routine

iscntrl

iswcntrl

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIB CMT. LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
iscntrl returns a non-zero value if c is a control character (OxOO-OxlF or Ox7F).
iswcntrl returns a non-zero value if c is a control wide character. Each of these
routines returns 0 if c does not satisfy the test condition.

The result of the test condition for the iscntrl function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswcntrl, the result of the test condition is independent of locale.

Parameter

336

c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istcntrl

_UNICODE & _MBCS
Not Defined

iscntrl

_MBCS-Defined _UNICODE Defined

iscntrl iswcntrl

_iscsym, _iscsymf
int _iscsym(int c);
int _iscsymf(int c);

Routine

_iscsym

_iscsymf

Required Header

<ctype.h>

<ctype.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSYCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

_iscsym returns a non-zero value if c is a letter, underscore, or digit. _iscsymf
returns a non-zero value if c is a letter or an underscore. Each of these routines returns
o if c does not satisfy the test condition.

The result of the test condition for the _iscsym function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
_iscsymf, the result of the test condition is independent of locale.

Parameter
c Integer to test

isdigit, iswdigit
int isdigit(int c);
int iswdigit(winet c);

Each of these routines returns true if c is a particular representation of a decimal-digit
character.

Routine

isdigit

iswdigit

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

is, isw Routines

337

is, isw Routines

Return Value
isdigit returns a non-zero value if c is a decimal digit (0-9). iswdigit returns a
non-zero value if c is a wide character corresponding to a decimal-digit character.
Each of these routines returns 0 if c does not satisfy the test condition.

The result of the test condition for the isdigit function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswdigit, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istdigit

_UNICODE & _MBCS
Not Defined

isdigit

_MBCS Defined _UNICODE Defined

_ismbcdigit iswdigit

isgraph, iswgraph
int isgraph(int c);
int iswgraph(winet c);

Each of these routines returns true if c is a particular representation of a printable
character other than a space.

Routine

isgraph

iswgraph

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

338

isgraph returns a non-zero value if c is a printable character other than a space.
iswgraph returns a non-zero value if c is a printable wide character other than
a wide-character space. Each of these routines returns 0 if c does not satisfy the
test condition.

The result of the test condition for the isgraph function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswgraph, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istgraph

_UNICODE & _MBCS
Not Defined

isgraph

islower, iswlower
int islower(int c);
int iswlower(wint_t c);

_MBCS Defined _UNICODE Defined

_ismbcgraph iswgraph

Each of these routines returns true if c is a particular representation of a lowercase
character.

Routine

islower

iswlower

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

islower returns a non-zero value if c is a lowercase character (a-z). iswlower returns
a non-zero value if c is a wide character that corresponds to a lowercase letter, or if c
is one of an implementation-defined set of wide characters for which none of
iswcntrl, iswdigit, iswpunct, or iswspace is true. Each of these routines returns 0 if c
does not satisfy the test condition.

The result of the test condition for the islower function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswlower, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istlower

_UNICODE & _MBCS
Not Defined

islower

_MBCS Defined _UNICODE Defined

_ismbc1ower iswlower

is, isw Routines

339

is, isw Routines

isprint, iswprint
int isprint(int c);
int iswprint(wint_t c);

Each of these routines returns true if c is a particular representation of a printable
character.

Routine

isprint

iswprint

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
isprint returns a nonzero value if c is a printable character, including the space
character (Ox20-0x7E). iswprint returns a nonzero value if c is a printable wide
character, including the space wide character. Each of these routines returns 0 if c
does not satisfy the test condition.

The result of the test condition for the isprint function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswprint, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_istprint isprint _ismbcprint iswprint

ispunct, iswpunct

340

int ispunct(int c);
int iswpunct(wint_t c);

Each of these routines returns true if c is a particular representation of a punctuation
character.

Routine

ispunct

iswpunct

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

ispunct returns a non-zero value for any printable character that is not a space
character or a character for which isalnum is true. iswpunct returns a non-zero value
for any printable wide character that is neither the space wide character nor a wide
character for which iswalnum is true. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the ispunct function depends on the LC_ CTYPE
category setting of the current locale; see setlocale for more information. For
iswpunct, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istpunct

. .

_UNICODE & _MBCS
Not Defined

ispunct

lSSpaCe, lSWSpaCe

int isspace(int c);
int iswspace(wint_t c);

_MBCS Defined _UNICODE Defined

_ismbcpunct iswpunct

Each of these routines returns true if c is a particular representation of a space
character.

Routine

isspace

iswspace

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

is, isw Routines

341

is, isw Routines

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
isspace returns a non-zero value if c is a white-space character (Ox09-0xOD or Ox20).
iswspace returns a non-zero value if c is a wide character that corresponds to a
standard white-space character or is one of an implementation-defined set of wide
characters for which iswalnum is false. Each of these routines returns 0 if c does not
satisfy the test condition.

The result of the test condition for the isspace function depends on the LC_ CTYPE
category setting of the current locale; see setlocale for more information. For
iswspace, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istspace

_UNICODE & _MBCS
Not Defined

isspace

_MBCS Defined _UNICODE Defined

_ismbcspace iswspace

. .
lSUpper, lSWUpper

342

int isupper(int c);
int iswupper(wint_t c);

Each of these routines returns true if c is a particular representation of an uppercase
letter.

Routine

isupper

iswupper

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
isupper returns a non-zero value if c is an uppercase character (a-z). iswupper
returns a non-zero value if c is a wide character that corresponds to an uppercase
letter, or if c is one of an implementation-defined set of wide characters for which
none of iswcntrl, iswdigit, iswpunct, or iswspace is true. Each of these routines
returns 0 if c does not satisfy the test condition.

The result of the test condition for the isupper function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswupper, the result of the test condition is independent of locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istupper

iswctype

_UNICODE & _MBCS
Not Defined

isupper

int iswctype(winet c, wctype_t desc);

_MBCS Defined _UNICODE Defined

_ismbcupper iswupper

iswctype tests c for the property specified by the desc argument. For each valid value
of desc, there is an equivalent wide-character classification routine.

Routine Required Header Compatibility

iswctype <ctype.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

LIBCMT.LIB

MSYCRT.UB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

iswctype returns a nonzero value if c has the property specified by desc, or 0 if it does
not. The result of the test condition is independent of locale.

Parameters
c Integer to test

desc Property to test for

is, isw Routines

343

isxdigit, iswxdigit
int isxdigit(int c);
int iswxdigit(winet c);

Each of these routines returns true if c is a particular representation of a hexadecimal
digit.

Routine

isxdigit

iswxdigit

Required Header

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
isxdigit returns a non-zero value if c is a hexadecimal digit (A-F, a-f, or 0-9).
iswxdigit returns a non-zero value if c is a wide character that corresponds to a
hexadecimal digit character. Each of these routines returns 0 if c does not satisfy
the test condition.

The result of the test condition for the isxdigit function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For the
"C" locale, the iswxdigit function does not provide support for Unicode fullwidth
hexadecimal characters. The result of the test condition for iswxdigit is independent
of any other locale.

Parameter
c Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine

_istxdigit

UNICODE & _MBCS
Not Defined

isxdigit

_isatty
int _isatty(int handle);

Routine Required Header

<io.h>

344

_MBCS Defined _UNICODE Defined

isxdigit iswxdigit

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_isatty returns a nonzero value handle is associated with a character device.
Otherwise, _isatty returns O.

Parameter

Remarks

Example

Output

handle Handle referring to device to be tested

The _isatty function determines whether handle is associated with a character device
(a terminal, console, printer, or serial port).

/* ISATTY.C: This program checks to see whether
* stdout has been redirected to a file.
*/

#include <stdio.h>
#include <io.h>

void maine void
(

if(_isatty(_fileno(stdout)))
printf("stdout has not been redirected to a file\n");

else
printf("stdout has been redirected to a file\n");

stdout has been redirected to a file

isleadbyte
int isleadbyte(int c);

Routine Required Header Compatibility

isleadbyte <ctype.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

isleadbyte

345

_ismbb Routines

Return Value
isleadbyte returns a nonzero value if the argument satisfies the test condition or 0 if it
does not. In the "C" locale and in single-byte-character set (SBCS) locales,
isleadbyte always returns O.

Parameter

Remarks

c Integer to test

The isleadbyte macro returns a nonzero value if its argument is the first byte of a
multibyte character. isleadbyte produces a meaningful result for any integer argument
from -1 (EOF) to UCHAR_MAX (OxFF), inclusive. The result of the test depends
upon the LC_CTYPE category setting of the current locale; see setlocale for more
information.

The expected argument type of isleadbyte is int; if a signed character is passed,
the compiler may convert it to an integer by sign extension, yielding unpredictable
results.

Generic-Text Routine Mappings

TCHAR.H Routine

_istleadbyte

_UNICODE & _MBCS
Not Defined

Always returns false

See Also: _ismbb Routine Overview

_MBCS Defined _UNICODE Defined

_isleadbyte Always returns false

ismbb Routines

Remarks

346

Each routine in the _ismbb family tests the given integer value c for a particular
condition.

_ismbbalnum

_ismbbalpha

_ismbbgraph

_ismbbkalnum

_ismbbkana

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

Each routine in the _ismbb family tests the given integer value c for a particular
condition. The test result depends on the multibyte code page in effect. By default,
the multi byte code page is set to the system-default ANSI code page obtained from
the operating system at program startup. You can query or change the multibyte
code page in use with _getmbcp or _setmbcp, respectively.

The routines in the _ismbb family test the given integer c as follows:

Routine

_ismbbalnum

_ismbbalpba

_ismbbgrapb

_ismbbkalnum

_ismbbkana

_ismbbkprint

_ismbbkpunct

_ismbblead

_ismbbprint

_ismbbpunct

_ismbbtrail

Byte Test Condition

isalnum II _ismbbkalnum

isalpba II _ismbbkalnum

Same as _ismbbprint, but _ismbbgrapb does not include the space
character (Ox20).

Non-ASCII text symbol other than punctuation. For example, in code page
932 only, _ismbbkalnum tests for katakana alphanumeric.

Katakana (OxAI-OxDF). Specific to code page 932.

Non-ASCII text or non-ASCII punctuation symbol. For example, in code
page 932 only, _ismbbkprint tests for katakana alphanumeric or katakana
punctuation (range: OxAI-OxDF).

Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

First byte of multi byte character. For example, in code page 932 only,
valid ranges are Ox81-0x9F, OxEO-OxFC.

isprint II _ismbbkprint. ismbbprint includes the space character (Ox20).

ispunct II _ismbbkpunct

Second byte of multibyte character. For example, in code page 932 only,
valid ranges are Ox40-0x7E, Ox80-0xEC.

The following table shows the ORed values that compose the test conditions for
these routines. The manifest constants _BLANK, _DIGIT, _LOWER, _PUNCT,
and _UPPER are defined in CTYPE.H.

Non- Non-
ASCII ASCII

Routine

_ismbbalnum

_ismbbalpba

_ismbbgrapb

_ismbbkalnum

_ismbbkprint

_ismbbkpunct

_ismbbprint

_ismbbpunct

x

x

x x

LOWER _PUNCT

x

x

x x

x x

x

UPPER Text

x x

x x

x x

x

x

x x

The _ismbb routines are implemented both as functions and as macros. For
details on choosing either implementation, see "Choosing Between Functions
and Macros" on page xiii.

See Also: _mbbtombc, _mbctombb

Punct

x

x

x

x

x

_ismbb Routines

347

_ismbb Routines

_ismbbalnum
int _ismbbalnum(unsigned int c);

Routine Required Header Compatibility

_ismbbalnum <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbbalnum returns a nonzero value if the expression

isalnum II _ismbbkalnum

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbalpha
int _ismbbalpba(unsigned int c);

Routine Required Header Compatibility

_ismbbalpha <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbbalpba returns a nonzero value if the expression

isalpha I I _ismbbkalnum

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

348

_ismbbgraph
int _ismbbgraph (unsigned int c);

Routine Required Header Compatibility

_ismbbgraph <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ismbbgraph returns a nonzero value if the expression

(_PUNCT I _UPPER I _LOWER I _DIGIT) II _ i smbbkpri nt

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbkalnum
int _ismbbkalnum(unsigned int c);

Routine Required Header Compatibility

_ismbbkalnum <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ismbbkalnum returns a nonzero value if the integer c is a non-ASCII text symbol
other than punctuation, or 0 if it is not.

Parameter
c Integer to be tested

_ismbb Routines

349

_ismbb Routines

_ismbbkana
int _ismbbkana(unsigned int c);

_ismbbkana tests for a katakana symbol and is specific to code page 932.

Routine Required Header Compatibility

_ismbbkana <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbbkana returns a nonzero value if the integer c is a katakana symbol, or 0
if it is not.

Parameter
c Integer to be tested

_ismbbkprint
int _ismbbkprint(unsigned int c);

Routine Required Header Compatibility

_ismbbkprint <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbbkprint returns a nonzero value if the integer c is a non-ASCII text or
non-ASCII punctuation symbol, or 0 if it is not. For example, in code page 932
only, _ismbbkprint tests for katakana alphanumeric or katakana punctuation
(range: OxAI-OxDF).

Parameter
c Integer to be tested

350

_ismbbkpunct
int _ismbbkpunct(unsigned int c);

Routine Required Header Compatibility

_ismbbkpunct <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ismbbkpunct returns a nonzero value if the integer c is a non-ASCII punctuation
symbol, or 0 if it is not. For example, in code page 932 only, _ismbbkpunct tests for
katakana punctuation.

Parameter
c Integer to be tested

ismbblead
int _ismbblead(unsigned int c);

Routine

_ismbblead

Required Header

<mbctype.h> or
<mbstring.h>

1 For manifest constants for the test conditions.

Optional Headers

<ctype.h>, I <limits.h>,
<stdlib.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ismbblead returns a nonzero value if the integer c is the first byte of a multibyte
character. For example, in code page 932 only, valid ranges are Ox81-0x9F and
OxEO-OxFC.

Parameter
c Integer to be tested

_ismbb Routines

351

_ismbb Routines

Generic-Text Routine Mappings

TCHAR.H Routine

_istlead

_ismbbprint

_UNICODE & _MBCS
Not Defined

Always returns false

int _ismbbprint(unsigned int c);

Routine Required Header

_ismbbprint <mbctype.h>

_MBCS Defined _UNICODE Defined

_ismbblead Always returns false

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbbprint returns a nonzero value if the expression

;spr;nt I I _;smbbkpr;nt

is true of c, or 0 if it is not.

Parameter
c Integer to be tested

_ismbbpunct

352

int _ismbbpunct(unsigned int c);

Routine Required Header Compatibility

_ismbbpunct <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbbpunct returns a nonzero value if the integer c is a non-ASCII punctuation
symbol.

Parameter
c Integer to be tested

_ismbbtrail
int _ismbbtrail(unsigned int c);

Routine

_ismbbtrail

Required Header

<mbctype.h> or
<mbstring.h>

I For manifest constants for the test conditions.

Optional Headers

<ctype.h>, I <limits.h>,
<stdlib.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ismbbtrail returns a nonzero value if the integer c is the second byte of a multi byte
character. For example, in code page 932 only, valid ranges are Ox40-0x7E and Ox80
-OxEC.

Parameter
c Integer to be tested

ismbc Routines
Each of the _ismbc routines tests a given multibyte character c for a particular
condition.

_ismbcalnum, _ismbcalpha, _ismbcdigit

_ismbcgraph, _ismbcprint, _ismbcpunct,
_ismbcspace

_ismbchira, _ismbckata

_ismbclO, _ismbcll, _ismbcl2

_ismbclegal, _ismbcsymbol

_ismbclower, _ismbcupper

_ismbc Routines

353

_ismbc Routines

Remarks

354

The test result of each of the _ismbc routines depends on the multibyte code page in
effect. Multibyte code pages have single byte alphabetic characters. By default, the
multibyte code page is set to the system-default ANSI code page obtained from the
operating system at program startup. You can query or change the multibyte code page
in use with _getmbcp or _setmbcp, respectively.

Routine

_ismbcalnum

_ismbcalpha

_ismbcdigit

_ismbcgraph

_ismbclegal

_ismbclower

_ismbcprint

_ismbcpunct

_ismbcspace

_ismbcsymbol

_ismbcupper

Test Condition

Alphanumeric

Alphabetic

Digit

Graphic

Valid multi byte
character

Lowercase
alphabetic

Printable

Punctuation

Whitespace

Multibyte symbol

Uppercase
alphabetic

Code Page 932 Example

Returns true if and only if c is a single-byte
representation of an ASCII English letter: See
examples for _ismbcdigit and _ismbcalpha.

Returns true if and only if c is a single-byte
representation of an ASCII English letter: See
examples for _ismbcupper and _ismbclower; or
a Katakana letter: OxA6<=c<=OxDF.

Returns true if and only if c is a single-byte
representation of an ASCII digit:
Ox30<=c<=Ox39.

Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
printable character except a white space (). See
examples for _ismbcdigit, _ismbcalpha, and
_ismbcpunct.

Returns true if and only if the first byte of c is
within ranges Ox81-0x9F or OxEO-OxFC, while
the second byte is within ranges Ox40-0x7E or
Ox80-FC.

Returns true if and only if c is a single-byte
representation of an ASCII lowercase English
letter: Ox61 <=c<=Ox7 A.

Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
printable character including a white space ():
See examples for _ismbcspace, _ismbcdigit,
_ismbcalpha, and _ismbcpunct.

Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
punctuation character.

Returns true if and only if c is a whitespace
character: c=Ox20 or Ox09<=c<=OxOD.

Returns true if and only if Ox8141 <=c<=Ox81AC.

Returns true if and only if c is a single-byte
representation of an ASCII uppercase English
letter: Ox41<=c<=Ox5A.

Code Page 932 Specific ~

The following routines are specific to code page 932.

Routine

_ismbchira

_ismbckata

_ismbclO

_ismbcll

_ismbcl2

Test Condition (Code Page 932 Only)

Double-byte Hiragana: Ox829F<=c<=Ox82F 1.

Double-byte Katakana: Ox8340<=c<=Ox8396.

JIS non-Kanji: Ox8l40<=c<=Ox889E.

JIS level-I: Ox889F<=c<=Ox9872.

JIS level-2: Ox989F<=c<=OxEA9E.

_ismbclO, _ismbcll, and _ismbcl2 check that the specified value c matches the test
conditions described in the preceding table, but do not check that c is a valid multibyte
character. If the lower byte is in the ranges OxOO-Ox3F, Ox7F, or OxFD-OxFF, these
functions return a nonzero value, indicating that the character satisfies the test
condition. Use _ismbbtrail to test whether the multibyte character is defined.

END Code Page 932 Specific

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbcalnum, _ismbcalpha, _ismbcdigit
int _ismbcalnum(unsigned int c);
int _ismbcalpha(unsigned int c);
int _ismbcdigit(unsigned int c);

Routine

_ismbcalnum

_ismbcalpha

_ismbcdigit

Required Header

<mbstring.h>

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter
c Character to be tested

_ismbc Routines

355

_ismbc Routines

Remarks
Each of these routines tests a given multi byte character for a given condition.

Routine Test Condition

_ismbcalnum Alphanumeric

_ismbcalpha Alphabetic

_ismbcdigit Digit

Code Page 932 Example

Returns true if and only if c is a single-byte
representation of an ASCII English letter: See
examples for _ismbcdigit and _ismbcalpha.

Returns true if and only if c is a single-byte
representation of an ASCII English letter:
Ox41 <=c<=Ox5A or Ox61 <=c<=Ox7 A; or a
Katakana letter: OxA6<=c<=OxDF.

Returns true if and only if c is a single-byte
representation of an ASCII digit:
Ox30<=c<=Ox39.

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbcgraph, _ismbcprint, _ismbcpunct, _ismbcspace
int _ismbcgrapb(unsigned int c);

int _ismbcprint(unsigned int c);
int _ismbcpunct(unsigned int c);
int _ismbcspace(unsigned int c);

Routine Required Header

_ismbcgraph <mbstring.h>

_ismbcprint <mbstring.h>

_ismbcpunct <mbstring.h>

_ismbcspace <mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter
c Character to be tested

356

Remarks
Each of these functions tests a given multibyte character for a given condition.

Routine Test Condition Code Page 932 Example

_ismbcgraph Graphic Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
printable character except a white space ().

_ismbcprint Printable Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
printable character including a white space ().

_ismbcpunct Punctuation Returns true if and only if c is a single-byte
representation of any ASCII or Katakana
punctuation character.

_ismbcspace Whitespace Returns true if and only if c is a whitespace
character: c=Ox20 or Ox09<=c<=OxOD.

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbchira, _ismbckata
Code Page 932 Specific ~

int _ismbchira(unsigned int c);
int _ismbckata(unsigned int c);

Routine

_ismbchira

_ismbckata

Required Header

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter
c Character to be tested

Remarks
Each of these functions tests a given multibyte character for a given condition.

_ismbc Routines

357

_ismbc Routines

Routine

_ismbchira

_ismbckata

Test Condition (Code Page 932 Only)

Double-byte Hiragana: Ox829F<=c<=Ox82Fl.

Double-byte Katakana: Ox8340<=c<=Ox8396.

End Code Page 932 Specific

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbclO, _ismbcll, _ismbc12
Code Page 932 Specific~

int _ismbclO(unsigned int c);
int _ismbcl1(unsigned int c);
int _ismbcl2(unsigned int c);

Routine

_ismbclO

_ismbcll

_ismbcl2

Required Header

<mbstring.h>

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

358

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine

_ismbclO

_ismbcll

_ismbcl2

Test Condition (Code Page 932 Only)

JIS non-Kanji: Ox8140<=c<=Ox889E.

JIS level-I: Ox889F<=c<=Ox9872.

JIS level-2: Ox989F<=c<=OxEA9E.

_ismbclO, _ismbcll, and _ismbcl2 check that the specified value c matches the test
conditions described above, but do not check that c is a valid multi byte character. If
the lower byte is in the ranges OxOO-Ox3F, Ox7F, or OxFD-OxFF, these functions

, return a nonzero value, indicating that the character satisfies the test condition. Use
_ismbbtrail to test whether the multibyte character is defined.

End Code Page 932 Specific

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbclegal, _ismbcsymbol
int _ismbclegal(unsigned int c);
int _ismbcsymbol(unsigned int c);

Routine

_ismbclegal

_ismbcsymbol

Required Header

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine Test Condition

_ismbclegal Valid multi byte

_ismbcsymbol Multibyte symbol

Code Page 932 Example

Returns true if and only if the first byte of c is
within ranges Ox81-0x9F or OxEO-OxFC,
while the second byte is within ranges Ox40
-Ox7E or Ox80-FC.

Returns true if and only if
Ox8141 <=c<=Ox81AC.

_ismbc Routines

359

_ismbc Routines

Generic-Text Routine Mappings

TCHAR.H Routine

_istlegal

_UNICODE & _MBCS
Not Defined

Always returns false

_MBCS Defined UNICODE Defined

_ismbclegal Always returns false

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbclower, _ismbcupper
int _ismbclower(unsigned int c);
int _ismbcupper(unsigned int c);

Routine

_ismbcIower

_ismbcupper

Required Header

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a nonzero value if the character satisfies the test
condition or 0 if it does not. If c<= 255 and there is a corresponding _ismbb routine
(for example, _ismbcalnum corresponds to _ismbbalnum), the result is the return
value of the corresponding _ismbb routine.

Parameter

Remarks

360

c Character to be tested

Each of these functions tests a given multibyte character for a given condition.

Routine Test Condition

_ismbcIower Lowercase alphabetic

_ismbcupper Uppercase alphabetic

Code Page 932 Example

Returns true if and only if c is a
single-byte representation of an
ASCII lowercase English letter:
Ox61 <=c<=Ox7 A.

Returns true if and only if c is a
single-byte representation of an
ASCII uppercase English letter:
Ox41<=c<=Ox5A.

See Also: is, isw Function Overview, _ismbb Function Overview

_ismbslead, ismbstrail
int _ismbslead(const unsigned char *string, const unsigned char *current);
int _ismbstrail(const unsigned char *string, const unsigned char *current);

Routine Required Header Optional Headers Compatibility

- ismbslead <mbctype.h> or <ctype.h>,l <limits.h>, Win 95, Win NT
<mbstring.h> <stdlib.h>

- ismbstrail <mbctype.h> or <ctype.h>,l <limits.h>, Win 95, Win NT
<mbstring.h> <stdlib.h>

For manifest constants for the test conditions.

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ismbslead and _ismbstrail return -1 if the character is a lead or trail byte,
respectively. Otherwise they return zero.

Parameters

Remarks

string Pointer to start of string or previous known lead byte

current Pointer to position in string to be tested

The _ismbslead and _ismbstrail routines perform context-sensitive tests for
multibyte-character string lead and trail bytes; they determine whether a given
substring pointer points to a lead byte or a trail byte. _ismbslead and _ismbstrail are
slower than their _ismbblead and _ismbbtrail counterparts because they take the
string context into account.

See Also: is, isw Function Overview, _ismbb Function Overview

lsnan
Checks given double-precision floating-point value for not a number (NaN).

int _isnan(double x);

Routine Required Header Compatibility

_isnan <float.h> Win 95, Win NT

361

_itoa, _i64toa, _ui64toa, _itow, _i64tow, _ui64tow

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_isnan returns a nonzero value (TRUE) if the argument x is a NaN; otherwise it
returns 0 (FALSE).

Parameter

Remarks

x Double-precision floating-point value

The _isnan function tests a given double-precision floating-point value x, returning a
nonzero value if x is a NaN. A NaN is generated when the result of a floating-point
operation cannot be represented in Institute of Electrical and Electronics Engineers
(IEEE) format. For information about how a NaN is represented for output, see printf.

See Also: _finite, _fpclass

_itoa, _i64toa, _ui64toa, _itow, _i64tow,
ui64tow

362

Convert an integer to a string.

char * _itoa(int value, char *string, int radix);
char * _i64toa(_int64 value, char *string, int radix);
char * _ui64toa(unsigned _int64 value, char *string, int radix);
wchar_t * _itow(int value, wchar_t *string, int radix);
wchar_t * _i64tow(_int64 value, wchar_t *string, int radix);
wchar_t * _ui64tow(unsigned _int64 value, wchar_t *string, int radix);

Routine Required Header Compatibility

_itoa <stdlib.h> Win 95, Win NT

_i64toa <stdlib.h> Win 95, Win NT

- ui64toa <stdlib.h> Win 95, Win NT

_itow <stdlib.h> Win 95, Win NT

_i64tow <stdlib.h> Win 95, Win NT

_ui64tow <stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

_itoa, _i64toa, _ui64toa, _itow, _i64tow, _ui64tow

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to string. There is no error return.

Parameters

Remarks

Example

value Number to be converted

string String result

radix Base of value; must be in the range 2-36

The _itoa, _i64toa, and _ui64toa function convert the digits of the given value
argument to a null-terminated character string and stores the result (up to 17 bytes) in
string. If radix equals 10 and value is negative, the first character of the stored string
is the minus sign (-). _itow, _i64tow, and _ui64tow are wide-character versions of
_itoa, _i64toa, and _ui64toa respectively.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_MBCS Defined

1* ITOA.C: This program converts integers of various
* sizes to strings in various radixes.
*1

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char buffer[20J:
int i = 3445:
long 1 = -344115L:
unsigned long ul = 1234567890UL:

_ itoa (i , buffer, 10) :
pri ntf("String of integer %d (radix
_itoa (i , buffer, 16) ;

10): %s\n", i ,

pri ntf("String of integer %d (radix 16): 0x%s\n",
_itoa(i , buffer, 2) ;
pri ntf("String of integer %d (radix 2) : %s\n", i ,

_UNICODE Defined

buffer) :

i , buffer) ;

buffer) ;

363

Output

_ltoa(1, buffer, 16);
printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

_ul toa (ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

See Also: _ltoa, _ultoa

kbhit
Checks the console for keyboard input.

iot _kbhit(void);

Routine Required Header Compatibility

<conio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

364

_kbhit returns a nonzero value if a key has been pressed. Otherwise, it returns O.

The _kbhit function checks the console for a recent keystroke. If the function
returns a nonzero value, a keystroke is waiting in the buffer. The program can
then call _getch or _getche to get the keystroke.

/* KBHIT.C: This program loops until the user
* presses a key. If _kbhit returns nonzero, a
* keystroke is waiting in the buffer. The program
* can call _getch or _getche to get the keystroke.
*/

#include <conio.h>
#include <stdio.h>

Output

void main(void)
{

1* Display message until key is pressed. *1
while(!_kbhit())

_cputs("Hit me!! ");

1* Use _getch to throw key away. *1
printf("\nKey struck was '%c'\n", _getch());
_getch();

Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!! Hit me!!
Key struck was 'q'

labs
Calculates the absolute value of a long integer.

long labs(long n);

Routine Required Header Compatibility

labs <stdlib.h> and <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The labs function returns the absolute value of its argument. There is no error return.

Parameter

Example

n Long-integer value

1* ABS.C: This program computes and displays
* the absolute values of several numbers.
*1

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void main(void)
{

int ix = -4. iy;
long lx = -41567L. ly;
double dx = -3.141593. dy;

labs

365

Idexp

iy = abs(ix) ;

printf("The absolute value of %d is %d\n", ix, i y) ;

ly = labs(lx) ;

printf("The absolute value of %ld is %ld\n", 1 x, 1 y) ;

dy = fabs(dx) ;

printf("The absolute value of %f is %f\n", dx, dy) :
}

Output
The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

See Also: abs, _cabs, fabs

ldexp
Computes a real number from the mantissa and exponent.

double Idexp(double x, int exp);

Routine Required Header Compatibility

ldexp <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

LIBCMT.LIB

MSVCRT.UB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The Idexp function returns the value of x * 2exp if successful. On overflow
(depending on the sign of x), Idexp returns +/-HUGE_ VAL; the errno variable
is set to ERANGE.

Parameters

Example

366

x Floating-point value

exp Integer exponent

1* LDEXP.C *1

#include <math.h>
#include <stdio.h>

Output

void maine void)
(

double x = 4.0, y;
int p = 3;

y = ldexp(x, p);
printf("%2.lf times two to the power of %d is %2.1f\n", x, p, y);

4.0 times two to the power of 3 is 32.0

See Also: frexp, modf

Idiv
Computes the quotient and remainder of a long integer.

ldiv _t ldiv(long int numer, long int denom);

Routine Required Header Compatibility

Idiv <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

~eturn Value
ldiv returns a structure of type ldiv _t that comprises both the quotient and the
remainder.

'arameters

~emarks

nume r Numerator

denom Denominator

The ldiv function divides numer by denom, computing the quotient and remainder.
The sign of the quotient is the same as that of the mathematical quotient. The
absolute value of the quotient is the largest integer that is less than the absolute value
of the mathematical quotient. If the denominator is 0, the program terminates with an
error message. ldiv is the same as div, except that the arguments of ldiv and the
members of the returned structure are all of type long int.

The ldiv _t structure, defined in STDLIB.H, contains long int quot, the quotient, and
long int rem, the remainder.

Idiv

367

_lfind

Example

Output

/* LDIV.C: This program takes two long integers
* as command-line arguments and displays the
* results of the integer division.
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

void main(void)
{

long x = 5149627, y 234879;
ldiv_t div_result;

div_result = ldiv(x, y);
printf("For %ld / %ld, the quotient is ", x, y);
printf("%ld, and the remainder is %ld\n",

div_result.quot, div_result.rem);

For 5149627 / 234879, the quotient is 21, and the remainder is 217168

See Also: div

lfind
Performs a linear search for the specified key.

void * _lfind{ const void *key, const void *base, unsigned int *num, unsigned int width,
.. int (_cdecl *compare)(const void *eleml, const void *elem2));

Routine Required Header Compatibility

<search.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

368

If the key is found, _lfind returns a pointer to the element of the array at base that
matches key. If the key is not found, _lfind returns NULL.

Parameters

Remarks

Example

key Object to search for

base Pointer to base of search data

llum Number of array elements

width Width of array elements

compare Pointer to comparison routine

eleml Pointer to key for search

elem2 Pointer to array element to be compared with key

The _lfind function performs a linear search for the value key in an array of num
elements, each of width bytes in size. Unlike bsearch, _lfind does not require the
array to be sorted. The base argument is a pointer to the base of the array to be
searched. The compare argument is a pointer to a user-supplied routine that compares
two array elements and then returns a value specifying their relationship. _lfind calls
the compare routine one or more times during the search, passing pointers to two
array elements on each call. The compare routine must compare the elements then
return nonzero, meaning the elements are different, or 0, meaning the elements are
identical.

1* LFIND.C: This program uses lfind to search for
* the word "hello" in the command-line arguments.
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(const void *argl. const void *arg2);

void main(unsigned int argc. char **argv
{

cha r **result;
char *key = "hello";

result = (char **)_lfind(&key. argv.
&argc. sizeof(char *). compare);

if(result
printf("%s found\n". *result);

else
printf("hello not found!\n");

int compare(const void *argl. canst void *arg2)
{

return(_stricmp(* (char**)argl. * (char**)arg2));

369

localeconv

Output
[C:\code]lfind Hello
Hello found

See Also: bsearch, _lsearch, qsort

localeconv
Gets detailed infonnation on locale settings.

struct lconv *localeconv(void);

Routine Required Header Compatibility

localeconv <locale.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

370

localeconv returns a pointer to a filled-in object of type struct lconv. The values
contained in the object can be overwritten by subsequent calls to localeconv and do
not directly modify the object. Calls to setlocale with category values of LC_ALL,
LC_MONETARY, or LC_NUMERIC overwrite the contents of the structure.

The localeconv function gets detailed infonnation about numeric fonnatting for the
current locale. This infonnation is stored in a structure of type lconv. The lconv
structure, defined in LOCALE.H, contains the following members:

char *decimal_point Decimal-point character for nonmonetary quantities.

char *thousands_sep Character that separates groups of digits to left of decimal
point for nonmonetary quantities.

char *grouping Size of each group of digits in nonmonetary quantities.

char *int_curr_symbol International currency symbol for current locale. First
three characters specify alphabetic international currency symbol as defined in the
ISO 4217 Codesfor the Representation of Currency and Funds standard. Fourth
character (immediately preceding null character) separates international currency
symbol from monetary quantity.

char * currency _symbol Local currency symbol for current locale.

char *mon_decimal_point Decimal-point character for monetary quantities.

char *mon_thousands_sep Separator for groups of digits to left of decimal place in
monetary quantities.

char *mon_grouping Size of each group of digits in monetary quantities.

char *positive_sign String denoting sign for nonnegative monetary quantities.

char *negative_sign String denoting sign for negative monetary quantities.

char inCfrac_digits Number of digits to right of decimal point in internationally
formatted monetary quantities.

char frac_digits Number of digits to right of decimal point in formatted monetary
quantities.

char p_cs_precedes Set to 1 if currency symbol precedes value for nonnegative
formatted monetary quantity. Set to 0 if symbol follows value.

char p_sep_by _space Set to 1 if currency symbol is separated by space from value
for nonnegative formatted monetary quantity. Set to 0 if there is no space separation.

char n_cs_precedes Set to 1 if currency symbol precedes value for negative
formatted monetary quantity. Set to 0 if symbol succeeds value.

char n_sep_by _space Set to 1 if currency symbol is separated by space from value
for negative formatted monetary quantity. Set to 0 if there is no space separation.

char p_sign_posn Position of positive sign in nonnegative formatted monetary
quantities.

char n_sign_posn Position of positive sign in negative formatted monetary
quantities.

The char * members of the structure are pointers to strings. Any of these (other than
char *decimaCpoint) that equals "" is either of zero length or is not supported in the
current locale. The char members of the structure are nonnegative numbers. Any of
these that equals CHAR_MAX is not supported in the current locale.

The elements of grouping and mon_grouping are interpreted according to the
following rules.

CHAR_MAX Do not perform any further grouping.

o Use previous element for each of remaining digits.

n Number of digits that make up current group. Next element is examined to
determine size of next group of digits before current group.

The values for inCcurr_symbol are interpreted according to the following rules:

• The first three characters specify the alphabetic international currency symbol as
defined in the ISO 4217 Codes/or the Representation of Currency and Funds
standard.

• The fourth character (immediately preceding the null character) separates the
international currency symbol from the monetary quantity.

localeconv

371

localtime

The values for p_cs_precedes and n_cs_precedes are interpreted according to the
following rules (the n_cs_precedes rule is in parentheses):

o Currency symbol follows value for nonnegative (negative) formatted monetary
value.

Currency symbol precedes value for nonnegative (negative) formatted monetary
value.

The values for p_sep_by _space and n_sep_by _space are interpreted according to the
following rules (the n_sep_by_space rule is in parentheses):

o Currency symbol is separated from value by space for nonnegative (negative)
formatted monetary value.

There is no space separation between currency symbol and value for nonnegative
(negative) formatted monetary value.

The values for p_sign_posn and n_sign_posn are interpreted according to the
following rules:

o Parentheses surround quantity and currency symbol

Sign string precedes quantity and currency symbol

2 Sign string follows quantity and currency symbol

3 Sign string immediately precedes currency symbol

4 Sign string immediately follows currency symbol

See Also: setlocale, strcoll Functions, strftime, strxfrm

localtime

372

Converts a time value and corrects for the local time zone.

struct tm *localtime(const time_t *timer);

Routine Required Header Compatibility

localtime <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
localtime returns a pointer to the structure result. If the value in timer represents a
date before midnight, January 1, 1970, localtime returns NULL. The fields of the
structure type tm store the following values, each of which is an int:

tm_sec Seconds after minute (0-59)

tm_min Minutes after hour (0-59)

tm_hour Hours after midnight (0-23)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)

tm-year Year (current year minus 1900)

tm_ wday Day of week (0-6; Sunday = 0)

tm-yday Day of year (0-365; January 1 = 0)

tm_isdst Positive value if daylight savings time is in effect; 0 if daylight savings
time is not in effect; negative value if status of daylight savings time is unknown.
The C run-time library assumes the United States's rules for implementing the
calculation of Daylight Savings Time (DST).

Parameter

Remarks

Example

timer Pointer to stored time

The localtime function converts a time stored as a time_t value and stores the result
in a structure of type tm. The long value timer represents the seconds elapsed since
midnight (00:00:00), January 1, 1970, coordinated universal time (UTC). This value
is usually obtained from the time function.

gmtime, mktime, and localtime all use a single statically allocated tm structure for the
conversion. Each call to one of these routines destroys the result of the previous call.

localtime corrects for the local time zone if the user first sets the global environment
variable TZ. When TZ is set, three other environment variables Ltimezone,
_daylight, and _tzname) are automatically set as well. See _tzset for a description
of these variables. TZ is a Microsoft extension and not part of the ANSI standard
definition of localtime.

Note The target environment should try to determine whether daylight savings time is in effect.

/* LOCALTIM.C: This program uses time to get the current time
* and then uses localtime to convert this time to a structure
* representing the local time. The program converts the result
* from a 24-hour clock to a 12-hour clock and determines the
* proper extension (AM or PM).
*/

localtime

373

_locking

Output

#include <stdio.h>
#include <string.h>
#include <time.h>

void main(void
{

struct tm *newtime;
char am_pm[] ... "AM";
time_t long_time;

time(&long_time); 1* Get time as long integer. *1
newtime'" localtime(&long_time); 1* Convert to local time. *1

if(newtime->tm_hour > 12) 1* Set up extension. *1
strcpy(am_pm, "PM") ;

if(newtime->tm_hour > 12) 1* Convert from 24-hour *1
newtime->tm_hour -= 12; 1* to 12-hour clock. *1

if(newtime->tm_hour -- 0) 1* Set hour to 12 if midnight.
newtime->tm_hour ... 12;

printf("%.19s %s\n", asctime(newtime), am_pm);

Tue Mar 23 11:28:17 AM

See Also: asctime, ctime, _ftime, gmtime, time, _tzset

_locking
Locks or unlocks bytes of a file.

int _locking(int handle, int mode, long nbytes);

Routine

_locking

Required Header

<io.h> and
<sys/locking.h>

Optional Headers

<errno.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

374

_locking returns 0 if successful. A return value of -1 indicates failure, in which
case errno is set to one of the following values:

EACCES Locking violation (file already locked or unlocked).

EBADF Invalid file handle.

*1

EDEADLOCK Locking violation. Returned when the _LK_LOCK or
_LK_RLCK flag is specified and the file cannot be locked after 10 attempts.

EINVAL An invalid argument was given to _locking.

Parameters

Remarks

Example

handle File handle

mode Locking action to perform

nbytes Number of bytes to lock

The _locking function locks or unlocks nbytes bytes of the file specified by handle.
Locking bytes in a file prevents access to those bytes by other processes. All locking
or unlocking begins at the current position of the file pointer and proceeds for the next
nbytes bytes. It is possible to lock bytes past end of file.

mode must be one of the following manifest constants, which are defined in
LOCKING.H:

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the program
immediately tries again after 1 second. If, after 10 attempts, the bytes cannot be
locked, the constant returns an error.

_LK_NBLCK Locks the specified bytes. If the bytes cannot be locked, the constant
returns an error.

_LK_NBRLCK Same as _LK_NBLCK.

_LK_RLCK Same as _LK_LOCK.

_LK_UNLCK Unlocks the specified bytes, which must have been previously locked.

Multiple regions of a file that do not overlap can be locked. A region being unlocked
must have been previously locked. _locking does not merge adjacent regions; if two
locked regions are adjacent, each region must be unlocked separately. Regions should be
locked only briefly and should be unlocked before closing a file or exiting the program.

1* LOCKING.C: This program opens a file with sharing. It locks
* some bytes before reading them. then unlocks them. Note that the
* program works correctly only if the file exists.
*1

1Iinclude <io.h>
1Iinclude <sys/types.h>
1Iinclude <sys/stat.h>
1Iinclude <sys/locking.h>
1Iinclude <share.h>
1Iinclude <fcntl.h>
1Iinclude <stdio.h>
1Iinclude <stdlib.h>

_locking

375

log, log 10

Output

void main(void)
(

int fh. numread;
char buffer[40];

1* Quit if can't open file or system doesn't
* support sharing.
*/

fh = _sopen("locking.c". _O_RDWR. _SH_DENYNO.
S IREAD I S IWRITE);

if(fh == -1
ex it (1);

1* Lock some bytes and read them. Then unlock. *1
if(_locking(fh. LK_NBLCK. 30L) != -1)
(

pri ntf("No one can change these bytes whil e I'm readi ng them\n");
numread = _read(fh. buffer. 30);
printf("%d bytes read: %.30s\n". numread. buffer);
lseek(fh. 0L. SEEK_SET);
_locking(fh. LK_UNLCK. 30L);
printf("Now I'm done. Do what you will with them\n");

else
perror("Locking failed\n");

_close(fh);

No one can change these bytes while I'm reading them
30 bytes read: 1* LOCKING.C: This program ope
Now I'm done. Do what you will with them

See Also: _creat, _open

log,loglO

376

Calculates logarithms.

double loge double x);
double loglO(double x);

Routine

log

loglO

Required Header

<math.h>

<math.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The log functions return the logarithm of x if successful. If x is negative, these
functions return an indefinite (same as a quiet NaN). If x is 0, they return INF
(infinite). You can modify error handling by using the _matherr routine.

Parameter

Example

Output

x Value whose logarithm is to be found

/* LOG.C: This program uses log and 10g10
* to calculate the natural logarithm and
* the base-10 logarithm of 9,000.
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 9000.0:
double y:

y = log(x):
printf("log(%.2f) = %f\n", x, Y):
Y = 10g10(x);
printf("10g10(%.2f) = %f\n", x, y):

log(9000.00) = 9.104980
10g10(9000.00) = 3.954243

See Also: exp, _matherr, pow

_10gb
Extracts exponential value of double-precision floating-point argument.

double _logb(double x);

Routine Required Header Compatibility

<float.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

377

longjmp

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_10gb returns the unbiased exponential value of x.

Parameter

Remarks

x Double-precision floating-point value

The _10gb function extracts the exponential value of its double-precision
floating-point argument x, as though x were represented with infinite range. If the
argument x is denormalized, it is treated as if it were normalized.

See Also: frexp

longjmp
Restores stack environment and execution locale.

void longjmp(jmp_buf en v, int value);

Routine Required Header Compatibility

longjmp <setjmp.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameters

Remarks

378

env Variable in which environment is stored

value Value to be returned to setjmp call

The longjmp function restores a stack environment and execution locale previously
saved in env by setjmp. setjmp and longjmp provide a way to execute a nonlocal goto;
they are typically used to pass execution control to error-handling or recovery code in
a previously called routine without using the normal call and return conventions.

Example

A call to setjrnp causes the current stack environment to be saved in env. A
subsequent call to longjrnp restores the saved environment and returns control to the
point immediately following the corresponding setjrnp call. Execution resumes as if
value had just been returned by the setjrnp call. The values of all variables (except
register variables) that are accessible to the routine receiving control contain the
values they had when longjrnp was called. The values of register variables are
unpredictable. The value returned by setjrnp must be nonzero. If value is passed as 0,
the value 1 is substituted in the actual return.

Call1ongjrnp before the function that called setjrnp returns; otherwise the results are
unpredictable.

Observe the following restrictions when using longjrnp:

• Do not assume that the values of the register variables will remain the same. The
values of register variables in the routine calling setjrnp may not be restored to the
proper values after longjrnp is executed.

• Do not use longjrnp to transfer control out of an interrupt-handling routine unless
the interrupt is caused by a floating-point exception. In this case, a program may
return from an interrupt handler via longjrnp if it first reinitializes the
floating-point math package by calling _fpreset.

• Be careful when using setjrnp and longjrnp in C++ programs. Because these
functions do not support C++ object semantics, it is safer to use the C++
exception-handling mechanism.

1* FPRESET.C: This program uses signal to set up a
* routine for handling floating-point errors.
*/

1/i ncl ude
#include
#include
#include
1/i ncl ude
#include
#include

jmp_buf
int

<stdio.h>
<signal.h>
<setjmp.h>
<stdlib.h>
<float.h>
<math.h>
<string.h>

mark;
fperr;

1* Address for long jump to jump to *1
1* Global error number *1

void __ cdecl fphandler(int sig. int num);
void fpcheck(void);

1* Prototypes */

void main(void)
{

double nl. n2. r;
i nt jmpret;

longjrnp

379

longjrnp

380

1* Unmask all floating-point exceptions. *1
_contro187(0. _MCW_EM);

1* Set up floating-point error handler. The compiler
* will generate a warning because it expects
* signal-handling functions to take only one argument.
*1
if(signal(SIGFPE. fphandler) == SIG_ERR

fprintf(stderr. "Couldn't set SIGFPE\n");
abort(); }

1* Save stack environment for return in case of error. First
* time through. jmpret is 0. so true conditional is executed.
* If an error occurs. jmpret will be set to -1 and false
* conditional will be executed.
*1

jmpret ~ setjmp(mark);
if(jmpret == 0)
{

printf("Test for invalid operation - ");
pri ntf("enter two numbers: ");
scanf("%1 f %If''. &nl. &n2);
r "" nl I n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g I %4.3g = %4.3g\n". nl. n2. r);

r = nl * n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g * %4.3g = %4.3g\n". nl. n2. r);

else
fpcheck();

1* fphandler handles SIGFPE (floating-point error) interrupt. Note
* that this prototype accepts two arguments and that the
* prototype for signal in the run-time library expects a signal
* handler to have only one argument.
*
* The second argument in this signal handler allows processing of
* _FPE_INVALID. _FPE_OVERFLOW. _FPE_UNDERFLOW. and
* _FPE_ZERODIVIDE. all of which are Microsoft-specific symbols
* that augment the information provided by SIGFPE. The compiler
* will generate a warning. which is harmless and expected.

*1
void fphandler(int sig. int num)
{

1* Set global for outside check since we don't want
* to do 1/0 in the handler.
*1

fperr "" num;

Output

1* Initialize floating-point package. *1
_fpreset():
1* Restore calling environment and jump back to setjmp. Return
* -1 so that setjmp will return false for conditional test.
*1

longjmp(mark. -1):

void fpcheck(void
{

char fpstr[30]:
switch(fperr)
(

case FPE_INVALID:
strcpy(fpstr. "Invalid number"):
break:

case FPE_OVERFLOW:
strcpy(fpstr. "Overfl ow"):

break:
case FPE_UNDERFLOW:

strcpy(fpstr. "Underflow"):
break:

case FPE_ZERODIVIDE:
strcpy(fpstr. "Divide by zero"):
break:

default:
strcpy(fpstr. "Other floating point error"):
break:

printf("Error %d: %s\n". fperr. fpstr):

Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

See Also: setjrnp

_IrotI, Irotr
Rotate bits to the left Clrotl) or right Clrotr).

unsigned long _lrotl(unsigned long value, int shift);
unsigned long _lrotr(unsigned long value, int shift);

Routine Required Header

<stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

381

_lsearch

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Both functions return the rotated value. There is no error return.

Parameters

Remarks

Example

Output

value Value to be rotated

shift Number of bits to shift value

The _IrotI and _Irotr functions rotate value by shift bits. _Irotl rotates the value left.
_Irotr rotates the value right. Both functions "wrap" bits rotated off one end of value
to the other end.

1* LROT.C *1

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

unsigned long val = 0x0fac35791;

printf("0x%8.81x rotated left eight times is 0x%8.81x\n",
val, _lrotH val, 8));

printf("0x%8.81x rotated right four times is 0x%8.81x\n",
val. _1 rotr(val, 4));

0xfac35791 rotated left eight times is 0xc35791fa
0xfac35791 rotated right four times is 0xlfac3579

See Also: _rotl, _rotr

lsearch

382

Performs a linear search for a value; adds to end of list if not found.

void * _Isearch(const void *key, void *base, unsigned int *num, unsigned int width,
.. int (_cdecI *compare)(const void *eleml, const void *elem2));

Routine Required Header Compatibility

_lsearch <search.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If the key is found, _lsearch returns a pointer to the element of the array at base that
matches key. If the key is not found, _lsearch returns a pointer to the newly added
item at the end of the array.

Parameters

Remarks

Example

key Object to search for

base Pointer to base of array to be searched

num Number of elements

width Width of each array element

compare Pointer to comparison routine

eleml Pointer to key for search

elem2 Pointer to array element to be compared with key

The _lsearch function performs a linear search for the value key in an array of num
elements, each of width bytes in size. Unlike bsearch, _lsearch does not require the
array to be sorted. If key is not found, _lsearch adds it to the end of the array and
increments num.

The compare argument is a pointer to a user-supplied routine that compares two array
elements and returns a value specifying their relationship. _lsearch calls the compare
routine one or more times during the search, passing pointers to two array elements on
each call. compare must compare the elements, then return either nonzero, meaning
the elements are different, or 0, meaning the elements are identical.

1* LFIND.C: This program uses _lfind to search for
* the word "hello" in the command-line arguments.
*1

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(canst void *argl. const void *arg2);

void main(unsigned int argc. char **argv
{

_1 search

383

_lseek, _lseeki64

Output

cha r **result;
char *key = "hello";

result = (char **)_lfind(&key, argv,
&argc, sizeof(char *), compare);

i f(resul t
pri ntf("%s found\n", *resul t);

else
printf("hello not found!\n");

int compare(const void *argl, const void *arg2)
{

return(_stricmp(* (char**)argl, * (char**)arg2));

[C:\code]lfind Hello
Hello found

See Also: bsearch, _lfind

_lseek, _lseeki64
Move a file pointer to the specified location.

long _lseek(int handle, long offset, int origin);
_iot64 _lseeki64(iot handle, _iot64 offset, iot origin);

Routine

_lseek

_lseeki64

Required Header

<io.h>

<io.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

384

_lseek returns the offset, in bytes, of the new position from the beginning of the file.
_lseeki64 returns the offset in a 64-bit integer. The function returns -lL to indicate
an error and sets erroo either to EBADF, meaning the file handle is invalid, or to
EINVAL, meaning the value for origin is invalid or the position specified by offset
is before the beginning of the file. On devices incapable of seeking (such as
terminals and printers), the return value is undefined.

Parameters

Remarks

Example

handle Handle referring to open file

offset Number of bytes from origin

origin Initial position

The _lseek function moves the file pointer associated with handle to a new location
that is offset bytes from origin. The next operation on the file occurs at the new
location. The origin argument must be one of the following constants, which are
defined in STDIO.H:

SEEK_SET Beginning of file

SEEK_CUR Current position of file pointer

SEEK_END End of file

You can use _lseek to reposition the pointer anywhere in a file or beyond the end of
the file.

1* LSEEK.C: This program first opens a file named LSEEK.C.
* It then uses lseek to find the beginning of the file.
* to find the current position in the file. and to find
* the end of the file.
*/

tfinclude <io.h>
tfinclude <fcntl.h>
tfinclude <stdlib.h>
tfinclude <stdio.h>

void maine void)
{

int fh;
long pos;
char buffer[10];

1* Position of file pointer *1

fh = _open("lseek.c". _O_RDONLY);

1* Seek the beginning of the file: *1
pos = _lseek(fh. 0L. SEEK_SET);
if(pos == -lL)

perror("_lseek to beginning failed");
else

printf("Position for beginning of file seek = %ld\n". pos);

1* Move file pointer a little */
_read(fh. buffer. 10);

_lseek, _lseeki64

385

Output

/* Find current position: */
pos - _lseek(fh, 0L, SEEK_CUR);
if(pos == -IL)

perror("_lseek to current position failed");
else

printf("Position for current position seek"" %ld\n", pos);

/* Set the end of the file: */
pos - _lseek(fh, 0L, SEEK_END);
if(pos == -IL)

perror("_lseek to end failed");
else
printf("Position for end of file seek - %ld\n", pos);

_close(fh);

Position for beginning of file seek = 0
Position for current position seek"" 10
Position for end of file seek = 1207

See Also: fseek, _tell

_ltoa, Itow
Convert a long integer to a string.

char * _Itoa(long value, char *string, int radix);
wchar_t * _Itow(long value, wchar_t *string, int radix);

Routine Required Header

<stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to string. There is no error return.

Parameters
value Number to be converted

string String result

radix Base of value

386

Remarks

Example

Output

The _ltoa function converts the digits of value to a null-terminated character string
and stores the result (up to 33 bytes) in string. The radix argument specifies the base
of value, which must be in the range 2-36. If radix equals 10 and value is negative,
the first character of the stored string is the minus sign (-). _ltow is a wide-character
version of _ltoa; the second argument and return value of _ltow are wide-character
strings. Each of these functions is Microsoft-specific.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined
Not Defined

/* ITOA.C: This program converts integers of various
* sizes to strings in various radixes.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

_itoa (i , buffer, 10) ;

printf("String of integer %d (radix
_itoa (i , buffer, 16) ;

10) : %s\n", i ,

printf("String of integer %d (radix 16): 0x%s\n",
_itoa (i , buffer, 2) ;

printf("String of integer %d (radix 2) : %s\n", i ,

_ltoa(1, buffer, 16);

_UNICODE Defined

buffer) ;

i , buffer) ;

buffer) ;

printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

_ultoa(ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

See Also: _itoa, _ultoa

387

_makepath, _ wmakepath

_makepath, _wmakepath
Create a path name from components.

void _makepath(char *path, const char *drive, const char *dir,
... const char *fname, const char *ext);

void _wmakepath(wchar_t *path, const wchar_t *drive, const wchar_t *dir,
... const wchar_t *fname, const wchar_t *ext);

Routine

_makepath

_wmakepath

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameters

Remarks

388

path Full path buffer

drive Drive letter

dir Directory path

fname Filename

ext File extension

The _makepath function creates a single path and stores it in path. The path·may
include a drive letter, directory path, filename, and filename extension. _ wmakepath
is a wide-character version of _makepath; the arguments to _wmakepath are
wide-character strings. _ wmakepath and _makepath behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tmakepath _makepath _makepath _wmakepath

The following arguments point to buffers containing the path elements:

drive Contains a letter (A, B, and so on) corresponding to the desired drive and an
optional trailing colon. _makepath inserts the colon automatically in the composite

Example

Output

_makepath, _ wmakepath

path if it is missing. If drive is a null character or an empty string, no drive letter and
colon appear in the composite path string.

dir Contains the path of directories, not including the drive designator or the actual
filename. The trailing slash is optional, and either a forward slash (I) or a backslash
(\) or both may be used in a single dir argument. If a trailing slash (lor \) is not
specified, it is inserted automatically. If dir is a null character or an empty string,
no slash is inserted in the composite path string.

fname Contains the base filename without any extensions. Iffname is NULL or points
to an empty string, no filename is inserted in the composite path string.

ext Contains the actual filename extension, with or without a leading period (.).
_makepath inserts the period automatically if it does not appear in ext. If ext is a
null character or an empty string, no period is inserted in the composite path string.

The path argument must point to an empty buffer large enough to hold the complete path.
Although there are no size limits on any of the fields that constitute path, the composite
path must be no larger than the _MAX_PATH constant, defined in STDLIB.H.
_MAX_PATH may be larger than the current operating-system version will handle.

1* MAKEPATH.C *1

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char path_buffer[_MAX_PATHJ;
char drive[_MAX_DRIVEJ;
char dir[_MAX_DIRJ;
char fname[_MAX_FNAMEJ;
char ext[_MAX_EXTJ;

_rna kepath (path_buffer, "c", "\ \samp 1 e \\crt \\", "rna kepa th", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);
printf("Path extracted with _splitpath:\n");
printf(" Drive: %s\n", drive);
printf(" Dir: %s\n", dir);
printf(" Filename: %s\n", fname);
printf(" Ext: %s\n", ext);

Path created with _makepath: c:\sample\crt\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \sample\crt\
Filename: makepath
Ext: . c

See Also: _fullpath, _splitpath

389

malloc

malloc
Allocates memory blocks.

void *malIoe(size_t size);

Routine Required Header Compatibility

malloc <stdlib.h> and <malloc.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
malloe returns a void pointer to the allocated space, or NULL if there is insufficient
memory available. To return a pointer to a type other than void, use a type cast on the
return value. The storage space pointed to by the return value is guaranteed to be
suitably aligned for storage of any type of object. If size is 0, malloe allocates a
zero-length item in the heap and returns a valid pointer to that item. Always check
the return from manoe, even if the amount of memory requested is small.

Parameter

Remarks

390

size Bytes to allocate

The manoe function allocates a memory block of at least size bytes. The block may be
larger than size bytes because of space required for alignment and maintenance
information.

The startup code uses manoe to allocate storage for the _environ, envp, and argv
variables. The following functions and their wide-character counterparts also call manoe:

calloc fscanf _getw setvbuf

- exec functions fseek _popen _spawn functions

fgetc fsetpos printf _strdup

_fgetchar _fullpath putc system

fgets fwrite putchar _tempnam

fprintf getc _putenv ungetc

fputc getchar puts vfprintf

_fputchar _getcwd _putw vprintf

fputs ~etdcwd scanf

fread gets _searchenv

Example

Output

The C++ _set_new _mode function sets the new handler mode for malloc. The new
handler mode indicates whether, on failure, malloc is to call the new handler routine as
set by _set_new_handler. By default, malloc does not call the new handler routine on
failure to allocate memory. You can override this default behavior so that, when malloc
fails to allocate memory, malloc calls the new handler routine in the same way that the
new operator does when it fails for the same reason. To override the default, call

_set_new_mode(l)

early in your program, or link with NEWMODE.OBJ.

When the application is linked with a debug version of the C run-time libraries, malloc
resolves to _malloc_dbg. For more information about how the heap is managed during
the debugging process, see "Using C Run-Time Library Debugging Support."

1* MALLOC.C: This program allocates memory with
* malloc. then frees the memory with free.
*1

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

1* For _MAX_PATH definition *1

void main(void)
(

char *string;

1* Allocate space for a path name *1
string - malloc(_MAX_PATH);
if(string -- NULL)

printf("Insufficient memory available\n");
else
(

printf("Memory space allocated for path name\n");
free(string);
pri ntf("Memory freed\n");

Memory space allocated for path name
Memory freed

See Also: calloc, free, realloc

matherr
Handles math errors.

int _matherr(struct _exception *except);

_matherr

391

_matherr

Routine Required Header Compatibility

_matherr <math.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_matherr returns ° to indicate an error or a non-zero value to indicate success. If
_matherr returns 0, an error message can be displayed, and errno is set to an
appropriate error value. If _matherr returns a nonzero value, no error message is
displayed, and errno remains unchanged.

Parameter

Remarks

392

except Pointer to structure containing error information

The _matherr function processes errors generated by the floating-point functions of
the math library. These functions call_matherr when an error is detected.

For special error handling, you can provide a different definition of _matherr. If you use
the dynamically linked version of the C run-time library (MSVCRT.DLL), you can replace
the default _matherr routine in a client executable with a user-defined version. However,
you cannot replace the default _matherr routine in a DLL client of MSVCRT.DLL.

When an error occurs in a math routine, _matherr is called with a pointer to an
_exception type structure (defined in MATH.H) as an argument. The _exception
structure contains the following elements:

int type Exception type

char *name Name of function where error occurred

double argl, arg2 First and second (if any) arguments to function

double retval Value to be returned by function

The type specifies the type of math error. It is one of the following values, defined
inMATH.H:

_DOMAIN Argument domain error.

_SING Argument singularity.

_OVERFLOW Overflow range error.

_PLOSS Partial loss of significance.

_ TLOSS Total loss of significance.

_UNDERFLOW The result is too small to be represented. (This condition is not
currently supported.)

Example

The structure member name is a pointer to a null-terminated string containing the name
of the function that caused the error. The structure members argl and arg2 specify the
values that caused the error. (If only one argument is given, it is stored in argl.)

The default return value for the given error is retval. If you change the return value, it
must specify whether an error actually occurred.

/* MATHERR.C illustrates writing an error routine for math
* functions. The error function must be:
* _matherr
*/

#include <math.h>
#include <string.h>
#include <stdio.h>

void main()
{

/* Do several math operations that cause errors. The matherr
* routine handles DOMAIN errors, but lets the system handle
* other errors normally.
*/

printf("log(-2.0) = %e\n", log(-2.0));
printf("10g10(-5.0) = %e\n", 10g10(-5.0);
printf("log(0.0) = %e\n", log(0.0));

/* Handle several math errors caused by passing a negative argument
* to log or 10g10 (_DOMAIN errors). When this happens, _matherr
* returns the natural or base-10 logarithm of the absolute value
* of the argument and suppresses the usual error message.
*/

int _matherr(struct _exception *except)
{

/* Handle DOMAIN errors for log or 10g10. */
if(except->type == _DOMAIN)
{

if(strcmp(except->name, "log") == 0)
{

except->retval = log(-(except->arg1));
printf("Special: using absolute value: %s: DOMAIN"

"error\n", except->name);
return 1;

else if(strcmp(except->name, "10g10") == 0
{

except->retval = 10g10(-(except->arg1));
printf("Special: using absolute value: %s: DOMAIN"

"error\n", except->name);
return 1;

_matherr

393

Output

else
{

printf("Normal: ");
return 0; 1* Else use the default actions *1

Special: using absolute value: log: DOMAIN error
log(-2.0) = 6.931472e-001
Special: using absolute value: 10g10: DOMAIN error
10g10(-5.0) = 6.989700e-001
Normal: log(0.0) - -1.#INF00e+000

max
Returns the larger of two values.

type _max(type a, type b);

Routine Required Header Compatibility

<stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_max returns the larger of its arguments.

Parameters

Remarks

Example

394

type Any numeric data type

a, b Values of any numeric type to be compared

The _max macro compares two values and returns the value of the larger one. The
arguments can be of any numeric data type, signed or unsigned. Both arguments and
the return value must be of the same data type.

1* MINMAX.C */

#include <stdlib.h>
#include <stdio.h>

Output

void main(void
{

}

int a = 10:
int b = 21;

printf("The larger of %d and %d is %d\n", a, b, _max(a, b);
printf("The smaller of %d and %d is %d\n", a, b, _min(a, b);

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

See Also: _min

mbbtombc
unsigned short _mbbtombc(unsigned short c);

Routine Required Header Compatibility

_mbbtombc <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If _mbbtombc successfully converts c, it returns a multibyte character; otherwise it
returns c.

Parameter

Remarks

c Single-byte character to convert.

The _mbbtombc function converts a given single-byte multi byte character to a
corresponding double-byte multibyte character. Characters must be within the range
Ox20-0x7E or OxAI-OxDF to be converted.

In earlier versions, _mbbtombc was called hantozen. For new code, use _mbbtombc
instead.

See Also: _mbctombb

_mbbtombc

395

_mbbtype

_mbbtype
int _mbbtype(unsigned char c, int type);

Routine Required Header Optional Headers Compatibility

_mbbtype <mbstring.h> <mbctype.h> 1 Win 95, Win NT

1 For definitions of manifest constants used as return values.

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_mbbtype returns the type of byte within a string. This decision is context-sensitive
as specified by the value of type, which provides the control test condition. type is the
type of the previous byte in the string.The manifest constants in the following table
are defined in MBCTYPE.H.

_mbbtype
Value of type Tests for Return Value c

Any value Valid single byte _MBC_SINGLE (0) Single byte (Ox20-0x7E,
except 1 or lead byte OxAI-0xDF)

Any value Valid single byte _MBC_LEAD (1) Lead byte of multibyte
except 1 or lead byte character (Ox81-0x9F,

OxEO-OxFC)

Any value Valid single-byte _MBC_ILLEGAL (-1) Invalid character (any
except 1 or lead byte value except Ox20-0x7E,

OxAI-0xDF,Ox81-0x9F,
OxEO-OxFC

Valid trail byte _MBC_TRAIL (2) Trailing byte of multibyte
character (Ox40-0x7E,
Ox80-0xFC)

Valid trail byte _MBC_ILLEGAL (-1) Invalid character (any
value except Ox20-0x7E,
OxAI-0xDF,Ox81-0x9F,
OxEO-OxFC

Parameters
c Character to test

type Type of byte to test for

396

Remarks
The _mbbtype function determines the type of a byte in a multibyte character. If the
value of type is any value except 1, _mbbtype tests for a valid single-byte or lead byte
of a multibyte character. If the value of type is 1, _mbbtype tests for a valid trail byte
of a multibyte character.

In earlier versions, _mbbtype was called chkctype. For new code, _mbbtype use
instead.

Byte Classification

_mbccpy
void _mbccpy(unsigned char *dest, const unsigned char *src);

Routine Required Header Compatibility

_mhccpy <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
None

Parameters

Remarks

dest Copy destination

src Multibyte character to copy

The _mbccpy function copies one multi byte character from src to dest. If src does not
point to the lead byte of a multibyte character as determined by an implicit call to
_ismbblead, no copy is performed.

Generic-Text Routine Mappings

TCHAR.H Routine

See Also: _mbclen

_UNICODE & _MBCS
Not Defined

Maps to macro or
inline function

_MBCS Defined

_mbccpy

_UNICODE Defined

Maps to macro or
inline function

_mbccpy

397

_rnbcjistojrns, _rnbcjrnstojis

_mbcjistojms, _mbcjmstojis
unsigned int _rnbcjistojrns(unsigned int c);
unsigned int _rnbcjrnstojis(unsigned int c);

Routine

_mhcjistojms

_mhcjmstojis

Required Header

<rnbstring.h>

<rnbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_rnbcjistojrns and _rnbcjrnstojis return a converted character. Otherwise they return
O.

Parameter

Remarks

c Character to convert

The _rnbcjistojrns function converts a Japan Industry Standard (1IS) character to a
Microsoft Kanji (Shift 1IS) character. The character is converted only if the lead and
trail bytes are in the range Ox21-0x7E.

The _rnbcjrnstojis function converts a Shift 1IS character to a 1IS character. The
character is converted only if the lead byte is in the range Ox81-0x9F or OxEO-OxFC,
and the trail byte is in the range Ox40-0x7E or Ox80-0xFC.

The value c should be a 16-bit value whose upper eight bits represent the lead byte
of the character to convert and whose lower eight bits represent the trail byte.

In earlier versions, _rnbcjistojrns and _rnbcjrnstojis were called jistojrns and
jrnstojis, repectively. _rnbcjistojrns and _rnbcjrnstojis should be used instead.

See Also: _isrnbb Routines

_mbclen, mblen

398

Get the length and determine the validity of a multibyte character.

size_t _rnbclen(const unsigned char *c);
int rnblen(const char *mbstr, size_t count);

_mbc1en, mblen

Routine

_mbelen

mblen

Required Header

<mbstring.h>

<stdlib.h>

Compatibility

Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_mbclen returns I or 2, according to whether the multibyte character c is one or two
bytes long. There is no error return for _mbclen. If mbstr is not NULL, mblen returns
the length, in bytes, of the multi byte character. If mbstr is NULL, or if it points to the
wide-character null character, mblen returns O. If the object that mbstr points to does
not form a valid multibyte character within the first count characters, mblen returns -1.

Parameters

Remarks

Example

c Multibyte character

mbstr Address of multibyte-character byte sequence

count Number of bytes to check

The _mbclen function returns the length, in bytes, of the multibyte character c. If c does
not point to the lead byte of a multibyte character as determined by an implicit call to
_ismbblead, the result of _mbclen is unpredictable.

mblen returns the length in bytes of mbstr if it is a valid multibyte character. It examines
count or fewer bytes contained in mbstr, but not more than MB_CUR_MAX bytes. mblen
determines multibyte-character validity according to the LC_CTYPE category setting of
the current locale. For more information on the LC_CTYPE category, see setlocale.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

Maps to macro or
inline function

_MBCS Defined _UNICODE Defined

Maps to macro or
inline function

/* MBLEN.C illustrates the behavior of the mblen function
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

399

_mbctohira, _mbctokata

Output

i nt i ;
char *pmbc
wchar t wc

(char *)malloc(sizeof(char));
L I a ';

printf("Convert wide character to multibyte character:\n");
i = wctomb(pmbc. wc);
pri ntf("\ tCha racters converted: %u\n". i);
printf("\tMultibyte character: %x\n\n". pmbc);

i = mblen(pmbc. MB_CUR_MAX);
printf("Length in bytes of multibyte character %x: %u\n". pmbc.);

pmbc = NULL;
i = mblen(pmbc. MB_CUR_MAX);
printf("Length in bytes of NULL multi byte character %x: %u\n". pmbc.);

Convert wide character to multibyte character:
Characters converted: 1
Multibyte character: 2c02cc

Length in bytes of multibyte character 2c02cc: 1
Length in bytes of NULL multibyte character 0: 0

See Also: _mbccpy, _mbslen

_mbctohira, mbctokata
unsigned int _mbctohira(unsigned int c);

unsigned int _mbctokata(unsigned int c);

Routine

_mbctohira

_mbctokata

Required Header

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the converted character c, if possible. Otherwise it
returns the character c unchanged.

Parameter
c Multibyte character to convert

400

_mbctolower, _mbctoupper

Remarks
The _mbctohira and _mbctohira functions test a character c and, if possible, apply
one of the following conversions.

Routine

_mbctohira

_mbctokata

Converts

Multibyte katakana to multibyte hiragana

Multibyte hiragana to multibyte katakana

In previous versions, _mbctohira was called jtohira and _mbctokata was called
jtokata. For new code, use the new names instead.

See Also: _mbcjistojms, _mbctolower, _mbctombb

_mbctolower, _mbctoupper
unsigned int _mbctolower(unsigned int c);
unsigned int _mbctoupper(unsigned int c);

Routine

_mbctolower

_mbctoupper

Required Header

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the converted character c, if possible. Otherwise it
returns the character c unchanged.

Parameter

Remarks

c Multibyte character to convert

The _mbctolower and _mbctoupper functions test a character c and, if possible,
apply one of the following conversions.

Routine

_mbctolower

_mbctoupper

Converts

Uppercase character to lowercase character

Lowercase character to uppercase character

In previous versions, _mbctolower was called jtolower, and _mbctoupper was
called jtoupper. For new code, use the new names instead.

401

_mbctombb

Generic-Text Routine Mappings

TCHAR.H Routine

_totlower

_totupper

_UNICODE & _MBCS
Not Defined

tolower

to upper

_MBCS Defined

_mbctolower

_mbctoupper

_UNICODE Defined

tow lower

towupper

See Also: _rnbbtornbc, _rnbcjistojrns, _rnbctohira, _rnbctornbb

mbctombb
unsigned int _rnbctornbb(unsigned int c);

Routine Required Header Compatibility

_mbctombb <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, _rnbctornbb returns the single-byte character that corresponds to c;
otherwise it returns c.

Parameter

Remarks

c Multibyte character to convert.

The _rnbctornbb function converts a given multi byte character to a corresponding
single-byte multibyte character. Characters must correspond to single-byte characters
within the range Ox20-0x7E or OxAI-OxDF to be converted.

In previous versions, _rnbctornbb was called zentohan. Use _rnbctornbb instead.

See Also: _rnbbtornbc, _rnbcjistojrns, _rnbctohira, _rnbctolower

_mbsbtype
int _mbsbtype(const unsigned char *mbstr, size_t count);

Routine Required Header Optional Headers Compatibility

_mbsbtype <mbstring.h> <mbctype.h> 1 Win 95, Win NT

1 For manifest constants used as return values.

402

_mbsdec, _strdec, _wcsdec

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_mhshtype returns an integer value indicating the result of the test on the specified
byte. The manifest constants in the following table are defined in MBCTYPE.H.

Return Value Byte Type

_MBC_SINGLE (0) Single-byte character. For example, in code page 932, _mhshtype
returns 0 if the specified byte is within the range Ox20-0x7E or
OxAI-OxDF.

_MBC_LEAD (1) Lead byte of multibyte character. For example, in code page 932,
_mhshtype returns I if the specified byte is within the range
Ox81-0x9F or OxEO-OxFC.

_MBC_TRAIL (2) Trailing byte of multibyte character. For example, in code page
932, _mhshtype returns 2 if the specified byte is within the range
Ox40-0x7E or Ox80-0xFC.

_MBC_ILLEGAL (-1) Invalid character, or NULL byte found before the byte at offset
count in mbstr.

Parameters

Remarks

mbstr Address of a sequence of multibyte characters

count Byte offset from head of string

The _mhshtype function determines the type of a byte in a multibyte character string.
The function examines only the byte at offset count in mbstr, ignoring invalid
characters before the specified byte.

_mbsdec, _strdec, wcsdec
unsigned char * _mhsdec(const unsigned char *start, const unsigned char *current);

Routine

_mhsdec

_strdec

_wcsdec

Required Header

<mbstring.h>

<tchar.h>

<tchar.h>

Optional Headers

<mbctype.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

403

_mbsine, _strine, _ wesine

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a pointer to the character that immediately precedes
current, or NULL if the value of start is greater than or equal to that of current. The
return value from _tcsdec is undefined; thus, when using _tcsdec, you must ensure
that you do not decrement the string pointer beyond start.

Parameters

Remarks

start Pointer to first byte of any multibyte character in the source string; start must
precede current in the source string

current Pointer to first byte of any multibyte character in the source string; current
must follow start in the source string

The _mbsdec function returns a pointer to the first byte of the multibyte-character that
immediately precedes current in the string that contains start. _mbsdec recognizes
multibyte-character sequences according to the multibyte code page currently in use.

The generic-text function _tcsdec, defined in TCHAR.H, maps to _mbsdec if
_MBCS has been defined, or to _wcsdec if _UNICODE has been defined. Otherwise
_tcsdec maps to _strdec. _strdec and _ wcsdec are single-byte character and
wide-character versions of _mbsdec. _strdec and _ wcsdec are provided only for this
mapping and should not be used otherwise. For more information, see "Using
Generic-Text Mappings" on page 25 and Appendix B, "Generic-Text Mappings."

See Also: _mbsinc, _mbsnextc, _mbsninc

_mbsine, _strine, _" wesine

404

unsigned char * _mbsinc(const unsigned char *current);

Routine Required Header Compatibility

_IDbsinc <mbstring.h> Win 95, Win NT

- strine <tchar.h> Win 95, Win NT

_wesine <tchar.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a pointer to the character that immediately follows
current.

Parameter

Remarks

current Character pointer

The _mbsine function returns a pointer to the first byte of the multibyte character that
immediately follows current. _mbsine recognizes multibyte-character sequences
according to the multibyte code page currently in use.

The generic-text function _tesine, defined in TCHAR.H, maps to _mbsine if _MBCS
has been defined, or to _wesine if _UNICODE has been defined. Otherwise _tesine
maps to _strine. _strine and _ wesine are single-byte character and wide-character
versions of _mbsine. _strine and _wesine are provided only for this mapping and
should not be used otherwise. For more information, see "Using Generic-Text
Mappings" on page 25 and Appendix B, "Generic-Text Mappings."

See Also: _mbsdee, _mbsnexte, _mbsnine

mbsnbcat
unsigned ehar * _mbsnbeat(unsigned ehar *dest, eonst unsigned ehar *src, size_t count);

Routine Required Header Compatibility

_mbsnbcat <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSYCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

_mbsnbeat returns a pointer to the destination string. No return value is reserved to
indicate an error.

Parameters
dest Null-terminated multibyte-character destination string

src Null-terminated multibyte-character source string

count Number of bytes from src to append to dest

_mbsnbcat

405

_mbsnbcmp

Remarks
The _mbsnbcat function appends, at most, the first count bytes of src to dest. If the
byte immediately preceding the null character in dest is a lead byte, the initial byte
of src overwrites this lead byte. Otherwise the initial byte of src overwrites the
terminating null character of dest. If a null byte appears in src before count bytes are
appended, _mbsnbcat appends all bytes from src, up to the null character. If count is
greater than the length of src, the length of src is used in place of count. The resulting
string is terminated with a null character. If copying takes place between strings that
overlap, the behavior is undefined.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsncat

_UNICODE & _MBCS
Not Defined

stmcat

_MBCS Defined _UNICODE Defined

_mbsnbcat wcsncat

See Also: _mbsnbcmp, _mbsnbcnt, _mbsnccnt, _mbsnbcpy, _mbsnbicmp,
_mbsnbset, strncat

_mbsnbcmp
int _mbsnbcmp(const unsigned char * string 1 ,const unsigned char string2,

.. size_t count);

Routine Required Header Compatibility

_mbsnbcmp <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

406

The return value indicates the relation of the substrings of stringl and string.

Return Value

<0

o
>0

Description

string 1 substring less than string2 substring

string 1 substring identical to string 2 substring

string1 substring greater than string2 substring

On an error, _mbsnbcmp returns _NLSCMPERROR, which is defined in
STRING.H and MBSTRING.H.

Parameters

Remarks

Example

string], string2 Strings to compare

count Number of bytes to compare

The _mbsnbcmp function lexicographically compares, at most, the first count bytes
in string] and string2 and returns a value indicating the relationship between the
substrings. _mbsnbcmp is a case-sensitive version of _mbsnbicmp. Unlike strcoIl,
_mbsnbcmp is not affected by locale. _mbsnbcmp recognizes multi byte-character
sequences according to the current multi byte code page.

_mbsnbcmp is similar to _mbsncmp, except that _mbsnbcmp compares strings by
characters rather than by bytes.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tcsncmp stmcmp

1* STRNBCMP.C *1
#include <mbstring.h>
#include <stdio.h>

_MBCS Defined _UNICODE Defined

_mbsnbcmp wcsncmp

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

void main(void)
{

}

char tmp[20];
int result;
pri ntf("Compa re stri ngs: \n \ t\ t%s \n \ t \ t%s \n\n", stri ngl, stri ng2);
printf("Function:\t_mbsnbcmp (first 10 characters only)\n");
result = _mbsncmp(string1, string2 . 10);
if(result> 0)

_mbscpy(tmp, "greater than");
else if(result < 0)

_mbscpy(tmp, "less than");
else

_mbscpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);
printf("Function:\t_mbsnicmp _mbsnicmp (first 10 characters only)\n");
result - _mbsnicmp(string1, string2. 10);
if(result> 0)

_mbscpy(tmp, "greater than");
else if(result < 0)

_mbscpy(tmp, "less than");
else

_mbscpy(tmp, "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);

_mbsnbcmp

407

_mbsnbcnt, _mbsnccnt, _strncnt, _ wcsncnt

Output
Compare strings:

The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

Function:_mbsnbcmp (first 10 characters only)
Result: String 1 is greater than string 2

Function:_mbsnicmp (first 10 characters only)
Result: String 1 is equal to string 2

See Also: _mbsnbcat, _mbsnbicmp, strncmp, _strnicmp

_mbsnbcnt, _mbsnccnt, _strncnt, wcsncnt
Return number of characters or bytes within a supplied count

size_t _mbsnbcnt(const unsigned char *string, size_t number);
size_t _mbsnccnt(const unsigned char *string, size_t number);

Routine Required Header Compatibility

- mbsnbcnt <mbstring.h> Win 95, Win NT

_mbsnccnt <mbstring.h> Win 95, Win NT

- strncnt <tchar.h> Win 95, Win NT

- wcsncnt <tchar.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

408

_mbsnbcnt returns the number of bytes found in the first number of multibyte
characters of string. _mbsnccnt returns the number of characters found in the first
number of bytes of string. If a NULL character is encountered before the examination
of string has completed, they return the number of bytes or characters found before
the NULL character. If string consists of fewer than number characters or bytes, they
return the number of characters or bytes in the string. If number is less than zero, they
return O. In previous versions, these functions had a return value of type int rather
than size_t.

_strncnt returns the number of characters in the first number bytes of the single-byte
string string. _ wcsncnt returns the number of bytes in the first number wide
characters of the wide-character string string.

_mbsnbcnt, _mbsnccnt, _strncnt, _ wcsncnt

Parameters

Remarks

Example

Output

string String to be examined

number Number of characters or bytes to be examined in string

_mbsnbcnt counts the number of bytes found in the first number of multibyte
characters of string. _mbsnbcnt replaces mtob, and should be used in place
ofmtob.

_mbsnccnt counts the number of characters found in the first number of bytes
of string. If _mbsnccnt encounters a NULL in the second byte of a double-byte
character, the first byte is also considered to be NULL and is not included in the
returned count value. _mbsnccnt replaces btom, and should be used in place
ofbtom.

If _MBCS is defined, _mbsnbcnt is mapped to _tcsnbcnt and _mbsnbcnt is
mapped to _tcsnccnt. These two mapping routines provide generic-text support
and are defined in TCHAR.H. If _UNICODE is defined, both _mbsnbcnt and
_mbsnccnt are mapped to the _wcsncnt macro. When _MBCS and _UNICODE
are not defined, both _tcsnbcnt and _tcsnccnt are mapped to the _strncnt macro.
_strncnt is the single-byte-character string version and _ wcsncnt is the wide
character-string version of these mapping routines. _strncnt and _ wcsncnt are
provided only for generic-text mapping and should not be used otherwise. For
more information, see "Using Generic-Text Mappings" on page 25 and see
Appendix B, "Generic-Text Mappings."

/* MBSNBCNT.C */

#include <mbstring.h>
#include <stdio.h>

void maine void)
{

unsigned char str[] = "This is a multi byte-character string.";
unsigned int char_count, byte_count;
char_count = _mbsnccnt(str, 10);
byte_count = _mbsnbcnt(str, 10);
if (byte_count - char_count)

printf("The first 10 characters contain %s multibyte characters",
.. cha r _count);

else
printf("The first 10 characters are single-byte.");

The first 10 characters are single-byte.

See Also: _mbsnbcat

409

_mbsnbcoll, _mbsnbicoll

_mbsnbcoll, mbsnbicoll
int _mbsnbcoll(const unsigned char *string], const unsigned char string2, size_t count);
int _mbsnbicoll(const unsigned char *string], const unsigned char string2, size_t count);

Routine

_mbsnbcoll

_mbsnbicoll

Required Header

<mbstring.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value indicates the relation of the substrings of string] and string2.

Return Value

<0

o
>0

Description

string] substring less than string2 substring

string] substring identical to string2 substring

string] substring greater than string2 substring

Each of these functions returns _NLSCMPERROR on an error. To use
_NLSCMPERROR, include either STRING.H or MBSTRING.H.

Parameters

Remarks

410

string], string2 Strings to compare

count Number of bytes to compare

Each of these functions collates, at most, the first count bytes in string] and string2
and returns a value indicating the relationship between the resulting substrings of
string] and string2. If the final byte in the substring of string] or string2 is a lead
byte, it is not included in the comparison; these functions compare only complete
characters in the substrings. _mbsnbicoll is a case-insensitive version of _mbsnbcoll.
Like _mbsnbcmp and _mbsnbicmp, _mbsnbcoll and _mbsnbicoll collate the two
multibyte-character strings according to the lexicographic order specified by the
multibyte code page currently in use.

For some code pages and corresponding character sets, the order of characters in the
character set may differ from the lexicographic character order. In the "C" locale, this
is not the case: the order of characters in the ASCII character set is the same as the
lexicographic order of the characters. However, in certain European code pages, for

example, the character 'a' (value Ox61) precedes the character 'a' (value OxE4) in
the character set, but the character 'a' precedes the character 'a' lexicographically.
To perform a lexicographic comparison of strings by bytes in such an instance, use
_mbsnbcoll rather than _mbsnbcmp; to check only for string equality, use
_mbsnbcmp.

Because the coIl functions collate strings lexicographically for comparison, whereas
the cmp functions simply test for string equality, the coIl functions are much slower
than the corresponding cmp versions. Therefore, the coIl functions should be used
only when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the
comparison.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsncoll

_tcsnicoll

_UNICODE & _MBCS
Not Defined

_stmcoll

_stmicoll

_MBCS Defined

_mbsnbcoll

_mbsnbicoll

_UNICODE Defined

_wcsncoll

_wcsnicoll

See Also: _mbsnbcat, _mbsnbcmp, _mbsnbicmp, strcoll Functions, strncmp,
_strnicmp

_mbsnbcpy

_mhsnhcpy

unsigned char * _mbsnbcpy(unsigned char *dest, const unsigned char *src, size_t count);

Routine Required Header Compatibility

_mbsnhcpy <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_mbsnbcpy returns a pointer to the character string that is to be copied.

Parameters
dest Destination for character string to be copied

src Character string to be copied

count Number of bytes to be copied

411

_mbsnbicmp

Remarks
The _mbsnbcpy function copies count bytes from src to dest. If src is shorter than
dest, the string is padded with null characters. If dest is less than or equal to count it is
not terminated with a null character.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsncpy

_UNICODE & _MBCS
Not Defined

stmcpy

_MBCS Defined _UNICODE Defined

_mbsnbcpy wcsncpy

See Also: _mbsnbcat, _mbsnbcmp, _mbsnbcnt, _mbsnccnt, _mbsnbicmp,
_mbsnbset, _mbsncpy

_mhsnhicmp
int _mbsnbicmp(const unsigned char *stringl, const unsigned char *string2,

... size_t count);

Routine Required Header Compatibility

_mhsnhicmp <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value indicates the relationship between the substrings.

Return Value

<0

o
>0

Description

string] substring less than string2 substring

string] substring identical to string2 substring

string] substring greater than string2 substring

On an error, _mbsnhcmp returns _NLSCMPERROR, which is defined in
STRING.H and MBSTRING.H.

Parameters
string1, string2 Null-terminated strings to compare

count Number of bytes to compare

412

Remarks

Example

The _mbsnbicmp function lexicographically compares, at most, the first count bytes of
string] and string2. The comparison is performed without regard to case; _mbsnbcmp
is a case-sensitive version of _mbsnbicmp. The comparison ends if a terminating null
character is reached in either string before count characters are compared. If the strings
are equal when a terminating null character is reached in either string before count
characters are compared, the shorter string is lesser.

_mbsnbicmp is similar to _mbsnicmp, except that it compares strings by bytes
instead of by characters.

Two strings containing characters located between' Z' and 'a' in the ASCII table (T, '\', ,]"
"", '_', and "') compare differently, depending on their case. For example, the two strings
"ABCDE" and "ABCD"" compare one way if the comparison is lowercase ("abcde" >
"abcd"") and the other way ("ABC DE" < "ABCD"") if it is uppercase.

_mbsnbicmp recognizes multibyte-character sequences according to the multibyte
code page currently in use. It is not affected by the current locale setting.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsnicmp

_UNICODE & _MBCS
Not Defined

_stmicmp

1* STRNBCMP.C *1
#include <mbstring.h>
#include <stdio.h>

_MBCS Defined _UNICODE Defined

_mhsnhicmp _wcsnicmp

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

void maine void)
{

char tmp[20];
int result;
printf("Compare strings:\n\t\t%s\n\t\t%s\n\n". string!. string2);
printf("Function:\t_mbsnbcmp (first 10 characters only)\n");
result = _mbsncmp(string1. string2 . 10);
if(result > 0)

_mbscpy(tmp. "greater than");
else if(result < 0)

_mbscpy(tmp. "less than");
else

_mbscpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);
printf("Function:\t_mbsnicmp _mbsnicmp (first 10 characters only)\n");
result - _mbsnicmp(string!. string2. 10);
if(result> 0)

_mbscpy(tmp. "greater than");

_mbsnbicmp

413

_mbsnbset

Output

else if(result < 0)
_mbscpy(tmp, "less than");

else
_mbscpy(tmp, "equal to");

printf("Result:\t\tString 1 is %s string 2\n\n", tmp);

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

Function:_mbsnbcmp (first 10 characters only)
Result: String 1 is greater than string 2

Function:_mbsnicmp (first 10 characters only)
Result: String 1 is equal to string 2

See Also: _mbsnbcat, _mbsnbcmp, _stricmp

mbsnbset
unsigned char * _mbsnbset(unsigned char *string, unsigned int c, size_t count);

Routine Required Header Compatibility

_mbsnbset <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_mbsnbset returns a pointer to the altered string.

Parameters

Remarks

414

string String to be altered

c Single-byte or multibyte character setting

count Number of bytes to be set

The _mbsnbset function sets, at most, the first count bytes of string to c. If count is
greater than the length of string, the length of string is used instead of count. If c is a
multibyte character and cannot be set entirely into the last byte specified by count,
then the last byte will be padded with a blank character. _mbsnbset does not place
a terminating null at the end of string.

_mbsnextc, _strnextc, _ wcsnextc

Example

Output

_mbsnbset is similar to _mbsnset, except that it sets count bytes rather than count
characters of c.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tcsnset _strnset

1* MBSNBSET.C *1

#include <mbstring.h>
#include <stdio.h>

void maine void)
{

_MBCS Defined

_mbsnbset

char string[15] - "This is a test";
1* Set not more than 4 bytes of string to be *'s *1
printf("Before: %s\n", string);
_m b s nbs e t (s t r i n g, '*', 4);
printf("After: %s\n", string);

Before: This is a test
After: **** is a test

See Also: _mbsnbcat, _mbsnset, _mbsset

_UNICODE Defined

_wcsnset

_mbsnextc, _strnextc, wcsnextc
unsigned int _mbsnextc(const unsigned char *string);

Routine Required Header Compatibility

- mbsnextc <mbstring.h> Win 95, Win NT

_strnextc <tchar.h> Win 95, Win NT

- wcsnextc <tchar.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns the integer value of the next character in string.

415

_mbsninc, _strninc, _ wcsninc

Parameter

Remarks

string Source string

The _mbsnextc function returns the integer value of the next multi byte-character in
string, without advancing the string pointer. _mbsnextc recognizes
multibyte-character sequences according to the multibyte code page currently in use.

The generic-text function _tcsnextc, defined in TCHAR.H, maps to _mbsnextc if
_MBCS has been defined, or to _wcsnextc if _UNICODE has been defined. Otherwise
_tcsnextc maps to _strnextc. _strnextc and _ wcsnextc are single-byte-character string
and wide-character string versions of _mbsnextc. _ wcsnextc returns the integer value
of the next wide character in string; _strnextc returns the integer value of the next
single-byte character in string. _strnextc and _ wcsnextc are provided only for this
mapping and should not be used otherwise. For more information, see "Using
Generic-Text Mappings" on page 25 and Appendix B, "Generic-Text Mappings."

See Also: _mbsdec, _mbsinc, _mbsninc

_mbsninc, _strninc, WCSnlnC
unsigned char * _mbsninc(const unsigned char *string, size_t count);

Routine

_mbsninc

_strninc

_wcsninc

Required Header

<mbstring.h>

<tchar.h>

<tchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines returns a pointer to string after string has been incremented by
count characters, or NULL if the supplied pointer is NULL. If count is greater than or
equal to the number of characters in string, the result is undefined.

Parameters
string Source string

count Number of characters to increment string pointer

416

_mbsspnp, _strspnp, _ wcsspnp

Remarks
The _mbsninc function increments string by count multibyte characters. _mbsninc
recognizes multi byte-character sequences according to the multibyte code page
currently in use.

The generic-text function _tcsninc, defined in TCHAR.H, maps to _mbsninc if
_MBCS has been defined, or to _ wcsninc if _UNICODE has been defined.
Otherwise _tcsninc maps to _strninc. _strninc and _ wcsninc are single-byte
character string and wide-character string versions of _mbsninc. _ wcsninc and
_strninc are provided only for this mapping and should not be used otherwise. For
more information, see "Using Generic-Text Mappings" on page 25 and Appendix B,
"Generic-Text Mappings."

See Also: _mbsdec, _mbsinc, _mbsnextc

_mbsspnp, _strspnp, _wcsspnp
unsigned char * _mbsspnp(const unsigned char *string1, const unsigned char *string2);

Routine Required Header Compatibility

_mhsspnp <mbs tring .h> Win 95, Win NT

_strspnp <tchar.h> Win 95, Win NT

_wcsspnp <tchar.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_strspnp, _ wcsspnp, and _mbsspnp return a pointer to the first character in string 1
that does not belong to the set of characters in string2. Each of these functions returns
NULL if string1 consists entirely of characters from string2. For each of these
routines, no return value is reserved to indicate an error.

Parameters

Remarks

string 1 Null-terminated string to search

string2 Null-terminated character set

The _mbsspnp function returns a pointer to the multi byte character that is the first
character in string1 that does not belong to the set of characters in string2. _mbsspnp
recognizes multi byte-character sequences according to the multibyte code page
currently in use. The search does not include terminating null characters.

417

mbstowcs

Example

Output

The generic-text function _tcsspnp, defined in TCHAR.H, maps to _mbsspnp
if _MBCS has been defined, or to _wcsspnp if _UNICODE has been defined.
Otherwise _tcsspnp maps to _strspnp. _strspnp and _ wcsspnp are single-byte
character and wide-character versions of _mbsspnp. _strspnp and _ wcsspnp
behave identically to _mbsspnp otherwise; they are provided only for this mapping
and should not be used for any other reason. For more information, see "Using
Generic-Text Mappings" on page 25 and Appendix B, "Generic-Text Mappings."

/* STRSPN.C: This program uses strspn to determine
* the length of the segment in the string "cabbage"
* consisting of a's, b's, and c's. In other words,
* it finds the first non-abc letter.
*/

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[] - "cabbage":
int result:
result = strspn (stri ng, "abc"):
printf("The portion of '%5' containing only a, b, or c "

"is %d bytes long\n", string, result):

The portion of 'cabbage' containing only a, b, or c is 5 bytes long

See Also: strspn, strcspn, strncat, strncmp, strncpy, _strnicmp, strrchr

mbstowcs

418

Converts a sequence of multibyte characters to a corresponding sequence of wide
characters.

size_t mbstowcs(wchar_t *wcstr, const char *mbstr, size_t count);

Routine Required Header Compatibility

mbstowcs <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If mbstowcs successfully converts the source string, it returns the number of converted
multibyte characters. If the wcstr argument is NULL, the function returns the required size
of the destination string. If mbstowcs encounters an invalid multibyte character, it returns
-1. If the return value is count, the wide-character string is not null-terminated.

Parameters

Remarks

Example

wcstr The address of a sequence of wide characters

mbstr The address of a sequence of multi byte characters

count The number of multibyte characters to convert

The mbstowcs function converts count or fewer multibyte characters pointed to by mbstr
to a string of corresponding wide characters that are determined by the current locale. It
stores the resulting wide-character string at the address represented by wcstr. The result
is similiar to a series of calls to mbtowc. If mbstowcs encounters the single-byte null
character ('\0') either before or when count occurs, it converts the null character to a
wide-character null character (L '\0') and stops. Thus the wide-character string at wcstr
is null-terminated only if a null character is encountered during conversion. If the
sequences pointed to by wcstr and mbstr overlap, the behavior is undefined.

If the wcstr argument is NULL, mbstowcs returns the required size of the destination string.

/* MBSTOWCS.CPP illustrates the behavior of the mbstowcs function
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

int i;
char *pmbnull ~ NULL;
char *pmbhello (char *)malloc(MB_CUR_MAX);
wchar t *pwchello = L"Hi";
wchar_t *pwc = (wchar_t *)malloc(sizeof(wchar t));

printf("Convert to multibyte string:\n");
i = wcstombs(pmbhello. pwchello. MB_CUR_MAX);
printf("\tCharacters converted: %u\n". i);
printf("\tHex value of first");
printf(" multibyte character: %#.4x\n\n". pmbhello);

printf("Convert back to wide-character string:\n");
i = mbstowcs(pwc. pmbhello. MB_CUR_MAX);
printf("\tCharacters converted: %u\n".);
printf("\tHex value of first");
printf(" wide character: %#.4x\n\n". pwc);

mbstowcs

419

mbtowc

Output
Convert to multibyte string:

Characters converted: 1
Hex value of first multibyte character: 0x0ela

Convert back to wide-character string:
Characters converted: 1
Hex value of first wide character: 0x0ele

See Also: mblen, mbtowc, wcstombs, wctomb

mbtowc
Convert a multi byte character to a corresponding wide character.

int mbtowc(wchar_t *wchar, const char *mbchar, size_t count);

Routine Required Header Compatibility

mbtowc <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If mbchar is not NULL and if the object that mbchar points to forms a valid
multibyte character, mbtowc returns the length in bytes of the multibyte character. If
mbchar is NULL or the object that it points to is a wide-character null character
(L '\0'), the function returns O. If the object that mbchar points to does not form a
valid multibyte character within the first count characters, it returns -1.

Parameters

Remarks

420

wchar Address of a wide character (type wchar_t)

mbchar Address of a sequence of bytes (a multibyte character)

count Number of bytes to check

The mbtowc function converts count or fewer bytes pointed to by mbchar, if mbchar
is not NULL, to a corresponding wide character. mbtowc stores the resulting wide
character at wchar, if wchar is not NULL. mbtowc does not examine more than
MB_ CUR_MAX bytes.

Example

Output

1* MBTOWC.CPP illustrates the behavior of the mbtowc function
*1

#include <stdlib.h>
#include <stdio.h>

void main(void
{

int
char

i ;
*pmbc - (char *)malloc(sizeof(char));

wchar_t wc - L'a';
wchar_t *pwcnull - NULL;
wchar_t *pwc - (wchar_t *)malloc(sizeof(wchar_t));
printf("Convert a wide character to multibyte character:\n");
i - wctomb(pmbc. wc);
pri ntf("\ tCha racters converted: %u\n". i);
printf("\tMultibyte character: %x\n\n". pmbc);

printf("Convert multi byte character back to a wide"
"character:\n");

i - mbtowc(pwc. pmbc. MB_CUR_MAX);
pri ntf("\ tBytes converted: %u\n". i);
printf("\tWide character: %x\n\n". pwc);
printf("Attempt to convert when target is NULL\n");
printf(" returns the length of the multibyte character:\n");
i - mbtowc(pwcnull. pmbc. MB_CUR_MAX);
pri ntf("\ tLength of mul ti byte cha racter: %u\n\n". i);

printf("Attempt to convert a NULL pointer to a");
printf(" wide character:\n");
pmbc = NULL;
i = mbtowc(pwc. pmbc. MB_CUR_MAX);
pri ntf("\ tBytes converted: %u\n". i);

Convert a wide character to multibyte character:
Characters converted: 1
Multibyte character: 2d02d4

Convert multibyte character back to a wide character:
Bytes converted: 1
Wide character: 2d02dc

Attempt to convert when target is NULL
returns the length of the multibyte character:
Length of multibyte character: 1

Attempt to convert a NULL pointer to a wide character:
Bytes converted: 0

See Also: mblen, wcstombs, wctomb

mbtowc

421

_memccpy

_memccpy
Copies characters from a buffer.

void * _memccpy(void *dest, const void *src, int c, unsigned int count);

Routine Required Header Compatibility

_memccpy <memory.h> or <string.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If the character c is copied, _memccpy returns a pointer to the byte in dest that
immediately follows the character. If c is not copied, it returns NULL.

Parameters

Remarks

Example

422

dest Pointer to destination

src Pointer to source

c Last character to copy

count Number of characters

The _memccpy function copies 0 or more bytes of src to dest, halting when the character
c has been copied or when count bytes have been copied, whichever comes first.

1* MEMCCPY.C *1

#include <memory.h>
#include <stdio.h>
#include <string.h>

char string1[60] = "The quick brown dog jumps over the lazy fox";

void main(void)
{

}

char buffer[6l];
char *pdest;

printf("Function:\t_memccpy 60 characters or to character 's'\n");
printf("Source:\t\t%s\n", stringl);
p des t = _m e m c c p y (b u f fer, s t r i n g 1. 's', 60);
*pdest "" '\0';
printf("Result:\t\t%s\n", buffer);
printf("Length:\t\t%d characters\n\n", strlen(buffer));

Output
Function:
Source:
Result :
Length:

_memccpy 60 characters or to character's'
The quick brown dog jumps over the lazy fox
The quick brown dog jumps
25 characters

See Also: memchr, memcmp, memcpy, memset

memchr
Finds characters in a buffer.

void *memchr(const void *buf, int c, size_t count);

Routine Required Header Compatibility

memchr <memory .h> or <string.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, memchr returns a pointer to the first location of c in buf. Otherwise it
returns NULL.

Parameters

Remarks

Example

buf Pointer to buffer

c Character to look for

count Number of characters to check

The memchr function looks for the first occurrence of c in the first count bytes of buf.
It stops when it finds c or when it has checked the first count bytes.

1* MEMCHR.C *1

#include <memory.h>
#include <stdio.h>

int ch = 'r';
char str[] ... "lazy";
char string[] ... "The quick brown dog jumps over the lazy fox";
char fmtl[] ... 1 2 3 4 5";
char fmt2[] ... "12345678901234567890123456789012345678901234567890";

memchr

423

memcmp

Output

void main(void
{

char *pdest;
int result;
printf("String to be searched:\n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n", fmtl, fmt2);

pri ntf("Sea rch cha r: \ t%c\n", ch);
pdest = memchr(string, ch, sizeof(string));
result = pdest - string + 1;
if(pdest 1= NULL)

printf("Result:\t\t%c found at position %d\n\n", ch, result);
else

printf("Result:\t\t%c not found\n");

String to be searched:
The quick brown dog jumps over the lazy fox
12345

12345678901234567890123456789012345678901234567890

Search char: r
Result: r found at position 12

See Also: _memccpy, memcmp, memcpy, memset, strchr

memcmp
Compare characters in two buffers.

int memcmp(const void *bufl, const void *buj2, size_t count);

Routine Required Header Compatibility

memcmp <memory.h> or <string.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

424

The return value indicates the relationship between the buffers.

Return Value

<0

o
>0

Relationship of First count Bytes of buf1 and buf2

bufl less than buj2

bufl identical to buj2

bufl greater than buj2

Parameters

Remarks

Example

Output

bull First buffer

buj2 Second buffer

count Number of characters

The memcmp function compares the first count bytes of bu/l and buj2 and returns a
value indicating their relationship.

/* MEMCMP.C: This program uses memcmp to compare
* the strings named first and second. If the first
* 19 bytes of the strings are equal, the program
* considers the strings to be equal.
*/

#include <string.h>
#include <stdio.h>

void maine void)
{

char first[] = "12345678901234567890";
char second[] = "12345678901234567891";
i nt result;

printf("Compare '%.19s' to '%.19s':\n", first, second);
result = memcmp(first, second, 19);
if(result < 0)

pri ntf("Fi rst is 1 ess than second. \n");
else if(result == 0)

pri ntf("Fi rst is equa 1 to second. \n");
else if(result> 0)

pri ntf("Fi rst is greater than second. \n");
pri ntf("Compa re '%. 20s' to '%. 20s' : \n", fi rst, second);
result = memcmp(first, second, 20);
if(result < 0)

pri ntf("Fi rst is 1 ess than second. \n");
else if(result == 0)

pri ntf("Fi rst is equal to second. \n"):
else if(result> 0)

pri ntf("Fi rst is greater than second. \n");

Compare '1234567890123456789' to '1234567890123456789':
First is equal to second.
Compare '12345678901234567890' to '12345678901234567891':
First is less than second.

See Also: _memccpy, memchr, memcpy, memset, strcmp, strncmp

memcmp

425

memcpy

memcpy
Copies characters between buffers.

void *memcpy(void *dest, const void *src, size_t count);

Routine

memcpy

Required Header

<memory .h> or
<string.h>

Compatibility

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
memcpy returns the value of dest.

Parameters

Remarks

Example

426

dest New buffer

src Buffer to copy from

count Number of characters to copy

The memcpy function copies count bytes of src to dest. If the source and destination
overlap, this function does not ensure that the original source bytes in the overlapping
region are copied before being overwritten. Use memmove to handle overlapping regions.

/* MEMCPY.C: Illustrate overlapping copy: memmove
* handles it correctly; memcpy does not.
*/

#include <memory.h>
#include <string.h>
#include <stdio.h>

char string1[60] = "The quick brown dog jumps over the lazy fox";
char string2[60] "The quick brown fox jumps over the lazy dog";
/* 1 2 3 4 5
* 12345678901234567890123456789012345678901234567890
*/

void maine void)
{

printf("Function:\tmemcpy without overlap\n");
printf("Source:\t\t%s\n", string1 + 40);

Output

printf("Destination:\t%s\n", string1 + 16);
memcpy(string1 + 16, string1 + 40, 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

/* Restore string1 to original contents */
memcpy(string1 + 16, string2 + 40, 3);

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\n", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string1 + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result :
Length:

memcpy without overlap
fox

dog jumps over the lazy fox
The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog

brown fox jumps over the lazy dog
The quick quick brown fox jumps over the
49 characters

memcpy with overlap
quick brown dog jumps over the lazy fox

brown dog jumps over the lazy fox
The quick quick brown dog jumps over the
49 characters

lazy dog

lazy fox

See Also: _memccpy, memchr, memcmp, memmove, memset, strcpy, strncpy

_memlcmp
Compares characters in two buffers (case-insensitive).

int _memicmp(const void *bufl, const void *buj2, unsigned int count);

Routine Required Header Compatibility

_memicmp <memory.h> or <string.h> Win 95, Win NT

_memicmp

427

_memicmp

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value indicates the relationship between the buffers.

Return Value

<0

o
>0

Relationship of First count Bytes of buf1 and buf2

bull less than buj2

bull identical to buj2

bull greater than buj2

Parameters

Remarks

Example

428

bufl First buffer

buj2 Second buffer

count Number of characters

The _memicmp function compares the first count characters of the two buffers bufl
and buj2 byte by byte. The comparison is not case sensitive.

1* MEMICMP.C: This program uses _memicmp to compare
* the first 29 letters of the strings named first and
* second without regard to the case of the letters.
*1

#include <memory.h>
#include <stdio.h>
#include <string.h>

void main(void
(

int result:
char first[] - "Those Who Will Not Learn from History":
char second[] = "THOSE WHO WILL NOT LEARN FROM their mistakes":
1* Note that the 29th character is right here A *1

printf("Compare '%.29s' to '%.29s'\n", first, second):
result - _memicmp(first, second, 29):
if(result < 0)

printf("First is less than second.\n"):
else if(result == 0)

printf("First is equal to second.\n"):}
else if(result> 0)

printf("First is greater than second.\n"):

Output
Compare 'Those Who Will Not Learn from' to 'THOSE WHO WILL NOT LEARN FROM'
First is equal to second.

See Also: _memccpy, memchr, memcmp, memcpy, memset, _stricmp, _strnicmp

memmove
Moves one buffer to another.

void *memmove(void *dest, const void * src, size_t count);

Routine Required Header Compatibility

memmove <string.h> or <memory.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
memmove returns the value of dest.

Parameters

Remarks

Example

dest Destination object

src Source object

count Number of bytes of characters to copy

The memmove function copies count bytes of characters from src to dest. If
some regions of the source area and the destination overlap, memmove ensures
that the original source bytes in the overlapping region are copied before being
overwritten.

1* MEMCPY.C: Illustrate overlapping copy: memmove
* handles it correctly; memcpy does not.
*/

#include <memory.h>
#include <string.h>
#include <stdio.h>

memmove

429

memmove

Output

430

char string1[60] = "The quick brown dog jumps over the lazy fox";
char string2[60] = "The quick brown fox jumps over the lazy dog";
/* 1 2 3 4 5
* 12345678901234567890123456789012345678901234567890
*/

void main(void)
{

printf("Function:\tmemcpy without overlap\n");
printf("Source:\t\t%s\n". string1 + 40);
printf("Destination:\t%s\n". string1 + 16);
memcpy(string1 + 16. string1 + 40. 3);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

/* Restore string1 to original contents */
memcpy(string1 + 16, string2 + 40, 3);

printf("Function:\tmemmove with overlap\n");
printf("Source:\t\t%s\n", string2 + 4);
printf("Destination:\t%s\n", string2 + 10);
memmove(string2 + 10, string2 + 4, 40);
printf("Result:\t\t%s\n", string2);
printf("Length:\t\t%d characters\n\n", strlen(string2));

printf("Function:\tmemcpy with overlap\n");
printf("Source:\t\t%s\n", string1 + 4);
printf("Destination:\t%s\n", string1 + 10);
memcpy(string1 + 10, string1 + 4, 40);
printf("Result:\t\t%s\n", string1);
printf("Length:\t\t%d characters\n\n", strlen(string1));

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

Function:
Source:
Destination:
Result:
Length:

memcpy without overlap
fox

dog jumps over the lazy fox
The quick brown fox jumps over the lazy fox
43 characters

memmove with overlap
quick brown fox jumps over the lazy dog

brown fox jumps over the lazy dog
The quick quick brown fox jumps over the
49 characters

memcpy with overlap
quick brown dog jumps over the lazy fox

brown dog jumps over the lazy fox

lazy dog

The quick quick brown dog jumps over the lazy fox
49 characters

See Also: _memccpy, memcpy, strcpy, strncpy

memset
Sets buffers to a specified character.

void *memset(void *dest, int c, size_t count);

Routine Required Header Compatibility

memset <memory.h> or <string.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.LIB

UBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
memset returns the value of dest.

Parameters

Remarks

Example

Output

dest Pointer to destination

c Character to set

count N umber of characters

The memset function sets the first count bytes of dest to the character c.

/* MEMSET.C: This program uses memset to
* set the first four bytes of buffer to
*/

#include <memory.h>
#include <stdio.h>

void maine void)
(

"*"

char buffer[] = "This is a test of the memset function";

printf("Before: %s\n", buffer);
memset(buffer, '*',4);
printf("After: %s\n", buffer);

Before: This is a test of the memset function
After: **** is a test of the memset function

See Also: _memccpy, memchr, memcmp, memcpy, _strnset

memset

431

mIn
Returns the smaller of two values.

type _min(type a, type b);

Routine Required Header Compatibility

<stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
The smaller of the two arguments

Parameters

Remarks

Example

Output

432

type Any numeric data type

a, b Values of any numeric type to be compared

The _min macro compares two values and returns the value of the smaller one. The
arguments can be of any numeric data type, signed or unsigned. Both arguments and
the return value must be of the same data type.

/* MINMAX.C */

#include <stdlib.h>
#include <stdio.h>

void main(void
{

int a 10;
i nt b 21;

p r i n t f("T h e 1 a r g e r 0 f % dan d % dis % d \ n" . a. b. _m a x (a. b) ;
printf("The smaller of %d and %d is %d\n", a, b, _min(a, b);

The larger of 10 and 21 is 21
The smaller of 10 and 21 is 10

See Also: _max

_mkdir, wmkdir
Create a new directory.

int _mkdir(const char *dirname);
int _wmkdir(const wchar_t *dirnal1le);

Routine

_mkdir

_wmkdir

Required Header

<direct.h>

<direct.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the value 0 if the new directory was created. On an
error the function returns -1 and sets errno as follows:

EACCES Directory was not created because dirnal1le is the name of an existing file,
directory, or device

ENOENT Path was not found

Parameter

Remarks

dirname Path for new directory

The _mkdir function creates a new directory with the specified dirnal1le. _mkdir can
create only one new directory per call, so only the last component of dirname can
name a new directory. _mkdir does not translate path delimiters. In Windows NT,
both the backslash (\) and the forward slash (I) are valid path delimiters in character
strings in run-time routines.

_ wmkdir is a wide-character version of _mkdir; the dirnal1le argument to _ wmkdir
is a wide-character string. _ wmkdir and _mkdir behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tmkdir

_UNICODE & MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_wmkdir

_mkdir, _ wmkdir

433

_mktemp, _ wmktemp

Example

Output

/* MAKEDIR.C */

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void maine void)
{

i f (_m k d i r (" \\ t est t m p") == 0)
{

printf("Directory '\\testtmp' was successfully created\n");
system("dir \\testtmp");
if(_rmdir("\\testtmp") == 0

printf("Directory '\\testtmp' was successfully removed\n");
else

printf("Problem removing directory '\\testtmp'\n");

else
printf("Problem creating directory '\\testtmp'\n");

Directory '\testtmp' was successfully created
Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\testtmp

05/03/94
05/03/94

12:30p <DIR>
12:30p <DIR>

2 File(s) o bytes
17.358.848 bytes free

Directory '\testtmp' was successfully removed

See Also: _chdir, _rmdir

_mktemp, _wmktemp

434

Create a unique filename.

char * _mktemp(char *template);
wchar_t * _wmktemp(wchar_t *template);

Routine

_mktemp

_wmktemp

Required Header

<io.h>

<io.h> or <wchar.h>

Compatibility

Win 95, Win NTv

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

_mktemp, _ wmktemp

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the modified template. The function
returns NULL if template is badly formed or no more unique names can be created
from the given template.

Parameter

Remarks

template Filename pattern

The _mktemp function creates a unique filename by modifying the template
argument. _mktemp automatically handles multibyte-character string arguments as
appropriate, recognizing multibyte-character sequences according to the multibyte
code page currently in use by the run-time system. _ wmktemp is a wide-character
version of _mktemp; the argument and return value of _ wmktemp are wide-character
strings. _ wmktemp and _mktemp behave identically otherwise, except that
_ wmktemp does not handle multibyte-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tmktemp _mktemp _wmktemp

The template argument has the form baseXXXXXX where base is the part of the
new filename that you supply and each X is a placeholder for a character supplied by
_mktemp. Each placeholder character in template must be an uppercase X. _mktemp
preserves base and replaces the first trailing X with an alphabetic character. _mktemp
replaces the following trailing X's with a five-digit value; this value is a unique
number identifying the calling process, or in multi-threaded programs, the calling
thread.

Each successful call to _mktemp modifies template. In each subsequent call from
the same process or thread with the same template argument, _mktemp checks for
filenames that match names returned by _mktemp in previous calls. If no file exists
for a given name, _mktemp returns that name. If files exist for all previously returned
names, _mktemp creates a new name by replacing the alphabetic character it used in
the previously returned name with the next available lowercase letter, in order, from
'a' through 'z'. For example, if base is

fn

and the five-digit value supplied by _mktemp is 12345, the first name returned is

fna12345

435

_mktemp, _ wmktemp

Example

436

If this name is used to create file FNA12345 and this file still exists, the next
name returned on a call from the same process or thread with the same base for
template will be

fnb12345

If FNA12345 does not exist, the next name returned will again be

fna12345

_mktemp can create a maximum of 27 unique filenames for any given combination
of base and template values. Therefore, FNZ12345 is the last unique filename
_mktemp can create for the base and template values used in this example.

/* MKTEMP.C: The program uses _mktemp to create
* five unique filenames. It opens each filename
* to ensure that the next name is unique.
*/

/finclude <io.h>
/finclude <string.h>
/finclude <stdio.h>

char *template = "fnXXXXXX";
char *result;
char names[5][9];

void main(void)
{

int i;
FILE *fp;

for(i = 0; i < 5; i++)
{

strcpy(names[i]. template);
/* Attempt to find a unique filename: */
result = _mktemp(names[i]);
if(result == NULL)

printf("Problem creating the template");
else
{

if((fp = fopen(result. "w")) != NULL)
printf("Unique filename is %s\n". result);

else
pri ntf("Cannot open %s\n". resul t);

fclose(fp);

Output
Unique filename is fna00141
Unique filename is fnb00141
Unique filename is fnc00141
Unique fil ename is fnd00141
Unique filename is fne00141

See Also: fopen, _getmbcp, _getpid, _open, _setmbcp, _tempnam, tmpfile

mktime
Converts the local time to a calendar value.

time_t mktime(struct tm *timeptr);

Routine Required Header Compatibility

mktime <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
mktime returns the specified calendar time encoded as a value of type time_t. If
timeptr references a date before midnight, January 1, 1970, or if the calendar time
cannot be represented, the function returns -1 cast to type time_to

Parameter

Remarks

timeptr Pointer to time structure

The mktime function converts the supplied time structure (possibly incomplete)
pointed to by timeptr into a fully defined structure with normalized values and then
converts it to a time_t calendar time value. For description of tm structure fields, see
asctime. The converted time has the same encoding as the values returned by the time
function. The original values of the tm_ wday and tm-yday components of the
timeptr structure are ignored, and the original values of the other components are not
restricted to their normal ranges.

mktime handles dates in any time zone from midnight, January 1, 1970, to midnight,
February 5,2036. If successful, mktime sets the values of tm_wday and tm-yday as
appropriate and sets the other components to represent the specified calendar time, but
with their values forced to the normal ranges; the final value of tm_mday is not set

mktime

437

mktime

Example

Output

438

until tm_moD and tm-year are determined. When specifying a tm structure time, set
the tm_isdst field to 0 to indicate that standard time is in effect, or to a value greater
than 0 to indicate that daylight savings time is in effect, or to a value less than zero to
have the C run-time library code compute whether standard time or daylight savings
time is in effect. (The C run-time library assumes the United States's rules for
implementing the calculation of Daylight Savings Time). tm_isdst is a required field.
If not set, its value is undefined and the return value from mktime is unpredictable.
If timeptr points to a tm structure returned by a previous call to asctime, gmtime,
or localtime, the tm_isdst field contains the correct value.

Note that gmtime and localtime use a single statically allocated buffer for the
conversion. If you supply this buffer to mktime, the previous contents are
destroyed.

1* MKTIME.C: The example takes a number of days
* as input and returns the time, the current
* date, and the specified number of days.
*1

#include <time.h>
#include <stdio.h>

void maine void)
{

struct tm when:
time_t now, result:
int days:

time(&now):
when - *localtime(&now):
printf("Current time is %s\n", asctime(&when)):
printf("How many days to look ahead: "):
scanf("%d", &days):

when.tm_mday - when.tm_mday + days:
if((result - mktime(&when » !- (time_t)-1)

printf("In %d days the time will be %s\n",
days, asctime(&when)):

else
perror("mktime failed"):

Current time is Tue May 03 12:45:47 1994

How many days to look ahead: 29
In 29 days the time will be Wed Jun 01 12:45:47 1994

See Also: asctime, gmtime, localtime, time

modf
Splits a floating-point value into fractional and integer parts.

double modf(double x, double *intptr);

Routine Required Header Compatibility

modf <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
This function returns the signed fractional portion of x. There is no error return.

Parameters

Remarks

Example

Output

x Floating-point value

intptr Pointer to stored integer portion

The modf function breaks down the floating-point value x into fractional and integer
parts, each of which has the same sign as x. The signed fractional portion of x is
returned. The integer portion is stored as a floating-point value at intptr.

1* MODF.C *1

#include <math.h>
#include <stdio.h>

void maine void
{

double x, y, n;

x - -14.87654321;
y - modf(x, &n);

1* Divide x into its fractional *1
1* and integer parts *1

printf("For %f, the fraction is %f and the integer is %.f\n",
x, y, n);

For -14.876543, the fraction is -0.876543 and the integer is -14

See Also: frexp, ldexp

modf

439

mSlze
Returns the size of a memory block allocated in the heap.

size_t _msize(void *memblock);

Routine Required Header Compatibility

<malloc.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_msize returns the size (in bytes) as an unsigned integer.

Parameter

Remarks

Example

440

memblock Pointer to memory block

The _msize function returns the size, in bytes, of the memory block allocated by a call
to ealloe, malIoe, or realloe.

When the application is linked with a debug version of the C run-time libraries,
_msize resolves to _msize_dbg.

/* REALLOC.C: This program allocates a block of memory for
* buffer and then uses _msize to display the size of that
* block. Next. it uses realloc to expand the amount of
* memory used by buffer and then calls _msize again to
* display the new amount of memory allocated to buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{

long *buffer;
size_t size;

if((buffer = (long *)malloc(1000 * sizeof(long) »
exit(1);

NULL)

Output

size = _msize(buffer);
printf("Size of block after malloc of 1000 longs: %u\n", size);

/* Reallocate and show new size: */
if((buffer = realloc(buffer, size + (1000 * sizeof(long » »

NULL
exit(1);

size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n",

size);

free(buffer);
exit(0);

Size of block after malloc of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

See Also: calloc, _expand, malloc, realloc

nextafter
Returns next representable neighbor.

double _nextafter(double x, double y);

Routine Required Header Compatibility

_nextafter <float.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If x=y, _nextafter returns x, with no exception triggered. If either x or y is a quiet
NaN, then the return value is one or the other of the input NaNs.

Parameters

Remarks

x, y Double-precision floating-point values

The _nextafter function returns the closest representable neighbor of x in the
direction toward y.

See Also: _isnan

_nextafter

441

offsetof

offsetof
Retrieves the offset of a member from the beginning of its parent structure.

size_t offsetof(structName, memberName);

Routine Required Header Compatibility

offsetof <stddef.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
offsetof returns the offset in bytes of the specified member from the beginning of its
parent data structure. It is undefined for bit fields.

Parameters

Remarks

structName Name of the parent data structure

memberName Name of the member in the parent data structure for which to
determine the offset

The offsetof macro returns the offset in bytes of memberName from the beginning of
the structure specified by structName. You can specify types with the struct keyword.

Note offsetof is not a function and cannot be described using a C prototype.

onexit

442

Registers a routine to be called at exit time.

_onexit_t _onexit(_onexiCtftmc);

Routine Required Header Compatibility

<stdlib.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_onexit returns a pointer to the function if successful, or NULL if there is no space to
store the function pointer.

Parameter

Remarks

Example

June Pointer to function to be called at exit

The _onexit function is passed the address of a function (june) to be called when the
program terminates normally. Successive calls to _onexit create a register of functions
that are executed in LIFO (last-in-first-out) order. The functions passed to _onexit
cannot take parameters.

_onexit is a Microsoft extension. For ANSI portability use atexit.

/* ONEXIT.C */

#include <stdlib.h>
#include <stdio.h>

/* Prototypes */
int fnl(void), fn2(void), fn3(void), fn4 (void):

void main(void
{

_onexit(fnl):
_onexit(fn2):
_onexit(fn3);
_onexit (fn4):
printf("This is executed first.\n"):

int fnl()
{

pri ntf("next. \n"):
return 0;

int fn2()
{

pri ntf("executed "):
return 0;

int fn3()
{

printf("is");
return 0:

_onexit

443

_open, _ wopen

Output

int fn4()
{

printf("This");
return 0;

This is executed first.
This is executed next.

See Also: atexit, exit

_open, _wopen
Open a file.

int _open(const char *filename, int oflag [, int pmode]);
int _wopen(const wchar_t *filename, int oflag [, int pmode]);

Routine Required Header Optional Headers Compatibility

_open <io.h> <fcntl.h>, <sys/types.h>, Win 95, Win NT
<sys/stat.h>

_wopen <io.h> or <wchar.h> <fcntl.h>, <sys/types.h>, Win NT
<sys/stat.h>

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value

444

Each of these functions returns a file handle for the opened file. A return value
of -1 indicates an error, in which case errno is set to one of the following
values:

EACCES Tried to open read-only file for writing, or file's sharing mode does
not allow specified operations, or given path is directory

EEXIST _O_CREAT and _O_EXCL flags specified, but filename already
exists

EINVAL Invalid oflag or pmode argument

EMFILE No more file handles available (too many open files)

ENOENT File or path not found

Parameters

Remarks

filename Filename

oflag Type of operations allowed

pmode Permission mode

The _open function opens the file specified by filename and prepares the file for
reading or writing, as specified by oflag. _wopen is a wide-character version of
_open; the filename argument to _ wopen is a wide-character string. _ wopen and
_open behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_wopen

oflag is an integer expression formed from one or more of the following manifest
constants or constant combinations defined in FCNTL.H:

_O_APPEND Moves file pointer to end of file before every write operation.

_O_BINARY Opens file in binary (untranslated) mode. (See fop en for a
description of binary mode.)

_O_CREAT Creates and opens new file for writing. Has no effect if file
specified by filename exists. pmode argument is required when _O_CREAT
is specified.

_O_CREAT '_O_SHORT_LIVED Create file as temporary and if possible do
not flush to disk. pmode argument is required when _O_CREAT is specified.

_O_CREAT '_O_TEMPORARY Create file as temporary; file is deleted when
last file handle is closed. pmode argument is required when _O_CREAT is
specified.

_O_CREAT '_O_EXCL Returns error value if file specified by filename exists.
Applies only when used with _O_CREAT.

_O_RANDOM Specifies primarily random access from disk

_O_RDONLY Opens file for reading only; cannot be specified with _O_RDWR
or _0_ WRONLY.

_O_RDWR Opens file for both reading and writing; you cannot specify this
flag with _O_RDONLY or _0_ WRONLY.

_O_SEQUENTIAL Specifies primarily sequential access from disk

_O_TEXT Opens file in text (translated) mode. (For more information, see
"Text and Binary Mode File I/O" on page 15 and fop~n.)

_open, _wopen

445

Example

446

_O_TRUNC Opens file and truncates it to zero length; file must have write
permission. You cannot specify this flag with _O_RDONLY. _O_TRUNC
used with _O_CREAT opens an existing file or creates a new file.

Warning The _0_ TRUNC flag destroys the contents of the specified file.

0 WRONLY Opens file for writing only; cannot be specified with _O_RDONLY
or_O_RDWR.

To specify the file access mode, you must specify either _O_RDONLY, _O_RDWR,
or _0_ WRONLY. There is no default value for the access mode.

When two or more manifest constants are used to form the oflag argument, the
constants are combined with the bitwise-OR operator (I). See "Text and Binary
Mode File 110" on page 15 for a discussion of binary and text modes.

The pmode argument is required only when _O_CREAT is specified. If the file
already exists, pmode is ignored. Otherwise, pmode specifies the file permission
settings, which are set when the new file is closed the first time. _open applies the
current file-permission mask to pmode before setting the permissions (for more
information, see _umask). pmode is an integer expression containing one or both
of the following manifest constants, defined in SYS\STAT.H:

_S_IREAD Reading only permitted

_S_IWRITE Writing permitted (effectively permits reading and writing)

_S_IREAD I_S_IWRITE Reading and writing permitted

When both constants are given, they are joined with the bitwise-OR operator (I).
In Windows NT, all files are readable, so write-only permission is not available;
thus the modes _S_IWRITE and _S_IREAD I _S_IWRITE are equivalent.

/* OPEN.C: This program uses _open to open a file
* named OPEN.C for input and a file named OPEN.OUT
* for output. The files are then closed.
*/

/Ii ncl ude <fcntl. h>
/linclude <sys/types.h>
/linclude <sys/stat.h>
/linclude <io.h>
/linclude <stdio.h>

void main(void)
{

int fhl, fh2;

Output

fh1 ... _open("OPEN.C", _O_RDONLY);
if(fh1 ~= -1)

perror("open failed on input file");
else
(

printf("open succeeded on input file\n");
_close(fh1);

fh2 ... _open("OPEN.OUT", _O_WRONLY I _O_CREAT, S IREAD
_S_IWRITE);

if(fh2 =- -1)
perror("Open failed on output file");

else
(

pri ntf("Open succeeded on output fi 1 e\n");
_close(fh2);

Open succeeded on input file
Open succeeded on output file

See Also: _chmod, _close, _creat, _dup, Copen, _sopen

_open_osfhandle
Associates a C run-time file handle with a existing operating-system file handle.

int _open_osfbandle (long osjhandle, intflags);

Routine Required Header Compatibility

<io.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, _open_osfbandle returns a C run-time file handle. Otherwise, it
returns -1.

Parameters
osjhandle Operating-system file handle

flags Types of operations allowed

447

_outp, _outpw, _outpd

Remarks
The _open_osfbandle function allocates a C run-time file handle and sets it
to point to the operating-system file handle specified by osfhandle. Theflags
argument is an integer expression formed from one or more of the manifest
constants defined in FCNTL.H. When two or more manifest constants are used
to form the flags argument, the constants are combined with the bitwise-OR
operator (I).

The FCNTL.H file defines the following manifest constants:

_O_APPEND Positions file pointer to end of file before every write
operation.

_O_RDONLY Opens file for reading only

_O_TEXT Opens file in text (translated) mode

_outp, _outpw, _outpd
Output a byteLoutp), a wordLoutpw), or a double word Loutpd) at a port.

int _outp(unsigned short port, int databyte);
unsigned short _outpw(unsigned short port, unsigned short dataword);
unsigned long _outpd(unsigned short port, unsigned long dataword);

Routine Required Header Compatibility

_outp <conio.h> Win 95

_outpw <conio.h> Win 95

_outpd <conio.h> Win 95

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The functions return the data output. There is no error return.

Parameters
port Port number

da ta byte, dataword Output values

448

Remarks
The _outp, _outpw, and _outpd functions write a byte, a word, and a double word,
respectively, to the specified output port. The port argument can be any unsigned
integer in the range 0-65,535; databyte can be any integer in the range 0-255; and
dataword can be any value in the range of an integer, an unsigned short integer, and
an unsigned long integer, respectively.

See Also: _inp

_pclose
Waits for new command processor and closes stream on associated pipe.

int _pclose(FILE *stream);

Routine Required Header Compatibility

_pclose <stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_pclose returns the exit status of the terminating command processor, or -1 if an
error occurs. The format of the return value is the same as that for _cwait, except
the low-order and high-order bytes are swapped.

Parameter

Remarks

stream Return value from previous call to _popen

The _pclose function looks up the process ID of the command processor (CMD.EXE)
started by the associated _popen call, executes a _cwait call on the new command
processor, and closes the stream on the associated pipe.

See Also: _pipe, _popen

perrOf, _WperrOf
Print an error message.

void perror(const char * string);
void _wperror(const wchar_t *string);

perror, _wperror

449

perror, _ wperror

Routine

perror
_wperror

Required Header

<stdio.h> or <stdlib.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

450

string String message to print

The perror function prints an error message to stderr. _wperror is a wide-character
version of _perror; the string argument to _ wperror is a wide-character string.
_ wperror and _perror behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tperror perror perror _wperror

string is printed first, followed by a colon, then by the system error message for the
last library call that produced the error, and finally by a newline character. If string
is a null pointer or a pointer to a null string, perror prints only the system error
message.

The error number is stored in the variable errno (defined in ERRNO.H). The system
error messages are accessed through the variable _sys_errlist, which is an array of
messages ordered by error number. perror prints the appropriate error message using
the errno value as an index to _sys_errlist. The value of the variable _sys_nerr is
defined as the maximum number of elements in the _sys_errlist array.

For accurate results, call perror immediately after a library routine returns with an
error. Otherwise, subsequent calls can overwrite the errno value.

In Windows NT and Windows 95, some errno values listed in ERRNO.H are unused.
These values are reserved for use by the UNIX operating system. See _doserrno,
errno, _sys_errlist, and _sys_nerr for a listing of errno values used by Windows NT
and Windows 95. perror prints an empty string for any errno value not used by these
platforms.

Example

Output

1* PERROR.C: This program attempts to open a file named
* NOSUCHF.ILE. Because this file probably doesn't exist,
* an error message is displayed. The same message is
* created using perror, strerror, and _strerror.
*1

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void main(void
{

int fh;

if((fh = _open("NOSUCHF.ILE", _O_RDONLY)) == -1)
{

1* Three ways to create error message: *1
perror("perror says open failed");
printf("strerror says open failed: %s\n", strerror(errno));
pri ntf(_strerror("_strerror says open fail ed"));

else
{

printf("open succeeded on input file\n");
_close(fh);

perror says open failed: No such file or directory

strerror says open failed: No such file or directory
_strerror says open failed: No such file or directory

See Also: clearerr, ferror, strerror

_pIpe
Creates a pipe for reading and writing.

int _pipe(int *phandles, unsigned int psize, int textmode);

Routine Required Header

_pipe <io.h>

1 For 0 BINARY and _O_TEXT definitions.
2 err';o d~finitions.

Optional Headers

<fcntl.h>,l <errno.h>2

Compatibility

Win 95, Win NT

451

_pipe

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_pipe returns 0 if successful. It returns -1 to indicate an error, in which case errno is
set to one of two values: EMFILE, which indicates no more file handles available, or
ENFILE, which indicates a system file table overflow.

Parameters

Remarks

452

phandles[2] Array to hold read and write handles

psize Amount of memory to reserve

textmode File mode

The _pipe function creates a pipe. A pipe is an artificial 110 channel that a program
uses to pass information to other programs. A pipe is similar to a file in that it has a
file pointer, a file descriptor, or both, and can be read from or written to using the
standard library's input and output functions. However, a pipe does not represent a
specific file or device. Instead, it represents temporary storage in memory that is
independent of the program's own memory and is controlled entirely by the
operating system.

_pipe is similar to _open but opens the pipe for reading and writing, returning two file
handles instead of one. The program can use both sides of the pipe or close the one it
does not need. For example, the command processor in Windows NT creates a pipe
when executing a command such as

PROGRAMl I PROGRAM2

The standard output handle of PROGRAM 1 is attached to the pipe's write handle.
The standard input handle of PROGRAM2 is attached to the pipe's read handle. This
eliminates the need for creating temporary files to pass information to other programs.

The _pipe function returns two handles to the pipe in the phandles argument. The
element phandles[O] contains the read handle, and the element phandles[l] contains
the write handle. Pipe file handles are used in the same way as other file handles. (The
low-level input and output functions _read and _write can read from and write to a
pipe.) To detect the end-of-pipe condition, check for a _read request that returns 0 as
the number of bytes read.

The psize argument specifies the amount of memory, in bytes, to reserve for the pipe.
The textmode argument specifies the translation mode for the pipe. The manifest
constant _O_TEXT specifies a text translation, and the constant _O_BINARY
specifies binary translation. (See fopen for a description of text and binary modes.)

If the textmode argument is 0, _pipe uses the default translation mode specified by
the default-mode variable _fmode.

In multithreaded programs, no locking is performed. The handles returned are newly
opened and should not be referenced by any thread until after the _pipe call is
complete.

