
Visual C++ Tutorials
Development System for Windows 95 and Windows NT

Microsoft® Visual C++ TM

Version 4.0

Development System for Windows® 95 and Windows NTTM

Tutorials

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless
otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation.

© 1995 Microsoft Corporation. All rights reserved.

America Online is a registered trademark of America Online, Inc.
Btrieve is a registered trademark of Novell, Inc.
dBASE, dBASE II, dBASE III, and dBASE IV are registered trademarks, and Paradox is a trademark of Borland International, Inc.
CompuServe is a registered trademark of CompuServe, Inc.
GEnie is a trademark of General Electric Corporation.
Intel is a registered trademark of Intel Corporation.
ORACLE is a registered trademark of Oracle Corporation.
Prodigy is a trademark of Prodigy Services Company.
Macintosh is a registered trademark of Apple Computer, Inc.
MIPS is a registered trademark of MIPS Computer Systems, Inc.
Motorola is a registered trademark of Motorola, Inc.
Unicode is a trademark of Unicode, Incorporated.
Microsoft, MS, Microsoft Access, Microsoft Press, FoxPro, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s, and XENIX are
registered trademarks and Visual C++ and Windows NT are trademarks of Microsoft Corporation in the U.S. and other countries.

Document No. DB65885-0995

Printed in the United States of America

Contents

Introduction xvii
About This Book xvii
Overview of the Class Library Tutorials xviii
Document Conventions xx

Microsoft Support Network xxiii
Standard Support xxiii
Priority Support xxiv
Text Telephone xxiv
Product Support Worldwide xxiv

Part 1 Developing an Application Using Visual C++
Chapter 1 Developing an Application Using Visual C++ 3

The Development Process 3

Part 2 The Scribble Tutorial
Chapter 2 Scribble Tutorial 11
Installing the Sample Files 12

Previewing the Sample Applications 14
Scribble Tutorial Steps 14
The Files You Work With 15

Scribble Build Information 16

Chapter 3 Creating a New Application with AppWizard 19
Using AppWizard to Create the Starter Application for Scribble 20

Viewing the Starter Classes 23
Navigating Through Code 24

Build the Starter Application 26
Run the Starter Application 27

iii

Contents

iv

Chapter 4 Creating the Document 29
Documents 30

Document Definition 31
Documents in the Framework 32
Document Creation 32
How the Document and View Interact 33
You and the Document 34

Scribble's Document: Class CScribbleDoc 34
Customizing CScribbleDoc 35
Adding Code to CScribbleDoc 35
Adding the Template Collection Classes to Scribble 37
Using WizardBar to Override Base-Class Functions 38
Summary of CScribbleDoc Member Functions and Variables 40

The Document's Data: Class CStroke 41
Adding the CStroke Class 42
Building and Storing Strokes 43

Managing the Document 44
Initializing and Cleaning Up 44
Managing the Data 46

Serializing the Data 47
Serializing the Document 48
Serializing Strokes 49

Creating the Document: Summary 51

Chapter 5 Creating the View 53
Views 54

View Definition 54
Views in the Framework 55
View Creation 55
Drawing the View's Contents 55
How the View and Document Interact 55
You and the View 56

Scribble's View: Class CScribbleView 56
Defining the Working Data Used by the View 57
Redrawing the View 58
Handling Windows Messages in the View 60

Connecting Messages to Code 61
Adding the Message-Handler Functions 62

Build Scribble-Step 1 Version 65

Chapter 6 Constructing the User Interface 69
Edit Scribble's Menus 70

Default Menus 70
Scribble's New Menu Commands 70
Adding the Menus 71

Edit Scribble's Toolbar 76
About the Toolbar 77
Add the Thick Line Button to Scribble's Toolbar Bitmap 77

Summary: Constructing the User Interface 81

Chapter 7 Binding Visual Objects to Code Using Wizard Bar 83
What ClassWizard and WizardBar Can Do 84
Binding Scribble's Commands 85

Bind Scribble's Clear All Command to its Handler Code 86
Adding the ReplacePen Helper Function 89
Add New Member Variables to Scribble 91

Updating User-Interface Objects 92
Update Scribble's Clear All Menu Item 92
Update Scribble's Thick Line Menu Item 93

Build Scribble-Step 2 Version 94

Chapter 8 Adding a Dialog Box 97
Designing a Dialog Box 98

Create the Dialog Box 99
Add the Controls 100
Arrange and Test Controls 101

Connecting a Class to a Dialog Box 102
Declare the Dialog Class 102
Declare a Message-Handling Function for a Dialog Box Control 107
Map the Controls to Member Variables 108

Implementing the Message Handler 110
Open the Dialog Box 111
Build Scribble-Step 3 Version 113

Chapter 9 Enhancing Views 115
Updating Multiple Views 116

Define a Hint for Scribble 117
Pass the Hint After Modifying the Document 120
Use the Hint for Efficient Repainting 120

Contents

v

Contents

vi

Adding Scrolling 122

Basic Steps for Adding Scrolling 123

Add Scrolling to Scribble 124

Working with GDI Coordinates 126

Adding Splitter Windows 129

Add Splitter Windows to Scribble 131

Build Scribble-Step 4 Version 133

Chapter 10 Enhancing Printing 135
Enhance Scribble's Printing 136

Enlarge the Printed Image 136

Paginate Scribble Documents 140

Enhance Scribble's Print Preview 143

Compile Scribble-Step 5 Version 144

Chapter 11 Adding Context-Sensitive Help 147
What Does Context-Sensitive Help Consist of? 149

Implementing Context-Sensitive Help with AppWizard 150

Help Support Provided by AppWizard 151

See Context-Sensitive Help in Action 152
Compiling Your Help Files 153

Upgrading Your Help Project File to Windows 95 155

Adding Help to Scribble After the Fact 156

Copying Help-Specific Resources to Scribble 156

Copying the Help-Related Code and Files to Scribble 159

Customizing the Help Files and Code for Scribble 160

Scribble's Help Project File 161

Completing Scribble's Help Implementation 162

Chapter 12 Creating an OLE Server 167
Previewing Scribble Running as an OLE Server 168

Steps to Provide OLE Server Support After the Fact 169

Using AppWizard's Full Server Option 169

Transfer Scratch Files to Your Scribble Project 172

Registering an OLE Server Application with Windows 173

Add AFXOLE.H to Your Precompiled Header File 174

Add OLE Server Support to the Application Object 174

Convert the CDocument Class to the COleServerDoc Class 175

Analyze OLE Server Code in InitInstance 177

Editing OLE-Related Resources 181

Add OLE Standard Resources 181

Add OLE Menu Resources 182
Add OLE Toolbar Resources 184

Add Accelerator Resources for In-Place Active or Fully-Opened Servers 185

Adding Application-Specific Server Support 185

Add Application-Specific Server Support to the Document Class 186

Implement the Server Item 187

Implement OLE In-Place Support in the View Class 189

Testing Scribble Server Functionality Using a Container Application 192

Part 3 The OLE Tutorials
Chapter 13 Creating an OLE Container 195
Preview of the Container Application 195

Registering an OLE Server Application 196

The Tutorial Example: Container 197

Chapter 14 Implementing Basic OLE Container Features 199
Creating a Skeleton OLE Container 199

Trying Out the Newly Created OLE Container Application 201

Examining AppWizard-Provided Code 203

Implementing the OLE Client Item Rectangle 208

Implementing Hit Testing and Selection 210

Implementing Activation by Using a Mouse Click 211

Implementing Tracker Rectangles for Resizing and Moving Objects 214

Drawing the Embedded Objects 214

Deleting Embedded Objects 215
Building and Running Container Step 1 216

Chapter 15 Refining OLE Container Functionality 219
Adding Command Handlers for Copy and Paste 219
Using Smart Invalidation 221

Define the Update Hint 222

Receive the Hint and Invalidate the View 222

Centralize the Sending of Update Hints 223

Invalidate Selected and Deselected Objects 223

Invalidate Tracked Object 224

Invalidate Object Moved by the Server 224

Contents

vii

Contents

viii

Coordinating with the Server to Determine Size of Object 225
Get the Extent of the CContainerItem Object from the Server 226
Update the CContainerItem Rectangle When the Item's Natural Extent Changes 227
Update the Rectangle of a Newly Inserted Object 228

Building and Running 228

Chapter 16 Creating an OLE Automation Server 229
The Tutorial Example: AutoClik 230
Preview of the AutoClik Application 230
Overview of AutoClik Steps 1,2, and 3 233

Chapter 17 Enabling OLE Automation in an Application 235
Creating a Skeleton OLE Automation Server 235
Analyzing the Dispatch Interface Name 237

Analyzing AppWizard-Provided Code 239
Application Class of an Automation Server 239
Document Class of an Automation Server 240
Creating an OLE Type Library 242

Implementing AutoClik's Basic Behavior 242
Building and Running AutoClik Step 1 246

Chapter 18 Implementing Automation Properties and Methods 247
Implementing Properties of a Dispatch Interface 247
Implementing Methods of a Dispatch Interface 251
Build and Test AutoClik Step 2 255

Chapter 19 Implementing Multiple Dispatch Interfaces 257
Creating a New CCmdTarget Class with a Dispatch Interface 258
Referring to One Dispatch Interface from Another 259
Createable OLE Dispatch Interface Objects 262

Build and Run 262

Chapter 20 Building an OLE Control 263
The Tutorial Example: Circle 263

Other OLE Control Samples 264
Creating the Circle Control 265

Previewing the Circle Control 265
Creating the Basic Control 266

Modifying the Control Bitmap 268
Modifying the About Circ Control Dialog Box 269

Building the Control 269

Registering the Control 270

Testing the Circle Control 270

Chapter 21 Painting the Control 273
Enabling the BackColor Property 273

Setting the Default Background Color 275
Modifying the Draw Behavior 275

Rebuilding the Control with Painting Implemented 276

Testing the Control Drawing Behavior 276

Chapter 22 Adding a Custom Notification Property 279
The CircleShape Property 280

Adding the Circle Shape Property 282

Setting the CircleShape Default Value 284

Implementing New Drawing Behavior 284
Rebuilding the Control with CircleShape Implemented 287

Testing the Control CircleShape Property 287

Chapter 23 Adding a Custom Get/Set Property 289
The CircleOffset Property 290

Adding the CircleOffset Property 292

Setting the CircleOffset Default Value 294

Setting the CircleOffset Property 294
Drawing the Control 296

Modifying the OnCircleShapeChanged Function 297

Adding the OnSize Function 298

Rebuilding the Control with CircleOffset Implemented 299
Testing the Control CircleOffset Property 299

Chapter 24 Adding Special Effects 301
Adding the FlashColor Property 301

Setting the Default FlashColor Value 303

Responding to Mouse Events 304

Hit Testing 306

Adding the FlashColor Function 307

Rebuilding the Control with FlashColor Implemented 308
Testing the FlashColor Property 308

Contents

ix

Contents

x

Chapter 25 Adding Custom Events to the Circle Control 311
Adding the ClickIn Event 311

Firing the ClickIn Event 313

Adding the ClickOut Event 314

Firing the ClickOut Event 315

Rebuilding the Control 315
Testing the ClickIn and ClickOut Events 316

Chapter 26 Handling Text and Fonts 317
Adding the Stock Caption Property 317

Adding the Stock Font Property 319
Adding the Stock ForeColor Property 320

Implementing Caption Drawing Behavior 320

Adding the Color and Font Property Pages 323

Rebuilding the Control with Font and Color Support Implemented 324
Testing the Caption Property 324

Chapter 27 Modifying the Default Property Page 327
Adding Controls to the Default Property Page 327
Linking Controls with Properties 329

Rebuilding the Control with the Property Page 332

Testing the Default Property Page 332

Chapter 28 Simple Data Binding 333
Defining the Note Property 334

Completing the GetNote and SetNote Functions 335

Making the Note Property Persistent 336

Displaying the Note Property 336

Adding the Note Property to the Default Property Page 337

Making the Note Property Bindable 339

Notifying the Container of Changes 339

Rebuilding the Control with Data Binding Support 340
Testing the Control Data Binding Changes 341

Chapter 29 Versions and Serialization 343
Serialization of Control Version Information 343

Serializing Different Versions of Persistent Data 344

Ignoring Different Versions of Persistent Data 345

Rebuilding the Control with Version Support Implemented 347

Testing the Control 347

Part 4 The Database Tutorials
Chapter 30 Creating a Database Application 351
The Tutorial Example: Enroll 351

Setting Up the Student Registration Data Source 353

Tutorial Steps 357

Chapter 31 A Simple Form 359
About Step 1 360

Creating a New Database Application 360

Examining the Step 1 Classes 362
The CSectionForm Record View Class 364

The CEnrollDoc Document Class 365

Customizing the Dialog Template for the Section Form 366

Binding Enroll's Controls to Recordset Fields 369

Build and Run Enroll Step 1 370

Chapter 32 Using a Second Recordset 371
About Step 2 371

Changing the Course Control to a Combo Box 372
Binding the Combo Box Control to a Recordset Field and a CComboBox Variable 374

Creating a Recordset for the Course Table 375
Embedding the Recordset Object in the Document Object 377

Filling the Combo Box with a List of Courses 377

Filtering and Parameterizing the Recordset 379

Setting Up the Parameter 380

Reusing a Database Object Opened by Another Recordset 382

Sorting the Recordset 383
Requerying the CSectionSet Recordset 383

Build and Run Enroll Step 2 384

Chapter 33 Adding and Deleting Records 385
About Step 3 385

Creating the Step 3 User Interface 386

Add an Accelerator for the Refresh Command 388

Create Handlers for Add, Refresh, and Delete 389
The Basics of Adding, Editing, and Deleting Records 389

Implementing the Add Command 390

Updating the Data Source with the Added Record 392

Disabling Combo Box Logic in Add Mode 394

Contents

xi

Contents

Implementing the Delete Command 394

Implementing the Refresh Command 395

Building and Running Enroll Step 3 396

Chapter 34 Data Access Objects (DAO) Tutorial 397
The Tutorial Example: DaoEnrol 398

Setting Up the Student Registration Data Source for DaoEnrol 400

DAO Tutorial Steps 402
A Brief Overview of DAO 402

DaoEnrol Step 1 404

Creating a New DAO Database Application 405

Examining the DaoEnrol Step 1 Classes 408
Customizing the Dialog Template for the DaoEnrol Section Form 412

Binding DaoEnrol's Controls to Recordset Fields 414

Build and Run DaoEnrol Step 1 415

Completing the DaoEnrol Tutorial 416
DaoEnrol Step 2 416

Creating a Recordset for the Course Table in DaoEnrol 417

Embedding the Recordset Object in the Document Object in DaoEnrol 418

Filling the Combo Box in DaoEnrol 419
Filtering and Parameterizing the Recordset in DaoEnrol 420

Finishing DaoEnrol Step 2 423

DaoEnrol Step 3 424

Updating the Data Source with the Added Record in DaoEnrol 424
Disabling Combo Box Logic in Add Mode in DaoEnrol 426

Implementing the Delete Command in DaoEnrol 426

Implementing the Refresh Command in DaoEnrol 427

DaoEnrol Step 4: The DAOENROL Sample 428

Part 5 Windows 95 Compliance
Chapter 35 Adding Windows 95 Functionality 431
Summary of the Logo Requirements 431

xii

Following UI Recommendations 434

Using Tabbed Property Pages 434

Using Common Controls 436
Displaying a Shortcut Menu 437

Using the System Registry 439

Creating a Setup and an Uninstall Program 439

Adding OLE Support 441
Being a Drop Target 441
Providing Summary Information 448

Adding MAPI Support 449
For More Information on the Windows 95 Logo 450

Part 6 Appendix
Appendix A Accessibility for People with Disabilities 453
Microsoft Services for People Who Are Deaf or Hard-of-Hearing 454
Access Packs for Microsoft Windows and Microsoft Windows NT 454
Keyboard Layouts for Single-Handed Users 455
Microsoft Documentation in Alternative Formats 456
Third-Party Utilities to Enhance Accessibility 456
Customizing Windows or Windows NT 457
Getting More Information for People with Disabilities 457

Index

Contributors

Figures and Tables
Figures
2.1 Scribble in Action 12
3.1 New Project Workspace Dialog Box 21
3.2 The Build Toolbar 26
3.3 The Starter Application 27
4.1 Objects in Scribble 30
4.2 Document and View 32
4.3 Creating a Document 33
4.4 One Stroke in Scribble 34
4.5 Scribble's m_strokeList Data Structure 41
4.6 Serialization in Scribble 48
5.1 The View and the Document 54
5.2 The Text Editor 63
5.3 Scribble Step 1 66
6.1 Menu Editor for IDR_SCRIBBTYPE 72
6.2 Property Page with ID 73

Contents

xiii

Contents

xiv

6.3 The Clear All Menu Item 74
6.4 The Completed Pen Menu 76
6.5 The Default Scribble Toolbar 76
6.6 The Graphics Toolbar 78
6.7 The Toolbar Editor 78
6.8 Thick Line Toolbar Button Resource 79
6.9 The Edited Toolbar Resource 80
7.1 Clear All in WizardBar 87
7.2 The OnEditClearAll Function Template 88
7.3 Scribble Step 2 95
8.1 Scribble's Pen Widths Dialog Box 98
8.2 Designing the Pen Widths Dialog Box 101
8.3 The Create New Class Dialog Box 103
8.4 The Message Maps Tab Displaying the CPen WidthsDlg Class 104
8.5 The Member Variables Tab 109
8.6 Scribble Version 3 114
9.1 Multiple Views on a Document Without Updating 116
9.2 A Scrollable View on a Document 123
9.3 Scribble with Scrolling Support 124
9.4 A Window with Two Views on a Document 129
9.5 Scribble Document Window Split into Two Panes 130
9.6 Scribble Version 4 134
10.1 Scribble Version 5 145
16.1 AutoClik Test Driver Dialog Box 231
16.2 AutoClik Window Next to Autodriv Window 231
17.1 IDR_ACLICKTYPE in the String Editor 238
20.1 Editing the Circle Palette Bitmap with the Bitmap Editor 268
20.2 The Circle Control 271
22.1 The CircleShape Property Set to FALSE 281
22.2 The CircleShape Property Set to TRUE 281
23.1 Circle Offset 25 Units From Center 290
23.2 Circle Control With a Greater Y-Extent 291
30.1 The Enroll Tutorial Application 353
31.1 Enroll's Section Form 359
31.2 Table Columns Mapped to Recordset Data Members 364
31.3 The Layout of Enroll's Section Form 368
32.1 Enroll Step 2 With a Combo Box 374
33.1 The Enroll Step 3 Application 386
33.2 The Record Menu with New Commands 388

34.1 The Completed DaoEnrol Tutorial Application 400
34.2 DaoEnrol's Section Form 405
34.3 Table Columns Mapped to Recordset Data Members 409
34.4 The Layout of DaoEnrol's Section Form 413
35.1 DRAWCLI's New Property Sheet 436
35.2 DRAWCLI's Summary Information Property Sheet 4 48

Tables
2.1 Tutorial Steps 15
4.1 Key Objects in an Application 31
4.2 Document Implementation Responsibilities 34
4.3 CScribbleDoc Data Members 40
4.4 CScribbleDoc Member Functions 40
4.5 CStroke Data Members 43
4.6 CStroke Member Functions 43
5.1 View Implementation Responsibilities 56
5.2 CScribbleView Member Functions 57
5.3 CScribbleView Data Members 58
30.1 Tables in the Student Registration Database 352
32.1 CCourseSet Data Members 376
34.1 Tables in the Student Registration Database (DAO) 399
34.2 CCourseSet Data Members (DAO) 418

Contents

xv

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Introduction

The Microsoft® Visual C++TM 4.0 development system for Windows® and Windows
NTTM adds fully integrated Windows-hosted development tools and a "visual" user
interface-driven paradigm to the traditional C/C++ development process.

About This Book
This book is divided into the following parts:

• Part 1, Developing an Application Using Visual C++, provides an overview of the
development process and the Visual C++ tools you'll use to build your
applications. '

• Part 2, the Scribble Tutorial

• Part 3, the OLE tutorials, includes:

• Container

• AutoClik

• Circle

• Part 4, the database tutorials, includes:

• Enroll

• DaoEnrol

• Part 5, Win95 Compliance, discusses considerations for meeting the Win95 logo
requirements.

• Appendix A provides information about products and services tha,t make the
Microsoft Visual C++ development system more accessible for people with
disabilities.

The following section, gives an overview of the main topics covered by each Tutorial.

xvii

Tutorials

Overview of the Class Library Tutorials

xviii

The tutorials included in this book demonstrate practical application of the Microsoft
Foundation Class (MFC) Library classes, including the OLE and database classes,
both Open Database Connectivity (ODBC) and Data Access Objects (DAO). The
class library is a set of C++ classes that encapsulate the functionality of applications
written for the Microsoft Windows family of operating systems.

The Scribble Tutorial, introduces the basics of creating MFC applications, and
demonstrates how to use the class library's main features. Among the features
covered in the Scribble tutorial are the following:

• Using AppWizard to create a skeletal starter application upon which to build your
program.

• Implementing a document class to manage your application's data and to write to
and read from files.

• Implementing a "view" class to display your document and manage all user
interaction with it.

• Using the Visual C++ resource editors to create and edit your application's
resources.

• Using WizardBar to connect user-interface objects, such as menu items, buttons,
and accelerator keys, to handler functions in your source code.

• Using the Visual C++ dialog editor to create a dialog resource, and ClassWizard to
encapsulate the dialog resource in a dialog class. Also, using WizardBar to declare
handler functions, map the dialog box controls to member variables of the dialog
class, and define validation rules.

• Implementing scrolling and splitter windows; enhancing the default printing
capabilities, including Print Preview; and adding context-sensitive Help to your
application.

The OLE Server Tutorial is Scribble Step 7, which demonstrates adding OLE in
place editing server support to an existing application.

The OLE Container Tutorial introduces the MFC OLE classes and teaches you to use
their main features. Among the features this tutorial describes are the following:

• Creating an OLE in-place editing container starter application by using
AppWizard

• Implementing the OLE client item rectangle

• Implementing hit testing and selection

• Implementing activation with the mouse click

• Implementing special cursors for resizing and moving objects

• Drawing embedded objects

• Deleting embedded objects

The OLE Automation Server Tutorial describes how to create and test a simple OLE
Automation server application, starting with AppWizard's built-in support for
automation. Among the tutorial topics are:

• Analyzing the dispatch interface name

• Analyzing AppWizard-provided code

• Creating an OLE type library

• Implementing properties of a dispatch interface

• Implementing methods of a dispatch interface

• Creating a new CCmdTarget class with a dispatch interface

• Referring to one dispatch interface from another

The Circle Control Tutorial introduces the OLE control classes. Among the topics
discussed are:

• Building an OLE control

• Implementing background painting behavior

• Adding a custom property

• Implementing Get/Set methods for a custom property

• Adding special effects

• Adding custom events

• Handling text and fonts

• Working with property pages

• Simple data binding

• Versions and serialization of OLE controls

The database tutorials introduce the database classes and describe how to use their
main features, demonstrating both ODBC and DAO support. Among the features
these tutorials describe are:

• Selecting and registering a database with' ODBC, or using the DAO database
classes to read the data source directly (if applicable).

• Examining the classes App Wizard generates for your database application.

• Using ClassWizard to bind controls on your form to the member variables of a
"recordset" object. A recordset represents a set of records selected from a data
source. The framework takes care of moving data between the controls and the
data source.

Introduction

xix

Tutorials

• Vsing a database form based on two or more recordsets. Each record set represents
a different table or query.

• Controlling the data selected by a recordset. You can filter a recordset,
parameterize it at run time, and sort it.

• Adding, editing, and deleting records and implementing commands for these
actions.

Adding Windows95 Functionality provides information about making your
application Windows 95-compliant, including the Windows 95 support that
App Wizard provides for you. Topics include:

• Summary of the logo requirements

• Following VI recommendations

• V sing tabbed property pages

• V sing common controls

• Displaying a shortcut menu

• V sing the system registry

• Creating a Setup and an Vninstall program

• Adding OLE support, including:

• Being a drop target

• Providing summary information

• Adding Messaging API (MAPI) support

Document Conventions

xx

This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor, _far

Description

Uppercase letters indicate filenames, registers, and terms used
at the operating-system command level.

Bold type indicates C and C++ keywords, operators, and
library routines. Within discussions of syntax, bold type
indicates that the text must be entered exactly as shown.

Many constants, functions, and keywords begin with either a
single or double underscore. These are required as part of the
name. For example, the compiler recognizes the _cplusplus
manifest constant only when the leading double underscore is
included.

Example

expression

[option]

#pragma pack {I I 2}

1Iinclude <io.h>

CL pption ... Jfile ...

while()
{

}

Description

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

Items inside square brackets are optional.

Braces and a vertical bar indicate a choice among two or more
items. You must choose one of these items unless square
brackets ([]) surround the braces.

This font is used for examples, user input, program output, and
error messages in text.

Three dots (an ellipsis) following an item indicate that more
items having the same form may appear.

A column or row of three dots tells you that part of an example
program has been intentionally omitted.

CTRL+ENTER Small capital letters are used to indicate the names of keys on
the keyboard. When you see a plus sign (+) between two key
names, you should hold down the first key while pressing the
second .

.J The carriage-return key, sometimes marked as a bent arrow on
the keyboard, is called ENTER.

"argument" Quotation marks enclose a new term the first time it is defined
in text.

"C s t r; n g" Some C constructs, such as strings, require quotation marks.
Quotation marks required by the language have the form" "
and' 'rather than and".

Dynamic-Link Library The first time an acronym is used, it is usually spelled out.
(DLL)

Microsoft Specific Some features documented in this book have special usage
constraints. A heading identifying the nature of the exception,
followed by an arrow, marks the beginning of these exception
features.

END Microsoft Specific END followed by the exception heading marks the end of text
about a feature that has a usage constraint.

~ CEnterDlg; The arrow adjacent to the code indicates that it has been
altered from a previous example, usually because you are
being instructed to edit it.

Introduction

xxi

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Microsoft Support Network

In the event you cannot install Microsoft Visual C++, please refer to the telephone
support offerings below. Microsoft's support offerings range from no-cost and low
cost electronic information services (available 24 hours a day, 7 days a week) to
annual support plans and CD-ROM sUbscription programs. Please check the
Technical Support section in online Help for detailed information.

Microsoft support services are subject to Microsoft's then-current prices, terms, and
conditions, which are subject to change without notice.

Standard Support
No-charge support from Microsoft support engineers is available via a toll call
between 6:00 A.M and 6:00 P.M. Pacific time, Monday through Friday, excluding
holidays. In Canada, call between 8:00 A.M and 8:00 P.M. Eastern time, Monday
through Friday, excluding holidays. This support is available for 30 days after you
make your first call.

• In the United States, for technical support for Microsoft Visual C++, call (206)
635-7007.

• In Canada, for technical support for Microsoft Visual C++, call (905) 568-3503.

When you call, you should be at your computer and have the appropriate product
documentation at hand. Be prepared to give the following information:

• The version number of the Microsoft product that you are using

• The type of hardware that you are using, including network hardware, if
applicable

• The exact wording of any messages that appeared on your screen

• A description of what happened and what you were doing at the time

• A description of how you tried to solve the problem

xxiii

Tutorials

Priority Support
The Microsoft Support Network.offers priority telephone access to Microsoft support
engineers 24 hours a day, 7 days a week, excluding holidays, in the U.S. In Canada,
the hours are from 6:00 A.M to midnight, 7 days a week, excluding holidays.

• In the United States, call (900) 555-2300; $2.95 (U.S.) per minute, $95 maximum.
Charges appear on your telephone bill. Not available in Canada.

• In the United States, call (800) 936-5800, at $95 (U.S.) per incident, billed to your
VISA, MasterCard, or American Express card.

• In Canada, call (800) 668-7975 for more information.

Text Telephone
Microsoft text telephone (TTfTDD) services are available for the deaf or hard of
hearing. In the United States, using a TTfTDD modem, dial (206) 635-4948. In
Canada, using a TTfTDD modem, dial (905) 568-9641.

Product Support Worldwide

xxiv

The following list contains Microsoft subsidiary offices and the countries they serve.
If there is no Microsoft office in your country, please contact the establishment from
which you purchased your Microsoft product. This list provides only basic technical
support phone and fax numbers; other services such as BBS and sales numbers may
be available. For additional subsidiary information, check the Product Support
Services Worldwide section in online Help.

When you call, you should be at your computer and have the appropriate product
documentation at hand. Please follow the guidelines listed above under "Standard
Support."

Telephone Fax Numbers Telephone
Area . Numbers Area Numbers:

Argentina (54) (1) 815-1521 (54) (1) 814-0372 Liechtenstein 01-3424036

Australia (61) (02) 870-2131 (61) (02) 805-0519 Luxembourg (32) 2-5133274

Austria 0222-68 0660:-6515 0222-68 162710 Mexico (52) (5) 325-0912

Belgium 02-5133274 Netherlands 02503-77877

Bolivia (54) (1) 815-1521 (54) (1) 814-0372 New Zealand 64 (9) 357-5575

Brazil (55) (11) 871-0090 (55)(11) 240-2205 Northern Ireland (01734) 270007

Caribbean (214) 714-9100 (809) 273-3636 Norway (47) (22) 02 2550

Chile 56 2 232-4467 5622335917 Papua New Guinea (61) (02) 870-2131

Colombia (571) 618 2255 (571) 618 2269 Paraguay (54) (1) 815- 1521

Fax Numbers

01-8310869

64 (9) 358-3726

(01734) 270080

(47) (22) 02 25 70

(61) (02) 805-0519

(54) (1) 814-0372

Microsoft Support Network

Telephone Fax Numbers Telephone
Area Numbers Area Numbers Fax Numbers

Czech Republic (+42) (2) 2683-20 or -27 (+42) (2) 266020 Poland (+48) (2) 6216793 or (+48) (2) 6615434

(+48) (71) 441357

Denmark (45)(44) 8901 11 (45) (44) 890144 Portugal (351) 1 4412205 (351) 14412101

Dubai (971) 4 513 888 (971) 4 527 444 Republic of China (886) (2) 508-9501 (886) (2) 504-3121

Ecuador (593) (2) 463-094 Republic of Ireland (01734) 270007 (01734) 270080

England (01734) 270007 (01734) 270080 Russia (+7) (095) 267-8844 (+7) (502) 224 5045

or 158-6963

Finland (0358) (90) 525 502500 (46) (0) 8 752 29 00 Scotland (01734) 270007 (01734) 270080

France (33) (1) 69-86-10-20 (33) (1) 64-46-06-60 Singapore (65) 220-7202 (65) 227-6811

French Polynesia (33) (1) 69-86-10-20 (33) (1) 64-46-06-60 Slovenia (+386) (61) 1232354

Germany 089- 3176-1150 089- 3176-1000 Slovak Republic (+42) (7) 312083 (+42) (2) 266020

Greece (30) (1) 6893-631 (30) (1) 6893 636 South Africa 08021111 04 (27) 11 445 0045 or

through 6893-635 (27) 11 445 0046

Hong Kong (852) 804-4222 (852) 560-2217 Spain (34) (1) 803-9960 (34) (1) 803-8310

Hungary (36) (0) 111172289 (+36) (1) 2691030 Sweden (46) (8) 752 09 29 (46) (0) 8 752 29 00

India (01) (91) 646-0694 (01) (91) 646-0813 Switzerland 01-3424036 01-8310869

(01) (91) 646-0767

Ireland (01734) 270007 (01734) 270080 Turkey (90) 212 2585998 (90) 212 2585954

Israel 972-3- 613-0833 972-3- 613-0834 United Kingdom (01734) 270007 (01734) 270080

Italy (39) (2) 7039-8351 (39) (2) 7039-2020 Uruguay (54) (1) 815-1521 (54) (1) 814-0372

Japan (81) (3) 5454-2364 (81) (3) 5454-7972 Venezuela 58.2.910046 58.2. 923835

58.2.910510

Korea (82) (2) 531-4800 (82) (2) 531-1724 Wales (01734) 270007 (01734) 270080

© 1995 Microsoft Corporation. All rights reserved.

xxv

PAR T 1

Developing an Application Using
Visual C++

Chapter 1 Developing an Application Using Visual C++ 3

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

CHAPTER

Developing an Application Using
Visual C++

This section describes how you'll use the Microsoft Developer Studio to develop an
application, and points to sources within the Visual C++ documentation set where
you may find more information including, but not limited to, the tutorials that
comprise the rest of this book.

The tutorials show you how to build sample applications, while demonstrating key
concepts you'll need to understand when developing your own Visual C++
applications. If you're new to Visual C++ and Microsoft Developer Studio, the
tutorials are a great hands-on way to become more familiar with it.

For conceptual information on using the Microsoft Foundation classes, see
Programming with MFC. The complete documentation set for Microsoft Visual C++
and Microsoft Developer Studio fully describes the integrated development
environment, new features and tools, and ways to optimize your work.

The Development Process
Aside from the undefinable aspects of creating an application - inspiration, hard
work, frustration and dedication, to name a few -there are several stages that can be
broadly categorized. These stages are outlined here, and briefly discussed within the
context of Visual C++ and Microsoft Developer Studio. Each programmer may
approach any given stage at a different time or in a different order; no preferred order
is implied.

Creating a New Project
Generally, you'll use AppWizard to generate a robust set of application "starter" files.
Within AppWizard, you specify the structure you'd like your application to take, and
the options and features you'd like AppWizard to provide.

3

Tutorials

4

Choosing a Project Type
You can use AppWizard to generate the following types of MFC projects:

• Executable

• DLL

• OLE Control

• Custom App Wizard

In addition, you can create many non-MFC project types, such as console
applications, static libraries, and projects based on external makefiles. For more
information on building projects based on external makefiles, see "Using External
Projects." For more information on building a single file as a project, see "Building a
Single File without a Project Workspace."

For more information about working with projects, see "Working with Projects."

Choosing an Application Type
Once you've chosen your project type, you'll choose the application type. AppWizard
provides the following types to choose from, with MDI being selected as the default.

• Single Document Interface (SDI)

The Enroll Tutorial is an SDI-based application.

• Multiple Document Interface (MDI)

The Scribble Tutorial demonstrates creating a simple MDI application.

• Dialog-based

Specifying Initial Application Features
After choosing a basic project and application type, your choices become more
specific. App Wizard provides branching options you can use in various combinations
to create the basis for sophisticated applications. For example, based on your
specifications, App Wizard will generate MFC code for any of the following features:

• Standard menus and dialog boxes for opening, editing, arranging and saving files,
previewing print jobs, and printing.

• ODBC and DAO support.

The Enroll Tutorial demonstrates building a simple database application with
ODBC support. The DaoEnrol Tutorial demonstrates the Enroll application using
the DAO classes.

Chapter 1 Developing an Application Using Visual C++

• Support for OLE, including support for:

• OLE compound documents, both server and container.

Scribble Step 7 demonstrates adding OLE server support to Scribble. The OLE
Container Tutorial demonstrates building an OLE container application.

• OLE compound files.

• OLE automation.

The AutoClik Tutorial demonstrates building an OLE Automation server.

• OLE controls.

The Circle Tutorial demonstrates building an OLE control.

• A dockable toolbar, status bar, and 3D controls.

• Windows Open System Architecture (WOSA) support including the Messaging
API (MAPI) and Windows sockets.

• Support for context-sensitive Help, including a menu and toolbar button. In
addition, AppWizard provides initial .RTF (help project source) files.

Scribble Step 6 is a complete tour of providing context-sensitive Help for your
Visual C++ applications.

Custom AppWizards
If these options aren't as tailored to your needs as you'd like, you can design a
Custom AppWizard that, just like AppWizard, generates a set of starter project files.
With Custom App Wizard, however, you can specify the basis for the application
according to your needs, your company's particular data sources, and so forth. Then,
every time you run this custom App Wizard, it generates the starter files according to
those specifications.

For more information about creating a custom App Wizard, see "Creating Custom
AppWizards."

Component-Based Development
The Visual C++ Component Gallery makes building powerful applications more
straight-forward than ever. By simply selecting from the many pre-built components
and inserting them into your project, you can add fully-developed features to your
application, such as owner-draw controls, pop-up menus, OLE controls and more.
The Component Gallery also significantly increases code reuse in your application
development process.

For more information about Component Gallery, see "Using Component Gallery."

5

Tutorials

6

Adding and Editing User-Interface Objects
A large part of developing and refining your interface involves customizing user
interface objects, or Windows resources. Visual C++ provides a rich set of resources
you'll use to enhance the initial interface that AppWizard creates for you. By adding
various resources to your project, and editing them in the intuitive Visual C++
resource editors, you can quickly implement your user-interface design.

The Visual C++ resource editors enable you to move easily between design mode and
a run-time view of interface objects, such as menus, toolbars and dialog boxes. For
more information, see "Using the Resource Editors."

Connecting User-Interface Objects with Code
The MFC code that App Wizard generates may be sufficient for a small number of
your application's user-interface objects, such as the splash screen, but for the most
part you'll have application-specific routines that you want called when an interface
object receives input from the user. To do that, you need to make a connection
between the interface object, the event, and the code you want called.

The visual tools provided by Visual C++ 4.0 simplify the task of connecting user
interface objects to your application-specific code. If you've used Visual C++ before, .
you're probably familiar with the ways that ClassWizard automates such tasks as
generating message-handler functions and message maps. Version 4.0 implements
two short-cuts to the ClassWizard dialog: ClassView and WizardBar. In addition to
providing a seamless link between your project classes and files, these tools make
navigating through your source code as easy as pointing and clicking .

• ClassView

Class View displays your classes and their members in a hierarchical view, using
visually intuitive icons. For instance, it displays private member functions with a
"padlock" next to the function name. By simply clicking a class or any of its
displayed members, you can jump directly to the associated declaration or
definition in your project source file.

ClassView provides a pop-up menu that you can use to directly add member
functions and variables to a given class. (You'll still use ClassWizard, or
WizardBar, to add message-handling functions.)

You can also use ClassView to:

• Browse symbols

• Display graphs of symbol relationships

• Set breakpoints

• WizardBar

Chapter 1 Developing an Application Using Visual C++

Like Class View, WizardBar enables you to jump directly to a member function.
Additionally, you can use WizardBar to override virtual functions, and to create a
handler for the Windows messages or commands a particular class can respond to.

The tutorials demonstrate how these features simplify and speed the process of
specifying how your user-interface objects respond to messages.

Editing Code
You'll continue to use the navigational support provided by ClassView and
WizardBar as you edit your project source code. The Visual C++ integrated text
editor provides full-featured editor support. In addition, version 4.0 offers the
following new editor features:

• Emulation modes for either BRIEF or Epsilon

• Incremental searching

For more information, see "Finding and Replacing Text."

• Automatic indentation and separate tabs and indent sizes

For more information, see "Setting Tabs and Indents."

• Full-screen editing mode

• New navigating commands

For more information about editing your source code, see "Using the Text Editor."

Compiling and Building Your Project
You'll compile and build at every step of project development, to check that your code
is correct and that the your application behaves as you expect it to. In Visual C++ 4.0,
the initial default project configuration builds your application with debugging
information, so that you can easily debug any errors you discover. You can specify a
different project configuration to be built by default. For more information, see
"Setting the Default Project Configuration."

Visual C++ 4.0 provides several enhancements to the build process, including:

• Building subprojects, such as DLLs

• Specifying custom build settings for alternate file types, such as Help project
(.HPJ) files

For more information, see "Building a Project Configuration."

In addition, Visual C++ 4.0 offers many ways to optimize the build process,
including:

• Minimal rebuild

• Incremental compilation

• Improved incremental linking

7

Tutorials

8

For more information, see "Setting Compiler Options and Setting Linker Options," in
the Visual c++ User's Guide.

Debugging the Application
Compiling and building leads naturally to debugging. You may want to debug your
application when a build failure occurs, or when you've modified your source code.
You can run a program in the Visual C++ debugger, if you've built the debug project
configuration. Or, you can enter Debug mode if your application fails in execution,
without closing the application.

The Visual C++ 4.0 integrated debugger adds features that make debugging a less
troublesome process induding:

• DataTips

• Variables window

• Stepping into a specific function

For more information, see "Stepping Into Functions."

• QuickWatch

• New Watch window

• TCPIIP remote debugging

For more information about using the Visual C++ Debugger, see "Using the
Debugger. "

PAR T 2

The Scribble Tutorial

Chapter 2 Scribble Tutorial 11

Chapter 3 Creating a New Application with AppWizard 19

Chapter 4 Creating the Document 29

Chapter 5 Creating the View 53

Chapter 6 Constructing the User Interface 69

Chapter 7 Binding Visual Objects to Code Using Wizard Bar 83

Chapter 8 Adding a Dialog Box 97

Chapter 9 Enhancing Views 115

Chapter 10 Enhancing Printing 135

Chapter 11 Adding Context-Sensitive Help 147

Chapter 12 Creating an OLE Server 167

CHAPTER 2

Scribble Tutorial

It's a traditional programming practice to begin work with a new system or language
compiler by writing a program that prints "Hello, World!" on the display. When you
begin programming in a graphical user-interface (OUI) environment such as
Microsoft Windows, however, the traditional practice is hard to follow. There's a fair
amount of programming overhead-well in excess of the few lines of "Hello,
World!" - simply to get a minimal OUI application running.

Note This tutorial is designed for Win32. If you have Visual C++ for Macintosh, you will see
some Macintosh-specific resource IDs that have U$LMAC}" appended to the name. For the
purposes of this tutorial,you can either ignore or modify them in parallel with the Win32
resource IDs of the same name.

Scribble, the application you build in this tutorial, is a tiny drawing program that
poses a more realistic trial run in the Windows programming environment than
"Hello, World!" Instead of printing that little phrase so familiar to programmers,
Scribble lets the user draw "Hello, World!" (or any free-hand drawing) by using the
mouse, and then save the image in a file.

By the end of the tutorial, Scribble has custom menus, MAPI support, a dialog box
with automatic initialization and validation, printing and print preview, scrolling,
splitter windows, application Help support, and more. That's a fitting list of features
for a OUI "Hello, World!" As you'll see, Microsoft Developer Studio provides many
of these features "for free," and makes implementing the rest easy.

Figure 2.1 shows what Scribble looks like on the screen.

11

Tutorials

Figure 2.1 Scribble in Action

Installing the Sample Files

12

If you want to examine source code for Scribble, or any other tutorial sample you
choose to create by following the steps in this book, you can install the sample files
that are included on the Microsoft Developer Studio CD. You don't need to install the
sample files in order to build the tutorials yourself; simply follow the directions in the
tutorial chapters. You might find it useful, however, to have the sample source files
available locally, for example if you want to compare code between the sample files
and your version of the tutorial project.

There are also many samples included on the CD that are not covered in the tutorial
chapters. You can easily install the files needed to build these sample programs as
well.

~ To install sample files

1 From Info View, expand the following folders:

Samples \ MFC Samples \ Tutorial Samples

Under the Tutorials book icon, you'll see page icons that represent each of the
tutorial chapters in this book.

(Non tutorial samples are also located under the Samples \ MFC Samples category,
organized according to topic. For example, Samples \ MFC Samples \ MFC OLE
Samples contains several sample applications that demonstrate different aspects of
OLE support.)

2 Choose the page icon for the application you are interested in, for example,
Scribble.

In the topic window, you'll see an overview topic for the tutorial or other sample
application you chose.

Chapter 2 Scribble Tutorial

Use the buttons provided toward the end of the overview topic to install the sample
files. For the tutorial topics, each tutorial step is represented by a separate button.

3 Click the button for the tutorial step or other sample application you want installed
locally.

4 In the Sample Application dialog box, choose the Copy All button to install all
files needed to build and run the sample application or tutorial step.

You can also select and copy one or more individual files if you wish; or use the
View button to examine a file before copying it. When you choose either the Copy
or Copy All button, a dialog appears in which you can specify the directory where
you want the sample files installed.

5 Specify the directory for the sample files, and choose OK.

When the sample files have been copied, you are returned to the Sample
Application dialog box.

6 Choose Close.

You can also use Books Online to preview sample applications.

A Note About Long Filenames
The names of the source code files on the distribution CD (and therefore in Books
Online) comply with ISO standards, which specify an 8.3 filename configuration.
When you follow the instructions in this book to generate your tutorial project files,
App Wizard generates long filenames by default.

If you use the project files from the distribution CD or from Books Online (the
sample source files) as your starting point to develop a particular tutorial step, you
may notice discrepancies between the filenames. Class names remain the same.
When the tutorial instructions mention a project filename, for example,
ScribbleView.cpp, use the corresponding short filename, for example ScribVw.cpp,
when performing any operations in the file.

Scribble Step 7
For Scribble Step 7 (Creating an OLE Server), it's probably best not to start from the
sample source files. So long as you use your own Step 6 files as the starting point for
Scribble Step 7, the project filenames will remain compatible.

If you do choose to use the sample source files, when the tutorial steps instruct you to
change a filename, you must substitute the short filename in order to avoid naming
conflicts. For instance, #include statements may refer to the short filename rather
than the long filename AppWizard generates. For more information, refer to "Using
Short Filenames" in Chapter 12.

13

Tutorials

Previewing the Sample Applications
Without needing to install any sample files, you can use Books Online to preview
sample applications, including tutorial samples, in 'thdr executable state. For
example, if you're simply reading through the Scribble tutorial without adding code,
you can still run Scribble at each step to see what it looks like and how it behaves.

~ To run a sample application from the source files

1 From Info View, expand the following folders:

Samples \ MFC Samples \ Tutorial Samples

Under the Tutorials book icon, you'll see page icons that represent each of the
tutorial chapters in this book.

(Non tutorial samples are also located under the Samples \ MFC Samples category,
organized according to topic.)

2 Choose the page icon for the application you are interested in, for example,
Scribble.

This brings you to a topic window that corresponds to the sample file (or tutorial
step) that you want to preview.

3 From the topic window, choose the appropriate button. For example, to preview
Scribble as it appears after compiling Step 2, choose the Step 2 button.

4 In the Sample Application dialog box, select the executable file.

Notice that the View button in the dialog box changes to a Run button.

S With the executable file selected, choose Run.

Developer Studio launches a version of the application that you can use to view
and test the application's functionality. When you are finished previewing the
application, close it as you normally would.

You are returned to the Sample Application dialog box.

6 Choose Close to exit the dialog box.

Scribble Tutorial Steps

14

The tutorial develops the Scribble application in seven steps. By installing the sample
files, you can make a local copy of all project files in their representative state for
each particular step. By default, these files are copied to subdirectories (represented
as folder icons in your Project Workspace window) named STEPI through STEP7.
You can change the name and location of the subdirectories if you like.

Chapter 3 describes how to create the skeleton App Wizard files for Scribble. Chapters
4 through 11 describe how to develop the basic Scribble application (Steps 1 through
6). Chapter 12 describes how to convert Scribble to an OLE server (Step 7).

Chapter 2 Scribble Tutorial

Note that a single tutorial step might be covered in more than one chapter. For
convenience, Table 2.1 correlates chapters, steps, and chapter content. The second
column gives the step completed by the end of the corresponding chapter. Each
chapter begins where you left off in the previous step.

Table 2.1 Tutorial Steps

Chapter Step Completed Content

3 Starter AppWizard application (no corresponding tutorial
step); includes MAPI support

4 Scribble's document (first part of Step 1)

5 Scribble's view (completes Step 1)

6 Menus and toolbar-menu and graphics editors (first part of
Step 2)

7 2 Handlers for commands-ClassWizard, WizardBar, Classes
pane (completes Step 2)

8 3 Dialog boxes-resource editors, ClassWizard, WizardBar,
Classes pane, adding a spin control

9 4 Scrolling and splitting

10 5 Printing and print preview

11 6 Context-sensitive Help

12 7 OLE server creation

The Files You Work With
For most of the procedures that follow, you will need to deal with only a few of the
files actually generated by App Wizard:

• Document class files: ScribbleDoc.h (the header file) and ScribbleDoc.cpp (the
implementation file)

• View class files: Scribble View.h and Scribble View.cpp

You'll also occasionally refer to or edit Scribble.h and Scribble.cpp, the application
class files.

Tip ClassView makes working with your class files easy and intuitive. By expanding the top
level folders, you can display all member functions contained in the class. Then, by choosing
the icon for the member function you wish to edit, you can go directly to the file that contains
the function. You needn't explicitly open the file, and you can begin editing immediately,
because Developer Studio places your cursor at the selected function. For more information,
see "Navigating Through Code."

15

Tutorials

For chapters that use the resource editors (Chapters 5 through 7), you'll work with
Scribble.rc, the application's resource file. This file and the resources it contains
(such as Windows bitmaps and dialog resources) are represented in ResourceView.
For more information, see "Viewing Resources," in Chapter 4 of the the Visual C++
User's Guide.

You may occasionally want to examine the other files created by AppWizard and
ClassWizard, but in most cases·you won't need to alter them. For more information
about the skeleton application files that AppWizard creates, see the ReadMe.txt file in
your Scribble project root directory (AppWizard also creates this file). More detailed
information is available in the article "AppWizard: Files Created," in Part 2 of
Programming with MFC.

In Chapter 1:2, "Creating an OLE Server," you'll work with the files for MFC classes
that implement OLE server support.

Note For Chapter 3, "Creating a New Application" with AppWizard, simply follow the
instructions for using AppWizard to create the skeleton Scribble application files. Even if you
aren't planning to add the tutorial code yourself, you can easily follow this procedure. It's a
good way to learn to use this tool.

Scribble Build Information

16

This section explains a few things you'll need to know when you prepare to build
Scribble. General procedures for compiling and linking MFC programs in Visual
C++ and running the executable program under Windows are given in Chapter 1,
"Developing a Microsoft Visual C++ Application."

If you're working along, adding code as you read, build the version of the project that
you've been developing. You should be in your Scribble project directory and have
the project open. Setting up the project directory is described in Chapter 3, in the
procedure, "To create starter files for Scribble."

Setting Build Options
When you create a new project, Developer Studio automatically creates both Release
and Debug build configurations, although only one project configuration (the current
default) is displayed in the Project Workspace window. Developer Studio sets Debug
as the default project configuration. For Scribble, you shouldn't need to change this
default setting. However, for your own projects you'll want to be able to build a
Release version.

Chapter 2 Scribble Tutorial

~ To select Debug or Release build options

• From the Default Configuration drop-down list on the Build toolbar (just above the
Project Workspace window), select the type of project you want to build.

-or-

• From the Build menu, choose Set Default Configuration, and in the dialog box,
select the type of project you want built by default.

The project you select remains the default project until you change it again.

Chapter 3, "Creating a New Application with AppWizard," begins the tutorial
proper. You'll use AppWizard to create the skeleton Scribble application. Then, in
the chapters that follow, you'll build a more powerful Scribble application upon that
skeleton.

17

CHAPTER 3

Creating a New Application with
AppWizard

Once you've completed your initial application design, you'll typically perform the
following tasks to develop the application with Microsoft Developer Studio and the
Microsoft Foundation Class Library (MFC):

• Use App Wizard to create a set of C++ starter files and associated Windows
resources - a skeleton application that you can build and run immediately.

For more information, see Chapter 1, "Creating a New Application Using
AppWizard," in the Visual C++ User's Guide.

• Use resource editors to construct the objects that make up the user interface, such
as menus and dialogs.

• Use elements of the IDE to generate and edit application-specific code. These
elements include, but are not limited to:

• The text editor

• ClassView

• Class Wizard

• WizardBar

• Build, browse, test, and debug your project files - then add more code.

The steps tend to be iterative. You'll probably go back and forth between editing the
user interface and writing code all through the development process. You can also do
the steps in a different order, depending on your working style.

Starting with Scribble
This chapter shows you how to create the starter files for the Scribble application that
is developed throughout the tutorial. As mentioned, these files contain skeletal code
for several C++ classes:

• An application class

• A document class

19

Tutorials

• A view class

• A frame window class

The concepts behind these classes are discussed fully in Chapter 1, "Using the
Classes to Write Applications for Windows," of Programming with MFC.

You'll also learn more about them in Chapters 8 and 9 of this manual.

Details about the files AppWizard creates are available in a text file (ReadMe. txt)
that is created along with the starter files. For additional information about the starter
files, see the article "AppWizard: Files Created" in Part 2 of Programming with MFC.

Without adding a line of code, you can build the starter application you created with
AppWizard and run the resulting program, which exhibits much of the standard
functionality you expect from a program written for Windows. The steps needed to
build and run the program are given in the sections "Build the Starter Application"
and "Run the Starter Application."

If you're working along, adding code as you read, follow all directions in this chapter.
When you finish, you'll have a full set of starter files in your own project directory. If
you're reading along without adding any code, it's still a good idea to work through
this chapter to familiarize yourself with App Wizard.

Note If you do not have the Sample files in your current Microsoft Developer Studio
installation, you can easily install them. For more information, see "Installing the Sample Files."
Note that the filenames in the sample source code may differ from the ones generated by
AppWizard, depending on your specifications.

Using App Wizard to Create the Starter
Application for Scribble

20

This section shows you how to use App Wizard to create the starter application that
forms the beginnings of Scribble.

App Wizard presents a series of dialog boxes that contain options you specify,
depending on your preferences. Then AppWizard creates a set of source-code files,
based on these options, from which you develop your application. This saves a great
deal of time and effort and lets you focus on the application-specific parts of your
program.

Note The following procedure describes how to enter the correct values for Scribble. Many of
the AppWizard dialog boxes contain choices that you won't use to create the starter files for
Scribble. For more information on these choices, see Chapter 1, "Creating a New Application
Using AppWizard," in the Visual C++ User's Guide.

Chapter 3 Creating a New Application with AppWizard

Figure 3.1 New Project Workspace Dialog Box

::::< '. Location: '. . ' .•

;.~;: .1 ~:\M;~o,~~~~ra.i~;~s~~;:ibb~~;

~ To create starter files for Scribble

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace and click OK.

The New Project Workspace dialog box (Figure 3.1) appears.

3 In the Name box, type S c rib b 1 e.

AppWizard creates a project directory with this name under the main (root)
directory specified in the Location box. The workspace configuration file and
project makefile are based on this name, in this case, Scribble.mdp and
Scribble.mak, respectively.

4 In the Type listbox, make sure MFC App Wizard (exe) is selected.

5 If necessary, use the Location box to specify a different root directory for the
Scribble project files that App Wizard creates under the Scribble project directory.

Depending on the directory in which you last worked, you may want to change
where the Location box currently points to. You can use the Browse button to
navigate to an existing directory, or type a directory name directly into the
Location box. AppWizard creates this directory if it doesn't exist.

6 If any checkboxes other than Win32 appear in the Platforms box, clear them.

If your Microsoft Developer Studio installation includes other language packages,
they are represented by checkboxes as potential platforms. Choosing checkboxes
other than Win32 might mean that options you need for Scribble are not available.
For more information, see the topic, "Platform Types," in Chapter 2 of the Visual
c++ User's Guide.

7 Choose the Create button.

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

21

Tutorials

22

8 Choose the Next button in the dialog boxes for AppWizard Steps 1,2, and 3 to
accept the default options.

By default, AppWizard generates source code that supports the multiple document
interface (MDI), creating Scribble as an MDI application.

9 In the AppWizard-Step 4 dialog box, check the MAPI (Messaging API) support
checkbox.

Note MAPI support is available to users only if they have an electronic mail system.

With the default options in the Step 4 dialog selected, App Wizard creates code that
supports the following features:

• A dockable toolbar

• A status bar

• Printing and print preview

• 3D controls

10 Choose the Advanced button.

The Advanced Options dialog box appears with the Document Template Strings
page tab selected.

11 In the File Extension box, type s c b.

This step is optional. App Wizard appends the extension you specify here to the
names of files that the user saves with Scribble. If you choose not to specify an
extension, users must specify their own file extensions when saving files.

12 In the Filter Name box, change the filter description to read "Scribble Files
(* .scb)".

This step is optional. In the compiled Scribble application, this string, for
example, "Scribble Files (* .scb)", appears in the List Files of Type: box in the File
Open and File Save As dialog boxes.

13 Choose Close.

14 Click the Finish button in the dialog box for AppWizard-Step 4.

The default options in the Step 5 dialog box supply comments throughout the
AppWizard-created files, indicating where you need to add your own code.

The default settings in the Step 6 dialog box specify program file and class names.
For the purposes of Scribble, you won't modify class or filenames that AppWizard
automatically generates.

Note When you follow these steps, the names of the source code files for Scribble differ
slightly from the names generated by AppWizard. This may be helpful, when examining
source code, in distinguishing between your files and the samples.

The New Project Information dialog box appears, summarizing the settings and
features AppWizard will generate for you when it creates your project. You might

Chapter 3 Creating a New Application with AppWizard

want to take a moment to examine the application type, classes, and features that
AppWizard automatically provides.

15 Click the OK button in the New Project Information dialog box.

App Wizard creates all necessary files and opens the project.

Viewing the Project
Each pane of the Project Workspace (other than InfoView) displays a different view of
the project. You can switch among them to see what AppWizard generated for the
starter Scribble project.

• Class View displays a graphical representation of the Scribble classes and members
that App Wizard created. ..

• File View displays a list of the Scribble project files that App Wizard generated.

• Resource View displays the resources App Wizard generated for Scribble.

Project Build Information
App Wizard creates both Debug and Release versions of each project it creates,
selecting the Debug version as the default. The current default project configuration
is displayed in the Default Configuration drop-list on the Build toolbar. You can
switch the default project to specify which configuration you want to build. For more
information, see "Build the Starter Application."

Viewing the Starter Classes
Switch to Class View, and examine the classes that App Wizard defined in the skeleton
application files:

• CAboutDl g-the class used to create the "About Scribble" dialog box

• CChi 1 dFrame-the class used to create the MDI child frame window (which
contains the Scribble documents)

• CMa in Frame-the class used to create the MDI main frame window (which
contains the child frame windows)

• CScri bb 1 eApp-the main application object

• CScri bb 1 eDoc-the document class

• CScri bbl eVi ew-the view class

By expanding each class icon, you can view the default member functions and
variables App Wizard declared for you. In most cases, these are skeleton functions
that you'll fill in later.

Developer Studio provides several tools that make jumping directly to your code, and
generating skeleton handler functions, easy and intuitive. For instance, you can easily
jump from Class View directly to class and member function declarations and

23

Tutorials

definitions. For more information, see the next section, "Navigating Through Code,"
or "Using ClassView" in Chapter 2 of the Visual C++ User's Guide.

You'll undoubtedly want to examine the source code files. To orient you, AppWizard
creates a text file, ReadMe.txt, in your new project root directory. This file explains
the contents and uses of the other new files created by App Wizard. Further details are
available in the article "AppWizard: Files Created" in Part 2 of Programming with
MFC.

The final two sections of this chapter guide you through the process of compiling the
starter application and running the resulting program to examine its capabilities.

Navigating Through Code

24

You can use ClassView to quickly jump to existing code. Without having to think
about which file to open, you can jump to existing class definitions, member function
declarations and definitions, and member variable definitions.

You can use WizardBar to create a new function handler or to jump to existing
handler code.

In the event that you want to go to a section in your file that you can't jump to
directly, you can use File View to easily open the file for editing without going
through a menu.

~ To use ClassView to locate class definitions

• From Class View, double-click the icon for the class whose definition you want to
view or modify.

-or-

1 Point your cursor at the class icon, and click the right mouse button. (The class
name must be selected when you click.)

2 In the pop-up menu, choose Go To Definition.

The associated header (.h) file for the class opens in the text editor with the cursor
placed at the beginning of the class definition.

~ To use ClassView to locate member function declarations

1 In Class View, expand the folder for the class that contains the member function
declaration you want to view or edit.

2 Point your cursor at the icon (shaped like a document page) for the member
function, and click the right mouse button. (The member function name must be
selected when you right-click.)

3 In the pop-up menu, choose Go To Declaration.

The associated header (.h) file opens in the text editor with the cursor at the
declaration for the function you chose.

Chapter 3 Creating a New Application with AppWizard

~ To use ClassView to locate member function definitions

1 In Class View, expand the folder for the class that contains the member function
definition you want to view or edit.

2 Double-click the icon that represents the member function definition. Icons for
functions are shaped like a document page.

The associated implementation (.cpp) file opens in the text editor with the cursor
at the definition for the function you chose.