In order to use the _pipe function to communicate between a parent and a child
process, each process must have only one handle open on the pipe. The handles must
be opposites: if the parent has a read handle open, then the child must have a write
handle open. The easiest way to do this is to OR (I) the _O_NOINHERIT flag with
textmode. Then, use _dup or _dup2 to create an inheritable copy of the pipe handle
you wish to pass to the child. Close the original handle, and spawn the child process.
Upon returning from the spawn call, close the "duplicate" handle in the parent
process. See Example 2 below for more information.

In Windows NT and Windows 95, a pipe is destroyed when all of its handles have
been closed. (If all read handles on the pipe have been closed, writing to the pipe
causes an error.) All read and write operations on the pipe wait until there is enough
data or enough buffer space to complete the 1/0 request.

Example 1
/* PIPE.C: This program uses the _pipe function to pass streams of
* text to spawned processes.
*/

#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <math.h>

enum PIPES { READ, WRITE }; /* Constants 0 and 1 for READ and WRITE */
#define NUMPROBLEM 8

void main(int argc, char *argv[])
{

int hpipe[2];
char hstr[20];
int pid, problem, c;
int termstat;

/* If no arguments, this is the spawning process */
if(argc == 1)
{

setvbuf(stdout, NULL, _IONBF, 0);

_pipe

453

454

}

/* Open a set of pipes */
if(_pipe(hpipe. 256. O_BINARY -1)

exit(1);

/* Convert pipe read handle to string and pass as argument
* to spawned program. Program spawns itself (argv[0]).
*/

itoa(hpipe[READ]. hstr. 10);
if((pid = spawnl(P_NOWAIT. argv[0]. argv[0].

hstr. NULL)) == -1)
pri ntf("Spawn fail ed");

/* Put problem in write pipe. Since spawned program is
* running simultaneously. first solutions may be done
* before last problem is given.
*/

for(problem = 1000; problem <= NUMPROBLEM * 1000; problem += 1000)
{

printf("Son. what is the square root of %d?\n". problem);
write(hpipe[WRITE]. (char *)&problem. sizeof(int));

/* Wait until spawned program is done processing. */
_cwait(&termstat. pid. WAIT_CHILD);
if(termstat & 0x0)

printf("Child failed\n");

close(hpipe[READ]);
close(hpipe[WRITE]);

/* If there is an argument. this must be the spawned process. */
else
{

}

/* Convert passed string handle to integer handle. */
hpipe[READ] = atoi(argv[1]);

/* Read problem from pipe and calculate solution. */
for(c = 0; c < NUMPROBLEM; c++)
{

read(hpipe[READ]. (char *)&problem. sizeof(int));
pri ntf("Dad. the squa re root of %d is %3. 2f. \n".

problem. sqrt((double)problem));

Output
Son, what is the square root of 1000?
Son, what is the square root of 2000?
Son, what is the square root of 3000?
Son, what is the square root of 4000?
Son, what is the square root of 5000?
Son, what is the square root of 6000?
Son, what is the square root of 7000?
Son, what is the square root of 8000?
Dad, the square root of 1000 is 31. 62.
Dad, the square root of 2000 is 44.72.
Dad, the square root of 3000 is 54.77.
Dad, the square root of 4000 is 63.25.
Dad, the square root of 5000 is 70.71.
Dad, the square root of 6000 is 77 .46.
Dad, the square root of 7000 is 83.67.
Dad, the square root of 8000 is 89.44.

Example2
/I This is a simple filter application. It will spawn
II the application on command line. But before spawning
/I the application, ; t wi 11 create a pipe that
/I spawned application's stdout to the filter.
/I will remove ASCII 7 (beep) characters.

II Beeper.Cpp

1* Compile options needed: None */
#include <stdio.h>
#include <string.h>

int main()
{

i nt i ;
for(i-0;i<100;++i)

{

wi 11 direct
The filter

the

printf("\nThis is speaker beep number %d ... \n\7", i+1);

return 0;

II BeepFilter.Cpp
1* Compile options needed: none

Execute as: BeepFilter.exe <path>Beeper.exe
*1
#include <windows.h>
#include <process.h>
#include <memory.h>
#include <string.h)
#include <stdio.h>
#include <fcntl.h>
Ilinclude <io.h>

_pipe

455

456

Ifdefi ne
/fdefine
/fdefine
/fdefine

OUT_BUFF_SIZE 512
READ_HANDLE 0
WRITE_HANDLE 1
BEEP_CHAR 7

char szBuffer[OUT_BUFF_SIZE]:

int Filter(char* szBuff. ULONG nSize. int nChar)
{

char* szPos = szBuff + nSize -1:
char* szEnd = szPos;
int nRet = nSize;

while (szPos > szBuff)
{

if (*szPos == nChar)
{

memmove(szPos. szPos+1. szEnd - szPos);
--nRet;

--szPos;

return nRet:

int main(int argc. char** argv)
{

int nExitCode = STILL_ACTIVE;
if (argc >= 2)
{

HANDLE hProcess;
int hStdOut;
int hStdOutPipe[2];

II Create the pipe
if(_pipe(hStdOutPipe, 512, O_BINARY I O_NOINHERIT) -1)

return1;

II Duplicate stdout handle (next line will close original)
hStdOut = _dup(_fileno(stdout)):

II Duplicate write end of pipe to stdout handle
if(_dup2(hStdOutPipe[WRITE_HANDLE]. _fileno(stdout)) != 0)

return2;

II Close original write end of pipe
close(hStdOutPipe[WRITE_HANDLE]);

II Spawn process
hProcess = (HANDLE)spawnvp(P_NOWAIT. argv[1],
(const char* const*)&argv[1]);

II Duplicate copy of original stdout back into stdout
if(_dup2(hStdOut. _fileno(stdout» != 0)

return3;

II Close duplicate copy of original stdout
close(hStdOut);

if(hProcess)
{

int nOutRead;
while (nExitCode == STILL_ACTIVE)
{

nOutRead = read(hStdOutPipe[READ_HANDLEJ.
szBuffer. OUT_BUFF_SIZE);
if(nOutRead)
{

nOutRead = Filter(szBuffer. nOutRead. BEEP_CHAR);
fwrite(szBuffer. 1. nOutRead. stdout);

if(!GetExitCodeProcess(hProcess.(unsigned long*)&nExitCode»
return 4;

printf("\nPress \'ENTER\' key to continue ... ");
getchar() ;
return nExitCode;

See Also: _open

_popen, _wpopen
Creates a pipe and executes a command.

FILE * _popen(const char *command, const char *mode);
FILE * _wpopen(const wchar_t *command, const wchar_t *mode);

Routine

_popen

_wpopen

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_popen, _ wpopen

457

_popen, _ wpopen

Return Value
Each of these functions returns a stream associated with one end of the created pipe.
The other end of the pipe is associated with the spawned command's standard input or
standard output. The functions return NULL on an error.

Parameters

Remarks

Example

458

command Command to be executed

mode Mode of returned stream

The _popen function creates a pipe and asynchronously executes a spawned copy of
the command processor with the specified string command. The character string mode
specifies the type of access requested, as follows:

"r" The calling process can read the spawned command's standard output via the
returned stream.

"w" The calling process can write to the spawned command's standard input via the
returned stream.

"b" Open in binary mode.

"t" Open in text mode.

_ wpopen is a wide-character version of _popen; the path argument to _ wpopen is a
wide-character string. _ wpopen and _popen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tpopen _popen _popen _wpopen

1* POPEN.C: This program uses _popen and _pclose to receive a
* stream of text from a system process.
*1

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

char psBuffer[128];
FILE *chkdsk;

1* Run DIR so that it writes its output to a pipe. Open this
* pipe with read text attribute so that we can read it

* like a text file.
*1

if((chkdsk = _popen("dir *.c Ion Ip", "rt" » == NULL)
ex it (1);

Output

/* Read pipe until end of file. End of file indicates that
* CHKDSK closed its standard out (probably meaning it

* terminated).
*/

while(!feof(chkdsk))
{

if(fgets(psBuffer. 128. chkdsk) != NULL)
printf(psBuffer);

/* Close pipe and print return value of CHKDSK. */
pri ntf("\nProcess returned %d\n". _pclose(chkdsk));

Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\dolphin\crt\code\pcode

05/02194 01:05a 805
05/02/94 01:05a 2.149
05/02/94 01:05a 882
05/02/94 01:05a 206
05/02/94 01:05a 1.514
05/02/94 01:05a 454
05/02194 01:05a 162
05/02/94 01:05a 654

8 File(s) 6.826
86.597.632

Process returned 0

See Also: _pclose, _pipe

perror.c
pipe.c
popen.c
pow.c
printf.c
putc.c
puts.c
putw.c
bytes
bytes free

pow
Calculates x raised to the power of y.

double pow(double x, double y);

Routine Required Header Compatibility

pow <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

pow

459

printf, wprintf

Return Value
pow returns the value of xy. No error message is printed on overflow or underflow.

Values of x and y

x < > 0 and y = 0.0

x = 0.0 and y = 0.0

x = 0.0 and y < 0

Return Value of pow

1

INF

Parameters

Remarks

Example

Output

x Base

y Exponent

The pow function computes x raised to the power of y.

pow does not recognize integral floating-point values greater than 264
, such

as 1. 0E100.

/* POW.C
*
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

double x = 2.0, y = 3.0, z:

z = pow(x, y):
printf(''%.If to the power of %.If is %.If\n'', x, y, z):

2.0 to the power of 3.0 is 8.0

See Also: exp, log, sqrt

printf, wprintf

460

Print formatted output to the standard output stream.

int printf(const char *format [, argument]. ..);
int wprintf(const wchar_t *format [, argument]. ..);

Routine

printf

wprintf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns the number of characters printed, or a negative value if
an error occurs.

Parameters

Remarks

format Format control

argument Optional arguments

The printf function formats and prints a series of characters and values to the standard
output stream, stdout. If arguments follow the format string, the format string must
contain specifications that determine the output format for the arguments. printf and
fprintf behave identically except that printf writes output to stdout rather than to a
destination of type FILE.

wprintf is a wide-character version of printf;format is a wide-character string.
wprintf and printf behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tprintf printf printf wprintf

The format argument consists of ordinary characters, escape sequences, and (if
arguments follow format) format specifications. The ordinary characters and escape
sequences are copied to stdout in order of their appearance. For example, the line

printf("Line one\n\t\tLine two\n");

produces the output

Line one
Line two

Format specifications always begin with a percent sign (%) and are read left to right.
When printf encounters the first format specification (if any), it converts the value
of the first argument after format and outputs it accordingly. The second format
specification causes the second argument to be converted and output, and so on.
If there are more arguments than there are format specifications, the extra arguments
are ignored. The results are undefined if there are not enough arguments for all the
format specifications.

printf, wprintf

461

printf, wprintf

Example

462

/* PRINTF.C: This program uses the printf and wprintf functions
* to produce formatted output.
*/

#include <stdio.h>

void main(void)
{

char ch = 'h'. *string "computer";
int count - -9234;
double fp = 251.7366;
wchar_t wch = L'w'. *wstring = L"Unicode";

/* Display integers. */
printf("Integer formats:\n"

"\tDecimal: %d Justified: %.6d Unsigned: %u\n".
count. count. count. count);

printf("Decimal %d as:\n\tHex: %Xh C hex: 0x%x Octal: %o\n".
count. count. count. count);

/* Display in different radixes. */
printf("Digits 10 equal :\n\tHex: %i Octal: %i Decimal: %i\n".

0x10. 010. 10);

/* Display characters. */

printf("Characters in field (1):\n%10c%5hc%5C%5lc\n". ch.
,,+ch. wch. wch);
wprintf(L"Characters in field (2):\n%10C%5hc%5c%5lc\n". ch.
"+ ch. wch. wch);

/* Display strings. */

printf("Strings in field (1):\n%25s\n%25.4hs\n\t%S%25.3ls\n".
string. string. wstring. wstring);
wprintf(L"Strings in field (2):\n%25S\n%25.4hs\n\t%s%25.3ls\n".

string. string. wstring. wstring);

/* Display real numbers. */
printf("Real numbers:\n\t%f %.2f %e %E\n". fp. fp. fp. fp);

/* Display pointer. */
pri ntf("\nAddress as: \ t%p\n". &count);

/* Count characters printed. */
printf("\nDisplay to here:\n");
printf("1234567890123456%n78901234567890\n". &count);
printf("\tNumber displayed: %d\n\n". count);

Output
Integer formats:

Decimal: -9234 Justified: -009234 Unsigned: 4294958062
Decimal -9234 as:

Hex: FFFFDBEEh C hex: 0xffffdbee Octal: 37777755756
Digits 10 equal:

Hex: 16 Octal: 8 Decimal: 10
Characters in field (1):

h h w w
Characters in field (2):

h h w w
Strings in field (1):

computer
comp

Unicode
Strings in field (2):

computer
comp

Unicode
Real numbers:

Uni

Uni

251.736600 251.74 2.517366e+002 2.517366E+002

Address as: 0012FFAC

Display to here:
123456789012345678901234567890

Number displayed: 16

See Also: fopen, fprintf, scanf, sprintf, vprintf Functions

Format Specification Fields: printf and wprintf
Functions

A format specification, which consists of optional and required fields, has the
following form:

%[flags] [width] [.precision] [{h 1 I 1 1641 L}]type

Each field of the format specification is a single character or a number signifying a
particular format option. The simplest format specification contains only the percent
sign and a type character (for example, %s). If a percent sign is followed by a character
that has no meaning as a format field, the character is copied to stdout. For example,
to print a percent-sign character, use %%.

The optional fields, which appear before the type character, control other aspects of
the formatting, as follows:

type Required character that determines whether the associated argument is
interpreted as a character, a string, or a number (see Table R.3).

printf, wprintf

463

printf, wprintf

flags Optional character or characters that control justification of output and
printing of signs, blanks, decimal points, and octal and hexadecimal prefixes
(see Table R.4). More than one flag can appear in a format specification.

width Optional number that specifies the minimum number of characters output.
(See "printf Width Specification.")

precision Optional number that specifies the maximum number of characters printed
for all or part of the output field, or the minimum number of digits printed for
integer values (see Table R.S).

hili 164 I L Optional prefixes to type-that specify the size of argument
(see Table R.6).

printf Type Field Characters

464

The type character is the only required format field; it appears after any optional
format fields. The type character determines whether the associated argument is
interpreted as a character, string, or number. The types C and S, and the behavior of c
and s with printf functions, are Microsoft extensions and are not ANSI-compatible.

Table R.3 printf Type Field Characters

Character Type

c int or
winCt

C int or
winCt

d int

int

0 int

u int

x int

X int

e double

E double

f double

Output Format

When used with printf functions, specifies a single-byte character;
when used with wprintf functions, specifies a wide character.

When used with printf functions, specifies a wide character; when
used with wprintf functions, specifies a single-byte character.

Signed decimal integer.

Signed decimal integer.

Unsigned octal integer.

Unsigned decimal integer.

Unsigned hexadecimal integer, using "abcdef."

Unsigned hexadecimal integer, using "ABCDEF."

Signed value having the form [-]d.dddd e [sign]ddd where d is a
single decimal digit, dddd is one or more decimal digits, ddd is
exactly three decimal digits, and sign is + or -.

Identical to the e format except that E rather than e introduces
the exponent.

Signed value having the form [-]dddd.dddd, where dddd is one or
more decimal digits. The number of digits before the decimal
point depends on the magnitude of the number, and the number of
digits after the decimal point depends on the requested precision.

(continued)

Table R.3 printf Type Field Characters (continued)

Character

g

G

n

p

s

s

Type Output Format

double Signed value printed in for e format, whichever is more compact
for the given value and precision. The e format is used only when
the exponent of the value is less than -4 or greater than or equal to
the precision argument. Trailing zeros are truncated, and the
decimal point appears only if one or more digits follow it.

double Identical to the g format, except that E, rather than e, introduces
the exponent (where appropriate).

Pointer to Number of characters successfully written so far to the stream or
integer buffer; this value is stored in the integer whose address is given as

the argument.

Pointer to Prints the address pointed to by the argument in the form
void xxxx:yyyy where xxxx is the segment and yyyy is the offset, and

the digits x and yare uppercase hexadecimal digits.

String When used with printf functions, specifies a single-byte-character
string; when used with wprintf functions, specifies a wide
character string. Characters are printed up to the first null
character or until the precision value is reached.

String When used with printf functions, specifies a wide-character
string; when used with wprintf functions, specifies a single-byte
character string. Characters are printed up to the first null
character or until the precision value is reached.

Flag Directives
The first optional field of the format specification isflags. A flag directive is a
character that justifies output and prints signs, blanks, decimal points, and octal
and hexadecimal prefixes. More than one flag directive may appear in a format
specification.

Table R.4 Flag Characters

Flag

+

o

blank C.')

Meaning

Left align the result within the given field width.

Prefix the output value with a sign (+ or -) if the
output value is of a signed type.

If width is prefixed with 0, zeros are added until
the minimum width is reached. If 0 and - appear,
the 0 is ignored. If 0 is specified with an integer
format (i, u, x, X, 0, d) the 0 is ignored.

Prefix the output value with a blank if the output
value is signed and positive; the blank is ignored
if both the blank and + flags appear.

Default

Right align.

Sign appears only for
negative signed values (-).

No padding.

No blank appears.

printf, wprintf

465

printf, wprintf

Table R.4 Flag Characters (continued)

Flag

Meaning

When used with the 0, x, or X format, the # flag
prefixes any nonzero output value with 0, Ox, or
OX, respectively.

When used with the e, E, or f format, the # flag
forces the output value to contain a decimal point
in all cases.

When used with the g or G format, the # flag
forces the output value to contain a decimal point
in all cases and prevents the truncation of trailing
zeros. Ignored when used with c, d, i, U, or s.

Default

No blank appears.

Decimal point appears
only if digits follow it.

Decimal point appears
only if digits follow it.
Trailing zeros are
truncated.

printf Width Specification
The second optional field of the format specification is the width specification. The
width argument is a nonnegative decimal integer controlling the minimum number of
characters printed. If the number of characters in the output value is less than the
specified width, blanks are added to the left or the right of the values-depending on
whether the - flag (for left alignment) is specified-until the minimum width is
reached. If width is prefixed with 0, zeros are added until the minimum width is
reached (not useful for left-aligned numbers).

The width specification never causes a value to be truncated. If the number of
characters in the output value is greater than the specified width, or if width is not
given, all characters of the value are printed (subject to the precision specification).

If the width specification is an asterisk (*), an int argument from the argument list
supplies the value. The width argument must precede the value being formatted in the
argument list. A nonexistent or small field width does not cause the truncation of a
field; if the result of a conversion is wider than the field width, the field expands to
contain the conversion result.

Precision Specification

466

The third optional field of the format specification is the precision specification. It
specifies a nonnegative decimal integer, preceded by a period (.), which specifies
the number of characters to be printed, the number of decimal places, or the number
of significant digits (see Table R.5). Unlike the width specification, the precision
specification can cause either truncation of the output value or rounding of a
floating-point value. If precision is specified as ° and the value to be converted
is 0, the result is no characters output, as shown below:

printf("%.0d", 0); /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argument list
supplies the value. The precision argument must precede the value being formatted in
the argument list.

The type determines the interpretation of precision and the default when precision is
omitted, as shown in Table R.5.

Table R.S How Precision Values Affect Type

Type

c,c
d, i, u,
o,x,X

e,E

f

g,G

s,s

Meaning Default

The precision has no effect. Character is printed.

The precision specifies the minimum Default precision is 1.
number of digits to be printed. If the
number of digits in the argument is less
than precision, the output value is padded
on the left with zeros. The value is not
truncated when the number of digits
exceeds precision.

The precision specifies the number
of digits to be printed after the
decimal point. The last printed
digit is rounded.

The precision value specifies the number
of digits after the decimal point. If a
decimal point appears, at least one digit
appears before it. The value is rounded
to the appropriate number of digits.

The precision specifies the maximum
number of significant digits printed.

The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are
not printed.

Default precision is 6; if
precision is 0 or the period (.)
appears without a number
following it, no decimal point
is printed.

Default precision is 6; if
precision is 0, or if the
period (.) appears without
a number following it, no
decimal point is printed.

Six significant digits are
printed, with any trailing
zeros truncated.

Characters are printed
until a null character is
encountered.

If the argument corresponding to a floating-point specifier is infinite, indefinite, or
NaN, printf gives the following output.

Value
+ infinity

- infinity

Indefinite (same as quiet NaN)

NAN

Output
1.#INFrandom-digits

-1.#INFrandom-digits

digit.#lNDrandom-digits

digit. #NAN random-digits

printf, wprintf

467

printf, wprintf

Size and Distance Specification

468

The optional prefixes to type, h, I, and L, specify the "size" of argument (long or
short, single-byte character or wide character, depending upon the type specifier
that they modify). These type-specifier prefixes are used with type characters in
printf functions or wprintf functions to specify interpretation of arguments, as
shown in the following table. These prefixes are Microsoft extensions and are
not ANSI-compatible.

Table R.S Size Prefixes for printf and wprintf Format-Type Specifiers

To Specify Use Prefix With Type Specifier

long int

long unsigned int

short int

short unsigned int

_int64

Single-byte character with printf
functions

Single-byte character with wprintf
functions

Wide character with printf functions

Wide character with wprintf functions

Single-byte-character string with
printf functions

Single-byte-character string with
wprintf functions

Wide-character string with printf
functions

Wide-character string with wprintf
functions

h

h

164

h

h

h

h

d, i, 0, x, orX

u

d, i, 0, x, or X

u

d, i, 0, u, x, or X

eorC

cor C

eorC

cor C

s or S

s orS

s orS

sorS

Thus to print single-byte or wide-characters with printf functions and wprintf
functions, use format specifiers as follows:

To Print Character As Use Function With Format Specifier
single byte printf e, he, orhC

single byte wprintf C, he, orhC

wide wprintf e, Ie, orIC

wide printf C,lc,orIC

To print strings with printf functions and wprintf functions, use the prefixes hand 1
analogously with format type-specifiers sand S.

putc, putwc, putchar, putwchar

putc, putwc, putchar, putwchar
Writes a character to a stream (pute, putwe) or to stdout (putehar, putwchar).

int putc(int c, FILE *stream);
winet putwe(winet c, FILE *stream);
int putehar(int c);
winet putwehar(winet c);

Routine Required Header Compatibility

putc <stdio.h> ANSI, Win 95, Win NT

putwc <stdio.h> or <wehar.h> ANSI, Win 95, Win NT

putchar <stdio.h> ANSI, Win 95, Win NT

putwchar <stdio.h> or <wehar.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the character written. To indicate an error or
end-of-file condition, pute and putehar return EOF; putwe and putwehar return
WEOF. For all four routines, use ferror or feof to check for an error or end of file.

Parameters

Remarks

c Character to be written

stream Pointer to FILE structure

The pute routine writes the single character c to the output stream at the current
position. Any integer can be passed to pute, but only the lower 8 bits are written.
The putehar routine is identical to putc(c, stdout). For each routine, if a read error
occurs, the error indicator for the stream is set. pute and putehar are similar to fpute
and _fputchar, respectively, but are implemented both as functions and as macros
(see "Choosing Between Functions and Macros" on page xiii). putwe and putwehar
are wide-character versions of pute and putehar, respectively.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & MBCS MBCS Defined UNICODE Defined - - - -
Not Defined

_putte pute pute putwe

_puttehar putehar putehar putwehar

469

_putch

Example

Output

/* PUTC.C: This program uses putc to write buffer
* to a stream. If an error occurs. the program
* stops before writing the entire buffer.
*/

#include <stdio.h>

void main(void)
{

FILE *stream:
char *P. buffer[] - "This is the line of output\n":
int ch:

ch - 0:
/* Make standard out the stream and write to it. */
stream - stdout:
for(p - buffer: (ch !- EOF) && (*p !- '\0'): p++)

ch - putc(*P. stream):

This is the line of output

See Also: fputc, getc

_putch
Writes a character to the console.

int _putch(int c);

Routine

_putch

Required Header

<conio.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The function returns c if successful, and EOF if not.

Parameter
c Character to be output

Remarks
The _putch function writes the character c directly (without buffering) to the console.

470

Example

Output

/* GETCH.C: This program reads characters from
* the keyboard until it receives a 'Y' or 'y'.
*/

#include <conio.h>
#include <ctype.h>

void maine void)
(

int ch:

_cputs("Type 'Y' when finished typing keys: "):
do
(

ch - _getch():
ch - toupper(ch):

while(ch !- 'Y'):

_putch(ch):
_putch('\r'):
_p u t c h ('\ n'):

/* Carriage return */
/* Line feed */

Type 'Y' when finished typing keys: Y

See Also: _cprintf, _getch

_putenv, _wputenv
Creates new environment variables; modifies or removes existing ones.

int _putenv(const char *envstring);
int _ wputenv(const wchar_t *envstring);

Routine

_putenv

_wputenv

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_putenv and _ wputenv return 0 if successful, or -1 in the case of an error.

_putenv, _wputenv

471

_putenv, _ wputenv

Parameter

Remarks

472

envstring Environment-string definition

The _putenv function adds new environment variables or modifies the values of
existing environment variables. Environment variables define the environment in
which a process executes (for example, the default search path for libraries to be
linked with a program). _ wputenv is a wide-character version of _putenv; the
envstring argument to _ wputenv is a wide-character string.

Generic-Text Routine Mappings

TCHAR.H
Routine

_tputenv

_UNICODE & _MBCS
Not Defined

_putenv

_MBCS Defined _UNICODE Defined

_putenv _wputenv

The envstring argument must be a pointer to a string of the form varname=string,
where varname is the name of the environment variable to be added or modified and
string is the variable's value. If varname is already part of the environment, its value
is replaced by string; otherwise, the new varname variable and its string value are
added to the environment. You can remove a variable from the environment by
specifying an empty string-in other words, by specifying only varname=.

_putenv and _ wputenv affect only the environment that is local to the current
process; you cannot use them to modify the command-level environment. That is,
these functions operate only on data structures accessible to the run-time library and
not on the environment "segment" created for a process by the operating system.
When the current process terminates, the environment reverts to the level of the
calling process (in most cases, the operating-system level). However, the modified
environment can be passed to any new processes created by _spawn, _exec, or
system, and these new processes get any new items added by _putenv and _wputenv.

With regard to environment entries, observe the following cautions:

• Do not change an environment entry directly; instead, use _putenv or _ wputenv to
change it. To modify the return value of _putenv or _ wputenv without affecting
the environment table, use _strdup or strcpy to make a copy of the string.

• Never free a pointer to an environment entry, because the environment variable
will then point to freed space. A similar problem can occur if you pass _putenv or
_ wputenv a pointer to a local variable, then exit the function in which the variable
is declared.

getenv and _putenv use the global variable _environ to access the environment table;
_ wgetenv and _ wputenv use _ wenviron. _putenv and _ wputenv may change the
value of _environ and _ wenviron, thus invalidating the envp argument to main and
the_wenvp argument to wmain. Therefore, it is safer to use _environ or _wenviron to
access the environment information. For more information about the relation of
_putenv and _ wputenv to global variables, see _environ, _ wenviron.

Example

Output

/* GETENV.C: This program uses getenv to retrieve
* the LIB environment variable and then uses
* _putenv to change it to a new value.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *libvar;

/* Get the value of the LIB environment variable. */
1 i bvar = getenv("LIB");

if(libvar 1= NULL)
printf("Original LIB variable is: %s\n", libvar);

/* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*/

_putenv("LIB=c:\\mylib;c:\\yourlib");

/* Get new value. */
1 ibvar = getenv("LIB");

if(libvar 1= NULL)
printf("New LIB variable is: %s\n", libvar);

Original LIB variable is: C:\progra-l\devstu-l\vc\lib
New LIB variable is: c:\mylib;c:\yourlib

See Also: getenv, _searchenv

puts, _putws
Write a string to stdout.

int puts(const char *string);
int _putws(const wchar_t *string);

Routine

puts

_putws

Required Header

<stdio.h>

<stdio.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

puts, _putws

473

_putw

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these returns a nonnegative value if successful. If puts fails it returns EOF;
if _putws fails it returns WEOF.

Parameter

Remarks

Example

Output

string Output string

The puts function writes string to the standard output stream stdout, replacing the
string's terminating null character ('\0') with a newline character ('\n') in the output
stream.

Generic-Text Routine Mappings

TCHAR.H Routine

_putts

_UNICODE & _MBCS
Not Defined

puts

/* PUTS.C: This program uses puts
* to write a string to stdout.
*/

#include <stdio.h>

void main(void)
{

puts("Hello world from puts!");
}

Hello world from puts!

See Also: fputs, gets

_MBCS Defined _UNICODE Defined

puts _putws

_putw
Writes an integer to a stream.

int _putw(int binint, FILE *stream);

Routine Required Header Compatibility

_putw <stdio.h> Win 95, Win NT

474

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_putw returns the value written. A return value of EOF may indicate an error.
Because EOF is also a legitimate integer value, use ferror to verify an error.

Parameters

Remarks

Example

binint Binary integer to be output

stream Pointer to FILE structure

The _putw function writes a binary value of type int to the current position of
stream. _putw does not affect the alignment of items in the stream, nor does it
assume any special alignment. _putw is primarily for compatibility with previous
libraries. Portability problems may occur with _putw because the size of an int
and the ordering of bytes within an int differ across systems.

1* PUTW.C: This program uses _putw to write a
* word to a stream. then performs an error check.
*1

#include <stdio.h>
#include <stdlib.h>

void main(void)
{

FILE *stream;
unsigned u;
if((stream'" fopen("data.out", "wb" » -- NULL)

}

exit(1);
for(u ... 0; u « 10; u++)
{

_putw(u + 0x2132. stdout);
_putw(u + 0x2132. stream);
if(ferror(stream))
{

pri ntf("_putw fail ed");
clearerr(stream);
exit(1);

printf("\nWrote ten words\n");
fclose(stream);

1* Write word to stream. *1
1* Make error check. *1

_putw

475

qsort

Output
Wrote ten words

See Also: _getw

qsort
Performs a quick sort.

void qsort(void *base, size_t num, size_t width, int (_cdecl *compare)(const void
... *elem), const void *elem2));

Routine Required Header Compatibility

qsort <stdlib.h> and <search.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameters

Remarks

476

base Start of target array

num Array size in elements

width Element size in bytes

compare Comparison function

elem} Pointer to the key for the search

elem2 Pointer to the array element to be compared with the key

The qsort function implements a quick-sort algorithm to sort an array of num
elements, each of width bytes. The argument base is a pointer to the base of the
array to be sorted. qsort overwrites this array with the sorted elements. The
argument compare is a pointer to a user-supplied routine that compares two array
elements and returns a value specifying their relationship. qsort calls the compare
routine one or more times during the sort, passing pointers to two array elements
on each call:

comparee (void *) elem}, (void *) elem2);

Example

Output

The routine must compare the elements, then return one of the following values:

Return Value
<0

Description
eleml less than elem2

o
>0

eleml equivalent to elem2

eleml greater than elem2

The array is sorted in increasing order, as defined by the comparison function.
To sort an array in decreasing order, reverse the sense of "greater than" and
"less than" in the comparison function.

1* OSORT.C: This program reads the command-line
* parameters and uses qsort to sort them. It
* then displays the sorted arguments.
*1

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int compare(const void *argl, const void *arg2);

void main(int argc, char **argv)
{

i nt i;
1* Eliminate argv[0] from sort: *1
argv++;
argc--;

1* Sort remalnlng args using Quicksort algorithm: *1
qsort((void *)argv, (size_t)argc, sizeof(char *), compare);

1* Output sorted list: *1
for(i - 0; i < argc; ++i)

printf("%s ", argv[i]);
pri ntf("\n");

int compare(const void *argl, const void *arg2)
{

1* Compare all of both strings: *1
return _stricmp(* (char**) argl, * (char**) arg2);

[C:\code]qsort every good boy deserves favor
boy deserves every favor good

See Also: bsearch, _lsearch

qsort

477

_query_new_handler
Returns address of current new handler routine.

Routine Required Header Compatibility

<new.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

_query _new _handler returns the address of the current new handler routine as set by
_seCnew _handler.

The C++ _query _new _handler function returns the address of the current
exception-handling function set by the C++ _set_new _handler function.
_seCnew _handler is used to specify an exception-handling function that is to
gain control if the new operator fails to allocate memory. For more information,
see the discussions of the operator new and operator delete functions in
C++ Language Reference.

See Also: free

_query_new_mode

478

Returns an integer indicating new handler mode set by _seCnew _mode for malloc.

int _query_new _mode(void);

Routine Required Header Compatibility

<new.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

_query _new _mode returns the current new handler mode, namely 0 or I, for
malloe. A return value of I indicates that, on failure to allocate memory, malloe
calls the new handler routine; a return value of 0 indicates that it does not.

The C++ _query _new _mode function returns an integer that indicates the new
handler mode that is set by the C++ _seCnew _mode function for malloe. The
new handler mode indicates whether, on failure to allocate memory, malloe is
to call the new handler routine as set by _set_new_handler. By default, malloe
does not call the new handler routine on failure. You can use _seCnew_mode to
override this behavior so that on failure malloe calls the new handler routine in
the same way that the new operator does when it fails to allocate memory. For
more information, see the operator delete and operator new functions in
C++ Language Reference.

See Also: ealIoe, free, realIoe, _query _new_handler

raIse
Sends a signal to the executing program.

int raise(int sig);

Routine Required Header Compatibility

raise <signal.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, raise returns O. Otherwise, it returns a nonzero value.

Parameter

Remarks

sig Signal to be raised

The raise function sends sig to the executing program. If a previous call to signal
has installed a signal-handling function for sig, raise executes that function. If no
handler function has been installed, the default action associated with the signal
value sig is taken, as follows:

raise

479

rand

Signal

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

See Also:

Meaning

Abnormal termination

Floating-point error

Illegal instruction

CTRL+C interrupt

Illegal storage access

Termination request sent
to the program

abort, signal

Default

Terminates the calling program with exit code 3

Terminates the calling program

Terminates the calling program

Terminates the calling program

Terminates the calling program

Ignores the signal

rand
Generates a pseudorandom number.

int rand(void);

Routine Required Header Compatibility

rand <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

480

rand returns a pseudorandom number, as described above. There is no error return.

The rand function returns a pseudorandom integer in the range 0 to RAND_MAX. Use
the srand function to seed the pseudorandom-number generator before calling rand.

1* RAND.C: This program seeds the random-number generator
* with the time, then displays 10 random integers.
*/

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void maine void)
{

i nt i:

Output

/* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*/

srand((unsigned)time(NULL));

/* Display 10 numbers. */
for(i = 0; i < 10;i++)

printf(" %6d\n", rand());

6929
8026

21987
30734
20587
6699

22034
25051
7988

10104

See Also: srand

read
Reads data from a file.

int _read(int handle, void *buffer, unsigned int count);

Routine Required Header Compatibility

<io.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_read returns the number of bytes read, which may be less than count if there are
fewer than count bytes left in the file or if the file was opened in text mode, in which
case each carriage return-linefeed (CR-LF) pair is replaced with a single linefeed
character. Only the single linefeed character is counted in the return value. The
replacement does not affect the file pointer.

If the function tries to read at end of file, it returns O. If the handle is invalid, or the
file is not open for reading, or the file is locked, the function returns -1 and sets
errno to EBADF.

481

Parameters

Remarks

Example

Output

482

handle Handle referring to open file

buffer Storage location for data

count Maximum number of bytes

The _read function reads a maximum of count bytes into buffer from the file
associated with handle. The read operation begins at the current position of the file
pointer associated with the given file. After the read operation, the file pointer points
to the next unread character.

If the file was opened in text mode, the read terminates when _read encounters a
CTRL+Z character, which is treated as an end-of-file indicator. Use _lseek to clear
the end-of-file indicator.

/* READ.C: This program opens a file named
* READ.C and tries to read 60,000 bytes from
* that file using _read. It then displays the
* actual number of bytes read from READ.C.
*/

#include <fcntl.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

/* Needed only for _O_RDWR definition */

char buffer[60000];

void main(void)
{

int fh;
unsigned int nbytes = 60000, bytesread;

/* Open file for input: */
if((fh = _open("read.c", _O_RDONLY » == -1)
{

perror("open failed on input file");
exit(1);

/* Read in input: */
if((bytes read = _read(fh. buffer. nbytes)) <= 0)

perror("Problem reading file");
else
printf("Read %u bytes from file\n", bytesread);

_close(fh);

Read 775 bytes from file

See Also: _creat, fread, _open, _write

realloc
Reallocate memory blocks.

void *realloc(void *memblock, size_t size);

Routine Required Header Compatibility

realloc <stdlib.h> and <malloc.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
realloc returns a void pointer to the reallocated (and possibly moved) memory block.
The return value is NULL if the size is zero and the buffer argument is not NULL, or
if there is not enough available memory to expand the block to the given size. In the
first case, the original block is freed. In the second, the original block is unchanged.
The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than void, use a type cast
on the return value.

Parameters

Remarks

memblock Pointer to previously allocated memory block

size New size in bytes

The realloc function changes the size of an allocated memory block. The memblock
argument points to the beginning of the memory block. If memblock is NULL, realloc
behaves the same way as malloc and allocates a new block of size bytes. If memblock
is not NULL, it should be a pointer returned by a previous call to calloc, malloc, or
realloc.

The size argument gives the new size of the block, in bytes. The contents of the block
are unchanged up to the shorter of the new and old sizes, although the new block can
be in a different location. Because the new block can be in a new memory location,
the pointer returned by realloc is not guaranteed to be the pointer passed through the
memblock argument.

realloc calls malloc in order to use the C++ _seCnew _mode function to set the new
handler mode. The new handler mode indicates whether, on failure, malloc is to call
the new handler routine as set by _set_new_handler. By default, malloc does not call
the new handler routine on failure to allocate memory. You can override this default

realloc

483

realloc

Example

Output

484

behavior so that, when realloc fails to allocate memory, malloc calls the new handler
routine in the same way that the new operator does when it fails for the same reason.
To override the default, call

_set_new_mode(l)

early in your program, or link with NEWMODE.OBJ.

When the application is linked with a debug version of the C run-time libraries,
realloc resolves to _realloc_dbg.

/* REALLOC.C: This program allocates a block of memory for
* buffer and then uses _msize to display the size of that
* block. Next. it uses realloc to expand the amount of
* memory used by buffer and then calls _msize again to
* display the new amount of memory allocated to buffer.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{

long *buffer;
size_t size;

if((buffer - (long *)malloc(1000 * sizeof(long) » == NULL)
exit(1);

size = _msize(buffer);
printf("Size of block after malloc of 1000 longs: %u\n". size);

/* Reallocate and show new size: */
if((buffer = realloc(buffer. size + (1000 * sizeof(long » »

NU LL)
ex;t(1);

size = _msize(buffer);
printf("Size of block after realloc of 1000 more longs: %u\n".

size);

free(buffer);
exit(0);

Size of block after malloc of 1000 longs: 4000
Size of block after realloc of 1000 more longs: 8000

See Also: calloc, free, malloc

remove, wremove
Delete a file.

int remove(const char *path);
int _wremove(const wchar_t *path);

Routine

remove

_wremove

Required Header

<stdio.h> or <io.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns 0 if the file is successfully deleted. Otherwise, it
returns -1 and sets errno either to EACCES to indicate that the path specifies a
read-only file, or to ENOENT to indicate that the filename or path was not found or
that the path specifies a directory.

Parameter

Remarks

Example

path Path of file to be removed

The remove function deletes the file specified by path. _ wremove is a wide-character
version of _remove; the path argument to _ wremove is a wide-character string.
_ wremove and _remove behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tremove remove remove _wremove

/* REMOVE.C: This program uses remove to delete REMOVE.OBJ. */

#include <stdio.h>

void maine void)
{

if(remove("remove.obj") == -1)
perror("Could not delete 'REMOVE.OBJ'");

else
printf("Deleted 'REMOVE.OBJ'\n");

remove, _ wremove

485

rename, _ wrename

Output
Deleted 'REMOVE.08J'

See Also: _unlink

rename, wrename
Rename a file or directory.

int rename(const char *oldname, const char *newname);
int _wrename(const wchar_t *oldname, const wchar_t *newname);

Routine

rename

_wrename

Required Header

<io.h> or <stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns 0 if it is successful. On an error, the function
returns a nonzero value and sets errno to one of the following values:

EACCES File or directory specified by newname already exists or could not
be created (invalid path); or oldname is a directory and newname specifies a
different path.

ENOENT File or path specified by oldname not found.

Parameters

Remarks

486

oldname Pointer to old name

newname Pointer to new name

The rename function renames the file or directory specified by oldname to the name
given by newname. The old name must be the path of an existing file or directory. The
new name must not be the name of an existing file or directory. You can use rename
to move a file from one directory or device to another by giving a different path in
the newname argument. However, you cannot use rename to move a directory.
Directories can be renamed, but not moved.

_ wrename is a wide-character version of _rename; the arguments to _ wrename are
wide-character strings. _ wrename and _rename behave identically otherwise.

Example

Output

Generic-Text Routine Mappings

TCHAR.H Routine

_trename

_UNICODE & _MBCS
Not Defined

rename

_MBCS Defined

rename

1* RENAMER.C: This program attempts to rename a file
* named RENAMER.OBJ to RENAMER.JBO. For this operation
* to succeed, a file named RENAMER.OBJ must exist and
* a file named RENAMER.JBO must not exist.
*1

#include <stdio.h>

void maine void
{

i nt result;
char old[] - "RENAMER.OBJ", new[] = "RENAMER.JBO";

1* Attempt to rename file: *1
result - rename(old, new);
if(result !- 0)

pri ntf("Coul d not rename '%s' \n", 01 d);
else

printf("File '%s' renamed to '%s'\n", old, new);

File 'RENAMER.OBJ' renamed to 'RENAMER.JBO'

_UNICODE Defined

_wrename

rewind
Repositions the file pointer to the beginning of a file.

void rewind(FILE *stream);

Routine Required Header Compatibility

rewind <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

rewind

487

rewind

Return Value
None

Parameter

Remarks

Example

Output

488

stream Pointer to FILE structure

The rewind function repositions the file pointer associated with stream to the
beginning of the file. A call to rewind is similar to

(void) fseek(stream, OL, SEEK_SET);

However, unlike fseek, rewind clears the error indicators for the stream as well as the
end-of-file indicator. Also, unlike fseek, rewind does not return a value to indicate
whether the pointer was successfully moved.

To clear the keyboard buffer, use rewind with the stream stdin, which is associated
with the keyboard by default.

/* REWIND.C: This program first opens a file named
* REWIND.OUT for input and output and writes two
* integers to the file. Next, it uses rewind to
* reposition the file pointer to the beginning of
* the file and reads the data back in.
*/

#include <stdio.h>

void maine void)
{

FILE *stream;
int datal, data2;

datal 1;
data2 -37;

if((stream = fopen("rewind.out", "w+" » 1= NULL)
{

fprintf(stream, "%d %d", datal, data2);
printf("The values written are: %d and %d\n", datal, data2);
rewind(stream);
fscanf(stream, "%d %d", &data1, &data2);
printf("The values read are: %d and %d\n", datal, data2);
fclose(stream);

The values written are: 1 and -37
The values read are: 1 and -37

_rmdir, wrmdir
Delete a directory.

int _rmdir(const char *dirname);
int _wrmdir(const wchar_t *dirname);

Routine

_rmdir

_wrmdir

Required Header

<direct.h>

<direct.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns 0 if the directory is successfully deleted. A return
value of -1 indicates an error, and errno is set to one of the following values:

ENOTEMPTY Given path is not a directory; directory is not empty; or directory is
either current working directory or root directory.

ENOENT Path is invalid.

Parameter

Remarks

Example

dirname Path of directory to be removed

The _rmdir function deletes the directory specified by dirname. The directory must
be empty, and it must not be the current working directory or the root directory.

_ wrmdir is a wide-character version of _rmdir; the dirname argument to _ wrmdir is
a wide-character string. _ wrmdir and _rmdir behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_trmdir

/* MAKEDIR.C */

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

_MBCS Defined _UNICODE Defined

_wrmdir

jmdir, _wrmdir

489

Output

void main(void)
(

if(_mkdir("\\testtmp") == 0)
(

printf("Directory '\\testtmp' was successfully created\n");
system("dir \\testtmp");
if(_rmdir("\\testtmp") == 0

pri ntf("Di rectory '\ \ testtmp' was successfull y removed\n") ;
else

printf("Problem removing directory '\\testtmp'\n");

else
printf("Problem creating directory '\\testtmp'\n");

Directory '\testtmp' was successfully created
Volume in drive C is CDRIVE
Volume Serial Number is 0E17-1702

Directory of C:\testtmp

05/03/94
05/03/94

12:30p
12:30p

<01 R>
<01 R>

2 File(s) o bytes
17,358,848 bytes free

Directory '\testtmp' was successfully removed

See Also: _chdir, _mkdir

_rmtmp
Removes temporary files.

int _rmtmp(void);

Routine Required Header Compatibility

<stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_rmtmp returns the number of temporary files closed and deleted.

490

Remarks

Example

Output

The _rmtmp function cleans up all temporary files in the current directory. The
function removes only those files created by tmpfile; use it only in the same directory
in which the temporary files were created.

/* TMPFILE.C: This program uses tmpfile to create a
* temporary file. then deletes this file with _rmtmp.
*/

#include <stdio.h>

void maine void)
{

FILE *stream;
char tempstring[] = "String to be written";
i nt i;

/* Create temporary files. */
fore i = 1; i <= 3; i++)
{

if((stream = tmpfile()) == NULL)
perror("Could not open new temporary file\n");

else
pri ntf("Tempora ry fi 1 e %d was created\n". i);

/* Remove temporary files. */
pri ntf("%d temporary fil es del eted\n". _rmtmp());

Temporary file 1 was created
Temporary file 2 was created
Temporary file 3 was created
3 temporary files deleted

See Also: _flushall, tmpfile, tmpnam

_rotl, _rotr
Rotate bits to the left Crotl) or right Crotr).

unsigned int _rotl(unsigned int value, int shift);
unsigned int _rotr(unsigned int value, int shift);

Routine Required Header

<stdlib.h>

<stdlib.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

491

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Both functions return the rotated value. There is no error return.

Parameters

Remarks

Example

Output

value Value to be rotated

shift Number of bits to shift

The _rotl and _rotr functions rotate the unsigned value by shift bits. _rotl rotates the
value left. _rotr rotates the value right. Both functions "wrap" bits rotated off one end
of value to the other end.

/* ROT.C: This program uses rotr and rotl with
* different shift values to rotate an integer.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void
{

unsigned val 0x0fd93;
printf("0x%4.4x rotated left three times is 0x%4.4x\n".

val. _rotl(val. 3));
printf("0x%4.4x rotated right four times is 0x%4.4x\n".

val. _rotr(val. 4));

0xfd93 rotated left three times is 0x7ec98
0xfd93 rotated right four times is 0x30000fd9

See Also: _lrotl

scalb

492

Scales argument by a power of 2.

double _scalb(double x, long exp);

Routine Required Header

<float.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_scalb returns an exponential value if successful. On overflow (depending
on the sign of x), _scalb returns +/-HUGE_ VAL; the errno variable is
set to ERANGE.

Parameters
x Double-precision floating-point value

exp Long integer exponent

Remarks
The _scalb function calculates the value of x * 2exp

•

See Also: Idexp

scanf, wscanf
Read formatted data from the standard input stream.

int scanf(const char *format [,argument] ...);
int wscanf(const wchar_t *format [,argument] ...);

Routine

scanf

wscanf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Both scanf and wscanf return the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned.
A return value of 0 indicates that no fields were assigned. The return value is
EOF for an error or if the end-of-file character or the end-of-string character
is encountered in the first attempt to read a character.

scanf, wscanf

493

scanf, wscanf

Parameters

Remarks

Example

494

format Format control string

argument Optional arguments

The scanf function reads data from the standard input stream stdin and writes the data
into the location given by argument. Each argument must be a pointer to a variable of
a type that corresponds to a type specifier informat. If copying takes place between
strings that overlap, the behavior is undefined.

wscanf is a wide-character version of scanf; the format argument to wscanf is a
wide-character string. wscanf and scanf behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tscanf scanf scanf wscanf

For more information, see "Format Specification Fields-scanf functions and
wscanf functions" on page 495.

1* SCANF.C: This program uses the scanf and wscanf functions
* to read formatted input.
*1

#include <stdio.h>

void main(void)
{

int i, result;
float fp;
char c, s[81];
wchar_t wc, ws[81];

pri ntf("\n\nEnter an i nt, a fl oat, two cha rs and two stri ngs\n");

result = scanf("%d %f %c %C %s %S", &i, &fp, &c, &wc, s, ws);
pri ntf("\nThe number of fi el ds input is %d\n", resul t);
printf("The contents are: %d %f %c %C %s %S\n", i, fp, c, wc, s, ws);

wprintf(L"\n\nEnter an int, a float, two chars and two strings\n");

result - wscanf(L"%d %f %hc %lc %S %ls", &i, &fp, &c, &wc, s, ws);
wpri ntf(L"\nThe number of fi el ds input is %d\n", resul t);
wprintf(L"The contents are: %d %f %C %c %hs %s\n", i, fp, c, wc, s, ws);

Output
Enter an into a float. two chars and two strings
71
98.6
h
z
Byte characters

The number of fields input is 6
The contents are: 71 98.599998 h z Byte characters

Enter an into a float. two chars and two strings
36
92.3
y
n
Wide characters

The number of fields input is 6
The contents are: 456 92.300003 y n Wide characters

See Also: fscanf, printf, sprintf, sscanf

scanf, wscanf

Format Specification Fields: scanf and wscanf Functions
A format specification has the following form:

%[*] [width] [{h III 1641 L}]type

The format argument specifies the interpretation of the input and can contain one or
more of the following:

• White-space characters: blank (' I); tab ('\t'); or newline ('\n'). A white-space
character causes scanf to read, but not store, all consecutive white-space characters
in the input up to the next non-white-space character. One white-space character in
the format matches any number (including 0) and combination of white-space
characters in the input.

• Non-white-space characters, except for the percent sign (%). A non-white-space
character causes scanf to read, but not store, a matching non-white-space
character. If the next character in stdin does not match, scanf terminates.

• Format specifications, introduced by the percent sign (%). A format specification
causes scanf to read and convert characters in the input into values of a specified
type. The value is assigned to an argument in the argument list.

The format is read from left to right. Characters outside format specifications are
expected to match the sequence of characters in stdin; the matching characters in stdin
are scanned but not stored. If a character in stdin conflicts with the format specification,
scanf terminates, and the character is left in stdin as if it had not been read.

495

scanf, wscanf

When the first format specification is encountered, the value of the first input field is
converted according to this specification and stored in the location that is specified
by the first argument. The second format specification causes the second input field
to be converted and stored in the second argument, and so on through the end of the
format string.

An input field is defined as all characters up to the first white-space character (space,
tab, or newline), or up to the first character that cannot be converted according to the
format specification, or until the field width (if specified) is reached. If there are too
many arguments for the given specifications, the extra arguments are evaluated but
ignored. The results are unpredictable if there are not enough arguments for the
format specification.

Each field of the format specification is a single character or a number signifying a
particular format option. The type character, which appears after the last optional
format field, determines whether the input field is interpreted as a character, a string,
or a number.

The simplest format specification contains only the percent sign and a type character
(for example, %5). If a percent sign (%) is followed by a character that has no
meaning as a format-control character, that character and the following characters (up
to the next percent sign) are treated as an ordinary sequence of characters, that is, a
sequence of characters that must match the input. For example, to specify that a
percent-sign character is to be input, use %%.

An asterisk (*) following the percent sign suppresses assignment of the next input field,
which is interpreted as a field of the specified type. The field is scanned but not stored.

scanf Type Field Characters

496

The type character is the only required format field; it appears after any optional
format fields. The type character determines whether the associated argument is
interpreted as a character, string, or number.

Table R.7 Type Characters for scanf functions

Character

c

Type of Input Expected

When used with scanf functions,
specifies single-byte character; when
used with wscanf functions, specifies
wide character. White-space characters
that are ordinarily skipped are read
when c is specified. To read next non
white- space single-byte character, use
% Is; to read next non-white-space wide
character, use % 1 ws.

Type of Argument

Pointer to char when used with
scanf functions, pointer to wchar_t
when used with wscanf functions.

(continued)

Table R.7 Type Characters for scanf functions (continued)

Character

C

Type of Input Expected

When used with scanf functions,
specifies wide character; when used
with wscanf functions, specifies
single-byte character. White-space
characters that are ordinarily skipped are
read when C is specified. To read next
non-white-space single-byte character,
use % Is; to read next non-white-space
wide character, use % 1 ws.

d Decimal integer.

Decimal, hexadecimal, or octal integer.

o Octal integer.

u Unsigned decimal integer.

x Hexadecimal integer.

e, E, f, g, G Floating-point value consisting of
optional sign (+ or -), series of one or
more decimal digits containing decimal
point, and optional exponent ("e" or
"E") followed by an optionally signed
integer value.

n No input read from stream or buffer.

s String, up to first white-space character
(space, tab or newline). To read strings
not delimited by space characters, use
set of square brackets ([D, as discussed
following Table R.8.

S String, up to first white-space character
(space, tab or newline). To read strings
not delimited by space characters, use
set of square brackets ([]), as discussed
preceding this table.

Type of Argument

Pointer to wchact when used
with sennf functions, pointer
to char when used with wscanf
functions.

Pointer to int.

Pointer to int.

Pointer to int.

Pointer to unsigned int.

Pointer to int.

Pointer to float.

Pointer to int, into which is stored
number of characters successfully
read from stream or buffer up to
that point in current call to scanf
functions or wscanf functions.

When used with scanf functions,
signifies single-byte character array;
when used with wscanf functions,
signifies wide-character array. In
either case, character array must be
large enough for input field plus
terminating null character, which is
automatically appended.

When used with scanf functions,
signifies wide-character array; when
used with wscanf functions,
signifies single-byte-character
array. In either case, character array
must be large enough for input field
plus terminating null character,
which is automatically appended.

The types c, C, S, and S are Microsoft extensions and are not ANSI-compatible.

scanf, wscanf

497

scanf, wscanf

Thus, to read single-byte or wide characters with scanf functions and wscanf
functions, use format specifiers as follows:

To Read Character As Use This Function With These Format Specifiers

single byte scanf functions c, he, orhC

single byte wscanf functions e, he, or he

wide wscanf functions c, Ie, or Ie

wide scanf functions e, Ie, or Ie

To scan strings with scanf functions, and wscanf functions, use the prefixes hand 1
analogously with format type-specifiers sand S.

scanf Width Specification

498

width is a positive decimal integer controlling the maximum number of characters to
be read from stdin. No more than width characters are converted and stored at the
corresponding argument. Fewer than width characters may be read if a white-space
character (space, tab, or newline) or a character that cannot be converted according to
the given format occurs before width is reached.

The optional prefixes h, I, 164, and L indicate the "size" of the argument (long or short,
single-byte character or wide character, depending upon the type character that they
modify). These format-specification characters are used with type characters in scanf or
wscanf functions to specify interpretation of arguments as shown in the Table R.8. The
type prefixes h, I, 164, and L are Microsoft extensions and are not ANSI-compatible.
The type characters and their meanings are described in Table R.7.

Table R.8 Size Prefixes for scanf and wscanf Format-Type Specifiers

To Specify Use Prefix With Type Specifier

double

long int

long unsigned int

short int

short unsigned int

_int64

Single-byte character with scanf

Single-byte character with wscanf

Wide character with scanf

Wide character with wscanf

Single-byte-character string with scanf

Single-byte-character string with wscanf

Wide-character string with scanf

Wide-character string with wscanf

I

h

h

164

h

h

h

h

e, E, f, g, or G

d, i, 0, x, orX

u

d, i, 0, x, or X

u

d, i, 0, u, x, or X

core

core

cor e

c, ore

s or S

s or S

s or S

s or S

_searchenv, _wsearchenv

Following are examples of the use of h and I with scanf functions and wscanf
functions:

scanf("%15", &x);
wscanf("%1 e", &x);

II Read a wide-character string
II Read a single-byte character

To read strings not delimited by space characters, a set of characters in brackets ([])
can be substituted for the s (string) type character. The corresponding input field is
read up to the first character that does not appear in the bracketed character set. If the
first character in the set is a caret (1\), the effect is reversed: The input field is read up
to the first character that does appear in the rest of the character set.

Note that %[a-z] and %[z-a] are interpreted as equivalent to % [abcde •.. z]. This is a
common scanf function extension, but note that the ANSI standard does not require it.

To store a string without storing a terminating null character ('\0'), use the
specification %nc where n is a decimal integer. In this case, the c type character
indicates that the argument is a pointer to a character array. The next n characters are
read from the input stream into the specified location, and no null character ('\0') is
appended. If n is not specified, its default value is 1.

The scanf function scans each input field, character by character. It may stop reading
a particular input field before it reaches a space character for a variety of reasons:

• The specified width has been reached.

• The next character cannot be converted as specified.

• The next character conflicts with a character in the control string that it is supposed
to match.

• The next character fails to appear in a given character set.

For whatever reason, when the scanf function stops reading an input field, the next
input field is considered to begin at the first unread character. The conflicting
character, if there is one, is considered unread and is the first character of the next
input field or the first character in subsequent read operations on stdin.

_searchenv, _wsearchenv
Searches for a file using environment paths.

void _searchenv(const char *filename, const char *varname, char *pathname);
void _wsearchenv(const wchar_t *filename, const wchar_t *varname, wchar_t *pathname);

Routine

_searchenv

_ wsearchenv

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

499

_searchenv, _wsearchenv

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameters

Remarks

Example

500

filename N arne of file to search for

varname Environment to search

pathname Buffer to store complete path

The _searchenv routine searches for the target file in the specified domain. The
varname variable can be any environment or user-defined variable that specifies a list
of directory paths, such as PATH, LIB, and INCLUDE._searchenv is case sensitive,
so varname should match the case of the environment variable.

The routine searches first for the file in the current working directory. If it does not find
the file, it looks next through the directories specified by the environment variable. If
the target file is in one of those directories, the newly created path is copied into
pathname. If the filename file is not found, pathname contains an empty,
null-terminated string.

The pathname buffer must be large enough to accommodate the full length of the
constructed path name. Otherwise, _searchenv will overwite the pathname buffer resulting
in unexpected behavior. This condition can be avoided by ensuring that the length of the
constructed path name does not exceed the size of the pathname buffer, by calculating the
maximum sum of the filename and varname lengths before calling _searchenv.

_ wsearchenv is a wide-character version of _searchenv; the arguments to
_ wsearchenv are wide-character strings. _ wsearchenv and _searchenv behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tsearchenv

_UNICODE & _MBCS
Not Defined

_searchenv

_MBCS Defined

_searchenv

/* SEARCHEN.C: This program searches for a file in
* a directory specified by an environment variable.
*/

#include <stdlib.h>
#include <stdio.h>

_UNICODE Defined

_ wsearchenv

Output

void main(void)
{

}

char pathbuffer[_MAX_PATH];
char searchfile[]'" "CL.EXE";
char envvar[] = "PATH";

/* Search for file in PATH environment variable: */
_searchenv(searchfile. envvar. pathbuffer);
if(*pathbuffer !- '\0')

printf("Path for %s: %s\n". searchfile. pathbuffer);
else

pri ntf("%s not found\n". searchfi 1 e);

Path for CL.EXE: C:\msvcnt\c32\bin\CL.EXE

See Also: getenv, _putenv

setbuf
Controls stream buffering.

void setbuf(FILE *stream, char *buffer);

Routine Required Header Compatibility

setbuf <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameters

Remarks

stream Pointer to FILE structure

buffer User-allocated buffer

The setbuf function controls buffering for stream. The stream argument must refer to an
open file that has not been read or written. If the buffer argument is NULL, the stream is
unbuffered. If not, the buffer must point to a character array of length BUFSIZ, where
BUFSIZ is the buffer size as defined in STDIO.H. The user-specified buffer, instead of the
default system-allocated buffer for the given stream, is used for I/O buffering. The stderr
stream is unbuffered by default, but you can use setbuf to assign buffers to stderr.

setbuf

501

setjmp

Example

Output

setbuf has been replaced by setvbuf, which is the preferred routine for new code.
setbuf is retained for compatibility with existing code.

/* SETBUF.C: This program first opens files named DATA! and
* DATA2. Then it uses setbuf to give DATA! a user-assigned
* buffer and to change DATA2 so that it has no buffer.
*/

#include <stdio.h>

void main(void)
{

char buf[BUFSIZ];
FILE *stream!. *stream2;

if(«stream! "'" fopen("data!". "a" » != NULL) &&
«stream2 = fopen("data2". "w" » != NULL))

/* "stream!" uses user-assigned buffer: */
setbuf(stream!. buf);
printf("stream! set to user-defined buffer at: %Fp\n". buf);

/* "stream2" is unbuffered */
setbuf(stream2. NULL);
printf("stream2 buffering disabled\n");
_fcl oseall ();

stream! set to user-defined buffer at: 00!3FDA0
stream2 buffering disabled

See Also: fclose, fOush, fopen, setvbuf

setjmp

502

Saves the current state of the program.

int setjrnp(jrnp_buf env);

Routine Required Header Compatibility

setjrnp <setjmp.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
setjrnp returns ° after saving the stack environment. If setjrnp returns as a result of a
longjrnp call, it returns the value argument of longjrnp, or if the value argument of
longjrnp is 0, setjrnp returns 1. There is no error return.

Parameter

Remarks

Example

env Variable in which environment is stored

The setjrnp function saves a stack environment, which you can subsequently restore
using longjrnp. When used together, setjrnp and longjrnp provide a way to execute a
"non-local goto." They are typically used to pass execution control to error-handling
or recovery code in a previously called routine without using the normal calling or
return conventions.

A call to setjrnp saves the current stack environment in env. A subsequent call to
longjrnp restores the saved environment and returns control to the point just after the
corresponding setjrnp call. All variables (except register variables) accessible to the
routine receiving control contain the values they had when longjrnp was called.

setjrnp and longjrnp do not support C++ object semantics . .In C++ programs, use the
C++ exception-handling mechanism.

1* FPRESET.C: This program uses signal to set up a
* routine for handling floating-point errors.
*1

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>

jmp_buf mark;
int fperr;

1* Address for long jump to jump to *1
1* Global error number *1

void __ cdecl fphandler(int sig. int num);
void fpcheck(void);

void maine void)
{

double nl. n2. r;
int jmpret;
1* Unmask all floating-point exceptions. *1
_contro187(0. _MeW_EM);

1* Prototypes *1

1* Set up floating-point error handler. The compiler
* will generate a warning because it expects
* signal-handling functions to take only one argument.
*1

if(signal(SIGFPE. fphandler) == SIG_ERR

setjrnp

503

setjmp

504

fprintf(stderr, "Couldn't set SIGFPE\n");
abort(); }

1* Save stack environment for return in case of error. First
* time through, jmpret is 0, so true conditional is executed.
* If an error occurs, jmpret will be set to -1 and false
* conditional will be executed.
*1

jmpret = setjmp(mark);
if(jmpret == 0)
{

printf("Test for invalid operation -");
pri ntf("enter two numbers: ");
scanf(''%If %If'', &nl, &n2);
r = nl I n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g I %4.3g = %4.3g\n", nl, n2, r);

r = nl * n2;
1* This won't be reached if error occurs. *1
printf("\n\n%4.3g * %4.3g = %4.3g\n", nl. n2, r);

else
fpcheck();

1* fphandler handles SIGFPE (floating-point error) interrupt. Note
* that this prototype accepts two arguments and that the
* prototype for signal in the run-time library expects a signal
* handler to have only one argument.
*
* The second argument in this signal handler allows processing of
* _FPE_INVALID. _FPE_OVERFLOW. _FPE_UNDERFLOW, and
* _FPE_ZERODIVIDE, all of which are Microsoft-specific symbols
* that augment the information provided by SIGFPE. The compiler
* will generate a warning, which is harmless and expected.

*1
void fphandler(int sig, int num)
{

1* Set global for outside check since we don't want
* to do 1/0 in the handler.
*1

fperr = num;
1* Initialize floating-point package. *1
_fpreset();
1* Restore calling environment and jump back to setjmp. Return
* -1 so that setjmp will return false for conditional test.
*1

longjmp(mark, -1);

Output

void fpcheck(void
{

char fpstr[30];
switch (fperr)
(

case FPE_INVALID:
strcpy(fpstr. "Invalid number");
break;

case FPE_OVERFLOW:
strcpy(fpstr. "Overflow");

break;
case FPE_UNDERFLOW:

strcpy(fpstr. "Underflow");
break;

case FPE_ZERODIVIDE:
strcpy(fpstr. "Divide by zero");
break;

default:
strcpy(fpstr. "Other floating point error");
break;

printf("Error %d: %s\n". fperr. fpstr);

Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

See Also: longjrnp

setlocale, wsetlocale
Define the locale.

char *setlocale(int category, const char *locale);
wchar_t * _wsetlocale(int category, const wchar_t *locale);

Routine

setlocale

_ wsetlocale

Required Header

<locale.h>

<locale.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

setlocale, _ wsetlocale

505

setlocale, _ wsetlocale

Return Value
If a valid locale and category are given, the function returns a pointer to the string
associated with the specified locale and category. If the locale or category is invalid,
the function returns a null pointer and the current locale settings of the program are
not changed.

For example, the call

setlocale(LC_ALL, "English");

sets all categories, returning only the string Engl ish_USA .1252. If all categories
are not explicitly set by a call to setlocale, the function returns a string indicating
the current setting of each of the categories, separated by semicolons. If the locale
argument is a null pointer, setlocale returns a pointer to the string associated with the
category of the program's locale; the program's current locale setting is not changed.

The null pointer is a special directive that tells setlocale to query rather than set the
international environment. For example, the sequence of calls

II Set all categories and return "English_USA.1252"
setlocale(LC_ALL. "English");
II Set only the LC_MONETARY category and return "French_France.1252"
setlocale(LC_MONETARY, "French");
setlocale(LC_ALL, NULL);

returns

LC_COLLATE=English_USA.1252;
LC_CTYPE=English_USA.1252;
LC_MONETARY=French_France.1252;
LC_NUMERIC=English_USA.1252;
LC_TIME=English_USA.1252

which is the string associated with the LC_ALL category.

You can use the string pointer returned by setlocale in subsequent calls to restore that
part of the program's locale information, assuming that your program does not alter
the pointer or the string. Later calls to setlocale overwrite the string; you can use
_strdup to save a specific locale string.

Parameters

Remarks

506

category Category affected by locale

locale Locale name

Use the setlocale function to set, change, or query some or all of the current program
locale information specified by locale and category. "Locale" refers to the locality
(country and language) for which you can customize certain aspects of your program.
Some locale-dependent categories include the formatting of dates and the display
format for monetary values.

setlocale, _ wsetlocale

_ wsetlocale is a wide-character version of setlocale; the locale argument and return
value of _ wsetlocale are wide-character strings. _ wsetlocale and setlocale behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tsetlocale

_UNICODE & _MBCS
Not Defined

setlocale

_MBCS Defined _UNICODE Defined

setlocale _ wsetlocale

The category argument specifies the parts of a program's locale information that are
affected. The macros used for category and the parts of the program they affect are as
follows:

LC_ALL All categories, as listed below

LC_ COLLATE The strcoll, _stricoll, wcscoll, _ wcsicoll, and strxfrm functions

LC_CTYPE The character-handling functions (except isdigit, isxdigit, mbstowcs,
and mbtowc, which are unaffected)

LC_MONETARY Monetary-formatting information returned by the localeconv
function

LC_NUMERIC Decimal-point character for the formatted output routines (such as
printf), for the data-conversion routines, and for the nonmonetary-formatting
information returned by localeconv

LC_TIME The strftime and wcsftime functions

The locale argument is a pointer to a string that specifies the name of the locale. If
locale points to an empty string, the locale is the implementation-defined native
environment. A value of "C" specifies the minimal ANSI conforming environment for
C translation. The "c" locale assumes that all char data types are 1 byte and that their
value is always less than 256. The "c" locale is the only locale supported in Microsoft
Visual C++ version 1.0 and earlier versions of Microsoft C/C++. Microsoft
Visual C++ supports all the locales listed in Appendix A, "Language and Country
Strings." At program startup, the equivalent of the following statement is executed:

setlocale(LC_ALL. "C");

The locale argument takes the following form:

locale :: "lang[_country[.code_page]]"
I ".code_page"
I ""
I NULL

The set of available languages, countries, and code pages includes all those supported
by the Win32 NLS API. The set of language and country codes supported by setlocale
is listed in Appendix A, "Language and Country Strings."

507

setlocale, _ wsetlocale

508

If locale is a null pointer, setlocale queries, rather than sets, the international
environment, and returns a pointer to the string associated with the specified category.
The program's current locale setting is not changed. For example,

setlocale(LC_ALL. NULL);

returns the string associated with category.

The following examples pertain to the LC_ALL category. Either of the strings
".OCptl and ".ACP" can be used in place of a code page number to specify use of the
system default OEM code page and system-default ANSI code page, respectively.

set 1 0 cal e (LC_A L L. ""); Sets the locale to the default, which is the
system-default ANSI code page obtained from the operating system.

setl ocal e(LC_ALL. ". OCP"); Explicitly sets the locale to the current OEM
code page obtained from the operating system.

set 1 oca 1 e (LC_ALL. ". AC P"); Sets the locale to the ANSI code page obtained
from the operating system.

setlocale(LC_ALL. "[lang_ctry]"); Sets the locale to the language and
country indicated, using the default code page obtained from the host operating
system.

set 1 oca 1 e (LC_ALL. "[1 a ng_ct ry . cp]"); Sets the locale to the language,
country, and code page indicated in the [lang_ctry.cp] string. You can use various
combinations of language, country, and code page. For example:

setlocale(LC_ALL. "French_Canada.1252");
II Set code page to French Canada ANSI default
setlocale(LC_ALL. "French_Canada.ACP");
II Set code page to French Canada OEM default
setlocaleC LC_ALL. "French_Canada.OCP");

set 1 oca 1 e (LC_A L L. "[1 a ng]"); Sets the locale to the country indicated,
using the default country for the language specified, and the system-default ANSI
code page for that country as obtained from the host operating system. For
example, the following two calls to setlocale are functionally equivalent:

setlocale(LC_ALL. "English");
setlocale(LC_ALL. "English_United States.1252");

setlocale(LC_ALL. "[.code_page]"); Setsthecodepagetothevalue
indicated, using the default country and language (as defined by the host operating
system) for the specified code page.

The category must be either LC_ALL or LC_CTYPE to effect a change of code
page. For example, if the default country and language of the host operating system
are "United States" and "English," the following two calls to setlocale are
functionally equivalent:

setlocale(LC_ALL. ".1252");
setlocale(LC_ALL. "English_United States.1252");

For more information see the setlocale pragma in Preprocessor Reference.

Example

Output

1* LOCALE.C: Sets the current locale to "Germany" using the
* setlocale function and demonstrates its effect on the strftime
* function.
*1

#include <stdio.h>
#include <locale.h>
#include <time.h>

void main(void)
{

time_t ltime;
struct tm *thetime;
unsigned char str[100];

setlocale(LC_ALL. "German");
time (& 1 time) ;
thetime ~ gmtime(<ime);

1* %#x is the long date representation. appropriate to
* the current locale
*1

if (!strftime((char *)str. 100. "%lfx".
(const struct tm *)thetime))

printf("strftime failed!\n");
else

printfC"In German locale. strftime returns '%s'\n".
str);

1* Set the locale back to the default environment *1
setlocale(LC_ALL. "C");
time (& It i me) ;
thetime = gmtime(<ime);

if (!strftime((char *)str. 100. "%#x".
(const struct tm *)thetime))

printf("strftime failed!\n");
else

printfC"In 'C' locale. strftime returns '%s'\n".
str);

In German locale. strftime returns 'Donnerstag. 22. April 1993'
In 'C' locale. strftime returns 'Thursday. April 22. 1993'

See Also: localeconv, mblen, _mbstrlen, mbstowcs, mbtowc, strcoll Functions,
strftime, strxfrm, wcstombs, wctomb

setlocale, _ wsetlocale

509

_setmaxstdio

setmaxstdio
Sets a maximum for the number of simultaneously open files at the stdio
level.

int _setmaxstdio(int newmax);

Routine Required Header Compatibility

_setmaxstdio <stdio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Returns newmax if successful; -1 otherwise.

Parameter

Remarks

510

newmax New maximum for number of simultaneously open files at the stdio
level

The _setmaxstdio function changes the maximum value for the number of files
which may be simultaneously open at the stdio level.

C run-time I/O now supports many more open files on Win32 platforms than in
previous versions. Up to 2,048 files may be open simultaneously at the lowio
level (that is, opened and accessed by means of the _open, _read, _write, and
so forth family of I/O functions). Up to 512 files may be open simultaneously at
the stdio level (that is, opened and accessed by means of the fopen, fgetc, fputc,
and so forth family of functions). The limit of 512 open files at the stdio level
may be increased to a maximum of 2,048 by means of the _setmaxstdio
function.

Since stdio level functions, such as fopen, are built on top of the lowio functions,
the maximum of 2,048 is a hard upper limit for the number of simultaneously open
files accessed through the C run-time library.

Note This upper limit may be beyond what is supported by a particular Win32 platform and
configuration. For example, Win32s only supports 255 open files.

_setmbcp
Sets a new multi byte code page.

int _setmhcp(int codepage);

Routine Required Header Compatibility

_setmhcp <mbctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_setmhcp returns 0 if the code page is set successfully. If an invalid code page
value is supplied for codepage, the function returns -1 and the code page setting
is unchanged.

Parameter

Remarks

codepage New code page setting for locale-independent multibyte routines

The _setmhcp function specifies a new multibyte code page. By default, the run-time
system automatically sets the multibyte code page to the system-default ANSI code
page. The multibyte code page setting affects all multibyte routines that are not
locale-dependent. However, it is possible to instruct _setmbcp to use the code page
defined for the current locale (see the following list of manifest constants and
associated behavior results). For a list of the multibyte routines that are dependent
on the locale code page rather than the multibyte code page, see "Interpretation of
Multibyte-Character Sequences."

The multi byte code page also affects multibyte-character processing by the following
run-time library routines:

_exec functions

_fullpath

_makepath

_mktemp

_spawn functions

_splitpath

_stat

_tempnam

tmpnam

In addition, all run-time library routines that receive multibyte-character argv or
envp program arguments as parameters (such as the _exec and _spawn families)
process these strings according to the multibyte code page. Hence these routines
are also affected by a call to _setmbcp that changes the multibyte code page.

_setmbcp

511

_setmode

The codepage argument can be set to any of the following values:

• _MB_CP _ANSI Use ANSI code page obtained from operating system at
program startup

• _MB_CP _LOCALE Use the current locale's code page obtained from a previous
call to setlocale

• _MB_CP _OEM Use OEM code page obtained from operating system at program
startup

• _MB_CP _SBCS Use single-byte code page. When the code page is set to
_MB_CP _SBCS, a routine such as _ismbblead always returns false.

• Any other valid code page value, regardless of whether the value is an ANSI,
OEM, or other operating-sytem-supported code page.

See Also: _getmbcp, setlocale

setmode
Sets the file translation mode.

int _setmode (int handle, int mode);

Routine Required Header Optional Headers Compatibility

_setmode <io.h> <fcntl.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If successful, _setmode returns the previous translation mode. A return value of -1
indicates an error, in which case errno is set to either EBADF, indicating an invalid
file handle, or EINVAL, indicating an invalid mode argument (neither _O_TEXT nor
_O_BINARY).

Parameters

Remarks

512

handle File handle

mode New translation mode

The _setmode function sets to mode the translation mode of the file given by handle.
The mode must be one of two manifest constants, _O_TEXT or _O_BINARY.
_O_TEXT sets text (translated) mode. Carriage return-linefeed (CR-LF) combinations

Example

Output

are translated into a single linefeed character on input. Linefeed characters are
translated into CR-LF combinations on output. _O_BINARY sets binary (untranslated)
mode, in which these translations are suppressed.

_setmode is typically used to modify the default translation mode of stdin and stdout,
but you can use it on any file. If you apply _setmode to the file handle for a stream,
call _setmode before performing any input or output operations on the stream.

/* SETMODE.C: This program uses setmode to change
* stdin from text mode to binary mode.
*/

#include <stdio.h>
#i ncl ude <fcnt 1 . h>
#include <io.h>

void main(void
{

int result;

/* Set "stdin" to have binary mode: */
result = _setmode(_fileno(stdin). 0 BINARY);
if(result == -1)

perror("Cannot set mode");
else

printf("'stdin' successfully changed to binary mode\n");

'stdin' successfully changed to binary mode

See Also: _creat, fopen, _open

set new handler
Transfer control to your error-handling mechanism if the new operator fails to
allocate memory.

_PNH _set_new _handler(_PNH pNewHandler);

Routine Required Header Compatibility

<new.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

513

Return Value
_set_new _handler returns a pointer to the previous exception handling function
registered by _set_new_handler, so that the previous function can be restored later. If
no previous function has been set, the return value may be used to restore the default
behavior; this value may be NULL.

Parameter

Remarks

514

pNewHandler Pointer to the application-supplied memory handling function

Call the C++ _set_new _handler function to specify an exception-handling function
that is to gain control if the new operator fails to allocate memory. If new fails, the
run-time system automatically calls the exception-handling function that was passed
as an argument to _seCnew_handler. _PNH, defined in NEW.H, is a pointer to a
function that returns type int and takes an argument of type sizc_t. Use size_t to
specify the amount of space to be allocated.

_set_new _handler is essentially a garbage-collection scheme. The run-time system
retries allocation each time your function returns a nonzero value and fails if your
function returns O.

An occurrence of one of the _set_new _handler functions in a program registers the
exception-handling function specified in the argument list with the run-time system:

#include <new.h>
int handle_program_memory_depletion(size_t
{

II Your code

void main(void
{

_set_new_handler(handle_program_memory_depletion);
int *pi = new int[BIG_NUMBER];

You can save the function address that was last passed to the _set_new_handler
function and reinstate it later:

_PNH old_handler = _set_new_handler(my_handler);
II Code that requires my_handler
_set_new_handler(old_handler)
II Code that requires old_handler

In a multithreaded environment, handlers are maintained separately for each process
and thread. Each new process lacks installed handlers. Each new thread gets a copy of
the new handlers of the calling thread. Thus, each process and thread is in charge of
its own free-store error handling.

The C++ _seCnew _mode function sets the new handler mode for malloc. The new
handler mode indicates whether, on failure, malloc is to call the new handler routine as
set by _seCnew_handler. By default, malloc does not call the new handler routine on
failure to allocate memory. You can override this default behavior so that, when malloc

Example

Output

fails to allocate memory, malloc calls the new handler routine in the same way that the
new operator does when it fails for the same reason. To override the default, call

_set_new_mode(1)

early in your program, or link with NEWMODE.OBJ.

1* HANDLER.CPP: This program uses set_new_handler to
* print an error message if the new operator fails.
*1

#include <stdio.h>
#include <new.h>

1* Allocate memory in chunks of size MemBlock. *1
const size_t MemBlock = 1024;

1* Allocate a memory block for the printf function to use in case
* of memory allocation failure; the printf function uses malloc.
* The failsafe memory block must be visible globally because the
* handle_program_memory_depletion function can take one
* argument only.
*1

char * failsafe = new char[128];

1* Declare a customized function to handle memory-allocation failure.
* Pass this function as an argument to set_new_handler.
*1

int handle_program_memory_depletion(size_t);

void maine void)
{

II Register existence of a new memory handler.
_set_new_handler(handle_program_memory_depletion);
size_t *pmemdump = new size_t[MemBlock];
fore ; pmemdump != 0; pmemdump = new size_t[MemBlock]);

int handle_program_memory_depletion(size_t size
{

II Release character buffer memory.
delete failsafe;
printf("Allocation failed, ");
printf("%u bytes not available.\n", size);
II Tell new to stop allocation attempts.
return 0;

Allocation failed %0 bytes not available.

See Also: calloc, free, realloc

515

set new mode - -
Sets a new handler mode for malloc.

int _seCnew_mode(int newhandlermode);

Routine Required Header Compatibility

<new.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_set_new _mode returns the previous handler mode set for malloc. A return value
of 1 indicates that, on failure to allocate memory, malloc previously called the new
handler routine; a return value of 0 indicates that it did not. If the newhandlermode
argument does not equal 0 or 1, _seCnew _mode returns -1.

Parameter

Remarks

newhandlermode New handler mode for malloc; valid value is 0 or 1

The C++ _set_new _mode function sets the new handler mode for malloc. The new
handler mode indicates whether, on failure, malloc is to call the new handler routine as
set by _seCnew_handler. By default, malloc does not call the new handler routine on
failure to allocate memory. You can override this default behavior so that, when malloc
fails to allocate memory, malloc calls the new handler routine in the same way that the
Dew operator does when it fails for the same reason. To override the default, call

_set_new_mode(l)

early in your program, or link with NEWMODE.OBJ.

See Also: calloc, free, realloc, _querY_Dew_handler, _querY_Dew_mode

set sbh threshold

516

- -
Sets the upper limit for the size of a memory allocation that will be supported by the
small-block heap.

int _seCsbh_threshold(size_t size);

Routine Required Header Compatibility

_seCsbh_threshold <malloc.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_seCsbh_threshold returns 1 if the operation of setting the small-block threshold size
is successful. It returns 0 if the input threshold size is too big.

Parameter

Remarks

size the new small-block threshold size to be set

This function takes a user specified small-block threshold size as input, and sets the
current small-block threshold size to that value. The small-block heap threshold size
can be set to any multiples of 16, from 0 to 1920 bytes for Windows 95 and all
Windows NT platforms except the DEC Alpha, and from 0 to 3616 bytes for DEC
Alpha platforms.

See Also: _geCsbh_thresold

set se translator - -
Handles Win32 exceptions (C structured exceptions) as C++ typed exceptions.

typedef void (* _se_translator_function)(unsigned int, struct _EXCEPTION_POINTERS*);
_se_translator_function _seCse_translator(_se_translator_function se_transJunc);

Routine Required Header Compatibility

<eh.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

517

_seese_translator

Return Value
_set_se_translator returns a pointer to the previous translator function registered by
_seese_translator, so that the previous function can be restored later. If no previous
function has been set, the return value may be used to restore the default behavior; this
value may be NULL.

Parameter

Remarks

Example

518

se_transJunc Pointer to a C structured exception translator function that you write

The _set_se_translator function provides a way to handle Win32 exceptions (C
structured exceptions) as C++ typed exceptions. To allow each C exception to be handled
by a C++ catch handler, first define a C exception "wrapper" class that can be used, or
derived from, in order to attribute a specific class type to a C exception. To use this class,
install a custom C exception translator function that is called by the internal
exception-handling mechanism each time a C exception is raised. Within your translator
function, you can throw any typed exception that can be caught by a matching C++ catch
handler.

To specify a custom translation function, call _set_se_translator with the name of your
translation function as its argument. The translator function that you write is called once
for each function invocation on the stack that has try blocks. There is no default
translator function.

In a multithreaded environment, translator functions are maintained separately for each
thread. Each new thread gets a copy of the new translator function of the calling thread.
Thus, each thread is in charge of its own translation handling.

The se_transJunc function that you write must take an unsigned integer and a pointer to a
Win32 _EXCEPTION_POINTERS structure as arguments. The arguments are the return
values of calls to the Win32 API GetExceptionCode and GetExceptionInformation
functions, respectively.

/* SETRANS.CPP
*/

#include <stdio.h>
#include <windows.h>
#include <eh.h>

void SEFunc();
void trans_func(unsigned into EXCEPTION_POINTERS*);

class SE_Exception
{

private:
unsigned int nSE;

public:
SE_Exception() {}
SE_Exception(unsigned int n) nSE(n) {}

Output

-SE_Exception() {}
unsigned int getSeNumber() { return nSE; }

} ;

void main(void
{

try
{

_set_se_translator(trans_func);
SEFunc () ;

catch(SE_Exception e)
{

printf("Caught a _try exception with SE_Exception.\n");

void SEFunc()
{

int x, y=0;
x ~ 5 / y;

_finally
{

printf("In finally\n");

void trans_func(unsigned int u, EXCEPTION_POINTERS* pExp)
{

printf("In trans_func.\n");
throw SE_Exception();

In finally.
In trans_func.
Caught a _try exception with SE_Exception.

See Also: seCterminate, set_unexpected, terminate, unexpected

set terminate
Installs your own termination routine to be called by terminate.

typedef void (*terminate_function)O;
terminate_function set_terminate(terminate_function termJunc);

Routine Required Header Compatibility

seCterminate <eh.h> ANSI, Win 95, Win NT

seCterminate

519

seCterminate

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
set_terminate returns a pointer to the previous function registered by set_terminate,
so that the previous function can be restored later. If no previous function has been
set, the return value may be used to restore the default behavior; this value may be
NULL.

Parameter

Remarks

Example

520

termJunc Pointer to a terminate function that you write

The seCterminate function installs termJunc as the function called by terminate.
set_terminate is used with C++ exception handling and may be called at any point
in your program before the exception is thrown. terminate calls abort by default.
You can change this default by writing your own termination function and calling
set_terminate with the name of your function as its argument. terminate calls the last
function given as an argument to seCterminate. After performing any desired
cleanup tasks, termJunc should exit the program. If it does not exit (if it returns to its
caller), abort is called.

In a multithreaded environment, termination functions are maintained separately for
each thread. Each new thread gets a copy of the new termination function of the
calling thread. Thus, each thread is in charge of its own termination handling.

The terminate_function type is defined in EH.H as a pointer to a user-defined
termination function, termJunc, that returns void. Your custom function termJunc
can take no arguments and should not return to its caller. If it does, abort is called.
An exception may not be thrown from within termJunc.

/* TERMINAT.CPP:
*/

#include <eh.h>
#include <process.h>
#include <iostream.h>

void term_func();

void main()
{

Output

}

int i = 10, j = 0, result;
set_terminate(term_func);
try
{

if(j 0)

throw "Divide by zero!";
else

result = if j;

catch(int
{

cout « "Caught some integer exception.\n";

cout « "This should never print.\n";

void term_func()
{

cout« "term_func() was called by terminate().\n";

II ... cleanup tasks performed here

II If this function does not exit, abort is called.

exit(-l);

term_func() was called by terminate().

See Also: abort, seCunexpected, terminate, unexpected

set_unexpected
Installs your own termination function to be called by unexpected.

typedef void (*unexpected_function)O;
unexpected_function set_unexpected(unexpected_function unexp June);

Routine Required Header Compatibility

seCunexpected <eh.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LlB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

set_unexpected

521

setvbuf

Return Value
_set_unexpected returns a pointer to the previous termination function registered by
_set_unexpected, so that the previous function can be restored later. If no previous
function has been set, the return value may be used to restore the default behavior; this
value may be NULL.

Parameter

Remarks

unexpJunc Pointer to a function that you write to replace the unexpected function

The set_unexpected function installs unexpJunc as the function called by unexpected.
unexpected is not used in the current C++ exception-handling implementation. The
unexpected_function type is defined in EH.H as a pointer to a user-defined unexpected
function, unexpJunc, that returns void. Your custom unexpJunc function should not
return to its caller.

By default, unexpected calls terminate. You can change this default behavior by
writing your own termination function and calling set_unexpected with the name of
your function as its argument. unexpected calls the last function given as an argument
to seCunexpected.

Unlike the custom termination function installed by a call to set_terminate, an
exception can be thrown from within unexpJunc.

In a multithreaded environment, termination functions are maintained separately for each
thread. Each new thread gets a copy of the new termination function of the calling thread.
Thus, each thread is in charge of its own unexpected termination handling.

In the current Microsoft implementation of C++ exception handling, unexpected calls
terminate by default and is never called by the exception-handling run-time library.
There is no particular advantage to calling unexpected rather than terminate.

See Also: abort, set_terminate, terminate, unexpected

setvbuf

522

Controls stream buffering and buffer size.

int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

Routine Required Header Compatibility

setvbuf <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
setvbuf returns 0 if successful, or a nonzero value if an illegal type or buffer size is
specified.

Parameters

Remarks

Example

stream Pointer to FILE structure

buffer User-allocated buffer

mode Mode of buffering

size Buffer size in bytes. Allowable range: 2 < size < 32768. Internally, the value
supplied for size is rounded down to the nearest multiple of 2.

The setvbuf function allows the program to control both buffering and buffer size
for stream. stream must refer to an open file that has not undergone an I/O operation
since it was opened. The array pointed to by buffer is used as the buffer, unless it
is NULL, in which case setvbuf uses an automatically allocated buffer of length
sizel2 * 2 bytes.

The mode must be _IOFBF, _IOLBF, or _IONBF. If mode is _IOFBF or _IOLBF,
then size is used as the size of the buffer. If mode is _IONBF, the stream is unbuffered
and size and buffer are ignored. Values for mode and their meanings are:

_IOFBF Full buffering; that is, buffer is used as the buffer and size is used as the
size of the buffer. If buffer is NULL, an automatically allocated buffer size bytes
long is used.

_IOLBF With MS-DOS, the same as _IOFBF.

_IONBF No buffer is used, regardless of buffer or size.

/* SETVBUF.C: This program opens two streams: stream1
* and stream2. It then uses setvbuf to give stream1 a
* user-defined buffer of 1024 bytes and stream2 no buffer.
*/

#include <stdio.h>

void maine void)
{

char buf[1024];
FILE *stream1, *stream2;

if(«stream1 = fopen("datal", "a" » != NULL) &&
«stream2 = fopen("data2", "w" » != NULL))

if(setvbuf(stream1, buf, _IOFBF, sizeof(buf)!= 0)
printf("Incorrect type or size of buffer for stream1\n");

else
pri ntf('" stream1' now has a buffer of 1024 bytes \n");

setvbuf

523

signal

Output

if(setvbuf(stream2. NULL. _IONBF. 0) != 0
printf("Incorrect type or size of buffer for stream2\n");

else
printf("'stream2' now has no buffer\n");

_fcl oseall ();

'stream1' now has a buffer of 1024 bytes
'stream2' now has no buffer

See Also: fclose, fflush, fopen, setbuf

signal
Sets interrupt signal handling.

void (*signal(int sig, void (_cdecl *June) (int sig [, int subeode]))) (int sig);

Routine Required Header Compatibility

signal <signa1.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
signal returns the previous value of June associated with the given signal. For
example, if the previous value of June was SIG_IGN, the return value is also
SIG_IGN. A return value of SIG_ERR indicates an error, in which case errno
is set to EINVAL.

Parameters

Remarks

524

sig Signal value

June Function to be executed

subcode Optional subcode to the signal number

The signal function allows a process to choose one of several ways to handle an
interrupt signal from the operating system. The sig argument is the interrupt to which
signal responds; it must be one of the following manifest constants, defined in
SIGNAL.H.

sigValue Description

SIGABRT Abnormal termination

SIGFPE Floating-point error

SIGILL Illegal instruction

SIGINT CTRL+C signal

SIGSEGV Illegal storage access

SIGTERM Termination request

By default, signal terminates the calling program with exit code 3, regardless of
the value of sig.

Note SIGINT is not supported for any Win32 application including Windows NT and
Windows 95. When a CTRL+C interrupt occurs, Win32 operating systems generate a new
thread to specifically handle that interrupt. This can cause a single-thread application such
as UNIX, to become multithreaded, resulting in unexpected behavior.

The June argument is an address to a signal handler that you write, or one of the
manifest constants SIG_DFL or SIG_IGN, also defined in SIGNAL.H. !ffune is a
function, it is installed as the signal handler for the given signal. The signal handler's
prototype requires one formal argument, sig, of type int. The operating system
provides the actual argument through sig when an interrupt occurs; the argument is
the signal that generated the interrupt. Thus you can use the six manifest constants
(listed in the preceding table) inside your signal handler to determine which interrupt
occurred and take appropriate action. For example, you can call signal twice to assign
the same handler to two different signals, then test the sig argument inside the handler
to take different actions based on the signal received.

If you are testing for floating-point exceptions (SIGFPE), June points to a function
that takes an optional second argument that is one of several manifest constants
defined in FLOAT.H of the form FPE_xxx. When a SIGFPE signal occurs, you can
test the value of the second argument to determine the type of floating-point exception
and then take appropriate action. This argument and its possible values are Microsoft
extensions.

For floating-point exceptions, the value of June is not reset upon receiving the signal.
To recover from floating-point exceptions, use setjrnp with longjrnp. If the function
returns, the calling process resumes execution with the floating-point state of the
process left undefined.

If the signal handler returns, the calling process resumes execution immediately
following the point at which it received the interrupt signal. This is true regardless
of the type of signal or operating mode.

Before the specified function is executed, the value of June is set to SIG_DFL. The
next interrupt signal is treated as described for SIG_DFL, unless an intervening call
to signal specifies otherwise. This feature lets you reset signals in the called function.

signal

525

sin, sinh

Because signal-handler routines are usually called asynchronously when an
interrupt occurs, your signal-handler function may get control when a run-time
operation is incomplete and in an unknown state. The list below summarizes
restrictions that determine which functions you can use in your signal-handler
routine.

• Do not issue low-level or STDIO.H 110 routines (such as printf and fread).

• Do not call heap routines or any routine that uses the heap routines (such as
malloc, _strdup, and _putenv). See malloc for more information.

• Do not use any function that generates a system call (e.g., _getcwd, time).

• Do not use longjmp unless the interrupt is caused by a floating-point
exception (i.e., sig is SIGFPE). In this case, first reinitialize the floating-point
package with a call to _fpreset.

• Do not use any overlay routines.

A program must contain floating-point code if it is to trap the SIGFPE exception
with the function. If your program does not have floating-point code and requires
the run-time library's signal-handling code, simply declare a volatile double and
initialize it to zero:

volatile double d - 0.0f;

The SIGILL, SIGSEGV, and SIGTERM signals are not generated under
Windows NT. They are included for ANSI compatibility. Thus you can set signal
handlers for these signals with signal, and you can also explicitly generate these
signals by calling raise.

Signal settings are not preserved in spawned processes created by calls to
_exec or _spawn functions. The signal settings are reset to the default in the
new process.

See Also: abort, _exec Functions, exit, _fpreset, _spawn Functions

sin, sinh

526

Calculate sines and hyperbolic sines.

double sin(double x);
double sinh(double x);

Routine

sin

sinh

Required Header

<math.h>

<math.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
sin returns the sine of x. If x is greater than or equal to 263

, or less than or
equal to _263

, a loss of significance in the result occurs, in which case the
function generates a _TLOSS error and returns an indefinite (same as a
quiet NaN).

sinh returns the hyperbolic sine of x. If the result is too large, sinh sets
errno to ERANGE and returns ±HUGE_ VAL. You can modify error
handling with _math err .

Parameter

Example

Output

x Angle in radians

1* SINCOS.C: This program displays the sine, hyperbolic
* sine, cosine, and hyperbolic cosine of pi I 2.
*1

#include <math.h>
#include <stdio.h>

void maine void)
{

}

double pi == 3.1415926535;
double x, y;

x = pi I 2;
y = sine x);
printf("sin(%f) = %f\n", x, y);
y == sinh(x);
printf("sinhC %f) ~ %f\n",x, y);
y = cos(x);
printf("cos(%f) = %f\n", x, y);
y = cosh(x);
printf("cosh(%f) = %f\n" ,x, y);

sine 1.570796) = 1.000000
sinh(1.570796) == 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) = 2.509178

See Also: acos, asin, atan, cos, tan

sin, sinh

527

_snprintf, _snwprintf

_snprintf, _snwprintf
Write formatted data to a string.

int _snprintf(char *buffer, size_t count, const char *format [, argument] ...);
int _snwprintf(wchar_t *buffer, size_t count, const wchar_t *format [, argument] ...);

Routine

_snprintf

_snwprintf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_snprintf returns the number of bytes stored in buffer, not counting the terminating null
character. If the number of bytes required to store the data exceeds count, then count
bytes of data are stored in buffer and a negative value is returned. _snwprintf returns
the number of wide characters stored in buffer, not counting the terminating null wide
character. If the storage required to store the data exceeds count wide characters, then
count wide characters are stored in buffer and a negative value is returned.

Parameters

Remarks

528

buffer Storage location for output

count Maximum number of characters to store

format Format-control string

argument Optional arguments

The _snprintf function formats and stores count or fewer characters and values
(including a terminating null character that is always appended unless count is zero
or the formatted string length is greater than or equal to count characters) in buffer.
Each argument (if any) is converted and output according to the corresponding format
specification informat. The format consists of ordinary characters and has the same
form and function as the format argument for printf. If copying occurs between
strings that overlap, the behavior is undefined.

_snwprintf is a wide-character version of _snprintf; the pointer arguments to
_snwprintf are wide-character strings. Detection of encoding errors in _snwprintf
may differ from that in _snprintf. _snwprintf, like swprintf, writes output to a string
rather than to a destination of type FILE.

Example

Output

Generic-Text Routine Mappings

TCHAR.H Routine

_sntprintf

_UNICODE & _MBCS
Not Defined

_snprintf

_MBCS Defined _UNICODE Defined

_snprintf _snwprintf

1* SPRINTF.C: This program uses sprintf to format various
* data and place them in the string named buffer.
*/

#include <stdio.h>

void maine void)
(

char buffer[200], s[] = "computer", c '1';
i nt i = 35, j;
float fp = 1.7320534f;

1* Format and print various data: */
j spri ntf(buffer, "\tString: %s\n",
j +- spri ntf(buffer + j, "\tCharacter: %c\n",
j += spri ntf(buffer + j, "\tlnteger: %d\n",
j += spri ntf(buffer + j, "\tReal: %f\n",

s) ;

c) ;

i) ;

fp) ;

printf("Output:\n%s\ncharacter count %d\n", buffer, j);

Output:
String: computer
Character: 1
Integer: 35
Rea 1 : 1.732053

character count = 71

See Also: sprintf, fprintf, printf, scanf, sscanf, vprintf Functions

_sopen, _wsopen
Open a file for sharing.

int _sopen(const char *filename, int oflag, int shflag [, int pmode]);
int _wsopen(const wchar_t *filename, int oflag, int shflag [, int pmode]);

Routine Required Header Optional Headers Compatibility

<io.h> <fcntl.h>, <sys/types.h>, Win 95, Win NT
<sys/stat.h>, <share.h>

_wsopen <io.h> or <wchar.h> <fcntl.h>, <sys/types.h>, Win NT
<sys/stat.h>, <share.h>

_sopen, _ wsopen

529

_sopen, _ wsopen

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a file handle for the opened file. A return value of -I
indicates an error, in which case errno is set to one of the following values:

EACCES Given path is a directory, or file is read-only, but an open-for-writing
operation was attempted.

EEXIST _O_CREAT and _O_EXCL flags were specified, but filename already
exists.

EINVAL Invalid oflag or shflag argument.

EMFILE No more file handles available.

ENOENT File or path not found.

Parameters

Remarks

530

filename Filename

oflag Type of operations allowed

shflag Type of sharing allowed

pmode Permission setting

The _sopen function opens the file specified by filename and prepares the file for
shared reading or writing, as defined by oflag and shflag. _ wsopen is a wide-character
version of _sopen; the filename argument to _ wsopen is a wide-character string.
_ wsopen and _sopen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tsopen

UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_wsopen

The integer expression oflag is formed by combining one or more of the following
manifest constants, defined in the file FCNTL.H. When two or more constants form
the argument oflag, they are combined with the bitwise-OR operator (I).

_O_APPEND Repositions file pointer to end of file before every write operation.

_O_BINARY Opens file in binary (untranslated) mode. (See Copen for a description
of binary mode.)

_O_CREAT Creates and opens new file for writing. Has no effect if file specified by
filename exists. The pmode argument is required when _O_CREAT is specified.

_O_CREAT I_O_SHORT_LIVED Create file as temporary and if possible do not
flush to disk. The pmode argument is required when _O_CREAT is specified.

_O_CREAT I_O_TEMPORARY Create file as temporary; file is deleted when last
file handle is closed. The pmode argument is required when _O_CREAT is
specified.

_O_CREAT I_O_EXCL Returns error value if file specified by filename exists.
Applies only when used with _O_CREAT.

_O_NOINHERIT Prevents creation of a shared file handle.

_O_RANDOM Specifies primarily random access from disk.

_O_RDONLY Opens file for reading only; cannot be specified with _O_RDWR or
_O_WRONLY.

_O_RDWR Opens file for both reading and writing; cannot be specified with
_O_RDONLY or _0_ WRONLY.

_O_SEQUENTIAL Specifies primarily sequential access from disk

_O_TEXT Opens file in text (translated) mode. (For more information, see "Text
and Binary Mode File I/O" and fopen.)

_O_TRUNC Opens file and truncates it to zero length; the file must have write
permission. You cannot specify this flag with _O_RDONLY. _O_TRUNC used
with _O_CREAT opens an existing file or creates a new file.

Warning The _O_TRUNC flag destroys the contents of the specified file.

0 WRONLY Opens file for writing only; cannot be specified with _O_RDONLY
or_O_RDWR.

To specify the file access mode, you must specify either _O_RDONLY, _O_RDWR,
or _0_ WRONLY. There is no default value for the access mode.

The argument shflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H.

_SH_DENYRW Denies read and write access to file

_SH_DENYWR Denies write access to file

_SH_DENYRD Denies read access to file

_SH_DENYNO Permits read and write access

The pmode argument is required only when you specify _O_CREAT. If the file
does not exist, pmode specifies the file's permission settings, which are set when the

_sapen, _ wsapen

531

_sopen, _ wsopen

Example

532

new file is closed the first time. Otherwise pmode is ignored. pmode is an integer
expression that contains one or both of the manifest constants _S_IWRITE and
_S_IREAD, defined in SYS\STAT.H. When both constants are given, th~y are
combined with the bitwise-OR operator. The meaning of pmode is as follows:

_S_IWRITE Writing permitted

_S_IREAD Reading permitted

_S_IREAD I _S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. Under Windows NT and
Windows 95, all files are readable; it is not possible to give write-only permission.
Thus the modes _S_IWRITE and _S_IREAD I _S_IWRITE are equivalent.

_sopen applies the current file-permission mask to pmode before setting the
permissions (see _umask).

1* LOCKING.C: This program opens a file with sharing. It locks
* some bytes before reading them, then unlocks them. Note that the
* program works correctly only if the file exists.
*1

Iii ncl ude <i o. h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/locking.h>
#include <share.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{

int fh, numread;
char buffer[40];

1* Quit if can't open file or system doesn't
* support sharing.
*1

fh = _sopen("locking.c", _O_RDWR, _SH_DENYNO,
S IREAD I _S_IWRITE);

if(fh == -1
exit(1);

1* Lock some bytes and read them. Then unlock. *1
if(_locking(fh, LK_NBLCK, 30L) != -1)
{

printf("No one can change these bytes while I'm reading them\n");
numread = _read(fh, buffer, 30);
printf("%d bytes read: %.30s\n", numread, buffer);

Output

lseek(fh, 0L, SEEK_SET);
_locking(fh, LK_UNLCK, 30L);

pri ntf("Now I'm done. Do what you wi 11 wi th them\n");

else
perror("Locking failed\n");

_close(fh);

No one can change these bytes while I'm reading them
30 bytes read: 1* LOCKING.C: This program ope
Now I'm done. Do what you will with them

See Also: _close, _creat, fopen, _fsopen, _open

_spawn, _ wspawn Functions

_spawn, _wspawn Functions

Remarks

Each of the _spawn functions creates and executes a new process.

_spawnl, _ wspawnl

_spawnle, _ wspawnle

_spawnlp, _ wspawnlp

_spawnlpe, _ wspawnlpe

_spawnv, _ wspawnv

_spawnve, _ wspawnve

_spawnvp, _ wspawnvp

_spawnvpe, _ wspawnvpe

The letter(s) at the end of the function name determine the variation.

_spawn Function
Suffix

e

p

v

Description

envp, array of pointers to environment settings, is passed to new process.

Command-line arguments are passed individually to _spawn function.
This suffix is typically used when number of parameters to new process
is known in advance

PA TH environment variable is used to find file to execute.

argv, array of pointers to command-line arguments, is passed to _spawn
function. This suffix is typically used when number of parameters to new
process is variable.

The _spawn functions each create and execute a new process. They automatically
handle multibyte-character string arguments as appropriate, recognizing multibyte
character sequences according to the multibyte code page currently in use. The
_ wspawn functions are wide-character versions of the _spawn functions; they do
not handle multibyte-character strings. Otherwise, the _ wspawn functions behave
identically to their _spawn counterparts.

533

_spawn, _ wspawn Functions

534

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & -
Not Defined

_tspawnl _spawnl

_tspawnle _spawnle

_tspawnlp _spawnlp

_tspawnlpe _spawnlpe

_tspawnv _spawnv

_tspawnve _spawnve

_tspawnvp _spawnvp

_tspawnvpe _spawnvpe

MBCS - MBCS Defined -

_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp

_spawnvpe

_UNICODE Defined

_wspawnl

_wspawnle

_wspawnlp

_wspawnlpe

_wspawnv

_wspawnve

_wspawnvp

_wspawnvpe

Enough memory must be available for loading and executing the new process. The
mode argument determines the action taken by the calling process before and during
_spawn. The following values for mode are defined in PROCESS.H:

_P _OVERLAY Overlays calling process with new process, destroying the calling
process (same effect as _exec calls).

_P _ WAIT Suspends calling thread until execution of new process is complete
(synchronous _spawn).

_P _NOWAIT or _P _NOWAITO Continues to execute calling process concurrently
with new process (asynchronous _spawn).

_P _DETACH Continues to execute the calling process; new process is run in the
background with no access to the console or keyboard. Calls to _cwait against the
new process will fail (asynchronous _spawn).

The cmdname argument specifies the file that is executed as the new process and can
specify a full path (from the root), a partial path (from the current working directory),
or just a filename. If cmdname does not have a filename extension or does not end
with a period (.), the _spawn function first tries the .COM extension, then the .EXE
extension, the .BAT extension, and finally the .CMD extension.

If cmdname has an extension, only that extension is used. If cmdname ends with a
period, the _spawn call searches for cmdname with no extension. The _spawnlp,
_spawnlpe, _spawnvp, and _spawnvpe functions search for cmdname (using the
same procedures) in the directories specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (that is, if it is a relative path),
the _spawn call searches only for the specified file; no path searching is done.

Note To ensure proper overlay initialization and termination, do not use the setjmp or
longjrnp function to enter or leave an overlay routine.

_spawn, _ wspawn Functions

Arguments for the Spawned Process
To pass arguments to the new process, give one or more pointers to character strings
as arguments in the _spawn call. These character strings form the argument list for
the spawned process. The combined length of the strings forming the argument list
for the new process must not exceed 1024 bytes. The terminating null character ('\0')
for each string is not included in the count, but space characters (automatically
inserted to separate arguments) are included.

You can pass argument pointers as separate arguments (in _spawnl, _spawnle,
_spawnlp, and _spawnlpe) or as an array of pointers (in _spawnv, _spawnve,
_spawnvp, and _spawnvpe). You must pass at least one argument, argO or argv[O],
to the spawned process. By convention, this argument is the name of the program
as you would type it on the command line. A different value does not produce
an error.

The _spawnl, _spawnle, _spawnlp, and _spawnlpe calls are typically used in cases
where the number of arguments is known in advance. The argO argument is usually a
pointer to cmdname. The arguments arg 1 through argn are pointers to the character
strings forming the new argument list. Following argn, there must be a NULL pointer
to mark the end of the argument list.

The _spawnv, _spawnve, _spawnvp, and _spawnvpe calls are useful when there
is a variable number of arguments to the new process. Pointers to the arguments are
passed as an array, argv. The argument argv[O] is usually a pointer to a path in real
mode or to the program name in protected mode, and argv[1] through argv[n] are
pointers to the character strings forming the new argument list. The argument
argv[n + 1] must be a NULL pointer to mark the end of the argument list.

Environment of the Spawned Process
Files that are open when a _spawn call is made remain open in the new process. In
the _spawnl, _spawnlp, _spawnv, and _spawnvp calls, the new process inherits the
environment of the calling process. You can use the _spawnle, _spawnlpe, _spawnve,
and _spawnvpe calls to alter the environment for the new process by passing a list
of environment settings through the envp argument. The argument envp is an array
of character pointers, each element (except the final element) of which points to a
null-terminated string defining an environment variable. Such a string usually has
the form NAME=value where NAME is the name of an environment variable and
value is the string value to which that variable is set. (Note that value is not enclosed
in double quotation marks.) The final element of the envp array should be NULL.
When envp itself is NULL, the spawned process inherits the environment settings
of the parent process.

The _spawn functions can pass all information about open files, including the
translation mode, to the new process. This information is passed in real mode through

535

_spawn, _ wspawn Functions

Example

536

the C_FILE_INFO entry in the environment. The startup code normally processes
this entry and then deletes it from the environment. However, if a _spawn function
spawns a non-C process, this entry remains in the environment. Printing the
environment shows graphics characters in the definition string for this entry because
the environment information is passed in binary form in real mode. It should not
have any other effect on normal operations. In protected mode, the environment
information is passed in text form and therefore contains no graphics characters.

You must explicitly flush (using fflush or _flushall) or close any stream before
calling a _spawn function.

You can control whether the open file information of a process is passed to
its spawned processes. The external variable _fileinfo (declared in STDLIB.H)
controls the passing of C_FILE_INFO information. If _fileinfo is 0 (the default),
the C_FILE_INFO information is not passed to the new processes. If _fileinfo is
not 0, C_FILE_INFO is passed to new processes. You can modify the default
value of _fileinfo in one of two ways: link the supplied object file, FILEINFO.OBJ,
into the program, or set the _file info variable to a nonzero value directly in the
C program.

New processes created by calls to _spawn routines do not preserve signal settings.
Instead, the spawned process resets signal settings to the default.

/* SPAWN.C: This program accepts a number in the range
* 1-8 from the command line. Based on the number it receives,
* it executes one of the eight different procedures that
* spawn the process named child. For some of these procedures,
* the CHILD.EXE file must be in the same directory: for
* others, it only has to be in the same path.
*/

#include <stdio.h>
#include <process.h>

char *my_env[] =
{

} :

"TH I S=envi ronment wi 11 be",
"PASSED=to child.exe by the",
"_SPAWNLE=and",
"_SPAWNLPE=and",
"_SPAWNVE=and",
"_SPAWNVPE=functions",
NULL

void main(int argc, char *argv[])
{

char *args[4]:

Output

_spawn, _wspawn Functions

/* Set up parameters to be sent: */
args[0] ... "child":
args[1] = "spawn??":
args[2] "two":
args[3] = NULL:

if (argc <= 2)
{

pri ntf("SYNTAX: SPAWN <1-8> <chil dprogram>\n"):
exit(1):

switch (argv[I][0])
{

case '1':

/* Based on first letter of argument */

_spawnl(_P_WAIT. argv[2]. argv[2]. "_spawnl". "two". NULL):
break:

case '2':
_spawnl e(_P _WAIT. argv[2]. argv[2], "_spawnl e". "two".

NULL. my_env):
break;

case '3':
_spawnlp(_P_WAIT. argv[2]. argv[2]. "_spawnlp". "two". NULL):
break:

case '4':
_spawnlpe(_P_WAIT. argv[2]. argv[2]. "_spawnlpe". "two".

NULL. my_env);
break:

case '5':
_spawnv(_P_OVERLAY. argv[2]. args):
break:

case '6':
_spawnve(_P_OVERLAY. argv[2]. args. my_env):
break:

case '7':
_spawnvp(_P_OVERLAY. argv[2]. args):
break:

case '8':
_spawnvpe(_P_OVERLAY. argv[2]. args. my_env):
break:

default :
printf("SYNTAX: SPAWN <1-8> <childprogram>\n"):
exit(1):

pri ntf("from SPAWN! \n"):

SYNTAX: SPAWN <1-8> <childprogram>

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

537

_spawn, _ wspawn Functions

_spawnl, _ wspawnl
Create and execute a new process.

int _spawnl(int mode, const char *cmdname, const char *argO,
"+ const char *argl, ... const char *argn, NULL);

int _wspawnl(int mode, const wchar_t *cmdname, const wchar_t *argO,
"+ const wchar_t *argl, ... const wchar_t *argn, NULL);

Routine

_spawnl

_wspawnl

Required Header

<process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value from a synchronous _spawnl or _ wspawnl CP _ WAIT specified for
mode) is the exit status of the new process. The return value from an asynchronous
_spawnl or _wspawnl CP _NOWAIT or _P _NOWAITO specified for mode) is the
process handle. The exit status is 0 if the process terminated normally. You can set the
exit status to a nonzero value if the spawned process specifically calls the exit routine
with a nonzero argument. If the new process did not explicitly set a positive exit
status, a positive exit status indicates an abnormal exit with an abort or an interrupt.
A return value of -1 indicates an error (the new process is not started). In this case,
errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

538

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

Each of these functions creates and executes a new process, passing each
command-line argument as a separate parameter.

_spawn, _ wspawn Functions

Example

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_spawnle, _ wspawnle
Create and execute a new process.

int _spawnle(int mode, const char *cmdname, const char *argO,
... const char *arg 1, ... const char *argn, NULL, const char *const *envp);

int _wspawnle(int mode, const wchar_t *cmdname, const wchar_t *argO,
... const wchar_t *argl, ... const wchar_t *argn, NULL,
... const wchar_t *const *envp);

Routine

_spawnle

_wspawnle

Required Header

<process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

The return value from a synchronous _spawnle or _ wspawnle CP _ WAIT specified
for mode) is the exit status of the new process. The return value from an asynchronous
_spawnle or _wspawnle CP _NOWAIT or _P _NOW AlTO specified for mode) is the
process handle. The exit status is 0 if the process terminated normally. You can set the
exit status to a nonzero value if the spawned process specifically calls the exit routine
with a nonzero argument. If the new process did not explicitly set a positive exit
status, a positive exit status indicates an abnormal exit with an abort or an interrupt.
A return value of -1 indicates an error (the new process is not started). In this case,
errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

539

_spawn, _ wspawn Functions

Parameters

Remarks

Example

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing each
command-line argument as a separate parameter and also passing an array of
pointers to environment settings.

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_spawnlp, _ wspawnlp
Create and execute a new process.

int _spawnlp(int mode, const char *cmdname, const char *argO,
... const char *argl, ... const char *argn, NULL);

int _wspawnlp(int mode, const wchar_t *cmdname, const wchar_t *argO,
... const wchar_t *argl, ... const wchar_t *argn, NULL);

Routine

_spawnlp

_wspawnlp

Required Header

<process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

540

The return value from a synchronous _spawnlp or _ wspawnlp CP _WAIT specified
for mode) is the exit status of the new process. The return value from an asynchronous
_spawnlp or _wspawnlp CP _NOWAIT or _P _NOWAITO specified fo mode) is the
process handle. The exit status is 0 if the process terminated normally. You can set the
exit status to a nonzero value if the spawned process specifically calls the exit routine
with a nonzero argument. If the new process did not explicitly set a positive exit status,
a positive exit status indicates an abnormal exit with an abort or an interrupt. A return

_spawn, _ wspawn Functions

value of -1 indicates an error (the new process is not started). In this case, errno is set
to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

Example

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

Each of these functions creates and executes a new process, passing each
command-line argument as a separate parameter and using the PATH
environment variable to find the file to execute.

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_spawnlpe, _ wspawnlpe
Create and execute a new process.

int _spawnlpe(int mode, const char *cmdname, const char *argO,
.. const char *argl, ... const char *argn, NULL, const char *const *envp);

int _wspawnlpe(int mode, const wchar_t *cmdname, const wchar_t *argO,
.. const wchar_t *argl, ... const wchar_t *argn, NULL, const wchar_t *const *envp);

Routine

_spawnlpe

_wspawnlpe

Required Header

<process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

541

_spawn, _ wspawn Functions

Return Value
The return value from a synchronous _spawnlpe or _wspawnlpe CP _WAIT
specified for mode) is the exit status of the new process. The return value from
an asynchronous _spawnlpe or _wspawnlpe CP _NOWAIT or _P _NOW AlTO
specified for mode) is the process handle. The exit status is 0 if the process terminated
normally. You can set the exit status to a nonzero value if the spawned process
specifically calls the exit routine with a nonzero argument. If the new process did
not explicitly set a positive exit status, a positive exit status indicates an abnormal
exit with an abort or an interrupt. A return value of -1 indicates an error (the new
process is not started). In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file
format

EN OM EM Not enough memory is available to execute new process

Parameters

Remarks

Example

mode Execution mode for calling process

cmdname Path of file to be executed

argO, ... argn List of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing each
command-line argument as a separate parameter and also passing an array of
pointers to environment settings. These functions use the PATH environment
variable to find the file to execute.

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_spawnv, _ wspawnv
Create and execute a new process.

int _spawnv(int mode, const char *cmdname, const char *const *argv);
int _wspawnv(int mode, const wchar_t *cmdname, const wchar_t *const *argv);

542

_spawn, _ wspawn Functions

Routine

_spawnv

_wspawnv

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value from a synchronous _spawnv or _wspawnv CP _WAIT specified
for mode) is the exit status of the new process. The return value from an asynchronous
_spawnv or _wspawnv CP _NOWAIT or _P _NOWAITO specified for mode) is
the process handle. The exit status is 0 if the process terminated normally. You Can
set the exit status to a nonzero value if the spawned process specifically calls the
exit routine with a nonzero argument. If the new process did not explicitly set a
positive exit status, a positive exit status indicates an abnormal exit with an abort
or an interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file
format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

Example

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments.

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

543

_spawn, _ wspawn Functions

_spawnve, _ wspawnve
Create and execute a new process.

int _spawnve(int mode, const char *cmdname, const char *const *argv,
... const char *const *envp);

int _wspawnve(int mode, const wchar_t *cmdname, const wchar_t *const *argv,
... const wchar_t *const *envp);

Routine

_spawnve

_wspawnve

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.LIB

MSVCRT.UB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value from a synchronous _spawnve or _ wspawnve CP _ WAIT specified
for mode) is the exit status of the new process. The return value from an asynchronous
_spawnve or _wspawnve CP _NOWAIT or _P _NOWAITO specified for mode) is the
process handle. The exit status is 0 if the process terminated normally. You can set the
exit status to a nonzero value if the spawned process specifically calls the exit routine
with a nonzero argument. If the new process did not explicitly set a positive exit status,
a positive exit status indicates an abnormal exit with an abort or an interrupt. A return
value of -1 indicates an error (the new process is not started). In this case, errno is set
to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

544

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

envp Array of pointers to environment settings

_spawn, _wspawn Functions

Remarks

Example

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments and an array of pointers to environment settings.

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_spawnvp, _ wspawnvp
Create and execute a new process.

int _spawnvp(int mode, const char *cmdname, const char *const *argv);
int _wspawnvp(int mode, const wchar_t *cmdllame, const wchar_t *const *argv);

Routine

_spawnvp

_wspawnvp

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

The return value from a synchronous _spawnvp or _ wspawnvp CP _ WAIT specified
for mode) is the exit status of the new process. The return value from an asynchronous
_spawnvp or _wspawnvp CP _NOWAIT or _P _NOWAITO specified for mode) is
the process handle. The exit status is 0 if the process terminated normally. You can set
the exit status to a nonzero value if the spawned process specifically calls the exit
routine with a nonzero argument. If the new process did not explicitly set a positive
exit status, a positive exit status indicates an abnormal exit with an abort or an
interrupt. A return value of -1 indicates an error (the new process is not started).
In this case, errno is set to one of the following values:

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

545

_spawn, _ wspawn Functions

Parameters

Remarks

Example

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments and using the the PATH environment variable to
find the file to execute.

See Also: abort, atexit, _exec Functions, exit, _flushall, ~etmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_spawnvpe, _ wspawnvpe
Create and execute a new process.

int _spawnvpe(int mode, const char *cmdname, const char *const *argv,
.. const char *const *envp);

int _wspawnvpe(int mode, const wchar_t *cmdname, const wchar_t *const *argv,
.. const wchar_t *const *envp);

Routine

_spawnvpe

_wspawnvpe

Required Header

<stdio.h> or <process.h>

<stdio.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

546

The return value from a synchronous _spawnvpe or _wspawnvpe LP _WAIT specified
for mode) is the exit status of the new process. The return value from an asynchronous
_spawnvpe or _wspawnvpe LP _NOWAIT or _P _NOWAITO specified for mode)
is the process handle. The exit status is 0 if the process terminated normally. You can
set the exit status to a nonzero value if the spawned process specifically calls the exit
routine with a nonzero argument. If the new process did not explicitly set a positive exit
status, a positive exit status indicates an abnormal exit with an abort or an interrupt.
A return value of -1 indicates an error (the new process is not started). In this case,
errno is set to one of the following values:

_splitpath, _ wsplitpath

E2BIG Argument list exceeds 1024 bytes

EINVAL mode argument is invalid

ENOENT File or path is not found

ENOEXEC Specified file is not executable or has invalid executable-file format

ENOMEM Not enough memory is available to execute new process

Parameters

Remarks

Example

mode Execution mode for calling process

cmdname Path of file to be executed

argv Array of pointers to arguments

envp Array of pointers to environment settings

Each of these functions creates and executes a new process, passing an array of
pointers to command-line arguments and an array of pointers to environment
settings. These functions use the PATH environment variable to find the file
to execute.

See Also: abort, atexit, _exec Functions, exit, _flushall, _getmbcp, _onexit,
_setmbcp, system

See Example on page 536.

_splitpath, _wsplitpath
Break a path name into components.

void _splitpath(const char *path, char *drive, char *dir, char *fname, char *ext);
void _wsplitpath(const wchar_t *path, wchar_t *drive, wchar_t *dir,

"+ wchar_t *fname, wchar_t *ext);

Routine

_splitpath

_ wsplitpath

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

547

_splitpath, _ wsplitpath

Return Value
None

Parameters

Remarks

Example

548

path Full path

drive Optional drive letter, followed by a colon (:)

dir Optional directory path, including trailing slash. Forward slashes (I),
backslashes (\), or both may be used.

fname Base filename (no extension)

ext Optional filename extension, including leading period (.)

The _splitpath function breaks a path into its four components. _splitpath
automatically handles multibyte-character string arguments as appropriate, recognizing
multibyte-character sequences according to the multi byte code page currently in use.
_ wsplitpath is a wide-character version of _splitpath; the arguments to _ wsplitpath
are wide-character strings. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tsplitpath

_UNICODE & _MBCS
Not Defined

_splitpath

_MBCS Defined _UNICODE Defined

_splitpath _ wsplitpath

Each argument is stored in a buffer; the manifest constants _MAX_DRIVE,
_MAX_DIR, _MAX_FNAME, and _MAX_EXT (defined in STDLIB.H) specify
the maximum size necessary for each buffer. The other arguments point to buffers
used to store the path elements. After a call to _splitpath is executed, these arguments
contain empty strings for components not found in path. You can pass a NULL
pointer to _splitpath for any component you don't need.

1* MAKEPATH.C *1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char path_buffer[_MAX_PATHJ;
char drive[_MAX_DRIVEJ;
char dir[_MAX_DIRJ;
char fname[_MAX_FNAMEJ;
char ext[_MAX_EXTJ;

_makepath(path_buffer, "c", "\\sample\\crt\\", "makepath", "c");
printf("Path created with _makepath: %s\n\n", path_buffer);
_splitpath(path_buffer, drive, dir, fname, ext);

Output

pri ntf("Path extracted wi th _spl i tpath: \n");
printf(" Drive: %s\n". drive);
printf(" Dir: %s\n". dir);
printf(" Filename: %s\n". fname);
printf(" Ext: %s\n". ext);

Path created with _makepath: c:\sample\crt\makepath.c

Path extracted with _splitpath:
Drive: c:
Dir: \sample\crt\
Filename: makepath
Ext: . c

See Also: _full path, _getmbcp, _makepath, _setmbcp

sprintf, swprintf
Write formatted data to a string.

int sprintf(char *buffer, const char -;"format [, argument] ...);
int swprintf(wchar_t *buffer, const wchar_t *format [, argument] ...);

Routine

sprintf

swprintf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.LIB

MSYCRT.UB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

sprintf returns the number of bytes stored in buffer, not counting the terminating
null character. swprintf returns the number of wide characters stored in buffer,
not counting the terminating null wide character.

Parameters
buffer Storage location for output

format Format-control string

argument Optional arguments

For more information, see "Format Specifications" on page 463.

sprintf, swprintf

549

sprintf, swprintf

Remarks

Example

Output

550

The sprintf function formats and stores a series of characters and values in buffer.
Each argument (if any) is converted and output according to the corresponding format
specification informat. The format consists of ordinary characters and has the same
form and function as the format argument for printf. A null character is appended
after the last character written. If copying occurs between strings that overlap, the
behavior is undefined.

swprintf is a wide-character version of sprintf; the pointer arguments to swprintf are
wide-character strings. Detection of encoding errors in swprintf may differ from that
in sprintf. swprintf and fwprintf behave identically except that swprintf writes
output to a string rather than to a destination of type FILE.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined
Not Defined

_stprintf sprintf sprintf

/* SPRINTF.C: This program uses sprintf to format various
* data and place them in the string named buffer.
*/

#include <stdio.h>

void main(void)
{

char buffer[200], s[]
i nt i = 35, j:
float fp = 1.7320534f:

"computer", c

/* Format and print various data: */
j sprintf(buffer, "\tString:
j += sprintf(buffer + j, "\tCharacter:
j += sprintf(buffer + j, "\tInteger:
j += spri ntf(buffer + j , "\tReal:

'" ;

%s\n", s) :
%c\n", c) :
%d\n", i) :
%f\n", fp) :

UNICODE Defined

swprintf

printf("Output:\n%s\ncharacter count = %d\n", buffer, j):

Output:
String:
Character:
Integer:
Rea 1 :

computer
1
35
1.732053

character count = 71

See Also: _snprintf, fprintf, printf, scanf, sscanf, vprintf Functions

sqrt
Calculates the square root.

double sqrt(double x);

Routine Required Header Compatibility

sqrt <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The sqrt function returns the square-root of x. If x is negative, sqrt returns an
indefinite (same as a quiet NaN). You can modify error handling with _matherr.

Parameter

Example

Output

x Nonnegative floating-point value

/* SQRT.C: This program calculates a square root. */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
(

double question - 45.35, answer;

answer = sqrt(question);
if(question < 0)

printf("Error: sqrt returns %.2f\n, answer");
else

printf("The square root of %.2f is %.2f\n", question, answer);

The square root of 45.35 is 6.73

See Also: exp, log, pow

sqrt

551

srand

srand
Sets a random starting point.

void srand(unsigned int seed);

Routine Required Header Compatibility

srand <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Parameter

Remarks

Example

552

seed Seed for random-number generation

The srand function sets the starting point for generating a series of pseudorandom
integers. To reinitialize the generator, use I as the seed argument. Any other value for
seed sets the generator to a random starting point. rand retrieves the pseudorandom
numbers that are generated. Calling rand before any call to srand generates the same
sequence as calling srand with seed passed as 1.

1* RAND.C: This program seeds the random-number generator
* with the time, then displays 10 random integers.
*1

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void maine void)
{

i nt i:

1* Seed the random-number generator with current time so that
* the numbers will be different every time we run.
*/

srand((unsigned)time(NULL)):

1* Display 10 numbers. *1
fore i = 0: i < 10:i++)

printf(" %6d\n", rand()):

Output
6929
8026

21987
30734
20587

6699
22034
25051

7988
10104

See Also: rand

sscanf, swscanf
Read formatted data from a string.

int sscanf(const char *buffer, const char *format [, argument] ...);
int swscanf(const wchar_t *buffer, const wchar_t *format [, argument] ...);

Routine

sscanf

swscanf

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned.
A return value of 0 indicates that no fields were assigned. The return value is EOF
for an error or if the end of the string is reached before the first conversion.

Parameters
buffer Stored data

format Format-control string

argument Optional arguments

For more information, see "Format Specifications" on page 495.

sscanf, swscanf

553

sscanf, swscanf

Remarks

Example

Output

554

The sscanf function reads data from buffer into the location given by each argument.
Every argument must be a pointer to a variable with a type that corresponds to a type
specifier in format. The format argument controls the interpretation of the input fields
and has the same form and function as the format argument for the scanf function; see
scanf for a complete description of format. If copying takes place between strings that
overlap, the behavior is undefined.

swscanf is a wide-character version of sscanf; the arguments to swscanf are
wide-character strings. sscanf does not handle multibyte hexadecimal characters.
swscanf does not handle Unicode fullwidth hexadecimal or "compatibility zone"
characters. Otherwise, swscanf and sscanf behave identically.

Generic-Text Routine Mappings

TCHAR.H Routine

_stscanf

_UNICODE & _MBCS
Not Defined

sscanf

_MBCS Defined _UNICODE Defined

sscanf swscanf

/* SSCANF.C: This program uses sscanf to read data items
* from a string named tokenstring, then displays them.
*/

#include <stdio.h>

void maine void)
{

char tokenstring[] == "15 12 14 ... ";
char s[81];
char c;
i nt i ;
float fp;

/* Input various data from tokenstring: */
sscanf(tokenstri ng, "%s", s);
sscanf(tokenstring, "%c", &c);
sscanf(tokenstri ng, "%d", &i);
sscanf(tokenstring. "%f", &fp);

/* Output the data read */
printf("String == %s\n", s);
printf("Character == %c\n", c);
printf("Integer: == %d\n", i);
printf("Real: = %f\n", fp);

Stri ng 15
Character 1
Integer: 15
Real: == 15.000000

_stat, _ wstat, _stati64, _ wstati64

See Also: fscanf, scanf, sprintf, _snprintf

_stat, _wstat, _stati64, wstati64
Get status information on a file.

int _state const char *path, struct _stat *buffer);
_int64 _stati64(const char *path, struct _stat *buffer);
int _ wstat(const wchar_t *path, struct _stat *buffer);
_int64 _wstati64(const wchar_t *path, struct _stat *buffer);

Routine Required Header Optional Headers

- stat <sys/types.h> followed by <errno.h>
<sys/stat.h>

- wstat <sys/types.h> followed by <ermo.h>
<sys/stat.h> or <wchar.h>

- stati64 <sys/types.h> followed by <errno.h>
<sys/stat.h>

- wstati64 <sys/types.h> followed by <errno.h>
<sys/stat.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns 0 if the file-status information is obtained. A return
value of -1 indicates an error, in which case errno is set to ENOENT, indicating that
the filename or path could not be found.

Parameters

Remarks

path Path of existing file

buffer Pointer to structure that stores results

The _stat function obtains information about the file or directory specified by
path and stores it in the structure pointed to by buffer. _stat automatically handles
multibyte-character string arguments as appropriate, recognizing multibyte-character
sequences according to the multibyte code page currently in use.

555

_stat, _ wstat, _stati64, _ wstati64

Example

556

_ wstat is a wide-character version of _stat; the path argument to _ wstat is a
wide-character string. _ wstat and _stat behave identically except that _ wstat does
not handle multi byte-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & MBCS MBCS Defined UNICODE Defined - - - -
Not Defined

tstat stat stat wstat - - - -
_tstati64 - stati64 - stati64 - wstati64

The _stat structure, defined in SYS \ STAT. H, includes the following fields.

gid Numeric identifier of group that owns file (UNIX-specific)

sCatime Time of last access of file.

sCctime Time of creation of file.

sCdev Drive number of the disk containing the file (same as sCrdev).

sCino Number of the information node (the inode) for the file (UNIX-specific). On
UNIX file systems, the inode describes the file date and time stamps, permissions,
and content. When files are soft-linked to one another, they share the same inode.
The inode, and therefore st_ino, has no meaning in the FAT, HPFS, or NTFS file
systems.

sCmode Bit mask for file-mode information. The _S_IFDIR bit is set if path specifies
a directory; the _S_IFREG bit is set if path specifies an ordinary file or a device.
User read/write bits are set according to the file's permission mode; user execute bits
are set according to the filename extension.

st_mtime Time of last modification of file.

sCnlink Always I on non-NTFS file systems.

sCrdev Drive number of the disk containing the file (same as sCdev).

sCsize Size of the file in bytes; a 64-bit integer for _stati64 and _ wstati64

uid Numeric identifier of user who owns file (UNIX-specific)

If path refers to a device, the size, time, _dey, and _rdev fields in the _stat structure
are meaningless. Because STAT.H uses the _dev_t type that is defined in TYPES.H,
you must include TYPES.H before STAT.H in your code.

/* STAT.C: This program uses the _stat function to
* report information about the file named STAT.C.
*/

#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

Output

void main(void
{

}

struct stat buf;
int result;
char buffer[] ... "A line to output";

/* Get data associated with "stat.c": */
result-_stat("stat.c", &buf);

/* Check if statistics are valid: */
if(result != 0)

perror("Problem getting information");
else
{

/* Output some of the statistics: */
printf("File size %ld\n", buf.st_size);
printf("Drive %c:\n", buf.st_dev + 'A');
printf("Time modified %5", ctime(&buf.st atime);

File size 745
Drive C:
Time modified Tue May 03 00:00:00 1994

See Also: _access, _fstat, _getmbcp, _setmbcp

_status87, _statusfp
Get the floating point status word.

unsigned int _status87{ void);
unsigned int _statusfp{ void);

Routine

_status87

_statusfp

Required Header

<f1oat.h>

<f1oat.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

The bits in the value returned indicate the floating-point status. See the FLOAT.H
include file for a complete definition of the bits returned by _status87.

_status87, _statusfp

557

_status87, _statusfp

Remarks

Example

Output

558

Many math library functions modify the 8087/80287 status word, with unpredictable
results. Return values from _clear87 and _status87 are more reliable if fewer
floating-point operations are performed between known states of the floating-point
status word.

The _status87 function gets the floating-point status word. The status word is a
combination of the 8087/80287/80387 status word and other conditions detected by
the 8087/80287/80387 exception handler, such as floating-point stack overflow and
underflow. Unmasked exceptions are checked for before returning the contents of the
status word. This means that the caller is informed of pending exceptions.

_statusfp is a platform-independent, portable version of _status87. It is identical to
_status87 on Intel (x86) platforms and is also supported by the MIPS platform. To
ensure that your floating-point code is portable to MIPS, use _statusfp. If you are
only targeting x86 platforms, use either _status87 or _statusfp.

1* STATUS87.C: This program creates various floating-point errors and
* then uses _status87 to display messages indicating these problems.
* Compile this program with optimizations disabled (lad). Otherwise,
* the optimizer removes the code related to the unused floating-
* point values.
*1

#include <stdio.h>
#include <float.h>

void main(void)
{

double a - le-40, b;
float x, y;

printf("Status -= %.4x - clear\n",_status87());

1* ASSignment into y is inexact & underflows: *1
y == a;
pri ntf("Status == %. 4x - inexact, underfl ow\n", _status87 ());

1* y is denormal: *1
b = y;
printf("Status = %.4x - inexact underflow, denormal\n",

_status87 ());

1* Clear user 8087: *1
_clear87();

Status -= 0000 - clear
Status == 0003 - inexact, underflow
Status = 80003 - inexact underflow, denormal

See Also: _c1ear87, _contro187

strcat, wcscat, mbscat
Append a string.

char *strcat(char *strDestination, const char *strSource);
wchar_t *wcscat(wchar_t *strDestination, const wchar_t *strSollrce);
unsigned char * _mbscat(unsigned char * strDestination,

... const unsigned char *strSource);

Routine Required Header Compatibility

strcat <string.h> ANSI, Win 95, Win NT

wcscat <string.h> or <wchar.h> ANSI, Win 95, Win NT

- mbscat <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the destination string (strDestination). No return
value is reserved to indicate an error.

Parameters

Remarks

strDestination Null-terminated destination string

strSource Null-terminated source string

The strcat function appends strSource to strDestination and terminates the
resulting string with a null character. The initial character of strSource overwrites
the terminating null character of strDestination. No overflow checking is performed
when strings are copied or appended. The behavior of strcat is undefined if the
source and destination strings overlap.

wcscat and _mbscat are wide-character and multibyte-character versions of
strcat. The arguments and return value of wcscat are wide-character strings;
those of _mbscat are multibyte-character strings. These three functions behave
identically otherwise.

strcat, we scat, _mbscat

559

strchr, wcschr, _mbschr

Example

Output

Generic-Text Routine Mappings

TCHAR.H Routine

_tcscat

_UNICODE & _MBCS
Not Defined

strcat

/* STRCPV.C: This program uses strcpy
* and strcat to build a phrase.
*/

#include <string.h>
#include <stdio.h>

void maine void)
{

char string[80];

_MBCS Defined

_mbscat

strcpy(string. "Hello world from");
strcat(string. "strcpy ");
strcat(stri ng. "and");
strcat(string. "strcat!");
printf("String = %s\n". string);

String = Hello world from strcpy and strcat!

See Also: strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

_UNICODE Defined

wcscat

strchr, wcschr, mbschr

560

Find a character in a string.

char *strchr(const char *string, int c);
wchar_t *wcschr(const wchar_t *string, winet c);
unsigned char * _mhschr(const unsigned char *string, unsigned int c);

Routine

strchr

wcschr

_mbschr

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

strchr, wcschr, _mbschr

Return Value
Each of these functions returns a pointer to the first occurrence of c in string, or
NULL if c is not found.

Parameters

Remarks

Example

string Null-terminated source string

c Character to be located

The strchr function finds the first occurrence of c in string, or it returns NULL if cis
not found. The null-terminating character is included in the search.

wcschr and _mbschr are wide-character and multibyte-character versions of strchr.
The arguments and return value of wcschr are wide-character strings; those of _mbschr
are multi byte-character strings. _mbschr recognizes multibyte-character sequences
according to the multi byte code page currently in use. These three functions behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcschr

_UNICODE & _MBCS
Not Defined

strchr

_MBCS Defined _UNICODE Defined

_mbschr wcschr

/* STRCHR.C: This program illustrates searching for a character
* with strchr (search forward) or strrchr (search backward).
*/

#include <string.h>
#include <stdio.h>

int ch = 'r';

char string[] = "The quick brown dog jumps over the lazy fox";
char fmtl[] 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

void maine void
(

char *pdest;
int result;

printf("String to be searched: \n\t\t%s\n". string);
printf("\t\t%s\n\t\t%s\n\n". fmt1. fmt2);
printf("Search char:\t%c\n". ch);

561

strcmp, wcscmp, _mbscmp

Output

1* Search forward. *1
pdest = strchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tfirst %c found at position %d\n\n",
ch, result);

else
printf("Result:\t%c not found\n");

1* Search backward. *1
pdest = strrchr(string, ch);
result ~ pdest - string + 1;
if(pdest != NULL)

printf("Result:\tlast %c found at position %d\n\n", ch, result);
else

printf("Result:\t%c not found\n");

String to be searched:
The quick brown dog jumps over the lazy fox

1 2 3 4 5
12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result: last r found at position 30

See Also: strcspn, strncat, strncmp, strncpy, _strnicmp, strpbrk, strrchr, strstr

strcmp, wcscmp, _mbscmp

562

Compare strings.

int strcmp(const char *stringl, const char *string2);
int wcscmp(const wchar_t *stringJ, const wchar_t *string2);
int _mbscmp(const unsigned char *stringl, const unsigned char *string2);

Routine Required Header Compatibility

strcmp <string.h> ANSI, Win 95, Win NT

wcscmp <string.h> or <wchar.h> ANSI, Win 95, Win NT

_mhscmp <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

strcmp, wcscmp, _mbscmp

Return Value
The return value for each of these functions indicates the lexicographic relation of
string} to string2.

Value Relationship of string1 to string2

<0

o
>0

string1less than string2

string 1 identical to string2

string1 greater than string2

On an error, _mhscmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

string}, string2 Null-terminated strings to compare

The strcmp function compares string} and string2lexicographically and returns a
value indicating their relationship. wcscmp and _mhscmp are wide-character and
multi byte-character versions of strcmp. The arguments and return value of wcscmp
are wide-character strings; those of _mhscmp are multi byte-character strings.
_mhscmp recognizes multibyte-character sequences according to the current
multibyte code page and returns _NLSCMPERROR on an error. (For more
information, see "Code Pages" on page 22 in Chapter I.) These three functions
behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcscmp

_UNICODE & _MBCS
Not Defined

strcmp

_MBCS Defined _UNICODE Defined

_mbscmp wcscmp

The strcmp functions differ from the strcoll functions in that strcmp comparisons are
not affected by locale, whereas the manner of strcoll comparisons is determined by
the LC_COLLATE category of the current locale. For more information on the
LC_COLLATE category, see setlocale.

In the "C" locale, the order of characters in the character set (ASCII character set) is
the same as the lexicographic character order. However, in other locales, the order of
characters in the character set may differ from the lexicographic order. For example, in
certain European locales, the character 'a' (value Ox61) precedes the character 'a' (value
OxE4) in the character set, but the character 'a' precedes the character 'a'
lexicographically.

In locales for which the character set and the lexicographic character order differ, use
strcoll rather than strcmp for lexicographic comparison of strings according to the
LC_COLLATE category setting of the current locale. Thus, to perform a lexicographic
comparison of the locale in the above example, use strcoll rather than strcmp.
Alternatively, you can use strxfrm on the original strings, then use strcmp on the
resulting strings.

563

strcmp, wcscmp, _mhscmp

Example

Output

564

_stricmp, _ wcsicmp, and _mbsicmp compare strings by first converting them to their
lowercase forms. Two strings containing characters located between 'Z' and 'a' in the
ASCII table C[', '\', ,]" 11\1, '_', and "') compare differently, depending on their case. For
example, the two strings "ABCDE" and "ABCD"" compare one way if the comparison is
lowercase ("abcde" > "abcd"") and the other way ("ABCDE" < "ABCD"") if the
comparison is uppercase.

/* STRCMP.C */

#include <string.h>
#include <stdio.h>

char stringl[]
char string2[]

void maine void)
{

char tmp[20];
int result;

"The quick brown dog jumps over the lazy fox";
"The QUICK brown dog jumps over the lazy fox";

/* Case sensitive */
printf("Compare strings:\n\t%s\n\t%s\n\n". stringl. string2);
result = strcmp(stringl. string2);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
pri ntf("\ tstrcmp: Stri ng 1 is %s stri ng 2\n". tmp);
/* Case insensitive (could use equivalent _stricmp) */
result = _stricmp(stringl. string2);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("\t_stricmp: String 1 is %s string 2\n". tmp);

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown dog jumps over the lazy fox

strcmp:
_stricmp:

String 1 is greater than string 2
String 1 is equal to string 2

See Also: memcmp, _memicmp, strcoll Functions, _stricmp, strncmp,
_strnicmp, strrchr, strspn, strxfrm

strcoll Functions

Remarks

Each of the strcoll and wcscoll functions compares two strings according to the
LC_COLLATE category setting of the locale code page currently in use. Each of
the _mbscoll functions compares two strings according to the multibyte code page
currently in use. Use the colI functions for string comparisons when there is a
difference between the character set order and the lexicographic character order
in the current code page and this difference is of interest for the comparison. Use
the corresponding cmp functions to test only for string equality.

strcoll Functions

SBCS Unicode

strcoll wcscoll

stricoll wcsicoll - -
strncoll wcsncoll - -
strllicoll wcsnicoll - -

MBCS

mbscoll -

mbsicoll -

mbsncoll -
mbsnicoll -

Description

Collate two strings

Collate two strings (case insensitive)

Collate first count characters of two strings

Collate first COllnt characters of two strings
(case-insensitive)

The single-byte character (SBCS) versions of these functions (strcoll, stricoll, _strncoll,
and _strnicoll) compare string1 and string2 according to the LC_COLLATE category
setting of the current locale. These functions differ from the corresponding strcmp
functions in that the strcoll functions use locale code page information that provides
collating sequences. For string comparisons in locales in which the character set order
and the lexicographic character order differ, the strcoll functions should be used rather
than the corresponding strcmp functions. For more information on LC_COLLATE,
see setlocale.

For some code pages and corresponding character sets, the order of characters in the
character set may differ from the lexicographic character order. In the "C" locale, this
is not the case: the order of characters in the ASCII character set is the same as the
lexicographic order of the characters. However, in certain European code pages, for
example, the character 'a' (value Ox61) precedes the character 'a' (value OxE4) in the
character set, but the character 'a' precedes the character 'a' lexicographically. To
perform a lexicographic comparison in such an instance, use strcoll rather than
strcmp. Alternatively, you can use strxfrm on the original strings, then use strcmp
on the resulting strings.

strcoll, stricoll, _strncolI, and _strnicoll automatically handle multi byte-character
strings according to the locale code page currently in use, as do their wide-character
(Unicode) counterparts. The multibyte-character (MBCS) versions of these functions,
however, collate strings on a character basis according to the multibyte code page
currently in use.

strcoll Functions

565

strcoll.Functions

Because the coli functions collate strings lexicographically for comparison, whereas
the cmp functions simply test for string equality, the coli functions are much slower
than the corresponding cmp versions. Therefore, the coli functions should be used
only when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the string
comparison.

See Also: localeconv, _mbsnbcoll, setlocale, strcmp, strncmp, _strnicmp, strxfrm

strcoll, wcscoll, _mbscoll
Compare strings using locale-specific information.

int strcoll(const char *string], const char *string2);
int wcscoll(const wchar_t *string], const wchar_t *string2);
int _mbscoll(const unsigned char * string] , const unsigned char * string2);

Routine

strcoll

wcscoll

_mbscoll

Required Header

<string.h>

<wchar.h>, <string.h>

<mbstring.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

566

Each of these functions returns a value indicating the relationship of string] to
string2, as follows:

Return Value

<0

o
>0

Relationship of string1 to string2

string 1 less than string2

stringl identical to string2

stringl greater than string2

Each of these functions returns _NLSCMPERROR on an error. To use
_NLSCMPERROR, include either STRING.H or MBSTRING.H. wcscoll can fail
if either string] or string2 contains wide-character codes outside the domain of the
collating sequence. When an error occurs, wcscoll may set errno to EINVAL. To
check for an error on a call to wcscoll, set errno to 0 and then check errno after
calling wcscoll.

Parameters

Remarks

string1, string2 Null-terminated strings to compare

Each of these functions perfonns a case-sensitive comparison of string1 and string2
according to the code page currently in use. These functions should be used only
when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the string
comparison.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcscoll

_UNICODE & _MBCS
Not Defined

strcoll

_MBCS Defined _UNICODE Defined

_mbscoll wcscoll

See Also: localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

_stricoll, _ wcsicoll, _mbsicoll
Compare strings using locale-specific information.

int _stricoll(const char *string1, const char *string2);
int _wcsicoll(const wchar_t *stringl, const wchar_t *string2);
int _mbsicoll(const unsigned char * string 1, const unsigned char * string2);

Routine Required Header Compatibility

- stricoll <string.h> Win 95, Win NT

-wcsicoll <wchar.h>, <string.h> Win 95, Win NT

- mbsicoll <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns a value indicating the relationship of
string1 to string2, as follows:

Return Value

<0

o
>0

Relationship of string1 to string2

string] less than string2

string] identical to string 2

string] greater than string2

strcoll Functions

567

strcoll Functions

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR,
include either STRING.H or MBSTRING.H. _wcsicoll can fail if either string1
or string2 contains wide-character codes outside the domain of the collating
sequence. When an error occurs, _wcsicoll may set errno to EINVAL. To check
for an error on a call to _ wcsicoll, set errno to 0 and then check errno after
calling _ wcsicoll.

Parameters

Remarks

stringl, string2 Null-terminated strings to compare

Each of these functions performs a case-insensitive comparison of string land string2
according to the code page currently in use. These functions should be used only
when there is a difference between the character set order and the lexicographic
character order in the current code page and this difference is of interest for the
string comparison.

Generic-Text Routine Mappings

TCHAR.H Routine

_tesicoll

_UNICODE & _MBCS
Not Defined

_stricoll

_MBCS Defined

_mbsieoll

See Also: localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp,
strncmp, _strnicmp, strxfrm

_UNICODE Defined

_wesicoll

_strncoll, _ wcsncoll, _mbsncoll

568

Compare strings using locale-specific information.

int _strncoll(const char *stringl, const char *string2, size_t count);
int _wcsncoll(const wchar_t *stringl, const wchar_t *string2, size_t count);
int _mbsncoll(const unsigned char *stringl, const unsigned char *string2,

... size_t count);

Routine Required Header Compatibility

- strncoll <string.h> Win 95, Win NT

- wcsncoll <wehar.h> or <string.h> Win 95, Win NT

_mbsncoll <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns a value indicating the relationship of the substrings of
string] and string2, as follows:

Return Value

<0

o
>0

Relationship of string1 to string2

string 1 less than string2

string 1 identical to string2

string 1 greater than string2

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR,
include either STRING.H or MBSTRING.H. _wcsncoll can fail if either string]
or string2 contains wide-character codes outside the domain of the collating
sequence. When an error occurs, _wcsncoll may set errno to EINVAL. To check
for an error on a call to _ wcsncoll, set errno to 0 and then check errno after
calling _ wcsncoll.

Parameters

Remarks

string], string2 Null-terminated strings to compare

count Number of characters to compare

Each of these functions performs a case-sensitive comparison of the first count
characters in string] and string2 according to the code page currently in use. These
functions should be used only when there is a difference between the character set
order and the lexicographic character order in the current code page and this
difference is of interest for the string comparison.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & MBCS MBCS Defined UNICODE Defined - - - -

Not Defined

tcsnccoll strncoll mbsncoll wcsncoll - - - -

tcsncoll strncoll mbsnbcoll wcsncoll - - - -

See Also: localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

strcoll Functions

569

strcoll Functions

_strnicoll, _ wcsnicoll, _mbsnicoll
Compare strings using locale-specific information.

int _strnicoll(const char *stringl, const char *string2, size_t count);
int _wcsnicoll(const wchar_t *stringl, const wchar_t *string2 ,size_t count);
int _mbsnicoll(const unsigned char *stringl, const unsigned char *string2,

'-+ size_t count);

Routine

_strnicoll

_wcsnicoll

_mbsnicoll

Required Header

<string.h>

<wchar.h> or <string.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a value indicating the relationship of the substrings of
string1 and string2, as follows:

Return Value

<0

o
>0

Relationship of string1 to string2

stringlless than string2

string] identical to string2

stringl greater than string2

Each of these functions returns _NLSCMPERROR. To use _NLSCMPERROR,
include either STRING.H or MBSTRING.H. _wcsnicoll can fail if either string1 or
string2 contains wide-character codes outside the domain of the collating sequence.
When an error occurs, _wcsnicoll may set errno to EINVAL. To check for an error
on a call to _ wcsnicoll, set errno to 0 and then check errno after calling _ wcsnicoll.

Parameters

Remarks

570

stringl, string2 Null-terminated strings to compare

count Number of characters to compare

Each of these functions performs a case-insensitive comparison of the first count
characters in string 1 and string2 according to the code page currently in use. These
functions should be used only when there is a difference between the character set
order and the lexicographic character order in the current code page and this
difference is of interest for the string comparison.

strcpy, wcscpy, _mbscpy

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsncicoll

_tcsnicoll

_UNICODE & _MBCS
Not Defined

_strnicoll

_strnicoll

_MBCS Defined

_mbsnicoll

_mbsnbicoll

_UNICODE Defined

_wcsnicoll

_wcsnicoll

See Also: localeconv, _mbsnbcoll, setlocale, strcmp, _stricmp, strncmp,
_strnicmp, strxfrm

strcpy, wcscpy, _mbscpy
Copy a string.

char *strcpy(char *strDestination, const char *strSource);
wchar_t *wcscpy(wchar_t *strDestination, const wchar_t *strSource);
unsigned char * _mbscpy(unsigned char * strDestination,

~ const unsigned char *strSource);

Routine Required Header Compatibility

strcpy <string.h> ANSI, Win 95, Win NT

wcscpy <string.h> or <wchar.h> ANSI, Win 95, Win NT

_mbscpy <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the destination string. No return value is reserved to
indicate an error.

Parameters

Remarks

strDestination Destination string

strSource Null-terminated source string

The strcpy function copies strSource, including the terminating null character, to
the location specified by strDestination. No overflow checking is performed when
strings are copied or appended. The behavior of strcpy is undefined if the source
and destination strings overlap.

571

strcspn, wcscspn, _mbscspn

Example

Output

wcscpy and _mhscpy are wide-character and multibyte-character versions of
strcpy. The arguments and return value of wcscpy are wide-character strings;
those of _mhscpy are multibyte-character strings. These three functions behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcscpy

_UNICODE & _MBCS
Not Defined

strcpy

1* STRCPY.C: This program uses strcpy
* and strcat to build a phrase.
*1

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[80];

_MBCS Defined

_mbscpy

strcpy(string. "Hello world from");
strcat(string. "strcpy");
strcat(stri ng. "and");
strcat(string. "strcat!");
printf("String = %s\n". string);

String = Hello world from strcpy and strcat!

_UNICODE Defined

wcscpy

See Also: strcat, strcmp, strncat, strncmp, strncpy, _strnicmp, strrchr,
strspn

strcspn, wcscspn, _mhscspn
Find a substring in a string.

size_t strcspn(const char *string, const char *strCharSet);
size_t wcscspn(const wchar_t *string, const wchar_t *strCharSet);
size_t _mhscspn(const unsigned char *string, const unsigned char *strCharSet);

Routine Required Header Compatibility

strcspn <string.h> ANSI, Win 95, Win NT

wcscspn <string.h> or <wchar.h> ANSI, Win 95, Win NT

_mbscspn <mbstring.h> Win 95, Win NT

572

strcspn, wcscspn, _mbscspn

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns an integer value specifying the length of the initial
segment of string that consists entirely of characters not in strCharSet. If string
begins with a character that is in strCharSet, the function returns O. No return value
is reserved to indicate an error.

Parameters

Remarks

Example

string Null-terminated searched string

strCharSet Null-terminated character set

The strcspn function returns the index of the first occurrence of a character in
string that belongs to the set of characters in strCharSet. Terminating null characters
are included in the search.

wcscspn and _mbscspn are wide-character and multi byte-character versions
of strcspn. The arguments of wcscspn are wide-character strings; those of
_mbscspn are multibyte-character strings. These three functions behave identically
otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tcscspn strcspn

1* STRCSPN.C *1

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[] = "xyzabc";
int pos;

pos = strcspn(string, "abc");

_MBCS Defined

_mbscspn

p r i n t f(" Fir s t a, b 0 r c i n % sis at c h a r act e r %d \ n" ,
string, pos);

_UNICODE Defined

wcscspn

573

_strdate, _ wstrdate

Output
First a, b or c in xyzabc is at character 3

See Also: strncat, strncmp, strncpy, _strnicmp, strrchr, strspn

_strdate, _wstrdate
Copy a date to a buffer.

char * _strdate(char *datestr);
wchar_t * _wstrdate(wchar_t *datestr);

Routine

_strdate

_wstrdate

Required Header

<time.h>

<time.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the resulting character string datestr.

Parameter

Remarks

574

datestr A pointer to a buffer containing the formatted date string

The _strdate function copies a date to the buffer pointed to by datestr, formatted
mmlddlyy, where mm is two digits representing the month, dd is two digits
representing the day, and yy is the last two digits of the year. For example, the
string 12/05/99 represents December 5, 1999. The buffer must be at least 9
bytes long.

_ wstrdate is a wide-character version of _strdate; the argument and return
value of _ wstrdate are wide-character strings. These functions behave identically
otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tstrdate

_UNICODE & _MBCS
Not Defined

_strdate

_MBCS Defined _UNICODE Defined

_strdate _wstrdate

Example
/* TIMES.C illustrates various time and date functions including:
* time ftime ctime asctime
* localtime gmtime mktime tzset
* strtime strdate strftime
*
* Also the global variable:
* _tzname
*/

#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <string.h>

void maine)
{

char tmpbuf[128], ampm[] = "AM";
time_t ltime;
struct _timeb tstruct;
struct tm *today, *gmt, xmas = { 0, 0, 12, 25, II, 93 };

/* Set time zone from TZ environment variable. If TZ is not set,
* the operating system is queried to obtain the default value
* for the variable.
*/

_tzset () ;

/* Display operating system-style date and time. */
_strtime(tmpbuf);
printf("as time:\t\t\t\t%s\n", tmpbuf);
_strdate(tmpbuf);
printf("aS date:\t\t\t\t%s\n", tmpbuf);

/* Get UNIX-style time and display as number and string. */
time (& It i me);
printf("Time in seconds since UTC 1/1/70:\t%ld\n", ltime);
printf("UNIX time and date:\t\t\t%s", ctime(<ime));

/* Display UTC. */
gmt = gmtime(<ime);
printf("Coordinated universal time:\t\t%s", asctime(gmt));

/* Convert to time structure and adjust for PM if necessary. */
today = localtime(<ime);
if(today->tm_hour > 12)

_strdate, _ wstrdate

575

_strdate, _ wstrdate

Output

576

strcpy(ampm, "PM");
today->tm_hour -= 12;
}

if(today->tm_hour == 0) 1* Adjust if midnight hour. *1
today->tm_hour = 12;

1* Note how pointer addition is used to skip the first 11
* characters and printf is used to trim off terminating
* characters.
*1

printf("12-hour time:\t\t\t\t%.8s %s\n",
asctime(today) + 11, ampm);

1* Print additional time information. *1
_ftime(&tstruct);
printf("Plus milliseconds:\t\t\t%u\n", tstruct.millitm);
printf("Zone difference in seconds from UTC:\t%u\n",

tstruct.timezone);
printf("Time zone name:\t\t\t\t%s\n", _tzname[0]);
printf("Daylight savings:\t\t\t%s\n",

tstruct.dstflag? "YES" : "NO");

1* Make time for noon on Christmas, 1993. *1
if(mktime(&xmas) != (time_t)-l)
printf("Christmas\t\t\t\t%s\n", asctime(&xmas));

1* Use time structure to build a customized time string. *1
today = localtime(<ime);

1* Use strftime to build a customized time string. *1
strftime(tmpbuf, 128,

"Today is %A, day %d of %8 in the year %Y.\n", today);
printf(tmpbuf);

as time:
as date:
Time in seconds since UTC 1/1/70:
UNIX time and date:
Coordinated universal time:
12-hour time:
Plus milliseconds:
Zone difference in seconds from UTC:
Time zone name:
Daylight savings:
Christmas

21:51:03
05/03/94
768027063
Tue May 03 21:51:03 1994
Wed May 04 04:51:03 1994
09:51:03 PM
279
480

YES
Sat Dec 25 12:00:00 1993

Today is Tuesday, day 03 of May in the year 1994.

See Also: asctime, ctime, gmtime, localtime, mktime, time, _tzset

_strdup, _wcsdup, _mbsdup

_strdup, _wcsdup, _mhsdup
Duplicate strings.

char *_strdup(const char *strSource);
wchar_t * _wcsdup(const wchar_t *strSource);
unsigned char * _mbsdup(const unsigned char *strSource);

Routine Required Header Compatibility

_strdup <string.h> Win 95, Win NT

_wcsdup <string.h> or <wchar.h> Win 95, Win NT

_mbsdup <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the storage location for the copied string
or NULL if storage cannot be allocated.

Parameter

Remarks

strSource Null-terminated source string

The _strdup function calls malloc to allocate storage space for a copy of strSource
and then copies strSource to the allocated space.

_ wcsdup and _mbsdup are wide-character and multibyte-character versions of
_strdup. The arguments and return value of _ wcsdup are wide-character strings;
those of _mbsdup are multibyte-character strings. These three functions behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsdup

UNICODE & _MBCS
Not Defined

_strdup

_MBCS Defined _UNICODE Defined

_mbsdup _wcsdup

Because _strdup calls malloc to allocate storage space for the copy of strSource, it is
good practice always to release this memory by calling the free routine on the pointer
returned by the call to _strdup.

577

strerror, _strerror

Example

Output

/* STRDUP.C */

#include <string.h>
#include <stdio.h>

void main(void)
{

char buffer[] = "This is the buffer text";
char *newstring;
printf("Original: %s\n", buffer);
newstring = _strdup(buffer);
printf("Copy: %s\n", newstring);
free(newstring);

Ori gi na 1: Thi sis the buffer text
Copy: This is the buffer text

See Also: memset, strcat, strcmp, strncat, strncmp, strncpy, _strnicmp, strrchr,
strspn

strerror, strerror
Get a system error message (strerror) or prints a user-supplied error message
Lstrerror).

char *strerror(int errnum);
char * _strerror(const char *strErrMsg);

Routine

strerror

_strerror

Required Header

<string.h>

<string.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

578

strerror and _strerror return a pointer to the error-message string. Subsequent calls
to strerror or _strerror can overwrite the string.

Parameters

Remarks

Example

errnum Error number

strErrMsg User-supplied message

The strerror function maps errnum to an error-message string, returning a pointer to
the string. Neither strerror nor _strerror actually prints the message: For that, you
need to call an output function such as fprintf:

if « _ a c c e s s (" d a t a f i 1 e" ,2)) ==- - 1)
fprintf(stderr, strerror(NULL));

If strErrMsg is passed as NULL, _strerror returns a pointer to a string containing the
system error message for the last library call that produced an error. The
error-message string is terminated by the newline character ('\n'). If strErrMsg is not
equal to NULL, then _strerror returns a pointer to a string containing (in order) your
string message, a colon, a space, the system error message for the last library call
producing an error, and a newline character. Your string message can be, at most, 94
bytes long.

The actual error number for _strerror is stored in the variable errno. The system error
messages are accessed through the variable _sys_errlist, which is an array of messages
ordered by error number. _strerror accesses the appropriate error message by using the
errno value as an index to the variable _sys_errlist. The value of the variable _sys_nerr
is defined as the maximum number of elements in the _sys_errlist array. To produce
accurate results, call _strerror immediately after a library routine returns with an error.
Otherwise, subsequent calls to strerror or _strerror can overwrite the errno value.

_strerror is not part of the ANSI definition but is instead a Microsoft extension to it.
Do not use it where portability is desired; for ANSI compatibility, use strerror
instead.

/* PERROR.C: This program attempts to open a file named
* NOSUCHF.ILE. Because this file probably doesn't exist,
* an error message is displayed. The same message is
* created using perror, strerror, and _strerror.
*/

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void main(void
{

int fh;

strerror, _strerror

579

strftime, wcsftime

Output

if((fh = _open("NOSUCHF.ILE", 0 RDONLY » == -1)
{

/* Three ways to create error message: */
perror("perror says open failed");
printf("strerror says open failed: %s\n", strerror(errno));
printf(_strerror("_strerror says open failed"));

else
{

printf("open succeeded on input file\n");
_close(fh);

perror says open failed: No such file or directory

strerror says open failed: No such file or directory
_strerror says open failed: No such file or directory

See Also: clearerr, ferror, perror

strftime, wcsftime
Fonnat a time string.

size_t strftime(char *strDest, size_t maxsize, const char *format,
... const struct tm *timeptr);

size_t wcsftime(wchar_t *strDest, size_t maxsize, const wchar_t *format,
... const struct tm *timeptr);

Routine

strftime

wcsftime

Required Header

<time.h>

<time.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility infonnation, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

580

strftime returns the number of characters placed in strDest if the total number
of resulting characters, including the terminating null, is not more than maxsize.
wcsftime returns the corresponding number of wide characters. Otherwise, the
functions return 0, and the contents of strDest is indetenninate.

Parameters

Remarks

strDest Output string

maxsize Maximum length of string

format Format-control string

timeptr tm data structure

The strftime and wcsftime functions format the tm time value in timeptr according
to the suppliedformat argument and store the result in the buffer strDest. At most,
maxsize characters are placed in the string. For a description of the fields in the
timeptr structure, see asctime. wcsftime is the wide-character equivalent of
strftime; its string-pointer argument points to a wide-character string. These
functions behave identically otherwise.

Note Prior to this version of Visual C++, the documentation described the format parameter of
wcsftime as having the datatype const wchact *, but the actual implementation of the format
datatype was const char *. In this version, the implementation of the format datatype has been
updated to reflect the previous and current documentation, that is: const wchar_t *.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsftime

_UNICODE & _MBCS
Not Defined

strftime

_MBCS Defined _UNICODE Defined

strftime wcsftime

The format argument consists of one or more codes; as in printf, the formatting codes
are preceded by a percent sign (%). Characters that do not begin with % are copied
unchanged to strDest. The LC_TIME category of the current locale affects the output
formatting of strftime.(For more information on LC_TIME, see setlocale.) The
formatting codes for strftime are listed below:

%a Abbreviated weekday name

%A Full weekday name

% b Abbreviated month name

% B Full month name

%c Date and time representation appropriate for locale

%d Day of month as decimal number (01-31)

%H Hour in 24-hour format (00-23)

%1 Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

%m Month as decimal number (01-12)

strftime, wcsftime

581

strftime, wcsftime

Example

582

%M Minute as decimal number (00-59)

%p Current locale's AM.IP.M. indicator for 12-hour clock

%8 Second as decimal number (00-59)

% U Week of year as decimal number, with Sunday as first day of week (00-51)

%w Weekday as decimal number (0-6; Sunday is 0)

% W Week of year as decimal number, with Monday as first day of week (00-51)

%x Date representation for current locale

% X Time representation for current locale

%y Year without century, as decimal number (00-99)

% Y Year with century, as decimal number

%z, %Z Time-zone name or abbreviation; no characters if time zone is unknown

% % Percent sign

As in the printf function, the # flag may prefix any formatting code. In that case, the
meaning of the format code is changed as follows:

Format Code

%#a, %#A, %#b, %#B, %#p, %#X,
%#z, %#Z, %#%

%#c

%#x

%#d, %#H, %#1, %#j, %#m, %#M,
%#8, %#U, %#w, %#W, %#y, %#y

Meaning

flag is ignored.

Long date and time representation, appropriate for
current locale. For example: "Tuesday, March 14,
1995, 12:41:29."

Long date representation, appropriate to current
locale. For example: "Tuesday, March 14, 1995."

Remove leading zeros (if any).

1* TIMES.C illustrates various time and date functions including:
* time ftime ctime asctime
* localtime gmtime mktime tzset
* strtime strdate strftime
*
* Also the global variable:
* tzname
*1

#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <string.h>

void maine)
{

cha r tmpbuf[128], ampm[] - "AM";
time_t ltime;
struct _timeb tstruct;
struct tm *today, *gmt, xmas - { 0, 0, 12, 25, II, 93 };

/* Set time zone from TZ environment variable. If TZ is not set,
* the operating system is queried to obtain the default value
* for the variable.
*/

_tzset();

/* Display operating system-style date and time. */
_strtime(tmpbuf);
printf("aS time:\t\t\t\t%s\n", tmpbuf);
_strdate(tmpbuf);
printf("aS date:\t\t\t\t%s\n", tmpbuf);

/* Get UNIX-style time and display as number and string. */
time(<ime);
printf("Time in seconds since UTC 1/1/70:\t%ld\n", ltime);
printf("UNIX time and date:\t\t\t%s", ctime(<ime));

/* Display UTC. */
gmt - gmtime(<ime);
printf("Coordinated universal time:\t\t%s", asctime(gmt));

/* Convert to time structure and adjust for PM if necessary. */
today = localtime(<ime);
if(today->tm_hour > 12)
{
strcpy(ampm, "PM");
today->tm_hour -= 12;
}

if(today->tm_hour == 0) /* Adjust if midnight hour. */
today->tm_hour = 12;

/* Note how pointer addition is used to skip the first 11
* characters and printf is used to trim off terminating
* characters.
*/

printf("12-hour time:\t\t\t\t%.8s %s\n",
asctime(today) + II, ampm);

/* Print additional time information. */
_ftime(&tstruct);
printf("Plus milliseconds:\t\t\t%u\n", tstruct.millitm);
printf("Zone difference in seconds from UTC:\t%u\n",

tstruct.timezone);
printf("Time zone name:\t\t\t\t%s\n", _tzname[0]);
printf("Daylight savings:\t\t\t%s\n",

tstruct.dstflag ? "YES" : "NO");

strftime, we sf time

583

_stricmp, _ wcsicmp, _mbsicmp

Output

1* Make time for noon on Christmas, 1993. *1
if(mktime(&xmas) 1= (time_t)-l)
printf("Christmas\t\t\t\t%s\n", asctime(&xmas));

1* Use time structure to build a customized time string. *1
today = localtime(<ime);

1* Use strftime to build a customized time string. *1
strftime(tmpbuf, 128.

"Today is %A, day %d of %B in the year %Y.\n", today);
printf(tmpbuf);

as time:
as date:
Time in seconds since UTC 1/1/70:
UNIX time and date:
Coordinated universal time:
12-hour time:
Plus milliseconds:
Zone difference in seconds from UTC:
Time zone name:
Daylight savings:
Christmas

21:51:03
05/03/94
768027063
Tue May 03 21:51:03 1994
Wed May 04 04:51:03 1994
09:51:03 PM
279
480

YES
Sat Dec 25 12:00:00 1993

Today is Tuesday, day 03 of May in the year 1994.

See Also: localeconv, setiocale, strcoll, _stricoll, strxfrm

_stricmp, _wcsicmp, _mbsicmp

584

Perform a lowercase comparison of strings.

int _stricmp(const char *stringl, const char *string2);
int _wcsicmp(const wchar_t *stringl, const wchar_t *string2);
int _mbsicmp(const unsigned char *stringl, const unsigned char_t *string2);

Routine Required Header Compatibility

_stricmp <string.h> Win 95, Win NT

_wcsicmp <string.h> or <wchar.h> Win 95, Win NT

_mbsicmp <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_stricmp, _ wcsicmp, _mbsicmp

Return Value
The return value indicates the relation of string 1 to string2 as follows:

Return Value

<0

o
>0

Description

string 1 less than string2

string1 identical to string2

string1 greater than string2

On an error, _mhsicmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

Example

string 1 , string2 Null-terminated strings to compare

The _stricmp function lexicographically compares lowercase versions of string 1
and string2 and returns a value indicating their relationship. _stricmp differs from
_stricoll in that the _stricmp comparison is not affected by locale, whereas the
_stricoll comparison is according to the LC_COLLATE category of the current
locale. For more information on the LC_COLLATE category, see setlocale.

The _strcmpi function is equivalent to _stricmp and is provided for backward
compatibility only.

_ wcsicmp and _mhsicmp are wide-character and multi byte-character versions
of _stricmp. The arguments and return value of _ wcsicmp are wide-character
strings; those of _mhsicmp are multibyte-character strings. _mhsicmp recognizes
multi byte-character sequences according to the current multi byte code page and
returns _NLSCMPERROR on an error. (For more information, see "Code Pages"
on page 22 in Chapter 1.) These three functions behave identically otherwise.

_ wcsicmp and wcscmp behave identically except that wcscmp does not convert its
arguments to lowercase before comparing them. _mhsicmp and _mhscmp behave
identically except that _mhscmp does not convert its arguments to lowercase before
comparing them.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsicmp

1* STRCMP.C *1

_UNICODE & _MBCS
Not Defined

_stricmp

#include <string.h>
#include <stdio.h>

_MBCS Defined _UNICODE Defined

_mhsicmp _wcsicmp

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown dog jumps over the lazy fox";

585

strlen, wcslen, _mbslen, _mbstrlen

Output

void main(void)
(

char tmp[20];
int result;
/* Case sensitive */
printf("Compare strings:\n\t%s\n\t%s\n\n". stringl. string2);
result = strcmp(stringl. string2);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("\tstrcmp:String 1 is %s string 2\n". tmp);
/* Case insensitive (could use equivalent _stricmp) */
result ~ _stricmp(stringl. string2);
if(result > 0)

strcpy(tmp, "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp, "equal to");
printf("\t_stricmp: String 1 is %s string 2\n", tmp);

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown dog jumps over the lazy fox

strcmp:
_stricmp:

String 1 is greater than string 2
String 1 is equal to string 2

See Also: memcmp, _memicmp, strcmp, strcoll Functions, strncmp, _strnicmp,
strrchr, _strset, strspn

strlen, weslen, _mbslen, mbstrlen

586

Get the length of a string.

size_t strlen(const char *string);
size_t wcslen(const wchar_t *string);
size_t _mbslen(const unsigned char *string);
size_t _mbstrlen(const char *string);

Routine

strlen

wcslen

_mbslen

_mbstrlen

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

<stdlib.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

strlen, wcslen, _mbslen, _mbstrlen

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns the number of characters in string, excluding the
terminal NULL. No return value is reserved to indicate an error.

Parameter

Remarks

Example

Output

string Null-terminated string

Each of these functions returns the number of characters in string, not including the
terminating null character. wcslen is a wide-character version of strlen; the argument
of wcslen is a wide-character string. wcslen and strlen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcslen

UNICODE & _MBCS
Not Defined

strlen

MBCS Defined _UNICODE Defined

_mbslen wcslen

_mbslen and _mbstrlen return the number of multi byte characters in a
multi byte-character string. _mbslen recognizes multi byte-character sequences according
to the multibyte code page currently in use; it does not test for multi byte-character validity.
_mbstrlen tests for multibyte-character validity and recognizes multibyte-character
sequences according to the LC_CTYPE category setting of the current locale. For more
information about the LC_CTYPE category, see setlocale.

1* STRLEN.C *1

#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>

void maine void)
{

char buffer[61] = "How long am I?";
int len;
len = strlen(buffer);
pri ntf('" %s' is %d cha racters 1 ong\n". buffer. 1 en);

'How long am I?' is 14 characters long

See Also: setlocale, strcat, strcmp, strcoll Functions, strcpy, strrchr, _strset, strspn

587

_strlwr, _wcslwr, _mbslwr

_strlwr, _wcslwr, mbslwr
Convert a string to lowercase.

char * _strlwr(char *string);
wchar_t * _wcslwr(wchar_t *string);
unsigned char *_mbslwr(unsigned char *string);

Routine Required Header Compatibility

- strlwr <string.h> Win 95, Win NT

- wcslwr <string.h> or <wchar.h> Win 95, Win NT

- mbslwr <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the converted string. Because the
modification is done in place, the pointer returned is the same as the pointer
passed as the input argument. No return value is reserved to indicate an error.

Parameter

Remarks

588

string Null-terminated string to convert to lowercase

The _strlwr function converts any uppercase letters in string to lowercase as
determined by the LC_CTYPE category setting of the current locale. Other
characters are not affected. For more information on LC_CTYPE, see setlocale.

The _ wcslwr and _mbslwr functions are wide-character and multi byte-character
versions of _strlwr. The argument and return value of _wcslwr are wide-character
strings; those of _mbslwr are multibyte-character strings. These three functions
behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcslwr

_UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_mbslwr _wcslwr

Example

Output

1* STRLWR.C: This program uses strlwr and _strupr to create
* uppercase and lowercase copies of a mixed-case string.
*1

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[100] =- "The String to End All Strings!";
char *copyl, *copy2;
copyl - _strlwr(_strdup(string);
copy2 - _strupr(_strdup(string);
printf("Mixed: %s\n", string);
printf("Lower: %s\n", copyl);
printf("Upper: %s\n", copy2);

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

See Also: _strupr

strncat, wcsncat, mbsncat
Append characters of a string.

char *strncat(char * strDest, const char * strSource, size_t count);
wchar_t *wcsncat(wchar_t *strDest, const wchar_t *strSource, size_t count);
unsigned char * _mbsncat(unsigned char * strDest,

.... const unsigned char *strSource, size_t count);

Routine

strncat

wcsncat

_mbsncat

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns a pointer to the destination string. No return value
is reserved to indicate an error.

stmcat, wcsncat, _mbsncat

589

stmcat, wcsncat, _mbsncat

Parameters

Remarks

Example

Output

590

strDest Null-terminated destination string

strSource Null-terminated source string

count Number of characters to append

The strncat function appends, at most, the first count characters of strSource to
strDest. The initial character of strSource overwrites the terminating null character of
strDest. If a null character appears in strSource before count characters are appended,
strncat appends all characters from strSource, up to the null character. If count is
greater than the length of strSource, the length of strSource is used in place of count.
The resulting string is terminated with a null character. If copying takes place between
strings that overlap, the behavior is undefined.

wcsncat and _mbsncat are wide-character and multi byte-character versions of
strncat. The string arguments and return value of wcsncat are wide-character strings;
those of _mbsncat are multibyte-character strings. These three functions behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsncat

1* STRNCAT.C *1

_UNICODE & _MBCS
Not Defined

stmcat

#include <string.h>
#include <stdio.h>

void main(void)
(

_MBCS Defined

_mbsncat

char string[80] = "This is the initial string!";

_UNICODE Defined

wcsncat

char suffix[] = " extra text to add to the string ... ";
1* Combine strings with no more than 19 characters of suffix: *1
printf("Before: %s\n", string);
strncat(string, suffix, 19);
printf("After: %s\n", string);

Before: This is the initial string!
After: This is the initial string! extra text to add

See Also: _mbsnbcat, strcat, strcmp, strcpy, strncmp, strncpy, _strnicmp,
strrchr, _strset, strspn

strncmp, wcsncmp, _mhsncmp

strncmp, wcsncmp, _mbsncmp
Compare characters of two strings.

int strncmp(const char *stringl, const char *string2, size_t count);
int wcsncmp(const wchar_t *stri1lg1, const wchar_t *string2, size_t count);
int _mbsncmp(const unsigned char *stringl, const unsigned char string2,

"+ size_t count);

Routine Required Header Compatibility

strncmp <string.h> ANSI, Win 95, Win NT

wcsncmp <string.h> or <wchar.h> ANSI, Win 95, Win NT

_mbsncmp <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value indicates the relation of the substrings of string 1 and string2 as
follows:

Return Value

<0

o
>0

Description

string1 substring less than string2 substring

string 1 substring identical to string2 substring

string1 substring greater than stri1lg2 substring

On an error, _mbsncmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

string 1, string2 Strings to compare

count Number of characters to compare

The strncmp function lexicographically compares, at most, the first count
characters in string 1 and string2 and returns a value indicating the relationship
between the substrings. strncmp is a case-sensitive version of _strnicmp.
Unlike strcoll, strncmp is not affected by locale. For more information on the
LC_COLLATE category, see setlocale.

591

strncmp, wcsncmp, _mbsncmp

Example

592

wcsncmp and _mbsncmp are wide-character and multi byte-character versions of
strncmp. The arguments and return value of wcsncmp are wide-character strings;
those of _mbsncmp are multibyte-character strings. _mbsncmp recognizes
multibyte-character sequences according to the current multibyte code page and
returns _NLSCMPERROR on an error. For more information, see "Code Pages" on
page 22 in Chapter 1. These three functions behave identically otherwise. wcsncmp
and _mbsncmp are case-sensitive versions of _ wcsnicmp and _mbsnicmp.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS

_tcsnccmp

_tcsncmp

Not Defined

strncmp

strncmp

1* STRNCMP.C *1
#include <string.h>
#include <stdio.h>

_MBCS Defined

_mbsncmp

_mbsnbcmp

_UNICODE Defined

wcsncmp

wcsncmp

char stringl[]
char string2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

void maine void)
{

char tmp[20];
int result;
printf("Compare strings:\n\t\t%s\n\t\t%s\n\n". string!, string2);
printf("Function:\tstrncmp (first 10 characters only)\n");
result = strncmp(string1. string2 • 10);
if(result> 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);
printf("Function:\tstrnicmp _strnicmp (first 10 characters only)\n");
result = _strnicmp(string1. string2. 10);
if(result > 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);

strncpy, wcsncpy, _mbsncpy

Output
Compare strings:

The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

Function:
Result :

Function:
Result:

strncmp (first 10 characters only)
String is greater than string 2

_strnicmp (first 10 characters only)
String 1 is equal to string 2

See Also: _mbsnbcmp, _mbsnbicmp, strcmp, strcoll Functions, _strnicmp,
strrchr, _strset, strspn

strncpy, wcsncpy, _mbsncpy
Copy characters of one string to another.

char *strncpy(char *strDest, const char *strSource, size_t count);
wchar_t *wcsncpy(wchar_t *strDest, const wchar_t *strSource, size_t count);
unsigned char * _mbsncpy(unsigned char *strDest, const unsigned char *strSource,

~ size_t count);

Routine Required Header Compatibility

strncpy <string.h> ANSI, Win 95, Win NT

wcsncpy <string.h> or <wchar.h> ANSI, Win 95, Win NT

_mbsncpy <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns strDest. No return value is reserved to indicate an error.

Parameters

Remarks

strDest Destination string

strSource Source string

count Number of characters to be copied

The strncpy function copies the initial count characters of strSource to strDest and
returns strDest. If count is less than or equal to the length of strSource, a null character is
not appended automatically to the copied string. If count is greater than the length of

593

_stmicmp, _ wcsnicmp, _mbsnicmp

Example

Output

strSource, the destination string is padded with null characters up to length count. The
behavior of strncpy is undefined if the source and destination strings overlap.

wcsncpy and _mbsncpy are wide-character and multibyte-character versions of
strncpy. The arguments and return value of wcsncpy and _mbsncpy vary
accordingly. These three functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsncpy

/* STRNCPY.C */

_UNICODE & _MBCS
Not Defined

stmcpy

#include <string.h>
#include <stdio.h>

void maine void)
{

_MBCS Defined

_mbsncpy

char string[100] = "Cats are nice usually";
printf ("Before: %s\n", string);
strncpy(string, "Dogs", 4);
strncpy(string + 9, "mean", 4);
printf ("After: %s\n", string);

Before: Cats are nice usually
After: Dogs are mean usually

_UNICODE Defined

wcsncpy

See Also: _mbsnbcpy, strcat, strcmp, strcpy, strncat, strncmp, _strnicmp,
strrchr, _strset, strspn

_stmicmp, _wcsnicmp, _mbsnicmp

594

Compare characters of two strings without regard to case.

int _strnicmp(const char *stringl, const char *string2, size_t count);
int _wcsnicmp(const wchar_t *stringl, const wchar_t *string2, size_t count);
int _mbsnicmp(const unsigned char *stringl, const unsigned char *string2,

... size_t count);

Routine Required Header Compatibility

_strnicmp <string.h> Win 95, Win NT

_wcsnicmp <string.h> or <wchar.h> Win 95, Win NT

_mbsnicmp <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

_strnicmp, _ wcsnicmp, _mbsnicmp

Libraries

LIBC.LIB

LIB CMT. LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
The return value indicates the relationship between the substrings as follows:

Return Value

<0

o
>0

Description

string 1 substring less than string2 substring

string 1 substring identical to string2 substring

string 1 substring greater than string2 substring

On an error, _mbsnicmp returns _NLSCMPERROR, which is defined in STRING.H
and MBSTRING.H.

Parameters

Remarks

string], string2 Null-terminated strings to compare

count Number of characters to compare

The _strnicmp function lexicographically compares, at most, the first count
characters of string] and string2. The comparison is performed without regard to
case; _strnicmp is a case-insensitive version of strncmp. The comparison ends if
a terminating null character is reached in either string before count characters are
compared. If the strings are equal when a terminating null character is reached in
either string before count characters are compared, the shorter string is lesser.

Two strings containing characters located between 'Z' and 'a' in the ASCII table
('[', '\', ,]" '1\', I_I, and I"~) compare differently, depending on their case. For example, the
two strings "ABCDE" and "ABCDI\" compare one way if the comparison is lowercase
("abcde" > "abcdl\") and the other way ("ABCDE" < "ABCDI\") if it is uppercase.

_ wcsnicmp and _mbsnicmp are wide-character and multibyte-character versions
of _strnicmp. The arguments and return value of _ wcsnicmp are wide-character
strings; those of _mbsnicmp are multibyte-character strings. _mbsnicmp
recognizes multi byte-character sequences according to the current multibyte code
page and returns _NLSCMPERROR on an error. For more information, see "Code
Pages" on page 22 in Chapter 1. These three functions behave identically otherwise.
These functions are not affected by the current locale setting.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & MBCS MBCS Defined UNICODE Defined - - - -
Not Defined

_tcsncicmp _strnicmp _mbsnicmp _wcsnicmp

_tcsnicmp _strnicmp _mbsnbicmp _wcsnicmp

595

_stmicmp, _ wcsnicmp, _mbsnicmp

Example

Output

596

1* STRNCMP.C *1
#include <string.h>
#include <stdio.h>

char stringl[]
char stri ng2[]

"The quick brown dog jumps over the lazy fox";
"The QUICK brown fox jumps over the lazy dog";

void main(void)
{

}

char tmp[20];
int result;
printf("Compare strings:\n\t\t%s\n\t\t%s\n\n". string!. string2);
printf("Function:\tstrncmp (first 10 characters only)\n");
result = strncmp(string1. string2 . 10);
if(result > 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);
printf("Function:\tstrnicmp _strnicmp (first 10 characters only)\n");
result = _strnicmp(string1. string2. 10);
if(result > 0)

strcpy(tmp. "greater than");
else if(result < 0)

strcpy(tmp. "less than");
else

strcpy(tmp. "equal to");
printf("Result:\t\tString 1 is %s string 2\n\n". tmp);

Compare strings:
The quick brown dog jumps over the lazy fox
The QUICK brown fox jumps over the lazy dog

Function:
Result:

Function:
Result:

strncmp (first 10 characters only)
String 1 is greater than string 2

_strnicmp (first 10 characters only)
String 1 is equal to string 2

See Also: strcat, strcmp, strcpy, strncat, strncmp, strncpy, strrchr,
_strset, strspn

_stmset, _ wcsnset, _mbsnset

_strnset, _wcsnset, mbsnset
Initialize characters of a string to a given format.

char * _strnset(char *string, int c, size_t count);
wchar_t * _wcsnset(wchar_t *string, wchar_t c, size_t count);
unsigned char * _mbsnset(unsigned char *string, unsigned int c, size_t count);

Routine Required Header Compatibility

_strnset <string.h> Win 95, Win NT

- wcsnset <string.h> or <wchar.h> Win 95, Win NT

- mbsnset <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

UBC.UB

UBCMT.LIB

MSYCRT.UB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the altered string.

Parameters

Remarks

string String to be altered

c Character setting

count Number of characters to be set

The _strnset function sets, at most, the first count characters of string to c (converted
to char). If count is greater than the length of string, the length of string is used
instead of count.

_ wcsnset and _mbsnset are wide-character and multibyte-character versions of
_strnset. The string arguments and return value of _ wcsnset are wide-character
strings; those of _mbsnset are multibyte-character strings. These three functions
behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsnset

_UNICODE & _MBCS
Not Defined

_strnset

_MBCS Defined _UNICODE Defined

_mbsnset _wcsnset

597

strpbrk, wcspbrk, _mbspbrk

Example

Output

/* STRNSET.C */

#include <string.h>
#include <stdio.h>

void main(void)
{

char string[15] = "This is a test";
/* Set not more than 4 characters of string to be *'s */
printf("Before: %s\n", string);
_strnset(string, '*', 4);
printf("After: %s\n", string);

Before: This is a test
After: **** is a test

See Also: strcat, strcmp, strcpy, _strset

strpbrk, wcspbrk, _mbspbrk
Scan strings for characters in specified character sets.

char *strpbrk(const char *string, const char *strCharSet);
wchar_t *wcspbrk(const wchar_t *string, const wchar_t *strCharSet);
unsigned char * _mbspbrk(const unsigned char*string,

"'+ const unsigned char *strCharSet);

Routine Required Header Compatibility

strpbrk <string.h> ANSI, Win 95, Win NT

wcspbrk <string.h> or <wchar.h> ANSI, Win 95, Win NT

_mbspbrk <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

598

Each of these functions returns a pointer to the first occurrence of any character from
strCharSet in string, or a NULL pointer if the two string arguments have no
characters in common.

strpbrk, wcspbrk, _mbspbrk

Parameters

Remarks

Example

Output

string Null-terminated, searched string

strCharSet Null-terminated character set

The strpbrk function returns a pointer to the first occurrence of a character in string
that belongs to the set of characters in strCharSet. The search does not include the
terminating null character.

wcspbrk and _mbspbrk are wide-character and multibyte-character versions of
strpbrk. The arguments and return value of wcspbrk are wide-character strings;
those of _mbspbrk are multi byte-character strings. These three functions behave
identically otherwise. _mbspbrk is similar to _mbscspn except that _mbspbrk
returns a pointer rather than a value of type size_t.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcspbrk

1* STRPBRK.C */

_UNICODE & _MBCS
Not Defined

strpbrk

#include <string.h>
#include <stdio.h>

void maine void)
{

_MBCS Defined _UNICODE Defined

_mbspbrk wcspbrk

char string[100] ... "The 3 men and 2 boys ate 5 pigs\n";
char *result;

1 :

2:

3:

4:

1* Return poi nter to fi rst 'a' or 'b' in "stri ng" * /
printf("1: %s\n", string);
result ... strpbrk(string, "0123456789");
printf("2: %s\n", result++);
result - strpbrk(result. "0123456789");
printf("3: %s\n". result++);
result - strpbrk(result. "0123456789");
printf("4: %s\n", resul t);

The 3 men and 2 boys ate 5 pigs

3 men and 2 boys ate 5 pigs

2 boys ate 5 pigs

5 pigs

See Also: strcspn, strchr, strrchr

599

strrchr, wcsrchr, _mbsrchr

strrchr, wcsrchr, mbsrchr
Scan a string for the last occurrence of a character.

char *strrchr(const char *string, int c);
char *wcsrchr(const wchar_t *string, int c);
int _mbsrchr(const unsigned char *string, unsigned int c);

Routine Required Header Compatibility

strrchr <string.h> ANSI, Win 95, Win NT

wcsrchr <string.h> or <wchar.h> ANSI, Win 95, Win NT

- mbsrchr <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIB CMT. LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the last occurrence of c in string, or
NULL if c is not found.

Parameters

Remarks

600

string Null-terminated string to search

c Character to be located

The strrchr function finds the last occurrence of c (converted to char) in string. The
search includes the terminating null character.

wcsrchr and _mbsrchr are wide-character and multibyte-character versions of
strrchr. The arguments and return value of wcsrchr are wide-character strings; those
of _mbsrchr are multi byte-character strings. These three functions behave identically
otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tcsrchr strrchr _mbsrchr wcsrchr

Example

Output

strrchr, wcsrchr, _mbsrchr

1* STRCHR.C: This program illustrates searching for a character
* with strchr (search forward) or strrchr (search backward).
*/

#include <string.h>
#include <stdio.h>

int ch = 'r';

char string[] = "The quick brown dog jumps over the lazy fox";
char fmtl[] = 1 2 3 4 5";
char fmt2[] = "12345678901234567890123456789012345678901234567890";

void maine void
{

char *pdest;
int result;

printf("String to be searched: \n\t\t%s\n", string);
printf("\t\t%s\n\t\t%s\n\n", fmtl, fmt2);
printf("Search char:\t%c\n", ch);

/* Search forward. */
pdest = strchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tfirst %c found at position %d\n\n",
ch, result);

else
printf("Result:\t%c not found\n");

/* Search backward. */
pdest = strrchr(string, ch);
result = pdest - string + 1;
if(pdest != NULL)

printf("Result:\tlast %c found at position %d\n\n", ch, result);
else

pri ntf("Result: \ t%c not found\n");

String to be searched:
The quick brown dog jumps over the lazy fox

12345
12345678901234567890123456789012345678901234567890

Search char: r
Result: first r found at position 12

Result : last r found at position 30

See Also: strchr, strcspn, _strnicmp, strpbrk, strspn

601

_strrev, _ wcsrev, _mbsrev

_strrev, _wcsrev, mbsrev
Reverse characters of a string.

char * _strrev(char *string);
wchar_t * _wcsrev(wchar_t *string);
unsigned char * _mbsrev(unsigned char * string);

Routine Required Header Compatibility

_strrev <string.h> Win 95, Win NT

_wcsrev <string.h> or <wchar.h> Win 95, Win NT

- mbsrev <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the altered string. No return value is
reserved to indicate an error.

Parameter

Remarks

Example

602

string Null-terminated string to reverse

The _strrev function reverses the order of the characters in string. The terminating
null character remains in place. _ wcsrev and _mbsrev are wide-character and
multi byte-character versions of _strrev. The arguments and return value of _ wcsrev
are wide-character strings; those of _mbsrev are multibyte-character strings. For
_mbsrev, the order of bytes in each multibyte character in string is not changed.
These three functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsrev

_UNICODE & _MBCS
Not Defined

_MBCS Defined

_mbsrev

1* STRREV.C: This program checks an input string to
* see whether it is a palindrome: that is. whether
* it reads the same forward and backward.
*1

#include <string.h>
#include <stdio.h>

_UNICODE Defined

_wcsrev

_strset, _ wcsset, _mbsset

Output

void main(void)
{

char string[100];
int result;

printf("Input a string and I will tell you if it is a palindrome:\n");
gets(string);

/* Reverse string and compare (ignore case): */
result - _stricmp(string, _strrev(_strdup(string)));
if(result == 0)

printf("The string \"%s\" is a palindrome\n\n", string);
else

printf("The string \"%s\" is not a palindrome\n\n", string);

Input a string and I will tell you if it is a palindrome:
Able was I ere I saw Elba
The string "Able was I ere I saw Elba" is a palindrome

See Also: strcpy, _strset

_strset, _wcsset, mbsset
Set characters of a string to a character.

char *_strset(char *string, int c);
wchar_t * _wcsset(wchar_t *string, wchar_t c);
unsigned char * _mhsset(unsigned char *string, unsigned int c);

Routine

_strset

_wesset

_mhsset

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns a pointer to the altered string. No return value is
reserved to indicate an error.

Parameters
string Null-terminated string to be set

c Character setting

603

strspn, wcsspn, _mbsspn

Remarks

Example

Output

The _strset function sets all the characters of string to c (converted to char), except
the terminating null character. _ wcsset and _mbsset are wide-character and
multi byte-character versions of _strset. The data types of the arguments and return
values vary accordingly. These three functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsset

/* STRSET.C */

UNICODE & MBCS
Not Defined

_strset

#include <string.h>
#include <stdio.h>

void main(void)
(

_MBCS Defined

_mbsset

char string[] = "Fill the string with something";
printf("Before: %s\n", string);
_strset(string, '*');
printf("After: %s\n". string);

Before: Fill the string with something
After: ******************************

See Also: _mbsnbset, memset, strcat, strcmp, strcpy, _strnset

_UNICODE Defined

_wesset

strspn, wcsspn, _mbsspn
Find the first substring.

size_t strspn(const char * string , const char *strCharSet);
size_t wcsspn(const wchar_t *string, const wchar_t *strCharSet);
size_t _mbsspn(const unsigned char *string, const unsigned char *strCharSet);

Routine Required Header Compatibility

strspn <string.h> ANSI, Win 95, Win NT

wcsspn <string.h> or <wehar.h> ANSI, Win 95, Win NT

_mhsspn <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

604

strspn, wcsspn, _mbsspn

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
strspn, wcsspn, and _mhsspn return an integer value specifying the length of the
substring in string that consists entirely of characters in strCharSet. If string begins
with a character not in strCharSet, the function returns O. No return value is reserved
to indicate an error. For each of these routines, no return value is reserved to indicate
an error.

Parameters

Remarks

Example

string Null-terminated string to search

strCharSet Null-terminated character set

The strspn function returns the index of the first character in string that does not
belong to the set of characters in strCharSet. The search does not include terminating
null characters.

wcsspn and _mhsspn are wide-character and multibyte-character versions of
strspn. The arguments of wcsspn are wide-character strings; those of _mhsspn are
multibyte-character strings. These three functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined
Not Defined

_tcsspn strspn _mbsspn

1* STRSPN.C: This program uses strspn to determine
* the length of the segment in the string "cabbage"
* consisting of a's, b's, and c's. In other words,
* it finds the first non-abc letter.
*1

#include <string.h>
#include <stdio.h>

void maine void)
{

char string[] = "cabbage";
int result;
result = strspn(string, "abc");

_UNICODE Defined

wcsspn

printf("The portion of '%s' containing only a, b, or c "
"is %d bytes long\n", string, result);

605

strstr, wcsstr, _mbsstr

Output
The portion of 'cabbage' containing only a, b, or c is 5 bytes long

See Also: _mbsspnp, strcspn, strncat, strncmp, strncpy, _strnicmp, strrchr

strstr, wcsstr, mbsstr
Find a substring.

char *strstr(const char *string, const char *strCharSet);
wchar_t *wcsstr(const wchar_t *string, const wchar_t *strCharSet);
unsigned char * _mbsstr(const unsigned char *string,

10+ const unsigned char *strCharSet);

Routine

strstr

wcsstr

_mbsstr

Required Header

<string.h>

<string.h> or <wchar.h>

<mbstring.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the first occurrence of strCharSet in
string, or NULL if strCharSet does not appear in string. If strCharSet points to a
string of zero length, the function returns string.

Parameters

Remarks

606

string Null-terminated string to search

strCharSet Null-terminated string to search for

The strstr function returns a pointer to the first occurrence of strCharSet in string.
The search does not include terminating null characters. wcsstr and _mbsstr are
wide-character and multibyte-character versions of strstr. The arguments and return
value of wcsstr are wide-character strings; those of _mbsstr are multibyte-character
strings. These three functions behave identically otherwise.

Example

Output

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsstr

/* STRSTR.C */

_UNICODE & _MBCS
Not Defined

strstr

#include <string.h>
#include <stdio.h)

char str[] - "lazy";

_MBCS Defined _UNICODE Defined

_mbsstr wcsstr

char string[] - "The quick brown dog jumps over the lazy fox";
c h a r fmt l[] - 1 2 3 4 5" ;
char fmt2[] - "12345678901234567890123456789012345678901234567890";

void main(void
{

char *pdest;
int result;
printf("String to be searched:\n\t%s\n", string);
printf("\t%s\n\t%s\n\n", fmt1, fmt2);
pdest - strstr(string, str);
result - pdest - string + 1;
if(pdest 1- NULL)

printf("%s found at position %d\n\n". str. result);
else

printf("%s not found\n", str);

String to be searched:
The quick brown dog jumps over the lazy fox

12345
12345678901234567890123456789012345678901234567890

lazy found at position 36

See Also: strcspn, strcmp, strpbrk, strrchr, strspn

_strtime, wstrtime
Copy the time to a buffer.

char * _strtime(char *timestr);
wchar_t * _wstrtime(wchar_t *timestr);

Routine

_strtime

_wstrtime

Required Header

<time.h>

<time.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

_strtime, _ wstrtime

607

_strtime, _ wstrtime

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Va!ue
Each of these functions returns a pointer to the resulting character string timestr.

Parameter

Remarks

Example

Output

608

timestr Time string

The _strtime function copies the current local time into the buffer pointed to by
timestr. The time is formatted as hh:mm:ss where hh is two digits representing the
hour in 24-hour notation, mm is two digits representing the minutes past the hour,
and ss is two digits representing seconds. For example, the string 18: 23: 44 represents
23 minutes and 44 seconds past 6 P.M. The buffer must be at least 9 bytes long.

_ wstrtime is a wide-character version of _strtime; the argument and return value of
_ wstrtime are wide-character strings. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tstrtime _strtime

1* STRTIME. C *1

#include <time.h>
#include <5tdio.h>

void maine void
{

char dbuffer [9J:
char tbuffer [9J:
_strdate(dbuffer) :
pri ntf("The current
_strtime(tbuffer) :
pri ntf("The current

date

time

The current date is 03/23/93
The current time is 13:40:40

is %s

is %5

MBCS Defined _UNICODE Defined

_strtime _wstrtime

\n", dbuffer) :

\n", tbuffer) :

See Also: asctime, ctime, gmtime, localtime, mktime, time, _tzset

strtod, strtol, strtoul Functions

strtod, strtol, strtoul Functions
strtod, westod

strtol, westol

strtoul, westoul

Return Value
strtod returns the value of the floating-point number, except when the representation
would cause an overflow, in which case the function returns +/-HUGE_ VAL. The
sign of HUGE_VAL matches the sign of the value that cannot be represented. strtod
returns 0 if no conversion can be performed or an underflow occurs.

strtol returns the value represented in the string nptr, except when the representation
would cause an overflow, in which case it returns LONG_MAX or LONG_MIN.
strtoul returns the converted value, if any, or ULONG_MAX on overflow. Each of
these functions returns 0 if no conversion can be performed.

westod, westol, and westoul return values analogously to strtod, strtol, and strtoul,
respectively.

For all six functions in this group, errno is set to ERANGE if overflow or underflow
occurs.

Parameters

Remarks

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

base Number base to use

The strtod, strtol, and strtoul functions convert nptr to a double-precision value, a
long-integer value, or an unsigned long-integer value, respectively.

The input string nptr is a sequence of characters that can be interpreted as a numerical
value of the specified type. Each function stops reading the string nptr at the first
character it cannot recognize as part of a number. This may be the terminating null
character. For strtol or strtoul, this terminating character can also be the first numeric
character greater than or equal to base.

For all six functions in the strtod group, the current locale's LC_NUMERIC
category setting determines recognition of the radix character in nptr; for more
information, see setloeale. If endptr is not NULL, a pointer to the character that
stopped the scan is stored at the location pointed to by endptr. If no conversion can be
performed (no valid digits were found or an invalid base was specified), the value of
nptr is stored at the location pointed to by endptr.

609

strtod, strtol, strtoul Functions

Example

610

strtod expects nptr to point to a string of the following fonn:

[whitespace] [sign] [digits] [.digits] [{d I Die I E}[sign]digits]

A whitespace may consist of space or tab characters, which are ignored; sign is either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the radix character, at least one must appear after the radix character. The
decimal digits can be followed by an exponent, which consists of an introductory
ietter (d, D, e, or E) and an optionaiiy signed integer. If neiIher an exponent part nor a
radix character appears, a radix character is assumed to follow the last digit in the
string. The first character that does not fit this form stops the scan.

The strtol and strtoul functions expect nptr to point to a string of the following fonn:

[whitespace] [{ + I - }] [0 [{ x I X }]] [digits]

If base is between 2 and 36, then it is used as the base of the number. If base is 0, the
initial characters of the string pointed to by nptr are used to determine the base. If the
first character is 0 and the second character is not 'x' or 'X', the string is interpreted as
an octal integer; otherwise, it is interpreted as a decimal number. If the first character
is '0' and the second character is 'x' or 'X', the string is interpreted as a hexadecimal
integer. If the first character is 'I' through '9', the string is interpreted as a decimal
integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the values 10 through
35; only letters whose assigned values are less than base are permitted. strtoul allows
a plus (+) or minus (-) sign prefix; a leading minus sign indicates that the return value
is negated.

westod, westol, and westoul are wide-character versions of strtod, strtol, and
strtoul, respectively; the nptr argument to each of these wide-character functions is a
wide-character string. Otherwise, each of these wide-character functions behaves
identically to its single-byte-character counterpart.

/* STRTOD.C: This program uses strtod to convert a
* string to a double-precision value; strtol to
* convert a string to long integer values; and strtoul
* to convert a string to unsigned long-integer values.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *string, *stopstring;
double x;
long 1 ;
int base;
unsi gned long ul;
string = "3.1415926This stopped it";
x = strtod(string, &stopstring);

Output

printf("string - %s\n", string);
printf(" strtod == %f\n", x);
printf(" Stopped scan at: %s\n\n", stopstring);
string == "-10110134932This stopped it";
1 - strto1(string, &stopstring, 10);
printf("string == %s", string);
printf(" strto1 == %ld", 1);
printf(" Stopped scan at: %s", stopstring);
string'" "10110134932";
printf("string == %s\n", string);
1* Convert string using base 2, 4, and 8: *1
for(base'" 2; base < ... 8; base *- 2)
{

1* Convert the string: *1
u1 - strtou1(string, &stopstring, base);
pri ntf(" strto1 - %1 d (base %d) \n", u1, base);
printf(" Stopped scan at: %s\n", stopstring);

string == 3.1415926 This stopped it
strtod == 3.141593
Stopped scan at: This stopped it

string == -10110134932 This stopped it
strto1 ... -2147483647
Stopped scan at: This stopped it

string = 10110134932
strto1 == 45 (base 2)
Stopped scan at: 34932
strto1 == 4423 (base 4)
Stopped scan at: 4932
strto1 - 2134108 (base 8)
Stopped scan at: 932

See Also: atof, localeconv, setlocale

strtod, wcstod
Convert strings to a double-precision value.

double strtod(const char *nptr, char **endptr);
double wcstod(const wchar_t *nptr, wchar_t **endptr);

Each of these functions converts the input string nptr to a double.

Routine

strtod

wcstod

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

strtod, wcstod

611

strtod, wcstod

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
strtod returns the value of the floating-point number, except when the representation
would cause an overflow, in which case the function returns +/-HUGE_ VAL. The
sign of HUGE_VAL matches the sign of the value that cannot be represented. strtod
returns 0 if no conversion can be performed or an underflow occurs.

wcstod returns values analogously to strtod. For both functions, errno is set to
ERANGE if overflow or underflow occurs.

Parameters

Remarks

612

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

The strtod function converts nptr to a double-precision value. strtod stops reading
the string nptr at the first character it cannot recognize as part of a number. This may
be the terminating null character. wcstod is a wide-character version of strtod; its nptr
argument is a wide-character string. Otherwise these functions behave identically.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcstod

_UNICODE & _MBCS
Not Defined

strtod

_MBCS Defined _UNICODE Defined

strtod wcstod

The LC_NUMERIC category setting of the current locale determines recognition of
the radix character in nptr; for more information, see setlocale. If endptr is not
NULL, a pointer to the character that stopped the scan is stored at the location pointed
to by endptr. If no conversion can be performed (no valid digits were found or an
invalid base was specified), the value of nptr is stored at the location pointed to by
endptr.

strtod expects nptr to point to a string of the following form:

[whitespace] [sign] [digits] [.digits] [{d I Die I EHsign]digits]

A whitespace may consist of space and tab characters, which are ignored; sign is
either plus (+) or minus (-); and digits are one or more decimal digits. If no digits
appear before the radix character, at least one must appear after the radix character.
The decimal digits can be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed integer. If neither an exponent part nor a
radix character appears, a radix character is assumed to follow the last digit in the
string. The first character that does not fit this form stops the scan.

Example

Output

/* STRTOD.C: This program uses strtod to convert a
* string to a double-precision value; strtol to
* convert a string to long integer values; and strtoul
* to convert a string to unsigned long-integer values.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *string, *stopstring;
double x;
long 1 ;
int base;
unsigned long ul;
string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);
printf(" strtod = %f\n", x);
printf(" Stopped scan at: %s\n\n", stopstring);
string = "-10110134932This stopped it";
1 = strtol(string, &stopstring, 10);
printf("string = %s", string);
printf(" strtol = %ld", 1);
printf(" Stopped scan at: %s", stopstring);
string = "10110134932";
printf("string = %s\n", string);
1* Convert string using base 2, 4, and 8: */
for(base = 2; base <= 8; base *= 2)
{

/* Convert the string: */
ul = strtoul(string, &stopstring, base);
printf(" strtol = %ld (base %d)\n", ul, base);
pri ntf(" Stopped scan at: %s\n", stopstri ng);

string = 3.1415926 This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

string = -10110134932 This stopped it
strtol = -2147483647
Stopped scan at: This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

See Also: strtol, strtoul, atof, localeconv, setlocale

strtoll, we stoll

613

strtok, wcstok, _mbstok

strtok, wcstok, mbstok
Find the next token in a string.

char *strtok(char *strToken, const char *strDelimit);
wchar_t *wcstok(wchar_t *strToken, const wchar_t *strDelimit);
unsigned char * _mbstok(unsigned char*strToken, const unsigned char *strDelimit);

Routine Required Header Compatibility

strtok <string.h> ANSI, Win 95, Win NT

wcstok <string.h> or <wchar.h> ANSI, Win 95, Win NT

- mbstok <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
All of these functions return a pointer to the next token found in strToken. They return
NULL when no more tokens are found. Each call modifies strToken by substituting a
NULL character for each delimiter that is encountered.

Parameters

Remarks

614

strToken String containing token(s)

strDelimit Set of delimiter characters

The strtok function finds the next token in strToken. The set of characters in strDelimit
specifies possible delimiters of the token to be found in strToken on the current call.
wcstok and _mbstok are wide-character and multibyte-character versions of strtok.
The arguments and return value of wcstok are wide-character strings; those of _mbstok
are multibyte-character strings. These three functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tcstok strtok _mbstok wcstok

On the first call to strtok, the function skips leading delimiters and returns a pointer to
the first token in strToken, terminating the token with a null character. More tokens
can be broken out of the remainder of strToken by a series of calls to strtok. Each call
to strtok modifies strToken by inserting a null character after the token returned by
that call. To read the next token from strToken, call strtok with a NULL value for the

Example

Output

strtok, wcstok, _mbstok

strToken argument. The NULL strToken argument causes strtok to search for the next
token in the modified strToken. The strDelimit argument can take any value from one
call to the next so that the set of delimiters may vary.

Warning Each of these functions uses a static variable for parsing the string into tokens.
If multiple or simultaneous calls are made to the same function, a high potential for data
corruption and inaccurate results exists. Therefore, do not attempt to call the same function
simultaneously for different strings and be aware of calling one of these function from within a
loop where another routine may be called that uses the same function. However, calling this
function simultaneously from multiple threads does not have undesirable effects.

/* STRTOK.C: In this program, a loop uses strtok
* to print all the tokens (separated by commas
* or blanks) in the string named "string".
*/

#include <string.h>
#include <stdio.h>

char string[] - "A string\tof "tokens\nand some more tokens";
char seps[] -", \t\n";
char *token;

void main(void
{

printf("%s\n\nTokens:\n", string);
/* Establish string and get the first token: */
token - strtok(string, seps);
while(token !- NULL)
{

/* While there are tokens in "string" */
printf(" %s\n", token);
/* Get next token: */
token - strtok(NULL, seps);

A string of "tokens
and some more tokens

Tokens:
A
string
of
tokens
and
some
more
tokens

See Also: strcspn, strspn, setlocale

615

strtol, wcstol

strtol, wcstol
Convert strings to a long-integer value.

long strtol(const char *nptr, char **endptr, int base);
long wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

Routine

strtol

wcstol

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

compatibiiity

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
strtol returns the value represented in the string nptr, except when the
representation would cause an overflow, in which case it returns LONG_MAX
or LONG_MIN. strtol returns 0 if no conversion can be performed. wcstol
returns values analogously to strtol. For both functions, errno is set to
ERANGE if overflow or underflow occurs.

Parameters

Remarks

616

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

base Number base to use

The strtol function converts nptr to a long. strtol stops reading the string nptr
at the first character it cannot recognize as part of a number. This may be the
terminating null character, or it may be the first numeric character greater than
or equal to base.

wcstol is a wide-character version of strtol; its nptr argument is a wide-character
string. Otherwise these functions behave identically.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcstol

_UNICODE & _MBCS
Not Defined

strtol

_MBCS Defined _UNICODE Defined

strtol wcstol

Example

The current locale's LC_NUMERIC category setting determines recognition of the
radix character in llptr; for more information, see setlocale. If endptr is not NULL, a
pointer to the character that stopped the scan is stored at the location pointed to by
endptr. If no conversion can be performed (no valid digits were found or an invalid
base was specified), the value of nptr is stored at the location pointed to by endptr.

strtol expects nptr to point to a string of the following form:

[whitespace] [{+ I-}] [0 [{ x I X }]] [digits]

A whitespace may consist of space and tab characters, which are ignored; digits are
one or more decimal digits. The first character that does not fit this form stops the
scan. If base is between 2 and 36, then it is used as the base of the number. If base is
0, the initial characters of the string pointed to by nptr are used to determine the base.
If the first character is 0 and the second character is not 'x' or 'X', the string is
interpreted as an octal integer; otherwise, it is interpreted as a decimal number. If the
first character is '0' and the second character is 'x' or 'X', the string is interpreted as a
hexadecimal integer. If the first character is '1' through '9', the string is interpreted as
a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the values
10 through 35; only letters whose assigned values are less than base are permitted.

1* STRTOD.C: This program uses strtod to convert a
* string to a double-precision value; strtol to
* convert a string to long integer values; and strtoul
* to convert a string to unsigned long-integer values.
*1

#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char *string, *stopstring;
double x;
long 1 ;
int base;
unsigned long ul;
string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);
printf(" strtod = %f\n", x);
printf(" Stopped scan at: %s\n\n", stopstring);
stri ng = "-10110134932Thi s stopped it";
1 = strtol(string, &stopstring, 10);
printf("string = %s", string);
printf(" strtol = %ld", 1);
printf(" Stopped scan at: %s", stopstring);
stri ng = "10110134932";
printf("string = %s\n", string);
/* Convert string using base 2, 4. and 8: */
for(base = 2; base <= 8; base *= 2)

strtol, wcstol

617

strtoul, westoul

Output

/* Convert the string: */
ul = strtoul(string, &stopstring, base);
printf(" strtol - %ld (base %d)\n", ul, base);
printf(" Stopped scan at: %s\n", stopstring);

string ~ 3.1415926 This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

string = -10110134932 This stopped it
strtol = -2147483647
Stopped scan at: This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

See Also: strtod, strtoul, atof, localeconv, setlocale

strtoul, westoul
Convert strings to an unsigned long-integer value.

unsigned long strtoul(const char *nptr, char **endptr, int base);
unsigned long wcstoul(const wchar_t *nptr, wchar_t **endptr, int base);

Routine

strtoul

westoul

Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

618

strtoul returns the converted value, if any, or ULONG_MAX on overflow. strtoul
returns 0 if no conversion can be performed. wcstoul returns values analogously to
strtoul. For both functions, errno is set to ERANGE if overflow or underflow
occurs.

Parameters

Remarks

Example

nptr Null-terminated string to convert

endptr Pointer to character that stops scan

base Number base to use

Each of these functions converts the input string nptr to an unsigned long.

strtoul stops reading the string nptr at the first character it cannot recognize as part of
a number. This may be the terminating null character, or it may be the first numeric
character greater than or equal to base. The LC_NUMERIC category setting of the
current locale determines recognition of the radix character in nptr; for more
information, see setloeale. If endptr is not NULL, a pointer to the character that
stopped the scan is stored at the location pointed to by endptr. If no conversion can
be performed (no valid digits were found or an invalid base was specified), the value
of nptr is stored at the location pointed to by endptr.

westoul is a wide-character version of strtoul; its nptr argument is a wide-character
string. Otherwise these functions behave identically.

Generic-Text Routine Mappings

TCHAR.H Routine

_testoul

_UNICODE & _MBCS
Not Defined

strtoul

_MBCS Defined

strtoul

strtoul expects nptr to point to a string of the following form:

[whitespace] [{+ I-}] [0 [{ x I X }]] [digits]

_UNICODE Defined

westoul

A whitespace may consist of space and tab characters, which are ignored; digits are
one or more decimal digits. The first character that does not fit this form stops the
scan. If base is between 2 and 36, then it is used as the base of the number. If base is
0, the initial characters of the string pointed to by nptr are used to determine the base.
If the first character is 0 and the second character is not 'x' or 'X', the string is
interpreted as an octal integer; otherwise, it is interpreted as a decimal number. If the
first character is '0' and the second character is 'x' or 'X', the string is interpreted as a
hexadecimal integer. If the first character is 'I' through '9', the string is interpreted as
a decimal integer. The letters 'a' through 'z' (or 'A' through 'Z') are assigned the values
10 through 35; only letters whose assigned values are less than base are permitted.
strtoul allows a plus (+) or minus (-) sign prefix; a leading minus sign indicates that
the return value is negated.

1* STRTOD.C: This program uses strtod to convert a
* string to a double-precision value; strtol to
* convert a string to long integer values; and strtoul
* to convert a string to unsigned long-integer values.
*/

strtoul, westaul

619

strtoul, westoul

Output

620

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char *string, *stopstring;
double x;
long 1 ;

uns i gned long ul;
string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);
pri ntf(" strtod = %f\n", x);
printf(" Stopped scan at: %s\n\n", stopstring);
string = "-10110134932This stopped it";
1 = strtol(string, &stopstring, 10);
printf("string=%s", string);
printf(" strtol = %ld", 1);
printf(" Stopped scan at: %s", stopstring);
string = "10110134932";
printf("string = %s\n", string);
1* Convert string using base 2, 4, and 8: *1
fore base = 2; base <= 8; base *= 2)
{

1* Convert the string: *1
ul = strtoul(string, &stopstring, base);
printf(" strtol = %ld (base %d)\n", ul, base);
printf(" Stopped scan at: %s\n", stopstring);

string = 3.1415926 This stopped it
strtod = 3.141593
Stopped scan at: This stopped it

string = -10110134932 This stopped it
strtol = -2147483647
Stopped scan at: This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at: 34932
strtol = 4423 (base 4)
Stopped scan at: 4932
strtol = 2134108 (base 8)
Stopped scan at: 932

See Also: strtod, strtol, atof, localeconv, setlocale

_stropr, _ wcsupr, _mbsupr

_strupr, _wcsupr, _mhsupr
Convert a string to uppercase.

char * _strupr(char *string);
wchar_t * _ wcsupr(wchar_t *string);
unsigned char * _mhsupr(unsigned char * string);

Routine Required Header Compatibility

_strupr <string.h> Win 95, Win NT

_wcsupr <string.h> or <wchar.h> Win 95, Win NT

_mbsupr <mbstring.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
These functions return a pointer to the altered string. Because the modification is done
in place, the pointer returned is the same as the pointer passed as the input argument.
No return value is reserved to indicate an error.

Parameter

Remarks

string String to capitalize

The _strupr function converts, in place, each lowercase letter in string to uppercase.
The conversion is determined by the LC_CTYPE category setting of the current
locale. Other characters are not affected. For more information on LC_ CTYPE,
see setlocale.

_ wcsupr and _mhsupr are wide-character and multibyte-character versions of
_strupr. The argument and return value of _ wcsupr are wide-character strings;
those of _mhsupr are multibyte-character strings. These three functions behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsupr

_UNICODE & _MBCS
Not Defined

_MBCS Defined _UNICODE Defined

_mbsupr _wcsupr

621

strxfrm, wcsxfrm

Example

Output

/* STRLWR.C: This program uses _strlwr and _strupr to create
* uppercase and lowercase copies of a mixed-case string.
*/

#include <string.h>
#include <stdio.h>

void main(voirl)

char string[l00] = "The String to End All Strings!";
char *copyl, *copy2;
copyl = _strlwr(_strdup(string);
copy2 = _strupr(_strdup(string);
printf("Mixed: %s\n", string);
printf("Lower: %5\n", copyl);
printf("Upper: %s\n", copy2);

Mixed: The String to End All Strings!
Lower: the string to end all strings!
Upper: THE STRING TO END ALL STRINGS!

See Also: _strlwr

strxfrm, wcsxfrm
Transform a string based on locale-specific information.

size_t strxfrm(char *strDest, const char *strSource, size_t count);
size_t wcsxfrm(wchar_t *strDest, const wchar_t *strSource, size_t count);

Routine

strxfrm

wcsxfrm

Required Header

<string.h>

<string.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value

622

Each of these functions returns the length of the transformed string, not counting the
terminating null character. If the return value is greater than or equal to count, the
content of strDest is unpredictable. On an error, each of the functions sets errno and
returns (size_t) -1.

Parameters

Remarks

strDest Destination string

strSource Source string

count Maximum number of characters to place in strDest

The strxfrm function transforms the string pointed to by strSource into a new collated
form that is stored in strDest. No more than count characters, including the null
character, are transformed and placed into the resulting string. The transformation
is made using the current locale's LC_COLLATE category setting. For more
information on LC_COLLATE, see setlocale.

After the transformation, a call to strcmp with the two transformed strings yields results
identical to those of a call to strcoll applied to the original two strings. As with strcoll
and stricoll, strxfrm automatically handles multibyte-character strings as appropriate.

wcsxfrm is a wide-character version of strxfrm; the string arguments of wcsxfrm are
wide-character pointers. For wcsxfrm, after the string transformation, a call to wcscmp
with the two transformed strings yields results identical to those of a call to wcscoll
applied to the original two strings. wcsxfrm and strxfrm behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tcsxfrm

_UNICODE & _MBCS
Not Defined

strxfrm

_MBCS Defined _UNICODE Defined

strxfrm wcsxfrm

In the "C" locale, the order of the characters in the character set (ASCII character set)
is the same as the lexicographic order of the characters. However, in other locales, the
order of characters in the character set may differ from the lexicographic character
order. For example, in certain European locales, the character 'a' (value Ox61) precedes
the character 'a' (value OxE4) in the character set, but the character 'a' precedes the
character 'a' lexicographically.

In locales for which the character set and the lexicographic character order differ, use
strxfrm on the original strings and then strcmp on the resulting strings to produce a
lexicographic string comparison according to the current locale's LC_COLLATE
category setting. Thus, to compare two strings lexicographically in the above locale,
use strxfrm on the original strings, then strcmp on the resulting strings. Alternatively,
you can use strcoll rather than strcmp on the original strings.

The value of the following expression is the size of the array needed to hold the
strxfrm transformation of the source string:

1 + strxfrm(NULL, string, 0)

In the "C" locale only, strxfrm is equivalent to the following:

strncpy(_stringl, _string2, _count);
return(strlen(_stringl));

See Also: localeconv, setlocale, strcmp, strncmp

strxfrm, wcsxfrm

623

swab
Swaps bytes.

void _swab(char *src, char *dest, int n);

Routine Required Header Compatibility

<stdiib.h> Win 9.3, 'vViu NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
None

Parameters

Remarks

Example

624

src Data to be copied and swapped

dest Storage location for swapped data

n Number of bytes to be copied and swapped

The _swab function copies n bytes from src, swaps each pair of adjacent bytes, and
stores the result at dest. The integer n should be an even number to allow for
swapping. _swab is typically used to prepare binary data for transfer to a machine that
uses a different byte order.

/* SWAB.C illustrates:
* swab
*/

#include <stdlib.h>
#include <stdio.h>

char from[] = "BADCFEHGJILKNMPORQTSVUXWZY";
char toe] = ";

void main()
{

printf("Before:\t%s\n\t%s\n\n", from, to);
_swab(from. to, sizeof(from));
printf("After:\t%s\n\t%s\n\n", from, to);

Output
Before: BADCFEHGJILKNMPOROTSVUXWZY

After: BADCFEHGJILKNMPOROTSVUXWZY
ABCDEFGHIJKLMNOPORSTUVWXYZ

system, _wsystem
Execute a command.

int system(const char *command);
int _ wsystem(const wchar_t *command);

Routine

system

_wsystem

Required Header

<process.h> or <stdlib.h>

<process.h> or <stdlib.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If command is NULL and the command interpreter is found, the function returns a
nonzero value. If the command interpreter is not found, it returns 0 and sets errno to
ENOENT. If command is not NULL, system returns the value that is returned by the
command interpreter. It returns the value 0 only if the command interpreter returns
the value O. A return value of -1 indicates an error, and errno is set to one of the
following values:

E2BIG Argument list (which is system-dependent) is too big.

ENOENT Command interpreter cannot be found.

ENOEXEC Command-interpreter file has invalid format and is not executable.

ENOMEM Not enough memory is available to execute command; or available
memory has been corrupted; or invalid block exists, indicating that process making
call was not allocated properly.

'arameter

~emarks

command Command to be executed

The system function passes command to the command interpreter, which executes
the string as an operating-system command. system refers to the COMSPEC and

system, _ wsystem

625

tan, tanh

Example

Output

PATH environment variables that locate the command-interpreter file (the file named
CMD.EXE in Windows NT). If command is NULL, the function simply checks to see
whether the command interpreter exists.

You must explicitly flush (using fflush or _flushall) or close any stream before calling
system.

_ wsystem is a wide-character version of system; the command argument to _ wsystem
is a Vv~ide-charactcr string. These functions behn:v"e identicrrl1j' cther'.'Ilise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS
Not Defined

_tsystem system

/* SYSTEM.C: This program uses
* system to TYPE its source file.
*/

#include <process.h>

void maine void)
{

system("type system.c");

/* SYSTEM.C: This program uses
* system to TYPE its source file.
*/

#include <process.h>
void maine void)
{

system("type system.c");

_MBCS Defined

system

See Also: _exec Functions, exit, _flushall, _spawn Functions

_UNICODE Defined

_wsystem

tan, tanh

626

Calculate the tangent (tan) or hyperbolic tangent (tanh).

double tan(double x);
double tanh(double x);

Routine

tan

tanh

Required Header

<math.h>

<math.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
tan returns the tangent of x. If x is greater than or equal to 263

, or less than or equal
to _263

, a loss of significance in the result occurs, in which case the function generates
a _TLOSS error and returns an indefinite (same as a quiet NaN). You can modify
error handling with _matherr.

tanh returns the hyperbolic tangent of x. There is no error return.

Parameter

Example

)utput

x Angle in radians

/* TAN.C: This program displays the tangent of pi / 4
* and the hyperbolic tangent of the result.
*/

#include <math.h>
#include <stdio.h>

void main(void)
{

double pi - 3.1415926535;
double x. y;

x ~ tan(pi / 4);
y = tanh(x);
printf("tan(%f) = %f\n". x. y);
printf("tanh(%f) = %f\n". y. x);

tan(1.000000) = 0.761594
tanh(0.761594) - 1.000000

See Also: acos, asin, atan, cos, sin

_tell, telli64
Get the position of the file pointer.

long _tell(int handle);
_int64 _telli64(int handle);

627

Routine Required Header

<io.h>

<io.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility infonnation, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
A return value of -IL indicates an error, and errno is set to EBADF to indicate
an invalid file-handle argument. On devices incapable of seeking, the return value
is undefined.

Parameter

Remarks

Example

Output

628

handle Handle referring to open file

The _tell function gets the current position of the file pointer (if any) associated
with the handle argument. The position is expressed as the number of bytes from
the beginning of the file. For the _te1li64 function, this value is expressed as a
64-bit integer.

/* TELL.C: This program uses _tell to tell the
* file pointer position after a file read.
*/

fFinclude <io.h>
fFinclude <stdio.h>
fFinclude <fcntl.h>

void maine void
{

int fh;
char buffer[500];

if((fh = _open("tell.c", _O_RDONLY)) !== -1)
{

if(_read(fh, buffer, 500) > 0)
printf("Current file position is: %d\n", _tell(fh));

_close(fh);

Current file position is: 434

See Also: ftell, _lseek

_tempnam, _wtempnam, tmpnam, _wtmpnam

_tempnam, _wtempnam, tmpnam,
_wtmpnam

Create temporary filenames.

char * _tempnam(char *dir, char *prefix);
wchar_t * _wtempnam(wchar_t *dir, wchar_t *prefix);
char *tmpnam(char *string);
wchar_t * _wtmpnam(wchar_t *string);

Routine Required Header Compatibility

_tempnam <stdio.h> Win 95, Win NT

_wtempnam <stdio.h> or <wchar.h> Win 95, Win NT

tmpnam <stdio.h> ANSI, Win 95, Win NT

_wtmpnam <stdio.h> or <wchar.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a pointer to the name generated, unless it is impossible
to create this name or the name is not unique. If the name cannot be created or if a file
with that name already exists, tmpnam and _tempnam return NULL. _tempnam and
_ wtempnam also return NULL if the file search fails.

Note The pointer returned by tmpnam points to an internal static buffer. free does not need to
be called to deallocate this pointer.

Parameters

Remarks

prefix Filename prefix

dir Target directory to be used if TMP not defined

string Pointer to temporary name

The tmpnam function generates a temporary filename that can be used to open a
temporary file without overwriting an existing file.

This name is stored in string. If string is NULL, then tmpnam leaves the result in
an internal static buffer. Thus any subsequent calls destroy this value. If string is not
NULL, it is assumed to point to an array of at least L_tmpnam bytes (the value of

629

_tempnam, _ wtempnam, tmpnam, _ wtmpnam

Example

630

L_tmpnam is defined in STDIO.H). The function generates unique filenames for up
to TMP _MAX calls.

The character string that tmpnam creates consists of the path prefix, defined by the
entry P _tmpdir in the file STDIO.H, followed by a sequence consisting of the digit
characters '0' through '9'; the numerical value of this string is in the range 1-65,535.
Changing the definitions of L_tmpnam or P _tmpdir in STDIO.H does not change
the operation of tmpnam.

_tempnam creates a temporary filename for use in another directory. This filename
is different from that of any existing file. The prefix argument is the prefix to the
filename. _tempnam uses malloe to allocate space for the filename; the program is
responsible for freeing this space when it is no longer needed. _tempnam looks for
the file with the given name in the following directories, listed in order of precedence.

Directory Used

Directory specified by TMP

dir argument to _tempnam

P _tmpdir in STDIO.H

Current working directory

Conditions

TMP environment variable is set, and directory
specified by TMP exists.

TMP environment variable is not set, or directory
specified by TMP does not exist.

dir argument is NULL, or dir is name of nonexistent
directory.

P _tmpdir does not exist.

_tempnam and tmpnam automatically handle multibyte-character string arguments
as appropriate, recognizing multibyte-character sequences according to the OEM code
page obtained from the operating system. _ wtempnam is a wide-character version of
_tempnam; the arguments and return value of _ wtempnam are wide-character
strings. _ wtempnam and _tempnam behave identically except that _ wtempnam
does not handle multibyte-character strings. _ wtmpnam is a wide-character version of
tmpnam; the argument and return value of _ wtmpnam are wide-character strings.
_ wtmpnam and tmpnam behave identically except that _ wtmpnam does not handle
multibyte-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS

_ttmpnam

_ttempnam

Not Defined

tmpnam

_tempnam

_MBCS Defined

tmpnam

_tempnam

_UNICODE Defined

_wtmpnam

_wtempnam

/* TEMPNAM.C: This program uses tmpnam to create a unique
* filename in the current working directory, then uses
* _tempnam to create a unique filename with a prefix of stq.
*/

#include <stdio.h)

Output

void main(void
(

char *namel, *name2;

/* Create a temporary filename for the current working directory: */
if((namel - tmpnam(NULL)) !- NULL)

printf("%s is safe to use as a temporary file.\n", namel);
else

printf("Cannot create a unique filename\n");

/* Create a temporary filename in temporary directory with the
* prefix "stq". The actual destination directory may vary
* depending on the state of the TMP environment variable and
* the global variable P_tmpdir.
*/

i f((name2 - _tempnam("c: \ \ tmp", "stq")) !- NULL)
pri ntf("%s is safe to use as a tempora ry fi 1 e. \n", name2);

else
printf("Cannot create a unique filename\n");

\s5d. is safe to use as a temporary file.
C:\temp\stq2 is safe to use as a temporary file.

See Also: ~etmbep, malloe, _setmbep, tmpfile

terminate
Calls abort or a function you specify using seCterminate.

void terminate(void);

Routine Required Header Compatibility

terminate <eh.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

leturn Value
None

lemarks
The terminate function is used with C++ exception handling and is called in the
following cases:

• A matching catch handler cannot be found for a thrown C++ exception.

terminate

631

terminate

Example

Output

632

• An exception is thrown by a destructor function during stack unwind.

• The stack is corrupted after throwing an exception.

terminate calls abort by default. You can change this default by writing your own
termination function and calling seCterminate with the name of your function as its
argument. terminate calls the last function given as an argument to seCterminate.

1* TERMINAT.CPP:
*1

#include <eh.h>
#include <process.h>
#include <iostream.h>

void term_func();

void maine)
{

int i = 10. j = 0. result;
set_terminate(term_func);
try
{

if(j 0)

throw "Divide by zero!";
else

result = i/j;

catch (i nt
{

cout « "Caught some integer exception.\n";

cout « "This should never print.\n";

void term_func()
{

cout « "term_func() was called by terminate().\n";

II ... cleanup tasks performed here

II If this function does not exit. abort is called.

exit(-l);

term_func() was called by terminate().

See Also: abort, _set_se_translator, set_terminate, set_unexpected,
unexpected

time
Gets the system time.

time_t time(time_t *timer);

Routine Required Header Compatibility

time <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
time returns the time in elapsed seconds. There is no error return.

Parameter

Remarks

Example

timer Storage location for time

The time function returns the number of seconds elapsed since midnight (00:00:00),
January 1, 1970, coordinated universal time, according to the system clock. The return
value is stored in the location given by timer. This parameter may be NULL, in which
case the return value is not stored.

1* TIMES.C illustrates various time and date functions including:
* time ftime ctime asctime
* localtime gmtime mktime tzset
* strtime strdate strftime
*
* Also the global variable:
* tzname
*1

#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <string.h>

void main()
{

char tmpbuf[128], ampm[] "AM";
time_t ltime;
struct _timeb tstruct;
struct tm *today, *gmt, xmas {0, 0, 12, 25, 11, 93 };

time

633

time

634

/* Set time zone from TZ environment variable. If TZ is not set,
* the operating system is queried to obtain the default value
* for the variable.
*/

_tzset () :

/* Display operating system-style date and time. */
_strtime(tmpbuf):
printf("OS time:\t\t\t\t%s\n", tmpbuf):
_strdate(tmpbuf):
printf("OS date:\t\t\t\t%s\n", tmpbuf):

/* Get UNIX-style time and display as number and string. */
time(<ime):
printf("Time in seconds since UTC 111/70:\t%ld\n", ltime):
printf("UNIX time and date:\t\t\t%s", ctime(<ime));

/* Display UTC. */
gmt - gmtime(<ime):
printf("Coordinated universal time:\t\t%s", asctime(gmt)):

/* Convert to time structure and adjust for PM if necessary. */
today - localtime(<ime):
if(today->tm_hour > 12)
{

strcpy(ampm, "PM"):
today->tm_hour -~ 12;
}

if(today->tm_hour -- 0) /* Adjust if midnight hour. */
today->tm_hour = 12:

/* Note how pointer addition is used to skip the first 11
* characters and printf is used to trim off terminating
* characters.
*/

printf("12-hour time:\t\t\t\t%.8s %s\n",
asctime(today) + 11, ampm):

/* Print additional time information. */
_ftime(&tstruct):
printf("Plus milliseconds:\t\t\t%u\n", tstruct.millitm):
printf("Zone difference in seconds from UTC:\t%u\n",

tstruct.timezone):
printf("Time zone name:\t\t\t\t%s\n", _tzname[0]);
printf("Daylight savings:\t\t\t%s\n",

tstruct.dstflag? "YES" : "NO"):

/* Make time for noon on Christmas, 1993. */
if(mktime(&xmas) !- (time_t)-1)
printf("Christmas\t\t\t\t%s\n", asctime(&xmas)):

Output

1* Use time structure to build a customized time string. *1
today ~ localtime(<ime);

1* Use strftime to build a customized time string. *1
strftime(tmpbuf. 128.

"Today is %A. day %d of %8 in the year %Y.\n". today);
printf(tmpbuf);

as time:
as date:
Time in seconds since UTC 1/1/70:
UNIX time and date:
Coordinated universal time:
12-hour time:
Plus milliseconds:
Zone difference in seconds from UTC:
Time zone name:
Daylight savings:
Christmas

21:51:03
05/03/94
768027063
Tue May 03 21:51:03 1994
Wed May 04 04:51:03 1994
09:51:03 PM
279
480

YES
Sat Dec 25 12:00:00 1993

Today is Tuesday. day 03 of May in the year 1994.

See Also: asctime, _ftime, gmtime, localtime, _utime

tmpfile
Creates a temporary file.

FILE *tmpfile(void);

Routine Required Header Compatibility

tmpfile <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

If successful, tmpfile returns a stream pointer. Otherwise, it returns a
NULL pointer.

tmpfile

635

to Functions

Remarks

Example

Output

The tmpfile function creates a temporary file and returns a pointer to that stream. If
the file cannot be opened, tmpfile returns a NULL pointer. This temporary file is
automatically deleted when the file is closed, when the program terminates normally,
or when _rmtmp is called, assuming that the current working directory does not
change. The temporary file is opened in w+b (binary read/write) mode.

/* TMPFILE.C: This program uses tmpfile to create a
* temporary file, then deletes this file with _rmtmp.
*/

#include <stdio.h>

void main(void)
{

FILE *stream;
char tempstring[]
i nt i;

"String to be written";

/* Create temporary files. */
for(i = 1; i <- 3; i++)
{

if((stream = tmpfile()) == NULL)
perror("Coul d not open new temporary fil e\n");

else
pri ntf("Temporary fi 1 e %d was created\n", i);

/* Remove temporary files. */
printf("%d temporary files deleted\n", _rmtmp());

Temporary file 1 was created
Temporary file 2 was created
Temporary file 3 was created
3 temporary files deleted

See Also: _rmtmp, _tempnam

to Functions

636

Each of the to functions and its associated macro, if any, converts a single
character to another character.

_toascii toupper, _toupper, towupper

tolower, _tolower, towlower

Remarks
The to functions and macro conversions are as follows:

Routine Macro Description

toascii to ascii Converts c to ASCII character - -
tolower tolower Converts c to lowercase if appropriate

_tolower - tolower Converts c to lowercase

towlower None Converts c to corresponding wide-character lowercase letter

toupper toupper Converts c to uppercase if appropriate

_toupper _toupper Converts c to uppercase

towupper None Converts c to corresponding wide-character uppercase letter

To use the function versions of the to routines that are also defined as macros,
either remove the macro definitions with #undef directives or do not include
CTYPE.H. If you use the /Za compiler option, the compiler uses the function
version of toupper or tolower. Declarations of the toupper and tolower
functions are in STDLIB.H.

The _toascii routine sets all but the low-order 7 bits of c to 0, so that the
converted value represents a character in the ASCII character set. If c already
represents an ASCII character, c is unchanged.

The tolower and toupper routines:

• Are dependent on the LC_CTYPE category of the current locale (tolower calls
isupper and toupper calls islower).

• Convert c if c represents a convertible letter of the appropriate case in the
current locale and the opposite case exists for that locale. Otherwise, c is
unchanged.

The _tolower and _toupper routines:

• Are locale-independent, much faster versions of tolower and toupper.

• Can be used only when isascii(c) and either isupper(c) or islower(c),
respectively, are true.

• Have undefined results if c is not an ASCII letter of the appropriate case for
converting.

The towlower and towupper functions return a converted copy of c if and only if
both of the following conditions are true. Otherwise, c is unchanged.

• c is a wide character of the appropriate case (that is, for which iswupper or
iswlower, respectively, is true).

• There is a corresponding wide character of the target case (that is, for which
is wi ower or iswupper, respectively, is true).

to Functions

637

to Functions

Example

Output

/* TOUPPER.C: This program uses toupper and tolower to
* analyze all characters between 0x0 and 0x7F. It also
* applies _toupper and _tolower to any code in this
* range for which these functions make sense.
*/

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals\r\n";
char *p;

void main(void)
{

_cputs(msg);

/* Reverse case of message. */
for(p = msg; p < msg + strlen(msg); p++)
{

if(islower(*p))
_putch(_toupper(*p));

else if(isupper(*p))
_putch(_tolower(*p));

else
_putch(*p);

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

See Also: is Routines

_toascii

638

Converts characters.

int _toascii(int c);

Routine Required Header Compatibility

_toascii <ctype.h> Win 95, Win NT

For additional compatibility information, see ~'Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
_toascii converts a copy of c if possible, and returns the result. There is no return
value reserved to indicate an error.

Parameter

Remarks

Example

Output

c Character to convert

The _toascii routine converts the given character to an ASCII character.

See Also: is Routines, to Functions Overview

/* TOUPPER.C: This program uses toupper and tolower to
* analyze all characters between 0x0 and 0x7F. It also
* applies _toupper and _tolower to any code in this
* range for which these functions make sense.
*/

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] - "Some of THESE letters are Capitals\r\n";
char *p;

void main(void)
{

_cputs(msg);

/* Reverse case of message. */
for(p - msg; p < msg + strlen(msg); p++)
{

}

if(islower(*p))
_putch(_toupper(*p));

else if(isupper(*p))
_putch(_tolower(*p));

else
_putch(*p);

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

tolower, _tolower, towlower
Convert character to lowercase.

int tolower(int c);
int _tolower(int c);
int towlower(wint_t c);

to Functions

639

to Functions

Routine

tolower

_tolower

towlower

Required Header

<stdlib.h> and <ctype.h>

<ctype.h>

<ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these routines converts a copy of c, if possible, and returns the result. There is
no return value reserved to indicate an error.

Parameter

Remarks

Example

640

c Character to convert

Each of these routines converts a given uppercase letter to a lowercase letter if
possible and appropriate.

See Also: is Routines, to Functions Overview

1* TOUPPER.C: This program uses toupper and tolower to
* analyze all characters between 0x0 and 0x7F. It also
* applies _toupper and _tolower to any code in this
* range for which these functions make sense.
*/

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] = "Some of THESE letters are Capitals\r\n";
char *p;

void main(void)
{

_cputs(msg);

/* Reverse case of message. *1
for(p = msg; p < msg + strlen(msg); p++)
{

if(i sl ower(*p))
_putch(_toupper(*p));

Output

else if(isupper(*p))
_putch(_tolower(*p));

else
_putch(*p):

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

toupper _toupper, towupper
Convert character to uppercase.

int toupper(int c);
int _toupper(int c);
int towupper(winet c);

Routine Required Header

toupper <stdlib.h> and <ctype.h>

_toupper <ctype.h>

towupper <ctype.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
Each of these routines converts a copy of c, if possible, and returns the result.

If c is a wide character for which iswlower is true and there is a corresponding wide
character for which iswupper is true, towupper returns the corresponding wide
character~ otherwise, towupper returns c unchanged.

There is no return value reserved to indicate an error.

Parameter

Remarks

c Character to convert

Each of these routines converts a given lowercase letter to an uppercase letter if
possible and appropriate.

See Also: is Routines, to Functions Overview

to Functions

641

towctrans

Example

Output

1* TOUPPER.C: This program uses toupper and tolower to
* analyze all characters between 0x0 and 0x7F. It also
* applies _toupper and _tolower to any code in this
* range for which these functions make sense.
*1

#include <conio.h>
#include <ctype.h>
#include <string.h>

char msg[] ". "Some of THESE letters are Capitals\r\n";
char *p;

void main(void)
{

_cputs(msg);

1* Reverse case of message. *1
for(p - msg; p < msg + strlen(msg); p++)
{

if(islower(*p))
_putch(_toupper(*p));

else if(isupper(*p))
_putch(_tolower(*p));

else
_putch(*p);

Some of THESE letters are Capitals
sOME OF these LETTERS ARE cAPITALS

towctrans

642

Transforms a wide character.

winCt towctrans(wint_t c, wctrans_t category);

Routine Required Header Compatibility

towctrans <wctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCP.LIB

LIBCPMT.LIB

MSYCPRT.LIB

Single thread static library, retail version

Multithread static library, .retail version

Import library for MSYCRT.DLL, retail version

Return Value

Remarks

The transformation of the character c, using the transform in category.

The value of category must have been returned by an earlier successful call
to wctrans.

tzset
Sets time environment variables.

void _tzset(void);

Routine Required Header

<time.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Remarks
The _tzset function uses the current setting of the environment variable TZ to assign
values to three global variables: _daylight, _timezone, and _tzname. These variables
are used by the _ftime and localtime functions to make corrections from coordinated
universal time (UTC) to local time, and by the time function to compute UTC from
system time. Use the following syntax to set the TZ environment variable:

set TZ=tzn[+ I-]hh[:mm[:ss]][dzn]

tzn Three-letter time-zone name, such as PST. You must specify the correct offset
from UTC.

hh Difference in hours between UTC and local time. Optionally signed.

mm Minutes. Separated from hh by a colon (:).

ss Seconds. Separated from mm by a colon (:).

dzn Three-letter daylight-saving-time zone such as PDT. If daylight savings time is
never in effect in the locality, set TZ without a value for dzn. The C run-time
library

643

Example

644

assumes the United States's rules for implementing the calculation of Daylight
Savings Time (DST).

For example, to set the TZ environment variable to correspond to the current time
zone in Germany, you can use one of the following statements:

set TZ=GSTlGDT
set TZ=GST+IGDT

These strings use GST to indicate German standard time, assume that Germany is
one hour ahead of UTC, and assume that daylight savings time is in effect.

If the TZ value is not set, _tzset attempts to use the time zone information specified
by the operating system. Under Windows NT and Windows 95, this information is
specified in the Control Panel's Daterrime application. If _tzset cannot obtain this
information, it uses PST8PDT by default, which signifies the Pacific time zone.

Based on the TZ environment variable value, the following values are assigned to
the global variables _daylight, _timezone, and _tzname when _tzset is called:

Global Variable

_daylight

_timezone

_tzname[O]

_tzname[1]

Description

Nonzero value if a daylight-savings-time
zone is specified in TZ setting; otherwise, 0

Difference in seconds between UTe and
local time.

String value of time-zone name from TZ
environmental variable; empty if TZ has not
been set

String value of daylight-saving-time zone;
empty if daylight-saving-time zone is
omitted from TZ environmental variable

Default Value

28800 (28800 seconds
equals 8 hours)

PST

PDT

The default values shown in the preceding table for _daylight and the _tzname
array correspond to "PST8PDT." If the DST zone is omitted from the TZ
environmental variable, the value of _daylight is 0 and the _ftime, gmtime,
and localtime functions return 0 for their DST flags.

/* TZSET.C: This program first sets up the time zone by
* placing the variable named TZ=EST5 in the environment
* table. It then uses _tzset to set the global variables
* named _daylight. _timezone. and _tzname.
*/

#include <time.h>
#include <stdlib.h>
#include <stdio.h>

Output

void main(void
{

if(_putenv("TZ=EST5EDT") == -1)
{

pri ntf("Unabl e to set TZ\n");
exit(1);

else
{

_tzset();
pri ntf("_dayl i ght = %d\n", _dayl i ght);
printf("_timezone = %ld\n", _timezone);
printf("_tzname[0] = %s\n", _tzname[0]);

exit(0);

_daylight = 1
timezone = 18000

_tzname[0] = EST

See Also: asctime, _ftime, gmtime, localtime, time, _utime

_ultoa, ultow
Convert an unsigned long integer to a string.

char *_ultoa(unsigned long value, char *string, int radix);
wchar_t *_ultow(unsigned long value, wchar_t *string, int radix);

Routine Required Header

<stdlib.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each of these functions returns a pointer to string. There is no error return.

Parameters
value Number to be converted

string String result

radix Base of value

645

Remarks

Example

Output

646

The _ultoa function converts value to a null-terminated character string and stores the
result (up to 33 bytes) in string. No overflow checking is performed. radix specifies
the base of value; radix must be in the range 2-36. _ultow is a wide-character version
of _ultoa.

Generic-Text Routine Mappings

TCHAR.H
Routine

_UNICODE & _MBCS Not
Defined

_MBCS Defined

/* ITOA.C: This program converts integers of various
* sizes to strings in various radixes.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char buffer[20];
int i = 3445;
long 1 = -344115L;
unsigned long ul = 1234567890UL;

_itoa (i , buffer, 10) ;

pri ntf("String of integer %d (radix
_itoa(i , buffer, 16) ;

10): %s\n", i ,

pri ntf("String of integer %d (radix 16): 0x%s\n",
_itoa(i , buffer, 2) ;

pri ntf("String of integer %d (radix 2) : %s\n", i ,

_ltoa(1, buffer, 16);

_UNICODE Defined

buffer) ;

i , buffer) ;

buffer) ;

printf("String of long int %ld (radix 16): 0x%s\n", 1, buffer);

_ul toa (ul, buffer, 16);
printf("String of unsigned long %lu (radix 16): 0x%s\n", ul, buffer);

String of integer 3445 (radix 10): 3445
String of integer 3445 (radix 16): 0xd75
String of integer 3445 (radix 2): 110101110101
String of long int -344115 (radix 16): 0xfffabfcd
String of unsigned long 1234567890 (radix 16): 0x499602d2

See Also: _itoa, _ltoa

umask
Sets the default file-permission mask.

int _umask(int pmode);

Routine Required Header

<io.h> and <sys/stat.h>
and <sys/types.h>

Compatibility

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_umask returns the previous value of pmode. There is no error return.

Parameter

Remarks

Example

pmode Default permission setting

The _umask function sets the file-permission mask of the current process to the mode
specified by pmode. The file-permission mask modifies the permission setting of new
files created by _creat, _open, or _sopen. If a bit in the mask is 1, the corresponding
bit in the file's requested permission value is set to ° (disallowed). If a bit in the mask
is 0, the corresponding bit is left unchanged. The permission setting for a new file is
not set until the file is closed for the first time.

The argument pmode is a constant expression containing one or both of the manifest
constants _S_IREAD and _S_IWRITE, defined in SYS\STAT.H. When both
constants are given, they are joined with the bitwise-OR operator (I). If the pmode
argument is _S_IREAD, reading is not allowed (the file is write-only). If the pm ode
argument is _S_IWRITE, writing is not allowed (the file is read-only). For example,
if the write bit is set in the mask, any new files will be read-only. Note that with
MS-DOS, Windows NT, and Windows 95, all files are readable; it is not possible to
give write-only permission. Therefore, setting the read bit with _umask has no effect
on the file's modes.

1* UMASK.C: This program uses umask to set
* the file-permission mask so that all future
* files will be created as read-only files.
* It also displays the old mask.
*1

647

unexpected

Output

#include <sys/stat.h>
#include <sys/types.h>
#include <io.h>
#include <stdio.h>

void main(void
{

int oldmask;

/* Create read-only files: */
oldmask = _umask(_S_IWRITE);
printf("Oldmask = 0x%.4x\n". oldmask);

Oldmask = 0x0000

See Also: _chmod, _creat, _mkdir, _open

unexpected
Calls terminate or function you specify using set_unexpected.

void unexpected(void);

Routine Required Header Compatibility

unexpected <eh.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
None

Remarks

648

The unexpected routine is not used with the current implemenation of C++ exception
handling. unexpected calls terminate by default. You can change this default
behavior by writing a custom termination function and calling set_unexpected with
the name of your function as its argument. unexpected calls the last function given as
an argument to set_unexpected.

See Also: abort, _seCse_translator, seCterminate, seCunexpected, terminate

ungetc, ungetwc
Pushes a character back onto the stream.

int ungetc(int c, FILE *stream);
winCt ungetwc(winCt c, FILE *stream);

Routine

ungetc

ungetwc

Required Header

<stdio.h>

<stdio.h> or <wchar.h>

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
If successful, each of these functions returns the character argument c. If c cannot be
pushed back or if no character has been read, the input stream is unchanged and
ungetc returns EOF; ungetwc returns WEOF.

Parameters

Remarks

c Character to be pushed

stream Pointer to FILE structure

The ungetc function pushes the character c back onto stream and clears the end-of-file
indicator. The stream must be open for reading. A subsequent read operation on
stream starts with c. An attempt to push EOF onto the stream using ungetc is ignored.

Characters placed on the stream by ungetc may be erased if fflush, fseek, fsetpos,
or rewind is called before the character is read from the stream. The file-position
indicator will have the value it had before the characters were pushed back. The
external storage corresponding to the stream is unchanged. On a successful ungetc
call against a text stream, the file-position indicator is unspecified until all the
pushed-back characters are read or discarded. On each successful ungetc call
against a binary stream, the file-position indicator is decremented; if its value
was 0 before a call, the value is undefined after the call.

Results are unpredictable if ungetc is called twice without a read or file-positioning
operation between the two calls. After a call to fscanf, a call to ungetc may fail
unless another read operation (such as getc) has been performed. This is because
fscanf itself calls ungetc.

ungetc, ungetwc

649

_ungetch

Example

Output

ungetwc is a wide-character version of ungetc. However, on each successful
ungetwc call against a text or binary stream, the value of the file-position indicator
is unspecified until all pushed-back characters are read or discarded.

Generic-Text Routine Mappings

TCHAR.H Routine

_ungettc

_UNICODE & _MBCS
Not Defined

ungetc

_MBCS Defined

ungetc

/* UNGETC.C: This program first converts a character

_UNICODE Defined

ungetwc

* representation of an unsigned integer to an integer. If
* the program encounters a character that is not a digit,
* the program uses ungetc to replace it in the stream.
*/

#include <stdio.h>
#include <ctype.h>

void maine void)
{

int ch;
int result = 0;

printf("Enter an integer: ");

/* Read in and convert number: */
while(«ch = getchar(» !~ EOF) && isdigit(ch))

result = result * 10 + ch - '0'; /* Use digit. */
if(ch != EOF)

ungetc(ch, stdin); /* Put nondigit back. */
printf("Number = %d\nNextcharacter in stream = '%c"',

result, getchar());

Enter an integer: 521a
Number = 521
Nextcharacter in stream = 'a'

See Also: getc, putc

_ungetch
Pushes back the last charcter read from the console.

int _ungetch(int c);

Routine Required Header Compatibility

_ungetch <conio.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

650

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
_ungetch returns the character c if it is successful. A return value of EOF indicates
an error.

Parameter

Remarks

Example

Output

c Character to be pushed

The _ungetch function pushes the character c back to the console, causing c to be
the next character read by _getch or _getche. _ungetch fails if it is called more than
once before the next read. The c argument may not be EOF.

/* UNGETCH.C: In this program, a white-space delimited
* token is read from the keyboard. When the program
* encounters a delimiter, it uses _ungetch to replace
* the character in the keyboard buffer.
*/

#include <conio.h>
#include <ctype.h>
#include <stdio.h>

void maine void)
{

char buffer[100];
int count = 0;
int ch;
ch = _getche();
while(isspace(ch) /* Skip preceding white space. */

ch = _getche();
while(count < 99) /* Gather token. */
{

if(isspace(ch /* End of token. */
break;

buffer[count++] (char)ch;
ch = _getche();

}

_ungetch(ch); /* Put back delimiter. */
buffer[count] = '\0'; /* Null terminate the token. */
printf("\ntoken = %s\n", buffer);

White
token = White

See Also: _cscanf, _getch

_ungetch

651

_unlink, _ wunlink

_unlink, wunlink
Delete a file.

int _unlink(const char *filename);
int _wunlink(const wchar_t *filename);

Routine

_unlink

_wunlink

Required Header

<io.h> and <stdio.h>

<io.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIB CMT. LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns 0 if successful. Otherwise, the function returns -1
and sets errno to EACCES, which means the path specifies a read-only file, or to
ENOENT, which means the file or path is not found or the path specified a directory.

Parameter

Remarks

Example

652

filename Name of file to remove

The _unlink function deletes the file specified by filename. _wunlink is a
wide-character version of _unlink; the filename argument to _ wunlink is a
wide-character string. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine

_tunlink

_UNICODE & _MBCS
Not Defined

_unlink

_MBCS Defined UNICODE Defined

_unlink _wunlink

/* UNLINK.C: This program uses unlink to delete UNLINK.OBJ. */

#include <stdio.h>

void main(void
{

if(_unlink("unlink.obj") == -1)
perror("Could not delete 'UNLINK.OBJ'");

else
printf("Deleted 'UNLINK.OBJ'\n");

Output
Deleted 'UNLINK.OBJ'

See Also: _close, remove

_utime, wutime
Set the file modification time.

int _utime(unsigned char *filename, struct _utimbuf *times);
int _wutime(wchar_t *filename, struct _utimbuf *times);

Routine

_utime

_wutime

Required Headers

<sys/utime.h>

<utime.h> or <wchar.h>

Optional Headers

<errno.h>

<errno.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns 0 if the file-modification time was changed. A return
value of -1 indicates an error, in which case errno is set to one of the following
values:

EACCES Path specifies directory or read-only file

EINVAL Invalid times argument

EMFILE Too many open files (the file must be opened to change its modification
time)

ENOENT Path or filename not found

Parameters

Remarks

filename Path or filename

times Pointer to stored time values

The _utime function sets the modification time for the file specified by filename.
The process must have write access to the file in order to change the time. Under
Windows NT and Windows 95, you can change the access time and the modication
time in the _utimbuf structure. If times is a NULL pointer, the modification time is
set to the current local time. Otherwise, times must point to a structure of type
_utimbuf, defined in SYS\UTIME.H.

_utime, _wutime

653

_utime, _ wutime

Example

Output

654

The _utimbuf structure stores file access and modification times used by _utime to
change file-modification dates. The structure has the following fields, which are both
of type time_t:

actime Time of file access

mod time Time of file modification

_utime is identical to _futime except that the filename argument of _utime is a
filename or a path to a file, rather than a handle to an open file.

_ wutime is a wide-character version of _utime; the filename argument to _ wutime is
a wide-character string. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined
Not Defined

_tutime _utime

/* UTIME.C: This program uses _utime to set the
* file-modification time to the current time.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/utime.h>

void maine void
{

}

/* Show file time before and after. */
system("dir utime.c");
if(_utime("utime.c". NULL) -- -1

perror("_uti me fail ed\n");
else

printf("File time modified\n");
system("dir utime.c");

Volume in drive C is ALDONS
Volume Serial Number is 0E17-1702

Directory of C:\dolphin\crt\code

05/03/94 10:00p 451 utime.c
1 File(s) 451 bytes

83.320.832 bytes free
Volume in drive C is ALDONS
Volume Serial Number ;s 0E17-1702

_UNICODE Defined

_wutime

Directory of C:\dolphin\crt\code

05/03/94 10:00p
1 File(s)

File time modified

451 utime.c
451 bytes

83,320,832 bytes free

See Also: asctime, ctime, _fstat, _ftime, _futime, gmtime, localtime, _stat, time

va_arg, va_end, va_start
Access variable-argument lists.

type va_arg(va_list arg-ptr, type);
void va_end(va_list arg-ptr);
void va_start(va_list arg-ptr); (UNIX version)
void va_start(va_list arg-ptr,prev-param); (ANSI version)

Routine Required Header Optional Headers

va_arg <stdio.h> and <stdarg.h> <varargs.h>l

va_end <stdio.h> and <stdarg.h> <varargs.h>l

va_start <stdio.h> and <stdarg.h> <varargs.h> 1

1 Required for UNIX V compatibility.

Compatibility

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
va_arg returns the current argument; va_start and va_end do not return values.

Parameters

Remarks

type Type of argument to be retrieved

arg-ptr Pointer to list of arguments

prev-param Parameter preceding first optional argument (ANSI only)

The va_arg, va_end, and va_start macros provide a portable way to access the
arguments to a function when the function takes a variable number of arguments. Two
versions of the macros are available: The macros defined in STDARG.H conform to
the ANSI C standard, and the macros defined in VARARGS.H are compatible with
the UNIX System V definition. The macros are:

655

656

va_alist Name of parameter to called function (UNIX version only)

va_arg Macro to retrieve current argument

va_del Declaration of va_alist (UNIX version only)

va_end Macro to reset argytr

va_list typedef for pointer to list of arguments defined in STDIO.H

va_start Macro to set argytr to beginning of list of optional arguments
(UNIX version only)

Both versions of the macros assume that the function takes a fixed number of
required arguments, followed by a variable number of optional arguments. The
required arguments are declared as ordinary parameters to the function and can
be accessed through the parameter names. The optional arguments are accessed
through the macros in STDARG.H or VARARGS.H, which set a pointer to the
first optional argument in the argument list, retrieve arguments from the list, and
reset the pointer when argument processing is completed.

The ANSI C standard macros, defined in STDARG.H, are used as follows:

• All required arguments to the function are declared as parameters in the usual
way. va_del is not used with the STDARG.H macros.

• va_start sets argytr to the first optional argument in the list of arguments
passed to the function. The argument argytr must have va_list type. The
argument prev yaram is the name of the required parameter immediately
preceding the first optional argument in the argument list. If prev yaram is
declared with the register storage class, the macro's behavior is undefined.
va_start must be used before va_arg is used for the first time.

• va_arg retrieves a value of type from the location given by argytr and
increments argytr to point to the next argument in the list, using the size of
type to determine where the next argument starts. va_arg can be used any
number of times within the function to retrieve arguments from the list.

• After all arguments have been retrieved, va_end resets the pointer to NULL.

The UNIX System V macros, defined in VARARGS.H, operate somewhat
differently:

• Any required arguments to the function can be declared as parameters in the
usual way.

• The last (or only) parameter to the function represents the list of optional
arguments. This parameter must be named va_alist (not to be confused with
va_list, which is defined as the type of va_alist).

• va_del appears after the function definition and before the opening left brace
of the function. This macro is defined as a complete declaration of the va_alist
parameter, including the terminating semicolon; therefore, no semicolon should
follow va_del.

Example

• Within the function, va_start sets arg-ptr to the beginning of the list of optional
arguments passed to the function. va_start must be used before va_arg is used for
the first time. The argument arg-ptr must have va_list type.

• va_arg retrieves a value of type from the location given by arg-ptr and increments
arg-ptr to point to the next argument in the list, using the size of type to determine
where the next argument starts. va_arg can be used any number of times within
the function to retrieve the arguments from the list.

• After all arguments have been retrieved, va_end resets the pointer to NULL.

/* VA.C: The program below illustrates passing a variable
* number of arguments using the following macros:
* va start va_arg va_end
* va list va_dcl (UNIX only)
*/

#include <stdio.h>
#define ANSI
#ifdef ANSI
#include <stdarg.h>
int average(int first,
#else
#include <varargs.h>
int average(va_list);
Ilendif

void main(void
{

/* Comment out for UNIX version
/* ANSI compatible version

...);

/* UNIX compatible version

/* Call with 3 integers (-1 is used as terminator). */
printf("Average is: %d\n", average(2, 3,4, -1));

/* Call with 4 integers. */
printf("Average is: %d\n", average(5, 7, 9, 11, -1));

/* Call with just -1 terminator. */
printf("Average is: %d\n", average(-1));

/* Returns the average of a variable list of integers. */
#ifdef ANSI /* ANSI compatible version */
int average(int first, ...)
{

int count = 0, sum 0, i = first;
va_list marker;

*/
*/

*/

va_start(marker, first);
while(i 1= -1)

/* Initialize variable arguments. */

{

sum += i;
count++;
i = va_arg(marker, int);

657

vprintf Functions

Output

va_end(marker); /* Reset variable arguments. */
return(sum? (sum / count) : 0);

}

#else /* UNIX compatible version must use old-style definition. */
int average(va_alist)
va_del
{

int i. count. sum;
va_list marker;

va_start< marker); /* Initialize variable arguments. */
fore sum ~ count - 0; (i - va_arg(marker. int» !- -1; count++)

sum +- i;
va_end(marker);
return(sum? (sum / count)

}
#endif

Average is: 3
Average is: 8
Average is: 0

See Also: vfprintf

/* Reset variable arguments.
o);

*/

vprintf Functions

Remarks

658

Each of the vprintf functions takes a pointer to an argument list, then formats and
writes the given data to a particular destination.

vfprintf, vfwprintf

vprintf, vwprintf

_ vsnprintf, _ vsnwprintf

vsprintf, vswprintf

The vprintf functions are similar to their counterpart functions as listed in the
following table. However, each vprintf function accepts a pointer to an argument list,
whereas each of the counterpart functions accepts an argument list.

These functions format data for output to destinations as follows:

Function Counterpart Function Output Destination

vfprintf fprintf stream

vfwprintf fwprintf stream

vprintf printf stdout

vwprintf wprintf stdout

vsprintf sprintf memory pointed to by buffer

vswprintf swprintf memory pointed to by buffer

_vsnprintf _snprintf memory pointed to by buffer

_ vsnwprintf _snwprintf memory pointed to by buffer

The argptr argument has type va_list, which is defined in VARARGS.H and
STDARG.H. The argptr variable must be initialized by va_start, and may be
reinitialized by subsequent va_arg calls; argptr then points to the beginning of
a list of arguments that are converted and transmitted for output according to
the corresponding specifications in the format argument. format has the same
form and function as the format argument for printf. None of these functions
invokes va_end. For a more complete description of each vprintf function,
see the description of its counterpart function as listed in the preceding table.

_ vsnprintf differs from vsprintf in that it writes no more than count bytes to
buffer.

vfwprintf, _ vsnwprintf, vswprintf, and vwprintf are wide-character versions
of vfprintf, _ vsnprintf, vsprintf, and vprintf, respectively; in each of these
wide-character functions, buffer andformat are wide-character strings.
Otherwise, each wide-character function behaves identically to its SBCS
counterpart function.

For vsprintf, vswprintf, _ vsnprintf and _ vsnwprintf, if copying occurs
between strings that overlap, the behavior is undefined.

See Also: fprintf, printf, sprintf, va_arg

vfprintf, vfwprintf
Write formatted output using a pointer to a list of arguments.

int vfprintf(FILE *stream, const char *format, va_list argptr);
int vfwprintf(FILE *stream, const wchar_t *format, va_list argptr);

Routine Required Header Optional Headers Compatibility

vfprintf <stdio.h> and <stdarg.h> <varargs.h>, ANSI, Win 95

vfwprintf <stdio.h> or <wchar.h>, <varargs.h> ' ANSI, Win 95,
and <stdarg.h> Win NT

, Required for UNIX V compatibility.

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

vfprintf and vfwprintf return the number of characters written, not
including the terminating null character, or a negative value if an output
error occurs.

vprintf Functions

659

vprintf Functions

Parameters

Remarks

stream Pointer to FILE structure

format Format specification

argptr Pointer to list of arguments

For more information, see "Format Specifications."

Each of these functions takes a pointer to an argument list, then formats and writes
the given data to stream.

Generic-Text Routine Mappings

TCHAR.H Routine

_vftprintf

_UNICODE & _MBCS
Not Defined

vfprintf

See Also: fprintf, printf, sprintf, va_arg

_MBCS Defined _UNICODE Defined

vfprintf vfwprintf

vprintf, vwprintf
Write formatted output using a pointer to a list of arguments.

int vprintf(const char *format, va_list argptr);
int vwprintf(const wchar_t *format, va_list argptr);

Routine Required Header Optional Headers

vprintf <stdio.h> and <stdarg.h> <varargs.h> 1

vwprintf <stdio.h> or <wchar.h>, <varargs.h> 1

and <stdarg.h>

1 Required for UNIX V compatibility.

Compatibility

ANSI, Win 95,
Win NT

ANSI, Win 95,
Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
vprintf and vwprintf return the number of characters written, not including the
terminating null character, or a negative value if an output error occurs.

Parameters
format Format specification

argptr Pointer to list of arguments

660

Remarks
Each of these functions takes a pointer to an argument list, then formats and writes the
given data to stdout.

Generic-Text Routine Mappings

TCHAR.H Routine

_vtprintf

_UNICODE & _MBCS
Not Defined

vprintf

See Also: fprintf, printf, sprintf, va_arg

_MBCS Defined _UNICODE Defined

vprintf vwprintf

_ vsnprintf, _ vsnwprintf
Write formatted output using a pointer to a list of arguments.

int _ vsnprintf(char *buffer, size_t count, const char *format, va_list argptr);
int _vsnwprintf(wchar_t *buffer, size_t count, const wchar_t *format,

... va_list argptr);

Routine Required Header Optional Headers Compatibility

_vsnprintf <stdio.h> and <stdarg.h> <varargs.h> 1 Win 95, Win NT

_ vsnwprintf <stdio.h> or <wchar.h>, <varargs.h> 1 Win 95, Win NT
and <stdarg.h>

1 Required for UNIX V compatibility.

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIB C. LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

_ vsnprintf and _ vsnwprintf return the number of characters written, not including
the terminating null character, or a negative value if an output error occurs. For
_ vsnprintf, if the number of bytes to write exceeds buffer, then count bytes are
written and -1 is returned.

Parameters
buffer Storage location for output

count Maximum number of bytes to write

format Format specification

argptr Pointer to list of arguments

vprintf Functions

661

vprintf Functions

Remarks
Each of these functions takes a pointer to an argument list, then formats and writes the
given data to the memory pointed to by buffer.

Generic-Text Routine Mappings

TCHAR.H Routine

_ vsntprintf

_UNICODE & _MBCS
Not Defined

_vsnprintf

See Also: fprintf, printf, sprintf, va_arg

_MBCS Defined _UNICODE Defined

_vsnprintf _ vsnwprintf

vsprintf, vswprintf
Write formatted output using a pointer to a list of arguments.

int vsprintf(char *buffer, const char *format, va_list argptr);
int vswprintf(wchar_t *buffer, const wchar_t *format, va_list argptr);

Routine Required Header Optional Headers Compatibility

vsprintf <stdio.h> and <stdarg.h> <varargs .h> 1 ANSI, Win 95,
Win NT

vswprintf <stdio.h> or <wchar.h>, <varargs .h> 1 ANSI, Win 95,
and <stdarg.h> Win NT

1 Required for UNIX V compatibility.

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
vsprintf and vswprintf return the number of characters written, not including
the terminating null character, or a negative value if an output error occurs. For
vswprintf, a negative value is also returned if count or more wide characters are
requested to be written.

Parameters

662

buffer Storage location for output

format Format specification

argptr Pointer to list of arguments

count Maximum number of bytes to write

Remarks
Each of these functions takes a pointer to an argument list, then formats and writes the
given data to the memory pointed to by buffer.

Generic-Text Routine Mappings

TCHAR.H Routine

_vstprintf

_UNICODE & _MBCS
Not Defined

vsprintf

See Also: fprintf, printf, sprintf, va_arg

_MBCS Defined _UNICODE Defined

vsprintf vswprintf

wcstombs
Converts a sequence of wide characters to a corresponding sequence of multibyte
characters.

size_t wcstombs(char *mbstr, const wchar_t *wcstr, size_t count);

Routine Required Header Compatibility

wcstombs <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If wcstombs successfully converts the multibyte string, it returns the number of bytes
written into the multibyte output string, excluding the terminating NULL (if any). If
the mbstr argument is NULL, wcstombs returns the required size of the destination
string. If wcstombs encounters a wide character it cannot be convert to a multi byte
character, it returns -1 cast to type size_to

Parameters

Remarks

mbstr The address of a sequence of multi byte characters

wcstr The address of a sequence of wide characters

count The maximum number of bytes that can be stored in the multibyte
output string

The wcstombs function converts the wide-character string pointed to by wcstr to the
corresponding multibyte characters and stores the results in the mbstr array. The count
parameter indicates the maximum number of bytes that can be stored in the multibyte

wcstombs

663

wctomb

Example

Output

output string (that is, the size of mbstr). In general, it is not known how many bytes
will be required when converting a wide-character string. Some wide characters will
require only one byte in the output string; others require two. If there are two bytes in
the multibyte output string for every wide character in the input string (including the
wide character NULL), the result is guaranteed to fit.