~ To use ClassView to locate member variable definitions

1 In Class View, expand the folder for the class that contains the member variable
you want to view or edit.

2 Double-click the icon that represents the member variable. Icons for variables are
shaped like a cube.

The associated project file opens in the text editor with your the placed at the
appropriate line in your class definition.

Using Wizard Bar
The WizardBar appears at the top of the text editor whenever you have an
implementation (.cpp) file open in an editor window. When the class associated with
the implementation file is selected in the Object IDs list, the Messages drop-down list
displays select MFC virtual functions, Windows messages, and CCmdTarget
procedures for the selected class.

The function names listed in bold represent functions that already have handlers.
When you choose any of these functions from the list, Class Wizard jumps you
directly to the associated definition in your source files.

When you choose a function without a handler, Class Wizard displays a message box
that asks whether you want to create a handler for the function. If you respond Yes,
Class Wizard creates a skeleton function with the correct parameters and syntax,
highlighting the II TODO comment so you can replace it with your code.

For more information, see "Using WizardBar" in Chapter 14 of the Visual C++
User's Guide.

Opening a File for Editing
Sometimes you will need to locate a place in one of Scribble's files that you can't
automatically jump to by using Class View or WizardBar. The File View pane of the
Project Workspace window provides a way to easily open your project files without
using a menu command.

File View displays the main project folder. By expanding this folder, you can view
your project files. You can double-click any of these files to open them inside the text
editor.

25

Tutorials

~ To open a file for editing

1 In File View, expand the top-level project folder, if necessary, to display the
project files.

Implementation files, such as. cpp and .rc files, can be found under the main
project folder (in this case, Scribble.exe). Other files, such as header (.h) files can
be found under the Dependencies folder.

2 Double-click the file in which you want to work.

The file opens in an editor window.

Build the Starter Application

26

The starter application you created provides the skeleton of a working application for
the Windows operating system. You can choose to build either a Release or a Debug
version, because Microsoft Developer Studio generates project files and settings for
both versions.

Before compiling, select the type of project you want to build.

~ To select Debug or Release build options,

• From the Default Configuration drop-down list on the Build toolbar, select the
type of project you want to build.

-or-

• From the Build menu, choose Set Default Configuration, and in the Default
Project Configuration dialog box, choose the type of project you want to build.

The project type you specify in this dialog will remain the default until you change
it again.

The Build toolbar is located just above the Project Workspace window.

Figure 3.2 The Build Toolbar

I' Build toolbar buttons

~ Default configuration drop-down

~ To build the starter application

• From the Build menu, choose Build Scribble.exe.

Developer Studio builds the default version of the starter application, producing
the file Scribble.exe in your project directory.

Chapter 3 Creating a New Application with AppWizard

When you build the skeleton Scribble application from the files that AppWizard
creates- without adding a single line of code - the result is an application that
runs, opens, and closes windows, and lets you perform other operations on the
windows. Try running the application to view this built-in functionality.

For more information, see "Building a Project," in Chapter 2 of the Visual C++
User's Guide.

Run the Starter Application
. After you build the starter application, you can run either a Debug or a Release
version, so long as you have first built the version of the project you want to run. For
more information, see the previous section, "Build the Starter Application," and
"Running a Program," in Chapter 2 of the Visual C++ User's Guide.

~ To run the Debug version of Scribble

1 From the Default Configuration drop-down on the Build toolbar, select Scribble
Win32 Debug.

2 From the Build menu, choose Execute Scribble.exe.

~ To run the Release version of Scribble

1 From the Default Configuration drop-down on the Build toolbar, select Scribble
Win32 Release.

2 From the Build menu, choose Execute Scribble.exe.

When the starter application runs, an MDI application window appears with a default
toolbar and a menu bar that contains File, Edit, View, Window, and Help menus. The
application window contains one open document window, as shown in Figure 3.3.

Figure 3.3 The Starter Application

27

Tutorials

28

The document window is empty, of course, because you've added no application
specific code yet. But there is already a great deal of functionality built into Scribble:

• You can use the New command on the File menu to open new windows, and the
commands on the Window menu to arrange any open windows.

• The Open, Save, and Save As commands on the File menu are partially
functional: at this point, they save empty files. You haven't added all of the code
yet to support these commands. The Print command opens the Print dialog box,
and the Print Preview and Print Setup commands work.

• MAPI support is fully implemented:

• The Send command on the File menu works without any additional code from
you. (This command, and MAPI support in general, is only available if the user
has an electronic mail system.)

• The Recent File command appears on the File menu as a placeholder for the Most
Recently Used (MRU) file list, which is implemented automatically when users
save and reopen files.

• The commands on the View menu show or hide the toolbar and the status bar.

• The About command on the Help menu brings up an About dialog box with
default text in it.

• The default toolbar is partially functional too: the New, Open, Save/Save As, and
Print buttons do the same things as the corresponding menu commands, and tool
tips appear when your mouse cursor rests over a toolbar button. The status bar at
the bottom of the application window displays a description string when you move
the mouse pointer over any menu command.

That's a lot of functionality for free! Of course, at this stage the windows have
nothing in them. So far, Scribble doesn't scribble.

This application lays the foundation for Scribble and displays much of the standard
behavior you expect in an MDI application written for Windows. The next two
chapters use Scribble to show you how to develop the document and view classes that
you created in this chapter.

For more information about using App Wizard, see Chapter 1, "Creating Applications
Using AppWizard," in the Visual C++ User's Guide.

CHAPTER 4

Creating the Document

In this chapter and the next, you'll add code to the starter application you created
with AppWizard in Chapter 3, "Creating a New Application with AppWizard."
You'll be working in the following files: StdAfx.h, ScribbleDoc.h, and
ScribbleDoc.cpp.

Note If you have not made a local copy of the sample source code for the tutorial step you're
working in, it's easy to do so. For more information, see "Installing the Sample Files."

Developing the CScribbleDoc Document Class
This chapter introduces documents and develops Scribble's document class, called
C S e rib b 1 e D a e, an application-specific class derived from class CDocument.
Chapter 5 introduces views and develops the view class. The two chapters together
introduce many of the fundamental concepts of the framework: documents, views,
drawing, messages, and serialization (file loading and saving). Because documents
and views are intimately related, you need to implement both before Scribble is fully
functional.

In later chapters, you'll add new features to Scribble incrementally: more menus, a
working toolbar, a dialog box with automatic initialization and validation of its
controls, scrolling, splitter windows, enhanced printing, full application Help
support, and OLE server support.

Your tour of Scribble's code begins with the starter files created by AppWizard (see
the topic "Using AppWizard to Create the Starter Application for Scribble.") You'll
add a lot of functionality to Scribble with a small amount of code. Among the things
you'll develop in this chapter are:

• Scribble's data-CSt rake, a class that defines one "stroke" of a drawing.

• Scribble's document-CSeri bbl eDae, a class to contain and manage a list of
strokes.

• Scribble's serialization code-code that implements writing and reading
documents.

29

Tutorials

Working Through Scribble Step 1
This chapter and Chapter 5 cover Step 1 of Scribble. If you are working along, begin
with the files you created with App Wizard in Chapter 3. As you read this chapter,
add or change all lines of code as instructed in the procedures. At the end of
Chapter 5, your files should essentially resemble Scribble Stepl source files.

Previewing Step 1
You can easily preview sample applications, including tutorial steps, in their
executable state. For more information, see "Prev~ewing the Sample Applications."

Documents

30

At the heart of every document-based application, such as Scribble, are its document
and its view. This section explains the role of the document and introduces Scribble's
document class and its members.

At run time, an application written with MFC is a group of cooperating objects that
communicate by sending and receiving Windows messages and by calling each
other's member functions. Documents are created by document template objects and
managed by an application object. Users interact with a document through a view
object, which is framed by a document frame window object. Figure 4.1 shows
graphically the relationships between these key objects.

Figure 4.1 Objects in Scribble

I Application Object I

t
I Document Template I

t
I Document I Main Frame Window

Arrows show directions
of communication flow.

Toolbar

'------+-.-.~ View

Status Bar

I

Chapter 4 Creating the Document

Table 4.1 shows how the document and other objects are created and managed in a
framework application.

Table 4.1 Key Objects in an Application

Object Primary purpose Relationships to other objects

Application Manages all other Keeps a list of document templates.
framework objects.

Document Creates and manages Manages a list of open documents of a given
template documents. type. Creates frame windows and views to

provide a user interface for a document's data.

Document Stores data. Manages a list of views on its data.

View Manages user interaction Attached to a document. Owned by a frame
with a document. window.

Frame window Frames a view. Owns a view that is attached to a document.

Document Definition
A document is the unit of data that a user opens with the Open command on the File
menu and saves with the Save command. The document is responsible for storing the
data and for loading it from and storing it to persistent storage, usually a disk file. A
document typically appears to the user inside a frame window through which the user
manipulates the data.

Figure 4.2 shows the general relationship between a document and its view and frame
window.

31

Tutorials

Figure 4.2 Document and View

Document: Stores data in
an internally useful form.

Portion of document
currently visible

--

--

--
-
-
-

;- View' Renders the data
in a visual form and
responds to us - er actions. -----...

:
....

I .. , .

- Frame wmdow

Documents in the Framework
In the framework, the data and the user's operations on the data are managed by two
separate objects. A document is an object that stores your data in its member
variables, and reads and writes it through a member function called Serialize. The
user interacts with the document's data through a separate object called a view. The
view fills the client area of a frame window, where it displays the data and accepts
user input and editing operations. Documents know how to manage data; views know
how to display it and accept operations on it. Figure 4.2 shows this important
relationship graphically.

Document Creation

32

When the user opens a document-existing or new-the framework creates a
document object and its associated frame window and view objects. If the document is
associated with a file, the document reads the file into data structures inside the
document. The view obtains data from the document and displays it. Figure 4.3
shows the general process of creating a new document and its view and frame
window.

Chapter 4 Creating the Document

In MFC, documents are based on class CDocument. To use CDocument, you derive
your own document class from it. For more detailed information about documents,
see Chapter 1, "Using the Classes to Write Applications for Windows," and Chapter
3, "Working with Frame Windows, Documents, and Views," in Programming with
MFC, as well as class CDocument in the Class Library Reference.

Figure 4.3 Creating a Document

New Open

/
Select document template

Construct document object

Construct mainframe window Construct view object

/

Create document frame window

If open, serialize data from file 'I~ _____ C_r_e_a_te __ vi_e_w_w __ in_d_o_w ____ ~

Initialize view

Display document in view

.--- User begins editing document

How the Document and View Interact
When the user modifies data through the view, the view notifies the document. In
tum, the document tells all of its views (a document can have multiple views) to
update their displays with the new information, and the views respond by redrawing
all or part of the visible portion of the document. You'llieam more about the view's
part in this process in Chapter 5, "Creating the View."

33

Tutorials

You and the Document
Table 4.2 shows your responsibilities and those of the framework in implementing a
document.

Table 4.2 Document Implementation Responsibilities

Your job

Derive a document class from class
CDocument.

Add data members to your class.

Implement application-specific
initialization and cleanup of your
document's data.

Override CDocument's Serialize
member function to specify how your
data is read and written.

The framework's job

Provide many document services through class
CDocument.

Call the appropriate initialization and cleanup
functions at the right times.

Provide implementations of File Open, Save,
and Save As that call your Seri ali ze
override to read and write your data.

Typically, you also add member functions to your derived document class through
which other objects-mainly the view-can access the document's data.

Scribble's Document: Class CScribbleDoc

34

Scribble is a simple drawing program. Documents in Scribble store the lines, or
"strokes," that make up a drawing. Because a drawing is typically made up of many
strokes, the document stores a list of all the strokes the user has drawn. Figure 4.4
shows a single stroke drawn in a Scribble document's view.

Figure 4.4 One Stroke in Scribble

Chapter 4 Creating the Document

Documents in Scribble are objects of class CSc ri bb 1 eDoc, which is derived from
CDocument. CScri bbl eDoc has a member variable named m_strokeL i st for
storing a list of strokes and member functions to manage the stroke list. You can view
this member variable in the Classes pane by expanding the icon for class
CScri bbl eDoc.

Note By convention, class names begin with an uppercase "G" and member variable names
begin with a lowercase "m_".

Customizing CScribbleDoc
AppWizard writes a skeletal CScri bb 1 eDoc class for you, which you'll customize in
the following procedures. First you'll add CSt r 0 k e, a class used to define the
document's data structure, to CScri bbl eDoc. Then you'll add member variables and
functions to C S c rib b 1 e Doc, which provide some typical document functionality,
such as:

• Defining and manipulating the document's data.

• Serializing the data to and from files.

In this chapter, and throughout this tutorial, you'll use the text editor to add code to
an existing file (one of the files AppWizard created for you).

Jumping Directly to Code
Microsoft Developer Studio provides several tools that make navigating through your
code quick and easy. Class View visually depicts all existing classes and their
members. WizardBar, which appears at the top of the text editor window when you
have an implementation (.cpp) file open, lists all virtual functions, Windows
messages, and CCmndTarget procedures associated with the selected class.

You can use either of these tools to jump directly to the code you'll edit. For more
information, see "Navigating Through Code," for a description of some basic
procedures you can use to jump to your code.

Adding Code to CScribbleDoc
In the following procedure you add the forward declaration for CSt r 0 k e. You'll
learn more about CSt r 0 k e later in this chapter, in the section "The Document's
Data: Class CStroke." Then, in procedures that follow, you'll add new member
variables (m_nPenWi dth and m_penCur) and functions (Ini tDocument and
NewStroke) to CScri bbl eDoc. For more information, see "Adding Members from
ClassView" in Chapter 2, of the Visual C++ User's Guide.

35

Tutorials

36

Note The source files for tutorials such as Scribble contain comments that clarify the purpose
of the code. Including such comments is not always mentioned as part of a tutorial step, both
for brevity's sake, and because the the purpose of code you add is explained in the procedures
you'll follow. You can always, of course, modify or add to comments in your own files.

~ To add CStroke to CScribbleDoc,

1 In Class View, expand the project folder, if necessary, and double-click the icon for
the CSeri bbl eDoe class.

The document class header file, ScribbleDoc.h, opens in the text editor with the
cursor placed at the class definition.

2 Add the following code just before the definition of class C S e rib b 1 e Doe:

II Forward declaration of data structure class
class CStroke:

3 Save the header file. (Optional.)

Note Developer Studio saves all your work for you automatically when you build your project,
close the workspace, or exit the program. Any prompts within these procedures to save your
files are provided only as extra safeguards of your work.

~ To add member variables to Scribble's document class

1 In Class View, point the cursor at C S e rib b 1 e Doe and click the right mouse
button.

2 In the pop-up menu, choose Add Variable.

The Add Member Variable dialog appears.

3 From the Variable Type drop-box, select UINT (or simply type it in).

4 In the Variable Declaration box, type m_n Pen Wid t h.

5 In the Access area, select Protected, and choose OK.

Class Wizard adds the variable declaration to file ScribbleDoc.h.

6 Repeat steps 1 through 5 to declare the protected m_p e n Cur variable of type
CPen.

ClassView displays the new member declarations and variables you've added with
your code.

7 Expand the icon for CSeri bb 1 eDoe.

Note that m_nPenWi dth and m_penCur are now displayed as variables belonging
to the class. Once member functions and variables are declared, ClassView
displays them, even if their definition isn't written yet.

Chapter 4 Creating the Document

8 Double-click the icon for m_n PenWi dth.

ScribbleDoc.h opens in the text editor, with your cursor at the definition for
m_n PenWi dth.

9 Add the following two lines of code in the Public attributes section of
ScribbleDoc.h:

CTypedPtrList<CObList, CStroke*> m_strokeList:
CPen* GetCurrentPen() { return &m_penCur: }

The m_strokeL i st variable is an instance ofa template. The GetCurrentPen
function is inline, so its definition appears in ScribbleDoc.h instead of
ScribbleDoc.cpp.

~ To add member functions to Scribble's document class

1 In Class View, point the cursor at C S c rib b 1 e Doc and click the right mouse
button.

2 In the pop-up menu, choose Add Function.

The Add Member Function dialog appears.

3 Fill in the dialog as follows:

• In the Function Type box, type CSt ro ke* .

• In the Function Declaration box, type NewS t r 0 k e () .

• In the Access area, select Public.

• Choose OK.

A declaration is added to the file ScribbleDoc.h, while a skeletal definition is
added to ScribbleDoc.cpp. You'll fill in the definition later in this chapter.

4 Repeat steps 1 through 3· to declare the function I nit Doc urn en t with a return
type of void, and a Protected access specifier.

Once again, you can view the new functions in Class View.

Adding the Template Collection Classes to Scribble
Scribble uses two of several C++ collection template classes provided by MFC:
CTypedPtrList and CArray. You've just added the code that uses CTypedPtrList;
you'll add the code that uses CArray when you declare the CStroke class.

All the template collection classes are defined in the header file, AFXTEMPL.H.
Since this MFC-provided header file will not change over the course of your
development of the Scribble application, itmakes sense to add it to Scribble's
precompiled header, STDAFX.H.

37

Tutorials

STDAFX.H was created by AppWizard to keep the list of header files to be
precompiled. It consists of a list of #include statements, followed by the names of the
header files.

Note Precompiled header (PCH) files speed up build times because they don't require
recompiling. For more information, see "Precompiled Headers."

~ To add AFXTEMPL.H to the precompiled header

1 Switch to File View, and if necessary, expand the Scribble project folder.

2 Expand the Dependencies folder, and open file StdAfx.h.

3 At the bottom of the file, type

#include <afxtempl.h>

4 Save StdAfx.h.

II MFC templ ates

Using WizardBar to Override Base-Class Functions

38

The final task in declaring the member functions for C S e r; b b 1 e Doe is to override
OnOpenDocument and DeleteContents, which are needed for Scribble-specific
initialization and clean-up.

You may be familiar with how to use ClassWizard to override virtual functions. Using
the WizardBar (a short cut into ClassWizard) eliminates several steps for you. For
more information, see "Using WizardBar," in Chapter 14, "Working with Classes," of
the Visual C++ User's Guide.

Note The following procedures assume you have an editor window open, and that it is
displaying the implementation (.cpp) file containing the class whose functions you want to
override. By default, Wizard Bar should be displayed. If it is not, first use the following
procedure to display it.

~ To display the Wizard Bar

• With your cursor in the editor window, click the right mouse button, and from the
pop-up menu, choose Toolbar.

The Toolbar command is a toggle switch that either displays or hides the
WizardBar.

~ To use the Wizard Bar to override functions

1 If necessary, open the class implementation file, in this case, ScribbleDoc.cpp.

In the WizardBar Object IDs List, the class name (in this case CSer; bbl eDoe) is
selected by default.

Chapter 4 Creating the Document

2 From the Messages drop-down list, select the function you want to override. First
select OnOpenDocument.

A message box prompts you to specify whether you want to add a handler for the
function.

3 Choose Yes.

ClassWizard creates a skeleton definition for the function, highlighting the code so
you can simply begin typing to override it. (You won't type anything at this point.)

4 Repeat steps 2 and 3 for DeleteContents.

5 Save ScribbleDoc.h and ScribbleDoc.cpp.

Class Wizard writes the overridden functions to ScribbleDoc.h. As a result, you can
view them in Class View.

Here's how the ClassWizard-generated code appears in ScribbleDoc.h:

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAl(CScribbleDoc)
public:
virtual BOOl OnNewOocument():
virtual void Serialize(CArchive& ar):
virtual BOOl OnOpenDocument(lPCTSTR lpszPathName):
virtual void OeleteContents():
I/} }AFX_V I RTUAl

AppWizard added the implementation for OnNewDocument, and for Seri ali ze, to
ScribbleDoc.h when you first created the skeleton application. (You may have noticed
that both functions already appeared in bold in the WizardBar Messages list.)

Here is the skeleton function handler code that Class Wizard added to
ScribbleDoc.cpp:

BOOl CScribbleOoc::OnOpenDocument(lPCTSTR lpszPathName)
{

}

if (!CDocument::OnOpenDocument(lpszPathName»
return FALSE:

II TOOO: Add your specialized creation code here

return TRUE:

void CScribbleOoc::OeleteContents()
{

II TOOO: Add your specialized code here and/or call the base
class

CDocument::DeleteContents():
}

39

Tutorials

You will fill in the handler definitions for OnOpenDocument, OnNewDocument,
and De 1 eteContents later, in "Initializing and Cleaning Up."

Summary of CScribbleDoc Member Functions and
Variables

40

Table 4.3 describes the current member variables of class CScri bbl eDoc, and the
purpose they will serve in Scribble.

Table 4.3 CScribbleDoc Data Members

Member Description

A list of strokes. Each item in the list is an object of class
CSt r 0 k e. The list itself is a C++ class template based on the
MFC template class, CTypedPtrArray.

A CPen object used to do the drawing. Its main attribute is its
width. The pen is created when the document is constructed and
is used during the creation of new strokes.

The current width of the lines drawn by the pen.

Table 4.4 describes the member functions.

Table 4.4 CScribbleDoc Member Functions

Member

CScribbleDoc,
.... CScribbleDoc

DeleteContents

GetCurrentPen

In i tDocument,
OnNewDocument,
OnOpenDocument

NewStroke

Serialize

AssertValid

Dump

Description

A default constructor and a virtual destructor. AppWizard
creates placeholders for these functions. In Scribble, they remain
empty.

Deletes the contents of a document-the strokes that make up
the drawing.

Retrieves a pointer to the current pen object any time it's
needed by the drawing code.

Called when a new document is created or an existing document
is opened. The overridden versions of the CDocument member
functions OnNewDocument and OnOpenDocument call
Ini tDocument to initialize the new document.

Creates a new stroke object and adds it to the list of strokes in
m_strokeL i st.

Overrides the Serialize member function of class CDocument.
The override specifies how to serialize a list of stroke objects to
and from a disk file. AppWizard creates this function for you in
skeletal form.

Tests the validity of an object's internal state.

Dumps the contents of an object's members for examination
during debugging.

Chapter 4 Creating the Document

You'll add code for most of these member functions in later sections of this chapter.
You'llieam more about Se ri ali ze under "Serializing the Data." For more
information about AssertValid and Dump, see "Diagnostics" in Programming with
MFC. You won't add code to these functions for Scribble.

The Document's Data: Class CStroke
In Scribble, a stroke consists of an array of points. As the user drags the mouse to
draw, Scribble collects points and stores them as part of the current stroke. Points
collected from the time the left mouse button is pressed to the time it's released form
one stroke of a Scribble drawing. Figure 4.5 shows Scribble's data structure
schematically. Scribble uses an object of class CPen for drawing.

Figure 4.5 Scribble's m_strokeList Data Structure

Document

CTypedPtrList of CStroke objects.
Each CStroke contains a CAr ray
of CPoint objects.

0000
QQQP
0000
0006
000
dod
000

a
a

Arrays of point

Each stroke is stored in an object of class CStroke, Scribble's primary data structure,
which you'll declare as a new class in Scribble's source files (ScribbleDoc.h and
ScribbleDoc.cpp). The whole drawing is a list of CStroke objects.

The next topic describes how to add CStroke to Scribble.

41

Tutorials

Adding the CStroke Class

42

Recall that you added a forward declaration of CStroke previously. Now you will
add the actual CStroke class declaration.

~ To add the CStroke class

• If you're working along, add the code shown below to ScribbleDoc.h, and then
save the file. The declaration for class CStroke follows that for class
esc rib b 1 eO 0 c, so it comes at the very end of the file.

II class Cstroke
II A stroke is a series of connected points in the Scribble drawing.
II A Scribble document may have multiple strokes.
class CStroke : public CObject
{

public:
CStroke(UINT nPenWidth);

protected:
CStroke ();
DEClARE_SERIAl(CStroke)

II Attributes
protected:

UINT m_nPenWidth; II One width applies to entire stroke
public:

CArray<CPoint, CPoint>

II Operations
public:

m_pointArray; II Series of connected
II pOints

BOOl DrawStroke(CDC* pDC);

public:
virtual void Serialize(CArchive& ar);

} ;

This code declares a C++ class of stroke objects. You can examine the new CSt ro ke
class and its current list of member functions and variables in Class View. The next
topic, "CStroke Member Functions and Variables," describes their purpose.

Your next step in this tutorial is to add definitions for CSt r 0 k e' s member functions.

Chapter 4 Creating the Document

CStroke Member Functions and Variables
The est r 0 k e class member variables and functions will be used to define and
manipulate the data of a stroke and serialize it when the document is serialized.
You'll add the member function definitions in the next section, "Building and Storing
Strokes."

Table 4.5 lists eStroke's member variables.

Table 4.5 CStroke Data Members

Member

m_pointArray

Used to

Store the width of the pen in effect at the time this stroke was
drawn.

Store an array containing the points that define this stroke. The
points are used to redraw the stroke as needed.

Table 4.6 lists eStroke's member functions.

Table 4.6 CStroke Member Functions

Member

eStroke

DrawStroke

Serialize

Used to

The class defines two constructors: one protected and one public.

Draws each stroke. When the view object redraws the document's
data, it calls upon each stroke object in the stroke list to draw itself by
calling its Dr a w S t r 0 k e member function.

Assist the document in making its data persistent, typically on disk.
eSt r 0 k e overrides the Serialize member function of CObject to
define how a single stroke serializes its points and other data. For
fnore information about point serialization, see "Serializing the Data."

Building and Storing Strokes
In this tutorial step you add definitions for eSt r 0 k e' s member functions .

• To add implementation code for the CStroke members

• Add the following definitions for eStroke's two empty constructors to
ScribbleDoc.cpp, after the last line of esc ri bb 1 eDoe code:

///////////////////////////
// CStroke
CStroke::CStroke()
{

43

Tutorials

II This empty constructor should be used by serialization only
}

CStroke::CStroke(UINT nPenWidth)
{

m_nPenWidth = nPenWidth;

The first constructor, declared protected in ScribbleDoc.h, is used only by the
application framework during serialization of CSt r a k e objects. Its parameter list
and function body are empty. The second constructor is for public use, when you
need to construct new stroke objects directly. When it constructs a new stroke
object, the public constructor initializes the pen width. CSt ra ke doesn't declare
its own destructor-it relies on CObject to provide one by default.

At this point, class CStrake is not quite complete. You'll add code for the remaining
member function, DrawSt rake, in "Constructing the User Interface." This member
function is used by the view object to draw the data.

Managing the Document
Typically, you must write code to:

• Initialize a document's data members

• Deallocate memory allocated for the data, release system resources, and perform
other cleanup chores.

When a new Scribble document is created, CSeri bbl eDae must create a pen for
drawing new strokes. When a document is closed, the document must delete the
stroke objects it has stored up.

The following section, "Initializing and Cleaning Up," describes how to do this for
Scribble.

Initializing and Cleaning Up

44

Because a document can be created with either the New command or the Open
command on the File menu, CSeri bbl eDae overrides both the OnNewDocument
and OnOpenDocument member functions of CDocument to perform necessary
document initialization. However, for Scribble, both initializations are the same, so
both overrides call the new member function Ini tDacument. (Recall when you
declared I nit D a e urn en t earlier in this chapter.)

Chapter 4 Creating the Document

The framework automatically calls OnNewDocument when a new document is
created or OnOpenDocument when a document is opened. AppWizard creates a
skeletal version of OnNewDocument for you, and ClassWizardcreated a skeleton
version for OnOpenDocument.

In the following procedure, you'll define these functions for Scribble.

~ To implement initialization for Scribble's documents

1 Use ClassView to jump to the skeletal definition for In i tDocument (in class
CSc ri bb 1 eDoc), and fill it in with the following code:

m_nPenWidth - 2; II Default 2-pixel pen width
II Solid black pen
m_penCur.CreatePen(PS_SOlID. m_nPenWidth. RGB(0.0.0));

In; tDocument sets a default pen width and creates a pen object for drawing. Pen
creation is done through the CPen object, m_penCur, by calling its CreatePen
member function. The arguments specify a solid black pen 2 pixels wide.

2 Use ClassView or WizardBar to jump to the override of OnNewDocument created
by AppWizard, and replace the \\TOnO comments with the call to
In i tDocument. The completed handler looks like this:

BOOl CScribbleDoc::OnNewDocument()
{

if(!CDocument::OnNewDocument(»
return FALSE;

InitDocument();
return TRUE;

3 Finally, jump to the skeletal version of On Open Document, and replace the
\\TOnO comments with another call to In; tDocument. The completed handler
looks like this:

BOOl CScribbleDoc::OnOpenDocument(lPCTSTR lpszPathName)
{

}

if(! CDocument: : OnOpenDocument (1 pszPathName))
return FALSE;

InitDocument();
return TRUE;

The overrides of OnNewDocument and OnOpenDocument call the base-class
version of the function before performing application-specific initialization of the
document.

45

Tutorials

The following procedure describes how to add the code that implements document
cleanup for Scribble. You'll replace the ClassWizard skeleton version of the
DeleteContents member function of CDocument. Note that you are still working in
ScribbleDoc.cpp.

~ To implement document cleanup

• Use ClassView or WizardBar to jump to the De 1 eteContents member function,
and replace the !/TODO comment with the following code:

«<

while(!m_strokeList.IsEmpty())
{

delete m_strokeList.RemoveHead();
}

De 1 eteContents provides the best place to destroy a document's data when you
want to keep the document object around. The function is called automatically by the
framework any time it's necessary to delete only the document's contents. It's called
in response to the Close command on the File menu, when the user closes the
document's last open window, and before creating or opening a document with the
New and Open commands. This is all part of the base-class functionality of
De 1 eteContents.

Scribble's override of De 1 eteContents iterates through the stroke list. For each
stroke object, the function invokes the delete operator. This destroys the strokes.
RemoveHead, a member function of class CTypedPtrList, does two things: it
removes the pointer to the object from the head of the list, and it returns the pointer.
Then it deletes the object that the pointer points to.

Alternatively, this cleanup code could be placed in the destructor, but
Del e t e Con ten t s is reused later in other functions.

Managing the Data

46

In this procedure, you'll create a member function, NewStroke, that manages the
stroke data in Scribble's drawings.

NewStroke uses the C++ new operator to construct a new CStroke object
dynamically, initializing it with the current pen width. It uses the CTypedPtrList
member function AddTaii to add the new stroke to the list. Then it calls the
CDocument member function SetModifiedFlag to flag the document as having been
modified since the last save, and it returns a pointer to the stroke.

Chapter 4 Creating the Document

Just as you implemented the skeleton handler for In; tDacument, in the following
procedure you'll implement the NewSt ra ke function that you declared earlier.
NewStrake creates a new stroke object and adds it to the stroke list.

~ To implement document members for managing Scribble's data

• Use ClassView to jump to the skeletal definition of NewStrake (in class
esc r; b b 1 e D a c), and fill it in with the following code:

CStroke* pStrokeltem - new CStroke(m_nPenWidth);
m_strokeList.AddTail(pStrokeltem);
SetModifiedFlag(); II Mark document as modified

II to confirm File Close.
return pStrokeltem;

Note that the new operator never returns NULL. Instead, an exception is thrown if
memory could not be allocated. This would be a good place to implement an
exception handler with the TRY and CATCH macros. For more information about
exception handling, see the article "Exceptions" in Programming with MFC.

Serializing the Data
This section describes how to add the code that defines file input/output for Scribble
documents. The default I/O implementation in MFC is called "serialization" (see
Figure 4.6). It provides a mechanism for making a document's data persistent
between work sessions with the program. By adding the code described in this
section, you enable the Scribble application to handle file serialization when the user
chooses the Open, Save, or Save As commands from the File menu.

Note Other than filling in the serialization function, you don't have to write any code-for
example, to display the dialog boxes-to process the Open, Save, and Save As commands on
the File menu. The framework supplies this code.

47

Tutorials

Figure 4.6 Serialization in Scribble

STORE LOAD

",Strok~' 'iist:9ynamicaIlYieraafes.ad new,!'>
:. ~trc*~~bje~t.·(C$trci~~) '.foteaph stroKel·\
, ., "ao(j:t~I.I~,str6ke.tolo?g~tself. ' ".'0';'

::'}.()str6~~;t~jIS:'its"c~rr~~i()f.CP~iO.t ..
E",: •• · •••...•.•• ,.j)~j~~t t'pJo~git~elf·:,:iT •. ~:,

, : / ~ , , •• ~ ., •• < " ,

The esc rib b 1 eO 0 c class declaration in file ScribbleDoc.h begins with the following
lines, which contain an important macro invocation (DECLARE_DYNCREATE)
needed for serialization (don't add this code):

class CScribbleDoc : public CDocument
{

protected: II Cre~te from serialization only.

} ;

CScribbleDoc();
DECLARE_DYNCREATE(CScribbleDoc
II Other declarations ...

App Wizard wrote this code for you when you first created the skeleton application.

The DECLARE_DYNCREATE macro prepares the class so that document objects
can be dynamically created by the framework.

Serializing the Document

48

Serializing a document occurs in two stages. First, the framework calls the
document's Seri ali ze member function. Second, that Seri ali ze function calls
the Serialize function of the stroke list.

In the following procedure, you'll add code that implements serialization for
Scribble's documents.

Chapter 4 Creating the Document

~ To implement serialization for Scribble documents

• Use ClassView or WizardBar to jump to the Seri ali ze member function in
CScri bbl eDoc, and add the following line just before the closing brace:

m_strokeList.Serialize(ar):

Later, you'll add code to both branches of the if statement.

Serialization uses an object of class CArchive to manage the connection to a disk
file or other storage. A CArchive object, ar, is passed in as an argument.

A call to the archive object's IsStoring member function determines whether this
is a store or a load operation. If the archive is for storing (saving), the stroke-list
object's own S e ria 1 i z e member function is called to store the stroke's data to
disk. If the archive is for loading, its Se ri ali ze member function is called to
load data from the disk file. This constructs new CSt r 0 k e objects to fill the list.
The stroke list for a document being read in from disk must already be empty.

Note that the stroke list already exists when Seri ali ze reads data in. That's
because it was declared as an embedded object, like this:

CTypedPtrList <CObList, CStroke*> m_strokeList:

rather than as a pointer, like this:

CTypedPtrList <CObList, CStroke*>* m_pStrokeList:

For a pointer, you'd use CArchive's extraction (») operator to read the data:

ar » m_pStrokeList: II Example of serializing to a
II referenced (non-embedded) object

But for an embedded object, as in Scribble, you call S e ria 1 i z e directly because
you don't want to create a second CTypedPtrList object, and because you know
the exact type of the object.

Serializing Strokes
When the document responds to an Open, Save, or Save As command, it delegates
the real serialization work to the strokes themselves. That is, the document tells the
stroke list to serialize itself, and the stroke list, in tum, tells the individual strokes to
serialize themselves. As a result, all strokes in the document are read from or written
to a file.

Note Throughout the tutorial, Scribble is presented as a series of incremental versions. When
you build successive versions that modify the structure of CSt r 0 k e, they are incompatible
with earlier versions. Attempts to read CStroke data stored by a previous version may fail
because the serialization process expects a different structure. Each time you make such a
modification of CStroke, it's valuable to tag the new version with a version number. The
version or "schema" number is checked automatically during serialization. You can check the
schema number in the serialization code to support backward compatibility, allowing you to
read files created with earlier versions of your application.

49

Tutorials

50

For more information, see CArchive::GetObjectSchema in the Class Library Reference.

You've added serialization for Scribble documents; now you'll implement
serialization for the strokes.

~ To implement serialization for stroke objects

1 Use Class View to jump to the CSt r a k e constructor and, just before it, add the
IMPLEMENT_SERIAL macro as shown:

IMPLEMENT_SERIAL(CStroke, CObject, 1)

The third argument is the schema number, discussed earlier. It's set to 1 for
Scribble Step 1.

The IMPLEMENT_SERIAL macro complements the DECLARE_SERIAL
macro which you declared in ScribbleDoc.h when you were adding the code for
the CStrake class. The two macros prepare a class for serialization.

Like CScri bbl eDac, CStrake also overrides the Serialize member function of
its base class. When the stroke-list object is called to serialize itself, it calls each
stroke object in turn to serialize itself.

2 Add the following S e ria 1 i z e override for class CSt r a k e. This code should
come just after the second CSt rake constructor (the one that initializes the pen).

void CStroke::Serialize(CArchive& ar)
{

}

if(ar.IsStoring())
{

else
{

ar « (WORD)m_nPenWidth;
m_pointArray.Serialize(ar);

WORD w;
ar » w;

m_nPenWidth == w;
m_pointArray.Serialize(ar);

If the archive object is used for storing, the stroke's pen-width value is stored in
the archive and then its array of points is stored. Notice that the m_p 0 i n tA r ray
object as a CArray object can serialize itself.

If the archive object is used for loading, the stroke's data must be read in the
same order it was written: first the pen width, then the array of points. The else
branch of the if statement declares a local variable to receive the width, then
copies that value to m_n Pen Wid t h. It then calls upon the point array to load its
data (see Figure 4.6).

Chapter 4 Creating the Document

Note that the m_nPenWi dth variable is cast to a WORD before it's inserted in the
archive, ar:

ar « (WORD)m_nPenWidth;

The cast is necessary because m_n Pen Wid this declared as type UINT (unsigned
integer). The archive mechanism only supports saving types of fixed size. UINT,
for example, is 16 bits in Windows 3.1 and 32 bits in Windows NT and Windows
95. Using the WORD cast makes the data files created by your application
portable. To promote machine independence, class CArchive doesn't have an
extraction operator for type int but does have one for type WORD.

Once this code is in place, serialization of Scribble's data is automatic.

Creating the Document: Summary
In this chapter you filled in the details of Scribble's document class by defining its
data, providing useful functions through which to manipulate the data, and specifying
how the data objects are written to and read from files. So far, the data can be
initialized and cleaned up but not displayed or worked on by the user.

At this point, Scribble is about half ready to build. In Chapter 5, "Creating the View,"
you'll complete the basic Scribble application by developing a view on the document.
The view displays strokes and manages all user input. At the end of that chapter,
you'll build and test Scribble.

51

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j

j
j
j

j
j

j
j
j

CHAPTER 5

Creating the View

In Chapter 4, "Creating the Document," you completed Scribble's document class by
adding code to the ScribbleDoc.h and ScribbleDoc.cpp files. In this chapter, you'll
add a view class that provides a "view on the document." To do so, you'll add code to
Scribble's view files, ScribbleView.h and ScribbleView.cpp. You'll also add two more
member functions to class CStroke in ScribbleDoc.cpp.

By the end of this chapter, you can compile and run Scribble.

Scribble's view class displays the strokes of a drawing and accepts user input from
the mouse. Among the things you'll develop in this chapter are:

• Code to display Scribble's strokes- in class CScri bbl eVi ew.

• Code to handle Windows messages as the user draws with the mouse - also in
class CScri bbl eVi ew.

While you're adding code, you'll have more opportunities to use ClassView to jump
directly to your code. You'll also get more hands-on experience with WizardBar.
WizardBar, a shortcut into ClassWizard, lets you map Windows messages to
message-handler member functions in your classes. As you'll see in Chapter 7,
"Binding Visual Objects to Code Using WizardBar," it also lets you map the
commands generated by user-interface objects such as menu items, toolbar buttons,
and accelerator keys to message-handler functions.

This chapter and Chapter 4 cover Step 1 of Scribble. If you want to work along,
adding the code as you go, begin with the files from your Scribble root project
directory. At this point, your files should consist of the starter files you created with
App Wizard in Chapter 3 and modified in Chapter 4. As you read this chapter, add all
lines of code as instructed in the procedures. At the end of this chapter, your files
should closely resemble the Step 1 source code files.

53

Tutorials

If, on the other hand, you want to read along without adding code, you can print or
examine the Step 1 files in Books Online.

Note If you have not made a local copy of the sample source code for the tutorial step
you're working in, it's easy to do 'so. For more information, see "Installing the Sample Files"
in Chapter 2.

Views
The document object defines, stores, and manages the application's data. All user
interaction with the document, however, is managed through a view object attached
to the document object. Scribble uses a view object to display a document on the
screen or on a printer. This section explains the role of the view and introduces
Scribble's view class and its members.

As you saw in Chapter 4, when a new document is created in response to a New or
Open command from the File menu, the framework also creates a document frame
window and creates a view inside the frame window's client area as a child window.
The view displays the document's data and responds to mouse actions, keystrokes,
menu commands, and other actions as the user works on the document. It's your task
to specify how the view draws your application-specific data and what it does in
response to user actions.

Figure 5.1 illustrates the view's role in relation to the document.

Figure 5.1 The View and the Document

View 1. Updates data Document

:::;GetDg6arh~ht;,;i---------..
" • ' , < ~ •• ;" • '., ,~;

~Qn:upd~tai,;f!;f: ________ 'M
;", ~ <, , ;:" <.: /., .,.< __ .. __ 11 2. Tells view to

Manages user
interaction with

document

redraw itself
Coordinates all

views on its data

View Definition

54

A view is an object derived from class CView (or from another CView-derived class,
such as CScrollView) that manages user interaction with a document. The view is a
child window that typically fills the client area of a document frame window. In
single document interface (SDI) applications, the view fills the main frame window.
In multiple document interface (MDI) applications, the view fills the MDI child.

Chapter 5 Creating the View

Views in the Framework·
In the framework, the document manages data, but the view displays it and acts as
intermediary between the user and the document for all input, selection, and editing
in the document. A given view is always associated with only one document.
However, it is possible for a document to have multiple views associated with it. In
MDI applications such as Scribble, for example, the Window menu contains
commands to open a new view onto a document, and to arrange open documents. In
Scribble, you'll also add splitter window functionality, enabling the user to create a
second view onto a document without opening a new window.

For more information about documents and views, see Chapter 9, "Enhancing
Views."

View Creation
A view is created by its parent frame window when the framework creates the
associated document. Both the document and frame objects are created by a document
template object; then the frame window creates the view. Immediately after creation,
the framework calls the view's OnlnitialUpdate member function to initialize the
view. You'll frequently override the OnlnitialUpdate member function of class
CView to initialize the view object. After creation, the view's OnUpdate member
function is called when the document's data changes. You can override the
OnUpdate member function to optimize which portion of the view is redrawn.

Drawing the View's Contents
Each time the view needs to be redrawn, the framework calls its OnDraw member
function. OnDraw does the actual drawing, obtaining the data to draw from its
document. However, when more immediate drawing is required, a view can respond
to mouse-related messages, such as WM_LBUTTONDOWN, to do mouse-driven
drawing. You'll see both kinds of drawing in this chapter.

You'll always override the OnDraw member function of class CView to specify how
your document's data is drawn.

How the View and Document Interact
A view can access the data stored in its document by calling the CView member
function GetDocument, which returns a pointer to the document object. The view
can call public member functions and access public data members of the document by
using the pointer.

55

Tutorials

When the user changes data in the view, the view notifies the document and updates
the data stored there. On such occasions, the document typically then calls its
UpdateAIlViews member function to cause any views attached to it to redraw
themselves. For a document with multiple views, this mechanism ensures that all of
them are updated properly.

You and the View
Table 5.1 shows your responsibilities and those of the framework in implementing a
view on a document.

Table 5.1 View Implementation Responsibilities

Your job The framework's job

Derive a view class from class CView.
For scrolling, use CScrollView instead.
Other view classes are available as well.

Implement your view's 0 n D raw member
function.

Map Windows messages and commands
to member functions of your view.

App Wizard provides a skeletal view class for
you. Class CView and its derived classes
provide view services.

The framework calls 0 n D raw at the
appropriate times, passing it a device-context
object into which it can draw.

The framework calls your message-handler
member functions in response to the
corresponding Windows messages.

Other view classes include, for example, CFormView, CEditView, CListView,
CScrollView and CTreeView. To see the complete list of CView-derived classes, see
class CView in the Class Library Reference. For more information about views, see
Chapter 1, "Using the Classes to Write Applications for Windows," and Chapter 3,
"Working with Frame Windows, Documents, and Views," of Programming with MFC

Scribble's View: Class CScribbleView

56

The job of the view in Scribble is to redraw the view as needed-for example, when
the window is covered by another window and then uncovered, or as the user draws
strokes with the mouse.

Views in Scribble are objects of class CScr; bbl eV; ew, which is derived from class
CView. CScr; bbl eV; ew knows how to access the document's stroke list and can
tell the strokes stored there to draw themselves in the view.

You can view a graphical representation of CScr; bbl eV; ew and all its member
functions in the ClassView pane of the Project Workspace window.

Chapter 5 Creating the View

Table 5.2 describes the member functions of class CScri bb 1 eVi ew that AppWizard
created for you.

Table 5.2 CScribbleView Member Functions

Member

CScri bbl eVi ew,
.-JCScribbleView

OnDraw

Get Document

AssertValid,Dump

OnPreparePrinting,
OnBeginPrinting,
OnEndPrinting

Description

With nothing to initialize and no data to destroy,
the view's constructor and destructor are empty.

On D raw updates the view by redrawing its
contents. (It's used to draw both on the screen and
on a printer.)

Defined inline in file Scribble View .h,
Get Document retrieves a type-safe pointer to the
document attached to this view. The view uses the
pointer to call document member functions, which
it must do to access the data it displays.

These diagnostic functions simply call the base
class functions they override.

These virtual functions override the versions in
CView to specify the application's printing
behavior. See Chapter 10, "Enhancing Printing,"
for more information about how Scribble prints.

You won't need to alter any of the following AppWizard-created functions in this
chapter: Get Document, As se rtVa 1 i d, Dump, On P repa rePri nt i ng,
On Beg i nPri nt i ng, and On End P ri nt i ng.

Notice the inline definition of GetDocument after the class declaration above. The
debug version of this member function calls the IsKindOf member function defined
in class CObject and uses the RUNTIME_CLASS macro to retrieve the run-time
class name of the document. For more information about those topics, see class
CObject in the Class Library Reference and the article "CObject Class" in
Programming with MFC.

The next sections describe the code you'll add to CScri bb 1 eVi ew.

Defining the Working Data Used by the
View

The view's job in Scribble is to redraw itself as needed - for example, when the
window is covered by another window and then uncovered, or as the user draws with
the mouse.

In the procedure in this section, you'll add two member variables to class
CScri bVi ew that store information about a stroke in progress.

57

Tutorials

Note The procedures in this chapter assume you are familiar with the various tools, such as
ClassView and Wizard Bar, that Microsoft Developer Studio provides to make working with your
project code easy and intuitive. For more information, see "Navigating Through Code" in
Chapter 3, "Creating a New Application with AppWizard."

~ To d.eclare the new member variables

1 In Class View, d?uble-click the icon for the C S c r; b b 1 e V; ew class.

This jumps you directly to the class definition (generated for you by App Wizard)
in file Scribble View.h.

2 Add the following code right after the public Attributes section:

protected:
CStroke* m_pStrokeCur; II The stroke in progress
CPoint m_ptPrev; II The last mouse pt in the stroke

I lin progress

The New CScribbleView Member Variables
The code you just a,dded declares two new protected member variables inside class
CScr; bbl eV; ew-m_pStrokeCur and m_ptPrev.

You can view the new member variables in the ClassView pane of the Project
Workspace window by expanding the CScr; bbl eV; ew class icon.

Table 5.3 describes the new member variables.

Table 5.3 CScribbleView Data Members

Member

m_pStrokeCur

m_ptPrev

Description

A pointer to the stroke currently being drawn.

A CPoint object containing the previous mouse coordinates, from
which a line will be drawn to the current coordinates.

The view uses these members to store the information it needs in order to record the
points of a stroke in progress.

Redrawing the View

58

When the view, or some part of it, must be redrawn, the framework calls the override
of the OnDraw member function that AppWizard generated. In this section you'll add
Scribble-specific ,code for 0 n D raw to the Scribble View.cpp file.

~ To add implementation code for the view's OnDraw member function

1 Use ClassView or WizardBar to jump to the skeleton OnDraw member function of
class CScr; bbl eV; ew.

(You can use WizardBar to jump to functions when the .cpp file is open in the
current editor window. Using ClassView automatically opens the file for you.)

Chapter 5 Creating the View

Your cursor is placed inside the skeleton code that AppWizard created in
Scribble View.cpp for the 0 n D raw function.

2 Add the following code after the ASS E RT _VA LID (P Doc) line. (You can replace
the II TODO comments for adding drawing code.)

II The view delegates the drawing of individual strokes to
II CStroke::OrawStroke().
CTypedPtrList<CObList. CStroke*>& strokeList -

pOoc->m_strokeList;
POSITION pos - strokeList.GetHeadPosition();
while (pos 1- NULL)
{

CStroke* pStroke - strokeList.GetNext(pos);
pStroke->OrawStroke(pOC);

The view calls upon the individual stroke objects to draw themselves. To do this, the
view needs access to the stroke data stored in the document, so the view's first task is
to obtain a pointer to its document, using GetDocument. The view then uses the
pointer to iterate through the stroke list, telling each stroke to draw itself. When
OnDraw calls DrawStroke for a given stroke object, it passes along the device
context object it received as a parameter. (Having the data draw itself is only one
possible strategy.)

To complete Scribble's drawing, you must also add the DrawSt roke member
function definition to class CSt r 0 k e.

~ To add drawing code for strokes

• Add the DrawStroke member function definition to ScribbleDoc.cpp as shown,
right after the Serialize function. (Recall that you added its declaration when you
added the CSt r 0 k e class to ScribbleDoc.h.)

BOOL CStroke::OrawStroke(COC* pOC)
{

CPen penStroke;
if(IpenStroke.CreatePen(PS_SOLIO. m_nPenWidth. RGB(0.0.0»)

return FALSE;
CPen* pOldPen - pOC->SelectObject(&penStroke);
pOC->MoveTo(m_pointArray[0J);
for(int i-I; i < m_pointArray.GetSize(); i++
{

pOC->LineTo(m_pointArray[iJ);
}

pOC->SelectObject(pOldPen);
return TRUE;

59

Tutorials

This code passes DrawStroke a pointer to an object of class CDC, which
encapsulates a Windows device context (DC). In programs written with MFC, all
graphics calls are made through a device-context object of class CDC or one of its
derived classes. DrawStroke calls CDC member functions-SelectObject,
MoveTo, LineTo--through the pointer to select a graphic device interface (GDI) pen
into the device context and to move the pen and draw.

DrawSt ro ke next constructs a new CPen object and initializes it with the current
properties by calling the pen's CreatePen member function-note that this two-stage
construction is typical of framework objects. Then DrawStroke calls SelectObject
to select the pen into the device context (saving the existing pen as pOl dPen) and
calls MoveTo to position the pen to the first point.

DrawStroke then iterates through the array of points. It calls the device context's
LineTo member function to connect the previous point with the next point.

Finally, DrawStroke restores the device context to its previous condition by
reinstalling its old pen.

Important Always restore the device context to its original state before releasing it to
Windows. To do so, save the state before you change it. Storing the old pen in DrawStroke
is an example of how to do this.

The addition of DrawStroke completes Scribble's code for drawing in response to
update requests from the framework. However, Scribble also draws in response to
mouse actions, as discussed in the next section, "Handling Windows Messages in the
View."

Handling Windows Messages in the View

60

To implement mouse-driven drawing in Scribble, it's necessary to write code that
handles several Windows messages related to mouse activity. You will use the
WizardBar to help write this message-handling code.

When the user presses the left mouse button while the pointer is in a Scribble
window, Windows sends the window a WM_LBUTTONDOWN message. If the user
moves the mouse, (whether or not the mouse button is pressed down) Windows sends
a WM_MOUSEMOVE message. When the user releases a mouse button, Windows
sends the window a WM_LBUTTONUP message.

In Scribble, these messages are first sent to a window, in this case the currently active
view. The view uses its message map to determine whether it has a member function
that can handle the message. For example, on receiving a WM_LBUTTONDOWN
message, the view checks to see whether it has a handler associated with that
message name and, if so, calls the handler.

Chapter 5 Creating the View

It's appropriate that the view should handle mouse-drawing messages because it's in
the view that Scribble's drawing takes place. The view represents that part of the
document that can be seen at anyone time.

The message handlers track mouse activity, and draw in the view accordingly. They
also call member functions of the document to update its data. As the user draws a
stroke, the points that make up the stroke are stored in the document's stroke list.

Connecting Messages to Code
This section takes you through the steps required to connect the three mouse-related
messages needed in Scribble -WM_LBUTTONDOWN, WM_LBUTTONUP, and
WM_MOUSEMOVE-to the equivalent message-handler member functions of
class CScri bbl eVi ew-OnLButtonDown, OnLButtonUp, and OnMouseMove.

This step will be different from the previous ones. Instead of directly adding lines of
code to a file in the text editor, you'll first use the WizardBar to make connections
between Windows messages and their handler functions. Class Wizard adds an entry
to the message map in ScribbleView.cpp for class CScri bbl eVi ew, and writes a
default member function definition to the same file for the handler function. Then, as
described in "Adding the Message-Handler Functions," you use the ClassView pane
to jump directly to the skeleton member function, and you fill in the function's code.

If you're reading along instead of working in the files, you can still try out the
WizardBar on the starter code you created with App Wizard in Chapter 3

For more information see "Using WizardBar," in Chapter 12 of the Visual C++
User's Guide.

~ To connect the messages to Scribble's code

1 With Scribble View.cpp open in the text editor, use the Messages list to select the
WM_LBUTTONDOWN message.

Tip Type the first letters of the message to jump alphabetically through the function list. If
your list-box is too narrow to display longer message names, try resizing the editor window.

The WM_LBUTTONDOWN message is not displayed in bold because it
currently has no handler function.

2 Choose Yes when the message box appears, informing you that the message is not
handled and asking if you want to add a handler.

You won't fill in the handler just yet.

3 Repeat steps 1 and 2 for the additional mouse messages: WM_LBUTTONUP and
WM_MOUSEMOVE.

After you choose Yes, ClassWizard does the following things to associate each of the
three messages with its handler and to greatly simplify your work:

• Adds the following function declarations for the handlers to the esc rib b 1 e View
class declaration in file Scribble View.h:

61

Tutorials

afx_msg void OnLButtonDown(UINT nFlags. CPoint point):
afx_msg void OnLButtonUp(UINT nFlags. CPoint point):
afx_msg void OnMouseMove(UINT nFlags. CPoint point):

• Adds the following message-map entries for the message-to-handler connections
in CScri bbl eVi ew's message map in file ScribbleView.cpp:

ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()
ON_WM_MOUSEMOVE()

• Adds the appropriate function definitions (with a default body) to file
ScribbleView.cpp. For example, here is the default function definition ClassWizard
added for On LButtonDown:

void CScribbleView::OnLButtonDown(UINT nFlags, CPoint point)
{

II TODO: Add your message handler code here
II and/or call default
CView::OnLButtonDown(nFlags, point);

Notice that ClassWizard embeds a comment reminding you what to do and adds a
call to the OnLButtonDown member function of class CView, the base class of
CScri bbl eVi ew. Also, if your files were open in the workspace window,
Class Wizard marks them as modified (an asterisk appears in the title bar next to
the filename of files that have not been saved). You can, if you like, save the files
now, or you can let Visual C++ save them for you automatically when you build
your project or exit the program.

For more information, see Chapter 2, "Working with Messages and Commands," in
Programming with MFC.

Adding the Message-Handler Functions

62

With the connections made, you can fill in the bodies of the handler functions.

~ To fill in Scribble's message-handler function bodies

1 Use ClassView or WizardBar to jump to the skeleton member function. (For
example, double-click On LButtonDown from ClassView or select
WM_LBUTTONDOWN from WizardBar.

2 Fill in the member function with your application-specific code.

Chapter 5 Creating the View

Figure 5.2 shows On LBut ton Down in the editor.

Figure 5.2 The Text Editor

;,' csciibbwitew 12bject 10$1 CScri~ble'liew
/
// CScribbleView message handlers

void CScribbleViev: : OnlButtonDown(UINT nFlags. CPoint point)
{

// TODO: Add your message handler code here and/or call def

CViev: :OnlButtonDown(nFlags. point);

void CScribbleView: : OnlButtonUp(UINT nFlags. CPoint point)

{ //Tnnn' Arlrl ~"''',.. ,~~,"'n~ h""rll .. ,.. rnrl .. , h~,. .. ""rl/n,.. rAIl, ~

IIltJ

For Scribble, you'll fill in member functions to:

• Initiate stroke drawing

• Terminate stroke drawing

• Draw while the mouse button is down

Initiate Stroke Drawing
The On LButtonDown member function, shown below, is called via the message map
when Windows sends a WM_LBUTTONDOWN message to the view object. The
function begins a new stroke, adding the current location of the mouse to the stroke
and adding the stroke to the document's stroke list. Then On LButtonDown captures
the mouse-until the left mouse button is released to end the stroke.

~ To add code for OnLButtonDown

1 Use ClassView to jump to the On LButtonDown function definition in
Scribble View.cpp.

-or-

2 With Scribble View.cpp open in the editor window, choose
WM_LBUTTONDOWN from the WizardBar Messages list.

3 Replace the \\TODO comments and code with the code shown here:

II Pressing the mouse button in the view window
II starts a new stroke.

m_pStrokeCur - GetDocument()-)NewStroke():
II Add first point to the new stroke
m_pStrokeCur-)m_pointArray.AddCpoint):

63

Tutorials

64

SetCapture(): II Capture the mouse until button up
m_ptPrev - point: II Serves as the MoveTo() anchor point

II for the LineTo() the next point, as
II the user drags the mouse

return:

This version of On LButtonDown doesn't include a call to the base class version. It
completely replaces the inherited behavior.

Terminate Stroke Drawing
The On LButtonUp member function, shown below, ends the current stroke when the
user releases the left mouse button. The function draws a line to connect the last
stroke, then releases the mouse for use by other windows. The test at the beginning
calls the Windows GetCapture function to determine whether the current window
has control of the mouse. If not, the user is not currently drawing in this view.

~ To add code for OnLButtonUp

1 Use Class View to jump to the 0 n L But ton U p function definition in
Scribble View.cpp.

-or-

2 With Scribble View.cpp open in the editor window, choose WM_LBUTTONUP
from the WizardBar Messages list.

3 Replace the \\TODO comments and code with the code shown here:

II Mouse button up is interesting in the Scribble
II application only if the user is currently drawing a new
II stroke by dragging the captured mouse.

i f(GetCapture() 1- thi s
return: II If this window (view) didn't capture the

II mouse, the user isn't drawing in this window.

CScribbleDoc* pDoc - GetDocument();
CClientDC dc(this);
CPen* pOldPen - dc.SelectObject(pDoc-)GetCurrentPen());
dc.MoveTo(m_ptPrev);
dc.LineTo(point):
dc.SelectObject(pOldPen):
m_pStrokeCur-)m_pointArray.Add(point);

ReleaseCapture(); II Release the mouse capture established
II at the beginning of the mouse drag.

return;

Draw While the Mouse Button Is Down
Between the time that the mouse button goes down and the time that it's released,
Scribble tracks the mouse and draws a trace of its movements in the view.

Chapter 5 Creating the View

OnMouseMove, shown below, is called as the user moves the mouse while drawing
the current stroke. The function connects the latest mouse location with its previous
location and saves the new location as the previous point for the next time the
function is called. To do the drawing, OnMouseMove constructs a local CClientDC
object used to draw in the window's client area.

~ To add code for OnMouseMove

1 Use ClassView to jump to the OnMouseMove function definition in
Scribble View.cpp.

-or-

2 With Scribble View.cpp open in the editor window, choose WM_MOUSEMOVE
from the WizardBar Messages list.

3 Replace the \\TODO comments and code with the code shown here:

II Mouse movement is interesting in the Scribble application
II only if the user is currently drawing a new stroke by
II dragging the captured mouse.

if(GetCapture() 1= this)
return: II If this window (view) didn't capture the

II mouse, the user isn't drawing in this window.

CClientDC dc(this):

m_pStrokeCur-)m_pointArray.Add(point):

II Draw a line from the previous detected point in the mouse
II drag to the current point.
CPen* pOldPen -

dc.SelectObject(GetDocument()-)GetCurrentPen()):
dc.MoveTo(m_ptPrev):
dc.LineTo(point):
dc.SelectObject(pOldPen):
m_ptPrev = point:
return;

In the Scribble application, OnLButtonDown, OnMouseMove, and OnLButtonUp
handle the three phases of mouse drawing: beginning to track the mouse, tracking the
mouse and connecting points, and ending mouse tracking.

For more information about MFC classes mentioned in this section, see the Class
Library Reference.

Build Scribble - Step 1 Version
In this section, if you've been working along, you'll compile your completed code and
try out the program. If you're simply reading along, use Books Online to preview the
sample application.

65

Tutorials

66

Note You can easily make a local copy of the sample source code files. For more information,
see "Installing the Sample Files," in Chapter 2. Note that the filenames in the sample source
code may differ from the ones generated by AppWizard, depending on your specifications.

~ To build Scribble Step 1

1 Open your Scribble project (if it's not already open) by choosing Scribble.mdp
from the MRU list.

2 If necessary, specify the Debug build by doing one of the following:

• From the Default Configuration drop-down list on the Build toolbar, choose the
Debug version of the project.

-or-

• Choose Configurations from the Build menu, and then in the Configurations
dialog box, select the Debug option.

3 From the Build menu, choose Build Scribble.exe to compile and link Scribble.

~ To give Scribble a try

1 From the Build menu, choose Execute Scribble.exe to run Scribble.

When Scribble runs, an MDI application window appears with a menu bar
containing File, Edit, View, Window and Help menus and a toolbar and status bar.
It has one document window open as shown in Figure 5.3.

Figure 5.3 Scribble Step 1

2 Move, resize, minimize, and maximize the document window.

3 Draw "Hello, World!" (or anything) in the window. Then save the file as
HELLO.SCB.

4 Try the Print Preview and Print commands on the File menu.

Chapter 5 Creating the View

Note Drawing on the printer device will show the strokes at a reduced size. This is
because the current version of Scribble uses MM_TEXT mapping mode. Later in this
tutorial, you'll use MM_LOENGLISH mapping mode to improve the printer output.

5 If you have an electronic mail system, try the Send command on the File menu.

6 Close HELLO.SCB and reopen it with the Open button on the toolbar, or by
choosing it from the MRU list.

7 Create a new document with the New button on the toolbar and draw in the new
document. (Save the new document if you like.)

8 Exit Scribble.

This concludes your quick introduction to Scribble. You've seen how to implement
the document with serialization code, and the view with message handling functions.
In Chapter 6, "Constructing the User Interface," you'llleam how to use the resource
editors to construct some additional user-interface components. In later chapters you
willleam to add more (and more interesting) code to Scribble.

67

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I
j

CHAPTER 6

Constructing the User Interface

The next three chapters show how to use some of the powerful tools supplied with
Microsoft Developer Studio and the Microsoft Foundation Class Library (MFC).'

• This chapter explains how to use resource editors to customize Scribble's default
menus and toolbar .

• Chapter 7, "Binding Visual Objects to Code Using WizardBar," describes how to
use WizardBar and the text editor to bind Scribble menu items and toolbar buttons
to commands, and define message-handler functions to process the commands.

• Chapter 8, "Adding a Dialog Box," shows how to use the dialog resource editor
and WizardBar to create a dialog box and connect it to a menu command.

This chapter and Chapter 7 cover Step 2 of Scribble. You can build the new version
of Scribble at the end of Chapter 7.

If you are working along, begin with the files in your Scribble project directory. At
this point, your files should be very similar to the sample source files in the
SCRIBBLE\STEPI subdirectory.

Note If you have not made a local copy of the sample source code for this tutorial step and
you wish to do so, see "Installing the Sample Files," in Chapter 2.

As you read this chapter, perform all steps that use the resource editors. At the end,
your resource file, Scribble.rc, should closely resemble the same file in the
SCRIBBLE\STEP2 sample source directory. You'll also use the text editor to make a
small addition to MainFrm.cpp.

If, on the other hand, you want to read along without adding code, refer to the files in
the SCRIBBLE\STEP2 subdirectory. You can also easily preview a running version of
Scribble at this tutorial step. For more information, see "Previewing the Sample
Applications," in Chapter 2.

Even if you don't want to add code, it's a good idea to work along in this chapter to
familiarize yourself with the resource editors and the Visual C++ programming
process.

69

Tutorials

Edit Scribble's Menus
The first task in this chapter is to edit Scribble's default menus by using the menu
editor.

Thanks to App Wizard, Scribble starts out with a skeleton resource file, Scribble.rc,
with no effort on your part. Scribble.rc already contains the default menus described
in the next section, as well as other resources App Wizard generates by default, such
as a toolbar, an icon to depict the application in its minimized state, and so on. You
can open Scribble.rc and examine the default menus and other resources if you like.

For more information about editing resources, see "Using the Resource Editors," in
Chapter 5 of the Visual C++ User's Guide.

~ To examine the contents of Scribble.rc

1 From ResourceView, double-click Scribble.rc to open it.

This launches the resource compiler. Once Scribble's resource file has been
compiled, Scribble's resource types appear as folder icons in ResourceView.

2 Expand any of the folders to open them and view the resources they contain; then
double-click a resource to open it inside a resource editor window, where you can
both view and edit it.

Default Menus
The menu resources App Wizard generated by default for Scribble include:

• A menu bar to display when Scribble, a multiple document interface (MDI)
application, has no documents open.

The menus include a basic File menu, a View menu for toggling the visibility of
Scribble's status bar and toolbar, and a basic Help menu.

• A menu bar to display when a Scribble document is open.

They include, besides those above, more File menu commands, an Edit menu with
standard commands, and a Window menu with standard commands (supplied only
for MDI applications, like Scribble).

Note Single document interface (SOl) applications have only one menu bar. The correct
menu bars are generated when you choose between single-document and multiple-document
options in AppWizard.

Scribble's New Menu Commands

70

The goal in this section is to add a new Clear All command to Scribble's default Edit
menu, as well as a completely new Pen menu with two commands, Thick Line and
Pen Widths. The Clear All command clears the current drawing and deletes its stroke
data. The Thick Line command toggles the thickness of the lines (either thin or

Chapter 6 Constructing the User Interface

thick) used to draw subsequent strokes. The Pen Widths command displays a dialog
box that lets the user define, in pixels, the width of the thick and and thin lines for
subsequent drawing.

The next section, "Adding the Menus," describes how to create the new menu items.
In Chapter 7, "Binding Visual Objects to Code Using WizardBar," you'll see how to
use WizardBar to connect the menus to code. And, in Chapter 8, "Adding a Dialog
Box," you'll see how to create the Pen Widths dialog box and connect it to its
associated menu command.

Adding the Menus
This section describes how to add the new Scribble menu items, demonstrating some
fundamental techniques for using the menu editor to edit menu resources. For more
information, see Chapter 7, "Using the Menu Editor," in the Visual C++ User's
Guide.

Add the Clear All Command to Scribble's Edit Menu
When you add the new Clear All menu item to Scribble, you'll learn how the menu
editor works. If you're working along, use the following procedure.

~ To add Scribble's Clear All menu command

1 If you don't already have Scribble's resource file open, switch to ResourceView
and expand the Scribble folder.

2 Expand the Menu folder.

Two menu IDs appear: IDR_MAINFRAME and IDR_SCRIBBTYPE. These
menus correspond to the default menus discussed previously. Their IDs are defined
for you by AppWizard, based on the document type you chose (MDI or SDI).

3 Double-click IDR_SCRIBBTYPE.

The menu editor opens, with the menu displayed much as it appears in the
running application.

4 Click the Edit menu item.

The Edit menu drops down as it would in the application. An empty cell sits below
the last menu item, as shown in Figure 6.1. This cell defines where you add the
next menu item.

S Click the cell at the bottom of the Edit menu to select it.

71

Tutorials

72

Figure 6.1 Menu Editor for IDR_SCRIBBTYPE

EJ .. ·a Scribble resources
i:B ... G:J Acceler atar
$.G:J Dialog
i:BG:J Icon sE3 Menu
; ill lOR_MAINFRAME
! i.···11 j lOR SCRIBBTYPE I

~::~;~~:.able ~~~;;:~ri1--1

6 Type the caption Cl ea r &A 11.

Empty cells

When you start typing, the Properties page for menu items opens, with your cursor
in the Caption edit box. As you continue to type, the caption appears both in the
Caption edit box and on the Edit menu.

Note To ensure that the Properties window remains open while you are editing Scribble's
menus, press the pushpin in the upper-left corner of the Properties window.

Typing the ampersand character (&) in front of a letter creates an access key
combination. As you type &A, for example, the letter A appears underlined in the
menu, which means that simply pressing A with the Edit menu open chooses the
Clear All command. (If an access key appears in a top-level menu item, you can
press ALT plus the letter to open the menu.)

Note To specify an accelerator, or shortcut key, for the menu item, append its specifier
after the caption. For example, to specify CTRL+O as the accelerator for an Open command,
the caption string would read "Open ... \tCTRL+O" where "t" signifies a tab to align the
column.

7 Open the ID drop-down list in the Properties window and begin typing the ID for
the Clear All command: ID_EDIT_C.

If you type with the drop-down list open, you'll see the list box scroll to the first
ID that matches the letters you've typed so far. Visual C++ always ensures that the
ID you enter is unique. ID_EDIT_CLEAR_ALL is a command ID predefined by
the class library. If what you type matches a predefined command, Visual C++
assigns the predefined command ID to your menu item rather than creating a
duplicate.

Several IDs that begin with "ID_EDIT_C" appear in the list box.

Chapter 6 Constructing the User Interface

As soon as you select the predefined ID, the following string appears in the
Prompt edit box: "Erase everything\nErase All". This prompt string is displayed in
the status bar, if the application has one, when the user navigates up and down the
menu using the keyboard; the text after the newline character (\n) appears as a tool
tip if you create a toolbar button for this menu command. (For more information,
see "Add the Thick Line Button to Scribble's Toolbar Bitmap," later in this
chapter).

AppWizard predefines the prompt text for the ID_EDIT_CLEAR_ALL symbol.
For any ID that isn't predefined, you should enter a descriptive prompt string.
This context-sensitive menu information is essentially free, so take advantage of it.

Figure 6.2 shows the property page after you've selected the ID.

Figure 6.2 Property Page with 10

You can define your own command IDs, of course. You'll see an example under
"Add Scribble's Pen Menu."

9 Change the Prompt wording to "Clears the drawing".

Since this menu command won't have an equivalent toolbar button, you remove
the tool tip.

10 Save the resource file.

That's it. You've added the Clear All command to the Edit menu.

Note You don't have to press ENTER or click any buttons to accept the values you've entered
in the menu Properties page. Your entries are stored immediately by the program. For more
information, see "Using Property Pages" in the Visual C++ User's Guide.

73

Tutorials

74

Figure 6.3 shows how the menu looks at this stage.

Figure 6.3 The Clear All Menu Item

Properties filled
New menu item

Menu IDs and the Framework
The most important thing about defining the menu command is assigning it an ID.
To the framework, the ID is the command. At some point, you have to specify what
happens when the user chooses the Clear All menu command; that is, which code
will be executed? You'llieam more about commands in the next chapter.

Add Scribble's Pen Menu
Adding a new menu is similar to adding new commands to existing menus. If you're
working along, use the following procedure.

Note This procedure assumes you have "pinned" the Menu Properties window so that it
remains open. .

~ To add Scribble's Pen menu

1 With the menu-editor window still showing, click in the empty cell at the right
hand end of the Scribble menu bar (after the Help menu).

2 To position the menu entry, drag the selected cell to the left and drop it between
the Edit and View menus.).

Chapter 6 Constructing the User Interface

3 Type the new menu's caption: &Pen.

The caption appears simultaneously in the cell and in the Caption edit box of the
Properties window.

4 Press ENTER to advance to the first menu item on the Pen menu (or click the empty
cell that descends beneath the word "Pen").

5 Type this menu item's caption: Thi ck &L i ne.

Move your cursor to the ID box in the Menu Properties window. You'll notice that
Visual C++ created an ID for you, based on the menu name and the menu item
name: ID_PEN_THICKLINE.

6 Modify this ID slightly, to ID_PEN_THICK_OR_THIN.

7 In the Prompt edit box, type the following command prompt string :

Toggles the line thickness between thin and thick

No default prompt string appeared because ID_PEN_THICK_OR_THIN is not a
predefined command ID.

8 Select the empty cell at the bottom of the Pen menu, below "Thick Line." (You
can also toggle between the Menu Properties window and the menu editor by
pressing ENTER.)

9 Type this menu item's caption: Pen &Wi dths

An ellipsis (...) included in a menu item's caption lets the user know that
selecting the item opens a dialog box or a cascading menu.

10 In the ID box, modify the Visual C++-generated ID slightly, to
ID_PEN_ WIDTHS.

11 Type the following command prompt string:

Sets the size of the thin and thick pen

12 Close the menu editor.

If the menu editor window is maximized, you must first resize it so the control
menu appears.

That's all it takes to create the Pen menu. If you like, you can save Scribble.rc before
proceeding to the next step.

75

Tutorials

Figure 6.4 shows the completed menu as it appears in the menu editor.

Figure 6.4 The Completed Pen Menu

Connect the Menus to Code
Typically, at this point you would use ClassWizard or WizardBar to bind the menu
commands to message-handler functions. That step is postponed until the next
chapter in order to keep this chapter focused on constructing the user interface. If you
like, you can skip ahead, perform the command-binding steps in Chapter 7, and then
return to this chapter to edit Scribble's toolbar.

Edit Scribble's Toolbar

76

The resource file that App Wizard creates for Scribble, Scribble.rc, also includes a
toolbar resource, shown in Figure 6.5. When you build Scribble, the framework uses
the toolbar resource to create a dockable toolbar. In this section you'll use the toolbar
editor to add a new button and, optionally, delete some unnecessary buttons from
Scribble's toolbar.

Figure 6.5 The Default Scribble Toolbar

Earlier in the chapter, you added the Pen menu. One of its menu items is the Thick
Line command. In this section, you'll add a corresponding Thick Line button to
Scribble's toolbar. Then, in Chapter 7, you'll use WizardBar to connect both the
Thick Line menu item and the Thick Line toolbar button to the same handler member
function. Thus, the Thick Line toolbar button will become an alternative user
interface for the Thick Line menu item. That is, both user-interface objects will have
the same command ID so they generate the same command message, which calls the
same handler function.

Chapter 6 Constructing the User Interface

When the user chooses either the menu item or the toolbar button, the handler
function toggles Scribble's drawing pen between thin and thick lines. Figure 6.6, at
the end of this topic, shows Scribble as it appears with the finished toolbar.

About the Toolbar
Some of the buttons on Scribble's toolbar already work, as you saw in Chapter 5
when you compiled Scribble. The buttons for opening and saving files are already
connected to handlers defined by the framework. All you had to do to make the file
operations functional was write the serialize functions for the document and the
stroke data structure. Also, the print button is supported by default, and the About
button automatically displays the About box for Scribble (the About box was created
for you by AppWizard).

The Cut, Copy, and Paste buttons on the toolbar appear grayed, because they have no
handlers defined for them. These buttons will not be implemented for Scribble, and
so you will (optionally) remove them from the Scribble toolbar.

Add the Thick Line Button to Scribble's Toolbar Bitmap
You'll add the Thick Line button to Scribble's toolbar by performing a few
simple steps:

• Open Scribble's toolbar resource

• Delete toolbar buttons

• Add a new button

• Assign a resource ID to the new button

• Add a tool tip

For more information, see Chapter 9, "Using the Toolbar Editor," in the Visual c++
User's Guide.

Opening Scribble's Toolbar Resource
~s with any of the Visual C++ resource editors, when you open a specific application
resource, the corresponding resource editor opens automatically.

~ To open Scribble's default toolbar resource .

1 If you don't already have Scribble's resource file open, switch to ResourceView
and expand the Scribble folder.

2 Expand the Toolbar folder and double-click IDR_MAINFRAME.

The toolbar editor, shown in Figure 6.7, opens, displaying the default toolbar
resource that App Wizard created for Scribble. The first button on the toolbar,
selected by default, appears in the bottom pane, or magnified view, of the editor
window.

77

Tutorials

78

The graphics and color tools, shown in Figure 6.6, also open as part of the toolbar
editor. If these graphics tools don't appear, choose Toolbars from the View menu
and select Graphics and Colors in the dialog box. You can drag the graphics tools
to either side of the screen and dock them to get a better view of the editor
window.)

Figure 6.6 The Graphics Toolbar

Fill tool

Selection tool

Pencil tool

Color indicator

Figure 6.7 The Toolbar Editor

Tool box

Brush selector

} Color palette

Search Eroject Besource Image .!!ebug IDols

Space for new tile

Selection tracker

Chapter 6 Constructing the User Interface

Deleting and Adding Buttons to Scribble's Toolbar
Adding, copying, moving, and deleting toolbar buttons are all very simple operations.

~ To delete a toolbar button

• Drag the button off the toolbar (in the top, or normal view pane).

In this case, drag the Cut, Copy, and Paste buttons off the Scribble toolbar.

This step is optional; if you don't remove these buttons, they will remain grayed in
the running application but otherwise will not interfere with Scribble operations.

~ To add the new toolbar button

1 Select the blank button at the right-hand end of the toolbar resource.

It receives focus in the two split panes of the editing window.

Tip If you want the button to appear larger in the editor, choose the Magnify tool and
select the magnification factor you want.

2 Choose the pencil tool from the graphics toolbar.

3 Using the magnified view of the button, draw the image shown in Figure 6.S.

It doesn't have to be exact. If you make a mistake, use the eraser tool.

4 Save your edits.

Figure 6.8 Thick Line Toolbar Button Resource

Note The blank button that appears by default in the toolbar editor window does not appear in
the running application.

Associating the Toolbar Button with a Command ID
In the next step you'll associate the new Thick Line button with a command ID so
that the button works when chosen in the running Scribble application. This step is
identical to the one you performed to associate a menu item with a command ID.

You'll bind the Thick Line button to I D_PEN_ TH I CK_OR_ TH I N. You defined that ID
earlier for the Thick Line menu command, so Visual C++ has already written a
#define for the ID in the project file called Resource.h. Your only task at this point is
to associate the ID with the button.

79

Tutorials

80

Note You don't need to delete the command IDs for the buttons you deleted; Visual C++ does
that for you automatically.

~ To associate the button with a command 10

1 If necessary, choose Properties from the Edit menu to display the Toolbar Button
Properties page.

You'll notice that Visual C++ has already assigned a command ID to the button.
You could accept (or modify) this ID, but in this case we want to select an existing
ID - the one defined for the Thick Line menu command.

2 From the ID drop-down list, select ID_PEN_THICK_OR_THIN.

You can also type this directly into the ID edit box.

3 Save the .rc file.

By associating the command ID with the toolbar button, the string resources become
active for the button as well: when the mouse passes over the button, the prompt
string displays in the status line, and the tool tip displays by the button.

Figure 6.9 shows the modified toolbar resource as it appears in Scribble.

Figure 6.9 The Edited Toolbar Resource

Adding a Tool Tip
It's easy to add a tool tip, the yellow hint that appears when the mouse rests over an
interface element, to your new toolbar button.

Note AppWizard appends the tool tip string automatically to the prompt strings it generates.

~ To add a tool tip

1 If necessary, select the new toolbar button in the editor window, and choose
Properties from the Edit menu to display the Toolbar Button Properties page.

In the Prompt: box, you'll see the text string "Toggles the line thickness between
thin and thick". You entered this text for the Thick or Thin menu item on
Scribble's Pen menu; it appears in the status line when the mouse passes over the
menu command.

2 To add a tool tip, at the end of the Prompt text type a newline character (\ n) plus
the text you want displayed in the tip (there should be no space between the
newline character and the tip text). If you want a tool tip without a prompt string,
simply start with the newline character.

Keep this text short. For Scribble, type \ n Tog 9 1 e Pen after the existing Prompt
string.

Chapter 6 Constructing the User Interface

Summary: Constructing the User Interface
Scribble's resource needs are simple, so this chapter introduced only a few of the
things you can do with the resource editors in Visual C++. For information about
their many capabilities, see "Using the Resource Editors" in Chapter 5 of the Visual
C++ User's Guide.

After editing your application's menus and toolbar, the next step is to connect them to
code using WizardBar and Class View. That step is explained in Chapter 7.

81

1

1

1

1
1

1
1

1

1

1

1

1
1

1

1
1

1

1

1

1
1

1

1

1
1

1

1

1
1

1

1

1

1
1

1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1
1
1

1

1

1

1

1

1

1
1

1

1

CHAPTER 7

Binding Visual Objects to Code
Using WizardBar

Like all applications written for Windows, Scribble is message driven. A keystroke,
mouse click, or other event causes messages to be sent to some part of the application
that can respond to the event. In Chapter 5, for example, you saw that Scribble
implements mouse drawing by detecting and responding to messages generated by

. . mouse clicks and drags.

This chapter discusses a category of messages called "commands," which are
messages to your application from menu items, toolbar buttons, and accelerator keys.
For more information, see Chapter 2, "Working with Messages and Commands," in
Programming with MFC.

The expanded version of Scribble developed in this chapter adds two menu items -
one that generates commands to toggle the line thickness for drawing and one that
clears all strokes from the current document. The command that toggles line
thickness is also duplicated by a button on Scribble's toolbar.

You created the resources for Scribble's new menu items and its new toolbar button in
Chapter 6. Now you can use WizardBar to assign a user-interface object, such as a
menu item, to a command and map the command to a function that handles it.

In this chapter, you will:

• Extend your knowledge of ClassWizard and WizardBar, begun in Chapter 5.

• Add new command-handling code for Scribble.

• Connect a toolbar button and a menu item to the same command .

• Learn how to keep your user-interface objects (menus and toolbar buttons) updated
in response to changing program conditions by, for example, enabling or disabling
a menu item and checking or unchecking a button.

(For more information, see "How to Update User-Interface Objects" in
Programming with MFC.)

83

Tutorials

Completing Scribble Step 2
This chapter and the previous chapter cover Step 2 of Scribble. If you are working
along, begin with the files in your Scribble project directory.

After following the steps descibed in this chapter, your files should closely resemble
the files in the SCRIBBLE\STEP2 subdirectory.

If, on the other hand, you want to read along without adding code, refer to the files in
the SCRIBBLE\STEP2 subdirectory.

Note If you have not made a local copy of the sample source code for this tutorial
step and you wish to do so, see "Installing the Sample Files" in Chapter 2.

You can also easily preview a running version of Scribble as it appears when this
tutorial step is completed. For more information, see "Previewing the Sample
Applications" in Chapter 2.

What Class Wizard and WizardBar Can Do

84

ClassWizard and WizardBar are tools you'll find yourself using quite frequently as
you program in the Developer Studio environment. WizardBar provides a shortcut to
many of the tasks you can perform with Class Wizard, such as:

• Connect standard Windows messages to message-handler functions.

• Connect user-interface objects to message-handler functions.

• Edit existing message maps and message-handler functions.

In this chapter, you'll learn to use WizardBar to bind commands to message-handler
functions.

For more information, see the topics "Using WizardBar" and "Using ClassWizard," .
in Chapter 14 of the Visual C++ User's Guide, and the article "ClassWizard," in Part
2 of Programming with MFC.

Creating Message-Handler Functions with Wizard Bar
When you use WizardBar to create a message-handler function, ClassWizard writes
an entry for the command in the chosen class's message map and adds a function
declaration to the class. Also, Class Wizard writes a function template-a complete
member function definition with an empty function body-in the source files that
contain the class. WizardBar jumps you directly to the text editor to fill in the
function template.

Chapter 7 Binding Visual Objects to Code Using WizardBar

Important If you delete a command binding with ClassWizard, its message-map entry is
deleted, but the message-handler function, and any references to it in your other code, are not
deleted. You must delete those items by hand. This is for your safety; the message-handler
function code, which you probably wrote, is preserved until you delete it.

For more information on command handling, see "Working with Messages and
Commands," in Chapter 2 of Programming with MFC.

Binding Scribble's Commands
This section explains the issues and procedures involved in binding Scribble's Clear
All and Thick Line commands to their handlers using WizardBar. (You'll bind the
Pen Widths command in the next chapter.)

Which Command· Target Class Gets the Handler?
Before you can bind Scribble's Clear All command to a message-handler function in
the document class, there are some problems to solve. Where should you put the
handler for a command? Where should you put attributes, such as a line thickness
value? In the document class? In the view class? Somewhere else?

Consider the specific case of Scribble. Scribble has one document class (some
applications might have several kinds of documents-such as text documents and
graphics documents) and one view class (some documents might have more than one
way to view their data-for example, as text or as an outline).

Scribble's Clear All command has two effects: It deletes data in the document and it
causes the view to be redrawn with no strokes. Should the handler for Clear All be
located in the document or the view? Scribble's C S c rib b 1 e Doc class houses the
application's data structure, the stroke list. Clear All's primary effect is to delete the
data. Redrawing the view afterward is secondary. Hence, it makes sense to locate the
OnEdi tC1 ea rA 11 handler in the document.

Scribble's Thick Line command is more interesting. This command toggles the
current value of a line thickness variable between thick and thin. Should the handler
for Thick Line be located in the view because it affects how Scribble's data is drawn?
This seems reasonable, but consider what happens when, in Chapter 9, Scribble gets
splitter window functionality. In that case, each pane of the splitter window is really a
new view on the same data. Should each of these views house its own line thickness
information (and its own pen)? It seems a better solution is to store that information
in the document instead, where all of the views can access it.

85

Tutorials

Keep in mind that this is a decision specific to Scribble's user interface, where it's
desirable that the pen width commands apply to all views, not just the one with the
current focus. You might choose to organize things differently in another application.
This type of program flow is up to you.

Now consider a hypothetical application with more than one view on a document and
perhaps even more than one frame window for the same document. Should handlers
and attributes be part of the document, part of one of the frame windows, or part of
one of the views? Should an attribute be duplicated in more than one view or frame
window?

Here are some guidelines that may help:

• In general, put handlers in the command-target class where they have the greatest
effect.

• When attributes are shared by multiple views or frame windows, put them in the
common document.

• If attributes are not shared, put them in the view(s) or window(s) that use them.

Bind Scribble's Clear All Command to its Handler Code

86

As discussed in the previous section, "Which Command-Target Class Gets the
Handler?," Scribble's Clear All command is bound to the document class.

If you're working along, use the following procedure.

~ To create the skeleton handler for Scribble's Clear All command

1 From File View, expand the Scribble project folder, if necessary, and double-click
the icon for ScribbleDoc.cpp to open the file.

Recall the decision to handle the command from the document rather than the
view. That's why the handler for Clear All will be placed in esc rib b 1 eO 0 c.

2 From the Object IDs list in WizardBar, select ID_EDIT_CLEAR_ALL.

3 From the WizardBar Messages list-box, select COMMAND.

You can see both COMMAND and UPDATE_COMMAND_UI in the Messages
list box. These are the two events for which the framework provides Class Wizard
support in creating your command handler code. That's why, for commands, these
are always the choices you see in the Messages list. In other cases, you might see
other things listed-a list of Windows messages, for example, when the selected
item is the name of a window or view class.

Chapter 7 Binding Visual Objects to Code Using WizardBar

Later in the chapter, in the section "Update Scribble's Clear All Menu Item,"
you'll see how UPDATE_COMMAND_UI is used for this menu command.

If handler functions exist for these events, the functions appear in bold. Since no
handler function exists for COMMAND, WizardBar prompts you with a message
box that asks whether you want to create one.

Figure 7.1 shows the selections from steps 2, 3, and 4.

Figure 7.1 Clear All in Wizard Bar

// ScribbleDoc. cpp : ilnplelnentation of the CScribbleDoc Cla_
v·

linclude 'stdafx.h'
linclude 'Scribble.h'

linclude 'ScribDoc.h'
linclude 'PenDlg.h'

lifdef _DEBUG

I

4 In the Add Member Function dialog box, choose the OK button to accept the name
OnEditClearAll.

ClassWizard creates the skeleton handler function in the implementation (.cpp)
file, opening the file in a text editor window and highlighting the comment code
so you can simply begin typing your application-specific handler code if you like.
The code that you'll fill in here is described in the next'procedure, "To complete
the OnEditClearAll handler function."

Member Function Code that ClassWizard Creates for You
ClassWizard adds several things to your source files when you use WizardBar to
create a member function to handle a command:

• A message-map entry to the class's message map (in the .cpp file for the class)

• A member function declaration to the class declaration (in the .h file for the class)

• An empty member function definition to the .cpp file

87

Tutorials

88

Figure 7.2 shows the skeleton code for 0 nEd i t C 1 ear All.

Figure 7.2 The OnEditClearAII Function Template

//);..
// CScribbleDoc commands

void CScribbleDoc: : OnEdi tClearAll ()
{

/ / TODO: Add your command handler code here

~ To complete the OnEditClearAII handler function

• Add the following code to fill in the On Ed i tCl ea rA 11 message-handler function.
(Replace the highlighted \\TODO comments.)

DeleteContents();
SetModifiedFlag();
UpdateAllViews(NULL);

SetModified Flag is a member function of class CDocument. It marks the
document as changed so the framework will prompt the user to save the document
when it closes.

The new On Ed i tCl ea rA 11 message handler first calls De 1 eteContents to
destroy the document's stroke data. (Scribble's version of De 1 eteContents, from
Chapter 9, overrides CDocument's DeleteContents member function.) Then
OnE d it C 1 ear A 11 calls the UpdateAllViews member function inherited from
CDocument to cause all views of the data to be updated. The document's view is
redrawn, this time with no data. UpdateAllViews takes a NULL argument because
the document is modifying itself. The parameter is normally used to pass a pointer to
the view that modified the document, but that doesn't apply here.

The Del eteContents member function iterates through the list of strokes. For each
stroke, it gets the next stroke and calls the delete operator on it. For more
information about working with list classes, see the article "Collections" in Part 2 of
Programming with MFC.

Chapter 7 Binding Visual Objects to Code Using WizardBar

Bind Scribble's Thick Line Command
When you finish adding 0 nEd i t C 1 ear A 11 , you're still in the text editor. To
continue binding commands, you'll continue to choose them from WizardBar.

Like the Clear All command, the Thick Line command will be handled by the
document. Recall the discussion under "Which Command-Target Class Gets the
Handler? "

~ To bind Scribble's Thick Line command

1 Make sure that file ScribbleDoc.cpp is active in the text editor.

2 In the WizardBar Object IDs list-box, select ID_PEN_THICK_OR_THIN.

3 In the Messages list box, select COMMAND.

4 In the Add Member Function dialog box, click the OK button to accept the name
OnPenThickOrThin.

ClassWizard creates and displays the function template for OnPenThi ckOrThi n.

5 Replace the highlighted comment text with the following code:

II Toggle the state of the pen between thin and thick.
m_bThickPen - Im_bThickPen:

II Change the current pen to reflect the new width.
ReplacePen():

The OnPenThi ckOrThi n message handler first toggles the state of a Boolean
variable, m_bThi ckPen.lfthe variable is now TRUE, the pen will be thick.
Otherwise, it will be thin. The handler then calls a helper function, Re p 1 ace Pen, to
reset the current pen to the new width. (You declare the m_bThi ckPen variable later
in the tutorial.)

The next section describes how to create this helper function.

Adding the ReplacePen Helper Function
Rep1 acePen is not a message handler, so you don't add it with WizardBar. You
could type the function directly into the text editor, by placing a definition in file
ScribbleDoc.cpp and a declaration in file ScribbleDoc.h. However, ClassWizard
provides a simpler way to add a new member function.

When you use the Add Function menu command, you simply enter information into a
dialog box, and Class Wizard creates both the function declaration and the skeleton
definition for you. All you need to do is fill in your application-specific code.

89

Tutorials

90

~ To create the ReplacePen helper function

1 In Class View, point your mouse cursor at the icon for class C S e r; b b 1 e D a e, and
click the right mouse button.

Pointing to the class icon specifies the class to which your selection from the local
menu applies.

2 From the pop-up menu, choose Add Function.

The Add Member Function dialog box appears.

3 In the Function Type edit box, type the function's return type (in this case, va; d).

4 In the Function Declaration edit box, type the declaration (function name and
parameters, if any) of the new function.

In this case, type the following:

ReplacePen ()

There's no need to type a semi colon. Also, for functions such as this that take no
parameters, the parentheses are optional.

5 In the Access area, select Protected.

6 Click OK.

Visual C++ adds the declaration to the beginning of the first Protected section of
the header file it finds (creating the section if it does not exist); creates a skeleton
definition in the implementation file; and jumps you to the body of the definition,
so you can begin typing your application-specific code.

7 Type the following code to fill in the function definition for Repl aeePen:

m_nPenWidth = m_bThickPen ? m_nThickWidth : m_nThinWidth;
II Change the current pen to reflect the new width.
m_penCur.DeleteObject();
m_penCur.CreatePen(PS_SOLID, m_nPenWidth, RGB(0.0,0));

The Repl aeePen member function uses the C conditional operator (?:) to determine
the pen width and return its value. Then it calls the Del e teO b j e e t member
function of the current pen object and creates a new solid black pen with
CreatePen, setting its width and other attributes.

Now that you've created Rep 1 aeePen, you want to call it from the Scribble code that
initializes the pen width. This happens in the In; tDaeument member function code.

~ To incorporate ReplacePen into Scribble

1 In ClassView, expand class CSer; bbl eDae and jump to the In; tDaeument
member function.

2 In the text editor, replace the current code with the single line that calls
Repl aeePen:

ReplacePen(); II Initialize pen according to current width

Chapter 7 Binding Visual Objects to Code Using WizardBar

Note This is the code you replace (originally added in Chapter 5):
m_nPenWidth - 2; II Default 2 pixel pen width
II Solid. black pen
m_penCur.CreatePen(PS_SOlID. m_nPenWidth. RGB(0.0.0));

This code was incorporated into the Re p 1 ace Pen function.

3 Save your work in both ScribbleDoc.h and ScribbleDoc.cpp.

Add New Member Variables to Scribble
In addition to storing the current pen width in m_n Pen Wid t h, class esc rib b 1 eO a c
needs to keep track of whether the pen is currently thick or thin and how "thick" and
"thin" are defined (in pixels). You do this by adding new data members for the thick
and thin pen values. In Chapter 8, "Connecting a Class to a Dialog Box," you will
add code to allow the user to define these values with a dialog box. For now, the
default values will be hard coded.

~ To add the new data members

1 Use Class View to jump to the class definition for esc rib b 1 eO a c.

Locate the section labeled "I I Attri butes :".

2 Add the following marked lines after the protected keyword and the existing
m_n Pen Wid t h declaration:

BOOl m_bThickPen; II Thick currently selected or not
UINT m_nThinWidth; II Current definition of thin
UINT m_nThickWidth; II Current definition of thick

Tip You could also use the Add Member Variable procedure from ClassView to add these
three variables.

~ To hard code the values

1 Use ClassView to jump to I ni tDocument, and add the following code just before
the call to Repl acePen:

m_bThickPen - FALSE;
m_nThinWidth - 2; II Default thin penis 2 pixels wide
m_nThickWidth - 5; II Default thick pen is 5 pixels wide

The added code specifies that the pen is initially thin and defines the meanings of
"thin" and "thick."

2 Save files ScribbleDoc.h and ScribbleDoc.cpp.

Class View displays iconic representation of the new member functions.

91

Tutorials

Updating User-Interface Objects
You'll often change the condition of menu items in your running application to
provide the user with information about current program conditions. For example,
you might want certain menu items to appear dimmed (grayed) to show they're
unavailable. You might want other menu items to have a check mark toggle. The
same general idea holds true for toolbar buttons: you can specify that they appear
enabled, disabled, or perhaps pushed in, as conditions in the program change. The
framework provides a direct, command-based way to set the state of the menus and
toolbar buttons. For an explanation of how this works, see Chapter 2, "Working with
Messages and Commands," in Programming with MFC.

The next section describes how you'll update Scribble's Edit menu at runtime.

Update Scribble's Clear All Menu Item

92

This section presents the steps you will take to update the Clear All menu item on
Scribble's Edit menu. The update command is handled by the document object, which
has the necessary information on whether there are any strokes in the current
drawing to clear.

Recall how you used WizardBar to create a skeleton handler for the Edit menu's
Clear All command, in the section "Bind Scribble's Clear All Command;" then you
filled in the handler code. Similarly, in this section you'll use WizardBar to create a
skeleton handler for the update command, which you'll then fill in with Scribble
specific code.

If you're working along, perform the following procedure.

~ To add an update handler for Scribble's Clear All menu

1 Open ScribbleDoc.cpp in an editor window.

2 In the WizardBar Object IDs list-box, select ID_EDIT_CLEAR_ALL.

3 In the Messages list-box, select UPDATE_COMMAND_UI.

The Add Member Function dialog appears, displaying a suggested name for the
handler.

4 Click the OK button to accept the name OnUpdateEdi tCl ea rA 11.

WizardBar creates and displays the function template for
OnUpdateEdi tCl ea rA 11, highlighting the comment.

S Replace the highlighted comment text with the following code:

II Enable the user-interface object (menu item or tool
II bar button) if the document is non-empty, i.e., has
II at least one stroke.
pCmdUI->Enable(!m_strokeList.lsEmpty());

Chapter 7 Binding Visual Objects to Code Using WizardBar

6 Save your changes to ScribbleDoc.cpp.

Notice that the UPDATE_COMMAND_UI entry in the Messages list is now
displayed in bold, indicating that a handler exists for it.

The 0 n U p d ate Ed i t C 1 ear A 11 handler takes one argument, a pointer to a CCmdUI
object that contains information about the Clear All menu item on Scribble's Edit
menu.

The pointer to a CCmdUI object, pCmdUI, is used to access a CCmdUI member
function, Enable. Enable takes one Boolean argument. In this code, the expression
! m_s t ro ke Lis t . I s Empty () evaluates to nonzero if the document has at least
one stroke to clear. If the expression evaluates to zero (no strokes), the menu item is
disabled (and dimmed or grayed).

Note When the user pulls down a menu, the update handlers for all items on the menu are
called before the user sees the menu displayed. Thus it's important not to perform a lot of
processing in your update handlers.

When you added the update command handler for the Clear All menu item,
ClassWizard wrote the following message-map entry in the document's message map
in ScribbleDoc.cpp:

ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL. OnUpdateEditClearAll)

The ON_UPDATE_COMMAND_UI macro resembles the ON_COMMAND macro
for the On Ed i tCl ea rA 11 message handler.

In addition, Class Wizard added a new member function declaration for
OnUpdateEdi tCl ea rA 11 to the CSeri bbl eDoe class declaration in ScribbleDoc.h.
The function declaration looks like this:

afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);

Update Scribble's Thick Line Menu Item
Updating the Thick Line menu is very similar to updating the Clear All menu. In this
case, however, rather than enabling or disabling the menu item, the handler puts a
check mark beside the item or removes an existing check mark.

If you're working along, perform the following procedure. (This procedure assumes
you still have ScribbleDoc.cpp open in the editor window.)

~ To add an update handler for the Thick Line menu

1 In the WizardBar Object IDs list box, select ID_PEN_THICK_OR_THIN.

2 In the Messages list box, select UPDATE_COMMAND_UI.

3 Choose the OK button in the Add Member Function dialog box to accept the name
OnUpdatePenThi ekOrThi n, and to create the handler.

93

Tutorials

4 Fill in the skeleton OnUpdatePenThi ekOrThi n update handler function with the
following code:

II Add check mark to Pen Thick Line menu item if the current
II pen width is "thick."
pCmdUI-)SetCheck(m_bThickPen):

5 Save changes to ScribbleDoc.cpp and ScribbleDoc.h.

Rather than enabling or disabling the menu command, this handler uses the pointer
to a CCmdUI object to call the SetCheck member function. SetCheck puts a check
mark in front of the menu item's text, "Thick Line," if its argument evaluates to
TRUE, or un checks the menu item if FALSE. In this case, the expression
m_bThi ekPen is a member variable of CSeri bbl eDoe. It evaluates TRUE if the
line thickness is currently set to thick. Since the value of m_b T hie k Pen is passed to
SetCheck, the effect is to toggle the menu item's check mark on or off as the line
thickness changes.

The ON_UPDATE_COMMAND_UI message-map entry and the
On U p d ate Pen T hie k 0 r T h i n message handler serve to update the state of the Thick
Line button on the toolbar as well as the Thick Line menu item. The code line

pCmdUI-)SetCheck(m_bThickPen):

adjusts the state of the toolbar button as well as updates the checked state of the menu
item. For a toolbar button, "checked" means depressed.

In this example, the user would previously have reset the line thickness. The next
time the user chooses the Pen menu (or the toolbar button), the user-interface update
mechanism take,S care of updating the check mark to match the current thickness.
Similarly, the toolbar button's state toggles between a "pressed down" appearance and
a normal appearance.

As with the update handler for Clear All, ClassWizard adds a message-map entry for
OnUpdatePenThi ekOrThi n to the document's m~ssage map in ScribbleDoc.cpp:

BEGIN_MESSAGE_MAP(CScribbleDoc. CDocument
11{{AFX_MSG_MAP(CScribbleDoc)
II Other message-map entries
ON_UPDATE_COMMAND_UI(ID_PEN_THICK_OR_THIN.OnUpdatePenThickOrThin)
I/} JAFX_MSG_MAP

END_MESSAGE_MAP()

Class Wizard also adds a member function declaration to the document class
definition in ScribbleDoc.h:

afx_msg void OnUpdatePehThickOrThin(CCmdUI* pCmdUI):

Build Scribble - Step 2 Version

94

How does Scribble behave with these new commands in place? Build, and then run
the new Step 2 version of Scribble to find out.

Chapter 7 Binding Visual Objects to Code Using WizardBar

1 From the Build menu, choose Execute Scribble.exe.

2 When prompted with the message that the file Scribble.exe does not exist, choose
Yes to build the file.

Once the file is built, the executable will run.

Figure 7.3 shows this version of Scribble.

Figure 7.3 Scribble Step 2

!·=rull!lf;~'C~:::~:~=:·::~~::<::~:==='=:~~::~_<_:"J:;:TflIE!
!! file .Edit fen Ylew ~indow Help

Draw some strokes with the default thin pen. Then change the line thickness by
choosing the Thick Line toolbar button you added in Chapter 6, "Constructing the
User Interface," and draw some new strokes. Try the same task by using the Thick
Line command on the Pen menu. (The Pen Widths command is grayed because you
have not hooked it up to the dialog yet. You'll do that in Chapter 8, "Adding a Dialog
Box.") Clear all strokes from the drawing with the Clear All command on the Edit
menu. Move the toolbar around and see how it docks when you drag it over to the
frame. The framework provides this functionality for you.

Exit Scribble.

This completes Step 2 in the tutorial. You should now have a basic understanding of
commands. In later chapters you'll build on that foundation.

In the next chapter, "Adding a Dialog Box," you'll implement a command that
displays a dialog box and then processes the results in its message handler.

95

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CHAPTER 8

Adding a Dialog Box

In Chapters 6 and 7, you added new commands to Scribble in two steps: first, by
using the menu editor to add new menu items; and second, by using the WizardBar to
define message handlers and bind them to the menu commands.

Recall that in Chapter 6, you added menu items for three new commands: Edit Clear
All, Thick Pen, and Pen Widths. Chapter 7 discussed binding only the first two of
these commands.

The Pen Widths command is somewhat different from the other two commands. Both
the Edit Clear All and Thick Pen commands execute to completion as soon as the
user selects them. By contrast, the Pen Widths command requires more information
from the user. This command opens a dialog box, one that lets the user specify the
widths of the Thin Pen and the Thick Pen.

Before you can write a message handler for the Pen Widths command, you have to
design the dialog box that it displays and define a new class to manage the dialog
box. That's what you'll do in this chapter.

This chapter develops a modal dialog box using the same general procedure that was
used for adding menu commands in Chapters 6 and 7. You'll use the dialog editor to
design the dialog box's appearance, and then use ClassWizard to declare a dialog
class, and WizardBar to define message handlers and bind them to the dialog box.

This chapter describes the following topics:

• Designing a dialog box

• Connecting a class to a dialog box

• Opening the dialog box from your application

For more information about editing dialog boxes, see Chapter 6, "Using the Dialog
Editor," in the Visual C++ User's Guide.

97

Tutorials

Completing Scribble Step 3
This chapter covers Step 3 of Scribble. If you want to work along, adding the code as
you go, begin with the files from your Scribble project directory. At the end of the
chapter, your files should closely resemble the files in the SCRIBBLE\STEP3
subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
view the files in the SCRIBBLE\STEP3 subdirectory.

Note If you have not made a local copy of the sample source code for this tutorial step and
you wish to do so, see "Installing the Sample Files" in Chapter 2.

You can also easily preview a running version of Scribble as it appears at the
completion of this tutorial step. For more information, see "Previewing the Sample
Applications" in Chapter 2.

Designing a Dialog Box

98

Figure 8.1 shows the Pen Widths dialog box that you will create.

Figure 8.1 Scribble's Pen Widths Dialog Box

The Pen Width dialog box will have the following characteristics:

• Thin and Thick Pen width edit boxes where the user can enter any number
(representing pixels) between 1 and 20. If the user enters a value outside this
range, Scribble displays a message box stating the legal range; after dismissing the
message box, the user can enter new values.

• A Default button that enables the user to reset the pen widths to their default
values.

• An OK button that enables the user to use the specified values for any subsequent
drawing.

• A Cancel button that enables the user to cancel any values entered in the dialog.

Chapter 8 Adding a Dialog Box

Developer Studio Dialog Resource Editor
Microsoft Developer Studio provides a dialog resource editor for designing dialog
boxes. This editor displays the dialog control toolbar, which shows the available
controls (such as radio buttons, check boxes, and pushbuttons). You select controls
from the toolbar and position them on your dialog box. You can move and resize the
controls directly by using the mouse.

You use the property page for each control to specify its caption and ID.

Designing a dialog box requires three steps:

1. Creating a new dialog box and editing its caption and ID.

2. Adding the controls and editing their captions and IDs.

3. Arranging and testing the controls within the dialog box.

Create the Dialog Box
Microsoft Developer Studio provides many predesigned resources that you can easily
incorporate into your projects. The default dialog box is one such resource. In this
procedure, you'll create a simple dialog box by starting with the default dialog box
that Developer Studio provides.

~ To create the Pen Widths dialog box

1 With your Scribble project open, from the Insert menu, choose Resource.

2 In the Insert Resource dialog box, select Dialog from the list of resource types and
choose OK.

Scribble's resource file, Scribble.rc, opens and the dialog editor window appears,
displaying a default dialog box that contains two pushbuttons labeled OK and
Cancel. The dialog controls toolbar also appears.

3 If the property page is not currently displayed, double-click the dialog box and
then choose the pushpin button on the property page to keep it open.

4 In the ID box, type I DD_P EN_W I DTHS.

This is not a predefined ID, so you can't select it from the drop-down list.

S In the caption box, change the caption to Pen Wid t h s .

Notice that the title bar of the dialog box reflects the new caption.

6 Optionally, save Scribble.rc.

99

Tutorials

Note The OK and Cancel buttons have predefined properties, including their command IDs
lOOK and IOCANCEL, respectively. If you select the OK button and switch to the Styles tab of
the Properties dialog, you'll see that the Default Button check box is also checked.

In the next section you'll add several controls to the default dialog box resource.

Add the Controls

100

This procedure assumes you have the Properties Page "pinned down," and the
I DD_PEN_W I DTHS dialog resource open in the dialog editor.

~ To add controls to the Pen Widths dialog box

1 From the control toolbar, add two edit box controls to the Pen Width dialog box.

•. Select the first edit box to display its property page. Change its ID to
IDC_THIN_PEN_WIDTH.

• Select the second edit box, and in the property page change its ID to
IDC_THICK_PEN_WIDTH.

2 From the control toolbar, add two static text controls to contain the descriptions
for the two edit controls.

• Select the first text box to display its property page. Change the caption to
"Thin Pen Width:".

• Select the second text box, and in the property page change its caption to
"Thick Pen Width:".

Notice that the text boxes automatically resize to display the text you type.

For the purposes of Scribble, you won't have to refer programmatically to the IDs
of the text boxes, so you can leave them with their default values (both have the
value IDC_STATIC).

3 From the control toolbar, add a third pushbutton to the two already present.

4 Select the third pushbutton to display its property page. Change its caption to
"Default" and its ID to IDC_DEFAULT_PEN_ WIDTHS.

The handler for this button will reset the thick and thin pens to their default
widths.

Figure 8.2 illustrates designing the Pen Widths dialog box. In this illustration, the
central window is the dialog editor window. Below the dialog editor is the property
page, and the control toolbar is to the right.

Chapter 8 Adding a Dialog Box

P'Iitiebar

P' Systemrrien~
r; Minimize bali

r, MaJ:limize box

Layout tool bar

Dialog property page

Arrange and Test Controls

Control tool bar

Dialog editor window

Once you've added all the controls to the dialog box, you can also:

• Resize the dialog box for a balanced layout.

• Align the controls, make them the same size, etc., using the commands on the
Layout menu.

• Define the tab order for the controls.

Tab order is the order in which the TAB key moves the input focus from one
control to the next. You can see the tab order by choosing Tab Order from the
Layout menu. To change the tab order, click each control in the order you want as
the tab order.

• Test the dialog box.

If you want to see how the dialog box will look when it's displayed, choose the
Test command from the Layout menu. This displays the dialog box as it will
appear in Scribble, enabling you to test aspects such as the tab order, default
button, and so on. Exit Test mode by choosing either the OK or Cancel button on
the dialog box or by pressing the ESC key.

101

Tutorials

Connecting a Class to a Dialog Box
Once you've specified the appearance of your dialog box, you need to specify its
runtime behavior. This requires deriving a class from CDiaiog that implements your
dialog box, and connecting that class to the dialog resource you created in the
previous section.

In general, to connect a class to a dialog box:

1. Declare a class to represent the dialog box.

2. Declare handler functions for the messages you want to handle.

3. Map the dialog box controls to member variables of the dialog class and define
what (if any) validation rules should be applied to each.

You could do all of this manually, but ClassWizard and WizardBar provide a
graphical user interface that lets you do it quickly and easily. Class Wizard generates a
header (.h) and an implementation (.cpp) file for your dialog class, complete with
function prototypes, skeletal function definitions, a message map, and a data map.

The following sections show how these steps are accomplished for Scribble's Pen
Widths dialog box.

Declare the Dialog Class

102

The following procedure shows you how to use Class Wizard to declare a class for the
dialog box you just created. ClassWizard enables you to easily declare new classes in
your application. For more information, see "Adding a Class."

Note The following procedure assumes you have the Pen Widths dialog resource open, and
that you have not previously declared a class for it.

~ To declare the new dialog class

1 From the View menu, choose ClassWizard.

-or-

From the standard toolbar, click the Class Wizard button.

The Adding a Class dialog appears, with a message that I DD_PEN_WI DTHS is a
new resource, and with the "Create a new class" option selected by default. '

ClassWizard knows that a class hasn't been defined yet for your dialog resource,
so it displays this dialog box to enable you to define one.

Note If yciu had created the dialog class before creating the dialog resource, you could
specify the "Select an existing class option" in this dialog to connect the dialog to the
existing class.

Chapter 8 Adding a Dialog Box

Figure 8.3 The Create New Class Dialog Box

Ii [File
:.' ,Change .. ,

I: '
, Resource$-----,----.,-,--·---,

QialoglD:

i:, ~ •. OLE Aut~matio~ . '., '
!: :C;:,tJ,QI'Ie
i> : C:e,utomation ' il,l C; CjNte"bh, by type 11):' ·1 .. ,,; <,'; ,

! ~. ." ... ",.,. " .. ,

; ',ComponentGaner,ll-~~~~"""--"""""" '1:

· 8> Add to Component yallery .

2 Choose OK to create the dialog class.

3 The Create New Class dialog appears, with I DD_PEN_W I DTHS displayed in the
dialog ID drop-down list under Resources.

Notice that the Base Class is already set to CDialog. ClassWizard assumes this is
the type to use because you were using the dialog editor.

4 In the Name box under Class Information, type C Pen Wid t h s D 1 g.

Notice, in the File box, that ClassWizard derives the name for the implementation
(.cpp) and header (.h) files from the characters you type. If you wanted to change
either filename you would choose the Change button.

S Clear the Add to Component Gallery checkbox.

For more information about this option, see "Using the Component Gallery" in
Chapter 15 of the Visual C++ User's Guide.

6 Click the Create button.

This creates the class and closes the Create New Class dialog box. The
information for CPenWi dthsDl 9 is now displayed in the ClassWizard dialog box.
The Class Name edit box and Object Ids list box display "CPenWidthsDlg," and
the Messages list box displays messages appropriate for the controls in the Pen
Widths dialog box, as shown in Figure 8.4.

7 Click OK to close ClassWizard.

103

Tutorials

104

Figure 8.4 The Message Maps Tab Displaying the CPenWidthsDlg Class

Viewing the Newly Created Class
When you use Class Wizard to create a new class, Class Wizard creates and adds the
associated .h and .cpp files to the project. You can view them in the FileView pane of
the Project Workspace window; and, in the Class View pane, you can view the iconic
representation of the new C Pen Wi d t h s D 1 9 class and its default member functions.

In the section "Declare a Message Handling Function for a Dialog Box Control,"
you'll use WizardBar to add a message handling function to the PenWidthsDlg.h and
PenWidthsDlg.cpp files. But first, let's examine the files as they appear when first
created by Class Wizard.

Header File
Here's the initial version of PenWidthsDlg.h that ClassWizard creates:

II PenWidthsDlg.h : header file
/I

IIIIIIIIIIIIIIIIIIIIIIII
II CPenWidthsDlg dialog

class CPenWidthsDlg : public CDialog
{

II Construction
public:

CPenWidthsDlg(CWnd* pParent = NULL);

II Dialog Data
11{{AFX_DATA(CPenWidthsDlg)
enum { IDD = IDD_PEN_WIDTHS };

II standard constructor

II NOTE: the ClassWizard will add data members here
I/} }AFX_DATA

Chapter 8 Adding a Dialog Box

II Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CPenWidthsDlg)
protected:
virtual void DoDataExchange(CDataExchange* pOX): II DDX/DDV support
I/}}AFX_VIRTUAL

II Implementation
protected:

} :

II Generated message map functions
11{{AFX_MSG(CPenWidthsDlg)

II NOTE: the ClassWizard will add member functions here
I/} }AFX_MSG
DECLARE_MESSAGE_MAP()

This file contains a declaration for CPenWi dthsDl g, the class that implements the
Pen Widths dialog box. At this point, the class contains two member functions: a
constructor and the DoDa ta Excha nge function, which is described later on.

The file contains comment lines that begin / / {{AFX_ and / /} }AFX_. ClassWizard
uses those comment lines to find the sections of code that it maintains. There are
three such sections in the header file, each delimited by slightly different comments:
the AFX_DAT A section, containing the declarations of the dialog data members; the
AFX_V I RTUAL section containing declarations of override functions; and the
AFX_MSG section, containing the declarations of the message handlers.

Note In general, you shouldn't manually edit any declarations that appear in these sections, or
add code here in general. It is good style, and safe practice, to put any custom declarations in
the appropriate group, but below the / /} } A F X_line.

Implementation File
Here's the initial version ofPenWidthsDlg.cpp that ClassWizard creates:

II PenWidthsDlg.cpp : implementation file
II

lIinclude "stdafx.h"
lIinclude "Scribble.h"
Ilinclude "PenWidthsDlg.h"

lIifdef _DEBUG
lIundef THIS_FILE
static char THIS_FILE[J - __ FILE __ :
Ilendif

IIIIIIIIIIIIIIIIIIIIIIII
II CPenWidthsDlg dialog

105

Tutorials

106

CPenWidthsDlg::CPenWidthsDlg(CWnd* pParent I*=NULL*/)
: CDialog(CPenWidthsDlg::IDD. pParent)

11{{AFX_DATA_INIT(CPenWidthsDlg)
II NOTE: the ClassWizard will add member initialization here

IlllAFX_DATA_INIT

void CPenWidthsDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
11{{AFX_DATA_MAP(CPenWidthsDlg)

II NOTE: the ClassWizard will add DDX and DDV calls here
I/} lAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CPenWidthsDlg. CDialog)
11{{AFX_MSG_MAP(CPenWidthsDlg)

II NOTE: the ClassWizard will add message map macros here
I/} lAFX_MSG_MAP

END_MESSAGE_MAP()

111
II CPenWidthsDlg message handlers

This file contains an empty message map and empty function definitions for the
constructor and the DoDataExchange member function. For more information on
the DoData Exchange function, see "Map the Controls to Member Variables," later
in this chapter.

Notice that the constructor has a base initializer for CDiaiog. The CDiaiog
constructor that it invokes creates a modal dialog box, and it takes two parameters:
the ID of the dialog resource and a pointer to the parent window. For the first
parameter Class Wizard has specified C Pen Wid t h s D 1 g : : I D D. This is an enumerated
value that is defined in the AFX DATA section in the class declaration. This
enumerated value is equal to I DD_P EN_W I DTHS, the ID you specified in the section
"Add the Controls." Thus the dialog class is associated with the dialog resource you
created.

Also notice that the implementation file, like the header file, contains sections
delimited by / / { {A F X_ and / /} } A F X_, into which Class Wizard will insert code
later.

Chapter 8 Adding a Dialog Box

Declare a Message-Handling Function for a
Dialog Box Control

The CDialog class, from which C Pen Wid t h s D 1 9 is derived, defines default handlers
for the OK and Cancel buttons. The Pen Widths dialog box contains a third
pushbutton, the Default button. For CPenWi dthsDl 9 to respond when the user
chooses this button, you must define a new message handler and bind it to the Default
pushbutton.

Binding a message handler to a control in a dialog box is similar to binding a
message handler to a menu command, which was described in Chapter 7 in "Bind
Scribble's Clear All Command to Its Handler"; both can be accomplished by using
WizardBar to add an entry to a class's message map.

You should be familiar, from Chapter 7, with what the WizardBar displays for a
document or view class. For a dialog class, note the following differences:

• The Object IDs box displays the IDs of all the controls in the dialog box, not the
commands in a menu.

• The message being handled is a Windows control notification message, not an
application-specific command. As a result, the Messages list box displays more
than just COMMAND and UPDATE_COMMAND_UI; it displays all the
messages that can be sent by the object that's highlighted in the Object IDs box.
For example, if I DC_ TH I N_PEN_WI DTH - which is the ID of the first edit box
- is highlighted in the Object IDs box, the Message box displays all the control
notification messages that an edit box can generate, such as EN_SETFOCUS,
EN_KILLFOCUS, and EN_UPDATE.

Despite these differences, the procedure for adding a message handler is the same.

Adding the Message Handler for the Default Button
The following procedure assumes you have Pen WidthsDlg.cpp open in the text editor.

~ To add a message handler for the Default button

1 In the WizardBar Object IDs list box, select I DC_DE FAU L T _PEN_W I DTHS. This is
the ID of the Default button you created.

The Messages list box now shows all the notification messages that a pushbutton
can send; namely, BN_CLICKED and BN_DOUBLECLICKED.

2 In the Messages list box, select the BN_CLICKED message.
I

The Add Member Function dialog box appears, displaying the candidate name,
"OnDefaultPenWidths." ClassWizard has synthesized this name from the object's
ID and the message name.

3 Click OK to accept the function name offered by ClassWizard, and to create the
function.

107

Tutorials

ClassWizard generates a skeleton function definition in PenWidthsDlg.cpp for the
On 0 e f au 1 t Pen Wid t h s message handler. Class Wizard also inserts the member
function declaration into Pen WidthsDlg.h, and an entry in the message map in
Pen WidthsDlg.cpp indicating that the member function 0 nO e fa u 1 t Pen Wid t h s is
the message handler called whenever the control I DC_DEFAU L T _PEN_WIDTHS sends
a BN_ CLICKED message.

Right now the CPenWi dthsDl 9 class doesn't have any member variables defined;
you will define those members in the next section, "Map the Controls to Member
Variables." You will implement OnDefaul tPenWi dths later, in the section
"Implementing the Message Handler," after you've added the member variables.

Map the Controls to Member Variables

108

Scribble must be able to retrieve the values that the user enters in the Thin Pen and
Thick Pen edit boxes. MFC defines a mechanism that automates the process of
gathering values from a dialog box; this mechanism is called a "data map." In the
same way that a message map binds a user-interface element with a member function,
a data map binds a dialog-box control with a member variable. The value of the
member variable reflects the status or the contents of the control. By adding entries to
CPenWi dthsDl g's data map, you can retrieve the values entered in the Thin Pen and
Thick Pen edit boxes.

For Scribble, the widths of the thin and thick pens must be between I and 20. You
can enforce these conditions by using the automated data validation that data maps
provide. If the user enters values that fall outside this range, the application displays
a message box stating the legal range and allows the user to enter new values.