If wcstombs encounters the wide-character null character (L' \0') either before or
when count occurs, it converts it to an 8-bit 0 and stops. Thus, the multibyte character
string at mbstr is null-terminated only if wcstombs encounters a wide-character null
character during conversion. If the sequences pointed to by wcstr and mbstr overlap,
the behavior of wcstombs is undefined.

If the mbstr argument is NULL, wcstombs returns the required size of the destination
string.

/* WCSTOMBS.C illustrates the behavior of the wcstombs function. */

#include <stdio.h>
#include <stdlib.h>

void main(void
{

i nt i ;
char *pmbbuf (char *)malloc(MB_CUR_MAX);
wchar t *pwchello = L"Hello. world.";

printf("Convert wide-character string:\n");
i = wcstombs(pmbbuf. pwchello. MB_CUR_MAX);
printf("\tCharacters converted: %u\n". i);
printf("\tMultibyte character: %s\n\n". pmbbuf);

Convert wide-character string:
Characters converted: 1
Multibyte character: H

See Also: mblen, mbstowcs, mbtowc, wctomb

wctomb

664

Converts a wide character to the corresponding multibyte character.

int wctomb(char *mbchar, wchar_t wchar);

Routine Required Header Compatibility

wctomb <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If wctomb converts the wide character to a multi byte character, it returns the number of
bytes (which is never greater than MB_CUR_MAX) in the wide character. If wchar is
the wide-character null character (L '\0'), wctomb returns 1. If the conversion is not
possible in the current locale, wctomb returns -1.

Parameters

Remarks

Example

Output

mbchar The address of a multibyte character

wchar A wide character

The wctomb function converts its wchar argument to the corresponding multibyte character
and stores the result at mbchar. You can call the function from any point in any program.

1* WCTOMB.CPP illustrates the behavior of the wctomb function */

#include <stdio.h>
#include <stdlib.h>

void maine void)
{

}

i nt i;
wchar_t wc = L'a';
char *pmbnull = NULL;
char *pmb = (char *)malloc(sizeof(char));

printf("Convert a wide character:\n");
i = wctomb(pmb. wc);
printf("\tCharacters converted: %u\n". i);
printf("\tMultibyte character: %.ls\n\n". pmb);

printf("Attempt to convert when target is NULL:\n");
i = wctomb (pmbnull. wc);
pri ntf("\ tCha racters converted: %u\n". i);
printf("\tMultibyte character: %.ls\n". pmbnull);

Convert a wide character:
Characters converted: 1
Multibyte character: a

Attempt to convert when target is NULL:
Characters converted: 0
Multibyte character: (

See Also: mblen, mbstowcs, mbtowc, wcstombs

wctomb

665

wctrans

wctrans
Determines a mapping from one set of wide-character codes to another.

wctrans_t wctrans(const char *property);

Routine Required Header Compatibility

wctrans <wctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBCP.LIB

LIBCPMT.LIB

MSYCPRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
If the LC_CTYPE category of the current locale does not define a mapping whose
name matches the property string property, the function returns zero. Otherwise, it
returns a nonzero value suitable for use as the second argument to a subsequent call
to towctrans.

Parameters

Remarks

property property string

This function determines a mapping from one set of wide-character codes to another.

The following pairs of calls have the same behavior in all locales (but an
implementation can define additional mappings even in the "C" locale):

tolower(c) same as towctrans(c, wctrans("towlower"))

towupper(c) same as towctrans(c, wctrans("toupper"))

See Also: setlocale

wctype
Determines a classification rule for wide-character codes.

wctype_t wctype(const char * property);

Routine Required Header Compatibility

wctype <wctype.h> Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

666

Libraries

LIBCP.LIB

LIBCPMT.LIB

MSVCPRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Return Value
If the LC_CTYPE category of the current locale does not define a classification
rule whose name matches the property string property, the function returns zero.
Otherwise, it returns a nonzero value suitable for use as the second argument to a
subsequent call to towctrans.

Parameters

Remarks

property property string

The function determines a classification rule for wide-character codes. The following
pairs of calls have the same behavior in all locales (but an implementation can define
additional classification rules even in the "e" locale):

iswalnum(c) same as iswctype(c, wetype("alnum"))

iswalpha(c) same as iswctype(c, wctype("alpha"))

iswcntrl(c) same as iswctype(c, wctype("cntrl"))

iswdigit(c) same as iswctype(c, wetype("digit"))

iswgraph(c) same as iswctype(c, wctype("graph"))

iswlower(c) same as iswctype(c, wctype("lower"))

iswprint(c) same as iswctype(c, wctype("print"))

iswpunct(c) same as iswctype(c, wctype("punet"))

iswspace(c) same as iswctype(c, wetype("space"))

iswupper(c) same as iswctype(c, wctype("upper"))

iswxdigit(c) same as iswetype(c, wctype("xdigit"))

See Also: setlocale

write
Writes data to a file.

int _ write(int handle, const void *buffer, unsigned int count);

Routine Required Header Compatibility

<io.h> Win 95, Win NT

667

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.UB

LIBCMT.LIB

MSYCRT.LIB

Single thread static library, retail version

Multithread static library, retail version

Import library for MSYCRT.DLL, retail version

Return Value
If successful, _write returns the number of bytes actually written. If the actual
space remaining on the disk is less than the size of the buffer the function is trying
to write to the disk, _write fails and does not flush any of the buffer's contents to
the disk. A return value of -1 indicates an error. In this case, errno is set to one of
two values: EBADF, which means the file handle is invalid or the file is not opened
for writing, or ENOSPC, which means there is not enough space left on the device
for the operation.

If the file is opened in text mode, each linefeed character is replaced with a carriage
return-linefeed pair in the output. The replacement does not affect the return value.

Parameters

Remarks

Example

668

handle Handle of file into which data is written

buffer Data to be written

count Number of bytes

The _write function writes count bytes from buffer into the file associated with
handle. The write operation begins at the current position of the file pointer (if any)
associated with the given file. If the file is open for appending, the operation begins
at the current end of the file. After the write operation, the file pointer is increased
by the number of bytes actually written.

When writing to files opened in text mode, _write treats a CTRL+Z character as the
logical end-of-file. When writing to a device, _write treats a CTRL+Z character in
the buffer as an output terminator.

1* WRITE.C: This program opens a file for output
* and uses _write to write some bytes to the file.
*1

1Finclude <io.h>
1Finclude <stdio.h>
1Finclude <stdlib.h>
1Finclude <fcntl.h>
1Finclude <sys/types.h>
1Finclude <sys/stat.h>

char buffer[] = "This is a test of '_write' function";

_ wtoi, _ wtoi64, _ wtol

Output

void maine void)
{

int fh;
unsigned byteswritten;

if((fh = _open("write.o", _O_RDWR I _O_CREAT,
_S_IREAD I _S_IWRITE » != -1

if« byteswritten - _write(fh, buffer, sizeof(buffer ») == -1)
perror("Write fai 1 ed");

else
pri ntf("Wrote %u bytes to fi 1 e\n", byteswri tten);

_close(fh);

Wrote 36 bytes to file

See Also: fwrite, _open, _read

_wtoi, _wtoi64, _wtol
Converts a wide-character string to an integer C wtoi and _ wtoi64) or to a long integer
Cwtol).

int _wtoi(const wcbar_t *string);
_int64 _wtoi64(wchar_t *string);
long _wtol(const wchar_t *string);

Routine

_wtoi

_wtoi64

_wtol

Required Header

<stdlib.h> or <wchar.h>

<stdlib.h> or <wchar.h>

<stdlib.h> or <wchar.h>

Compatibility

Win 95, Win NT

Win 95, Win NT

Win 95, Win NT

For additional compatibility information, see "Compatibility" in the Introduction.

Libraries

LIBC.LIB

LIBCMT.LIB

MSVCRT.LIB

Return Value

Single thread static library, retail version

Multithread static library, retail version

Import library for MSVCRT.DLL, retail version

Each function returns the int, _int64, or long value produced by interpreting the
input characters as a number. If the input cannot be converted to a value of the
appropriate type, _ wtoi and _ wtoi64 return 0 and _ wtol returns OL. The return
value is undefined in case of overflow.

669

_wtoi, _wtoi64, _wtol

Parameter

Remarks

Example

670

string String to be converted

The _ wtoi and _ wtoi64 function converts a wide-character string to an integer value.
_ wtol converts a wide-character string to a long integer value. The input string is a
sequence of characters that can be interpreted as a numerical value of the specified
type. The output value is affected by the setting of the LC_NUMERIC category
of the current locale. (For more information on the LC_NUMERIC category, see
setlocale.The function stops reading the input string at the first character that it
cannot recognize as part of a number. This character may be the null character
(L '\0') terminating the string.

The string argument for these functions has the form

[whitespace] [sign]digits

A whitespace consists of space and/or tab characters, which are ignored. sign is
either plus (+) or minus (-). digits is one or more decimal digits. _ wtoi, _ wtoi64,
and _ wtol do not recognize decimal points or exponents.

1* ATOF.C: This program shows how numbers stored
* as strings can be converted to numeric values
* using the atof. atoi. and atol functions.
*/

#include <stdlib.h>
#include <stdio.h>

void maine void)
{

char *s: double x: int i: long 1:

s ==" -2309.12E-15": 1* Test of atof *1
x == atof(s):
printf("atof test: ASCII string: %s\tfloat: %e\n". s, x):

s == "7.8912654773d210": 1* Test of atof *1
x == atof(s):
printf("atof test: ASCII string: %s\tfloat: %e\n", s, x):

s ==" -9885 pigs": /* Test of atoi */
i = atoi(s):
printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s,):

s = "98854 dollars": 1* Test of atol *1
1 ==atol(s):
printf("atol test: ASCII string: %s\t\tlong: %ld\n", s, 1):

Output
atof test: ASCII string: -2309.12E-15
atof test: ASCII string: 7.8912654773d210
atoi test: ASCII string: -9885 pigs
atol test: ASCII string: 98854 dollars

See Also: atoi, _eevt, _fevt, _gevt

float: -2.309120e-012
float: 7.891265e+210
integer: -9885
long: 98854

_ wtoi, _ wtoi64, _ wtol

671

APPENDIX A

Language and Country Strings

Language and Country Strings
The locale argument to the setlocale function takes the following form:

locale "lang[_country[.code_page]]"
I ".code_page"
I ""
I NULL

This appendix lists the language strings and country strings available to setlocale.
All country and language codes currently supported by the Win32 NLS API are
supported by setlocale. For information on code pages, see "Code Pages" on
page 22 in Chapter 1.

Language Strings
The following language strings are recognized by setlocale. Any language not
supported by the operating system is not accepted by setlocale. The three-letter
language-string codes are only valid in Windows NT and Windows 95.

Primary Language Sublanguage

Chinese Chinese

Chinese Chinese (simplified)

Chinese Chinese (traditional)

Czech Czech

Danish Danish

Dutch Dutch (Belgian)

Dutch Dutch (default)

English English (Australian)

English English (Canadian)

Language String

"chinese"

"chinese-simplified" or "chs"

"chinese-traditional" or "cht"

"csy" or "czech"

"dan"or "danish"

"belgian," "dutch-belgian," or "nIb"

"dutch" or "nld"

"australian," "en a," or "english-aus"

"canadian," "ene," or "english-can"

(continued)

673

Run-Time Library Reference

674

(continued)

Primary Language

English

English

English

English

Finnish

French

French

French

French

German

German

German

Greek

Hungarian

Icelandic

Italian

Italian

Japanese

Korean

Norwegian

Norwegian

Norwegian

Polish

Portuguese

Portuguese

Russian

Slovak

Spanish

Spanish

Spanish

Swedish

Turkish

Sublanguage

English (default)

English (New Zealand)

English (UK)

English (USA)

Finnish

French (Belgian)

French (Canadian)

French (default)

French (Swiss)

German (Austrian)

German (default)

German (Swiss)

Greek

Hungarian

Icelandic

Italian (default)

Italian (Swiss)

Japanese

Korean

Norwegian (Bokmal)

Norwegian (default)

Norwegian (Nynorsk)

Polish

Portuguese (Brazilian)

Portuguese (default)

Russian (default)

Slovak

Spanish (default)

Spanish (Mexican)

Spanish (Modern)

Swedish

Turkish

Language String

"english"

"english-nz" or "enz"

"eng", "english-uk," or "uk"

"american," "american english,"
"american-english," "english-american,"
"english-us," "english-usa," "enu,"
"us," or "usa"

"fin" or "finnish"

"frb" or "french-belgian"

"frc" or "french-canadian"

"fra"or "french"

"french-swiss" or "frs"

"de a" or "german-austrian"

"deu" or "german"

"des," "german-swiss," or "swiss"

"ell" or "greek"

"hun" or "hungarian"

"icelandic" or "isl"

"ita" or "italian"

"italian-swiss" or "its"

"japanese" or "jpn"

"kor" or "korean"

"nor" or "norwegian-bokmal"

"norwegian"

"non" or "norwegian-nynorsk"

"plk" or "polish"

"portuguese-brazilian" or "ptb"

"portuguese" or "ptg"

"rus" or "russian"

"sky" or "slovak"

"esp" or "spanish"

"esm" or "spanish-mexican"

"esn" or "spanish-modern"

"sve" or "swedish"

"trk" or "turkish"

Appendix A Language and Country Strings

Country Strings
The following is a list of country strings recognized by setlocale. Strings for
countries that are not supported by the operating system are not accepted by
setlocale. Three-letter country-name codes are from ISOIIEC (International
Organization for Standardization, International Electrotechnical Commission)
specification 3166.

Country

Australia

Austria

Belgium

Brazil

Canada

Czech Republic

Denmark

Finland

France

Germany

Greece

Hong Kong

Hungary

Iceland

Ireland

Italy

Japan

Mexico

Netherlands

New Zealand

Norway

People's Republic of China

Poland

Portugal

Russia

Singapore

Slovak Repubic

South Korea

Country String

"aus" or "australia"

"austria" or "aut"

"bel" or "belgium"

"bra" or "brazil"

"can" or "canada"

"cze" or "czech"

"denmark" or "dnk"

"fin" or "finland"

"fra" or "france"

"deu" or "germany"

"grc" or "greece"

"hkg," "hong kong," or "hong-kong"

"hun" or "hungary"

"iceland" or "isl"

"ireland" or "irl"

"ita" or "italy"

"japan" or "jpn"

"mex" or "mexico"

"nld," "holland," or "netherlands"

"new zealand," "new-zealand," "nz," or "nzl"

"nor" or "norway"

"china," "chn," "pr china," or "pr-china"

"pol" or "poland"

"prt" or "portugal"

"rus" or "russia"

"sgp" or "singapore"

"svk" or "slovak"

"kor," "korea," "south korea," or "south-korea"

(continued)

675

Run-Time Library Reference

676

(continued)

Country

Spain

Sweden

Switzerland

Taiwan

Turkey

United Kingdom

United States of America

Country String

"esp" or "spain"

"swe" or "sweden"

"che" or "switzerland"

"taiwan" or "twn"

"tur" or "turkey"

"britain," "england," "gbr," "great britain," "uk,"
"united kingdom," or "united-kingdom"

"america," "united states," "united-states," "us," or "usa"

APPENDIX B

Generic-Text Mappings

To simplify writing code for international markets, generic-text mappings are defined
in TCHARH for:

• Data types

• Constants and global variables

• Routine mappings

For more information, see "Using Generic-Text Mappings" in Chapter 1. Generic-text
mappings are Microsoft extensions that are not ANSI-compatible.

Data Type Mappings
These data-type mappings are defined in TCHAR.H and depend on whether the
constant _UNICODE or _MBCS has been defined in your program.

For related information, see "Using TCHAR.H Data Types with _MBCS Code"
on page 29 in Chapter 1.

Generic-Text Data Type Mappings

Generic-Text SBCS LUNICODE,
Data Type Name _MBCS Not Defined) MBCS Defined - UNICODE Defined

- TCHAR char char wchar_t

- TINT int int winet

- TSCHAR signed char signed char wchar_t

- TUCHAR unsigned char unsigned char wchar_t

- TXCHAR char unsigned char wchar_t

- Tor _TEXT No effect (removed No effect (removed L (converts following
by preprocessor) by preprocessor) character or string to its

Unicode counterpart)

677

Run-Time Library Reference

Constant and Global Variable Mappings
These generic-text constant, global variable, and standard-type mappings are defined
in TCHAR.H and depend on whether the constant _UNICODE or _MBCS has been
defined in your program.

Generic-Text Constant and Global Variable Mappings

Generic-Text SBCS LUNICODE,
Object Name _MBCS Not Defined) - MBCS Defined _UNICODE Defined

_TEOF EOF EOF WEOF

- tenviron - environ - environ _wenviron

- tfinddata_t _finddata_t - finddata_t _ wfinddata_t

Routine Mappings

678

The generic-text routine mappings are defined in TCHAR.H. _tccpy and _tden
map to functions in the MBCS model; they are mapped to macros or inline functions
in the SBCS and Unicode models for completeness. For information on a generic
text routine, see the help topic about the corresponding SBCS-, _MBCS-, or
_UNICODE-related routine.

More specific information about individual routines listed in the left column below is
not available in this documentation. However, you can easily look up the information
on a corresponding SBCS-, _MBCS-, or _UNICODE-related routine. Use the Search
command on the Help menu to look up any generic-text routine listed below.

Generic-Text Routine Mappings

Generic-Text SBCS LUNICODE &
Routine Name MBCS Not Defined) - MBCS Defined - UNICODE Defined

_fgettc fgete fgete fgetwe

_fgettchar fgetehar fgetehar _fgetwehar

_fgetts fgets fgets fgetws

_fputtc fpute fpute fputwe

_fputtchar fputehar fputehar _fputwehar

_fputts fputs fputs fputws

3tprintf fprintf fprintf fwprintf

ftseanf fseanf fseanf fwseanf -

Generic-Text Routine Mappings (continued)

Generic-Text
Routine Name

_gettc

~ettchar

_getts

_istalnum

_istalpha

_istascii

_istcntrl

_istdigit

_istgraph

_istlead

_istleadbyte

_istlegal

_istlower

_istprint

_istpunct

_istspace

_istupper

_istxdigit

_itot

_Itot

_puttc

_puttchar

_putts

_tmain

_sntprintf

_stprintf

_stscanf

_taccess

_tasctime

_tccpy

_tchmod

_tcreat

SBCS LUNICODE &
MBCS Not Defined)

getc

getchar

gets

isalnum

isalpha

_isascii

iscntrl

isdigit

isgraph

Always returns false

Always returns false

Always returns true

islower

isprint

ispunct

isspace

isupper

isxdigit

_itoa

_Itoa

putc

putchar

puts

main

_snprintf

sprintf

sscanf

_access

asctime

Maps to macro or
inline function

_chdir

Maps to macro or
inline function

_chmod

_creat

_MBCS Defined

getc

getchar

gets

_ismbcalnum

_ismbcalpha

_isascii

iscntrl

_ismbcdigit

_ismbcgraph

_ismbblead

isleadbyte

_ismbclegal

_ismbclower

_ismbcprint

_ismbcpunct

_ismbcspace

_ismbcupper

isxdigit

_itoa

_Ito a

putc

putchar

puts

main

_snprintf

sprintf

sscanf

_access

asctime

_mbccpy

Appendix B Generic-Text Mappings

UNICODE Defined

getwc

getwchar

getws

iswalnum

iswalpha

iswascii

iswcntrl

iswdigit

iswgraph

Always returns false

Always returns false

Always returns true

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxdigit

_itow

_ltow

putwc

putwchar

putws

wmain

_snwprintf

swprintf

swscanf

_waccess

_wasctime

Maps to macro or
inline function

_wchdir

Maps to macro or
inline function

_wchmod

_wcreat

(continued)

679

Run-Time Library Reference

Generic-Text Routine Mappings (continued)

Generic-Text SBCS LUNICODE &
Routine Name MBCS Not Defined) - MBCS Defined - UNICODE Defined

tcscat strcat mbscat wcscat - -
tcschr strchr mbschr wcschr - -
tcsclen strlen mbslen wcslen - -

_tcscmp strcmp _mbscmp wcscmp

tcscoll strcoll mbscoll wcscoll - -
_tcscpy strcpy _mbscpy wcscpy

_tcscspn strcspn _mbscspn wcscspn

- tcsdec - strdec _mbsdec - wcsdec

_tcsdup _strdup _mbsdup _wcsdup

tcsftime strftime strftime wcsftime -
_tcsicmp _stricmp _mbsicmp _wcsicmp

tcsicoll stricoll stricoll wcsicoll - - - -

- tcsinc _strinc - mbsinc - wcsinc

tcslen strlen strlen wcslen -

- tcslwr - strlwr _mbslwr - wcslwr

- tcsnbcnt - strncnt _mbsnbcnt - wcnscnt

- tcsncat strncat _mbsnbcat wcsncat

- tcsnccat strncat _mbsncat wcsncat

_tcsncmp strncmp _mbsnbcmp wcsncmp

_tcsnccmp strncmp _mbsncmp wcsncmp

- tcsnccnt _strncnt - mbsnccnt - wcsncnt

_tcsnccpy strncpy _mbsncpy wcsncpy

_tcsncicmp _strnicmp _mbsnicmp _wcsnicmp

_tcsncpy strncpy _mbsnbcpy wcsncpy

tcsncset strnset mbsnset wcsnsct - - - -
tcsnextc strnextc mbsnextc wcsnextc - - - -

_tcsnicmp _strnicmp _mbsnicmp _wcsnicmp

tcsnicoll strnicoll strnicoll wcsnicoll - - - -
tcsninc strninc mbsninc wcsninc - - - -

- tcsnccnt _strncnt - mbsnccnt - wcsncnt

- tcsnset _strnset _mbsnbset - wcsnset

_tcspbrk strpbrk _mbspbrk wcspbrk

_tcsspnp _strspnp _mbsspnp _wcsspnp

tcsrchr strrchr mbsrchr wcsrchr - -
tcsrev strrev mbsrev wcsrev - - - -
tcsset strset mbsset wcsset - - - -

680

Generic-Text Routine Mappings (continued)

Generic-Text
Routine Name

_tcsspn

_tcsstr

_tcstod

_tcstok

_tcstol

_tcstoul

_tcsupr

_tcsxfrm

_tctime

_texeel

_texeele

_texeelp

_texeelpe

_texecv

_texecve

_texecvp

_texecvpe

_tfdopen

_tfindfirst

_tfindnext

_tfopen

_tfreopen

_tfsopen

_tfullpath

_tgetcwd

_tgetenv

_tmain

_tmakepath

_tmkdir

_tmktemp

_tperror

_topen

_totlower

_totupper

_tpopen

SBCS LUNICODE &
MBCS Not Defined)

strspn

strstr

strtod

strtok

strtol

strtoul

_strupr

strxfrm

ctime

_exeel

_exeele

_exeelp

_exeelpe

_execv

_execve

_execvp

_execvpe

3dopen

_findfirst

_findnext

fopen

freopen

_fsopen

_fullpath

_getcwd

getenv

main

_makepath

_mkdir

_mktemp

perror

_open

tolower

toupper

_popen

_MBCS Defined

_mbsspn

_mbsstr

strtod

_mbstok

strtol

strtoul

_mbsupr

strxfrm

ctime

_exeel

_exeele

_exeelp

_exeelpe

_execv

_execve

_execvp

_execvpe

_fdopen

_findfirst

_findnext

fopen

freopen

_fsopen

_fullpath

_getcwd

getenv

main

_makepath

_mkdir

_mktemp

perror

_open

_mbctolower

_mbctoupper

_popen

Appendix B Generic-Text Mappings

_UNICODE Defined

wcsspn

wcsstr

wcstod

wcstok

wcstol

wcstoul

_wcsupr

wcsxfrm

_wctime

_wexeel

_wexeele

_wexeelp

_wexeelpe

_wexecv

_wexecve

_wexecvp

_wexecvpe

_wfdopen

_ wfindfirst

_wfindnext

_wfopen

_wfreopen

_wfsopen

_wfullpath

_wgctcwd

_wgetenv

wmain

_wmakepath

_wmkdir

_wmktemp

_wperror

_wop en

towlower

towupper

_wpopen

(continued)

681

Run-Time Library Reference

Generic-Text Routine Mappings (continued)

682

Generic-Text
Routine Name

_tprintf

_tremove

_trename

_trmdir

_tsearchenv

_tscanf

_tsetlocale

_tsopen

_tspawnl

_tspawnle

_tspawnlp

_tspawnlpe

_tspawnv

_tspawnve

_tspawnvp

_tspawnvpe

_tsplitpath

_tstat

_tstrdate

_tstrtime

_tsystem

_ttempnam

_ttmpnam

_ttoi

_ttol

_tutime

_tWinMain

_uItot

_ungettc

_vftprintf

_ vsntprintf

_vstprintf

_vtprintf

SBCS LUNICODE &
MBCS Not Defined)

printf

remove

rename

_rmdir

_searchenv

scanf

setlocale

_sopen

_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp

_spawnvpe

_splitpath

_stat

_strdate

_strtime

system

_tempnam

tmpnam

atoi

atol

_utime

WinMain

_uItoa

ungetc

vfprintf

_vsnprintf

vsprintf

vprintf

_MBCS Defined

printf

remove

rename

_rmdir

_searchenv

scanf

setlocale

_sopen

_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp

_spawnvpe

_splitpath

_stat

_strdate

_strtime

system

_tempnam

tmpnam

atoi

atol

_utime

WinMain

_uItoa

ungetc

vfprintf

_vsnprintf

vsprintf

vprintf

_UNICODE Defined

wprintf

_wremove

_wrename

_wrmdir

_ wsearchenv

wscanf

_ wsetlocale

_wsopen

_wspawnl

_wspawnle

_wspawnlp

_wspawnlpe

_wspawnv

_wspawnve

_tspawnvp

_tspawnvpe

_ wsplitpath

_wstat

_wstrdate

_wstrtime

_wsystem

_wtempnam

_wtmpnam

_wtoi

_wtol

_wutime

wWinMain

_uItow

ungetwc

vfwprintf

_ vsnwprintf

vswprintf

vwprintf

A
aa 43,149,384
abort function 143
Aborting

abort function 143
assert macro 153

abs function 144
Absolute paths, convering relative paths to with fullpath

function 295
Absolute values, calculating

abs function 144
floating-point 232
labs function 365

_access function 146
Accessing variable-argument lists, va_arg, va_end,

and va_start functions 655
acos function 147
Adding memory to heaps, _heapadd function 319
_alloca function 149
Allocating memory See Memory allocation
_amblksize variable 39
ANSI C compatibility, compliance xi
ANSI code pages 22
API compatibility xi
Appending

bytes of strings, _mbsnbcat function 405
characters of strings, strncat, wcsncat, _mbsncat

functions 589
strings, strcat, wcscat, _mbscat functions 559

Arccosines, calculating, _acos function 147
Arcsines, calculating, as in function 152
Arctangents, calculating, at an function 155
Argument lists, routines for accessing variable length
Argument-list routines 1
Arguments

floating-point, calculating absolute value, fabs
function 232

type checking of xiv, xv
variable, accessing lists, va_arg, va_end, and

va_start functions 655

Index

Arrays
searching, bsearch function 168
sorting, qsort function 476

asctime function 150
asin function 152
_ASSERT and _ASSERTE macros 69
assert macro 153
atan function 155
atan2 function 155
atexit function 156
atof function 158
atoi function 158
atol function 158
_atoli64 function 158

8
Backward compatibility, structure names xii
_beginthread function 160
_beginthreadex function 160
Bessel functions 164
_bexpand function 230
Binary and text file-translation modes 15
Bits, rotating

_lrotl and _lrotr functions 381
_rotl and _rotr functions 491

bsearch function 168
Buffer-manipulation routines 2
Buffers

committing contents to disk 18
controlling and setting size, setvbuf function 522
moving one to another, memmove function 429
setting to specified character, memset function 431
stream control, setbuf function 501

Byte classification
isleadbyte macro 345
routines (list) 2

Byte-conversion routines, (list) 4
Bytes

appending from strings, _mbsnbcat function 405
converting individual 4
locking or unlocking, _locking function 374

683

Index

684

Bytes (continued)

c

reading from input port, _inp and _inpw
functions 327

swapping, _swab function 624
testing individual 2
writing to output port, _outp and _outpw

functions 448

C Run-Time Retail Libraries ix
_c_exit function 174
_cabs function 170
_cabsl function 170
Calculating

absolute value 459
arguments, abs function 144
complex numbers, _cabs and _cabsl

functions 170
floating-point arguments, fabs function 232
long integers, labs function 365

arccosines, acos function 147
arcsines, asin function 152
arctangents, atan function 155
ceilings of values, ceil and ceill functions 172
cosines, cos functions 193
exponentials, exp and expl functions 229
floating-point remainders, fmod function 259
floors of values, floor function 256
hypotenuses, _hypot function 326
logarithms, log functions 376
square roots, sqrt function 551
tangents, tan functions 626
time used by calling process, clock function 185

calloc function 171
_calloc_dbg 72
Case sensitivity, operating systems xii
ceil function 172
ceill function 172
_cexit function 174
_cgets function 174
Changing

current drives, _chdir function 177
directories, _chdir function 176
file size, _chsize function 181
file-permission settings, 3hmod, _ wchmod

functions 179
memory block size, _expand functions 230

Character classification routines (list) 3

Character devices, checking, _isatty function 344
Character sets

described 22
scanning strings for characters, strpbrk, wcspbrk,

_mbspbrk routines 598
Character strings, getting from console, _cgets

function 174
Characters

appending from strings, strncat, wcsncat, _mbsncat
functions 589

comparing
from two strings, _mbsnbcmp 406
from two strings, strncmp, wcsncmp, _mbsncmp

functions 591
in two buffers (case-insensitive characters),

_memicmp function 427
in two buffers, memcmp function 424
of two strings, _strnicmp, _ wcsnicmp,

_mbsnicmp functions 412, 594
converting

_toascii, tolower, toupper functions 636
multibyte to wide 420
series of wide to multibyte, wcstombs

function 663
wide to multi byte, wctomb function 664

copying
between buffers, memcpy function 426
from buffers, _memccpy function 422
from strings, strncpy, wcsncpy, _mbsncpy

functions 593
finding

in buffers, memchr function 423
in strings, strchr, wcschr, _mbschr functions 560
next in strings, _mbsnextc,_strnextc, _ wcsnextc

routines 415
formatting and printing to console, 3printf

function 195
getting from console, _getch and _getche

functions 303
multibyte

comparing 417
converting 395, 398, 400-402
converting to wide, mbstowcs function 418
copying 397, 411
counting 408
determining type 396
determining type in string 402

Characters (continued)
multibyte (continued)

finding length 398
getting length and determining validity, mblen

function 398
of a string, initializing to given characters

_mbsnbset function 414
_stmset, _ wcsnset, _mbsnset functions 597

printing to output stream, printf, wprintf
functions 460

pushing back
last read from console, _ungetch function 650
onto streams, ungetc and ungetwc functions 649

reading from streams
fgetc and _fgetchar functions 243
fgetc, fgetwc, jgetchar, and jgetwchar

functions 243
getc and getchar functions and macros 301

reversing in strings, _strrev, _wcsrev, _mbsrev
functions 602

scanning strings
for last occurrence of, strrchr, wcsrchr, _mbsrchr

routines 600
for specified character sets, strpbrk, wcspbrk,

_mbspbrk routines 598
setting

buffers to specified, memset function 431
in strings to, _strset, _ wcsset, _mbsset

functions 603
testing individual 3
writing

to console, _putch function 470
to streams, fputc, fputwc,_fputchar, and

_fputwchar functions 271
_chdir function 176
_chdrive function 177
Checking

character device, _isatty function 344
console for keyboard input, _kbhit function 364
heaps, _heap set function 322

_chgsign function 179
Child processes, defined 33
_chmod function 179
_chsize function 181
Cleanup operations during a process, _cexit and _c_exit

functions 174
_clear87/_clearfp functions 183
clearerr function 184

Index

Clearing floating-point status word, _clear87/_clearfp
functions 183

clock function 185
_close function 187
Closing

files, _close function 187
streams, fclose and jcloseall functions 233

Code pages
ANSI 22
current, for multibyte functions, ~etmbcp

function 312
definition of 22
described 2
information, using for string comparisons 565
representation of 22
setting, for multi byte functions, _setmbcp

function 511
system-default 22
types of 22

Command-line options xii
Commands, executing, system, _ wsystem

functions 625
_commit function 188
Comparing

characters in two buffers
_memicmp function 427
memcmp function 424

characters of two strings
_mbsnbcmp function 406
case-insensive,_stmicmp, _ wcsnicmp,

_mbsnicmp functions 412,594
stmcmp, wcsncmp, _mbsncmp functions 591

multibyte characters 417
strings

based on locale-specific information, strxfrm
functions 622

lowercase, _stricmp, _ wcsicmp, _mbsicmp
functions 584

null-terminated, strcmp, wcscmp, _mbscmp
functions 562

using code page information, strcoll
functions 565

Compatibility
backward, of structure names xii
described xii
header files, with UNIX xii
OLDNAMES.LIB xii
UNIX, with header files xii
UNIX, XENIX, POSIX xi

685

Index

686

Compatibility (continued)
Win32 API xi
Win32s API xi

Computing
Bessel functions 164
quotients and remainders

from long integers, ldiv and ldiv _t functions 367
of two integer values, div function 206

real numbers from mantissa and exponent, ldexp
function 366

Consistency checking of heaps, _heapchk function 319
Console

and port VO functions 14
checking for keyboard input, _kbhit function 364
getting character string from, _cgets function 174
getting characters from, _getch and ~etche

functions 303
VO routines 19
putting strings to, _cputs function 196
reading data from, _cscanf function 199
writing characters to, _putch function 470

Constant and global variable mappings 678
Control flags

_CRTDBG_MAP_ALLOC 45
_crtDbgFlag 46
_DEBUG 46
using 39

_control87 / _controlfp functions 190
Controlling

stream buffering and buffer size, setvbuf
function 522

Converting
characters to ASCII, lowercase or uppercase,

_toascii, to lower, to upper functions 636
double-precision numbers to strings, _ecvt

function 209
floating-point

numbers to strings, _fcvt function 234
numbers to strings, ~cvt function 300

integers
long, to strings, _ltoa and _ltow functions 386
to strings, _itoa and _itow functions 362
unsigned long, to strings, _ultoa and _ultow

functions 645
multibyte characters 395,398,400,401,402
multibyte to wide characters, mbstowcs

function 418
single multibytye to wide characters, mbtowc

function 420

Converting (continued)
strings

to double-precision or long-integer numbers,
strtod functions 609

to double-precision, atof function 158
to integer, atoi function 158
to long integer, atol function 158
to lowercase, _strlwr, _wcslwr, _mbslwr

functions 588
to uppercase, _strupr, _wcsupr, _mbsupr

functions 621
time

structures to character strings, asctime,
_wasctime functions 150

to character strings, ctime, _ wctime
functions 200

values to structures, gmtime function 317
values with zone correction, localtime

function 372
wide to multi byte characters

character sequence, wctomb function 664
single character, wcstombs function 663

wide-character strings
to integer, _ wtoi function 669
to long integer, _wtol function 669

Copying
characters

between buffers, memcpy function 426
from buffers, _memccpy function 422
of strings, stmcpy, wcsncpy, _mbsncpy

functions 593
dates to buffers, _strdate, _wstrdate functions 574
multibyte characters 397, 411
strings, strcpy, wcscpy, _mbscpy functions 571
time to buffers, _strtime, _ wstrtime functions 607

_copysign function 193
cos function 193
cosh function 193
coshl function 193
Cosines, calculating, _cos functions 193
cosl function 193
Counting multi byte characters 408
Country strings 675
_cprintf function 195
_cpumode variable 44
_cputs function 196
_creat function 197

Creating
directories, _mkdir, wmkdir functions 433
environment variables, _putenv, _ wputenv

functions 471
file handles, _dup and _dup2 functions 207
filenames

temporary, _tempnam, _ wtempnam, tmpnam,
_ wtmpnam functions 629

unique, _mktemp, _ wmktemp functions 434
files

_creat, _ wcreat functions 197
temporary, tmpfile function 635

new process, _spawn, _ wspawn functions 533
path names, _makepath, _wmakepath functions 388
pipes for reading, writing, _pipe function 451
threads, _beginthread, _beginthreadex

functions 160
_ CrtCheckMemory 74
_CRTDBG_MAP _ALLOC flag 45
_crtDbgFlag flag 46
_CrtDbgReport 79
_CrtDoForAllClientObjects 85
_CrtDumpMemoryLeaks 89
_CrtIsMemoryBlock 92
_ CrtIs ValidHeapPointer 90
_CrtIsValidPointer 94
_CrtMemCheckpoint 96
_ CrtMemDifference 97
_CrtMemDumpAllObjectsSince 98
_ CrtMemDumpStatistics 108
_CrtSetAllocHook 109
_CrtSetBreakAlloc 110
_CrtSetDbgFlag 112
_CrtSetDumpClient 115
_ CrtSetReportFile 117
_ CrtSetReportHook 121
_CrtSetReportMode 126
_cscanf function 199
ctime function 200
Current disk drives, getting, ~etdrive function 308

working directories
getting, ~etcwd, _ wgetcwd functions 304
getting, ~etdcwd, _ wgetdcwd functions 306

_cwait function 202

D
Data

conversion routines 4
reading from files, _read, function 481
reading from streams, fread function 274
writing to streams, fwrite function 298

Data-type mappings 677
Date, copying to buffers, _strdate, _ wstrdate

functions 574
daylight variable 40
_daylight variable 40
Deallocating memory blocks, free function 276
_DEBUG flag 46
Debug Functions 6
Debug Heap Manager, enable memory allocation

tracking flag 46
Debug Macros

_ASSERT and _ASSERTE 69
_RPT and _RPTF 139
described 6

Debug Reporting
_ASSERT and _ASSERTE macros 69
_RPT and _RPTF macro groups 139

Debugging
described 6
flag to tum on the debugging process 46
heap-related problems

_heapchk function 319
_heapset function 322
_heapwalk function 323

memory allocation

Index

and tracking using the debug heap, _crtDbgFlag
flag 46

using debug versions of the heap functions,
_CRTDBG_MAP _ALLOC flag 45

using debug versions of the run-time functions,
_DEBUG flag 46

Decrementing string pointers, _mbsdec, _strdec,
_ wcsdec routines 403

#define directive xiv
Defining locales, setlocale, _ wsetlocale function 505
Deleting files

specified by filename, remove, _ wremove
functions 485

specified by path, _unlink, _ wunlink functions 652
difftime function 205
Directives, #define xiv

687

Index

688

Directories
creating, _mkdir, _ wmkdir functions 433
current

changing, _chdir function 176
getting paths, _getdcwd, _ wgetdcwd

functions 306
getting, _getcwd, _ wgetcwd functions 304

removing, _rmdir, _ wrmdir functions 489
renaming, rename, _ wrename functions 486
subdirectory conventions xii

Directory-control routines 9
Disk drives, getting current, _getdrive function 308
div function 206
Dividing integers, div function 206
_doserrno variable 41
Drives

changing current, 3hdir function 177
getting current, _getdrive function 308

_dup function 207
_dup2 function 207
Duplicating strings, _strdup, _ wcsdup, _mbsdup

functions 577
Dynamic Libraries ix

E
_ecvt function 209
_endthread function 211
_endthreadex function 211
environ variable 42
Environment

control routines 32, 33, 34
creating variables, _putenv, _wputenv functions 471
table, getting value from, getenv, _wgetenv

functions 310
time, setting, _tzset function 643

_eof function 214
ermo

values and meanings (list) 41
variable 41

errno variable 41
Error codes

global variable to hold 41
Error handling

for malloc failures, _seenew _mode function 516
math routines 41
math, _matherr function 391
stream I/O 9

Error messages
getting and printing, strerror and _strerror

functions 578
printing, perror, _ wperror functions 449

Errors, testing on streams, ferror function 240
Exception handler

querying for new operator failure,
_query_new_handler function 478

setting for new operator failure, _set_new_handler
function 513

Exception handling
mixing C and C++ exceptions, seese_translator

function 517
routines 10
_seese_translator function 518
_seeterminate function 519
seeunexpected function 521
terminate function 631
unexpected function 648

_exec functions 215
_exec1 function 215
_exec1e function 215
_exec1p function 215
_exec1pe function 215
Executing

commands, system, _ wsystem functions 625
new process, _spawn, _ wspawn functions 533

_execv function 215
_execve function 215
_execvp function 215
_execvpe function 215
Exit

processing function at, atexit function 156
registering function to be called at, _onexit

function 442
exp function 229
_expand function 230
_expand_dbg 130
expl function 229
Exponent and mantissa

getting, _10gb function 377
getting, frexp function 280
splitting floating-point values, modf function 439

Exponential functions, calculating powers
exp and expl functions 229
pow function 459
_scalb function 492

F
fabs function 232
fclose function 233
_fcloseall function 233
_fcvt function 234
_fdopen function 236
ferror function 240
_fexpand function 230
fflush function 242
fgetc function 243
_fgetchar function 243
fgetpos function 245
fgets and fgetws function 247
fgets function 247
fgetwc function 243
_fgetwchar function 243
File handles

allocating, _open_osfhandle function 447
creating, reassigning, _dup and _dup2 functions 207
getting, _fileno function 250
getting, _gecosfhandle function 312
low-level 110 (list) 18, 19
predefined 19

File modification time, setting, jutime function 297
File pointers

getting current position, ftell function 292
getting position associated with handle, _tell

function 627
moving

associated with handle, _lseek function 384
fseek function 283

reassigning, freopen, _ wfreopen functions 277
repositioning, rewind function 487

File-access permission, determining, _access, _ waccess
functions 146

File-handling routines 10
_fileinfo variable 43
_filelength function 249
Filenames

creating
temporary, _tempnam, _ wtempnam, tmpnam,

_ wtmpnam functions 629
unique, _mktemp, _ wmktemp functions 434

operating system conventions xii
_fileno function 250
File-open functions, overriding jmode default with 15
File-permission settings, changing, _chmod, _ wchmod

functions 179

File-position indicators
getting from streams, fgetpos function 245
setting, fsetpos function 285

File-translation modes
for stdin, stdout, stderr 15
overriding default 15
text and binary 15

Files
changing size, _chsize function 181
closing, _close function 187
creating, _creat, _ wcreat functions 197
deleting

specified by filename, remove, _ wremove
functions 485

specified by path, _unlink, _ wunlink
functions 652

end-of-file testing 9
flushing to disks, _commit function 188
handling routines 10
length, _filelength function 249
locking bytes in, _locking function 374
open information about, _fstat function 290
opening

_open, _ wopen functions 444
fopen, _ wfopen functions 260

Index

for file sharing, _sopen, _ wsopen functions 529
for sharing, _fsopen function 287

pointers See File pointers
reading data from, _read function 481
renaming, rename, _ wrename functions 486
searching for, using environment paths, _searchenv,

_ wsearchenv functions 499
setting

modification time, _utime, _ wutime
functions 653

permission masks, _umask function 647
translation mode, _setmode function 512

status information about, _stat, _ wstat functions 555
temporary

creating, tmpfile function 635
removing, _rmtmp function 490

testing for end of file, _eof function 214
writing data to, _write function 667

_find functions 251
_findclose function 251
_finddata_t structure 251
_findfirst function 251

689

Index

690

Finding
characters

in buffers, memchr function 423
in strings, strchr, wcschr, _mbschr functions 560

next token in string, strtok, wcstok, _mbstok
functions 614

string length, strlen, wcslen, _mbslen, _mbstrlen
functions 586

substrings
strcspn, wcscspn, _mbscspn functions 572
strstr, wcsstr, _mbsstr functions 606

_findnext function 251
Flags, control See Control flags
Floating-point

arguments, calculating absolute value, fabs
function 232

class status word, _fpclass function 263
control word, getting and setting,

30ntrol87 /30ntrolfp functions 190
exceptions, trap handlers for, _fpieee_flt

function 264
functions 11
numbers

converting to strings, _fcvt function 234
getting mantissa and exponent, frexp

function 280
operations, NaN results of 361
package, reinitializing, _fpreset function 267
precision, setting internal 11
remainders, calculating, fmod function 259
status word

getting and clearing, _clear87/ _c1earfp
functions 183

getting, _status87/statusfp functions 557
support for printf, scanf function families 11
values

converting to strings, _gcvt function 300
splitting into mantissa and exponent, modf

function 439
floor function 256
_flushall function 258
Flushing

files to disks, _commit function 188
streams

_flushall function 258
fflush function 242

fmod function 259
jmode global variable 15
jmode variable 44

fopen function 260
Formatted data

reading from input stream, scanf and wscanf
functions 493

reading from streams, fscanf and fwscanf
functions 281

_fpclass function 263
_fpieee_flt function 264
_fpreset function 267
fprintf function 269
fputc function 271
jputchar function 271
fputs function 273
fputwc function 271
_fputwchar function 271
fputws function 273
fread function 274
free function 276
_free_dbg 133
freopen function 277
frexp function 280
fscanf function 281
fseek function 283
fsetpos function 285
_fsopen function 287
_fstat function 290
ftell function 292
_ftime function 293
jullpath function 295
Function pointers xiv
junction 388
Functions

See also Routines
arguments, type checking of xiv
buffer-manipulation (list) 2
byte classification (list) 2
character c1assification(list) 3
defined xiii
described by category 1-4, 11, 13
difference from macros xiii
floating-point support 11
110, types of 14
long double (list) 13
math 11
registering to be called on exit, _onexit function 442
time variables (list) 40

_futime function 297
fwprintf function 269

fwrite function 298
fwscanf function 281

G
_gcvt function 300
Generating pseudorandom number, rand function 480
Generic-text mappings

_tmain, example of 27-29
examples 25-29
for data types 25
of _TCHAR, with _MCBS defined 29
preprocessor directives for 25
with _MBCS constant 25,27,29
with _UNICODE constant 25-29
with _UNICODE, _MBCS not defined 25,27,29

Generic-text routines, relation to Unicode 25
~ecosfhandle function 312
getc function and macro 301
~etch function 303
getchar function and macro 301
~etche function 303
_getcwd function 304
~etdcwd function 306
_getdrive function 308
getenv function 310
~etmbcp function 312
~etpid function 313
gets function 314
getwc function and macro 301
getwchar function and macro 301
getws function 314
Global variable mappings 678
Global variables

_amblksize 39,40
_c_fileinfo 43
_daylight 40
_doserrno 41
environ 42
environment 42
errno 41
error codes 41
_fileinfo 43
jmode 15,43
Open file information 43
_osmode 44
_osver 44
sys_errlist 41
_sys_errlist 41

Global variables (continued)
sys_nerr 41
_sys_nerr 41
timezone 40
_timezone 40
tzname 40
_tzname 40
using 39
_ winmajor 44
_ winminor 44
_winver 44

gmtime function 317

H

Index

Handler modes, returning new, _query_new_mode 478
Handlers, mode See Handler modes
Header files, UNIX compatibility with xii
_heapadd function 319
_heapchk function 319
_heapmin function 321
Heaps

checking, _heapset function 322
consistency checks, _heapchk function 319
debugging

_heapchk function 319
_heapset function 322
_heapwalk function 323

memory
allocation mapping flag 45
granularity variable 39

minimizing, _heapmin function 321
_heapset function 322
_heapwalk function 323
Hiragana characters 400
_hypot function 326
Hypotenuses, calculating, _hypot function 326
_hypotl function 326

I/O functions
stream buffering 16
text and binary modes 14-15
types 14

I/O routines
committing buffer contents to disk 18
console 19
low-level routines 18
port 19

691

Index

692

I/O routines (continued)
reading and writing operations 18
searching and sorting routines (list) 34
stream buffering 18
system calls 37

Import Libraries ix
Incrementing string pointers

by specified number of characters, _mbsninc,
_strninc, _ wcsninc routines 416

_mbsinc, _strinc, _ wcsinc routines 404
Indefinite output from printf function 467
Initializing characters of strings to given characters

_mbsnbset function 414
_strnset, _ wcsnset, _mbsnset functions 597

_inp function 327
_inpw function 327
Integers

calculating absolute value of long integers, labs
function 365

converting
long, to strings, _Hoa and _How functions 386
to strings, _itoa and _itow functions 362
unsigned long, to strings, _ultoa and _ultow

functions 645
returning, indicating new handler mode,

_query _new_mode 478
writing to streams, _putw function 474

Internationalization routines 20
Interrupts, setting signal handling, signal function 524
_isatty function 344
isleadbyte macro 345
_isnan function 361
_itoa function 362
_itow function 362

J
jO function 164
jOl function 164
j 1 function 164
j 11 function 164
Japan Industry Standard characters 398
JIS multibyte characters 398
jn function 164
jnl function 164

K
Katakana characters 400
_kbhit function 364
Keyboard, checking console for input, _kbhit

function 364

L
labs function 365
Language strings 673
Idexp function 366
Idiv function 367
Idiv _t structure 367
Lead bytes, checking for, isleadbyte macro 345
Leading underscores, meaning of xi
Length of multi byte characters, finding 398
_lfind function 368
Libraries

described ix
linking ix

Library routines, basic information xi-xv, 9
Linear searching

arrays, for keys, _lfind function 368
_lsearch function 382

Lines, getting from streams, gets, getws functions 314
Loading new process and executing, _exec, _ wexec

functions 215
Locale code page information, using for string

comparisons 565
Locale code pages 22
localeconv function 370
Locale-dependent routines 20
Locales

defining, setlocale, _wsetlocale function 505
definition of 20
settings, getting information on, localeconv

function 370
localtime function 372
Locking bytes in file, _locking function 374
_locking function 374
log functions 376
10glO function 376
10gi0l function 376
Logarithms, calculating, log functions 376
_10gb function 377
logl function 376
Long integers, converting to strings, _ltoa and _ltow

functions 386
longjmp function 378

Low-level 110 functions 14
_Irotl function 381
_lrotr function 381
_lsearch function 382
_lseek function 384
_ltoa function 386

M
Macros

argument access (list)
arguments, type checking of xiv
benefits over functions xiv
defined xiii
locale 3,20
MB_CUR_MAX 3,20

malloc function
described 390
failures of using _seCnew _mode function for 516

_malloc_dbg 134
Mantissa and exponent

getting, frexp function 280
splitting floating-point values, modf function 439

Mappings
constant and global variable 678
data-type 677
generic-text

described 25
for routines 25

of data types using generic text 25
routine 678

Masks, file-permission-setting, _umask function 647
Math

error handling, _matherr function 391
functions 11

_matherr function 391
_max macro 394
Maximum, returning larger of two values, _max

macro 394
MB_CUR_MAX macro 3, 20
MB_LEN_MAX macro 3, 20
mbbtombc function 395
mbbtype function 396
mbccpy function 397
mbcjistojms function 398
mbcjmstojis function 398
mbclen function 398
mbctohira function 400
mbctokana function 400

mbctolower function 401
mbctombb function 402
mbctoupper function 401
mblen function 398
mbsbtype function 402
_mbscat function 559
_mbschr function 560
_mbscmp function 562
_mbscoll function 565
_mbscpy function 571
_mbscspn function 572
_mbsdec function 403
_mbsdup function 577
_mbsicmp function 584
_mbsicoll function 565
_mbsinc function 404
_mbslen function 586
_mbslwr function 588
_mbsnbcat function 405
_mbsnbcmp function 406
mbsnbcnt function 408
mbsnbcpy function 411
_mbsnbset function 414
_mbsncat function 589
mbsnccnt function 408
_mbsncmp function 591
_mbsncoll function 565
_mbsncpy function 593
_mbsnextc function 415
_mbsnicmp function 412,594
_mbsnicoll function 565
_mbsninc function 416
_mbsnset function 597
_mbspbrk function 598
_mbsrchr function 600
_mbsrev function 602
_mbsset function 603
_mbsspn function 604
mbsspnp function 417
_mbsspnp function 604
mbsstr function 606
_mbstok function 614
mbstowcs function 418
_mbstrlen function 586
_mbsupr function 621
mbtowc function 420
_memccpy function 422
memchr function 423
memcmp function 424

Index

693

Index

694

memcpy function 426
_memicmp function 427
memmove function 429
Memory

adding to heaps, _heap add function 319
blocks

changing size, _expand functions 230
returning size allocated in heap, _msize

function 440
deallocating, free function 276
heaps, minimizing, _heapmin function 321

Memory allocation
arrays, calloc function 171
controlling heap granularity, _amblksize variable 39
malloc function 390
_msize function 440
routines 31
stacks, _alloca function 149

memset function 431
Microsoft-specific naming conventions xi
_min macro 432
Minimizing heaps, _heapmin function 321
Minimum, returning smaller of two values, _min

macro 432
_mkdir function 433
_mktemp function 434
mktime function 437
modf function 439
Moving

buffers, memmove function 429
file pointers, _lseek function 384

_msize function 440
_msize_dbg 135
Multibyte characters

comparing 417
converting 395,398,400,401,402
copying 397,411
counting 408
determining type 396
finding length 398
functions See Multibyte-character functions
routines See Multibyte-character routines
strings See Multibyte-character strings

Multibyte code page information, using for string
comparisons 565

Multibyte code pages 22
Multibyte functions

code page settings, _getmbcp function 312
setting code pages for, _setmbcp function 511

Multibyte strings
copying 411
determining type of characters 402

Multibyte-character functions
_mbscoll 565
_mbsicmp function 584
_mbsicoll 565
_mbsncoll 565
_mbsnicoll 565
_mbstok function 614

Multibyte-character routines
byte conversion 4
_mbscat 559
_mbschr 560
_mbscmp 562
_mbscpy 571
_mbscspn function 572
_mbsdec 403
_mbsdup 577
_mbsinc 404
_mbslen, _mbstrlen functions 586
_mbslwr function 588
_mbsnbcat function 405
_mbsnbcmp function 406
_mbsncat function 589
_mbsncmp function 591
_mbsncpy function 593
_mbsnextc 415
_mbsnicmp function 412,594
_mbsninc 416
_mbspbrk function 598
_mbsrchr function 600
_mbsset function 603
_mbsspn, _mbsspnp 604
_ wcsnset function 597
_ wcsrev function 602
wcsstr function 606
_ wcsupr function 621

Multibyte-character strings
with _exec functions 215
with _mktemp function 434
with _spawn and _ wspawn functions 533
with _splitpath and _wsplitpath functions 547
with _stat function 555
with _tempnam and tmpnam functions 629

Multithread Libraries ix

N
Naming conventions, Microsoft-specific xi
NaN

definition of 361
output from printf function 467

New operator failure
querying exception handler for,

_query_new_handler function 478
setting exception handler for, _seCnew_handler

function 513
New processes

See also Spawned processes
loading and executing, _exec, _wexec functions 215

NEWMODE.OBJ, linking with, formalloc failures 516
_nexpand function 230
_nextafter function 441
Numbers

o

converting double to strings, _ecvt function 209
pseudorandom, generating, rand function 480
real, computing from mantissa and exponent,

function 366

offsetof macro 442
OLDNAMES.LIB, compatibility xii
_onexit function 442
Open files, information about, 3stat function 290
_open function 444
_open_osfhandle function 447
Opening files

_open, _wopen functions 444
fopen, _ wfopen functions 260
for file sharing, _sopen, _ wsopen functions 529

Operating systems
case sensitivity xii
file and paths xii
files and paths xii
specifying versions 44
variable mode 44

_osmode variable 44
_outp function 448
_outpw function 448

p
Parameters

See also Arguments
type checking of xiv

Index

Parent process defined 33
Paths

breaking into components, _splitpath, _ wsplitpath
functions 547

converting from relative to absolute, _fullpath
function 295

creating, _makepath, _ wmakepath functions 388
delimiters xii
getting current directory

~etcwd, _ wgetcwd functions 304
~etdcwd, _ wgetdcwd functions 306

operating system conventions xii
_pclose function 449
Permissions, file-access, determining 146
perror function 449
_pgmptr variable 44
PID See ~etpid function
_pipe function 451
Pipes

closing streams, _pc1ose 449
creating for reading, writing, _pipe function 451

_popen function 457
Porting programs to UNIX xii
Ports, VO routines 19
POSIX compatibility xi, xii
POSIX, filenames xii
pow function 459
Powers, calculating, pow function 459
Preprocessor directives for generic-text mappings 25
printf function

family, floating-point support for 11
output, indefinite (quiet NaN) 467
type characters (list) 464
use 460

Printf function
Printing

characters, values to output streams, printf,
wprintf 460

data to stream, fprintf and fwprintf functions 269
error messages

perror, _ wperror functions 449
strerror and _strerror functions 578

to console, _cprintf function 195
Process control routines 32, 33, 34
Process identification number, getting, ~etpid

function 313

695

Index

696

Processes
identification, _getpid function 313
new, loading and executing, _exec, _wexec

functions 215
Processing at exit, atexit function 156
Programs

aborting, assert, abort routines 153
executing, sending signal to, raise function 479
saving current state, setjmp function 502

_putch function 470
_putenv function 471
puts function 473
Putting strings to the console, _cputs function 196
_putw function 474
_putws function 473

Q
qsort function 476
_query _new _handler function 478
_query _new _mode 478
Quick-sort algorithm, qsort function 476
Quiet NaN, output from printf function 467
Quotients, computing, ldiv function 367

R
raise function 479
rand function 480
Random number generation, rand function 480
Random starting point, setting, srand function 552
_read function 481
Reading

bytes or words from port, _inp and _inpw
functions 327

characters from streams,getc, getwc, getchar, and
getwchar functions and macros 301

console data, _cscanf function 199
file data, _read function 481
formatted data

from input stream, scanf and wscanf
functions 493

from strings, sscanf functions 553
realloc function 483
_realloc_dbg 137
Registering function to be called on exit, _onexit

function 442
Remainders, computing, ldiv function 367
remove function 485

Removing
directories, Jmdir, _wrmdir functions 489
files

remove, _ wremove functions 485
temporary, _rmtmp function 490

rename function 486
Renaming directories, files, rename, _ wrename

functions 486
Repositioning file pointers, rewind function 487
Resetting stream error indicator, clearerr function 184
Restoring stack environment and execution locale,

longjmp function 378
Reversing characters in strings, _strrev, _wcsrev,

_mbsrev functions 602
rewind function 487
_rmdir function 489
_rmtmp function 490
Rotating bits

_lrot! and _lrotr functions 381
_rot! and _rotr functions 491

_rot! function 491
_rotr function 491
Routine mappings 678
Routine mappings, using generic-text macros for 25
Routines

See also Functions; Macros
argument access (list) 1
argument-list 1
arguments, type checking of xiv
buffer-manipulation (list) 2
byte classification (list) 2
byte-conversion (list) 4
character classification(list) 3
choosing functions or macros xiii
console and port I/O (list) 19,20
data-conversion (list) 4
described by category 1-4,9-20,31-37
directory control (list) 9
exception-handling 10
file-handling 10
for accessing variable-length argument lists
generic-text 25
I/O, predefined stream pointers 17
internationalization (list) 20
locale-dependent 20
long double, (list) 13
low-level I/O (list) 18
math (list) 11
memory allocation (list) 31

Routines (continued)
multibyte-character, byte conversion 4
process and environment (list) 32, 33
_spawn and _exec forms (list) 34
stream liD, (list) 16
string manipulation (list) 35
time, current (list) 37
wide-character 24
Windows NT interface (list) 37

_RPT and _RPTF macros 139
_RPTO 139
_RPTI 139
_RPT2 139
_RPT3 139
_RPT4 139
_RPTFO 139
_RPTFI 139
_RPTF2 139
_RPTF3 139
_RPTF4 139

s
Saving current state of program, setjmp function 502
_scalb function 492
scanf function 493
Scanning strings

for characters in specified character sets, strpbrk,
wcspbrk, _mbspbrk routines 598

for last occurrence of characters, strrchr, wcsrchr,
_mbsrchr routines 600

Scantf function family, floating-point support for 11
_searchenv function 499
Searching

and sorting routines (list) 34
arrays

for keys, _lfind function 368
for values, _I search function 382
with binary search, bsearch function 168

for files using environment paths, _searchenv,
_ wsearchenv functions 499

Sending signal to executing programs, raise
function 479

_seCnew _handler function 513
_set_new _mode function 516
_set_se _translator function 518
_set_terminate function 519
secunexpected function 521
setbuf function 501

setjmp function 502
setlocale function 505
_setmbcp function 511
_setmode function 512
Setting

Index

buffers to specified character, memset function 431
characters of strings to character, _strset, _wcsset,

_mbsset functions 603
code pages, for multi byte functions, _setmbcp

function 511
file default permission mask, _umask function 647
file translation mode, _setmode function 512
floating point control word, _control87 / _controlfp

functions 190
interrupt signal handling, signal function 524
locales, setlocale, _ wsetlocale function 505

setvbuf function 522
Shift 1IS multi byte characters 398
signal function 524
Signaling executing programs, raise function 479
sin function 526
Sines, calculating, sin function 526
Single thread Libraries ix
sinh function 526
_snprintf function 549
_snwprintf function 549
_sop en function 529
Sorting, qsort function 476
_spawn functions 533
Spawned processes, creating and executing, _spawn,

_ wspawn functions 533
_spawnl function 533
_spawn Ie function 533
_spawnlp function 533
_spawnlpe function 533
_spawnv function 533
_spawnve function 533
_spawnvp function 533
_spawnvpe function 533
_splitpath function 547
Splitting floating-point values into mantissa and

exponent, modf function 439
sprintf function 549
sqrt function 551
Square roots, calculating, sqrt function 551
srand function 552
sscanf function 553

697

Index

698

Stacks
memory allocation, _alloca function 149
restoring environment, longjmp function 378

Standard auxiliary stream, stdaux 17
Standard error stream, stderr 17
Standard input stream, stdin 17
Standard output stream, stdout 17
Standard print stream, stdprn 17
Standard streams See File handles, predefined
Standard types

(list) 46
using 39

Starting point, setting random, srand function 552
_stat function 555
Static Libraries ix
Status information, getting on files, _stat, _ wstat

functions 555
Status word, floating-point

class, jpclass function 263
getting, _status87/statusfp functions 557

_status87/statusfp functions 557
stdin, stdout, stderr, file-translation modes for 15
strcat function 559
strchr function 560
strcmp function 562
strcoll functions 565
strcpy function 571
strcspn function 572
_strdate function 574
_strdec routine 403
_strdup function 577
Stream I/O

buffering 16, 18
buffers, default size 16
controlling, setbuf function 501
error handling 9
error testing 9
functions 14, 16
predefined pointers 17
routines (list) 16
transferring data 18

Stream pointers, predefined 17
Streams

associating with files, jdopen, _ wfdopen
functions 236

buffer control
setbuf function 501
setvbuf function 522

Streams (continued)
closing

fclose and jcloseall functions 233
routines 18

flushing
_flushall function 258
fflush function 242

getting
associated file handle, _fileno function 250
file-position indicator, fgetpos function 245
line from, gets, getws functions 314
string from, fgets and fgetws functions 247
string from, fgets function 247

stdin, stdout, stderr 15
printing

data to, fprintf and fwprintf functions 269
formatted output to, printf, wprintf 460

pushing characters back onto, ungetc and ungetwc
functions 649

reading characters from
fgetc and _fgetchar functions 243
fgetc, fgetwc, _fgetchar, and jgetwchar

functions 243
getc, getwc, getchar, and getwchar functions and

macros 301
reading data from, fread function 274
reading formatted data from, fscanf and fwscanf

functions 281
resetting error indicator, clearerr function 184
returning, associated with end of pipe, _popen,

_wpopen 457
setting position indicators, fsetpos function 285
testing for errors, ferror function 240
writing

characters to, fputc, fputwc,_fputchar, and
_fputwchar functions 271

data to, fwrite function 298
integers to, _putw function 474
strings to, fputs and fputws functions 273

strerror function 578
_strerror function 578
strftime function 580
_stricmp function 584
_stricoll function 565
_strine routine 404
String manipulation routines 35

String pointers
decrementing, _mbsdec, _strdec, _ wcsdec

routines 403
incrementing

_mbsinc, _strinc, _ wcsinc routines 404
by specified number of characters, _mbsninc,

_stminc, _ wcsninc routines 416
Strings

appending
bytes of, _mbsnbcat function 405
characters of, stmcat, wcsncat, _mbsncat

functions 589
strcat, wcscat, _mbscat functions 559

comparing
based on locale-specific information, strxfrm

functions 622
characters, _mbsnbcmp function 406
characters, case-insensitive, _stmicmp,

_wcsnicmp, _mbsnicmp functions 412,594
characters, stmcmp, wcsncmp, _mbsncmp

functions 591
lowercase, _stricmp, _ wcsicmp, _mbsicmp

functions 584
strcmp, wcscmp, _mbscmp functions 562
strcoll functions 565

converting
double-precision to, _ecvt function 209
long integers to, _ltoa and _ltow functions 386
to double-precision or long-integer numbers,

strtod functions 609
to double-precision, atof function 158
to integer, _atoi function 158
to long, atoi64 function 158
to lowercase, _strlwr, _ wcslwr, _mbslwr

functions 588
to uppercase, _strupr, _ wcsupr, _mbsupr

functions 621
copying

characters of, stmcpy, wcsncpy, _mbsncpy
functions 593

strcpy, wcscpy, _mbscpy functions 571
duplicating, _strdup, _ wcsdup, _mbsdup

functions 577
finding

characters in, strchr, wcschr, _mbschr
functions 560

next characters in, _mbsnextc, _stmextc,
_wcsnextc routines 415

Strings (continued)
finding (continued)

next token in, strtok, wcstok, _mbstok
functions 614

Index

specified substrings in, strspn, _strspnp, wcsspn,
_wcsspnp, _mbsspn, _mbsspnp routines 604

substring in, strcspn, wcscspn, _mbscspn
functions 572

substrings in, strstr, wcsstr, _mbsstr
functions 606

getting
character strings from console, _cgets

function 174
from streams, fgets and fgetws functions 247
from streams, fgets function 247

initializing
characters of, to given characters, _mbsnbset

functions 414
characters of, to given characters, _stmset,

_ wcsnset, _mbsnset functions 597
language and country 673
length, strlen, wcslen, _mbslen, _mbstrlen

functions 586
multibyte

comparing 417
copying 411
counting 408
determining type 402

putting to console, _cputs function 196
reading formatted data from, sscanf functions 553
reversing characters in, _strrev, _ wcsrev, _mbsrev

functions 602
scanning

for characters in specified character sets, strpbrk,
wcspbrk, _mbspbrk routines 598

for last occurrence of characters, strrchr, wcsrchr,
_mbsrchr routines 600

setting characters of to character, _strset, _ wcsset,
_mbsset functions 603

time, formatting, strftime, wcsftime functions 580
writing

formatted data to, sprintf functions 549
to output, puts, _putws functions 473
to streams, fputs and fputws functions 273

strlen function 586
_strlwr function 588
stmcat function 589
stmcmp function 591
stmcnt function 408

699

Index

700

_stmcoll function 565
stmcpy function 593
_stmextc routine 415
_stmicmp function 412,594
_stmicoll function 565
_stminc routine 416
_stmset function 597
strpbrk function 598
strrchr function 600
_strrev function 602
_strset function 603
strspn function 604
strspnp function 417
_strspnp routine 604
strstr function 606
_strtime function 607
strtod function 609
strtok function 614
strtol function 609
_strtold function 609
strtoul function 609
Structure names, backward compatibility of xii
_strupr function 621
strxfrm function 622
Substrings, finding in strings

strspn, _strspnp, wcsspn, _ wcsspnp, _mbsspn,
_mbsspnp routines 604

strstr, wcsstr, _mbsstr functions 606
_swab function 624
Swapping bytes, _swab function 624
swprintf function 549
swscanf function 553
sys_errlist variable 41
_sys_errlist variable 41
sys_nerr variable 41
_sys_nerr variable 41
System call routines 37
system function 625
System time, getting, time function 633
System-default code page 22

T
Tangents, calculating, tan functions 626
tanhl function 626
_TCHAR data type, example of using 25-29
TCHAR, using, with _MCBS defined 29
_tell function 627
_tempnam function 629

terminate function 631
Terminating

atexit function 156
threads, _endthread, _endthreadex functions 211

Testing
end of file

_eoffunction 214
on given stream 9

streams for errors, ferror function 240
Text and binary file-translation modes 15
Threads

creating, _beginthread, _beginthreadex
functions 160

terminating, _endthread, _endthreadex
functions 211

Time
calculating calling process, clock function 185
converting

local to calendar, mktime function 437
to character strings, ctime, _ wctime

functions 200
values and correcting for zone, localtime

function 372
values to structures, gmtime function 317

copying to buffers, _strtime, _ wstrtime
functions 607

current, getting, jtime function 293
environment variables, setting, _tzset function 643
finding difference between two times, difftime

function 205
formatting strings, strftime, wcsftime functions 580
routines 37
setting

file modification, jutime function 297
file modification, _utime, _ wutime functions 653

structures, converting to character strings, asctime,
_ wasctime functions 150

system, getting, time function 633
time function 633
_timezone variable 40
Time-zone variables 40
_tmain, generic-text mappings of (example) 27-29
tmpfile function 635
tmpnam function 629
_toascii function 636
Tokens, finding next in string, strtok, wcstok, mbstok

functions 614
tolower, _tolower functions 636
toupper, _toupper functions 636

Trap handlers, for floating-point exceptions, _fpieee_flt
function 264

Triangles, calculating hypotenuse, _hypot function 326
Type checking of arguments xiv, xv
Types, standard See Standard types
tzname variable 40
_tzname variable 40
_tzset function 643

u
_ultoa function 645
_ultow function 645
_umask function 647
Underscores, leading, meaning of xi
unexpected function 648
ungetc function 649
_ungetch function 650
ungetwc function 649
Unicode, generic-text function name mappings

for use with 25
UNIX

case sensitivity xii
compatibility xi, xii
header files, compatibility with xii
naming conventions xii
path delimiters xii

_unlink function 652
Uppercase, converting strings to, _strupr, _wcsupr,

_mbsupr functions 621
_utime function 653

v
va_arg function 655
va_end function 655
va_start function 655
Values

calculating
ceilings, ceil and ceill functions 172
floors, floor function 256

getting environment table, getenv, _ wgetenv
functions 310

printing to output stream, printf, wprintf
functions 460

returning
maximum, _max macro 394
smaller of two, _min macro 432

searching for, _lsearch function 382
Variable-length argument lists, routines for accessing

Variables, global See Global variables
Versions, compatibility with previous xii
vfprintf function 658
vfwprintf function 658
vprintf function 658
_ vsnprintf function 658
_ vsnwprintf function 658
vsprintf function 658
vswprintf function 658
vwprintf function 658

w
_waccess function 146
_ wasctime function 150
_ wchdir function 176
_ wchmod function 179
_ wcreat function 197
wcscat function 559
wcschr function 560
wcscmp function 562
wcscoll function 565
wcscpy function 571
wcscspn function 572
_ wcsdec routine 403
_ wcsdup function 577
wcsftime function 580
_wcsicmp function 584
_ wcsicoll function 565
_ wcsinc routine 404
wcslen function 586
_wcslwr function 588
wcsnbcnt function 408
wcsncat function 589
wcsncmp function 591
_wcsncoll function 565
wcsncpy function 593
_wcsnextc routine 415
_wcsnicmp function 412,594
_ wcsnicoll function 565
_ wcsninc routine 416
_ wcsnset function 597
wcspbrk function 598
wcsrchr function 600
_ wcsrev function 602
_ wcsset function 603
wcsspn function 604
_ wcsspnp routine 604
wcsstr function 606

Index

701

Index

702

wcstod function 609
wcstok function 614
wcstol function 609
wcstombs function 663
wcstoul function 609
_wcsupr function 621
wcsxfrm function 622
_ wctime function 200
wctomb function 664
_wexec functions 215
_wexec1 function 215
_ wexec1e function 215
_wexec1p function 215
_wexec1pe function 215
_wexecv function 215
_wexecve function 215
_wexecvp function 215
_wexecvpe function 215
_ wfdopen function 236
_ wfopen function 260
_ wfreopen function 277
_ wgetcwd function 304
_ wgetdcwd function 306
_ wgetenv function 310
Wide character functions

_fgetwchar function 243
fgetwc function 243

Wide-character functions
_snwprintf 549
_vsnwprintf 658
_wcsicmp function 584
_ wcsicoll 565
_ wcsncoll 565
_ wcsnicoll 565
swprintf 549
swscanf 553
tow lower 636
towupper 636
vfwprintf 658
vswprintf 658
vwprintf 658
wcschr 560
wcscmp 562
wcscoll 565
wcsftime 580
wcstod function 609
wcstok function 614
wcstol function 609
wcstombs 663

Wide-character functions (continued)
wcstoul function 609
wcsxfrm function 622
wctomb 664
wscanf function 493

Wide-character routines
(list) 24
_ wasctime 150
_wchdir 176
_wchmod 179
_wcreat 197
_wcsdup 577
_wcslwr function 588
_wcsnicmp function 412,594
_ wcsnset function 597
_ wcsrev function 602
_ wcsset function 603
_ wcsupr function 621
_wctime 200
_wexec family 215
_ wfdopen 236
_wfopen 260
_ wfreopen function 277
_ wfullpath function 295
_ wgetcwd 304
_ wgetdcwd 306
_ wgetenv 310
_wmakepath 388
_wmkdir 433
_ wmktemp function 434
_wopen 444
_wperror 449
_wpopen 457
_wputenv 471
_ wremove 485
_ wrename 486
_wrmdir 489
_ wsearchenv 499
_ wsetlocale 505
_wsopen 529
_wspawn family 533
_wsplitpath 547
_wstat 555
_wstrdate 574
_ wstrtime 607
_ wsystem 625
_ wtempnam, _ wtmpnam 629
_wunlink 652
_wutime 653

Wide-character routines (continued)
fputwc, _fputwchar functions 271
fputws function 273
fwprintf 269
fwscanf function 281
generic-text function name mapping to 25
wcscat 559
wcscpy 571
wcscspn 572
wcslen function 586
wcsncat function 589
wcsncmp function 591
wcsncpy function 593
wcspbrk function 598
wcsrchr function 600
wcsspn, _ wcsspnp 604
wcsstr function 606

Wide-character strings, converting
to integer, _ wtoi function 669
to long integer, _ wtol function 669

Win32, Win32s API compatibility xi
Windows NT interface routines (list) 37
_wmain, generic-text mapping to (example) 27,28
_wmakepath function 388
_ wmkdir function 433
_ wmktemp function 434
_ wopen function 444
Words

inputting from port, _inp and _inpw functions 327
writing at port, _outp and _outpw functions 448

Working directories, getting, getcwd, _wgetcwd,
getdcwd, _wgetdcwd functions 304

_ wperror function 449
_ wpgmptr variable 44
_ wpopen function 457
wprintf function 460
_wputenv function 471
_ wremove function 485
_ wrename function 486
_write function 667
Writing

bytes at port, _outp and _outpw functions 448
characters

to console, _putch function 470
to streams, fputc, fputwc,_fputchar, and

jputwchar functions 271
data

to files, _write function 667
to strings, sprintf functions 549

Writing (continued)
formatted output to argument lists, vprintf

functions 658
integers to streams, _putw function 474
strings

to output, puts, _putws functions 473
to the console, _cputs function 196

_ wrmdir function 489
wscanf function 493
_wsearchenv function 499
_ wsetlocale function 505
_ wsopen function 529
_ wspawn functions 533
_wspawnl function 533
_ wspawnle function 533
_ wspawnlp function 533
_ wspawnlpe function 533
_ wspawnv function 533
_ wspawnve function 533
_ wspawnvp function 533
_ wspawnvpe function 533
_wsplitpath function 547
_ wstat function 555
_wstrdate function 574
_ wstrtime function 607
_ wsystem function 625
_ wtempnam function 629
_ wtmpnam function 629
_ wtoi function 669
_ wtol function 669
_ wunlink function 652
_ wutime function 653

x
XENIX compatibility xi, xii

y
_yO function 164
_yOl function 164
_yl function 164
_y 11 function 164
-yn function 164
_ynl function 164

Index

703

Active Template
Library

Run-Time Ubrary Reference

Part 1 Active Template Library Articles 1
ATL Article Overview 3

Introduction to COM and ATL 3

Creating an ATL Project 8

Fundamentals of ATL COM Objects 15

ATL Window Classes 19

Connection Points 25

Enumerators 27

The Proxy Generator 28

Debugging Tips for ATL Objects 30

ATL Services 31

The ATL Registry Component (Registrar) 36

Part 2 Active Template Library Tutorial 47
ATL Tutorial 49

Part 3 Active Template Library Reference 73
3ATL Class Overview 75

CBindStatusCallback 83

CComAggObject 92

CComApartment 95

CComAutoCriticalSection 98
CComAutoThreadModule 100

CComBSTR 104

CComCachedTearOffObject 110

CComClassFactory 114

CComCIassFactory2 116

CComClassFactory AutoThread 120

CComClassFactorySingleton 122

CComCoClass 124

CComContainedObject 127

CComControl 129

CComCriticalSection 165

Contents

iii

Contents

iv

CComDispatchDri ver 167

CComDynamicUnkArray 172

CComFakeCriticalSection 174

CComGlobalsThreadModel 176

CComModule 177

CComMultiThreadModel 189

CComMultiThreadModelNoCS 194
CComObject 198

CComObjectGlobal 201

CComObjectNoLock 204

CComObjectRoot 206

CComObjectRootEx 207

CComObjectStack 215

CComObjectThreadModel 218

CComPolyObject 219

CComPtr 223

CComQIPtr 227

CComSimpleThreadAllocator 231

CComSingleThreadModel 232
CComTearOffObject 236

CComUnkArray 240

CComVariant 242

CContainedWindow 247

CDialogImpl 255

CDynamicChain 258

CFirePropNotifyEvent 261

CMessageMap 263
CRegKey 265

CStockPropImpl 272

CWindow 274

CWindow Impl 314

CWndClassInfo 320

IConnectionPointContainerImpl 324

IConnectionPointImpl 326

IDataObjectImpl 329

IDispatchImpl 333

IObjectSafetyImpl 336

IObjectWithSiteImpl 338

IOleControlImpl 340

IOleInPlaceActiveObjectlmpl 342

IOleInPlaceObjectWindowlessImpl 345

IOleObjectImpl 349

IPerPropertyBrowsingImpl 359

IPersistPropertyBagImpl 361

IPersistStorageImpl 363

IPersistStreamInitlmpl 366

IPointerInactiveImpl 368

IPropertyNotifySinkCP 370

IPropertyPageImpl 371

IPropertyPage2Impi 378

IProvideCIassInfo2Impi 379

IQuickActivateImpl 381

IRunnableObjectlmpl 383

ISpecifyPropertyPagesImpl 385

ISupportErrorInfoImpl 386

IViewObjectExImpl 387

ATL Macros and Global Functions 392

ALT_MSG_MAP 396

AtlAdvise 397

AtlCreateTargetDC 397

AtlFreeMarshalStream 398

AtlHiMetricToPixel 398

AtlInternalQueryInterface 398

AtlMarshalPtrInProc 399

AtlPixelToHiMetric 400

AtlReportError 400
AtlTrace 401

ATLTRACE 401

ATLTRACENOTIMPL 402

AtlUnadvise 402

AtlUnmarshalPtr 402

AtlWaitWithMessageLoop 403

BEGIN_COM_MAP 403

BEGIN_CONNECTION_POINT_MAP 404

BEGIN_MSG_MAP 404

BEGIN_OBJECT_MAP 407

BEGIN_PROPERTY _MAP 407

CHAIN_MSG_MAP 408

Contents

v

Contents

vi

CHAIN_MSG_MAP _ALT 409

CHAIN_MSG_MAP _ALT_DYNAMIC 410

CHAIN_MSG_MAP_ALT_MEMBER 411

CHAIN_MSG_MAP _DYNAMIC 411

CHAIN_MSG_MAP_MEMBER 412

COM_INTERFACE_ENTRY Macros 413

COM_INTERFACE_ENTRY 414

COM_INTERFACE_ENTRY2 415

COM_INTERFACE_ENTRY2_IID 415

COM_INTERFACE_ENTRY _AGGREGATE 416

COM_INTERFACE_ENTRY _AGGREGATE_BLIND 416

COM_INTERFACE_ENTRY _AUTOAGGREGATE 417

COM_INTERFACE_ENTRY _AUTOAGGREGATE_BLIND 417

COM_INTERFACE_ENTRY _BREAK 418

COM_INTERFACE_ENTRY _CACHED_TEAR_OFF 418

COM_INTERFACE_ENTRY _CHAIN 419

COM_INTERFACE_ENTRY _FUNC 419

COM_INTERFACE_ENTRY _FUNC_BLIND 420

COM_INTERFACE_ENTRY _lID 420

COM_INTERFACE_ENTRY_IMPL 421

COM_INTERFACE_ENTRY _IMPL_IID 422

COM_INTERFACE_ENTRY _NOINTERFACE 422

COM_INTERFACE_ENTRY _TEAR_OFF 423

COMMAND_CODE_HANDLER 423

COMMAND_HANDLER 424

COMMAND_ID_HANDLER 425

COMMAND_RANGE_HANDLER 425

CONNECTION_POINT_ENTRY 426

DECLARE_AGGREGATABLE 426

DECLARE_CLASSFACTORY 427

DECLARE_CLASSFACTORY2 427
DECLARE_CLASSFACTORY_AUTO_THREAD 428

DECLARE_CLASSFACTORY _EX 428

DECLARE_CLASSFACTORY _SINGLETON 429

DECLARE_GET_CONTROLLING_UNKNOWN 429

DECLARE_NO_REGISTRY 429

DECLARE_NOT_AGGREGATABLE 430

DECLARE_OBJECT _DESCRIPTION 430

DECLARE_ONLY_AGGREGATABLE 431

DECLARE_POLY _AGGREGATABLE 431

DECLARE_PROTECT_FINAL_CONSTRUCT 432

DECLARE_REGISTRY 432

DECLARE_REGISTRY _RESOURCE 433

DECLARE_REGISTRY _RESOURCEID 434

DECLARE_ WND_CLASS 434

DECLARE_ WND_SUPERCLASS 435

END_COM_MAP 435

END_CONNECTION_POINT_MAP 436

END_MSG_MAP 436

END_OBJECT_MAP 437

END_PROPERTY_MAP 437

IMPLEMENT_BOOL_STOCKPROP 437

IMPLEMENT_BSTR_STOCKPROP 438

IMPLEMENT_STOCKPROP 439

MESSAGE_HANDLER 439

MESSAGE_RANGE_HANDLER 440

NOTIFY_CODE_HANDLER 441

NOTIFY_HANDLER 441

NOTIFY _ID_HANDLER 442

NOTIFY _RANGE_HANDLER 442

OBJECT_ENTRY 443

PROP_ENTRY 443

PROP_ENTRY _EX 444

PROP_PAGE 444

String Conversion Macros 445

DEVMODE and TEXTMETRIC String Conversion Macros 446

Contents

vii

PAR T 1

Active Template Library Articles

Introduction to COM and ATL

ATL Article Overview
Articles in the Active Template Library (ATL) consist of the following:

"Introduction to COM and ATL" introduces the major concepts behind the
Component Object Model (COM). This article also briefly explains what ATL is
and when you should use it.

"Creating an ATL Project" contains information on the ATL COM AppWizard and
ATL Object Wizard.

"Fundamentals of ATL COM Objects" discusses the relationship among various
ATL classes and how those classes get implemented.

"ATL Window Classes" describes how to create, superclass, and subclass windows
in ATL.

"Connection Points" explains what connection points are and how ATL implements
them.

"Enumerators" describes the implementation and creation of enumerators in ATL.

"The Proxy Generator" explains what the ATL proxy generator does and how to
use it.

"Debugging Tips for ATL Objects" tells you how to use ATL's built-in support for
debugging Querylnterface, AddRef, and Release calls.

"ATL Services" covers the series of events that occur when a service gets
implemented. It also talks about some of the concepts related to developing a service.

"The ATL Registry Component (Registrar)" discusses ATL scripting syntax and
replaceable parameters. It also explains how to set up a static link to the Registrar.

See Also: "ATL Class Overview"

Introduction to COM and ATL
This article provides a very brief introduction to COM and ATL. For more
information on COM, see "The Component Object Model" in the Win32 SDK online.
For more information on ATL, see the "ATL Article Overview" and the "ATL Class
Overview."

3

Introduction to COM and ATL

Introduction to COM
COM is the fundamental "object model" on which ActiveX and OLE are built.
COM allows an object to expose its functionality to other components and to host
applications. It defines both how the object exposes itself and how this exposure
works across processes and across networks. COM also defines the object's
life cycle.

Fundamental to COM are these concepts:

• Interfaces-the mechanism through which an object exposes its functionality.

• IUnknown-the basic interface on which all others are based. It implements
the reference counting and interface querying mechanisms running
through COM.

• Reference counting-the technique by which an object (or, strictly, an
interface) decides when it is no longer being used and is therefore free to
remove itself.

• Querylnterface-the method used to query an object for a given interface.

• Marshaling-the mechanism that enables objects to be used across thread,
process, and network boundaries, allowing for location independence.

• Aggregation-a way in which one object can make use of another.

See Also: "The Component Object Model" in the Win32 SDK online

Interfaces

4

An interface is the way in which an object exposes its functionality to the outside
world. In COM, an interface is a table of pointers (like a C++ vtable) to functions
implemented by the object. The table represents the interface, and the functions to
which it points are the methods of that interface. An object can expose as many
interfaces as it chooses.

Each interface is based on the fundamental COM interface, IUnknown. The
methods of IUnknown allow navigation to other interfaces exposed by the object.

Also, each interface is given a unique interface ID (lID). This uniqueness makes it
is easy to support interface versioning. A new version of an interface is simply a
new interface, with a new lID.

Note liDs for the standard COM, OLE, and ActiveX interfaces are pre-defined.

See Also: "COM Objects and Interfaces" in the Win32 SDK online

Introduction to COM and ATL

IUnknown
IUnknown is the base interface of every other COM interface. IUnknown defines
three methods: Querylnterface, AddRef, and Release. Querylnterface allows an
interface user to ask the object for a pointer to another of its interfaces. AddRef and
Release implement reference counting on the interface.

See Also: "IUnknown and Interface Definition Inheritance" in the Win32 SDK online

Reference Counting
COM itself does not automatically try to remove an object from memory when it
thinks the object is no longer being used. Instead, the object programmer must remove
the unused object. The programmer determines whether an object can be removed
based on a reference count.

COM uses the IUnknown methods, AddRef and Release, to manage the reference
count of interfaces on an object. The general rules for calling these methods are:

• Whenever a client receives an interface pointer, AddRef must be called on the
interface.

• Whenever the client has finished using the interface pointer, it must call Release.

In a simple implementation, each AddRef call increments and each Release call
decrements a counter variable inside the object. When the count returns to zero, the
interface no longer has any users and is free to remove itself from memory.

Reference counting can also be implemented so that each reference to the object
(not to an individual interface) is counted. In this case, each AddRef and Release call
delegates to a central implementation on the object, and Release frees the entire object
when its reference count reaches zero.

See Also: "Managing Object Lifetimes through Reference Counting" in the Win32
SDK online

Query Interface
Although there are mechanisms by which an object can express the functionality it
provides statically (before it is instantiated), the fundamental COM mechanism is to
use the IUnknown method called Querylnterface.

Every interface is derived from IUnknown, so every interface has an implementation
of Querylnterface. Regardless of implementation, this method queries an object
using the lID of the interface to which the caller wants a pointer. If the object supports
that interface, Querylnterface retrieves a pointer to the interface, while also calling
AddRef. Otherwise, it returns the E_NOINTERFACE error code.

See Also: "QueryInterface: Navigating in an Object" in the Win32 SDK online

5

Introduction to COM and ATL

Marshaling
The COM technique of marshaling allows interfaces exposed by an object in one
process to be used in another process. In marshaling, COM provides code (or uses
code provided by the interface implementor) both to pack a method's parameters into
a format that can be moved across processes (as well as, across the wire to processes
running on other machines) and to unpack those parameters at the other end.
Likewise, COM must perform these same steps on the return from the call.

Note Marshaling is typically not necessary when an interface provided by an object is being
used in the same process as the object. However, marshaling may be needed between threads.

See Also: "Marshaling Details" in the Win32 SDK online

Aggregation
There are times when an object's implementor would like to take advantage of the
services offered by another, pre-built object. Furthermore, it would like this second
object to appear as a natural part of the first. COM achieves both of these goals
through containment and aggregation.

Aggregation means that the containing (outer) object creates the contained (inner)
object as part of its creation process and the interfaces of the inner object are exposed
by the outer. An object allows itself to be aggregatable or not. If it is, then it must
follow certain rules for aggregation to work properly.

Primarily, all IUnknown method calls on the contained object must delegate to the
containing object.

See Also: "Reusing Objects" in the Win32 SDK online

Introduction to ATL

6

ATL is the Active Template Library, a set of template-based C++ classes with
which you can easily create small, fast Component Object Model (COM) objects.
It has special support for key COM features including: stock implementations of
IUnknown, IClassFactory, IClassFactory2 and IDispatch; dual interfaces;
standard COM enumerator interfaces; connection points; tear-off interfaces;
and ActiveX controls.

ATL code can be used to create single-threaded objects, apartment-model objects,
free-threaded model objects, or both free-threaded and apartment-model objects.

Topics covered in this section include:

Introduction to COM and A TL

• How a template library differs from a standard C++ library.

• What you can and cannot do with ATL.

• When to use ATL versus MFC.

Using a Template Library
A template is somewhat like a macro. As with a macro, invoking a template causes
it to expand (with appropriate parameter substitution) to code you have written.
However, a template goes further than this to allow the creation of new classes based
on types that you pass as parameters. These new classes implement type-safe ways
of performing the operation expressed in your template code.

Template libraries such as ATL differ from traditional C++ class libraries in that they
are typically supplied only as source code (or as source code with a little, supporting
run time) and are not inherently or necessarily hierarchical in nature. Rather than
deriving from a class to get the functionality you desire, you instantiate a class from
a template.

The Scope of ATL
ATL allows you to easily create COM objects, Automation server, and ActiveX
controls. ATL provides built-in support for many of the fundamental COM interfaces.

ATL is shipped as source code which you include in your application. ATL also makes
a DLL available (atl.dll), which contains code that may be shared across components.
However, this DLL is not necessary.

See Also: "Creating an ATL Project"

Choosing When to Use ATL
When developing components and applications, you can choose between two
approaches-ATL and MFC (the Microsoft Foundation Class Library).

Using All
ATL is a fast, easy way to both create a COM component in C++ and maintain a small
footprint. Use ATL to create a control if you don't need all of the built-in functionality
that MFC automatically provides.

Using MFC
MFC allows you to create full applications, ActiveX controls, and active documents.
If you have already created a control with MFC, you may want to continue
development in MFC. When creating a new control, consider using ATL if you
don't need all of MFC's built-in functionality.

7

Creating an A TL Project

Creating an ATL Project
The easiest way to create an ATL project is to use the ATL COM AppWizard. You can
then add objects or controls to your project using the ATL Object Wizard. Go through
the "ATL Tutorial" to insert a control and add custom properties and events.

This article:

• Describes how to use the ATL COM AppWizard.

• Lists the files generated by the ATL COM App Wizard.

• Describes how to add an object or a control with the ATL Object Wizard.

• Describes how to add a new interface to an existing object or control.

U sing the ATL COM App Wizard

8

~ To create a project using the ATL COM AppWizard

1 Open Developer Studio. Click New on the File menu and click the Projects tab.

2 Choose ATL COM AppWizard as your application type.

3 Enter a project name.

4 Click OK.

This W"'otd ereates anATL proiect withOlJt any
flitill! COM obiect •. After comp1eI'lg lhis Wizard.
use frio NewATl Object command It om
CIa.,view to .peC1l~ the type of object you would
like to add 10 this project

r Allow m .. ging of Qroxy/$1ub code

r SUPIlOltMFC

The ATL COM App Wizard displays a dialog box showing options that apply to your
ATL project:

• Choose from one of three server types: Dynamic Link Library (DLL) for an
in-process server, Executable (EXE) for a local out-of-process server, or Service
(EXE), a server is also a Windows NT service that runs in the background when
NT starts up.

Creating an A TL Project

• Select Allow merging of proxy/stub code as a convenience when marshaling
interfaces is required. This option places the MIDL generated proxy and stub code
in the same DLL as the server.

• Click the Support MFC check box to use MFC functionality (such as CString)
in your server.

Click Finish to generate the project. The App Wizard then displays information about
the project that it is creating and then displays the newly created project in the Project
Workspace.

Note When you build your project, you can choose a MinSize or Min Dependency
configuration. MinSize will generate a smaller component, since shared code will be used
from atl.dll. In this case, you must distribute atl.dll with your component. Min Dependency will
generate a larger component, since all necessary code will be linked in with your component.

Note When building a Release version of a project, you can get the following link error:
LIBCMT.LIB(crt0.obj) : error LNK2001: unresolved external symbol _main

This error occurs if you are using CRT functions that require CRT startup code. The Release
configurations define _ATL_MIN_CRT, which excludes CRT startup code from your EXE or
DLL. To avoid this error, do one of the following:

• Remove _ATL_MIN_CRT from the list of preprocessor defines to allow CRT startup code
to be included. On the Project menu, click Settings. In the Settings For: drop down list,
choose Multiple Configurations. In the Select project configuration(s) to modify dialog
box that appears, click the check boxes for all Release versions, and then click OK. On the
C/C++ tab, choose the General category, then remove _ATL_MIN_CRT from the
Preprocessor definitions edit box.

• If possible, remove calls to CRT functions that require CRT startup code and use their Win32
equivalents. For example, use Istrcmp instead of strcmp. Known functions that require
CRT startup code are some of the string and floating point functions.

Files Generated by the ATL COM
AppWizard

Choose the File View tab in the Project Workspace and expand by clicking + to see
the files generated for your project:

File

Test.cpp

Description

Contains the implementation of your DLL's exports for an
in-process server and the implementation of WinMain for a
local server. For a service, this additionally implements all the
service management functions.

(continued)

9

Creating an A TL Project

(continued)

File

Test.def

Testjdl

Test.rc

Resource.h

StdAfx.cpp

StdAfx.h

Description

Typically, contains a list of your DLL's exports. Generated only
for an in-process server.

Includes the definitions for all your interfaces. As an Interface
Definition Language (.idl) file, it will be processed by the MIDL
compiler to generate the Testtlb type library and marshaling code.

Contains the resource information for your project.

The header file for the resource file.

Includes the files StdAfx.h and Atlimpl.cpp.

Includes the ATL header files.

Adding Objects and Controls

10

After generating a project with the ATL COM AppWizard, you can add an object or
a control using the ATL Object Wizard. For each COM object or control you add, the
wizard will generate .cpp and .h files, as well as an .rgs file for script-based registry
support.

~ To add an object or a control using the ATl Object Wizard

• With your ATL project open, select New ATL Object from the Insert menu.
The ATL Object Wizard opens.

- or-

1 With your ATL project open, select the Class View tab in the project workspace.

2 Click the right mouse button on the top-most classes folder. A menu appears.

3 From the menu, choose New ATL Object. The ATL Object Wizard opens.

- or-

• With your ATL project open and the WizardBar visible, click on the WizardBar
Actions drop-down list and select New ATL Object.

- or-

• With your ATL project open and the ATL ToolBar visible, select the New ATL
Object button.

o 'octs c~ (\ !l!)
Mi.celloneou. :t1

~ Internet Property Page
Explorer
Control

Creating an A TL Project

The ATL Object Wizard displays the categories of objects on the left and the icons
of the objects in each category on the right. Choose a category, and the icons of the
objects that category contains are displayed.

ATL Objects

• Simple Object adds a minimal COM object.

• Internet Explorer Object adds an object that supports the interfaces needed
by Internet Explorer, but without support for a user interface.

• Add-in Object adds a COM object that extends the Developer Studio shell
with your own toolbar button and event handling. This object offers the same
functionality as the one added by the DevStudio Add-in Wizard on the
Developer Studio File\New Projects tab.

• ActiveX Server Component adds an object that can be used by the Active Server
Pages feature of Internet Information Server (lIS).

• Microsoft Transaction Server Component includes the header files needed
by the Transaction Server and defines the object as nonaggregatable.

• Component Registrar Object adds an object that implements the
IComponentRegistrar interface. This object can be used to register any objects in
your in-process server that declare the DECLARE_OBJECT_DESCRIPTION
macro. Using this object you can and register and/or unregister objects
individually, unlike DllRegisterServer and DllUnregisterServer which register
and unregister all objects in your server. It is also possible to get a list of objects
in the server and their descriptions with the
IComponentRegistrar:: GetComponents method.

ATL Controls

• Full Control adds an object that supports the interfaces for all containers.

• Internet Explorer Control adds an object that supports the interfaces needed
by Internet Explorer, including support for a user interface.

• Property Page adds an object that implements a property page.

ATL Miscellaneous

• Dialog adds an object that implements a dialog box.

Double-click the control or object you want to insert. The ATL Object
Wizard displays a dialog box showing options that apply to your object or
control.

11

Creating an A TL Project

12

Note Depending on the type of object or control you select, some of the pages and options
described below may not be available.

In the Names page, enter class and file names. By default, the name you enter for
Short name becomes the root for all other names in this page. You can enter your
own names rather than accept these defaults.

• Class is the name of the class implementing your object.

• CoClass is the name of the component class that contains a list of interfaces
supported by the object.

• Interface is the name of the interface you create for your object. This interface
contains your custom methods. For Full Controls, Internet Explorer Controls,
Simple Objects, Internet Explorer Objects, Add-in Objects, ActiveX Server
Components, and Microsoft Transaction Server Components, the wizard creates
an interface with the name you specify. For Property Page objects, no custom
interface is created, and the wizard assigns IUnknown as the object interface.
Dialog objects do not create an interface.

• Type is a description string for the object that goes into the registry.

• ProgID is a name that containers can use instead of the CLSID of the object.

In the Attributes page, select a threading model, interface type, and aggregation
support:

• Choose Dual Interfaces if you want the object's interfaces to derive from
IDispatch as well as support your custom functions (the vtable has custom
interface functions plus late-binding IDispatch methods). This allows both
COM clients and Automation controllers to access your object.

• Choose Custom Interfaces to derive the object's interfaces from IUnknown
(the vtable has custom interface functions and not IDispatch methods). A custom
interface can be faster than a dual interface, especially across process boundaries.

• Choose Only for aggregation if you want the object to be instantiated only if it is
being aggregated.

• Check the Support ISupportErrorInfo checkbox to have your object implement
the ISupportErrorInfo interface for error reporting.

Creating an A TL Project

• Check the Support Connection Points checkbox to add support for connection
points to the object. The wizard will automatically derive the object's class from
IConnectionPointContainerImpl.

• Check the Free Threaded Marshaler checkbox to create a free-threaded
mars haler object to efficiently marshal interface pointers between threads in the
same process.

In the Miscellaneous page, choose the features for the object.

• Choose Opaque to make your control completely opaque, so that none of the
container shows behind the control boundaries. This helps the container draw the
control more quickly. The entire control rectangle passed to your control class's
OnDraw method. This option sets the VIEWSTATUS_OPAQUE bit in the
VIEWSTATUS enumeration.

• Choose Solid Background to make the control's background a solid color and not
a pattern. This option is meaningful only if the Opaque is option is also selected.
This option sets the VIEWSTATUS_SOLIDBKGND bit in the VIEWSTATUS
enumeration.

• Choose Invisible at runtime to make your control invisible at run time. You can
use invisible controls to perform operations in the background, such as firing
events at timed intervals.

• Choose Acts like button to enable your control to act like a button, in particular
to display itself as the default button based on the ambient property
Display AsDefault.

• Choose Acts like label to enable your control to replace the container's native
label.

• Choose Add control based on to superclass one of the standard window classes.
The drop-down list contains window class names defined by Windows. When you
choose one of these, the wizard adds a CContainedWindow member variable to
your control's class. CContainedWindow::Create will superclass the window
class you specify.

• Choose Normalize DC to have your control create a normalized device context
when it is called to draw itself. This standardizes the control's appearance, but is
less efficient.

• Choose Insertable to have your control appear in the Insert Object dialog box of
applications such as Microsoft Word and Microsoft Excel. Your control can then
be inserted by any application that supports embedded objects through the Insert
Object dialog box.

• Choose Windowed Only to force your control to be windowed, even in containers
that support windowless objects. If you do not select this option, your control will
automatically be windowless in containers that support windowless objects, and
automatically be windowed in containers that do not support windowless objects.

13

Creating an ATL Project

14

In the Stock Properties page, select the stock properties you want the object to
support, such as Caption or Border Color. You can select all the stock properties
at once by clicking the » button.

In the Strings page, enter names for the property page object.

• Title is the text that appears on the property page's tab.

• Doc String is a text string describing the page. The property frame could use the
description in a status line or tool tip. The standard property frame currently does
not use this string.

• Helpfile is the name of the associated help file. The help file name should be the
simple name without a path. When the user presses Help, the frame opens the help
file in the directory named in the value of the HelpDir key in the property page
registry entries under its CLSID.

In the Add-in page, choose features for the Add-in object.

• Provide Toolbar creates a toolbar button the user can click to carry out a command
added by your Add-in object.

• Command Name is the name of the command added by to Developer Studio by
your Add-in object. This name appears in the list on the Add-ins and Macro Files
tab of Tools/Customize menu option.

• Method Name is the name of the method that implements the command.

• Toolbar Text is the text you want to appear on the button you add to the toolbar
to carry out your command.

• Status bar Text is the text you want to appear on the status line when your
command is executing.

• Tooltips Text is the text you want to appear in the tooltip message for your toolbar
button when the user's mouse hovers over the button.

• Application Events allows your Add-in object to catch application events.

• Debugger Events allows your Add-in object to catch debugger events.

In the ASP page, choose features for the ActiveX Server component.

• OnStartPage/OnEndPage, checked by default, adds the OnStartPage and
OnEndPage methods to the object.

• If OnStartPage/OnEndPage is checked, you can choose which Intrinsic Objects
you want to have available as member pointers in the object's class. By default,
each intrinsic object is checked.

In the MTX page, choose features for the MS Transaction Server component. Dual
and Custom choose the kind of interface implemented, and Support Connection
Points adds support for connection points. These options are the same as the ones in

Fundamentals of A TL COM Objects

the Attributes page for other kinds of objects. In addition, the MTX page has two
unique options:

• Support IObjectControl provides access to the three IObjectControl methods:
Activate, CanBePooled, and Deactivate.

• Can be pooled tells the Transaction Server run-time environment that your object
should be returned to an instance pool after deactivation, rather than destroyed.
This option cannot be selected unless the Support IObjectControl option is also
selected.

Adding aNew Interface to an Existing
Object or Control

~ To add a new interface to an existing object

1 Add the definition of your new interface to the .idl file.

2 Derive your object or control from the interface.

3 Create a new COM_INTERFACE_ENTRY for the interface.

4 Implement methods on the interface.

Fundamentals of ATL COM Objects
The following illustration depicts the relationship among the various classes and
interfaces used in defining an ATL COM object.

AlL Structure

CComObjectRoot

CComCoCl as s<> I

IDispatchlmpl<>

CCom{Agg}object<>

15

Fundamentals of A TL COM Objects

ATL implements IUnknown in two phases:

• CComObject, CComAggObject, or CComPolyObject implements the
IUnknown methods.

• CComObjectRoot or CComObjectRootEx manages the reference count and
outer pointers of IUnknown.

Other aspects of your ATL COM object are handled by other classes:

• CComCoClass defines the object's default class factory and aggregation model.

• IDispatchlmpl provides a default implementation of the IDispatch portion of
any dual interfaces on the object.

For more information, see the following sections in this article:

• Implementing CComObjectRootEx

• Implementing CComObject, CComAggObject, and CComPolyObject

• Supporting IDispatch and IErrorInfo

• Changing the Default Class Factory and Aggregation Model

• Creating an Aggregate

For information about creating an ATL COM object, see the article "Creating an
ATL Project."

Implementing CComObjectRootEx

16

CComObjectRootEx is essential-all ATL objects must have one instance
of CComObjectRootEx or CComObjectRoot in their inheritance.
CComObjectRootEx provides the default Querylnterface mechanism
based on COM map entries.

Through its COM map, an object's interfaces are exposed to a client when
the client queries for an interface. The query is performed through
CCom ObjectRootEx: :lnternalQuery Interface. InternalQuery Interface
only handles interfaces in the COM map table.

You can enter interfaces into the COM map table with the
COM_INTERFACE_ENTRY macro or one of its variants. For example,
the following code from the BEEPER sample enters the interfaces IDispatch,
IBeeper, and ISupportErrorInfo into the COM map table:

BEGIN_COM_MAP(CBeeper)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(IBeeper)
COM_INTERFACE_ENTRY_TEAR_OFF(IID_ISupportErrorlnfo, CBeeper2)

END_COM_MAP()

Fundamentals of A TL COM Objects

Implementing CComObject,
CComAggObject, and CComPolyObject

The template classes, CComObject, CComAggObject, and CComPolyObject
are always the most derived classes in the inheritance chain. It is their responsibility
to handle all the methods in IUnknown: QueryInterface, AddRef, and Release.
In addition, CComAggObject and CComPolyObject (when used for aggregated
objects) provide the special reference counting and QueryInterface semantics
required for the inner unknown.

Whether CComObject, CComAggObject, or CComPolyObject is used depends
on whether you declare the DECLARE_POLY _AGGREGATABLE macro and
on whether your object is being aggregated:

• If your class definition specifies the DECLARE_POLY_AGGREGATABLE
macro, ATL creates an instance of CComPolyObject<CYourClass> when
IClassFactory::CreateInstance is called. During creation, the value of the
outer unknown is checked. If it is NULL, IUnknown is implemented for a
non-aggregated object. If the outer unknown is not NULL, IUnknown is
implemented for an aggregated object.

• If you do not specify the DECLARE_POLY _AGGREGATABLE macro
in your class definition and the object is not aggregated, ATL creates an
instance of CComObject<CYourClass> when IClassFactory::CreateInstance
is called.

• If you do not specify the DECLARE_POLY _AGGREGATABLE macro in
your class definition and the object is aggregated, ATL creates a
CComAggObject<CYourClass> when IClassFactory:: CreateInstance
is called.

The advantage of using CComAggObject and CComObject is that the
implementation of IUnknown is optimized for the kind of object being created. For
instance, a nonaggregated object only needs a reference count, while an aggregated
object needs both a reference count for the inner unknown and a pointer to the outer
unknown.

The advantage of using CComPolyObject is that you avoid having both
CComAggObject and CComObject in your module to handle the aggregated and
nonaggregated cases. A single CComPolyObject object handles both cases. This
means only one copy of the vtable and one copy of the functions exist in your module.
If your vtable is large, this can substantially decrease your module size. However, if
your vtable is small, using CComPolyObject can result in a slightly larger module
size because it is not optimized for an aggregated or nonaggregated object, as are
CComAggObject and CComObject.

17

Fundamentals of ATL COM Objects

The DECLARE_POLY_AGGREGATABLE macro is automatically added to your
class definition by the ATL Object Wizard when you create a full control or Internet
Explorer control. For more information about the wizard, see the article "Creating an
ATL Project."

Supporting IDispatch and IErrorlnfo
The template class IDispatchImpl can be used to provide a default implementation
of the IDispatch portion of any dual interfaces on your object.

If your object uses the IErrorInfo interface to report errors back to the client, then
your object must support the ISupportErrorInfo interface. The template class
ISupportErrorInfoImpl provides an easy way to implement this if you only have
a single interface that generates errors on your object.

Changing the Default Class Factory and
Aggregation Model

18

ATL uses CComCoClass to define the default class factory and aggregation model
for your object. CComCoClass specifies the following two macros:

• DECLARE_CLASSFACTORY Declares the class factory to be
CComClassFactory.

• DECLARE_AGGREGATABLE Declares that your object can be aggregated.

You can override either of these defaults by specifying another macro in your class
defintion. For example, to use CComCIassFactory2 instead of CComClassFactory,
specify the DECLARE_CLASSFACTORY2 macro:

class CMyClass : ... ,
public CComCoClass<CMyClass, &CLSID_CMyClass>

{

public:
DECLARE_CLASSFACTORY2(CMyLicense)

} ;

Two other macros that define a class factory include
DECLARE_ CLASSFACTORY _AUTO _THREAD and
DECLARE_ CLASSFACTORY _SINGLETON.

ATL also uses the typedef mechanism to implement default behavior. For example,
the DECLARE_AGGREGATABLE macro uses typedef to define a type called
_CreatorClass, which is then reference throughout ATL. Note that in a derived class,

a typedef using the same name as the base class's typedef results in ATL using your
definition and overriding the default behavior.

Creating an Aggregate
~ To create an aggregate

1 Add an IUnknown pointer to your class object and initialize it to NULL in the
constructor.

2 Override FinalConstruct to create the aggregate.

3 Use the IUnknown pointer you defined as the parameter to the
COM_INTERFACE_ENTRY _AGGREGATE macros.

4 Override FinalRelease to release the IUnknown pointer.

Note If you use and release an interface from the aggregate during FinalConstruct, you
should add the DECLARE_PROTECT _FINAL_CONSTRUCT macro to the definition of your
class object.

ATL Window Classes
ATL contains several classes that allow you to use and implement windows. These
classes, like other ATL classes, provide an efficient implementation that does not
impose an overhead on your code.

• CWindow allows you to attach a window handle to the CWindow object. You
then call CWindow methods to manipulate the window.

• CWindowlmpl allows you to implement a new window and process messages
with a message map. You can create a window based on a new Windows class,
superclass an existing class, or subclass an existing window.

• CDialoglmpl allows you to implement a modal or a modeless dialog box and
process messages with a message map.

• CContainedWindow is a pre-built class that implements a window whose
message map is contained in another class. Using CContainedWindow allows
you to centralize message processing in one class.

This article explains how to use the ATL window classes. Topics covered include:

• Using a window

• Implementing a window

• Implementing a dialog box

• Using contained windows

A TL Window Classes

19

ATL Window Classes

U sing a Window
Class CWindow allows you to use a window. Once you attach a window to a
CWindow object, you can then call CWindow methods to manipulate the window.
CWindow also contains an HWND operator to convert a CWindow object to an
HWND. Thus you can pass a CWindow object to any function that requires a handle
to a window. You can easily mix CWindow method calls and Win32 function calls,
without creating any temporary objects.

Because CWindow has only one data member (a window handle), it does not impose
an overhead on your code. In addition, many of the CWindow methods simply wrap
corresponding Win32 API functions. By using CWindow, the HWND member is
automatically passed to the Win32 function.

In addition to using CWindow directly, you can also derive from it to add data or
code to your class. ATL itself derives three classes from CWindow: CWindowImpl,
CDialoglmpl, and CContainedWindow.

Implementing a Window
Class CWindowImpl allows you to implement a window and handle its messages.
Message handing in ATL is based on a message map. This section explains:

• What message maps are and how to use them.

• How to implement a window with CWindowImpl.

Message Maps

20

A message map associates a handler function with a particular message, command,
or notification. By using ATL's message map macros, you can specify a message
map for a window. The window procedures in CWindowImpl, CDialogImpl, and
CContainedWindow direct a window's messages to its message map.

The message handler functions accept an additional argument of type BOO L&. This
argument indicates whether a message has been processed, and it is set to TRUE by
default. A handler function can then set the argument to FALSE to indicate that it has
not handled a message. In this case, ATL will continue to look for a handler function
further in the message map. By setting this argument to FALSE, you can first perform
some action in response to a message and then allow the default processing or another
handler function to finish handling the message.

ATL also allows you to chain message maps, which directs the message handling to
a message map defined in another class. For example, you can implement common
message handling in a separate class to provide uniform behavior for all windows
chaining to that class. You can chain to a base class or to a data member of your class.

A TL Window Classes

ATL also supports dynamic chaining, which allows you to chain to another object's
message map at run time. To implement dynamic chaining, you must derive your class
from CDynamicChain. Then declare the CHAIN_MSG_MAP _DYNAMIC macro
in your message map. CHAIN_MSG_MAP _DYNAMIC requires a unique number
that identifies the object and the message map to which you are chaining. You must
define this unique value through a call to CDynamicChain::SetChainEntry.

You can chain to any class that declares a message map, provided the class derives
from CMessageMap. CMessageMap allows an object to expose its message maps to
other objects. Note that CWindowImpl already derives from CMessageMap.

Finally, ATL supports alternate message maps, declared with the ALT_MSG_MAP
macro. Each alternate message map is identified by a unique number, which you pass
to ALT_MSG_MAP. Using alternate message maps, you can handle the messages
of multiple windows in one map. Note that by default, CWindowImpl does not use
alternate message maps. To add this support, override the WindowProc method in
your CWindowImpl-derived class and call ProcessWindowMessage with the
message map identifier.

Implementing a Window with CWindow Impl
To implement a window, derive a class from CWindowImpl. In your derived class,
declare a message map and the message handler functions. You can now use your
class in three different ways:

• Creating a window based on a new Windows class

• Superclassing an existing Windows class

• Subclassing an existing window

Creating a window based on a new Windows class
CWindowImpl contains the DECLARE_ WND_CLASS macro to declare Windows
class information. This macro implements the GetWndClassInfo function, which
uses CWndClassInfo to define the information of a new Windows class. When
CWindowImpl::Create is called, this Windows class is registered and a new
window is created.

Note CWindowlmpl passes NULL to the DECLARE_WND_CLASS macro, which means
ATL will generate a Windows class name. To specify your own name, pass a string to
DECLARE_WND_CLASS in your CWindowlmpl-derived class.

Following is an example of a class that implements a window based on a new
Windows class:

class CMyWindow : public CWindowImpl<CMyWindow>.
{

public:
II Optionally specify name of the new Windows class
DECLARE_WND_CLASS("MyName")

21

A TL Window Classes

22

} ;

II If this macro is not specified in your
II class, ATL will generate a class name

BEGIN_MSG_MAP(CMyWindow)
MESSAGE_HANDLER(WM_PAINT, OnPaint)

END_MSG_MAP()

LRESULT OnPaint(UINT nMsg. WPARAM wParam,
LPARAM lParam, BOOL& bHandled)

II Do some painting code
return 0;

To create a window, create an instance of CMyWi ndow and then call the Create
method.

Note To override the default Windows class information, implement the GetWndClasslnfo
method in your derived class by setting the CWndClasslnfo members to the appropriate
values.

Superclassing an existing Windows class
The DECLARE_ WND _SUPER CLASS macro allows you to create a window
that superclasses an existing Windows class. Specify this macro in your
CWindowImpl-derived class. Like any other ATL window, messages are handled
by a message map.

When you use DECLARE_ WND_SUPERCLASS, a new Windows class will be
registered. This new class will be the same as the existing class you specify, but will
replace the window procedure with CWindowImpl::WindowProc (or with your
function that overrides this method).

Following is an example of a class that superclasses the standard Edit class:

class CMyEdit : public CWindowImpl<CMyEdit> •...
{

public:
/! "Edit" is the name of the standard Windows class.
/! "MyEdit" is the name of the new Wi ndows cl ass
II that will be based on the Edit class.
DECLARE_WND_SUPERCLASS("Edit", "MyEdit")

BEGIN_MSG_MAP(CMyEdit)
MESSAGE_HANDLER(WM_CHAR, OnChar)

END_MSG_MAP()

LRESULT OnChar(UINT nMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled)

II Do some character handling code

} :

To create the superclassed Edit window, create an instance of CMyEdi t and then call
the Create method.

For more information about superclassing, see "Window Procedure Superclassing"
in the Win32 SDK online.

Subclassing an existing window
To subclass an existing window, derive a class from CWindowlmpl and declare a
message map, as in the two previous cases. Note, however, that you do not specify
any Windows class information, since you will subclass an already existing window.

Instead of calling Create, call SubclassWindow and pass it the handle to the
existing window you want to subclass. Once the window is subclassed, it will use
CWindowlmpl::WindowProc (or your function that overrides this method) to
direct messages to the message map. To detach a subclassed window from your
object, call UnsubclassWindow. The window's original window procedure will
then be restored.

For more information about subclassing, see "Window Procedure SUbclassing"
in the Win32 SDK online.

Implementing a Dialog Box
Implementing a dialog box is similar to implementing a window. You derive a class
from CDialoglmpl and declare a message map to handle messages. However, you
must also specify a dialog template resource ID in your derived class. Your class
must have a data member called I D D to hold this value.

Note When you create a dialog box using the ATL Object Wizard, the wizard automatically
adds the I DD member as an enum type.

CDialoglmpl allows you to implement a modal or a modeless dialog box. To create
a modal dialog box, create an instance of your CDialoglmpl-derived class and then
call the DoModal method. To close a modal dialog box, call the EndDialog method
from a message handler. To create a modeless dialog box, call the Create method
instead of DoModal. To destroy a modeless dialog box, call
CWindow: :Destroy Window instead of EndDialog.

Implement the dialog box's message handlers as you would the handlers in a
CWindowlmpl-derived class. If there is a message-specific return value, return
it as an L RES U LT. ATL maps the returned L RES U L T values for proper handling by
the Windows dialog manager. For details, see the source code for
CDi a log Imp 1 Base: : Di a 1 ogProc in atlwin.cpp.

ATL Window Classes

23

ATL Window Classes

Following is an example of a class that implements a dialog box:

class CMyDialog : public CDialogImpl<CMyDialog>, ...
{

public:

} ;

enum { 100 = IDD_MYDIALOG };

BEGIN_MSG_MAP(CMyDialog)
MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

END_MSG_MAP()

LRESULT OnInitDialog(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled)

II Do some initialization code
return 1;

U sing Contained Windows

24

ATL implements contained windows with CContainedWindow. A contained window
represents a window that delegates its messages to a container object instead of
handling them in its own class.

Note You do not need to derive a class from CContainedWindow in order to use contained
windows.

With contained windows, you can either superclass an existing Windows class or
subclass an existing window. To create a window that superclasses an existing
Windows class, first specify the existing class name in the constructor for the
CContainedWindow object. Then call CContainedWindow::Create. To subclass
an existing window, you don't need to specify a Windows class name (pass NULL
to the constructor). Simply call the CContainedWindow::SubclassWindow method
with the handle to the window being subclassed.

You typically use contained windows as data members of a container class. The
container does not need to be a window; however, it must derive from
CMessageMap.

A contained window can use alternate message maps to handle its messages. If you
have more than one contained window, you should declare several alternate message
maps, each corresponding to a separate contained window.

Following is an example of a container class with two contained windows:

class CMyContainer : public CMessageMap, ...
{

public:
CContainedWindow m_wndEdit;
CContainedWindow m_wndList;

} ;

CMyContainerC)

{
}

m_wndEditC"Edit", this, 1),

m_wndListC"List", this, 2)

BEGIN_MSG_MAPCCMyContainer)
AL T _MSG_MAP (1)

II handlers for the Edit window go here
ALT_MSG_MAP(2)

II handlers for the List window go here
END_MSG_MAPC)

For more information about contained windows, see the SUBEDIT sample
online. For more information about superclassing and subclassing, see
"Window Procedure Superclassing" and "Window Procedure Subclassing"
in the Win32 SDK online.

Connection Points
A connectable object is one that supports outgoing interfaces. An outgoing
interface allows the object to communicate with a client. For each outgoing
interface, the connectable object exposes a connection point. Each outgoing
interface is implemented by a client on an object called a sink.

Client Connectable
Object

• ~ 0--
IC onnectionPointContainer

Connection Point Iconnectionpointo-I'-
Object

• Outgoing intertace I •

Iconnectionpointl

Sink ~

Sink Uo Connection Point

If • Object
Outgoing interface

Each connection point supports the IConnectionPoint interface. The
connectable object exposes its connection points to the client through the
I ConnectionPointContainer interface.

Connection Points

25

Connection Points

This article:

• Briefly describes the ATL classes that support connection points.

• Outlines the steps used to add connection points to an object.

• Provides an example of declaring a connection point.

See Also: "The Proxy Generator"

Connection Point Classes
ATL uses the following classes to support connection points:

• IConnectionPointImpl implements a connection point. The lID of the outgoing
interface it represents is passed as a template parameter.

• IConnectionPointContainerImpl implements the connection point container and
manages the list of IConnectionPointImpl objects.

• IPropertyNotifySinkCP implements a connection point representing the
IPropertyNotifySink interface.

• CComDynamicUnkArray manages an arbitrary number of connections between
the connection point and its sinks.

• CComUnkArray manages a predefined number of connections as specified by the
template parameter.

• CFirePropNotifyEvent notifies a client's sink that an object's property has
changed or is about to change.

Adding Connection Points to an Object

26

~ To add a connection point to an object

1 Derive your class from IConnectionPointContainerImpl and from one or more
instances of IConnectionPointImpl. Each instance of IConnectionPointImpl
represents a separate connection point.

2 Use the COM_INTERFACE_ENTRY_IMPL macro to add an entry in the
object's COM map to expose the IConnectionPointContainer interface:

BEGIN_COM_MAP(CMyClass)
COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)

END_COM_MAP()

3 Add a connection point map to your object declaration:

BEGIN_CONNECTION_POINT_MAP(CMyClass)
CONNECTION_POINT_ENTRY(iid)

END_CONNECTION_POINT_MAP()

The parameter i i d is the lID of the interface represented by the connection point.

Connection Point Example
This example shows an object that supports IPropertyNotifySink as an outgoing
interface:

class CConnect :
public CComObjectRootEx<CComObjectThreadModel>.
public CComCoClass<CConnect. &CLSID_CConnect>.
public IConnectionPointContainerlmpl<CConnect>.
public IConnectionPointImpl<CConnect.

&IID_IPropertyNotifySink>

public:

} ;

BEGIN_COM_MAP(CConnect)
COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)

END_COM_MAP()

BEGIN_CONNECTION_POINT_MAP(CConnect)
CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)

END_CONNECTION_POINT_MAP()

Note When specifying IPropertyNotifySink as an outgoing interface, you can use class
IPropertyNotifySinkCP instead of IConnectionPointimpl. For example:

class CConnect :

} ;

public CComObjectRootEx<CComObjectThreadModel>.
public CComCoClass<CConnect. &CLSID_CConnect>.
public IConnectionPointContainerlmpl<CConnect>.
public IPropertyNotifySinkCP<CConnect>

Enumerators
Enumerators provide a consistent way to iterate through a collection of objects.
For example, you can define a simple enumerator to access strings in a collection.
A complex enumerator can access records from a database.

This article describes:

• Implementing enumerators in ATL and COM.

• Using CComEnum, _Copy, CComIEnum, and CComIEnumImpl to create
enumerators in ATL.

Enumerators

27

The Proxy Generator

ATL does not define any standard objects for enumerators. However, it does provide
you with the infrastructure for building them easily using the CComEnum and
_Copy templates.

COM implements enumerators as separate objects that usually support a single
interface, IEnurnxxxx, where xxxx is the type that is being enumerated. Standard
enumerator types defined by COM include: IEnumUnknown, IEnumMoniker,
IEnumString, IEnumVARIANT, IEnumFORMATETC, IEnumSTATSTG,
IEnumSTATDATA, and IEnumOLEVERB.

Using CCornEnum, _Copy,
CComIEnum, and CComIEnumImpl
to Create Enumerators in ATL

In ATL, CComEnum<Base, piid, T, Copy> defines an enumerator object that
enumerates objects of type T. The parameter Base is the name of the interface that
represents this enumerator (for example, IEnum VARIANT), and piid is a pointer
to the lID of that interface. The parameter Copy is the name of a class used by
CComEnum to implement copying the type and is typically used when cloning
the enumerator.

A _ Copy<class 1'> class performs deep copy semantics for the particular type T.
ATL predefines certain copy classes for your convenience: _Copy<VARIANT>,
_Copy<LPOLESTR>, _ Copy<OLEVERB>, _ Copy<CONNECTDATA>, and
_CopyInterface<>. These can be used to quickly build many of the standard
enumerators.

CComIEnum is a pure virtual class that defines an enumeration interface.

CComIEnumImpl implements the methods on the enumeration interface: Next,
Skip, Reset, and Clone. Generally, this class is only used internally by ATL during
the implementation of CComIEnum.

The Proxy Generator

28

The ATL proxy generator automatically generates proxies for interfaces defined in
a type library. Otherwise, hand coding these proxies would be very tedious.

Use the proxy generator when you want to support a connection point or a smart
pointer. The proxy generator creates a class that represents a particular interface and
its methods. For a connection point, the proxy generator also writes the code needed
to broadcast a method call to all connected sinks.

For a connection point proxy, the class created derives from IConnectionPointlmpl
and each method enumerates the connections (making calls on each one) inside a
critical section.

For a smart pointer proxy, the class derives from CComPtr. Each method simply
calls through to the underlying interface. When the target interface is a dispinterface,
the methods automatically call Invoke.

The proxy generator generates the class derived from IConnectionPointlmpl or
CComPtr by reading the type library and implementing a function for each method.
Before you can use the proxy generator you must generate the type library. To do this,
either build your project or right click on the .idl file in FileView. On the submenu
that appears, click Compile thisproj.idl where thisproj will be the name of your
project.

~ To generate a proxy for a connection point or a smart pointer

1 With your ATL project open, choose Add To Project from the Project menu.
A pop-up menu appears.

2 Choose Components and Controls from the pop-up menu. The Components
and Controls Gallery dialog box appears.

3 Double-click the Developer Studio Components folder.

4 Select the ATL Proxy Generator and click the Insert button.

S You will be asked to confirm insertion of an ATL object. Click OK.
The ATL Proxy Generator dialog box appears.

!l>peUbrary name ('.lib. '.olb. '.dll. '.00<. '.8,..,)
Ic:\DevSludioWC\ATL\PolygOn.Ub GJ
Mot .eloct.d 2el.cled

r~' , ... r:: F:_P~oIY~Eve~nls--~

.... <~
. ~Pt""yll'Pe--.......,
i r. Connection Point!
I (" 2mart Pointer Insert '1 go,. I

6 In the TypeLibrary name edit box, click the ... button.

7 In the Open dialog box that appears, double-click the type library that contains
the interfaces you want to wrap. A list of all the interfaces in the type library
appears in the Not Selected list box.

8 Highlight the names of the interfaces that you want proxy generator to generate
wrappers for.

9 Click the -> button to move the highlighted interfaces from the Not Selected
list box to the Selected list box.

10 For the Proxy Type, click either Connection Point or Smart Pointer.

The Proxy Generator

29

Debugging Tips for ATL Objects

11 Click Insert and select a file name for the proxy header.

12 Select Save. The ATL proxy generator generates the header file.

For more information about using the ATL Proxy Generator, see the "ATL Tutorial."

See Also: "Connection Points"

Debugging Tips for ATL Objects
The debugging tips included in this article are:

• Setting breakpoints using DebugBreak

• Debugging Query Interface calls

• Debugging AddRef and Release calls

See Also: "Debugging Tips" in "ATL Services"

Using DebugBreak
You can have your program call the DebugBreak Win32 function at the point in
your code that you want debugging to start. Calling this function causes the program
to display a dialog box as if it had crashed. Click Cancel to start the debugger and
continue on in debug mode.

Enabling Query Interface Debugging

30

ATL has built-in support for debugging QueryInterface calls. You enable this
support using the following two-step process.

~ To enable Querylnterface debugging

1 Run the FINDGUID program which comes with ATL and specify -insert as the
command line parameter:

findguid -insert

This ensures all the common IIDs are in the interfaces section of your registry.
You need to only do this once.

2 Add the following line before including at1com.h:

#define _ATL_DEBUG_QI

Once you've enabled QueryInterface debugging, the debug output window of
Developer Studio will display the name of each interface that is queried for on
your object.

Enabling Reference Count Debugging
ATL has built-in support for debugging Add Ref and Release calls. You enable
this support using the following process.

~ To enable reference count debugging

• Add the following line before including atlcom.h:

#define _ATL_DEBUG_REFCOUNT

With reference count debugging enabled, the debug output window of Developer
Studio will display the corresponding interface name and its current reference count
every time AddRef or Release is called on one of your interfaces.

ATL Services
To create your ATL COM object so that it runs in a service, simply select Service
from the list of server options in the ATL COM AppWizard. The wizard will then
create a CServiceModule class to implement the service.

The first four sections of this article discuss the actions that occur during execution of
CServiceModule member functions. These topics appear in the same sequence as the
functions are typically called. To improve your understanding of these topics, it is a
good idea to use the source code generated by the ATL COM App Wizard as reference.
These first four sections are:

• CServiceModule::Start

• CServiceModule: :ServiceMain

• CServiceModule::Run

• CServiceModule::Handler

The last three sections of this article discuss concepts related to developing a service:

• Registry Entries for ATL services

• DCOMCNFG

• Debugging Tips for ATL services

CServiceModule: : Start
The WinMain routine handles both registration and installation, as well as
deregistration and uninstallation. When the service is run, WinMain calls
CServiceModule: : Start.

A TL Services

31

A TL Services

CServiceModule::Start sets up an array of SERVICE_TABLE_ENTRY structures
that map each service to its startup function. This array is then passed to the Win32
API function, StartServiceCtrlDispatcher. In theory, one EXE could handle multiple
services and the array could have multiple SERVICE_TABLE_ENTRY structures.
Currently, however, an ATL-generated service supports only one service per EXE.
Therefore, the array has a single entry that contains the service name and
_ServiceName as the startup function. _ServiceName is a static member function
of CServiceModule that calls the non-static member function, ServiceName.

Note Failure of StartServiceCtrlDispatcher to connect to the service control manager (SCM)
probably means that the program is not running as a service. In this case, the program calls
CServiceModule::Run directly so that the program can run as a local server. For more
information about running the program as a local server, see Debugging Tips.

CServiceModule: : ServiceMain
The SCM calls ServiceMain when you open the Services Control Panel application,
select the service, and click Start.

After the SCM calls ServiceMain, a service must give the SCM a handler function.
This function lets the SCM obtain the service's status and pass specific instructions
(such as pausing or stopping). The SCM gets this function when the service passes
_Handler to the Win32 API function, RegisterServiceCtrlHandler. CHandler is
a static member function that calls the non-static member function Handler.)

At startup, a service should also inform the SCM of its current status. It does this
by passing SERVICE_START_PENDING to the Win32 API function,
SetServiceStatus.

Now, CServiceModule::Run is called to perform the main work of the service.
Run continues to execute until the service is stopped.

CServiceModule: :Run

32

After being called, Run first stores the service's thread ID. The service will use this
ID to close itself by sending a WM_QUIT message using the Win32 API function,
PostThreadMessage.

Run then calls the Win32 API function, CoInitializeEx. By default, Run passes the
COINIT_MULTITHREADED flag to the function. This flag indicates that the
program is to be a free-threaded server.

Now you can specify security using CSecurityDescriptor. This class greatly
simplifies the task of setting up and making changes to the discretionary
access-control list (DACL)-a list of access-control entries (ACEs), where each
ACE defines access to a Win32 object.

By default, the ATL COM AppWizard generates a call to the
InitializeFromThreadToken member function of CSecurityDescriptor. This
initializes the object's security descriptor to a null DACL, which means that any
user has access to your object.

The easiest way to change user access is with the Deny and Allow member functions
of CSecurityDescriptor. These functions add an ACE to the existing DACL.
However, Deny always takes priority since Deny adds the ACE to the beginning of
the DACL, while Allow adds it to the end. Both Deny and Allow pass the user name
as the first parameter and the access rights (typically, COM_RIGHTS_EXECUTE)
as the second.

Recall that the null DACL created by InitializeFromThreadToken grants all users
access to the COM object. However, as soon as you call Allow to add an ACE, only
that specified user will have access. The following code shows a call to Allow:

CSecurityDescriptor sd;
sd.lnitializeFromThreadToken();

if (bAllowOneUser)
(

sd.Allow("MYDOMAIN\\myuser", COM_RIGHTS_EXECUTE);

ColnitializeSecurity(sd, -1, NULL, NULL,
RPC_C_AUTHN_LEVEL_PKT,
RPC_C_IMP_LEVEL_IMPERSONATE,
NULL, EOAC_NONE, NULL);

If the variable, bA 11 oWOn eU s e r, is TRUE, then only the one specified user has
access because only that user's ACE is in the DACL. If bA 11 owOneUser is FALSE,
then all users have access because the DACL is null.

If you do not want the service to specify its own security, remove the call to the
Win32 API function, ColnitializeSecurity, and COM will then determine the security
settings from the registry. A convenient way to configure registry settings is with the
DCOMCNFG utility discussed later in this article.

Once security is specified, the object is registered with COM so that new clients can
connect to the program. Finally, the program tells the SCM that it is running and the
program enters a message loop. The program remains running until it posts a quit
message upon service shutdown.

For more information about Windows NT security, see the MSDN article, "Windows
NT Security in Theory and Practice" online.

CServiceModule: : Handler
CServiceModule: :Handler is the routine that the SCM calls to retrieve the status of
the service and give it various instructions (such as stopping or pausing). The SCM
passes an operation code to Handler to indicate what the service should do. A default

A TL Services

33

A TL Services

ATL-generated service only handles the stop instruction. If the SCM passes the stop
instruction, the service tells the SCM that the program is about to stop. The service
then calls PostThreadMessage to post a quit message to itself. This terminates the
message loop and the service will ultimately close.

To handle more instructions, you need to change the dwControlsAccepted data
member initialized in the CServiceModule::Init function. This data member tells the
SCM which buttons to enable when the service is selected in the Services Control
Panel application.

Registry Entries
DCOM introduced the concept of Application IDs (AppIDs), which group
configuration options for one or more DCOM objects into a centralized location in
the registry. You specify an AppID by indicating its value in the AppID named value
under the object's CLSID.

By default, an ATL-generated service uses its CLSID as the GUID for its AppID.
Under H KEY _C LASS ES_ROOT\App I D, you can specify DCOM-specific entries.
Initially, two entries exist:

• L 0 cal S e r vic e, with a value equal to the name of the service. If this value exists,
it is used instead of the L 0 cal S e r v e r 32 key under the CLSID .

• Servi cePa rameters, with a value equal to -Servi ceo This value specifies
parameters that will be passed to the service when it is started. Note that these
parameters are passed to the service's ServiceMain function, not WinMain.

Any DCOM service also needs to create another key under
HKEY_CLASSES_ROOT\AppID. This key is equal to the name of the EXE and acts as
a cross-reference, as it contains an AppID value pointing back to the AppID entries.

DCOMCNFG
DCOMCNFG is a Windows NT 4.0 utility that allows you to configure various
DCOM-specific settings in the registry. The DCOMCNFG window has three pages:
Default Security, Default Properties, and Applications.

The Default Security Page

34

You can use the Default Security page to specify default permissions for objects
on the system. The Default Security page has three sections: Access, Launch, and
Configuration. To change a section's defaults, click on the corresponding Edit
Default button. These Default Security settings are stored in the registry under
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE.

The Default Properties Page
On the Default Properties page, you must select the Enable Distributed COM
on this Computer check box if you want clients on other machines to access
COM objects running on this machine. Selecting this option sets the
H KEY _LOCAL_MACH IN E\Softwa re \Mi c rosoft \0 LE\ Enab 1 eDCOM value to Y.

The Applications Page
You change the settings for a particular object with the Applications page. Simply
select the application from the list and click the Properties button. The Properties
window has four pages:

• The General page confirms the application you are working with.

• The Location page allows you to specify where the application should run when
a client calls CoCreatelnstance on the relevant CLSID. If you select the Run
Application on the Following Computer check box and enter a computer name,
then a RemoteServerName value is added under the AppID for that application.
Clearing the Run Application on this Computer check box renames the
Local Servi ce value to _Local Servi ce and ,thereby, disables it.

• The Security page is similar to the Default Security page found in the
DCOMCNFG window, except that these settings apply only to the current
application. Again, the settings are stored under the AppID for that object.

• The Identify page identifies which user is used to run the application.

Debugging Tips
The following paragraphs outline some useful steps for debugging your service:

• Using Task Manager

• Displaying assertions

• Running the program as a local server

Using Task Manager
One of the simplest ways to debug a service is through the use of the Task Manager
in Windows NT 4.0. While the service is running, start the Task Manager and click
on the Processes tab. Use the right mouse button to click on the name of the EXE and
then click Debug. This launches Developer Studio attached to that running process.
Now, click Break on the Debug menu to allow you to set breakpoints in your code.
Click Run to run to your selected breakpoints.

ATL Services

35

The ATL Registry Component (Registrar)

Displaying Assertions
If the client connected to your service appears to hang, the service may have asserted
and displayed a message box that you are not able to see. You can confirm this by
using Developer Studio's debugger to debug your code (see Using Task Manager
earlier in this section).

If you determine that your service is displaying a message box that you cannot see,
you may want to set the Allow Service to Interact with Desktop option before using
the service again. This option is a startup parameter that permits any message boxes
displayed by the service to appear on the desktop. To set this option, open the Services
Control Panel application, select the service, click Startup, and then select the Allow
Service to Interact with Desktop option.

Running the Program as a Local Server
If running the program as a service is inconvenient, you can temporarily change
the registry so that the program is run as a normal local server. Simply rename
the Loca 1 Servi ce value under your AppID to _Loca 1 Servi ce and ensure
the Loca 1 Server32 key under your CLSID is set correctly. (Note that using
DCOMCNFG to specify that your application should be run on a different
computer renames your Loca 1 Server32 key to _Loca 1 Server32.) Running
your program as a local server takes a few more seconds on startup because the
call to StartServiceCtrlDispatcher in CServiceModule::Start takes a few
seconds before it fails.

The ATL Registry Component (Registrar)

36

The ATL 2.x Registrar provides optimized access to the system registry through a
custom interface. The Registrar is free-threaded and allows static linking of code
for C++ clients.

Note The ATL 2.x Registrar, provided in atl.dll, does not support Automation or the 1.1
methods that operated on a single key.

This article covers the following topics related to the Registrar:

• Creating Registrar Scripts, which includes:

• Understanding Backus Nauer Form (BNF) Syntax

• Understanding Parse Trees

• Registry Scripting Examples

The ATL Registry Component (Registrar)

• Using Replaceable Parameters (The Registrar's Preprocessor)

• Invoking scripts

• Setting Up a Static Link to the Registrar Code (C++ only)

Note All of the source code for the 2.x Registrar ships with ATL. You can find the source code
in atl\src\atliface.h.

Creating Registrar Scripts
A registrar script provides data-driven, rather than API-driven, access to the system
registry. Data-driven access is typically more efficient since it takes only one or two
lines in a script to add a key to the registry.

The ATL Object Wizard automatically generates a registrar script for your COM
server. You can find this script in the .rgs file associated with your object.

The ATL Registrar's Script Engine processes your registrar script at run time.
ATL automatically invokes the Script Engine during server setup.

Understanding Backus Nauer Form (BNF) Syntax
The scripts used by the ATL Registrar follow BNF syntax and use the notation shown
in the next table.

Convention/Symbol

X+
[X]
Any bold text

Any italicized text

What It Means

Equivalent

OR

One or more Xs.

X is optional. Optional delimiters are denoted by [].

A string literal.

How to construct the string literal.

As indicated in the preceding table, registrar scripts use string literals. These values
are actual text that must appear in your script. The following table describes the string
literals used in an ATL Registrar script.

String Literal

ForceRemove

NoRemove

val

Delete

s

d

Description

Completely remove the following key (if it exists) and then recreate it.

Do not remove the following key during Unregister.

The following <Key Name> is actually a named value.

Delete the following key during Register.

The following value is a string.

The following value is a DWORD.

37

The ATL Registry Component (Registrar)

BNF Syntax Examples
Here are a few syntax examples to help you understand how the notation and string
literals work in an ATL Registrar script.

Syntax example 1

<registry expression> ::= <Add Key>

specifies that reg; stry express; on is equivalent to Add Key.

Syntax example 2

<registry expression> ::= <Add Key> I <Delete Key>

specifies that reg; stry expressi on is equivalent to either Add Key or
Delete Key.

Syntax example 3

<Key Name> ::= '<AlphaNumeric>+'

specifies that Key Name is equivalent to one or more Alpha Numeri cs.

Syntax example 4

<Add Key> ::= [ForceRemove I NoRemove I val]<Key Name>

specifies that Add Key is equivalent to Key Name, and that the string literals,
ForceRemove, NoRemove, and va 1, are optional.

Syntax example 5

<AlphaNumeric> ::= any character not NULL. i.e. ASCII 0

specifies that A 1 phaNumeri c is equivalent to any non-NULL character.

Understanding Parse Trees

38

Using BNF syntax, you define one or more parse trees in your script.

Each parse tree has the form:

<root key>{<registry expression>}+

where:

<root key> .. HKEY_CLASSES_ROOT I HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE I HKEY_USERS I
HKEY_PERFORMANCE_DATA I HKEY_DYN_DATA
HKEY_CURRENT_CONFIG I HKCR I HKCU I
HKLM I HKU I HKPD I HKDD I HKCC

<registry expression> ::= <Add Key> I <Delete Key>
<Add Key> ::= [ForceRemove I NoRemove I val]<Key Name>

[<Key Value>][{< Add Key>}]
<Delete Key> ::= Delete<Key Name>
<Key Name> ::= '<AlphaNumeric>+'

The ATL Registry Component (Registrar)

<AlphaNumeric> ::- any character not NULL, i.e. ASCII 0
<Key Value> ::-- <Key Type><Key Name>
<Key Type> ::- sid
<Key Value> ::- '<AlphaNumeric>'

Note HKEY _CLASSES_ROOT and HKCR are equivalent; HKEY _CURRENT _USER and
HKCU are equivalent; and so on.

A parse tree can add multiple keys and subkeys to the <root key>. In doing so, it
keeps a subkey's handle open until the parser has completed parsing all its subkeys.
This approach is more efficient than operating on a single key at a time, as seen in
the following parse tree example:

HKEY_CLASSES_ROOT
{

'MyVeryOwnKey'
{

'HasASubKey'
{

'PrettyCool?'

Here, the Registrar initially opens (creates) H KEY _C LASSES_ROOT\MyVeryOwnKey.
It then sees that MyVeryOwnKey has a subkey. Rather than close the key to
MyVeryOwnKey, the Registrar retains the handle and opens (creates) HasASubKey
using this parent handle. (The system registry can be slower when no parent handle
is open.) Thus, opening HKEY_CLASSES_ROOT\MyVeryOwnKey and then opening
HasASubKey with MyVeryOwnKey as the parent is faster than opening
MyVeryOwnKey, closing MyVeryOwnKey, and then opening
MyVeryOwnKey\HasASubKey.

Registry Scripting Examples
The scripting examples in this article demonstrate how to add a key to the system
registry; register the Registrar COM server; and specify multiple parse trees.

Add a Key to HKEY_CURRENT_USER
The following parse tree illustrates a simple script that adds a single key to the
system registry. In particular, the script adds the key, MyVeryOwnKey, to
HKEY _CURRENT _USER. It also assigns the default string value of HowGoes It?
to the new key:

HKEY_CURRENT_USER
{

'MyVeryOwnKey' = s 'HowGoesIt?'

39

The ATL Registry Component (Registrar)

40

This script can easily be extended to define multiple subkeys as follows:

HKCU
{

'MyVeryOwnKey' - s 'HowGoeslt?'
{

'HasASubkey'
{

'PrettyCool?' = d '55'
val 'ANameValue' = s 'WithANamedValue'

Now, the script adds a subkey, HasASubkey, to MyVeryOwnKey. To this subkey,
it adds both the PrettyCoo1? subkey (with a default DWORD value of 55) and
the ANameV a 1 ue named value (with a string value of Wi thANamedVa 1 ue).

Register the Registrar COM Server
The following script registers the Registrar COM server itself.

HKCR
{

ATL.Registrar = s 'ATL 2.0 Registrar Class'
{

CLSID = s '{44EC053A-400F-IID0-9DCD-00A0C90391D3}'

NoRemove CLSID
{

ForceRemove {44EC053A-400F-IID0-9DCD-00A0C90391D3} =
s 'ATL 2.0 Registrar Class'

ProgID = s 'ATL.Registrar'
InprocServer32 = s '%MODULE%'
{

val ThreadingModel = s 'Apartment'

At run time, this parse tree adds the ATL. Regi strar key to HKEY _CLASSES_ROOT.
To this new key, it then:

• Specifies ATL Regi stra r 2.0 C1 ass as the key's default string value.

• Adds C LS I 0 as a subkey.

• Specifies {44EC053A-400F-IID0-9DCD-00A0C90391D3} for CLSID. (This
value is the Registrar's CLSID for use with CoCreatelnstance.)

Since C LS lOis shared, it should not be removed in Unregister mode. The statement,
NoR e m 0 v e C LSI 0, does this by indicating that C LSI 0 should be opened in Register
mode and ignored in Unregister mode.

The A TL Registry Component (Registrar)

The ForceRemove statement provides a housekeeping function by removing a key
and all its subkeys before recreating the key. This can be useful if the names of the
subkeys have changed. In this scripting example, ForceRemove checks to see if
{44 EC0 53A -40 0 F -11 00 - 9 DC 0 - 00A0C90391 03} already exists. If it does,
ForceRemove:

• Recursively deletes {44EC053A-400F-II00-90CO-00A0C9039103} and all of
its subkeys.

• Recreates {44EC053A - 400 F -11 00 - 90CO - 00A0C90391 03}.

• Adds ATL Reg; s t ra r 2.0 C1 ass as the default string value for {44EC053A-
400F-II00-90CO-00A0C9039103}.

The parse tree now adds two new subkeys to {44EC053A - 400 F -11 00 - 9DCD-
00A0C90391D3}. The first key, Prog I 0, gets a default string value that is the ProgID.
The second key, InprocServer32, gets a default string value, %MODULE%, that is a
preprocessor value explained in the section, Using Replaceable Parameters (The
Registrar's Preprocessor), of this article. InprocServer32 also gets a named value,
Th read; ngMode 1, with a string value of Apa rtment.

Specify Multiple Parse Trees
In order to specify more than one parse tree in a script, simply place one tree at the
end of another. For example, the following script adds the key, MyVeryOwnKey, to
the parse trees for both H KEY _C LASS ES_ROOT and HKEY _CU RRENT _US ER:

HKCR
{

'MyVeryOwnKey' s 'HowGoeslt?'
}

HKEY_CURRENT_USER
{

'MyVeryOwnKey' = s 'HowGoeslt?'

Note In a Registrar script, 4K is the maximum token size. (A token is any recognizable
element in the syntax). In the previous scripting example, HKCR, HKEY _CURRENT_USER,
• MyVeryOwnKey', and • HowGoes It?' are all tokens.

Using Replaceable Parameters (The Registrar's
Preprocessor)

Replaceable parameters allow a Registrar's client to specify run-time data. To do this,
the Registrar maintains a replacement map into which it enters the values associated
with the replaceable parameters in your script. The Registrar makes these entries at
run time. The following section, Using %MODULE%, demonstrates these steps.

41

The ATL Registry Component (Registrar)

42

~ To specify run-time data using replaceable parameters

1 In the location in the script where the data is to be placed, create a replacement
variable name of the form %Vari abl eName%.

2 Before calling one of the parsing methods, add a replacement value to the
Registrar's replacement map by calling AddReplacement(LPCOLESTR key,
LPCOLESTR item), where key is "Vari abl eName" and item is the value that
Vari abl eName is to expand to at run time.

Besides adding entries to the map, you may also want to remove all entries from it.
This is useful if more than one object wishes to use the same instance of the Registrar.

~ To remove all entries from the replacement map

• Call ClearReplacements().

Using %MODULEO/o
The ATL Object Wizard automatically generates a script that uses %MODULE%. ATL
uses this replaceable parameter for the actual location of your server's DLL or EXE.

Besides adding %MODU LE% to the script, the ATL Object Wizard also adds the
following line to the object's class declaration:

DECLARE_REGISTRY_RESOURCEID(IDR_MYCOMAPP)

This macro expands to:

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

return _Module.UpdateRegistryFromResource(IDR_MYCOMAPP,
bRegister):

where _Modul e refers to the global CComModule, which has the following method
and #define statement:

UpdateRegistryFromResourceD(UINT nResID, BOOL bRegister,
struct _ATL_REGMAP_ENTRY* pMapEntries - NULL):

#define UpdateRegistryFromResource
UpdateRegistryFromResourceD

This method calls Atl Modul eUpdateRegi stryFromResourceD, which contains
the following code:

ATLAPI AtlModuleUpdateRegistryFromResourceD(_ATL_MODULE*pM,
LPCOLESTR lpszRes, BOOL bRegister,
struct _ATL_REGMAP_ENTRY* pMapEntries,
IRegistrar* pReg)

USES_CONVERSION:

CComPtr<IRegistrar> p:

The A TL Registry Component (Registrar)

TCHAR szModule[_MAX_PATHJ;
GetModuleFileName(pM->m_hlnst, szModule, _MAX_PATH);
p->AddReplacement(OLESTR("Module"), T20LE(szModule));

Note You can find this code in atl\include\atlimpl.cpp.

CoCreatelnstance acquires the pointer p, which points to the Registrar. Then,
AddReplacement receives an LPCOLESTR containing the string "Modul e", as
well as an LPCOLESTR containing the string acquired from the Win32 API
function, GetModuleFileName. This code adds a replacement map entry for the
Mod u 1 e variable that has a value associated with the result of GetModuleFileName.
Now, when the preprocessor sees the %MODULE% in the script, it will replace it with
the value from GetModuleFileName.

Concatenating run-time data with script data
Another use of the preprocessor is to concatenate run-time data with script data.
For example, suppose we need an entry that contains a full path to a module with
the string". 1" appended at the end. First, define the following expansion:

'MyGoofyKey' = s '%MODULE%, l'

Then, before calling one of the script processing methods, add a replacement to
the map:

TCHAR szModule[_MAX_PATHJ
GetModuleFileName(pM->m_hlnst, szModule, _MAX_PATH);
p->AddReplacement(OLESTR("Module"), T20LE(szModule));

During the parsing of the script, the Registrar expands • %MODU LE%. l' to
c: \mycode\mydll . dll. 1.

Note In a Registrar script, 4K is the maximum token size. (A token is any recognizable element
in the syntax.) This includes tokens that were created or expanded by the preprocessor.

Note To sUbstitute replacement values at run time, do not specify the
DECLARE_REGISTRY _RESOURCE or DECLARE_REGISTRY _RESOURCEID macro.
Instead, create an array of _ATL_REGMAP _ENTRIES structures, where each entry contains
a variable placeholder paired with a value to replace the placeholder at run time. Then call
CComModule::UpdateRegistryFromResourceD, passing it the array. This method adds
all the replacement values in the _ATL_REGMAP _ENTRIES structure to the Registrar's
replacement map.

Invoking Scripts
The previous section, Using Replaceable Parameters (The Registrar's Preprocessor),
discussed replacement maps and introduced two of the Registrar's methods,
AddReplacement and ClearReplacements. The Registrar has eight other methods

43

The ATL Registry Component (Registrar)

44

specific to scripting. All eight of these methods are described in the following table
and invoke the Registrar on a particular script.

Method

ResourceRegister

Resource U nregister

ResourceRegisterSz

ResourceUnregisterSz

FileRegister

File U nregister

StringRegister

StringUnregister

Syntax/Description

HRESUL T ResourceRegister(LPCOLESTR resFileName,
... UINT nID, LPCOLESTR szType);

Registers the script contained in a module's resource. resFileName
indicates the UNC path to the module itself. nID and szType
contain the resource's ID and type, respectively.

HRESULT ResourceUnregister(LPCOLESTR resFileName,
... UINT nID, LPCOLESTR szType);

Unregisters the script contained in a module's resource.
resFileName indicates the UNC path to the module itself. nID
and szType contain the resource's ID and type, respectively.

HRESULT ResourceRegisterSz(LPCOLESTR resFileName,
... LPCOLESTR sz/D, LPCOLESTR szType);

Registers the script contained in a module's resource. resFileName
indicates the UNC path to the module itself. sz/D and szType
contain the resource's string identifier and type, respectively.

HRESULT ResourceUnregisterSz(LPCOLESTR res FileName,
... LPCOLESTR szID, LPCOLESTR szType);

Unregisters the script contained in a module's resource.
resFileName indicates the UNC path to the module itself.
sz/D and szType contain the resource's string identifier and
type, respectively.

HRESULT FileRegister(LPCOLESTRfileName);

Registers the script in a file. fileName is a UNC path to a file that
contains (or is) a resource script.

HRESULT FileUnregister(LPCOLESTRfileName);

Unregisters the script in a file. FileName is a UNC path to a file
that contains (or is) a resource script.

HRESULT StringRegister(LPCOLESTR data);

Registers the script in a string. data contains the script itself.

HRESULT StringUnregister(LPCOLESTR data);
Unregisters the script in a string. data contains the script itself.

ATL uses the first two methods shown in the table (ResourceRegister and
ResourceUnregister) in atlimpl.cpp:

LPCOLESTR szType - OLESTR("REGISTRY");
GetModuleFileName(pM-)m_hlnstResource. szModule. _MAX_PATH);
LPOLESTR pszModule - T20LE(szModule);

The ATL Registry Component (Registrar)

if (HIWORD(lpszRes)--0)
{

if (bRegister)
hRes - p->ResourceRegister(pszModule.

«UINT)LOWORD«DWORD)lpszRes». szType);
else

else
{

hRes - p->ResourceUnregister(pszModule.
«UINT)LOWORD«DWORD)lpszRes». szType);

if (bRegister)
hRes - p->ResourceRegisterSz(pszModule. lpszRes. szType);

else
hRes - p->ResourceUnregisterSz(pszModule. lpszRes. szType);

Note that szModul e contains the value acquired from GetModuleFileName.

The next two methods shown in the table, ResourceRegisterSz and
ResourceUnregisterSz, are similar to ResourceRegister and ResourceUnregister,
but allow you to specify a string identifier.

The methods FileRegister and FileUnregister are useful if you do not want the script
in a resource or if you want the script in its own file. The methods StringRegister and
StringUnregister allow the .rgs file to be stored in a dynamically-allocated string.

Setting Up a Static Link to the
Registrar Code (C++ only)

c++ clients can create a static link to the Registrar's code. Static linking of the
Registrar's parser adds approximately 5K to a release build.

The simplest way to set up static linking assumes you have specified
DECLARE_REGISTRY_RESOURCEID in your object's declaration. (This is
the default specification used by the ATL.)

~ To create a static link using DECLARE_REGISTRY _RESOURCEID

1 At the top of stdafx.h, add the following #define statement:
#define _ATL_STATIC_REGISTRY.

2 Recompile.

45

PAR T 2

Active Template Library Tutorial

47

ATL Tutorial
With ATL, you can create efficient, flexible, lightweight controls. This tutorial leads
you through the creation of a control and demonstrates some ATL fundamentals in
the process.

The ATL control that you create in this seven-step tutorial draws a circle and also
draws a filled polygon inside the circle. You will add a control to your project, add
a Sides property to indicate how many sides the polygon will have, and add drawing
code to display your control when the property changes. Then, you will make your
control respond to click events, add a property page to your control, and put your
control on a Web page.

The tutorial is divided into seven steps. Do them in order because later steps depend
on tasks you have completed in earlier steps.

• Step 1: Creating the Project

• Step 2: Adding a Control to Your Project

• Step 3. Adding a Property to Your Control

• Step 4: Changing Your Control's Drawing Code

• Step 5: Adding an Event to Your Control

o Step 6: Adding a Property Page to Your Control

• Step 7: Putting Your Control on a Web Page

• ATL References

• Appendix (code generated by the ATL Object Wizard)

Step 1: Creating the Project
First you will create the initial ATL project using the ATL COM App Wizard.

1. In the Developer Studio environment, click New on the File menu, then choose
the Projects tab.

2. Select the ATL COM AppWizard.

3. Type Polygon as the project name.

ATL Tutorial

49

ATL Tutorial

50

Your dialog box should look like this:

Click OK and the ATL COM AppWizard presents a dialog box offering several
choices to configure the initial ATL project.

Because you are creating a control, leave the Server Type as a DLL, since a control
must be an in-process server. All the default options are fine, so click Finish. A dialog
box appears that lists the main files that will be created. These files are listed below,
along with a description of each file that the ATL COM AppWizard generates.

File

Polygon.cpp

Polygon.def

Description

Contains the implementation of DllMain, DllCanUnloadNow,
DllGetClassObject, DllRegisterServer and DllUnregisterServer.
Also contains the object map, which is a list of the ATL objects
in your project. This is initially blank, since you haven't created
an object yet.

The standard Windows module definition file for the DLL.

(continued)

File

Polygon.dsw

Polygon.dsp

Polygon.idl

Polygon.rc

Resource.h

Polygonps.mk

Polygonps.def

StdAfx.cpp

StdAfx.h

Description

The project workspace.

The file that contains the project settings.

The interface definition language file, which describes
the interfaces specific to your objects.

The resource file, which initially contains the version
information and a string containing the project name.

The header file for the resource file.

The make file that can be used to build a proxy/stub DLL.
You will not need to use this.

The module definition file for the proxy/stub DLL.

The file that will #include the A TL implementation files.

The file that will #include the ATL header files.

To make the Polygon DLL useful, you need to add a control, using the ATL
Object Wizard.

Step 2: Adding a Control
To add an object to an ATL project, you use the ATL Object Wizard. Click New
ATL Object on the Insert menu, and the ATL Object Wizard appears.

Inlernel Properly Page
Explorer
Conlrol

In the first ATL Object Wizard dialog box, select the category of object you want to
add to your current ATL project. Some of the options you can select are a basic COM
object, a control tailored to work in Internet Explorer, and a property page. In this
tutorial, you are going to create a standard control, so set the category as Controls
on the left, then on the right select Full Control. Finally, click Next.

A set of property pages is displayed that allow you to configure the control you are
inserting into your project. Type "PolyCtl" as the short name.

A TL Tutorial

51

A TL Tutorial

52

COM--;:;::;::::==l
£hortN.me',IPo~Ctl II.~ CQO.s.,lpolyCti

t;1 ... : ';;lcP;:::oly::;::ctl== Interlace: r:;IIP';;';';oIYc;;;';;'u';;';';';;';';=

.t! File' IpOlyCtih i lYPe: IpOlyCti CI."

·CfPF'ilec Ipol:()t~pp ,1 P",gj(J; IpOIYCtlP~IYCtl,
'--c-,--___ --'

The Class field shows the C++ class name created to implement the control. The .H
File and .CPP File show the files created containing the definition of the C++ class.
The CoClass is the name of the component class for this control, and Interface is the
name of the interface on which your control will implement its custom methods and
properties. The Type is a description for the control, and the ProgID is the readable
name that can be used to look up the CLSID of the control.

Now enable support for rich error information for your control:

1. Click on the Attributes tab.

2. Click the Support ISupportErrorInfo check box.

You're going to color in the polygon when you draw it, so add a Fill Color stock
property:

1. Click on the Stock Properties tab.
You see a list box with all the possible stock properties you can enter.

2. Scroll down the list, then double-click Fill Color to move it to the Supported list.

You are finished selecting options for your control. Click OK.

When you created your control, several code changes and additions were made.
The following files were created:

File

PolyCtl.h

PolyCtl.cpp

Description

Contains most of the implementation of the C++ class CPolyCtl.

Contains the remaining parts of CPolyCtl.

(continued)

File

PolyCtl.rgs

PolyCtl.htm

Description

A text file that contains the registry script used to register the control.

An HTML file that contains the source of a Web page that contains a
reference to the newly created control, so that you can try it out in
Internet Explorer immediately.

The following code changes were also performed by the Wizard:

• A #include was added to the StdAfx.h and StdAfx.cpp files to include the ATL
files necessary for controls.

• The registry script PolyCtl.rgs was added to the project resource.

• Polygon.idl was changed to include details of the new control.

• The new control was added to the object map in Polygon.cpp.

The file PolyCtl.h is the most interesting because it contains the main code that
implements your control. The code for PolyCtl.h is described in the Appendix of
this tutorial.

You are now ready to build your control:

1. On the Build menu click Build Polygon.dll.

2. Once your control has finished building, click ActiveX Control Test Container
on the Tools menu. The Test Container is launched.

3. In Test Container, choose Insert Ole Control from the Edit menu. The Insert
Ole Control dialog box appears.

4. From the list of available controls in the Insert Ole Control dialog box, choose
PolyCtl class.

You should see a rectangle with the text "ATL 2.0" in the middle.

5. Close Test Container.

Next, you will add a custom property to the control.

ATL Tutorial

Step 3: Adding a Property to the Control
I Pol yet 1 is the interface that contains your custom methods and properties. The
easiest way to add a property to this interface is to right click on it in the Class View
and select Add Property.

El ;81 Polygon classes
rJ:j··"'t~ CPolyCti
i·-··"O~····.········"''"
riD Global.: G()toDeIinition

AddM~hod ..
AlidPlOpelty,,;

C/N"!t!F<>lder.:.

'17. D~WlgV';;-
lii<le

53

ATL Tutorial

54

The Add Property to Interface dialog box appears, allowing you to enter the details
of the property you want to add:

1. On the drop-down list of property types, select short.

2. Type "Sides" as the Property Name. If you move to another field after editing the
Property Name field, the Implementation box will show the lines that will be
added to your .idl file.

3. Click OK to finish adding the property.

: !HRESGU

: Prope,\yJjpe'

: Ishort

MIDL (the program that compiles .idl files) defines a Get method that retrieves the
property and a Put method that sets the property. When MIDL compiles the file, it
automatically defines those two methods in the interface by prepending p u t_ and
get_ to the property name.

Along with adding the necessary lines to the .idl file, the Add Property to Interface
dialog box also adds the Get and Put function prototypes to the class definition in
PolyCtl.h and adds an empty implementation to PolyCtl.cpp.

To set and retrieve the property you need a place to store it. Open PolyCtl.h and add
the following line at the end of the class definition after m_cl rFi 11 Color is defined:

short m_nSides;

Now you can implement the Get and Put methods. The get_Si des and put_Si des
function definitions have been added to PolyCtl.cpp. You need to add code to match
the following:

STDMETHODIMP CPolyCtl ::get_Sides(short *pVal)
(

*pVal = m_nSides;
return S_OK;

STDMETHODIMP CPolyCtl::put_Sides(short newVal)

if (newVal > 2 && newVal < 101)
{

m_nSides - newVal:
return S_OK:

else
return Error(_T("Shape must have between 3 and 100 sides"»:

The 9 e t_S ide s function simply returns the current value of the Sides property
through the pVa 1 pointer. In the put_Si des method, you make sure the user is
setting the Sides property to an acceptable value. You need more than 2 sides, and
since you will be storing an array of points for each side later on, 100 is a reasonable
limit for a maximum value. If an invalid value is passed you use the ATL Error
function to set the details in the IErrorInfo interface. This is useful if your container
needs more information about the error than the returned HRESULT.

The last thing you need to do for the property is initialize m_nSi des. Make a triangle
the default shape by adding a line to the constructor in PolyCtl.h:

CPolyCtl()
{

You now have a property called Sides. It's not much use until you do something with
it, so next you will change the drawing code to use it.

Step 4: Changing the Drawing Code
In the drawing code you will use sin and cos functions to calculate the polygon points,
so add include math.h at the top of PolyCtl.h:

#include <math.h>
#include "resource.h" II main symbols

Note for Release builds only When the ATL COM App Wizard generates the default
project, it defines the macro _ATL_MIN_CRT. This macro is defined so that you
don't bring the C Run-Time Library into your code if you don't need it. The polygon
control needs the C Run-Time Library start-up code to initialize the floating-point
functions. Therefore, you need to remove the _ATL_MIN_CRT macro if you want
to build a Release version. To remove the macro, click Settings on the Project menu.
In the Settings For: drop-down list, choose Multiple Configurations. In the Select
project configuration(s) to modify dialog box that appears, click the check boxes
for all four Release versions, then click OK. On the C/C++ tab, choose the General
category, then remove _ATL_MIN_CRT from the Preprocessor definitions
edit box.

A TL Tutorial

55

A TL Tutorial

56

Once the polygon points are calculated, you store the points by adding an array of
type POINT to the end of the class definition in PolyCtl.h:

OLE_COLOR m_clrFillColor;
short m_nSides;
POINT m_arrPoint[100];

Now change the OnDraw function in PolyCtl.cpp to match the one below. Note that
you remove the calls to the Rectangle and DrawText functions. You also explicitly
get and select a black pen and white brush. You need to do this in case your control
is running windowless. If you don't have your own window, you can't make
assumptions about the device context you'll be drawing in.

The completed OnDraw looks like this:

HRESULT CPolyCtl: :OnDraw(ATL_DRAWINFO& di)
{

RECT& rc = *(RECT*)di .prcBounds;
HOC hdc = di .hdcDraw;
COLORREF col Fore;
HBRUSH hOldBrush. hBrush;
HPEN hOldPen. hPen;

II Translate m_colFore into a COLORREF type
OleTranslateColor(m_clrFillColor. NULL. &colFore);

IICreate and select the colors to draw the circle
hPen = (HPEN)GetStockObject(BLACK_PEN);
hOldPen = (HPEN)SelectObject(hdc. hPen);
hBrush = (HBRUSH)GetStockObject(WHITE_BRUSH);
hOldBrush = (HBRUSH)SelectObject(hdc. hBrush);

canst double pi = 3.14159265358979;
POINT ptCenter;
double dblRadiusx = (rc.right - rc.left) I 2;
double dblRadiusy = (rc.bottom - rc.top) I 2;
double dblAngle = 3 * pi I 2; II Start at the top
double dblDiff = 2 * pi I m_nSides; II Angle each side will make
ptCenter.x (rc.left + rc.right) I 2;
ptCenter.y = (rc.top + rc.bottom) I 2;

II Calculate the points for each side
for (int i = 0; i < m_nSides; i++)
{

m_arrPoint[i].x = (long)(dblRadiusx * cos(dblAngle) + ptCenter.x + 0.5);
m_arrPoint[i].y = (long)(dblRadiusy * sin(dblAngle) + ptCenter.y + 0.5);
dblAngle += dblDiff;

Ellipse(hdc. rc.left. rc.top. rc.right. rc.bottom);

II Create and select the brush that will be
II used to fill the polygon
hBrush = CreateSolidBrush(colFore);

SelectObject(hdc. hBrush);
Polygon(hdc. &m_arrPoint[0J. m_nSides);

II Select back the old pen and brush and delete
II the brush we created
SelectObject(hdc. hOldPen);
SelectObject(hdc. hOldBrush);
DeleteObject(hBrush);

Now, initialize m_cl rFi 11 Color. Choose green as the default color and add this line
to the CPo 1 yCt 1 constructor in PolyCtl.h:

m_clrFillColor = RGB(0. 0xFF. 0);

The constructor now looks like this:

CPolyCtl ()
{

m_nSides = 3;
m_clrFillColor = RGB(0. 0xFF. 0);

Now rebuild the control and try it again. Open ActiveX Control Test Container
and insert the control. You should see a green triangle within a circle. Try changing
the number of sides. To modify properties on a dual interface from within Test
Container, use Invoke Methods:

1. In Test Container, click Invoke Methods on the Edit menu.
The Invoke Control Method dialog box is displayed.

2. Click Sides from the Name list box and click 1: Put from the ID list box.

3. Type 5 in the (Prop Value) edit box and click Invoke .

... :::0
31D:~~~

12 (prop valuel I~

Notice that the control doesn't change. What is wrong? Although you changed
the number of sides internally by setting the m_nSi des variable, you didn't cause
the control to repaint. If you switch to another application and then switch back to

A TL Tutorial

57

ATL Tutorial

Test Container you will find that the control is repainted and now has the correct
number of sides.

To correct this problem, you need to add a call to the Fire ViewChange function,
which is defined in IViewObjectExImpl, after you set the number of sides. If the
control is running in its own window, Fire ViewChange will call the InvalidateRect
API directly. If the control is running windowless, the InvalidateRect method will
be called on the container's site interface. This forces the control to repaint itself.

The new put_Si des method is as follows:

STDMETHODIMP CPolyCtl ::put_Sides(short newVal)
{

if (newVal > 2 && newVal < 101)
{

m_nSides - newVal;
FireViewChange();
return S_OK;

else
return Error(_T("Shape must have between 3 and 100 sides"));

After you've added FireViewChange, rebuild and try the control again. This time
when you change the number of sides and click Invoke, you should see the control
change immediately.

Next, you will add an event to the control.

Step 5: Adding an Event

58

Now you will add a Cl i ckln and a Cl i ckOut event to your ATL control. You will
fire the C 1 i c kIn event if the user clicks within the polygon and fire C 1 i c kO u t if
the user clicks outside.

To be able to fire events, you must first specify an event interface. Add the code
declaring this interface to the 1 i bra ry section in the Polygon.idl file. The resulting
.idl file should appear as shown in the following code. The code that you add is in
bold. Note that the GUIDs in your file will differ from the ones below. Do not change
the code that is not bold. In particular, be careful not to overwrite the second GUID in
the code below.

library POLYGONLib
{

importlib("stdole32.tlb");

uuid(4CBBC677-507F-11D0-B98B-000000000000).
helpstring("Event interface for PolyCtl")

dispinterface _PolyEvents

} ;

} ;
[

properties:
methods:
[id(l)] void Clickln([in]long x, [in] long y);
[id(2)] void ClickOut([in]long x, [in] long y);

uuid(4CBBC676-507F-llD0-B98B-000000000000),
helpstring("PolyCtl Class")

coclass PolyCtl
{

[default] interface IPolyCtl;
[default, source] dispinterface _PolyEvents;

} ;

Note that you start the interface name with an underscore. This is a convention to
indicate that the interface is an internal interface. Thus, programs that allow you
to browse COM objects can choose not to display the interface to the user.

In the interface definition, you added the eli c kIn and eli c k 0 u t methods that take
the x and y coordinates of the clicked point as parameters. You also added a line to
indicate that this is the default source interface. The source attribute indicates that the
control is the source of the notifications, so it will call this interface on the container.

Now implement a connection point interface and a connection point container
interface for your control. (In COM, events are implemented through the mechanism
of connection points. To receive events from a COM object, a container establishes an
advisory connection to the connection point that the COM object implements. Since
a COM object can have multiple connection points, the COM object also implements
a connection point container interface. Through this interface, the container can
determine which connection points are supported.) The interface that implements a
connection point is called IConnectionPoint and the interface that implements a
connection point container is called IConnectionPointContainer.

To help implement IConnectionPoint, ATL provides a proxy generator. This proxy
generator generates the IConnectionPoint interface by reading your type library and
implementing a function for each event that can be fired. But before you can use it,
you must generate your type library. To do this you can either rebuild your project or
right click on the .idl file in the File View and click Compile Polygon.idl. This will
create the Polygon.t1b file, which is your type library.

After compiling your type library, follow these steps:

1. Go to the Components and Controls Gallery (on the Project menu, click Add to
Project, then click Components and Controls).

2. In Components and Controls Gallery, double-click the Developer Studio
Components folder. Select the ATL Proxy Generator and click the Insert button.

ATL Tutorial

59

ATL Tutorial

60

You will be asked to confirm insertion. Click OK. The ATL Proxy Generator
dialog box appears.

3. Click on the button labeled ••• and select the Polygon.tlb file.
The type library will be read and the two interfaces that you implemented
(_Po 1 y Events and I Po 1 yCt 1) will appear in the Not selected box.

4. To generate a connection point for the event interface, select _P 0 1 y Eve n t s
and click the> button to move _P 0 1 y Eve n t s to the Selected box.
You want a connection point, so leave the Proxy Type as Connection Point.

S. Click Insert.

6. A standard Save dialog box appears and suggests CPPolygon.h as the filename.
Accept this name and click Save.

7. A message that the proxy has been successfully generated appears. Click OK.

8. Now click Close, then click Close again to close the Components and Controls
Gallery.

If you look at the generated CPPolygon.h file, you see it has a class called
CPr oxy _P 0 1 y Eve n t s that derives from IConnectionPointImpl. CPPolygon.h also
defines the two methods Fi re_Cl i ckI nand Fi re_Cl i ckOut, which take the two
coordinate parameters. These are the methods you call when you want to fire an event
from your control.

Now include the CPPolygon.h file at the top of PolyCtl.h:

#include <math.h>
#include "resource.h"
#include "CPPolygon.h"

II main symbols

Now add the CP roxy _Po 1 yEvents class to the CPo 1 yCt 1 class inheritance list in
PolyCtl.h. You also need to implement IConnectionPointContainer. ATL supplies
an implementation of this interface in the class IConnectionPointContainerImpl.
Therefore, add these two lines to CPo 1 y C t 1 class inheritance list in PolyCtl.h:

public CProxy_PolyEvents<CPolyCtl>,
public IConnectionPointContainerlmpl<CPolyCtl>

Also, you need to make the interface _P 01 y Eve n t s the default outgoing interface, so
supply it as the second parameter to IProvideClasslnfo2Impl in the CPo 1 y C t 1 class
inheritance list in PolyCtl.h:

public IProvideClasslnfo2Impl<&CLSID_PolyCtl. &DIID __ PolyEvents.
&LIBID_POLYGONLib>.

The CPo 1 y C t 1 class declaration now looks like this:

class ATL_NO_VTABLE CPolyCtl :
public CComObjectRootEx<CComObjectThreadModel>.
public CComCoClass<CPolyCtl. &CLSID_PolyCtl>.
public CComControl<CPolyCtl>.
public CStockPropImpl<CPolyCtl. IPolyCtl. &IID_IPolyCtl.

&LIBID_POLYGONLib>.
public IProvideClasslnfo2Impl<&CLSID_PolyCtl. &DIID __ PolyEvents.

&LIBID_POLYGONLib>.
public IPersistStreamInitImpl<CPolyCtl>.
public IPersistStorageImpl<CPolyCtl>.
public IQuickActivateImpl<CPolyCtl>.
public IOleControlImpl<CPolyCtl>.
public IOleObjectImpl<CPolyCtl>.
public IOleInPlaceActiveObjectImpl<CPolyCtl>.
public IViewObjectExImpl<CPolyCtl>.
public IOleInPlaceObjectWindowlessImpl<CPolyCtl>.
public IDataObjectImpl<CPolyCtl>.
public ISupportErrorInfo.
public ISpecifyPropertyPagesImpl<CPolyCtl>.
public CProxy_PolyEvents<CPolyCtl>.
public IConnectionPointContainerImpl<CPolyCtl>

Next expose IConnectionPointContainer through your Querylnterface function by
adding it to your COM map. Note that you don't need to expose IConnectionPoint
through Querylnterface, since the client obtains this interface through the use of
IConnectionPointContainer. Add the following line to the end of the COM map
in PolyCtl.h:

COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)

The COM map now looks like this:

BEGIN_COM_MAP(CPolyCtl)
COM_INTERFACE_ENTRY(IPolyCtl)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY_IMPL(IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IViewObject2. IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IViewObject. IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL(IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IOleInPlaceObject.

IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IOleWindow.

IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL(IOleInPlaceActiveObject)

ATL Tutorial

61

A TL Tutorial

62

COM_INTERFACE_ENTRY_IMPL(IOleControl)
COM_INTERFACE_ENTRY_IMPL(IOleObject)
COM_INTERFACE_ENTRY_IMPL(IQuickActivate)
COM_INTERFACE_ENTRY_IMPL(IPersistStorage)
COM_INTERFACE_ENTRY_IMPL(IPersistStreamlnit)
COM_INTERFACE_ENTRY_IMPL(ISpecifyPropertyPages)
COM_INTERFACE_ENTRY_IMPL(IDataObject)
COM_INTERFACE_ENTRY(IProvideClasslnfo)
COM_INTERFACE_ENTRY(IProvideClasslnfo2)
COM_INTERFACE_ENTRY(ISupportErrorlnfo)
COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)

END_COM_MAP()

There is one more thing to do for connection points and that is to tell the ATL
implementation of IConnectionPointContainer which connection points are
available. You do this through the use of a connection point map, which is
simply a list of the interface identifiers for each supported connection point.
Add the following three lines after the COM map in PolyCtl.h. Note that there
are two underscore characters in the identifier name for the interface, since MIDL
prepends 0 I 10_ onto the interface name that you defined earlier, which starts
with an underscore character.

BEGIN_CONNECTION_POINT_MAP(CPolyCtl)
CONNECTION_POINT_ENTRY(DIID __ PolyEvents)

END_CONNECTION_POINT_MAP()

You are done implementing the code to support events. Now, add some code to fire
the events at the appropriate moment. Remember, you are going to fire a C 1 i c kIn or
Cl i ckOut event when the user clicks the left mouse button in the control. To find out
when the user clicks the button, first add a handler for the WM_LBUTTONDOWN
message. In PolyCtl.h, add the following line to the message map:

MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)

The message map now looks like this:

BEGIN_MSG_MAP(CPolyCtl)
MESSAGE_HANDLER(WM_PAINT, OnPaint)
MESSAGE_HANDLER(WM_GETDLGCODE, OnGetDlgCode)
MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
MESSAGE_HANDLER(WM_KILLFOCUS, OnKillFocus)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)

END_MSG_MAP()

To supply the implementation of On LButtonDown, add the following code after the
OnDraw prototype in PolyCtl.h:

LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled);

Next, add the following code after the OnDraw implementation in PolyCtl.cpp:

LRESULT CPolyCtl ::OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled)

HRGN hRgn;
WORD xPos ~ LOWORD(lParam);
WORD yPos = HIWORD(lParam);

II horizontal position of cursor
II vertical position of cursor

II Create a region from our list of points
hRgn ~ CreatePolygonRgn(&m_arrPoint[0], m_nSides, WINDING);

II If the clicked point is in our polygon then fire the ClickIn
II event otherwise we fire the ClickOut event
if (PtInRegion(hRgn, xPos, yPos»

Fire_ClickIn(xPos, yPos);
else

Fire_ClickOut(xPos, yPos);

II Delete the region that we created
DeleteObject(hRgn);
return 0;

Since you have already calculated the points of the polygon in the OnDraw function,
use them in 0 n L But ton 0 own to create a region. Then, use the PtInRegion API
function to determine whether the clicked point is inside the polygon or not.

The u M s 9 parameter is the ID of the Windows message being handled. This allows
you to have one function that handles a range of messages. The w Par a m and the
1 Par a m are the standard values for the message being handled. The parameter
bHandl ed allows you to specify whether the function handled the message or not.
By default, the value is set to TRUE to indicate that the function handled the message,
but you can set it to FALSE. Doing so will cause ATL to continue looking for another
message handler function to which to send the message.

Now tryout your events. Build the control and start ActiveX Control Test Container
again. This time open the event log window by clicking Event Log on the View
menu. Now insert the control and try clicking in the window. Notice that eli c kIn
is fired if you click within the filled polygon and eli c kOut is fired when you click
outside it.

Next you will add a property page.

Step 6: Adding a Property Page
Property pages are implemented as separate COM objects, which allow property
pages to be shared if required. To add a property page to your control you can use
the ATL Object Wizard.

A TL Tutorial

63

ATL Tutorial

64

Start the ATL Object Wizard and select Controls as the category on the left. Select
Property Page on the right, then click Next.

You again get the dialog box allowing you to enter the name of the new object. Call
the object PolyProp and enter that name in the Short Name edit box.

C++ [OM ~ :lOOrt Name: IPOlyPrOp I· CgCia.s: IPOlyPrOp

,1;;1.1$$; ICPolyPrOp . loterface; 1tf'<:'YHCO

,Ji FiI<!: IPolyProph l.}'pe·IPol~~roPcl'ss•.

Ol'Fk I_~ '~ID I'",,,~",,,"
.. ~-~-----.- ----------------

Notice that the Interface edit box is grayed out. This is because a property page
doesn't need a custom interface.

Click on the Strings tab to set the title of the property page. The title of the property
page is the string that appears in the tab for that page. The Doc String is a description
that a property frame could use to put in a status line or tool tip. Note that the standard
property frame currently doesn't use this string, but you can set it anyway. You're not
going to generate a Helpfile at the moment, so erase the entry in that text box. Click
OK and the property page object will be created.

Name, ItlUributes ~t,ing> I
1i11e;
!:sntWi.1

. QocString
I Polygon Properties

Helpln",

The following three files are created:

File Description

PolyProp.h Contains the C++ class CPo 1 y Prop, which implements
the property page.

PolyProp.cpp

PolyProp.rgs

Includes the PolyProp.h file.

The registry script that registers the property page object.

The following code changes are also made:

• The new property page is added to the object entry map in Polygon.cpp.

• The Po 1 yProp class is added to the Polygon.idl file.

• The new registry script file PolyProp.rgs is added to the project resource.

• A dialog box template is added to the project resource for the property page.

• The property strings you specified are added to the resource string table.

Now add the fields that you want to appear on the property page. Switch to
ResourceView, then open the dialog I DO_PO L Y PRO P. Notice that it is empty except
for a label that tells you to put your property page controls here. Delete that label and
add one that contains the text "Sides:". Next to the label add an edit box and give it an
IDofIDC SIDES .

........................ _ _ .•....•... __ .. _ _. __ .. - .. _ .. __ .. _ .. _ _ _._ ... _-_ .. __ __ .. _ ... _._-----

1""1""1""1",,1,,,,1,,,,1,,,,11,.,1

SideS:~

-

~~I--------------~I,~

Include Polygon.h at the top of the PolyProp.h file:

/linclude "Polygon.h" II definition of IPolyCtl

Now enable the CPo 1 yP rop class to set the number of sides in your object when the
Apply button is pressed. Change the App 1 y function in PolyProp.h as follows.

STDMETHOD(Apply)(void)
{

USES_CONVERSION;
AT L T RA C E (_ T("C Pol y Pro p : : A p ply \ n ")) ;
for (UINT i = 0; i < m_nObjects; i++)
{

CComQIPtr<IPolyCtl. &IID_IPolyCtl> pPoly(m_ppUnk[i]);
short nSides = (short)GetDlgItemInt(IDC_SIDES);
if FAILED(pPoly->put_Sides(nSides))

A TL Tutorial

65

A TL Tutorial

66

CComPtr<IErrorInfo> pError;
CComBSTR strError;
GetErrorInfo(0. &pError);
pError->GetDescription(&strError);
MessageBox(OLE2T(strError). _T("Error"). MB_ICONEXCLAMATION);
return E_FAIL;

m_bDirty = FALSE;
return S_OK;

A property page could have more than one client attached to it at a time, so the
A p ply function loops around and calls p u t_S ide s on each client with the value
retrieved from the edit box. You are using the CComQIPtr class, which performs
the QueryInterface on each object to obtain the I Po 1 yCt 1 interface from the
IUnknown (stored in the m_ppUn k array).

Check that setting the Sides property actually worked. If it fails, you get a message
box displaying error details from the IErrorInfo interface. Typically, a container
asks an object for the ISupportErrorInfo interface and calls
InterfaceSupportsErrorInfo first, to determine whether the object supports
setting error information. But since it's your control, you can forego that check.

CComPtr helps you by automatically handling the reference counting, so you don't
need to call Release on the interface. CComBSTR helps you with BSTR processing,
so you don't have to perform the final SysFreeString call. You also use one of the
various string conversion classes, so you can convert the BSTR if necessary (this is
why we add the USES_CONVERSION macro at the start of the function).

You also must set the property page's dirty flag to indicate that the Apply button
should be enabled. This occurs when the user changes the value in the Sides edit box,
so add this line to the message map in PolyProp.h:

COMMAND_HANDLER(IDC_SIDES. EN_CHANGE. OnSidesChange)

The property page message map now looks like this:

BEGIN_MSG_MAP(CPolyProp)
COMMAND_HANDLER(IDC_SIDES. EN_CHANGE. OnSidesChange)
CHAIN_MSG_MAP(IPropertyPageImpl<CPolyProp»

END_MSG_MAP()

Now add the anSi des Change function after the Appl y function:

LRESULT OnSidesChange(WORD wNotify. WORD wID. HWND hWnd. BOOL& bHandled)
{

SetDi rty (TRUE) ;
return 0;

anSi desChange will be called when a WM_COMMAND message is sent with the
EN_CHANGE notification for the I DC_S I DES control. anSi des Change then calls

SetDi rty and passes TRUE to indicate the property page is now dirty and the Apply
button should be enabled.

Now, add the property page to your control. The ATL Object Wizard doesn't do this
for you automatically, since there could be multiple controls in your project. Open
PolyCtl.h and add this line to the property map:

PROP_ENTRYC"Sides", 1, CLSID_PolyProp)

The control's property map now looks like this:

BEGIN_PROPERTY_MAPCCPolyCtl)
//PROP_ENTRYC"Description", dispid, clsid)
PROP_ENTRYC"Sides", 1, CLSID_PolyProp)
PROP_PAGECCLSID_StockColorPage)

END_PROPERTY_MAPC)

You could have added a PROP _PAGE macro with the CLSID of your property page,
but if you use the PROP_ENTRY macro as shown, the Sides property value is also
saved when the control is saved. The three parameters to the macro are the property
description, the DISPID of the property, and the CLSID of the property page that has
the property on it. This is useful if, for example, you load the control into Visual Basic
and set the number of Sides at design time. Since the number of Sides is saved, when
you reload your Visual Basic project the number of Sides will be restored.

Now build that control and insert it into ActiveX Control Test Container. Then
follow the steps below:

1. In Test Container, on the Edit menu click Embedded Object Functions.

2. Click Properties on the submenu.

The property page appears.

£o!ygon I Colors I

Sid.".~

The Apply button is initially disabled. Start typing a value in the Sides edit box and
the Apply button will become enabled. After you have finished entering the value,
click the Apply button. The control display changes and the Apply button is again
disabled. Try entering an invalid value and you should see a message box containing
the error description that you set from the put_Si des function.

Next you'll put your control on a Web page.

ATL Tutorial

67

A TL Tutorial

Step 7: Putting the Control on a Web Page

68

Your control is now finished. To see your control work in a real-world situation, put it
on a Web page. When the ATL Object Wizard creates the initial control it also creates
an HTML file that contains the control. You can open up the PolyCtl.htm file in
Internet Explorer and you see your control on a Web page.

The control doesn't do anything yet, so change the Web page to respond to the events
that you send. Open PolyCtl.htm in Developer Studio and add the lines in bold.

<HTML>
<HEAD>
<TITLE>ATL 2.0 test page for object PolyCtl</TITLE>
</HEAD>
<BODY>
<OBJECT ID-"PolyCtl" <
CLASSID="CLSID:4CBBC676-507F-llD0-B98B-000000000000">

>
<IOBJECT>
<SCRIPT LANGUAGE-"VBScript">
<! --
Sub PolyCtl_ClickIn(x. y)

PolyCtl .Sides "" PolyCtl .Sides + 1
End Sub
Sub PolyCtl_ClickOut(x. y)

PolyCtl .Sides "" PolyCtl .Sides - 1
End Sub
-->
</SCRIPT>
</BODY>
</HTML>

You have added some VBScript code that gets the Sides property from the control,
and increases the number of sides by one if you click inside the control. If you click
outside the control you reduce the number of sides by one.

Start up Internet Explorer and make sure your Security settings are set to Medium:

1. Click Options on the View menu.

2. Select the Security tab and click Safety Level.

3. Set the security to medium if necessary, then click OK.

4. Click OK to close the Options dialog box.

Now open PolyCtl.htm. A Safety Violation dialog box informs you that Internet
Explorer doesn't know if the control is safe to script.

What does this mean? Imagine if you had a control that, for example, displayed a file,
but also had a De 1 ete method that deleted a file. The control would be safe if you

just viewed it on a page, but wouldn't be safe to script since someone could call the
De 1 ete method. This message is Internet Explorer's way of saying that it doesn't
know if someone could do damage with this control so it is asking the user.

You know your control is safe, so click Yes. Now click inside the polygon; the number
of sides increases by one. Click outside the polygon to reduce the number of sides. If
you try to reduce the number of sides below three, you will see the error message that
you set.

The following figure shows the control running in Internet Explorer after you have
clicked inside the polygon twice.

Since you know your control is always safe to script, it would be good to let Internet
Explorer know, so that it doesn't need to show the Safety Violation dialog box. You
can do this through the IObjectSafety interface. ATL supplies an implementation of
this interface in the class IObjectSafetylmpl.

To add the interface to your control, just add IObjectSafetylmpl to your list of
inherited classes and add an entry for it in your COM map.

Add the following line to the end of the list of inherited classes in PolyCtl.h,
remembering to add a comma to the previous line:

public IObjectSafetylmpl<CPolyCtl>

Then add the following line to the COM map in PolyCtl.h:

COM_INTERFACE_ENTRY_IMPL(IObjectSafety)

Now build the control. Once the build has finished, open PolyCtl.htm in Internet
Explorer again. This time the Web page should be displayed directly without the
Safety Violation dialog box. Click inside and outside the polygon to confirm that
the scripting is working.

A TL Tutorial

69

A TL Tutorial

ATL References
This tutorial has demonstrated some basic concepts about using ATL.

To view the available ATL documentation, see:

• ATL Article Overview

• ATL Class Overview

• ATL Samples Index (online)

Appendix

70

This appendix contains the PolyCtl.h and Poly.cpp code created by the ATL Object
Wizard when generating a full control with the Support ISupportErrorInfo option
chosen on the Attributes tab.

PolyCtl.cpp implements the InterfaceSupportsErrorInfo function for the
ISupportErrorInfo interface and the OnDraw function.

PolyCtl.h shows how ATL uses multiple inheritance to implement the necessary
interfaces. This provides a flexible way of implementing a COM object, since it
allows you to add and remove interfaces easily. The list of interfaces that will be
exposed through Querylnterface are specified in the COM map.

The DECLARE_REGISTRY_RESOURCEID macro simply specifies the resource ID
containing the registry script and is used to register and unregister the control.

The property map indicates which properties of the object will persist, meaning
they can be loaded and saved. The property map also identifies the property pages
used by the object.

The message map indicates which function will be called to handle the various
Windows messages.

// PolyCtl.h : Declaration of the CPolyCtl

#ifndef __ POLYCTL_H_
#define __ POLYCTL_H_

#include "resource.h" // main symbols

///
II CPolyCtl
class ATL_NO_VTABLE CPolyCtl :

public CComObjectRootEx<CComObjectThreadModel>,
public CComCoClass<CPolyCtl, &CLSID_PolyCtl>,
public CComControl<CPolyCtl>,
public CStockProplmpl<CPolyCtl, IPolyCtl, &IID_IPolyCtl, &LIBID_TEMPLib>,
public IProvideClasslnfo2Impl<&CLSID_PolyCtl, NULL, &LIBID_TEMPLib>,

public IPersistStreamInitImpl<CPolyCtl>.
public IPersistStorageImpl<CPolyCtl>.
public IQuickActivateImpl<CPolyCtl>.
public IOleControlImpl<CPolyCtl>.
public IOleObjectImpl<CPolyCtl>.
public IOleInPlaceActiveObjectImpl<CPolyCtl>.
public IViewObjectExImpl<CPolyCtl>.
public IOleInPlaceObjectWindowlessImpl<CPolyCtl>.
public IDataObjectImpl<CPolyCtl>.
public ISupportErrorInfo.
public ISpecifyPropertyPagesImpl<CPolyCtl>

(

public:
CPolyCtl()
(

DECLARE_POLY_AGGREGATABLE(CPolyCtl)

BEGIN_COM_MAP(CPolyCtl)
COM_INTERFACE_ENTRY(IPolyCtl)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY_IMPL(IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IViewObject2. IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IViewObject. IViewObjectEx)
COM_INTERFACE_ENTRY_IMPL(IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IOleInPlaceObject.

IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL_IID(IID_IOleWindow.

IOleInPlaceObjectWindowless)
COM_INTERFACE_ENTRY_IMPL(IOleInPlaceActiveObject)
COM_INTERFACE_ENTRY_IMPL(IOleControl)
COM_INTERFACE_ENTRY_IMPL(IOleObject)
COM_INTERFACE_ENTRY_IMPL(IQuickActivate)
COM_INTERFACE_ENTRY_IMPL(IPersistStorage)
COM_INTERFACE_ENTRY_IMPL(IPersistStreamInit)
COM_INTERFACE_ENTRY_IMPL(ISpecifyPropertyPages)
COM_INTERFACE_ENTRY_IMPL(IDataObject)
COM_INTERFACE_ENTRY(IProvideClassInfo)
COM_INTERFACE_ENTRY(IProvideClassInfo2)
COM_INTERFACE_ENTRY(ISupportErrorInfo)

END_COM_MAP()

BEGIN_PROPERTY_MAP(CPolyCtl)
II PROP_ENTRY("Description". dispid. clsid)
PROP_PAGE(CLSID_StockColorPage)

END_PROPERTY_MAP()

BEGIN_MSG_MAP(CPolyCtl)
MESSAGE_HANDLER(WM_PAINT. OnPaint)
MESSAGE_HANDLER(WM_GETDLGCODE. OnGetDlgCode)

ATL Tutorial

71

ATL Tutorial

72

MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)
MESSAGE_HANDLER(WM_KILLFOCUS. OnKillFocus)

END_MSG_MAP()

1/ IViewObjectEx
STDMETHOD(GetViewStatus)(DWORD* pdwStatus)
{

ATL TRACE(_ T<" I Vi ewObj ectExImpl : : GetVi ewStatus \n")) ;
*pdwStatus = VIEWSTATUS_SOLIDBKGNDIVIEWSTATUS_OPAOUE;
return S_OK;
}

// IPolyCtl
public:

HRESULT OnDraw(ATL_DRAWINFO& di);

} ;
#endif // __ POLYCTL_H_

The following code is the PolyCtl.cpp file generated by the ATL Object Wizard
when the Support ISupportErrorInfo option is chosen. You can see that the default
drawing code simply draws a rectangle with the text "ATL 2.0" in the center.

1/ PolyCtl.cpp : Implementation of CPolyCtl
#include "stdafx.h"
#include "Polygon.h"
#include "PolyCtl.h"

//////1/// ///////////////////
/ / CPolyCtl

STDMETHODIMP CPolyCtl ::InterfaceSupportsErrorInfo(REFIID riid)
{

static const 110* arr[] =
{

&IID_IPolyCtl.
} ;

for (int i=0;i<sizeof(arr)/sizeof(arr[0]);i++)
{

}

if (InlineIsEqualGUID(*arr[i].riid))
return S_OK;

return S_FALSE;

HRESULT CPolyCtl: :OnDraw(ATL_DRAWINFO& di)
{

RECT& rc = *(RECT*)di .prcBounds;
Rectangle(di .hdcDraw. rc.left. rc.top. rc.right. rc.bottom);
DrawText(di.hdcDraw. _T<"ATL 2.0"). -1. &rc.

DT_CENTER I DT_VCENTER I DT_SINGLELINE);
return S_OK;

PAR T 3

Active Template Library Reference

73

3ATL Class Overview
Classes in the Active Template Library (ATL) can be categorized as follows:

Class Factories

Class Information

COM Modules

Connection Points

Controls: General Support

Data Transfer

Data Types

Dual Interfaces

Error Information

Interface Pointers

IUnknown Implementation

See Also: "ATL Article Overview"

Class Factories

Object Safety

Persistence

Properties and Property Pages

Registry Support

Running Objects

Site Information

Tear-Off Interfaces

Thread Pooling

Threading Models and Critical Sections

VI Support

Windows Support

The following classes implement or support a class factory:

• CComClassFactory Provides a default class factory for object creation.

• CComCIassFactory2 Controls object creation through a license.

• CComClassFactory AutoThread Allows objects to be created in multiple
thread-pooled apartments.

• CComClassFactorySingleton Creates a single object.

• CComCoClass Defines the class factory for the object.

See Also: Aggregation and Class Factory Macros

Class Information
The following class provides support for retrieving class information:

• IProvideCIassInfo2Impi Provides access to type information. Retrieves the
outgoing lID for the object's default event set.

3ATL Class Overview

75

3ATL Class Overview

COM Modules
The following classes provide support for a COM module:

• CComModule Implements a DLL or EXE module.

• CComAutoThreadModule Implements an EXE module, with support for
multiple thread-pooled apartments.

Connection Points
The following classes provide support for connection points:

• IConnectionPointContainerlmpl Implements a connection point container.

• IConnectionPointImpl Implements a connection point.

• IPropertyNotifySinkCP Implements a connection point representing the
IProperty N otifySink interface.

• CComDynamicUnkArray Manages unlimited connections between a connection
point and its sinks.

• CComUnkArray Manages a fixed number of connections between a connection
point and its sinks.

• CFirePropNotifyEvent Notifies a client's sink that an object's property has
changed or is about to change.

Related Articles "Connection Points"

See Also: Connection Point Macros and Global Functions

Controls: General Support

76

The following classes provide general support for ATL controls:

• CComControl Consists of helper functions and data members that are essential
to ATL controls.

• IOleControlImpl Provides methods necessary for controls.

• IOleObjectImpl Provides the principal methods through which a container
communicates with a control. Manages the activation and deactivation of in-place
controls.

• IQuickActivatelmpl Combines initialization into a single call to help containers
avoid delays when loading controls.

• IPointerInactivelmpl Provides minimal mouse interaction for an otherwise
inactive control.

Related Articles "ATL Tutorial"

3A TL Class Overview

Data Transfer
The following classes support various types of data transfer:

• IDataObjectImpl Supports Uniform Data Transfer by using standard formats to
retrieve and set data. Handles data change notifications by managing connections
to advise sinks.

• CBindStatusCallback Allows an asynchronous moniker to send and receive
information about the asynchronous data transfer to and from your object.

Data Types
The following classes wrap C++ data types:

• CComBSTR Wraps the BSTR data type.

• CCom Variant Wraps the VARIANT data type.

Dual Interfaces
The following class provides support for dual interfaces:

• IDispatchImpl Implements the IDispatch portion of a dual interface.

Error Information
The following class indicates how error information is handled:

• ISupportErrorInfoImpl Determines whether the object supports the IErrorInfo
interface. IErrorInfo allows error information to be propagated back to the client.

Interface Pointers
The following classes manage a given interface pointer:

• CComPtr Performs automatic reference counting.

• CComQIPtr Similar to CComPtr, but also performs automatic querying of
interfaces.

77

3ATL Class Overview

IUnknown Implementation
The following classes implement IUnknown and related methods:

• CComObjectRootEx Manages reference counting for both aggregated and
non aggregated objects. Allows you to specify a threading model.

o CComObjectRoot Manages reference counting for both aggregated and
nonaggregated objects. Uses the default threading model of the server.

• CComAggObject Implements IUnknown for an aggregated object.

• CComObject Implements IUnknown for a nonaggregated object.

• CComPolyObject Implements IUnknown for aggregated and nonaggregated
objects. Using CComPolyObject avoids having both CComAggObject and
CComObject in your module. A single CComPolyObject object handles both
aggregated and nonaggregated cases.

• CComObjectNoLock Implements IUnknown for a nonaggregated object,
without modifying the module lock count.

• CComTearOffObject Implements IUnknown for a tear-off interface.

• CComCachedTearOffObject Implements IUnknown for a "cached" tear-off
interface.

• CComContainedObject Implements IUnknown for the inner object of an
aggregation or a tear-off interface.

• CComObjectGlobal Manages a reference count on the module to ensure your
object won't be deleted.

• CComObjectStack Creates a temporary COM object, using a skeletal
implementation of IUnknown.

Related Articles "Fundamentals of ATL COM Objects"

See Also: Aggregation and Class Factory Macros, COM Map Macros and Global
Functions

Object Safety

78

The following class provides support for object safety:

• IObjectSafetylmpl Allows an object to be marked as safe for initialization or
safe for scripting.

Related Articles "ATL Tutorial"

3A TL Class Overview

Persistence
The following classes implement object persistence:

• IPersistStreamlnitlmpl Allows a client to load and save an object's persistent
data to a stream.

• IPersistStoragelmpl Allows a client to load and save an object's persistent data
to a storage.

• IPersistPropertyBaglmpl Allows a client to load and save an object's properties
to a property bag.

Related Articles "ATL Tutorial"

See Also: Property Map Macros

Properties and Property Pages
The following classes support properties and property pages:

• IPropertyPagelmpl Manages a particular property page within a property sheet.

• IPropertyPage2Impi Similar to IPropertyPagelmpl, but also allows a client to
select a specific property in a property page.

• IPerPropertyBrowsinglmpl Accesses the information in an object's property
pages.

• ISpecifyPropertyPageslmpl Obtains the CLSIDs for the property pages
supported by an object.

• IPersistPropertyBaglmpl Stores an object's properties in a client-supplied
property bag.

• CComDispatchDriver Retrieves or sets an object's properties through an
IDispatch pointer.

• CStockProplmpl Implements the stock properties supported by ATL.

Related Articles "ATL Tutorial"

See Also: Property Map Macros, Stock Property Macros

Registry Support
The following class provides registry support:

• CRegKey Contains methods for manipulating values in the system registry.

Related Articles "The ATL Registry Component (Registrar)"

See Also: Registry Macros

79

3ATL Class Overview

Running Objects
The following class provides support for running objects:

• IRunnableObjectImpl Determines if an object is running, forces it to run,
or locks it into the running state.

Related Articles "ATL Tutorial"

Site Information
The following classes allow an object to communicate with its site:

• IObjectWithSiteImpl Retrieves and sets a pointer to an object's site. Used for
objects that are not controls.

• IOleObjectImpl Retrieves and sets a pointer to an object's site. Used for
controls.

Tear-Off Interfaces
The following classes provide support for tear-off interfaces:

• CComTearOffObject Implements IUnknown for a tear-off interface.

• CComCachedTearOffObject Implements IUnknown for a "cached" tear-off
interface.

Thread Pooling
The following classes support thread pooling:

• CComAutoThreadModule Implements an EXE module, with support for
multiple thread-pooled apartments.

• CComApartment Manages an apartment in a thread-pooled EXE module.

• CComSimpleThreadAllocator Manages thread selection for an EXE module.

Threading Models and Critical Sections

80

The following classes define a threading model and critical section:

• CComMultiThreadModel Provides thread-safe methods for incrementing and
decrementing a variable. Provides a critical section.

• CComMultiThreadModelNoCS Provides thread-safe methods for incrementing
and decrementing a variable. Does not provide a critical section.

3A TL Class Overview

• CComSingleThreadModel Provides methods for incrementing and decrementing
a variable. Does not provide a critical section.

• CComObjectThreadModel Determines the appropriate threading-model class
for a single object class.

• CComGlobalsThreadModel Determines the appropriate threading-model class
for an object that is globally available.

• CComAutoCriticalSection Contains methods for obtaining and releasing a
critical section. The critical section is automatically initialized.

• CComCriticalSection Contains methods for obtaining and releasing a critical
section. The critical section must be explicitly initialized.

• CComFakeCriticalSection Mirrors the methods in CComCriticalSection
without providing a critical section. The methods in CComFakeCriticalSection
do nothing.

DI Support
The following classes provide general VI support:

• IOleObjectImpl Provides the principal methods through which a container
communicates with a control. Manages the activation and deactivation of in-place
controls.

• IOleInPlaceObjectWindowlessImpl Manages the reactivation of in-place
controls. Enables a windowless control to receive messages, as well as to
participate in drag and drop operations.

• IOlelnPlaceActiveObjectImpl Assists communication between an in-place
control and its container.

• IViewObjectExImpl Enables a control to display itself directly and to notify
the container of changes in its display. Provides support for flicker-free drawing,
non-rectangular and transparent controls, and hit testing.

Related Articles "ATL Tutorial"

Windows Support
The following classes provide support for windows:

• CWindow Contains methods for manipulating a window. CWindow is the base
class for CWindowImpl, CDialogImpl, and CContainedWindow.

• CWindowImpl Implements a window based on a new window class. Also allows
you to subclass or superclass the window.

• CDialogImpl Implements a dialog box.

81

3ATL Class Overview

82

• CContainedWindow Implements a window contained within another object.
Allows you to subclass or superclass the window.

• CWndClasslnfo Manages the information of a new window class.

• CDynamicChain Supports dynamic chaining of message maps.

• CMessageMap Allows an object to expose its message maps to other objects.

Related Articles "ATL Window Classes," "ATL Tutorial"

See Also: Message Map Macros, Window Class Macros

CB indS tatusCallback
template< class T>
class CBindStatusCallback :

public CComObjectRootEx<T::_ ThreadModel: :ThreadModeINoCS>,
public IBindStatusCallbacklmpkT>

Parameters
T Your class, derived from IBindStatusCallbacklmpl.

The CBindStatusCallback class implements the IBindStatusCallback interface.
IBindStatusCallback must be implemented by your application so it can receive
notifications from an asynchronous data transfer. The asynchronous moniker provided
by the system uses IBindStatusCallback methods to send and receive information
about the asynchronous data transfer to and from your object.

Typically, the CBindStatusCallback object is associated with a specific bind
operation. For example, in the ASYNC sample, when you set the URL property,
it creates a CBindStatusCallback object in the call to Download:

STDMETHOD(put_URL)(BSTR strURL)
{

m_bstrURL = strURL;
CBindStatusCallback<CATLAsync>::Download(this,

OnOata, m_bstrURL, m_spClientSite, FALSE);
return S_OK;

The asynchronous moniker uses the callback function 0 n D a t a to call your application
when it has data. The asynchronous moniker is provided by the system.

See the ActiveX SDK online for a description of IBindStatusCallback.

#include <atlctl.h>

IBindStatusCaliback Methods

GetBindInfo

GetPriority

OnLow Resource

OnObjectA vailable

OnProgress

OnStartBinding

OnStopBinding

Called by the asynchronous moniker to request information on
the type of bind to be created.

Called by the asynchronous moniker to get the priority of the
bind operation. The A TL implementation returns E_NOTIMPL.

Called when resources are low. The ATL implementation
returns S_OK.

Called by the asynchronous moniker to pass an object interface
pointer to your application. The A TL implementation returns
S_OK.

Called to indicate the progress of a data downloading process.
The ATL implementation returns S_OK.

Called when binding is started.

Called when the asynchronous data transfer is stopped.

CB indS tatusCallback

83

CBindStatusCallback: :CB indStatusCallback

Class Methods

CBindStatusCallback

Download

OnDataA vailable

StartAsyncDownload

Data Members

Constructor.

Starts the download process, creates a CBindStatusCallback
object, and calls StartAsyncDownload.

Called to provide data to your application as it becomes available.
Reads the data, then calls the function passed to it to use the data.

Initializes the bytes available and bytes read to zero, creates a
push-type stream object from a URL, and calls OnDataA vailable
every time data is available.

m_dwAvailableToRead Number of bytes available to read.

m_dwTotalRead Total number of bytes read.

m_pFunc Pointer to the function called when data is available.

m_pT Pointer to the object requesting the asynchronous data transfer.

m_spBindCtx Pointer to the IBindCtx interface for the current bind operation.

m_spBinding Pointer to the IBinding interface for the current bind operation.
See the ActiveX SDK online for a description of lBinding.

m_spMoniker Pointer to the IMoniker interface for the URL to use.

m_spStream Pointer to the IStream interface for the data transfer.

Methods
CBindStatusCallback: : CBindStatusCallback

Remarks

CBindStatusCallback();

The constructor. Creates an object to receive notifications concerning the
asynchronous data transfer. Typically, one object is created for each bind operation.

The constructor also initializes m_pT and m_pFunc to NULL.

See Also: CBindStatusCallback: :StartAsyncDownload

CBindStatusCallback: :Download
HRESULT Download(1'* pT, ATL_PDATAAVAILABLE pFunc, BSTR bstrURL,

.. IUnknown* pUnkContainer = NULL, BOOL bRelative = FALSE);

Return Value
One of the standard HRESULT values.

84

CBindStatusCallback: :GetBindInfo

Parameters

Remarks

pT [in] A pointer to the object requesting the asynchronous data transfer. The
CBindStatusCallback object is templatized on this object's class.

pFunc [in] A pointer to the function that receives the data that is read. The function
is a member of your object's class of type T. See StartAsyncDownload for syntax
and an example.

bstrURL [in] The URL to obtain data from. Can be any valid URL or file name.
Cannot be NULL. For example:

CComBSTR mybstr =_T(''http://somesite/data.htm'')

pUnkContainer [in] The IUnknown of the container. NULL by default.

bRelative [in] A flag indicating whether the URL is relative or absolute. FALSE
by default, meaning the URL is absolute.

Creates a CBindStatusCallback object and calls StartAsyncDownload to start
downloading data asynchronously from the specified URL. Every time data is
available it is sent to the object through OnDataAvailable. OnDataAvailable reads
the data and calls the function pointed to by pFunc (for example, to store the data or
print it to the screen).

See Also: CBindStatusCallback: :StartAsyncDownload

CBindStatusCallback: : GetBindInfo
HRESULT GetBindInfo(DWORD* pgrjBSCF, BINDINFO* pbindinfo);

Return Value
One of the standard HRESULT values.

Parameters
pgrjBSCF [out] A pointer to BINDF enumeration values indicating how the bind

operation should occur. By default, set with the following enumeration values:

BINDF _ASYNCHRONOUS Asynchronous download.

BINDF _ASYNCSTORAGE OnDataAvailable returns E_PENDING when
data is not yet available rather than blocking until data is available.

BINDF _GETNEWESTVERSION The bind operation should retrieve the
newest version of the data.

BINDF _NOWRITECACHE The bind operation should not store retrieved data
in the disk cache.

pbindinfo [in, out] A pointer to the BIND INFO structure giving more information
about how the object wants binding to occur.

85

CBindStatusCallback: :GetPriority

Remarks
Called to tell the moniker how to bind. The default implementation sets the binding to
be asynchronous and to use the data-push model. In the data-push model, the moniker
drives the asynchronous bind operation and continuously notifies the client whenever
new data is available.

See IBindStatusCallback::GetBindlnfo in the ActiveX SDK online.

CBindStatusCallback: : GetPriority
HRESULT GetPriority(LONG* pnPriority);

See IBindStatusCallback::GetPriority in the ActiveX SDK online.

Remarks
Returns E_NOTIMPL.

CBindStatusCallback: : OnDataAvailable
HRESULT OnDataAvailable(DWORD gifBSCF, DWORD dwSize,

.. FORMATETC* pformatetc, STGMEDIUM* pstgmed);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

86

gifBSCF [in] A BSCF enumeration value. One or more of the following:
BSCF _FIRSTDATANOTIFICATION,
BSCF _INTERMEDIARYDATANOTIFICATION, or
BSCF _LASTDATANOTIFICATION.

dwSize [in] The cumulative amount (in bytes) of data available since the beginning
of the binding. Can be zero, indicating that the amount of data is not relevant or
that no specific amount became available.

pformatetc [in] Pointer to the FORMATETC structure that contains the format of
the available data. If there is no format, can be CF _NULL.

pstgmed [in] Pointer to the STGMEDIUM structure that holds the actual data now
available.

The system-supplied asynchronous moniker calls OnDataAvailable to provide data
to the object as it becomes available.

CBindStatusCallback: :OnStartBinding

OnDataAvailable reads the data, then calls a method of your object's class
(for example, to store the data or print it to the screen). See
CBindStatusCallback: :StartAsyncDownload for details.

See Also: CBindStatusCallback: :StartAsyncDownload

CBindStatusCallback: :OnLowResource
HRESULT OnLowResource(DWORD dwReserved);

See IBindStatusCallback::OnLowResource in the ActiveX SDK online.

~emarks

CBindStatusCallback: :OnObjectAvailable
HRESULT OnObjectAvailable(REFID riid, IUnknown* punk);

See IBindStatusCallback::OnObjectAvailable in the ActiveX SDK online.

~emarks

Returns S_OK.

CBindStatusCallback: :OnProgress

~emarks

HRESULT OnProgress(ULONG ulProgress, ULONG ulProgressMax,
.. ULONG ulStatusCode, LPCWSTRONG szStatusText);

See IBindStatusCallback::OnProgress in the ActiveX SDK online.

Returns S_OK.

2BindStatusCallback:: OnStartBinding

lemarks

HRESULT OnStartBinding(DWORD dwReserved, IBinding* pBinding);

See IBindStatusCallback::OnStartBinding in the ActiveX SDK online.

Sets the data member m_spBinding to the IBinding pointer in pBinding.

See Also: CBindStatusCallback: :OnStopBinding

87

CBindS tatusCallback: :OnS topBinding

CBindStatusCallback: : OnStopBinding

Remarks

HRESULT OnStopBinding(HRESULT hresult, LPCWSTR szError);

See IBindStatusCallback::OnStopBinding in the ActiveX SDK online.

Releases the IBinding pointer in the data member m_spBinding. Called by the
system-supplied asynchronous moniker to indicate the end of the bind operation.

See Also: CBindStatusCallback: :OnStartBinding

CB indStatusCallback: : StartAsyncDownload
HRESULT StartAsyncDownload(1'* pT, ATL_PDATAAVAILABLEpFunc,

... BSTR bstrURL, BOOL bRelative = FALSE);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

88

pT [in] A pointer to the object requesting the asynchronous data transfer. The
CBindStatusCallback object is templatized on this object's class.

pFunc [in] A pointer to the function that receives the data being read. The
function is a member of your object's class of type T. See Remarks for syntax
and an example.

bstrURL [in] The URL to obtain data from. Can be any valid URL or file name.
Cannot be NULL. For example:

CComBSTR mybstr =_T("http://somesite/data.htm")

pUnkContainer [in] The IUnknown of the container. NULL by default.

bRelative [in] A flag indicating whether the URL is relative or absolute. FALSE by
default, meaning the URL is absolute.

Starts downloading data asynchronously from the specified URL. Every time data is
available it is sent to the object through OnDataAvailable. OnDataAvailable reads
the data and calls the function pointed to by pFunc (for example, to store the data or
print it to the screen).

The function pointed to by pFunc is a member of your object's class and has the
following syntax:

void Function_Name(CBindStatusCallback<T>* pbsc, BYTE* pBytes,
... DWORD dwSize);

CB indS tatusCallback: :m_dwTotaIRead

In the following example (taken from the ASYNC sample), the function On Data
writes the received data into a text box:

void OnData(CBindStatusCallback(CATLAsync)* pbsc,
BYTE* pBytes, DWORD dwSize)

m_bstrText.Append= (LPCSTR)pBytes;
if (:: IsWindow(m_EditCtrl.m_hWnd»
{

USES_CONVERSION;
::SendMessage(m_EditCtrl.m_hWnd, WM_SETTEXT, 0,

(LPARAM)OLE2CT«BSTR)m_bstrText»;

See Also: CBindStatusCallback::OnDataAvailable

Data Members
CBindStatusCallback: :m_dw AvailableToRead

Remarks

DWORD m_dwAvailableToRead;

Can be used to store the number of bytes available to be read. Initialized to zero
in StartAsyncDownload.

See Also: CBindStatusCallback: :StartAsyncDownload

CBindStatusCallback: :m_dwTotaIRead

Remarks

DWORD m_dwTotaIRead;

The cumulative total of bytes read in the asychronous data transfer. Incremented
every time OnDataAvailable is called by the number of bytes actually read.
Initialized to zero in StartAsyncDownload.

See Also: CBindStatusCallback: :StartAsyncDownload,
CBindStatusCallback:: OnDataAvailable

89

CBindStatusCallback: :m_pFunc

CBindStatusCallbacl(: :m_pFunc

Remarks
The function pointed to by m_pFunc is called by OnDataAvailable after it reads the
available data (for example, to store the data or print it to the screen).

The function pointed to by m_pFunc is a member of your object's class and has the
following syntax:

void Function_Name(CBindStatusCallback<T>* pbsc, BYTE* pBytes,
1+ DWORD dwSize);

See Also: CBindStatusCallback: :StartAsyncDownload,
CBindStatusCallback: :OnDataAvailable

CBindStatusCallback: :m_pT

Remarks
A pointer to the object requesting the asynchronous data transfer. The
CBindStatusCallback object is templatized on this object's class.

See Also: CBindStatusCallback: :StartAsyncDownload

CBindStatusCallback: :m_spBindCtx

Remarks

CComPtr<IBindCtx> m_spBindCtx;

A pointer to an IBindCtx interface that provides access to the bind context (an object
that stores information about a particular moniker binding operation). Initialized in
StartAsyncDownload.

See Also: CBindStatusCallback: :StartAsyncDownload, CComPtr

CBindStatusCallback: :m_spBinding

Remarks

90

CComPtr<IBinding> m_spBinding;

A pointer to the IBinding interface of the current bind operation. Initialized in
OnStartBinding and released in OnStopBinding.

CB indStatusCallback: :m_spStream

See the ActiveX SDK online for a description of IBinding.

See Also: CBindStatusCallback: :OnStartBinding,
CBindStatusCallback:: OnStopBinding, CComPtr

CBindStatusCallback: :m_spMoniker

Remarks

CComPtr<IMoniker> m_spMoniker;

A pointer to the IMoniker interface for the URL to use. Initialized in
StartAsyncDownload.

See Also: CBindStatusCallback: :StartAsyncDownload, CComPtr

CBindStatusCallback: :m_spStream

Remarks

CComPtr<IStream> m_spStream;

A pointer to the IStream interface of the current bind operation. Initialized in
OnDataAvailable from the STGMEDIUM structure when the BCSF flag is
BCSF _FIRSTDATANOTIFICATION and released when the BCSF flag is
BCSF _LASTDATANOTIFICATION.

See Also: CBindStatusCallback::OnDataAvailable, CComPtr

91

CComAggObject

CComAggObject
template< class contained>
class CComAggObject : public IUnknown,

public CComObjectRootEx< contained::_ThreadModel::ThreadModeINoCS >

Parameters
contained Your class, derived from CComObjectRoot or CComObjectRootEx,

as well as from any other interfaces you want to support on the object.

CComAggObject implements IUnknown for an aggregated object.
CComAggObject has its own IUnknown, separate from the outer object's
IUnknown, and maintains its own reference count.

CComAggObject uses CComContainedObject to delegate to the outer unknown.

For more information about aggregation, see the article "Fundamentals of ATL COM
Objects."

#include <atlcom.h>

See Also: CComObject, CComPolyObject, DECLARE_AGGREGATABLE,
DECLARE_ONLY_AGGREGATABLE, DECLARE_NOT_AGGREGATABLE

Class Methods

CComAggObject

Final Construct

FinalRelease

IUnknown Methods

AddRef

QueryInterface

Release

Data Members

Constructor.

Performs final initialization of m_contained.

Performs final destruction of m_contained.

Increments the reference count on the aggregated object.

Retrieves a pointer to the requested interface.

Decrements the reference count on the aggregated object.

Delegates IUnknown calls to the outer unknown.

Methods
CComAggObject: : AddRef

ULONG AddRef();

Return Value
A value that may be useful for diagnostics or testing.

92

CComAggObject: :FinalRelease

Remarks
Increments the reference count on the aggregated object.

See Also: CComAggObject: :Release

CComAggObject: : CComAggObject
CComAggObject(void* pv);

Parameters

Remarks

pv [in] The outer unknown.

The constructor. Initializes the CComContainedObject member, m_contained,
and increments the module lock count.

The destructor decrements the module lock count.

See Also: CComAggObject: :FinaIConstruct, CComAggObject: :FinalRelease

CComAggObject: : FinalConstruct
HRESULT FinaIConstruct();

Return Value

Remarks

A standard HRESULT value.

Called during the final stages of object construction, this method performs any final
initialization on the m_contained member.

See Also: CComObjectRootEx: :FinaIConstruct, CComAggObject: :FinalRelease

CComAggObject: : FinalRelease
void FinaIRelease();

Remarks
Called during object destruction, this method frees the m_contained member.

See Also: CComObjectRootEx: :FinaIRelease, CComAggObject: :Final Construct

93

CComAggObject: :Query Interface

CComAggObj ect:: Query Interface
HRESULT QueryInterface(REFIID iid, void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The identifier of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid. If the object does
not support this interface, ppvObject is set to NULL.

Retrieves a pointer to the requested interface. If the requested interface is IUnknown,
QueryInterface returns a pointer to the aggregated object's own IUnknown and
increments the reference count. Otherwise, this method queries for the interface
through the CComContainedObject member, m_contained.

CComAggObject: :Release
ULONG Release();

Return Value

Remarks

In debug builds, Release returns a value that may be useful for diagnostics or testing.
In non-debug builds, Release always returns o.

Decrements the reference count on the aggregated object.

See Also: CComAggObject: :AddRef

Data Members
CComAggObject: :m_contained

CComContainedObject< contained> m_contained;

Parameters

Remarks

94

contained [in] Your class, derived from CComObjectRoot or CComObjectRootEx,
as well as from any other interfaces you want to support on the object.

A CComContainedObject object derived from your class. All IUnknown calls
through m_contained are delegated to the outer unknown.

CComApartment
class CComApartment

CComApartment is used by CComAutoThreadModule to manage an apartment in
a thread-pooled EXE module. CComApartment provides methods for incrementing
and decrementing the lock count on a thread.

#include <atlbase.h>

Methods

Apartment

GetLockCount

Lock

Unlock

Data Members

m_dwThreadID

m_hThread

m_nLockCnt

Marks the starting address of the thread.

Returns the current lock count on the thread.

Increments the lock count on the thread.

Decrements the lock count on the thread.

Contains the identifier of the thread.

Contains the handle to the thread.

Contains the current lock count on the thread.

Methods
CComApartment: : Apartment

DWORD Apartment();

Return Value

Remarks

Always O.

The thread function marking the starting address of the thread. Automatically set
during CComAutoThreadModule: : Init.

CComApartment: : GetLockCount
LONG GetLockCount();

Return Value
The lock count on the thread.

CComApartment

95

CComApartment: :Lock

Remarks
Returns the current lock count on the thread.

See Also: CComApartment::Lock, CComApartment::Unlock,
CComApartment: :m_nLockCnt

CComApartment: :Lock
LONG Lock();

Return Value

Remarks

A value that may be useful for diagnostics or testing.

Performs an atomic increment on the thread's lock count. Called by
CComAutoThreadModule: :Lock.

The lock count on the thread is used for statistical purposes.

See Also: CComApartment:Unlock, CComApartment::GetLockCount,
CComApartment: :m_nLockCnt

CComApartment: : Unlock
LONG Unlock();

Return Value

Remarks

A value that may be useful for diagnostics or testing.

Performs an atomic decrement on the thread's lock count. Called by
CComAutoThreadModule:: Unlock.

The lock count on the thread is used for statistical purposes.

See Also: CComApartment: :Lock, CComApartment: :GetLockCount,
CComApartment::m_nLockCnt

Data Members
CComApartment: :m_dwThreadID

DWORD m_dwThreadID;

Remarks
Contains the identifier of the thread.

96

CComApartment::m_nLockCnt

CComApartment: :m_hThread
HANDLE m_hThread;

Remarks
Contains the handle to the thread.

CComApartment: :m_nLockCnt
LONG m_nLockCnt;

Remarks
Contains the current lock count on the thread.

See Also: CComApartment::Lock, CComApartment::Unlock

97

CComAutoCriticalSection

CComAutoCriticalSection
class CComAutoCriticalSection

CComAutoCriticalSection provides methods for obtaining and releasing
ownership of a critical section object. CComAutoCriticalSection is similar to
class CComCriticalSection, except CComAutoCriticalSection automatically
initializes critical section objects in the constructor.

Typically, you use CComAutoCriticalSection through the typedef name
AutoCriticalSection. This name references CComAutoCriticalSection when
CComMultiThreadModel is being used.

You should not use CComAutoCriticalSection in global objects or static class
members if you want to eliminate the CRT startup code. In this case, use
CComCriticalSection.

#include <atlbase.h>

See Also: CComFakeCriticalSection

Methods

CComAutoCriticalSection

Lock

Unlock

Data Members

Constructor.

Obtains ownership of the critical section object.

Releases ownership of the critical section object.

A CRITICAL_SECTION object.

Methods
CComAutoCriticalSection: :CComAutoCriticalSection

Remarks

98

void CComAutoCriticaISection();

The constructor. Calls the Win32 function InitializeCriticalSection, which initializes
the critical section object contained in the m_sec data member.

The destructor calls DeleteCriticaISection, which releases all system resources used
by the critical section object.

CComAutoCriticalSection: :m_sec

CComAutoCriticalSection: :Lock

Remarks

void Lock();

Calls the Win32 function EnterCriticalSection, which waits until the thread can
take ownership of the critical section object contained in the m_sec data member.
When the protected code has finished executing, the thread must call Unlock to
release ownership of the critical section.

CComAutoCriticalSection: : Unlock

Remarks

void Unlock();

Calls the Win32 function LeaveCriticalSection, which releases ownership of
the critical section object contained in the m_sec data member. To first obtain
ownership, the thread must call the Lock method. Each call to Lock then requires
a corresponding call to Unlock to release ownership of the critical section.

Data Members
CComAutoCriticalSection: :m_sec

Remarks
Contains a critical section object that is used by all CComAutoCriticalSection
methods.

See Also: CComAutoCriticalSection: :CComAutoCriticaISection,
CComAutoCriticalSection: :Lock, CComAutoCriticaISection:: Unlock

99

CComAutoThreadModule

CComAutoThreadModule
template< class ThreadAliocator = CComSimpleThreadAllocator >
class CComAutoThreadModule : public CComModule

Parameters

100

ThreadAliocator [in] The class managing thread selection. The default value is
CComSimpleThreadAllocator.

CComAutoThreadModule derives from CComModule to implement a
thread-pooled, apartment-model COM server for EXEs and Windows NT services.
CComAutoThreadModule uses CComApartment to manage an apartment for each
thread in the module.

Derive your module from CComAutoThreadModule when you want to create
objects in multiple apartments. You must also include the
DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's class
definition to specify CComClassFactoryAutoThread as the class factory.

By default, the ATL COM AppWizard will derive your module from CComModule.
To use CComAutoThreadModule, modify the class definition. For example:

class CMyModule :
public CComAutoThreadModule<CComSimpleThreadAllocator>
{

public:
LONG Unlock()
{

LONG 1 = CComAutoThreadModule<ComSimpleThreadAllocator>::Unlock();
if(1-=0)

PostThreadMessage(dwThreadID. WM_OUIT. 0. 0);
return 1;

DWORD dwThreadID;
} ;

For more information about the AppWizard, see the article "Creating an ATL Project."

#include <atlbase.h>

Methods

Createlnstance

GetDefaultThreads

Init

Lock

Unlock

Selects a thread and then creates an object in the associated apartment.

Dynamically calculates the number of threads for the module based on
the number of processors.

Creates the module's threads.

Increments the lock count on the module and on the current thread.

Decrements the lock count on the module and on the current thread.

CCornAutoThreadModule: : GetDefaultThreads

Data Members

dwThreadID

m_Allocator

m_nThreads

m_pApartments

Contains the identifier of the current thread.

Manages thread selection.

Contains the number of threads in the module.

Manages the module's apartments.

Methods
CComAutoThreadModule: : CreateInstance

HRESULT CreateInstance(void* pjnCreatelnstance,
.. REFIID riid, void** ppvObj);

Return Value
A standard HRESULT value.

Parameters

Remarks

pjnCreatelnstance [in] A pointer to a creator function.

riid [in] The lID of the requested interface.

ppvObj [out] A pointer to the interface pointer identified by riid. If the object does
not support this interface, ppvObj is set to NULL.

Selects a thread and then creates an object in the associated apartment. Called by
CComClassFactoryAutoThread::CreateInstance.

CComAutoThreadModule: : GetDefaultThreads
static int GetDefauItThreads();

Return Value

Remarks

The number of threads to be created in the EXE module.

This static method dynamically calculates the maximum number of threads for the
EXE module, based on the number of processors. By default, this return value is
passed to the Init method to create the threads.

101

CComAutoThreadModule: :Init

CComAutoThreadModule: :Init
void Init(_ATL_OBJMAP _ENTRY* p, HINSTANCE h,

... int nThreads = GetDefaultThreads());

Parameters

Remarks

p [in] A pointer to an array of object map entries.

h [in] The HINSTANCE passed to DLLMain or WinMain.

nThreads [in] The number of threads to be created. By default, nThreads is the value
returned by GetDefaultThreads.

Initializes data members and creates the number of threads specified by nThreads.

See Also: CComAutoThreadModule: :m_nThreads

CComAutoThreadModule: :Lock
LONG Lock();

Return Value

Remarks

A value that may be useful for diagnostics or testing.

Performs an atomic increment on the lock count for the module and for the current
thread. CComAutoThreadModule uses the module lock count to determine whether
any clients are accessing the module. The lock count on the current thread is used for
statistical purposes. ~

See Also: CComAutoThreadModule:: Unlock, CComModule: :m_nLockCnt,
CComApartment: :m_nLockCnt

CComAuto ThreadModule: : Unlock
LONG Unlock();

Return Value

Remarks

102

A value that may be useful for diagnostics or testing.

Performs an atomic decrement on the lock count for the module and for the current
thread. CComAutoThreadModule uses the module lock count to determine whether
any clients are accessing the module. The lock count on the current thread is used for
statistical purposes.

CComAutoThreadModule: :m_pApartments

When the module lock count reaches zero, the module can be unloaded.

See Also: CComAutoThreadModule: :LocI{, CComModule: :m_nLockCnt,
CComApartment: :m_nLockCnt

Data Members
CComAutoThreadModule: : dwThreadID

DWORD dwThreadID;

Remarks
Contains the identifier of the current thread.

CComAutoThreadModule::m Allocator

Remarks

ThreadAliocator m_Allocator;

The object managing thread selection. By default, the ThreadAliocator class template
parameter is CComSimpleThreadAllocator.

CComAutoThreadModule: :m_nThreads

Remarks

int m_nThreads;

Contains the number of threads in the EXE module. When Init is called, m_nThreads
is set to the nThreads parameter value. Each thread's associated apartment is managed
by a CComApartment object.

See Also: CComAutoThreadModule::m_pApartments

CComAutoThreadModule: :m_pApartments

Remarks

CComApartment* m_pApartments;

Points to an array of CComApartment objects, each of which manages an apartment
in the module. The number of elements in the array is based on the m_nThreads
member.

103

CComBSTR

CComBSTR

104

class CComBSTR

The CComBSTR class is a wrapper for BSTRs, length-prefixed strings. The
length is stored as an integer at the memory location preceding the data in
the string.

A BSTR is null-terminated after the last counted character, but may also
contain null characters embedded within the string. The string length is
determined by the character count, not the first null character.

#include <atlbase.h>

Methods

Append

AppendBSTR

Attach

CComBstr

Copy

Detach

Empty

Length

ReadFromStream

WriteToStream

Operators

operator BSTR

operator =
operator +=
operator &

operator!

Data Members

Appends a string to m_str.

Appends a BSTR to m_str.

Attaches a BSTR to the CComBSTR object.

Constructor.

Returns a copy of m_str.

Detaches m_str from the CComBSTR object.

Frees m_str.

Returns the length of m_str.

Loads a BSTR object from a stream.

Saves m_str to a stream.

Converts a CComBSTR object to a BSTR.

Assigns a value to m_str.

Appends a CComBSTR to the object.

Returns the address of m_str.

Returns TRUE or FALSE, depending on
whether m_str is NULL.

Contains the BSTR associated with the
CComBSTR object.

Methods
CComBSTR: :Append

void Append(const CComBSTR& bstrSrc);
void Append(LPCOLESTR /psz);
void Append(LPCSTR /psz);
void Append(LPCOLESTR /psz, int nLen);

Parameters

Remarks

bstrSrc [in] A CComBSTR object.

/psz [in] A character string. The Unicode version specifies an LPCOLESTR;
the ANSI version specifies an LPCSTR.

nLen [in] The number of characters from lpsz to append.

Appends either lpsz or the BSTR member of bstrSrc to m_str.

See Also: CComBSTR::AppendBSTR, CComBSTR::operator +=

CComBSTR: :AppendBSTR
void AppendBSTR(BSTR p);

Parameters
p [in] A BSTR to append.

,Remarks
Appends the specified BSTR to m_str.

See Also: CComBSTR::Append, CComBSTR::operator +=

CComBSTR::Attach
void Attach(BSTR src);

Parameters

Remarks

src [in] The BSTR to attach to the object.

Attaches a BSTR to the CComBSTR object by setting the m_str member to src.

Note This method will assert if m_str is non-NULL.

See Also: CComBSTR::Detach, CComBSTR::operator =

CComBSTR: :Attach

105

CComBSTR::CComBSTR

CComBSTR: :CComBSTR
CComBSTR();
CComBSTR(int nSize, LPCOLESTR sz = NULL);
CComBSTR(int nSize, LPCSTR sz = NULL);
CComBSTR(LPCOLESTR pSrc);
CComBSTR(LPCSTR pSrc);
CComBSTR(const CComBSTR& src);

Parameters

Remarks

nSize [in] The number of characters to copy from sz.

sz [in] A string to copy. The Unicode version specifies an LPCOLESTR; the ANSI
version specifies an LPCSTR. Only nSize characters will be copied. The default
value is NULL.

pSrc [in] A string to copy. The Unicode version specifies an LPCOLESTR; the
ANSI version specifies an LPCSTR.

src [in] A CComBSTR object.

The default constructor sets the m_str member to NULL. The copy constructor sets
m_str to a copy of the BSTR member of src.

The other four constructors set m_str to a copy of the specified string; however, if
you pass a value for nSize, then only nSize characters will be copied, followed by a
terminating null character.

The destructor frees the string pointed to by m_str.

CComBSTR: :Copy
BSTR Copy() const;

Return Value

Remarks

106

A copy of the m_str member.

Allocates and returns a copy of m_str.

See Also: CComBSTR: :operator =

CComBSTR: :ReadFromStream

CComBSTR::Detach
BSTR Detach();

Return Value

Remarks

The BSTR associated with the CComBSTR object.

Detaches m_str from the CComBSTR object and sets m_str to NULL.

See Also: CComBSTR: :Attach

CComBSTR: : Empty
void Empty();

Remarks
Frees the m_str member.

CComBSTR::Length
unsigned int Length() const;

Return Value
The length of the m_str member.

Remarks
Returns the number of characters in m_str, excluding the terminating null character.

CComBSTR: : ReadFromStream
HRESULT ReadFromStream(IStream* pStream);

Return Value
A standard HRESULT value.

Parameters

Remarks

pStream [in] A pointer to the IStream interface on the stream containing the data.

Sets the m_str member to the BSTR contained in the specified stream.
ReadToStream requires a previous call to WriteToStream.

107

CComBSTR::WriteToStream

CComBSTR: : WriteToStream
HRESULT WriteToStream(IStream* pStream);

Return Value
A standard HRESULT value.

Parameters
pStream [in] A pointer to the IStream interface on a stream.

Remarks
Saves the m_str member to a stream.

See Also: CComBSTR::ReadFromStream

Operators
CComBSTR::operator BSTR

operator BSTR() const;

Remarks
Converts a CComBSTR object to a BSTR.

CComBSTR::operator =

Remarks

CComBSTR& operator =(LPCOLESTR pSrc);
CComBSTR& operator =(LPCSTR pSrc);
CComBSTR& operator =(const CComBSTR& src);

Sets the m_str member to a copy of pSrc or to a copy of the BSTR member of src.
The pSrc parameter specifies either an LPCOLESTR for Unicode versions or
LPCSTR for ANSI versions.

See Also: CComBSTR: :Copy

CComBSTR::operator +=
CComBSTR& operator +=(const CComBSTR& bstrSrc);

Remarks
Appends the BSTR member of bstrSrc to m_str.

See Also: CComBSTR: :Append, CComBSTR: :AppendBSTR

108

CComBSTR::operator &
BSTR* operator &();

Remarks
Returns the address of the BSTR stored in the m_str member.

CComBSTR: : operator !
bool operator !();

Remarks
Returns true if the m_str member is NULL; otherwise, false.

Data Members
CComBSTR: :m_str

BSTR m_str;

Remarks
Contains the BSTR associated with the CComBSTR object.

CComBSTR: :m_str

109

CComCachedTearOffObject

CComCachedTearOffObject
template <class contained>
class CComCachedTearOffObject : public IUnknown,

public CComObjectRootEx< contained::_ ThreadModel: :ThreadModelNoCS >

Parameters

110

contained Your tear-off class, derived from CComTearOffObjectBase and the
interfaces you want your tear-off object to support.

CComCachedTearOffObject implements IUnknown for a tear-off interface. This
class differs from CComTearOffObject in that CComCachedTearOffObject has its
own IUnknown, separate from the owner object's IUnknown (the owner is the object
for which the tear-off is being created). CComCachedTearOffObject maintains its
own reference count on its IUnknown and deletes itself once its reference count is O.
Note, however, that querying for any of its tear-off interfaces increments the reference
count of the owner object's IUnknown.

If the CComCachedTearOffObject object implementing the tear-off is already
instantiated, and the tear-off interface is queried for again, the same
CComCachedTearOffObject object is reused. In contrast, if a tear-off interface
implemented by a CComTearOffObject is again queried for through the owner
object, another CComTearOffObject will be instantiated.

The owner class must implement FinalRelease and call Release on the cached
IUnknown for the CComCachedTearOffObject, which will decrement its reference
count. This will cause CComCachedTearOffObject's FinalRelease to be called and
delete the tear-off.

#include <atlcom.h>

See Also: CComTearOffObject, CComObjectRootEx

Methods

AddRef

CComCachedTearOffObject

Final Construct

FinalRelease

Query Interface

Release

Increments the reference count for a
CComCachedTearOffObject object.

Constructor.

Calls the m_contained::FinaIConstruct
(the tear-off class' method).

Calls the m_contained::FinaIRelease
(the tear-off class' method).

Returns a pointer to the IUnknown of the
CComCachedTearOffObject object, or to the requested
interface on your tear-off class (the class contained).

Decrements the reference count for a
CComCachedTearOffObject object and destroys
it if the reference count is O.

CComCachedTearOffObject::FinaIConstruct

Data Members

m_contained A CComContainedObject object derived from your
tear-off class (the class contained).

Methods
CComCachedTearOffObject: : AddRef

ULONG AddRef();

Return Value

Remarks

A value that may be useful for diagnostics and testing.

Increments the reference count of the CComCachedTearOffObject object by 1.

See Also: CComCachedTearOffObject: :Release

CComCachedTearOffObject: :CComCachedTearOffObject
CComCachedTearOffObject(void* pv);

Parameters

Remarks

pv [in] Pointer to the IUnknown of the CComCachedTearOffObject.

The constructor. Initializes the CComContainedObject member, m_contained.

See Also: CComTearOffObject

CComCachedTearOffObject: :FinalConstruct
HRESULT FinaIConstruct();

Return Value

Remarks

A standard HRESULT value.

Calls m_contained::FinaIConstruct to create m_contained, the
CComContainedObject<contained> object used to access the interface implemented
by your tear-off class.

See Also: CComCachedTearOffObject: :FinalRelease

111

CComCachedTearOffObject:: FinalRelease

CComCachedTearOffObject: : FinalRelease

Remarks

void FinalRelease();

Calls m_contained::FinaIRelease to free m_contained, the
CComContainedObject<contained> object.

See Also: CComCachedTearOffObject::FinaIConstruct

CComCachedTearOffObject:: Query Interface
HRESULT Querylnterface(REFIID iid , void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The GUID of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid, or NULL if the
interface is not found.

Retrieves a pointer to the requested interface. If the requested interface is IUnknown,
returns a pointer to the CComCachedTearOffObject's own IUnknown and
increments the reference count. Otherwise, queries for the interface on your tear-off
class using the InternalQuerylnterface method inherited from
CComObjectRootEx.

See Also: CComCachedTearOffObject::AddRef,
CComCachedTearOffObject::Release

CComCachedTearOffObj ect: : Release
ULONG Release();

Return Value

Remarks

112

In non-debug builds, always returns 0. In debug builds, returns the a value that may be
useful for diagnostics or testing.

Decrements the reference count by 1 and, if the reference count is 0, deletes the
CComCachedTearOffObject object.

See Also: CComCachedTearOffObject::AddRef

CComCachedTearOffObject::m_contained

Data Members
CComCachedTearOffObj ect: :m_ contained

CComContainedObject<colllailled> m_contained;

Parameters

Remarks

contained [in] Your tear-off class, derived from CComTearOffObjectBase and the
interfaces you want your tear-off object to support.

A CComContainedObject object derived from your tear-off class. The methods
m_contained inherits are used to access the tear-off interface in your tear-off class
through the cached tear-off object's Querylnterface, FinalConstruct, and
FinalRelease.

See Also: CComTearOffObject

113

CComClassFactory

CComClassFactory

114

class CComClassFactory : public IClassFactory,
public CComObjectRootEx< CComGlobalsThreadModel >

CComClassFactory implements the IClassFactory interface, which contains
methods for creating an object of a particular CLSID, as well as locking the class
factory in memory to allow new objects to be created more quickly. IClassFactory
must be implemented for every class that you register in the system registry and to
which you assign a CLSID.

ATL objects normally acquire a class factory by deriving from CComCoClass.
This class includes the macro DECLARE_CLASSFACTORY, which declares
CComClassFactory as the default class factory. To override this default, specify
one of the DECLARE_CLASSFACTORYXXX macros in your class definition.
For example, the DECLARE_CLASSFACTORY_EX macro uses the specified
class for the class factory:

class CMyClass : ... , public CComCoClass< ... >
{

public:
DECLARE_CLASSFACTORY_EX(CMyClassFactory)

} :

The above class definition specifies that CMyClassFactory will be used as the
object's default class factory. CMyClassFactory must derive from
CComClassFactory and override Createlnstance.

ATL provides three other macros that declare a class factory:

• DECLARE_CLASSFACTORY2 Uses CComClassFactory2, which controls
creation through a license.

• DECLARE_CLASSFACTORY_AUTO_THREAD Uses
CComClassFactory AutoThread, which creates objects in multiple apartments.

• DECLARE_CLASSFACTORY_SINGLETON Uses
CComClassFactorySingleton, which constructs a single CComObjectGlobal
object.

#include <atlcom.h>

See Also: CComObjectRootEx, CComGlobalsThreadModel

IClassFactory Methods

Createlnstance

LockServer

Creates an object of the specified CLSID.

Locks the class factory in memory.

CComClassFactory: :LockServer

Methods
CComClassFactory: :CreateInstance

HRESULT Createlnstance(LPUNKNOWN pUnkOuter, REFIID riid,
.. void** ppvObj);

Return Value
A standard HRESULT value.

Parameters

Remarks

pUnkOuter [in] If the object is being created as part of an aggregate, then pUnkOuter
must be the outer unknown. Otherwise, pUnkOuter must be NULL.

riid [in] The lID of the requested interface. If pUnkOuter is non-NULL, riid must be
IID_IUnknown.

ppvObj [out] A pointer to the interface pointer identified by riid. If the object does
not support this interface, ppvObj is set to NULL.

Creates an object of the specified CLSID and retrieves an interface pointer to this
object.

See Also: CoCreatelnstance, CoGetClassObject

CComClassFactory: :LockServer
HRESULT LockServer(BOOLfLock);

~eturn Value
A standard HRESULT value.

Jarameters

~emarks

fLock [in] If TRUE, the lock count is incremented; otherwise, the lock count
is decremented.

Increments and decrements the module lock count by calling _Module: :Lock
and _Module::Unlock, respectively. _Module refers to the global instance of
CComModule or a class derived from it.

Calling LockServer allows a client to hold onto a class factory so that multiple
objects can be created quickly.

See Also: CComModule::Lock, CComModule::Unlock

115

CComClassFactory2

CComClassF actory2
template< class license>
class CComClassFactory2 : public CComClassFactory2Base, license

Parameters

116

license A class that implements the following static functions:

• static BOOL VerifyLicenseKey(BSTR bstr);

• static BOOL GetLicenseKey(DWORD dwReserved, BSTR* pBstr);

• static BOOL IsLicenseValid();

CComClassFactory2 implements the IClassFactory2 interface, which is an
extension of IClassFactory. IClassFactory2 controls object creation through a
license. A class factory executing on a licensed machine can provide a run-time
license key. This license key allows an application to instantiate objects when a
full machine license does not exist.

ATL objects normally acquire a class factory by deriving from CComCoClass.
This class includes the macro DECLARE_CLASSFACTORY, which declares
CComClassFactory as the default class factory. To use CComClassFactory2,

. specify the DECLARE_CLASSFACTORY2 macro in your object's class
definition. For example:

cl ass CMyCl ass : publ i c CComCoCl ass< ... >
(

public:
DEClARE_ClASSFACTORY2(CMylicense)

} ;

CMyLicense, the template parameter to CComClassFactory2, must implement
the static functions VerifyLicenseKey, GetLicenseKey, and IsLicenseValid.
The following is an example of a simple license class:

class CMylicense
(

protected:
static BOOl VerifylicenseKey(BSTR bstr)
(

USES_CONVERSION;
return !lstrcmp(OlE2TCbstr). _TC"My run-time license key"»;

static BOOl GetlicenseKey(DWORD dwReserved. BSTR* pBstr)
(

USES_CONVERSION;
*pBstr = SysAllocString(T20lE(_TC"My run-time license key"»);
return TRUE;

CComClassFactory2: :Createlnstance

static BOOl IslicenseValid() { return TRUE; }
} ;

CComCIassFactory2 derives from both CComCIassFactory2Base and license.
CComClassFactory2Base, in turn, derives from ICIassFactory2 and
CComObjectRootEx< CComGlobalsThreadModel >.

#include <atlcom.h>

See Also: CComClassFactoryAutoThread, CComClassFactorySingleton,
CComObjectRootEx, CComGlobalsThreadModel

IClassFactory Methods

Createlnstance

LockServer

ICIassFactory2 Methods

CreatelnstanceLic

GetLicInfo

RequestLicKey

Creates an object of the specified CLSID.

Locks the class factory in memory.

Given a license key, creates an object of the specified CLSID.

Retrieves information describing the licensing capabilities
of the class factory.

Creates and returns a license key.

Methods
CComClassFactory2: :CreateInstance

HRESULT CreateInstance(LPUNKNOWN pUnkOuter, REFIID riid, void** ppvObj);

Return Value
A standard HRESULT value.

Parameters

Remarks

pUnkOuter [in] If the object is being created as part of an aggregate, then pUnkOuter
must be the outer unknown. Otherwise, pUnkOuter must be NULL.

riid [in] The lID of the requested interface. If pUnkOuter is non-NULL, riid must be
lID _IUnknown.

ppvObj [out] A pointer to the interface pointer identified by riid. If the object does
not support this interface, ppvObj is set to NULL.

Creates an object of the specified CLSID and retrieves an interface pointer to this
object. Requires the machine to be fully licensed. If a full machine license does not
exist, call CreateInstanceLic.

See Also: CoCreateInstance, CoGetClassObject

117

CComClassFactory2: :CreatelnstanceLic

CComClassFactory2: :CreateInstanceLic
HRESULT CreateInstanceLic(IUnknown* pUnkOuter, IUnknown* pUnkReserved,

10+ REFIID rUd, BSTR bstrKey, void** ppvObjeet);

Return Value
A standard HRESULT value.

Parameters

Remarks

pUnkOuter [in] If the object is being created as part of an aggregate, then pUnkOuter
must be the outer unknown. Otherwise, pUnkOuter must be NULL.

pUnkReserved [in] Not used. Must be NULL.

rUd [in] The lID of the requested interface. If pUnkOuter is non-NULL, rUd must
be IID_IUnknown.

bstrKey [in] The run-time license key previously obtained from a call to
RequestLicKey. This key is required to create the object.

ppvObjeet [out] A pointer to the interface pointer specified by riid. If the object does
not support this interface, ppvObjeet is set to NULL.

Similar to CreateInstance, except that CreateInstanceLic requires a license key.
You can obtain a license key using RequestLicKey. In order to create an object on
an unlicensed machine, you must call CreateInstanceLic.

See Also: CoCreateInstance, CoGetClassObject

CComClassFactory2: : GetLicInfo
HRESULT GetLicInfo(LICINFO* pLicInfo)

Return Value
A standard HRESULT value.

Parameters

Remarks

118

pLicInfo [out] Pointer to a LICINFO structure.

Fills a LICINFO structure with information that describes the class factory's
licensing capabilities. The jRuntimeKeyAvail member of this structure indicates
whether, given a license key, the class factory allows objects to be created on an
unlicensed machine. The fLie Verified member indicates whether a full machine
license exists.

See Also: CComClassFactory2: : RequestLicKey ,
CComClassFactory2:: CreateInstanceLic

CComClassFactory2: : RequestLicKey

:ComClassFactory2: :LockServer
HRESULT LockServer(BOOLjLock);

~eturn Value
A standard HRESULT value.

)arameters

~emarks

jLock [in] If TRUE, the lock count is incremented; otherwise, the lock count is
decremented.

Increments and decrements the module lock count by calling _Module::Lock and
_Module::Unlock, respectively. _Module refers to the global instance of
CComModule or a class derived from it.

Calling LockServer allows a client to hold onto a class factory so that multiple
objects can be quickly created.

See Also: CComModule::Lock, CComModule::Unlock

:ComClassFactory2: : RequestLicKey
HRESULT RequestLicKey(DWORD dwReserved, BSTR* pbstrKey);

leturn Value
A standard HRESULT value.

)arameters

remarks

dwReserved [in] Not used. Must be zero.

pbstrKey [out] Pointer to the license key.

Creates and returns a license key, provided that the fRuntimeKeyAvail
member of the LICINFO structure is TRUE. A license key is required for
calling CreatelnstanceLic to create an object on an unlicensed machine. If
fRuntimeKeyAvail is FALSE, then objects can only be created on a fully
licensed machine.

Call GetLicInfo to retrieve the value of fRuntimeKeyAvail.

119

CComClassFactory AutoThread

CComClassFactory AutoThread
class CComClassFactory AutoThread : public IClassFactory,

public CComObjectRootEx< CComGlobalsThreadModel >

CComClassFactoryAutoThread is similar to CComClassFactory, but allows
objects to be created in multiple apartments. To take advantage of this support,
derive your EXE module from CComAutoThreadModule.

ATL objects normally acquire a class factory by deriving from CComCoClass.
This class includes the macro DECLARE_CLASSFACTORY,
which declares CComClassFactory as the default class factory.
To use CComClassFactoryAutoThread, specify the
DECLARE_CLASSFACTORY_AUTO_THREAD macro in your
object's class definition. For example:

class CMyClass : ... , public CComCoClass< ... >
{

public:
DECLARE_CLASSFACTORY_AUTO_THREAD(

} ;

#includc <atJcom.h>

See Also: IClassFactory, CComClassFactory2, CComClassFactorySingleton,
CComObjectRootEx, CComGlobalsThreadModel

IClassFactory Methods

Create Instance

LockServer

Creates an object of the specified CLSID.

Locks the class factory in memory.

Methods
CComClassFactory AutoThread: :Createlnstance

HRESULT Createlnstance(LPUNKNOWN pUnkOuter, REFIID riid,
~ void** ppvObj);

Return Value
A standard HRESULT value.

Parameters

120

pUnkOuter [in] If the object is being created as part of an aggregate, then pUnkOuter
must be the outer unknown. Otherwise, pUnkOuter must be NULL.

CComClassFactory AutoThread: :LockServer

Remarks

riid [in] The lID of the requested interface. If pUnkOuter is non-NULL, riid must
be IID_IUnknown.

ppvObj [out] A pointer to the interface pointer identified by riid. If the object does
not support this interface, ppvObj is set to NULL.

Creates an object of the specified CLSID and retrieves an interface pointer to this
object. If your module derives from CComAutoThreadModule, Createlnstance
first selects a thread to create the object in the associated apartment.

See Also: CoCreatelnstance, CoGetClassObject

CComClassFactory AutoThread: : LockServer
HRESULT LockServer(BOOL fLock);

Return Value
A standard HRESULT value.

Parameters

Remarks

fLock [in] If TRUE, the lock count is incremented; otherwise, the lock count is
decremented.

Increments and decrements the module lock count by calling _Module: :Lock and
_Module:: Unlock, respectively. When using CComClassFactory AutoThread,
_Module typically refers to the global instance of CComAutoThreadModule.

Calling LockServer allows a client to hold onto a class factory so that multiple
objects can be quickly created.

See Also: CComAutoThreadModule: :Lock, CComAutoThreadModule:: Unlock

121

CComClassFactorySingleton

CComClassFactorySingleton
template< class T>
class CComClassFactorySingleton : public CComClassFactory

Parameters
T Your class.

CComClassFactorySingleton derives from CComClassFactory and uses
CComObjectGlobal to construct a single object. Each call to the Createlnstance
method simply queries this object for an interface pointer.

ATL objects normally acquire a class factory by deriving from CComCoClass.
This class includes the macro DECLARE_CLASSFACTORY, which declares
CComClassFactory as the default class factory. To use
CComClassFactorySingleton, specify the
DECLARE_CLASSFACTORY_SINGLETON macro in your object's class
definition. For example:

class CMyClass : ... , public CComCoClass< ... >
{

public:
DECLARE_CLASSFACTORY_SINGLETONCCMyClass)

} :

#include <atlcom.h>

See Also: IClassFactory, CComClassFactory2, CComClassFactoryAutoThread,
CComObjectRootEx, CComGlobalsThreadModel

IClassFactory Methods

CreateInstance

Data Members

Queries m_Obj for an interface pointer.

The CComObjectGlobal object constructed by
CComClassFactorySingleton.

Methods
CComClassFactorySingleton: :CreateInstance

HRESULT Createlnstance(LPUNKNOWN pUnkOuter, REFIID riid, void** ppvObj);

Return Value
A standard HRESULT value.

122

CComClassFactorySingleton: :m_ Obj

Parameters

Remarks

pUnkOuter [in] If the object is being created as part of an aggregate, then pUnkOuter
must be the outer unknown. Otherwise, pUnkOuter must be NULL.

riid [in] The lID of the requested interface. If pUnkOuter is non-NULL, rUd must be
IID_IUnknown.

ppvObj [out] A pointer to the interface pointer identified by riid. If the object does
not support this interface, ppvObj is set to NULL.

Calls Querylnterface through m_Obj to retrieve an interface pointer.

See Also: CoCreatelnstance, CoGetClassObject

Data Members
CComClassFactorySingleton: :m_ Obj

Remarks

CComObjectGlobal< T> m_Obj;

The CComObjectGlobal object constructed by CComClassFactorySingleton,
where T is the class template parameter. Each call to the Createlnstance method
simply queries this object for an interface pointer.

123

CComCoClass

CComCoClass
template< class T, const CLSID* pclsid >
class CComCoClass

Parameters

124

T Your class, derived from CComCoClass.

pclsid A pointer to the CLSID of the object.

CComCoClass provides methods for retrieving an object's CLSID and setting error
information. Any class object that can be created externally should be derived from
CComCoClass.

CComCoClass also defines the default class factory and aggregation model for your
object. CComCoClass uses the following two macros:

• DECLARE_CLASSFACTORY Declares the class factory to be
CComClassFactory.

• DECLARE_AGGREGATABLE Declares that your object can be aggregated.

You can override either of these defaults by specifying another macro in your class
definition. For example, to use CComClassFactory2 instead of CComClassFactory,
specify the DECLARE_CLASSFACTORY2 macro:

class CMyClass :
public CComCoClass<CMyClass. &CLSID_CMyClass>

public:
DECLARE_CLASSFACTORY2(CMyLicense)

} ;

#include <atIcom.h>

Methods

Error

GetObjectCLSID

GetObjectDescription

Returns rich error information to the client.

Returns the object's class identifier.

Override to return the object's description.

CComCoClass: : Error

Methods
CComCoClass: : Error

static HRESULT Error(LPCOLESTR lpszDesc, const IID& iid = GUID_NULL,
... HRESULT hRes = 0);

static HRESULT Error(LPCOLESTR IpszDesc, DWORD dwHelpID,
... LPCOLESTR IpszHelpFile, const IID& iid = GUID_NULL, HRESULT hRes = 0);

static HRESULT Error(LPCSTR IpszDesc, const IID& iid = GUID_NULL,
... HRESULT hRes = 0);

static HRESULT Error(LPCSTR lpszDesc, DWORD dwHelpID,
... LPCSTR IpszHelpFile, const IID& iid = GUID_NULL, HRESULT hRes = 0);

static HRESULT Error(UINT nID, const IID& iid = GUID_NULL,
... HRESULT hRes = 0, HINSTANCE hlnst = _Module.GetResourceInstance());

static HRESULT Error(UINT nID, DWORD dwHelpID, LPCOLESTR lpszHelpFile,
... const IID& iid = GUID_NULL, HRESULT hRes = 0,
... HINSTANCE hlnst = _Module.GetResourceInstance());

Return Value
A standard HRESULT value. For details, see Remarks.

Parameters

Remarks

lpszDesc [in] The string describing the error. The Unicode version of Error specifies
that IpszDesc is of type LPCOLESTR; the ANSI version specifies a type of
LPCSTR.

iid [in] The lID of the interface defining the error or GUID_NULL (the default
value) if the error is defined by the operating system.

hRes [in] The HRESULT you want returned to the caller. The default value is O.
For more details about hRes, see Remarks.

nID [in] The resource identifier where the error description string is stored. This
value should lie between Ox0200 and OxFFFF, inclusively. In debug builds, an
ASSERT will result if nID does not index a valid string. In release builds, the
error description string will be set to "Unknown Error."

dwHelpID [in] The help context identifier for the error.

lpszHelpFile [in] The path and name of the help file describing the error.

hlnst [in] The handle to the resource. By default, this parameter is
_Module::GetResourceInstance, where _Module is the global instance
of CComModule or a class derived from it.

This static method sets up the IErrorInfo interface to provide error information to the
client. In order to call Error, your object must implement the ISupportErrorInfo
interface.

125

CComCoClass::GetObjectCLSID

If the hRes parameter is nonzero, then Error returns the value of hRes. If hRes is zero,
then the first four versions of Error return DISP _E_EXCEPTION. The last two
versions return the result of the macro MAKE_HRESULT(1, FACILITY _ITF,
nID).

See Also: ISupportErrorInfoImpl, MAKE_HRESULT

CComCoClass: : GetObjectCLSID
static const CLSID& GetObjectCLSID();

Return Value
The object's class identifier.

Remarks
Provides a consistent way of retrieving the object's CLSID.

CComCoClass: : GetObj ectDescription
static LPCTSTR WINAPI GetObjectDescription();

Return Value

Remarks

126

The class object's description.

This static method retrieves the text description for your class object. The
default implementation returns NULL. You can override this method with the
DECLARE_OBJECT_DESCRIPTION macro. For example:

cl ass CMyCl ass : publ i c CComCoCl ass< ... >. ...
{

public:
DECLARE_OBJECT_DESCRIPTION("Account Transfer Object 1.0")

} ;

GetObjectDescription is called by IComponentRegistrar::GetComponents.
IComponentRegistrar is an Automation interface that allows you to register and
unregister individual components in a DLL. When you create a Component Registrar
object with the ATL Object Wizard, the wizard will automatically implement the
IComponentRegistrar interface. IComponentRegistrar is typically used by
Microsoft Transaction Server.

For more information about the ATL Object Wizard, see the article "Creating an
ATL Project."

CComContainedObject

CComContainedObject
tempIate< class Base>
class CComContainedObject : public Base

Parameters
Base Your class, derived from CComObjectRoot or CComObjectRootEx.

ATL uses CComContainedObject in classes CComAggObject, CComPolyObject,
and CComCachedTearOffObject. CComContainedObject implements IUnknown
by delegating to the owner object's IUnknown. (The owner is either the outer object
of an aggregation, or the object for which a tear-off interface is being created.)
CComContainedObject calls CComObjectRootEx's OuterQuerylnterface,
OuterAddRef, and OuterRelease, all inherited through Base.

#include <atlcom.h>

Class Methods

CComContainedObject Constructor. Initializes the member pointer to the owner object's
IUnknown.

GetControllingUnknown Retrieves the owner object's IUnknown.

IUnknown Methods

AddRef

Query Interface

Release

Increments the reference count on the owner object.

Retrieves a pointer to the interface requested on the owner object.

Decrements the reference count on the owner object.

Methods
CComContainedObject: : AddRef

ULONG AddRef();

Return Value
A value that may be useful for diagnostics or testing.

Remarks
Increments the reference count on the owner object.

See Also: CComContainedObject: :Release

CComContainedObject::CComContainedObject
CComContainedObject(void* pv);

Parameters
pv [in] The owner object's IUnknown.

127

CComContainedObject: :GetControllingUnknown

Remarks
The constructor. Sets the m_pOuterUnknown member pointer (inherited through the
Base class) to pv.

See Also: CComObjectRootEx: :m_pOuterUnknown

CComContainedObj ect: : GetControlling Unknown
IUnknown* GetControllingUnknown();

Return Value

Remarks

The owner object's IUnknown.

Returns the m_pOuterUnknown member pointer (inherited through the Base class)
which holds the owner object's IUnknown. This method may be virtual if Base has
declared the DECLARE_GET_CONTROLLING_UNKNOWN macro.

See Also: CComObjectRootEx::m_pOuterUnknown

CComContainedObj ect: : Query Interface
HRESULT Querylnterface(REFIID iid, void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The identifier of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid. If the object does
not support this interface, ppvObject is set to NULL.

Retrieves a pointer to the interface requested on the owner object.

CComContainedObject: :Release
ULONG Release();

Return Value

Remarks

128

In debug builds, Release returns a value that may be useful for diagnostics or testing.
In non-debug builds, Release always returns O.

Decrements the reference count on the owner object.

See Also: CComContainedObject::AddRef

CComControl
template < class T>
class CComControl : public CComControlBase, public CWindowlmpl< T>

Parameters
T The class implementing the control.

CComControl is a set of useful control helper functions and essential data
members for ATL controls. When you create a full control or an Internet Explorer
control using the ATL Object Wizard, the wizard will automatically derive your
class from CComControl.

For more information about creating a control, see the "ATL Tutorial." For
more information about the ATL Object Wizard, see the article "Creating an
ATL Project."

For a demonstration of CComControl methods and data members, see the
CIRC sample online.

#include <atlctl.h>

See Also: CWindowlmpl

CComControl class members are divided into the following categories:

• Methods

• CComControlBase Methods

• GetAmbient Property Methods

• Data Members

• Stock Property Data Members

Methods

CComControl

Control Query Interface

Create Control Window

FireOnChanged

FireOnRequestEdit

Constructor.

Retrieves a pointer to the requested
interface.

Creates a window for the control.

Notifies the container's sink that a
control property has changed.

Notifies the container's sink that a
control property is about to change.

CComControl

129

CComControl

130

CComControlBase Methods

CComControlBase

Does VerbActivate

Does Verb UIActivate

Do VerbProperties

Fire ViewChange

GetDirty

GetZoomlnfo

InPlaceActivate

OnDraw

OnDraw Advanced

OnGetDIgCode

OnKillFocus

OnPaint

OnSetFocus

Send On Close

SendOnDataChange

SendOnRename

SendOnSave

SendOn View Change

SetControlFocus

SetDirty

Constructor. Stores the window handle. Initializes

the control data and sets a default control size.

Checks that the iVerb parameter used by
IOleObjectImpl::DoVerb activates the control.

Checks that the iVerb parameter used by
IOleObjectImpl::DoVerb causes the control's
user interface to activate.

Tells the control to display its property sheet.

Tells the control to discard any undo the state it is
maintaining.

Retrieves the value of the flag indicating whether the
control's properties have changed since it was last saved.

Retrieves the zoom factor and stores it in the
ATL_DRA WINFO structure.

Determines that the control can be in-place activated,
informs the container the control is going in-place active,
and activates the control.

Draws your control.

Normalizes the device context, then calls your control
class's OnDraw method.

Called in response to a WM_GETDLGCODE message.
Override to have the control process TAB keys and
arrow keys.

Informs the container the control has lost focus.

Prepares the container for painting, gets information
about the control size, and calls your control class's
OnDraw method.

Informs the container the control has gained focus.

Called by the server to notify the control's advise
sinks the control has changed from the running to the
loaded state.

Called by the server to notify the control's advise sinks
that data in the control has changed.

Called by the server to notify the control's advise sinks
the control has been renamed.

Called by the server to notify the control's advise sinks
the control has been saved.

Notifies the control's advise sinks its view has changed.

Sets or removes keyboard focus to or from the control.

Sets the value of the flag indicating that the control's
properties have changed since it was last saved.

GetAmbient Property Methods

GetAmbientAppearance

GetAmbientAutoCIip

GetAmbientBackColor

GetAmbientDisplay AsDefault

GetAmbientDisplayName

GetAmbientFont

GetAmbientForeColor

GetAmbientLocaleID

GetAmbientMessageReflect

GetAmbientPalette

GetAmbientProperty

GetAmbientScaleUnits

GetAmbientShowGrabHandles

GetAmbientShow Hatching

GetAmbientSupportsMnemonics

GetAmbientTextAlign

GetAmbientUIDead

GetAmbientUserMode

Data Members

m_bDrawFromNatural

m_bDrawGetDataInHimetric

m_bInPlaceActive

m_bInPlaceSiteEx

m_bN egotiatedWnd

m_bRecomposeOnResize

m_bRequiresSave

m_bResizeNatural

Gets the container's APPEARANCE property.

Gets the container's AUTOCLIP property.

Gets the container's BACKCOLOR property.

Gets the container's DISPLAY AS DEFAULT property.

Gets the container's DISPLAYNAME property.

Gets the container's FONT properties.

Gets the container's FORECOLOR property.

Gets the container's LOCALEID property.

Gets the container's MESSAGEREFLECT property.

Gets the container's PALETTE property.

Retrieves the specified container property.

Gets the container's SCALEUNITS property.

Gets the container's SHOWGRABHANDLES property.

Gets the container's SHOWHATCHING property.

Gets the container's SUPPORTSMNEMONICS
property.

Gets the container's TEXTALIGN property.

Gets the container's UIDEAD property.

Gets the container's USERMODE property.

Flag indicating the control cannot be any other size,
and SetExtent should fail.

Flag indicating that GetData should use the control's
actual size and not its current extent when drawing.

Flag indicating that GetData should use HIMETRIC
units and not pixels when drawing.

Flag indicating the control is in-place active.

Flag indicating the container supports OCX96 control
features, such as windowless and flicker-free controls.

Flag indicating whether or not the control has negotiated
with the container about being windowless or windowed.

Flag indicating the control wants to recompose its
presentation when the container changes the control's
display size.

Flag indicating the control has changed since it was
last saved.

Flag indicating the control wants to resize its natural
extent (its unscaled physical size) when the container
changes the control's display size.

(continued)

CComControl

131

CComControl

132

Data Members (continued)

m_bUIActive

m_bUsingWindowRgn

m_b WasOnce Windowless

m_b Window Only

m_bWndless

m_hWndCD

m_nFreezeEvents

m_rcPos

m_sizeExtent

m_sizeNatural

m_spAdviseSink

m_spAmbientDispatch

m_spClientSite

m_spDataAdviseHolder

m_splnPlaceSite

m_spOleAdviseHolder

Stock Property Data Members

m_bAutoSize

m_bBorderVisible

m_bEnabled

m_bstrCaption

m_bstrText

m_bTabStop

m_bValid

m_cIrBackColor

Flag indicating the control's user interface is active.

Flag indicating the control is using the
container-supplied window region.

Flag indicating the control has been windowless,
but mayor may not be windowless now.

Flag indicating the control should be windowed even
if the container supports windowless controls.

Flag indicating the control is windowless.

A reference to the window handle associated with the
control.

A count of the number of times the container has
refused to accept events (a freeze of events) without
an intervening acceptance of events (a thaw of events).

A pointer to the window handle associated with the
control.

The RECT position of the control.

The SIZE of the control on a particular display in
HIMETRIC units (each logical unit is 0.01 millimeter).
This size is scaled by the display.

The fixed physical SIZE of the control in HIMETRIC
units (each logical unit is 0.01 millimeter). This size is
not scaled by the display.

A COM interface pointer of type lAd viseS ink.

A CComDispatchDriver object used to set and get
properties through IDispatch.

A COM interface pointer of type IOleClientSite.

A COM interface pointer of type IDataAdviseHolder.

A pointer to the container's IOIeInPlaceSite,
IOIeInPlaceSiteEX, or IOleInPlaceSiteWindowless
COM interface.

A COM interface pointer of type IOleAdviseHolder.

Stores the AUTOSIZE stock property.

Stores the BORDERVISIBLE stock property.

Stores the ENABLED stock property.

Stores the CAPTION stock property.

Stores the TEXT stock property.

Stores the TABSTOP stock property.

Stores the VALID stock property.

Stores the BACKCOLOR stock property.

CComControl: :CComControlBase

Stock Property Data Members (continued)

m_clrBorderColor

m_clrFillColor

m_clrForeColor

m_nAppearance

m_nBackStyle

m_nBorderStyle

m_nBorderWidth

m_nDrawMode

m_nDrawStyle

m_nDrawWidth

m_nFillStyle

m_nMousePointer

m_nReadyState

m_pFont

m_pMouseIcon

m_pPicture

Stores the BORDERCOLOR stock property.

Stores the FILLCOLOR stock property.

Stores the FORECOLOR stock property.

Stores the APPEARANCE stock property.

Stores the BACKSTYLE stock property.

Stores the BORDERSTYLE stock property.

Stores the BORDERWIDTH stock property.

Stores the DRAWMODE stock property.

Stores the DRAWSTYLE stock property.

Stores the DRAWWIDTH stock property.

Stores the FILLSTYLE stock property.

Stores the MOUSEPOINTER stock property.

Stores the READYSTATE stock property.