~ To map the controls of the Pen Widths dialog box to member variables

1 From the View menu, choose ClassWizard, and choose the Member Variables tab.

This tab, shown in Figure 8.5, contains a list box displaying the mapping between
controls and member variables.

2 In the Class Name drop-list, select CPenWidthsDlg.

At the moment the box displays only the IDs for the controls because you haven't
yet specified which member variables the controls correspond to.

3 Select IDC_THIN_PEN_ WIDTH and then choose the Add Variable button.

The Add Member Variable dialog box appears.

4 In the Member Variable Name box, specify m_nThinWidth as the variable name.

S From the Variable Type list box, choose int.

6 Choose OK to add the member variable to the class.

Notice the changes in the dialog:

• The member name and type you specified now appear in the Control IDs box.

Chapter 8 Adding a Dialog Box

• A description string of "int with validation" appears .

• Two new edit boxes (Minimum Value and Maximum Value) appear to receive
the validation parameters appropriate for an integer. These correspond to the
edit boxes you added to the dialog box resource.

7 In the Minimum and Maximum boxes, enter 1 and 20, respectively.

8 Repeat steps 2 through 6 for the control I DC_ TH ICK_PEN_WI DTH. Specify
m_nThickWidth as the member name, choose int, and enter lower and upper
limits of 1 and 20.

9 Click OK.

You've now completed the data map connecting the Pen Widths dialog box to the
CPenWi dthsDl 9 class. You can view the m_ nThi ckWi dth and m_nThi nWi dth
member variables in Class View under the C Pen Wid t h s D 1 9 class.

Figure 8.5 The Member Variables Tab

:; ,:t:~M~S: .• ·~~l~'V~~~ .·lo~:fl.:9~~I~~~· ,1.~s;I~~;J k~qL:.'c.;,
i)~~:b\~:bble\penw~~Digh:o:r.Jlenw!:~::sDlg :3 ;. iiddV~iat.l.lH.·1

TJ'P1t Member . Q.ebteV"r.3ble I
int :Urd;tetO!.lmm I

!:. Coo,0I101:

IDC_THICK_PEN_WIDTH
IDC_THIN_PEN_WIDTH
IDCANCEL in! '. ']li,',';!"!" I

; IDOK

f:' : __________ -:-:"!-_____________ -:-: __ --t

~ ,

Class Wizard inserts declarations into the data map of Pen WidthsDlg.h for the
member variables you specified in the Add Member Variable dialog box.

ClassWizard also makes the following changes to PenWidthsDlg.cpp after you've
mapped the controls to member variables:

CPenWidthsDlg::CPenWidthsDlg(CWnd* pParent /*=NULL*/)
: CDialog(CPenWidthsDlg::IDD. pParent)

J

//{{AFX_DATA_INIT(CPenWidthsDlg)
m_nThinWidth = 0;
m_ThickWidth = 0;
//JJAFX_DATA_INIT

109

Tutorials

void CPenWidthsDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CPenWidthsDlg)
DDX_Text(pDX. IDC_THIN_PEN_WIDTH. m_nThinWidth);
DDV_MinMaxlnt(pDX. m_nThinWidth. 1. 20);
DDX_Text(pDX. IDC_THICK_PEN_WIDTH. m_nThickWidth);
DDV_MinMaxlnt(pDX. m_nThickWidth. 1. 20);
//}}AFX_DATA_MAP

Notice that ClassWizard has initialized the member variables in the constructor and
provided an implementation for the DoDataExchange function. The framework calls
DoDataExchange whenever values have to be moved between the member variables
in the class and the controls in the dialog box on screen (for example, when first
displaying the dialog box on the screen or when the user closes the dialog box by .
choosing OK).

The DoDataExchange function is implemented using DDX and DDV function calls.
A DDX (for Dialog Data eXchange) function specifies which control in the dialog
box corresponds to a particular member variable and transfers the data between the
two. A DDV (for Dialog Data Validation) function specifies the validation parameters
for a particular member variable, ensuring that its value is legal. The DDX and DDV
function calls shown above reflect the mapping and validation parameters you
specified with Class Wizard.

Notice that the DDV function call for a given member variable immediately follows
the DDX function call for that variable. This is a rule you must follow if you choose
to manually edit the contents of the data map.

For more information about Class Wizard, see "Using Class Wizard," in Chapter 4 of
the Visual C++ User's Guide.

Implementing the Message Handler

110

Recall that Class Wizard provided an empty function definition for the
On De f a u 1 t Pen Wid t h s message handler, which is called when the user chooses the
Default button. Now that the CPenWi dthsDl 9 class contains the necessary member
variables, m_nThi ckWi dth and m_nThi nWi dth, it's time to fill in that function
definition.

The 0 n De fa u 1 t Pen Wid t h s function sets the contents of the edit boxes to the default
widths of the thin and thick pens.

Chapter 8 Adding a Dialog Box

~ To implement the message handler for the Default button

1 Use Class View or WizardBar to jump to the 0 nO e f au 1 t Pen Wid t h s function
definition in file Pen WidthsDlg.cpp, and add the following code (you can delete
the TODO comments):

m_nThinWidth - 2;
m_nThickWidth - 5;
UpdateData(FALSE); II causes DoDataExchange()

II bSave-FALSE means don't save from screen, rather, write
II to screen

2 Save your changes to PenWidthsDlg.cpp.

OnDefaul tPenWi dths sets m_nThi nWi dth and m_nThi ckWi dth to their
default values and then calls UpdateData, a member function defined by CWnd
(the base class of CDialog).

The UpdateData member function calls the DoData Exchange function to move
values between the member variables and the controls displayed on the screen.
The direction in which the data values are moved is specified by the argument to
UpdateData. The default value of this argument is TRUE, which moves data
from the controls to the member variables. A value of FALSE moves data from the
member variables to the controls. The OnDefaul tPenWi dths member function
passes FALSE, causing the default values to be displayed in the edit boxes on the
screen.

Open the Dialog Box
By now you've specified almost everything about the Pen Widths dialog box: its
appearance, the data map for its edit controls, and the message handlers for its
pushbuttons. There's only one thing that remains to be specified: when the dialog box
should be opened.

Currently there is no programmatic connection between the Pen Widths menu item
and the Pen Widths dialog box. That is, the menu item and the dialog box are not
bound together. You must explicitly bind them by calling the Pen Widths dialog box
from within the message handler for the Pen Widths command.

How do you open a dialog box? The first step is to declare a C Pen Wid t h sOl g object.
This doesn't display the dialog box on the screen; it just constructs the C++ object
that manages the dialog box. The second step is to complete the OnPenWi dths
member function handler for the Pen Widths menu command.

To specify that the Pen Widths command displays the dialog box modally, you call
the DoModal member function defined by the CDialog class. (To display a modeless
dialog, you would call the Create member function of CDialog.)

111

Tutorials

112

The DoModal function continues executing as long as the dialog box is displayed on
the screen. When the user chooses the OK or Cancel button, the DoModal function
returns IDOK or IDCANCEL, respectively, and the application can continue.

Before you write the message handler for the Pen Widths command, you need to
decide which class should get the handler. Recall that in Chapter 7, in "Add New
Member Variables to Scribble," you added declarations for the m_nThi ckWi dth and
m_n T hi n Wid t h member variables to the esc rib b Doc class, because the document
needs to keep track of the widths of the thick and thin pens (this allows multiple
views to share the same pen widths). Since the document class has to maintain those
values, it should get the handler for the Pen Widths command.

Declaring the CPenWidthsDlg Object
In the following procedure you'll use the WizardBar to add a function handler for the
On Pen Wid t h s message and bind the function to its handler code, which is executed
whenever the user chooses the Pen Widths command.

~ To declare the CPenWidthsDlg object

1 Open ScribbleDoc.cpp in the text editor.

2 In the WizardBar Object IDs list box, select the ID _PEN_ WIDTHS command.

3 In the Messages list box, select COMMAND.

4 In the Add Member Function dialog box, choose OK to accept the candidate name
"OnPen Widths."

5 In place of the highlighted \\TODO comment, add the following code:

CPenWidthsDlg dlg:
II Initialize dialog data
dlg.m_nThinWidth - m_nThinWidth:
dlg.m_nThickWidth - m_nThickWidth:

II Invoke the dialog box
if (dlg.DoModal() -- IDOK)
{

}

II retrieve the dialog data
m_nThinWidth - dlg.m_nThinWidth:
m_nThickWidth = dlg.m_nThickWidth:

II Update the pen used by views when drawing new strokes
I I to refl ect the new pen wi dths ,for. "thi ck" and "thi n".
ReplacePen():

6 Scroll to the top of ScribbleDoc.cpp and add the following #include statement:

Iii ncl ude "PenWi dthsDl g. hIt

7 Save ScribbleDoc.cpp.

Chapter 8 Adding a Dialog Box

When modifying ScribbleDoc.cpp, it's necessary to include PenWidthsDlg.h so that
the message handler has access to the dialog class you've created.

The OnPenWi dths function declares a CPenWi dthsDl 9 object and sets the values of
the m_n T hie k Wid t hand m_n T hi n Wid t h member variables to the current widths of
the thick and thin pens. Then the function calls the DoModal function, which
displays the dialog box on the screen and takes control of the application until the
user exits the dialog box. If the user exits the dialog box by choosing the OK button,
the function changes the current thick and thin pen widths to the new values; if the
user chooses the Cancel button, the old values are retained. Finally, the function calls
the Repl acePen member function to make the document's pen use the current
widths.

When does the application perform the data exchange and validation defined in the
DoDataExchange function? Recall that DoDataExchange is called by the
UpdateData member function. Just before the dialog box is first displayed on the
screen, the framework calls the UpdateData function with an argument of FALSE,
which sets the contents of the edit boxes to the values of the member variables. If the
user exits the dialog box by choosing the OK button, the framework calls
UpdateData with an argument of TRUE, which retrieves the contents of the edit
boxes and sets the values of the member variables accordingly. (If the user exits by
choosing the Cancel button, the framework doesn't call UpdateData.)

You don't have to handle the UPDATE_COMMAND_UI message for the Pen
Widths menu item because the menu item doesn't need to be updated. The command
is never disabled since it's always legal to change the widths of the pens, and there's
no need to add or remove a check mark because the command isn't a toggle.

Build Scribble - Step 3 Version
How does Scribble behave now that a dialog box has been added? Compile the new
version of Scribble and find out.

~ To build Scribble - Step 3 Version

1 From the Build menu, choose Build Scribble.exe.

2 Run the new version of Scribble. Draw some strokes with the default thick pen and
the default thin pen. Then use the Pen Widths dialog to change the thickness of
the pens and draw some new strokes. Figure 8.6 illustrates the third version of
Scribble with a variety of strokes drawn.

113

Tutorials

114

Figure 8.6 Scribble Version 3

3 Exit Scribble.

This completes Step 3 of the tutorial.

In the next chapter, you'll implement the updating of multiple views, scrolling, and
splitter windows.

CHAPTER 9

Enhancing Views

In the previous chapters, you've seen how a view acts as an intermediary between a
document and the user: The view displays a document on the screen and interprets
mouse actions as operations on the document. You've also seen how a view
cooperates with a frame window so that the frame window implements the generic
window behavior while the view provides the application-specific functionality.

However, there are additional benefits to having a view class that is separate from the
document and the frame window. This chapter describes how to take advantage of the
division of labor between these classes to add special features to your application's
user interface by:

• Updating multiple views on the same document.

• Scrolling a view.

• Splitting a window.

This chapter covers Step 4 of Scribble. If you want to work along, adding the code as
you go, begin with the files you worked on in Chapter 8 in your Scribble project
directory. At this point, these files should closely resemble those in the
SCRIBBLE\STEP3 subdirectory. After following the steps outlined in this chapter,
your files should closely resemble the files in the SCRIBBLE\STEP4 subdirectory.

If you want to read along without adding code, you can print or examine the files in
the SCRIBBLE\STEP4 subdirectory.

Note If you have not made a local copy of the sample source code for this tutorial step and
you wish to do so, see "Installing the Sample Files" in Chapter 2.

You can also easily preview a running version of Scribble as it appears at the
completion of this tutorial step. For more information, see "Previewing the Sample
Applications" in Chapter 2.

115

Tutorials

Updating Multiple Views

116

To illustrate, try the following:

1 Run Scribble (your Step 3 version) and draw a few strokes in the open document.

2 From the Window menu, choose the New Window command.

This opens a new document window displaying the same drawing. The document
object now has two view objects connected to it.

3 Choose the Tile command so you can see both views at the same time.

4 Add some more new strokes in the first window.

Do the new strokes appear in the other window simultaneously? No.

Why is this the case? Scribble, as currently implemented, has no way of telling each
open document window what is happening in any other open document window.
(This is illustrated in Figure 9.1.) You could force a repaint - for instance, by
minimizing and then restoring the window. Then its OnDraw function would display
the drawing again, including the new strokes. But how can you ensure that all the
views attached to a document reflect changes to the document as soon as they
are made?

Figure 9.1 Multiple Views on a Document Without Updating

Each view must notify the other views whenever it has modified the document. MFC
provides a standard mechanism for notifying views of modifications to a document
through the UpdateAIlViews member function of the CDocument class.

Chapter 9 Enhancing Views

The UpdateAlIViews function traverses the list of views attached to the document.
For each view in the list, the function calls the OnUpdate member function of the
CView class. The OnUpdate function is where the view responds to changes in the
document; the default implementation of the function invalidates the client area of
the view, causing it to be repainted. The simplest way for you to use this updating
mechanism in your application is to call the document's UpdateAlIViews function
whenever a view modifies a document in response to a user action.

You can also perform more efficient repainting with this updating mechanism if you
use the parameters of the UpdateAlIViews function. Here is the declaration of
UpdateAlIViews:

void UpdateAllViews(CView* pSender. LPARAM lHint - 0L.
CObject* pHint - NULL);

The first argument identifies the view that made the modifications to the document.
This is specified to keep the UpdateAlIViews function from performing a redundant
notification; typically the view that made the modifications doesn't need to be told
about them. The second two arguments are "hints." You can use these hints to
describe the modifications that the view made.

The UpdateAlIViews function gives the hints to every view attached to the document
by passing them as parameters to the OnUpdate member function. You can override
OnUpdate to interpret those hints and update only the area of the display that
corresponds to the modified portion of the document. Thus, if another view is
displaying a completely different portion of the document, itdoesn't have to perform
any repainting at all.

These are the basic steps you take to inform other views of modifications:

1. Define a type of hint that describes a modification to a document.

2. When a view modifies the document, create a hint describing the modification
made and pass it to UpdateAlIViews.

3. Override OnUpdate to use the hint so that only the portion of the screen
corresponding to the modification gets updated.

These steps are described in more detail in the following sections, using Scribble as
an example.

Define a Hint for Scribble
When a stroke is added to a drawing in Scribble, the rectangular region that contains
the new stroke is the only area that needs to be updated; the remainder of the drawing
can be left alone. Therefore, a logical choice for a hint in Scribble is the bounding
rectangle of the new stroke.

117

Tutorials

118

Instead of creating a separate class to represent the hint, it's more convenient to pass
a CStroke pointer as a hint. Store the bounding rectangle for each stroke in the
CStroke object itself, so that it can be quickly referred to by OnUpdate to determine
which area of the window needs to be repainted.

The following procedure assumes you have your Scribble project file (Scribble.mdp)
open in the workspace.

~ To define bounding rectangles for strokes

1 From ClassView, jump to the definition for class CSt roke.

2 In the Attributes section, add the following code, just after the m_p 0 i n tA r r ay
declaration:

CRect m_rectBounding: II smallest rect that surrounds all
II of the points in the stroke

public:
CRect& GetBoundingRect() { return m_rectBounding:

The protected member variable m_rectBoundi ng is a CRect object storing the
bounding rectangle, and the public member function Get B 0 u n din 9 R e c tallows
the rectangle to be retrieved by the view.

3 Now search in the implementation file (ScribbleDoc.cpp) for the
IMPLEMENT_SERIAL macro, and change the schema number parameter to 2.

IMPLEMENT_SERIAL(CStroke. CObject. 2)

This version of Scribble changes what's stored in a CStroke object by adding a
new member variable. Changing the schema number distinguishes strokes saved
by this version of Scribble from those of other versions.

4 Go to the second CSt r 0 k e constructor (the one that initializes the pen width) and
add the following line:

m_rectBounding.SetRectEmpty():

This initializes the bounding rectangle to an empty rectangle in the constructor.

5 Jump to the CStroke Seri al i ze function and add the following line just after
the first if condition:

ar « m_rectBounding:

This stores the m_rectBoundi ng member variable in the archive.

6 Add its code pair just after the else branch:

ar » m_rectBounding:

This reads the m_rectBound i ng member variable from the archive.

In the next procedure, you'll add a helper function, Fin ish S tr 0 k e. This function
calculates the bounding rectangle, which is needed for smart repainting.

Chapter 9 Enhancing Views

~ To add the FinishStroke helper function

1 From ClassView, point your cursor at the CStroke class icon ~md click the right
mouse button.

2 From the pop-up menu, choose Add Function.

The Add Member Function dialog box appears.

3 In the Function Type edit box, type the return type (in this case, v 0 i d).

4 In the Function Declaration edit box, type the following:

FinishStroke()

5 In the Access area, select Public.

6 Choose OK.

Visual C++ adds the declaration to the header file, creates a skeleton definition in
the implementation file, and jumps you to the body of the definition so you can
begin typing your application-specific code.

7 Type the following code to fill in the function definition for Fin ish S t r 0 k e:

if(m_pointArray.GetS;ze() -- 0)
{

}

m_rectBounding.SetRectEmpty():
return:

CPoint pt - m_pointArray[0]:
m_rectBounding - CRect(pt.x, pt.y, pt.x, pt.y):

for (int i-I: i < m_pointArray.GetSize(): i++)
{

II If the point lies outside of the accumulated bounding
II rectangle, then inflate the bounding rect to include it.
pt - m_pointArray[i]:
m_rectBounding.left - min(m_rectBounding.left, pt.x):'
m_rectBounding.right - max(m_rectBounding.right, pt.x):
m_rectBounding.top - min(m_rectBounding.top, pt.y):
m_rectBounding.bottom - max(m_rectBounding.bottom, pt.y):

II Add the pen width to the bounding rectangle. This is needed
II to account for the width of the stroke when invalidating
II the screen.
m_rectBounding.Infla'teRect(CSize(m_nPenWidth, m_nPenWidth»:
return:

119

Tutorials

The F; n ish S t r 0 k e member function calculates the bounding rectangle for a stroke.
In this function, the stroke object iterates through its array of points, testing the
location of each one; if a point falls outside the current bounding rectangle, the stroke
object enlarges the bounding rectangle just enough to contain it. Then the bounding
rectangle is expanded on each side by the width of the pen.

Pass the Hint After Modifying the ,Document
The next step is to pass the hint to the document's UpdateAIlViews member
function. It's appropriate to pass a hint each time a stroke is completed.

~ To pass the hint after modifying the document

• From Class View, jump to the 0 n L But ton U p member function of class
CScri bbl eVi ew and add the following code, just before the Rel easeCapture
function call:

II Tell the stroke item that we're done adding points to it.
II This is so it can finish computing its bounding rectangle.
m_pStrokeCur-)FinishStroke();

II Tell the other views that this stroke has been added
II so that they can invalidate this stroke's area in their
II client area.
pDoc-)UpdateAllViews(this. 0L. m_pStrokeCur);

The OnLButtonUp member function is called when a stroke is finished, so you call
UpdateAIlViews from there. In this function, the view gets the hint information that
it will send to the document. It does this by calling the F; n; s h S t r 0 k e member
function for m_p S t r 0 k e Cur; Fin ish S t r 0 k e computes the bounding rectangle for
the current stroke. Then the view calls UpdateAIlViews, passing two arguments: the
this pointer, which identifies this view as the one that performed the modification to
the document, and m_pStrokeCur, whose bounding rectangle is the hint. (The
function sends a pointer to the entire CSt r 0 k e object rather than just the bounding
rectangle because the hint must be a CObject pointer, and CRect isn't derived from
CObject.) The view doesn't need to send any more hint information, so it doesn't
pass anything (0) in the LPARAM parameter.

The UpdateAIlViews function iterates through the list of views attached to the
document; for each view (except the one that performed the modification), the
function calls its OnUpdate function and passes the hint as a parameter.

Use the Hint for Efficient Repainting

120

The last step is to take advantage of the hint so the other views can repaint
themselves more efficiently. This involves modifying the CScri bbl eVi ew class by
overriding the OnUpdate function to respond to any hint it receives.

Chapter 9 Enhancing Views

In Chapter 7, "Binding Visual Objects to Code Using WizardBar," you saw how to
use WizardBar to connect user-interface objects to their message-handler functions.
You can also use WizardBar to override functions inherited from the base class,
which are not attached to user-interface objects. The following procedure illustrates
this point.

The OnUpdate function for class CScri bbl eVi ew is inherited from its base class,
CView.OnUpdate appears in the WizardBar Messages list with the other virtual
functions associated with the CView class. Messages displayed in bold have already
been mapped or overridden in the class.

Note To use Wizard Bar to override OnUpda te, file ScribbleView.cpp must be open in the
text editor.

~ To add the OnUpdate function to Scribble

1 In the WizardBar Messages list box, select OnUpda teo

2 When prompted, choose Yes to create a handler function.

3 Fill in the skeleton function definition with the following code (you can replace
the II TODO comments):

II The document has informed this view that some data has changed.

if (pHint 1- NULL)
{

}

if (pHint-)IsKindOf(RUNTIME_CLASS(CStroke»)
{

II The hint is that a stroke has been added (or changed).
II So. invalidate its rectangle.
CStroke* pStroke - (CStroke*)pHint:
CRect rectInvalid - pStroke->GetBoundingRect():
InvalidateRect(&rectInvalid);
return:

II We can't interpret the hint. so assume that anything might
II have been updated.
Invalidate():
return:

Recall that this function is called by the UpdateA 11 Vi ews function of
esc rib b 1 eO 0 c, which passes it a hint. In this function, the view checks if the
hint is a CStroke object. If so, the view gets the bounding rectangle for the stroke
and marks it as invalid. This rectangle marks the area that must be redrawn. If the
hint isn't a CStroke object, the view doesn't know what area was modified, so it
invalidates the entire client area as a precaution.

After a region has been invalidated, Windows sends a WM_PAINT message. The
OnPaint member function defined by CView handles this message by calling the
virtual OnDraw member function. Consequently, you must modify the OnDraw
function to take advantage of the invalidated rectangle when redrawing.

121

Tutorials

4 From ClassView,jump to the OnDraw member function in class CScri bbl eVi ew,
and add the following code just after the ASSERT_VALl D (pDoc) line:

II Get the invalidated rectangle of the view, or in the case
II of printing, the clipping region of the printer DC.
CRect rectClip;
CRect rectStroke;
pDC->GetClipBox(&rectClip);

IINote: CScrollView::OnPaint() will have already adjusted the
Ilviewpoint origin before calling OnDraw(), to reflect the
Ilcurrently scrolled position.

S Then, add the following code immediately following the Cstroke* pStroke
stroke Li st. Get Next (pos) line:

rectStroke - pStroke->GetBoundingRect():
if (!rectStroke.lntersectRect(&rectStroke, &rectClip))

continue;

In the On Draw function, the view first calls the GetClipBox member function of
CDC to get the invalidated portion of the client area. Then the view iterates
through the list of strokes in the document, calling I ntersectRect for each to
determine if any part of the stroke lies in the invalidated region. If so, the view
asks the stroke to draw itself. Any strokes that don't intersect the invalidated
region don't have to be redrawn.

Note This is a good point to compile your changes and test the window updating.

~ To test your update code

1 Build and execute Scribble.

2 Add some lines to the document window.

3 From the Window menu, choose New Window, then choose Tile.

4 Draw in either window and note that the application now correctly tracks the
results in both windows.

Adding Scrolling

122

In the current version of Scribble, you cannot work on a drawing that is larger than
the window. It would be more convenient if you could work on a large drawing, no
matter how small the window is. To do this, Scribble must support scrolling.

The addition of scrolling expands the conceptual role played by a view. Not only does
a view produce a visual representation of a document's data, it also acts as a peephole
to a document that may be too large to display all at once. This peephole can be
moved across the document to reveal different portions of it. This is illustrated in
Figure 9.2.

Chapter 9 Enhancing Views

Figure 9.2 A Scrollable View on a Document

Currently
scrolled
position

Implementing scrolling from scratch is fairly complicated. However, since a lot of the
scrolling code is the same for all applications, MFC implements the common
scrolling logic in a class called CScrollView.

Basic Steps for Adding Scrolling
The basic steps for adding scrolling to your application are as follows:

1. Define a size for your documents. This can be a constant, a member stored in each
document object, a value calculated at run time, etc.

2. Derive your view class from CScrollView instead of CView.

Note In the AppWizard-Step 6 dialog box, you have the option of changing your base
class. You could have, for example, chosen CScroliView instead of CView at that point,
thereby eliminating some of the steps in this procedure.

3. Pass the document's size to the SetScrollSizes member function of CScrollView
whenever the size may change.

4. Convert between logical coordinates and device coordinates if passing points
between graphic device interface (GDI) and non-GDI functions.

The framework's responsibilities are as follows:

• Handle all WM_HSCROLL and WM_ VSCROLL messages, scroll the
document in response, and move the scroll box accordingly.

The positions of the scroll boxes reflect where the currently displayed portion of
the document resides relative to the rest of the document. If the user clicks on a
scroll arrow at either end of the scroll bar, the document scrolls one "line" (whose
meaning depends on the document type). If the user clicks on either side of the
scroll box, the document is scrolled one page. If the user drags the scroll box itself,
the document is scrolled accordingly.

123

Tutorials

• Calculate a mapping between the lengths of the scroll bars and the height and
width of the document, adjust this scaling factor when the window is resized or
when the size of the document changes, and in tum remove or add scroll bars as
needed.

The next section describes how to add scrolling to Scribble. Figure 9.3 shows what
Scribble looks like with scroll bars added.

Figure 9.3 Scribble with Scrolling Support

Add Scrolling to Scribble

124

The following procedures describe how to perform the first three steps involved in
adding scrolling to Scribble, as described in "Basic Steps for Adding Scrolling." In
the section, "Working with GDI Coordinates," you'll see how to perform the fourth
step.

~ To add scrOlling support to Scribble

1 From Class View, jump to the definition of class C S e rib b 1 e Doe, and add the
following code after the public Attributes section:

protected:
CSize m_sizeOoc;

public:
CSize GetOocSize() { return m_sizeDoc; }

This defines the size of Scribble documents by having each document store its
dimensions. The member variable m_s i zeD 0 e stores the size of the document in a
CSize object. This member is protected, so it cannot be accessed directly by the
views attached to the document. To let the views retrieve the size of the document,
you provide a public helper function named GetDoeSi ze. The views base their
scrolling limits on the document size.

2 Jump to the Seri ali ze member function in CSeri bb 1 eDoe and add the
following line of code in place of the \\TODO comments for storing:

ar « m_sizeOoc;

Chapter 9 Enhancing Views

3 Add the matching line just after the else branch:

ar » m_sizeDoc;

4 Jump to the In i tDocument function, and add the following code after the call to
Repl acePen:

II Default document size is 800 x 900 screen pixels.
m_sizeDoc - CSize(800.900);

The new code in the In i tDocument member function initializes the m_s i zeDoc
member variable; recall that you use this function whenever a new document is
created or an existing document is opened. All Scribble documents are the same
size: 800 logical units in width and 900 logical units in height. For simplicity's
sake, Scribble doesn't support documents of varying size.

The changes to the S e ria 1 i z e member function store and read the m_s i zeD 0 c
member variable.

S Jump to the esc ri bb 1 eVi ew class definition and specify that it be derived from
class CScrollView (instead of class CView):

class CScribbleView : public CScrollView

Recall that MFC uses message maps as well as C++ inheritance. As a result,
modifying the class declaration in the header file isn't enough to give
eScri bb 1 eVi ew all of CScrollView's functionality. You also have to modify the
message-map macros in the implementation file.

6 In Scribble View.cpp, change the reference to CView in the following lines to refer
to CScrollView instead:

IMPLEMENT_DYNCREATE(CScribbleView. CScrollView)

BEGIN_MESSAGE_MAP(CScribbleView. CScrollView)

In the message map macro, referencing CScrollView instead of CView instructs
the framework to search CScrollView's message map if it can't find the message
handler it needs in eScri bbl eVi ew's message map.

7 If you want to use the diagnostic features provided by MFC, change the
implementat~ons of the Dump and AssertV ali d member functions of
esc rib b 1 e View. These functions simply call their base class versions; change
them to call the CScrollView versions rather than the CView versions.

These changes set the document's scrolling limits according to the size of the
document. By changing the base class of eScri bbl eVi ew from CView to
CScrollView, you give esc r i bb 1 e View scrolling functionality without having to
implement scrolling yourself.

Since Scribble documents are fixed in size, there is no need to make any subsequent
calls to SetScrollSizes. If your application supports documents of varying size, you
should call SetScrollSizes immediately after the document's size changes. (You can
do this from the OnUpdate member function of your view class.)

125

Tutorials

In addition to the changes just made, the C S cr i b b 1 e View class will override the
OnlnitialUpdate member function, which is called when the view is first attached to
the document. By overriding this function, you can inform the view of the document's
size as soon as possible. .

The following procedure describes how to do this.

Note To use the Wizard Bar for this procedure, first open file ScribbleView.cpp in the text
editor.

~ To override OnlnitialUpdate

1 In the WizardBar Messages list box, select On I nit i a 1 Upda teo

2 When prompted, choose Yes to add a function handler.

3 Add the following line of code just before the call to the 0 n I nit i a 1 Up d ate
function in the base class:

SetScrollSizes(MM_TEXT, GetDocument()->GetDocSize());

The SetScrollSizes member function is defined by CScrollView. Its first parameter is
the mapping mode used to display the document. The current version of Scribble uses
MM_TEXT as the mapping mode; in Chapter 10, Scribble will use the
MM_LOENGLISH mapping mode for better printing. (For more information on
mapping modes, see "Enlarge the Printed Image" in Chapter 10, or see
CDC::SetMapMode in the Class Library Reference).

The second parameter is the total size of the document, which is needed to determine
the scrolling limits. The view uses the value returned by the document's
GetDocSi ze member function for this parameter.

SetScrollSizes also has two other parameters for which Scribble uses the default
values. These are CSize values that represent the size of one "page" and one "line,"
the distances to be scrolled if the user clicks the scroll bar or a scroll arrow. The
default values are 1I10th and II100th of the document size, respectively.

Working with GDI Coordinates

126

Notice that the addition of scrolling didn't require you to modify the OnDraw member
function of esc rib b 1 e View. If the drawing function is unchanged, why does the
window display different portions of the document depending on where the user has
scrolled to? The reason is that the document is displayed using coordinates relative to
an origin used by GDI. When this origin was fixed at the upper-left comer of the
client area, the part of the document that was visible was always the same. By moving
the origin used by GDI, CScrollView can adjust which portion of the document is
shown in the client area of the window and which portions are hidden.

The origin used by GDI is a characteristic of a device context; it is used by the
member functions of the CDC class. If you want to make adjustments to the CDC
object used by your view, you can override the OnPrepareDC member function

Chapter 9 Enhancing Views

defined by CView. CScrollView overrides OnPrepareDC to move the device
context's origin to reflect the currently scrolled position. OnPrepareDC is always
called by the framework before it calls OnDraw. As a result,you don't have to make
any changes to the OnDraw function to draw a properly scrolled document; all the
work needed to do scrolling is done to the device context before anD raw receives it.

It's important to note that changing the device context's origin doesn't affect the
coordinates you receive with Windows messages such as WM_LBUTTONDOWN or
WM_MOUSEMOVE; the points accompanying those messages are still specified in
coordinates relative to the upper-left comer of the client area. This is because
Windows messages are not part of a device context, so they are unaffected by changes
to the GDI origin. Thus, C S c rib b 1 e View must now deal with two types of
coordinates:

• The coordinates used for describing the points received with a mouse message.
Those points are returned in "device coordinates." ,

• The coordinates used for drawing with GD!. These are known as "logical
coordinates."

Converting from Device Coordinates to Logical
Coordinates
When storing the coordinates of strokes, Scribble needs to know where the strokes are
relative to the document, not relative to the client area. Consequently,
C S c rib b 1 e View must convert points from device coordinates (relative to the
window origin) to logical coordinates (relative to the document origin) before storing
them in CSt r 0 k e objects.

~ To store the strokes using logical coordinates

1 Use ClassView to jump to the On LButtonDown member function of class
C S c rib b 1 e View, and add the following code to the beginning of the function
definition:

II CScrollView changes the viewport origin and mapping mode.
II It's necessary to convert the point from device coordinates
II to logical coordinates. such as are stored in the document.
CClientDC dc(this);
OnPrepareDC(&dc);
dc.DPtoLP(&point);

In this function, the view receives a point speCified in device .coordinates. A device
context is needed to find the GDI origin, so the function declares a CClientDC
object, which is a CDC object for the client 'area of the view, and calls
OnPrepareDC to adjust its origin. Then the function passes the point 'to the
DPtoLP (Device Point to Logical Poirit) member function of CDC to perform the
actual conversion. The point added to m_pSt ro keC uris thus described in logical
coordinates (that is, relative to the document origin).

127

Tutorials

128

2 Jump to OnMouseMove and add similar code just after the line CCl i entDC
de(thi s):

II CScrollView changes the viewport origin and mapping mode.
II It's necessary to convert the point from device coordinates
II to logical coordinates, such as are stored in the document.
OnPrepareDC(&dc);
dc.DPtoLP(&point);

This function already has a device context for drawing the stroke in progress, so
the only modifications needed are to call OnPrepareDC to move the viewport
origin and then DPtoLP to convert the point before adding it.

3 Make the same modification to the On LButtonUp member function, again, just
after the line C C 1 i en t DC de (t his) :

II CScrollView changes the viewport origin and mapping mode.
II It's necessary to convert the point from device coordinates
II to logical coordinates, such as are stored in the document.
OnPrepareDC(&dc); II set up mapping mode and viewport origin
dc.DPtoLP(&point);

Like OnMouseMove, this function already has a device context to complete
drawing the stroke, so the only modifications needed are to call OnPrepareDC
and then DPtoLP.

4 Jump to On Update and add the following lines of code just after the line
CStroke* pStroke = (CStroke*)pHint:

CClientDC dc(this);
OnPrepareDC(&dc);

5 Skip a line (the C reet reet I n val i d ... line) and add the following line:

dc.LPtoDP(&rectlnvalid);

Unlike the previous three functions, OnUpdate requires a conversion in the
opposite direction; that is, from logical coordinates to device coordinates. Recall
that OnUpdate retrieves the bounding rectangle of a stroke and invalidates that
rectangle. The stroke's bounding rectangle is stored in logical coordinates.
However, the rectangle passed to InvalidateRect must be specified in device
coordinates (since InvalidateRect is not a GDI function). Accordingly, a stroke's
bounding rectangle must have its coordinates converted into device coordinates
before it can be invalidated.

The function declares a CClientDC object and then calls the OnPrepareDC
member function to move the viewport origin of the device context to reflect the
currently scrolled position. The rectangle is then passed to the LPtoDP (Logical
Point to Device Point) function of CDC to convert its points into device
coordinates. (Both DPtoLP and LPtoDP are overloaded to accept rectangles as
well as points.) Once it is converted, the rectangle can be invalidated.

Chapter 9 Enhancing Views

For more information on CScrollView, see the Class Library Reference.

Note This is a good point to compile and test Scribble's scrolling.

Adding Splitter Windows
Scrolling lets you work on a document that is larger than the window, but by the same
token it means that much of the document is hidden at anyone time. Suppose the
user needs to refer to two widely separated portions of a document at the same time.
One way to do this is to open another window on the same document and scroll both
window to different locations. However, windows must be resized individually so that
they don't overlap. A more convenient solution is to divide a window into separate
"panes," each of which can display a different portion of the document. This is
illustrated in Figure 9.4.

Figure 9.4 A Window with Two Views on a Document

Document

Window

1st View

2nd View

129

Tutorials

130

A window that can be divided into multiple panes is called a "splitter window." A
splitter window contains split boxes at the top of the vertical scroll bar and at the left
of the horizontal scroll bar. By double-clicking a split box, the user can divide a
window vertically or horizontally into panes. The panes are separated by a "split
bar"; each pane can be scrolled independently to display a different portion of the
document. The user can also drag the split bar to resize both panes at once.

Figure 9.5 shows what a Scribble window looks like when it is split into two panes.

Figure 9.5 Scribble Document Window Split into Two Panes

Each pane in a splitter window represents a separate view object. In Figure 9.5, each
pane is an instance of the CScri bbl eVi ew class, but it's not necessary for the panes
to use the same view class; you can use different classes for different panes. This is
useful when, for example, you want one pane to display an outline of a document
while the other pane displays the full text.

How the Framework Supports Splitting
For an MDI application such as Scribble to support splitting, objects of three classes
must cooperate to display a document: a CMDIChildWnd object, which manages the
document window's frame; a CSplitterWnd object, which manages the document
window's client area; and one or more CScri bbl eVi ew objects, each of which
manages a pane in the window. The CSplitterWnd object is not visible as a distinct
entity, but it is responsible for handling the esc rib b 1 e View objects as panes,
managing their scroll bars, and drawing the split boxes and split bars.

This technique for managing splitter windows is similar to the implementation of
MDI in general. A client window manages the entire client area, or workspace, of an
MDI application's frame window. It is this client window that owns the child
windows that display documents.

Because you specified Scribble as an MDI application, AppWizard creates the
CChildFrame class, derived from CMDIChildWnd. You'll add the code to support
splitter windows in Scribble to this class. If Scribble were an SDI application, you
would add the splitter window functionality directly to the CMainFrame class.

Chapter 9 Enhancing Views

There are two ways that you can add splitter window functionality to your
application:

• You can choose the Use Splitter Window option in AppWizard when you first
create the application's skeleton files. This method performs the steps outlined
below for you.

• You can add this functionality "manually," using ClassWizard to automate the
process somewhat.

You'll use the manual method for Scribble because it demonstrates how simply the
framework implements this feature. The method for using App Wizard is described
later in this section, in the topic "Adding Splitter Window Functionality by Using
App Wizard."

Basic Steps to Add Splitter Windows
By performing the following steps, you can easily add splitter windows to your
applications:

1. Derive a frame window class from CMDIChildWnd if you are writing a Multiple
Document Interface (MDI) application.

Because you specified Scribble as an MDI application, AppWizard generated a
CChildFrame class for you, derived from CMDIChildWnd.

2. Give this class a member variable of type CSplitterWnd. (For SDI applications,
add the member variable to your CMainFrame class.)

This is the window that covers the frame window's client area.

3. Override the OnCreateClient member function of your frame window class to
create a CSplitterWnd. (For SDI applications, the frame window class is
CMainFrame.)

The framework calls this function when it first creates the frame window. For
Scribble, you will override the OnCreateClient member function of
CChildFrame.

Add Splitter Windows to Scribble
Adding splitter windows to Scribble requires only two very simple steps. As shown in
the following procedures, you'll add a member variable, m_WndSpl i tter, and a
function, OnCreateCl i ent, to class CChi 1 dFrame. Once this is done, you can
build and run Scribble to test the splitter window functionality.

Note When you choose the splitter window option from AppWizard, AppWizard also generates
a menu item, which the user can use if they like instead of directly selecting the split box. To
duplicate this feature, create a Split item on Scribble's Window menu, and assign it an 10 of
ID_WINDOW_SPLIT. There's no need to create a handler for it--the framework handles it
automatically.

131

Tutorials

132

~ To declare the CSpliHerWnd member variable

1 In Class View, point to the C Chi 1 d F r a me class icon and click the right mouse
button.

2 From the pop-up menu, choose Add Variable.

The Add Member Variable dialog box appears.

3 In the Variable Type edit box, type: CSpi tterWnd

4 In the Variable Declaration edit box, type: m_wndSpl i tter

5 In the Access area, specify "protected."

6 Choose OK.

You can view the new variable in ClassView under the CCh i 1 d Frame class.

~ To add the OnCreateClient member function

1 Open ChildFrm.cpp in the editor window.

2 From the WizardBar Messages list, choose OnCreateClient.

3 When prompted, choose Yes to create the handler.

4 Within the skeleton function definition that Class Wizard creates, type the
following (replace the existing code or comments):

return m_wndSplitter.Create(this,
2, 2, II TODD: adjust the number of rows, columns
CSize(10, 10), II TODD: adjust the minimum pane size
pContext):

5 If you like, save the header and implementation files for CChi 1 dFrame.

You can view the new member function in Class View, under class C Chi 1 d F r a me.

In the 0 nCr eat e C 1 i en t member function, the frame window creates the window
that will cover its client area by calling the Create function of its CSplitterWnd
member variable. The parameters passed to the Create function describe the panes
that the splitter window will manage.

The first argument passed to Create specifies the parent window for the client
window: The function passes the this pointer, making the CScri bbl eFrame window
the parent of the CSplitterWnd object (the member variable, m_wndSp 1 i tte r). The
second and third parameters specify the maximum number of rows and columns that
the splitter window can have; a value of two is used for each, so Scribble's splitter
windows can have up to four panes. The fourth parameter specifies the minimum size
of a pane: a square 10 logical units on a side. The fifth parameter is the
CCreateContext structure that is passed to OnCreateCl i ent. This structure is used
to determine which view class should be used for each pane in the splitter window.

Chapter 9 Enhancing Views

The Create function can also accept an additional two arguments; because Scribble
doesn't pass any values for these, the default values are used. The sixth argument
specifies the styles to be used for the splitter window. The default value specifies a
visible child window with vertical and horizontal scroll bars that supports dynamic
splitting. The seventh argument specifies the ID to be assigned to the splitter window.
Its default value is AFX_IDW _PANE_FIRST, which is the ID of the first pane.

Adding Splitter Window Functionality by Using AppWizard
The previous section described how to add splitter window functionality to an MDI
application that you had already developed. By performing the following procedure,
AppWizard adds the splitter window functionality for you when you first create a
project.

Note This procedure isn't relevant to the version of Scribble you've developed to this point, as
it requires starting over with AppWizard. It is included here for information only.

~ To add splitter windows by using AppWizard

1 Start App Wizard and specify your preferences in the first three dialog boxes.

2 In the App Wizard Step 4 dialog box, choose the Advanced button.

3 Select the Window Styles tab.

4 Select the Use Splitter Window option, and choose Close.

5 Finish choosing your options in AppWizard, and choose OK in the New Project
Information dialog box.

For more information on CSplitterWnd, see the Class Library Reference.

Build Scribble - Step 4 Version
How does Scribble behave with these new enhancements? Build the new version and
find out.

~ To build Scribble

• From the Build menu, choose Build Scribble.exe.

Run the new version of Scribble.

Draw some strokes, scroll to a new portion of the drawing, and draw some more
strokes. Resize the window and scroll back and forth. Double-click the split box, or
drag it to split the window into two panes. With both panes displaying the same
portion of the document, draw some strokes in one pane and see them reflected in the
other one. Figure 9.6 shows this version of Scribble.

133

Tutorials

134

Figure 9.6 Scribble Version 4

Exit Scribble.

This completes Step 4 of the tutorial. You now have a basic understanding of the view
architecture provided by the Microsoft Foundation Class Library.

In the next chapter, you'll enhance Scribble's printing and print preview support.

C HAP T E R 1 0

Enhancing Printing

Scribble has supported printing and print preview since Chapter 5, "Creating the
View," when you first added application-specific code to the starter files created by
AppWizard. All the printing and previewing functionality came for free. None of the
code you added dealt specifically with printing; App Wizard and the framework did
all the work for you.

While it's nice to get printing and print preview for free, Scribble's current printing
support isn't perfect. For example, the printed image is smaller than you might like.
In addition, the printed image is very plain; it doesn't include a header or footer. This
chapter describes how to enlarge the printed image and implement printing
enhancements in your application.

This chapter covers the following topics:

• Enhance Scribble's printing

• Enhance Scribble's print preview

This chapter covers Step 5 of Scribble. If you want to work along, adding the code as
you go, begin with the files in your Scribble project directory. At this point, these files
should closely resemble those in the SCRIBBLE\STEP4 subdirectory. After following
the steps outlined in this chapter, your files should closely resemble the files in the
SCRIBBLE\STEP5 subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEP5 subdirectory.

Note If you have not made a local copy of the sample source code for this tutorial step and
you wish to do so, see "Installing the Sample Files," in Chapter 2.

You can also easily preview a running version of Scribble as it appears at the
completion of this tutorial step. For more information, see "Previewing the Sample
Applications," in Chapter 2.

For more information on the framework's printing architecture, see the article
"Printing" in Programming with MFC.

135

Tutorials

Enhance Scribble's Printing
Step 5 of Scribble adds the following printing capabilities to the program:

• Enlarges the printed image by using the MM_LOENGLISH mapping mode

• Paginates a Scribble document

• Adds a page header

These enhancements will invalidate previous Scribble file formats. To alleviate this
issue, you'll first increment Scribble's serialization.

The following topics describe these enhancements in detail.

Enlarge the Printed Image

136

Recall from "Add Scrolling to Scribble," in Chapter 9, that when you specify a
position for a GDI drawing function, you use logical coordinates. Chapter 9 described
how CScrollView moves the origin of this coordinate system. You can also control
the scale of this coordinate system, that is, the physical size of a logical unit. By
default, GDI considers logical units to be equal to device units, meaning that 1
logical unit equals 1 pixel on the screen. This interpretation of logical units is called
MM_TEXT mapping mode.

Since Scribble uses MM_TEXT mapping mode, it considers a stroke that is 100
units long to be 100 pixels long. The physical size of the stroke depends on the device
that displays it. For example, a device unit on a typical laser printer is 1/300 of an
inch, which is considerably smaller than a pixel on a typical screen. As a result, the
images that Scribble produces on a printer are much smaller than those it displays on
the screen.

To keep Scribble from producing tiny images on the printer, you need a mapping
mode that ensures that a drawing remains the same size no matter what device
displays it. Windows provides several such mapping modes, known as metric
mapping modes. In these modes, GDI considers logical units to be equal to real-world
units (or metrics), such as millimeters or inches.

Using the MM_LOENGLISH Mapping Mode
In Step 5, Scribble changes to MM_LOENGLISH mapping mode, which treats each
logical unit as 0.01 inches. In this mode, a stroke that is 100 logical units long is
drawn as 1 inch long, no matter which device is used; each device driver determines
how many device units are needed to draw a I-inch stroke.

Chapter 10 Enhancing Printing

Once Scribble uses MM_LOENGLISH mode, all coordinates used for GDI drawing
are in hundredths of an inch, not pixels. As a result, the images that Scribble displays
on the printer are the same size as the ones it displays on the screen. Recall that in
Chapter 9, a Scribble drawing was defined to be 800 logical units across and 900
logical units high; once you change the mapping mode, a drawing is 8 inches across
and 9 inches high.

Another feature of MM_LOENGLISH mode (as well as the other metric mapping
modes) is that its y-axis runs in the opposite direction to that in MM_TEXT mode.
In MM_TEXT mode, y-coordinates increase when you move down, but in all the
metric mapping modes, y-coordinates increase when you move up.

After you change the mapping mode, you need to make several adjustments to the
existing Scribble code. These changes are described in the procedure "To compensate
for the reversal of the y-axis." For an explanation of the modifications, see
"Compensating for the Reversal of the Y-Axis."

Serializing Scribble's New Stroke Information
All of these code changes, including the change to the mapping mode, invalidate
previous Scribble file formats. For example, the x and y coordinates of earlier
Scribble drawings were based on pixel locations; now they are interpreted according
to 1I100ths of an inch. Also, because of the metric mapping mode, the sign of the y
coordinate reverses, and what used to be a positive value is now negative. To
compensate for this reversal, you'll also modify the m_ r e c t B 0 u n din 9 variable,
which is a member of CStroke, the class that stores Scribble's stroke data.

What does this mean? If the new version of Scribble tries to read in stroke data from
an older version of Scribble, it will still try to draw the stroke, but the old stroke data
might map to an area, for example, outside the current window.

Recall that, when you defined a hint for Scribble, you modified the way Scribble
stored strokes by adding the member variable, m_rectBoundi ng. In that tutorial
step, you incremented the schema number of the IMPLEMENT_SERIAL macro to
distinguish between stroke data from different versions of Scribble. Because of the
code changes you'll make in following sections, you need to increment this schema
number again.

Note After marking the version of Scribble data in this way, you'll receive an error message
"Unrecognized file format" if you try to load drawings from previous versions of Scribble.
Naturally, this is preferable to opening a drawing and seeing nothing on the screen.

137

Tutorials

138

~ To increment Scribble's serialization

• Open ScribbleDoc.cpp, search for the IMPLEMENT_SERIAL macro, and
change the schema number parameter to.3.

IMPLEMENT_SERIAL(CStroke, CObject, 3)

The next topic describes how to specify MM_LOENGLISH as the new mapping
mode.

Specify the Mapping Mode
You specify the mapping mode in Scribble when you call the SetScrollSizes member
function defined by CScrollView. Recall from Chapter 9, that this function sets the
view's scrolling limits. SetScrollSizes is called from the On I nit i a 1 Upda te
member function of CScri bbl eVi ew.

~ To specify the mapping mode

1 Use ClassView or WizardBar to jump to the On I ni t i a 1 Update function in class
CScri bbl eVi ew.

2 Replace MM_TEXT with MM_LOENGLISH as illustrated below.

SetScrollSizes(MM_LOENGLISH, GetDocument()->GetDocSize()):

Recall that a n I nit i a 1 Up d ate is called immediately after the view is attached to
the document. This lets the view set its mapping mode before anD raw is called.

Compensating for the Reversal of the V-Axis
Even though MM_LOENGLISH mapping has changed the direction of the y-axis
for drawing, most of the current Scribble code doesn't require any modifications.
This is because the DPtoLP function performs the conversion for you. (DPtoLP is
called by the mouse event handler functions: OnLButtonDown, OnMouseMove, and
OnLButtonUp.)

Consider this: when a point is received with a mouse message, its coordinates are
converted by the DPtoLP function before being stored in a CStroke object. This
means its y-coordinates are converted from a positive number of pixels to a negative
number of inches (1 pixel = .01 inch). Those coordinates are then passed to the
LineTo drawing function, and then it's up to the device driver for the screen to
determine how many pixels are equivalent to the value that was passed in inches. You
never have to directly examine the value of the coordinates.

However, there are some places where the reversal of the y-axis does have an impact.
The mapping mode used by GDI is a characteristic of a device context; functions that
don't use a device context are unaffected by the mapping mode. The member
functions of the CRect class don't use the mapping mode; consequently, you must
make some adjustments wherever Scribble uses CRect functions.

Chapter 10 Enhancing Printing

~ To compensate for the reversal of the y-axis

1 From Class View, jump to the Fin ish S t r 0 k e member function definition of class
CStroke.

2 Modify the code, as shown below, by reversing the min and max functions for the
top and bottom of the bounding rectangle, and adding a cast to the y-axis
m_nPenWi dth parameter. These modifications take into account the negative sign
of the y coordinates.

Note that the lines of code shown already exist-you are just modifying them
slightly, as described.

void CStroke::FinishStroke()
{

II

1/

m_rectBounding.top
m_rectBounding.bottom

- max(m_rectBounding.top, pt.y):
- min(m_rectBounding.bottom, pt.y):

m_rectBounding.InflateRect
(CSize(m_nPenWidth,-(int)m_nPenWidth»:

return:

You must also make a correction when using the invalid rectangle. Recall that the
On D raw member function checks whether the invalid rectangle intersects the
bounding rectangle for each stroke. The IntersectRect member function of CRect
assumes that the bottom of a rectangle must have a larger y-coordinate than that of
the top; it cannot find. the intersection of two rectangles whose bottoms have
smaller y-coordinates than their tops.

3 Use ClassView to jump to the OnDraw member function of CScri bb 1 eVi ew. and
add the following lines of code after the line pDC -)GetCl i pBox (&rectCl i p):

pDC-)LPtoDP(&rectClip):
rectClip.InflateRect(1, 1): II avoid rounding to nothing

4 Add the following lines of code after the line rectStroke = pStroke
)GetBoundingRect():

pDC-)LPtoDP(&rectStroke):
rectStroke.InflateRect(1, 1):

Both the invalidated rectangle and the bounding rectangle are converted to device
coordinates (changing the signs of the coordinates to positive) before being tested
for intersection. They are also inflated by one pixel in case they were rounded to
nothing during the conversion.

139

Tutorials

Paginate Scribble Documents

140

If Scribble allowed you to produce arbitrarily large drawings, it would make sense for
the program to break up a drawing into pages by dividing it into a grid of m by n
rectangles, the values of m and n being determined by the size of the drawing.
However, Scribble supports drawings of only one size, and each one fits on a single
page. To illustrate pagination, Step 5 of Scribble prints each drawing as a two-page
document: a title page, and the drawing itself.

Adding Pagination
To add pagination, you'll:

• Modify the OnPreparePrinting member function

• Override the default OnPrint member function

• Add two new helper functions: Pri ntTi tl ePage, which prints the title page,
and P r i n t P age H e a d e r, which prints a header on the drawing page.

~ To modify OnPreparePrinting

• Use ClassView orWizardBar to jump to the OnPreparePri nti ng function
definition of class esc rib b 1 e View, and add the following code (replace the
existing comment and return code):

plnfo->SetMaxPage(2); II the document is two pages long:
II the first page is the title page
II the second page is the drawing

This function specifies the length of the document by calling SetMaxPage for the
pInfo parameter. Since all Scribble documents are two pages long, the function
uses a numeric constant rather than a variable to represent the number of the last
page of the document. The title page and the drawing page are numbered 1 and 2,
respectively. Later, you'll add a Scribble-specific version of the call to
DoPreparePrinting that AppWizard generated (which you just replaced), when
you enhance Scribble's Print Preview. This function displays the Print dialog box
and creates a device context for the printer.

You've used WizardBar before to override base class functions. The following
procedure assumes you have file Scribble View.cpp open in the editor.

~ To override OnPrint

1 In the WizardBar Messages list, choose OnPrint.

2 When prompted, respond Yes to create a handler.

Chapter 10 Enhancing Printing

3 Replace the highlighted comment and code generated by WizardBar with the
following:

the

if (plnfo->m_nCurPage -- 1) II page no. 1 is the title page
{

else
{

PrintTitlePage(pDC. plnfo);

CString strHeader - GetDocument()->GetTitle();

PrintPageHeader(pDC. plnfo. strHeader);
II PrintPageHeader() subtracts out from the plnfo->m_rectDraw

II amount of the page used for the header.
pDC->SetWindowOrg(plnfo->m_rectDraw.left.-plnfo

>m_rectDraw.top);

II Now print the rest of the page
OnDraw(pDC);

return;

The behavior of the 0 n P r; n t member function depends on which of the two pages is
being printed. If the title page is being printed, 0 n P r; n t simply calls the
Pr; ntT; tl ePage function and then returns. If it's the drawing page, OnPr; nt calls
Pri ntPageHeader to print the header and then calls OnDraw to do the actual
drawing. Before calling OnDraw, OnPri nt sets the window origin at the upper-left
comer of the rectangle defined by m_rectDraw; this rectangle was reduced by
P r i n t P age H e ad e r to account for the size of the header. This keeps the drawing
from overlapping the header.

Notice that the drawing itself isn't divided into multiple pages. Consequently,
On 0 raw never has to display just a portion of the drawing (for example, it never has
to display the section that fits on a particular page without displaying the surrounding
sections). Either the title page is being printed and OnDraw isn't called at all, or else
the drawing page is being printed and 0 nOr a w displays the entire drawing at once.

This also explains why CScri bbl eVi ew doesn't override the OnPrepareDC
member function: there's no need to adjust the viewport origin or clipping region
depending on which page is being printed.

Adding the Helper Functions
The next step is to add the new helper functions. By using the Add Function pop-up
menu command, you can declare and define them in one step.

As mentioned, the P r i n t Tit 1 ePa 9 e function prints a title page, and
P r i n t P age H e a d e r prints a header on the drawing page.

141

Tutorials

142

~ To add the PrintTitiePage helper function

1 In the Class View, point to esc r; b b 1 e V; ew and click the right mouse button.

2 From the pop-up menu, choose the Add Function command.

3 In the Function Type edit box, type the return type of the function (in this case,
vo; d).

4 In the Function Declaration edit box, type the following:

PrintTitlePage(CDC* pDC. CPrintlnfo* plnfo)

5 In the Access area, select Public, and choose OK.

Class Wizard adds the declaration to the Public section of the header file, creates a
skeleton definition in the implementation file, and jumps you to the body of the
definition so you can begin typing your application-specific code.

6 Implement P r; n t T; t 1 ePa 9 e with the following code:

II Prepare a font size for displaying the file name
LOGFONT logFont;
memset(&logFont. 0. sizeof(LOGFONT»;
logFont.lfHeight - 75; II 3/4th inch high in MM_LOENGLISH
CFont font;
CFont* pOldFont = NULL;
if (font.CreateFontlndirect(&logFont»

pOldFont - pDC->SelectObject(&font);

II Get the file name. to be displayed on title page
CString strPageTitle - GetDocument()->GetTitle();

II Display the file name 1 inch below top of the page.
II centered horizontally
pDC->SetTextAlign(TA_CENTER);
pDC->TextOut(plnfo->m_rectDraw.right/2. -100. strPageTitle);

if (pOldFont 1- NULL)
pDC->SelectObject(pOldFont);

The Pr; ntT; tl ePage function uses m_rectDraw, which stores the usable
drawing area of the page, as the rectangle in which t~e title should be centered.

Notice that Pr; ntT; tl ePage declares a local CFont object to use when printing
the title page. If you needed the font for the entire printing process, you could
declare a CFont member variable in your view class, create the font in the
OnBeginPrinting, and destroy it in EndPrinting. However, since Scribble uses
the font for just the title page, the font doesn't have to exist beyond the
P r; n t T; t 1 ePa 9 e function. When the function ends, the destructor is
automatically called for the local CFont object.

Chapter 10 Enhancing Printing

~ To add the PrintPageHeader helper function

1 From the ClassView pop-up menu, choose the Add Function command. (As in the
previous procedure, your mouse cursor should be pointing at class
CScr; bbl eV; ew when you invoke the pop-up menu.)

The Add Function dialog box appears.

2 In the Function Type edit box, type the return type of the function (in this case,
vo; d).

3 In the Function Declaration edit box, type the following:

PrintPageHeader(CDC* pDC, CPrintlnfo* plnfo,
CString& strHeader)

4 In the Access area, select Public, and choose OK.

S Add the following code to the function body:

II Specify left text alignment
pDC->SetTextAlign(TA_LEFT):

II Print a page header consisting of the name of
II the document and a horizontal line
pDC->TextOut(0,-25, strHeader): II 1/4 inch down

II Draw a line across the page, below the header
TEXTMETRIC textMetric:
pDC->GetTextMetrics(&textMetric);
int y - -35 - textMetric.tmHeight: II line 1/10th in.

II below text
pDC->MoveTo(0, y): II from left margin
pDC->LineTo(plnfo->m_rectDraw.right, y): II to right margin

II Subtract from the drawing rectangle the space used by header.
y -=- 25: II space 114 inch below (top of) line
plnfo->m_rectDraw.top += y:

The P r; n t P age He a d e r member function prints the name of the document at the
top of the page, and then draws a horizontal line separating the header from the
drawing.·It adjusts the ID_rectDraw member of the plnfo parameter to account for
the height of the header; recall that 0 n P r; n t uses this value to adjust the window
origin before it calls 0 n D raw.

Enhance Scribble's Print Preview
The default print preview capabilities are almost sufficient for Scribble's needs. To
some extent, Scribble's print preview has already been enhanced when the printing
capabilities were enhanced. Recall that in the override of On P repa reP r; nt; ng you
called the SetMaxPages function to specify the length of Scribble documents. This
allows the framework to add a scroll bar to the preview window.

143

Tutorials

Another enhancement you can make is to change the number of pages displayed
when preview mode is invoked.

For more information on the framework's print preview architecture, see the article
"Printing" in Programming with MFC.

~ To set the number of pages displayed in preview mode

• Use ClassView or WizardBar to jump to the On Prepa rePri nt i ng member
function in Scribble View.cpp. Then add the following code to the end of the
function:

BOOl bRet - DoPreparePrinting (pInfo); II default preparation
pInfo->m_nNumPreviewPages ~ 2; IIPreview 2 pages at a time
II Set this value after calling DoPreparePrinting to override
II value read from .INI file
return bRet;

The lines added here assign the value 2 to m_nNumPreviewPages. This causes
Scribble to preview both pages of the document at once: the title page (page 1) and
the drawing page (page 2). Note the value for m_nNumPreviewPages must be
assigned after calling DoPreparePrinting, because DoPreparePrinting sets
m_nNumPreviewPages to the number of preview pages used the last time the
program was executed; this value is stored in the application's .INI file.

Compile Scribble - Step 5 Version

144

What does Scribble's printing look like now? Build the new version of Scribble and
find out.

~ To build Scribble

• From the Build menu, choose Build Scribble.exe.

Run the new version of Scribble. Draw some strokes, and then choose the Print
Preview from the File menu. Switch back and forth between one-page and two-page
display mode, or move to the previous or next page. Figure 10.1 shows this version of
Scribble.

Chapter 10 Enhancing Printing

Figure 10.1 Scribble Version 5

Scribb1

, ,

1.1

Exit Scribble.

This completes Step 5 of the Scribble tutorial. For a deeper understanding of the
printing architecture provided by MFC, see the article "Printing" in Programming
withMFC.

In the next chapter, you'll add context-sensitive help to Scribble.

145

CHAPTER 11

Adding Context-Sensitive Help

So far, thanks to the Microsoft Foundation Class Library (MFC), Scribble implements
a number of common user-interface features, such as print preview and splitter
windows. This chapter adds another such feature to Scribble: context-sensitive
Windows Help.

Scribble already offers the user some help in the form of prompt strings and tool tips.
When the user navigates through a menu by using the UP ARROW and DOWN ARROW

keys, or uses the mouse to point to a toolbar button, Scribble displays a brief
description of the command's purpose in the status bar (if the status bar is visible);
and if the user holds the mouse cursor over a toolbar button, a small pop-up window
(called a "tool tip") appears with a brief description of the button.

Since prompts are attached to command IDs, Scribble's toolbar buttons, which
duplicate commands on the menus, automatically invoke the appropriate prompts. To
get more information on adding tool tips to your application, see the article
"Toolbars: Tool Tips" in Programming with MFC.

The framework supplies this level of information for commands predefined by the
class library. And, as you did in Chapter 6, in "Add the Clear All Command to
Scribble's Edit Menu," you can add prompt strings and tool tips to the menu items
you create by filling in a field in the menu's property page.

The level of help described in this chapter, however, goes much further. By the end of
this chapter, which covers Step 6 of Scribble, Scribble provides access to Windows
Help from the Help menu, and to context-sensitive Help by pressing the FI key or
SHIFf +FI. When the user chooses the Help menu item, the Help file for Scribble
opens, displaying the Help contents screen. Context-sensitive help invokes a Help
topic specific to the area of the user interface with focus when FI or SHIFf +FI is
pressed.

147

Tutorials

148

What This Chapter Covers
This chapter explains how to implement:

• FI help

• SHIff +FI help mode

• Help menu support

The next section, "What Does Context-Sensitive Help Consist of? ," describes the
three kinds of help listed here.

AppWizard provides this level of help support for free when you choose the Context
Sensitive Help option when initially creating your application starter files. For a
quick preview of the results, follow the instructions described in See "Context
Sensitive Help in Action."

Similarly to Chapter 9, "Enhancing Views," this chapter shows how to add
functionality supported by AppWizard to your application, if you didn't originally
choose it in AppWizard. In "Adding Help to Scribble After the Fact," you'll learn
how to add Help support to Scribble, since you didn't select the help option in
App Wizard when you originally created your Scribble starter files. This will
demonstrate in detail all the work App Wizard does for you to provide a robust Help
system for your application.

For an overview of the framework's help support, see Chapter 4, "Working with
Dialog Boxes, Controls, and Control Bars" in Programming with MFC.

Completing Scribble Step 6
This chapter covers Step 6 of Scribble. If you are working along, begin with the files
in your Scribble project directory.

After following the steps descibed in this chapter, your files should closely resemble
the files in the SCRIBBLE\STEP6 subdirectory.

If, on the other hand, you want to read along without adding code, refer to the files in
the SCRIBBLE\STEP6 subdirectory.

Note If you have not made a local copy of the sample source code for this tutorial step and
you wish to do so, see "Installing the Sample Files."

You can also easily preview a running version of Scribble as it appears at the
completion of this tutorial step. For more information, see "Previewing the Sample
Applications."

Chapter II Adding Context-Sensitive Help

What Does Context-Sensitive Help
Consist of?

This section provides more detail about the different levels of application help
supported by the framework .

• FI help

This level of help support enables the user to press the FI key from an active
window, dialog box, or message box, or with a menu item or toolbar button
selected, to invoke a Help topic relevant to the selected item.

For menu items, the user can use the arrow keys to highlight a particular menu
item, and then press Fl. For toolbar buttons, the user can use the mouse to hold
down the button and press FI before letting the button up.

If no user interface object is selected, or if no specific Help topic exists, pressing
FI invokes the main Contents topic for the application Help file.

Note You can define a key other than F1 for help, but it is common among applications for
Windows to use F1.

• SHIff +FI help mode

This level of help support enables the user, from within an active application, to
press SHIFf+Fl to put the application into "help mode."

While the application is in help mode, the cursor changes to an arrow beside a
question mark. So long as help mode is active, the user can click any window,
dialog box, message box, menu item, or toolbar button to summon help specific to
the item. This invokes the application's Help file, and ends help mode. Pressing
ESC or switching away from the application and back also ends help mode.

Note When you choose the context-sensitive Help option from AppWizard, the toolbar
resource that AppWizard creates includes an additional button that the user can use to
invoke help mode. The graphic on the button resembles the mouse cursor as it appears in
help mode.

In addition to context-sensitive Help, most applications provide help support through
one or more menu items. For instance, most Windows applications include a Help
menu item that invokes the application's Help file when chosen. Additional items on
the Help menu might, for example, display a Search dialog.

AppWizard Help Support
You can use AppWizard to generate a starter application with all the application help
support described here, and more. The following section," Implementing Context
Sensitive Help with App Wizard," describes how to create this starter application. The
section "Help Support App Wizard Provides" describes the code and files App Wizard
generates when you do so.

149

Tutorials

Implementing Context-Sensitive Help with
AppWizard

150

You can use AppWizard to automatically enable the framework's support for context
sensitive Help and the Help menu. The following sections explain how to select this
option in AppWizard, and what AppWizard creates as a result.

You'll see how to add help support to Scribble later in this chapter, in "Adding Help
to Scribble After the Fact."

Note The following procedure is the first step to implementing help support in Scribble.

The Context-Sensitive Help Option
This procedure describes how to select the Context-Sensitive Help option when you
create a new application with App Wizard.

~ To generate AppWizard application help support

1 From the File menu, choose New.

2 In the New dialog, select Project Workspace.

The New Project Workspace dialog box appears.

3 In the Name box, specify a project name.

If you are performing this step as the first part of implementing help support in
Scribble, give this project a name of HelpApp. We'll refer to this project name
throughout the steps in "Adding Help to Scribble After the Fact."

4 Use the Location box to specify the directory where you want to build this sample
application.

5 Click Create

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

6 Choose the Next button to accept the default options in the AppWizard Step 1,2
and 3 diaiog boxes.

7 In the Step 4 dialog box, select the Context Sensitive Help option, and then click
Finish.

The New Project Information dialog box appears.

8 Click OK to create your application.

Chapter 11 Adding Context-Sensitive Help

You can freely use the Help files that AppWizard creates in your applications and
freely ship the compiled help.

Note By default, AppWizard generates the Help Project file in Windows 3.1· format. You can '
easily upgrade to the Windows 4.0 Help format. For more information, see "Upgrading Your
Help Project File to Windows 95," later in this chapter.

Help Support Provided by App Wizard
In addition to the other features App Wizard provides in the skeleton application files,
AppWizard adds the following items to support context~sensitive Help:

• Message-map entries in your derived frame-window class (CMai nFrame)for
handler functions to handle Help menu items and FI and SHIFT +FI help. These
handlers are predefined by the framework.

To view the message map entries, look in the message map of file MainFrm.cpp,
under the \\global help commands section. .

• A new Help Topics item in the menu definitions, including a status bar prompt.

To view the menu item, open the project resource file and view the project-specific
menu resource (for example, I D R_H E L P A PlY P E); to view the status bar prompt·
string, choose Properties from the Edit menu, and examine the Prompt edit box in
the Menu Item Properties page.

• A Windows Help Project file with an .HPJ extension, named for your'project.

This is located in the project \HLP directory. You edit this file to reflect the
changes you make to your application Help system.

Note Help Project files and Windows Help tools are explained in Programming Tools for
the Microsoft Windows Operating System.

• One or more RTF-format files (.RTF extension) containing help contexts, and·
boilerplat~ text.

These files are located in the project \HLP directory. You can add application
specific help contexts and text to. these files to customize your application Help
system, and add new topics or delete unused topics. For more information, see the
article "Help: Authoring Help Topics" in Programming with MFC.

You can fine-tune your application help further by overriding portions of the class
library to support more specific help contexts, such as individual controls in a
dialog box. For more information about fine-tuning context-sensitive Help, see
Technical Note 28 under MFC Technical Notes in Books Online.

• Several bitmap (.BMP) files used to display graphics in the Help system.

These are located in the project \HLP directory. .

• A .CNT file which contains the information needed to create the help Contents
screen.

151

Tutorials

• A batch file called MAKEHELP.BAT that you can use to compile your Help
Project files.

This file is located in the root project directory.

Note When you first build the skeleton AppWizard application with context-sensitive Help
support, Visual C++ compiles the Help files for you, so that you can immediately take
advantage of this feature. Once you customize the Help files, you must recompile them to
incorporate your changes into the application project. For more information, see "Compiling
Your Help Files."

The next section, See "Context-Sensitive Help in Action," makes a few suggestions
for ways you might explore the free application help support that AppWizard
implements for you.

See Context-Sensitive Help in Action

152

Once you've created an AppWizard application with the Context-Sensitive Help
option, it's easy to try out the help support provided by the framework and
AppWizard.

~ To try out the help support

• Build the HelpApp application you created in the procedure "To generate
AppWizard application help support."

The first time you build this application, Visual C++ automatically compiles the
AppWizard-generated Help Project files as part of the project build process. You
don't need to compile them separately until you begin modifying them.

Once the project has been built, you can run the application and try out the various
help options. Here are some suggestions for what to try:

• Choose Help Topics from the Help menu.

This invokes the application Help file generated for you by App Wizard, displaying
the Contents tab of the Help Topics dialog. The Contents tab already contains two
top-level topics: Menus, which expands to display the menu topics AppWizard
generated for the application; and a place-holder topic where you can add your
own application-specific topics.

• Expand the top-level Menus topic.

You'll see all the topics AppWizard provided for you. They describe the standard
menus that the framework provides. Continue choosing topics for a particular
menu, such as the File menu, until you see a topic for a specific menu item or
dialog, such as the Print Preview command or the Print Setup dialog box. You'll
see that the Help file is already quite robust.

Chapter 11 Adding Context-Sensitive Help

• Click the Index button.

Select an index entry, and then choose Display. Again you'll see that the skeleton
Help file already contains much relevant information, implemented in a useful
help structure.

• Click the Contents button and then select the Find tab.

Follow the simple instructions for the Find Setup Wizard, which sets up the full
text search capabilities of the Windows help engine. Once finished, your simple
Help system suddenly becomes more sophisticated -- the user can type in words or
phrases, and if there is a match in any of the AppWizard-generated Help topics,
that topic appears in the topic list. Choose Display to see the topic.

When you add new files to your Help system, recompile, and run the Find Setup
Wizard again, the Windows Help engine recreates this full-text search index,
incorporating the text in your new topics seamlessly.

• Click the help-mode button on the HelpApp toolbar, which appears as an arrow
beside a question mark.

To get help for a menu item, drop down a menu and click a menu item with the
mouse. Click the help-mode button again and then click another toolbar button.
Finally, enter help mode again by pressing the SHIFf+FI keys; then click the
toolbar itself, or a window's title bar, or some other element of HelpApp's user
interface.

• Drop down a menu and select a menu item by using the DOWN ARROW key. Then
press the FI key to get help for the selected item.

• Press and hold down a toolbar button, and press FI before releasing the toolbar
button.

Thanks to AppWizard and the framework, you-and your users-get all of this help
essentially for free.

Compiling Your Help Files
App Wizard provides you with a robust help package: .RTF files that already
document the standard (AppWizard-generated) menus, a help project (.HPJ) file, a
Help contents topic (.CNT) file, and the other resources needed to generate an
application with a fully functional online Help system.

You'll undoubtedly want to take the files that AppWizard provides and customize
them to your particular application, even as you develop the application. When you
compile and build your developing application, you also need to recompile your
project Help files so that they continue to renect your customizations.

Note The article Help: Authoring Help Topics in Programming with MFC explains how to
author the Help topics using a program that can edit .RTF files, such as Microsoft Word for
Windows.

153

Tutorials

154

There are two ways you can compile the Help files you create for your Visual C++
applications:

• Compile the help project (.HPJ) file from within the Microsoft Developer Studio.

This calls MAKEHELP.BAT, a batch file which builds the Help system.

• Run the MAKEHELP.BAT file from the command line.

MAKEHELP.BAT is generated by App Wizard each time you create the starter files
for an application that contains AppWizard-provided context-sensitive Help
support.

Note By default AppWizard generates the Help Project files in Windows 3.1 format. When you
use the VC++ tools to compile your Help project, the result is a system compatible with either
Windows 3.1 or 4.0. If porting your applications to other environments is not an issue, you can
also easily convert your Help project to the 4.0 format. For more information, see "Upgrading
Your Help Project File to Windows 95," later in this chapter.

Compiling Your Help Files from within Microsoft Developer
Studio
For this option to work, the executable files called by MAKEHELP.BAT must be in a
directory listed in the Directories tab of the Options dialog. (Choose Options from the
Tools menu.) By default, these files are installed to the \BIN directory of your Visual
C++ installation, and included in the Options dialog, so unless you modify either of
these conditions your Help compilation will be a completely transparent part of
building your project files.

For more infomation about directory settings, see "Setting Directories" in Chapter 23
of the Visual c++ User's Guide.

~ To compile your Help files from within Microsoft Developer Studio

1 From the Build pane of the Project workspace, select your help project (.HPJ) file.
(You needn't open the file; but it must remain selected while you perform the
next step.)

2 From the Build menu, choose Compile.

This calls MAKEHELP.BAT, which in turn calls the following two programs:

• MAKEHM.EXE,. a program that incorporates your context-sensitive topic IDs

• The Windows Help Compiler, which builds your .HLP file.

Compiling Your Help Files from the Command Line
In order to compile your application Help from the command line, the Windows Help
Compiler and MAKEHM.EXE must be in your path statement. To ensure that this is
the case (and to set other relevant environment variables for a specific build target)
you may want to run the VCVARS32 batch file. In general, it's a good idea to run

Chapter 11 Adding Context-Sensitive Help

VCVARS32 prior to running build tools such as MAKEHELP from the command
line.

~ To run VCVARS32.BAT

• At the command line, type:

VCVARS32 [target]

where target is one of the following: x86, m68k, mppc.

~ To compile your Help files from the command line

1 At the command line, change to the root directory of your help project.

App Wizard copies MAKEHELP.BAT to this directory by default.

2 Type MAKEHELP and press ENTER.

The Windows Help compiler generates your application help (.HLP) file.

Upgrading Your Help Project File
to Windows 95

Because Visual C++ version 4.0 ships with the Windows 4.0 Help compiler, you can
easily upgrade your Help Project files to a 4.0 format. This gives you access to the
Windows 4.0 Help Workshop, a graphical Help authoring environment with many
useful features.

Note If you're planning on porting your applications to other platforms, first ensure that those
platforms have a compiler that's compatible with the 4.0 Help Project file before upgrading.

~ To upgrade your project file

1 Start the Help Workshop by running HCW.EXE.

This file is installed to the \BIN directory of a default product installation.

2 In Help Workshop, open your HPJ file.\

You'll notice that Help Workshop automatically adds entries to the file, such as the
LCID (language) entry in the [OPTIONS] section.

3 Use Help Workshop to make any modifications, and then save your file.

Help Workshop saves your file in the 4.0 format.

For more information about Help Workshop, see the online Help file included with
the product. This file, HCW.HLP, is installed to the \HELP directory of a default
Visual C++ installation. You can open this file directly, by double-clicking it, or view
it by opening Help Workshop and then choosing Help.

155

Tutorials

Adding Help to Scribble After the Fact
This section explains how to add context-sensitive Help to an application when you
did not originally choose it as an AppWizard option.

Merging context-sensitive Help support into Scribble at a later stage requires several
general steps. Each step is explained in more detail in following sections. The overall
steps are:

1. Run AppWizard and choose the context-sensitive Help option to create a new
application that has the help-related files and code.

See the procedure "To generate AppWizard application help support." You'll use
this skeleton application to copy code and resources into Scribble.

2. Copy resources from this application to Scribble.

See the section "Copying Help-Specific Resources to Scribble."

3. Copy help-related files and code from the application to Scribble.

See the section "Copying the Help-Related Code and Files to Scribble."

4. Customize the contents of the files you copied from HELPAPP.

See the section "Customizing the Help Files and Code for Scribble."

5. Build the new version of Scribble and compile its Help file.

See Complete Scribble's Help Implementation.

Copying Help-Specific Resources to Scribble

156

In the following procedures, you'll copy menu items, accelerator keys, and status-bar
prompt strings from HelpApp, (the project you created with AppWizard help
support), to Scribble. As you do this, you'll not only learn about adding help to an
application after the fact, you'll also learn how easy it is to copy resources from one
resource file in Visual C++ to another. Finally, you'll add a toolbar button to
Scribble's toolbar resource, just as you did in Chapter 6, "Constructing the User
Interface. "

Note If you have not already created HelpApp, refer to the procedure "To generate AppWizard
application help support." This is the first step in implementing help support in Scribble.

In the following procedures, you'll use the menu editor, the accelerator editor, the
string editor, and the Toolbar editor, respectively. For more information about these
resource editors, see Chapters 7, 8,9 and 11 of the Visual C++ User's Guide.

Chapter 11 Adding Context-Sensitive Help

Copying the Help Menu Resources
First, copy Help-related menu resources from HelpApp to Scribble.

~ To copy Help menu resources to Scribble

1 Open SCRIBBLE.RC, and HELPAPP.RC.

2 Open the IDR_MAINFRAME menus from both resource files.

Arrange the menu editor windows so that they don't overlap.

3 Drop down both Help menus.

4 Click the Help Topics menu item in the HelpApp Help menu. Then hold down the
SHIff key while you click on the separator below the Help Topics item. Release the
SHIff key.

This selects the menu item and separator.

S Hold down the CTRL key, and use the mouse to drag the highlighted menu items to
the Help menu in SCRIBBLE.RC, above the About Scribble menu item. Release
the mouse button and the CTRL key.

This copies the menu item and the separator to Scribble.

6 Close the two IDR_MAINFRAME menu editing windows.

7 Repeat steps 3 through 6, using the application-specific menu resources in
Scribble and HelpApp: I DR_SCRI BBTY PE and I DR_HELPAPTYPE, respectively.

Copying the Help Accelerator Resources
Next, copy the accelerator resources for the menu items.

~ To copy the accelerator keys for Help resources

1 Open the Accelerator table resource, IDR_MAINFRAME, from both Scribble
and HelpApp, again resizing the Accelerator editor windows so that they do not
overlap.

2 Select the ID _HELP command from the HelpApp Accelerator table.

3 Hold down the CTRL key while you drag this entry to the Scribble Accelerator
editor window.

It doesn't matter where in the window you drop the entry. This copies the
accelerator keys (FI and SHIff +Fl) for the Help menu item to Scribble.

4 Repeat this procedure for the ID_CONTEXT_HELP command.

This maps to the help mode toolbar button, described below in Copying the Help
Mode Toolbar Button.

S Close both Accelerator editor windows.

157

Tutorials

158

Copying the Help-Related String Resources
In this procedure you copy the command IDs for Help-related menu items.

~ To edit Help-related string resources

1 Open the String Table resource for both Scribble and HelpApp, resizing both
editor windows so they do not overlap.

2 Locate the AFX_IDS_IDLEMESSAGE string in both tables, noting the
difference in the captions.

For an application without help, AppWizard defines the default status-bar prompt
to be "Ready". This is the string displayed in the status bar when no other
command prompt is being displayed. This string resource is identified as
AFX_IDS_IDLEMESSAGE.

3 Select AFX_IDS_IDLEMESSAGE in Scribble's string table, and choose
Properties from the Edit menu to open the String Properties window.

4 Edit the Caption so that it matches that in the HelpApp version of this string
resource: For Help, press Fl.

S Next, copy the following strings from the HelpApp String Table to Scribble's
String Table: AFX_IDS_HELPMODEMESSAGE, ID_CONTEXT_HELP, and
ID_HELP.

The copying procedure is similar to the procedures for copying menus and
accelerators. To copy several contiguous strings, hold the SHIFT key down while
selecting the strings. Then hold the CTRL key down while dragging the selected
strings to the new window.

The AFX_IDS_HELPMODEMESSAGE prompt displays in the status bar while
the application is in help mode. The ID_CONTEXT_HELP prompt displays
when the mouse pauses over the help mode toolbar button.

Notice that Scribble's string table already contains the ID_HELP _FINDER
string, representing the prompt that displays for the Help Topics command on the
Help menu. This was copied when you copied the Help Topic menu item.

The ID _HELP command is called when the user presses Fl.

6 Close the String Table resources.

Copying the Help Mode Toolbar Button
When you generate context-sensitive Help from AppWizard, AppWizard creates a
button on the toolbar which, when chosen, places the application in Help mode, just
as pressing SHIFT +FI does.

In this procedure you'll copy the Help mode button to Scribble's toolbar resource
from HelpApp's toolbar resource, simply by dragging it. .

Chapter 11 Adding Context-Sensitive Help

~ To copy the help-mode toolbar button

1 Open Scribble's toolbar resource, and HelpApp's toolbar resource, resizing both
editor windows so they do not overlap. and so you can see both subject toolbars.

2 Press CTRL and drag the Help mode button from HelpApp's toolbar onto Scribble's
toolbar.

3 Save the Scribble resource file, Scribble.rc, and close the HelpApp resource file,
Helpapp.rc.

Copying the Help-Related Code and Files to Scribble
App Wizard generates not only help-specific code, but files that are used to build the
application's Help system. In the following procedures, you'll copy those files, and
the Help-related code from HelpApp into the Scribble project.

Copying the Help Message Map Commands
AppWizard places Help-specific code into the message map in the frame window
class implementation file, MainFrm.cpp.

~ To copy help-related code to Scribble

1 Open the HelpApp project MainFrm.cpp file, and your Scribble project version of
MainFrm.cpp.

2 Scroll to the Help-related code, delineated by the / / gl oba 1 he 1 p comma nds
comment, in the message map section of the HelpApp MainFrm.cpp file.

3 Copy this code, shown below, from the HelpApp MainFrm.cpp file, and paste into.
the same position in the message map in Scribble's MainFrm.cpp.

II Global help commands
ON~COMMAND(ID_HELP_FINDER, CMDIFrameWnd::OnHelpFinder)
ON_COMMAND(ID_HELP, CMDIFrameWnd::OnHelp)
ON_COMMAND(ID_CONTEXT_HELP, CMDIFrameWnd::OnContextHelp)
ON_COMMAND(ID_DEFAULT_HELP, CMDIFrameWnd::OnHelpFinder)

You've already seen how ID_HELP _FINDER and ID_CONTEXT_HELP are
called. When the user presses FI, the framework calls ID_HELP and directly
handles this command so long as the application contains help support.

4 Close the HelpApp project's MainFrm.cpp file, and save the changes to Scribble's
MainFrm.cpp.

Copying the Help-Related Files to Scribble
To perform the following procedure, use File Manager or another file management
utility.

159

Tutorials

~ To copy help-related files to Scribble

1 Copy the MAKEHELP.BAT file from the HelpApp project (root) directory to your
Scribble project (root) directory.

2 Select and copy the entire HELPAPP\HLP directory to the Scribble project
directory, thereby creating the \HLP subdirectory and all its files under the
Scribble project.

The files contained in the \HLP directory include, among others:

• The Help Project (.HPJ) file, which tells the Help compiler how to build the
Help file.

• A file with the extension .CNT, needed to display the Help Contents screen.

• A file with the extension .HM, created during the process of compiling the Help
file, needed to provide context-sensitive Help for user interface objects. (If you
did not build the HelpApp project, this file won't have been created yet.)

• Several bitmap (.BMP) files used to display graphics in the Help system.

3 In the Scribble project \HLP directory, rename HELPAPP.HPJ to SCRIBBLE.HPJ;
HELPAPP.HM to SCRIBBLE.HM (if this file exists); and HELPAPP.CNT to
SCRIBBLE.CNT.

The bitmap and .RTF files do not need to be renamed.

4 Copy the following file from the Scribble Step 6 source code directory to your
corresponding Scribble directory:

• PEN.RTF (in the \HLP directory)

This file contains the Scribble-specific Help Contents topic, and Help topics for
Scribble's Pen menu.

Note If you have not made a local copy of the sample source code for Scribble Step 6,
see "Installing the Sample Files."

The next section, "Customizing the Help Files and Code for Scribble," describes how
to modify the files you just copied so they work with your Scribble project.

Customizing the Help Files and Code for Scribble

160

Once the Help-specific files are copied and renamed, you need to modify their
contents to refer to the Scribble project instead of to HelpApp. You can perform the
following procedure in the Visual C++ editor window.

~ To customize the Help files for Scribble

1 Use the File Open command to open the Scribble copy of MAKEHELP.BAT, and
change all occurrences of the string "HelpApp" to "Scribble."

2 Save and close MAKEHELP.BAT.

3 Repeat step 1 for the files SCRIBBLE.CNT and SCRIBBLE.HPJ (located in the
\HLP directory).

Chapter 11 Adding Context-Sensitive Help

Keep both files open.

4 In SCRIBBLE.CNT, Add an entry in the menu structure for the Pen menu,
between the Edit and View entdes:

2 Pen menu-menu_pen

5 Save and close SCRIBBLE.CNT.

6 In SCRIBBLE.HPJ, make the following changes:

• Under the [FILES] section, add the line

pen. rtf

This adds the file, PEN.RTF, to your Help project.

• Under the [OPTIONS] section, change "CONTENTS=main_index" to
"CONTENTS=new _index".

Ma i n_ index is the context string for the Help Contents topic that AppWizard
created; replacing it with new_index calls the topic, in PEN.RTF, for
Scribble's Help Contents screen instead.

• Under the [ALIAS] section, change the string "HIDR_MAINFRAME =
main_index" to "HIDR_MAINFRAME = new_index"; and change
"HIDR_HELPAPTYPE" to "HIDR_SCRIBBTYPE".

The next topic, Scribble's Help Project File, shows the edited .HPJ file.

Scribble's Help Project File
Here's how the edited Scribble.hpj should look:

[OPTIONS]
CONTENTS=new_index (or Main_index)
TITLE=Scribble Application Help
COMPRESS=true
WARNING=2
BMROOT= ..•.
ROOT= ..•.

[FILES]
afxcore.rtf
afxprint.rtf
pen. rtf

[ALIAS]
HIDR_MAINFRAME = new_index (or Main_index)
HIDR_SCRIBBTYPE = HIDR_DOCITYPE
HIDD_ABOUTBOX = HID_APP_ABOUT
HID_HT_SIZE = HID_SC_SIZE
HID_HT_HSCROLL = scrollbars
HID_HT_VSCROLL = scrollbars
HID_HT_MINBUTTON HID_SC_MINIMIZE
HID_HT_MAXBUTTON HID_SC_MAXIMIZE

161

Tutorials

AFX_HIDP_INVALID_FILENAME
AFX_HIDP_FAILED_TO_OPEN_DOC
AFX_HIDP_FAILED_TO_SAVE_DOC
AFX_HIDP_ASK_TO_SAVE
AFX_HIDP_FAILED_TO_CREATE_DOC
AFX_HIDP_FILE_TOO_LARGE
AFX_HIDP_FAILED_TO_START_PRINT
AFX_HIDP_FAILED_TO_LAUNCH_HELP
AFX_HIDP_INTERNAL_FAILURE
AFX_HIDP_COMMAND_FAILURE
AFX_HIDP_PARSE_INT
AFX_HIDP_PARSE_REAL
AFX_HIDP_PARSE_INT_RANGE
AFX_HIDP_PARSE_REAL_RANGE
AFX_HIDP_PARSE_STRING_SIZE
AFX_HIDP_FAILED_INVALID_FORMAT
AFX_HIDP_FAILED_INVALID_PATH
AFX_HIDP_FAILED_DISK_FULL
AFX_HIDP_FAILED_ACCESS_READ
AFX_HIDP_FAILED_ACCESS_WRITE
AFX_HIDP_FAILED_IO_ERROR_READ
AFX_HIDP_FAILED_IO_ERROR_WRITE
AFX_HIDP_STATIC_OBJECT
AFX_HIDP_FAILED_TO_CONNECT
AFX_HIDP_SERVER_BUSY
AFX_HIDP_BAD_VERB
AFX_HIDP_FAILED_MEMORY_ALLOC
AFX_HIDP_FAILED_TO_NOTIFY
AFX_HIDP_FAILED_TO_LAUNCH
AFX_HIDP_ASK_TO_UPDATE
AFX_HIDP_FAILED_TO_UPDATE
AFX_HIDP_FAILED_TO_REGISTER
AFX_HIDP_FAILED_TO_AUTO_REGISTER

[MAP]

= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default
= AFX_HIDP_default

#include <D:\MSDEV\MFC\include\afxhelp.hm>
#include <Scribble.hm>

Note If your product installation is in another directory, change the entry in the [MAP] section
accordingly.

The next topic, "Completing Scribble's Help Implementation," describes how to build
the Scribble Help system.

Completing Scribble's Help
Implementation

162

The first time you build an App Wizard-generated project with Help support, Visual
C++ builds your Help project files for you. Thereafter, if you change the Help files,
you must recompile them just as you would any other project file. As described in

Chapter 11 Adding Context-Sensitive Help

"Compiling Your Help Files," there are two ways to do this; you can either run a
batch file from the command prompt, or compile the Help Project file from within
Microsoft Developer Studio.

To compile Scribble's Help Project file from within Microsoft Developer Studio, you
must first perform two steps:

• Add Scribble.hpj to the Scribble project

• Specify Custom Build settings

Both of these steps are optional: you can compile Scribble's Help files from the
command line without any further customizations. (Note that AppWizard performs
these steps for you automatically when you choose the context-sensitive Help option.)

Compiling Scribble's Help from Microsoft Developer
Studio
You can easily prepare Scribble to compile the new Help files from within Microsoft
Developer Studio, by performing the following two procedures.

~ To add Scribble.hpj to the project

1 With your Scribble project open in Microsoft Developer Studio, from the Insert
menu, choose Files to Project.

2 In the Insert Files to Project dialog, navigate to the \HLP directory underneath the
Scribble project root directory, and specify Scribble.hpj.

3 Choose Add.

The file now appears in the File View pane of the workspace.

When AppWizard adds context-sensitive Help support, it implements special build
options for the application's Help Project file. You can duplicate this functionality by
specifying Custom Build settings for Scribble.hpj. Once you complete this step, you
can build Scribble.hpj from within Microsoft Developer Studio.

~ To specify custom build settings

1 From the Build menu, choose Settings.

The Project Settings Dialog opens.

2 In the Settings For area, expand the Scribble project folder and select Scribble.hpj.

You can simultaneously select Scribble.hpj in both the Debug and Release folders
if you want to implement this feature for both project build types.

3 Select the Custom Build tab.

4 In the Build Command(s) edit box, type the following:

$(ProjDir)\makehelp.bat

This calls MAKEHELP.BAT, which in turn compiles the Help files.

163

Tutorials

164

5 In the Output File(s) edit box, type the following:

.\$(OutDir)\$(TargetName).hlp

This specifies Scribble.hlp as the output file.

6 Click OK.

You can now compile Scribble.hlp from Microsoft Developer Studio anytime you
need to update the contents of the Help Project files.

~ To compile Scribble Help from within Microsoft Developer Studio

1 After completing the previous two procedures, in File View, select Scribble.hpj.

2 From the Build menu, choose Compile Scribble.hpj.

You can also simply build Scribble.exe at this point to see Scribble running with full
application Help support.

~ To tryout Scribble's Help

1 From the Help menu, choose Help Topics.

2 In the Contents tab, expand the Menus heading, and double-click the Pen
menu topic.

This is the topic you added to Scribble's Help system by editing the .CNT and
.HPJ files. You'll see the custom Help that has been provided in PEN.RTF.

3 Return to the Scribble application, and press SHIff +FI to enter Help mode, then
click one of the items on Scribble's Pen menu.

Help mode, invoked by pressing SHIFf+FI, is another way for users to access
Scribble application Help topics.

4 Select the Index and Find commands in the Help topics dialog box to see the new
Windows 4.0 application Help interface.

Compiling Scribble Help from the Command Line
To successfully run MAKEHELP.BAT from the command line, two files must be in
your path statement: the Windows Help Compiler (HCW.EXE), and MAKEHM.EXE,
a file which incorporates your context-sensitive topic IDs into the built Help system.
These files are copied to your installation \BIN directory as part of a standard setup.

~ To compile Scribble's Help from the command line

1 From the command line, switch to the Scribble project root directory.

2 Run VCV ARS32.BAT.

This sets up your environment variables.

3 Run MAKEHELP.BAT.

4 In Microsoft Developer Studio, rebuild Scribble.

Chapter 11 Adding Context-Sensitive Help

For more information on how to create a Help file for an MFC application, see the
"Help" articles in Programming with MFC.

This concludes Step 6. Chapter 12 describes Step 7, which adds OLE server support
to Scribble so that the user can embed Scribble objects into OLE container
documents.

165

C HAP T E R 1 2

Creating an OLE Server

An OLE in-place editing server application can create OLE items that can be
embedded or linked into container applications. Some server applications support
only the creation of embedded items, while others support the creation of both
embedded and linked items.

A container application must be able to start a server application when the user
wants to edit an item. If a server application supports linked items, it must also be
able to copy its data to the Clipboard so that a container can use that data to create
OLE items.

An application can be both a container and a server; that is, it can both incorporate
external data into its documents and create data that can be incorporated as items
into the documents of other applications. For more information on OLE containers
and servers, see the article "OLE Overview: Containers and Servers" in
Programming with MFC.

Scribble Step 7 addresses two general cases for adding OLE server support to an
application:

• Creating a new OLE in-place editing server application from scratch

• Adding OLE in-place editing server support to an existing application

The technique described in this chapter illustrates both cases, even though the tutorial
starts with an existing MFC application, Scribble Step 6, to which you will add OLE
server support. For more information on Scribble, see Chapters 2 through 11.

As when adding support for context-sensitive help to Scribble Step 6, you will use
App Wizard to provide a skeleton OLE server application in a scratch directory. Then
you will copy files and code fragments from the scratch directory to the existing
Scribble code base. By doing this, you willleam about the OLE server code that
AppWizard provides. Therefore, even if you are starting a new MFC OLE server
application from scratch, you are advised to read this tutorial, if not actually do
the steps.

167

Tutorials

How does this approach differ from the traditional approach of copying source code
from a sample application? AppWizard allows you to customize the sample code you
will be borrowing. That is, when you create the scratch application, you will name it
"Scribble," give the classes the same names Scribble itself uses, and so on. Thus,
when you copy source code from the AppWizard-created sample application, it will
match the class names of your original application. You can use this approach to add
other App Wizard-supported features to your existing MFC applications "after the
fact."

Previewing Scribble Running as an OLE
Server

168

Before working through the steps of adding OLE server support to Scribble, try out
the completed application. This will help you appreciate how Scribble behaves when
it is activated by an OLE container.

The OLE container application you will use is the completed Container tutorial
project (you'll build it from the source files). Before you can view Scribble (the server
application) files from within Container, you need to register Scribble as an OLE
server application.

~ To install and register Scribble as an OLE server application

• Build and run Scribble.exe from the sample source files for Step 7, or run
Scribble.exe directly from the Books Online.

Running Scribble briefly as a stand-alone application registers it in the system
registry as an OLE server.

Note To install the Sample files, see "Installing the Sample Files." To run an application
from Books Online, see "Previewing the Sample Applications."

~ To preview the Container project as an OLE container application

1 Build and run Container.exe from the sample source files for Step 2, or run
Container.exe directly from the Books Online.

2 From Container's Edit menu, choose Insert New Object.

The Insert Object dialog box appears.

3 In the Object Type list,' select Scribb Document.

This opens a Scribble document inside the Container application. Notice how
Scribble:

• Opens a window inside Container for in-place editing. The window has a
resizeable border so you can change the size of the window while visually
editing the Scribble object.

• Takes over part of Container's menu bar and adds its own Pen menu.

Chapter 12 Creating an OLE Server

• Takes over Container's toolbar.

4 Draw something in Scribble's in-place window.

Notice how drawing in Scribble's in-place window is just like drawing in the
stand-alone Scribble application.

S Click outside the window.

With focus taken away so the Scribble document is no longer selected, the Scribble
object is redrawn inside Container's view with the help of the Scribble server.

The rest of this chapter describes how to make Scribble an OLE server.

Steps to Provide OLE Server Support
After the Fact

When you first used App Wizard to create your Scribble starter files, you could have
chosen the Full Server option to create Scribble as an OLE server application.
However, the purpose of this tutorial step is to show you how to build OLE server
support into your existing MFC application.

You'll complete the following steps:

• Run App Wizard with the full server option.

• Copy new files from the App Wizard full server project to your Scribble project
directory.

• Add AFXOLE.H to your precompiled header file.

• Add OLE-specific server code to the application object.

• Convert the CDocument class to the COleServerDoc class.

In addition, you'll take several steps to:

• Edit OLE-related resources.

• Add application-specific server support.

Using AppWizard's Full Server Option
This step of Scribble is similar to Step 6 ("Adding Context-Sensitive Help") in that
you'll start by running AppWizard with an option that you didn't originally choose.
In this case, the option is OLE Server support. Then you'll copy the files and
resources that AppWizard generates for an OLE Server application to your Scribble
project.

~ To set the AppWizard options for an OLE server application

1 From the File menu, choose New.

The New dialog box appears.

169

Tutorials

170

2 Select Project Workspace, and click OK.

The New Project Workspace dialog box appears.

3 In the Project Name box, type Scri bbl e.

You're using the same project name (Scribble) so that you can copy code that
contains class names and other identifiers into your current Scribble project files.

However, you'll need to make sure you create this Scribble in a different project.
directory than the original Scribble.

4 Use the Browse button next to the Location box to navigate to a directory of your
choice.

5 In the Location box, type Scratch as the new project directory.

This creates the new Scribble project under a subdirectory named Scratch.

6 In the Type listbox, make sure MFC App Wizard (exe) is specified.

7 If any check boxes other than Win32 appear in the Platforms box, clear them.

Note OLE support, as required by this step of the tutorial, will not be generated if any
other check boxes are selected.

8 Click Create.

9 Respond Yes when prompted about creating the Scratch directory.

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

10 Click Next in the dialog boxes for AppWizard Steps 1 and 2 to accept the default
options.

11 In the AppWizard-Step 3 dialog box, select Full-Server, and then click Next.

12 In the AppWizard-Step 4 dialog box, click the Advanced button.

13 In the File Extension box, type 5cb.

The entry in the Filter Name box box changes appropriately.

14 Click Close.

15 Choose the Context Sensitive Help option, and click Next.

When you choose Context-Sensitive Help with the Full Server option, AppWizard
creates:

• The toolbar bitmap for Scribble when it runs as a server

• An additional .RTF file for the OLE commands that appear on the menu when
Scribble is running as a server.

You'll copy these resources to your Scribble project later.

16 In AppWizard-Step 5, click Next to accept the default options.

17 In the AppWi za rdStep 6 dialog box, check and modify class names and
filenames to make them match the original Scribble application.

Chapter 12 Creating an OLE Server

Important If you are starting from the sample source code files for Step 6, rather than
from a Scribble project which you have been developing step by step, you need to modify
the filenames and classnames differently than what is described here. Use the alternate
filenames described in the topic "Using Short Filenames," after this procedure.

For more information about using short filenames, see the topic "A Note About Long
Filenames."

• Select the class esc r i bb 1 e Vi ew, and choose CScrollView in the Base Class
box.

• Select'the class esc rib b 1 e S r v r I t em, and change its name to
esc rib b 1 e I t em, the header filename to ScribbleItem.h, and the
implementation filename to ScribbleItem.cpp.

Notice that COleServerItem is the base class, which reflects your full-server
choice.

18 Choose Finish.

19 Choose Yes if the following message box appears:

A unique class 1D already exists in the registration database for this
document type. Use existing 1D?

This message box appears when you have already run the OLE server version of
Scribble, to register it with Windows.

20 In the New Project Information dialog box, confirm the specifications and
click OK.

App Wizard creates the new files.

21 From the File menu, choose Close Workspace to close the SCRATCH\Scribble
project.

In the next procedure you'll incorporate files and resources from this SCRATCH
version of Scribble, into the Scribble you've been developing all along.

Using Short Filenames
If you are starting Scribble Step 7 from the Step 6 sample source files, your project
filenames need to match the short filenames found on the distribution CD. (Class
names remain the same.) The Visual C++ distribution CD uses short (8.3) filenames
in order to meet ISO standards.

The following list describes the filenames you need to change. For convenience, class
name modifications for this step, as described in the previous procedure, are listed
as well.

Note As described in the previous procedure, you need to modify these project file and
classnames in the AppWizard-Step 6 dialog before creating your project.

• For class eScri bbl eSrvrltem, change the classname to eScri bbl eltem, the
header file to ScribItm.h; and the implementation file to ScribItm.cpp.

171

Tutorials

• For class CScri bbl eVi ew, change the header file to ScribVw.h and the
implementation file to Scrib Vw.cpp. As mentioned in the previous procedure,
change the base class of esc rib b 1 e Vie w to esc r 0 1 1 Vie w.

• For class esc rib b 1 e Doc, change the header file to ScribDoc.h and the
implementation file to ScribDoc.cpp.

Note Keep in mind, as you work through the procedures in this tutorial step, that whenever a
procedure refers to a long filename you should substitute the equivalent short filename.

Transfer Scratch Files to Your Scribble Project

172

AppWizard provides several source files for an OLE server application that you can
use as-is in Scribble. The following procedures describe how to incorporate source
files and code from the SCRATCH version of Scribble, which you created with the
AppWizard full-server option, into the version of Scribble you've been developing
step by step, and which did not initially include full-server support.

~ To add the new files to your Scribble project

1 Copy the following files from SCRIBBLE\SCRATCH to your Scribble project root
directory:

• IPFRAME.H

• IPFRAME.CPP

• SCRIBBLE.CPP (choose Yes when prompted to overwrite the existing version
of this file)

• SCRIBBLEITEM.H

• SCRIBBLEITEM.CPP

• SCRIBBLE.REG (choose Yes if prompted to overwrite the existing version of
this file)

• HLP\AFXOLESV.RTF

• RES\ITOOLBAR.BMP

These files provide "In Place" (IP) editing functionality for Scribble. Placing them
in your project directory makes dependent files available to the project. When
AppWizard generates Scribble.cpp with Full Server support, it adds OLE-specific
code to the file.

2 Start Visual C++, if necessary, and from the File menu, choose Open Workspace.

3 Navigate to your original version of Scribble, and open Scribble.mdp.

4 From the Insert menu, choose Files Into Project.

The Insert Files into Project dialog box appears. By default, the dialog points to
your current project directory.

Chapter 12 Creating an OLE Server

5 Select the files IpFrame.cpp and ScribbleItem.cpp, and choose the Add button.

Visual C++ automatically adds any dependent files, in this case, the header files
associated with the two implementation files you just added to the project. You can
now view the added files in File View, and their associated classes in Class View.

6 From FileView, open SCRIBBLE.HPJ.

Because you added the help source file, AFXOLESY.RTF, to the project, you need
to modify the help project file.

7 In the [FILES] section of SCRIBBLE.HPJ, type "afxolesv.rtf," and save the file.

Similar to the process for adding files to a project, you can't just copy a help
source (.RTF) file; you must add it to the Help project. Modifying the Help Project
(.HPJ) file accomplishes this.

Scribble's In Place Editing Files
IpFrame.cpp contains the implementation of Scribble's COleIPFrameWnd-derived
class. This is the frame window for Scribble when it draws in the container.
COleIPFrameWnd provides the resize border that you noticed in the preview
demonstration. Note that Scribble only uses this COleIPFrameWnd object when the
Scribble object is in-place activated in the container application. Only then does the
server need to provide a window. When the Scribble object is not activated in place,
but is just being drawn in the container's window, the OLE server provides a metafile
(a list of drawing commands) to the container so it can then play the metafile.

ScribbleItem.cpp contains the implementation of Scribble's COleServerItem-derived
class. The COleServerItem object represents the Scribble document when it is
embedded in a container.

Registering an OLE Server Application with Windows
In order to run your application as an OLE server, you need to register it with
Windows. App Wizard provides code that does this for you when you simply run the
application, as you saw in the section "Preview Scribble Running as an OLE Server."
AppWizard also provides a text file, SCRIBBLE.REG, which you can use to register
Scribble as an OLE server. You do this by running REGEDIT and merging
SCRIBBLE.REG with the existing Windows registry file.

~ To use REG EDIT to register Scribble as an OLE Server

1 Run REGEDIT. (Note that on Windows NT, both REGEDIT and REGEDT32 are
available. You can only merge a .REG file using REGEDIT.)

2 On Windows NT, from the File menu, choose Merge Registration File. On
Windows 95, from the Registry menu, choose Import Registry File.

3 Select SCRIBBLE.REG from your Scribble project directory.

4 When notified that the information has been registered, click OK and then close
REGEDIT.

173

TutorialS

If you're going to distribute your application, you should provide this registration as
part of the application setup routine.

There are several ways you can do this:

• Spawn REGEDIT, using the /s (silent) option and specifying the .REG file as a
command line parameter, for example:

regedit Is scribble.reg

Naturally, you'd need to create and maintain a .REG file specific to your particular
application. .

• Use the Windows registry APIs to set up all the registry keys.

• Let the framework programmatically register the application for you, by allowing
your application to be run with a special switch (for example, "!Register") that
registers the application and then immediately quits, such that the application can
be run with this special switch as part of setup. For example:

scribble Iregister

Of course, you'd need to modify your application's In i tIn s tan c e code so that it
recognizes this special switch. This works well for applications that are small and
boot relatively quickly, since you can leverage the automatic registration that MFC
provides as part of the framework.

For more information, see "Framework Support for Registering the Application
with Windows."

Add AFXOLE.H to Your Precompiled Header File
The MFC OLE support is kept in a separate extension header file, AFXOLE.H.
Because several SCRIBBLE implementation files refer to the MFC OLE classes, it is
a good idea to include it in STDAFX.H, the precompiled header for Scribble.

For more information about precompiled headers, see "Precompiled Headers."

~ To add AFXOLE.H to the precompiled header file

1 From FileView, open STDAFX.H (under the Dependencies folder), and add the
following #include statement:

#include <afxole.h>

2 Save the file.

II MFC OLE support

Add OLE Server Support to the Application Object

174

You've already added much OLE server support to the application objectby using the
Full Server version of Scribble.cpp. In the next two procedures, you'll complete this
process by adding a COieTempiateServer data member to CScri bbl eApp, and by
adding a string resource to Scribble's string table.

Chapter 12 Creating an OLE Server

~ To add a COleTemplateServer data member to CScribbleApp

• Use Class View to jump to the C S e r; b b 1 e A p p declaration, and add the following
lines at the beginning of the 1/ implementation section:

COleTemplateServer m_server;
II Server object for document creation

You will find the same code in SCRATCH\SCRIBBLE.H, which was provided by
AppWizard.

The COleTemplateServer object is used to register a server application with
OLE. See how m_server is used in Scribble's In; t I nstanee.

~ To copy the string resource

1 Switch to ResourceView and open Scribble's String table.

2 Use the File menu to open the .RC file for the SCRATCH\SCRIBBLE project, and
open its String table. (Don't insert this resource file.)

3 Arrange the string editor windows so that you can view both String tables and they
don't overlap.

4 Press CTRL, and then drag the resource I D P _0 L E_ I NIT _F A I LED from the Full
Server version of Scribble to your Scribble project's String table.

This AppWizard p"rovided string is used in Scribble's In; tIns ta nee. The string
text is:

OLE initialization failed. Make sure that the OLE libraries are
correct version.

You can view this text by selecting the string and then choosing Properties from
the Edit menu.

S Save your Scribble.rc and close both String tables. (You can also close the
SCRATCH\SCRIBBLE version of Scribble.rc.)

Convert the CDocument Class to the COleServerDoc
Class

The CDocument class implements standard document behavior in a stand-alone
application. When the application runs as an OLE in-place editing server, however,
the document must do extra work on behalf of OLE. The framework implements the
bulk of this OLE document support in class COleServerDoc. The remaining work
you have to do is:

• Change the base class of CSer; bbl eDoe from CDocument to COleServerDoc.

• Implement the document's support for embedded items.

175

Tutorials

176

~ To change the base class of CScribbleDoc

1 Use ClassView to jump to the declaration for class CScri bbl eDoc, and change:

class CScribbleDoc : public CDocument

to:

class CScribbleDoc : public COleServerDoc

2 Use FileView to open ScribbleDoc.cpp, and replace all instances of CDocument
with COleServerDoc.

This changes the base class reference of esc rib b 1 eO 0 c from CDocument to
COleServerDoc.

The COleServerItem object represents the Scribble document when the document is
embedded in a container. To create a COleServerItem for a given document,
AppWizard provides an override of GetEmbeddedItem in the COleServerDoc
derived class. The return type of OnGetEmbeddedItem is a pointer to a
COleServer Item.

Note A COleServerltem object can also represent an OLE link item, but Scribble doesn't
illustrate that. For an illustration of a link item, see the sample HIERSVR under MFC Samples
in Books Online.

In the following procedure, you'll fill in some of the code that AppWizard would
have generated had you originally chosen the Full Server option.

~ To implement the document's support for embedded items

1 Switch to ScribbleDoc.h in the editor and add the following forward class
reference for esc rib b 1 e I tern. after the forward declaration for class CSt r 0 k e:

class CScribbleltem;

2 In ScribbleDoc.cpp, add the following #include statement:

lIinclude "Scribbleltem.h"

Note The short filename for this header file is Scribltm.h. If you're starting from the
sample source files from Scribble Step 6 to complete this tutorial step, be sure to use this
short filename. Otherwise, you will not be able to compile your project.

Now you'll add the OnGetEmbedded I tern function overri4e. (AppWizard
provided this code in the Scratch version of Scribble you generated with Full
server support.)

3 In Class View, point your mouse at the esc rib b 1 eO 0 c class icon and click the
right mouse button.

4 From the pop-up menu, choose Add Function.

S In the Function Type box, specify: COleServerItem*

6 In the Function Declaration box, type: OnGet Embedded I tern ()

7 In the Access group box, select the Protected radio button.

Chapter 12 Creating an OLE Server

8 Select the Virtual check box, (note that this adds the virtual keyword to the
declaration) and click OK.

9 Implement the function as follows:

// OnGetEmbeddedItem is called by the framework to get the
Cal eServerItem

// that;s associated with the document. It is only called when
necessary.

CScribbleItem* pItem - new CScribbleItem(this);
ASSERT_VAlID(pItem);
return pItem;

10 For convenience you'll also provide a type-safe function to return a pointer to the
specific COleServerltem-derived class, esc rib b 1 e I tern. by adding the
following code to the public Attributes section of ScribbleDoc.h:

CScribbleItem* GetEmbeddedItem()
{ return (CScribbleItem*)COleServerDoc::GetEmbeddedItem();

Analyze OLE Server Code in InitInstance
The code below shows Scribble.cpp with the default OLE server code provided by
AppWizard. (Note that the default classnames differ from those you customized for
Scribble.)

#include "IpFrame.h"

//
// The one and only CScribbleApp object

CScribbleApp theApp;

// This identifier was generated to be statistically unique for your app.
// You may change it if you prefer to choose a specific identifier.

// {9936A203-C918-11CE-B9Dl-08002B321D20}
static const ClSID clsid -
{ 0x9936a203. 0xc918, 0xllce, { 0xb9. 0xdl. 0x8, 0x0, 0x2b, 0x32. 0xld. 0x20 } };

///
// CScribSvrApp initialization

Baal CScribSvrApp::InitInstance()
{

// Initialize OLE libraries
if (!AfxOleInit(»
{

}

AfxMessageBox(IDP_OlE_INIT_FAIlED);
return FALSE;

177

Tutorials

178

II Standard initialization
II If you are not using these features and wish to reduce the size
II of your final executable. you should remove from the following
II the specific initialization routines you do not need.

lIifdef _AFXDLL
Enable3dControls(): II Call this when using MFC in a shared DLL

lIelse
Enable3dControlsStatic(): II Call this when linking to MFC stati cally

Ilendif

LoadStdProfileSettings(): II Load standard INI file options (including MRU)

II Register the application's document templates. Document templates
II serve as the connection between documents, frame windows and views.

CMultiDocTemplate* pDocTemplate:
pDocTemplate - new CMultiDocTemplate(

IDR_SCRIBSTYPE,
RUNTIME_CLASS(CScribSvrDoc),
RUNTIME_CLASS(CChildFrame), II custom MDI child frame
RUNTIME_CLASS(CScribSvrView»:

pDocTemplate-)SetServerlnfo(
IDR_SCRIBSTYPE_SRVR_EMB, IDR_SCRIBSTYPE_SRVR_IP,
RUNTIME_CLASS(ClnPlaceFrame»:

AddDocTemplate(pDocTemplate):

II Connect the COleTemplateServer to the document template.
II The COleTemplateServer creates new documents on behalf
II of requesting OLE containers by using information
II specified in the document template.
m_server.ConnectTemplate(clsid. pDocTemplate, FALSE):

II Register all OLE server factories as running. This enables the
II OLE libraries to create objects from other applications.
COleTemplateServer::RegisterAll():

II Note: MDI applications register all server objects without regard
II to the IEmbedding or IAutomation on the command line.

II create main MDI Frame window
CMainFrame* pMainFrame - new CMainFrame:
if (!pMainFrame-)LoadFrame(IDR_MAINFRAME»

return FALSE:
m_pMainWnd = pMainFrame:

II Enable drag/drop open
m_pMainWnd-)DragAcceptFiles():

II Enable DDE Execute open
EnableShellOpen():
RegisterShellFileTypes(TRUE):

Chapter 12 Creating an OLE Server

II Parse command line for standard shell commands, DOE, file open
CCommandLinelnfo cmdlnfo;
ParseCommandLine(cmdlnfo);

II Check to see if launched as OLE server
if (cmdlnfo.m_bRunEmbedded I I cmdlnfo.m_bRunAutomated)
{

II Application was run with IEmbedding or IAutomation. Don't show the
II main window in this case.
return TRUE;

II When a server application is launched stand-alone, it is a good idea
II to update the system registry in case it has been damaged.
m_server.UpdateRegistry(OAT_INPLACE_SERVER);

II Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdlnfo))

return FALSE;

II The main window has been initialized, so show and update it.
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

return TRUE;

Here is an explanation of the preceding code that was provided by App Wizard. All
MFC OLE applications-whether container, server, or automation server-must call
AfxOlelnit and the static function COleTemplateServer::RegisterAll from the
application's In; tlnstance to initialize framework support for OLE. For an
application that is not an OLE server, the CDocTemplate object coordinates the
creation of the frame window, view, and document object for the stand-alone
application. The CDocTemplate uses menu, accelerator, and string resources passed
to the constructor in In; tIn s tan c e code, to determine the menu, accelerators, and
Windows shell registration of the stand-alone application.

In the case of an OLE server application, additional information is needed. The
In; tIn s tan c e function passes this information as parameters to the
CDocTemplate: :SetServerinfo function, before it calls
CWinApp::AddDocTemplate. Here is a description of the parameters:

pDocTemplate->SetServerlnfo(
IDR_SCRIBBTYPE_SRVR_EMB, IDR_SCRIBBTYPE_SRVR_IP,
RUNTIME_CLASS(ClnPlaceFrame));

• I DR_SCRI BBTYPE_SRVR_EMB is the common ID of the menu and accelerator
resources loaded when Scribble is fully opened by the container application when
it edits an embedded item.

179

Tutorials

180

• 10 R_S C RIB B TV P E_S RV R_ I P is the common ID of the menu, accelerators, and
toolbar bitmap resources that are loaded when Scribble is activated in place in the
container application. The purpose and design of these resources specifically for
the in-place activated server application, as well as the purpose and design of the
above resources for the fully opened server application, are explained later in this
tutorial.

• RUNTIME_CLASS(CInPlaceFrame) is the COleIPFrameWnd-derived class
provided by App Wizard. This class defines the behavior of the window created by
the framework on behalf of the server application when it is activated in place by
the container. The App Wizard-provided implementation of this class adds the
resize border to the in-place window so that the user can resize the object while it
is activated in place.

The following code defines the OLE class ID for the Scribble application and
registers the application. App Wizard provides a default ID that is randomly
generated. The call to COleTemplateServer::ConnectTemplate registers the class
ID with Windows.

Note The clsid below will differ from the unique one that is provided when you run
AppWizard.

static const CLSrD BASED_CODE clsid -
{ 0x0002180f, 0x0, 0x0, { 0xC0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x46 } }:

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE):

If the application was spawned by OLE as an in-place server or automation server,
then In; tIn s tan c e returns before performing additional initialization tasks that are
appropriate only for stand-alone applications:

if (cmdlnfo.m_bRunEmbedded I I cmdlnfo.m_bRunAutomated)
{

return TRUE:
}

Framework Support for Registering the Application with
Windows
An MFC OLE server can use COleTemplate::UpdateRegistry to register the
application as an OLE server. The following AppWizard-provided code is optional.

II When a server application is launched stand-alone, it is a good
II idea to update the system registry in case it has been damaged.
m_server.UpdateRegistry(OAT_INPLACE_SERVER):

Chapter 12 Creating an OLE Server

This code enables the user to run the application once to register it as an OLE server.
The preferred method of registering your application with Windows is to use one of
the methods described earlier, in "Registering an OLE Server Application With
Windows."

• Manually merge the SCRIBBLE.REG registration file into the system registry by
using REGEDIT

-or-

• Programmatically merge the registry information as part of your application's
setup program. There are several ways you can accomplish this, as described in
the topic mentioned.

Editing OLE-Related Resources
The next overall task is to edit the OLE-related resources in your server application.
In general, this consists of the following steps:

• Add OLE standard resources

• Add menus

• Add toolbar buttons

• Add accelerators for in-place active or fully-opened servers

Add OLE Standard Resources
~ To add OLE standard resources

• From the View menu, choose the Resource Includes command.

-or-

1 In Resource View, point the mouse cursor at the Scribble Resources folder, and
click the right mouse button.

2 From the pop-up menu, choose Resource Includes.

3 In the Compile-Time Directives list box, type the following:

/linclude "afxolesv.rc" II OLE server resources

This #include statement takes care of including some string resources referred to
by the framework OLE classes. App Wizard adds this #include statement to your
application resource file if you choose the Mini-Server, Full-Server, or Container
Server option. If you look at SCRATCIDScribble.rc, you will see that App Wizard
has added this same compile-time directive.

181

Tutorials

4 Click OK to accept the changes you made in the Resource Includes dialog box.

5 Click OK when the following message box appears:

Directive text will be written verbatim into your resource script and
may render it incompatible

Add OLE Menu Resources

182

A server application shows different menus, depending on whether it is running
stand-alone, embedded, or in-place activated. AppWizard provides three different
menus for these cases:

• 10 R_S C RIB B TY P E is the menu for the document when it is opened in the usual
way .

• IDR_SCRIBBTYPE_SRVR_EMB is the menu for the document when the server is
opened fully from the container application.