Stores the FONT stock property.

Stores the MOUSEICON stock property.

Stores the PICTURE stock property.

Methods
CComControl: : CComControl

Remarks

CComControl();

The constructor. Calls the CComControlBase constructor, passing the m_h Wnd data
member inherited through CWindowImpl.

See Also: CComControl::CComControlBase, CWindow::m_hWnd

CComControl: : CComControlBase
CComControlBase(HWND h);

Parameters

Remarks

h [in] The handle to the window associated with the control.

The constructor. Stores a pointer to the window handle in the data member
m_phWndCD. Initializes the control size to 5080X5080 HIMETRIC units (2"X2")
and initializes the CComControlBase data member values to NULL or FALSE.

See Also: CComControl: :m_sizeExtent, CComControl: :m_ph WndCD

133

CComControl: :ControlQueryInterface

CComControl::ControIQueryInterface
virtual HRESULT ControlQuerylnterface(const IID& iid, void** ppv);

Parameters

Remarks

iid [in] The OUID of the interface being requested.

ppv [out] A pointer to the interface pointer identified by iid, or NULL if the interface
is not found.

Retrieves a pointer to the requested interface. Only handles interfaces in the COM
map table.

See Also: CComObjectRootEx::lnternaIQuerylnterface

CComControl: :CreateControlWindow
virtual HWND CreateControlWindow(HWND hWndParent, RECT& rcPos);

Parameters

Remarks

h WndParent [in] Handle to the parent or owner window. A valid window handle must
be supplied. The control window is confined to the area of its parent window.

rcPos [in] The initial size and position of the window to be created.

By default, creates a window for the control by calling CWindowlmpl::Create.
Override this method if you want to do something other than create a single window,
for example, to create two windows, one of which becomes a toolbar for your control.

See Also: CWindowlmpl: : Create

CComControl: :Does VerbActivate
BOOL DoesVerbActivate(LONG iVerb);

Return Value
Returns TRUE if iVerb equals OLEIVERB_UIACTIVATE,
OLEIVERB_PRIMARY, OLEIVERB_SHOW, or
OLEIVERB_INPLACEACTIVATE; otherwise, returns FALSE.

Parameters

Remarks

134

iVerb [in] Value indicating the action to be performed by Do Verb.

Checks that the iVerb parameter used by IOleObjectImpl::DoVerb either activates
the control's user interface (iVerb equals OLEIVERB_UIACTIVATE), defines the

CComControl: :Do VerbProperties

action taken when the user double-clicks the control (iVerb equals
OLEIVERB_PRIMARY), displays the control (iVerb equals OLEIVERB_SHOW),
or activates the control (iVerb equals OLEIVERB_INPLACEACTIVATE). You can
override this method to define your own activation verb.

See Also: IOleObjectlmpl: :Do Verb, CComControl: :DoesVerb UIActivate

CComControl: :Does Verb UIActivate
BOOL DoesVerbUIActivate(LONG iVerb);

Return Value
Returns TRUE if iVerb equals OLEIVERB_UIACTIVATE or
OLEIVERB_PRIMARY. Also returns TRUE if the control is not active
and iVerb equals OLEIVERB_UIACTIVATE, OLEIVERB_PRIMARY,
OLEIVERB_SHOW, or OLEIVERB_INPLACEACTIVATE. Otherwise,
the method returns FALSE.

Parameters

Remarks

iVerb [in] Value indicating the action to be performed by Do Verb.

Checks that the iVerb parameter used by IOleObjectlmpl::DoVerb causes the
control's user interface to activate and returns TRUE.

DoesVerbUIActivate also checks whether the control is in-place active. If it is not
and the value of iVerb causes the control to go active, DoesVerbUIActivate returns
TRUE. This handles older containers that must activate the control and its user
interface together.

See Also: IOleObjectlmpl: :Do Verb, CComControl: :Does Verb Activate

CComControl: :Do VerbProperties
HRESULT DoVerbProperties(LPCRECT prcPosRect, HWND hwndParent);

Return Value
One of the standard HRESULT values.

Parameters
prcPosRec [in] Pointer to the rectangle the container wants the control to draw into.

hwndParent [in] Handle of the window containing the control. Not used in the ATL
implementation.

135

CComControl::FireOnChanged

Remarks
Displays the control's property pages. By default, this is set as the action taken when
the user double-clicks the control. You can change this to another action by overriding
IOleObjectlmpl::DoVerbPrimary.

See Also: IOleObjectlmpl: :Do VerbPrimary

CComControl: : FireOnChanged
HRESULT FireOnChanged(DISPID dispID);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

dispID [in] Identifier of the property that has changed.

If your control class derives from IPropertyNotifySink, this method calls
CFirePropNotifyEvent::FireOnChanged to notify all connected
IPropertyNotifySink interfaces that the specified control property has changed.
If your control class does not derive from IPropertyNotifySink, this method
returns S_OK.

This function is safe to call even if your control doesn't support connection points.

See Also: CComControl: :FireOnRequestEdit

CComControl: : FireOnRequestEdit
HRESULT FireOnRequestEdit(DISPID dispID);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

136

dispID [in] Identifier of the property about to change.

If your control class derives from IPropertyNotifySink, this method calls
CFirePropNotifyEvent: :FireOnRequestEdit to notify all connected
IPropertyNotifySink interfaces that the specified control property is about to
change. If your control class does not derive from IPropertyNotifySink, this
method returns S_OK.

This function is safe to call even if your control doesn't support connection points.

See Also: CComControl::FireOnChanged

CComControl: :GetAmbientAutoClip

CComControl: : Fire ViewChange
HRESULT Fire ViewChange();

Return Value

Remarks

One of the standard HRESULT values.

If the control is active (the control class data member m_blnPlaceActive is TRUE),
notifies the container that you want to redraw the entire control. If the control is
inactive, notifies the control's registered advise sinks (through the control class data
member m_spAdviseSink) that the control's view has changed.

CComControl: : GetAmbientAppearance
HRESULT GetAmbientAppearance(short& nAppearance);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

nAppearance [out] The property DISPID_AMBIENT_APPEARANCE.

Retrieves DISPID_AMBIENT_APPEARANCE, the current appearance setting for
the control: 0 for flat and 1 for 3D.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientAutoClip
HRESULT GetAmbientAutoClip(BOOL& bAutoClip);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bAutoClip [out] The property DISPID_AMBIENT_AUTOCLIP.

Retrieves DISPID_AMBIENT_AUTOCLIP, a flag indicating whether the container
supports automatic clipping of the control display area.

See Also: GetAmbient Property Methods

137

CComControl::GetAmbientBackColor

CCornControl: : GetArnbientBackColor
HRESULT GetAmhientBackColor(OLE_ COLOR& BackColor);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

BackColor [out] The property DISPID_AMBIENT_BACKCOLOR.

Retrieves DISPID_AMBIENT_BACKCOLOR, the ambient background color
for all controls, defined by the container.

See Also: GetAmbient Property Methods

CCornControl: : GetArnbientDisplay AsDefault
HRESULT GetAmhientDisplayAsDefault(BOOL& bDisplayAsDefault);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bDisplayAsDefault [out] The property
DISPID_AMBIENT_DISPLAYASDEFAULT.

Retrieves DISPID_AMBIENT_DISPLAYASDEFAULT, a flag that is TRUE if
the container has marked the control in this site to be a default button, and therefore
a button control should draw itself with a thicker frame.

See Also: GetAmbient Property Methods

CCornControl: : GetArnbientDisplay N arne
HRESULT GetAmhientDisplayName(BSTR& bstrDisplayName);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

138

bstrDisplayName [out] The property DISPID_AMBIENT_DISPLAYNAME.

Retrieves DISPID_AMBIENT_DISPLAYNAME, the name the container has
supplied to the control.

See Also: GetAmbient Property Methods

CComControl::GetAmbientLocaleID

CComControl: : GetAmbientFont
HRESULT GetAmbientFont(IFont** ppFont);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

ppFont [out] The property DISPID_AMBIENT_FONT.

Retrieves DISPID_AMBIENT_FONT, a pointer to the container's ambient IFont
dispatch interface. If the property is NULL, the pointer is NULL. If the pointer is not
NULL, the caller must release the pointer.

See Also: GetAmbient Property Methods

CComControl:: GetAmbientForeColor
HRESULT GetAmbientForeColor(OLE_COLOR& ForeColor);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

ForeColor [out] The property DISPID_AMBIENT_FORECOLOR.

Retrieves DISPID_AMBIENT_FORECOLOR, the ambient foreground color for
all controls, defined by the container.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientLocaleID
HRESULT GetAmbientLocaleID(LCID& lcid);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

lcid [out] The property DISPID_AMBIENT_LOCALEID.

Retrieves DISPID_AMBIENT_LOCALEID, the identifier of the language used by
the container. The control can use this identifier to adapt its user interface to different
languages.

See Also: GetAmbient Property Methods

139

CComControl::GetAmbientMessageReflect

CComControl: : GetAmbientMessageReflect
HRESULT GetAmbientMessageReflect(BOOL& bMessageReflect);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bMessageReflect [out] The property DISPID_AMBIENT_MESSAGEREFLECT.

Retrieves DISPID_AMBIENT_MESSAGEREFLECT, a flag indicating whether
the container wants to receive window messages (such as WM_DRAWITEM) as
events.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientPalette
HRESULT GetAmbientPalette(HPALETTE& hPalette);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

hPalette [out] The property DISPID_AMBIENT_PALETTE.

Retrieves DISPID_AMBIENT_PALETTE, used to access the container's
HPALETTE.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientProperty
HRESULT GetAmbientProperty(DISPID dispid, VARIANT& var);

Return Value
One of the standard HRESULT values.

Parameters
dispid [in] Identifier of the container property to be retrieved.

var [in] Variable to receive the property.

Remarks
Retrieves the container property specified by id.

140

CComControl: :GetAmbientShowHatching

ATL has provided a set of helper functions to retrieve specific properties, for example,
GetAmbientBackColor. These functions retrieve specific properties.

See Also: CComControl: :m_spClientSite, GetAmbient Property Methods

CComControl: : GetAmbientScale Units
HRESULT GetAmbientScaleUnits(BSTR& bstrScaleUnits);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bstrScaleUnits [out] The property DISPID_AMBIENT_SCALEUNITS.

Retrieves DISPID_AMBIENT_SCALEUNITS, the container's ambient units
(such as inches or centimeters) for labeling displays.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientShowGrabHandles
HRESULT GetAmbientShowGrabHandles(BOOL& bShowGrabHandles);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bShowGrabHandles [out] The property
DISPID_AMBIENT_SHOWGRABHANDLES.

Retrieves DISPID_AMBIENT_SHOWGRABHANDLES, a flag indicating whether
the container allows the control to display grab handles for itself when active.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientShow Hatching
HRESULT GetAmbientShowHatching(BOOL& bShowHatching);

Return Value
One of the standard HRESULT values.

Parameters
bShowHatching [out] The property DISPID_AMBIENT_SHOWHATCHING.

141

CComControl: :GetAmbientSupportsMnemonics

Remarks
Retrieves DISPID_AMBIENT_SHOWHATCHING, a flag indicating whether the
container allows the control to display itself with a hatched pattern when VI active.

See Also: GetAmbient Property Methods

CComControl::GetAmbientSupportsMnemonics
HRESVLT GetAmbientSupportsMnemonics(BOOL& bSupportsMnemonics);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bSupportsMnemonics [out] The property
DISPID_AMBIENT_SUPPORTSMNEMONICS.

Retrieves DISPID_AMBIENT_SUPPORTSMNEMONICS, a flag indicating
whether the container supports keyboard mnemonics.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientTextAlign
HRESULT GetAmbientTextAlign(short& nTextAlign);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

nTextAlign [out] The property DISPID_AMBIENT_TEXTALIGN.

Retrieves DISPID_AMBIENT_TEXTALIGN, the text alignment preferred by the
container: 0 for general alignment (numbers right, text left), 1 for left alignment,
2 for center alignment, and 3 for right alignment.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientUIDead
HRESULT GetAmbientUIDead(BOOL& bUIDead);

Return Value
One of the standard HRESULT values.

142

CComControl: :GetZoomlnfo

Parameters

Remarks

bUIDead [out] The property DISPID_AMBIENT_UIDEAD.

Retrieves DISPID_AMBIENT_UIDEAD, a flag indicating whether the container
wants the control to respond to user-interface actions. If TRUE, the control should not
respond. This flag applies regardless of the DISPID_AMBIENT_USERMODE flag.

See Also: GetAmbient Property Methods

CComControl: : GetAmbientU serMode
HRESULT GetAmhientUserMode(BOOL& bUserMode);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

bUserMode [out] The property DISPID_AMBIENT_USERMODE.

Retrieves DISPID_AMBIENT_USERMODE, a flag indicating whether the
container is in run-mode (TRUE) or design-mode (FALSE).

See Also: GetAmbient Property Methods

CComControl: : GetDirty
BOOL GetDirty();

Return Value

Remarks

Returns the value of data member m_bRequiresSave.

Returns the value of data member m_bRequiresSave. This value is set in SetDirty.

See Also: CComControl: :SetDirty

CComControl:: GetZoomInfo
void GetZoomlnfo(ATL_DRAWINFO& di);

Parameters
di [out] The structure that will hold the zoom factor's numerator and denominator.

143

CComControl: :InPlaceActi vate

Remarks
Retrieves the x and y values of the numerator and denominator of the zoom factor for
a control activated for in-place editing. The zoom factor is the proportion of the
control's natural size to its current extent.

See Also: CComControl::m_sizeNatural, CComControl::m_sizeExtent

CComControl: : InPlaceActivate
HRESULT InPlaceActivate(LONG iVerb, const RECT* prcPosRect = NULL);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

iVerb [in] Value indicating the action to be performed by IOleObjectImpl::DoVerb.

prcPosRect [in] Pointer to the position of the in-place control.

Causes the control to transition from the inactive state to whatever state the verb in
iVerb indicates. Before activation, this method checks that the control has a client site,
checks how much of the control is visible, and gets the control's location in the parent
window. After the control is activated, this method activates the control's user
interface and tells the container to make the control visible.

This function also retrieves an IOlelnPlaceSite, IOlelnPlaceSiteEx, or
IOlelnPlaceSite Windowless interface pointer for the control and stores it in the
control class's data member m_splnPlaceSite. The control class data members
m_blnPlaceSiteEx, m_bWndless, m_bWasOnceWindowless, and
m_bNegotiatedWnd are set to TRUE as appropriate.

See Also: IOlelnPlaceObjectWindowlesslmpl: : InPlaceDeactivate

CComControl: :OnDraw
virtual HRESULT OnDraw(ATL_DRAWINFO& di);

Return Value
A standard HRESULT value.

Parameters

Remarks

144

di [in] A reference to the ATL_DRAWINFO structure that contains drawing
information such as the draw aspect, the control bounds, and whether the drawing
is optimized or not.

Override this method to draw your control.

CComControl::OnGetDlgCode

The default OnDraw deletes or restores the device context or does nothing,
depending on flags set in OnDrawAdvanced.

An OnDraw method is automatically added to your control class when you create
your control with the ATL Object Wizard. The wizard's default OnDraw draws a
rectangle with the label "ATL 2.0".

See Also: CComControl::OnDrawAdvanced,IViewObjectExImpl::Draw

CComControl: :OnDraw Advanced
virtual HRESULT OnDrawAdvanced(ATL_DRAWINFO& di);

~eturn Value
A standard HRESULT value.

Jarameters

~emarks

di [in] A reference to the ATL_DRAWINFO structure that contains drawing
information such as the draw aspect, the control bounds, and whether the drawing
is optimized or not.

The default OnDraw Advanced prepares a normalized device context for drawing,
then calls your control class's OnDraw method. Override this method if you want to
accept the device context passed by the container without normalizing it.

An OnDraw method is automatically added to your control class when you create
your control with the ATL Object Wizard. The wizard's default OnDraw draws a
rectangle with the label "ATL 2.0".

See Also: CComControl::OnDraw, IViewObjectExImpl::Draw

CComControl: : On GetD 19Code
LRESULT OnGetDIgCode(UINT nMsg, WPARAM wParam,

~ LPARAM iParam, BOOL& bRandied);

~eturn Value
The result of message processing. 0 if successful.

)arameters
nMsg [in] The window message identifier. Not used in the default

ATL implementation.

wParam [in] A 32-bit message parameter. Not used in the default
ATL implementation.

iParam [in] A 32-bit message parameter. Not used in the default
ATL implementation.

145

CComControl: :OnKillFocus

Remarks

bHandled [in, out] Flag that indicates whether the window message was
successfully handled. The default is TRUE.

Called in response to a WM_GETDLGCODE window message. The message is sent
to the dialog box associated with the control. Override this method to let the control
process the input of arrow keys and TAB keys. The default ATL implementation
simply returns O.

See Also: WM_GETDLGCODE

CComControl: : OnKillFocus
LRESULT OnKillFocus(UINT nMsg, WPARAM wParam,

... LPARAM IParam, BOOL& bHandled);

Return Value
Always returns o.

Parameters

Remarks

nMsg [in] The window message identifier. Not used in the default ATL
implementation.

wParam [in] A 32-bit message parameter. Not used in the default ATL
implementation.

IParam [in] A 32-bit message parameter. Not used in the default ATL
implementation.

bHandled [in, out] Flag that indicates whether the window message was successfully
handled. The default is TRUE.

Checks that the control is in-place active and has a valid control site, then informs the
container the control has lost focus.

See Also: CComControl: :m_bInPlaceActive, CComControl: :m_spClientSite

CComControl: : OnPaint
LRESULT OnPaint(UINT nMsg, WPARAM wParam, LPARAM IParam,

... BOOL& IResult);

Return Value
Returns zero.

146

CComControl: :OnSetFocus

Parameters

~emarks

nMsg [in] Specifies the message. Not used in the default ATL implementation.

wParam [in] Additional message-specific information. Not used in the default
ATL implementation.

lParam [in] Additional message-specific information. Not used in the default
ATL implementation.

lResult [in, out] A boolean value. Not used in the default ATL implementation.
See MESSAGE_HANDLER for more information.

Prepares the container for painting, gets the control's client area, then calls the control
class's OnDraw method.

An OnDraw method is automatically added to your control class when you create
your control with the ATL Object Wizard. The wizard's default OnDraw draws a
rectangle with the label "ATL 2.0".

See Also: BeginPaint, EndPaint, IViewObjectExImpl::Draw

CComControl: :OnSetFocus
LRESULT OnSetFocus(UINT nMsg, WPARAM wParam, LPARAM IParam,

-. BOOL& bHandled);

~eturn Value
Always returns O.

'arameters

~emarks

nMsg [in] The window message identifier. Not used in the default ATL
implementation.

wParam [in] A 32-bit message parameter. Not used in the default ATL
implementation.

IParam [in] A 32-bit message parameter. Not used in the default ATL
implementation.

bRandied [in, out] Flag that indicates whether the window message was successfully
handled. The default is TRUE.

Checks that the control is in-place active and has a valid control site, then informs the
container the control has gained focus.

See Also: CComControl::m_bInPlaceActive, CComControl::m_spClientSite

147

CComControl: :SendOnClose

CComControl: : SendOnClose
HRESULT SendOnClose();

Return Value

Remarks

One of the standard HRESULT values.

Notifies all advisory sinks registered with the advise holder that the control has
been closed.

See Also: CComControl: :m_spOleAdviseHolder

CComControl: : SendOnDataChange
HRESULT SendOnDataChange(DWORD advf = 0);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

advf [in] Advise flags that specify how the call to IAdviseSink::OnDataChange
is made. Values are from the ADVF enumeration.

Notifies all advisory sinks registered with the advise holder that the control data
has changed.

See Also: CComControl: :m_spDataAdviseHolder

CComControl:: SendOnRename
HRESULT SendOnRename(IMoniker* pmk);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

148

pmk [in] Pointer to the new moniker of the control.

Notifies all advisory sinks registered with the advise holder that the control has a
new moniker.

See Also: CComControl::m_spOleAdviseHolder

CComControl: :SetControlFocus

CComControl:: SendOnSave
HRESULT SendOnSave();

=leturn Value

=lemarks

One of the standard HRESULT values.

Notifies all advisory sinks registered with the advise holder that the control has been
saved.

See Also: CComControl: :m_spOleAdviseHolder

CComControl:: SendOn ViewChange
HRESULT SendOn ViewChange(DWORD dwAspect, LONG !index = -1);

=leturn Value
One of the standard HRESULT values.

larameters

=lemarks

dwAspect [in] The aspect or view of the control.

lindex [in] The portion of the view that has changed. Only -1 is valid.

Notifies all registered advisory sinks that the control's view has changed.

See Also: CComControl: :m_spAdviseSink

CComControl:: SetControlFocus
BOOL SetControlFocus(BOOL bGrab);

~eturn Value
Returns TRUE if the control successfully receives focus; otherwise, FALSE.

)arameters

~emarks

bGrab [in] If TRUE, sets the keyboard focus to the calling control. If FALSE,
removes the keyboard focus from the calling control, provided it has the focus.

Sets or removes the keyboard focus to or from the control. For a windowed
control, the Windows API function SetFocus is called. For a windowless control,
IOleInPlaceSiteWindowless::SetFocus is called. Through this call, a windowless
control obtains the keyboard focus and can respond to window messages.

149

CComControl: :SetDirty

CComControl: : SetDirty
void SetDirty(BOOL bDirty);

Parameters

Remarks

bDirty [in] Value of the data member m_bRequiresSave.

Sets the data member m_bRequiresSave to the value in bDirty. You should call
SetDirty(TRUE) to flag that the control has changed since it was last saved. The
value of m_bRequiresSave is retrieved with GetDirty.

Data Members
CComControl: :m_bAutoSize

Remarks

unsigned m_bAutoSize:l;

Flag indicating the control cannot be any other size. This flag is checked by
IOleObjectImpl::SetExtent and, if TRUE, causes the function to return E_FAIL.

If you choose the AUTOSIZE option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

See Also: IOleObjectImpl: :SetExtent

CComControl: :m_bBorderVisible

Remarks

150

BOOL m_bBorderVisible;

The data member in your control class that flags whether the control's border should
be visible or not. If you choose the BORDERVISIBLE option from the Stock
Properties tab in the ATL Object Wizard, the wizard automatically creates this data
member in your control class, creates put and get methods for the property, and
supports IPropertyNotifySink to automatically notify the container when the
property changes.

See Also: CComControl: :m_nBorderStyle, CComControl: :m_clrBorderColor,
CComControl: :m_nBorderWidth

CComControl::m_blnPlaceActive

CComControl: :m_bDraw FromN atural

Remarks

unsigned m_bDrawFromNatural:l;

Flag indicating that IDataObjectImpl::GetData should set the control size from
m_sizeNatural rather than from m_sizeExtent.

See Also: IDataObjectImpl::GetData, CComControl::m_sizeNatural,
CComControl: :m_sizeExtent

CComControl: :m_bDrawGetDataInHimetric

~emarks

unsigned m_bDrawGetDatalnHimetric: 1;

Flag indicating that IDataObjectImpl::GetData should use HIMETRIC units and
not pixels when drawing. Each logical HIMETRIC unit is 0.01 millimeter.

See Also: IDataObjectImpl::GetData

CComControl: :m_bEnabled

~emarks

BOOL m_bEnabled;

The data member in your control class that flags whether the control is enabled.
The m_blnPlaceActive flag indicates the control is in-place active, while the
m_bUIActive flag indicates the control's user interface (menus and toolbars) is
also active.

If you choose the ENABLED option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

2ComControl::m_bInPlaceActive

lemarks

unsigned m_blnPlaceActive: 1;

Flag indicating the control is in-place active. This means the control is visible and
its window, if any, is visible, but its menus and toolbars may not be active. The
m_bUIActive flag indicates the control's user interface, such as menus, is also active.

See Also: CComControl::m_bEnabled, CComControl::m_bUIActive

151

CComControl: :m_bInPlaceSiteEx

CComControl: :m_bInPlaceSiteEx

Remarks

unsigned m_blnPlaceSiteEx: 1;

Flag indicating the container supports the IOlelnPlaceSiteEx interface and OCX96
control features, such as windowless and flicker-free controls.

The data member m_splnPlaceSite points to an IOlelnPlaceSite,
IOlelnPlaceSiteEx, or IOlelnPlaceSiteWindowless interface, depending on
the value of the m_b Wndless and m_blnPlaceSiteEx flags. (The data member
m_bNegotiatedWnd must be TRUE for the m_splnPlaceSite pointer to
be valid.)

If m_bWndless is FALSE and m_blnPlaceSiteEx is TRUE, m_splnPlaceSite is
an IOlelnPlaceSiteEx interface pointer. See m_splnPlaceSite for a table showing
the relationship among these three data members.

See Also: CComControl: :m_b Wndless, CComControl: :m_bNegotiatedWnd,
CComControl: :m_splnPlaceSite

CComControl::m_bNegotiatedWnd

Remarks

unsigned m_bNegotiatedWnd:l;

Flag indicating whether or not the control has negotiated with the container about
support for OCX96 control features (such as flicker-free and windowless controls),
and whether the control is windowed or windowless. The m_bNegotiatedWnd flag
must be TRUE for the m_splnPlaceSite pointer to be valid.

See Also: CComControl::m_bWndless, CComControl::m_splnPlaceSite

CComControl: :m_bRecomposeOnResize

Remarks

152

unsigned m_bRecomposeOnResize: 1;

Flag indicating the control wants to recompose its presentation when the
container changes the control's display size. This flag is checked by
IOleObjectlmpl::SetExtent and, if TRUE, SetExtent notifies the container
of view changes. if this flag is set, the OLEMISC_RECOMPOSEONRESIZE
bit in the OLEMISC enumeration should also be set.

See Also: IOleObjectlmpl::SetExtent

CComControl::m_bstrText

CComControl: :m_bRequiresSave

Remarks

unsigned m_bRequiresSave: 1;

Flag indicating the control has changed since it was last saved. The value of
m_bRequiresSave can be set with SetDirty and retrieved with GetDirty.

See Also: CComControl::SetDirty, CComControl::GetDirty

CComControl: :m_bResizeN atural

Remarks

unsigned m_bResizeNatural:l;

Flag indicating the control wants to resize its natural extent (its unscaled physical
size) when the container changes the control's display size. This flag is checked by
IOleObjectImpl::SetExtent and, if TRUE, the size passed into SetExtent is
assigned to m_sizeNatural.

The size passed into SetExtent is always assigned to m_sizeExtent, regardless of
the value of m_bResizeNatural.

See Also: IOleObjectImpl::SetExtent, CComControl::m_sizeNatural,
CComControl::m_sizeExtent

CComControl: :m_bstrCaption

Remarks

BSTR m_bstrCaption;

The data member in your control class that holds text to be displayed with the control.
If you choose the CAPTION option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

See Also: CComControl: :m_bstrText

CComControl: :m_bstrText

Remarks

BSTR m_bstrCaption;

The data member in your control class that holds text to be displayed with the control.
If you choose the TEXT option from the Stock Properties tab in the ATL Object

153

CComControl: :m_bTabStop

Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink
to automatically notify the container when the property changes.

See Also: CComControl: :m_bstrCaption

CComControl: :m_bTabStop

Remarks

BOOL m_bTabStop;

The data member in your control class that flags whether the control is a tab stop
or not. If you choose the TABSTOP option from the Stock Properties tab in the
ATL Object Wizard, the wizard automatically creates this data member in your
control class, creates put and get methods for the property, and supports
IPropertyNotifySink to automatically notify the container when the property
changes.

CComControl: :m_b UIActive

Remarks

unsigned m_bUIActive:l;

Flag indicating the control's user interface, such as menus and toolbars, is active.
The m_blnPlaceActive flag indicates that the control is active, but not that its user
interface is active.

See Also: CComControl::m_bEnabled, CComControl::m_blnPlaceActive

CComControl: :m_b Using WindowRgn
unsigned m_bUsingWindowRgn:l;

Remarks
Flag indicating the control is using the container-supplied window region.

CComControl: :m_b Valid

Remarks

154

The data member in your control class that flags whether the control is a valid or not.
If you choose the VALID option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,

CComControl: :m_b W ndless

creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

CComControl: :m_b WasOnce Windowless

Remarks

unsigned m_b WasOnce Windowless: 1;

Flag indicating the control has been windowless, but mayor may not be
windowless now.

See Also: CComControl: :m_b Wndless

CComControl: :m_b Window Only

Remarks

unsigned m_b WindowOnly: 1;

Flag indicating the control should be windowed, even if the container supports
windowless controls.

See Also: CComControl: :m_b Wndless

CComControl: :m_b Wndless

Remarks

unsigned m_bWndless:l;

Flag indicating the control is windowless.

The data member m_splnPlaceSite points to an IOlelnPlaceSite,
IOlelnPlaceSiteEx, or IOlelnPlaceSiteWindowless interface, depending on
the value of the m_b Wndless and m_blnPlaceSiteEx flags. (The data member
m_bNegotiatedWnd must be TRUE for the m_splnPlaceSite pointer to be
valid.)

If m_bWndless is TRUE, m_splnPlaceSite is an IOlelnPlaceSiteWindowless
interface pointer. See m_splnPlaceSite for a table showing the complete relationship
between these data members.

See Also: CComControl::m_splnPlaceSite, CComControl::m_blnPlaceSiteEx,
CComControl: :m_bNegotiatedWnd, CComControl: :m_b WindowOnly,
CComControl: :m_b WasOnce Windowless

155

CComControl: :m_clrBackColor

CComControl: :m_clrBackColor

Remarks
The data member in your control class that holds the control's background
color. If you choose the BACKCOLOR option from the Stock Properties tab
in the ATL Object Wizard, the wizard automatically creates this data member
in your control class, creates put and get methods for the property, and supports
IPropertyNotifySink to automatically notify the container when the property
changes.

See Also: CComControl::m_clrBorderColor, CComControl::m_clrFillColor,
CComControl: :m_clrForeColor

CComControl: : m_clrBorderColor

Remarks

OLE_COLOR m_clrBorderColor;

The data member in your control class that holds the control's border color.
If you choose the BORDERCOLOR option from the Stock Properties tab in
the ATL Object Wizard, the wizard automatically creates this data member in
your control class, creates put and get methods for the property, and supports
IPropertyNotifySink to automatically notify the container when the property
changes.

See Also: CComControl: :m_clrBackColor, CComControl: :m_clrFillColor,
CComControl: :m_clrForeColor

CComControl: :m_clrFiIIColor

Remarks

156

OLE_COLOR m_clrFillColor;

The data member in your control class that holds the control's fill color. If you choose
the FILLCOLOR option from the Stock Properties tab in the ATL Object Wizard, the
wizard automatically creates this data member in your control class, creates put and
get methods for the property, and supports IPropertyNotifySink to automatically
notify the container when the property changes.

See Also: CComControl: :m_clrBackColor, CComControl: :m_clrBorderColor,
CComControl: :m_clrForeColor

CComControl::m_nBackStyle

CComControl: :m_clrForeColor

Remarks

OLE_COLOR m_cIrForeColor;

The data member in your control class that holds the control's foreground color. If you
choose the FORECOLOR option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

See Also: CComControl: :m_clrBackColor, CComControl: :m_clrBorderColor,
CComControl::m_clrFillColor

CComControl: :m_h WndCD

Remarks

HWND& m_hWndCD;

Contains a reference to the window handle associated with the control. Part of a union
with m_ph WndCD.

See Also: CComControl::CComControl, CComControl::m_phWndCD

CComControl: :m_nAppearance

Remarks

long m_nAppearance;

The data member in your control class that stores the paint style used by the control,
for example, flat or 3D. If you choose the APPEARANCE option from the Stock
Properties tab in the ATL Object Wizard, the wizard automatically creates this data
member in your control class, creates put and get methods for the property, and
supports IPropertyNotifySink to automatically notify the container when the
property changes.

See Also: CComControl::m_nDrawMode

CComControl::m_nBackStyle

Remarks

long m_nBackStyle;

The data member in your control class that stores the control's background style,
either transparent or opaque. If you choose the BACKSTYLE option from the Stock
Properties tab in the ATL Object Wizard, the wizard automatically creates this data

157

CComControl: :m_nBorderStyle

member in your control class, creates put and get methods for the property, and
supports IPropertyNotifySink to automatically notify the container when the
property changes.

See Also: CComControl: :m_nFillStyle

CComControl: :m_nBorderSty Ie

Remarks

long m_nBorderStyle;

The data member in your control class that stores the control's border style. If you
choose the BORDERSTYLE option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

See Also: CComControl::m_bBorderVisible, CComControl::m_clrBorderColor,
CComControl: :m_nBorderWidth

CComControl: : m_nBorderWidth

Remarks

long m_nBorderWidth;

The data member in your control class that stores the control's border width. If you
choose the BORDERWIDTH option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

See Also: CComControl::m_bBorderVisible, CComControl::m_clrBorderColor,
CComControl: :m_nBorderStyle

CComControl: :m_nDraw Mode

Remarks

158

long m_nDrawMode;

The data member in your control class that stores the appearance of output from the
control's graphics methods, for example, XOR Pen or Invert Colors. If you choose the
DRA WMODE option from the Stock Properties tab in the ATL Object Wizard, the
wizard automatically creates this data member in your control class, creates put and
get methods for the property, and supports IPropertyNotifySink to automatically
notify the container when the property changes.

CComControI: :m_nFillS ty Ie

See Also: CComControl::m_nDrawWidth, CComControl::m_nDrawStyle

CComControI: :m_nDrawStyIe

Remarks

long m_nDrawStyle;

The data member in your control class that stores the line style used by the
control's drawing methods, for example, solid, dashed, or dotted. If you choose the
DRA WSTYLE option from the Stock Properties tab in the ATL Object Wizard, the
wizard automatically creates this data member in your control class, creates put and
get methods for the property, and supports IPropertyNotifySink to automatically
notify the container when the property changes.

See Also: CComControl: :m_nDrawWidth, CComControl: :m_nDrawMode

CComControI: :m_nDrawWidth

Remarks

long m_nDrawWidth;

The data member in your control class that stores the line width (in pixels) used by
the control's drawing methods. If you choose the DRAWWIDTH option from the
Stock Properties tab in the ATL Object Wizard, the wizard automatically creates this
data member in your control class, creates put and get methods for the property, and
supports IPropertyNotifySink to automatically notify the container when the
property changes.

See Also: CComControl: :m_nDrawStyle, CComControl: :m_nDrawMode

CComControI: :m_nFiIISty Ie
long m_nFillStyle;

Remarks
The data member in your control class that stores the control's fill style, for example,
solid, transparent, or cross-hatched. If you choose the FILLSTYLE option from the
Stock Properties tab in the ATL Object Wizard, the wizard automatically creates this
data member in your control class, creates put and get methods for the property, and
supports IPropertyNotifySink to automatically notify the container when the
property changes.

See Also: CComControl: :m_nBackStyle

159

CComControl: :m_nFreezeEvents

CComControl: :m_nFreezeEvents

Remarks

short m_nFreezeEvents;

A count of the number of times the container has frozen events (refused to accept
events) without an intervening thaw of events (acceptance of events).

See Also: IOleControl: :FreezeEvents

CComControl: :m_nMousePointer

Remarks

long m_nMousePointer;

The data member in your control class that stores the type of mouse pointer displayed
when the mouse is over the control, for example, arrow, cross, or hourglass. If you
choose the MOUSEPOINTER option from the Stock Properties tab in the ATL Object
Wizard, the wizard automatically creates this data member in your control class,
creates put and get methods for the property, and supports IPropertyNotifySink to
automatically notify the container when the property changes.

See Also: CComControl::m_pMouselcon

CComControl: :m_nReadyState

Remarks

long m_nReadyState;

The data member in your control class that stores the control's readiness state, for
example, loading or loaded. If you choose the READYSTATE option from the Stock
Properties tab in the ATL Object Wizard, the wizard automatically creates this data
member in your control class, creates put and get methods for the property, and
supports IPropertyNotifySink to automatically notify the container when the
property changes.

CComControl: :m_pFont

Remarks

160

IFontDisp* m_pFont;

The data member in your control class that stores a pointer to IFontDisp font
properties. If you choose the FONT option from the Stock Properties tab in the
ATL Object Wizard, the wizard automatically creates this data member in your

CComControl: :m_pPicture

control class, creates put and get methods for the property, and supports
IPropertyNotifySink to automatically notify the container when the property
changes.

CComControl: :m_ph WndCD

Remarks

HWND* m_phWndCD;

Contains a pointer to the window handle associated with the control. Initialized in the
CComControl constructor. Part of a union with m_hWndCD.

See Also: CComControl::CComControl, CComControl::m_hWndCD

CComControl: :m_pMouseIcon

Remarks

IPictureDisp* m_pMouselcon;

The data member that stores a pointer to IPictureDisp picture properties of the
graphic (icon, bitmap, or metafile) to be displayed when the mouse is over the control.
The properties include the handle of the picture. If you choose the MOUSEICON
option from the Stock Properties tab in the ATL Object Wizard, the wizard
automatically creates this data member in your control class, creates put and get
methods for the property, and supports IPropertyNotifySink to automatically
notify the container when the property changes.

See Also: CComControl: :m_nMousePointer

CComControl: :m_pPicture

Remarks

IPictureDisp* m_pPicture;

The data member that stores a pointer to IPictureDisp picture properties of a
graphic (icon, bitmap, or metafile) to be displayed. The properties include the
handle of the picture. If you choose the PICTURE option from the Stock Properties
tab in the ATL Object Wizard, the wizard automatically creates this data member
in your control class, creates put and get methods for the property, and supports
IPropertyNotifySink to automatically notify the container when the property
changes.

See Also: CComControl::m_pMouselcon

161

CComControl: :m_rcPos

CComControl: :m_rcPos

Remarks
The position in pixels of the control, expressed in the coordinates of the container.

See Also: CComControl::m_sizeExtent, CComControl::m_sizeNatural,
RECT

CComControl: :m_sizeExtent

Remarks

SIZE m_sizeExtent;

The extent of the control in HIMETRIC units (each unit is 0.01 millimeters) for a
particular display. This size is scaled by the display. The control's physical size is
specified in the m_sizeNatural data member and is fixed.

You can convert the size to pixels with the global function AtlHiMetricToPixel.

See Also: CComControl::m_sizeNatural, CComControl::m_rcPos, SIZE

CComControl: :m_sizeN atural

Remarks

SIZE m_sizeNatural;

The physical size of the control in HIMETRIC units (each unit is 0.01 millimeters).
This size is fixed, while the size in m_sizeExtent is scaled by the display.

You can convert the size to pixels with the global function AtlHiMetricToPixel.

See Also: CComControl: :m_sizeExtent, CComControl: : m_rcPos , SIZE

CComControl: :m_spAdviseSink
CComPtr<IAdviseSink> m_spAdviseSink;

Remarks

162

A direct pointer to the advisory connection on the container (the container's
IAdviseSink).

See Also: CComPtr

CComControl: :m_splnPlaceSite

CComControl: :m_spAmbientDispatch

Remarks

CComDispatchDriver m_spAmbientDispatch;

A CComDispatchDriver object that lets you retrieve and set an object's properties
through an IDispatch pointer.

See Also: CComDispatchDriver

CComControl: :m_spClientSite

Remarks

CComPtr<IOleClientSite> m_spClientSite;

A pointer to the control's client site within the container.

See Also: CComPtr, IOleClientSite

CComControl: :m_spDataAdviseHolder

Remarks

CComPtr<IDataAdviseHolder> m_spDataAdviseHolder;

Provides a standard means to hold advisory connections between data objects and
advise sinks. (A data object is a control that can transfer data and that implements
IDataObject, whose methods specify the format and transfer medium of the data.)

The interface m_spDataAdviseHolder implements the IDataObject::DAdvise and
IDataObject: :DUnadvise methods to establish and delete advisory connections to the
container. The control's container must implement an advise sink by supporting the
IAdviseSink interface.

See Also: CComPtr

CComControl: :m_spInPlaceSite

Remarks

CComPtr<IOlelnPlaceSiteWindowless> m_splnPlaceSite;

A pointer to the container's IOlelnPlaceSite, IOlelnPlaceSiteEx, or
IOlelnPlaceSiteWindowless interface pointer.

The m_splnPlaceSite pointer is valid only if the m_bNegotiatedWnd flag is TRUE.

163

CComControl: :m_spOleAdviseHolder

The following table shows how the m_spInPlaceSite pointer type depends on the
m_b Wndless and m_bInPlaceSite data member flags:

m_splnPlaceSite Type m_bWndless Value m_blnPlaceSite Value

IOleInPlaceSite Windowless

IOlelnPlaceSiteEx

IOlelnPlaceSite

See Also: CComPtr

TRUE

FALSE

FALSE

TRUE or FALSE

TRUE

FALSE

CComControl: :m_spOleAdviseHolder

Remarks

164

CComPtr<IOleAdviseHolder> m_spOleAdviseHolder;

Provides a standard implementation of a way to hold advisory connections.
Implements the IOleObject::Advise and IOleObject::Unadvise methods to
establish and delete advisory connections to the container. The control's container
must implement an advise sink by supporting the IAdviseSink interface.

See Also: CComPtr

CComCriticalSection
class CComCriticalSection

CComCriticalSection provides methods for obtaining and releasing ownership
of a critical section object. CComCriticalSection is similar to class
CComAutoCriticalSection, except that you must explicitly initialize and release
the critical section.

Typically, you use CComCriticalSection through the typedef name CriticalSection.
This name references CComCriticalSection when CComMultiThreadModel is
being used.

#include <atlbase.h>

See Also: CComFakeCriticalSection

Methods

Init

Lock

Term

Unlock

Data Members

Creates and initializes a critical section object.

Obtains ownership of the critical section object.

Releases system resources used by the critical section object.

Releases ownership of the critical section object.

A CRITICAL_SECTION object.

Methods
CComCriticalSection: :Init

Remarks

void Init();

Calls the Win32 function InitializeCriticalSection, which initializes the critical
section object contained in the m_sec data member.

CComCriticalSection: :Lock

Remarks

void Lock();

Calls the Win32 function EnterCriticalSection, which waits until the thread can take
ownership of the critical section object contained in the m_sec data member. The
critical section object must first be initialized with a call to the Init method. When

CComCriticalSection

165

CComCriticalSection: :Term

the protected code has finished executing, the thread must call Unlock to release
ownership of the critical section.

CComCriticalSection: : Term

Remarks

void Term();

Calls the Win32 function DeleteCriticalSection, which releases all resources used by
the critical section object contained in the m_sec data member. Once Term has been
called, the critical section can no longer be used for synchronization.

CComCriticaISection:: Unlock

Remarks

void Unlock();

Calls the Win32 function LeaveCriticalSection, which releases ownership of the
critical section object contained in the m_sec data member. To first obtain ownership,
the thread must call the Lock method. Each call to Lock requires a corresponding call
to Unlock to release ownership of the critical section.

Data Members
CComCriticalSection: :m_sec

Remarks

166

Contains a critical section object that is used by all CComCriticalSection methods.

See Also: CComCriticaISection::Lock, CComCriticaISection::Unlock,
CComCriticalSection: :Init, CComCriticalSection: : Term

CComDispatchDri ver
class CComDispatchDriver

CComDispatchDriver lets you retrieve or set an object's properties through an
IDispatch pointer. For more information about adding properties to an object,
see the "ATL Tutorial."

#include <atlctI.h>

Methods

CComDispatchDriver

GetProperty

PutProperty

Release

Operators

operator IDispatch*

operator *
operator &

operator ->

operator =

operator!

Data Members

p

Methods

Constructor. Initializes the data member p to NULL.

Gets the value of a property exposed by an object.

Sets the value of a property exposed by an object.

Releases the IDispatch pointer and sets it to NULL.

Converts a ComDispatchDriver object to an IDispatch
pointer.

Returns the dereferenced value of the data member p.

Returns the address of data member p.

Returns the data member p.

Sets the data member p to the specified IDispatch
interface pointer.

Checks whether the data member p is NULL or not.

Pointer to the IDispatch interface.

CComDispatchDri ver: : CComDispatchDri ver
CComDispatchDriver();
CComDispatchDriver(IDispatch* lp);
CComDispatchDriver(IUnknown* lp));

Parameters
lp [in] Pointer to an IDispatch or IUnknown interface.

CComDispatchDriver

167

CComDispatchDri ver: : GetProperty

Remarks
The constructor. If there is no lp parameter, the constructor initializes the data member
p to NULL. If lp points to an IDispatch interface, the constructor sets p to that
interface and calls AddRef. If lp points to an IUnknown interface, the constructor
calls Querylnterface for the IDispatch interface and sets p to that interface.

The destructor calls Release on p, if necessary.

CComDispatchDri ver: : GetProperty
HRESULT GetProperty(DISPID dwDispID, VARIANT* var);
static HRESULT GetProperty(IDispatch* pDisp, DISPID dwDispID, VARIANT* var);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

168

dwDispID [in] The DISPID of the property to be retrieved. The DISPID can be
obtained from IDispatch::GetIDsOfNames.

var [out] Pointer to where the property value is to be stored.

pDisp [in] Pointer to the IDispatch interface.

Gets the value of the property identified by dwDispID. If you supply pDisp, that
IDispatch pointer is used. If you do not, the IDispatch pointer contained in the data
member p is used.

The following example shows a call to the static version of GetProperty. This code is
used to implement IPersistStreamlnitImpl::Save.

CComPtr<IOispatch> pOispatch;
const 110* piidOld = NULL;
for(int i = 0; pMap[i].pclsidPropPage != NULL; i++)

II pMap is a pointer to an array of
II ATL_PROPMAP_ENTRY structures

if (pMap[i].szOesc == NULL)
continue;

CComVariant var;
if(pMap[i].piidOispatch != piidOld)
{

if(FAILEO(ControlQuerylnterface(*pMap[i].piidOispatch,
(void**)&pOispatch)))

ATLTRACE(_TC"Failed to get a dispatch pointer
for property #%i\n"), i);

hr = E_FAIL;
break;

CComDispatchDri ver: :PutProperty

piidOld = pMap[i].piidDispatch;

if (FAILED(CComDispatchDriver::GetProperty(pDispatch.
pMap[i].dispid. &var»)

ATLTRACE<_T("Invoked failed on DISPID %x\n").
pMap[i].dispid);

hr = E_FAIL;
break;

HRESULT hr = var.WriteToStream(pStm);
if (FAILED(hr»

break;

See Also: CComDispatchDriver: :PutProperty

CComDispatchDriver: :PutProperty
HRESULT PutProperty(DISPID dwDispID, VARIANT* var);
static HRESULT PutProperty(IDispatch* pDisp, DISPID dwDispID, VARIANT* var);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

dwDispID [in] The DISPID of the property to be set. The DISPID can be obtained
from IDispatch::GetlDsOfNames.

var [in] Pointer to the property value to be set.

pDisp [in] Pointer to the IDispatch interface.

Sets the value of the property identified by dwDispID to the value in var. If you
supply pDisp, that IDispatch pointer is used. If you do not, the IDispatch pointer
contained in the data member p is used.

The following code illustrates PutProperty:

DISPID dwDispID;
VARIANT var;
HRESULT hRes;
OLECHAR *szMember = "ThisProperty";
VariantInit(&var)

hRes = pDisp->GetIDsOfNames(IID_NULL. szMember. 1.
LOCALE_USER_DEFAULT. &dwDispID);

hRes = CComDispatchDriver::PutProperty(pDisp. dwDispID. &var);

See Also: CComDispatchDriver::GetProperty

169

CComDispatchDriver: :Release

CComDispatchDriver: :Release

Remarks

void Release();

Checks whether data member p points to an IDispatch interface and, if it does,
releases the interface and sets p to NULL.

Operators
CComDispatchDri ver: : operator IDispatch *
Remarks

operator IDispatch*() ;

Converts a CComDispatchDriver object to an IDispatch pointer by returning the
data member p. Thus, if the CComDispatchDriver object is pOD, the following two
statements are equivalent:

pMyDisp=(IDispatch*)(pDD)
pMyDisp= pDD.p

CComDispatchDriver: : operator *
Remarks

IDispatch& operator *();

Returns the dereferenced value of the IDispatch interface pointer stored in the data
member p.

Note The operation will assert if p is NULL.

CComDispatchDriver::operator &

Remarks

170

IDispatch** operator &();

Returns the address of the IDispatch interface pointer stored in the data member p.
The operation will assert if p is non-NULL. This operator avoids memory leaks if you
want to set p without releasing it first.

CComDispatchDriver: :p

CComDispatchDri ver: : operator ->

Remarks

IDispatch* operator ->();

Returns the IDispatch interface pointer stored in the data member p.

Note The operation will assert if p is NULL.

CComDispatchDriver: : operator =

Remarks

IDispatch* operator =(IDispatch* lp) ;
IDispatch* operator =(IUnknown* lp) ;

Sets the data member p to an IDispatch interface pointer or to a pointer to an
IDispatch interface obtained through an IUnknown pointer.

If p already points to an IDispatch interface, that interface is first released.

For example, if the CComDispatchDriver object is pDD and an IDispatch pointer
is pMyDi s p, pDD=pMyDi s p sets pDD. P to pMyDi s p. If an IUnknown pointer is
pMyUn k, pDD=pMyUn k sets pDD. P to point to the IDispatch queried for on pMyUn k,
that is:

pMyUnk->Querylnterface(IID_IDispatch, (void**)pDD.p);

CComDispatchDriver: : operator !
BOOL operator !();

Remarks
Returns TRUE if the data member p is NULL; otherwise, FALSE.

Data Members
CComDispatchDri ver: :p

Remarks

IDispatch* p;

The pointer to the IDispatch interface. This data member can be set to an existing
IDispatch interface with operator =.

See Also: CComDispatchDriver: :operator =

171

CComDynamicUnkArray

CComDynamic UnkArray
class CComDynamicUnkArray

CComDynamicUnkArray holds a dynamically allocated array of IUnknown
pointers, each an interface on a connection point. CComDynamicUnkArray can be
used as a parameter to the IConnectionPointImpl template class.

The CComDynamicUnkArray methods begin and end can be used to loop through
all connection points (for example, when an event is fired).

See "The Proxy Generator" for details on automating creation of connection point
proxies.

#include <atlcom.h>

See Also: CComUnkArray

Methods

begin

CComDynamicUnkArray

end

Returns a pointer to the first IUnknown pointer in the
collection.

Constructor. Initializes the collection values to NULL
and the collection size to zero.

Returns a pointer to one past the last IUnknown pointer
in the collection.

Methods
CComDynamicUnkArray::begin

IUnknown** begin();

Return Value

Remarks

172

A pointer to an IUnknown interface pointer.

Returns a pointer to the beginning of the collection of IUnknown interface pointers.

The collection contains pointers to interfaces stored locally as IUnknown. You cast
each IUnknown interface to the real interface type and then call through it. You do
not need to query for the interface first.

Before using the IUnknown interface, you should check that it is not NULL.

See Also: CComDynamicUnkArray::end, CComUnkArray::begin

CComDynamicUnkArray::end

CComDynamicUnkArray::CComDynamicUnkArray

Remarks

CComDynamicUnkArray();

The constructor. Sets the collection size to zero and initializes the values to NULL.
The destructor frees the collection, if necessary.

CComDynamic UnkArray: :end
IUnknown** end();

Return Value

Remarks

A pointer to an IUnknown interface pointer.

Returns a pointer to one past the last IUnknown pointer in the collection.

See Also: CComDynamicUnkArray::begin, CComUnkArray::end

173

CComFakeCriticalSection

CComFakeCriticalSection
class CComFakeCriticalSection

CComFakeCriticalSection mirrors the methods found in CComCriticalSection.
However, CComFakeCriticalSection does not provide a critical section; therefore,
its methods do nothing.

Typically, you use CComFakeCriticalSection through a typedef name, either
AutoCriticalSection or CriticalSection. When using CComSingleThreadModel
or CComMultiThreadModelNoCS, both of these typedef names reference
CComFakeCriticalSection. When using CComMultiThreadModel, they reference
CComAutoCriticalSection and CComCriticalSection respectively.

#include <atlbase.h>

Methods

Init

Lock

Term

Unlock

Does nothing.

Does nothing.

Does nothing.

Does nothing.

Methods
CComFakeCriticalSection: : Init

Remarks

void Init();

Does nothing since there is no critical section.

See Also: CComCriticaISection::Init

CComFakeCriticalSection: :Lock

Remarks

174

void Lock();

Does nothing since there is no critical section.

See Also: CComCriticaISection::Lock

CComFakeCriticalSection: : Term
void Term();

Remarks
Does nothing since there is no critical section.

See Also: CComCriticalSection: :Term

CComF akeCriticalSection: : Unlock

Remarks

void Unlock();

Does nothing since there is no critical section.

See Also: CComCriticaISection:: Unlock

CComFakeCriticaISection:: Unlock

175

CComGlobalsThreadModel

CComGlobalsThreadModel

176

#if defined(_ATL_SINGLE_THREADED)
typedef CComSingleThreadModel CComGlobalsThreadModel;

#elif defined(_ATL_APARTMENT_THREADED)
typedef CComMultiThreadModel CComGlobalsThreadModel;

#else
typedef CComMultiThreadModel CComGlobalsThreadModel;

#endif

Depending on the threading model used by your application, the typedef name
CComGlobalsThreadModel references either CComSingleThreadModel or
CComMultiThreadModel. These classes provide additional typedef names to
reference a critical section class.

Note CComGlobalsThreadModel does not reference class CComMultiThreadModelNoCS.

Using CComGlobalsThreadModel frees you from specifying a particular threading
model class. Regardless of the threading model being used, the appropriate methods
will be called.

In addition to CComGlobalsThreadModel, ATL provides the typedef name
CComObjectThreadModel. The class referenced by each typedef depends on
the threading model used, as shown in the following table:

typedef

CComObjectThreadModel

CComGlobalsThreadModel

Threading Model

Single

s
s

Apartment

S

M

S=CComSingleThreadModel; M=CComMultiThreadModel

Free

M

M

Use CComObjectThreadModel within a single object class. Use
CComGlobalsThreadModel in an object that is globally available to your
program, or when you wish to protect module resources across multiple threads.

#include <atlbase.h>

See Also: CComObjectRootEx

CComModule
class CComModule : public _ATL_MODULE

CComModule implements a COM server module, allowing a client to access the
module's components. CComModule supports both DLL (in-process) and EXE
(local) modules.

A CComModule instance uses an object map to maintain a set of class object
definitions. This object map is implemented as an array of _ATL_OBJMAP _ENTRY
structures, and contains information for:

• Entering and removing object descriptions in the system registry.

• Instantiating objects through a class factory.

• Establishing communication between a client and the root object in the component.

• Performing lifetime management of class objects.

When you run the ATL COM AppWizard, the wizard automatically generates
_Module, a global instance of CComModule or a class derived from it. For more
information about the ATL COM App Wizard, see the article "Creating an ATL
Project."

In addition to CComModule, ATL provides CComAutoThreadModule, which
implements an apartment-model module for EXEs and Windows NT services. Derive
your module from CComAutoThreadModule when you want to create objects in
multiple apartments.

#include <atlbase.h>

Methods

GetClassObject

GetLockCount

GetModulelnstance

GetResourcelnstance

GetTypeLiblnstance

Init

Lock

RegisterClassHelper

RegisterClassO bj ects

RegisterServer

Creates an object of a specified CLSID. For DLLs only.

Returns the current lock count on the module.

Returns m_hlnst.

Returns m_hlnstResource.

Returns m_hlnstTypeLib.

Initializes data members.

Increments the module lock count.

Enters an object's standard class registration in the
system registry.

Registers the class factory in the Running Object Table.
For EXEs only.

Updates the system registry for each object in the
object map.

(continued)

CComModule

177

CComModule: :GetClassObject

Methods (continued)

RegisterTypeLib

RevokeClassObjects

Term

Unlock

U nregisterClassHelper

U nregisterServer

UpdateRegistryClass

UpdateRegistryFromResourceD

UpdateRegistryFromResourceS

Data Members

m_csTypelnfoHolder

m_csWindowCreate

m_hHeap

m_hlnst

m_hlnstResource

m_hlnstTypeLib

m_nLockCnt

m_pObjMap

Methods

Registers a type library.

Removes the class factory from the Running Object
Table. For EXEs only.

Releases data members.

Decrements the module lock count.

Removes an object's standard class registration from
the system registry.

Unregisters each object in the object map.

Registers or unregisters an object's standard class
registration.

Runs the script contained in a specified resource to
register or unregister an object.

Statically links to the ATL Registry Component. Runs
the script contained in a specified resource to register
or unregister an object.

Ensures synchronized access to the object map
information.

Ensures synchronized access to the type library
information.

Ensures synchronized access to window class
information and static data used during window creation.

Contains the handle to the heap managed by the module.

Contains the handle to the module instance.

By default, contains the handle to the module instance.

By default, contains the handle to the module instance.

Contains the current lock count on the module.

Points to the object map maintained by the module
instance.

CComModule: : GetClassObject
HRESULT GetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv);

Return Value
A standard HRESULT value.

178

CComModule: : GetResourcelnstance

)arameters

~emarks

rclsid [in] The CLSID of the object to be created.

riid [in] The lID of the requested interface.

ppv [out] A pointer to the interface pointer identified by riid. If the object does not
support this interface, ppv is set to NULL.

Creates an object of the specified CLSID and retrieves an interface pointer to this
object.

Note GetClassObject is only available to DLLs.

CComModule: : GetLockCount
LONG GetLockCount();

~eturn Value

~emarks

The lock count on the module.

Returns the current lock count on the module. CComModule uses the lock count to
determine whether any clients are accessing the module. When the lock count reaches
zero, the module can be unloaded.

See Also: CComModule: :Lock, CComModule:: Unlock,
CComModule: :m_nLockCnt

CComModule: : GetModuleInstance
HINSTANCE GetModulelnstance();

~eturn Value

~emarks

The HINSTANCE identifying this module.

Returns the m_hlnst data member.

See Also: CComModule::GetResourcelnstance,
CComModule: : GetTypeLiblnstance

CComModule: : GetResourceInstance
HINSTANCE GetResourcelnstance();

~eturn Value
An HINSTANCE.

179

CComModule: :GetTypeLiblnstance

Remarks
Returns the m_hInstResource data member.

See Also: CComModule: : GetModuleInstance,
CComModule: : GetTypeLibInstance

CComModule: : GetTypeLibInstance
HINSTANCE GetTypeLibInstance();

Return Value

Remarks

An HINSTANCE.

Returns the m_hInstTypeLib data member.

See Also: CComModule: : GetModuleInstance,
CComModule: : GetResourceInstance

CComModule: :Init
void Init(_ATL_OBJMAP _ENTRY* p, HINSTANCE h);

Parameters
p [in] A pointer to an array of object map entries.

h [in] The HINSTANCE passed to DLLMain or WinMain.

Remarks
Initializes all data members.

See Also: CComModule: : Term

CComModule: :Lock
LONG Lock();

Return Value

Remarks

180

A value that may be useful for diagnostics or testing.

Performs an atomic increment on the module's lock count. CComModule uses the
lock count to determine whether any clients are accessing the module.

See Also: CComModule:: Unlock, CComModule: :GetLockCount,
CComModule: :m_nLockCnt

CComModule: :RegisterClassObjects

CComModule: : RegisterClassHelper
HRESULT RegisterClassHelper(const CLSID& clsid, LPCTSTR lpszProgID,

... LPCTSTR lpszVerlndProgID, UINT nDesC/D, DWORD dwFlags);

Aeturn Value
A standard HRESULT value.

Parameters

Aemarks

clsid [in] The CLSID of the object to be registered.

lpszProgID [in] The ProgID associated with the object.

lpszVerlndProgID [in] The version-independent ProgID associated with the object.

nDesC/D [in] The identifier of a string resource for the object's description.

dwFlags [in] Specifies the threading model to enter in the registry. Possible values
are THREADFLAGS_APARTMENT, THREADFLAGS_BOTH, or
AUTPRXFLAG.

Enters an object's standard class registration in the system registry. The
UpdateRegistryClass method calls RegisterClassHelper.

See Also: CComModule:: UnregisterClassHelper

CComModule: :RegisterClassObjects
HRESULT RegisterClassObjects(DWORD dwClsContext, DWORD dwFlags);

Return Value
A standard HRESULT value.

Parameters

Remarks

dw Cis Con text [in] Specifies the context in which the class object
is to be run. Possible values are CLSCTX_INPROC_SERVER,
CLSCTX_INPROC_HANDLER, or CLSCTX_LOCAL_SERVER.
For a description of these values, see CLSCTX in the Win32 SDK online.

dwFlags [in] Determines the connection types to the class object. Possible
values are REGCLS_SINGLEUSE, REGCLS_MULTIPLEUSE, or
REGCLS_MULTI_SEPARATE. For a description of these values, see
REGCLS in the Win32 SDK online.

Registers the class factory in the Running Object Table.

Note RegisterClassObjects is only available to EXEs.

See Also: CComModule: :RevokeClassObjects

181

CComModule: :RegisterServer

CComModule: : RegisterServer
HRESULT RegisterServer(BOOL bRegTypeLib = FALSE,

.. const CLSID* pCLSID = NULL);

Return Value
A standard HRESULT value.

Parameters

Remarks

bRegTypeLib [in] Indicates whether the type library will be registered. The default
value is FALSE.

pCLSID [in] Points to the CLSID of the object to be registered. If NULL (the default
value), all objects in the object map will be registered.

Depending on the pCLSID parameter, updates the system registry for a single class
object or for all objects in the object map. If bRegTypeLib is TRUE, the type library
information will also be updated.

The BEGIN_OBJECT_MAP macro starts your object map definition.

RegisterServer will be called automatically by DLLRegisterServer for a DLL or by
WinMain for an EXE run with the lRegServer command line option.

See Also: CComModule::UnregisterServer

CComModule: : RegisterTypeLib
HRESULT RegisterTypeLib();
HRESULT RegisterTypeLib(LPCTSTR lpszlndex);

Return Value
A standard HRESULT value.

Parameters

Remarks

IpszIndex [in] Specifies the name of a type library resource.

Adds information about a type library to the system registry. If the module instance
contains multiple type libraries, use the second version of this method to specify
which type library should be used.

CComModule: : RevokeClassObjects
HRESULT RevokeClassObjects();

Return Value
A standard HRESULT value.

182

CComModule:: UnregisterClassHelper

~emarks

Removes the class factory from the Running Object Table.

Note RevokeClassObjects is only available to EXEs.

See Also: CComModule::RegisterClassObjects

CComModule: : Term
void Term();

~emarks

Releases all data members.

See Also: CComModule: :Init

CComModule:: Unlock
LONG Unlock();

~eturn Value

~emarks

A value that may be useful for diagnostics or testing.

Performs an atomic decrement on the module's lock count. CComModule uses the
lock count to determine whether any clients are accessing the module. When the lock
count reaches zero, the module can be unloaded.

See Also: CComModule::Lock, CComModule::GetLockCount,
CComModule: :m_nLockCnt

CComModule:: UnregisterClassHelper
HRESULT UnregisterClassHelper(const CLSID& clsid, LPCTSTR IpszProgID,

.. LPCTSTR IpszVerlndProgID);

~eturn Value
A standard HRESULT value.

larameters
clsid [in] The CLSID of the object to be unregistered.

IpszProgID [in] The ProgID associated with the object.

IpszVerlndProgID [in] The version-independent ProgID associated with the object.

183

CComModule:: U nregisterServer

Remarks
Removes an object's standard class registration from the system registry. The
UpdateRegistryClass method calls UnregisterClassHelper.

See Also: CComModule: :RegisterClassHelper

CComModule:: UnregisterServer
HRESULT UnregisterServer(const CLSID* pCLSID = NULL);

Return Value
A standard HRESULT value.

Parameters

Remarks

pCLSID [in] Points to the CLSID of the object to be unregistered. If NULL (the
default value), all objects in the object map will be unegistered.

Depending on the pCLSID parameter, unregisters either a single class object or all
objects in the object map. The BEGIN_OBJECT_MAP macro starts your object
map definition.

UnregisterServer will be called automatically by DLLUnregisterServer for a DLL
or by WinMain for an EXE run with the IUnregServer command line option.

See Also: CComModule: :RegisterServer

CComModule:: UpdateRegistryClass
HRESULT UpdateRegistryClass(const CLSID& clsid, LPCTSTR IpszProgID,

1+ LPCTSTR IpszVerlndProgID, UINT nDescID, DWORD dwFlags,
1+ BOOL bRegister);

Return Value
A standard HRESULT value.

Parameters

184

clsid [in] The CLSID of the object to be registered or unregistered.

IpszProgID [in] The ProgID associated with the object.

IpszVerIndProgID [in] The version-independent ProgID associated with the object.

nDescID [in] The identifier of the string resource for the object's description.

dwFlags [in] Specifies the threading model to enter in the registry. Possible values
are THREADFLAGS_APARTMENT, THREADFLAGS_BOTH, or
AUTPRXFLAG.

bRegister [in] Indicates whether the object should be registered.

CComModule:: U pdateRegistry FromResourceD

Remarks
If bRegister is TRUE, this method enters the object's standard class registration in
the system registry. If bRegister is FALSE, it removes the object's registration.

Depending on the value of bRegister, UpdateRegistryClass calls either
RegisterClassHelper or U nregisterClassHelper.

By specifying the DECLARE_REGISTRY macro, UpdateRegistryClass will be
invoked automatically when your object map is processed.

CComModule: : U pdateRegistry FromResourceD
HRESULT UpdateRegistryFromResourceD(LPCTSTR IpszRes, BOOL bRegister,

... struct _ATL_REGMAP _ENTRY * pMapEntries = NULL);
HRESULT UpdateRegistryFromResourceD(UINT nResID, BOOL bRegister,

... struct _ATL_REGMAP _ENTRY* pMapEntries = NULL);

Return Value
A standard HRESULT value.

Parameters

Remarks

IpszRes [in] A resource name.

nResID [in] A resource ID.

bRegister [in] Indicates whether the object should be registered.

pMapEntries [in] A pointer to the replacement map storing values associated with
the script's replaceable parameters. ATL automatically uses %MO DU L E%. To use
additional replaceable parameters, see Remarks for details. Otherwise, use the
NULL default value.

Runs the script contained in the resource specified by IpszRes or nResID.1f bRegister
is TRUE, this method registers the object in the system registry; otherwise, it
unregisters the object.

By specifying the DECLARE_REGISTRY_RESOURCE or
DECLARE_REGISTRY _RESOURCEID macro, UpdateRegistryFromResourceD
will be invoked automatically when your object map is processed.

Note To substitute replacement values at run time, do not specify the
DECLARE_REGISTRY _RESOURCE or DECLARE_REGISTRY _RESOURCEID macro.
Instead, create an array of _ATL_REGMAP _ENTRIES structures, where each entry contains
a variable placeholder paired with a value to replace the placeholder at run time. Then call
UpdateRegistryFromResourceD, passing the array for the pMapEntries parameter. This adds
all the replacement values in the _ATL_REGMAP _ENTRIES structures to the Registrar's
replacement map.

185

CComModule:: UpdateRegistryFromResourceS

Note To statically link to the ATL Registry Component (Registrar), see
UpdateRegistryFromResourceS.

For more information about replaceable parameters and scripting, see the article
"The ATL Registry Component (Registrar)."

See Also: BEGIN_OBJECT_MAP

CComModule:: UpdateRegistryFromResourceS
HRESULT UpdateRegistryFromResourceS(LPCTSTR lpszRes, BOOL bRegister,

1+ struct _ATL_REGMAP _ENTRY* pMapEntries = NULL);
HRESULT UpdateRegistryFromResourceS(UINT nResID, BOOL bRegister,

1+ struct _ATL_REGMAP _ENTRY* pMapEntries = NULL);

Return Value
A standard HRESULT value.

Parameters

Remarks

186

lpszRes [in] A resource name.

nResID [in] A resource ID.

bRegister [in] Indicates whether the resource script should be registered.

pMapEntries [in] A pointer to the replacement map storing values associated with
the script's replaceable parameters. ATL automatically uses %MODU LE%. To use
additional replaceable parameters, see Remarks for details. Otherwise, use the
NULL default value.

Similar to UpdateRegistryFromResourceD except UpdateRegistryFromResourceS
creates a static link to the ATL Registry Component (Registrar).

UpdateRegistryFromResourceS will be invoked automatically when your object
map is processed, provided you add /ldefi ne _ATL_STATIC_REGISTRY to your
stdafx.h.

Note To substitute replacement values at run time, do not specify the
DECLARE_REGISTRY _RESOURCE or DECLARE_REGISTRY _RESOURCEID macro.
Instead, create an array of _ATL_REGMAP _ENTRIES structures, where each entry contains
a variable placeholder paired with a value to replace the placeholder at run time. Then call
CComModule::UpdateRegistryFromResourceS, passing the array for the pMapEntries
parameter. This adds all the replacement values in the _ATL_REGMAP _ENTRIES structures
to the Registrar's replacement map.

For more information about replaceable parameters and scripting, see the article
"The ATL Registry Component (Registrar)."

See Also: BEGIN_OBJECT_MAP

Data Members
CComModule: :m_csObjMap

CRITICAL_SECTION m_csObjMap;

Remarks
Ensures synchronized access to the object map.

CComModule: :m_csTypeInfoHolder
CRITICAL_SECTION m_csTypelnfoHolder;

Remarks
Ensures synchronized access to the type library.

CComModule: :m_cs WindowCreate

Remarks

CRITICAL_SECTION m_cs WindowCreate;

Ensures synchronized access to window class information and to static data used
during window creation.

CComModule: :m_hHeap
HANDLE m_hHeap;

Remarks
Contains the handle to the heap managed by the module.

CComModule: :m_hInst

Remarks

HINSTANCE m_hlnst;

Contains the handle to the module instance. The Init method sets m_hlnst to the
handle passed to DLLMain or WinMain.

CComModule: :m_hInst

187

CComModule: :m_hInstResource

CComModule: :m_hInstResource

Remarks

HINSTANCE m_hlnstResource;

By default, contains the handle to the module instance. The Init method sets
m_hlnstResource to the handle passed to DLLMain or WinMain. You can explicitly
set m_hInstResource to the handle to a resource.

The GetResourceInstance method returns the handle stored in m_hlnstResource.

CComModule: :m_hInstTypeLib

Remarks

HINSTANCE m_hInstTypeLib;

By default, contains the handle to the module instance. The Init method sets
m_hInstTypeLib to the handle passed to DLLMain or WinMain. You can explicitly
set m_hInstTypeLib to the handle to a type library.

The GetTypeLibInstance method returns the handle stored in m_hInstTypeLib.

CComModule: :m_nLockCnt

Remarks

LONG m_nLockCnt;

Contains the current lock count on the module. CComModule uses the lock count to
determine whether any clients are accessing the module. When the lock count reached
zero, the module can be unloaded.

See Also: CComModule: : GetLockCount, CComModule: :Lock,
CComModule:: Unlock

CComModule: :m_pObjMap

Remarks
Points to the object map maintained by the module instance.

188

CComMultiThreadModel

CComMultiThreadModel
class CComMultiThreadModel

CComMultiThreadModel provides thread-safe methods for incrementing and
decrementing the value of a variable. Typically, you use CComMultiThreadModel
through one of two typedef names, either CComObjectThreadModel or
CComGlobalsThreadModel. The class referenced by each typedef depends on
the threading model used, as shown in the following table:

Threading Model

typedef Single Apartment Free

CComObjectThreadModel S S M

CComGlobalsThreadModel S M M

S=CComSingleThreadModel; M=CComMultiThreadModel

CComMultiThreadModel itself defines three typedef names. AutoCriticalSection
and CriticalSection reference classes that provide methods for obtaining and
releasing ownership of a critical section. ThreadModelNoCS references class
CComMultiThreadModelNoCS.

#include <atlbase.h>

See Also: CComSingleThreadModel, CComAutoCriticalSection,
CComCriticalSection

Methods

Decrement

Increment

Typedefs

AutoCriticalSection

CriticalSection

ThreadModelNoCS

Decrements the value of the specified variable in a
thread-safe manner.

Increments the value of the specified variable in a
thread-safe manner.

References class CComAutoCriticalSection.

References class CComCriticalSection.

References class CComMultiThreadModelNoCS.

189

CComMultiThreadModel::Decrement

Methods
CComMultiThreadModel: : Decrement

static ULONG Decrement(LPLONG p);

Return Value
If the result of the decrement is 0, then Decrement returns 0. If the result of the
decrement is nonzero, the return value is also nonzero but may not equal the result
of the decrement.

Parameters

Remarks

p [in] Pointer to the variable to be decremented.

This static method calls the Win32 function InterlockedDecrement, which
decrements the value of the variable pointed to by p. InterlockedDecrement
prevents more than one thread from simultaneously using this variable.

See Also: CComMultiThreadModel: :Increment

CComMultiThreadModel: : Increment
static ULONG Increment(LPLONG p);

Return Value
If the result of the increment is 0, then Increment returns 0. If the result of the
increment is nonzero, the return value is also nonzero but may not equal the result
of the increment.

Parameters

Remarks

190

p [in] Pointer to the variable to be incremented.

This static method calls the Win32 function InterlockedIncrement, which increments
the value of the variable pointed to by p. InterlockedIncrement prevents more than
one thread from simultaneously using this variable.

See Also: CComMultiThreadModel: : Decrement

CComMultiThreadModel::AutoCriticaISection

Typedefs
CComMultiThreadModel: : AutoCriticalSection

Remarks

Example

typedef CComAutoCriticalSection AutoCriticalSection;

When using CComMultiThreadModel, the typedef name AutoCriticalSection
references class CComAutoCriticalSection, which provides methods for obtaining
and releasing ownership of a critical section object.

CComSingleThreadModel and CComMultiThreadModelNoCS also contain
definitions for AutoCriticalSection. The following table shows the relationship
between the threading model class and the critical section class reference by
AutoCriticalSection:

Class defined in

CComMultiThreadModel

CComSingleThreadModel

CComMultiThreadModelNoCS

Class referenced

CComCriticalSection

CComFakeCriticalSection

CComFakeCriticalSection

In addition to AutoCriticalSection, you can use the typedef name CriticalSection.
You should not specify AutoCriticalSection in global objects or static class members
if you want to eliminate the CRT startup code.

The following code is taken from CComObjectRootEx.

template< class ThreadModel >
class CComObjectRootEx : public CComObjectRootBase
{

public:
typedef ThreadModel _ThreadModel:
typedef _ThreadModel ::AutoCriticalSection _CritSec;

ULONG InternalAddRef(
{

return _ThreadModel ::Increment(&m_dwRef):

v 0 i d L 0 c k () { m_ c r it sec. L 0 c k (): }

private:
_CritSec m_critsec:

} :

191

CComMultiThreadModel::CriticalSection

The following tables show the results of the InternalAddRef and Lock methods,
depending on the ThreadModel template parameter and the threading model used by
the application:

ThreadModel = CComObjectThreadModel

InternalAddRef

Lock

Single or Apartment

The increment is not thread-safe.

Does nothing; there is no critical
section to lock.

ThreadModel = CComObjectThreadModel::ThreadModeINoCS

InternalAddRef

Lock

Single or Apartment

The increment is not thread-safe.

Does nothing; there is no critical
section to lock.

Free

The increment is thread-safe.

The critical section is locked.

Free

The increment is thread-safe.

Does nothing; there is no
critical section to lock.

See Also: CComObjectThreadModel, CComGlobalsThreadModel,
CComMultiThreadModel: :ThreadModelNoCS

CComMultiThreadModel: :CriticalSection

Remarks

Example

192

typedef CComCriticalSection CriticalSection;

When using CComMultiThreadModel, the typedef name CriticalSection references
class CComCriticalSection, which provides methods for obtaining and releasing
ownership of a critical section object.

CComSingleThreadModel and CComMultiThreadModelNoCS also contain
definitions for CriticalSection. The following table shows the relationship between
the threading model class and the critical section class referenced by CriticalSection:

Class defined in

CComMultiThreadModel

CComSingleThreadModel

CComMultiThreadModelN oCS

Class referenced

CComCriticalSection

CComFakeCriticalSection

CComFakeCriticalSection

In addition to CriticalSection, you can use the typedef name AutoCriticalSection.
You should not specify AutoCriticalSection in global objects or static class members
if you want to eliminate the CRT startup code.

See AutoCriticalSection.

See Also: CComObjectThreadModel, CComGlobalsThreadModel,
CComMultiThreadModel: :ThreadModelNoCS

CComMultiThreadModel: :ThreadModelNoCS

CComMulti ThreadModel: : ThreadModelN oCS
typedef CComMultiThreadModelNoCS ThreadModelNoCS;

Remarks

Example

When using CComMultiThreadModel, the typedef name ThreadModelNoCS
references class CComMultiThreadModelNoCS. CComMultiThreadModelNoCS
provides thread-safe methods for incrementing and decrementing a variable; however,
it does not provide a critical section.

CComSingleThreadModel and CComMultiThreadModelNoCS also contain
definitions for ThreadModelNoCS. The following table shows the relationship
between the threading model class and the class referenced by ThreadModelNoCS:

Class defined in

CComMultiThreadModel

CComSingleThreadModel

CComMultiThreadModelNoCS

See AutoCriticalSection.

Class referenced

CComMultiThreadModelNoCS

CComSingleThreadModel

CComMultiThreadModelNoCS

See Also: CComObjectThreadModel, CComGlobalsThreadModel

193

CComMuItiThreadModelN oCS

CComMultiThreadModelN oCS
class CComMultiThreadModelNoCS

CComMultiThreadModelNoCS is similar to CComMultiThreadModel in that it
provides thread-safe methods for incrementing and decrementing a variable. However,
when you reference a critical section class through CComMultiThreadModelNoCS,
methods such as Lock and Unlock will do nothing.

Typically, you use CComMultiThreadModelNoCS through the ThreadModelNoCS
typedef name. This typedef is defined in CComMultiThreadModelNoCS,
CComMultiThreadModel, and CComSingleThreadModel.

Note The global typedef names CComObjectThreadModel and
CComGlobalsThreadModel do not reference CComMultiThreadModelNoCS.

In addition to ThreadModelNoCS, CComMultiThreadModelNoCS defines
AutoCriticalSection and CriticalSection. These latter two typedef names reference
CComFakeCriticalSection, which provides empty methods associated with
obtaining and releasing a critical section.

#include <atlbase.h>

Methods

Decrement

Increment

Typedefs

Decrements the value of the specified variable in a thread-safe manner.

Increments the value of the specified variable in a thread-safe manner.

AutoCriticalSection References class CComFakeCriticalSection.

CriticalSection References class CComFakeCriticalSection.

ThreadModelNoCS References class CComMultiThreadModelNoCS.

Methods
CComMultiThreadModeINoCS::Decrement

static ULONG Decrement{ LPLONG p);

Return Value

194

If the result of the decrement is 0, then Decrement returns 0. If the result of the
decrement is nonzero, the return value is also nonzero but may not equal the result
of the decrement.

CComMultiThreadModeINoCS::AutoCriticaISection

Parameters

Remarks

p [in] Pointer to the variable to be decremented.

This static method calls the Win32 function InterlockedDecrement, which
decrements the value of the variable pointed to by p. InterlockedDecrement
prevents more than one thread from simultaneously using this variable.

See Also: CComMultiThreadModelNoCS: :Increment

CComMultiThreadModelN oCS: : Increment
static ULONG Increment(LPLONG p);

Return Value
If the result of the increment is 0, then Increment returns O. If the result of the
increment is nonzero, the return value is also nonzero but may not equal the result
of the increment.

Parameters

Remarks

p [in] Pointer to the variable to be incremented.

This static method calls the Win32 function InterlockedIncrement, which increments
the value of the variable pointed to by p. InterlockedIncrement prevents more than
one thread from simultaneously using this variable.

See Also: CComMultiThreadModelNoCS: :Decrement

Typedefs
CComMultiThreadModelN oCS: : AutoCriticalSection

Remarks

typedef CComFakeCriticalSection AutoCriticalSection;

When using CComMultiThreadModelNoCS, the typedef name
AutoCriticalSection references class CComFakeCriticalSection. Because
CComFakeCriticalSection does not provide a critical section, its methods do
nothing.

CComMultiThreadModel and CComSingleThreadModel also contain
definitions for AutoCriticalSection. The following table shows the relationship

195

CComMultiThreadModelNoCS::CriticalSection

Example

between the threading model class and the critical section class referenced by
AutoCriticalSection:

Class defined in

CComMultiThreadModelNoCS

CComMultiThreadModel

CComSingleThreadModel

Class referenced

CComFakeCriticalSection

CComAutoCriticalSection

CComFakeCriticalSection

In addition to AutoCriticalSection, you can use the typedef name CriticalSection.
You should not specify AutoCriticalSection in global objects or static class members
if you want to eliminate the CRT startup code.

See CComMultiThreadModel: :AutoCriticaISection.

See Also: CComObjectThreadModel, CComGlobalsThreadModel,
CComMultiThreadModelNoCS: :ThreadModelNoCS

CComMultiThreadModeINoCS::CriticaISection

Remarks

Example

196

typedef CComFakeCriticalSection CriticalSection;

When using CComMultiThreadModelNoCS, the typedef name CriticalSection
references class CComFakeCriticalSection. Because CComFakeCriticalSection
does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComSingleThreadModel also contain definitions
for CriticalSection. The following table shows the relationship between the threading
model class and the critical section class referenced by CriticalSection:

Class defined in

CComMultiThreadModelNoCS

CComMultiThreadModel

CComSingleThreadModel

Class referenced

CComFakeCriticalSection

CComCriticalSection

CComFakeCriticalSection

In addition to CriticalSection, you can use the typedef name AutoCriticalSection.
You should not specify AutoCriticalSection in global objects or static class members
if you want to eliminate the CRT startup code.

See CComMultiThreadModel: :AutoCriticaISection.

See Also: CComObjectThreadModel, CComGlobalsThreadModel,
CComMultiThreadModelNoCS: :ThreadModelNoCS

CComMultiThreadModelNoCS: :ThreadModelNoCS

CComMultiThreadModelN oCS: : ThreadModelN oCS

Remarks

Example

typedef CComMultiThreadModelNoCS ThreadModelNoCS;

When using CComMultiThreadModelNoCS, the typedef name
ThreadModelNoCS simply references CComMultiThreadModelNoCS.

CComMultiThreadModel and CComSingleThreadModel also contain definitions
for ThreadModelNoCS. The following table shows the relationship between the
threading model class and the class referenced by ThreadModelNoCS:

Class defined in

CComMultiThreadModelNoCS

CComMultiThreadModel

CComSingleThreadModel

Class referenced

CComMultiThreadModelNoCS

CComMultiThreadModelNoCS

CComSingleThreadModel

See CComMultiThreadModel: :AutoCriticaISection.

Note that the definition of ThreadModelNoCS in CComMultiThreadModelNoCS
provides symmetry with CComMultiThreadModel and CComSingleThreadModel.
For example, suppose the sample code in
CComMultiThreadModel::AutoCriticaISection declared the following typedef:

typedef ThreadModel ::ThreadModelNoCS _ThreadModel;

Regardless of the class specified for ThreadModel (such as
CComMultiThreadModeINoCS), _ThreadModel resolves accordingly.

See Also: CComObjectThreadModel, CComGlobalsThreadModel

197

CComObject

CComObject
template< class Base>
class CComObject : public Base

Parameters
Base Your class, derived from CComObjectRoot or CComObjectRootEx, as well

as from any other interfaces you want to support on the object.

CComObject implements IUnknown for a nonaggregated object. However, calls to
QueryInterface, AddRef, and Release are delegated to CComObjectRootEx.

For more information about using CComObject, see the article "Fundamentals of
ATL COM Objects."

#include <atlcom.h>

See Also: CComAggObject, CComPolyObject, DECLARE_AGGREGATABLE,
DECLARE_NOT_AGGREGATABLE

Methods

CComObject

Createlnstance

IUnknown Methods

AddRef

Query Interface

Release

Constructor.

Creates a new CComObject object.

Increments the reference count on the object.

Retrieves a pointer to the requested interface.

Decrements the reference count on the object.

Methods
CComObject: : AddRef

ULONG AddRef();

Return Value

Remarks

198

A value that may be useful for diagnostics or testing.

Increments the reference count on the object.

See Also: CComObject: :Release

CComObject:: Query Interface

CComObject: :CComObject
CComObject(void* = NULL);

Parameters

Remarks

void* [in] This unnamed parameter is not used. It exists for symmetry with other
CCornXXXObjectXXX constructors.

The constructor increments the module lock count. The destructor decrements it.

CComObject: :CreateInstance
static HRESULT Createlnstance(CComObject< Base >** pp);

Return Value
A standard HRESULT value.

Parameters

Remarks

pp [out] A pointer to a CComObject<Base> pointer. If Createlnstance is
unsuccessful, pp is set to NULL.

This static method allows you to create a new CComObject<Base> object,
without the overhead of CoCreatelnstance.

CComObject: : Query Interface
HRESULT Querylnterface(REFIID iid, void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The identifier of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid. If the object
does not support this interface, ppvObject is set to NULL.

Retrieves a pointer to the requested interface.

199

CComObject: :Release

CComObject: :Release
ULONG Release();

Return Value

Remarks

200

In debug builds, Release returns a value that may be useful for diagnostics or testing.
In non-debug builds, Release always returns O.

Decrements the reference count on the object.

See Also: CComObject: :AddRef

CComObjectGlobal
template< class Base>
class CComObjectGlobal : public Base

Parameters
Base Your class, derived from CComObjectRoot or CComObjectRootEx, as well

as from any other interface you want to support on the object.

CComObjectGlobal manages a reference count on the module containing your Base
object. CComObjectGlobal ensures your object will not be deleted as long as the
module is not released. Your object will only be removed when the reference count
on the entire module goes to zero.

For example, using CComObjectGlobal, a class factory can hold a common global
object that is shared by all its clients.

#include <atlcom.h>

See Also: CComObjectStack, CComAggObject, CComObject

Class Methods

CComObjectGlobal

IUnknown Methods

AddRef

Query Interface

Release

Data Members

m_hResFinalConstruct

Constructor.

Implements a global AddRef.

Implements a global QueryInterface.

Implements a global Release.

Contains the HRESUL T returned during construction
of the CComObjectGlobal object.

Methods
CComObjectGlobal::AddRef

ULONG AddRef();

Return Value

Remarks

A value that may be useful for diagnostics and testing.

Increments the reference count of the object by 1. By default, AddRef calls
_Module: :Lock, where _Module is the global instance of CComModule or a
class derived from it.

CComObjectGlobal

201

CComObjectGlobal: :CComObjectGlobal

See Also: CComObjectGlobal: : Release, CComModule: :Lock

CComObjectGlobal: :CComObjectGlobal

Remarks

CComObjectGlobal();

The constructor. Calls FinalConstruct and then sets m_hResFinalConstruct to the
HRESULT returned by FinalConstruct. If you have not derived your base class from
CComObjectRoot, you must supply your own FinalConstruct method. The
destructor calls FinalRelease.

See Also: CComObjectRootEx::FinaIConstruct

CComObjectGlobal:: Query Interface
HRESULT Querylnterface(REFIID iid, void** ppvObject) ;

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The GUID of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid, or NULL if the
interface is not found.

Retrieves a pointer to the requested interface pointer. Querylnterface only handles
interfaces in the COM map table.

See Also: CComObjectRootEx::lnternaIQuerylnterface, BEGIN_COM_MAP

CComObjectGlobal: :Release
ULONG Release();

Return Value

Remarks

202

In debug builds, Release returns a value that may be useful for diagnostics and
testing. In non-debug builds, Release always returns O.

Decrements the reference count of the object by 1. By default, Release calls
_Module::Unlock, where _Module is the global instance of CComModule or a
class derived from it.

See Also: CComObjectGlobal::AddRef, CComModule:: Unlock

CComObjectGlobal: :m_hResFinaIConstruct

Data Members
CComObjectGlobal: :m_hResFinaIConstruct

HRESULT m_hResFinaIConstruct();
Remarks

Contains the HRESULT from calling FinalConstruct during construction of the
CComObjectGlobal object.

See Also: CComObjectRootEx: :FinalConstruct

203

CComObjectNoLock

CCamObjectN aLack
template< class Base>
class CComObjectNoLock : public Base

Parameters
Base Your class, derived from CComObjectRoot or CComObjectRootEx, as well

as from any other interface you want to support on the object.

CComObjectNoLock is similar to CComObject in that it implements IUnknown
for a nonaggregated object; however, CComObjectNoLock does not increment the
module lock count in the constructor.

ATL uses CComObjectNoLock internally for class factories. In general, you will
not use this class directly.

#include <atlcom.h>

Class Methods

CComObjectNoLock

IUnknown Methods

AddRef

Query Interface

Release

Constructor.

Increments the reference count on the object.

Returns a pointer to the requested interface.

Decrements the reference count on the object.

Methods
CComObjectN oLock: : AddRef

ULONG AddRef();

Return Value

Remarks

204

A value that may be useful for diagnostics or testing.

Increments the reference count on the object.

See Also: CComObjectNoLock::Release

CComObjectNoLock: :Release

CCamObjectN aLack: :CCamObjectN aLack
CComObjectNoLock(void* = NULL);

Parameters

Remarks

void* [in] This unnamed parameter is not used. It exists for symmetry with other
CCornXXXObjectXXX constructors.

The constructor. Unlike CComObject, does not increment the module lock count.

CCamObjectN aLack: : Query Interface
HRESULT QueryInterface(REFIID iid, void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The identifier of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid. If the object
does not support this interface, ppvObject is set to NULL.

Retrieves a pointer to the requested interface.

CCamObjectN aLack: :Release
ULONG Release();

Return Value

Remarks

In debug builds, Release returns a value that may be useful for diagnostics or testing.
In non-debug builds, Release always returns O.

Decrements the reference count on the object.

See Also: CComObjectNoLock::AddRef

205

CComObjectRoot

CComObjectRoot

206

typedef CComObjectRootEx<CComObjectThreadModel> CComObjectRoot;

CComObjectRoot is a typedef of CComObjectRootEx templatized on the default
threading model of the server. Thus CComObjectThreadModel will reference
either CComSingleThreadModel or CComMultiThreadModel.

CComObjectRootEx handles object reference count management for both
nonaggregated and aggregated objects. It holds the object reference count if your
object is not being aggregated, and holds the pointer to the outer unknown if your
object is being aggregated. For aggregated objects, CComObjectRootEx methods
can be used to handle the failure of the inner object to construct, and to protect the
outer object from deletion when inner interfaces are released or the inner object
is deleted.

#inc1ude <at1com.h>

See Also: CComObjectRootEx, CComAggObject, CComObject,
CComPolyObject

CComObjectRootEx
template< class ThreadModel >
class CComObjectRootEx : public CComObjectRootBase

Parameters
ThreadModel The class whose methods implement the desired threading model.

You can explicitly choose the threading model by setting ThreadModel
to CComSingleThreadModel, CComMultiThreadModel, or
CComMultiThreadModelNoCS. You can accept the server's default
thread model by setting ThreadModel to CComObjectThreadModel or
CComGlobalsThreadModel.

CComObjectRootEx handles object reference count management for both
non aggregated and aggregated objects. It holds the object reference count if your
object is not being aggregated, and holds the pointer to the outer unknown if your
object is being aggregated. For aggregated objects, CComObjectRootEx methods
can be used to handle the failure of the inner object to construct, and to protect the
outer object from deletion when inner interfaces are released or the inner object
is deleted.

A class that implements a COM server must inherit from CComObjectRootEx or
CComObjectRoot.

If your class definition specifies the DECLARE_POLY _AGGREGATABLE
macro, ATL creates an instance of CComPolyObject<CYourClass> when
IClassFactory::CreateInstance is called. During creation, the value of the outer
unknown is checked. If it is NULL, IUnknown is implemented for a nonaggregated
object. If the outer unknown is not NULL, IUnknown is implemented for an
aggregated object.

If your class does not specify the DECLARE_POLY _AGGREGATABLE macro,
ATL creates an instance of CComObject<CYourClass> for aggregated objects or
an instance of CComAggObject<CYourClass> for nonaggregated objects.

The advantage of using CComPolyObject is that you avoid having both
CComAggObject and CComObject in your module to handle the aggregated
and nonaggregated cases. A single CComPolyObject object handles both cases.
Therefore, only one copy of the vtable and one copy of the functions exist in your
module. If your vtable is large, this can substantially decrease your module size.
However, if your vtable is small, using CComPolyObject can result in a slightly
larger module size because it is not optimized for an aggregated or nonaggregated
object, as are CComAggObject and CComObject.

The DECLARE_POLY _AGGREGATABLE macro is automatically added to your
class definition by the ATL Object Wizard when you create a full control or Internet
Explorer control.

CComObjectRootEx

207

CComObjectRootEx

208

If your object is aggregated, IUnknown is implemented by CComAggObject or
CComPolyObject. These classes delegate QueryInterface, AddRef, and Release
calls to CComObjectRootEx's OuterQueryInterface, OuterAddRef, and
OuterRelease to forward to the outer unknown. Typically, you override
CComObjectRootEx: :FinalConstruct in your class to create any aggregated
objects, and override CComObjectRootEx: :FinalRelease to free any aggregated
objects.

If your object is not aggregated, IUnknown is implemented by CComObject or
CComPolyObject. In this case, calls to QueryInterface, AddRef, and Release are
delegated to CComObjectRootEx's InternalQueryInterface, InternalAddRef,
and InternalRelease to perform the actual operations.

#include <atlcom.h>

See Also: CComAggObject, CComObject, CComPolyObject

Methods

CComObjectRootEx

InternalAddRef

InternalQuery Interface

InternalRelease

Lock

Unlock

CComObjectRootBase Methods

Final Construct

FinalRelease

OuterAddRef

OuterQuery Interface

OuterRelease

Data Members

m_pOuterUnknown

Constructor.

Increments the reference count for a nonaggregated object.

Delegates to the IUnknown of a nonaggregated object.

Decrements the reference count for a nonaggregated object.

If the thread model is multithreaded, obtains ownership of
a critical section object.

If the thread model is multithreaded, releases ownership of
a critical section object.

Override in your class to create any aggregated objects.

Override in your class to release any aggregated objects.

Increments the reference count for an aggregated object.

Delegates to the outer IUnknown of an aggregated object.

Decrements the reference count for an aggregated object.

A CComAutoCriticalSection object or
CComFakeCriticalSection object, depending on the
thread model.

With m_pOuterUnknown, part of a union. Used when
the object is not aggregated to hold the reference count of
AddRef and Release.

With m_dwRef, part of a union. Used when the object is
aggregated to hold a pointer to the outer unknown.

CComObjectRootEx: :FinalConstruct

Methods
CComObjectRootEx: :CComObjectRootEx

CComObjectRootEx();

Remarks
The constructor initializes the reference count to O.

CComObjectRootEx: : FinalConstruct
HRESULT FinaIConstruct();

Return Value

Remarks

One of the standard HRESULT values.

Typically, override this method in the class derived from CComObjectRootEx
to create any aggregated objects. For example:

class CMyAggObject : public CComObjectRootEx< ... >
{

} ;

DECLARE_GET_CONTROLLING_UNKNOWN
HRESULT FinalConstruct()
{

return CoCreateInstance(CLSID_SomeServer.
GetControllingUnknown(). CLSCTX_ALL.
IID_ISomeServer. &m_pSomeServer);

If the construction fails, you can return an error. You can also use the macro
DECLARE_PROTECT_FINAL_CONSTRUCT to protect your outer object
from being deleted if (during creation) the internal aggregated object increments
the reference count then decrements the count to O.

By default, CComObjectRootEx::FinaIConstruct simply returns S_OK.

Here is a typical way to create an aggregate:

• Add an IUnknown pointer to your class object and initialize it to NULL in the
constructor.

• Override FinalConstruct to create the aggregate.

• Use the IUnknown pointer you defined as the parameter to the
COM_INTERFACE_ENTRY_AGGREGATE macro.

• Override FinalRelease to release the IUnknown pointer.

209

CComObjectRootEx: :FinalRelease

See Also: CComObjectRootEx: :FinalRelease,
DECLARE_GET_CONTROLLING_UNKNOWN

CComObjectRootEx: : FinalRelease

Remarks

void FinalRelease();

Typically, override this method in the class derived from CComObjectRootEx to
free any aggregated objects before deletion.

See Also: CComObjectRootEx: : FinalConstruct

CComObjectRootEx: : IntemalAddRef
ULONG InternalAddRef();

Return Value

Remarks

A value that may be useful for diagnostics and testing.

Increments the reference count of a non aggregated object by 1. If the thread model is
multithreaded, InterlockedIncrement is used to prevent more than one thread from
changing the reference count at the same time.

See Also: CComObjectRootEx: :InternalRelease, InterlockedIncrement in the
Win32 SDK online

CComObjectRootEx: : Internal Query Interface
static HRESULT InternalQueryInterface(void* pThis,

... const _ATL_INTMAP _ENTRY* pEn tries, REFIID iid, void** ppvObject);

Return Value
One of the standard HRESULT values.

Parameters

210

pThis [in] A pointer to the object that contains the COM map of interfaces exposed
to Query Interface.

pEntries [in] A pointer to the _ATL_INTMAP _ENTRY structure that accesses a
map of available interfaces.

iid [in] The GUID of the interface being requested.

ppvObject [out] A pointer to the interface pointer specified in iid, or NULL if the
interface is not found.

CComObjectRootEx::Lock

lemarks
Retrieves a pointer to the requested interface.

InternalQuery Interface only handles interfaces in the COM map table. If your
object is aggregated, InternalQuerylnterface does not delegate to the outer
unknown. You can enter interfaces into the COM map table with the macro
COM_INTERFACE_ENTRY or one of its variants.

See Also: CComObjectRootEx: :lnternaIAddRef,
CComObjectRootEx: :lnternalRelease

:ComObj ectRootEx: : InternalRelease
ULONG InternalRelease();

leturn Value

lemarks

In non-debug builds, always returns O. In debug builds, returns a value that may be
useful for diagnostics or testing.

Decrements the reference count of a nonaggregated object by 1. If the thread model is
multithreaded, InterlockedDecrement is used to prevent more than one thread from
changing the reference count at the same time.

See Also: CComObjectRootEx: :lnternaIAddRef, InteriockedDecrement in the
Win32 SDK online

:ComObjectRootEx: :Lock

lemarks

void Lock();

If the thread model is multithreaded, this method calls the Win32 API function
EnterCriticalSection, which waits until the thread can take ownership of the critical
section object obtained through the m_critsec data member. When the protected code
finishes executing, the thread must call Unlock to release ownership of the critical
section.

If the thread model is single-threaded, this method does nothing.

See Also: CComObjectRootEx:: Unlock, CComObjectRootEx: :m_critsec

211

CComObjectRootEx::Outer Add Ref

CComObjectRootEx: :OuterAddRef
ULONG OuterAddRef();

Return Value

Remarks

A value that may be useful for diagnostics and testing.

Increments the reference count of the outer unknown of an aggregation.

See Also: CComObjectRootEx: :OuterRelease,
CComObjectRootEx::OuterQuerylnterface

CComObjectRootEx: : OuterQuery Interface
HRESULT OuterQuerylnterface(REFIID iid, void** ppvObject);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

iid [in] The GUID of the interface being requested.

ppvObject [out] A pointer to the interface pointer specified in iid, or NULL if
the aggregation does not support the interface.

Retrieves an indirect pointer to the requested interface.

See Also: CComObjectRootEx: :Outer AddRef,
CComObjectRootEx: : Outer Release

CComObj ectRootEx: : OuterRelease
ULONG OuterRelease();

Return Value

Remarks

212

In non-debug builds, always returns O. In debug builds, returns a value that may
be useful for diagnostics or testing.

Decrements the reference count of the outer unknown of an aggregation.

See Also: CComObjectRootEx: :Outer AddRef,
CComObjectRootEx: :OuterQuerylnterface

CComObjectRootEx::m_dwRef

CComObjectRootEx: : Unlock

Remarks

void Unlock();

If the thread model is multithreaded, this method calls the Win32 API function
LeaveCriticalSection, which releases ownership of the critical section object
obtained through the m_critsec data member. To obtain ownership, the thread
must call Lock. Each call to Lock requires a corresponding call to Unlock to
release ownership of the critical section.

If the thread model is single-threaded, this method does nothing.

See Also: CComObjectRootEx: :Lock, CComObjectRootEx: :m_critsec

Data Members
CComObjectRootEx: :m_critsec

Remarks

_CritSec m_critsec;

A CComAutoCriticalSection or CComFakeCriticalSection object. The critical
section class _CritSec is determined by the thread model: CComAutoCriticalSection
if multithreaded, and CComFakeCriticalSection if single-threaded.

If the thread model is multithreaded, m_critsec is a CComAutoCriticalSection
object and provides access to CComAutoCriticalSection's methods and a
CRITICAL_SECTION object.

If the thread model is single-threaded, a critical section is not needed and m_critsec
is a CComFakeCriticalSection object.

See Also: CComObjectRootEx::Lock, CComObjectRootEx::Unlock

CComObjectRootEx: :m_dw Ref

Remarks
Part of a union that accesses four bytes of memory.

union
{

long m_dwRef;
IUnknown* m_pOuterUnknown;

} ;

213

CComObjectRootEx::m_pOuterUnknown

If the object is not aggregated, the reference count accessed by AddRef and Release
is stored in m_dwRef. If the object is aggregated, the pointer to the outer unknown
is stored in m_pOuterUnknown.

CComObjectRootEx: :m_pOuterUnknown

Remarks

214

IUnknown* m_pOuterUnknown;

Part of a union that accesses four bytes of memory.

union
{

long m_dwRef;
IUnknown* m_pOuterUnknown;

} ;

If the object is aggregated, the pointer to the outer unknown is stored in
m_pOuterUnknown. If the object is not aggregated, the reference count accessed
by AddRef and Release is stored in m_dwRef.

CComObjectStack
template< class Base>
class CComObjectStack : public Base

Parameters
Base Your class, derived from CComObjectRoot or CComObjectRootEx, as

well as from any other interface you want to support on the object.

CComObjectStack is used to create a temporary COM object and provide the
object a skeletal implementation of IUnknown. Typically, the object is used as a
local variable within one function (that is, pushed onto the stack). Since the object
is destroyed when the function finishes, reference counting is not performed to
increase efficiency.

The following example shows how to create a COM object used inside a function:

v 0 i d My Fun c ()
{

CComObjectStack<CMyObject> Tempobj:

The temporary object Tempobj is pushed onto the stack and automatically disappears
when the function finishes.

#include <atlcom.h>

See Also: CComAggObject, CComObject, CComObjectGlobal

Class Methods

CComObjectStack

IUnknown Methods

Add Ref

Querylnterface

Release

Data Members

m_hResFinalConstruct

Constructor.

Returns zero. In debug mode, calls _ASSERTE.

Returns E_NOINTERFACE. In debug mode, calls _ASSERTE.

Returns zero. In debug mode, calls _ASSERTE.

Contains the HRESUL T returned during construction of the
CComObjectStack object.

CComObjectStack

215

CComObjectStack: :AddRef

Methods
CComObjectStack: : AddRef

ULONG AddRef();

Return Value
Returns zero.

Remarks
Returns zero. In debug mode, calls _ASSERTE.

CComObjectStack::CComObjectStack

Remarks

CComObjectStack();

The constructor. Calls FinalConstruct and then sets m_hResFinalConstruct to the
HRESULT returned by FinalConstruct. If you have not derived your base class from
CComObjectRoot, you must supply your own FinalConstruct method. The
destructor calls FinalRelease.

See Also: CComObjectRootEx: :FinalConstruct

CComObjectStack::QueryInterface
HRESULT Querylnterface(REFIID iid, void** ppvObject) ;

Return Value
Returns E_NOINTERFACE.

Parameters

Remarks

216

iid [in] The lID of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid, or NULL if the
interface is not found.

Returns E_NOINTERFACE. In debug mode, calls _ASSERTE.

CComObjectS tack: :m_hResFinaIConstruct

CComObjectStack: :Release
ULONG Release();

Return Value
Returns zero.

Remarks
Returns zero. In debug mode, calls _ASSERTE.

Data Members
CComObj ectStack: :m_hResFinal Construct

Remarks

HRESULT m_hResFinaIConstruct();

Contains the HRESULT returned from calling FinalConstruct during construction
of the CComObjectStack object.

See Also: CComObjectRootEx: :FinalConstruct

217

CComObjectThreadModel

CComObjectThreadModel

218

#if defined(_ATL_SINGLE_THREADED)
typedef CComSingleThreadModel CComObjectThreadModel;

#elif defined(_ATL_APARTMENT_THREADED)
typedef CComSingleThreadModel CComObjectThreadModel;

#else
typedef CComMultiThreadModel CComObjectThreadModel;

#endif

Depending on the threading model used by your application, the typedef name
CComObjectThreadModel references either CComSingleThreadModel or
CComMultiThreadModel. These classes provide additional typedef names to
reference a critical section class.

Note CComObjectThreadModel does not reference class CComMultiThreadModelNoCS.

Using CComObjectThreadModel frees you from specifying a particular threading
model class. Regardless of the threading model being used, the appropriate methods
will be called.

In addition to CComObjectThreadModel, ATL provides the typedef name
CComGlobalsThreadModel. The class referenced by each typedef depends on
the threading model used, as shown in the following table:

typedef

CComObjectThreadModel

CComGlobalsThreadModel

Threading Model

Single

s
s

Apartment

S

M

S=CComSingleThreadModel; M=CComMultiThreadModel

Free

M

M

Use CComObjectThreadModel within a single object class. Use
CComGlobalsThreadModel in an object that is either globally available to your
program, or when you wish to protect module resources across multiple threads.

#include <atlbase.h>

See Also: CComObjectRootEx

CComPolyObject
template< class contained>
class CComPolyObject : public IUnknown,

public CComObjectRootEx< contained::_ ThreadModel: :ThreadModelNoCS >

Parameters
contained Your class, derived from CComObjectRoot or CComObjectRootEx,

as well as from any other interfaces you want to support on the object.

CComPolyObject implements IUnknown for an aggregated or nonaggregated
object.

When an instance of CComPolyObject is created, the value of the outer unknown is
checked. If it is NULL, IUnknown is implemented for a nonaggregated object. If the
outer unknown is not NULL, IUnknown is implemented for an aggregated object.

The advantage of using CComPolyObject is that you avoid having both
CComAggObject and CComObject in your module to handle the aggregated and
nonaggregated cases. A single CComPolyObject object handles both cases. This
means only one copy of the vtable and one copy of the functions exist in your module.
If your vtable is large, this can substantially decrease your module size. However, if
your vtable is small, using CComPolyObject can result in a slightly larger module
size because it is not optimized for an aggregated or nonaggregated object, as are
CComAggObject and CComObject.

If the DECLARE_POLY _AGGREGATABLE macro is specified in your object's
class definition, CComPolyObject will be used to create your object.
DECLARE_POLY _AGGREGATABLE will automatically be declared if you use
the ATL Object Wizard to create a full control or Internet Explorer control.

If aggregated, the CComPolyObject object has its own IUnknown, separate from the
outer object's IUnknown, and maintains its own reference count. CComPolyObject
uses CComContainedObject to delegate to the outer unknown.

For more information about aggregation, see the article "Fundamentals of ATL COM
Objects."

#include <atlcom.h>

See Also: CComObjectRootEx, DECLARE_POLY _AGGREGATABLE

Class Methods

CComPolyObject

FinalConstruct

FinalRelease

Constructor.

Performs final initialization of m_contained.

Performs final destruction of m_contained.

CComPolyObject

219

CComPolyObject: :AddRef

IUnknown Methods

AddRef

Query Interface

Release

Data Members

m_contained

Increments the reference count on the object.

Retrieves a pointer to the requested interface.

Decrements the reference count on the object.

Delegates IUnknown calls to the outer unknown if the object is
aggregated or to the IUnknown of the object if the object is not
aggregated.

Methods
CComPolyObject: : AddRef

ULONG AddRef();

Return Value

Remarks

A value that may be useful for diagnostics or testing.

Increments the reference count on the object.

See Also: CComPolyObject::Release

CComPolyObject: :CComPolyObject
CComPolyObject(void* pv);

Parameters

Remarks

220

pv [in] A pointer to the outer unknown if the object is to be aggregated, or NULL if
the object if the object is not aggregated.

The constructor. Initializes the CComContainedObject data member, m_contained,
and increments the module lock count.

The destructor decrements the module lock count.

See Also: CComPolyObject: :FinaIConstruct, CComPolyObject: : FinalRelease

CComPolyObject: : Query Interface

CComPolyObject: : FinalConstruct
HRESULT FinaIConstruct();

Return Value

Remarks

A standard HRESULT value.

Called during the final stages of object construction, this method performs any final
initialization on the m_contained data member.

See Also: CComObjectRootEx: :FinaIConstruct,
CComPolyObject: :FinalRelease

CComPolyObject: : FinalRelease

Remarks

void FinalRelease();

Called during object destruction, this method frees the m_contained data member.

See Also: CComObjectRootEx::FinaIRelease,
CComPolyObject: :Final Construct

CComPolyObject: : Query Interface
HRESULT QueryInterface(REFIID iid, void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

iid [in] The identifier of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid. If the object does
not support this interface, ppvObject is set to NULL.

Retrieves a pointer to the requested interface.

For an aggregated object, if the requested interface is IUnknown, QueryInterface
returns a pointer to the aggregated object's own IUnknown and increments the
reference count. Otherwise, this method queries for the interface through the
CComContainedObject data member, m_contained.

221

CComPolyObject: :Release

CComPolyObject: :Release
ULONG Release();

Return Value

Remarks

In debug builds, Release returns a value that may be useful for diagnostics or testing.
In nondebug builds, Release always returns O.

Decrements the reference count on the object.

See Also: CComPolyObject: :AddRef

Data Members
CComPolyObject: :m_contained

CComContainedObject< contained> m_contained;

Parameters

Remarks

222

contained [in] Your class, derived from CComObjectRoot or
CComObjectRootEx, as well as from any other interfaces you want to support on
the object.

A CComContainedObject object derived from your class. IUnknown calls through
m_contained are delegated to the outer unknown if the object is aggregated, or to the
IUnknown of this object if the object is not aggregated.

CComPtr
template< class T>
class CComPtr

Parameters
T A COM interface specifying the type of pointer to be stored.

ATL uses CComPtr and CComQIPtr to manage COM interface pointers. Both
classes perform automatic reference counting through calls to AddRef and Release.
Overloaded operators handle pointer operations. CComQIPtr additionally supports
automatic querying of interfaces though Querylnterface.

The following code is from CFirePropNotifyEvent::FireOnRequestEdit:

static HRESULT FireOnRequestEdit(IUnknown* pUnk. DISPID dispID)
{

} ;

CComQIPtr<IConnectionPointContainer.
&IID_IConnectionPointContainer> pCPC(pUnk);

if (!pCPC)
return S_OK;

CComPtr<IConnectionPoint> pCP;
pCPC->FindConnectionPoint(IID_IPropertyNotifySink. &pCP);
if (!pCP)

return S_OK;

This example illustrates the following:

• The constructor for the CComQIPtr object, pCPC, calls Querylnterface on pUnk
to obtain the IConnectionPointContainer pointer. The retrieved pointer is stored
in pCPC.

• The function declares the CComPtr object, pC P, to hold an IConnectionPoint
pointer.

• IConnectionPointContainer::FindConnectionPoint is called through pC PC to
retrieve an IConnectionPoint pointer via pC P.

#include <atlbase.h>

See Also: CComPtr::CComPtr, CComQIPtr::CComQIPtr

Methods

CComPtr

Release

Constructor. Initializes the member pointer.

Decrements the reference count on the object pointed to by the
member pointer.

CComPtr

223

CComPtr: :CComPtr

Operators

operator T*

operator *
operator &

operator ->

operator =
operator!

Data Members

p

Converts a CComPtr object to a T*.

Returns the dereferenced value of the member pointer.

Returns the address of the member pointer.

Returns the member pointer.

Assigns a pointer to the member pointer.

Returns TRUE or FALSE, depending on whether the member
pointer is NULL.

The managed COM interface pointer of type T*.

Methods
CComPtr: :CComPtr

CComPtr();
CComPtr(T* /p);
CComPtr (const CComPtr< T >& /p);

Parameters

Remarks

/p [in] Used to initialize the interface pointer, p.

T [in] A COM interface.

The default constructor sets p to NULL. The copy constructor sets p to the member
pointer of /p and calls AddRef through p. If you pass a pointer type derived from T,
the constructor sets p to the T* parameter and calls AddRef.

The destructor calls Release through p.

CComPtr: :Release
void Release();

Remarks
Calls IUnknown::Release through p and sets p to NULL.

224

Operators
CComPtr::operator T*

operator T*();

Remarks
Converts a CComPtr object to a T*.

CComPtr::operator *
T& operator *();

Remarks
Returns the dereferenced value of the interface pointer, p.

Note The operation will assert if p is NULL.

CComPtr::operator &
T~* operator &();

Remarks
Returns the address of the interface pointer, p.

Note The operation will assert if p is non-NULL.

CComPtr::operator ->
T* operator ->();

Remarks
Returns the interface pointer, p.

Note The operation will assert if p is NULL.

CComPtr::operator ->

225

CComPtr::operator =

CComPtr:: operator =

Remarks

1'* operator =(1'* lp);
1'* operator =(const CComPtr< T >& lp);

When assigning a pointer type derived from T, the operator sets p to the given 1'*.
When assigning a CComPtr, the operator sets p to the member pointer of lp.

CComPtr: : operator !
bool operator !();

Remarks
Returns true if p is NULL; otherwise, false.

Data Members
CComPtr::p

1'* p;

Remarks
Points to the specified COM interface.

226

CComQIPtr
template< class T, const IID* piid >
class CComQIPtr

Parameters
T A COM interface specifying the type of pointer to be stored.

piid A pointer to the lID of T.

ATL uses CComQIPtr and CComPtr to manage COM interface pointers. Both
classes perform automatic reference counting through calls to AddRef and Release.
Overloaded operators handle pointer operations. CComQIPtr additionally supports
automatic querying of interfaces though QueryInterface.

For an example of using CComQIPtr and CComPtr, see the CComPtr class
overview.

Note Do not use CComQIPtr<IUnknown, &IIDJUnknown>. Rather, use
CComPtr<IUnknown>.

#include <atlbase.h>

See Also: CComPtr::CComPtr, CComQIPtr::CComQIPtr

Methods

CComQIPtr

Release

Operators

operator T*

operator *
operator &

operator ->

operator =
operator!

Data Members

p

Constructor. Initializes the member pointer.

Decrements the reference count on the object pointed
to by the member pointer.

Converts a CComQIPtr object to a T*.

Returns the dereferenced value of the member pointer.

Returns the address of the member pointer.

Returns the member pointer.

Assigns a pointer to the member pointer.

Returns TRUE or FALSE, depending on whether
the member pointer is NULL.

The managed COM interface pointer of type T*.

CComQIPtr

227

CComQIPtr: :CComQIPtr

Methods
CComQ IPtr: : CComQIPtr

CComQIPtr();
CComQIPtr(T* Ip);
CComQIPtr(const CComQIPtr< T, piid >& lp);
CComQIPtr(IUnknown* Ip);

Parameters

Remarks

lp [in] Used to initialize the interface pointer, p.

T [in] A COM interface.

piid [in] A pointer to the lID of T.

The default constructor sets p to NULL. The copy constructor sets p to the member
pointer of lp and calls AddRef through p.

If you pass a pointer type derived from T, the constructor sets p to the T* parameter
and calls AddRef. If you pass a pointer type not derived from T, the constructor calls
Querylnterface to set p to an interface pointer corresponding to piid.

The destructor calls Release through p.

CComQIPtr: :Release
void Release();

Remarks
Calls IUnknown::Release through p and sets p to NULL.

Operators
CComQIPtr: : operator T*

operator T*();

Remarks
Converts a CComQIPtr object to a T*.

228

CComQIPtr::operator =

CComQIPtr::operator *

Remarks

T& operator *();

Returns the dereferenced value of the interface pointer, p.

Note The operation will assert if p is NULL.

CComQIPtr::operator &
1'** operator &();

Remarks
Returns the address of the interface pointer, p.

Note The operation will assert if p is non-NULL.

CComQIPtr::operator ->
1'* operator ->();

Remarks
Returns the interface pointer, p.

Note The operation will assert if p is NULL.

CComQIPtr: : operator =

Remarks

1'* operator =(1'* lp);
1'* operator =(const CComQIPtr< T, piid >& lp);
1'* operator =(IUnknown* lp);

When assigning a pointer type derived from T, the operator sets p to the given 1'*.
When assigning a CComQIPtr, the operator sets p to the member pointer of lp.

When assigning a pointer type not derived from T, the operator calls Querylnterface
to set p to an interface pointer corresponding to piid. If Querylnterface fails, p is set
to NULL.

229

CComQIPtr::operator!

CComQIPtr: : operator !
bool operator !();

Remarks
Returns true if p is NULL; otherwise, false.

Data Members
CComQIPtr: :p

T* p;

Remarks
Points to the specified COM interface.

230

CComSimpleThreadAllocator

CComSimpleThreadAllocator
class CComSimpleThreadAllocator

CComSimpleThreadAllocator manages thread selection for
CComAutoThreadModule. CComSimpleThreadAllocator: : GetThread simply
cycles through each thread and returns the next one in the sequence.

#include <atJbase.h>

See Also: CComApartment

Methods

GetThread Selects a thread.

Methods
CComSimpleThreadAllocator:: GetThread

int GetThread(CComApartment* pApt, int nThreads);

Return Value
An integer between zero and nThreads -1. Identifies one of the threads in the
EXE module.

Parameters

Remarks

pApt [in] Not ~sed in ATL's default implementation.

nThreads [in] The maximum number of threads in the EXE module.

Selects a thread by specifying the next thread in the sequence. You can override
GetThread to provide a different method of selection or to make use of the pApt
parameter.

GetThread is called by CComAutoThreadModule::Createlnstance.

See Also: CComApartment

231

CComSingleThreadModel

CComSingleThreadModel

232

class CComSingleThreadModel

CComSingleThreadModel provides methods for incrementing and decrementing
the value of a variable. Unlike CComMultiThreadModel and
CComMultiThreadModelNoCS, these methods are not thread-safe.

Typically, you use CComSingleThreadModel through one of two typedef names,
either CComObjectThreadModel or CComGlobalsThreadModel. The class
referenced by each typedef depends on the threading model used, as shown in the
following table:

typedef

CComObjectThreadModel

CComGlobalsThreadModel

Threading Model

Single

s
s

Apartment

S

M

Free

M

M

S=CComSingleThreadModel; M=CComMultiThreadModel

CComSingleThreadModel itself defines three typedef names. ThreadModelNoCS
references CComSingleThreadModel. AutoCriticalSection and CriticalSection
reference class CComFakeCriticalSection, which provides empty methods
associated with obtaining and releasing ownership of a critical section.

#include <atlbase.h>

Methods

Decrement

Increment

Typedefs

AutoCriticalSection

CriticalSection

ThreadModelNoCS

Decrements the value of the specified variable.
This implementation is not thread-safe.

Increments the value of the specified variable.
This implementation is not thread-safe.

References class CComFakeCriticalSection.

References class CComFakeCriticalSection.

References CComSingleThreadModel.

CComSingleThreadModc1: :AutoCriticalSection

Methods
CComSingleThreadModel: : Decrement

static ULONG Decrement(LPLONG p);

Return Value
The result of the decrement.

Parameters

Remarks

p [in] Pointer to the variable to be decremented.

This static method decrements the value of the variable pointed to by p.

See Also: CComSingleThreadModel: :Increment

CComSingleThreadModel: : Increment
static ULONG Increment(LPLONG p);

Return Value
The result of the increment.

Parameters

Remarks

p [in] Pointer to the variable to be incremented.

This static method decrements the value of the variable pointed to by p.

See Also: CComSingleThreadModel: :Decrement

Typedefs
CComSingleThreadModel: : AutoCriticalSection

Remarks

typedef CComFakeCriticalSection AutoCriticalSection;

When using CComSingleThreadModel, the typedef name AutoCriticalSection
references class CComFakeCriticalSection. Because CComFakeCriticalSection
does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComMultiThreadModelNoCS also contain
definitions for AutoCriticalSection. The following table shows the relationship

233

CComSingleThreadModel: :CriticalSection

Example

between the threading model class and the critical section class referenced by
AutoCriticalSection:

Class defined in

CComSingleThreadModel

CComMultiThreadModel

CComMultiThreadModelNoCS

Class referenced

CComFakeCriticalSection

CComAutoCriticalSection

CComFakeCriticalSection

In addition to AutoCriticalSection, you can use the typedef name CriticalSection.
You should not specify AutoCriticalSection in global objects or static class members
if you want to eliminate the CRT startup code.

See CComMultiThreadModel: :AutoCriticaISection.

See Also: CComObjectThreadModel, CComGlobalsThreadModel,
CComSingleThreadModel: :ThreadModelNoCS

CComSingleThreadModel: :CriticalSection

Remarks

Example

234

typedef CComFakeCriticalSection CriticalSection;

When using CComSingleThreadModel, the typedef name CriticalSection
references class CComFakeCriticalSection. Because CComFakeCriticalSection
does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComMultiThreadModelNoCS also contain
definitions for CriticalSection. The following table shows the relationship between
the threading model class and the critical section class referenced by CriticalSection:

Class defined in

CComSingleThreadModel

CComMultiThreadModel

CComMultiThreadModelNoCS

Class referenced

CComFakeCriticalSection

CComCriticalSection

CComFakeCriticalSection

In addition to CriticalSection, you can use the typedef name AutoCriticalSection.
You should not specify AutoCriticalSection in global objects or static class members
if you want to eliminate the CRT startup code.

See CComMultiThreadModel: :AutoCriticaISection.

See Also: CComObjectThreadModel, CComGlobalsThreadModel,
CComSingleThreadModel: :ThreadModelNoCS

CComSingleThreadModel: :ThreadModelN oCS

CComSingleThreadModel: : ThreadModelN oCS
typedef CComSingleThreadModel ThreadModelNoCS;

Remarks

Example

When using CComSingleThreadModel, the typedef name ThreadModelNoCS
simply references CComSingleThreadModel.

CComMuItiThreadModel and CComMuItiThreadModelNoCS also contain
definitions for ThreadModelNoCS. The following table shows the relationship
between the threading model class and the class referenced by ThreadModelNoCS:

Class defined in

CComSingleThreadModel

CComMultiThreadModel

CComMultiThreadModelNoCS

Class referenced

CComSingleThreadModel

CComMultiThreadModelNoCS

CComMultiThreadModelNoCS

See CComMultiThreadModel: :AutoCriticaISection.

See Also: CComObjectThreadModel, CComGlobalsThreadModel

235

CComTearOffObject

CComTearOffObject
template< class Base>
class CComTearOffObject : public Base

Parameters

236

Base Your tear-off class, derived from CComTearOffObjectBase and the interfaces
you want your tear-off object to support.

ATL implements its tear-off interfaces in two phases-the CComTearOffObjectBase
methods handle the reference count and Querylnterface, while CComTearOffObject
implements IUnknown.

CComTearOffObject implements a tear-off interface as a separate object that is
instantiated only when that interface is queried for. The tear-off is deleted when its
reference count becomes zero. Typically, you build a tear-off interface for an interface
that is rarely used, since using a tear-off saves a vtable pointer in all the instances of
your main object.

You should derive the class implementing the tear-off from
CComTearOffObjectBase and from whichever interfaces you want your tear-off
object to support. CComTearOffObjectBase is templatized on the owner class and
the thread model. The owner class is the class of the object for which a tear-off is
being implemented. If you do not specify a thread model, the default thread model
is used.

You should create a COM map for your tear-off class. When ATL instantiates the
tear-off, it will create CComTearOffObject<CYourTearOffClass> or
CComCachedTearOffObject<CYourTearOffClass>.

For example, in the BEEPER sample, the C Bee per 2 class is the tear-off class and
the CBeeper class is the owner class:

class CBeeper2 public ISupportErrorInfo.
public CComTearOffObjectBase<CBeeper>

{

public:

} ;

CBeeper2 () {}
STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid)
{

return (InlineIsEqualGUID(IID_IBeeper.riid» ?
S_OK : S_FALSE;

BEGIN_COM_MAP(CBeeper2)
COM_INTERFACE_ENTRY(ISupportErrorInfo)

END_COM_MAP()

CComTearOffObject: :AddRef

class CBeeper :
public IDispatchImpl<IBeeper. &IID_IBeeper.

&LIBID_BeeperLib>.
public CComObjectRoot.
public CComCoClass<CBeeper. &CLSID_Beeper>

public:
CBeeper();
BEGIN_COM_MAP(CBeeper)

COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(IBeeper)
COM_INTERFACE_ENTRY_TEAR_OFF(IID_ISupportErrorInfo.

CBeeper2)

} ;

#include <atlcom.h>

See Also: CComCachedTearOffObject

Methods

AddRef

CComTearOffObject

Query Interface

Release

CComTearOffObjectBase Methods

CComTearOffObjectBase

Increments the reference count for a CComTearOffObject
object.

Constructor.

Returns a pointer to the requested interface on either your
tear-off class or the owner class.

Decrements the reference count for a CComTearOffObject
object and destroys it.

Constructor.

CComTearOffObjectBase Data Members

A pointer to a CComObject derived from the owner class.

Methods
CComTearOffObject: : AddRef

ULONG AddRef();

Return Value
A value that may be useful for diagnostics and testing.

237

CComTearOffObject: : CComTearOffObject

Remarks
Increments the reference count of the CComTearOffObject object by 1.

See Also: CComTearOffObject::Release

CCom TearOffObject: : CCom TearOffObj ect
CComTearOffObject(void* p);

Parameters
p [in] Pointer that will be converted to a pointer to a CComObject<Owner> object.

Remarks
The constructor. Increments the owner's reference count by 1.

See Also: CComCachedTearOffObject::CComCachedTearOffObject

CComTearOffObject: :CComTearOffObjectBase
CComTearOffObjectBase();

Remarks
The constructor. Initializes the m_pOwner member to NULL.

See Also: CComCachedTearOffObject:: CComCachedTearOffObject

CComTearOffObject:: Query Interface
HRESULT Querylnterface(REFIID iid , void** ppvObject);

Return Value
A standard HRESULT value.

Parameters

Remarks

238

iid [in] The lID of the interface being requested.

ppvObject [out] A pointer to the interface pointer identified by iid, or NULL if the
interface is not found.

Retrieves a pointer to the requested interface. Queries first for interfaces on your
tear-off class. If the interface is not there, queries for the interface on the owner
object. If the requested interface is IUnknown, returns the IUnknown of the owner.

See Also: CComTearOffObject: :AddRef, CComTearOffObject: :Release

CComTearOffObject: :m_pOwner

CComTearOffObject: :Release
ULONG Release();

Return Value

Remarks

In non-debug builds, always returns 0. In debug builds, returns a value that may be
useful for diagnostics or testing.

Decrements the reference count by 1 and, if the reference count is 0, deletes the
CComTearOffObject.

See Also: CComTearOffObject::AddRef

Data Members
CComTearOffObject: :m_pOwner

CComObject<Owner>* m_pOwner;

Parameters

Remarks

Owner [in] The class for which a tear-off is being implemented.

A pointer to a CComObject object derived from Owner. The pointer is initialized
to NULL during construction.

See Also: CComTearOffObject::CComTearOffObjectBase

239

CComUnkArray

CCom U nkArray
template< unsigned int nMaxSize >
class CComUnkArray

Parameters
nMaxSize The maximum number of IUnknown pointers that can be held in

the static array.

CComUnkArray holds a fixed number of IUnknown pointers, each an interface
on a connection point. CComUnkArray can be used as a parameter to the
IConnectionPointImpl template class. CComUnkArray<l> is a template
specialization of CComUnkArray that has been optimized for one connection
point.

The CComUnkArray methods begin and end can be used to loop through all
connection points (for example, when an event is fired).

See "The Proxy Generator" for details on automating creation of connection
point proxies.

#include <atlcom.h>

See Also: CComDynamicUnkArray

Methods

begin

CComUnkArray

end

Returns a pointer to the first IUnknown pointer in the collection.

Constructor.

Returns a pointer to one past the last IUnknown pointer in
the collection.

Methods
CComUnkArray:: begin

IUnknown** begin();

Return Value

Remarks

240

A pointer to an IUnknown interface pointer.

Returns a pointer to beginning of the collection of IUnknown interface pointers.

The collection contains pointers to interfaces stored locally as IUnknown. You cast
each IUnknown interface to the real interface type and then call through it. You do
not need to query for the interface first.

Before using the IUnknown interface, you should check that it is not NULL.

See Also: CComUnkArray::end, CComDynamicUnkArray::begin

CComUnkArray::CComUnkArray

Remarks

CComUnkArray();

The constructor. Sets the collection to hold nMaxSize IUnknown pointers, and
initializes the pointers to NULL.

CComUnkArray::end
IUnknown** end();

Return Value

Remarks

A pointer to an IUnknown interface pointer.

Returns a pointer to one past the last IUnknown pointer in the collection.

The CComUnkArray methods begin and end can be used to loop through the
all connection points, for example, when an event is fired.

IUnknown** p = m_vec.begin();
while(p != m_vec.end())
{

II Do something with *p
p++;

See Also: CComUnkArray::begin, CComDynamicUnkArray::end

CComUnkArray::end

241

CCom Variant

CCOID Variant
class CCom Variant: public tagVARIANT

CComVariant wraps the VARIANT type, which consists of a tagged union, as well
as a member indicating the value type stored in the union. VARIANTs are typically
used in Automation.

#include <atlbase.h>

Methods

Attach

CComVariant

ChangeType

Clear

Copy

Detach

ReadFromStream

WriteToStream

Operators

operator =
operator ==

operator !=

Attaches a VARIANT to the CCom Variant object.

Constructor.

Converts the CCom Variant object to a new type.

Clears the CComVariant object.

Copies a VARIANT to the CCom Variant object.

Detaches the underlying VARIANT from the CCom Variant object.

Loads a VARIANT from a stream.

Saves the underlying VARIANT to a stream.

Assigns a value to the CComVariant object.

Indicates whether the CCom Variant object equals the specified
VARIANT.

Indicates whether the CCom Variant object does not equal the
specified VARIANT.

Methods
CCom Variant: : Attach

HRESULT Attach(VARIANT* pSrc);

Return Value
A standard HRESULT value.

Parameters

Remarks

242

pSrc [in] Points to the VARIANT to be attached to the object.

Attaches the specified VARIANT to the CComVariant object. Attach sets the
variant type of the object to VT_EMPTY.

See Also: CCom Variant: : Detach

CCom Variant: :CCom Variant

CCom Variant: :CCom Variant
CCom Variant();
CCom Variant(const CCom Variant& varSrc);
CComVariant(const VARIANT& varSrc);
CCom Variant(LPCOLESTR lpsz);
CComVariant(LPCSTR lpsz);
CCom Variant(BSTR bstrSrc);
CComVariant(bool bSrc);
CCom Variant(int llSrc);
CCom Variant(BYTE llSrc);
CCom Variant(short nSrc);
CComVariant(long nSrc, VARTYPE vtSrc = VT_I4);
CComVariant(floatjltSrc);
CCom Variant(double dblSrc);
CComVariant(CY cySrc);
CCom Variant(IDispatch* pSrc);
CCom Variant(IUnknown* pSrc);

Parameters

Remarks

varSrc [in] The CComVariant or VARIANT used to initialize the CComVariant
object.

lpsz [in] The character string used to initialize the CCom Variant object. The
Unicode version specifies an LPCOLESTR; the ANSI version specifies an
LPCSTR.

bstrSrc [in] The BSTR used to initialize the CComVariant object.

bSrc [in] The bool used to initialize the CCom Variant object.

llSrc [in] The int, BYTE, short, or long used to initialize the CCom Variant object.

vtSrc [in] The type for the CCom Variant object. This parameter is available only
when passing a long for llSrc. vtSrc can only be VT_I4 (the default value) or
VT_ERROR; otherwise, the constructor will assert.

jltSrc [in] The float used to initialize the CComVariant object.

dblSrc [in] The double used to initialize the CComVariant object.

cySrc [in] The CY used to initialize the CCom Variant object.

pSrc [in] The IDispatch or IUnknown pointer used to initialize the CComVariant
object.

Each constructor initializes the object by calling the Variantlnit Win32 function.
If you pass a parameter value, the constructor sets the object's value and type
accordingly.

The destructor manages cleanup by calling CComVariant::Clear.

243

CCom Variant: : Change Type

CCom Variant: :ChangeType
HRESULT ChangeType(VARTYPE vtNew, const VARIANT* pSrc = NULL);

Return Value
A standard HRESULT value.

Parameters

Remarks

vtNew [in] The new type for the CCom Variant object.

pSrc [in] A pointer to the VARIANT whose value will be converted to the new type.
The default value is NULL, meaning the CCom Variant object will be converted
in place.

Converts the CCom Variant object to a new type. If you pass a value for pSrc,
ChangeType will use this VARIANT as the source for the conversion. Otherwise,
the CCom Variant object will be the source.

See Also: VariantChangeType

CCom Variant: : Clear
HRESULT Clear();

Return Value

Remarks

A standard HRESULT value.

Clears the CCom Variant object by calling the VariantClear API function.

The destructor automatically calls Clear.

CCom Variant: :Copy
HRESULT Copy(const VARIANT* pSrc);

Return Value
A standard HRESULT value.

Parameters

Remarks

244

pSrc [in] A pointer to the VARIANT to be copied

Frees the CComVariant object and then assigns it a copy of the specified VARIANT.

See Also: CCom Variant: : operator =, VariantCopy

CComVariant::WriteToStream

eCom Variant: : Detach
HRESULT Detach(VARIANT* pSrc);

~eturn Value
A standard HRESULT value.

Jarameters

~emarks

pSrc [out] Returns the underlying VARIANT value of the object.

Detaches the underlying VARIANT from the CComVariant object and sets the
object's type to VT_EMPTY.

See Also: CCom Variant: :Attach

eCom Variant: : ReadFromStream
HRESULT ReadFromStream(IStream* pStream);

fleturn Value
A standard HRESULT value.

Parameters

flemarks

pStream [in] A pointer to the IStream interface on the stream containing the data.

Sets the underlying VARIANT to the VARIANT contained in the specified stream.
ReadToStream requires a previous call to WriteToStream.

eCom Variant: : WriteToStream
HRESULT WriteToStream(IStream* pStream);

fleturn Value
A standard HRESULT value.

Parameters

Remarks

pStream [in] A pointer to the IStream interface on a stream.

Saves the underlying VARIANT to a stream.