• I DR_SCRI BBTYPE_SRVR_1 P is the menu for the document when it is activated in
place (thus, "IP") in a container. When an object is activated in place, OLE merges
the menu of the container application with the menu provided by the server
application. The merging of the two menus is based on separator bars. Scribble's
in-place menu (I DR_SCR1 BBTYPE_SRVR_1 P) looks like this:

Edit I Pen I Help

An example of a container's menu is seen in Container (the OLE Container
tutorial discussed in Chapters 13 through 15), as shown below:

File I I Window

OLE merges the two menus to create the following menu when the Scribble object
is activated in place in the Container application:

File Edit Pen Window Help

OLE merges pop-up menus from left to right in the following order:

1. Container's pop-up menu(s) before the first separator.

2. Server's pop-up menu(s) before the first separator.

3. Container's pop-up menu(s) between the first and second separators.

4. Server's pop-up menu(s) between the first and second separators.

5. Container's pop-up menu(s) after the second separator.

6. Server's pop-up menu(s) after the second separator.

Scribble's two distinct OLE-related menu resources are referred to in the following
code in C S c r; b b 1 e A p p : : In; tIn s tan c e:

pDocTemplate-)SetServerInfo(
IDR_SCRIBBTYPE_SRVR_EMB. IDR_SCRIBBTYPE_SRVR_IP.
RUNTIME_CLASS(ClnPlaceFrame)):

Chapter 12 Creating an OLE Server

App Wizard provides all the code and resources described above, except for the Pen
pop-up menu, which is application specific. If you are creating a new application
from scratch, each new pop-up menu must be added to each of the three resources~
This is easy to do with the drag and copy feature of the menu editor. You can copy a
resource by dragging it to the desired location while pressing the CTRL key, and then
releasing the mouse button.

In this part of the tutorial, you will:

• Copy the two new resources, IDR_SC,RIBBTYPE_SRVR_EMB and
IDR_SCRIBBTYPE_SRVR_IP, from the AppWizard-provided
SCRATCH\Scribble.rc to your Scribble.rc.

• Add the Pen pop-up menu to each of the menus.

~ To copy menu resources

1 Switch to Resource View and expand the Scribble Resources folder, then expand
the Menu folder.

2 From the File menu, choose Open and select SCRIBBLE\SCRATCH\Scribble.rc.
Again, expand the Menu folder.

3 Copy the menus IDR_SCRIBBTYPE_SRVR_EMB and
I DR_SCRI BBTY PE_SRVR_I P from the scratch resource file to your Scribble
project .RC file.

4 Close the scratch version of Scribble.rc.

~ To copy menu items

1 Open the menu resources IDR_SCRIBBTYPE and IDR_SCRIBBTYPE_SRVR_EMB
in your Scribble project resource file.

2 Arrange the two menus so they don't overlap and yet you can see both of them in
the Menu editor wind.ow.

3 Copy the Pen menu from IDR_SCRIBBTYPE into the
IDR_SCRIBBTYPE_SRVR_EMB menu so that it is between the Edit and View
menus, as in IDR_SCRIBBTYPE.

4 Copy the Clear All menu item from the Edit menu in I D R_SC RI BBTY P E to the
Edit menu in IDR_SCRIBBTYPE_SRVR_EMB.

5 Close IDR_SCRIBBTYPE_SRVR_EMB and repeat steps 1 to 3 for
IDR_SCRIBBTYPE_SRVR_IP, placing the Pen menu as follows:

Edit I Pen I View I I I I Help

(Don't copy the Clear All menu item.)

6 Save and then close the menu resources.

183

Tutorials

Add OLE Toolbar Resources

184

The server application also provides an in-place toolbar to the container. This toolbar
typically supports a different set of commands than does the container's usual toolbar,
generally a subset. For example, the in-place toolbar does not support File menu
commands, because the container, not the server, must handle those commands even
if the server is activated in place.

AppWizard provides a default in-place toolbar resource with five buttons. The
COleIPFrameWnd-derived class is responsible for specifying the mapping of
commands to toolbar buttons.

~ To view the default in-place toolbar

1 Open the scratch version of Scribble.rc, expand the Toolbar folder and double
click I DR_SCRI BBTYPE_SRVR_I P.

The Toolbar editor opens.

2 Choose Properties from the Edit menu to view the Toolbar Button Properties page,
which displays the default resource IDs and prompt strings.

3 Close the toolbar editor for the next procedure.

The Developer Studio toolbar editor makes it easy to edit your application toolbar
resources. In the following procedure, you'll copy the AppWizard-generated toolbar
resources for in-place activation of Scribble into your Scribble project. Then you'll
edit the toolbars to match your other Scribble project toolbar resources.

~ To copy the toolbar buttons

1 With the scratch Scribble.rc file open and the Toolbar folder expanded, switch to
Resource View in your Scribble project, and expand the Toolbar folder.

2 Hold down the CTRL key while you drag the toolbar resource,
I DR_SCRI BBTYPE_SRVR_I P, from the AppWizard-provided scratch resource file
into your Scribble project Toolbar folder.

You may want to close the scratch Scribble.rc file at this point; to eliminate clutter
in the editor window.

3 In Resource View, double-click both Scribble toolbar resources -
I DR_MAl NFRAME and I DR_SCRI BBTYPE_SRVR_I P - arranging them in the
editor window so they don't overlap.

4 Copy the Pen Width button from the IDR_MAINFRAME toolbar to the
I DR_SCRI BBTYPE_SRVR_I P toolbar, just after the Paste button. (Hold down CTRL

while you drag the button.)

Chapter 12 Creating an OLE Server

5 Delete the Cut, Copy and Paste buttons from the I DR_SCRI BBTY PE_SRVR_I P
toolbar by dragging them off the toolbar.

Your in-place toolbar should now contain just three buttons: the application Help
button, the Pen Widths button, and the Help Mode button. This is the toolbar that
will appear when Scribble is activated as an OLE server application.

6 Save your Scribble project .RC file, and close the Toolbar editors.

For more information about working with toolbar resources, see Chapter 11, "Using
the Toolbar Editor," in the Visual C++ User's Guide.

Add Accelerator Resources for In-Place Active or Fully
Opened Servers

Just as a server application offers different menus when it is in-place active or fully
opened versus running stand-alone, the server application offers a different set of
accelerators. App Wizard provides two additional accelerator resources,
I DR_SCRI BBTYPE_SRVR_EMB and I DR_SCRI BBTYPE_SRVR_I P, just as it creates
two additional menu resources with these same identifications. You can copy these
accelerator resources from the scratch version of Scribble.rc.

~ To copy accelerator resources

1 Just as you have done in previous procedures to copy resources, expand the
Accelerator folders from both the scratch version of Scribble.rc, and your Scribble
project .RC file.

2 Copy accelerator resources I D R_S C RIB B TY P E_S RV R_EM Band
I DR_SCRI BBTYPE_SRVR_I P from the scratch version of Scribble.rc to your
Scribble project Accelerator folder.

You can copy both resources simultaneously, as the Resource Editors support
mUltiple selection.

3 Save your changes to Scribble.rc, and close the scratch .RC file.

Adding Application-Specific Server
Support

To complete Scribble Step 7, and implement Scribble as a fully-functional OLE
server application, these are the final steps you'll take:

• Add application-specific server support to the document class.

• Implement the server item.

• Implement OLE in-place support in the view class.

185

Tutorials·

Add Application-Specific Server Support to
the Document Class

186

To finish adding application-specific server support in the document class, you
have to:

• Notify the OLE server that the embedded item has moved or changed size (see
next procedure).

• Change the initial size of the document.

• Implement the document's support for putting a link format on the Clipboard.

In the following procedure, you'll use the Add Member Function command to
implement the OnSetRect I terns function for class CScri bb 1 eDoc. The
framework calls OnSetItemRects when the position or size of the embedded item has
changed in the container, or when the clipping of the embedded item has changed in
the container. Because Scribble's view is a CScrollView, you need to call
CScrollView::SetScrollSizes to reflect the change in the size of the item. Because
there are multiple places where the logic associated with SetScrollSizes must be
performed, you will later write a helper function,
CScri bbl eVi ew:: ResyncScroll Si zes, which you will call from the override of
OnSetItemRects.

~ To notify the OLE server when the embedded item moves or changes size

1 In Class View, point the mouse cursor at esc rib b 1 e Doc and click the right mouse
button to invoke the pop-up menu.

2 Choose the Add Function command.

The Add Member Function dialog appears.

3 Fill in the dialog box as follows:

• In the Function Type box, type void.

• In the Function Declaration box, type the following:

OnSetItemRects(LPCRECT lpPosRect. LPCRECT lpClipRect)

• In the Access area, select Protected.

4 Click OK.

S In ScribbleDoc.cpp, implement the skeletal definition with the following code:

II call base class to change the size of the window
COleServerDoc::OnSetItemRects(lpPosRect. lpClipRect):

II notify first view that scroll info should change
POSITION pos - GetFirstViewPosition();
CScribbleView* pView = (CScribbleView*)GetNextView(pos);
pView-)ResyncScrollSizes();

Chapter 12 Creating an OLE Server

6 Add the following #include statement to ScribbleDoc.cpp, because the above
implementation refers to CSer; bbl eV; ew:

#include "ScribbleView.h"

The short filename is ScribVw.h.

The next step is to modify CSer; bbl eDoe: : In; tDoeument so Scribble's fixed
document size changes from 8 by 9 inches, to 2 by 2 inches. The current size, 8 by 9
inches, is too large for most containers.

~ To change the initial size of the document

1 Use ClassView to jump to CSer; bbl eDoe: : In; tDoeument, and modify the
comments and the parameters that return the default document size, as follows:

//default document size is 200 x 200 screen pixels

m_sizeDoc - CSize(200, 200);

2 Use Class View to jump to the C S e r; b b 1 e Doe constructor, and replace the
//TODO comments with the following line:

m_sizeDoc - CSize(200, 200);

The m_s; zeDoe is also initialized in the helper member function,
In; tDoeument, when a document is newly created or reopened in a stand-alone
running instance of Scribble. In; tDoeument is called by Scribble's overrides of
CDocument::OnNewDocument and OnOpenDocument. When Scribble is run as
a server, the OnNewDoeument and OnOpenDoeument functions are not called.
Therefore a good place to initialize m_s; zeDoe is in the constructor.

Finally, in the following procedure you'll implement the ability for containers to
execute the Paste Link command on the server's Edit menu.

~ To implement the document's support for putting a link format on the Clipboard

1 With ScribbleDoc.cpp displayed in the editor window, from the WizardBar Object
IDs list, select ID_EDIT_COPY, and from the Messages list select COMMAND.

2 In the Add Member Function dialog, accept the default name OnEditCopy.

3 Replace the highlighted comment with the following code:

CScribbleItem* pItem - GetEmbeddedItem();
pltem->CopyToClipboard(TRUE);

The framework function COleServerDoc::CopyToClipboard does all the work.

Implement the Server Item
App Wizard has done most of the work associated with implementing the server item
by providing the COleServerItem-derived class in ScribbleItem.cpp. All you have to
do is add the application-specific implementation.

187

Tutorials

188

The server item's OnDraw is called when the server document needs to draw itself as
an inactive embedded object inside the container window. In contrast, the view's
OnDraw is called when the document is activated in place inside the container.
CScri bb 1 e I tern: : OnDraw needs to do essentially the same drawing that
CScri bb 1 eVi ew: : OnDraw does. If your OnDraw code in your view class is
complex, you will probably want to reuse that code by having your client item's
OnDraw call a shared draw routine. In Scribble, the CStroke: : DrawStroke routine
is reused.

Recall that you previously added the AppWizard-generated file, ScribbleItem.cpp, to
the project. Now you'll modify the AppWizard-provided code to support Scribble
specific drawing functions.

~ To implement the OLE item's OnDraw function

1 Use ClassView to jump to CScri bb 1 e Item: : OnDraw, and modify the
AppWizard-provided stubbed version of the function so that it looks like the
following:

BOOl CScribbleItem::OnDraw(CDC* pDC. CSize& rSize)
{

CScribbleDoc* pDoc - GetDocument();
ASSERT_VAlID(pDoc);

pDC->SetMapMode(MM_ANISOTROPIC);
CSize sizeDoc - pDoc->GetDocSize();
sizeDoc.cy - -sizeDoc.cy;
pDC->SetWindowExt(sizeDoc);
pDC->SetWindowOrg(0.0);

CTypedPtrList<CObList. CStroke*>& strokeList
- pDoc->m_strokeList;·

POSITION pos - strokeList.GetHeadPosition();
while (pos !- NULL)
{

strokeList.GetNext(pos)->DrawStroke(pDC);
}

return TRUE;

This code sets the window extent to the size of the document so that when the
document is drawn in the in-place window, the drawing will stretch to the size of
the window. It is necessary to reverse the sign of the y dimension to reflect the fact
that strokes' positions are maintained in MM_LOENGLISH coordinates by using
negative y coordinates.

2 Similarly, use ClassView to jump to the AppWizard-provided version of
CScri bbl eI tern: : OnGetExtent, and modify it as follows:

BOOl CScribbleItem::OnGetExtent(DVASPECT dwDrawAspect. CSize& rSize)
{

II This implementation of CScribbleItem::OnGetExtent only handles

Chapter 12 Creating an OLE Server

II the "content" aspect indicated by DVASPECT_CONTENT.

if (dwDrawAspect 1- DVASPECT_CONTENT)
return COleServerltem::OnGetExtent(dwDrawAspect. rSize):

II CScribbleltem::OnGetExtent is called to get the extent in
II HIMETRIC units of the entire item. The default
II implementation here simply returns a hard-coded
II number of units.
CScribbleDoc* pDoc - GetDocument():
ASSERT_VALID(pDoc):

rSize - pDoc->GetDocSize():
CClientDC dc(NULL):

II use a mapping mode based on logical units
II (we can't use MM_LOENGLISH because MM_LOENGLISH uses
II physical inches)
dc.SetMapMode(MM_ANISOTROPIC):
dc.SetViewportExt(dc.GetDeviceCaps(LOGPIXELSX).

dc.GetDeviceCaps(LOGPIXELSY»:
dc.SetWindowExt(100. -100):
dC.LPtoHIMETRIC(&rSize):

return TRUE;

3 Save Scribbleltem.cpp.

The framework calls the virtual COleServerltem::OnGetExtent member function
when the item needs to set the viewport and window extents of the server item
window when the item is in-place active. The new code modifies the original code
provided by App Wizard, which sets the size of the server item to an arbitrary fixed
value. The function must return the size of the server item in HIMETRIC units. In
Scribble, the server item needs to return the size of the document. Scribble stores the
drawing size in physical MM_LOENGLISH units. For reasons explained in the
next section, Scribble needs to convert the drawing size to HIMETRIC units based
on its logical MM_LOENGLISH size rather than physical MM_LOENGLISH
size.

Implement OLE In-Place Support in the View Class
To implement OLE in-place support in the view class, you must:

• Calculate logical MM_LOENGLISH sizes rather than physical
MM_LOENGLISH sizes.

• Adjust the scroll view's scroll bars to reflect the use of the logical mapping mode.

• Notify OLE when the embedded item changes.

189

Tutorials

190

Before Scribble was enhanced to be an OLE in-place editing server, it was lazy about
its device context coordinates using MM_LOENGLISH: Scribble did not adjust for
how many logical pixels per inch were on the screen display. Most serious Windows
applications scale their screen output because small fonts are rarely readable when
displayed in their true (physical) size. Applications can adjust for the number of
pixels in the logical inch by applying the kind of logic illustrated by the following
code sample. This logic relies primarily on values returned by
CDC: : GetDeviceCaps(LOGPIXELSX) and GetDeviceCaps(LOGPIXELSY).
Now that Scribble is an OLE server, it should scale according to logical pixels per
inch. Otherwise, you (and your user) will notice a difference in the scaling of a
Scribble drawing when the Scribble server is fully open versus its scaling when it is
displayed embedded in the container.

~ To implement logical MM_LOENGLISH rather than physical MM_LOENGLISH

1 Open Class Wizard.

2 If necessary, choose the Message Maps tab and ensure that CScri bbl eVi ew is
chosen in the Class Name and Object IDs boxes.

3 In the Messages box, choose OnPrepareDC, and click Add Function.

4 Choose Edit Code.

S Implement the override of 0 n Pre par e D C as follows:

void CScribbleView::OnPrepareDC(CDC* pDC. CPrintInfo* pInfo)
{

CScribbleDoc* pDoc - GetDocument();
CScrollView::OnPrepareDC(pDC. pInfo);

pDC->SetMapMode(MM_ANISOTROPIC);
CSize sizeDoc - pDoc->GetDocSize();
sizeDoc.cy - -sizeDoc.cy;
pDC->SetWindowExt(sizeDoc);

CSize sizeNum. sizeDenom;
pDoc->GetZoomFactor(&sizeNum. &sizeDenom);

int xLogPixPerInch - pDC->GetDeviceCaps(LOGPIXELSX);
int yLogPixPerInch - pDC->GetDeviceCaps(LOGPIXELSY);

long xExt - (long)sizeDoc.cx * xLogPixPerlnch * sizeNum.cx;
xExt /- 100 * (long)sizeDenom.cx;
long yExt - (long)sizeDoc.cy * yLogPixPerlnch * sizeNum.cy;
yExt /- 100 * (long)sizeDenom~cy;
pDC->SetViewportExt«int)xExt. (int)-yExt);

In the following procequre, you'll implement the ResyncScroll Si zes helper
function mentioned previously.

Chapter 12 Creating an OLE Server

~ To adjust the scroll view's scroll bars to reflect the use of the logical
MM_LOENGLISH mapping mode

1 In Class View, point the cursor at C S c rib b 1, e View and click the right mouse
button.

2 From the pop-up menu, choose Add Function.

3 In the Add Member Function dialog, specify the following:

• In the Function Type box, type v 0 i d .

• In the Function Declaratio~ box, type ResyncScro11 Si zes ().

• In the Access area, select Public.

Click OK.

4 Fill in the skeletal definition with the following code:

CClientDC dc(NULL);
OnPrepareDC(&dc);
CSize sizeDoc - GetDocument()-)GetDocSize();
dc.LPtoDP(&sizeDoc);
SetScrollSizes(MM_TEXT, sizeDoc);

5 Use ClassView to jump to CScri bb 1 eVi ew: : On I nit i a 1 Upda te, and replace
the call to CScrollView::SetScrollSizes with the call to the helper function,
ResyncScro11Sizes:

void CScribbleView::OnlnitialUpdate()
{

ResyncScrollSizes();
CScrollView::OnlnitialUpdate();

In the next several steps you'll use WizardBar to add a function that updates the
scroll bars appropriately when the window is sized.

6 Switch to Scribble View.cpp in the editor.

7 In the WizardBar Object IDs listbox, select CScri bb1 eVi ew, and in the Messages
listbox, select WM_SIZE.

8 Choose Yes to accept the default function name.

9 Replace the highlighted comment with a call to ResyncScro11 Si zes:

ResyncScrollSizes(); II ensure that scroll info is up-to-date

10 Use ClassView to jump to the CScri bb1 eVi ew constructor, and replace the
comment with the following code:

SetScrollSizes(MM_TEXT, CSize(0,0»;

It is necessary to initialize the scroll sizes in the C S c rib b 1 e View constructor to
default values, so that the extent is defined before the first call to On P repa reDC.

191

Tutorials

When Scribble's view finishes adding a new stroke in
CScri bb 1 eVi ew: : On LButtonDown, it calls the document's Upda teA 11 Vi ews to
inform other views that they need to invalidate a portion of the client area occupied
by the new stroke. This notification is fine for Scribble when it is running stand
alone, but it is not adequate when Scribble is fully opened and editing an embedded
object. In the latter case, Scribble needs to inform the container that the object has
changed. This requires an additional call to COleServerDoc::NotifyChanged.

~ To notify OLE when the embedded item changes

• Use ClassView to jump to CScri bb1 eVi ew: : On LButtonUp, and add the call to
NotifyChanged just after the ReleaseCapture function call, before the final
return:

pDoc->NotifyChanged();

Testing Scribble Server Functionality Using
a Container Application

192

You have now completed all the work needed to convert Scribble to an OLE in-place
editing server application. Build the project in the usual way, and follow the steps in
the preview of Scribble found at the beginning of this chapter. In particular,
remember to run Scribble once stand alone.

You have now converted Scribble to an OLE server that works as in the preview
demonstration.

PAR T 3

The OLE Tutorials

Chapter 13 Creating an OLE Container 195

Chapter 14 Implementing Basic OLE Container Features 199

Chapter 15 Refining OLE Container Functionality 119

Chapter 16 Creating an OLE Automation Server 229

Chapter 17 Enabling OLE Automation in an Application 235

Chapter 18 Implementing Automation Properties and Methods 247

Chapter 19 Implementing Multiple Dispatch Interfaces 257

Chapter 20 Building an OLE Control 263

Chapter 21 Painting the Control 273

Chapter 22 Adding a Custom Notification Property 279

Chapter 23 Adding a Custom Get/Set Property 289

Chapter 24 Adding Special Effects 301

Chapter 25 Adding Custom Events to the Circle Control 311

Chapter 26 Handling Text and Fonts 317

Chapter 27 Modifying the Default Property Page 327

Chapter 28 Simple Data Binding 333

Chapter 29 Versions and Serialization 343

C HAP T E R 1 3

Creating an OLE Container

A container application is an application that can incorporate embedded or linked
items into its own documents. The documents managed by a container application
must be able to store and display OLE items as well as data created by the application
itself. A container application must also allow users to insert new OLE items or edit
existing ones.

In this tutorial you will create a simple OLE container application, Container. The
Container document can hold several OLE in-place items that the user can resize and
move to any place in the document. However, the Container document doesn't
contain any application-specific objects. For an example of a container document that
has both application-specific objects (draw objects) and OLE items, see the
DRA WCLI sample under MFC Samples in Books Online.

Note This tutorial assumes that you are already familiar with Visual C++ and the basics of the
Microsoft Foundation Class Library (MFC). If you are not, follow the Scribble tutorial in
Chapters 2 through 11 before you begin this tutorial. The Scribble tutorial introduces important
class library concepts and techniques, and demonstrates how to use the wizards and the
resource editors.

Preview of the Container Application
Before you work through the steps of implementing Container, you might want to try
out the completed application. This will help you appreciate OLE container
functionality in general, and Container's container functionality in particular, from a
user's point of view.

Other example container applications are provided on the Visual C++ distribution
CD-ROM. Some of these samples were written using MFC, and others were written
using the OLE SDK. You can easily install the files needed to build and examine
these sample applications. For more information, see "Installing the Sample Files."
For the OLE SDK samples, look under Windows SDK Samples in Books Online. For
the MFC samples, look under MFC Samples in Books Online.

195

Tutorials

Finally, the best examples are those world-class applications that support OLE today.
These are the applications you will ultimately want to test your application against.

Registering an OLE Server Application

196

Before you can preview the Container application (by running either the Step 2
executable source file, Container.exe, or the version you'll develop yourself by
following the tutorial steps), you need to install and register at least one OLE server
application for Container to access.

The Step 7 version of Scribble is a good sample server application. Another example
is the HIERSVR sample (under \ SAMPLES \ MFC Samples \ OLE Samples in
Books Online).

You can run either of these applications directly from Books Online. For more
information, see "Previewing the Sample Applications."

For more information on OLE containers and servers, see "OLE Overview:
Containers and Servers" in Programming with MFC.

~ To register the Scribble server application

• Run Scribble.exe Step 7 directly from Books Online; or build and run Scribble.exe
from the sample source files for Step 7.

Note To run an application from Books Online, see "Previewing the Sample Applications."
To install the Sample files, see "Installing the Sample Files."

Running Scribble briefly as a stand-alone application registers it in the system
registry as an OLE server.

~ To preview Container

1 Run Container.exe Step 2 directly from Books Online; or build and run
Container.exe from the sample source files for Step 2.

2 From the Edit menu, choose Insert New Object.

3 In the Insert Object dialog box, select Scribb Document from the Object Type box.

4 Click OK.

A blank Scribble document is opened inside the Container document.

• Notice the tracker rectangle with resize handles and dashed border that appears
in the upper-left comer of the Container document. Container negotiates with
the server (Scribble) to determine where to place the initial rectangle and what
size to make it.

• Notice how Container's menu has been merged with Scribble's (for example,
notice the Pen menu) andhow Container's toolbar is replaced by one provided
by Scribble (notice the Pen toolbar button). This is part of the OLE menu
merging feature, which enables you to edit the document within the container
application.

Chapter 13 Creating an OLE Container

5 Use the mouse to draw within the rectangle provided by the server running within
the Container document.

6 Try out Scribble's menu and toolbar commands in place; for example, change the
pen width.

7 Click outside the Scribble object, somewhere else in the Container document.

Notice how the Scribble server is deactivated; the dashed border and resize
handles are removed. The application's caption changes back to indicate that a
Container document now has the focus.

8 Click the Scribble object to select it.

The selection rectangle and resize handles are drawn again to indicate that this
object has been selected. Notice that the cursor changes to a four-way arrow when
it is over the structure.

9 Drag the Scribble object around and resize it.

10 From the Edit menu, choose Insert New Object to add additional OLE embedded
objects.

11 If you like, run HIERSVR stand-alone. Copy an object from the HIERSVR to the
Windows Clipboard.

12 Paste the object from the Clipboard into the Container document.

You have now seen two ways to initiate an embedded object: You can use the Insert
New Object command on the Edit menu, or you can copy an object from the server
and paste it into the container, as shown in steps 10 and 11 above.

The Tutorial Example: Container
This tutorial consists of two steps. The sample source files contain a subdirectory for
each step: STEP1 and STEP2. Each step's subdirectory contains complete source
files, and other files needed for the step. If you do not have these files on your local
drive, you can easily install them from within Books Online. For more information,
see "Installing the Sample Files."

This tutorial shows you how to develop an MFC OLE container application that
allows visual (in-place) editing. In Step 1 (Chapter 14), you learn how to:

• Create a skeleton OLE container application capable of visual editing.

• Interpret the OLE container code provided by App Wizard.

• Coordinate the size of an embedded object with the server.

• Add hit testing and selection to the App Wizard-created container application.

• Implement activation of an embedded object.

197

Tutorials

• Implement tracker rectangles for resizing and moving items.

• Draw embedded and linked items.

• Delete embedded items.

In Step 2 (Chapter 15), you learn how to:

• Implement the Copy and Paste commands on the Edit menu.

• Implement smart invalidation.

• Improve coordination with the server to determine the size of contained objects.

198

C HAP T E R 1 4

Implementing Basic OLE
Container Features

This chapter covers Step 1 of the OLE container tutorial. You willleam how to:

• Create a skeleton OLE container application capable of visual editing.

• Interpret the OLE container code provided by App Wizard.

• Coordinate the size of an embedded object with the server.

• Add hit testing and selection to the AppWizard-created container application.

• Implement activation of an embedded object.

• Implement tracker rectangles for resizing and moving items.

• Draw embedded and linked items.

• Delete embedded items.

Creating a Skeleton OLE Container
App Wizard contains options that make it easy to create a skeleton application with
OLE container functionality.

Note The following procedure describes how to enter the correct values for Container in the
various AppWizard dialog boxes. Many of the dialog boxes contain choices you won't use. For
more information on these choices, see Chapter 1, "Creating Applications Using AppWizard," in
the Visual C++ User's Guide.

For more information on OLE options in AppWizard, see the article "AppWizard:
OLE Support" in Programming with MFC.

~ To create a skeleton OLE container-enabled application

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace.

The New Project Workspace dialog box appears.

199

Tutorials

200

3 In the Name box, type Conta i nero

App Wizard creates a project directory with this name under the main (root)
directory specified in the Location box.

The workspace configuration file and project makefile are based on this name, in
this case, Container.mdp and Container.mak, respectively.

4 In the Type list box, make sure MFC App Wizard (exe) is specified.

5 If necessary, use the Location box to specify a different root directory for the
Container project files that App Wizard creates under the Container project
directory.

Depending on the directory you last worked in, you may want to change to where
the Location box currently points. You can use the Browse button to navigate to an
existing directory, or type a directory name directly into the Location box.
AppWizard creates this directory if it doesn't exist.

6 If any check boxes other than Win32 appear in the Platforms box, clear them.

7 Click Create.

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

8 Click Next in the dialog boxes for AppWizard Steps 1 and 2 to accept the default
options.

9 In the AppWizard Step 3 dialog box, select Container, and then click Next to
continue.

10 In the AppWizard Step 4 dialog box, click Advanced.

The Advanced Options dialog box appears.

11 If necessary, choose the Document Template Strings tab.

• In the File Extension box, type ct r without a period.

The extension is reflected in the Filter Names box.

• Change the Mainframe caption to "Container" (optional).

This string gets displayed in the title bar of the running application.

• In the Doc Type Name box, change "Contai" to "Contr."

• In the Filter Name box, change the entry to read "Container Files."

• Click Close, and Next to continue to Step 5.

12 Click Next again to accept the default options for AppWizard Step 5.

Chapter 14 Implementing Basic OLE Container Features

13 In the AppWizard-Step 6 dialog box, you'll change one of the class names from
the defaults that AppWizard suggests. This is basically to create a cleaner-looking
name. If you don't want to perform this step, it isn't necessary.

• Select the class CConta; nCnt r I tern. Change its name to CConta; ner I tern.
Change its header file to ContainerItem.h, and its implementation file to
ContainerItem.cpp.

14 Click Finish.

15 The New Project Information dialog box appears, summarizing the settings and
features AppWizard will generate for you when it creates your project.

16 Click OK in the New Project Information dialog box.

AppWizard creates the starter files for Container and opens the project.

In the next section you'll build the skeleton Container application AppWizard just
created, and try out some of the features it already has, without your having written
any code.

Trying Out the Newly Created OLE Container
Application

App Wizard provides a skeleton OLE container application that already has a lot of
the underlying architecture that most OLE container applications need. Build this
new AppWizard-provided application and try it out.

Note Before you can preview the Container application, you need to install and register at
least one OLE server application for Container to access.

The Step 7 version of Scribble is a good sample server application. Another example is the
HIERSVR sample (under MFC Samples in Books Online).

You can run either of these applications to register them as an OLE server directly from Books
Online. For more information, see "Previewing the Sample Applications."

~ To register the Scribble server application

• Run Scribble.exe directly from Books Online, or build and run Scribble.exe from
the sample source files for Step 7.

Note To run an application from Books Online, see "Previewing the Sample Applications."
To install the Sample files, see "Installing the Sample Files."

Running Scribble briefly as a stand-alone application registers it in the system
registry as an OLE server.

201

Tutorials

202

~ To build and execute the newly created Container application

1 From the Build menu, choose Execute Container.exe.

2 Respond Yes when prompted with the message box that asks whether you want to
build the executable.

Visual C++ builds and then executes Container.exe.

At this point, Container already has many of the features you saw in the preview of
the completed Container application, but it is missing several capabilities, such as:

• Inserting more than one OLE object

• Selecting outside of the OLE object (back in the Container area of the document)

You will add this and other functionality during this tutorial. First, see for yourself
the built-in capabilities of the skeleton Container application.

~ To create a new Scribble drawing within Container

1 From the Edit menu, choose Insert New Object.

2 In the Insert Object dialog box, select the "Scribb Document" from the Object
Type box.

3 Click OK.

A new Scribble object is activated in place. No additional code is required to
implement the Insert New Object command on the Edit menu. For more
information on in-place activation, see "Activation" in Programming with MFC.

Notice how Container's menu is merged with Scribble's and how Container's
toolbar is replaced by one provided by Scribble. Again, this is already working so
no additional code is required here.

~ To edit the in-place activated object

1 Drag the mouse to draw in the embedded Scribble object.

2 Try out Scribble's menu and toolbar commands in place, such as the Pen Width
command.

3 Click outside the Scribble object.

Nothing happens because Container does not yet support hit testing and selection.
(Hit testing code determines the location of the cursor in the application.)

4 Press ESC to deactivate the Scribble object.

Notice that the user interface (ESC) for deactivating the selected OLE object is
already incorporated into the skeleton AppWizard-created application.

Chapter 14 Implementing Basic OLE Container Features

5 Click the Scribble object.

Again, nothing happens because Container does not yet support hit testing and
selection. Note, however, that the AppWizard-provided application always has its
sole OLE object selected. Thus you can use the OLE verb command in the Edit
menu to reactivate the Scribble object.

6 From the Edit menu, choose "Scribb Object" and from the cascading menu,
choose Edit.

The Edit verb activates the object in place. (The Open verb fully opens the
Scribble server.) For more information on OLE verbs, see the article "Activation:
Verbs" in Programming with MFC.

Note that the Scribble server provides the tracker rectangle; Container provides
the tracker only when the object is not activated in place.

7 Exit Container.

In summary, the AppWizard-provided container application already has a lot of OLE
container functionality, but it is still missing some basics that are implemented in the
remainder of this tutorial. For more information on creating a new OLE application,
see the article "AppWizard: Creating an OLE Visual Editing Application" in
Programming with MFC.

Examining AppWizard-Provided Code
The following description of most of the container-specific code provided by
AppWizard will help you gain a preliminary understanding of how MFC OLE
container support works. In addition, if you choose to add OLE container support to
an already existing MFC application, this description will help you identify the code
you need to manually add to your application.

CContainerApp
Tip Use ClassView to jump to the CConta; ne rApp: : In; tIns ta nce code we're about
to examine.

AppWizard provides the application's In; tInstance function as follows:

• Initializes the OLE libraries by calling AfxOlelnit.

• Calls CDocTemplate::SetContainerInfo to assign the menu and accelerator
resources that are used when an embedded item is activated in place. App Wizard
gives the menu and accelerator resources the same identification:
IDR_CONTRTYPE_CNTR_IP.

The menu looks like this:

File I I Window

The two separator bars in the menu tell the framework where to insert pop-up
menus provided by the server when the embedded item is activated in place.

203

Tutorials

204

For more information on how separator bars work, see "Menus and Resources:
Menu Merging" in Programming with MFC.

The accelerator resource reflects the fact that fewer accelerators are provided by
the container application when an embedded item is activated in place. The reason
for this is that the server provides accelerators specific to the activated item.

CContainerView
The member CContai nerltem* m_pSel ecti on points to the currently selected
OLE object. If no object is selected, its value is NULL.

The AppWizard-provided implementation of OnDraw relies on the simple assumption
that there is only one object to be drawn, namely the sole m_pSe 1 ect i on object.
Later this implementation is replaced with code that draws the multiple OLE client
items (OLE embedded objects) contained in the document.

Tip Use ClassView to jump to the On Draw member function of class CConta i nerVi ew
and examine the code.
void CContainerView::OnDraw(CDC* pDC)
{

if (m_pSelection == NUll)
(

POSITION pos = pDoc->GetStartPosition():
m_pSelection = (CContainerItem*)pDoc->GetNextClientItem(pos):

if (m_pSelection != NUll)
m_pSelection->Draw(pDC. CRect(10. 10. 210. 210»:

The App Wizard-provided implementation of IsS e 1 e c ted returns TRUE if the
specified CObject is the m_pSe 1 ect i on object. This code is used without changes
for the Container application, which has a simple single-selection user interface. For
an example of multiple selection, see the DRA WCLl sample application.

Tip Use ClassView to jump to the Is Se 1 ected member function, and examine the code.
BOOl CContainerView::IsSelected(const CObject* pDocItem) const
{

II The implementation below is adequate if your selection consists
II of only CContainerItem objects. To handle different selection
II mechanisms. the implementation here should be replaced.

II TODO: implement this function that tests for a selected OLE
II client item

return pDocItem == m_pSelection:

Chapter 14 Implementing Basic OLE Container Features

OnlnsertObject is the command handler for the Insert New Object command on the
Edit menu. The App Wizard-provided implementation creates a standard
COlelnsertDialog object and calls up the dialog box. It then creates a
COleClientltem-derived object and calls the Createltem member function of the
COlelnsertDialog object to create the embedded object using the information
specified by the user. For more information, see the articles "Containers: Client
Items" and "Dialog Boxes in OLE" in Programming with MFC.

void CContainerView::OnlnsertObject()
{

II Invoke the standard Insert Object dialog box to obtain
II information for new CContainerltem object.
COlelnsertDialog dlg;
if (dlg.DoModal() !- IDOK)

return;

BeginWaitCursor();

CContainerltem* pltem - NULL;
TRY
{

II Create new item connected to this document.
CContainerDoc* pDoc - GetDocument();
ASSERT_VALID(pDoc);
pltem - new CContainerltem(pDoc);
ASSERT_VALID(pltem);

II Initialize the item from the dialog data.
if (!dlg.Createltem(pltem»

AfxThrowMemoryException(); II any exception will do
ASSERT_VALID(pltem);

II If item created from class list (not from file) then launch
II the server to edit the item.
if (dlg.GetSelectionType() -- COlelnsertDialog::createNewltem)

pltem-)DoVerb(OLEIVERB_SHOW, this);

ASSERT_VALID(pltem);

II As an arbitrary user interface design, this sets the
II selection to the last item inserted.

II TODO: reimplement selection as appropriate for your
II application

m_pSelection - pltem; II set selection to last inserted item
pDoc-)UpdateAllViews(NULL);

CATCH(CException, e)
{

205

Tutorials

206

if (pItem 1- NULL)
{

ASSERT_VALID(pItem);
pItem-)Delete();

}

AfxMessageBox(IDP_FAILED_TO_CREATE);

EndWa itCursor () ;

The App Wizard-provided implementation of ceo n t a i n e r View: : 0 n Set Foe U S

changes the focus from the view to an embedded OLE item if the embedded item is
currently activated in place. This is exactly the implementation needed by Container
and by most container applications.

void CContainerView::OnSetFocus(CWnd* pOldWnd)
{

COleClientItem* pActiveItem
- GetDocument()-)GetInPlaceActiveItem(this);

if (pActiveItem 1= NULL &&

{

}

pActiveItem-)GetItemState() -- COleClientItem::activeUIState)

II need to set focus to this item if it is in the same view
CWnd* pWnd - pActiveItem-)GetInPlaceWindow();
if (pWnd 1- NULL)
{

}

pWnd-)SetFocus();
return;

II don't call the base class

CView::OnSetFocus(pOldWnd);

The App Wizard-provided implementation of ceo n t a i n e r View: : 0 n S i z e
determines if there is an OLE item (COleClientltem) currently activated in place. If
so, the COleClientltem is notified that the clipping rectangle of the item has
changed. This allows the server to know how much of the object is visible. When the
size of the window changes, so does the size of the clipping rectangle. For example,
HIERSVR uses this mechanism to implement scrolling and keyboard movement
correctly.

void CContainerView::OnSize(UINT nType. int ex. int cy)
{

}

CView::OnSize(nType. ex. cy);
COleClientItem* pActiveltem

- GetDocument()-)GetlnPlaceActiveltem(this);
if (pActiveltem 1- NULL)

pActiveltem-)SetltemRects();

Chapter 14 Implementing Basic OLE Container Features

CContainerltem
Class CConta i ner Item is derived from COleClientItem. From the container
application's perspective, a COleClientItem object represents an OLE embedded
item, something it can draw and edit. The life of this object spans the life of the
container document, as long as the particular item is embedded in the document. A
container application typically creates a COleClientItem object in its implementation
of the Insert Object command. Indeed, the implementation of
C Con t a i n e r View: : 0 n Ins e r t 0 b j e c t provided by App Wizard does create the
C Con t a i n e r I t em object, as explained earlier. The application explicitly deletes a
COleClientItem object only in certain cases, such as when the user presses DEL when
this item is selected or when the entire containing document is destroyed. For more
information, see the article "Containers: Client Items" in Programming
withMFC.

The AppWizard-provided implementation of CConta i ner Item: : OnChange simply
calls OnChange in the base class, COleClientItem, and then, just to be safe,
invalidates all views of the document.

Tip Use ClassView to jump to the 0 n C han 9 e handler function of class ceo n t a i n e r I tern.

void CContainerItem::OnChange(OLE_NOTIFICATION nCode. DWORD dwParam)
{ ,

ASSERT_VALID(this);

COleClientItem::OnChange(nCode. dwParam);

II When an item is being edited (either in-place or fully open)
II it sends OnChange notifications for changes in the state of the
II item or visual appearance of its content.

II TODO: invalidate the item by calling UpdateAllViews
II (with hints appropriate to your application)

GetDocument()-)UpdateAllViews(NULL);
II for now just update ALL viewslno hints

The framework calls COleClientItem::OnGetItemPosition during in-place
activation when OLE needs to determine the location of the item. The App Wizard
provided implementation arbitrarily sets the rectangle of the item to (10, 10,210,
210). Later this implementation is changed to reflect the actual position and size of
the embedded item.

void CContainerItem::OnGetItemPosition(CRect& rPosition)
{

ASSERT_VALID(this);

II During in-place activation. CContainerItem::OnGetItemPosition
II will be called to determine the location of this item. The
II default implementation created from AppWizard simply returns a
II hard-coded rectangle. Usually. this rectangle would reflect the

207

Tutorials

}

II current position of the item relative to the view used for
II activation. You can obtain the view by calling
II CContainerltem::GetActiveView.

II TODO: return correct rectangle (in pixels) in rPosition

rPosition.SetRect(10. 10. 210. 210):

The framework calls COleClientltem::OnChangeltemPosition on behalf of a server
to change the position of the in-place window, usually as a result of the server
window being resized or the extent of the server window being changed. The
AppWizard-provided implementation of the OnChange I temPos it i on function
calls the base class COleClientltem::OnChangeltemPosition, which in tum calls
COleClientltem: :SetltemRects to move or resize the item to the new position
or size.

BOOl CContainerltem::OnChangeltemPosition(const CRect& rectPos)
{

ASSERT_VAlID(this):

II During in-place activation CContainerltem::OnChangeltemPosition
II is called by the server to change the position of the
II in-place window. Usually. this is a result of the data in the
II server document changing such that the extent has changed or as
II a result of in-place resizing.
II
II
II
II

The default here is to call the base class. which will call
COleClientltem::SetltemRects to move the item
to the new position.

if (!COleClientltem::OnChangeltemPosition(rectPos»
return FALSE:

II TODO: update any cache you may have of the item's
Ilrectanglelextent

return TRUE:

Implementing the OLE Client Item
Rectangle

208

The AppWizard-provided implementation of CContai nerItem does most of the
work needed for Contain, but some of its functionality needs to be enhanced.

~ To implement the OLE client item rectangle

1 Declare m_rect in the public attributes section of ContainerItem.h:

CRect m_rect: II position within the document

Chapter 14 Implementing Basic OLE Container Features

Tip Use ClassView to jump to the definition of class CContainerltem.

The App Wizard-provided implementation of C Con t a i n e r I t em assumed an
arbitrary rectangle that locates the object in the container document. A CRect is
needed to store the location and size of the object.

2 Initialize m_rect in the CConta i ne r I tern constructor in ContainerItem.cpp (you
. can jump to the constructor from ClassView). Replace the IffODO comment with

the following code:

m_rect.SetRect(10, 10, 50, 50):

3 Use ClassView to jump to OnGet I temPos it i on, and replace its default
implementation with the following code (leave the ASS E RT _VA LID (t his) line):

II return rect relative to client area of view
rPosition - m_rect:

The AppWizard-provided implementation arbitrarily sets the rectangle to (l0, 10,
210,210) when requested by the framework. Because the rectangle for each
CConta i ner Item item is now being tracked by CRectTracker, the framework's
request is satisfied by returning the CRect member, rn_rect.

In Container Step 2, this implementation is replaced with one that allows the
server to negotiate the size of the object.

Complete the implementation of 0 n C han 9 e I tern P 0 sit ion by adding the
following code in place of the II TODO comment:

GetDocument()-)UpdateAllViews(NULL):
m_rect - rectPos:

II mark document as dirty
GetDocument()-)SetModifiedFlag():

The framework calls COleClientltem::OnChangeItemPosition on behalf of a
server to change the position of the in-place window. Replace the AppWizard stub
below with the marked lines. The C Con t a i n e r I tern updates its CRect rn_ r e c t
according to the value requested by the framework. This means that the container
document has changed. Thus views need to be notified and the document needs to
be marked as dirty according to normal framework document/view rules.

In Container Step 2, the simple UpdateAIIViews call is replaced with smart
invalidation.

4 Serialize the CRect m_rect member variable in
CContainerItem::Serialize .

• Replace the IffODO comment for storing code with:

ar « m_rect:
• Replace the IffODO comment for loading code with:

ar » m_rect:

209

Tutorials

Implementing Hit Testing and Selection

210

The AppWizard-provided skeleton application initially supports only one embedded
object. This part of the tutorial adds support for multiple objects by implementing hit
testing and selection. Hit testing determines which of the multiple objects lies at a
given point.

In the next two procedures, you'll use ClassView to add two helper functions to class
CConta i nerVi ew: Hi tTes t I terns, and SetSe 1 ect i on. These functions
implement hit testing and selection.

~ To implement hit testing

1 In Class View, point your cursor at the C Con t a i n e r View class icon and click the
right mouse button.

2 From the pop-up menu, choose Add Function.

The Add Member Function dialog box appears.

3 Fill in the dialog box as follows:

• In the Function Type box, type CContai nerltern*.

• In the Function Declaration box, type the following:

HitTestItems(CPoint point)

• In the Access area, select Public.

• Click OK.

Visual c++ adds the declaration to the header file and creates a skeletal definition
in the implementation file.

4 In ContainerView.cpp, type the following code to fill in the function definition for
Hi tTestlterns:

CContainerDoc* pDoc = GetDocument();
CContainerItem* pItemHit = NULL;
POSITION pos = pDoc-)GetStartPosition();
while (pos !~ NULL)
{

CContainerItem* pItem ~ (CContainerItem*)pDoc
)GetNextItem(pos);

if (pItem-)m_rect.PtInRect(point))
pItemHit = pItem;

return pItemHit; II return top item at point

~ To implement selection

1 Repeat steps 1 and 2 from the previous procedure to invoke the Add Member
Function dialog.

2 Fill in the dialog box as follows:

• In the Function Type box, type voi d.

Chapter 14 Implementing Basic OLE Container Features

• In the Function Declaration box, type the following:

SetSelection(CContainerItem* pItem)

• In the Access area, select Public.

• Click OK.

3 In ContainerView.cpp, fill in the implementation code:

II close in-place active item
if (pItem =- NULL II m_pSelection 1- pItem)
{

COleClientltem* pActiveItem
= GetDocument()-)GetInPlaceActiveItem(this):

if (pActiveItem 1- NULL && pActiveItem 1- pItem)
pActiveItem-)Close():

Invalidate():
m_pSelection - pItem:

4 Save the header and implementation files.

The above implementation is "lazy" in that it invalidates the entire client area of the
view whenever the selection changes. In Container Step 2, this implementation is
replaced with smarter invalidation.

Implementing Activation by Using a
Mouse Click

Container has a standard user interface for selecting and activating embedded objects.
A single click selects an object; a double-click activates it. If the object is selected, the
user can move or resize it, or in general, manipulate the object as a whole. If the
object is activated in place, the user can edit it. For more information, see
"Activation" in Programming with MFC.

Implementing the OnLButtonDown handler so that a single click selects the
embedded object follows this scheme:

• Call Hi tTestltems to find the CContai nerltem at the point where the mouse
was clicked.

• Set the selection to be this CContai nerltem. Note, if no CContai nerltem is
located at the point where the mouse was clicked, nothing (NULL) is selected.

• If something is selected, set up a tracker rectangle (CRectTracker) around the
selected object. A CRectTracker object is short lived. It exists only during the
time a mouse event is being handled, or as you will see later, during the time a
window is being repainted. In the case of a single click, the CRectTracker paints
a rectangle with resize handles around the object.

211

Tutorials

212

If the item is clicked, CRectTracker::Track captures the mouse, enabling the
user to drag the tracker rectangle around on the screen and to:

• Resize the item if the click was on a handle.

• Drag the item if the click was inside the rectangle.

When the user releases the mouse button, CRectTracker updates its public
member variable, m_rect, which represents the new size of the object. For more
information, see "Trackers" in Programming with MFC.

• If the user has resized the object (indicated by a value of TRUE being returned
from CRectTracker::Track), update the rn_rect of the CConta i ner I tern
object.

~ To implement the OnLButtonDown mouse handler

1 With ContainerView.cpp open in the editor, use WizardBar to add the
WM_LBUTTONDOWN handler for CContai nerVi ew.

2 Implement CConta i ne rVi ew: : On LButton Down in ContainerView.cpp by
replacing the \\TODO comments inside the skeleton handler code that WizardBar
generates with the following code.

For now, the entire client area of the view is invalidated. Smarter invalidation is
implemented in Step 2.

CContainerItem* pItemHit - HitTestItems(point);
SetSelection(pItemHit);

if (pItemHit !- NULL)
{

CRectTracker tracker;
SetupTracker(pItemHit, &tracker):

UpdateWindow();
if (tracker.Track(this, pOint»
{

}

Invalidate();
pItemHit-)m_rect - tracker.m_rect;
GetDocument()-)SetModifiedFlag();

The helper function SetupTracker sets up the styles of the tracker rectangle
according to the state of the C Con t a i n e r I t em object, such as whether it has been
selected.

~ To implement the helper function CContainerView::SetupTracker

1 In ClassView, select the icon for class CConta i nerVi ew, and click the right
mouse button.

2 From the pop-up menu, choose Add Member Function.

Chapter 14 Implementing Basic OLE Container Features

3 Fill in the Add Member Function dialog as follows:

• In the Function Type box, type voi d.

• In the Function Declaration box, type:

SetupTracker(CContainerItem* pItem. CRectTracker* pTracker)

• In the Access area, select Public, and choose OK.

4 Implement the helper function with the following code:

pTracker-)m_rect - pItem-)m_rect:

if (pItem -- m_pSelection)
pTracker-)m_nStyle 1- CRectTracker::resizeInside:

if (pItem-)GetType() -- OT_LINK)
pTracker-)m_nStyle 1- CRectTracker::dottedLine:

else
pTracker-)m_nStyle 1- CRectTracker::solidLine:

if (pItem->GetItemState() -- COleClientItem::openState II
pItem-)GetItemState() -- COleClientItem::activeUIState)

pTracker-)m_nStyle 1- CRectTracker::hatchInside:

The OnLButtonDblClick handler needs to be implemented so that if the user
double-clicks, the object is opened (OLEIVERB_OPEN). How the object is opened
depends on whether the server supports in-place editing. If the user presses CTRL

while double-clicking, the Open verb of the object should be called. Otherwise, call
the primary verb, the meaning of which is determined by the server.

~ To implement the OnLButtonDblClick mouse handler

1 Use WizardBar to add the WM_LBUTTONDBLCLK handler to
CContai nerVi ew.

2 Implement CConta i nerVi ew: : On LButtonDb 1 Cl kin ContainerView.cpp by
replacing the \\TODO comment inside the skeleton handler code that WizardBar
generates with the following code:

OnLButtonDown(nFlags. point):

if (m_pSelection !- NULL)
{

m_pSelection-)DoVerb(GetKeyState(VK_CONTROL) < 0 ?
OLEIVERB_OPEN : OLEIVERB_PRIMARY. this):

213

Tutorials

Implementing Tracker Rectangles for
Resizing and Moving Objects

When the user moves the cursor over a selected object, the cursor changes its shape to
indicate the kind of manipulation available to the user. For example, if the cursor is
over the resize handle at the upper-middle or lower-middle side of the tracker
rectangle, the cursor changes to a two-way vertical arrow to indicate that the user can
drag the upper or lower edge of the object. The framework's CRectTracker class
implements this. All you need to do is call CRectTracker::SetCursor.

~ To implement special cursors for the tracker

1 Use WizardBar to add a WM_SETCURSOR handler for CConta i nerVi ew.

2 Replace the highlighted \\TODO comment with the following code to implement
the CConta i nerVi ew: : OnSetCu rs or handler:

if (pWnd -- this && m_pSelection !- NULL)
{

}

II give the tracker for the selection a chance,
CRectTracker tracker;
SetupTracker(m_pSelection. &tracker);
if (tracker.SetCursor(this. nHitTest»

return TRUE;

Note Your code should come before, but not replace, the call to the base class (CView)
that Wizard Bar adds to the skeleton handler:

return CView::OnSetCursor(pWnd. nHitTest. message);

Drawing the Embedded Objects

214

The AppWizard-provided implementation of CConta i nerVi ew: : OnDraw simply
draws the one embedded object pointed to by m_pSe 1 ect i on. Now that Container
supports mUltiple embedded objects, OnDraw must be reimplemented accordingly.

~ To support drawing of multiple embedded objects

• Use ClassView to jump to the OnDraw function in class CConta i nerVi ew.
Replace the implementation provided by AppWizard with the following code (start
after the ASSERT statement): .

II draw the OLE items from the list
POSITION pos = pDoc-)GetStartPosition();
while (pos !- NULL)
{

II draw the item
CContainerItem* pItem - (CContainerItem*)pDoc

)GetNextItem(pos);
pItem-)Draw(pDC. pItem-)m_rect);

Chapter 14 Implementing Basic OLE Container Features

II draw the tracker over the item
CRectTracker tracker;
SetupTracker(pltem. &tracker);
tracker.Draw(pDC);

Again, a CRectTracker object is used to draw the rectangle and possibly resize
handles around the embedded object. The CRectTracker object lives only long
enough to draw during this particular repaint. Another CRectTracker object was
used, as you saw above, to handle a click on one of the resize handles. Yet another
CRectTracker object was used to change the shape of the cursor when it was over
one of the resize handles. Each of these CRectTracker objects is short lived; that is,
they are automatic (local) variables of the respective Windows event handler. They
were all initialized with the common code in SetUpTracker.

Deleting Embedded Objects
Deleting an embedded object is as simple as calling COleClientItem.::Delete from a
handler for the Clear command on the Edit menu pop up in the I D R_ CON T RTY P E
menu.

~ To delete an embedded object

1 Use the menu editor to add a Delete command and. separator to the Edit menu in
the I DR_CONTRTYPE menu resource:

Edit

Paste &Special

&Delete

Assign the standard framework command ID, that is ID_EDIT_(::LEAR, ,to the
Delete command. Note that the command prompt is already defined for you by the
framework:

Erase the selection\nErase

(The prompt doesn't show until you're out of edit mode for this. menu command.)

2 Save the resource file, and if you like, close it.

3 Using the WizardBar, create a pair of ON_COMMAND and
ON_UPDATE_COMMAND_UI handlers for ID_EDIT_CLEARin
Container View.cpp.

215

Tutorials

4 Implement OnEdi tCl ea r as follows:

if (m_pSelection !- NULL)
{

}

m_pSelection->Delete():
m_pSelection - NULL:
GetDocument()->UpdateAllViews(NULL):

5 Implement OnUpdateEdi tCl ea r as follows:

pCmdUI->Enable(m_pSelection !- NULL):

To delete an embedded object in a container, simply call the object's
COleClientItem: :Delete function.

Building and Running Container Step 1

216

Build Container Step 1. When it compiles and links successfully, run the program.
Here are some things to try:

• From the Edit menu, choose Insert New Object to create a new Scribble drawing
within the Container document. When the Insert Object dialog box appears, select
Scribb Document in the Object Type box.

Notice that the Scribble object initially has a size of (10, 10,50,50), as determined
by the CConta i ner I tern constructor. Container does not consult the server about
the initial size of the object.

• Resize the object to make it bigger and draw in the new object.

• Click outside the Scribble object. It is now properly deselected.

• Click the Scribble object.

Selection now works, and the cursor changes to a four-way arrow over the object.

• Drag the object around, and resize it.

Rectangle tracking is now working.

At this point you can try to insert linked items:

• Start HIERSVR stand-alone, create a file, and save it to disk. (For information on
how to run a sample program from Books Online, see "Previewing the Sample
Application. ")

• Close HIERSVR.

• From the Container Edit menu, choose Insert New Object.

Chapter 14 Implementing Basic OLE Container Features

• Choose the Create From File option.

• Type the name of the HIERSVR file just created, or use the Browse button to
select it.

• Choose the Link check box.

• Click OK.

You will see that the item now has a dashed border, and that double-clicking the item
opens it instead of activating it, as would be expected from linked items.

This completes Step 1 of Contain. In Chapter 15, "Refining' OLE Container
Functionality," you will add the Copy and Paste commands to the Edit menu,
implement smart invalidation, and implement better coordination with the server to
determine the size of contained objects.

217

C HAP T E R 1 5

Refining OLE Container
Functionality

As implemented in Step 1, Container is almost fully functional as a general-purpose
OLE container application, but it needs some refinement. To accomplish this, Step 2
adds the following:

• Implementation of the Copy and Paste commands on the Edit menu.

• Implementation of smart invalidation that optimizes Container to redraw only
those objects that need to be redrawn, rather than redrawing all objects whenever
one is changed.

• Better coordination with the server to determine the size of contained objects.

To demonstrate why this is necessary, you will be asked to run Step 1 of Container.
For that reason, you should save the Step 1 version of CONTAINER.EXE before
you start working on Step 2.

You will probably need to make similar refinements in your container applications,
although the details may vary.

Adding Command Handlers for
Copy and Paste

AppWizard has already added the Copy and Paste menu items to Container's Edit
menu, but these commands still need to be implemented. The COleDocument
implementation already provides an UPDATE_COMMAND_UI handler for the
Paste command. This handler enables the Paste command if there is anything on the
Clipboard.

~ To implement the Copy command

1 Open ContainerView.cpp in a text editor window.

2 From the WizardBar IDs drop-box, choose ID_EDIT_COPY.

219

Tutorials

220

3 Add both the COMMAND and UPDATE_COMMAND_UI handlers for
ID_EDIT_COPY, and accept the default function names, On Ed i tCopy and
OnUpdateEdi tCopy, respectively.

4 To implement the Copy command on the Edit menu, fill in the skeleton handler
that WizardBar creates with the code below:

if (m_pSelection !- NULL)
m_pSelection-)CopyToClipboard();

The Copy command on the Edit menu copies the contents of the current selection
to the Clipboard. Implementing the Copy command is easy because the framework
function COleClientItem::CopyToClipboard does all the work.

S Fill in the skeleton handler for OnUpdateEdi tCopy with the following code:

pCmdUI-)Enable(m_pSelection !- NULL);

The UPDATE_COMMAND_UI handler for the Copy command enables the
command if there is an active selection; otherwise, the command is disabled.

~ To implement the Paste command on the Edit menu

1 With ContainerView.cpp still open in the editor, from the WizardBar IDs drop
down, choose ID_EDIT_PASTE.

2 From the Messages drop-list, choose COMMAND and accept the default name of
OnE d i t Pas t e to create the skeleton handler.

3 Implement the Paste command with the following code:

CContainerItem* pItem - NULL;

TRY
{

}

II Create new item connected to this document.
CContainerDoc* pDoc - GetDocument();
ASSERT_VALID(pDoc);
pItem - new CContainerItem(pDoc);
ASSERT_VALID(pItem);

II Initialize the item from clipboard data
if (!pItem->CreateFromClipboard(»

AfxThrowMemoryException(); II any exception will do
ASSERT_VALID(pItem);

II update the size before displaying
pItem-)UpdateFromServerExtent();

II set selection to newly pasted item
SetSelection(pItem);
pItem-)InvalidateItem();

CATCH(CException. e)
{

if (pItem !- NULL)

Chapter 15 Refining OLE Container Functionality

{

ASSERT_VALID(pItem):
pItem-)Delete():

}

AfxMessageBox(IDP_FAILED_TO_CREATE):
}

END_CATCH

The Paste command on the Edit menu is somewhat like the Insert New Object
command on the Edit menu in that it creates a new COleClientItem object. Compare
the above implementation of 0 nEd; t Pas t e with the one that App Wizard provided
for 0 n Ins e r t 0 b j e ct. Both share some code for constructing a new
CConta; nerItem.