See Also: CCom Variant: :ReadFromStream

245

CComVariant::operator =

Operators
CComVariant::operator =

Remarks

CComVariant& operator =(const CComVariant& varSrc);
CComVariant& operator =(const VARIANT& varSrc);
CComVariant& operator =(LPCOLESTR lpsz);
CComVariant& operator =(LPCSTR lpsz);
CComVariant& operator =(BSTR bstrSrc);
CCom Variant& operator =(bool bSrc);
CComVariant& operator =(int nSrc);
CComVariant& operator =(BYTE nSrc);
CCom Variant& operator =(short nSrc);
CCom Variant& operator =(long nSrc);
CComVariant& operator =(float nSrc);
CComVariant& operator =(double nSrc);
CComVariant& operator =(CY cySrc);
CComVariant& operator =(IDispatch* pSrc);
CComVariant& operator =(IUnknown* pSrc);

Assigns a value and corresponding type to the CCom Variant object.

See Also: CCom Variant: :Copy, VARIANT

CComVariant::operator ==
bool operator ==(const VARIANT& varSrc);

Remarks
Returns true if the value and type of varSrc are equal to the value and type,
respectively, of the CCom Variant object. Otherwise, false.

See Also: CComVariant::operator !=, VARIANT

CComVariant::operator !=
bool operator !=(const VARIANT& varSrc);

Remarks

246

Returns true if either the value or type of varSrc is not equal to the value or type,
respectively, of the CCom Variant object. Otherwise, false.

See Also: CComVariant::operator ==, VARIANT

:ContainedWindow
class CContainedWindow : public CWindow

CContainedWindow implements a window contained within another object.
CContainedWindow's window procedure uses a message map in the containing
object to direct messages to the appropriate handlers. When constructing a
CContainedWindow object, you specify which message map should be used.

CContainedWindow allows you to create a new window by superclassing an existing
window class. The Create method first registers a window class that is based on an
existing class but uses CContainedWindow:: WindowProc. Create then creates a
window based on this new window class. Each instance of CContainedWindow
can superclass a different window class.

CContainedWindow also supports window subclassing. The SubclassWindow
method attaches an existing window to the CContainedWindow object and changes
the window procedure to CContainedWindow::WindowProc. Each instance of
CContainedWindow can subclass a different window.

Note For any given CContainedWindow object, call either Create or SubclassWindow.
You should not invoke both methods on the same object.

When you use the Add control based on option in the ATL Object Wizard, the
wizard will automatically add a CContainedWindow data member to the class
implementing the control. The following example is taken from the SUBEDIT
sample and shows how the contained window is declared:

class CAtlEdit
{

public:
II Declare a contained window data member
CContainedWindow m_EditCtrl:

II Initialize the contained window:
II 1. Pass "EDIT" to specify that the contained
II window should be based on the standard
II Windows Edit box
II 2. Pass 'this' pointer to specify that CAtlEdit
II contains the message map to be used for the
II contained window's message processing
I I 3. Pass the i denti fi er of the message map. '1'
II identifies the alternate message map declared
II with ALT_MSG_MAP(l)
CAtlEdit() : m_EditCtrl(_T("EDIT"), this, 1)
{

m_bWindowOnly = TRUE;

CContainedWindow

247

CContainedWindow

248

} ;

II Declare the default message map,
II identified by '0'
BEGIN_MSG_MAP(CAtlEdit)

MESSAGE_HANDLER(WM_CREATE, OnCreate)

II Declare an alternate message map,
II identified by '1'
ALT_MSG_MAPO)

MESSAGE_HANDLER(WM_CHAR, OnChar)
END_MSG_MAP()

II Define OnCreate handler
II When the containing window receives a WM_CREATE
II message, create the contained window by calling
II CContainedWindow::Create
LRESULT OnCreate(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled)

m_EditCtrl.Create(m_hWnd, rc, _T<"hello"),
WS_CHILD I WS_VISIBLE I
ES_MULTILINE I ES_AUTOVSCROLL);

return 0;

For more information about See

Creating controls

U sing windows in A TL

A TL Object Wizard

Windows

Subclassing

Superclassing

#include <atlwin.h>

"ATL Tutorial"

"A TL Window Classes"

"Creating an A TL Project"

"Windows" and subsequent topics in the Win32 SDK online

"Window Procedure Subclassing" in the Win32 SDK online

"Window Procedure Superclassing" in the Win32 SDK online

See Also: CWindow, CWindowImpl, CMessageMap, BEGIN_MSG_MAP,
ALT_MSG_MAP

Methods

CContainedWindow

Create

DefWindowProc

Register W ndSuperclass

SubclassWindow

Constructor. Initializes data members to specify which
message map will process the contained window's messages.

Creates a window.

Provides default message processing.

Registers the window class of the contained window.

Subclasses a window.

CContainedWindow: :CContainedWindow

Methods (continued)

SwitchMessageMap

UnsubclassWindow

WindowProc

Data Members

m_IpszClassName

m_pfnSuperWindowProc

m_pObject

Changes which message map is used to process the
contained window's messages.

Restores a previously subclassed window.

Processes messages sent to the contained window.

Identifies which message map will process the contained
window's messages.

Specifies the name of an existing window class on which
a new window class will be based.

Points to the window class's original window procedure.

Points to the containing object.

Methods
CContainedWindow: : CContainedWindow

CContainedWindow(LPTSTR IpszClassName, CMessageMap* pObject,
... DWORD dwMsgMapID = 0);

Parameters

Remarks

ipszClassName [in] The name of an existing window class on which the contained
window will be based.

pObject [in] A pointer to the containing object that declares the message map.
This object's class must derive from CMessageMap.

dwMsgMapID [in] Identifies the message map that will process the contained
window's messages. The default value, 0, specifies the default message map
declared with BEGIN_MSG_MAP. To use an alternate message map declared
with ALT_MSG_MAP(msgMapID), pass msgMapID.

The constructor initializes data members. If you want to create a new window through
Create, you must pass the name of an existing window class for the IpszClassName
parameter. For an example, see the CContainedWindow overview.

If you subclass an existing window through SubclassWindow, the IpszClassName
value will not be used. Therefore, you can pass NULL for this parameter.

See Also: CContainedWindow::m_lpszClassName,
CContainedWindow::m_pObject,
CContainedWindow: :m_pfnSuperWindowProc,
CContainedWindow: :SwitchMessageMap

249

CContainedWindow: : Create

CContainedWindow: : Create
HWND Create(HWND h WndParent, RECT & rcPos,

.. LPCTSTR sz WindowName = NULL,

.. DWORD dwStyle = WS_CHILD I WS_ VISIBLE,

.. DWORD dwExStyle = 0, UINT nID = 0);

Return Value
If successful, the handle to the newly created window. Otherwise, NULL.

Parameters

Remarks

h WndParent [in] The handle to the parent or owner window.

rcPos [in] A RECT structure specifying the position of the window.

szWindowName [in] Specifies the name of the window. The default value is NULL.

dwStyle [in] The style of the window. The default value is WS_CHILD I
WS_ VISIBLE. For a list of possible values, see CreateWindow in the Win32
SDK online.

dwExStyle [in] The extended window style. The default value is 0, meaning no
extended style. For a list of possible values, see CreateWindowEx in the
Win32 SDK online.

nID [in] For a child window, the window identifier. For a top-level window,
an HWND casted to a UINT. The default value is O.

Calls RegisterWndSuperclass to register a window class that is based on an existing
class but uses CContainedWindow::WindowProc. The existing window class name
is saved in m_IpszClassName. Create then creates a window based on this new class.
The newly created window is automatically attached to the CContainedWindow
object.

Note Do not call Create if you have already called SubclassWindow.

See Also: CWindow::m_h Wnd

CContainedWindow: : DefWindowProc
LRESULT DefWindowProc(UINT uMsg, WPARAM wParam, LPARAM IParam);

Return Value
The result of the message processing.

Parameters
uMsg [in] The message sent to the window.

250

CContainedWindow: :Subc1ass Window

Remarks

wParam [in] Additional message-specific information.

IParam [in] Additional message-specific information.

Called by WindowProc to process messages not handled by the message map. By
default, DefWindowProc calls the CallWindowProc Win32 function to send the
message information to the window procedure specified in
m_pfnSuperWindowProc.

CContainedWindow: :Register W ndSuperclass
ATOM RegisterWndSuperClass();

Return Value

Remarks

If successful, an atom that uniquely identifies the window class being registered.
Otherwise, O.

Called by Create to register the window class of the contained window. This window
class is based on an existing class but uses CContainedWindow::WindowProc. The
existing window class's name and window procedure are saved in m_lpszClassName
and m_pfnSuperWindowProc, respectively.

See Also: CContainedWindow::CContainedWindow

CContainedWindow: : Subclass Window
BOOL SubclassWindow(HWND hWnd);

Return Value
TRUE if the window is successfully subclassed; otherwise, FALSE.

Parameters

Remarks

hWnd [in] The handle to the window being subclassed.

Subclasses the window identified by h Wnd and attaches it to the CContainedWindow
object. The subclassed window now uses CContainedWindow::WindowProc. The
original window procedure is saved in m_pfnSuperWindowProc.

Note Do not call SubclassWindow if you have already called Create.

See Also: CContainedWindow::UnsubclassWindow

251

CContainedWindow: :SwitchMessageMap

CContainedWindow: :SwitchMessageMap
void SwitchMessageMap(DWORD dwMsgMapID);

Parameters

Remarks

dwMsgMapID [in] The message map identifier. To use the default message map
declared with BEGIN_MSG_MAP, pass O. To use an alternate message map
declared with ALT_MSG_MAP(msgMapID), pass msgMapID.

Changes which message map will be used to process the contained window's
messages. The message map must be defined in the containing object.

You initially specify the message map identifier in the constructor.

See Also CContainedWindow: :CContainedWindow,
CContainedWindow: :m_dwMsgMapID

CContainedWindow: : U nsubclass Window
HWND UnsubclassWindow();

Return Value

Remarks

The handle to the window previously subclassed.

Detaches the subclassed window from the CContainedWindow object and restores
the original window procedure, saved in m_pfnSuperWindowProc.

See Also: CContainedWindow::SubclassWindow

CContainedWindow: : Window Proc
static LRESULT CALLBACK WindowProc(HWND h Wnd, UINT uMsg,

"+ WPARAM wParam, LPARAM lParam);

Return Value
The result of the message processing.

Parameters

252

hWnd [in] The handle to the window.

uMsg [in] The message sent to the window.

wParam [in] Additional message-specific information.

lParam [in] Additional message-specific information.

CContainedWindow: :m_pfnSuperWindowProc

Remarks
This static method implements the window procedure. WindowProc directs messages
to the message map identified by m_dwMsgMapID. If necessary, WindowProc calls
DefWindowProc for additional message processing.

See Also: BEGIN_MSG_MAP, ALT_MSG_MAP

Data Members
CContainedWindow: :rn_dwMsgMapID

Remarks

DWORD m_dwMsgMapID;

Holds the identifier of the message map currently being used for the contained
window. This message map must be declared in the containing object.

The default message map, declared with BEGIN_MSG_MAP, is always identified
by O. An alternate message map, declared with ALT_MSG_MAP(msgMapID), is
identified by msgMapID.

m_dwMsgMapID is first initialized by the constructor and can be changed by calling
SwitchMessageMap. For an example, see the CContainedWindow overview.

See Also: CContainedWindow: :m_pObject

CContainedWindow: :rn_IpszClassN arne
LPTSTR m_lpszCIassName;

Remarks
Specifies the name of an existing window class. When you create a window,
Create registers a new window class that is based on this existing class but uses
CContainedWindow:: WindowProc.

m_IpszCIassName is initialized by the constructor. For an example, see the
CContainedWindow overview.

CContainedWindow: :rn_pfnSuperWindow Proc
WNDPROC m_pfnSuperWindowProc;

Remarks
If the contained window is subclassed, m_pfnSuperWindowProc points to the
original window procedure of the window class. If the contained window is

253

CContainedWindow::m_pObject

superclassed, meaning it is based on a window class that modifies an existing class,
m_pfnSuperWindowProc points to the existing window class's window procedure.

The DefWindowProc method sends message information to the window procedure
saved in m_pfnSuperWindowProc.

See Also: CContainedWindow: : Create, CContainedWindow: :SubclassWindow

CContainedWindow: :m_pObject

Remarks

254

CMessageMap* m_pObject;

Points to the object containing the CContainedWindow object. This container,
whose class must derive from CMessageMap, declares the message map used by
the contained window.

m_pObject is initialized by the constructor. For an example, see the
CContainedWindow overview.

See Also: CContainedWindow: :m_dwMsgMapID

CDialoglmpl
template< class T>
class CDialogImpl : public CDialogImplBase

Parameters
T Your class, derived from CDialogImpl.

CDialogImpl allows you to create a modal or modeless dialog box. CDialogImpl
provides the dialog box procedure, which uses the default message map to direct
messages to the appropriate handlers.

CDialogImpl derives from CDialogImplBase, which in tum derives from CWindow
and CMessageMap.

Note Your class must define an 100 member that specifies the dialog template resource 10.
For example, the AIL Object Wizard automatically adds the following line to your class:

enum { 100 - IDD_MYDIALOG };

where MyDi a log is the Short name entered in the wizard's Names page.

For more information about

Creating controls

Using dialog boxes in ATL

ATL Object Wizard

Dialog boxes

#include <atlwin.h>

See Also: BEGIN_MSG_MAP

Methods

Create

DoModal

CDialoglmplBase Methods

DialogProc

EndDialog

See

"ATL Tutorial"

"ATL Window Classes"

"Creating an ATL Project"

"Dialog Boxes" and subsequent topics in the
Win32 SDK online

Creates a modeless dialog box.

Creates a modal dialog box.

Processes messages sent to the dialog box.

Destroys a modal dialog box.

CDialogImpl

255

CDialogImpl: : Create

Methods
CDialogImpl: : Create

HWND Create(HWND h WndParent);

Return Value
The handle to the newly created dialog box.

Parameters

Remarks

h WndParent [in] The handle to the owner window.

Creates a modeless dialog box. This dialog box is automatically attached to the
CDialoglmpl object.

To create a modal dialog box, call DoModal.

See Also: CWindow: :m_h Wnd

CDialogImpl: : DialogProc
static BOOL CALLBACK DialogProc(HWND hWnd, UINT uMsg,

... WPARAM wParam, LPARAM lParam);

Return Value
TRUE if the message is processed; otherwise, FALSE.

Parameters

Remarks

256

h Wnd [in] The handle to the dialog box.

uMsg [in] The message sent to the dialog box.

wParam [in] Additional message-specific information.

lParam [in] Additional message-specific information.

This static method implements the dialog box procedure. DialogProc uses the
default message map to direct messages to the appropriate handlers.

You can override DialogProc to provide a different mechanism for handling
messages.

CDialoglmpl: :EndDialog

CDialogImpl: :DoModal
int DoModal(HWND hWndParent = ::GetActiveWindow());

Return Value
If successful, the value of the nRetCode parameter specified in the call to EndDialog.
Otherwise, -1.

Parameters

Remarks

hWndParent [in] The handle to the owner window. The default value is the return
value of the GetActiveWindow Win32 function.

Creates a modal dialog box. This dialog box is automatically attached to the
CDialoglmpl object.

To create a modeless dialog box, call Create.

See Also: CWindow::m_hWnd

CDialogImpl: :EndDialog
BOOL EndDialog(int nRetCode);

Return Value
TRUE if the dialog box is destroyed; otherwise, FALSE.

Parameters

Remarks

nRetCode [in] The value to be returned by CDialoglmpl::DoModal.

Destroys a modal dialog box. EndDialog must be called through the dialog procedure.
After the dialog box is destroyed, Windows uses the value of nRetCode as the return
value for DoModal, which created the dialog box.

Note Do not call End Dialog to destroy a modeless dialog box. Call
CWindow::DestroyWindow instead.

See Also: CDialoglmpl: :DialogProc

257

CDynamicChain

CDynamicChain

258

class CDynamicChain

CDynamicChain manages a collection of message maps, enabling a Windows
message to be directed, at run time, to another object's message map.

To add support for dynamic chaining of message maps, do the following:

• Derive your class from CDynamicChain. In the message map, specify the
CHAIN_MSG_MAP _DYNAMIC macro to chain to another object's default
message map. Specify CHAIN_MSG_MAP _ALT_DYNAMIC to chain to an
alternate message map.

• Derive every class you want to chain to from CMessageMap. CMessageMap
allows an object to expose its message maps to other objects.

• Call CDynamicChain::SetChainEntry to identify which object and which
message map you want to chain to.

For example, suppose your class is defined as follows:

class CMyWindow : public CDynamicChain, ...
{

public:

} ;

BEGIN_MSG_MAP(CMyWindow)
MESSAGE_HANDLER(WM_PAINT, OnPaint)
MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
II dynamically chain to the default
II message map in another object
CHAIN_MSG_MAP_DYNAMIC(1313)

II '1313' identifies the object
II and the message map that will be
II chained to. '1313' is defined
II through the SetChainEntry method

END_MSG_MAP()

LRESULT OnPaint(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled)

{ ... }

LRESULT OnSetFocus(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled)

{ ... }

The client then calls CMyWi ndow: : SetCha in Ent ry:

II myCtl is a CMyWindow object
myCtl.SetChainEntry(1313, &chainedObj);

CDynamicChain: :CallChain

where cha i nedObj is the chained object and is an instance of a class derived from
CMessageMap. Now, if myCt 1 receives a message that is not handled by On Pa i nt
or 0 n Set Foe us, the window procedure directs the message to c h a i ned 0 b j 's default
message map.

For more information about message map chaining, see Message Maps in the article
"ATL Window Classes."

#include <atlwin.h>

See Also: CWindowImpl

Methods

Call Chain

RemoveChainEntry

SetChainEntry

Directs a Windows message to another object's message map.

Removes a message map entry from the collection.

Adds a message map entry to the collection or modifies an
existing entry.

Methods
CDynamicChain: : Call Chain

BOOL CallChain(DWORD dwChainID, HWND h Wnd, UINT uMsg,
... WPARAM wParam, LPARAM IParam, LRESULT& IResult);

Return Value
TRUE if the message is fully processed; otherwise, FALSE.

Parameters

Remarks

dwChainID [in] The unique identifier associated with the chained object and its
message map.

hWnd [in] The handle to the window receiving the message.

uMsg [in] The message sent to the window.

wParam [in] Additional message-specific information.

IParam [in] Additional message-specific information.

IResult [out] The result of the message processing.

Directs the Windows message to another object's message map. In order
for the window procedure to invoke Call Chain, you must specify the
CHAIN_MSG_MAP _DYNAMIC or CHAIN_MSG_MAP _ALT_DYNAMIC
macro in your message map. For an example, see the CDynamicChain overview.

Call Chain requires a previous call to SetChainEntry to associate the dwChainID
value with an object and its message map.

259

CDynamicChain: :RemoveChainEntry

CDynamicChain: : RemoveChainEntry
BOOL RemoveChainEntry(DWORD dwChainID);

Return Value
TRUE if the message map is successfully removed from the collection. Otherwise,
FALSE.

Parameters

Remarks

dwChainID [in] The unique identifier associated with the chained object and its
message map. You originally define this value through a call to SetChainEntry.

Removes the specified message map from the collection.

CDynamicChain: : SetChainEntry
BOOL SetChainEntry(DWORD dwChainID, CMessageMap* pObject,

... DWORD dwMsgMapID = 0);

Return Value
TRUE if the message map is successfully added to the collection. Otherwise, FALSE.

Parameters

Remarks

260

dwChainID [in] The unique identifier associated with the chained object and its
message map.

pObject [in] A pointer to the chained object declaring the message map. This object
must derive from CMessageMap.

dwMsgMapID [in] The identifier of the message map in the chained object.
The default value is 0, which identifies the default message map declared with
BEGIN_MSG_MAP. To specify an alternate message map declared with
ALT_MSG_MAP(msgMapID), pass msgMapID.

Adds the specified message map to the collection. If the dwChainID value already
exists in the collection, its associated object and message map are replaced by pObject
and dwMsgMapID, respectively. Otherwise, a new entry is added.

See Also: CDynamicChain: :CallChain, CDynamicChain: :RemoveChainEntry,
CHAIN_MSG_MAP _DYNAMIC, CHAIN_MSG_MAP _ALT_DYNAMIC

CFirePropN otify Event

CFirePropN otify Event
class CFirePropN otify Event

CFirePropNotifyEvent has two methods that notify the container's sink that a control
property has changed or is about to change.

If the class implementing your control is derived from IPropertyNotifySink, the
CFirePropNotifyEvent methods are invoked when you call FireOnRequestEdit or
FireOnChanged. If your control class is not derived from IPropertyNotifySink,
calls to these functions return S_OK.

For more information about creating controls, see the "ATL Tutorial."

#include <atlctl.h>

Methods

FireOnChanged

FireOnRequestEdit

Notifies the container's sink that a control property
has changed.

Notifies the container's sink that a control property is
about to change.

Methods
CFirePropNotifyEvent::FireOnChanged

HRESULT FireOnChanged(IUnknown* pUnk, DISPID dispID);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

pUnk [in] Pointer to the IUnknown of the object sending the notification.

dispID [in] Identifier of the property that has changed.

Notifies all connected IPropertyNotifySink interfaces (on every connection point of
the object) that the specified object property has changed. This function is safe to call
even if your control doesn't support connection points.

See Also: CFirePropN otify Event: : FireOnRequestEdit,
CComControl: :FireOnChanged

261

CFirePropN otify Event: :FireOnRequestEdit

CFirePropN otify Event: : FireOnRequestEdit
HRESULT FireOnRequestEdit(IUnknown* pUnk, DISPID dispID);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

262

pUnk [in] Pointer to the IUnknown of the object sending the notification.

dispID [in] Identifier of the property about to change.

Notifies all connected IPropertyNotifySink interfaces (on every connection point of
the object) that the specified object property is about to change. This function is safe
to call even if your control doesn't support connection points.

See Also: CFirePropNotifyEvent::FireOnChanged,
CComControl: : FireOnRequestEdit

CMessageMap
class CMessageMap

CMessageMap is an abstract base class that allows an object's message maps to
be accessed by another object. In order for an object to expose its message maps,
its class must derive from CMessageMap.

ATL uses CMessageMap to support contained windows and dynamic message
map chaining. For example, any class containing a CContainedWindow object
must derive from CMessageMap. The following code is taken from the SUBEDIT
s'ample. Through CComControi, the CAtl Ed; t class automatically derives from
CMessageMap.

class CAtlEdit : public CComControl<CAtlEdit>
II CComControl derives from CWindowImpl.
II which derives from CMessageMap

public:

} ;

II Declare a contained window data member
CContainedWindow m_EditCtrl;

II Initialize the contained window:
111. Pass "EDIT" to specify that the contained
II window should be'based on the standard
II Windows Edit box
II 2. Pass 'this' pointer to specify that CAtlEdit
II contains the message map to be used for the
II contained window's message processing
II 3. Pass the identifier of the message map. In
I I thi s case. '1' i denti fi es the message map
II declared with ALT_MSG_MAP(l)
CAtlEdit() : m_EditCtrl(_T("EDIT"). this. 1)
{

m_bWindowOnly - TRUE;

II Declare the default message map
BEGIN_MSG_MAP(CAtlEdit)

MESSAGE_HANDLER(WM_PAINT. OnPaint)

II Declare an alternate message map.
II identified by '1'
ALT_MSG_MAP(l)

MESSAGE_HANDLER(WM_CHAR. OnChar)
END_MSG_MAP()

Because the contained window, m_Ed; tCt r 1 , will use a message map in the
containing class, CAt 1 Ed; t derives from CMessageMap.

CMessageMap

263

CMessageMap: :Process WindowMessage

For more information about message maps, see Message Maps in the article
"ATL Window Classes."

#incIude <atlwin.h>

See Also: CDynamicChain, BEGIN_MSG_MAP, ALT_MSG_MAP

Methods

Process Window Message Accesses a message map in the CMessageMap-derived class.

Methods
CMessageMap: :Process Window Message

virtual BOOL ProcessWindowMessage(HWND h Wnd, UINT uMsg,
... WPARAM wParam, LPARAM IParam, LRESULT& IResult,
... DWORD dwMsgMapID) = 0;

Return Value
TRUE if the message is fully handled; otherwise, FALSE.

Parameters

Remarks

264

h Wnd [in] The handle to the window receiving the message.

uMsg [in] The message sent to the window.

wParam [in] Additional message-specific information.

IParam [in] Additional message-specific information.

IResult [out] The result of the message processing.

dwMsgMapID [in] The identifier of the message map that will process the message.
The default message map, declared with BEGIN_MSG_MAP, is identified by O.
An alternate message map, declared with ALT_MSG_MAP(msgMapID), is
identified by msgMapID.

Accesses the message map identified by dwMsgMapID in a CMessageMap-derived
class. Called by the window procedure of a CContainedWindow object or of an
object that is dynamically chaining to the message map.

See Also: CHAIN_MSG_MAP _DYNAMIC,
CHAIN_MSG_MAP _ALT_DYNAMIC

CRegKey
class CRegKey

CRegKey provides methods for manipulating values in the system registry. The
registry contains an installation-specific set of definitions for system components,
such as software version numbers, logical-to-physical mappings of installed hardware,
and COM objects.

CRegKey provides a programming interface to the system registry for a given
machine. For example, to open a particular registry key, call CRegKey: :Open. To
retrieve or modify a data value, call CRegKey::QueryValue or CRegKey::SetValue,
respectively. To close a key, call CRegKey::Close.

When you close a key, its registry data is written (flushed) to the hard disk. This
process may take several seconds. If your application must explicitly write registry
data to the hard disk, you can call the RegFlushKey Win32 function. However,
RegFlushKey uses many system resources and should be called only when absolutely
necessary.

#include <atlbase.h>

Methods

Attach

Close

Create

CRegKey

DeleteSubKey

Delete Value

Detach

Open

QueryValue

RecurseDeleteKey

SetKeyValue

SetValue

Operators

operator HKEY

Data Members

Attaches a registry key handle to the CRegKey object.

Releases m_hKey.

Creates or opens the specified key.

Constructor.

Deletes the specified key.

Deletes a value field of the key identified by m_hKey.

Detaches m_hKey from the CRegKey object.

Opens the specified key.

Retrieves the data for a specified value field.

Deletes the specified key and explicitly deletes all subkeys.

Stores data in a specified value field of a specified key.

Stores data in a specified value field.

Converts a CRegKey object to an HKEY.

Contains a handle of the registry key associated with the
CRegKey object.

CRegKey

265

CRegKey: : Attach

Methods
CRegKey: : Attach

void Attach(HKEY hKey);

Parameters

Remarks

hKey [in] The handle of a registry key.

Attaches an HKEY to the CRegKey object by setting the m_hKey member handle
to hKey.

Note Attach will assert if m_hKey is non-NULL.

See Also: CRegKey::Detach

CRegKey: :Close
LONG Close();

Return Value

Remarks

If successful, returns ERROR_SUCCESS; otherwise, an error value.

Releases the m_hKey member handle and sets it to NULL.

See Also: CRegKey::Open

CRegKey: : Create
LONG Create(HKEY hKeyParent, LPCTSTR lpszKeyName,

"+ LPTSTR lpszClass = REG_NONE,
"+ DWORD dwOptions = REG_OPTION_NON_ VOLATILE,
"+ REGSAM samDesired = KEY _ALL_ACCESS,
"+ LPSECURITY _ATTRIBUTES lpSecAttr = NULL,
"+ LPDWORD lpdwDisposition = NULL);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

266

hKeyParent [in] The handle of an open key.

lpszKeyName [in] Specifies the name of a key to be created or opened. This name
must be a subkey of hKeyParent.

CRegKey::DeleteSubKey

Remarks

IpszClass [in] Specifies the class of the key to be created or opened. The default
value is REG_NONE.

dwOptions [in] Options for the key. The default value is
REG_OPTION_NON_ VOLATILE. For a list of possible values and
descriptions, see RegCreateKeyEx in the Win32 SDK online.

samDesired [in] The security access for the key. The default value is
KEY _ALL_ACCESS. For a list of possible values and descriptions, see
RegCreateKeyEx.

IpSecAttr [in] A pointer to a SECURITY_ATTRIBUTES structure that indicates
whether the handle of the key can be inherited by a child process. By default, this
parameter is NULL (meaning the handle cannot be inherited).

IpdwDisposition [out] If non-NULL, retrieves either
REG_CREATED_NEW _KEY (if the key did not exist and was created) or
REG_OPENED_EXISTING_KEY (if the key existed and was opened).

Creates the specified key if it does not exist as a subkey of hKeyParent. Otherwise,
Create opens the key.

Create sets the m_hKey member to the handle of this key.

See Also: CRegKey::Open, CRegKey::Close

CRegKey: :CRegKey

Remarks

CRegKey();

The constructor. Sets the m_hKey member handle to NULL. The destructor releases
m_hKey.

CRegKey: : DeleteSubKey
LONG DeleteSubKey(LPCTSTR IpszSubKey);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

Remarks

IpszSubKey [in] Specifies the name of the key to delete. This name must be a subkey
ofm_hKey.

Removes the specified key from the registry. Under Windows 95, DeleteSubKey
deletes the key and all its subkeys. Under Windows NT, DeleteSubKey can only

267

CRegKey: :Delete Value

delete a key that has no subkeys. If the key has subkeys, call RecurseDeleteKey
instead.

See Also: CRegKey: :Delete Value

CRegKey: : Delete Value
LONG DeleteValue(LPCTSTR lpszValue);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

Remarks

IpszValue [in] Specifies the value field to remove.

Removes a value field from m_hKey.

See Also: CRegKey: :DeleteSubKey

CRegKey: : Detach
HKEY Detach();

Return Value

Remarks

The HKEY associated with the CRegKey object.

Detaches the m_hKey member handle from the CRegKey object and sets m_hKey
to NULL.

See Also: CRegKey::Attach

CRegKey::Open
LONG Open(HKEY hKeyParent, LPCTSTR lpszKeyName,

10+ REGSAM samDesired = KEY _ALL_ACCESS);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

268

hKeyParent [in] The handle of an open key.

lpszKeyName [in] Specifies the name of a key to be created or opened. This name
must be a subkey of hKeyParent.

CRegKey: :RecurseDeleteKey

Remarks

samDesired [in] The security access for the key. The default value is
KEY _ALL_ACCESS. For a list of possible values and descriptions, see
RegCreateKeyEx in the Win32 SDK online.

Opens the specified key and sets m_hKey to the handle of this key. If the
IpszKeyName parameter is NULL or points to an empty string, Open opens a new
handle of the key identified by hKeyParent, but does not close any previously
opened handle.

Unlike CRegKey::Create, Open will not create the specified key if it does not exist.

See Also: CRegKey::Close

CRegKey: : QueryValue
LONG QueryValue(DWORD& dwValue, LPCTSTR IpszValueName);
LONG QueryValue(LPTSTR szValue, LPCTSTR IpszValueName,

... DWORD* pdwCount)

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

Remarks

dwValue [out] The value field's numerical data.

IpszValueName [in] Specifies the value field to be queried.

szValue [out] The value field's string data.

pdwCount [out] The size of the string data.

Retrieves the data for the specified value field of m_hKey. The first version of
QueryValue allows you to retrieve numerical data. The second version allows you
to retrieve string data.

CRegKey: : RecurseDeleteKey
LONG RecurseDeleteKey(LPCTSTR IpszKey);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters
IpszKey [in] Specifies the name of the key to delete. This name must be a subkey

ofm_hKey.

269

CRegKey: :SetKeyValue

Remarks
Removes the specified key from the registry and explicitly removes any subkeys.
If the key has subkeys, you must call this method under Windows NT in order to
delete the key. Under Windows 95, you can call DeleteSubKey to remove the key
and any subkeys.

CRegKey:: SetKey Value
LONG SetKeyValue(LPCTSTR lpszKeyName, LPCTSTR lpszValue,

... LPCTSTR lpszValueName = NULL);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

Remarks

IpszKeyName [in] Specifies the name of the key to be created or opened. This name
must be a subkey of m_hKey.

IpszValue [in] Specifies the data to be stored. This parameter must be non-NULL.

lpszValueName [in] Specifies the value field to be set. If a value field with this name
does not already exist in the key, it is added.

Creates or opens the IpszKeyName key and stores the IpszValue data in the
lpszValueName value field.

See Also: CRegKey::SetValue

CRegKey::SetValue
LONG SetValue(DWORD dwValue, LPCTSTR lpszValueName);
LONG SetValue(LPCTSTR IpszValue, LPCTSTR lpszValueName = NULL);
LONG SetValue(HKEY hKeyParent, LPCTSTR lpszKeyName,

... LPCTSTR lpszValue, LPCTSTR lpszValueName = NULL);

Return Value
If successful, returns ERROR_SUCCESS; otherwise, an error value.

Parameters

270

dwValue [in] Specifies the data to be stored.

lpszValueName [in] Specifies the value field to be set. If a value field with this name
does not already exist in the key, it is added.

lpszValue [in] Specifies the data to be stored. This parameter must be non-NULL.

Remarks

hKeyParent [in] The handle of an open key.

IpszKeyName [in] Specifies the name of a key to be created or opened. This name
must be a subkey of hKeyParent.

Stores data in the specified value field of an open registry key. The first two versions
of SetValue use m_hKey as the open key. The third version allows you to create or
open a subkey of hKeyParent, and then set the value field of the subkey.

See Also: CRegKey::SetKeyValue

Operators
CRegKey::operator HKEY

operator HKEY () const;

Remarks
Converts a CRegKey object to an HKEY.

Data Members
CRegKey: :m_hKey

Remarks
Contains a handle of the registry key associated with the CRegKey object.

CRegKey: :m_hKey

271

CStockProplmpl

CStockPropImpl
template < class T, class InterfaceName, const IID* piid, const GUID* plibid >
class CStockPropImpl : IDispatchlmpl< InterfaceName, piid, plibid >

Parameters

272

T The class implementing the control.

InterfaceName A dual interface.

piid A pointer to the lID of InterfaceName.

plibid A pointer to the identifier of aUlD of the type library section of
InterfaceName.

CStockProplmpl implements every stock property you can choose from the Stock
Properties tab in the ATL Object Wizard. CStockProplmpl automatically creates a
data member in your control class for each property, creates put and get methods for
each property, and adds code to notify and synchronize with the container when any
property changes.

The ATL Object Wizard can also be used to implement any or all of the stock
properties in the same manner. For more information about adding stock properties to
a control, see the "ATL Tutorial." For more information about the ATL Object Wizard,
see the article "Creating an ATL Project."

CStockProplmpl implements put and get methods for the stock properties that are
interface pointers, including FONT, MOUSEICON, and PICTURE. For all other
stock properties, CStockProplmpl calls the macros IMPLEMENT_STOCKPROP,
IMPLEMENT_BOOL_STOCKPROP , and
IMPLEMENT_BSTR_STOCKPROP.

The following table lists the stock properties implemented and the data members
created by CStockProplmpl. See the data members in CComControl for a
description of each property, except HWND, whose data member is described
in CWindow.

CStockPropImpl

Stock Property Data Member

APPEARANCE m_nAppearance

AUTOSIZE m_bAutoSize

BACKCOLOR m_clrBackColor

BACKSTYLE m_nBackStyle

BORDERCOLOR m_clrBorderColor

BORDERSTYLE m_nBorderStyle

BORDERVISIBLE m_bBorderVisible

BORDERWIDTH m_nBorderWidth

CAPTION m_bstrCaption

DRAWMODE m_nDrawMode

DRAWSTYLE m_nDrawStyle

DRAWWIDTH m_nDrawWidth

ENABLED m_bEnabled

FILLCOLOR m_clrFillColor

FILLSTYLE m_nFillStyle

FONT m_pFont

FORECOLOR m_clrForeColor

HWND m_hWnd

MOUSEICON m_pMouseIcon

MOUSEPOINTER m_nMousePointer

PICTURE m_pPicture

READYSTATE m_nReadyState

TAB STOP m_bTabStop

TEXT m_bstrText

VALID m_bValid

#include <atlctl.h>

273

CWindow

CWindow

274

class Cwindow

CWindow provides the base functionality for manipulating a window in ATL.
Many of the CWindow methods simply wrap one of the Win32 API functions.
For example, compare the prototypes for CWindow::ShowWindow and
: :ShowWindow:

CWindow method

BOOL ShowWindow(int nCmdShow);

Win32 function

BOOL ShowWindow(HWND h Wnd,
int nCmdShow);

CWindow::ShowWindow calls the Win32 function ShowWindow by passing
CWindow::m_hWnd as the first parameter. Every CWindow method that directly
wraps a Win32 function passes the m_hWnd member; therefore, much of the
CWindow documentation will refer you to the Win32 SDK online documentation.

Note Not every window-related Win32 function is wrapped by CWindow, and not every
CWindow method wraps a Win32 function.

CWindow: :m_h Wnd stores the HWND that identifies a window. An HWND is
attached to your object when you:

• Specify an HWND in CWindow's constructor.

• Call CWindow::Attach.

• Use CWindow's operator =.

• Create or subclass a window, using one of the following classes derived from
CWindow:

CWindowlmpl Allows you to create a new window or subclass an existing
window.

CContainedWindow Implements a window contained within another object.
You can create a new window or subclass an existing window.

CDialoglmpl Allows you to create a modal or modeless dialog box.

For more information about windows, see "Windows" and subsequent topics in the
Win32 SDK online. For more information about using windows in ATL, see the
article "ATL Window Classes."

#include <atlwin.h>

Alert Methods

Flash Window

MessageBox

Attribute Methods

GetExStyle

GetStyle

GetWindowLong

GetWindowWord

ModifyStyle

ModifyStyleEx

SetWindowLong

SetWindowWord

Caret Methods

CreateCaret

CreateGrayCaret

CreateSolidCaret

HideCaret

ShowCaret

Clipboard Methods

Change Clipboard Chain

OpenClipboard

SetClipboardViewer

Flashes the window once.

Displays a message box.

Retrieves the extended window styles.

Retrieves the window styles.

Retrieves a 32-bit value at a specified offset into the
extra window memory.

Retrieves a 16-bit value at a specified offset into the
extra window memory.

Modifies the window styles.

Modifies the extended window styles.

Sets a 32-bit value at a specified offset into the extra
window memory.

Sets a 16-bit value at a specified offset into the extra
window memory.

Creates a new shape for the system caret.

Creates a gray rectangle for the system caret.

Creates a solid rectangle for the system caret.

Hides the system caret.

Displays the system caret.

Removes the window from the chain of Clipboard viewers.

Opens the Clipboard.

Adds the window to the Clipboard viewer chain.

Construction, Destruction, and Initialization

Attach

CWindow

DestroyWindow

Detach

Coordinate Mapping Methods

ClientToScreen

Map WindowPoints

ScreenToClient

Attaches a window to the CWindow object.

Constructor.

Destroys the window associated with the CWindow object.

Detaches the window from the CWindow object.

Converts client coordinates to screen coordinates.

Converts a set of points from the window's coordinate space
to the coordinate space of another window.

Converts screen coordinates to client coordinates.

CWindow

275

CWindow

276

Dialog Box Item Methods

CheckDlgButton

CheckRadioButton

DlgDirList

DlgDirListComboBox

DlgDirSelect

DlgDirSelectComboBox

GetDIgltemlnt

GetDlgltemText

GetNextDlgGroupltem

GetNextDlgTabltem

IsDIgButtonChecked

SendDIgltemMessage

SetDIgltemlnt

SetDlgItemText

Drag-Drop Methods

DragAcceptFiles

Font Methods

GetFont

SetFont

Help Methods

GetWindowContextHelpld

SetWindowContextHelpld

WinHelp

Hot Key Methods

GetHotKey

SetHotKey

Icon Methods

GetIcon

SetIcon

Changes the check state of the specified button.

Checks the specified radio button.

Fills a list box with the names of all files matching a
specified path or filename.

Fills a combo box with the names of all files matching
a specified path or filename.

Retrieves the current selection from a list box.

Retrieves the current selection from a combo box.

Translates a control's text to an integer.

Retrieves a control's text.

Retrieves the previous or next control within a group of
controls.

Retrieves the previous or next control having the
WS_TABSTOP style.

Determines the check state of the button.

Sends a message to a control.

Changes a control's text to the string representation of
an integer value.

Changes a control's text.

Registers whether the window accepts dragged files.

Retrieves the window's current font.

Changes the window's current font.

Retrieves the window's help context identifier.

Sets the window's help context identifier.

Starts Windows Help.

Determines the hot key associated with the window.

Associates a hot key with the window.

Retrieves the window's large or small icon.

Changes the window's large or small icon.

Menu Methods

DrawMenuBar

GetMenu

GetSystemMenu

HiliteMenuItem

SetMenu

Message Methods

PostMessage

SendMessage

SendNotifyMessage

Scrolling Methods

EnableScrollBar

GetScrollPos

GetScrollRange

Scroll Window

ScrollWindowEx

SetScrollPos

SetScrollRange

ShowScrollBar

Timer Methods

KillTimer

SetTimer

Update and Painting Methods

BeginPaint

EndPaint

GetDC

GetDCEx

GetUpdateRect

Redraws the window's menu bar.

Retrieves the window's menu.

Creates a copy of the system menu for modification.

Highlights or removes the highlight from a top-level
menu item.

Changes the window's current menu.

Places a message in the message queue associated with
the thread that created the window. Returns without
waiting for the thread to process the message.

Sends a message to the window and does not return until
the window procedure has processed the message.

Sends a message to the window. If the window was created
by the calling thread, SendNotifyMessage does not return
until the window procedure has processed the message.
Otherwise, it returns immediately.

Enables or disables the scroll bar arrows.

Retrieves the position of the scroll box.

Retrieves the scroll bar range.

Scrolls the specified client area.

Scrolls the specified client area with additional features.

Changes the position of the scroll box.

Changes the scroll bar range.

Shows or hides a scroll bar.

Destroys a timer event.

Creates a timer event.

Prepares the window for painting.

Marks the end of painting.

Retrieves a device context for the client area.

Retrieves a device context for the client area and allows
clipping options.

Retrieves the coordinates of the smallest rectangle that
completely encloses the update region.

(continued)

CWindow

277

CWindow

278

Update and Painting Methods (continued)

GetUpdateRgn

GetWindowDC

Invalidate

InvalidateRect

InvalidateRgn

IsWindowVisible

LockWindowUpdate

Print

PrintClient

RedrawWindow

ReleaseDC

SetRedraw

ShowOwnedPopups

ShowWindow

Update Window

ValidateRect

ValidateRgn

Window Access Methods

ChildWindowFromPoint

ChildWindowFromPointEx

GetLastActivePopup

GetParent

GetTopLevelParent

GetTopLevelWindow

GetTop Window

GetWindow

IsChild

SetParent

Retrieves the update region and copies it into a
specified region.

Retrieves a device context for the entire window.

Invalidates the entire client area.

Invalidates the client area within the specified
rectangle.

Invalidates the client area within the specified region.

Determines the window's visibility state.

Disables or enables drawing in the window.

Requests that the window be drawn in a specified
device context.

Requests that the window's client area be drawn in
a specified device context.

Updates a specified rectangle or region in the
client area.

Releases a device context.

Sets or clears the redraw flag.

Shows or hides the pop-up windows owned by
the window.

Sets the window's show state.

Updates the client area.

Validates the client area within the specified rectangle.

Validates the client area within the specified region.

Retrieves the child window containing the specified
point.

Retrieves a particular type of child window containing
the specified point.

Retrieves the most recently active pop-up window.

Retrieves the immediate parent window.

Retrieves the top-level parent or owner window.

Retrieves the top-level owner window.

Retrieves the top-level child window.

Retrieves the specified window.

Determines whether the specified window is a
child window.

Changes the parent window.

Window Size and Position Methods

ArrangelconicWindows

BringWindowToTop

CenterWindow

GetClientRect

GetWindowPlacement

GetWindowRect

IsIconic

IsZoomed

MoveWindow

SetWindowPlacement

SetWindowPos

Window State Methods

Enable Window

IsWindowEnabled

SetActive Window

SetCapture

SetFocus

Window Text Methods

GetWindowText

GetWindowTextLength

SetWindowText

Window Tree Access Methods

GetDescendantWindow

GetDIgCtrlID

GetDlgItem

SendMessageToDescendants

SetDIgCtrlID

Operators

operator HWND

operator =
Data Members

Arranges all minimized child windows.

Brings the window to the top of the Z order.

Centers the window against a given window.

Retrieves the coordinates of the client area.

Retrieves the show state and positions.

Retrieves the window's bounding dimensions.

Determines whether the window is minimized.

Determines whether the window is maximized.

Changes the window's size and position.

Sets the show state and positions.

Sets the size, position, and Z order.

Enables or disables input.

Determines whether the window is enabled for input.

Activates the window.

Sends all subsequent mouse input to the window.

Sets the input focus to the window.

Retrieves the window's text.

Retrieves the length of the window's text.

Changes the window's text.

Retrieves the specified descendant window.

Retrieves the window's identifier (for child windows only).

Retrieves the specified child window.

Sends a message to the specified descendant windows.

Changes the window's identifier.

Converts the CWindow object to an HWND.

Assigns an HWND to the CWindow object.

The handle to the window associated with the
CWindow object.

CWindow

279

CWindow::ArrangeIconicWindows

Methods
CWindow: : Arrangelconic Windows

UINT ArrangeIconicWindows();

See ArrangeIconicWindows in the Win32 SDK online.

Remarks
Arranges all minimized child windows.

CWindow: : Attach
void Attach(HWND h WndNew);

Parameters

Remarks

hWndNew [in] The handle to a window.

Attaches the window identified by h WndNew to the CWindow object.

See Also: CWindow: :Detach

CWindow: : BeginPaint

Remarks

HDC BeginPaint(LPPAINTSTRUCT IpPaint);

See BeginPaint in the Win32 SDK online.

Prepares the window for painting.

See Also: CWindow: :EndPaint

CWindow: :Bring WindowToTop
BOOL BringWindowToTop();

See BringWindowToTop in the Win32 SDK online.

Remarks
Brings the window to the top of the Z order.

See Also: CWindow::MoveWindow, CWindow::SetWindowPos

280

CWindow: :CheckRadioB utton

CWindow: :CenterWindow
BOOL CenterWindow(HWND h WndCenter = NULL);

Return Value
TRUE if the window is successfully centered; otherwise, FALSE.

Parameters

Remarks

h WndCenter [in] The handle to the window against which to center. If this parameter
is NULL (the default value), the method will set h WndCenter to the window's
parent window if it is a child window. Otherwise, it will set h WndCenter to the
window's owner window.

Centers the window against a given window.

See Also: CWindow::MoveWindow, CWindow::SetWindowPos

CWindow: : ChangeClipboardChain

Remarks

BOOL ChangeClipboardChain(HWND h WndNewNext);

See Change Clipboard Chain in the Win32 SDK online.

Removes the window from the chain of Clipboard viewers.

See Also: CWindow::SetClipboardViewer

CWindow: :CheckDlgButton

Remarks

BOOL CheckDlgButton(int nIDButton, UINT nCheck);

See CheckDlgButton in the Win32 SDK online.

Changes the check state of the specified button.

See Also: CWindow:: CheckRadioButton, CWindow: :IsDlgButtonChecked

CWindow: :CheckRadioButton
BOOL CheckRadioButton(int nIDFirstButton, int nIDLastButton,

... int nIDCheckButton);

See CheckRadioButton in the Win32 SDK online.

281

CWindow::ChildWindowFromPoint

Remarks
Checks the specified radio button.

See Also: CWindow: :CheckDIgButton

CWindow: :ChildWindow FromPoint

Remarks

HWND ChildWindowFromPoint(POINT point) const;

See ChildWindowFromPoint in the Win32 SDK online.

Retrieves the child window containing the specified point.

See Also: CWindow::ChildWindowFromPointEx, POINT

CWindow: :ChildWindowFromPointEx

Remarks

HWND ChildWindowFromPoint(POINT point, UINT uFlags) const;

See ChiidWindowFromPointEx in the Win32 SDK online.

Retrieves a particular type of child window containing the specified point.

See Also: CWindow::ChildWindowFromPoint, POINT

CWindow: :ClientToScreen

Remarks

BOOL ClientToScreen(LPPOINT lpPoint) const;
BOOL ClientToScreen(LPRECT lpRect) const;

See ClientToScreen in the Win32 SDK online.

Converts client coordinates to screen coordinates. The second version of this method
allows you to convert the coordinates of a RECT structure.

See Also: CWindow::ScreenToClient, POINT

CWindow: :CreateCaret

282

BOOL CreateCaret(HBITMAP pBitmap);

See Create Caret in the Win32 SDK online.

Remarks
Creates a new shape for the system caret.

See Also: CWindow::CreateGrayCaret, CWindow::CreateSolidCaret

CWindow: :CreateGrayCaret

Remarks

BOOL CreateGrayCaret(int n Width, int nHeight);

See CreateCaret in the Win32 SDK online.

Creates a gray rectangle for the system caret. Passes (HBITMAP) 1 for the bitmap
handle parameter to the Win32 function.

See Also: CWindow::CreateCaret, CWindow::CreateSolidCaret

CWindow: : CreateSolidCaret

Remarks

BOOL CreateSolidCaret(int nWidth, int nHeight);

See CreateCaret in the Win32 SDK online.

Creates a solid rectangle for the system caret. Passes (HBITMAP) 0 for the bitmap
handle parameter to the Win32 function.

See Also: CWindow::CreateCaret, CWindow::CreateGrayCaret

CWindow: :CWindow
CWindow(HWND h Wnd = NULL);

Parameters

Remarks

hWnd [in] The handle to a window.

The constructor. Initializes the m_h Wnd member to h Wnd, which by default is
NULL.

Note CWindow::CWindow does not create a window. Classes CWindowlmpl,
CContainedWindow, and CDialoglmpl (all of which derive from CWindow) provide a method
to create a window or dialog box, which is then assigned to CWindow::m_hWnd. You can also
use the CreateWindow Win32 function.

CWindow: :CWindow

283

CWindow: : DestroyWindow

CWindow: : DestroyWindow

Remarks

BOOL DestroyWindow();

See DestroyWindow in the Win32 SDK online.

Destroys the window associated with the CWindow object and sets m_hWnd to
NULL. It does not destroy the CWindowobject itself.

CWindow: : Detach
HWND Detach();

Return Value

Remarks

The HWND associated with the CWindow object.

Detaches m_h Wnd from the CWindow object and sets m_h Wnd to NULL.

See Also: CWindow::Attach

CWindow: : DIgDirList

Remarks

int DIgDirList(LPTSTR IpPathSpec, int nIDListBox, int nIDStaticPath,
1+ UINT nFileType);

See DIgDirList in the Win32 SDK online.

Fills a list box with the names of all files matching a specified path or filename.

See Also: CWindow: :DlgDirListComboBox, CWindow: :DlgDirSelect,
CWindow: :DlgDirSelectComboBox

CWindow: : DIgDirListComboBOX

Remarks

284

int DIgDirListComboBox(LPTSTR IpPathSpec, int nIDComboBox,
1+ int nIDStaticPath, UINT nFileType);

See DlgDirListComboBox in the Win32 SDK online.

Fills a combo box with the names of all files matching a specified path or filename.

See Also: CWindow: :DlgDirList, CWindow: :DlgDirSelect,
CWindow: :DlgDirSelectComboBox

CWindow: :EnableScrollBar

CWindow: : DlgDirS elect

Remarks

BOOL DIgDirSelect(LPTSTR IpString, int nCount, int nIDListBox);

See DIgDirSelectEx in the Win32 SDK online.

Retrieves the current selection from a list box.

See Also: CWindow: :DIgDirSelectComboBox, CWiodow: :DIgDirList

CWindow: : DlgDirSelectComboB OX

Remarks

BOOL DIgDirSelectComboBox(LPTSTR IpString, iot nCount, iot nIDComboBox);

See DIgDirSelectComboBoxEx in the Win32 SDK online.

Retrieves the current selection from a combo box.

See Also: CWindow: :DIgDirSelect, CWindow: :DIgDirListComboBox

CWindow: : DragAcceptFiles

Remarks

void DragAcceptFiles(BOOL bAccept = TRUE);

See DragAcceptFiles in the Win32 SDK online.

Registers whether the window accepts dragged files.

CWindow: :DrawMenuBar
BOOL DrawMeouBar();

See DrawMenuBar in the Win32 SDK online.

Remarks
Redraws the window's menu bar.

See Also: CWindow: :GetMenu, CWindow: :SetMenu

CWindow: :EnableScrollBar
BOOL EnableScrollBar(UINT uSBFlags,

.. UINT uArrowFlags = ESB_ENABLE_BOTH);

See EnableScrollBar in the Win32 SDK online.

285

CWindow::Enable Window

Remarks
Enables or disables the scroll bar arrows.

See Also: CWindow::ShowScroIlBar

CWindow: : Enable Window

Remarks

BOOL EnableWindow(BOOL bEnable = TRUE);

See EnableWindow in the Win32 SDK online.

Enables or disables input.

See Also: CWindow::IsWindowEnabled

CWindow: : EndPaint

Remarks

void EndPaint(LPPAINTSTRUCT IpPaint);

See EndPaint in the Win32 SDK online.

Marks the end of painting.

See Also: CWindow: :BeginPaint

CWindow: :Flash Window

Remarks

BOOL FlashWindow(BOOL blnvert);

See FlashWindow in the Win32 SDK online.

Flashes the window once.

See Also: CWindow: :SetTimer

CWindow: : GetClientRect

Remarks

286

BOOL GetClientRect(LPRECT IpRect) const;

See GetClientRect in the Win32 SDK online.

Retrieves the coordinates of the client area.

See Also: CWindow: : GetWindowRect, RECT

CWindow: : GetDC

Remarks

HDC GetDC();

See GetDC in the Win32 SDK online.

Retrieves a device context for the client area.

See Also: CWindow: :GetDCEx, CWindow: :GetWindowDC,
CWindow: :ReleaseDC

CWindow: : GetDCEx

Remarks

HDC GetDCEx(HRGN hRgnClip, DWORD flags);

See GetDCEx in the Win32 SDK online.

Retrieves a device context for the client area and allows clipping options.

CWindow::GetDlgCtrlID

See Also: CWindow::GetDC, CWindow::GetWindowDC, CWindow::ReleaseDC

CWindow: : GetDescendant Window
HWND GetDescendantWindow(int nID) const;

Return Value
The handle to a descendant window.

Parameters

Remarks

nID [in] The identifier of the descendant window to be retrieved.

Finds the descendant window specified by the given identifier.
GetDescendantWindow searches the entire tree of child windows, not only
the windows that are immediate children.

See Also: CWindow::GetDlgItem

CWindow: : GetDlgCtrlID
int GetDIgCtrlID() const;

See GetDIgCtrlID in the Win32 SDK online.

287

CWindow: :GetDlgItem

Remarks
Retrieves the window's identifier (for child windows only).

See Also: CWindow::SetDlgCtrlID

CWindow: : GetDIgItem
HWND GetDIgItem(int nID) const;

See GetDIgItem in the Win32 SDK online.

Remarks
Retrieves the specified child window.

See Also: CWindow: : GetDescendantWindow

CWindow: : GetDIgItemInt

Remarks

UINT GetDIgItemInt(int nID, BOOL* ipTrans = NULL,
.. BOOL bSigned = TRUE) const;

See GetDIgItemInt in the Win32 SDK online.

Translates a control's text to an integer.

See Also: CWindow: :SetDIgItemInt, CWindow: : GetDIgItemText

CWindow: : GetD IgItem Text

Remarks

UINT GetDIgItemText(int nID, LPTSTR ipStr, int nMaxCount) const;
BOOL GetDIgItemText(int nID, BSTR& bstrText) const;

See GetDIgItemText in the Win32 SDK online.

Retrieves a control's text. The second version of this method allows you to copy the
control's text to a BSTR. This version returns TRUE if the text is successfully copied;
otherwise, FALSE.

See Also: CWindow: :SetDIgItemText, CWindow: : GetDIgItem

CWindow: : GetExSty Ie
DWORD GetExStyle() const;

Return Value
The window's extended styles.

288

Remarks
Retrieves the extended window styles of the window.

To retrieve the regular window styles, call GetStyle.

See Also: CWindow: :ModifyStyleEx

.CWindow::GetFont
HFONT GetFont() const;

Return Value

Remarks

A font handle.

Retrieves the window's current font by sending a WM_GETFONT message to
the window.

See Also: CWindow: :SetFont

CWindow: : GetHotKey
DWORD GetHotKey(WORD& wVirtualKeyCode, WORD& wModifiers) const;

Return Value
The virtual key code and modifiers for the hot key associated with the window. For
a list of possible modifiers, see WM_GETHOTKEY in the Win32 SDK online.

Parameters

Remarks

wVirtualKeyCode [in] Not used.

wModifiers [in] Not used.

Determines the hot key associated with the window by sending a
WM_GETHOTKEY message.

See Also: CWindow: :SetHotKey

CWindow: : GetIcon
HICON GetIcon(BOOL bBigIcon = TRUE) const;

Return Value
An icon handle.

CWindow: :GetIcon

289

CWindow:: GetLastActivePopup

Parameters

Remarks

bBigIcon [in] If TRUE (the default value) the method returns the large icon.
Otherwise, it returns the small icon.

Retrieves the handle to the window's large or small icon. GetIcon sends a
WM_GETICON message to the window.

See Also: CWindow: :SetIcon

CWindow: : GetLastActivePopup
HWND GetLastActivePopup() const;

See GetLastActivePopup in the Win32 SDK online.

Remarks
Retrieves the most recently active pop-up window.

CWindow: : GetMenu
HMENU GetMenu() const;

See GetMenu in the Win32 SDK online.

Remarks
Retrieves the window's menu.

See Also: CWindow: :SetMenu

CWindow::GetNextDlgGroupItem

Remarks

HWND GetNextDIgGroupItem(HWND h WndCtl,
.. BOOL bPrevious = FALSE) const;

See GetNextDIgGroupItem in the Win32 SDK online.

Retrieves the previous or next control within a group of controls.

See Also: CWindow: : GetNextDIgTabItem

CWindow: : GetN extDIgTabItem

290

HWND GetNextDIgTabItem(HWND h WndCtl,
.. BOOL bPrevious = FALSE) const;

See GetNextDIgTabItem in the Win32 SDK online.

Remarks
Retrieves the previous or next control having the WS_TABSTOP style.

See Also: CWindow::GetNextDlgGroupltem

CWindow: : GetParent

Remarks

HWND GetParent() const;

See GetParent in the Win32 SDK online.

Retrieves the immediate parent window.

See Also: CWindow::SetParent

CWindow: : GetScrollPos

Remarks

int GetScrollPos(int nBar) const;

See GetScrollPos in the Win32 SDK online.

Retrieves the position of the scroll box.

See Also: CWindow::SetScrollPos

CWindow: : GetScrollRange

Remarks

BOOL GetScrollRange(int nBar, LPINT IpMinPos, LPINT IpMaxPos) const;

See GetScrollRange in the Win32 SDK online.

Retrieves the scroll bar range.

See Also: CWindow::SetScrollRange

CWindow: : GetStyle
DWORD GetStyle() const;

Return Value
The window's styles.

Remarks
Retrieves the window styles of the window.

CWindow::GetStyle

291

CWindow: :GetSystemMenu

To retrieve the extended window styles, call GetExStyle.

See Also: CWindow: : ModifyStyle

CWindow: : GetSystemMenu

Remarks

HMENU GetSystemMenu(BOOL bRevert) const;

See GetSystemMenu in the Win32 SDK online.

Creates a copy of the system menu for modification.

See Also: CWindow::GetMenu

CWindow: : GetTopLevelParent
HWND GetTopLevelParent() const;

Return Value

Remarks

The handle to the top-level parent window.

Retrieves the window's top-level parent window.

See Also: CWindow::GetParent, CWindow::GetTopLevelWindow,
CWindow: : GetWindow

CWindow: : GetTopLevelWindow
HWND GetTopLevelWindow() const;

Return Value
The handle to the top-level owner window.

Remarks
Retrieves the window's top-level parent or owner window.

See Also: CWindow: : GetTopLevelParent, CWindow: : GetWindow

CWindow: : GetTop Window
HWND GetTop Window() const;

See GetTopWindow in the Win32 SDK online.

Remarks
Retrieves the top-level child window.

292

CWindow: :GetWindowContextHelpId

See Also: CWindow::GetWindow

CWindow: : Get U pdateRect

Remarks

BOOL GetUpdateRect(LPRECT IpRect, BOOL bErase = FALSE);

See GetUpdateRect in the Win32 SDK online.

Retrieves the coordinates of the smallest rectangle that completely encloses the
update region.

See Also: CWindow::GetUpdateRgn, RECT

CWindow: : Get U pdateRgn

Remarks

int GetUpdateRgn(HRGN hRgn, BOOL bErase = FALSE);

See GetUpdateRgn in the Win32 SDK online.

Retrieves the update region and copies it into a specified region.

See Also: CWindow::GetUpdateRect

CWindow: : GetWindow

Remarks

HWND GetWindow(UINT nCmd) const;

See GetWindow in the Win32 SDK online.

Retrieves the specified window.

See Also: CWindow: : GetTop Window, CWindow: : GetTopLevelParent,
CWindow: : GetTopLevelWindow

CWindow: : Get WindowContextHelpId
DWORD GetWindowContextHelpId() const;

See GetWindowContextHelpId in the Win32 SDK online.

Remarks
Retrieves the window's help context identifier.

See Also: CWindow: :SetWindowContextHelpId

293

CWindow: : GetWindowDC

CWindow: : GetWindowDC
HDC GetWindowDC();

See GetWindowDC in the Win32 SDK online.

Remarks
Retrieves a device context for the entire window.

See Also: CWindow: :GetDC, CWindow: :GetDCEx, CWindow: :ReleaseDC

CWindow: : GetWindow Long

Remarks

LONG GetWindowLong(int nlndex) const;

See GetWindowLong in the Win32 SDK online.

Retrieves a 32-bit value at a specified offset into the extra window memory.

See Also: CWindow::SetWindowLong, CWindow::GetWindowWord

CWindow: : GetWindowPlacement

Remarks

BOOL GetWindowPlacement(WINDOWPLACEMENT FAR* lpwndpl) const;

See GetWindowPlacement in the Win32 SDK online.

Retrieves the show state and positions.

See Also: CWindow::SetWindowPlacement, WINDOWPLACEMENT

CWindow: : GetWindowRect

Remarks

294

BOOL GetWindowRect(LPRECT lpReet) const;

See GetWindowRect in the Win32 SDK online.

Retrieves the window's bounding dimensions.

See Also: CWindow: : GetClientRect, RECT

CWindow: : GetWindowText

Remarks

int GetWindowText(LPTSTR lpszStringBuf, int nMaxCount) const;
BOOL GetWindowText(BSTR& bstrText);

See GetWindowText in the Win32 SDK online.

Retrieves the window's text. The second version of this method allows you to store
the text in a BSTR. If the text is successfully copied, the return value is TRUE;
otherwise, the return value is FALSE.

See Also: CWindow: : GetWindowTextLength, CWindow: :SetWindowText

CWindow: : GetWindowTextLength

Remarks

int GetWindowTextLength() const;

See GetWindowTextLength in the Win32 SDK online.

Retrieves the length of the window's text.

See Also: CWindow::GetWindowText

CWindow: : GetWindowWord

Remarks

WORD GetWindowWord(int nlndex) const;

See GetWindowWord in the Win32 SDK online.

Retrieves a 16-bit value at a specified offset into the extra window memory.

See Also: CWindow::SetWindowWord, CWindow::GetWindowLong

CWindow: : HideCaret
BOOL HideCaret();

See HideCaret in the Win32 SDK online.

Remarks
Hides the system caret.

See Also: CWindow::ShowCaret

CWindow: :HideCaret

295

CWindow: : HiliteMenuItem

CWindow: : HiliteMenuItem

Remarks

BOOL HiliteMenultem(HMENU hMenu, UINT uHilite/tem, UINT uHilite);

See HiliteMenultem in the Win32 SDK online.

Highlights or removes the highlight from a top-level menu item.

CWindow: : Invalidate

Remarks

BOOL Invalidate(BOOL bErase = TRUE);

See InvalidateRect in the Win32 SDK online.

Invalidates the entire client area. Passes NULL for the RECT parameter to the
InvalidateRect Win32 function.

See Also: CWindow: : InvalidateRect, CWindow: :InvalidateRgn,
CWindow:: ValidateRect, CWindow:: ValidateRgn

CWindow: : InvalidateRect

Remarks

BOOL InvalidateRect(LPCRECT ipRect, BOOL bErase = TRUE);

See InvalidateRect in the Win32 SDK online.

Invalidates the client area within the specified rectangle.

See Also: CWindow: :Invalidate, CWindow: : InvalidateRgn,
CWindow:: ValidateRect, RECT

CWindow: : InvalidateRgn

Remarks

296

void InvalidateRgn(HRGN hRgn, BOOL bErase = TRUE);

See InvalidateRgn in the Win32 SDK online.

Invalidates the client area within the specified region. Specifies a void return type,
while the InvalidateRgn Win32 function always returns TRUE.

See Also: CWindow: :Invalidate, CWindow: :InvalidateRect,
CWindow:: ValidateRgn

CWindow::IsChi1d

Remarks

BOOL IsChild(const HWND h Wnd) const;

See IsChiid in the Win32 SDK online.

Determines whether the specified window is a child window.

CWindow: :IsD 19B uttonChecked

Remarks

UINT IsDIgButtonChecked(int nIDButton) const;

See IsDIgButtonChecked in the Win32 SDK online.

Determines the check state of the button.

See Also: CWindow:: CheckDIgButton

CWindow: :IsIconic

Remarks

BOOL IsIconic() const;

See IsIconic in the Win32 SDK online.

Determines whether the window is minimized.

See Also: CWindow::IsZoomed

CWindow: :Is Window Enabled
BOOL IsWindowEnabled() const;

See IsWindowEnabled in the Win32 SDK online.

Remarks
Determines whether the window is enabled for input.

See Also: CWindow::EnableWindow, CWindow::IsWindowVisible

CWindow: :Is Window Visible
BOOL IsWindowVisible() const;

See IsWindowVisible in the Win32 SDK online.

CWindow: :Is Window Visible

297

CWindow::IsZoomed

Remarks
Determines the window's visibility state.

CWindow: :IsZoomed
BOOL IsZoomed() const;

See IsZoomed in the Win32 SDK online.

Remarks
Determines whether the window is maximized.

See Also: CWindow::IsIconic

CWindow: : Kill Timer

Remarks

BOOL KillTimer(UINT nIDEvent);

See KilITimer in the Win32 SDK online.

Destroys a timer event.

See Also: CWindow::SetTimer

CWindow::LockWindowUpdate
BOOL LockWindowUpdate(BOOL bLock = TRUE);

Return Value
TRUE if the window is successfully locked; otherwise, FALSE.

Parameters

Remarks

bLock [in] If TRUE (the default value), the window will be locked. Otherwise,
it will be unlocked.

Disables or enables drawing in the window by calling the LockWindowUpdate
Win32 function. If bLock is TRUE, this method passes m_hWnd to the Win32
function; otherwise, it passes NULL.

CWindow: :Map WindowPoints

298

int MapWindowPoints(HWND hWndTo, LPPOINT lpPoint, UINT nCount) const;
int MapWindowPoints(HWND hWndTo, LPRECT lpRect) const;

See MapWindowPoints in the Win32 SDK online.

CWindow::ModifyStyle

Remarks
Converts a set of points from the window's coordinate space to the coordinate space
of another window. The second version of this method allows you to convert the
coordinates of a RECT structure.

See Also: POINT

CWindow: :MessageBox

Remarks

int MessageBox(LPCTSTR lpszText, LPCTSTR lpszCaption = NULL,
~ UINT nType = MB_OK);

See MessageBox in the Win32 SDK online.

Displays a message box.

CWindow: :ModifyStyle
BOOL ModifyStyle(DWORD dwRemove, DWORD dwAdd, UINT nFlags = 0);

Return Value
TRUE if the window styles are modified; otherwise, FALSE.

Parameters

Remarks

dwRemove [in] Specifies the window styles to be removed during style modification.

dwAdd [in] Specifies the window styles to be added during style modification.

nFlags [in] Window-positioning flags. For a list of possible values, see the
SetWindowPos function in the Win32 SDK online.

Modifies the window styles of the CWindow object. Styles to be added or removed
can be combined by using the bitwise OR (I) operator. See the CreateWindow
function in the Win32 SDK online for information about the available window styles.

If nFlags is nonzero, ModifyStyle calls the Win32 function SetWindowPos, and
redraws the window by combining nFlags with the following four flags:

• SWP _NOSIZE Retains the current size.

• SWP _NOMOVE Retains the current position.

• SWP _NOZORDER Retains the current Z order.

• SWP _NOACTIVATE Does not activate the window.

To modify a window's extended styles, call ModifyStyleEx.

See Also: CWindow::GetStyle

299

CWindow: :ModifyStyleEx

CWindow: :ModifyStyleEx
BOOL ModifyStyleEx(DWORD dwRemove, DWORD dwAdd, UINT nFlags = 0);

Return Value
TRUE if the extended window styles are modified; otherwise, FALSE.

Parameters

Remarks

dwRemove [in] Specifies the extended styles to be removed during style
modification.

dwAdd [in] Specifies the extended styles to be added during style modification.

nFlags [in] Window-positioning flags. For a list of possible values, see the
SetWindowPos function in the Win32 SDK online.

Modifies the extended window styles of the CWindow object. Styles to be added or
removed can be combined by using the bitwise OR (I) operator. See the
CreateWindowEx function in the Win32 SDK online for information about the
available extended styles.

If nFlags is nonzero, ModifyStyleEx calls the Win32 function SetWindowPos, and
redraws the window by combining nFlags with the following four flags:

• SWP _NOSIZE Retains the current size.

• SWP _NOMOVE Retains the current position.

• SWP _NOZORDER Retains the current Z order.

• SWP _NOACTIVATE Does not activate the window.

To modify windows using regular window styles, call ModifyStyle.

See Also: CWindow: : GetExStyle

CWindow: :Move Window

Remarks

300

BOOL MoveWindow(int x, int y, int nWidth, int nHeight, BOOL bRepaint = TRUE);
BOOL MoveWindow(LPCRECT lpRect, BOOL bRepaint = TRUE);

See MoveWindow in the Win32 SDK online.

Changes the window's size and position. The second version of this method uses a
RECT structure to determine the window's new position, width, and height.

See Also: CWindow::SetWindowPos

CWindow: : Open Clipboard
BOOL OpenClipboard();

See OpenClipboard in the Win32 SDK online.

Remarks
Opens the Clipboard.

CWindow: :PostMessage

Remarks

BOOL PostMessage(UINT message, WPARAM wParam = 0,
... LPARAM lParam = 0);

See PostMessage in the Win32 SDK online.

Places a message in the message queue associated with the thread that created the
window. Returns without waiting for the thread to process the message.

See Also: CWindow: :SendMessage, CWindow: :SendNotifyMessage

CWindow: : Print
void Print(HDC hDC, DWORD dwFlags) const;

Parameters

Remarks

hDC [in] The handle to a device context.

dwFlags [in] Specifies the drawing options. You can combine one or more of the
following flags:

• PRF _CHECKVISIBLE Draw the window only if it is visible.

• PRF _CHILDREN Draw all visible child windows.

• PRF _CLIENT Draw the client area of the window.

• PRF _ERASEBKGND Erase the background before drawing the window.

• PRF _NONCLIENT Draw the nonclient area of the window.

• PRF_OWNED Draw all owned windows.

Sends a WM_PRINT message to the window to request that it draw itself in the
specified device context.

See Also: CWindow: :PrintClient

CWindow: : Print

301

CWindow: :PrintClient

CWindow: :PrintClient
void PrintClient(HDC hDC, DWORD dwFlags) const;

Parameters

Remarks

hDC [in] The handle to a device context.

dwFlags [in] Specifies drawing options. You can combine one or more of the
following flags:

• PRF _CHECKVISIBLE Draw the window only if it is visible.

• PRF _CHILDREN Draw all visible child windows.

• PRF _CLIENT Draw the client area of the window.

• PRF _ERASEBKGND Erase the background before drawing the window.

• PRF _NON CLIENT Draw the nonclient area of the window.

• PRF _OWNED Draw all owned windows.

Sends a WM_PRINTCLIENT message to the window to request that it draw its
client area in the specified device context.

See Also: CWindow: :Print

CWindow: : RedrawWindow

Remarks

BOOL RedrawWindow(LPCRECT lpRectUpdate = NULL,
... HRGN hRgnUpdate = NULL,
... UINT flags = RDW _INVALIDATE I RDW _UPDATENOW I RDW _ERASE);

See RedrawWindow in the Win32 SDK online.

Updates a specified rectangle or region in the client area.

See Also: CWindow::UpdateWindow, RECT

CWindow: :ReleaseDC
int ReleaseDC(HDC hDC);

See ReleaseDC in the Win32 SDK online.

Remarks
Releases a device context.

See Also: CWindow::GetDC, CWindow::GetDCEx, CWindow::GetWindowDC

302

CWindow::SendDlgItemMessage

CWindow:: ScreenToClient

Remarks

BOOL ScreenToClient(LPPOINT lpPoint) const;
BOOL ScreenToClient(LPRECT lpRect) const;

See ScreenToClient in the Win32 SDK online.

Converts screen coordinates to client coordinates. The second version of this method
allows you to convert the coordinates of a RECT structure.

See Also: CWindow::ClientToScreen, POINT

CWindow: : ScrollWindow

Remarks

BOOL ScrollWindow(int xAmount, int yAmount, LPCRECT lpRect = NULL,
... LPCRECT lpClipRect = NULL);

See ScrollWindow in the Win32 SDK online.

Scrolls the specified client area.

See Also: CWindow: :ScrollWindowEx, RECT

CWindow: :ScrollWindowEx

Remarks

int ScrollWindowEx(int dx, int dy, LPCRECT lpRectScroll, LPCRECT lpRectClip,
... HRGN hRgnUpdate, LPRECT lpRectUpdate, UINT flags);

See ScrollWindowEx in the Win32 SDK online.

Scrolls the specified client area with additional features.

See Also: CWindow::ScrollWindow, RECT

CWindow:: S endDIgItemMes sage

Remarks

LRESULT SendDlgItemMessage(int nID, UINT message, WPARAM wParam = 0,
... LPARAM lParam = 0);

See SendDlgItemMessage in the Win32 SDK online.

Sends a message to a control.

See Also: CWindow::SendMessage

303

CWindow: :SendMessage

CWindow: :SendMessage

Remarks

LRESULT SendMessage(UINT message, WPARAM wParam = 0,
... LPARAM IParam = 0);

See SendMessage in the Win32 SDK online.

Sends a message to the window and does not return until the window procedure has
processed the message.

See Also: CWindow::PostMessage, CWindow::SendNotifyMessage,
CWindow: :SendMessageToDescendants

Cwindow: : SendMessageToDescendants
void SendMessageToDescendants(UINT message, WPARAM wParam = 0,

... LPARAM IParam = 0, BOOL hDeep = TRUE);

Parameters

Remarks

message [in] The message to be sent.

wParam [in] Additional message-specific information.

IParam [in] Additional message-specific information.

hDeep [in] If TRUE (the default value), the message will be sent to all descendant
windows; otherwise, it will be sent only to the immediate child windows.

Sends the specified message to all immediate children of the CWindow object. If
hDeep is TRUE, the message is additionally sent to all other descendant windows.

See Also: CWindow: :SendMessage, CWindow: :SendNotifyMessage,
CWindow: :PostMessage

CWindow:: SendN otify Message

Remarks

304

BOOL SendNotifyMessage(UINT message, WPARAM wParam = 0,
... LPARAM IParam = 0);

See SendNotifyMessage in the Win32 SDK online.

Sends a message to the window. If the window was created by the calling thread,
SendNotifyMessage does not return until the window procedure has processed the
message. Otherwise, it returns immediately.

See Also: CWindow: :SendMessage, CWindow: :SendMessageToDescendants,
CWindow: :PostMessage

CWindow:: SetActive Window
HWND SetActiveWindow();

See SetActiveWindow in the Win32 SDK online.

Remarks
Acti vates the window.

CWindow: :SetCapture
HWND SetCapture();

See SetCapture in the Win32 SDK online.

Remarks
Sends all subsequent mouse input to the window.

CWindow:: SetClipboardViewer

Remarks

HWND SetClipboardViewer();

See SetClipboardViewer in the Win32 SDK online.

Adds the window to the Clipboard viewer chain.

See Also: CWindow::ChangeClipboardChain

CWindow:: SetDlgCtrlID
int SetDIgCtrlID(int nID);

Return Value
If successful, the previous identifier of the window; otherwise O.

Parameters

Remarks

nID [in] The new value to set for the window's identifier.

Sets the identifier of the window to the specified value.

See Also: CWindow::GetDlgCtrlID

CWindow: :SetDIgCtrlID

305

CWindow: :SetDIgltemlnt

CWindow: :SetDIgItemInt

Remarks

BOOL SetDlgItemInt(int nID, UINT n Value, BOOL bSigned = TRUE);

See SetDlgItemInt in the Win32 SDK online.

Changes a control's text to the string representation of an integer value.

See Also: CWindow: : GetDlgItemInt, CWindow: :SetDlgItemText

CWindow: :SetDIgItemText

Remarks

BOOL SetDIgItemText(int nID, LPCTSTR IpszString);

See SetDIgItemText in the Win32 SDK online.

Changes a control's text.

See Also: CWindow: : GetDIgItemText, CWindow: :SetDIgItemInt

CWindow::SetFocus
HWND SetFocus();

See SetFocus in the Win32 SDK online.

Remarks
Sets the input focus to the window.

CWindow: :SetFont
void SetFont(HFONT hFont, BOOL bRedraw = TRUE);

Parameters

Remarks

306

hFont [in] The handle to the new font.

bRedraw [in] If TRUE (the default value), the window is redrawn. Otherwise, it
is not.

Changes the window's current font by sending a WM_SETFONT message to the
window.

See Also: CWindow::GetFont

CWindow: : SetHotKey
int SetHotKey(WORD wVirtualKeyCode, WORD wModifiers);

Return Value
For a list of possible return values, see WM_SETHOTKEY in the Win32 SDK
online.

Parameters

Remarks

wVirtualKeyCode [in] The virtual key code of the hot key.

wModifiers [in] The modifiers of the hot key. For a list of possible values, see
WM_SETHOTKEY in the Win32 SDK online.

Associates a hot key with the window by sending a WM_SETHOTKEY message.

See Also: CWindow: : GetHotKey

CWindow: : SetIcon
HICON Setlcon(HICON h/con, BOOL bBigIcon = TRUE);

Return Value
The handle to the previous icon.

Parameters

Remarks

hIcon [in] The handle to a new icon.

bBig/con [in] If TRUE (the default value), the method sets a large icon. Otherwise,
it sets a small icon.

Sets the window's large or small icon to the icon identified by hIcon. Setlcon sends
a WM_SETICON message to the window.

See Also: CWindow::Getlcon

CWindow::SetMenu

Remarks

BOOL SetMenu(HMENU hMenu);

See SetMenu in the Win32 SDK online.

Changes the window's current menu.

See Also: CWindow::GetMenu

CWindow: :SetMenu

307

CWindow:: SetParent

CWindow: : SetParent

Remarks

HWND SetParent(HWND h WndNewParent);

See SetParent in the Win32 SDK online.

Changes the parent window.

See Also: CWindow: : GetParent

CWindow: :SetRedraw
void SetRedraw(BOOL bRedraw = TRUE);

Parameters

Remarks

bRedraw [in] Specifies the state of the redraw flag. If TRUE (the default value),
the redraw flag is set; if FALSE, the flag is cleared.

Sets or clears the redraw flag by sending a WM_SETREDRAW message to the
window. Call SetRedraw to allow changes to be redrawn or to prevent changes from
being redrawn.

CWindow:: SetScrollPos

Remarks

int SetScrollPos(int nBar, int nPos, BOOL bRedraw = TRUE);

See SetScrollPos in the Win32 SDK online.

Changes the position of the scroll box.

See Also: CWindow: : GetScrollPos

CWindow:: SetScrollRange

Remarks

308

BOOL SetScrollRange(int nBar, int nMinPos, int nMaxPos,
~ BOOL bRedraw = TRUE);

See SetScrollRange in the Win32 SDK online.

Changes the scroll bar range.

See Also: CWindow::GetScrollRange

CWindow: :SetWindowPlacement

CWindow: : SetTimer
UINT SetTimer(UINT nIDEvent, UINT nElapse,

"+ void (CALLBACK EXPORT* IpfnTimer)(HWND, UINT, UINT, DWORD));

See SetTimer in the Win32 SDK online.

Remarks
Creates a timer event.

See Also: CWindow::KillTimer

CWindow: : Set WindowContextHelpId

Remarks

BOOL SetWindowContextHelpId(DWORD dwContextHelpld);

See SetWindowContextHelpId in the Win32 SDK online.

Sets the window's help context identifier.

See Also: CWindow::GetWindowContextHelpId

CWindow:: SetWindowLong

Remarks

LONG SetWindowLong(int nlndex, LONG dwNewLong);

See SetWindowLong in the Win32 SDK online.

Sets a 32-bit value at a specified offset into the extra window memory.

See Also: CWindow::GetWindowLong, CWindow::SetWindowWord

CWindow: :SetWindowPlacement

Remarks

BOOL SetWindowPlacement(const WINDOWPLACEMENT FAR*lpwndpl);

See SetWindowPlacement in the Win32 SDK online.

Sets the show state and positions.

See Also: CWindow::GetWindowPlacement, WINDOWPLACEMENT

309

CWindow: :SetWindowPos

CWindow: :SetWindowPos

Remarks

BOOL SetWindowPos(HWND h WndlnsertAfter, int x, int y, int ex, int ey,
.. UINT nFlags);

BOOL SetWindowPos(HWND h WndlnsertAfter, LPCRECT IpReet, UINT nFlags);

See SetWindowPos in the Win32 SDK online.

Sets the size, position, and Z order. The second version of this method uses a RECT
structure to set the window's new position, width, and height.

See Also: CWindow::BringWindowToTop, CWindow::MoveWindow, RECT

CWindow: : Set WindowText

Remarks

BOOL SetWindowText(LPCTSTR IpszString);

See SetWindowText in the Win32 SDK online.

Changes the window's text.

See Also: CWindow::GetWindowText

CWindow: :SetWindowWord

Remarks

WORD SetWindowLong(int nlndex, WORD wNewWord);

See SetWindowWord in the Win32 SDK online.

Sets a 16-bit value at a specified offset into the extra window memory.

See Also: CWindow::GetWindowWord, CWindow::SetWindowLong

CWindow: : ShowCaret
BOOL ShowCaret();

See ShowCaret in the Win32 SDK online.

Remarks
Displays the system caret.

See Also: CWindow: :HideCaret

310

:Window:: ShowOwnedPopups
BOOL ShowOwnedPopups(BOOL bShow = TRUE);

See ShowOwnedPopups in the Win32 SDK online.

lemarks
Shows or hides the pop-up windows owned by the window.

:Window: :ShowScrollBar

lemarks

BOOL ShowScrollBar(UINT nBar, BOOL bShow = TRUE);

See ShowScrollBar in the Win32 SDK online.

Shows or hides a scroll bar.

CWindow: :ShowWindow

~emarks

BOOL ShowWindow(int nCmdShow);

See ShowWindow in the Win32 SDK online.

Sets the window's show state.

CWindow:: Update Window
BOOL UpdateWindow();

See UpdateWindow in the Win32 SDK online.

~emarks

Updates the client area.

See Also: CWindow::RedrawWindow

CWindow:: ValidateRect

Remarks

BOOL ValidateRect(LPCRECT IpRect);

See ValidateRect in the Win32 SDK online.

Validates the client area within the specified rectangle.

CWindow:: ValidateRect

311

CWindow:: ValidateRgn

See Also: CWindow:: ValidateRgn, CWindow: :InvalidateRect

CWindow:: ValidateRgn
BOOL VaIidateRgn(HRGN hRgn);

See ValidateRgn in the Win32 SDK online.

Remarks
Validates the client area within the specified region.

See Also: CWindow:: ValidateRect, CWindow: : InvalidateRgn

CWindow:: WinHelp

Remarks

BOOL WinHelp(LPCTSTR ipszHelp, UINT nCmd = HELP_CONTEXT,
... DWORD dwData = 0);

See WinHelp in the Win32 SDK online.

Starts Windows Help.

Operators
CWindow::operator HWND

operator HWND() const;

Remarks
Converts a CWindow object to an HWND.

CWindow::operator =

Remarks

312

CWindow& operator =(HWND h Wnd);

Assigns an HWND to the CWindow object by setting the m_h Wnd member
to hWnd.

Data Members
CWindow::m_hWnd

Remarks
Contains a handle to the window associated with the CWindow object.

See Also: CWindow::CWindow

CWindow: :m_h Wnd

313

CWindowlmpl

CWindow Impl
template< class T>
class CWindowImpl: public CWindowImplBase

Parameters

314

T Your class, derived from CWindowImpl.

CWindowImpl allows you to create a new window or subclass an existing window.
CWindow Impl' s window procedure uses a message map to direct messages to the
appropriate handlers.

CWindowImpl::Create creates a new window based on the window class
information managed by CWndClassInfo. CWindowImpl contains the
DECLARE_WND_CLASS macro, which means CWndClassInfo will register a
new window class. If you want to superclass an existing window class, derive your
class from CWindowImpl and include the DECLARE_ WND_SUPERCLASS
macro. In this case, CWndClassInfo will register a window class that is based on
an existing class but uses CWindowImpl::WindowProc. For example:

class CMyWindow : CComControl<CMyWindow> •...
II CComControl derives from CWindowImpl

public:
II 1. The NULL parameter means ATL will generate a
II name for the superclass
II 2. The "EDIT" parameter means the superclass is
II based on the standard Windows Edit box
DEC LARE_WND_SU PERC LASS (NU LL. "ED IT")

} ;

Note Because CWndClasslnfo manages the information for a single window class, each
window created through an instance of CWindowlmpl will be based on the same window class.

CWindowImpl also supports window subclassing. The SubclassWindow method
attaches an existing window to the CWindowImpl object and changes the window
procedure to CWindowImpl::WindowProc. Each instance of CWindowImpl can
subclass a different window.

Note For any given CWindowlmpl object, call either Create or SubclassWindow. You should
not invoke both methods on the same object.

In addition to CWindowImpl, ATL provides CContainedWindow to create a
window contained within another object.

CWindowImpl derives from CWindowImplBase, which in tum derives from
CWindow and CMessageMap.

CWindowlmpl::Create

For more information about

Creating controls

Using windows in ATL

ATL Object Wizard

Windows

Subclassing

Superclassing

#include <atlwin.h>

See

"ATL Tutorial"

"ATL Window Classes"

"Creating an ATL Project"

"Windows" and subsequent topics in the Win32 SDK online

"Window Procedure Subclassing" in the Win32 SDK online

"Window Procedure Superclassing" in the Win32 SDK online

See Also: BEGIN_MSG_MAP, CComControl

Methods

Create

CWindowlmplBase Methods

DefWindowProc

GetWndClasslnfo

Subclass Window

UnsubclassWindow

WindowProc

Data Members

m_pfnSuperWindowProc

Methods

Creates a window.

Provides default message processing.

Returns a static instance of CWndClasslnfo, which manages
the window class information.

Subclasses a window.

Restores a previously subclassed window.

Processes messages sent to the window.

Points to the window class's original window procedure.

CWindow Impl: : Create
HWND Create(HWND h WndParent, RECT & rcPos,

.. LPCTSTR szWindowName = NULL,

Return Value

.. DWORD dwStyle = WS_CHILD I WS_ VISIBLE,

.. DWORD dwExStyle = 0, UINT nID = 0);

If successful, the handle to the newly created window. Otherwise, NULL.

Parameters
h WndParent [in] The handle to the parent or owner window.

rcPos [in] A RECT structure specifying the position of the window.

szWindowName [in] Specifies the name of the window. The default value is NULL.

315

CWindowlmpl: :DefWindowProc

Remarks

dwStyle [in] The style of the window. The default value is WS_CHILD I
WS_ VISIBLE. For a list of possible values, see CreateWindow in the
Win32 SDK online.

dwExStyle [in] The extended window style. The default value is 0, meaning no
extended style. For a list of possible values, see CreateWindowEx in the
Win32 SDK online.

nID [in] For a child window, the window identifier. For a top-level window,
an HWND casted to a UINT. The default value is 0.

Creates a window based on a new window class. Create first registers the window
class if it has not yet been registered. The newly created window is automatically
attached to the CWindowImpl object.

To use a window class that is based on an existing window class, derive your
class from CWindowImpl and include the DECLARE_ WND_SUPERCLASS
macro. The existing window class's window procedure is saved in
m_pfnSuperWindowProc. For more information, see the CWindowImpl
overview.

Note Do not call Create if you have already called SubclassWindow.

See Also: CWindowImpl: : GetWndClassInfo, CWndClassInfo: : Register,
CWindow::m_h Wnd

CWindowImpl::DetWindowProc
LRESULT DefWindowProc(UINT uMsg, WPARAM wParam, LPARAM lParam);

Return Value
The result of the message processing.

Parameters

Remarks

316

uMsg [in] The message sent to the window.

wParam [in] Additional message-specific information.

IParam [in] Additional message-specific information.

Called by WindowProc to process messages not handled by the message map. By
default, DefWindowProc calls the CallWindowProc Win32 function to send the
message information to the window procedure specified in
m_pfnSuperWindowProc.

CWindow Impl::Subclass Window

CWindowImpl::GetWndClassInfo
static CWndClassInfo& GetWndClassInfo();

Return Value

Remarks

A static instance of CWndClassInfo.

Called by Create to access the window class information. By default, CWindowImpl
obtains this method through the DECLARE_ WND_CLASS macro, which specifies
a new window class.

To superclass an existing window class, derive your class from CWindowImpl
and include the DECLARE_ WND_SUPERCLASS macro to override
GetWndClassInfo. For more information, see the CWindowImpl overview.

Besides using the DECLARE_WND_CLASS and
DECLARE_ WND_SUPERCLASS macros, you can override GetWndClassInfo
with your own implementation.

CWindow Impl: : Subclass Window
BOOL SubclassWindow(HWND h Wnd);

Return Value
TRUE if the window is successfully subclassed; otherwise, FALSE.

Parameters

Remarks

h Wnd [in] The handle to the window being subclassed.

Subclasses the window identified by hWnd and attaches it to the CWindowImpl
object. The subclassed window now uses CWindowImpl::WindowProc. The
original window procedure is saved in m_pfnSuperWindowProc.

Note Do not call SubclassWindow if you have already called Create.

See Also: CWindowImpl::UnsubclassWindow

317

CWindowImpl:: Unsubc1ass Window

CWindow Impl: : U nsubclass Window
HWND UnsubcIassWindow();

Return Value

Remarks

The handle to the window previously subclassed.

Detaches the subclassed window from the CWindowImpl object and restores
the original window procedure, saved in m_pfnSuperWindowProc.

See Also: CWindowImpl::SubclassWindow

CWindow Impl: : Window Proc
static LRESULT CALLBACK WindowProc(HWND h Wnd, UINT uMsg,

... WPARAM wParam, LPARAM IParam);

Return Value
The result of the message processing.

Parameters

Remarks

318

hWnd [in] The handle to the window.

uMsg [in] The message sent to the window.

wParam [in] Additional message-specific information.

IParam [in] Additional message-specific information.

This static method implements the window procedure. WindowProc uses the
default message map (declared with BEGIN_MSG_MAP) to direct messages
to the appropriate handlers. If necessary, WindowProc calls DefWindowProc
for additional message processing.

You can override WindowProc to provide a different mechanism for handling
messages.

CWindowImpl::m_pfnSuperWindowProc

Data Members
CWindow Impl: :m_pfnSuperWindowProc

WNDPROC m_pfnSuperWindowProc;

Remarks
Depending on the window, points to one of the following window procedures:

Type of window

A window based on a new window class, specified
through the DECLARE_WND_CLASS macro.

A window based on a window class that modifies
an existing class, specified through the
DECLARE_ WND_SUPERCLASS macro.

A subclassed window.

Window procedure

The DefWindowProc Win32 function.

The existing window class's window
procedure.

The subclassed window's original
window procedure.

CWindowlmpl::DefWindowProc sends message information to the window
procedure saved in m_pfnSuperWindowProc.

See Also: CWindowlmpl::Create, CWindowlmpl::SubclassWindow

319

CWndClasslnfo

CWndClassInfo

320

class CWndClassInfo

CWndClasslnfo manages the information of a window class. You typically use
CWndClasslnfo through one of two macros, DECLARE_ WND_CLASS or
DECLARE_ WND _SUPERCLASS, as described in the following table:

Macro

DECLARE_ WND_CLASS

DECLARE_ WND_SUPERCLASS

Description

CWndClasslnfo registers information for a new
window class.

CWndClasslnfo registers information for a
window class that is based on an existing class but
uses a different window procedure. This technique
is called superclassing.

By default, CWindowlmpl includes the DECLARE_ WND_CLASS macro to create
a window based on a new window class. If you want to create a window based on
an existing window class, derive your class from CWindowlmpl and include the
DECLARE_ WND _SUPERCLASS macro in your class definition. For example:

class CMyWindow : CComControl<CMyWindow> •...
II CComControl derives from CWindowlmpl

public:
II 1. The NULL parameter means ATL will generate a
II name for the superclass
II 2. The "EDIT" parameter means the superclass is
II based on the standard Windows Edit box
DECLARE_WND_SUPERCLASS(NULL. "EDIT")

} ;

For more information about window classes and superclassing, see "Window Classes"
and "Window Procedure Superclassing" in the Win32 SDK online.

For more information about using windows in ATL, see the article "ATL Window
Classes."

#include <atlwin.h>

See Also: CComControl

Methods

Register

Data Members

m_atom

m_bSystemCursor

Registers the window class.

Uniquely identifies the registered window class.

Specifies whether the cursor resource refers to a system cursor or to a
cursor contained in a module resource.

CWndClusslnfo: :m_utom

Methods (continued)

m_IpszCursor ID

m_IpszOrigName

m_szAutoName

m_we

pWndProe

Specifies the name of the cursor resource.

Contains the name of an existing window class.

Holds an ATL-generated name of the window class.

Maintains window class information in a WNDCLASSEX structure.

Points to the window procedure of an existing window class.

Methods
cw ndClassInfo: :Register

ATOM Register(WNDPROC* pProc);

Return Value
If successful, an atom that uniquely identifies the window class being registered.
Otherwise, O.

Parameters

Remarks

pProc [out] Specifies the original window procedure of an existing window class.

Called by CWindowlmpl::Create to register the window class if it has not yet
been registered.

If you have specified the DECLARE_ WND_CLASS macro (the default in
CWindowlmpl), Register registers a new window class. In this case, the pProc
parameter is not used.

If you have specified the DECLARE_ WND_SUPERCLASS macro, Register
registers a superclass-a window class that is based on an existing class but uses
a different window procedure. The existing window class's window procedure is
returned in pProc.

See Also: CWndClasslnfo::m_atom, CWndClasslnfo::m_wc,
CWndClasslnfo::p WndProc

Data Members
cw ndClassInfo: :m_atom

Remarks
Contains the unique identifier for the registered window class.

321

CW ndClassInfo: :m_bSystemCursor

See Also: CWndClassInfo::Register

CWndClassInfo::rn_bSysternCursor

Remarks

BOOL m_bSystemCursor;

If TRUE, the system cursor resource will be loaded when the window class is
registered. Otherwise, the cursor resource contained in your module will be loaded.

CWndClassInfo uses m_bSystemCursor only when the
DECLARE_ WND_CLASS macro is specified (the default in CWindowImpl).
In this case, m_bSystemCursor is initialized to TRUE. For more information,
see the CWndClassInfo overview.

See Also: CWndClassInfo: :m_IpszCursorID

CW ndClassInfo: :rn_IpszCursorID

Remarks

LPCTSTR m_IpszCursorID;

Specifies either the name of the cursor resource or the resource identifier in the
low-order word and zero in the high-order word. When the window class is
registered, the handle to the cursor identified by m_IpszCursorID is retrieved
and stored by m_ we.

CWndClassInfo uses m_IpszCursorID only when the DECLARE_ WND _CLASS
macro is specified (the default in CWindowImpl). In this case, m_IpszCursorID is
initialized to IDC_ARROW. For more information, see the CWndClassInfo
overview.

See Also: CWndClassInfo::m_bSystemCursor

CW ndClassInfo: :rn_IpszOrigN arne

Remarks

322

LPCTSTR m_IpszOrigName;

Contains the name of an existing window class. CWndClassInfo uses
m_IpszOrigName only when you include the DECLARE_ WND _SUPER CLASS
macro in your class definition. In this case, CWndClassInfo registers a window
class based on the class named by m_IpszOrigName. For more information, see the
CWndClassInfo overview.

See Also: CWndClassInfo: :m_ we, CWndClassInfo::p WndProe

CWndClassInfo::p WndProc

CW ndClasslnfo: :rn_szAutoN arne

Remarks

TCHAR m_szAutoName[13];

Holds the name of the window class. CWndClasslnfo uses m_szAutoName only if
NULL is passed for the WndClassName parameter to DECLARE_ WND_CLASS or
DECLARE_ WND_SUPERCLASS. ATL will construct a name when the window
class is registered.

CWndClasslnfo: :rn_ we

Remarks

WNDCLASSEX m_wc;

Maintains the window class information in a WNDCLASSEX structure.

If you have specified the DECLARE_ WND_CLASS macro (the default in
CWindowlmpl), m_ wc contains information about a new window class.

If you have specified the DECLARE_ WND _SUPERCLASS macro, m_ wc contains
information about a superclass-a window class that is based on an existing class
but uses a different window procedure. m_IpszOrigName and pWndProc save the
existing window class's name and window procedure, respectively.

CWndClasslnfo::p WndProe

Remarks

WNDPROC pWndProc;

Points to the window procedure of an existing window class. CWndClasslnfo uses
pWndProc only when you include the DECLARE_ WND_SUPERCLASS macro
in your class definition. In this case, CWndClasslnfo registers a window class that
is based on an existing class but uses a different window procedure. The existing
window class's window procedure is saved in pWndProc. For more information,
see the CWndClasslnfo overview.

See Also: CWndClasslnfo::m_wc, CWndClasslnfo::m_lpszOrigName

323

IConnectionPointContainerImpl

IConnectionPointContainerlmpl
template< class T>
class IConnectionPointContainerImpl

Parameters
T Your class, derived from IConnectionPointContainerImpl.

IConnectionPointContainerImpl implements a connection point container to
manage a collection of IConnectionPointImpl objects.
IConnectionPointContainerImpl provides two methods that a client can call to
retrieve more information about a connectable object:

• EnumConnectionPoints allows the client to determine which outgoing interfaces
the object supports.

• FindConnectionPoint allows the client to determine whether the object supports
a specific outgoing interface.

For information about using connection points in ATL, see the article "Connection
Points."

#include <atlcom.h>

See Also: IConnectionPointContainer

IConnectionPointContainer Methods

EnumConnectionPoints

FindConnectionPoint

Creates an enumerator to iterate through the connection points
supported in the connectable object.

Retrieves an interface pointer to the connection point that
supports the specified liD.

Methods
IConnectionPointContainerImpl: : EnumConnectionPoints

Remarks

324

HRESULT EnumConnectionPoints(IEnumConnectionPoints **ppEnum);

See IConnectionPointContainer::EnumConnectionPoints in the Win32 SDK
online.

Creates an enumerator to iterate through the connection points supported in the
connectable object.

See Also: IConnectionPointImpl, IEnumConnectionPoints

IConnectionPointContainerlmpl::FindConnectionPoint

IConnectionPointContainerImpl: :FindConnectionPoint

Remarks

HRESULT FindConnectionPoint(REF lID riid, IConnectionPoint** ppCP);

See IConnectionPointContainer::FindConnectionPoint in the Win32 SDK online.

Retrieves an interface pointer to the connection point that supports the specified lID.

See Also: IConnectionPointImpl

325

IConnectionPointImpl

IConnectionPointImpl
template< class T, const I1D* piid, class CDV = CComDynamicUnkArray >
class IConnectionPointImpl : public _ICPLocator< piid >

Parameters

326

T Your class, derived from IConnectionPointImpl.

piid A pointer to the lID of the interface represented by the connection point object.

CDV A class that manages the connections. The default value is
CComDynamicUnkArray, which allows unlimited connections. You can also
use CComUnkArray, which specifies a fixed number of connections.

IConnectionPointImpl implements a connection point, which allows an object to
expose an outgoing interface to the client. The client implements this interface on
an object called a sink.

ATL uses IConnectionPointContainerImpl to implement the connectable object.
Each connection point within the connectable object represents an outgoing interface,
identified by piid. Class CD V manages the connections between the connection point
and a sink. Each connection is uniquely identified by a "cookie."

For more information about using connection points in ATL, see the article
"Connection Points."

#include <atlcom.h>

See Also: IConnectionPoint

IConnectionPoint Methods

Advise

EnumConnections

GetConnectionlnterface

GetConnectionPointContainer

Unadvise

Data Members

Establishes a connection between the connection point
and a sink.

Creates an enumerator to iterate through the connections
for the connection point.

Retrieves the lID of the interface represented by the
connection point.

Retrieves an interface pointer to the connectable object.

Terminates a connection previously established through
Advise.

Manages the connections for the connection point.

IConnectionPointImpl::GetConnectionPointContainer

Methods
IConnectionPointImpl: :Advise

Remarks

HRESULT Advise(IUnknown* pUnkSink, DWORD* pdwCookie);

See IConnectionPoint::Advise in the Win32 SDK online.

Establishes a connection between the connection point and a sink.

To terminated the connection call, Unadvise.

IConnectionPointImpl: : EnumConnections

Remarks

HRESULT EnumConnections(IEnumConnections** ppEnum);

See IConnectionPoint::EnumConnections in the Win32 SDK online.

Creates an enumerator to iterate through the connections for the connection point.

See Also: IEnumConnections

IConnectionPointImpl: : GetConnectionInterface
HRESULT GetConnectionlnterface(IID* piid2);

See IConnectionPoint::GetConnectionlnterface in the Win32 SDK online.

Remarks
Retrieves the lID of the interface represented by the connection point.

IConnectionPointImpl::GetConnectionPointContainer

Remarks

HRESULT GetConnectionPointContainer(IConnectionPointContainer** ppCPC);

See IConnectionPoint::GetConnectionPointContainer in the Win32 SDK online.

Retrieves an interface pointer to the connectable object.

See Also: IConnectionPointContainerImpl

327

IConnectionPointlmpl::Unadvise

IConneetionPointImpl:: U nadvise
HRESULT Unadvise(DWORD dwCookie);

See IConneetionPoint::Unadvise in the Win32 SDK online.

Remarks
Terminates a connection previously established through Advise.

Data Members
IConneetionPointImpl: :m_ vee

Remarks

328

Manages the connections between the connection point object and a sink. By default,
m_ vee is of type CComDynamicUnkArray.

IDataObjectImpl
template< class T>
class IDataObjectlmpl

Parameters
T Your class, derived from IDataObjectlmpl.

The IDataObject interface provides methods to support Uniform Data Transfer.
IDataObject uses the standard format structures FORMATETC and STGMEDIUM
to retrieve and store data.

IDataObject also manages connections to advise sinks to handle data change
notifications. In order for the client to receive data change notifications from the data
object, the client must implement the lAd viseS ink interface on an object called an
advise sink. When the client then calls IDataObject::DAdvise, a connection is
established between the data object and the advise sink.

Class IDataObjectlmpl provides a default implementation of IDataObject and
implements IUnknown by sending information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

Class Methods

FireDataChange

IDataObject Methods

DAdvise

DUnadvise

EnumDAdvise

EnumFormatEtc

GetCanonicalFormatEtc

GetData

Sends a change notification back to each advise sink.

Establishes a connection between the data object and an advise
sink. This enables the advise sink to receive notifications of
changes in the object.

Terminates a connection previously established through
DAdvise.

Creates an enumerator to iterate through the current advisory
connections.

Creates an enumerator to iterate through the FORMATETC
structures supported by the data object. The A TL implementation
returns E_NOTIMPL.

Retrieves a logically equivalent FORMATETC structure to
one that is more complex. The A TL implementation returns
E_NOTIMPL.

Transfers data from the data object to the client. The data is
described in a FORMATETC structure and is transferred
through a STGMEDIUM structure.

(continued)

IDataObjectImpl

329

IDataObjectImpl: :DAdvise

IDataObject Methods (continued)

GetDataHere

QueryGetData

SetData

Similar to GetData, except the client must allocate the
STGMEDIUM structure. The ATL implementation returns
E_NOTIMPL.

Determines whether the data object supports a particular
FORMATETC structure for transferring data. The ATL
implementation returns E_NOTIMPL.

Transfers data from the client to the data object. The ATL
implementation returns E_NOTIMPL.

Methods
IDataObjectImpl::DAdvise

Remarks

HRESULT DAdvise(FORMATETC* pformatetc, DWORD advf,
* IAdviseSink* pAdvSink, DWORD* pdwConnection);

See IDataObject::DAdvise in the Win32 SDK online.

Establishes a connection between the data object and an advise sink. This enables the
advise sink to receive notifications of changes in the object.

To terminate the connection, call DUnadvise.

See Also: FORMATETC, IAdviseSink

IDataObjectImpl: : DUnadvise

Remarks

HRESULT DUnadvise(FORMATETC* pfonnatetc, DWORD advf,
* IAdviseSink* pAdvSink, DWORD* pdwConnection);

See IDataObject::DUnadvise in the Win32 SDK online.

Terminates a connection previously established through DAdvise.

See Also: FORMATETC, lAd viseS ink

IDataObjectImpl: : EnumDAdvise

330

HRESULT DAdvise(FORMATETC* pJormatetc, DWORD advf,
* IAdviseSink* pAdvSink, DWORD* pdwConnection);

See IDataObject::EnumDAdvise in the Win32 SDK online.

IDataObjectlmpl::GetData

Remarks
Creates an enumerator to iterate through the current advisory connections.

See Also: FORMATETC, IAdviseSink

IDataObjectImpl: : EnumFormatEtc

Remarks

HRESULT EnumFormatEtc(DWORD dwDirection,
.. IEnumFORMATETC** ppenumFormatEtc);

See IDataObject::EnumFormatEtc in the Win32 SDK online.

Returns E_NOTIMPL.

See Also: IEnumFORMATETC

IDataObjectlmpl: : FireDataChange
HRESULT FireDataChange();

Return Value

Remarks

A standard HRESULT value.

Sends a change notification back to each advise sink that is currently being
managed.

IDataObjectlmpl: : GetCanonicalFormatEtc

Remarks

HRESULT GetCanonicalFormatEtc(FORMATETC* pJormatetcIn,
.. FORMATETC* pJormatetcOut);

See IDataObject::GetCanonicaIFormatEtc in the Win32 SDK online.

Returns E_NOTIMPL.

See Also: FORMATETC

IDataObjectImpl:: GetData
HRESULT GetData(FORMATETC* pjormatetcIn, STGMEDIUM* pmedium);

See IDataObject::GetData in the Win32 SDK online.

331

IDataObjectlmpl: : GetDataHere

Remarks
Transfers data from the data object to the client. The pformatetcIn parameter must
specify a storage medium type of TYMED_MFPICT.

See Also: IDataObjectImpl: : GetDataHere, IDataObjectImpl: : QueryGetData,
IDataObjectImpl::SetData, FORMATETC, STGMEDIUM, TYMED

IDataObjectImpl: : GetDataHere

Remarks

HRESULT GetDataHere(FORMATETC* p!ormatetc, STGMEDIUM* pmedium);

See IDataObject::GetDataHere in the Win32 SDK online.

Returns E_NOTIMPL.

See Also: IDataObjectImpl: :GetData, IDataObjectImpl: : QueryGetData,
IDataObjectImpl: :SetData, FORMATETC, STGMEDIUM

IDataObjectImpl: : QueryGetData

Remarks

HRESULT QueryGetData(FORMATETC* pformatetc);

See IDataObject::QueryGetData in the Win32 SDK online.

Returns E_NOTIMPL.

See Also: IDataObjectImpl::GetData, IDataObjectImpl::GetDataHere,
IDataObjectImpl: :SetData, FORMATETC

IDataObjectImpl: : SetData

Remarks

332

HRESULT SetData(FORMATETC* pformatetc, STGMEDIUM* pmedium,
... BOOLjReiease);

See IDataObject::SetData in the Win32 SDK online.

Returns E_NOTIMPL.

See Also: IDataObjectImpl: : GetData, IDataObjectImpl: : GetDataHere,
IDataObjectImpl: : QueryGetData, FORMATETC, STGMEDIUM

IDispatchlmpl
template< class T, const IID* piid, const GUID* plibid, WORD wMajor = 1,

"+ WORD wMinor = 0, class tihclass = CComTypelnfoHolder >
class IDispatchlmpl : public T

Parameters
T A dual interface.

piid A pointer to the lID of T.

plibid A pointer to the identifier of Ts type library section.

wMajor The major version of the type library. The default value is 1.

wMinor The minor version of the type library. The default value is O.

tihclass The class used to manage the type information for T. The default value
is CComTypelnfoHolder.

IDispatchlmpl provides a default implementation for the IDispatch portion of any
dual interface on your object. A dual interface derives from IDispatch and uses only
Automation-compatible types. Like a dispinterface, a dual interface supports early and
late binding; however, a dual interface differs in that it also supports vtable binding.

The following example shows a typical implementation of IDispatchlmpl:

class CBeeper :
public IDispatchImpl< IBeeper. &IID_IBeeper.

&LIBID_BeeperLib >.
public CComObjectRoot.
public CComCoClass< CBeeper. &CLSID_Beeper >

} :

IDispatchlmpl contains a static member of type CComTypelnfoHolder that
manages the type information for the dual interface. If you have multiple objects
implementing the same dual interface, only a single instance of
CComTypelnfoHolder will be used.

#include <atlcom.h>

See Also: ITypelnfo

Class Methods

IDispatchlmpl Constructor.

IDispatchImpl

333

IDispatchlmpl: :GetIDsOtN ames

IDispatch Methods

GetIDsOfNames

GetTypeInfo

GetTypeInfoCount

Invoke

Data Members

Maps a set of names to a corresponding set of dispatch identifiers.

Retrieves the type information for the dual interface.

Determines whether there is type information available for the
dual interface.

Provides access to the methods and properties exposed by the
dual interface.

Manages the type information for the dual interface.

Methods
IDispatchImpl: : GetIDsOtN ames

Remarks

HRESULT GetlDsOfNames(REFIID riid, LPOLESTR* rgszNames,
.. UINT cNames, LCID lcid, DISPID* rgdispid);

See IDispatch::GetlDsOfNames in the Win32 SDK online.

Maps a set of names to a corresponding set of dispatch identifiers.

IDispatchImpl: : GetTypeInfo

Remarks

HRESULT GetTypeInfo(UINT itinfo, LCID lcid, ITypeInfo** pptinfo);

See IDispatch::GetTypeInfo in the Win32 SDK online.

Retrieves the type information for the dual interface.

See Also: IDispatchImpl::GetTypeInfoCount

IDispatchImpl: : GetTypeInfoCount

Remarks

334

HRESULT GetTypeInfoCount(UINT* pctinfo);

See IDispatch::GetTypeInfoCount in the Win32 SDK online.

Determines whether there is type information available for the dual interface.

See Also: IDispatchImpl::GetTypeInfo

IDispatchImpl: :IDispatchImpl
IDispatchlmpl();

Remarks
The constructor. Calls AddRef on the _tih member. The destructor calls Release.

IDispatchImpl: : Invoke

Remarks

HRESULT Invoke(DISPID dispidMember, REFIID riid, LCID lcid,
.. WORD wFlags, DISPPARMS* pdispparams, VARIANT* pvarResult,
.. EXCEPINFO* pexcepinJo, UINT* puArgErr);

See IDispatch::lnvoke in the Win32 SDK online.

Provides access to the methods and properties exposed by the dual interface.

Data Members
IDispatchImpl: :_tih

Remarks

static tihclass _tih;

This static data member is an instance of the class template parameter, tihclass,
which by default is CComTypelnfoHolder. _tih manages the type information
for the dual interface.

IDispatchImpl: :_tih

335

IObjectSafety Impl

IObjectSafetylmpl
template< class T>
class IObjectSafetylmpl

Parameters
T Your class, derived from IObjectSafetylmpl.

The IObjectSafety interface allows a client to retrieve and set an object's safety levels.
For example, a web browser may call IObjectSafety::SetInterfaceSafetyOptions to
make a control safe for initialization or safe for scripting.

Class IObjectSafetylmpl provides a default implementation of IObjectSafety and
implements IUnknown by sending information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: IObjectSafety in the ActiveX SDK online

IObjectSafety Methods

GetInterfaceSafetyOptions

SetInterfaceSafetyOptions

Data Members

Retrieves the safety options supported by the object,
as well as the safety options currently set for the object.

Makes the object safe for initialization or scripting.

Stores the object's current safety level.

IObj ectSafety Impl: : GetlnterfaceS afetyOptions

Remarks

336

HRESULT GetInterfaceSafetyOptions(REFIID riid,
... DWORD* pdwSupportedOptions, DWORD* pdwEnabledOptions);

See IObjectSafety::GetInterfaceSafetyOptions in the ActiveX SDK online.

Retrieves the safety options supported by the object, as well as the safety options
currently set for the object. If the riid parameter is not IID_IDispatch, this method
returns E_NOINTERFACE.

See Also: IObjectSafety Impl: :SetInterfaceSafetyOptions

IObjectSafetyImpl::m_dwSafety

IObj ectSafety Impl: : SetlnterfaceS afetyOptions

Remarks

HRESULT SetlnterfaceSafetyOptions(REFIID riid,
~ DWORD dwOptiollsSetMask, DWORD dwEnabledOptiolls);

See IObjectSafety: :SetlnterfaceSafetyOptions in the ActiveX SDK online.

Makes the object safe for initialization or scripting. If the riid parameter is not
IID_IDispatch, this method returns E_NOINTERFACE.

See Also: IObjectSafety Impl: : GetlnterfaceSafetyOptions

Data Members
IObjectSafetylmpl: : m_dwSafety

DWORD m_dwSafety;

Remarks
Stores the object's current safety level.

337

IObjectWithSitelmpl

IObjectWithSiteImpl
template< class T>
class IObjectWithSitelmpl

Parameters
T Your class, derived from IObjectWithSitelmpl.

The IObjectWithSite interface allows an object to communicate with its site.
Class IObjectWithSitelmpl provides a default implementation of this interface and
implements IUnknown by sending information to the dump device in debug builds.

IObjectWithSitelmpl specifies two methods. The client first calls SetSite, passing
the site's IUnknown pointer. This pointer is stored within the object, and can later be
retrieved through a call to GetSite.

Typically, you derive your class from IObjectWithSitelmpl when you are creating
an object that is not a control. For controls, derive your class from IOleObjectlmpl,
which also provides a site pointer. Do not derive your class from both
IObjectWithSitelmpl and IOleObjectlmpl.

#include <atlcom.h>

IObjectWithSite Methods

GetSite

SetSite

Data Members

Queries the site for an interface pointer.

Provides the object with the site's IUnknown pointer.

Manages the site's IUnknown pointer.

Methods
IObjectWithSiteImpl: : GetSite

Remarks

338

HRESULT GetSite(REFIID riid, void **ppvSite);

See IObjectWithSite::GetSite in the Win32 SDK online.

Queries the site for a pointer to the interface identified by riid. If the site supports
this interface, the pointer is returned via ppvSite. Otherwise, ppvSite is set to NULL.

See Also: IObjectWithSitelmpl::SetSite

IObjectWithSiteImpl::m_spUnkSitc

IObjectWithSiteImpl: :SetSite

Remarks

HRESULT SetSite(IUnknown* pUnkSite);

See IObjectWithSite::SetSite in the Win32 SDK online.

Provides the object with the site's IUnknown pointer.

See Also: IObjectWithSitelmpl::GetSite

Data Members
IObjectWithSiteImpl: :m_spUnkSite

Remarks

CComPtr< IUnknown > m_spUnkSite;

Manages the site's IUnknown pointer. m_spUnkSite initially receives this pointer
through a call to SetSite.

See Also: CComPtr

339

IOleControlImpl

IOleControlImpl
template< class T>
class IOleControlImpl

Parameters
T Your class, derived from IOleControlImpl.

Class IOleControlImpl provides a default implementation of the IOleControl
interface and implements IUnknown by sending information to the dump device
in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: IOleObjectImpl, "ActiveX Controls Interfaces" in the Win32 SDK online

IOleControl Methods

FreezeEvents

GetControlInfo

OnAmbientPropertyChange

OnMnemonic

Indicates whether or not the container ignores or accepts
events from the control.

Fills in information about the control's keyboard behavior.
The ATL implementation returns E_NOTIMPL.

Informs a control that one or more of the container's
ambient properties has changed. The ATL implementation
returns S_OK.

Informs the control that a user has pressed a specified
keystroke. The ATL implementation returns E_NOTIMPL.

Methods
IOleControlImpl: : FreezeEvents

Remarks

340

HRESULT FreezeEvents(BOOL bFreeze);

See IOleControl: : FreezeEvents in the Win32 SDK online.

In ATL's implementation, FreezeEvents increments the control class's
m_nFreezeEvents data member if bFreeze is TRUE, and decrements
m_nFreezeEvents if bFreeze is FALSE. FreezeEvents then returns S_OK.

See Also: CComControl: :m_nFreezeEvents

IOleControlImpl: : GetControlInfo

Remarks

HRESULT GetControlInfo(LPCONTROLINFO pCI);

See IOleControl:GetControlInfo in the Win32 SDK online.

Returns E_NOTIMPL.

IOleControlImpl::OnMnemonic

IOleControlImpl: : OnAmbientPropertyChange
HRESULT OnAmbientPropertyChange(DISPID dispid);

See IOleControl::OnAmbientPropertyChange in the Win32 SDK online.

Remarks

IOleControlImpl: :OnMnemonic
HRESULT OnMnemonic(LPMSG pMsg);

See IOleControl::OnMnemonic in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

341

IOlelnPlaceActiveObjectImpl

IOlelnPlaceActiveObjectlmpl
template< class T>
class IOlelnPlaceActiveObjectlmpl

Parameters

342

T Your class, derived from IOlelnPlaceActiveObjectlmpl.

The IOlelnPlaceActiveObject interface assists communication between an
in-place control and its container; for example, communicating the active state
of the control and container, and informing the control it needs to resize itself.
Class IOlelnPlaceActiveObjectlmpl provides a default implementation of
IOlelnPlaceActiveObject and supports IUnknown by sending information
to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: CComControl, "ActiveX Controls Interfaces" in the Win32 SDK
online

IOleWindow Methods

ContextSensitiveHelp

GetWindow

IOlelnPlaceActiveObject Methods

EnableModeless

OnDoc Window Activate

OnFrame Window Activate

ResizeBcrder

TranslateAccelerator

Enables context-sensitive help.
The ATL implementation returns E_NOTIMPL.

Gets a window handle.

Enables modeless dialog boxes.
The ATL implementation returns S_OK.

Notifies the control when the container's document
window is activated or deactivated.
The ATL implementation returns S_OK.

Notifies the control when the container's top-level
frame window is activated or deactivated.

Informs the control it needs to resize its borders.
The ATL implementation returns S_OK.

Processes menu accelerator-key messages from
the container. The A TL implementation returns
E_NOTIMPL.

IOleInPlaceActiveObjectImpl: :OnDoc Window Acti vate

Methods
[0 leInPlaceActi yeO bj ectImpl: : ContextSensi ti veHel p

HRESULT ContextSensitiveHelp(BOOLfEnterMode);

See IOleWindow::ContextSensitiveHelp in the Win32 SDK online.

~emarks
Returns E_NOTIMPL.

[OleInPlaceActiveObjectImpl: :EnableModeless
HRESULT EnableModeless(BOOLfEnable);

See IOlelnPlaceActiveObject::EnableModeless in the Win32 SDK online.

Flemarks

IOleInPlaceActiveObjectImpl::GetWindow

Flemarks

HRESULT GetWindow(HWND* phWlld);

See IOleWindow::GetWindow in the Win32 SDK online.

The container calls this function to get the window handle of the control.
Some containers will not work with a control that has been windowless,
even if it is currently windowed. In ATL's implementation, if the
CComControl::m_bWasOnceWindowless data member is TRUE, the function
returns E_FAIL. Otherwise, if *phwnd is not NULL, GetWindow assigns phwnd
to the control class's data member m_hWnd and returns S_OK.

See Also: CComControl: :m_b WasOnce Windowless

I OleInPlaceActi veObjectImpl: : OnDoc Window Activate
HRESULT OnDocWindowActivate(BOOL/Activate);

See IOlelnPlaceActiveObject::OnDocWindowActivate in the Win32 SDK online.

Remarks

343

IOleInPlaceActiveObjectImpl: :OnFrame Window Acti vate

I OleInPlaceActi veObjectImpl: : OnFrame Window Activate

Remarks

HRESULT OnFrameWindowActivate(BOOLfActivate);

See IOleInPlaceActiveObject::OnFrameWindowActivate in the Win32 SDK
online.

10 leInPlaceActi yeO bj ectImp 1: : ResizeB order
HRESULT ResizeBorder(LPRECT prcBorder,

... IOleInPlaceUIWindow* pUIWindow, BOOLjFrameWindow);

See IOleInPlaceActiveObject::ResizeBorder in the Win32 SDK online.

Remarks

IOleInPlaceActiveObjectImpl: : TranslateAccelerator
HRESULT TranslateAccelerator(LPMSG /pmsg);

See IOleInPlaceActiveObject::TranslateAccelerator in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

344

IOlelnPlaceObjectWindowlesslmpl

IOleInPlaceObjectWindowlessImpl
template< class T>
class 10 leInPlaceObject WindowlessImpl

Parameters
T Your class, derived from IOleInPlaceObjectWindowlessImpl.

The IOleInPlaceObject interface manages the reactivation and deactivation
of in-place controls and determines how much of the control should be visible.
The IOleInPlaceObjectWindowless interface enables a windowless control to
receive window messages and to participate in drag-and-drop operations. Class
IOleInPlaceObjectWindowlessImpl provides a default implementation of
IOleInPlaceObject and IOleInPlaceObjectWindowless and implements
IUnknown by sending information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: CComControl

IOleWindow Methods

ContextSensitiveHelp

GetWindow

IOlelnPlaceObject Methods

InPlaceDeactivate

ReactivateAndUndo

SetObjectRects

UIDeactivate

Enables context-sensitive help. The ATL implementation
returns E_NOTIMPL.

Gets a window handle.

Deactivates an active in-place control.

Reactivates a previously deactivated control. The ATL
implementation returns E_NOTIMPL.

Indicates what part of the in-place control is visible.

Deactivates and removes the user interface that supports
in-place activation.

IOlelnPlaceObjectWindowless Methods

GetDropTarget

On WindowMessage

Supplies the IDropTarget interface for an in-place active,
windowless object that supports drag and drop. The ATL
implementation returns E_NOTIMPL.

Dispatches a message from the container to a windowless
control that is in-place active.

345

IOleInPlaceObjectWindowlessImpl::ContextSensitiveHelp

Methods
IOleInPlaceObj ect Window lessImpl: : ContextSensiti veHelp

HRESULT ContextSensitiveHelp(BOOLfEnterMode);

See IOleWindow::ContextSensitiveHelp in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

IOleInPlaceObj ect Window lessImpl: : GetDropTarget
HRESULT GetDropTarget(IDropTarget** ppDropTarget);

See IOleInPlaceObjectWindowless::GetDropTarget in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

IOleInPlaceObj ect Window lessImpl: : Get Window

Remarks

HRESULT GetWindow(HWND* phwnd);

See IOleWindow::GetWindow in the Win32 SDK online.

The container calls this function to get the window handle of the control. Some
containers will not work with a control that has been windowless, even if it is
currently windowed. In ATL's implementation, if the control class's data member
m_bWasOnceWindowless is TRUE, the function returns E_FAIL. Otherwise,
if phwnd is not NULL, GetWindow sets *phwnd to the control class's data
member m_hWnd and returns S_OK.

See Also: CComControl: :m_b WasOnce Windowless

IOleInPlaceObj ect Window lessImpl: : InPlaceDeacti vate

Remarks

346

HRESULT InPlaceDeactivate(HWND* phwnd);

See IOleInPlaceObject::InPlaceDeactivate in the Win32 SDK online.

Called by the container to deactivate an in-place active control. This method
performs a full or partial deactivation depending on the state of the control. If

IOleInPlaceObjectWindowlessImpl::SetObjectRects

necessary, the control's user interface is deactivated, and the control's window,
if any, is destroyed. The container is notified that the control is no longer active in
place. The IOleInPlaceUIWindow interface used by the container to negotiate
menus and border space is released.

See Also: CComControl::InPlaceActivate

IOleInPlaceObjectWindowlessImpl::OnWindowMessage

Remarks

HRESULT OnWindowMessage(UINT msg, WPARAM WParam,
10+ LPARAM LParam, LRESULT plResultParam);

See IOleInPlaceObjectWindowless::OnWindowMessage in the Win32 SDK
online.

Dispatches a message from a container to a windowless control that is in-place
active.

IOleInPlaceObjectWindowlessImpl::ReactivateAndUndo
HRESULT ReactivateAndUndo();

See IOleInPlaceObject::ReactivateAndUndo in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

I OleInPlaceObj ect Window lessImpl: : SetObjectRects

Remarks

HRESULT SetObjectRects(LPCRECT prcPos, LPCRECT prcClip);

See IOleInPlaceObject::SetObjectRects in the Win32 SDK online.

Called by the container to inform the control that its size and/or position has changed.
Updates the control's m_rcPos data member and the control display. Only the part
of the control that intersects the clip region is displayed. If a control's display was
previously clipped but the clipping has been removed, this function can be called to
redraw a full view of the control.

See Also: CComControl: :m_rcPos

347

IOlelnPlaceObjectWindowlesslmpl:: UIDeactivate

I OleInPlaceObj ect Window lessImpl:: UIDeacti vate

Remarks

348

HRESULT UIDeactivate();

See IOleInPlaceObject::UIDeactivate in the Win32 SDK online.

Deactivates and removes the control's user interface that supports in-place activation.
Sets the control class's data member m_bUIActive to FALSE. The ATL
implementation of this function always returns S_OK.

See Also: CComControl: :m_bUIActive

IOleObjectImpl
template< class T>
class IOleObjectImpl

Parameters
T Your class, derived from IOleObjectImpl.

The IOleObject interface is the principle interface through which a container
communicates with a control. Class IOleObjectImpl provides a default
implementation of this interface and implements IUnknown by sending
information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: CComControl, "ActiveX Controls Interfaces" in the Win32 SDK online

IOleObject Methods

Advise

Close

DoVerb

EnumAdvise

EnumVerbs

GetClientSite

GetClipboardData

GetExtent

GetMiscStatus

GetMoniker

GetUserClassID

GetUserType

InitFromData

IsUpToDate

SetClientSite

SetColorScheme

SetExtent

SetHostNames

Establishes an advisory connection with the control.

Changes the control state from running to loaded.

Tells the control to perform one of its enumerated actions.

Enumerates the control's advisory connections.

Enumerates actions for the control.

Retrieves the control's client site.

Retrieves data from the Clipboard. The ATL implementation
returns E_NOTIMPL.

Retrieves the extent of the control's display area.

Retrieves the status of the control.

Retrieves the control's moniker. The ATL implementation
returns E_NOTIMPL.

Retrieves the control's class identifier.

Retrieves the control's user-type name.

Initializes the control from selected data. The A TL
implementation returns E_NOTIMPL.

Checks if the control is up to date. The A TL implementation
returns S_OK.

Tells the control about its client site in the container.

Recommends a color scheme to the control's application,
if any. The ATL implementation returns E_NOTIMPL.

Sets the extent of the control's display area.

Tells the control the names of the container application
and container document.

(continued)

IOleObjectImpl

349

IOleObjectlmpl: :Advise

IOleObject Methods (continued)

SetMoniker

Unadvise

Update

DoVerb Helper Methods

Do VerbDiscardUndo

DoVerbHide

Do VerblnPlaceActivate

DoVerbOpen

Do VerbPrimary

DoVerbShow

Do Verb UIActivate

Tells the control what its moniker is. The A TL implementation
returns E_NOTIMPL.

Destroys an advisory connection with the control.

Updates the control. The ATL implementation returns S_OK.

Tells the control to discard any undo state it is maintaining.

Tells the control to remove its user interface from view.

Runs the control and installs its window, but does not install
the control's user interface.

Causes the control to be open-edited in a separate window.

Performs the specified action when the user double-clicks the
control. The control defines the action, usually to activate the
control in-place.

Shows a newly inserted control to the user.

Activates the control in-place and shows the control's user
interface, such as menus and toolbars.

Methods
IOleObjectImpl: :Advise

Remarks

HRESULT Advise(IAdviseSink* pAdvSink, DWORD* pdwConnection);

See IOleObject::Advise in the Win32 SDK online.

If successful, the IAdviseSink pointer is stored in the control class's
m_spOleAdviseHolder data member.

See Also: CComControl: :m_spOleAdviseHolder, IOleObjectImpl:: Unadvise

IOleObjectImpl: :Close

Remarks

350

HRESULT Close(DWORD dWSaveOption);

See IOleObject::Close in the Win32 SDK online.

Changes the control from the running to the loaded state. Deactivates the control
and destroys the control window if it exists. If the control class data member
m_bRequiresSave is TRUE and the dwSaveOption parameter is either

IOleObjectImpl::Do VerbDiscardUndo

OLECLOSE_SAVEIFDIRTY or OLECLOSE_PROMPTSAVE, the control
properties are saved before closing.

The pointers held in the control class data members m_splnPlaceSite and
m_spAdviseSink are released, and the data members m_bNegotiatedWnd,
m_bWndless, and m_blnPlaceSiteEx are set to FALSE.

IOleObjectImpl: :Do Verb

Remarks

HRESULT DoVerb(LONG iVerb, LPMSG lpmsg, IOleClientSite* pActiveSite,
10+ LONG lindex, HWND hwndParent, LPCRECT lprcPosRect);

See IOleObject::DoVerb in the Win32 SDK online.

The ATL implementation of this function uses only the first parameter, iVerb.
Depending on the value of iVerb, one of the ATL Do Verb helper functions is called
as follows:

iVerbValue

OLEIVERB_DISCARDUNDOSTATE

OLEIVERB_HIDE

OLEIVERB_INPLACEACTIVATE

OLEIVERB_OPEN

OLEIVERB_PRIMARY

OLEIVERB_PROPERTIES

OLEIVERB_SHOW

OLEIVERB_UIACTIV ATE

See Also: IOleObject: :Enum Verbs

DoVerb helper function called

DoVerbDiscardUndo

DoVerbHide

Do VerblnPlaceActivate

DoVerbOpen

Do VerbPrimary

CComControl: :Do Verb Properties

DoVerbShow

Do VerbUIActivate

IOleObjectImpl: :Do VerbDiscardUndo
HRESULT DoVerbDiscardUndo(LPCRECT prcPosRect, HWND hwndParent);

Return Value
Returns S_OK.

Parameters
prcPosRec [in] Pointer to the rectangle the container wants the control to draw into.

hwndParent [in] Handle of the window containing the control.

Remarks
The default implementation simply returns S_OK.

351

IOleObjectlmpl: :Do VerbHide

IOleObjectImpl: :Do VerbHide
HRESULT Do VerbHide(LPCRECT prcPosRect, HWND hwndParent);

Return Value
Returns S_OK.

Parameters
prcPosRec [in] Pointer to the rectangle the container wants the control to draw into.

hwndParent [in] Handle of the window containing the control. Not used in the
ATL implementation.

Remarks
Deactivates and removes the control's user interface, and hides the control.

See Also: IOleObjectlmpl: :Do VerbShow

IOleObjectImpl: :Do VerbInPlaceActivate
HRESULT Do VerblnPlaceActivate(LPCRECT prcPosRect, HWND hwndParent);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

prcPosRec [in] Pointer to the rectangle the container wants the control to draw into.

hwndParent [in] Handle of the window containing the control. Not used in the ATL
implementation.

Activates the control in place by calling CComControl::lnPlaceActivate. Unless the
control class's data member m_bWindowOnly is TRUE, DoVerblnPlaceActivate
first attempts to activate the control as a windowless control (possible only if the
container supports IOlelnPlaceSiteWindowless). If that fails, the function attempts
to activate the control with extended features (possible only if the container supports
IOlelnPlaceSiteEx). If that fails, the function attempts to activate the control with
no extended features (possible only if the container supports IOlelnPlaceSite). If
activation succeeds, the function notifies the container the control has been activated.

See Also: CComControl: :InPlaceActivate, CComControl: :m_b WindowOnly

IOleObjectImpl: :Do Verb Open
HRESULT DoVerbOpen(LPCRECT prcPosRect, HWND hwndParent);

Return Value
Returns S_OK.

352

IOleObjectImpl: :Do VerbShow

Parameters

Remarks

prcPosRec [in] Pointer to the rectangle the container wants the control to
draw into.

hwndParent [in] Handle of the window containing the control.

The default implementation simply returns S_OK.

IOleObjectImpl: :Do Verb Pri mary
HRESULT Do VerbPrimary(LPCRECT prcPosRect, HWND hwndParent);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

prcPosRec [in] Pointer to the rectangle the container wants the control to
draw into.

hwndParent [in] Handle of the window containing the control.

Defines the action taken when the user double-clicks the control. By default,
set to display the property pages. You can override this in your control class to
invoke a different behavior on double-click; for example, playa video or go
in-place active.

See Also: CComControl: :Do VerbProperties

IOleObjectImpl: :Do VerbShow
HRESULT Do VerbShow(LPCRECT prcPosRect, HWND hwndParent);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

prcPosRec [in] Pointer to the rectangle the container wants the control to
draw into.

hwndParent [in] Handle of the window containing the control. Not used in
the ATL implementation.

Tells the container to make the control visible.

See Also: IOleObjectlmpl::DoVerbHide

353

IOleObjectlmpl: :Do VerbUIActivate

IOleObjectImpl: :Do VerbUIActivate
HRESULT DoVerbUIActivate(LPCRECT prcPosRect, HWND hwndParent);

Return Value
One of the standard HRESULT values.

Parameters

Remarks

prcPosRec [in] Pointer to the rectangle the container wants the control to
draw into.

hwndParent [in] Handle of the window containing the control. Not used in
the ATL implementation.

Activates the control's user interface and notifies the container that its menus
are being replaced by composite menus.

See Also: CComControl: :InPlaceActivate,
IOleObjectlmpl: :Do VerblnPlaceActivate

IOleObjectImpl: : EnumAdvise

Remarks

HRESULT EnumAdvise(IEnumSTATDATA ** ppenumAdvise);

See IOleObject::EnumAdvise in the Win32 SDK online.