The difference is that OnInsertObject initializes the item based on information
requested from the user by means of a COlelnsertDialog object as shown here:

II Initialize the item from the dialog data.
if (!dlg.CreateItem(pItem»

AfxThrowMemoryException(): II any exception will do
ASSERT_VALID(pItem):

II If item created from class list (not from file) then launch
II the server to edit the item.
if (dlg.GetSelectionType() -- COleInsertDialog::createNewItem)

pItem-)DoVerb(OLEIVERB_SHOW, this):

OnE d ; t Pas t e initializes the item from the Clipboard, using
COleClientItem::CreateFromClipboard as shown below:

if (!pItem-)CreateFromClipboard(»
AfxThrowMemoryException():

Using Smart Invalidation
The next task in Step 2 is to implement smart invalidation. Smart invalidation
involves several tasks:

• Defining the update hint

• Receiving the hint and invalidating the view

• Centralizing the sending of the update hint

• Invalidating selected and deselected objects

• Invalidating an object moved by the server

• Invalidating the tracked object

221

Tutorials

Define the Update Hint
The first task is to define the update hint.

~ To define the update hint

• Add the following two #define values to ContainerDoc.h, prior to the class
declaration:

tfdefine HINT_UPDATE_WINDOW 0.
tfdefine HINT_UPDATE_ITEM 1

The two #define HINT_values are used for the LPARAM [Hint value passed to
CConta i nerVi ew: : OnUpda te, which you'll create in the next step. The first
hint value, HINT_UPDATE_ WINDOW, has the framework's default [Hint value
of 0, which means "no hint": in other words, it is an instruction to invalidate the
entire client area of the view. The second, HINT_UPDATE_ITEM, is used to
invalidate the rectangle of the view's client area occupied by the COleClientltem
object. That rectangle is passed to OnUpdate using the pHint parameter.

Receive the Hint and Invalidate the View

222

The framework provides a mechanism for invalidating portions of a view by using
the [Hint and pHint parameters of CView::OnUpdate. This "update hint"
mechanism is described in the Scribble tutorial and is used in Container.

~ To receive the hint and invalidate the view

1 With ContainerView.cpp open in the editor, and CContainerView selected in the
WizardBar Object IDs drop-list, select OnUpdate in the Messages drop-list to
create the skeleton handler.

2 Accept the default handler name.

3 Implement OnUpdate with the following code:

switch (lHint)
{

case HINT_UPDATE_WINDOW: II invalidate entire window
Invalidate();
break;

case HINT_UPDATE_ITEM:
{

II invalidate single item

}

CRectTracker tracker;
SetupTracker«CContainerItem*)pH{nt. &tracker);
CRect rect;
tracker.GetTrueRect(rect);
InvalidateRect(rect);

break;

Chapter 15 Refining OLE Container Functionality

The rectangle to be invalidated for HINT_UPDATE_ITEM should include the
area that might be occupied by a tracker around the object. The implementation of
CConta i ne rVi ew: : OnUpdate takes this into account.

Centralize the Sending of Update Hints
There are several occasions when Container needs to send the
HINT_UPDATE_ITEM hint for a CContai nerltern object, for example, when the
object is selected, deselected, resized, or otherwise changed. The
HINT_UPDATE_ITEM hint must be passed to OnUpdate in conjunction with the
CObject* pHint parameter, which is a pointer to CConta i ner I tern. Thus, it makes
sense to have the CConta i ne r I tern object itself send the update hint by using the
document's Upda teA 11 Vi ews function. CConta i ne r I tern: : I nv ali date I tern is
a helper function that you can call whenever you want to send the hint.

~ To centralize the sending of update hints in the CContainerltem object

1 In Class View, point the cursor at the icon for class C Can t a i n e r I tern, and press
the right mouse button to invoke the pop-up menu for this class. .

2 Choose Add Function.

3 In the Add Member Function dialog:

• In the Function Type edit box, type va i d.

• In the Function Declaration edit box, type:

Invalidateltern()

• In the Access area, select Public, and click OK.

4 To implement CConta i ner I tern: : I nva 1 i dateltern, type the following code
inside the skeleton handler:

GetDocument()->UpdateAllViews(NULL. HINT_UPDATE~ITEM. this);

Note that the framework keeps track of which document object owns the·
C Can t a i n e r I tern object and therefore implements
CContainerltern::GetDocurnent.

Invalidate Selected and Deselected Objects
To eliminate unnecessary repainting whenever the user changes the selected object,
only the old and the new selected objects need to be invalidated. This results in
smarter repainting than simply invalidating the entire client area of the view.

~ To add update hints to selection code

• Use Class View to jump to the Set S e 1 e c t ion member function in
CConta i nerVi ew, and replace the following code:

Invalidate();
m_pSelection = pItem;

223

Tutorials

with this code:

II update view to new selection
if (m_pSelection !- pItem)
{

if (m_pSelection !- NULL)
OnUpdate(NULL, HINT_UPDATE_ITEM, m_pSelection);

m_pSelection - pItem;
if (m_pSelection !- NULL)

OnUpdate(NULL, HINT_UPDATE_ITEM, m_pSelection);
}

Invalidate Tracked Object
When the user clicks an object, the tracker needs to be drawn around the newly
selected object. This code invalidates the extra area occupied by the tracker.

~ To add update hints to OnLButtonDown

• Use ClassView to jump to the implementation of
CConta i nerVi ew: : On LButtonDown, and replace:

Invalidate();
pItemHit-)m_rect - tracker.m_rect;

with the following code:

pItemHit-)InvalidateItem();
pItemHit-)m_rect - tracker.m_rect;
pItemHit-)InvalidateItem();

Invalidate Object Moved by the Server

224

The framework calls COleClientItem::OnChangeItemPosition whenever the server
requests a change in the position of the in-place activated object. This is one of
several occasions for which you can implement smart repainting.

~ To send an update hint when the position of the CContainerltem object changes

• Use ClassView to jump to the implementation of
CConta i ner I tern: : OnChange I temPos it i on, and replace:

GetDocument()-)UpdateAllViews(NULL);
m_rect - rectPos;

with the following code:

InvalidateItem();
m_rect - rectPos;
InvalidateItem();

Chapter 15 Refining OLE Container Functionality

Coordinating with the Server to Determine
Size of Object

The following exercise demonstrates why Container needs to coordinate better with
servers to determine the size of embedded objects. For more information on OLE
containers and servers, see the article "OLE Overview: Containers and Servers" in
Programming with MFC.

~ To demonstrate why coordinating with the server is necessary

1 If you have not already run the HIERSVR sample, do so now. Run HIERSVR once
to register this OLE server application with OLE and then close it. (For
information on running sample applications directly from Books Online, see
"Previewing the Sample Applications.")

2 Similarly, run Step 1 of Container, but leave it running. (You can either use your
version, or the sample source version.)

3 From the Container Edit menu, choose Insert New Object.

4 Choose MFC Hierarchy List as the object type.

Notice that the initial size of the HIERSVR object is (10, 10, 50, 50), as
determined by the C Can t a i n e r I t em constructor. Container does not give
HIERSVR the opportunity to set the initial size of the object.

5 From HIERSVR's Edit menu, choose Add Node to add a second node.

Fill in a name for the node; the other options in the Add Node dialog box don't
matter for the purposes of this demonstration.

Notice that Container correctly increases the height of the object to accommodate
the new node. You can add more nodes, and Container continues to increase the
height of the object. In Step 1, the implementation of
CConta i ne r I tern: : OnCha nge I temPos it i on changes the height of the in
place activated object at the request of HIERSVR.

6 Deactivate the HIERSVR object, then click once to select it.

7 From the Edit menu, choose Hierarchy List Object, then choose Open from the
submenu.

This fully opens the HIERSVR server application. Arrange HIERSVR and
Container on the screen so you can see both applications at the same time.

S In HIERSVR, from the Edit menu choose Add Node to add another node.

Notice that the size of the object in Container does not change to accommodate the
new node. Rather, it stays the same size and compresses the nodes using a smaller
font, so that the N+ 1 nodes now occupy the same space as the original N nodes.
Add more nodes, and they become more and more compressed in the same space
in the container.

225

Tutorials

9 Close both applications.

What is happening here? Why does 0 n C han 9 e I tern Pas i t ion change the size of the
in-place window when a new HIERSVR node is added, but not if it is being updated
when HIERSVR is running fully opened?

The reason is that OnChange IternPos it i on is called by the framework only when
the object is in-place activated. The server temporarily provides the object with its
own in-place window and calls to give the container a chance to customize the size of
the in-place window.

When the server is fully opened, the situation is much different (although it appears
to be the same): When the server is fully opened, the object in the container is
selected but not activated in place. When the user edits the fully opened object so that
its natural size changes, as in the case of adding a node in HIERSVR, the server
indirectly (through the framework) calls CConta i ner I tern: : OnCha nge instead of
On C han 9 e I tern Pas i t ion. At this time, Container needs to find out the new natural
size of the object from HIERSVR. It does this by calling
COleClientltem: : GetCachedExtent.

COleClientltem::GetCachedExtent asks the server for the natural extent of the
object. The natural extent is the size of the object as it would appear on the printed
page (in MM_HIMETRIC units). In HIERSVR's case, the natural extent reflects (1)
the font size that the user can specify with the Change Font command on the Tree
menu, and (2) the number of nodes in the HIERSVR object.

The CConta i ner I tern: : OnCh a nge function is not the only place where Container
needs to call COleClientltem::GetCachedExtent to get the natural extent of the
object and then setthe rn_rect of the CConta i ner Item. Therefore, you will
implement the helper function UpdateFrornServerExtent as described in "Get the
Extent of the CContainerItem Object from the Server," following.

Get the Extent of the CContainerItem Object
from the Server

226

To get the extent of the C Can t a i n e r I t em object from the server, and update the
rn_rect of the container item, implement the helper function
CContainerItern::UpdateFrornServerExtent.

~ To get the extent of a CContainerltem object

1 In ClassView, point to the icon for class CConta i ner I tern, and click the right
mouse button.

2 From the pop-up menu, choose Add Function.

Chapter 15 Refining OLE Container Functionality

3 Fill in the Add Member Function dialog as follows:

• In the Function Type box, type vo; d.

• In the Function Declaration box, type the following:

UpdateFromServerExtent()

• Under Access, choose Public.

• Click OK.

4 In Containerltem.cpp, implement the helper function by entering the following
code:

CSize size:
if (GetCachedExtent(&size»
{

II OLE returns the extent in HIMETRIC units -- we need pixels
CClientDC dc(NULL):
dc.HIMETRICtoDP(&size):

II only invalidate if it has actually chariged and also only
II if it is not in-place active.
if (size !- m_rect.Size() && !IsInPlaceActive(»
{

II invalidate old, update, invalidate new
InvalidateItem():
m_rect.bottom - m_rect.top + size.cy:
m_rect.right - m_rect.left + size.ex:
InvalidateItem():

II mark document as modified
GetDocument()->SetModifiedFlag():

Update the CContainerItem Rectangle When the Item's
Natural Extent Changes

When the fully opened server (for example, HIERSVR) notifies the container about a
change (a new node) that affects the natural extent of the object, the
CConta; nerltem rectangle needs to be updated.

~ To update the CContainerltem rectangle when the item's natural extent changes

• Use Class View to jump to the implementation of 0 n C han 9 e in
C Con t a; n e r I t em, and replace the lines starting with the / rrODO code, with the
following code:

switch (nCode)
{

case OLE_CHANGED:
InvalidateItem():
UpdateFromServerExtent():

227

Tutorials

break;
case OLE_CHANGED_STATE:
case OLE_CHANGED_ASPECT:

InvalidateItem();
break;

Notice that the CConta i ner I tern object has to be invalidated whenever the server
sends a notification that the object has changed. The constant values that nCode can
assume are defined by the framework.

Update the Rectangle of a Newly Inserted Object
As a user-interface design decision in Container, the rectangle of a newly inserted
object is updated to reflect its natural extent, as determined by the server. A container
application can ignore the natural extent if, for example, you prefer to clip the object
in the rectangle.

~ To update the rectangle of a newly inserted object to its natural extent

• Insert the following code into CConta i nerVi ew: : On I nsertObj ect • just
before the comment / / If item created from class list ... :

pItem-)UpdateLink();
pItem-)UpdateFromServerExtent();

COleClientItem::UpdateLink is called so that if the server is fully open,
Conta i ner has a visual representation of the newly created item, even though the
item hasn't been changed by the user yet.

~ To implement smart invalidation of the newly inserted item

• In the same 0 n Ins e r t 0 b j e c t function, replace the code:

with

II TODO: reimplement selection as appropriate for your
II application
m_pSelection - pItem;
pDoc->UpdateAllViews(NULL);

SetSelection(pItem);
pItem->InvalidateItem;

Building and Running

228

Build the Step 2 version of Container. It now performs exactly as you previewed it in
Chapter 13.

C HAP T E R 1 6

Creating an OLE Automation Server

An "automation server" is an application that exposes programmable objects to other
applications, which are called "automation clients." Exposing programmable objects
enables clients to "automate" certain functions by directly accessing those objects and
using the services they make available.

Exposing objects is beneficial when applications provide functionality that is useful
for other applications. For example, a word processor might expose its spell-checking
functionality so that other programs can use it. Exposure of objects thus enables
vendors to improve their applications by using the ready-made functionality of other
applications. In this way, OLE automation applies some of the principles of object
oriented programming, such as reusability and encapsulation, at the level of
applications themselves.

More important is the support OLE automation provides to users and solution
providers. By exposing application functionality through a common, well-defined
interface, OLE automation makes it possible to build comprehensive solutions in a
single general programming language, such as Microsoft Visual Basic. instead of in
diverse application-specific macro languages.

This tutorial leads you through the basic steps of implementing an OLE automation
server. You will create a simple automation server application and test it using the
Autodriv sample application included in Visual C++.

If you want to learn about implementing an OLE automation client application, look
at the CALCDRIV sample application and its description in Samples \ MFC Samples
\ OLE Samples in Books Online.

Note This tutorial assumes that you are already familiar with Visual C++ and the basics of the
Microsoft Foundation Class Library (MFC). If you are not, follow the Scribble tutorial in
Chapters 2 through 11 before you begin this tutorial. The Scribble tutorial introduces important
class library concepts and techniques, and it demonstrates many aspects of Microsoft
Developer Studio-such as ClassWizard, AppWizard, WizardBar, ClassView, and many of the
built-in resource editors--that make developing your applications more streamlined and
intuitive.

229

Tutorials

The Tutorial Example: AutoClik
In this tutorial you will create AutoClik, a simple OLE automation server application.
When running as a stand-alone application, AutoClik does nothing but display some
text at the last point at which the user clicked the mouse. The user can change the
text displayed by specifying it in a dialog box. When running as an automation
server, AutoClik allows automation clients to simulate both the mouse clicking and
the changing of text (without bringing up the dialog box).

An automation server is not necessarily an OLE object server; AutoClik isn't.
AutoClik could have been implemented as both an automation server and an OLE
object server, but this tutorial focuses entirely on adding automation server
functionality to an application.

How Automation Clients Access Automation Server
Objects
For an automation client to drive an automation server, the client must gain
knowledge of one or more "dispatch interfaces" of the server. A dispatch interface is
the external programming interface of some grouping of functionality exposed by the
automation server. AutoClik provides two dispatch interfaces. The first exposes
AutoClik's mouse clicking and,text data entry functions. The second, introduced for
tutorial rather than practical reasons, represents a simple structure: a point given by x
and y coordinates.

A dispatch interface consists of two types of programming interfaces: properties and
methods. AutoClik exposes both. An automation client can get or set the x and y
properties representing the location of the text in AutoClik's window. Or an
automation client can 'set the x and y coordinates and the text all at once by using a
method with three parameters-x, y, and text.

To exercise AutoClik's automation functionality, you will use the Autodriv sample
application provided with Visual C++. Autodriv is a simple OLE Automation client
application. The following preview of AutoClik illustrates how you can drive an
automation server using Autodriv.

Preview of the AutoClik Application

230

Before you work through the steps of implementing AutoClik, try out the completed
application. This will help you appreciate OLE automation functionality 'in general,
and AutoClik's automation server functionality in particular, from a user's point of
view.

The first step is to register AutoClik with Windows. Just as with OLE object servers,
an OLE automation server must be registered before it can be driven by any
automation client.

Chapter 16 Creating an OLE Automation Server

~ To install and register the AutoClik automation server

1 Run Autoclik.exe from the sample source files for Step 3 (you can do this directly
from Books Online).

Note To install the Sample files, see "Installing the Sample Files." To run an application
from Books Online, see "Previewing the Sample Applications."

Running AutoClik briefly as a stand-alone application registers it in the system
registry as an OLE server.

2 Close AutoClik.

~ To preview AutoClik

1 Run Autodriv.exe from the sample source files.

This displays the AutoClik Test Driver dialog box shown in Figure 16.1.

Figure 16.1 AutoClikTest Driver Dialog Box

2 Arrange the open windows on your desktop, minimizing any as necessary, so that
AutoClik is visible next to Autodriv's window, without obscuring it.

Autodriv launches AutoClik on startup (Figure 16.2).

Figure 16.2 AutoClik Window Next to Autodriv Window

231

Tutorials

232

~ To explore the automation server features of AutoClik

1 Note that the X, Y, and Text fields in the AutoClik Test Driver window are
initially blank. To change this, click Get All.

The current AutoClik coordinates and text are now displayed in Autodriv's
window.

2 Click around in the AutoClik window.

Notice that the X, Y, and Text fields in Autodriv do not change. That is because
the automation is one direction between Autodriv and AutoClik. Although you can
implement an automation server to notify the automation client about changes,
such as the new coordinates in AutoClik, this feature requires that additional
callback/notification interfaces be established so that the automation client can
implement them.

3 From AutoClik's Edit menu, choose Change Text.

4 In the simple dialog box that appears, change the text to "hello", and click OK.

S In the Autodriv window, click Get All.

It now shows new X, Y, and Text values.

6 Change the X, Y, and Text fields in Autodriv, and then click Set All.

AutoClik accepts the changes.

7 Explore other Autodriv commands:

Command Description

Set X, Set Y

Get Position,
Set Position

Set Text

Set All

Accesses just the x or y coordinate of the text. The X and Y
properties of AutoClik's document dispatch interface are exposed
by using Get and Set methods. AutoClik's implementation of
SetX and SetY includes updating the window to reflect the
change.

Changes the x and y coordinates of the text by using a pointer to
AutoClik's second dispatch interface, which represents a Point.

Changes the Text property of AutoClik, which is directly
exposed as a string rather than by using a pair of Get and Set
functions. This means that when you choose the Set Text
command, AutoClik has no opportunity to detect the change as it
did when you chose the Set X, Set Y, or Set Pos; t; on
commands. Therefore, AutoClik does not immediately update its
window. To do so, you must then choose the Refresh Display
button.

Simultaneously changes AutoClik's X, Y, and T ext properties
through its SetA 11 Props method, which accepts these as three
parameters. AutoClik's implementation of SetA 11 Props
includes the immediate updating of the window.

Chapter 16 Creating an OLE Automation Server

Command

Get All

Refresh Display

Animate X & y

Animate Position

Description

Queries the X, V, and T ext properties of AutoClik, perhaps after
you have clicked around in the AutoClik window without
Autodriv's knowledge.

Updates AutoClik's window based on the most recent values of X,
V, and T ex t, which might have been previously set using
automation.

Updates AutoClik's x and y coordinates in 20 steps, by
individually updating the X property and then the V property.
Notice that the text moves horizontally, then vertically, then
horizontally, then vertically, and so on.

Updates AutoClik's x and y coordinates through its Point
interface. Because the Point interface updates both the X and V
values at the same time, the animation results in a smooth
diagonal movement of the text across AutoClik's window.

Overview of AutoClik Steps 1, 2, and 3
The AutoClik tutorial consists of three steps: STEPl, STEP2, and STEP3. The
sample source files contain a subdirectory for each step and each step's subdirectory
contains complete source files, and other files needed for the step. If you do not have
these files on your local drive, you can easily install them from within Books Online.
For more information, see "Installing the Sample Files."

In Step 1 (Chapter 17), you will learn how to:

• Create a skeleton OLE automation server using the OLE Automation option in
AppWizard.

• Change the external name of the dispatch interface created by App Wizard.

• Analyze the code created by AppWizard.

• Implement AutoClik so it can run as a stand-alone application.

In Step 2 (Chapter 18), you implement the document dispatch interface. You will
learn how to use Class Wizard to:

• Expose the CAutoC1 i ckDoc member variable m_pt by using the Get and Set
methods in AutoClik's document dispatch interface.

• Expose the CAutoC1 i ckDoc member variable m_str as a property in AutoClik's
document dispatch interface.

• Add automation methods for Refres hWi ndow, SetA 11 Props, and
ShowWi ndow.

233

Tutorials

234

In Step 3 (Chapter 19), you will implement the second Point interface and expose
AutoClik's X and Y values by using this Point interface. You will learn how to:

• Use ClassWizard to create a new CCmdTarget-derived class with a dispatch
interface.

• Implement one dispatch interface with reference to a second dispatch interface.

C HAP T E R 1 7

Enabling OLE Automation in an
Application

In Step 1 of AutoClik, you will:

• Create a skeleton OLE automation server using the OLE Automation option in
AppWizard.

• Change the external name of the dispatch interface created by App Wizard.

• Analyze the code created by AppWizard.

• Implement AutoClik so it can run as a stand-alone application.

• Build and run AutoClik.

Creating a Skeleton OLE Automation
Server

The following procedure describes values you will enter into the various App Wizard
dialog boxes in order to create the AutoClik skeleton files. You won't be entering a
value for every option that appears in these dialog boxes. For more information on
the other options, see Chapter 1, "Creating Applications Using AppWizard," in the
Visual c++ User's Guide.

~ To create a skeleton OLE automation server application

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace and click OK.

The New Project Workspace dialog box appears.

3 In the Name box, type AutoCl i k.

AppWizard creates a project directory with this name under the main (root)
directory specified in the Location box.

4 In the Type list box, make sure MFC App Wizard (exe) is specified.

235

Tutorials

236

5 If necessary, use the Location box to specify a different root directory for the
AutoClik project files that AppWizard creates under the AutoClik project
directory.

Depending on the directory you last worked in, you may want to change where the
Location box currently points to. You can use the Browse button to navigate to an
existing directory, or type a directory name directly into the Location box.
AppWizard creates this directory if it doesn't exist.

6 If any check boxes other than Win32 appear in the Platforms box, clear them.

7 Click Create.

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

8 Click Next in the dialog boxes for AppWizard Steps 1 and 2 to accept the default
options.

For more information on the various options that appear in these dialog boxes, see
Chapter 1, "Creating a New Application Using AppWizard," in the Visual C++
User's Guide.

9 In the AppWizard-Step 3 dialog box, select the OLE Automation check box.

10 Choose Next.

11 In the Step 4 dialog, choose the Advanced button.

The Advanced Options dialog box appears, with the Document Template Strings
page tab selected.

• In the File Extension box, specify ack.

The specified file extension is reflected in the Filter Name box.

• In the File Type ID box, edit it to read AutoClick.Document.

This identifier is initially created by App Wizard, based on the project name.
The OLE client application (such as Autodriv) uses this name to access the
automation object, or dispatch interface. This name corresponds to the
regFileTypeID string in the CDocTemplate::GetDocString function.

• Change the Mainframe caption to AutoClick (optional).

This string gets displayed in the title bar of the running application.

• In the Doc Type Name box, change AutoCI to AClick (optional).

Notice that the change is reflected in the File New Name (OLE Short Name)
box as well. This name corresponds to the fileNewName string in
CDocTemplate: : GetDocString.

• In the Filter Name box, change AutoCI files to AutoClick Files (optional).

Note The File Type 10 and Doc Type Name strings are discussed further in the next
section, "Analyzing the Dispatch Interface Name."

12 Click Close, and then click Next to accept the options for the Step 4 and 5 dialogs.

Chapter 17 Enabling OLE Automation in an Application

In the dialog box for AppWizard-Step 6, you can check and, if necessary, change
your project file and classnames. For the purposes of AutoClik, we'll just expand
the classnames for clarity. (This step is optional.)

13 Optionally, in the AppWizard-Step 6 dialog box, make the following changes:

• Change classname CAutoClikApp to CAutoClickApp.

• Change classname CAutoClikDoc to CAutoClickDoc. Change the header and
implementation files accordingly.

• Change classname CAutoClikView to CAutoClickView. Change the header and
implementation files accordingly.

14 Chose Finish.

You may be prompted with the following message:

"A unique class ID already exists in the registration database for this document
type. Us'e existing ID?"

This message appears if you ran the Step 3 version of AutoClik. Running
AutoClik adds an entry to the registry for its document type
(AutoClickDocument).

Note You can respond either Yes or No to the message dialog. If you respond No,
however, and then run your new version of AutoClik, you will need to fe-register
AutoClik before you can run the Autodriv sample, as described in "Preview of the
AutoClik Application." To re-register AutoClik, run the Step 3 source again.
Running a new AutoClik application overwrites the existing registry entry and
therefore invalidates the class ID Autodriv uses to identify this creatable OLE
object. Responding Yes tells AppWizard not to overwrite the existing registry
entry.

15 Respond as you choose to the message dialog.

The New Project Information dialog box appears, summarizing the settings and
features AppWizard will generate for you when it creates your project.

You might want to take a moment to examine the application type, classes, and
features that AppWizard automatically provides.

16 Click OK in the New Project Information dialog box.

AppWizard creates all necessary files, and opens the AutoClik project.

Analyzing the Dispatch Interface Name
The document template string resource is where MFC expects to find a lot of
information about an application or a particular document of an application, such as
default filename extensions of files saved by the application. If the application is an
automation server, MFC also expects to find information specific to OLE automation.

237

Tutorials

238

The name of the dispatch interface is a literal string that automation clients use to
access the automation server application. If you open the application's string
resource, you can look at, or change, this string.

~ To examine the document template string resource

• From ResourceView, expand the String Table folder and double-click the String
Table resource.

This opens the table of string resources for your application.

The ID for the string resource that contains the name of the dispatch interface is
IDR_<Doc Type Name>TYPE, created by AppWizard, which is registered in the
application's In; tInstance. The Doc Type Name appears in the AppWizard-Step
4 Advanced Options dialog box (see step 11 of the procedure, "Creating a Skeleton
OLE Automation Server.") For AutoClik, the string ID is I D R_AC L I C KTY P E.

To view the strings for a particular resource, open the String Properties page.

~ To open the string properties page

• With the application string table open, choose Properties from the Edit menu.

The String Properties window opens, with the properties for the selected string
displayed.

You can see the strings for I D R_AC L I C KTY P E in the Caption area of the String
Properties dialog, as illustrated in Figure 17.1.

Figure 17.1 IDR_ACLlCKTYPE in the String Editor

This string resource consists of several strings separated by newline characters (\n). It
contains the following strings: . .

\nAClick\nAClick\nAutoClick Files (*.ack)\n.ACK\nAutoClick.Document\nAClick Document

Chapter 17 Enabling OLE Automation in an Application

The string IAutoClickDocument" is the name, provided by AppWizard, (and
modified by you) of the automation object, or dispatch interface. You modified this
value in the Step 4 Advanced Options dialog box, in the File Type ID box. Autodriv
refers to this object name in the OnCreate function of the dialog class:

int CAutoDrivDlg::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

}

if (CDialog::OnCreate(lpCreateStruct) -- -1)
return -1: II fail

if (! m_a utoCl i kObj ect. C reateDi spatch (_ T(" AutoCl i ck. Document")))
{

AfxMessageBox(IDP_CANNOT_CREATE_AUTOCLICK):
return -1: II fail

m_autoClikObject.ShowWindow():

return 0: II success

Note An automation server may have more than one automation object. AutoClik will have
two automation objects. The initial AppWizard-created application has only one automation
object, which is the one identified in the document template string resource described above.

Analyzing App Wizard-Provided Code
Before implementing AutoClik's basic behavior, let's look at the AppWizard
provided code that enables automation server support in AutoClik

Application Class of an Automation Server
The work of enabling an MFC OLE Automation server application is done mostly in
the In it Ins ta n ce member function of your application's CWinApp-derived class.
AutoClik's application class is found in AutoClikcpp. AppWizard provides this code
for you.

All MFC OLE applications require the following call to AfxOlelnit, which initializes
the OLE DLLs so they can call OLE interfaces:

if (!AfxOleInit(»
{

}

AfxMessageBox(IDP_OLE_INIT_FAILED):
return FALSE:

239

Tutorials

All MFC OLE automation server applications, as well as OLE object servers, require
an OLE Class ID. The call to the ConnectTemplate member function of class
COleTemplateServer registers the Class ID with Windows.

static const CLSID BASED_CODE clsid -
{ 0x2106e720. 0xaef8. 0x101a. { 0x90. 0x5. 0x0. 0xdd. 0xl. 0x8. 0xd6. 0x51 } }:

II Connect the COleTemplateServer to the document template.
II The COleTemplateServer creates new documents on behalf
II of requesting OLE containers by using information
II specified in the document template.
m_server.ConnectTemplate(clsid. pDocTemplate. FALSE):

Note The numbers shown in the clsid line are generated at random, so the numbers in your
code will most likely be different from the ones shown here.

A framework application that is an OLE automation server can use
COleTemplateServer::UpdateRegistry to register itself as an OLE Automation
server (OLE Application Type: OAT_DISPATCH_OBJECT). This AppWizard
provided code is optional.

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT):
COleObjectFactory::UpdateRegistryAll():

Alternatively, you can register your application by using one of the two other methods
described in "Creating an OLE Server":

• Manually merge the AppWizard-provided AUTOCLIK.REG registration file into
the Windows registration file, using REGEDIT.

• Programmatically merge the registration as one of the tasks of your application's
installation program.

Document Class of an Automation Server

240

When you choose the Automation Support option in AppWizard, it not only enables
the application as a whole to support automation but also specifically enables the
document class (in AutoClickDoc.cpp) to expose properties and methods by using
automation.

The document class provided by App Wizard is derived from CDocument; therefore,
your application's document class is derived indirectly from CCmdTarget. To be
exposed through automation, a CCmdTarget-derived class must call its member
function, EnableAutomation, from its constructor and must also include a dispatch
map. Dispatch maps are like MFC message maps in that you do not edit them
directly. AppWizard and ClassWizard edit them for you.

Chapter 17 Enabling OLE Automation in an Application

The AppWizard-provided dispatch map in the document's header file looks like this:

11{{AFX_DISPATCHCCAutoClickDoc)
II NOTE - the ClassWizard will add and remove member
II functions here.
II DO NOT EDIT what you see in these blocks of generated code

II}}AFX_DISPATCH
DECLARE_DISPATCH_MAPC)

and is implemented in the document's .CPP file like this:

BEGIN_DISPATCH_MAPCCAutoClickDoc, CDocument)
11{{AFX_DISPATCH_MAPCCAutoClickDoc)
II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAPC)

As you will see in Steps 2 and 3 of AutoClik, whenever you add a new property or
method, ClassWizard adds an entry to the dispatch map.

The constructor of an automated CCmdTarget object must call
CCmdTarget: :EnableAutomation, as implemented by App Wizard:

CAutoClickDoc::CAutoClickDocC)
{

EnableAutomationC):

AfxOl eLockAppC):

If the automation server application supports being initially loaded by using
automation, then the constructor and destructor of the document class should call
AfxOleLockApp and AfxOleUnlockApp, respectively. AppWizard provides the
constructor and destructor of the document class. The calls to AfxOleLockApp and
AfxOleUnlockApp are required so that AutoClik gracefully terminates any
interactions with automation clients before exiting.

Generally, createable objects need this. That way, if a client application creates an
object of that type causing the automation server to start, the server will exit when the
object goes out of scope in the client.

CAutoClickDoc::-CAutoClickDocC)
{

AfxOleUnlockAppC):

241

Tutorials

Creating an OLE Type Library
AppWizard adds a file named AutoClik.odl to the project. AutoClik.odl is an Object
Definition Library text file. It is input to the MKTYPLIB.EXE tool which creates a
type library (.TLB) file named AutoClik.tlb. The binary type library (.TLB) can be
used by other applications to gain information about the automation server. This
information includes a list of the automation objects provided by the automation
server, and for each automation object, a list of properties and methods exposed by
the automation server.

Whenever you define new automation objects, and define new methods and properties
for the automation server, ClassWizard adds information to the .ODL file. When you
build the application, Microsoft Developer Studio spawns MKTYPLIB.EXE to create
an updated .TLB file.

The Read Type Library option of Class Wizard is a good example of how the type
library file is used. Class Wizard supports not only the development of automation
servers, as in this tutorial, but also the development of automation clients. An
automation client accesses the properties and methods of the automation server. The
Read Type Library option of ClassWizard creates a CCmdTarget-derived class for
each automation object defined by the automation server. In the code for the
automation client, you can then refer to the methods and properties of the automation
server simply as C++ class member functions and member variables.

For more information on Object Definition Library and Type Library files, see the
OLE documentation.

Implementing AutoClik's Basic Behavior

242

The rest of Step 1 implements AutoClik's basic behavior, which consists of
displaying text at mouse clicks and accepting changed text by using a simple dialog
box. There is nothing else relating to automation server support in this step.

~ To add the member variables to AutoClik's document class

1 Declare the following member variables in the public Attributes section of
AutoClickDoc.h:

CPoint m_pt;
CString m_str;

2 Use ClassView to jump to the CAutoCl i ckDoc constructor, and add the following
lines (after the EnableAutomation call):

m_pt = CPoint(10,10);
m_str ... _T("Automation!");

Chapter 17 Enabling OLE Automation in an Application

3 Serialize the member variables in the document class. Use Class View to jump to
the Serialize member function, and implement it with the following code.

• Add the following line in place of the IffODO comment for storing code:

ar « m_pt « m_str;

• Add the following line in place of the IffODO comment for loading code:

ar » m_pt » m_str;

~ To implement AutoClik's drawing code

• Use ClassView or WizardBar to jump to the OnDraw member function of
CAutoCl; ckVi ew, and add the following line, just after the ASSERT_VALID
call (you can replace the IffODO comment):

pDC->TextOut(pDoc->m_pt.x. pDoc->m_pt.y.
pDoc->m_str):

The implementations of On LButtonDown and On Ed; tChangeText make use of the
helper function, Refres h.

~ To implement the Refresh helper function

1 In ClassView, point the mouse cursor at the icon for class CAutoCl i ckDoc, and
click the right mouse button.

2 From the pop-up menu, choose Add Function.

3 In the Add Member Function dialog:

• In the Function Type edit box, type void.

• In the Function Declaration box, type: Refresh ()

• In the Access area, select Public, and click OK.

Class Wizard adds the declaration to the Public section of the header file, creates a
skeleton definition in the implementation file, and jumps you to the body of the
definition, with the /I TODO comment code highlighted so you can begin typing
your application-specific code.

4 Implement the function with the following code:

UpdateAllViews(NULL);
SetModifiedFlag();

~ To implement the mouse click handler

1 Switch to AutoClickView.cpp in the editor.

2 Ensure that CAutoClickView is selected in the WizardBar Object IDs list.

3 From the WizardBar Messages drop-list, double-click WM_LBUTIONDOWN.

4 Respond Yes when prompted to create a message handler.

Similar to what was described in the previous procedure, Class Wizard creates the
handler, jumping you to the skeleton definition in the text editor.

243

Tutorials

244

5 Replace the highlighted comment with the following code:

CAutoClickDoc* pDoc = GetDocument():
pDoc->m_pt = point:
pDoc->Refresh():

~ To implement the Change Text dialog box

1 From the Insert menu, choose Resource.

The Insert Resource dialog box appears.

2 Select Dialog and choose OK.

3 Open and pin down the dialog's properties page. (To open the properties page,
choose Properties from the Edit menu.)

4 In the Dialog Properties page, type the following information:

• In the ID box, type I DD_CHANGE_ TEXT.

• In the Caption box, type Change Text.

5 Add two controls to the dialog:

• A static text control labeled: Enter Text:

• An Edit control for the text

6 Open Class Wizard.

The Adding a Class dialog appears, with a message that I DD_CHANGE_ TEXT is a
new resource, and with the "Create a new class" option selected by default.

ClassWizard knows that a class hasn't been defined yet for your dialog resource,
so it displays this dialog box to enable you to define one.

Note If you had created the dialog class before creating the dialog resource, you could
specify the "Select an existing class option" in this dialog to connect the dialog to the
existing class.

7 Click OK to create the dialog class.

The Create New Class dialog appears.

8 Under Class Information, in the Name box, type CChangeText.

Note the following default selections:

• CDialog is selected as the base class.

• IDD_CHANGE_TEXT is selected as the dialog ID.

9 Under Component Gallery, clear the "Add to Component Gallery" check box.

For more information about this option, see "Using Component Gallery" in
Chapter 15 of the Visual C++ User's Guide.

10 Click Create.

ClassWizard creates the class and returns you to the main ClassWizard dialog.

11 Choose the Member Variables tab in Class Wizard.

Chapter 17 Enabling OLE Automation in an Application

12 Double-click IDC_EDITl, and type m_st r in the Member Variable Name box to
add the member variable for the edit control. '

13 Click OK twice.

~ To add the Change Text command to AutoClik's Edit menu

1 From Resource View, expand the Menu folder and double-click
IDR_ACLICKTYPE.

The menu editor opens.

2 Click AutoClik's Edit menu.

3 Add a separator below the Paste menu item.

4 Add the following menu item text below the separator:

Change &Text...

5 Press ENTER.

The menu editor automatically names the command ID_EDIT_CHANGETEXT. You
can view this by selecting the menu item again.

6 Type a prompt string such as

Change text displayed in the view.

You may want to close the resource editors before pro ceding to the next step.

~ To implement the handler for the Change Text command

1 Switch to AutoClickDoc.cpp in the text editor.

2 In the WizardBar Object ID box, select ID_EDIT_CHANGETEXT.

3 In the Messages drop-list, double-click COMMAND, and accept the default name
OnEditChangetext.

4 Fill in the skeleton 0 nEd i t C han geT ext handler as follows:

CChangeText dlg:
dlg.m_str - m_str:
if (dlg.DoModal(»
{

m_str - dlg.m_str:
Refresh():

}

5 Add the following #include statement to AutoClikDoc.cpp:

Hinclude "ChangeText.h"

245

Tutorials

Building and Running AutoClik Step 1

246

If you build and run AutoClik Step 1 now, it will run only as a stand-alone
application and minimally as an automation server. You will be able to launch
AutoClik from Autodriv, but if you try to access any of the methods or properties not
yet implemented, Autodriv will not be able to find them.

At this point there is enough information for automation clients to create an AutoClik
document, but not enough to call methods or get or set properties. You will add this
functionality in Chapters 18 and 19.

C HAP T E R 1 8

Implementing Automation Properties
and Methods

By the end of Step 1, AppWizard has enabled AutoClik to work as an automation
server. Also, AutoClik's basic behavior has been completely implemented, which is
where most of the work is in a typical application. With the help of ClassWizard, you
can easily add properties and methods to the dispatch maps ..

In Step 2, you will:

• Expose the CAutoC1 i ckDoc member variable m_pt by using the Get and Set
methods in AutoClik's document dispatch interface.

• Expose the CAutoC1 i ckDoc member variable m_str as a property in AutoClik's
document dispatch interface.

• Add automation methods for Refres hWi ndow, SetA 11 Props, and
ShowWi ndow.

In the course of doing this, you'll also learn about MFC OLE dispatch maps.

Implementing Properties of a Dispatch
Interface

AutoClik's document class has two member variables, m_pt and m_s t r. They can be
exposed to automation by using AutoClik's document dispatch interface.

There are two ways to expose member variables of an automated CCmdTarget
derived class.

o Directly expose the member variable as a dispatch interface property. This is
analogous to declaring a member variable public in a C++ class so that objects of
any other class can directly access the member variable.

• Indirectly expose the member variable by using a pair of dispatch interface Get'
and Set methods. This is analogous to declaring a member variable protected or
private in a C++ class and declaring Get and Set member functions that other C++
objects must call to access the member variable.

247

Tutorials

248

When should you expose a member variable directly, as a dispatch interface property,
and when should you expose it indirectly, by using dispatch interface Get and Set
methods? Again, the question is analogous to: when should you declare a member
variable protected or private and provide Get and Set member functions? If you do
not need to monitor access to a member variable, you can expose it directly. If your
application needs to know when the member variable is being accessed, you should
expose it indirectly.

In the case of AutoClik, it makes the most sense to expose both m_pt and m_s t r
indirectly by using Get and Set methods. This way, any time m_p t and m_s t rare
updated through automation, AutoClik updates its view. For tutorial purposes,
however, you handle m_pt and m_s t r differently. You expose m_s t r directly,
whereas you expose m_pt indirectly by using the Get and Set methods. Both
approaches to exposing the member variables are easy to do with the help of
Class Wizard.

~ To indirectly expose the m-pt member variable in the dispatch interface

1 Open ClassWizard.

2 Choose the OLE Automation tab.

3 In the Class Name box, select CAutoClickDoc, if it is not already selected.

4 Click Add Property.

5 In the Add Property dialog box, type x as the External Name.

6 Under Implementation, select Get/Set Methods.

(You will use the other choice, Member Variable, for m_str.)

7 In the Type list box, select short.

S Click OK.

This returns you to the OLE Automation tab. The new OLE property, listed as x in
the Name list, is implemented with Get and Set member functions. The
Implementation box shows:

short GetX ();
void SetX(short nNewValue);

The gray glyph with a "C" indicates that there is code associated with these
member functions.

9 Choose the Edit Code button.

1 0 Implement the Get method with the following code (replace the highlighted
comment and existing code):

return (short)m_pt.x;

Chapter 18 Implementing Automation Properties and Methods

11 Implement the Set method with the following code:

m_pt.x = nNewValue:
Refresh():

The x and y members of a point are declared as long in Win32. For compatibility
with versions of Windows that support only 16-bit GDI coordinates, the (short)
type-cast truncates the LONG coordinate. This eliminates a compiler warning.

12 Repeat steps 1 through 9 for the y property, ending with:

short CAutoClickDoc::GetY()
{

return (short)m_pt.y:

void CAutoClickDoc::SetY(short nNewValue)
{

m_pt.y - nNewValue:
Refresh();

(Note that you just add the implementation code: ClassWizard generated the stub
handlers.) ClassWizard enables you to implement methods the same way you
implement member functions.

ClassView displays the new methods. You can examine AutoClickDoc.cpp to see how
ClassWizard updated the dispatch map of the document class:

BEGIN_DISPATCH_MAP(CAutoClickDoc, CDocument)
//{{AFX_DISPATCH_MAP(CAutoClickDoc)
DISP_PROPERTY_EX(CAutoClickDoc, "x", GetX, SetX, VT_I2)
DISP_PROPERTY_EX(CAutoClickDoc, "y", GetY, SetY, VT_I2)
//}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

You can see how the information you entered in ClassWizard is reflected in the
dispatch map.

~ To directly expose the m_str member variable in the dispatch interface

1 Open Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class Name box, choose CAutoClickDoc if it is not already selected.

4 Choose Add Property.

5 In the Add Property dialog box, in the External Name box, type textl.

6 Under Implementation, select Member Variable.

Whereas you exposed m_pt indirectly by using the Get/Set Methods option,
expose m_s t r directly as a Member Variable.

7 In the Type list box, select CString.

249

Tutorials

250

8 Replace ClassWizard's proposed Variable Name, m_text (which was based on the
External Name), with m_str.

Soon you will see how to associate the text dispatch property with the m_s t r
member variable already declared in the document class.

9 Remove ClassWizard's proposed notification function name, OnTextChanged.

This step is included for instructional purposes. You could have implemented an
OnTextlChanged function by calling Refresh (), just as you did for SetX ()
and Set Y (). If you do not implement a similar 0 n T ext 1 C han 9 e d function, then
you can see the different behavior when you drive AutoClik from an automation
client. When the automation client updates the text, AutoClik does not
automatically update its view as it does when the automation client changes the x
or y values. Instead, the automation client must call the Ref res h method to
update AutoClik's view with the most recently changed text.

10 Click OK.

This returns you to the OLE Automation tab, which now displays the three
properties: text, x, and y. The Implementation box for the text variable shows:

CString m_str

11 Click OK.

12 Open AutoClickDoc.h.

ClassWizard has declared the following members in the dispatch map:

11{{AFX_DISPATCH(CAutoClickDoc)
CString m_str;
afx_msg short GetX();
afx_msg void SetX(short nNewValue);
afx_msg short GetY();
afx_msg void SetY(short nNewValue);
I/} }AFX_DISPATCH
DECLARE_DISPATCH_MAP()

At this point, the document header file declares m_s t r twice. The first declaration
is the one you originally wrote:

II Attributes
public:

CPoint m_pt;
CString m_str;

The second declaration is the one Class Wizard added above in the dispatch map.

13 Remove the CStri ng m_str declaration that you wrote, shown above.

14 Add the public keyword just after the line:

II Generated OLE dispatch map functions

This changes the declaration of the dispatch map from protected to public. This
is necessary because m_s t r had already been declared as public so it could be
accessed by the view.

Chapter 18 Implementing Automation Properties and Methods

Implementing Methods of a Dispatch
Interface

You now add three methods to AutoClik's document dispatch interface:

Method

RefreshWindow

SetAllProps

ShowWindow

Description

Updates the view according to the current values of m_pt and
m_str.

Sets the m_p t and m_s t r member variables, and updates the
view.

Shows AutoClik's frame window, which is initially hidden
when AutoClik is launched as an automation server.

The RefreshWi ndow method is the Refresh member function originally
implemented in Step 1. Here you directly expose the Re f res h member function, just
as you directly exposed the m_str member variable of CAutoCl i ckDocument.

~ To directly expose the Refresh member function in the dispatch interface

1 Open Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class Name box, select CAutoClickDoc, if it is not already selected.

4 Click Add Method.

S In the Add Method dialog box, type RefreshWi ndow in the External Name box.

This is the name that the automation client, Autodriv, uses to refer to the method,
as in the following code:

void CAutoDrivDlg::OnRefresh()
{

m_autoClikObject.RefreshWindow():

6 In the Internal Name box, replace the proposed "RefreshWindow" with Refresh.

Refresh is the name of the member function you implemented in Step 1. You do
not need to make the Internal Name the same as the External Name, even though
ClassWizard proposes that you do so.

7 In the Return Type box, type voi d, or select it from the drop-down list box.

8 Click OK.

This returns you to the OLE Automation tab. The new method, RefreshWi ndow,
is shown in the Name list. The gray glyph with an "M" in it indicates that this is a
method: The implementation box shows:

void Refresh():

251

Tutorials

252

9 Choose the Edit Code button.

Because Refresh was selected in the OLE Automation tab, ClassWizard takes
you to the implementation of Refresh in AutoClickDoc.cpp:

void CAutoClickDoc::Refresh()
{

UpdateAllView(NULL);
SetModifiedFlag();

However, you implemented the Refresh member function in Step 1; ClassWizard
was not aware of that, so it implemented a second stub member function at the end
of AutoClickDoc.cpp.

You will need to remove this second stub implementation. This is analogous to
how you removed Class Wizard's redundant declaration of m_s t r earlier.

10 Remove ClassWizard's redundant (and empty) implementation of Ref,res h at the
end of AutoClickDoc.cpp.

11 Remove the redundant declaration in the public Operations section of
AutoClickDoc.h.

Leave the dispatch map entry created by ClassWizard:

afx_msg void Refresh();

There are two more methods to implement: SetA 11 Props and ShowWi ndow.

~ To add a method with parameters

1 Open Class Wizard.

2 Choose the OLE Automation tab.

3 Select CAutoClickDoc in the Class Name box, if it is not already selected.

4 Click Add Method.

S Type SetA 11 Props in the External Name box. Accept ClassWizard's proposal to
reuse this as the Internal Name, which is the name of the class member function.

6 In the Return Type box, select void.

7 Click in the Parameter List box to begin entering information for the first
parameter of the Set A 11 Pro p s method.

This will highlight the first blank row in the Parameter box .

• Under the Name heading, type x in the Name box.

• If necessary, click under the Type heading, and select short as the Type.

8 Repeat step 7 for the y parameter, entering it in the row under the x parameter.

9 Add the third parameter, text, selecting LPCTSTR from the Type drop-list.

Chapter 18 Implementing Automation Properties and Methods

10 Click OK.

This returns you to the OLE Automation tab of ClassWizard, which shows the
following implementation:

void SetAllPropsC short x. short y. LPCTSTR text):

11 Click Edit Code.

This takes you to the stub handler that Class Wizard created in AutoClickDoc.cpp:

void CAutoClickDoc::SetAllProps(short x. short y. LPCTSTR text)
{

II TODO: Add your dispatch handler code here

12 Implement the handler with the following code:

m_pt.x - x:
m_pt.y - y:
m_str - text:
RefreshC);

Take a look at the dispatch map for the SetA 11 Props method (in
AutoClickDoc.cpp):

BEGIN_DISPATCH_MAPCCAutoClickDoc. CDocument)
11{{AFX_DISPATCH_MAPCCAutoClickDoc)

DISP_FUNCTIONCCAutoClickDoc. "SetAllProps". SetAllProps. VT_EMPTY.
VTS_I2 VTS_I2 VTS_BSTR)

II}}AFX_DISPATCH_MAP
END_DISPATCH_MAPC)

The last four parameters of the DISP _FUNCTION entry for SetA 11 Props list the
return type, VT_EMPTY for void, followed by the three parameters. You do not
need to interpret the parameter types in dispatch maps; the framework interprets
them at run time. But you can see that VTS_I2 represents short and VTS_BSTR
represents LPCTSTR.

The last method you'll implement is ShowWi ndow. You need this method because
AutoClik leaves its frame window hidden when it is initially launched by the
automation client. This is the default behavior implemented by App Wizard, which is
appropriate for most automation servers. Typically, the automation server gives the
automation client control over when the server window is shown or hidden. If you
want your automation server to show its frame window right at the time it is launched
by the automation client, simply remove the RunAutomated condition in the
following if-statement provided by App Wizard in the application's I nit Ins tan c e
routine (in AutoClik.cpp):

253

Tutorials

254

BOOl CAutoClickApp::InitInstance()
{

II Check to see if launched as OLE server
if (cmdInfo.m_bRunEmbedded I I cmdInfo.m_bRunAutomated)
{

II Application was run w~th IEmbedding or IAutomation. Don't
show the

II main window in this case.
return TRUE;

II The main window has been initialized. so show and update it.
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

return TRUE;

~ To add the ShowWindow method

1 Open Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class Name box, select CAutoClickDoc if it is not already selected, and
choose Add Method.

4 Type ShowWi ndow in the External Name box, and accept ClassWizard's proposal
to reuse this as the Internal Name, which is the name of the class member
function.

S In the Return Type box, select void.

Click OK to return to the OLE Automation tab (this method has no parameters).

6 Click Edit Code.

This takes you to the stub implementation of ShowWi ndow created in
AutoClickDoc.cpp by Class Wizard.

7 Implement S h owW i n d ow with the following code:

POSITION pos - GetFirstViewPositioni);
CView* pView - GetNextView(pos);
if (pView !- NUll)
{

CFrameWnd* pFrameWnd - pView->GetParentFrame();
pFrameWnd->ActivateFrame(SW_SHOW);
pFrameWnd - pFrameWnd->GetParentFrame();
if (pFrameWnd !- NUll)
pFrameWnd->ActivateFrame(SW_SHOW);
}

Chapter 18 Implementing Automation Properties and Methods

Adding a Stub Property
At this point, you can build AutoClik but Autodriv won't be able to load it. In Step 3,
you'll implement a Position property, which exposes the document's m_pt member
variable to a second dispatch interface. In order to load AutoClik from Autodriv to
see your Step 2 code at work, you need to add the stub Position property.

~ To add the Position property

1 Open Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class Name box, select CAutoClickDoc if it is not already selected, and
choose Add Property.

4 In the Add Property dialog box, type Pas it ian. as the External Name.

S In the type box, select LPDISPATCH.

6 Under Implementation, choose Get/Set Mehtods.

7 Choose OK.

This returns you to the OLE Automation tab. The new OLE Pas it i an property
is implemented with stub Get and Set member functions. The Implementation
box shows:

LPDISPATCH GetPosition();
void SetPosition(LPDISPATCH newValue);

At this point, you would normally choose the Edit Code button to implement the
Get and Set methods. However, you'll do that in Step 3 of the tutorial. For now,
this stub property makes it possible to run Autodriv and test the code you added
in Step 2.

8 Exit ClassWizard and save your changes to the project files.

Build and Test AutoClik Step 2
AutoClik is mostly implemented now. You can try it out with the Autodriv
application. For more information on loading and using Autodriv, see "Preview of the
AutoClik Application" in Chapter 16.

~ To test AutoClik Step 2

1 Build and then run AutoClik.exe to register the Step 2 version as the OLE server
application that Autodriv will load.

2 Close AutoClik.

3 Run Autodriv and try the following things:

• Choose the Set X and Set Y buttons in Autodriv.

• Change the X and Y coordinates in Autodriv and choose Set All.

• Click around in AutoClik and choose the Get All button in Autodriv.

255

Tutorials

256

• Change the text in the Text box of Autodriv and choose the Set Text button.

Nothing happens-Why?

Set X and Set Y call AutoClik's SetX and SetY methods, which call
CAutoCl i ckDoc: : Refresh. This means that when you use Autodriv's Set X
and Set Y functions, the change shows up immediately in AutoClik's window.

In contrast, Autodriv's Set Text function directly accesses the m_str member
variable of AutoClik's document. The change does not show up in AutoClik's
window until you call Refresh Di spl ay from Autodriv, which calls AutoClik's
RefreshWi ndow method, which in turn calls CAutoCl i ckDoc: : Refresh.·

• Choose the Refresh Display button.

The changes you entered in the Text box are displayed in AutoClik's window.

Note that the GetPos it i on and SetPos it i on methods have not been
implemented. You will implement them in Step 3.

C HAP T E R 1 9

Implementing Multiple Dispatch
Interfaces

In Step 2, you added properties and methods to AutoClik's document dispatch
interface, which was initially implemented by AppWizard. In Step 3, you create an
entirely new CCmdTarget-derived class that is exposed by using a second dispatch
interface.

In this step, you will:

• Use ClassWizard to create a CCmdTarget-derived class, named
CAutoCl i ckPoi nt, which implements a second, unnamed dispatch interface .

• Expose AutoClik's x and y coordinates by having AutoClik's document dispatch
interface refer to the second Point dispatch interface.

AutoClik's second dispatch interface, implemented in class CAutoCl i ckPoi nt, is
very simple. It has two properties: x and y. It has no methods. This dispatch interface
has been included solely for tutorial reasons. AutoClik already fully exposes its
behavior by using the document dispatch interface implemented in Step 2.
CAutoCl i ckPoi nt's dispatch interface is introduced to illustrate techniques for
managing multiple dispatch interfaces in the same application.

The design decision to split functionality into multiple dispatch interfaces is no
different from design decisions to split a C++ application into multiple classes. This
basic approach is so strong that the framework enforces a one-to-one relationship
between dispatch interfaces and automation-enabled CCmdTarget-derived classes.

AutoClik's document dispatch interface will refer to the second dispatch interface in
its implementation of the Get P 0 sit ion and Set P 0 sit ion methods. AutoClik's
document dispatch interface will expose the x and y coordinates using this Point
interface as a programmatic alternative for the automation client. The automation
client can get or set AutoClik's x and y coordinates by using the GetX, GetV, SetX,
and SetV methods implemented in Step 2. Alternatively, the automation client can
use the GetPos it i on and SetPos i ti on methods implemented here in Step 3.

257

Tutorials

Creating a New CCmdTarget Class with a
Dispatch Interface

258

When you use ClassWizard, it's simple to derive a new class from CCmdTarget that
implements a new dispatch interface.

~ To create a new CCmdTarget class with a dispatch interface

1 Open Class Wizard.

2 Click the Add Class menu button, and from the menu choose New.

The Create New Class dialog box appears.

3 Under Class Information, in the Name box, type CAutoCl ; ckPo; nt.

4 From the Base Class drop-box, select CCmdTarget.

Notice that the OLE Automation options are now available, because these options
pertain only to CCmdTarget-derived classes.

5 Select the Automation option.

The Createable by Type ID option is explained later.

6 Clear the Add to Component Gallery check box.

7 Click Create.

You are returned to the ClassWizard dialog box.

8 Choose the OLE Automation tab, and ensure that CAutoClickPoint is selected in
the Class Name box.

9 Click Add Property and in the Add Property dialog box:

• Type x in the External Name box.

• Select short in the Type box.

• Accept m_x as the Variable Name.

• Remove OnXChanged as the Notification Function.

As you will see later, the members of the C Aut 0 C 1 ; c k Po; n t dispatch
interface class do not need notification functions.

• Use the default Implementation type, Member Variable.

10 Click OK.

11 Repeat step 9 for the y property.

12 Click OK twice.

Take a look at the CAutoCl; ckPoi nt class created by ClassWizard in
AutoClickPoint.h and AutoClickPoint.cpp.

Tip You can use ClassView to jump to the header file by double-clicking the icon for the class.

Chapter 19 Implementing Multiple Dispatch Interfaces

Towards the end of the file, you'll find the declaration for the dispatch map:

DECLARE_DISPATCH_MAP()

The AutoClickPoint.cpp file implements the dispatch map, reflecting the two
properties you added in Class Wizard, x and y.

Tip To jump to the implementation file, from ClassView, right-click on any of the members of
CAutoCl i ckPoi nt, and choose Go to Definition.

BEGIN_DISPATCH_MAP(CAutoClickPoint, CCmdTarget)
//{{AFX_DISPATCH_MAP(CAutoClickPoint)
DISP_PROPERTY(CAutoClickPoint, "x", m_x, VT_I2)
DISP_PROPERTY(CAutoClickPoint, "y", m-y, VT_I2)
//}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

Referring to One Dispatch Interface from
Another

You will now implement the Position property you added at the end of Step 2. This
property exposes the document's m_pt by using the second dispatch interface
implemented by CAutoCl i ckPoi nt. You will expose this new property by adding
code to the Get and Set member functions (GetPos it i on and SetPos it ion)
which you declared in Step 2. The return type of GetPosi ti on and the type of the
parameter passed to SetPosi ti on is LPDISPATCH, a pointer to an OLE dispatch
object.

The following two Autodri v message handlers, 0 n Get P 0 sit ion and
OnSetPos it ion, found in the CAutoDri vDl 9 class, access the Pos it ion
property of AutoClik's document dispatch interface using the GetPos it ion
property:

void CAutoDr;vDlg::OnGetPosition()
{

CClikPoint point;
point.AttachDispatch(m_autoClikObject.GetPosition());

m_x - point.GetX();
m-y - point.GetY();
UpdateData(FALSE);

void CAutoDrivDlg::OnSetPosition()
{

CClikPoint point;
pOint.AttachDispatch(m_autoClikObject.GetPosition());

259

Tutorials

260

}

UpdateData(TRUE);
point.SetX«short)m_x);
pOint.SetY«short)m-y);
m_autoClikObject.SetPosition(point.m_lpDispatch);

The code

CClikPoint point;
pOint.AttachDispatch(m_autoClikObject.GetPosition(»;

accesses AutoClik's Pos it i on property, which is declared as LPDISPATCH in the
MFC OLE Automation server's dispatch map. The automation client gets initial
access to AutoClik's document dispatch interface object by creating it (in the
OnCreate method):

if (!m_autoClikObject.CreateDispatch(_T("AutoClick.Document")))
{

AfxMessageBox(IDP_CANNOT_CREATE_AUTOCLICK);
return -1; II fail

}
m_autoClikObject.ShowWindow();

~ To declare one dispatch interface object as a property of another dispatch interface

1 Open Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class Name box, choose-CAutoClickDoc if it is not already selected.

4 In the External Name box, select Position.

This is the property you added in Step 2.

5 Click Edit Code to implement the Get and Set member functions.

This takes you to their stub implementations in AutoClickDoc.cpp.

6 Implement the Get and Set member functions as shown by the following code:

LPDISPATCH CAutoClickDoc::GetPosition()
{

CAutoClickPoint* pPos - new CAutoClickPoint;
pPos->m_x - (short) m_pt.x;
pPos->m-y - (short) m_pt.y;

LPDISPATCH lpResult - pPos->GetIDispatch(FALSE):
return lpResult:

void CAutoClickDoc::SetPosition(LPDISPATCH newValue)
{

CAutoClickPoint* pPos ~
(CAutoClickPoint*)CCmdTarget::FromIDispatch(newValue):
if (pPos !- NULL && pPos->IsKindOf
(RUNTIME_CLASS(CAutoClickPoint»)
{

Chapter 19 Implementing MUltiple Dispatch Interfaces

}

m_pt.x - pPos->m_x:
m_pt.y - pPos->m-y:
Refresh():

7 Add the following #include statement at the top of AutoClickDoc.cpp:

11 inc 1 u de" Aut 0 C 1 i c k Poi n t . h"

This is required because the implementation of Set Po sit ion refers to the
CAutoCl i ckPoi nt class.