Supplies an enumeration of registered advisory connections for this control.

See Also: IOleObjectlmpl::EnumVerbs

IOleObjectImpl: : Enum Verbs

Remarks

354

HRESULT EnumVerbs(IEnumOLEVERB** ppEnumOleVerb);

See IOleObject::EnumVerbs in the Win32 SDK online.

Supplies an enumeration of registered actions (verbs) for this control by calling
OleRegEnumVerbs. You can add verbs to your project's .rgs file. For example,
see CIRCCTL.RGS in the CIRC sample.

See Also: OleRegEnum Verbs, IOleObjectlmpl: : EnumAdvise

IOleObjectImpl: :GetMiscStatus

IOleObjectImpl: : GetClientSite

Remarks

HRESULT GetClientSite(IOleClientSite** ppClientSite);

See IOleObject::GetClientSite in the Win32 SDK online.

Puts the pointer in the control class data member m_spClientSite into ppClientSite
and increments the reference count on the pointer.

See Also: IOleObjectImpl::SetClientSite

IOleObjectImpl::GetClipboardData

Remarks

HRESULT GetClipboardData(DWORD dwReserved, IDataObject** ppDataObject);

See IOleObject::GetClipboardData in the Win32 SDK online.

Returns E_NOTIMPL.

IOleObjectImpl::GetExtent

Remarks

HRESULT GetExtent(DWORD dwDrawAspect, SIZEL* psizel);

See IOleObject::GetExtent in the Win32 SDK online.

Retrieves a running control's display size in HIMETRIC units (0.01 millimeter per
unit). The size is stored in the control class data member m_sizeExtent.

See Also: IOleObjectImpl::SetExtent

10 leO bj ectImp I: : GetMiscS tatus

Remarks

HRESULT GetMiscStatus(DWORD dwAspect, DWORD* pdwStatus);

See IOleObject::GetMiscStatus in the Win32 SDK online.

Returns a pointer to registered status information for the control by calling
OleRegGetMiscStatus. The status information includes behaviors supported by
the control and presentation data. You can add status information to your project's
.rgs file.

See Also: OleRegGetMiscStatus, IOleObjectImpl: :Enum Verbs,
IOleObjectImpl::GetUserType

355

IOleObjectImpl: : GetMoniker

IOleObjectImpl::GetMoniker

Remarks

HRESULT GetMoniker(DWORD dwAssign, DWORD dwWhichMoniker,
.. IMoniker** ppmk);

See IOleObject::GetMoniker in the Win32 SDK online.

Returns E_NOTIMPL.

IOleObjectImpl: : GetU serClassID
HRESULT GetUserClassID(CLSID* pC/sid);

See IOleObject::GetUserClassID in the Win32 SDK online.

Remarks
Returns the control's class identifier.

See Also: IOleObjectlmpl: : GetUserType

IOleObjectImpl: : GetU serType

Remarks

HRESULT GetUserType(DWORD dwFormOf/'ype, LPOLESTR* pszUserType);

See IOleObject::GetUserType in the Win32 SDK online.

Returns the control's user-type name by calling OleRegGetUserType. The user-type
name is used for display in user-interfaces elements such as menus and dialog boxes.
You can change the user-type name in your project's .rgs file.

See Also: OleRegGetUserType, IOleObjectlmpl::GetUserClassID,
IOleObjectlmpl: : GetMiscStatus, IOleObjectlmpl: :Enum Verbs

IOleObjectImpl: : InitFromData

Remarks

356

HRESULT InitFromData(IDataObject* pDataObject, BOOLfCreation,
.. DWORD dwReserved);

See IOleObject::lnitFromData in the Win32 SDK online.

Returns E_NOTIMPL.

IOleObjectImpl::SetExtent

IOleObjectImpl: :Is UpToDate
HRESULT IsUpToDate();

See IOleObject::IsUpToDate in the Win32 SDK online.

Remarks
Returns S_OK.

IOleObjectImpl::SetClientSite

Remarks

HRESULT SetClientSite(IOleClientSite* pClientSite);

See IOleObject::SetClientSite in the Win32 SDK online.

Uses pClientSite as the pointer to the control's client site and stores pClientSite in the
control class data member m_spClientSite. The method then returns S_OK.

See Also: IOleObjectlmpl::GetClientSite

IOleObjectImpl: :SetColorScheme

Remarks

HRESULT SetColorScheme(LOGPALETTE* pLogPaZ);

See IOleObject::SetColorScheme in the Win32 SDK online.

Returns E_NOTIMPL.

IOleObjectImpl: :SetExtent

Remarks

HRESULT SetExtent(DWORD dwDrawAspect, SIZEL* psizeZ);

See IOleObject::SetExtent in the Win32 SDK online.

If the control class data member m_bAutoSize is TRUE, this method returns
E_FAIL because the control cannot be resized. Otherwise, SetExtent stores the value
pointed to by psizeZ in the control class data member m_sizeExtent. This value is in
HIMETRIC units (0.01 millimeter per unit).

If the control class data member m_bResizeNatural is TRUE, SetExtent also stores
the value pointed to by psizeZ in the control class data member m_sizeNatural.

357

IOleObjectImpl:: SetHostN ames

If the control class data member m_bRecomposeOnResize is TRUE, SetExtent
calls SendOnDataChange and SendOn ViewChange to notify all advisory sinks
registered with the advise holder that the control size has changed.

See Also: IOleObjectImpl: : GetExtent, CComControl: :SendOnDataChange,
CComControl: :SendOn ViewChange

IOleObjectImpl:: SetHostN ames

Remarks

HRESULT SetHostNames(LPCOLESTR szContainerApp,
... LPCOLESTR szContainerObj);

See IOleObject::SetHostNames in the Win32 SDK online.

IOleObjectImpl:: SetMoniker

Remarks

HRESULT SetMoniker(DWORD dwAssign, DWORD dwWhichMoniker,
... IMoniker** ppmk);

See IOleObject::SetMoniker in the Win32 SDK online.

Returns E_NOTIMPL.

IOleObjectImpl:: Unadvise

Remarks

HRESULT Unadvise(DWORD dwConnection);

See IOleObject::Unadvise in the Win32 SDK online.

Deletes the advisory connection stored in the control class's m_spOleAdviseHolder
data member.

See Also: CComControl::m_spOleAdviseHolder, IOleObjectImpl::Advise

IOleObjectImpl:: Update
HRESULT Update();

See IOleObject::Update in the Win32 SDK online.

Remarks

358

IPerProperty Browsinglmpl

IPerProperty BrowsingImpl
template< class T>
class IPerProperty Browsinglmpl

Parameters
T Your class, derived from IPerPropertyBrowsinglmpl.

The IPerPropertyBrowsing interface allows a client to access the information in
an object's property pages. Class IPerPropertyBrowsinglmpl provides a default
implementation of this interface and implements IUnknown by sending information
to the dump device in debug builds.

Note If you are using Microsoft Access as the container application, you must derive your
class from IPe~Pr~pertyBrowsinglmpl. Otherwise, Access will not load your control.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: IPropertyPagelmpl, ISpecifyPropertyPageslmpl

IPerPropertyBrowsing Methods

GetDisplayString

GetPredefinedStrings

GetPredefinedValue

MapPropertyToPage

Retrieves a string describing a given property.

Retrieves an array of strings corresponding to the values
that a given property can accept.

Retrieves a VARIANT containing the value of a property
identified by a given DISPID. The DISPID is associated
with the string name retrieved from GetPredefinedStrings.
The ATL implementation returns E_NOTIMPL.

Retrieves the CLSID of the property page associated with
a given property.

Methods
IPerPropertyBrowsingImpl::GetDisplayString

HRESULT GetDisplayString(DISPID dispID, BSTR* pBstr);

See IPerPropertyBrowsing::GetDisplayString in the Win32 SDK online.

Remarks
Retrieves a string describing a given property.

359

IPerPropertyBrowsinglmpl::GetPredefinedStrings

IPerProperty Browsinglmpl: : GetPredefinedStrings

Remarks

HRESULT GetPredefinedStrings(DISPID dispID,
... CALPOLESTR* pCaStringsOut, CADWORD* pCaCookiesOut);

See IPerPropertyBrowsing::GetPredefinedStrings in the Win32 SDK online.

Fills each array with zero items. ATL's implementation of GetPredefinedValue
returns E_NOTIMPL.

See Also: CADWORD, CALPOLESTR

IPerProperty Browsinglmpl: : GetPredefinedValue

Remarks

HRESULT GetPredefinedValue(DISPID dispID, DWORD dwCookie,
... VARIANT* pVarOut);

See IPerPropertyBrowsing::GetPredefinedValue in the Win32 SDK online.

Returns E_NOTIMPL. ATL's implementation of GetPredefinedStrings retrieves no
corresponding strings.

IPerProperty Browsinglmpl: : MapPropertyToPage

Remarks

360

HRESULT MapPropertyToPage(DISPID dispID, CLSID* pC/sid);

See IPerPropertyBrowsing::MapPropertyToPage in the Win32 SDK online.

Retrieves the CLSID of the property page associated with the specified property.
ATL uses the object's property map to obtain this information.

See Also: BEGIN_PROPERTY _MAP

IPersistProperty B agImpl

IPersistProperty BagImpl
template< class T>
class IPersistProperty BagImpl

Parameters
T Your class, derived from IPersistPropertyBagImpl.

The IPersistPropertyBag interface allows an object to save its properties to a
client-supplied property bag. Class IPersistPropertyBagImpl provides a default
implementation of this interface and implements IUnknown by sending information
to the dump device in debug builds.

IPersistPropertyBag works in conjunction with IPropertyBag and IErrorLog.
These latter two interfaces must be implemented by the client. Through
IPropertyBag, the client saves and loads the object's individual properties. Through
IErrorLog, both the object and the client can report any errors encountered.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: BEGIN_PROPERTY _MAP

IPersist Methods

GetClassID Retrieves the object's CLSID.

IPersistPropertyBag Methods

InitNew

Load

Save

Initializes a newly created object. The ATL implementation returns S_OK.

Loads the object's properties from a client-supplied property bag.

Saves the object's properties into a client-supplied property bag.

Methods
IPersistProperty B agImpl: : GetClassID

HRESULT GetClassID(CLSID *pClassID);

See IPersist::GetClassID in the Win32 SDK online.

Remarks
Retrieves the object's CLSID.

361

IPersistProperty Baglmpl: :InitNew

IPersistProperty B agImp 1: : Ini tN ew
HRESULT InitNew();

See IPersistPropertyBag::InitNew in the Win32 SDK online.

Remarks

IPersistProperty B agImpl: :Load

Remarks

HRESULT Load(LPPROPERTYBAG pPropBag, LPERRORLOG pErrorLog);

See IPersistPropertyBag::Load in the Win32 SDK online.

Loads the object's properties from a client-supplied property bag. ATL uses the
object's property map to retrieve this information.

See Also: BEGIN_PROPERTY _MAP, IPersistPropertyBagImpl: :Save,
IPropertyBag,IErrorLog

IPersistPropertyBagImpl::Save

Remarks

362

HRESULT Sayee LPPROPERTYBAG pPropBag, BOOLfClearDirty,
... BOOL jSaveAllProperties);

See IPersistPropertyBag::Save in the Win32 SDK online.

Saves the object's properties into a client-supplied property bag. ATL uses the object's
property map to store this information. By default, this method saves all properties,
regardless of the value ofjSaveAllProperties.

See Also: BEGIN_PROPERTY _MAP, IPersistPropertyBagImpl: :Load,
IPropertyBag

IPersistStoragelmpl
template< class T>
class IPersistStoragelmpl

Parameters
T Your class, derived from IPersistStoragelmpl.

The IPersistStorage interface allows a client to request that your object load and
save its persistent data using a storage. Class IPersistStoragelmpl provides a default
implementation of this interface and implements IUnknown by sending information
to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: "Storages and Streams" in the Win32 SDK online

IPersist Methods

GetClassID

IPersistStorage Methods

HandsOffStorage

InitNew

IsDirty

Load

Save

SaveCompleted

Retrieves the object's CLSID.

Instructs the object to release all storage objects and enter
HandsOff mode. The ATL implementation returns S_OK.

Initializes a new storage.

Checks whether the object's data has changed since it was
last saved.

Loads the object's properties from the specified storage.

Saves the object's properties to the specified storage.

Notifies an object that it can return to Normal mode to write
to its storage object. The ATL implementation returns S_OK.

Methods
IPersistStorageImpl: : GetClassID

HRESULT GetClassID(CLSID *pClassID);

See IPersist::GetClassID in the Win32 SDK online.

Remarks
Retrieves the object's CLSID.

IPersistStorageImpl

363

IPersistStorageImpl: : HandsOff Storage

IPersistStorageImpl: : Hands OffStorage
HRESULT HandsOffStorage();

See IPersistStorage::HandsOffStorage in the Win32 SDK online.

Remarks
Returns S_OK.

See Also: IPersistStoragelmpl: :SaveCompleted, IPersistStoragelmpl: :Save

IPersistStorageImpl: : InitN ew

Remarks

HRESULT InitNew(IStorage* pStorage);

See IPersistStorage:lnitNew in the Win32 SDK online.

Initializes a new storage. The ATL implementation delegates to the
IPersistStreamlnit interface.

See Also: IStorage

IPersistStorageImpl: : IsDirty

Remarks

HRESULT IsDirty();

See IPersistStorage:IsDirty in the Win32 SDK online.

Checks whether the object's data has changed since it was last saved. The ATL
implementation delegates to the IPersistStreamlnit interface.

IPersistStorageImpl: :Load

Remarks

364

HRESULT Load(IStorage* pStorage);

See IPersistStorage:Load in the Win32 SDK online.

Loads the object's properties. The ATL implementation delegates to the
IPersistStreamlnit interface. Load uses a stream named "Contents" to
retrieve the object's data. The Save method originally creates this stream.

See Also: IStorage

IPersistS torageImpl:: Sa veCompleted

IPersistStorageImpl::Save

Remarks

HRESULT Sayee IStorage* pStorage, BOOLjSameAsLoad);

See IPersistStorage:Save in the Win32 SDK online.

Saves the object's properties. The ATL implementation delegates to the
IPersistStreamlnit interface. When Save is first called, it creates a stream named
"Contents" on the specified storage. This stream is then used in later calls to Save
and in calls to Load.

See Also: IPersistStoragelmpl::SaveCompleted,IStorage

IPersistStorageImpl: : SaveCompleted

Remarks

HRESULT SaveCompleted(IStorage* pStorage);

See IPersistStorage:SaveCompleted in the Win32 SDK online.

Returns S_OK.

See Also: IPersistStoragelmpl: : HandsOffStorage, IPersistStoragelmpl: :Save,
IStorage

365

IPersistStreamlnitImpl

IPersistStreamInitImpl
template< class T>
class IPersistStreamInitlmpl

Parameters
T Your class, derived from IPersistStreamInitlmpl.

The IPersistStreamInit interface allows a client to request that your object load and
save its persistent data to a single stream. Class IPersistStreamInitlmpl provides
a default implementation of this interface and implements IUnknown by sending
information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: "Storages and Streams" in the Win32 SDK online

IPersist Methods

GetClassID

IPersistStreamlnit Methods

GetSizeMax

InitNew

IsDirty

Load

Save

Retrieves the object's CLSID.

Retrieves the size of the stream needed to save the object's data.
The ATL implementation returns E_NOTIMPL.

Initializes a newly created object.

Checks whether the object's data has changed since it was last saved.

Loads the object's properties from the specified stream.

Saves the object's properties to the specified stream.

Methods
IPersistStreamInitImpl::GetClassID

Remarks

HRESULT GetClassID(CLSID *pClassID);

See IPersist::GetClassID in the Win32 SDK.

Retrieves the object's CLSID.

IPersistStreamInitImpl::GetSizeMax
HRESULT GetSizeMax(ULARGE_INTEGER FAR* pcbSize);

366

IPersistStreamInitImpl::Save

See IPersistStreamInit::GetSizeMax in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

IPersistStreamInitImpl::InitNew
HRESULT InitNew();

See IPersistStreamInit::InitNew in the Win32 SDK online.

Remarks
Initializes a newly created object.

IPersistStreamInitImpl: : IsDirty
HRESULT IsDirty();

See IPersistStreamInit::IsDirty in the Wz·n32 SDK online.

Remarks
Checks whether the object's data has changed since it was last saved.

IPersistStreamInitImpl: :Load

Remarks

HRESULT Load(LPSTREAM pStm);

See IPersistStreamInit::Load in the Win32 SDK online.

Loads the object's properties from the specified stream. ATL uses the object's
property map to retrieve this infonnation.

See Also: BEGIN_PROPERTY _MAP, IPersistStreamInitImpl::Save, IStream

IPersistStreamInitImpl: : Save

Remarks

HRESULT Save(LPSTREAM pStm, BOOLjClearDirty);

See IPersistStreamInit::Save in the Win32 SDK online.

Saves the object's properties to the specified stream. ATL uses the object's property
map to store this infonnation.

See Also: BEGIN_PROPERTY _MAP, IPersistStreamInitImpl: :Load, IStream

367

IPointerlnactivelmpl

IPointerlnactivelmpl
template< class T>
class IPointerlnactivelmpl

Parameters
T Your class, derived from IPointerInactivelmpl.

An inactive object is one that is simply loaded or running. Unlike an active object, an
inactive object cannot receive Windows mouse and keyboard messages. Thus, inactive
objects use fewer resources and are typically more efficient.

The IPointerInactive interface allows an object to support a minimal level of mouse
interaction while remaining inactive. This functionality is particularly useful for
controls.

Class IPointerInactivelmpl implements the IPointerInactive methods by simply
returning E_NOTIMPL. However, it implements IUnknown by sending information
to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

IPointerlnactive Methods

GetActivationPolicy

OnInactiveMouseMove

OnInactiveSetCursor

Retrieves the current activation policy for the object.
The ATL implementation returns E_NOTIMPL.

Notifies the object that the mouse pointer has moved over it,
indicating the object can fire mouse events. The ATL
implementation returns E_NOTIMPL.

Sets the mouse pointer for the inactive object. The ATL
implementation returns E_NOTIMPL.

Methods
IPointerInactiveImpl: : GetActivationPolicy

HRESULT GetActivationPolicy(DWORD* pdwPolicy);

See IPointerInactive::GetActivationPolicy in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

368

IPointer Inacti veImpl: :OnInacti veSetCursor

IPointer Inacti veImpl: : OnInacti veMouseMove

Remarks

HRESULT OnlnactiveMouseMove(LPCRECT pRectBollllds, long x, long y,
... DWORD dwMouseMsg);

See IPointerInactive: :OnlnactiveMouseMove in the Win32 SDK online.

Returns E_NOTIMPL.

IPointerInactiveImpl::OnInactiveSetCursor
See IPointerInactive::OnlnactiveSetCursor in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

369

IPropertyNotifySinkCP

IProperty N otifySinkCP
template< class T, class CDV = CComDynamicUnkArray >
class IPropertyNotifySinkCP :

public IConnectionPointlmpi< T, &IID_IPropertyNotifySink, CDV>

Parameters

370

T Your class, derived from IPropertyNotifySinkCP.

CDV A class that manages the connections between a connection point and
its sinks. The default value is CComDynamicUnkArray, which allows
unlimited connections. You can also use CComUnkArray, which specifies
a fixed number of connections.

The IPropertyNotifySink interface allows a sink object to receive notifications
about property changes. Class IPropertyNotifySinkCP exposes this interface
as an outgoing interface on a connectable object. The client must implement the
IPropertyNotifySink methods on the sink.

Derive your class from IPropertyNotifySinkCP when you want to create a
connection point that represents the IPropertyNotifySink interface.

For more information about using connection points in ATL, see the article
"Connection Points."

#include <atlctl.h>

See Also: IConnectionPointlmpl, IConnectionPointContainerImpl

IPropertyNotifySinkCP inherits all methods through its base class,
I ConnectionPointlmpl.

IProperty PageImpl
template< class T>
class IProperty Pagelmpl

Parameters
T Your class, derived from IPropertyPagelmpl.

The IPropertyPage interface allows an object to manage a particular property page
within a property sheet. Class IPropertyPagelmpl provides a default implementation
of this interface and implements IUnknown by sending information to the dump
device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: IPropertyPage2Impl, IPerPropertyBrowsinglmpl,
ISpecify Property Pageslmpl

Class Methods

IPropertyPagelmpl

SetDirty

IPropertyPage Methods

Activate

Apply

Deactivate

GetPagelnfo

Help

IsPageDirty

Move

SetObjects

SetPageSite

Show

TranslateAccelerator

Constructor.

Flags the property page's state as changed or unchanged.

Creates the dialog box window for the property page.

Applies current property page values to the underlying objects
specified through SetObjects. The ATL implementation
returns S_OK.

Destroys the window created with Activate.

Retrieves information about the property page.

Invokes Windows help for the property page.

Indicates whether the property page has changed since
it was activated.

Positions and resizes the property page dialog box.

Provides an array of IUnknown pointers for the objects
associated with the property page. These objects receive
the current property page values through a call to Apply.

Provides the property page with an IPropertyPageSite
pointer, through which the property page communicates
with the property frame.

Makes the property page dialog box visible or invisible.

Processes a specified keystroke.

IPropertyPageImpl

371

IProperty PageImpl: : Activate

Data Members

m_bDirty

m_nObjects

m_dwHelpContext

m_dwDocString

Specifies whether the property page's state has changed.

Stores the number of objects associated with the property
page.

Stores the context identifier for the help topic associated
with the property page.

Stores the resource identifier associated with the text string
describing the property page.

Stores the resource identifier associated with the name of
the help file describing the property page.

Stores the resource identifier associated with the text string
that appears in the tab for the property page.

Points to the IPropertyPageSite interface through which
the property page communicates with the property frame.

Points to an array of IUnknown pointers to the objects
associated with the property page.

Stores the height and width of the property page's dialog
box, in pixels.

Methods
IProperty PageImpl: : Activate

Remarks

HRESULT Activate(HWND h WndParent, LPCRECT pRect, BOOL bModal);

See IPropertyPage::Activate in the Win32 SDK online.

Creates the dialog box window for the property page. By default, the dialog box is
always modeless, regardless of the value of the bModal parameter.

See Also: IProperty Pagelmpl: :Deactivate

IProperty PageImpl: : Appl y
HRESULT Apply();

See IPropertyPage::Apply in the Win32 SDK online.

Remarks
Returns S_OK.

See Also: IPropertyPagelmpl::SetObjects

372

IProperty Pagelmpl: :IProperty Pagelmpl

IPropertyPageImpl::Deactivate
HRESULT Deactivate();

See IPropertyPage::Deactivate in the Win32 SDK online.

Remarks
Destroys the dialog box window created with Activate.

IProperty PageImpl: : GetPageInfo

Remarks

HRESULT GetPageInfo(PROPPAGEINFO* pPageInfo);

See IPropertyPage::GetPagelnfo in the Win32 SDK online.

Fills the pPagelnfo structure with information contained in the data members.
GetPagelnfo loads the string resources associated with m_dwDocString,
m_dwHelpFile, and m_dwTitle.

See Also: IPropertyPagelmpl: :m_dwHelpContext, IPropertyPagelmpl: :m_size,
PROPPAGEINFO

IProperty PageImpl: : Help

Remarks

HRESULT Help(PROPPAGEINFO* pPagelnfo);

See IPropertyPage::Help in the Win32 SDK online.

Invokes Windows help for the property page.

See Also: PROPPAGEINFO

IProperty PageImpl: : IProperty PageImpl
IPropertyPagelmpl();

Remarks
The constructor. Initializes all data members.

373

IPropertyPagelmpl: :IsPageDirty

IPropertyPageImpl: : IsPageDirty

Remarks.

HRESULT Help(PROPPAGEINFO* pPagelnfo);

See IPropertyPage::Help in the Win32 SDK online.

Indicates whether the property page has changed since it was activated.

See Also: IPropertyPagelmpl::SetDirty, IPropertyPagelmpl::m_bDirty

IPropertyPageImpl: :Move
HRESULT Move(LPCRECT pRect);

See IPropertyPage::Move in the Win32 SDK online.

Remarks
Positions and resizes the property page dialog box.

IProperty PageImpl: : SetDirty
void SetDirty(BOOL bDirty);

Parameters

Remarks

bDirty [in] If TRUE, the property page's state is marked as changed. Otherwise, it is
marked as unchanged.

Flags the property page's state as changed or unchanged, depending on the value of
bDirty. If necessary, SetDirty informs the frame that the property page has changed.

See Also: IPropertyPagelmpl: : IsPageDirty , IPropertyPagelmpl: :SetPageSite,
IPropertyPagelmpl::m_bDirty

IProperty PageImpl: : SetObj ects

Remarks

374

HRESULT SetObjects(ULONG nObjects, IUnknown** ppUnk);

See IPropertyPage::SetObjects in the Win32 SDK online.

Provides an array of IUnknown pointers for the objects associated with the property
page.

See Also: IPropertyPagelmpl: :Apply, IPropertyPagelmpl: :m_nObjects,
IPropertyPagelmpl: :m_pp Unk

IProperty Pagelmpl: :m_bDirty

IProperty PageImpl: : SetPageSite

Remarks

HRESULT SetPageSite(IPropertyPageSite* pPageSite);

See IPropertyPage::SetPageSite in the Win32 SDK online.

Provides the property page with an IPropertyPageSite pointer, through which the
property page communicates with the property frame.

See Also: IPropertyPageImpl::m_pPageSite, IPropertyPageSite

IPropertyPageImpl: :Show
HRESULT Show(UINT nCmdShow);

See IPropertyPage::Show in the Win32 SDK online.

Remarks
Makes the property page dialog box visible or invisible.

IProperty PageImpl: : TranslateAccelerator

Remarks

HRESULT TranslateAccelerator(MSG* pMsg);

See IPropertyPage::TranslateAccelerator in the Win32 SDK online.

Processes the keystroke specified in pMsg.

See Also: MSG

Data Members
IProperty PageImpl: :m_bDirty

BOOL m_bDirty;

Remarks
Specifies whether the property page's state has changed.

See Also: IPropertyPageImpl: : IsPageDirty , IPropertyPageImpl: :SetDirty

375

IProperty PageImpl: :m_nObjects

IPropertyPageImpl: :m_nObjects
ULONG m_nObjects;

Remarks
Stores the number of objects associated with the property page.

See Also: IPropertyPageImpl::SetObjects

IPropertyPageImpl: :m_dwHelpContext

Remarks

DWORD m_dwHelpContext;

Stores the context identifier for the help topic associated with the property page.

See Also: IPropertyPageImpl::GetPageInfo

IPropertyPageImpl: :m_dwDocString

Remarks

UINT m_dwDocString;

Stores the resource identifier associated with the text string describing the property
page.

See Also: IPropertyPageImpl::GetPageInfo

IProperty PageImpl: :m_dw HelpFile

Remarks

376

UINT m_dwHelpFile;

Stores the resource identifier associated with the name of the help file describing
the property page.

See Also: IPropertyPageImpl::GetPageInfo

IProperty PageImpl: :m_size

IPropertyPageImpl::m_dwTitle

Remarks

UINT m_dwTitle;

Stores the resource identifier associated with the text string that appears in the tab
for the property page.

See Also: IPropertyPageImpl::GetPageInfo

IPropertyPageImpl: :m_pPageSite

Remarks

IPropertyPageSite* m_pPageSite;

Points to the IPropertyPageSite interface through which the property page
communicates with the property frame.

See Also: IPropertyPageImpl::SetPageSite

IPropertyPageImpl: :m_ppUnk

Remarks

IUnknown** m_ppUnk;

Points to an array of IUnknown pointers to the objects associated with the property
page.

See Also: IPropertyPageImpl::SetObjects

IProperty PageImpl: :m_size

Remarks
Stores the height and width of the property page's dialog box, in pixels.

See Also: IPropertyPageImpl::GetPageInfo, SIZE

377

IProperty Page2Impl

IProperty Page2Impl
template< class T>
class IPropertyPage2Impl : public IPropertyPageImpl< T>

Parameters
T Your class, derived from IPropertyPage2Impi.

The IPropertyPage2 interface extends IPropertyPage by adding the EditProperty
method. This method allows a client to select a specific property in a property page
object.

Class IPropertyPage2Impl simply returns E_NOTIMPL for
IPropertyPage2::EditProperty. However, it inherits the default implementation of
IPropertyPageImpl and implements IUnknown by sending information to the dump
device in debug builds.

When you create a property page, your class is typically derived from
IPropertyPageImpl. To provide the extra support of IPropertyPage2, modify your
class definition and override the EditProperty method.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atIctl.h>

See Also: IPerPropertyBrowsingImpl, ISpecifyPropertyPagesImpl

IPropertyPage2 Methods

EditProperty Specifies which property control will receive
the focus when the property page is activated.
The ATL implementation returns E_NOTIMPL.

Methods
IPropertyPage2Impl: : EditProperty

HRESULT EditProperty(DISPID dispID);

See IPropertyPage2::EditProperty in the Win32 SDK online.

Remarks
Returns E_NOTIMPL.

378

IProvideCIassInfo2Impi

IProvideClassInfo2Impl
template< const CLSID* pcoclsid, const IID* psrcid, const GUID* plibid,

~ WORD wMajor = 1, WORD wMinor = 0, class tihclass = CComTypelnfoHolder >
class IProvideCIasslnfo2Impl : public IProvideCIasslnfo2

Parameters
pcoclsid A pointer to the coclass' identifier.

psrcid A pointer to the identifier for the coclass' default outgoing dispinterface.

plibid A pointer to the identifier of the coclass' type library.

wMajor The major version of the type library. The default value is 1.

wMinor The minor version of the type library. The default value is O.

tihclass The class used to manage the coclass' type information. The default
value is CComTypelnfoHolder.

The IProvideCIasslnfo2 interface extends IProvideClasslnfo by adding the
GetGUID method. This method allows a client to retrieve an object's outgoing
interface lID for its default event set. Class IProvideCIasslnfo2Impl provides
a default implementation of the IProvideClasslnfo and IProvideCIasslnfo2
methods.

IProvideCIasslnfo2Impl contains a static member of type CComTypelnfoHolder
that manages the type information for the coclass.

#include <atlcom.h>

Class Methods

IProvideClassInfo2Impl

IProvideClasslnfo Methods

GetClassInfo

IProvideCIasslnfo2 Methods

GetGUID

Data Members

Constructor.

Retrieves an ITypeInfo pointer to the coclass'
type information.

Retrieves the GUID for the object's outgoing
dispinterface.

Manages the type information for the cocIass.

379

IProvideClassInfo2Impl: : GetClassInfo

Methods
IProvideClas sInfo 2Imp 1: : GetClas sInfo

HRESULT GetClasslnfo(ITypelnfo** pptinfo);

See IProvideClasslnfo::GetClasslnfo in the Win32 SDK online.

Remarks
Retrieves an ITypelnfo pointer to the coclass' type information.

IProvideClassInfo2Impl: : GetGUID

Remarks

HRESULT GetGUID(DWORD dwGuidKind, GUID* pGUID);

See IProvideClasslnfo2::GetGUID in the Win32 SDK online.

Retrieves the ~UID for the object's outgoing dispinterface.

IProvideClassInfo2Impl: : IProvideClassInfo2Impl
IProvideClasslnfo2Impl();

Remarks
The constructor. Calls AddRef on the _tih member. The destructor calls Release.

Data Members
IProvideClassInfo2Impl: :_tih

Remarks

380

static tihclass _tih;

This static data member is an instance of the class template parameter, tihclass,
which by default is CComTypelnfoHolder. _tih manages the type information
for the coclass.

I QuickActivatelmpl
template< class T>
class IQuickActivatelmpl

Parameters
T Your class, derived from IQuickActivatelmpl.

The IQuickActivate interface helps containers avoid delays when loading controls
by combining initialization in a single call. The QuickActivate method allows the
container to pass a pointer to a QACONTAINER structure that holds pointers to
all the interfaces the control needs. On return, the control passes back a pointer to a
QACONTROL structure that holds pointers to its own interfaces, which are used
by the container. Class IQuickActivatelmpl provides a default implementation of
IQuickActivate and implements IUnknown by sending information to the dump
device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: CComControl

IQuickActivate Methods

GetContentExtent

QuickActivate

SetContentExtent

Gets the extent of a full rendering of the control within the container.

Performs quick initialization of controls being loaded.

Informs the control how much display space the container has
assigned to it.

Methods
I QuickActi vateImpl: : GetContentExtent

Remarks

HRESULT GetContentExtent(LPSIZEL pSize);

See IQuickActivate::GetContentExtent in the Win32 SDK online.

Retrieves the current display size for a running control. The size is for a full rendering
of the control and is specified in HIMETRIC units.

See Also: IQuickActivatelmpl: :SetContentExtent

IQuickActivateImpl

381

IQuickActivateImpl::QuickActivate

IQuickActivateImpl::QuickActivate

Remarks

HRESULT QuickActivate(QACONTAINER* pQACont, QACONTROL* pQACtrl);

See IQuickActivate::QuickActivate in the Win32 SDK online.

With the QuickActivate method, the container passes a pointer to a
QACONTAINER structure. The structure contains pointers to interfaces needed by
the control and the values of some ambient properties. Upon return, the control passes
a pointer to a QACONTROL structure that contains pointers to its own interfaces that
the container requires, and additional status information.

IQuickActivateImpl: :SetContentExtent

Remarks

382

HRESULT SetContentExtent((LPSIZEL pSize);

See IQuickActivate: :SetContentExtent in the Win32 SDK online.

Informs a control of how much display space the container has assigned to it. The size
is specified in HIMETRIC units.

See Also: IQuickActivateImpl: : GetContentExtent

IRunnableObj ectImpl
template< class T>
class IRunnableObjectlmpl

Parameters
T Your class, derived from IRunnableObjectlmpl.

The IRunnableObject interface enables a container to determine if a control is
running, force it to run, or lock it into the running state. Class IRunnableObjectlmpl
provides a default implementation of this interface and implements IUnknown by
sending information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: CComControl

IRunnable Object Methods

GetRunningClass

Is Running

LockRunning

Run

SetContainedObject

Returns the CLSID of the running control. The ATL implementation
sets the CLSID to GUID_NULL and returns E_UNEXPECTED.

Determines if the control is running. The ATL implementation
returns TRUE.

Locks the control into the running state. The A TL implementation
returns S_OK.

Forces the control to run. The ATL implementation returns S_OK.

Indicates that the control is embedded. The A TL implementation
returns S_OK.

Methods
IRunnableObj ectImpl: : GetRunningClass

Remarks

HRESULT GetRunningClass(LPCLSID IpClsid);

See IRunnableObject::GetRunningClass in the Win32 SDK online.

The ATL implementation sets *lpClsid to GUID_NULL and returns
E_ UNEXPECTED.

IRunnableObjectlmpl

383

IRunnableObjectImpl::IsRunning

IRunnableObjeetImpl: : IsRunning
virtual BOOL IsRunning();

See IRunnableObject::IsRunning in the Win32 SDK online.

Remarks
The ATL implementation returns TRUE.

IRunnableObjeetImpl: : LoekRunning

Remarks

HRESULT LockRunning(BOOLjLock, BOOLfLastUnlockCloses);

See IRunnableObject::LockRunning in the Win32 SDK online.

The ATL implementation returns S_OK.

IRunnableObjeetImpl: : Run
HRESULT Run(LPBINDCTX);

See IRunnableObject::Run in the Win32 SDK online.

Remarks
The ATL implementation returns S_OK.

IRunnableObj eetImpl: : SetContainedObj eet
HRESULT SetContainedObject(BOOL fContained);

See IRunnableObject::SetContainedObject in the Win32 SDK online.

Remarks
The ATL implementation returns S_OK.

384

ISpecify Property PagesImpl

ISpecify Property Pageslmpl
template< class T>
class ISpecifyPropertyPagesImpl

Parameters
T Your class, derived from ISpecifyPropertyPagesImpl.

The ISpecifyPropertyPages interface allows a client to obtain a list of CLSIDs
for the property pages supported by an object. Class ISpecifyPropertyPagesImpl
provides a default implementation of this interface and implements IUnknown by
sending information to the dump device in debug builds.

Note Do not expose the ISpecifyPropertyPages interface if your object does not support
property pages.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: IPropertyPageImpl, IPerPropertyBrowsingImpl

ISpecifyPropertyPages Methods

GetPages Fills a Counted Array of UUID values. Each UUID corresponds
to the CLSID for one of the property pages that can be displayed
in the object's property sheet.

Methods
IS pecify Property PagesImpl: : GetPages

Remarks

HRESULT GetPages(CAUUID* pPages);

See ISpecifyPropertyPages::GetPages in the Win32 SDK online.

Fills the array in the CAUUID structure with the CLSIDs for the property pages that
can be displayed in the object's property sheet. ATL uses the object's property map to
retrieve each CLSID.

See Also: BEGIN_PROPERTY _MAP

385

ISupportErrorlnfolmpl

ISupportErrorInfoImpl
template< const IID* piid >
class ISupportErrorInfoImpl : public ISupportErrorInfo

Parameters
piid A pointer to the IID of an interface that supports IErrorInfo.

The ISupportErrorInfo interface ensures that error information can be returned to
the client. Objects that use IErrorInfo must implement ISupportErrorInfo.

Class ISupportErrorInfoImpl provides a default implementation of
ISupportErrorInfo and can be used when only a single interface generates errors
on an object. For example:

class CMyClass :
public IDispatchImpl< ... >,
public CComObjectRoot,
public CComCoClass< ... >
public ISupportErrorInfoImpl< &IID_IMyClass >

} ;

#include <atlcom.h>

ISupportErrorlnfo Methods

InterfaceSupportsErrorlnfo Indicates whether an interface supports the
IErrorlnfo interface.

Methods
ISupportErrorInfoImpl: : InterfaceSupportsErrorInfo

HRESULT InterfaceSupportsErrorInfo(REFIID riid);

See ISupportErrorInfo::InterfaceSupportsErrorInfo in the Win32 SDK online.

Remarks
Indicates whether the interface identified by riid supports the IErrorInfo interface.

386

IViewObjectExlmpl
template< class T>
class IViewObjectExlmpl

Parameters
T Your class, derived from IViewObjectExlmpl.

The IViewObject, IViewObject2, and IViewObjectEx interfaces enable a control to
display itself directly, and to create and manage an advise sink to notify the container
of changes in the control display. The IViewObjectEx interface provides support
for extended control features such as flicker-free drawing, non-rectangular and
transparent controls, and hit-testing (for example, how close a mouse click must
be to be considered on the control). Class IViewObjectExlmpl provides a default
implementation of these interfaces and implements IUnknown by sending
information to the dump device in debug builds.

Related Articles "ATL Tutorial," "Creating an ATL Project"

#include <atlctl.h>

See Also: CComControl, "ActiveX Controls Interfaces" in the Win32 SDK online

IViewObject Methods

Draw

Freeze

GetAdvise

GetColorSet

SetAdvise

Unfreeze

IViewObject2 Methods

GetExtent

IViewObjectEx Methods

GetNaturalExtent

GetRect

GetViewStatus

Draws a representation of the control onto a device context.

Freezes the drawn representation of a control so that it won't change
until an Unfreeze. The ATL implementation returns E_NOTIMPL.

Returns information on the most recent SetAdvise.

Returns the logical palette used by the control for drawing. The ATL
implementation returns E_NOTIMPL.

Sets up an advise sink to receive notifications of changes in the view
of the control.

Unfreezes the drawn representation of the control. The A TL
implementation returns E_NOTIMPL.

Retrieves the size of the control from the cache.

Provides sizing hints from the container for the object to use as the
user resizes it. The A TL implementation returns E_NOTIMPL.

Returns a rectangle describing a requested drawing aspect.
The ATL implementation returns E_NOTIMPL.

Returns information about the opacity of the object, and what
drawing aspects are supported.

(continued)

IViewObjectExlmpl

387

IViewObjectExlmpl: : Draw

IViewObjectEx Methods (continued)

QueryHitPoint

QueryHitRect

Indicates whether a point is within a given drawing aspect of
an object.

Indicates whether any point in a rectangle is within a given
drawing aspect of an object.

Methods
IViewObjectExImpl: : Draw

Remarks

HRESULT Draw(DWORD dwDrawAspect, LONG !index, void* pvAspect,
.. DVTARGETDEVICE* ptd, HDC hicTargetDev, LPCRECTL prcBounds,
.. LPCRECTL prcWBounds, BOOLLstdcall * pfnContinue) (DWORD dwContinue),
.. DWORD dwContinue);

See IViewObject::Draw in the Win32 SDK online.

This method calls CComControl::OnDrawAdvanced which in turn calls your
control class's OnDraw method. An OnDraw method is automatically added to your
control class when you create your control with the ATL Object Wizard. The Wizard's
default OnDraw draws a rectangle with the label "ATL 2.0".

See Also: CComControl::OnDrawAdvanced, CComControl::OnDraw

IViewObj ectExImpl: : Freeze

Remarks

HRESULT Freeze(DWORD dwAspect, LONG !index, void* pvAspect,
.. DWORD* pdwFreeze);

See IViewObject::Freeze in the Win32 SDK online.

Returns E_NOTIMPL.

IViewObjectExImpl: : GetAdvise

Remarks

388

HRESULT GetAdvise(DWORD* pAspects, DWORD* pAdvf,
.. IAdviseSink** ppAdvSink);

See IViewObject::GetAdvise in the Win32 SDK online.

Retrieves an existing advisory sink connection on the control, if there is one.
The advisory sink is stored in the control class data member m_spAdviseSink.

IViewObjectExImpl::GetRect

See Also: IViewObjectExlmpl::SetAdvise

IViewObjectExImpl: : GetColorSet

Remarks

HRESULT GetColorSet(DWORD dwAspect, LONG lindex,
1.+ void* pvAspect, DVTARGETDEVICE* ptd, HDC hicTargetDevice,
1.+ LOGPALETTE** ppColorSet);

See IViewObject::GetColorSet in the Win32 SDK online.

Returns E_NOTIMPL.

[ViewObjectExImpl::GetExtent

~emarks

HRESULT GetExtent(DWORD dwDrawAspect, LONG lindex,
1.+ DVTARGETDEVICE* ptd, LPSIZEL* lpsizel);

See IViewObject2::GetExtent in the Win32 SDK online.

Retrieves the control's display size in HIMETRIC units (0.01 millimeter per unit)
from the control class data member m_sizeExtent.

[ViewObjectExImpl::GetNaturaIExtent

~emarks

HRESULT GetNaturalExtent(DWORD dwAspect, LONG lindex,
1.+ DVTARGETDEVICE* ptd, HDC hicTargetDevice,
1.+ DVEXTENTINFO* pExtentInfo, LPSIZEL psizel);

See IViewObjectEx::GetNaturaIExtent in the Win32 SDK online.

If dwAspect is DVASPECT_CONTENT and pExtentInfo->dwExtentMode is
DVEXTENT_CONTENT, sets *psizel to the control class's data member
m_sizeNatural.

[ViewObjectExImpl: : GetRect

~emarks

HRESULT GetRect(DWORD dwAspect, LPRECTL pRect);

See IViewObjectEx::GetRect in the Win32 SDK online.

Returns E_NOTIMPL.

389

ViewObjectExlmpl:: Get ViewStatus

ViewObjectExImpl::GetViewStatus

Remarks

HRESULT GetViewStatus(DWORD* pdwStatus);

See IViewObjectEx::GetViewStatus in the Win32 SDK online.

By default, ATL sets pdwStatlls to indicate that the control supports
VIEWSTATUS_OPAQUE (possible values are in the VIEWSTATUS enumeration).

IViewObjectExImpl: : Query HitPoint

Remarks

HRESULT QueryHitPoint(DWORD dwAspect, LPCRECT pRectBounds,
~ POINT ptlLoc, LONG ICloseHit, DWORD* pHitResult);

See IViewObjectEx::QueryHitPoint in the Win32 SDK online.

Checks if the specified point is in the specified rectangle and returns a HITRESULT
value inpHitResult. The value can be either HITRESULT_HIT or
HITRESULT_OUTSIDE.

If dwAspect equals DVASPECT_CONTENT, the method returns S_OK. Otherwise,
the method returns E_FAIL.

See Also: IViewObjectExImpl: : QueryHitRect

IViewObjectExImpl::QueryHitRect

Remarks

390

HRESULT QueryHitRect(DWORD dwAspect, LPCRECT pRectBounds,
~ LPRECT prcLoc, LONG ICloseHit, DWORD* pHitResult);

See IViewObjectEx::QueryHitRect in the Win32 SDK online.

Checks whether the control's display rectangle overlaps any point in the specified
location rectangle and returns a HITRESULT value in pHitResult. The value can be
either HITRESULT_HIT or HITRESULT_OUTSIDE.

If dwAspect equals DVASPECT_CONTENT, the method returns S_OK. Otherwise,
the method returns E_FAIL.

See Also: IViewObjectExImpl::QueryHitPoint

IViewObjectExlmpl:: Unfreeze

IViewObjectExImpl: :SetAdvise

Aemarks

HRESULT SetAdvise(DWORD aspects, DWORD advf, IAdviseSink* pAdvSink);

See IViewObject::SetAdvise in the Win32 SDK online.

Sets up a connection between the control and an advise sink so that the sink can be
notified about changes in the control's view. The pointer to the lAd viseS ink interface
on the advise sink is stored in the control class data member m_spAdviseSink.

See Also: IViewObjectExImpl::GetAdvise

[ViewObjectExImpl:: Unfreeze
HRESULT Unfreeze(DWORD dwFreeze);

See IViewObject::Unfreeze in the Win32 SDK online.

~emarks

Returns E_NOTIMPL.

391

ATL Macros and Global Functions

ATL Macros and Global Functions

392

The ATL macros and global functions offer functionality in the following categories:

Aggregation and Class Factory Macros
COM Map Macros and Global Functions
Connection Point Macros and Global Functions
Debugging and Error Reporting Macros and Global Functions
Device Context Global Functions
Event Handling Global Functions
Marshaling Global Functions
Message Map Macros
Object Map Macros
PixellHIMETRIC Conversion Global Functions
Property Map Macros
Registry Macros
Stock Property Macros
String Conversion Macros
Window Class Macros

Aggregation and Class Factory Macros

DECLARE_AGGREGATABLE

DECLARE_CLASSFACTORY

DECLARE_CLASSFACTORY2

DECLARE_CLASSFACTORY_
AUTO_THREAD
DECLARE_CLASSFACTORY_
SINGLETON
DECLARE_GET_CONTROLLING_
UNKNOWN
DECLARE_NOT_AGGREGATABLE
DECLARE_ONLY_AGGREGATABLE
DECLARE_POLY_AGGREGATABLE

DECLARE_PROTECT_FINAL_
CONSTRUCT

Declares that your object can be aggregated
(the default).

Declares the class factory to be
CComClassFactory, the ATL default class
factory.

Declares your class factory object to be the
class factory.

Declares CComCIassFactory2 to be the class
factory.

Declares CComClassFactory AutoThread to
be the class factory.

Declares CComClassFactorySingleton to be
the class factory.

Declares a virtual GetControllingUnknown
function.

Declares that your object cannot be aggregated.

Declares that your object must be aggregated.

Checks the value of the outer unknown and
declares your object aggregatable or not
aggregatable, as appropriate.

Protects the outer object from deletion during
construction of an inner object.

COM Map Macros and Global Functions

AtlInternal Query Interface

COM_INTERFACE_ENTRY

END_COM_MAP

Connection Point Macros and Global Functions

AtiAdvise

AtiUnadvise

BEGIN_CONNECTION_POINT_MAP

CONNECTION_POINT_ENTRY

END_CONNECTION_POINT_MAP

Delegates to the IUnknown of a
nonaggregated object.

ATL Macros and Global Functions

Marks the beginning of the COM interface
map entries.

Enters interfaces into the COM interface map.

Marks the end of the COM interface map
entries.

Creates a connection between an object's
connection point and a client's sink.

Terminates the connection established through
AtiAdvise.

Marks the beginning of the connection point
map entries.

Enters connection points into the map.

Marks the end of the connection point map
entries.

Debugging and Error Reporting Macros and Global Functions

AtiReportError

AtiTrace

ATLTRACE

ATLTRACENOTIMPL

Device Context Global Functions

Atl CreateTargetDC

Event Handling Global Functions

AtiWaitWithMessageLoop

Marshaling Global Functions

AtiFreeMarshalStream

AtiMarshalPtr InProc

AtiUnmarshalPtr

Sets up IErrorInfo to provide error details
to a client.

Global function that sends a formatted message
and/or variable values to the dump device.

Sends a formatted message and/or variable
values to the dump device.

Sends a message to the dump device that the
specified function is not implemented.

Creates a device context.

Waits for an object to be signaled, meanwhile
dispatching window messages as needed.

Releases the marshal data and the IStream
pointer.

Creates a new stream object and marshals the
specified interface pointer.

Converts a stream's marshaling data into an
interface pointer.

393

A TL Macros and Global Functions

Message Map Macros

MESSAGE_HANDLER

COMMAND_HANDLER

COMMAND_ID_HANDLER

COMMAND_CODE_HANDLER

COMMAND_RANGE_HANDLER

NOTIFY_HANDLER

NOTIFY _CODE_HANDLER

NOTIFY _RANGE_HANDLER

394

Marks the beginning of the default message
map.

Marks the beginning of an alternate message
map.

Maps a Windows message to a handler
function.

Maps a contiguous range of Windows
messages to a handler function.

Maps a WM_ COMMAND message to a
handler function, based on the notification
code and the identifier of the menu item,
control, or accelerator.

Maps a WM_COMMAND message to a
handler function, based on the identifier of the
menu item, control, or accelerator.

Maps a WM_COMMAND message to a
handler function, based on the notification
code.

Maps a contiguous range of
WM_COMMAND messages to a handler
function.

Maps a WM_NOTIFY message to a handler
function, based on the notification code and the
control identifier.

Maps a WM_NOTIFY message to a handler
function, based on the control identifier.

Maps a WM_NOTIFY message to a handler
function, based on the notification code.

Maps a contiguous range of WM_NOTIFY
messages to a handler function.

Chains to the default message map in the
base class.

Chains to the default message map in a data
member of the class.

Chains to an alternate message map in the
base class.

Chains to an alternate message map in a data
member of the class.

Chains to the message map in another class
at run time.

Chains to an alternate message map in another
class at run time.

Marks the end of a message map.

Object Map Macros

END_OBJECT_MAP

DECLARE_OBJECT_DESCRIPTION

Pixel/HIMETRIC Conversion Global Functions

AtlHiMetricToPixel

AtlPixelToHiMetric

Property Map Macros

BEGIN_PROPERTY_MAP

PROP_ENTRY

Registry Macros

DECLARE_NO_REGISTRY

DECLARE_REGISTRY

DECLARE_REGISTRY_RESOURCE

DECLARE_REGISTRY_RESOURCEID

Stock Property Macros

IMPLEMENT_BOOL_STOCKPROP

IMPLEMENT_BSTR_STOCKPROP

IMPLEMENT_STOCKPROP

ATL Macros and Global Functions

Marks the beginning of the A TL object map
and initializes the array of object descriptions.

Enters an ATL object into the object map,
updates the registry, and creates an instance
of the object.

Marks the end of the A TL object map.

Allows you to specify a class object's text
description, which will be entered into the
object map.

Converts HIMETRIC units (each unit is 0.01
millimeter) to pixels.

Converts pixels to HIMETRIC units (each unit
is 0.01 millimeter).

Marks the beginning of the A TL property map.

Enters a property description, property DISPID,
and property page CLSID into the property map.

Enters a property description, property
DISPID, property page CLSID, and IDispatch
IID into the property map.

Enters a property page CLSID into the
property map.

Marks the end of the A TL property map.

A voids default A TL registration.

Enters or removes the main object's entry in
the system registry.

Finds the named resource and runs the registry
script within it.

Finds the resource identified by an ID number
and runs the registry script within it.

Implements a boolean stock property for
an ATL object.

Implements a text stock property for an
ATL object.

Implements a stock property for an A TL
object.

395

String Conversion Macros

String Conversion Macros

DEVMODE and TEXTMETRIC String
Conversion Macros

Window Class Macros

DECLARE_ WND_CLASS

DECLARE_ WND_SUPERCLASS

Set of macros that convert between string
types.

Set of macros that convert the strings within
DEVMODE and TEXTMETRIC structures.

Allows you to specify the name of a new
window class.

Allows you to specify the name of an existing
window class on which a new window class
will be based.

ALT_MSG_MAP(msgMapID)

Parameters

Remarks

396

msgMapID [in] The message map identifier.

Marks the beginning of an alternate message map. ATL identifies each message map
by a number. The default message map (declared with the BEGIN_MSG_MAP
macro) is identified by o. An alternate message map is identified by msgMapID.

Message maps are used to process messages sent to a window. For example,
CContainedWindow allows you to specify the identifier of a message map in the
containing object. CContainedWindow::WindowProc then uses this message map
to direct the contained window's messages either to the appropriate handler function
or to another message map. For a list of macros that declare handler functions, see
BEGIN_MSG_MAP.

Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps. The following example shows the default
message map and one alternate message map, each containing one handler function:

BEGIN_MSG_MAP(CMyClass)
MESSAGE_HANDLER(WM_PAINT. OnPaint)

AL T _MSG_MAP (1)

MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)
END_MSG_MAP

The next example shows two alternate message maps. The default message map is
empty.

BEGIN_MSG_MAP(CMyClass)
ALT_MSG_MAP(l)

MESSAGE_HANDLER(WM_PAINT, OnPaint)
MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)

ALT_MSG_MAP(2)
MESSAGE_HANDLER(WM_CREATE, OnCreate)

END_MSG_MAP

The END_MSG_MAP macro marks the end of the message map. Note that there is
always exactly one instance ofBEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps" in the
article "ATL Window Classes."

See Also: MESSAGE_HANDLER, CMessageMap, CDynamicChain

AtlAdvise
HRESULT AtlAdvise(IUnknown* pUnkCP, IUnknown* pUnk,

... const IID& iid, LPDWORD pdw);

Return Value
A standard HRESULT value.

Parameters

Remarks

pUnkCP [in] A pointer to the IUnknown of the object the client wants to
connect with.

pUnk [in] A pointer to the client's IUnknown.

iid [in] The GUrD of the connection point. Typically, this is the same as the
outgoing interface managed by the connection point.

pdw [out] A pointer to the cookie that uniquely identifies the connection.

Creates a connection between an object's connection point and a client's sink. The
sink implements the outgoing interface supported by the connection point. The client
uses the pdw cookie to remove the connection by passing it to AtlUnadvise.

AtlCreateTargetDC
HDC AtlCreateTargetDC(HDC hdc, DVTARGETDEVICE* ptd);

Return Value
Returns the handle to a device context for the device specified in the
DVTARGETDEVICE. If no device is specified, returns the handle to the default
display device.

AtlCreateTargetDC

397

AtlFreeMarshalStream

Parameters

Remarks

hdc [in] The existing handle of a device context, or NULL.

ptd [in] A pointer to the DVTARGETDEVICE structure that contains information
about the target device.

Creates a device context for the device specified in the DVTARGETDEVICE
structure. If the structure is NULL and hdc is NULL, creates a device context for the
default display device.

If hdc is not NULL and ptd is NULL, the function returns the existing hdc.

AtlFreeMarshalStream
void AtlFreeMarshalStream(IStream* pStream);

Parameters

Remarks

pStream [in] A pointer to the IStream interface on the stream used for marshaling.

Releases the marshal data in the stream, then releases the stream pointer.

See Also: AtlMarshalPtrInProc

AtlHiMetricToPixel
extern void AtlPixelToHiMetric(const SIZEL* IpSizelnHiMetric,

'+ LPSIZEL IpSizelnPix);

Parameters

Remarks

IpSizelnHiMetric [in] Pointer to the size of the object in HIMETRIC units.

IpSize!nPix [out] Pointer to where the object's size in pixels is to be returned.

Converts an object's size in HIMETRIC units (each unit is 0.01 millimeter) to a
size in pixels on the screen device.

See Also: AtlPixelToHiMetric

AtlInternal Query Interface
HRESULT AtlInternalQuerylnterface(void* pThis,

'+ const _ATL_INTMAP _ENTRY* pEntries, REFIID iid, void** ppvObject);

Return Value
One of the standard HRESULT values.

39B

Parameters

Remarks

pThis [in] A pointer to the object that contains the COM map of interfaces exposed
to Query Interface.

pEn tries [in] An array of _ATL_INTMAP _ENTRY structures that access a map of
available interfaces.

iid [in] The OUID of the interface being requested.

ppvObject [out] A pointer to the interface pointer specified in iid, or NULL if the
interface is not found.

Retrieves a pointer to the requested interface.

AtlInternalQuerylnterface only handles interfaces in the COM map table. If your
object is aggregated, AtlInternalQuerylnterface does not delegate to the outer
unknown. You can enter interfaces into the COM map table with the macro
COM_INTERFACE_ENTRY or one of its variants.

See Also: CComObjectRootEx: :lnternaIAddRef,
CComObjectRootEx: :lnternalRelease

AtlMarshalPtrInProc
HRESULT AtlMarshalPtrInProc(IUnknown* pUnk, const IID& iid,

... IStream** ppStream);

Return Value
A standard HRESULT value.

Parameters

Remarks

pUnk [in] A pointer to the interface to be marshaled.

iid [in] The OUID of the interface being marshaled.

ppStream [out] A pointer to the IStream interface on the new stream object used for
marshaling.

Creates a new stream object, writes the CLSID of the proxy to the stream, and
marshals the specified interface pointer by writing the data needed to initialize the
proxy into the stream. The MSHLFLAGS_TABLESTRONG flag is set so the
pointer can be marshaled to multiple streams. The pointer can also be unmarshaled
multiple times.

If marshaling fails, the stream pointer is released.

AtlMarshalPtrInProc can only be used on a pointer to an in-process object.

See Also: AtlUnmarshalPtr, AtlFreeMarshalStream, MSHLFLAGS in the Win32
SDK online

AtlMarshalPtrInProc

399

AtlPixelToHiMetric

AtlPixelToHiMetric
extern void AtlPixelToHiMetric(const SIZEL* IpSizelnPix,

... LPSIZEL IpSizelnHiMetric);

Parameters

Remarks

IpSizeInPix [in] Pointer to the object's size in pixels.

/pSizelnHiMetric [out] Pointer to where the object's size in HIMETRIC units is to be
returned.

Converts an object's size in pixels on the screen device to a size in HI METRIC units
(each unit is 0.01 millimeter).

See Also: AtlHiMetricToPixel

AtlReportError
HRESULT WINAPI AtlReportError(const CLSID& clsid, LPCOLESTR /pszDesc,

... const IID& iid = GUID_NULL, HRESULT hRes = 0);
HRESULT WINAPI AtlReportError(const CLSID& clsid, LPCOLESTR IpszDesc,

... DWORD dwHelpID, LPCOLESTR IpszHelpFile, const IID& iid = GUID_NULL,

... HRESULT hRes = 0);
HRESULT WINAPI AtlReportError(const CLSID& clsid, LPCSTR IpszDesc,

... const IID& iid = GUID_NULL, HRESULT hRes = 0);
HRESULT WINAPI AtlReportError(const CLSID& clsid, LPCSTR IpszDesc,

... DWORD dwHelpID, LPCSTR IpszHelpFile, const IID& iid = GUID_NULL,

... HRESULT hRes = 0);
HRESULT WIN API AtlReportError(const CLSID& clsid, UINT nID,

... const IID& iid = GUID_NULL, HRESULT hRes = 0,

... HINSTANCE hlnst = _Module.GetResourceInstance());
HRESULT WIN API AtlReportError(const CLSID& clsid, UINT nID,

... DWORD dwHelpID, LPCOLESTR IpszHelpFile, const IID& iid = GUID_NULL,

... HRESULT hRes = 0, HINSTANCE hlnst = _Module.GetResourceInstance());

Return Value
If the hRes parameter is nonzero, returns the value of hRes. If hRes is zero,
then the first four versions of AtlReportError return DISP _E_EXCEPTION.
The last two versions return the result of the macro
MAKE_HRESULT(1, FACILITY_ITF, nID).

Parameters

400

clsid [in] The CLSID of the object reporting the error.

/pszDesc [in] The string describing the error. The Unicode version specifies that
IpszDesc is of type LPCOLESTR; the ANSI version specifies a type of LPCSTR.

Remarks

iid [in] The lID of the interface defining the error or GUID_NULL if the error is
defined by the operating system.

hRes [in] The HRESULT you want returned to the caller.

nID [in] The resource identifier where the error description string is stored. This
value should lie between Ox0200 and OxFFFF, inclusively. In debug builds, an
ASSERT will result if nID does not index a valid string. In release builds, the
error description string will be set to "Unknown Error."

dwHelpID [in] The help context identifier for the error.

IpszHelpFile [in] The path and name of the help file describing the error.

hlnst [in] The handle to the resource. By default, this parameter is
_Module::GetResourcelnstance, where _Module is the global instance of
CComModule or a class derived from it.

Sets up the IErrorlnfo interface to provide error information to clients of the
object. The string IpszDesc is used as the text description of the error. When the
client receives the hRes you return from AtlReportError, the client can access
the IErrorInfo structure for details about the error.

See Also: MAKE_HRESULT

AtlTrace
void _cdecl AtlTrace(LPCTSTR IpszFormat, •.•);

Parameters

Remarks

IpszFormat [in] The format of the string and variables to send to the dump device.

Sends the specified string to the dump device. AtlTrace is available in both debug
and release builds.

For example:

AtlTrace<_T("The value of x is %d.\n"), x);

See Also: ATLTRACE

ATLTRACE
ATLTRACE(exp)

Parameters
exp [in] The formatted string and variables to send to the dump device.

ATLTRACE

401

ATLTRACENOTIMPL

Remarks
Sends the specified string to the dump device. The ATLTRACE macro performs the
same as the global function AtlTrace, except that in release builds ATLTRACE
compiles to (vo; d) 0, while the function AtlTrace can still be used.

For example:

ATLTRACE(_T(nThe value of x is %d.\nn), x)

ATLTRACENOTIMPL
ATLTRACENOTIMPL(funcname)

Parameters

Remarks

funcname [in] A string containing the name of the function that is not implemented.

In debug builds of ATL, sends the string ''funcname is not implemented" to the dump
device and returns E_NOTIMPL. In release builds, simply returns E_NOTIMPL.

See Also: ATLTRACE

AtlUnadvise
HRESULT AtlUnadvise(IUnknown* pUnkCP, const IID& iid, DWORD dw);

Return Value
A standard HRESULT value.

Parameters

Remarks

pUnkCP [in] A pointer to the IUnknown of the object that the client is connected
with.

iid [in] The OUID of the connection point. Typically, this is the same as the outgoing
interface managed by the connection point.

dw [in] The cookie that uniquely identifies the connection.

Terminates the connection established through AtlAdvise.

AtlUnmarshalPtr
HRESULT AtlUnmarshalPtr(IStream* pStream, const IID& iid,

.. IUnknown** ppUnk);

Return Value
A standard HRESULT value.

402

Parameters

Remarks

pStream [in] A pointer to the stream being unmarshaled.

iid [in] The GUID of the interface being unmarshaled.

ppUnk [out] A pointer to the unmarshaled interface.

Converts the stream's marshaling data into an interface pointer that can be used by
the client.

See Also: AtlMarshalPtrInProc

AtlWaitWithMessageLoop
BOOL AtlWaitWithMessageLoop(HANDLE hEvent);

Return Value
Returns TRUE if the object has been signaled.

Parameters

Remarks

hEvent [in] The handle of the object to wait for.

Waits for the object to be signaled, meanwhile dispatching window messages as
needed. This is useful if you want to wait for an object's event to happen and be
notified of it happening, but allow window messages to be dispatched while waiting.

BEGIN_COM_MAP(x)

Parameters

Remarks

x [in] The name of the class object you are exposing interfaces on.

The COM map is the mechanism that exposes interfaces on an object to a client
through Querylnterface. CComObjectRootEx::lnternalQuerylnterface only
returns pointers for interfaces in the COM map. Start your interface map with the
BEGIN_COM_MAP macro, add entries for each of your interfaces with the
COM_INTERFACE_ENTRY macro or one of its variants, and complete the
map with the END _COM_MAP macro.

For example, from the ATL BEEPER sample:

BEGIN_COM_MAPCCBeeper)
COM_INTERFACE_ENTRYCIDispatch)
COM_INTERFACE_ENTRYCIBeeper)
COM_INTERFACE_ENTRY_TEAR_OFFCIID_ISupportErrorlnfo. CBeeper2)

END_COM_MAPC)

403

See the ATL COMMAP sample for examples using the different types of COM map
entry macros.

BEGIN_CONNECTION_POINT_MAP
BEGIN_CONNECTION_POINT_MAP(x)

Parameters

Remarks

x [in] The name of the class containing the connection points.

Marks the beginning of the connection point map entries. Start your connection point
map with the BEGIN_CONNECTION_POINT_MAP macro, add entries for each
of your connection points with the CONNECTION_POINT_ENTRY macro, and
complete the map with the END_CONNECTION_POINT_MAP macro.

For example:

BEGIN_CONNECTION_POINT_MAP(CConnect)
CONNECTION_POINT_ENTRY(m_cplnterfaceBeingExposed)

END_CONNECTION_POINT_MAP()

For more information about connection points in ATL, see the article "Connection
Points."

BEGIN_MSG_MAP(theClass)

Parameters

Remarks

404

the Class [in] The name of the class containing the message map.

Marks the beginning of the default message map. CWindowImpl::WindowProc
uses the default message map to process messages sent to the window. The message
map directs messages either to the appropriate handler function or to another
message map.

The following macros map a message to a handler function. This function must be
defined in theClass.

Macro

MESSAGE_HANDLER

Description

Maps a Windows message to a handler
function.

Maps a contiguous range of Windows messages
to a handler function.

(continued)

Macro

COMMAND_HANDLER

COMMAND_ID_HANDLER

COMMAND_CODE_HANDLER

COMMAND_RANGE_HANDLER

NOTIFY_HANDLER

NOTIFY _ID_HANDLER

NOTIFY _RANGE_HANDLER

Description

Maps a WM_COMMAND message to a
handler function, based on the notification code
and the identifier of the menu item, control,
or accelerator.

Maps a WM_ COMMAND message to a
handler function, based on the identifier of the
menu item, control, or accelerator.

Maps a WM_COMMAND message to a
handler function, based on the notification
code.

Maps a contiguous range of
WM_COMMAND messages to a handler
function, based on the identifier of the menu
item, control, or accelerator.

Maps a WM_NOTIFY message to a handler
function, based on the notification code and
the control identifier.

Maps a WM_NOTIFY message to a handler
function, based on the control identifier.

Maps a WM_NOTIFY message to a handler
function, based on the notification code.

Maps a contiguous range of WM_NOTIFY
messages to a handler function, based on the
control identifier.

The following macros direct a message to another message map. This process is called
"chaining."

Macro Description

Chains to the default message map in the
base class.

Chains to the default message map in a data
member of the class.

Chains to an alternate message map in the
base class.

Chains to an alternate message map in a data
member of the class.

Chains to the default message map in another
class at run time.

Chains to an alternate message map in another
class at run time.

405

Example

406

class CMyWindow
{

public:

} ;

BEGIN_MSG_MAP(CMyWindow)
MESSAGE_HANDLER(WM_PAINT. OnPaint)
MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)
CHAIN_MSG_MAP(CMyBaseWindow)

END_MSG_MAP

LRESULT OnPaint(UINT uMsg. WPARAM wParam.
LPARAM lParam. BOOL& bHandled)

{ ... }

LRESULT OnSetFocus(UINT uMsg. WPARAM wParam.
LPARAM lParam. BOOL& bHandled)

{ ... }

When a CMyWi ndow object receives a WM_PAI NT message, the message is directed to
CMyWi ndow: : On Pa i nt for the actual processing. If On Pa i nt indicates the message
requires further processing, the message will then be directed to the default message
map in CMyBaseWi ndow.

In addition to the default message map, you can define an alternate message map with
ALT_MSG_MAP. Always begin a message map with BEGIN_MSG_MAP. You can
then declare subsequent alternate message maps. The following example shows the
default message map and one alternate message map, each containing one handler
function:

BEGIN_MSG_MAP(CMyClass)
MESSAGE_HANDLER(WM_PAINT. OnPaint)

AL T _MSG_MAP (1)

MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)
END_MSG_MAP

The next example shows two alternate message maps. The default message map
is empty.

BEGIN_MSG_MAP(CMyClass)
ALT_MSG_MAP(l)

MESSAGE_HANDLER(WM_PAINT. OnPaint)
MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)

ALT_MSG_MAP(2)
MESSAGE_HANDLER(WM_CREATE. OnCreate)

END_MSG_MAP

The END_MSG_MAP macro marks the end of the message map. Note that there
is always exactly one instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps"
in the article "ATL Window Classes."

See Also: CMessageMap, CDynamicChain

BEGIN_ OBJECT_MAP
BEGIN_OBJECT_MAP(x)

Parameters

Remarks

x [in] Array of ATL object definitions.

Marks the beginning of the map of ATL objects. The parameter x is an array holding
_ATL_OBJMAP _ENTRY structures that describe the objects.

Start your object map with the BEGIN_OBJECT_MAP macro, add entries for each
object with the OBJECT_ENTRY macro, and complete the map with the
END_OBJECT_MAP macro. When CComModule::RegisterServer is called, it
updates the system registry for each object in the object map.

Typically, you follow an object map definition with CComModule: :Init to initialize
the instance. For example, from the CIRCCOLL sample:

BEGIN_OBJECT_MAP(ObjectMap)
OBJECT_ENTRY(ClSID_MyCircleCollectionCreator, CMyCircleCollectionCreator)

END_OBJECT_MAP()

IIDll Entry Point
extern "C"
BOOl WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason, lPVOID l*lpReserved*/)
{

if (dwReason == Dll_PROCESS_ATTACH)
{

_Module.Init(ObjectMap, hInstance);
DisableThreadlibraryCalls(hInstance);

else if (dwReason == Dll_PROCESS_DETACH)
_Module.Term();

return TRUE;

BEGIN_PROPERTY _MAP(theClass)

Parameters
the Class [in] The name of the class containing the property map.

407

Remarks

Example

Marks the beginning of the object's property map. The property map stores property
descriptions, property DISPIDs, property page CLSIDs, and IDispatch liDs. Classes
IPer Property BrowsinglmpI, IPersistProperty BaglmpI, IPersistStreamlnitImpI,
and ISpecifyPropertyPageslmpl use the property map to retrieve and set this
information.

When you create a control with the ATL Object Wizard, the wizard will create an
empty property map by specifying BEGIN_PROPERTY_MAP followed by
END_PROPERTY_MAP.

From the CIRC sample:

BEGIN_PROPERTY_MAP(CCircCtl)
PROP_ENTRY("Caption", DISPID_CAPTION,

CLSID_CCircProps)
PROP_ENTRY("Enabled", DISPID_ENABLED,

CLSID_CCircProps)
PROP_ENTRY("Fore Color", DISPID_FORECOLOR,

CLSID_StockColorPage)
PROP_ENTRY("Back Color", DISPID_BACKCOLOR,

CLSID_StockColorPage)
PROP_ENTRY("Font", DISPID_FONT, CLSID_StockFontPage

END_PROPERTY_MAP()

See Also: PROP_ENTRY, PROP _ENTRY_EX, PROP_PAGE

CHAIN_MSG_MAP(the Chain Class)

Parameters

Remarks

408

theCha in Class [in] The name of the base class containing the message map.

Defines an entry in a message map. CHAIN_MSG_MAP directs messages to a base
class's default message map (declared with BEGIN_MSG_MAP). To direct messages
to a base class's alternate message map (declared with ALT_MSG_MAP), use
CHAIN_MSG_MAP _ALT.

For example:

class CMyClass public CMyBaseClass, ...
{

public:

BEGIN_MSG_MAP(CMyClass)
MESSAGE_HANDLER(WM_PAINT, OnPaint)

} ;

II chain to default message map in CMyBaseClass
CHAIN_MSG_MAPCCMyBaseClass)

AL T _MSG_MAP (1)

II chain to default message map in CMyBaseClass
CHAIN_MSG_MAPCCMyBaseClass)

ALT_MSG_MAP(2)
MESSAGE_HANDLERCWM_CHAR, OnChar)
II chain to alternate message map in CMyBaseClass
CHAIN_MSG_MAP_ALTCCMyBaseClass, 1)

END_MSG_MAP

This example illustrates the following:

• If a window procedure is using C My C 1 ass's default message map and 0 n P a i n t
does not handle a message, the message is directed to CMyBaseCl ass's default
message map for processing.

• If a window procedure is using the first alternate message map in C My C 1 ass,
all messages are directed to CMyBaseCl ass's default message map.

• If a window procedure is using C My C 1 ass's second alternate message map
and 0 n C h a r does not handle a message, the message is directed to the specified
alternate message map in CMyBaseCl ass. CMyBaseCl ass must have declared
this message map with A L T _M S G_MA P (1) .

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance
of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps"
in the article "ATL Window Classes."

See Also: CHAIN_MSG_MAP _MEMBER, CHAIN_MSG_MAP _DYNAMIC,
MESSAGE_HANDLER

CHAIN_MSG_MAP _ALT(theChainClass, msgMapID)

Parameters

Remarks

theChainClass [in] The name of the base class containing the message map.

msgMapID [in] The message map identifier.

Defines an entry in a message map. CHAIN_MSG_MAP _ALT directs messages
to an alternate message map in a base class. You must have declared this alternate

409

message map with ALT_MSG_MAP(msgMapID). To direct messages to a base
class's default message map (declared with BEGIN_MSG_MAP), use
CHAIN_MSG_MAP. For an example, see CHAIN_MSG_MAP.

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance
of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps"
in the article "ATL Window Classes."

See Also: CHAIN_MSG_MAP _ALT_MEMBER,
CHAIN_MSG_MAP _ALT_DYNAMIC

CHAIN_MSG_MAP _ALT_DYNAMIC(dynaChainID, msgMapID)

Parameters

Remarks

410

dynaChainID [in] The unique identifier for an object and its message map.

msgMapID [in] The message map identifier.

Defines an entry in a message map. CHAIN_MSG_MAP _ALT_DYNAMIC directs
messages, at run time, to an alternate message map in another object. You must have
declared this alternate message map with ALT_MSG_MAP(msgMapID).

The chained object and its message map are associated with the dynaChainID value,
which you define through CDynamicChain::SetChainEntry. You must derive your
class from CDynamicChain in order to use
CHAIN_MSG_MAP _ALT_DYNAMIC.

To direct messages at run time to another object's default message map (declared with
BEGIN_MSG_MAP), use CHAIN_MSG_MAP _DYNAMIC. For an example, see
the CDynamicChain overview.

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps" in the
article "ATL Window Classes."

CHAIN_MSG_MAP _ALT_MEMBER(theChainMember, msgMapID}

Parameters

Remarks

theChainMember [in] The name of the data member containing the message map.

msgMapID [in] The message map identifier.

Defines an entry in a message map. CHAIN_MSG_MAP _ALT_MEMBER directs
messages to an alternate message map in a data member. You must have declared this
alternate message map with ALT_MSG_MAP(msgMapID}. To direct messages to
a data member's default message map (declared with BEGIN_MSG_MAP), use
CHAIN_MSG_MAP _MEMBER. For an example, see
CHAIN_MSG_MAP _MEMBER.

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps" in the
article "ATL Window Classes."

CHAIN_MSG_MAP _DYNAMIC (dynaChainID }

Parameters

Remarks

dynaChainID [in] The unique identifier for an object's message map.

Defines an entry in a message map. CHAIN_MSG_MAP _DYNAMIC directs
messages, at run time, to the default message map in another object. The object
and its message map are associated with dynaChainID, which you define
through CDynamicChain::SetChainEntry. You must derive your class from
CDynamicChain in order to use CHAIN_MSG_MAP _DYNAMIC. For an
example, see the CDynamicChain overview.

To direct messages at run time to another object's alternate message map (declared
with ALT_MSG_MAP), use CHAIN_MSG_MAP _ALT_DYNAMIC.

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro

411

marks the end of the message map. Every message map must have exactly one instance
of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps"
in the article "ATL Window Classes."

CHAIN_MSG_MAP _MEMBER(theChainMember)

Parameters

Remarks

412

theChainMember [in] The name of the data member containing the message map.

Defines an entry in a message map. CHAIN_MSG_MAP _MEMBER
directs messages to a data member's default message map (declared with
BEGIN_MSG_MAP). To direct messages to a data member's alternate message map
(declared with ALT_MSG_MAP), use CHAIN_MSG_MAP _ALT_MEMBER.

For example:

class CMyClass
{

public:

} ;

CMyContainedClass m_obj;

BEGIN_MSG_MAP(CMyClass)
MESSAGE_HANDLER(WM_PAINT, OnPaint)
II chain to default message map of m_obj
CHAIN_MSG_MAP_MEMBER(m_obj)

ALT _MSG_MAP(1)

II chain to default message map of m_obj
CHAIN_MSG_MAP(m_obj)

ALT_MSG_MAP(2)
MESSAGE_HANDLER(WM_CHAR, OnChar)
II chain to alternate message map of m_obj
CHAIN_MSG_MAP_ALT(m_obj, 1)

END_MSG_MAP

This example illustrates the following:

• If a window procedure is using C My C 1 ass's default message map and 0 n P a i n t
does not handle a message, the message is directed to m_obj 's default message
map for processing.

• If a window procedure is using the first alternate message map in C My C 1 ass,
all messages are directed to m_obj 's default message map.

• If a window procedure is using CMyC 1 ass's second alternate message map and
On C h a r does not handle a message, the message is directed to the specified
alternate message map of m_obj. Class CMyCon ta in edC 1 ass must have
declared this message map with A L T _M S G_MA P (1) .

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps"
in the article "ATL Window Classes."

See Also: CHAIN_MSG_MAP, CHAIN_MSG_MAP _DYNAMIC,
MESSAGE_HANDLER

COM_INTERFACE_ENTRY Macros
These macros enter an object's interfaces into its COM map so that they can be
accessed by Querylnterface. The order of entries in the COM map is the order
interfaces will be checked for a matching lID during Querylnterface.

Each object that wants to expose its interfaces via Querylnterface must have its
own COM map. The COM map starts with the macro BEGIN_COM_MAP. Interface
entries are added with one or more of the COM_INTERFACE_ENTRY macros,
and the map is completed with the END _COM_MAP macro. For example:

BEGIN_COM_MAP(CMyObject)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(IMyObject)

END_COM_MAP()

See the ATL COMMAP sample online for examples using the different types of
COM map entry macros.

Note that the first entry in the COM map must be an interface on the object
containing the COM map. Thus, you cannot start your COM map entries with
COM_INTERFACE_ENTRY_CHAIN, which causes the COM map of a
different object to be searched at the point where
COM_INTERFACE_ENTRY_CHAIN(COtherObject) appears in your object's
COM map. If you want to search the COM map of another object first, add an
interface entry for IUnknown to your COM map, then chain the other object's
COM map. For example:

413

BEGIN_COM_MAP(CThisObject)
COM_INTERFACE_ENTRY(IUnknown)
COM_INTERFACE_ENTRY_CHAIN(COtherObject)

END_COM_MAP()

The following are the available entry macros:

COM Map Entry Macros

COM_INTERFACE_ENTRY

COM_INTERFACE_ENTRY _lID

COM_INTERF ACE_ENTRY2

COM_INTERFACE_ENTRY2_IID

COM_INTERFACE_ENTRY _IMPL

COM_INTERFACE_ENTRY _IMPL_IID

COM_INTERFACE_ENTRY _FUNC

COM_INTERFACE_ENTRY _FUNC_BLIND

COM_INTERFACE_ENTRY _TEAR_OFF

COM_INTERFACE_ENTRY_CACHED_TEAR_OFF

COM_INTERFACE_ENTRY _AGGREGATE

COM_INTERFACE_ENTRY _AGGREGATE_BLIND

COM_INTERFACE_ENTRY_AUTOAGGREGATE

COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND

COM_INTERFACE_ENTRY _CHAIN

COM_INTERFACE_ENTRY _BREAK

COM_INTERFACE_ENTRY _NOINTERFACE

COM_INTERFACE_ENTRY(x)

Parameters

Remarks

414

x [in] The name of an interface your class object derives from directly.

Typically, this is the entry type you use most often.

For example:

BEGIN_COM_MAP(CThisExample)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(IBaseThisExample)
COM_INTERFACE_ENTRY(ISupportErrorlnfo)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY2(x, x2)

Parameters

Remarks

x [in] The name of an interface you want to expose from your object.

x2 [in] The name of the inheritance branch from which x is exposed.

Use this macro to disambiguate two branches of inheritance. For example, if you
derive your class object from two dual interfaces, you expose IDispatch using
COM_INTERFACE_ENTRY2 since IDispatch can be obtained from either one
of the interfaces.

For example, from the ATL sample COMMAP:

class COuter :
public CChainBase. II CChainBase derives from

II IDispatch
public IDispatchImpl<IOuter. &IID_IOuter.

&LIBID_COMMAPLib».
public CComCoClass<COuter. &CLSID_COuter>

public:

} ;

COuter () {}

BEGIN_COM_MAP(COuter)
COM_INTERFACE_ENTRY2(IDispatch. IOuter)

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY2_IID
COM_INTERFACE_ENTRY2_IID(iid, x, x2)

Parameters
iid [in] The GUID you are specifying for the interface.

x [in] The name of an interface that your class object derives from directly.

x2 [in] The name of a second interface that your class object derives from directly.

Remarks
As COM_INTERFACE_ENTRY2, except you can specify a different IID.

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

415

COM_INTERFACE_ENTRY _AGGREGATE(iid, punk)

Parameters

Remarks

iid [in] The GUID of the interface queried for.

punk [in] The name of an IUnknown pointer.

When the interface identified by iid is queried for,
COM_INTERFACE_ENTRY _AGGREGATE forwards to punk. The punk
parameter is assumed to point to the inner unknown of an aggregate or to NULL,
in which case the entry is ignored. Typically, you would CoCreate the aggregate
in FinalConstruct.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _AGGREGATE_BLIND(punk)

Parameters

Remarks

416

punk [in] The name of an IUnknown pointer.

Same as COM_INTERFACE_ENTRY_AGGREGATE, except that querying for
any IID results in forwarding the query to punk. If the interface query fails, processing
of the COM map continues.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _AUTOAGGREGATE
COM_INTERFACE_ENTRY _AUTOAGGREGATE(iid, punk, clsid)

Parameters

Remarks

iid [in] The GUID of the interface queried for.

punk [in] The name of an IUnknown pointer. Must be a member of the class
containing the COM map.

clsid [in] The identifier of the aggregate that will be created if punk is NULL.

Same as COM_INTERFACE_ENTRY _AGGREGATE, except if punk is NULL, it
automatically creates the aggregate described by the clsid.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)

COM_INTERFACE_ENTRY_AUTOAGGREGATE(IID_IAutoAgg, m_pUnkAutoAgg.p, CLSID_CAutoAgg)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _AUTOAGGREGATE_
BLIND

COM_INTERFACE_ENTRY _AUTOAGGREGATE_BLIND(punk, clsid)

Parameters

Remarks

punk [in] The name of an IUnknown pointer. Must be a member of the class
containing the COM map.

clsid [in] The identifier of the aggregate that will be created if punk is NULL.

Same as COM_INTERFACE_ENTRY_AUTOAGGREGATE, except that
querying for any lID results in forwarding the query to punk, and if punk is NULL,
automatically creating the aggregate described by the clsid. If the interface query fails,
processing of the COM map continues.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)

417

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY_BREAK(x)

Parameters

Remarks

x [in] Text used to construct the interface identifier.

Causes your program to call DebugBreak when the specified interface is queried for.

The interface lID will be constructed by appending x to I IO_. For example, if x is
I Pe rs is tStora ge, the lID will be I I O_I Pers is tStorage.

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _CACHED _TEAR_OFF
COM_INTERFACE_ENTRY _CACHED_TEAR_OFF(iid, x, punk)

Parameters

Remarks

418

iid [in] The GUID of the tear-off interface.

x [in] The name of the class implementing the interface.

punk [in] The name of an IUnknown pointer. Must be a member of the class
containing the COM map. Should be initialized to NULL in the class object's
constructor.

Saves the interface specific data for every instance. If the interface is not used,
this lowers the overall instance size of your object.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)

COM_INTERFACE_ENTRY_CACHED_TEAR_OFF(IID_ITearOff2.
CTearOff2. m_pUnkTearOff2.p)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _CHAIN
COM_INTERFACE_ENTRY_CHAIN(classname)

Parameters

Remarks

classname [in] A base class of the current object.

Processes the COM map of the base class when the processing reaches this entry
in the COM map.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)
COM_INTERFACE_ENTRY2(IDispatch, IOuter)

END_COM_MAP()

Note that the first entry in the COM map must be an interface on the object
containing the COM map. Thus, you cannot start your COM map entries with
COM_INTERFACE_ENTRY_CHAIN, which causes the COM map ofa
different object to be searched at the point where
COM_INTERFACE_ENTRY_CHAIN(COtherObjeet) appears in your object's
COM map. If you want to search the COM map of another object first, add an
interface entry for IUnknown to your COM map, then chain the other object's
COM map. For example:

BEGIN_COM_MAP(CThisObject)
COM_INTERFACE_ENTRY(IUnknown)
COM_INTERFACE_ENTRY_CHAIN(COtherObject)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _FUNC(iid, dw,june)

Parameters

Remarks

iid [in] The GUID of the interface exposed.

dw [in] A parameter passed through to the june.

june [in] The function pointer that will return iid.

A general mechanism for hooking into ATL's Querylnterface logic. If iid matches
the IID of the interface queried for, then the function specified by june is called.

419

The declaration for the function should be:

HRESULT WINAPI func(void* pv, REFIID riid, LPVOID* ppv, DWORD dw):

When your function is called, pv points to your class object. The riid parameter refers
to the interface being queried for, ppv is the pointer to the location where the function
should store the pointer to the interface, and dw is the parameter you specified in the
entry. The function should set *ppv to NULL and return E_NOINTERFACE or
S_FALSE if it chooses not to return an interface. With E_NOINTERFACE, COM
map processing terminates. With S_FALSE, COM map processing continues, even
though no interface pointer was returned. If the function returns an interface pointer,
it should return S_OK.

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _FUNC_BLIND(dw,June)

Parameters

Remarks

dw [in] A parameter passed through to the June.

June [in] The function that gets called when this entry in the COM map is processed.

Same as COM_INTERFACE_ENTRY _FUNC, except that querying for any lID
results in a call to June. Any failure will cause processing to continue on the COM
map. If the function returns an interface pointer, it should return S_OK.

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _lID (iid, x)

Parameters

Remarks

420

iid [in] The OUID of the interface exposed.

x [in] The name of the class whose vtable will be exposed as the interface identified
by iid.

Use this macro to enter the interface into the COM map and specify its lID.

For example:

BEGIN_COM_MAP(CThisExample)
COM_INTERFACE_ENTRY_IID(*piid, CThisExample)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(IBaseThisExample)

COM_INTERFACE_ENTRY(ISupportErrorlnfo)
END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY_IMPL(x)

Parameters

Remarks

x [in] Text used to construct the interface ID and to construct the name of the class
whose vtable entries will be exposed.

Use this macro to construct the interface ID (lID), construct the interface name,
and enter the interface into the COM map.

The lID will be constructed by appending x to I I D_. For example, if x is
I Pers i stStorage, the lID will be II D_I Pers is tStorage.

The class name is constructed by prepending x to Imp 1 and a templatization on the
object exposing the class in its COM map. For example, if x is I Pers i stStorage
and the object exposing the class is CTh is Ct 1, the class will be
IPersistStorageImpl<CThisCtl>.

Use COM_INTERFACE_ENTRY_IMPL to construct a class that has the same
vtable as a needed interface but is templatized on the object exposing that interface
through its COM map. While you can accomplish the same thing by coding
COM_INTERFACE_ENTRY_IID(IID_x, xImpl<CThisCtl»,
COM_INTERFACE_ENTRY _IMPL is more convenient.

For example:

class CCircCtl

public IPersistStreamlnitlmpl<CCircCtl>.
public IPersistStoragelmpl<CCircCtl>.

public:

} ;

COM_INTERFACE_ENTRY_IMPL(IPersistStorage)
COM_INTERFACE_ENTRY_IMPL(IPersistStreamlnit)

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

421

COM_INTERFACE_ENTRY_IMPL_IID(iid, x)

Parameters

Remarks

iid [in] The OUID of the interface exposed.

x [in] Text used to construct the name of the class whose vtable entries will be
exposed.

Use this macro to specify the interface lID, construct the interface name, and enter
the interface into the COM map.

The class name is constructed by appending Imp 1 to x and then appending a
templatization on the object exposing the class in its COM map. For example, if
x is I Pe rs is tSto ra ge and the object exposing the class is CTh is Ct 1, the class
name will be I Per sis t S tor age Imp 1 < C T his C t 1 >.
Use COM_INTERFACE_ENTRY_IMPL_IID to construct a class that has the
same vtable as a needed interface but is templatized on the object exposing that
interface through its COM map. While you can accomplish the same thing by
coding COM_1 NTERFAC E_ENTRY _I 10 (i i d, x1mp 1 <CTh i sCt 1»,
COM_INTERFACE_ENTRY _IMPL_IID is more convenient.

For example:

class CCircCtl

public IPersistPropertyBaglmpl<CCircCtl>,

{

public:

} :

COM_INTERFACE_ENTRY_IMPL_IID(IID_IPersist,
IPersistPropertyBag)

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _NOINTERFACE
COM_INTERFACE_ENTRY _NOINTERFACE(x)

Parameters
x [in] Text used to construct the interface identifier.

422

COMMAND_CODE_HANDLER

Remarks
Returns E_NOINTERFACE and terminates COM map processing when the
specified interface is queried for. You can use this macro to prevent an interface from
being used in a particular case. For example, you can insert this macro into your COM
map right before COM_INTERFACE_ENTRY _AGGREGATE_BLIND to prevent
a query for the interface from being forwarded to the aggregate's inner unknown.

The interface lID will be constructed by appending x to I I D_. For example, if x is
I Per sis t S tor age, the lID will be I I D _ I Per sis t S tor age.

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COM_INTERFACE_ENTRY _TEAR_OFF(iid, x)

Parameters

Remarks

iid [in] The GUID of the tear-off interface.

x [in] The name of the class implementing the interface.

Exposes your tear-off interfaces. A tear-off interface is implemented as a separate
object that is instantiated every time the interface it represents is queried for.
Typically, you build your interface as a tear-off if the interface is rarely used, since
this saves a vtable pointer in every instance of your main object. The tear-off is
deleted when its reference count becomes zero. The class implementing the tear-off
should be derived from CComTearOffObjectBase and have its own COM map.

For example, from the ATL sample COMMAP:

BEGIN_COM_MAP(COuter)

END_COM_MAP()

See COM_INTERFACE_ENTRY Macros for remarks about COM map entries.

COMMAND_CODE_HANDLER
COMMAND_CODE_HANDLER(code,junc)

Parameters
code [in] The notification code.

June [in] The name of the message-handler function.

423

COMMAND_HANDLER

Remarks
Similar to COMMAND_HANDLER, but maps a WM_COMMAND message
based only on the notification code.

See Also: COMMAND_ID_HANDLER, COMMAND_RANGE_HANDLER,
MESSAGE_HANDLER, NOTIFY _CODE_HANDLER

COMMAND _HANDLER
COMMAND_HANDLER(id, code,junc)

Parameters

Remarks

424

id [in] The identifier of the menu item, control, or accelerator.

code [in] The notification code.

June [in] The name of the message-handler function.

Defines an entry in a message map. COMMAND_HANDLER maps a
WM_ COMMAND message to the specified handler function, based on the
notification code and the control identifier. For example:

class CMyClass
{

public:

} ;

BEGIN_MSG_MAP(CMyClass)
COMMAND_HANDLER(IDC_MYCTL, EN_CHANGE, OnChange)

II When a CMyClass object receives a WM_COMMAND
II message identified by IDC_MYCTL and EN_CHANGE,
II the message is directed to CMyClass: :OnChange
II for the actual processing.
LRESUL T OnChange (...)
{ ... }

Any function specified in a COMMAND_HANDLER macro must defined as
follows:

LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND hWndCtl,
BOOL& bHandled);

The message map sets bHandl ed to TRUE before CommandHandl er is called.
If CommandHandl er does not fully handle the message, it should set bHandl ed
to FALSE to indicate the message needs further processing.

COMMAND_RANGE_HANDLER

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

In addition to COMMAND_HANDLER, you can use MESSAGE_HANDLER to
map a WM_COMMAND message without regard to an identifier or code. In this
case, MESSAGE_HANDLER(WM_COMMAND, OnHandl erFunct ion) will direct all
WM_COMMAND messages to OnHandl erFuncti on.

For more information about using message maps in ATL, see "Message Maps" in the
article "ATL Window Classes."

See Also: COMMAND_ID_HANDLER, COMMAND_CODE_HANDLER,
COMMAND_RANGE_HANDLER, NOTIFY_HANDLER

COMMAND _ID _HANDLER
COMMAND_ID_HANDLER(id,june)

Parameters

Remarks

id [in] The identifier of the menu item, control, or accelerator sending the message.

jUlle [in] The name of the message-handler function.

Similar to COMMAND_HANDLER, but maps a WM_COMMAND message based
only on the identifier of the menu item, control, or accelerator.

See Also: COMMAND_CODE_HANDLER,
COMMAND_RANGE_HANDLER, MESSAGE_HANDLER,
NOTIFY _ID _HANDLER

COMMAND_RANGE_HANDLER
COMMAND_RANGE_HANDLER(idFirst, idLast,june)

Parameters

Remarks

idFirst [in] Marks the beginning of a contiguous range of WM_COMMAND
messages.

idLast [in] Marks the end of a contiguous range of WM_COMMAND messages.

fime [in] The name of the message-handler function.

Similar to COMMAND_HANDLER, but maps a range of WM_COMMAND
messages to a single handler function. This range is based on the identifier of the
menu item, control, or accelerator sending the message.

425

See Also: COMMAND_ID_HANDLER, COMMAND_CODE_HANDLER,
MESSAGE_RANGE_HANDLER, NOTIFY _RANGE_HANDLER

CONNECTION_POINT _ENTRY
CONNECTION_POINT_ENTRY(iid)

Parameters

Remarks

iid [in] The GUID of the interface being added to the connection point map.

Enters a connection point for the specified interface into the connection point
map so that it can be accessed. Connection point entries in the map are used by
IConnectionPointContainerImpl. The class containing the connection point
map must inherit from IConnectionPointContainerImpl. For example:

class CMyCPClass :
public IConnectionPointContainerImpl.
public IPropertyNotifySinkImpl(CMyCPClass>

public:

} ;

BEGIN_CONNECTION_POINT_MAP(CMyCPClass)
CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)

END_CONNECTION_POINT_MAP()

Start your connection point map with the BEGIN_CONNECTION_POINT_MAP
macro, add entries for each of your connection points with the
CONNECTION_POINT_ENTRY macro, and complete the map with the
END_CONNECTION_POINT_MAP macro.

For more information about connection points in ATL, see the article
"Connection Points."

DECLARE_AGGREGATABLE
DECLARE_AGGREGATABLE(x)

Parameters

Remarks

426

x [in] The name of the class you are defining as aggregatable.

Specifies that your object can be aggregated. CComCoClass contains this
macro to specify the default aggregation model. To override this default,
specify either the DECLARE_NOT_AGGREGATABLE or

DECLARE_CLASSFACTORY2

DECLARE_ONLY_AGGREGATABLE macro in your class definition.
For example:

class CMyClass : public CComCoClass< .. > •...
{

public:
DECLARE_NOT_AGGREGATABLE(CMyClass)

} :

DECLARE_CLASSFACTORY

Remarks

DECLARE_CLASSFACTORY()

Declares CComClassFactory to be the class factory. CComCoClass uses this macro
to declare the default class factory for your object.

See Also: DECLARE_CLASSFACTORY_EX, DECLARE_CLASSFACTORY2,
DECLARE_ CLASSFA CTORY _AUTO_THREAD,
DECLARE_CLASSFACTORY_SINGLETON

DECLARE_CLASSFACTORY2
DECLARE_CLASSFACTORY2(lie)

Parameters

Remarks

lie [in] A class that implements VerifyLicenseKey, GetLicenseKey, and
Is License Valid.

Declares CComClassFactory2 to be the class factory. For example:

class CMyClass : ...• public CComCoClass< ... >
{

DECLARE_CLASSFACTORY2(CMyLicense)

} :

CComCoClass includes the DECLARE_CLASSFACTORY macro, which
specifies CComClassFactory as the default class factory. However, by including
the DECLARE_CLASSFACTORY2 macro in your object's class definition,
you override this default.

See Also: DECLARE_CLASSFACTORY_EX,
DECLARE_CLASSFACTORY_AUTO_THREAD,
DECLARE_ CLASSFACTORY _SINGLETON

427

Remarks

DECLARE_ CLASSFACTORY _AUTO _THREAD()

Declares CComClassFactory AutoThread to be the class factory. For example:

class CMyClass : ...• public CComCoClass< ... >
{

} ;

CComCoClass includes the DECLARE_CLASSFACTORY macro, which
specifies CComClassFactory as the default class factory. However, by including
the DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's
class definition, you override this default.

See Also: DECLARE_CLASSFACTORY_EX, DECLARE_CLASSFACTORY2,
DECLARE_ CLASSFACTORY _SINGLETON

DECLARE_CLASSFACTORY_EX(q)

Parameters

Remarks

428

ef [in] The name of the class that implements your class factory object.

Declares efto be the class factory. efmust derive from CComClassFactory and
override the CreateInstance method. For example:

class CMyClass : ...• public CComCoClass< ... >
{

DECLARE_CLASSFACTORY_EX(CMyClassFactory)

} ;

CComCoClass includes the DECLARE_CLASSFACTORY macro, which
specifies CComClassFactory as the default class factory. However, by including
the DECLARE_CLASSFACTORY_EX macro in your object's class definition,
you override this default.

See Also: DECLARE_CLASSFACTORY2,
DECLARE_CLASSFACTORY_AUTO_THREAD,
DECLARE_ CLASSFACTORY _SINGLETON

DECLARE_ CLASSFACTORY _SINGLETON
DECLARE_CLASSFACTORY_SINGLETON(obj)

Parameters

Remarks

obj [in] The name of your class object.

Declares CComClassFactorySingleton to be the class factory. For example:

class CMyClass : ...• public CComCoClass< ... >
{

DECLARE_CLASSFACTORY_SINGLETON(CMyClass)

} ;

CComCoClass includes the DECLARE_CLASSFACTORY macro, which
specifies CComClassFactory as the default class factory. However, by including
the DECLARE_CLASSFACTORY_SINGLETON macro in your object's class
definition, you override this default.

See Also: DECLARE_CLASSFACTORY2, DECLARE_CLASSFACTORY_EX,
DECLARE_CLASSFACTORY_AUTO_THREAD

DECLARE_GET _CONTROLLING_UNKNOWN

Remarks
Declares a virtual function GetControllingUnknown. Add this macro to your object
if you get the compiler error message that GetControllingUnknown is undefined
(for example, in CComAggregateCreator).

See Also: DECLARE_AGGREGATABLE

DECLARE_NO_REGISTRY

Remarks
Use DECLARE_NO_REGISTRY if you want to avoid any default ATL registration
for the class in which this macro appears.

See Also: DECLARE_REGISTRY, DECLARE_REGISTRY_RESOURCE,
DECLARE_REGISTRY _RESOURCEID

429

DECLARE_NOT_AGGREGATABLE(x)

Parameters

Remarks

x [in] The name of the class object you are defining as not aggregatable.

Specifies that your object cannot be aggregated.
DECLARE_NOT_AGGREGATABLE causes CreateInstance to return an error
(CLASS_E_NOAGGREGATION) if an attempt is made to aggregate onto your
object.

By default, CComCoClass contains the DECLARE_AGGREGATABLE macro,
which specifies that your object can be aggregated. To override this default behavior,
include DECLARE_NOT_AGGREGATABLE in your class definition. For
example:

class CMyClass : public CComCoClass< .. > •...
{

public:
DECLARE_NOT_AGGREGATABLE(CMyClass)

} :

See Also: DECLARE_ONLY_AGGREGATABLE

DECLARE_ OBJECT_DESCRIPTION
DECLARE_OBJECT_DESCRIPTION(x)

Parameters

Remarks

430

x [in] The class object's description.

Allows you to specify a text description for your class object. ATL enters this
description into the object map through the OBJECT_ENTRY macro.

DECLARE_ OBJECT_DESCRIPTION implements a GetObjectDescription
function, which you can use to override the CComCoClass::GetObjectDescription
method. For example:

class CMyClass : public CComCoClass< ... >
{

public:

} :

II Override CComCoClass::GetObjectDescription
DECLARE_OBJECT_DESCRIPTION("Account Transfer Object 1.0")

The GetObjectDescription function is called by
IComponentRegistrar::GetComponents. IComponentRegistrar is an Automation
interface that allows you to register and unregister individual components in a DLL.
When you create a Component Registrar object with the ATL Object Wizard, the
wizard will automatically implement the IComponentRegistrar interface.
IComponentRegistrar is typically used by Microsoft Transaction Server.

For more information about the ATL Object Wizard, see the article "Creating an
ATL Project."

DECLARE_ONLY_AGGREGATABLE
DECLARE_ONLY _AGGREGATABLE(x)

Parameters

Remarks

x [in] The name of the class object you are defining as only aggregatable.

Specifies that your object must be aggregated.
DECLARE_ONLY_AGGREGATABLE causes an error (E_FAIL) if an attempt
is made to CoCreate your object as nonaggregated object.

By default, CComCoClass contains the DECLARE_AGGREGATABLE macro,
which specifies that your object can be aggregated. To override this default behavior,
include DECLARE_ONLY_AGGREGATABLE in your class definition. For
example:

class CMyClass : public CComCoClass< .. > •...
{

public:
DECLARE_ONLY_AGGREGATABLE(CMyClass)

} ;

See Also: DECLARE_NOT_AGGREGATABLE

DECLARE_POLY_AGGREGATABLE
DECLARE_POLY_AGGREGATABLE(x)

Parameters

Remarks

x [in] The name of the class object you are defining as aggregatable or not
aggregatable.

Specifies that an instance of CComPolyObject < x > is created when your object is
created. During creation, the value of the outer unknown is checked. If it is NULL,

431

IUnknown is implemented for a nonaggregated object. If the outer unknown is
not NULL, IUnknown is implemented for an aggregated object.

The advantage of using DECLARE_POLY _AGGREGATABLE is that you
avoid having both CComAggObject and CComObject in your module to handle
the aggregated and nonaggregated cases. A single CComPolyObject object handles
both cases. This means only one copy of the vtable and one copy of the functions
exist in your module. If your vtable is large, this can substantially decrease your
module size. However, if your vtable is small, using CComPolyObject can result
in a slightly larger module size because it is not optimized for an aggregated or
nonaggregated object, as are CComAggObject and CComObject.

The DECLARE_POLY _AGGREGATABLE macro is automatically declared in
your object if you use the ATL Object Wizard to create a full control or Internet
Explorer control.

See Also: CComPolyObject, CComAggObject, CComObject

DECLARE_PROTECT_FINAL_CONSTRUCT

Remarks

DECLARE_PROTECT_FINAL_ CONSTRUCT()

Protects your object from being deleted if (during FinalConstruct) the internal
aggregated object increments the reference count then decrements the count to O.

DECLARE_REGISTRY
DECLARE_REGISTRY(class, pid, vpid, nid,flags)

Parameters

Remarks

432

class [in] Included for backward compatibility.

pid [in] An LPCTSTR that is a version-specific program identifier.

vpid [in] An LPCTSTR that is a version-independent program identifier.

nid [in] A UINT that is an index of the resource string in the registry to use as
the description of the program.

flags [in] A DWORD containing the program's threading model in the registry.
Must be one of the following values: THREADFLAGS_APARTMENT,
THREADFLAGS_BOTH, or AUTPRXFLAG.

Enters the standard class registration into the system registry or removes it from
the system registry. The standard registration consists of the CLSID,·the program ID,
the version-independent program ID, description string, and the thread model.

DECLARE_REGISTRY_RESOURCE

When you create an object or control using the ATL Object Wizard, the
wizard automatically implements script-based registry support and adds the
DECLARE_REGISTRY _RESOURCEID macro to your files. If you do
not want script-based registry support, you need to replace this macro with
DECLARE_REGISTRY. DECLARE_REGISTRY only inserts the five
basic keys described above into the registry. You must manually write code
to insert other keys into the registry.

See Also: DECLARE_REGISTRY_RESOURCE

DECLARE_REGISTRY _RESOURCE
DECLARE_REGISTRY _RESOURCE(x)

Parameters

Remarks

x [in] String identifier of your resource.

Gets the named resource containing the registry file and runs the script to
either enter objects into the system registry or remove them from the system
registry.

When you create an object or control using the ATL Object Wizard, the
wizard will automatically implement script-based registry support and add
the DECLARE_REGISTRY_RESOURCEID macro, which is similar to
DECLARE_REGISTRY _RESOURCE, to your files.

You can statically link with the ATL Registry Component (Registrar) for
optimized registry access. To statically link to the Registrar code, add /ldefi ne
_AT L_ST AT I C_REG 1ST RY to your stdafx.h.

If you want ATL to substitute replacement values at run time, do not specify the
DECLARE_REGISTRY_RESOURCE or
DECLARE_REGISTRY _RESOURCEID macro. Instead, create an array of
_ATL_REGMAP _ENTRIES structures, where each entry contains a variable
placeholder paired with a value to replace the placeholder at run time. Then call
CComModule:: UpdateRegistryFromResourceD or
CComModule::UpdateRegistryFromResourceS, passing the array. This adds
all the replacement values in the _ATL_REGMAP _ENTRIES structures to the
Registrar's replacement map.

For more information about replaceable parameters and scripting, see the article
"The ATL Registry Component (Registrar)."

See Also: DECLARE_REGISTRY

433

DECLARE_REGISTRY _RESOURCEID

DECLARE_REGISTRY _RESOURCEID
DECLARE_REGISTRY _RESOURCEID(x)

Parameters

Remarks

x [in] Wizard-generated identifier of your resource.

Same as DECLARE_REGISTRY _RESOURCE except that it uses a
Wizard-generated UINT to identify the resource, rather than a string name.

When you create an object or control using the ATL Object Wizard, the wizard
will automatically implement script-based registry support and add the
DECLARE_REGISTRY _RESOURCEID macro to your files.

You can statically link with the ATL Registry Component (Registrar) for
optimized registry access. To statically link to the Registrar code, add #defi ne
_ATl_STATIC_REGISTRY to your stdafx.h.

If you want ATL to substitute replacement values at run time, do not specify the
DECLARE_REGISTRY_RESOURCE or
DECLARE_REGISTRY _RESOURCEID macro. Instead, create an array of
_ATL_REGMAP _ENTRIES structures, where each entry contains a variable
placeholder paired with a value to replace the placeholder at run time. Then call
CComModule:: UpdateRegistryFromResourceD or
CComModule::UpdateRegistryFromResourceS, passing the array. This adds
all the replacement values in the _ATL_REGMAP _ENTRIES structures to the
Registrar's replacement map.

For more information about replaceable parameters and scripting, see the article
"The ATL Registry Component (Registrar)."

See Also: DECLARE_REGISTRY, DECLARE_REGISTRY_RESOURCE

DECLARE_ WND_CLASS
DECLARE_ WND_CLASS(WndClassName)

Parameters

Remarks

434

WndClassName [in] The name of the new window class. If NULL, ATL will
generate a window class name.

Allows you to specify the name of a new window class, whose information will be
managed by CWndClasslnfo. DECLARE_WND_CLASS defines the new window
class by implementing the following static function:

static CWndClasslnfo& GetWndClasslnfo();

CWindowlmpl uses the DECLARE_ WND_CLASS macro to create a
window based on a new window class. To override this behavior, use the
DECLARE_ WND_SUPERCLASS macro or provide your own implementation
of the GetWndClasslnfo function.

For more information about using windows in ATL, see the article "ATL Window
Classes."

DECLARE_ WND_SUPERCLASS
DECLARE_ WND_SUPERCLASS(WndClassName, OrigWndClassName)

Parameters

Remarks

Remarks

WndClassName [in] The name of the window class that will superclass
OrigWndClassName. If NULL, ATL will generate a window class name.

Orig WndClassName [in] The name of an existing window class.

Allows you to specify the name of a window class that will superclass an existing
window class. CWndClasslnfo manages the information of the superclass.

DECLARE_ WND_SUPERCLASS implements the following static function:

static CWndClassInfo& GetWndClassInfo();

By default, CWindowlmpl uses the DECLARE_WND_CLASS macro to
create a window based on a new window class. By specifying the
DECLARE_ WND_SUPERCLASS macro in a CWindowlmpl-derived class,
the window class will be based on an existing class but will use your window
procedure. This technique is called superclassing.

Besides using the DECLARE_ WND _ CLASS and
DECLARE_WND_SUPERCLASS macros, you can override the GetWndClasslnfo
function with your own implementation.

For more information about superclassing, see "Window Procedure Superclassing"
in the Win32 SDK online. For more information about using windows in ATL, see
the article "ATL Window Classes."

END_COM_MAP()

Ends the definition of your COM interface map.

See Also: BEGIN_CaM_MAP, COM_INTERFACE_ENTRY

435

Remarks

Remarks

436

Marks the end of the connection point map entries. Start your connection point map
with the BEGIN_CONNECTION_POINT_MAP macro, add entries for each of
your connection points with the CONNECTION_POINT_ENTRY macro, and
complete the map with the END_CONNECTION_POINT_MAP macro.

For example:

BEGIN_CONNECTION_POINT_MAP(CMyCPClass)
CONNECTION_POINT_ENTRY(m_cplnterfaceBeingExposed)

END_CONNECTION_POINT_MAP()

For more information about connection points in ATL, see the article "Connection
Points."

Marks the end of a message map. Always use the BEGIN_MSG_MAP macro to
mark the beginning of a message map. Use ALT_MSG_MAP to declare subsequent
alternate message maps. The following example shows the default message map and
one alternate message map, each containing one handler function:

BEGIN_MSG_MAP(CMyClass)
MESSAGE_HANDLER(WM_PAINT. OnPaint)

AL T _MSG_MAP (1)

MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)
END_MSG_MAP

The next example shows two alternate message maps. The default message map
is empty.

BEGIN_MSG_MAP(CMyClass)
ALT_MSG_MAP(l)

MESSAGE_HANDLER(WM_PAINT. OnPaint)
MESSAGE_HANDLER(WM_SETFOCUS. OnSetFocus)

ALT_MSG_MAP(2)
MESSAGE_HANDLER(WM_CREATE. OnCreate)

END_MSG_MAP

Note that there is always exactly one instance of BEGIN_MSG_MAP and
END_MSG_MAP.

For more information about using message maps in ATL, see "Message Maps"
in the article "ATL Window Classes."

IMPLEMENT_BOOL_STOCKPROP

END _OBJECT_MAP

Remarks

END_OBJECT_MAP()

Marks the end of the map of ATL objects. When CComModule: : RegisterServer
is called, it updates the system registry for each object in the object map.

Start your object map with the BEGIN_OBJECT_MAP macro, add entries for
each object with the OBJECT_ENTRY macro, and complete the map with the
END _OBJECT_MAP macro.

END _PROPERTY _MAP

Remarks

Example

Marks the end of the object's property map. When you create a control with the
ATL Object Wizard, the wizard will create an empty property map by specifying
BEGIN_PROPERTY_MAP followed by END_PROPERTY_MAP.

See BEGIN_PROPERTY_MAP.

See Also: PROP_ENTRY, PROP _ENTRY_EX, PROP_PAGE

IMPLEMENT_BOOL_STOCKPROP
IMPLEMENT _BOOL_STOCKPROP(fname, pname, dispid)

Parameters

Remarks

fname [in] Name used to create the names of the put and get methods.

pname [in] Name used to create the name of the data member that stores the
property value.

dispid [in] The DISPID of the property.

Implements stock properties that are boolean values. Same as the
IMPLEMENT_STOCKPROP macro except that the get method tests the value
of the data member containing the property and returns VARIANT_TRUE or
VARIANT_FALSE rather than returning the value. This lets containers that do not
interpret all non-zero values as TRUE to use the property. Standard stock properties
that are boolean values are Auto Size, Border Visible, Enabled, Tab Stop, and
Valid.

437

IMPLEMENT_BOOL_STOCKPROP creates a data member in your control class
for a property, creates a put and get method for the property, and adds code to notify
and synchronize with the container if the property changes.

The put and get method names are created by appendingjhame to put_ and get_.
For example, ifjhame is Enabl ed, the method names are put_Enabl ed and
get_Enabl ed.

The data member name is created by appending pname to m_. For example, if pname
is bEn ab 1 ed, the data member is m_b En ab 1 ed.

See Also: CStockProplmpl, IMPLEMENT_BSTR_STOCKPROP,
IMPLEMENT_STOCKPROP, CComControl::m_bEnabled,
CComControl: :m_bAutoSize, CComControl: :m_bBorderVisible,
CComControl: :m_bTabStop, CComControl: :m_b Valid

IMPLEMENT_BSTR_STOCKPROP(!name, pname, dispid)

Parameters

Remarks

438

jhame [in] Name used to create the names of the put and get methods.

pname [in] Name used to create the name of the data member that stores the
property value.

dispid [in] The DISPID of the property.

Implements text stock properties. Allocates a BSTR data member in your control
class and copies pname into the data member. Creates a put and get method for the
property, and adds code to notify and synchronize with the container if the property
changes. Standard BSTR stock properties are Caption and Text.

The put and get method names are created by appendingjhame to put_ and get_.
For example, ifjhame is Ca pt i on, the method names are put_Ca pt i on and
get_Capti on.

The data member name is created by appending pname to m_. For example, if pname
is bstrCapti on, the data member is m_bstrCapti on.

See Also: CStockProplmpl,IMPLEMENT_STOCKPROP,
IMPLEMENT_BOOL_STOCKPROP, CComControl: :m_bstrCaption,
CComControl: :m_bstrText

MESSAGE_HANDLER

IMPLEMENT_STOCKPROP
IMPLEMENT_STOCKPROP(type,jname, pname, dispid)

Parameters

Remarks

type [in] The data type of the property.

jname [in] Name used to create the names of the put and get methods.

pname [in] Name used to create the name of the data member that stores the
property value.

dispid [in] The DISPID of the property.

Creates a data member in your control class for a property, creates a put and get
method for the property, and adds code to notify and synchronize with the container
if the property changes.

The put and get method names are created by appendingjname to put_ and get_.
For example, ifjname is BorderWi dth, the method names are put_BorderWi dth
and get_BorderWi dth.

The data member name is created by appending pname to m_. For example, if pname
is nBorderWi dth, the data member is m_nBorderWi dth.

For text stock properties, use the IMPLEMENT_BSTR_STOCKPROP macro
because it will automatically allocate a new string and copy the passed text into it.
For boolean stock properties, use the IMPLEMENT_BOOL_STOCKPROP macro.

See Also: CStockProplmpl

MESSAGE_HANDLER
MESSAGE_HANDLER(msg,june)

Parameters

Remarks

msg [in] The Windows message.

June [in] The name of the message-handler function.

Defines an entry in a message map. MESSAGE_HANDLER maps a Windows
message to the specified handler function. For example:

class CMyClass
{

public:

439

} ;

BEGIN_MSG_MAP(CMyClass)
MESSAGE_HANDLER(WM_PAINT, OnPaint)

II When a CMyClass object receives a WM PAINT
II message, the message is directed to
II CMyClass::OnPaint for the actual processing.
LRESULT OnPaint(...)
{ ... }

Any function specified in a MESSAGE_HANDLER macro must defined as follows:

LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled);

The message map sets bHandl ed to TRUE before MessageHandl er is called. If
MessageHandl er does not fully handle the message, it should set bHandl ed to
FALSE to indicate the message needs further processing.

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

In addition to MESSAGE_HANDLER, you can use COMMAND_HANDLER and
NOTIFY_HANDLER to map WM_COMMAND and WM_NOTIFY messages,
respectively.

For more information about using message maps in ATL, see "Message Maps" in the
article "ATL Window Classes."

See Also: MESSAGE_RANGE_HANDLER

MESSAGE_RANGE_HANDLER(msgFirst, msgLast,June)

Parameters

Remarks

440

msgFirst [in] Marks the beginning of a contiguous range of messages.

msgLast [in] Marks the end of a contiguous range of messages.

June [in] The name of the message-handler function.

Similar to MESSAGE_HANDLER, but maps a range of Windows messages to a
single handler function.

See Also: COMMAND_RANGE_HANDLER, NOTIFY_RANGE_HANDLER

NOTIFY_HANDLER

NOTIFY _CODE_HANDLER(cd,jullc)

Parameters

Remarks

cd [in] The notification code.

ftmc [in] The name of the message-handler function.

Similar to NOTIFY_HANDLER, but maps a WM_NOTIFY message based only on
the notification code.

See Also: NOTIFY _ID _HANDLER, NOTIFY _RANGE_HANDLER,
COMMAND_CODE_HANDLER, MESSAGE_HANDLER

NOTIFY _HANDLER
NOTIFY _HANDLER(id, cd,Junc)

Parameters

Remarks

id [in] The identifier of the control sending the message.

code [in] The notification code.

JUIlC [in] The name of the message-handler function.

Defines an entry in a message map. NOTIFY_HANDLER maps a WM_NOTIFY
message to the specified handler function, based on the notification code and the
control identifier. For example:

class CMyClass
(

public:

} ;

BEGIN_MSG_MAP(CMyClass)
NOTIFY_HANDLER(IDC_MYCTL. NM_CLICK. OnClick)

II When a CMyClass object receives a WM NOTIFY
II message identified by IDC_MYCTL and NM_CLICK.
II the message is directed to CMyClass: :OnClick
II for the actual processing.
LRESULT OnClick(...)
{ ... }

441

Any function specified in a NOTIFY_HANDLER macro must defined as follows:

LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL& bHandled);

The message map sets bHandl ed to TRUE before Not i fyHandl er is called. If
Not i fyHandl er does not fully handle the message, it should set bHandl ed to
FALSE to indicate the message needs further processing.

Note Always begin a message map with BEGIN_MSG_MAP. You can then declare
subsequent alternate message maps with ALT_MSG_MAP. The END_MSG_MAP macro
marks the end of the message map. Every message map must have exactly one instance
of BEGIN_MSG_MAP and END_MSG_MAP.

In addition to NOTIFY_HANDLER, you can use MESSAGE_HANDLER to
map a WM_NOTIFY message without regard to an identifier or code. In this
case, MESSAGE_HANDLER(WM_NOTI FY, OnHandl erFuncti on) will direct all
WM_NOTIFY messages to OnHandl erFuncti on.

For more information about using message maps in ATL, see "Message Maps" in
the article "ATL Window Classes."

See Also: NOTIFY _ID_HANDLER, NOTIFY _CODE_HANDLER,
NOTIFY _RANGE_HANDLER, COMMAND_HANDLER

NOTIFY _ID _HANDLER
NOTIFY_ID_HANDLER(id,june)

Parameters

Remarks

id [in] The identifier of the control sending the message.

june [in] The name of the message-handler function.

Similar to NOTIFY_HANDLER, but maps a WM_NOTIFY message based only
on the control identifier.

See Also: NOTIFY_CODE_HANDLER, NOTIFY_RANGE_HANDLER,
COMMAND_ID_HANDLER, MESSAGE_HANDLER

NOTIFY _RANGE_HANDLER
NOTIFY _RANGE_HANDLER(idFirst, idLast,june)

Parameters
idFirst [in] Marks the beginning of a contiguous range of WM_NOTIFY messages.

idLast [in] Marks the end of a contiguous range of WM_NOTIFY messages.

june [in] The name of the message-handler function.

442

Remarks
Similar to NOTIFY_HANDLER, but maps a range of WM_NOTIFY messages to
a single handler function. This range is based on the identifier of the control sending
the message.

See Also: NOTIFY _ID_HANDLER, NOTIFY _CODE_HANDLER,
COMMAND_RANGE_HANDLER, MESSAGE_RANGE_HANDLER

OBJECT_ENTRY
OBJECT_ENTRY(clsid, class)

Parameters

Remarks

clsid [in] The CLSID of the ATL object to be entered into the object map.

class [in] The name of the class of the ATL object.

Enters the function pointers of the creator class and class-factory creator class
CreateInstance functions for this object into the ATL object map. When
CComModule: : RegisterServer is called, it updates the system registry for
each object in the object map.

Start your object map with the BEGIN_OBJECT_MAP macro, add entries for
each object with the OBJECT_ENTRY macro, and complete the map with the
END_OBJECT_MAP macro.

See Also: DECLARE_OBJECT_DESCRIPTION

PROP_ENTRY
PROP _ENTRY(szDesc, dispid, clsid)

Parameters

Remarks

szDesc [in] The property description.

dispid [in] The property's DISPID.

clsid [in] The CLSID of the associated property page.

Use this macro to enter a property description, property DISPID, and property page
CLSID into the object's property map. The BEGIN_PROPERTY_MAP macro
marks the beginning of the property map; the END _PROPERTY _MAP macro
marks the end.

443

Example
See BEGIN_PROPERTY_MAP.

See Also: PROP _ENTRY_EX, PROP_PAGE

PROP _ENTRY _EX(szDesc, dispid, clsid, iidDispatch)

Parameters

Remarks

Example

szDesc [in] The property description.

dispid [in] The property's DISPID.

clsid [in] The CLSID of the associated property page.

iidDispatch [in] The IID of the dual interface defining the property.

Similar to PROP_ENTRY, but allows you specify a particular IID if your object
supports multiple dual interfaces.

The BEGIN_PROPERTY _MAP macro marks the beginning of the property map;
the END_PROPERTY_MAP macro marks the end.

The following example groups entries for I My 0 u a 11 followed by an entry for
I MyDua 12. Grouping by dual interface will improve performance.

BEGIN_PROPERTY_MAP(CMyClass)
PROP_ENTRY_EX("Caption", DISPID_CAPTION,

CLSID_CMyProps, IID_IMyDuall
PROP_ENTRY_EX("Enabled", DISPID_ENABLED,

CLSID_CMyProps, IID_IMyDuall
PROP_ENTRY_EX("Width", DISPID_WIDTH,

CLSID_CMyProps, IID_IMyDua12
END_PROPERTY_MAP()

See Also: PROP_PAGE

PROP_PAGE
PROP _PAGE(clsid)

Parameters

Remarks

444

clsid [in] The CLSID of a property page.

Use this macro to enter a property page CLSID into the object's property map.
PROP_PAGE is similar to PROP_ENTRY, but does not require a property
description or DISPID.

Example

Note If you have already entered a ClSID with PROP_ENTRY or PROP _ENTRY_EX,
you do not need to make an additional entry with PROP_PAGE.

String Conversion Macros

The BEGIN_PROPERTY _MAP macro marks the beginning of the property map;
the END_PROPERTY_MAP macro marks the end.

BEGIN_PROPERTY_MAP(CMyClass)
PROP_PAGE(CLSID_CMyClassPropPagel
PROP_PAGE(CLSID_CMyClassPropPage2

END_PROPERTY_MAP()

String Conversion Macros
The syntax of the ATL string-conversion macros is:

MACRONAME(string_address)

For example:

A2W(/pa)

In the macro names, the source string type is on the left (for example, A) and
the destination string type is on the right (for example, W). A stands for LPSTR,
OLE stands for LPOLESTR, T stands for LPTSTR, and W stands for LPWSTR.

Thus, A2W converts an LPSTR to an LPWSTR, OLE2T converts an LPOLESTR
to an LPTSTR, and so on.

The destination string is created using _alloca, except when the destination type is
BSTR. Using _alloca allocates memory off the stack, so that when your function
returns, it is automatically cleaned up.

If there is a C in the macro name, the macro converts to a const string. For example,
W2CA converts an LPWSTR to an LPCSTR.

Note When using an ATl string conversion macro, specify the USES_CONVERSION macro
at the beginning of your function in order to avoid compiler errors. For example:
void func(LPSTR lpsz)
{

USES_CONVERSION;

LPWSTR x - A2W(lpsz)
II Do something with x

The behavior of the ATL string conversion macros depends on the compiler directive
in effect, if any. If the source and destination types are the same, no conversion
takes place.

445

DEVMODE and TEXTMETRIC String Conversion Macros

Compiler directives change T and OLE as follows:

Compiler directive in effect T becomes

none A

_UNICODE W

OLE2ANSI A

UNICODE and OLE2ANSI W -

The following table lists the ATL string conversion macros.

ATl String Conversion Macros

A2BSTR

A2COLE

A2CT

A2CW

A20LE

A2T

A2W

OLE2A

OLE2BSTR

OLE2CA

OLE2CT

OLE2CW

OLE2T

OLE2W

T2A

T2BSTR

T2CA

T2COLE

T2CW

T20LE

T2W

OLE becomes

W

W

A

A

W2A

W2BSTR

W2CA

W2COLE

W2CT

W20LE

W2T

See Also: DEVMODE and TEXTMETRIC String Conversion Macros

DEVMODE and TEXTMETRIC String Conversion
Macros

446

These macros create a copy of a DEVMODE or TEXTMETRIC structure and
convert the strings within the new structure to a new string type. The macros allocate
memory on the stack for the new structure and return a pointer to the new structure.

The syntax is:

MACRONAME(address_oI_structure)

For example:

DEVMODEA2W(lpa)

and

TEXTMETRICA2W(lptma)

In the macro names, the string type in the source structure is on the left (for example,
A) and the string type in the destination structure is on the right (for example, W).
A stands for LPSTR, OLE stands for LPOLESTR, T stands for LPTSTR, and
W stands for LPWSTR.

DEVMODE and TEXTMETRIC String Conversion Macros

Thus, DEVMODEA2W copies a DEVMODE structure with LPSTR strings into
a DEVMODE structure with LPWSTR strings, TEXTMETRICOLE2T copies a
TEXTMETRIC structure with LPOLESTR strings into a TEXTMETRIC structure
with LPTSTR strings, and so on.

The two strings converted in the DEVMODE structure are the device name
(dmDeviceName) and the form name (dmFormName). The DEVMODE string
conversion macros also update the structure size (dmSize).

The four strings converted in the TEXTMETRIC structure are the first character
(tmFirstChar), the last character (tmLastChar), the default character
(tmDefauItChar), and the break character (tmBreakChar).

The behavior of the DEVMODE and TEXTMETRIC string conversion macros
depends on the compiler directive in effect, if any. If the source and destination
types are the same, no conversion takes place. Compiler directives change T and
OLE as follows:

Compiler directive in effect T becomes OLE becomes

none A W

UNICODE W W -

OLE2ANSI A A

_UNICODE and OLE2ANSI W A

The following table lists the DEVMODE and TEXTMETRIC string conversion
macros.

DEVMODE and TEXTMETRIC String Conversion Macros

DEVMODEA2W TEXTMETRICA2W

DEVMODEOLE2T TEXTMETRICOLE2T

DEVMODET20LE

DEVMODEW2A

TEXTMETRICT20LE

TEXTMETRICW2A

See Also: String Conversion Macros

447

Contributors to Active Template Library Reference

Walden Barcus, Writer

Lisa Hedley, Writer

Olinda Turner, Editor

Rod Wilkinson, Editor

WASSERStudios, Production

Microsoft

Visual C++
in both hanels.

This four-volume collection is the complete printed product documentation for Microsoft Visual C-H

version 5.0, the development system for Win32~ In book form, this information is portable, easy to access
and browse, and a comprehensive alternative to the substantial online help system in Visual C-t+. The
volumes are numbered as a set-but you can buy any or all of the volumes, any time you need them. So
take hold of all the power. Get the MICROSOFT VISUAL C-t+ 5.0 PROGRAMMER'S REFERENCE SET.

Volume 1 of the 4-volume
VISUal C++ 5.0 Programmer's
Reference Set

~c.r;psoft· .C
VISUaJ ++'
MFC Ubrary Reference,
Part!

Microsoft® Visual C++® MFC
Library Reference, Part 1
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-51S-0

Volume 2 of the 4-volume
VISual C++ 5.0 Programmer's
Reference Set

Microsoft® Visual C++® MFC
Library Reference, Part 2
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-519-9

VOlume 3 of the 4-volume
VIsual C++ 5.0 Programmer's
Reference Set

Microsoft® Visual C++ ®
Run-Time Library Reference
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-520-2

I
i
I

Volume 4 of the 4-volume
VIsual C+t 5.0 Programmer's
Reference Set

Microsoft® Visual C++®
Language Reference
U.S.A. $29.99
U.K. £27.49
Canada $39.99
ISBN 1-57231-521-0

Microsoft Press~ products are available worldwide wherever quality computer books are sold. For more information, contact your book retailer, computer
reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/msoress/. or call1-S00-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

Quick,
Explain COM,

OLE and

U.S.A. $22.95
U.K. £20.99
Canada $30.95
ISBN 1-57231-216-5

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book
retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www.microsoft.com/mspress/. or call1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

ActiveX'~
When it comes to strategic technologies such as

these, what decision makers need first is a good
explanation-one that gives them a quick, clear
understanding of the parts and the greater whole.
And that's exactly what UNDERSTANDING ACTiVE>< AND
OLE does. Here you'll learn the strategic significance
of the Component Object Model (COM) as the
foundation for Microsoft's object technology. You'll
understand the evolution of OLE. You'll discover the
powerful ActiveX technology for the Internet. In all
these subjects and more, this book provides a firm
conceptual grounding without extraneous details or
implementation specifics. UNDERSTANDING ACTiVE>< AND
OLE is also easy to browse, with colorful illustrations
and "fast track" margin notes. Get it quick. And get
up to speed on a fundamental business technology.

The Strategic Technology series is for
executives, business planners, software
deSigners, and technical managers who
need a quick, comprehensive introduction
to important technologies and their impli
cations for business.

81 uepri nt for
excellence.

CODE
COMPLETE

This classic from Steve McConnell is a practical guide to the art

and science of constructing software. Examples are provided in C,

Pascal, Basic, Fortran, and Ada, but the focus is on successful

programming techniques. CODE COMPLETE provides a larger per

spective on the role of construction in the software development

process that will inform and stimulate your thinking about your own

projects-enabling you to take strategic action rather than fight the

same battles again and again.

Get all of the Best Practices books.

STEVE McCONNElL

U.S.A. $35.00
U.K. £29.95
Canada $44.95
ISBN 1-55615-484-4

"The definitive book on software construction. This is a book that belongs on every
software developer's bookshelf."

-Warren Keuffel,
Software Development

"I cannot adequately express how good this book really is ... a work of brilliance."
-Jeff Duntemann,

PC Techniques

"If you are or aspire to be a professional programmer, this may be the wisest $35
investment you'll ever make."

-IEEE Micro

Microsoft Press® products are available worldwide wherever quality computer books are sold.
For more information, contact your book retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/mspress/.
or call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

Rapid Development
Steve McConnell
U.S.A. $35.00 ($46.95 Canada; £32.49 U.K.)
ISBN 1·55615-900-5

·Very few books I have encountered in the last few years have
given me as much pleasure to read as this one."
-Ray Duncan

Writing Solid Code
Steve Maguire
U.S.A. $24.95 ($32.95 Canada; £21.95 U.K.)
ISBN 1-55615-551-4

"Every working programmer should own this book."
-IEEE Spectrum

Debugging the Development Process
Steve Maguire
U.S.A. $24.95 ($32.95 Canada; £21.95 U.K.)
ISBN 1-55615-650-2

''A milestone in the game of hitting milestones."
-ACM Computing Reviews

Dynamics of Software Development
Jim McCarthy
U.S.A. $24.95 ($33.95 Canada; £22.99 U.K.)
ISBN 1-55615-823-8

"I recommend it without reservation to every developer."
-Jesse Berst, editorial director, Windows Watcher Newsletter

Learn to create programmable
32-bit applications

Automation

If you program for Microsoft® Windows~ OLE Auto
mation gives you real power-to create applications
whose objects can be manipulated from external
applications, to develop tools that can access and
manipulate objects, and more. And the OLE AUTOMA
TION PROGRAMMER'S REFERENCE gives you the power
to put OLE Automation to work. Everything is covered,
from designing applications that expose and access
OLE Automation Objects to creating type libraries.
So tap the power of OLE Automation. Make the
OLE AUTOMATION PROGRAMMER'S REFERENCE your
essential guide.

Microsoft Press® products are available worldwide wherever quality computer
books are sold. For more information, contact your book retailer, computer
reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www.microsoft.com/mspress/. or call1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

U.S.A. $24.95
U.K. £22.99
Canada $33.95
ISBN 1-55615-851-3

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada: M'i~JIIfII'tA~oft® n'/1eSS
1-800-667-1115 or 416-293-8464).· .t6#. ~. rj
Prices and availability dates are subject to change.

Run-Time Library
Reference

This four-volume collection is the complete printed product documentation for Microsoft
Visual C++ version 5, the development system for Win32~ In book form, this information
is portable and easy to access and browse, a comprehensive alternative to the
substantial online help system in Visual C++. The volumes are numbered as a set,
but you can buy only the volumes you need, when you need them.

7 90145 15202 2

Volume 1: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 1

Volume 2: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 2
This two-volume reference thoroughly documents the Microsoft Foundation Class (MFC)

libCary, providing a class library overview, an alphabetical listing of MFC classes, and a section
, ~

on the library's macros and globals. In-depth class descriptions summarize members by
category and list member functions, operators, and data members. Entries for member

functions include return values, parameters, related classes, important comments, and

source code examples.

Volume 3: MICROSOFT VISUAL C++ RUN·TIME LIBRARY REFERENCE
Combining the information of three books, this volume contains complete descriptions

and alphabetical listings of all the functions and parameters in the iostream class library,

ActiveX'" Template Library (ATl), and run-time library. Entries include helpful source code

examples.

Volume 4: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the C and C++ references in this volume guide you through the two

languages: terminology and concepts, programming structures, functions, declarations, and

expressions. The C++ section also covers Run-Time Type Information (RTII) and Namespaces.

The final section of this valuable resource discusses the preprocessor and translation phases,

integral to C and C++ programming, and includes an alphabetical listing of preprocessor

directives.

U.S.A. $39.99 Programming/Microsoft Visual C++

U.K. £36.99
Canada $53.99 ISBN 1-57231-520-2

[Recommended]

Microsoft Press I
9 781572 315204

-
Designed for

" "
"

Microsoft-
Windows NT·
Windows·95

S IW
i~
C]
+.

:::a:::a
(DC

&=?
(13::1
:J3
{::>(D
(Dc:

0-
m
~

VOLUME

3
OF FOUR

Microsoft
~

PRESS
~ - - - ---:'