8 Change the declaration of CAutoCl i ckPoi nt's OLE dispatch map (in file
AutoClickPoint.h) from protected to public, by adding the public keyword just
before the comment line:

public:
II Generated OLE dispatch map functions
11{{AFX_DISPATCH(CAutoClickPoint)
short m_x:
short m-y:
II}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

This is required because CAutoCl i ckDoc directly accesses CAutoCl i ckPoi nt's
member variables m_x and m-y in its implementation of GetPos it i on and
SetPos it ion.

The implementation of GetPos i ti on creates a new CAutoCl i ckPoi nt object.
The CAutoCl i ckPoi nt object, which is an automation-enabled CCmdTarget
object, in turn creates a dispatch interface object, through the help of the
framework.

Finally, Get Po sit ion gets the OLE IDispatch pointer by calling the
CCmdTarget::GetIDispatch member function of the CAutoCl i ckPoi nt object
and returns this IDispatch pointer to the automation client. The AddRef
parameter of GetIDispatch is FALSE, because the OLE reference count of this
dispatch interface object was already set to 1 when the CAutoCl i ckPoi nt object
was constructed.

The implementation of Set Po sit ion does a C++ down-casting of the IDispatch
pointer to a CAutoCl i ckPoi nt pointer. It tests the down-casting with IsKindOf
to make sure the automation client passed back an IDispatch pointer to a
CAutoCl i ckPoi nt object rather than an IDispatch pointer to some other kind of
object.

Finally, Set Po sit ion updates the view to reflect the new position of the text by
calling the document's Refresh function. Because the Refresh is called by
SetPos it i on, it is not necessary to implement the OnXChanged and
OnYChanged member functions to update the views for the CAutoCl i ckPoi nt
class.

261

Tutorials

Createable OLE Dispatch Interface. Objects
Earlier you were told not to choose the OLE Createable option for
CAutoCl i ckPoi nt in ClassWizard. You did not need to do this because the
IDispatch pointer to the Point object was passed between the aut()mation client and
server by using the Setpos it i on and GetPos i ti on methods of AutoClik's
document dispatch interface.

If you had chosen the' OLE Createable option, Class Wizard would have required you
to specify the External Name of the dispatch interface, such as "AutoClik.Point". In
that case, an automation client could dynamically create a CAutoCl i ckPoi nt
object, using ,

CAutoClikPoint point;
pOint.CreateDispatch("AutoClik.Point");

Build and Run

262

Build the Step 3 version of AutoClik. It now performs exactly as you previewed it in
Chapter 16. You have finished the AutoClik tutorial.

CH APT E R 2 0

Building an OLE Control

An "OLE control" is an OLE object with an extended interface that lets it behave like
a control for Windows.

In this tutorial you will use the OLE control development tools included with Visual
C++ to create a simple OLE control called Circle. The Circle control demonstrates
most of the features of an OLE control, such as properties, events, property pages,
and data binding.

Note This tutorial assumes that you are familiar with Microsoft Visual C++ and the basics of
the Microsoft Foundation Class Library. If you are not, follow the Scribble Tutorial beginning
with Chapter 2. Scribble introduces important class library concepts and techniques, and
teaches you how to use ClassWizard, Visual C++, and Microsoft Developer Studio.

The Tutorial Example: Circle
The Circle tutorial consists of three steps, CIRCl, CIRC2, and CIRC3. The
individual steps may be found under Samples \ MFC Samples \ Tutorials in Books
Online or in the \SAMPLES subdirectory on the Visual C++ CD-ROM. Each step
contains a project file, complete source files, and other related files for a version of
the Circle control that corresponds to a stage of the tutorial. CIRC 1 shows Circle just
after it has been created. CIRC2 shows Circle after several properties and events have
been added. CIRC3 shows the completed Circle control.

In successive chapters, you will learn how to:

• Create a skeleton OLE control.

• Use Test Container to test OLE.

• Change the painting behavior of an OLE control.

• Add stock properties to an OLE control.

• Add custom properties to an OLE control.

• Make an OLE control respond to mouse events.

• Add custom events to an OLE control.

263

Tutorials

• Use text and fonts in an OLE control.

• Implement OLE control property pages.

• Use simple data binding for control properties.

Note The sample source code in CIRC1, CIRC2, and CIRC3 is not exactly the same as the
source code produced by the tutorial. In the tutorial, where strings, identifiers, or filenames
contain the string "circ", CIRC1 uses "circ1", CIRC2 uses "circ2", and CIRC3 uses "circ3". The
main control class in the tutorial is Ci rcCtrl, but in the CIRC3 sample it is Ci rc3Ctrl.
This naming difference permits each stage of the Circle control to be registered as a distinct
OLE control. All three of the sample controls and the control you develop by following the
tutorial can be used in Test Container at the same time. The sample controls behave the same
way as the control produced by following the tutorial.

Other OLE Control Samples

264

The CIRe 1, CIRC2, and CIRC3 samples are just a few of the OLE control samples
included with the Visual C++. Other samples include:

• BUTTON-A control subclassed from a Windows button control. Demonstrates
use of an in-place active menu, a stock property page, and the About box control
option.

• DB-A control that illustrates the usage of the CRecordSet and CDatabase
classes.

• LICENSED-A control that enforces use of a design-time and run-time license.

• LOCALIZE-A control with a localized user interface. Demonstrates use of
separate type libraries and resource DLLs for localization.

• PAL-A control that displays the colors of a palette. Demonstrates read-only
properties, persistent Get/Set properties, persistent parameterized properties, and
picture properties.

• PUSH-A control subclassed from a Windows owner-drawn button control.
Demonstrates stock properties, custom events, and picture holders.

• REGSVR - Registers controls in the system registry.

• SPINDIAL-A control with the visual appearance of a spin-dial. Demonstrates
property page data validation.

• TIME-A control which is invisible at run time and fires a timer event at set
intervals. Demonstrates notification functions and ambient properties.

• XLIST - A control, subclassed from a Windows list box, that displays text or
bitmap items. Demonstrates methods, ambient properties, picture holders, and font
holders.

Chapter 20 Building an OLE Control

Creating the Circle Control
The Circle sample tutorial uses the Circle control to explore the features and
functions provided by the OLE control classes. Each chapter in this tutorial
represents one step in the development cycle.

Note You can find the code produced by working through this part of the tutorial in the CIRC1
sample source code directory.

The Circle control created at the beginning of the tutorial is a simple one; it meets
minimum control requirements and provides only default behaviors.

In the following sections, you will preview the Circle control and learn how to:

• Generate the Circle control template using ControlWizard.

• Modify the default control bitmap.

• Modify the default About Circ Control dialog box.

• Build the control.

• Register the control.

• Test the control using Test Container.

Previewing the Circle Control
Before you work through the steps for creating the Circle control, you may want to try
out the completed control in Test Container. This will help you understand OLE
controls and OLE control containers in general, and the Circle control in particular.
The CIRC3 sample is an OLE control that is very similar to the completed Circle
control.

Note The following procedures for building, registering, and testing the CIRC3 sample control
assume that Microsoft Developer Studio is running.

You'll begin by building the CIRC3 sample. An OLE control is built in much the
same way as a typical dynamic-link library (DLL).

~ To build the CIRC3 version of the Circle control

1 Open the CIRC3.MDP project file.

2 From the Build menu, choose Build CIRC3.0CX, or click the Build button on the
toolbar.

After successfully building the CIRC3 control, insert it into Test Container and
experiment with it.

265

Tutorials

~ To insert the CIRC3 control into Test Container

1 From the Tools menu, choose OLE Control Test Container.

2 From the Test Container Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 In the Object Type list box, select CIRC3 Control and click OK.

A CIRC3 control with a hashed border and resize handles is inserted into Test
Container.

You can now experiment with CIRC3 to see how it works. Try any of the following:

• Click the Test Container window outside of the control. The hashed border and
resize handles disappear.

• Click the control. The hashed border and resize handles reappear.

• Move the control around by clicking the hashed border and dragging the control to
different places in the window.

• Change the size and shape of the control by clicking any of the resize handles and
dragging the control outline to a different shape.

When you have finished, quit Test Container.

By following similar steps, you can build CIRCI and CIRC2 and insert them into
Test Container.

Creating the Basic Control

266

The first step in developing an OLE control is use ControlWizard to create the
project. ControlWizard creates the framework of an OLE control project, including a
basic set of classes, resources, and definition files. You will use ControlWizard to
create the first version of the Circle control, which will draw itself as the outline of an
ellipse. No properties, events, or methods are implemented in this step.

For more information on AppWizard, see Chapter 1, "Creating Applications Using
AppWizard," in the Visual C++ User's Guide.

~ To create the Circle control

1 From the File menu, choose New.

The New dialog box appears.

2 In the New dialog box, select Project Workspace.

3 Click OK.

The New Project Workspace dialog box appears.

4 In the Name text box, type C ire.

5 In the Type list, select OLE ControlWizard.

Chapter 20 Building an OLE Control

6 In the Platforms box, choose the appropriate platforms (in this case, Win32).

7 Using the Location edit box and Browse button, select an appropriate project path.

S Click Create.

The first OLE ControlWizard dialog box appears.

9 Click Finish.

OLE ControlWizard closes and the New Project Information dialog box appears.

10 Click OK.

The New Control Information dialog box closes and the project is created and
opened in Microsoft Developer Studio.

ControlWizard creates all of the necessary files to build the Circle control. Of these
files, three class templates are created:

Class Files Comments

CCi rcApp CIRC.H Implements the main DLL source. Typically,
there is no need to modify this code. CIRC.CPP

CCi rcCtrl CIRCCTL.H Implements the actual control functionality.
Modify this class's code to implement control
specific behavior.

CIRCCTL.CPP

CCi rcPropPage CIRCPPG.H Provides a template for the control's property
page. Modify this class and its dialog template
to implement a control-specific property page.

CIRCPPG.CPP

ControlWizard creates several other files that you will modify later in this chapter
and in subsequent chapters.

File

CIRL.ODL

CIRC.RC

CIRC.RC2

CIRCCTL.BMP

CIRC.ICO

Comments

Textually defines the control's type information. This file is
modified by Class Wizard when you add properties, events, or
methods to the control. MKTYPLIB.EXE uses this file as input to
generate the type library (CIRC.TLB) information that is ultimately
added to the control's executable file as a resource.

Standard resource file. Contains a template for the control's property
page.

Contains user-defined resources that define a control's version
information, include its type library information, and state that the
control is self-registering.

The tool palette representation of the control.

The About box dialog icon.

267

Tutorials

ControlWizard also creates several other standard files: CIRC.CLW, CIRC.DEF,
CIRC.MAK, CIRC.VCW, MAKEFILE, README.TXT, RESOURCE.H,
STDAFX.CPP, and STDAFX.H. For further infomation on files produced by
ControlWizard, see the article "OLE ControlWizard: Files Created" in Programming
withMFC.

Modifying the Control Bitmap

268

When ControlWizard created the Circle control classes, resources, and other files, it
also generated a bitmap file called CIRCCTL.BMP. This bitmap provides a tool
palette representation of the control. Tools such as Visual Basic can use this bitmap
by loading it from the DLL and displaying it in a palette. The palette provides a
pictorial representation of all the controls that are available to the user.

VBX controls are required to supply both an up (unselected) and down (selected)
bitmap. Thjr, is not the case with OLE controls. Only one bitmap is supplied with a
control, and it is up to the palette implementer to perform the appropriate processing
to achieve a three-dimensional look when the control is selected and unselected in the
palette.

Figure 20.1 Editing the Circle Palette Bitmap with the Bitmap Editor

Chapter 20 Building an OLE Control

~ To modify the control bitmap

1 In the Resource View pane, open the Circ project folder.

2 Open the Bitmap folder.

3 Double-click IDB_CIRC to start the resource editor for that bitmap.

4 Modify the bitmap as you like, giving it a look representative of a Circle control.

5 From the File menu, choose Save to save the changes to the bitmap.

6 Close the bitmap editor window.

Modifying the About Cire Control
Dialog Box

ControlWizard created an About Circ Control dialog box template in the file
CIRC.RC. It also defined the AboutBox "method" for the Circle control. A method is
a function in a control that can be called from outside the control. The About Circ
Control dialog box is displayed when the control container calls the control's
AboutBox method.

ControlWizard also created an icon file called CIRC.ICO, which is displayed in the
About Circ Control dialog box. You will use the resource editor to customize this icon
in much the same way as you modified the control bitmap.

~ To modify the About dialog box icon

1 In the Resource View pane, double-click the Circ project folder.

2 Open the Icon folder.

3 Double-click IDI_ABOUTDLL to start the resource editor for that icon.

4 Edit the icon. Like the control bitmap, the icon should have a look representative
of the Circle control.

5 From the File menu, choose Save to save the changes to the icon.

6 Close the icon editor window.

Building the Control
Now that you have created all required Circle control files and modified the control
bitmap, you can build the control.

~ To build the Circle control

• From the Build menu, choose Build CIRC.OCX.

Notice that the type library (TLB) compilation is automatically handled as part of the
normal build process.

269

Tutorials

The build process automatically registers the Circle control. However, it is also
possible to manually register a control. For more information, see the section
"Registering the Control."

Registering the Control
Use the following procedure to manually register a control in the Registration
Database. Note that this is automatically done as part of the build process for an OLE
control.

~ To register the Circle control

1 From the Tools menu, choose Register Control.

A message box appears, indicating that the registration was successful.

2 Click OK to close the message box.

Registering a control adds the following information to the Registration Database:

• The text name of the control

• The class name of the control

• An indicator stating that the control conforms to the OLE control protocols

• The path of the control's executable .

• The path and resource ID of the control palette bitmap

• An indication of whether the control is insertable

• The IDispatch IDs of the control's properties and events interfaces

Controls built with the MFC OLE control classes are self-registering because two
entry points, DLLRegisterServer and DLLUnregisterServer, in the control's
executable are automatically added when ControlWizard creates the control's files. In
the Circle control, these entry points are defined in the CIRC.CPP file. As their
names imply, DLLRegisterServer and DLLUnregisterServer add to and remove
from, respectively, the control's registration information in the Registration Database.

Testing the Circle Control

270

Once the Circle control has been built and registered, you can use Test Container to
see how it behaves.

~ To test the Circle control

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, seleCt Circ Control.

Chapter 20 Building an OLE Control

4 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

The Circle control will be displayed in the Test Container, as shown in Figure
20.2. Notice that the control is drawn as an ellipse within the bounding rectangle
of the control.

5 Move the control within the container to observe how the control is redrawn.
Resize the control to see how its ellipse is redrawn to the size of the bounding
rectangle.

6 From the Edit menu, choose Invoke Methods.

The Invoke Control Method dialog box appears.

Notice that AboutBox is selected in the Name drop-down list box. This is the only
method defined in the Circle control.

7 Click Invoke.

The About Cire Control dialog box appears. The icon you edited earlier is
displayed in the dialog box.

8 Click OK to close the About Cire Control dialog box.

9 Click Close to close the Invoke Control Method dialog box.

Figure 20.2 The Circle Control

Notice that the background color of the control is white. You'll modify control
painting in the next chapter.

At this point you have not defined any properties or events for the Circle control.
From the Test Container View menu, choose Properties. Notice that there are no
properties. From the View menu, choose Event Log. Click, move, and resize the
control. No events are displayed. As the Circle control evolves, you will add a
number of new properties and events.

271

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CHAPTER 21

Painting the Control

Now that the framework for the Circle control is in place, you can modify the control
to do something more useful. In this tutorial step, you'll implement the specialized
background painting behavior of the Circle control.

Note You can find the code produced by working through this part of the tutorial in the CIRC2
sample source code directory.

The Circle control uses the container's ambient background color property as the
default value for its background color and it uses the container's stock background
color property to maintain the value of its current background color.

In this chapter, you will learn how to:

• Use the BackColor stock property.

• Set the default background color value.

• Modify the default OnDraw function to implement new painting behavior.

Enabling the BackColor Property
The first step in implementing the new painting behavior is to add the background
color property (BackColor) to the control. BackColor, among others, is a stock
property.

~ To add the BackColor property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 From the Class Name drop-down list box, select CCircCtrl.

4 Choose the Add Property button.

The Add Property dialog box appears.

5 From the External Name drop-down combo box, select BackColor.

6 Under Implementation, choose Stock.

273

Tutorials

274

7 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the BackColor property is listed as:

Implementation:
Stock Property

8 Click OK again to confirm your choices and close ClassWizard.

ClassWizard creates the code to add the BackColor property, modifying both the
CCi rcCtrl class and the type library file CIRC.ODL.

The CCi rcCtrl class's dispatch map in CIRCCTL.CPP is modified by adding the
DISP _STOCKPROP _BACKCOLOR macro:

BEGIN_DISPATCH_MAP(CCircCtrl. COleControl)
11{{AFX_DISPATCH_MAP(CCircCtrl)
DISP_STOCKPROP_BACKCOLOR()
II}}AFX_DISPATCH_MAP
DISP_FUNCTION_ID(CCircCtrl. "AboutBox". DISPID_ABOUTBOX. AboutBox. VT_EMPTY.

VTS_NONE)
END_DISPATCH_MAP()

The control's type library file (CIRC.ODL) is modified to add BackColor to its
property section, as shown in the following code sample:

dispinterface _DCirc
{

} ;

properties:
II NOTE - ClassWizard will maintain property information here.
II Use extreme caution when editing this section.
11{{AFX_ODL_PROP(CCircCtrl)
[id(DISPID_BACKCOLOR). bindable. requestedit] OLE_COLOR BackColor;
II}}AFX_ODL_PROP

methods:
II NOTE - ClassWizard will maintain method information here.
II Use extreme caution when editing this section.
11{{AFX_ODL_METHOD(CCircCtrl)
II}}AFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();

Because the BackColor property is of type DISP _STOCKPROP _BACKCOLOR,
its value can be modified only through its Get and Set methods.

The value of the BackColor property is maintained by class COleControl. The
SetBackColor member function of COleControl automatically calls the
OnBackColorChanged member function after setting the BackColor value,
invalidating the control. Invalidating the control causes the 0 nOr a w function to be
called, and the control is redrawn using the new background color.

Chapter 21 Painting the Control

Setting the Default Background Color
The next step is to provide a default value for the control's background color.
Normally, the background color of a control is the same as the background color of
the control container's window, which can be obtained from the container's ambient
properties.

COleControl implements a mechanism for obtaining the default values of stock
properties. COleControl::OnResetState calls the function
COleControl: :DoPropExchange, which queries the container for its background
color ambient property and sets the value of the control's BackColor property equal to
this color.

In projects created by ControlWizard, the default background color is implemented
automatically.

Modifying the Draw Behavior
Now that you have enabled the Circle control's background color property and set its
default background color, the final step is to modify the C C i r c C t r 1 : : 0 n Dr a w
function in CIRCCTL.CPP to implement the painting behavior.

As created by ControlWizard, the C C i r c C t r 1 : : 0 n D raw function implements the
basic Circle control drawing behavior:

void CCircCtrl ::OnDraw(
CDC* pdc. const CRect& rcBounds. const CRect& rclnvalid)

II TODO: Replace the following code with your own drawing code.
pdc-)FillRect(rcBounds. CBrush::FromHandle«HBRUSH)GetStockObject(WHITE_BRUSH)»;
pdc-)Ellipse(rcBounds);

The default behavior of the 0 n D raw function is to draw an ellipse with a white
background-exactly what was displayed in Test Container earlier.

To modify 0 n D raw to use the background color value defined by the Circle control's
BackColor property, remove the TODO comment line and the line on which
Fi 11 Rect is called, and modify the code as follows (beginning with the fourth line
in the code example, this is new code that you will be adding):

void CCircCtrl ::OnDraw(
CDC* pdc.const CRect& rcBounds. const CRect& rclnvalid)

CBrush* pOldBrush;
CBrush bkBrush(TranslateColor(GetBackColor(»);
CPen* pOldPen;

II Paint the background using the BackColor property
pdc-)FillRect(rcBounds. &bkBrush);

275

Tutorials

II Draw the ellipse using the BackColor property and a black pen
pOldBrush = pdc->SelectObject(&bkBrush);
pOldPen = (CPen*)pdc->SelectStockObject(BLACK_PEN);
pdc->Ellipse(rcBounds);
pdc->SelectObject(pOldPen);
pdc->SelectObject(pOldBrush);

The code constructs a brush, called b kB rus h, that uses the BackColor property color.
Because a COLORREF value is expected for initializing the brush, and the
BackColor property value is an OLE_COLOR value, TranslateColor is called first.
The bounding rectangle of the control is painted using CDC::FillRect, specifying
b kB r u s h as the fill brush.

The ellipse is'drawn within the bounding rectangle of the control using the
CDC::Ellipse member function. Before the ellipse is drawn, the background color
brush and the pen must be selected into the device context. This is done by calling
CDC::SelectObject, as shown in the code. Now when the ellipse is drawn, it is filled
with the proper background color and drawn using a black pen. Finally, the old brush
and pen are selected back into the device context, restoring the device context to the
state in which it entered the 0 nOr a w function.

Rebuilding the Control with Painting
Implemented

Now that you have implemented the Circle control's painting behavior, you need to
rebuild the control. Because the BackColor property was added to the control, the
type library is automatically updated during the build.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

Testing the Control Drawing Behavior

276

To test the new drawing behavior of the control, run Test Container and load the
control.

~ To insert a Circ control in Test Container

1 Use Control Panel to modify the Windows system background color so that it is
not white.

2 From the Tools menu, choose OLE Control Test Container.

3 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

Chapter 21 Painting the Control

4 From the Object Type list box, select Circ Control.

5 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

The Circle control is displayed in Test Container and painted using the same
background color as the Test Container window. You can also modify the BackColor
property value from the Properties dialog box in Test Container. From the View
menu, choose Properties to open the Properties dialog box. Change the value of the
BackColor property to 255 and click Apply. The Circle control background color
changes to red.

277

CHAPTER 22

Adding a Custom Notification
Property

The ability to define a custom set of properties, events, and methods for a control is
one of the most powerful features of control writing. The previous chapter illustrated
the use of a stock property. This part of the tutorial illustrates how to add a custom
property to the Circle control.

Note You can find the code produced by working through this part of the tutorial in the CIRC2
sample source code directory.

OLE Control Properties-An Overview
Properties are typically used to represent control data or attributes. For example, a
Date control might define a Date Value property, which would provide access to the
current date value displayed in the control. This type of property represents control
data. In addition, the Date control may define a Format property, which would allow
the user to get and set the display format of the date. This type of property represents
a control attribute. For more information about OLE control properties, see
"Properties" in Programming with MFC.

The OLE control classes support four different types of custom properties:

• DISP _PROPERTY

Implemented using a member variable.

• DISP_PROPERTY_NOTIFY

Implemented using a member variable and a notification function.

• DISP_PROPERTY_EX

Implemented using Get/Set functions.

• DISP_PROPERTY_PARAM

Implemented using Get/Set functions and an index parameter. For more
information, see "Implementing a Parameterized Property" in the article "OLE
Controls: Advanced Topics."

279

Tutorials

In the following sections, you will add a property called CircleShape, which is an
example of a DISP _PROPERTY _NOTIFY custom property. CircleShape is a
Boolean property that displays the control as a perfect circle if set to TRUE, or as an
ellipse if set to FALSE. (The DISP _PROPERTY _EX and DISP _PROPERTY
custom property types are used later in the tutorial.)

In this chapter, you will:

• Define the CircleShape property's functionality.

• Add the CircleShape property to the control.

• Set the default value of the CircleShape property.

• Revise the control's draw behavior to reflect the value of the CircleShape property.

The CircleShape Property

280

This section presents general information on:

• CircleShape property functions and the property's effect on the Circle control

• Modifying the Circle control to implement CircleShape property functions

CircleShape Property Functionality
When the CircleShape property's value is set to TRUE, the Circle control will draw
the largest possible perfect circle centered within the bounding rectangle of the
control. When the CircleShape property is set to FALSE, the Circle control will draw
an ellipse whose major and minor axes touch the bounding rectangle of the control.
The initial value of the CircleShape property should be TRUE. Whenever the
CircleShape property is changed, the Circle control should be redrawn to reflect the
change.

Figure 22.1 shows the Circle control drawn as an ellipse, the desired effect when
CircleShape is set to FALSE. Notice that the ellipse is drawn to the edges of the
bounding rectangle. Currently, this is the standard drawing behavior of the Circle
control, so very little code needs modifying in order to implement the required
drawing behavior when CircleShape is set to FALSE.

Chapter 22 Adding a Custom Notification Property

Figure 22.1 The CircleShape Property Set to FALSE

When the CircleShape property is set to TRUE, the Circle control is drawn as a
perfect circle. Figure 22.2 shows how the circle would be drawn within the bounding
rectangle of the control. To determine how to draw the circle, calculate the square
region centered within the bounding rectangle of the control.

Figure 22.2 The CircleShape Property Set to TRUE

Recall from the previous chapter that the C C ire C t r 1 : : 0 n D raw function used the
CDC::Ellipse function to draw the ellipse. This function can also be used to draw the
circle. By passing the calculated square region instead of the bounding rectangle of
the control to the Ellipse function, the Ellipse function will draw a perfect circle.

281

Tutorials

Implementing the CircleShape Property
Now that the CircleShape property's functional specification is complete, and the
basic logic is described, you can revise the Circle control's code as follows:

• Add the CircleShape property to the control using Class Wizard.

• Set the default value of the CircleShape property when the control is created.

• Define the GetDrawRect member function in the CCi rcCt rl class.

This function determines the drawing coordinates to use: if CircleShape is
FALSE, use the entire bounding rectangle of the control; if CircleShape is TRUE,
use the centered square region inside the bounding rectangle.

• Modify C C i r c C t r 1 : : 0 nOr a w to use the coordinates returned by the
CCi rcCtrl : : GetDrawRect member function when drawing the control.

• Modify the CCi rcCtrl : : OnCi rcl eShapeChanged member function to
invalidate the control.

Aspects of this strategy apply whenever you add any custom property. Adding the
property using Class Wizard greatly simplifies the process by updating the appropriate
class and the object definition library (.ODL) files. It is always good practice to
provide a default value for the new property by adding initialization code for the
property to the DoPropExchange member function in the control class.

Adding the CircleShape Property

282

The first step in implementing the CircleShape property's functionality is to add the
CircleShape property to the control. Similar to a stock property, a custom property is
added using Class Wizard.

~ To add the CircleShape property

1 From the View menu, choose ClassWizard.

2 Choose the OLE Automation tab.

3 From the Class Name drop-down list box, select CCircCtrl.

4 Click Add Property.

The Add Property dialog box appears.

5 In the edit control of the External Name drop-down combo box, type
Ci rcl eShape.

6 Under Implementation, choose Member Variable.

7 From the Type list box, select BaaL.
a Verify that the Variable Name edit control contains m_circleShape.

Chapter 22 Adding a Custom Notification Property

9 Verify that the Notification Function edit control contains
OnCircleShapeChanged.

10 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the CircleShape property appears as:

Implementation:
BOOl m_circleShape:
void OnCircleShapeChanged():

11 Click OK to confirm your choices and close ClassWizard.

Class Wizard creates the appropriate code to add the CircleShape property, to the
CC; rcCtrl class and to the CIRC.ODL file. When adding a
DISP _PROPERTY _NOTIFY property type, ClassWizard modifies the CC; rcCt r 1
class's dispatch map by adding a DISP _PROPERTY_NOTIFY macro entry for the
property:

BEGIN_DISPATCH_MAP(CCircCtrl. COleControl)
11{{AFX_DISPATCH_MAP(CCircCtrl)
DISP _PROPERTY _NOTI FY (CCi rcCtrl. "Ci rcl eShape" •

m_circleShape. OnCircleShapeChanged. VT_BOOl)
DISP_STOCKPROP_BACKCOlOR()
II}}AFX_DISPATCH_MAP
DISP_FUNCTION_ID(CCircCtrl. "AboutBox".

DISPID_ABOUTBOX. AboutBox. VT_EMPTY. VTS_NONE)
END_DISPATCH_MAP()

The DISP _PROPERTY_NOTIFY macro associates the CircleShape property name
with its corresponding CC; rcCtrl class member variable (m_ci rcl eShape), as
well as the name of the C C; r c C t r 1 class notification function
(OnC; rcl eShapeChanged), which is called whenever the value of Circle Shape
property is changed. The property type value is specified as VT_BOOL.

Class Wizard also adds a declaration for the 0 n C; r c 1 e S hap e C han 9 e d notification
function in CIRCCTL.H and a function template in CIRCCTL.CPP:

void CCircCtrl::OnCircleShapeChanged()
{

II TODO: Add notification handler code

SetModifiedFlag():

You will modify 0 n C; r c 1 e S hap e C han 9 e d to invalidate the control later in this
chapter in "Modifying OnCircleShapeChanged."

283

Tutorials

Setting the CircleShape Default Value
Because the Circle control uses the CircleShape property as a key to determine how
to draw itself, it is important to initialize the CircleShape property to a specific value.
This step is easily accomplished by modifying the CCi rcCtrl : : DoPropExchange
function in the file CIRCCTL.CPP. Add the following line:

PX_Bool(pPX. _T("CircleShape"). m_circleShape. TRUE);

to CIRCCTL.CPP as shown in the following code example.

void CCircCtrl::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX. MAKELONG(_wVerMinor. _wVerMajor»;
COleControl ::DoPropExchange(pPX);
PX_Bool(pPX. _T("CircleShape"). m_circleShape. TRUE);

As stated earlier in "CircleShape Property Functionality," the initialized state of
CircleShape must be TRUE if you want the control initially drawn as a perfect circle.
This is accomplished by adding a call to the PX_Bool function in the
DoPropExchange function, which sets the default value of the CircleShape property
to TRUE.

First, the property name string parameter to the PX_Bool function is passed through
the _T macro. This macro is used for compatibility among different string
representations. For instance, UNICODE strings are available for 32-bit OLE
controls. All literal strings in an OLE control project must be handled in this manner.

Any property initialized with a call to a PX_ function in the DoPropExchange
function is called a "persistent property" because the PX_ functions do more than
initialize a property when a control is created. The DoPropExchange function is
called when a control is created, restored from a file or stream, or saved to a file or
stream. The PX_ functions determine whether the value of a persistent property must
change under any of these conditions. Whenever a persistent property is changed, a
modified flag for persistent properties must be set to indicate that at least one
persistent property must be updated. Setting the modified flag will be discussed later
in this chapter, in "Modifying the OnCircleShapeChanged Function."

Implementing New Drawing Behavior

284

Now that you have added the CircleShape property to the CCi rcCtrl class and set
its initial value in DoPropExchange, you can implement the new drawing behavior.
To do this, you will make several additions to the C C ire C t r 1 class code:

• Implement the GetDrawRect function, which calculates the coordinates of the
square region.

• Modify the OnDraw function to call GetDrawRect.

• Modify the OnCircleShapeChanged function to invalidate the control.

Chapter 22 Adding a Custom Notification Property

The GetDrawRect Function
The Get D raw Re c t function determines the coordinates of the bounding rectangle in
which the ellipse should be drawn. If the CircleShape property is TRUE,
Ge t Dr a w Re c t calculates the coordinates of the square region centered in the
rectangle rc, which was passed to GetDrawRect. The coordinates of the square
region are put back into rc. If CircleShape is FALSE, the function leaves rc
untouched. Add the GetDrawRect function at the end of the CIRCCTL.CPP file:

void CCircCtrl ::GetDrawRect(CRect* rc)
{

}

if (m_c;rcleShape)
{

}

int cx - rc-)right - rc-)left:
int cy - rc-)bottom - rc-)top:

if (cx) cy)
{

else
{

rc-)left +- (cx - cy) / 2:
rc->right - rc->left + cy:

rc-)top +- (cy - cx) / 2:
rc-)bottom - rc-)top + cx:

Declare the GetDrawRect as a protected member function in the CIRCCTL.H file.
Place the declaration

void GetDrawRect(CRect* rc):

immediately after the destructor, as shown below:

class CCircCtrl : public COleControl
{

protected:
-CCircCtrl():
void GetDrawRect(CRect* rc):

} :

285

Tutorials

286

Modifying OnDraw
The GetDrawReet function greatly simplifies the changes that need tobe made to
the OnDraw function. The modifications to OnDraw introduce a local CRect object,
re, whose value is initialized to the value of reBounds. Before the ellipse is drawn,
GetDrawReet is called. If the value of the CircleShape property is TRUE,
GetDrawReet adjusts the coordinates in~ re to be the square region centered within
reBounds.

Add the following individual lines of code to CIRCCTL.CPP:

CRect rc - reBounds;
GetDrawRect(&re);
pdc->Ellipse(re);

as shown in the following code example:

void CCircCtrl ::OnDraw(

}

CDC* pde. eonst CRect& reBounds. const CReet& relnvalid)

CBrush* pOldBrush;
CBrush bkBrush(TranslateColor(GetBackColor(»);
CPen* pOldPen;
CRect rc - reBounds;

II Paint the background using the BackColor property
pde->FillRect(rcBounds. &bkBrush);

II Draw the ellipse using the BackColor property and a black pen
GetDrawReet(&rc);
pOldBrush = pdc->SelectObject(&bkBrush);
pOldPen = (CPen*)pdc->SelectStockObjeet(BLACK_PEN);
pdc->Ellipse(re);
pdc->SeleetObject(pOldPen);
pde->SelectObject(pOldBrush);

Modifying OnCircleShapeChanged
Because CircleShape is a DISP _PROPERTY_NOTIFY property type, ClassWizard
creates the code required to force a notification function to be called if the
CircleShape property's value changes. The default OnCi rel eShapeChanged
notification function, created by Class Wizard, sets the modified flag for the control.

The CircleShape property is a persistent property because it is initialized by calling
the PX_Bool function in the COl eControl : : DoPropExehange function. The
modified flag for persistent properties must be set by calling the
COl eCont ro 1 : : SetMod i fi ed Fl ag function whenever the value of the persistent
property has changed. Because most properties are persistent, Class Wizard includes a
call to the CCi reCtrl : : SetModi fi edFl ag function in all notification functions.

Chapter 22 Adding a Custom Notification Property

If the value of the CircleShape property changes, the control must redraw itself to
ensure that it displays the correct representation of the control, either a circle or an
ellipse. This is done by invalidating the control when theOnCi rcl eShapeChanged
member function is called (as shown in the following code example). The
invalidation causes the OnDraw member function to be called.

Add the following lines of code to CIRCCTL.CPP:

II force the control to redraw itself
InvalidateCantrol();

as shown in the following code example:

vai d CCi rcCtrl : :OnCi rcl eShapeChanged()
{

II force the control to redraw itse~f
InvalidateCantrol();

SetModifiedFlag();

Rebuilding the Control with CircleShape
Implemented

Now that the CircleShape property is implemented, you need to rebuild the control.
Because the CIRC.ODL file was changed when the CircleShape property was added
to the control, the type library is automatically updated during the build.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

Testing the Control CircleShape Property
The CircleShape property's functionality has now been fully implemented. The next
step is use Test Container to test the code.

~ To insert the Circ control in Test Container

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, select Circ Control.

4 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

287

Tutorials

288

The Circle control is displayed in Test Container. Notice that the control is
initially drawn as a perfect circle because the CircleShape property is set to TRUE
in the DoPropExchange member function in the CC; rcCtrl class.

Next, change the value of the CircleShape property to cause the Circle control to be
redrawn as an ellipse.

~ To change the CircleShape property

1 From the View menu, choose Properties.

The Properties dialog box appears.

2 From the Property drop-down combo box, select CircleShape .

The Value edit control will display -1, which indicates a TRUE value. If the
CircleShape property is not listed, the control might not be selected or the type
library may not have been regenerated before the control was built last.

3 In the Value edit control, type 0 (zero), which indicates a FALSE value.

4 Click Apply.

The Circle control is redrawn as an ellipse the size of the control's bounding
rectangle. It is immediately redrawn, because changing the CircleShape property
caused the OnC; rcl eShapeChanged notification function to be called, which
invalidated the control.

CHAPTER 23

Adding a Custom Get/Set Property

The OLE control classes support a property type that can be accessed only through a
Get/Set method pair. By wrapping Get and Set methods around the property, you can
shield the internal representation and implementation of the property from the user.

Note You can find the code produced by working through this part of the tutorial in the CIRC2
sample source code directory.

Forcing access to a property through methods can be quite beneficial. For example, a
Set method can be coded to validate an input value before the property's value is set
to it, or a property can represent a computed value. When the computed property is
accessed, its Get method performs a computation and returns the result as the
property value.

In this chapter, you will implement a Get/Set property, CircleOffset, for the Circle
control. The CircleOffset property allows the circle to be offset from the center of the
control's bounding rectangle. Before the offset is modified, the Set method makes
sure that the edge of the circle will stay within the control's bounding rectangle. In
C++, Get and Set methods are implemented as member functions.

In this chapter, you will:

• Define the CircleOffset property's functionality.

• Add the CircleOffset property to the control.

• Set the Circle Offset property's default value.

• Set the CircleOffset property value.

• Revise the control's draw behavior to reflect the value of the CircleOffset property.

• Modify the OnCircleShapeChanged function.

• Add the OnSize function.

289

Tutorials

The CircleOffset Property

290

This section discusses the functional aspects of the CircleOffset property and the
property's effect on the behavior of the Circle control. It also presents a strategy for
modifying the Circle control's code to prepare for implementing the CircleOffset
property's behavior.

CircleOffset Property Functionality
The CircleOffset property allows the user to offset the circle from the center of the
control's bounding rectangle. The CircleOffset property has an effect only if the value
of the CircleShape property is TRUE. When the CircleShape property is FALSE, the
control is drawn as an ellipse the size of the bounding rectangle, so no movement
would be possible. When CircleShape is TRUE, the circle can potentially be offset
from center in either the x or y direction (Figure 23.1), depending on which has the
greater extent.

Figure 23.1 Circle Offset 25 Units From Center

The circle can also be offset in the negative direction. For example, if the Circle
control is drawn with a greater x-extent, a positive offset will move the circle to the
right, and a negative offset will move the circle to the left, within the bounding
rectangle. If the control is drawn with a greater y-extent, as in Figure 23.2, a positive
offset will move the circle toward the top, and a negative offset will move the circle
toward the bottom, of the bounding rectangle.

Chapter 23 Adding a Custom Get/Set Property

Figure 23.2 Circle Control With a Greater V-Extent

The following rules apply to the behavior of CircleOffset:

• The control ignores any offset that would cause the circle to be placed outside the
control's bounding rectangle.

• If the control is resized, CircleOffset is set to O.

• If the CircleShape property is set to TRUE, CircleOffset is set to O.

The control cannot allow the circle to be moved beyond its bounding rectangle. Thus,
CircleOffset property's Set method must implement code that will validate the value
of the offset passed to the Set method before setting the value of the CircleOffset
property.

Implementing the CircleOffset Property
The implementation of the CircleOffset property's functionality is more complex than
that of the CircleShape property. Not only does the CircleOffset property affect the
drawing behavior of the control, it also requires that the value of the CircleOffset
property be reset to 0 when either the control is resized or the CircleShape property is
set to TRUE. Given these factors, the following code revisions must be made:

• Add the CircleOffset property to the control using Class Wizard.

• Set the default value of the CircleOffset property to 0 when the control is created.

• Modify the CircleOffset property's Set method to perform offset validation.

• Modify the CCi rcCtrl : : GetDrawRect member function to properly calculate
the coordinates of the square region based on the current CircleOffset property
value.

• Modify the C C ire C t r 1 : : 0 n C ire 1 e S hap e C han 9 e d member function to reset
the Circle Offset property value to 0 if the CircleShape property is changed
to TRUE.

• Add the C C ire C t r 1 : : 0 n S i z e notification function to reset the CircleOffset
value to 0 if the size of the control is changed.

291

Tutorials

Adding the CircleOffset Property

292

The first step in implementing the CircleOffset functionality is to add the CircleOffset
property to the control.

~ To add the CircleOffset property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class Name drop-down list box, select CCircCtrl.

4 Click Add Property.

The Add Property dialog box appears.

5 In the edit control of the External Name drop-down combo box, type
Ci rcl eOffset.

6 Under Implementation, choose Get/Set Methods.

The Get Function and Set Function edit controls appear, replacing the Variable
Name and Notification Function edit controls.

7 From the Type list box, select short.

S Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the CircleOffset property appears as:

Implementation:
short GetCircleOffset();
void SetCircleOffset(short nNewValue);

9 Click OK to confirm your choices and close ClassWizard.

Class Wizard creates the appropriate code to add the CircleOffset property to the
CC i reCt r 1 class and to the CIRC.ODL file. Because CircleOffset is a Get/Set
property type, Class Wizard modifies the C C ire C t r 1 class's dispatch map to include
a DISP _PROPERTY _EX macro entry:

BEGIN_DISPATCH_MAP(CCircCtrl. COleControl)
//{{AFX_DISPATCH_MAP(CCircCtrl)
DISP_PROPERTY_NOTIFY(CCircCtrl. "CircleShape".

m_circleShape. OnCircleShapeChanged. VT_BOOL)
DISP_PROPERTY_EX(CCircCtrl. "CircleOffset".

GetCircleOffset. SetCircleOffset. VT_I2)
DISP_STOCKPROP_BACKCOLOR()
//}}AFX_DISPATCH_MAP
DISP_FUNCTION_ID(CCircCtrl. "AboutBox".

DISPID_ABOUTBOX. AboutBox. VT_EMPTY. VTS_NONE)
END_DISPATCH_MAP()

Chapter 23 Adding a Custom Get/Set Property

The DISP _PROPERTY _EX macro associates the CircleOffset property name with
its corresponding CCi rcCtrl class's Get and Set methods, GetCi rcl eOffset and
SetCi rcl eOffset. The type of the property value is also specified VT_I2, which
corresponds to short.

ClassWizard also adds a declaration for the GetCi rcl eOffset and
SetCi rcl eOffset functions in CIRCCTL.H and their function templates in
CIRCCTL.CPP:

short CCircCtrl ::GetCircleOffset()
{

II TODO: Add your property handler here

return 0;

void CCircCtrl::SetCircleOffset(short nNewValue)
{

II TODO: Add your property handler here

SetModifiedFlag();
}

You will modify the SetCi rcl eOffset function to perform offset validation later in
this chapter.

Because ClassWizard only creates the Get and Set functions, you must add a member
variable to the C C ire C t r 1 class to keep track of the actual value of the CircleOffset
property. The Get and Set methods will query and modify this variable. You can add
this variable by modifying the declaration of the C C ire C t r 1 class in the file
CIRCCTL.H. An easy way to do this is to add the member variable in the protected
section after the destructor.

Add the following line of code in CIRCCTL.H:

short m_circleOffset;

as shown in the following code example:

cl ass CCi rcCtrl : publ i c COl eControl
{

protected:
-CCircCtrl();

} ;

void GetDrawRect(CRect* rc);
short m_circleOffset;

293

Tutorials

Modify the Get method created by ClassWizard, GetCi rcl eOffset, in
CIRCCTL.CPP to return the value of this new variable (remove the TODO
comment line):

short CCircCtrl ::GetCircleOffset()
{

return m_circleOffset:

Setting the CircleOffset Default Value
Similar to other properties, the CircleOffset property must be initialized to a default
value when the control is created. In this case, setting CircleOffset to 0 is logical.
Add the following line:

PX_Short(pPX. _T("CircleOffset"). m_circleOffset. 0):

to the DoPropExchange function in CIRCCTL.CPP:

void CCircCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX. MAKELONG(_wVerMinor. _wVerMajor»:
COleControl ::DoPropExchange(pPX):

PX_Bool(pPX. _T("CircleShape"). m_circleShape. TRUE):
PX_Short(pPX. _T("CircleOffset"). m_circleOffset. 0):

}

The CircleOffset property is initialized by calling PX_Short in the
CCi rcCtrl : : DoPropExchange member function, passing 0 as the default value
parameter (the last parameter in the function call). Now, when the circle is first
drawn, it will be centered in the bounding rectangle of the Circle control. As with all
literal strings, the property name parameter must be passed through the _ T macro.

Properties initialized by calling a PX_ function in a control's DoPropExchange
function are persistent properties; thus, CircleOffset is a persistent property. Steps
described in "Setting the Circle Offset Property" will set the modified flag for
persistent properties whenever the value of the CircleOffset property changes.

Setting the CircleOffset Property

294

The reason that CircleOffset is defined as a Get/Set property is to provide an entry
point where the offset can be validated when the user attempts to change its value.
Two rules govern the offset validation:

• The CircleShape property must be set to TRUE.

• The new offset must not force the circle outside the control's bounding rectangle.

Chapter 23 Adding a Custom Get/Set Property

The Set function for Get/Set properties can be written to ignore requests to set the
property value to its current value. Properties implemented using only member
variables do not provide this ability. Consequently, there is another optional rule that
governs validation of Get/Set properties in general:

• The new property value must be different from the old property value.

If any of the rules are not followed, SetCi rc 1 eOffset will simply ignore the
request.

If the new offset is valid, the value of the CircleOffset property is updated. Because
the CircleOffset property is persistent, the modified flag is set. Because CircleOffset
affects the visual appearance of the control, the control is invalidated. Invalidating
the control is the simplest way to force the control to be redrawn.

Modify SetCi rcl eOffset in CIRCCTL.CPP to validate the new value (the TODO
comment line is removed and the Set Mod i fie d F 1 a 9 function call is now inside the
if statement):

void CCircCtrl ::SetCircleOffset(short nNewValue)
{

II Validate the specified offset value
if ((m_circleOffset 1= nNewValue) && m_circleShape && InBounds(nNewValue»
{

m_circleOffset = nNewValue;
SetModifiedFlag();
Inval idateControl ();

Notice that the function SetCi rcl eOffset calls the InBounds member function.
This function returns TRUE if the specified offset does not force the circle outside
the bounding rectangle of the control.

~ To implement the InBounds member function

1 Add the following line to your CIRCCTL.H file:

Baal InBounds(short nOffset);

as shown in the following code example:

cl ass CCi rcCtrl : publ i c Cal eControl
{

protected:
-CCircCtrl();

} ;

void GetDrawRect(CRect* rc);
short m_circleOffset;

Baal InBounds(short nOffset);

295

Tutorials

2 Add the function implementation at the end, of your CIRCCTL.CPP file:

BOOl CCireCtrl ::InBounds(short nOffset)
{

CReet re:
int diameter:
int length:

GetClientReet(re):

int ex - re.right - re.left:
int ey - re.bottom - re.top:

if (ex > ey)
{

else
{

length - ex:
diameter - ey:

length - ey:
diameter - ex;

if (nOffset < 0)
nOffset - -nOffset:

return (diameter / 2 + nOffset) <- (length / 2):

Drawing the Control

296

The CircleOffset functionality does not require any major drawing modifications. In
fact, the OnDraw function need not be changed at all. The only concern is that the
coordinates of the square region returned by GetDrawRect are properly adjusted
based on the current value of the CircleOffset property:

Chapter 23 Adding a Custom Get/Set Property

void CCircCtrl ::GetDrawRect(CRect* rc)
{

if (m_circleShape)
{

int cx - rc-)right - rc-)left:
int cy - rc-)bottom - rc-)top:

if (cx) cy)
{

else
{

rc-)left +- (cx - cy) I 2:
rc-)right - rc-)left + cy:

II offset circle in bounding rect
rc-)left +- m_circleOffset:
rc-)right +- m_circleOffset:

rc-)top +- (cy - cx) I 2:
rc-)bottom - rc-)top + cx:

II offset circle in bounding rect
rc-)bottom -- m_circleOffset:
rc-)top -- m_circleOffset:

The changes to the code for GetDrawRect are adjustments to the square region's left
and right coordinates (if the x-extent is greater) or the top and bottom coordinates (if
the y-extent is greater).

Modifying the OnCircleShapeChanged Function
The CircleOffset functional specification requires that the value of the CircleOffset
property be reset to 0 when CircleShape is set to TRUE. The
one i r c 1 e S hap e C han 9 e d function is called whenever the CircleShape property is
modified, so it is the appropriate place to handle this requirement:

voi d CCi rcCtrl : : OnCi rcl eShapeChanged ()
{

II force the control to redraw itself
InvalidateControl():

SetModifiedFlag():

II reset the circle offset, if necessary
if (m_circleShape)

SetCircleOffset(0):

297

Tutorials

Setting the CircleOffset property to 0 under this condition causes the circle to be
centered whenever the CircleShape property is set back to TRUE. All actions related
to the CircleShape property change are completed before the CircleOffset property is
changed.

Adding the OnSize Function

298

The final requirement is to set Circle Offset to 0 whenever the size of the control
changes. This can be done by adding a notification function, anSi ze, to CCi rcCtrl
that responds to a WM_SIZE message.

~ To add the OnSize function

1 From the View menu, choose Class Wizard.

2 Choose the Message Maps tab.

3 From the Class Name drop-down list box, select CCircCtrl.

4 From the Object IDs list box, select CCircCtrl.

5 From the Messages list box, select WM_SIZE.

6 Click Add Function.

This returns you to the Message Maps tab. Notice that this new handler appears in
the Member Functions list box as:

Member Functions
OnS;ze

7 Click Edit Code.

ClassWizard closes and the insertion point is positioned at the code for the
anSi ze member function.

The anSi ze member function resets the CircleOffset property to 0 only if
CircleShape is TRUE. This ensures that the circle always stays within the bounding
rectangle of the control no matter how the control is resized. Setting the CircleOffset
property to 0 is the simplest way to accomplish this task.

void CCircCtrl ::OnSize(UINT nType, int cx, int cy)
{

COleControl ::OnSize(nType, cx, cy);

1/ If circle shape ;s true, reset the offset when control size is changed
if (m_circleShape)

SetCircleOffset(0);

Chapter 23 Adding a Custom Get/Set Property

Rebuilding the Control with CircleOffset
Implemented

Now that the CircleOffset property modifications are complete, you need to rebuild
the control. Because the CIRC.ODL file changed when the CircleOffset property was
added to the control, the type library is automatically updated during the build.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

Testing the Control CircleOffset Property
CircleOffset functionality has been implemented and you can use Test Container to
test it.

~ To insert a Circ control in Test Container

1 From the Tools Menu, choose OLE Control Test Container.

2 From the Edit menu, select Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, select Circ Control.

4 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

The Circle control is displayed in Test Container's window. Notice that the control is
initially drawn as a perfect circle. The default bounding rectangle of the control is a
rectangle with an x-extent greater than its y-extent.

Next, change the value of the CircleOffset property to cause the circle to move from
the center of the bounding rectangle:

~ To change the CircleOffset property

1 From the View menu, choose Properties.

The Properties dialog box appears.

2 From the Property drop-down combo box, select CircleOffset.

The Value edit control displays 0 (zero), which is the CircleOffset property's
default value.

In the Value edit control, type 10, which indicates 10 units to the right of center.
(If the y-extent of the control were larger, it would indicate 10 units to the top of
center.)

3 Click Apply.

The Circle control is redrawn, with the circle offset from center by 10 units.

299

Tutorials

300

Experiment with different values for the Circle Offset property: type a negative
number to force the circle to the left of center. Try a number larger than the width or
height of the control; for example, 2000. Notice that nothing happens. In the
Properties dialog box, the number in the Value edit control reverts to CircleOffset's
last valid value.

Now, resize the control so that its y-extent is greater than its x-extent. Specify
positive and negative values for the CircleOffset property to see how the circle moves
above and below the center of the control's bounding rectangle.

CHAPTER 24

Adding Special Effects

This chapter further evolves the functionality of the Circle control. A new behavior
is introduced that produces special effects in response to mouse events at run time.

Note You can find the code produced by working through this part of the tutorial in the CIRC2
sample source code directory.

When you click the left mouse button inside the circle, the control briefly flashes a
different color. To implement this special effect, the control must respond to mouse
events.

This part of the tutorial introduces a new custom member variable property called
FlashColor. The value of the FlashColor property contains the color the control will
flash when the left mouse button is clicked when the insertion point (or cursor) is
within the circle.

In this chapter, you will:

• Add the FlashColor property to the Circle control.

• Set the value of the default color for FlashColor.

• Implement code to respond to mouse events.

• Implement code to perform hit testing.

• Add the FlashColor function.

Adding the FlashColor Property
The FlashColor property holds the color value that flashes within the control circle.
Windows represents a color as a 32-bit value, defined as a COLORREF type. The
OLE control classes do not directly support the COLORREF type, but they do
support an OLE_COLOR type that can hold the required information. Thus, the
FlashColor property is defined as an OLE_COLOR type.

301

Tutorials

302

The FlashColor property requires no special processing when its value is changed or
accessed. For this reason, FlashColor can be defined as a simple member variable
property.

~ To add the FlashColor property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 From the Class Name drop-down list box, select CCircCtrl.

4 Click Add Property.

The Add Property dialog box appears.

5 In the the edit control of the External name drop-down combo box, type
Fl ashCol or.

6 From the Type list box, select OLE_COLOR.

7 Under Implementation, choose Member Variable (it may already be selected).

8 Verify that the Notification function edit control contains OnFlashColorChanged.

9 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the FlashColor property appears as:

Implementation
OLE_COLOR m_flashColor:
void OnFlashColorChanged():

10 Click OK to confinn your choices and close ClassWizard.

Class Wizard creates the code to add the FlashColor property, modifyng both the
CCi rcCtrl class and the CIRC.ODL file. Because FlashColor is a member variable
property type, Class Wizard modifies the C C ire C t r 1 class's dispatch map in
CIRCCTL.CPP to include a DISP _PROPERTY _NOTIFY macro entry:

BEGIN_DISPATCH_MAP(CCircCtrl, COleControl)
//{{AFX_DISPATCH_MAP(CCircCtrl)
D I SP _PROPERTY _NOTI FY (CCi rcCt rl, "Fl as hCo lor" ,

m_flashColor, OnFlashColorChanged, VT_COLOR)
DISP_PROPERTY_NOTIFY(CCircCtrl, "CircleShape",

m_circleShape, OnCircleShapeChanged, VT_BOOL)
DISP_PROPERTY_EX(CCircCtrl, "CircleOffset",

GetCircleOffset, SetCircleOffset, VT_12)
DISP_STOCKPROP_BACKCOLOR()
//}}AFX_DISPATCH_MAP
DISP_FUNCTION_ID(CCircCtrl, "AboutBox",

DISPID_ABOUTBOX, AboutBox, VT_EMPTY, VTS_NONE)
END_DISPATCH_MAP()

The DISP _PROPERTY _NOTIFY macro associates the FlashColor property name
with the following:

Chapter 24 Adding Special Effects

• Its corresponding CCi rcCtrl class member variable

• The name of the CCircCtrl class notification function (OnFl ashCol orChanged) that
is called whenever the value of the FlashColor property is changed

• Its type, VT_COLOR, which corresponds to an OLE_COLOR value

Class Wizard also adds a declaration for the 0 n F 1 ash Color C han 9 e d notification
function in CIRCCTL.H and a function template in CIRCCTL.CPP:

void CCircCtrl ::OnFlashColorChanged()
{

}

II TODO: Add notification handler code
SetModifiedFlag();

Setting the Default FlashColor Value
Next, you will write the code that sets the default value of the FlashColor property.
Choosing the default value is relatively unimportant for the example; any arbitrary
value will do, as long as it's not the same as the background color.

Windows uses a 32-bit unsigned integer value to represent a color. The lowest three
bytes specify red, green, and blue values, each with a range from 0 through 255.
Therefore, the value OxOOOOOOFF is red, OxOOOOFFOO is green, and OxOOFFOOOO is
blue. To simplify the process of assigning color values, you will use the RGB macro.
Its three parameters consist of red, green, and blue values, in that order.

The member function Do Pro p Ex c han 9 e initializes the m_ f 1 ash Color member
variable to a value corresponding to the color red. Because the PX_Long function
expects a reference to a long and m_ f 1 ash Color is an unsigned long, .
m_ f 1 ash Color is cast to a long reference.

Add the following line to the DoPropExchange function in CIRCCTL.CPP:

PX_Long(pPX. _T("FlashColor"), (long &)m_flashColor, RGB(0xFF, 0x00. 0x00»;

as shown in the following code example:

void CCircCtrl ::DoPropExchange(CPropExchange* pPX)
{

}

ExchangeVersion(pPX. MAKELONG(_wVerMinor. _wVerMajor»;
COleControl ::DoPropExchange(pPX);

PX_Bool(pPX, _T("CircleShape"). m_circleShape. TRUE);
PX_Short(pPX, _T("CircleOffset"), m_circleOffset, 0);
PX_Long(pPX, _T("FlashColor"), (long &)m_flashColor, RGB(0xFF. 0x00. 0x00»;

As with all literal strings, the property name string is passed through the _ T macro
before being passed as a parameter to the PX_Long function.

303

Tutorials

Responding to Mouse Events

304

To better understand how to implement FlashColor functionality, you need to
understand the behavior the Circle control should have when the mouse is clicked
inside it. When the left mouse button is pressed, the circle is painted using the color
stored as the value of the FlashColor property. When the left mouse button is
released, the circle is repainted using the color stored as the value of the BackColor
property. Clicking in the circle causes it to flash.

To implement the flash behavior, the Circle control must handle mouse events. These
events are mapped to the following Windows mouse messages:

Message Response

WM_LBUTTONDOWN Paints the circle with the color stored as the value of the
FlashColor property.

WM_LBUTTONDBLCLK Paints the circle with the color stored as the value of the
FlashColor property.

WM_LBUTTONUP Paints the circle with the color stored as the value of the
BackColor property.

Notice that a WM_LBUTTONDBLCLK message is handled the same as a
WM_LBUTTONDOWN message. If the left mouse button is double-clicked in the
circle, the desired flash effect occurs.

The next step is to use Class Wizard to add a message handler for each of the three
mouse messages.

~ To add the message handlers

1 From the View menu, choose Class Wizard.

2 Choose the Message Maps tab.

3 From the Class Name drop-down list box, select CCircCtrl.

4 From the Object IDs list box, select CCircCtrl.

The list of message types appears in the Messages list box.

5 From the Messages list box, select WM_LBUTTONDOWN.

6 Click Add Function.

Notice that this new handler appears in the Member Functions list box as:

Member Functions
OnLButtonDown

7 From the Messages list box, select WM_LBUTTONDBLCLK.

8 Click Add Function.

Notice that this new handler appears in the Member Functions list box as:

Member Functions
OnLButtonDblClk

Chapter 24 Adding Special Effects

9 From the Messages list box, select WM_LBUTTONVP.

10 Click Add Function.

Notice that this new handler appears in the Member Functions list box as:

Member Functions
OnLButtonUp ON WM LBUTTONUP

11 Select the OnLButtonDown ON_ WM_LBUTIONDOWN entry in the Member
Functions list box.

12 Click Edit Code.

ClassWizard closes and the cursor is positioned at the
CCi rcCtrl : OnLButtonDown function in CIRCCTL.CPP.

The following code shows the fully implemented mouse message handlers. Note that
some of this code must be entered by the user, other lines are inserted automatically
by ClassWizard, and the TODO comment lines inserted by ClassWizard have been
removed.

void CCircCtrl ::OnLButtonDown(UINT nFlags. CPoint point)
{

CDC* pdc;

II Flash the color of the control if within the ellipse.
if (InCircle(point»
{

pdc - GetDC();
FlashColor(pdc);
ReleaseDC(pdc);

COleControl ::OnLButtonDown(nFlags. point);

void CCircCtrl::OnLButtonDblClk(UINT nFlags. CPoint point)
{

}

CDC* pdc;

II Flash the color of the control if within the ellipse.
if (InCircle(point»
{

pdc - GetDC();
FlashColor(pdc);
ReleaseDC(pdc);

COleControl ::OnLButtonDblClk(nFlags. point);

305

Tutorials

void CCircCtrl ::OnlButtonUp(UINT nFlags. CPoint point)
{

II Redraw the control.
if (InCircle(point»

InvalidateControl();

COleControl::OnlButtonUp(nFlags. point);

OnLButtonDown and OnLButtonDbl Cl k implement the same code: The circle will
be painted using the color stored as the value of the FlashColor property. The
On LButtonUp function invalidates the control, causing the circle to be redrawn with
the default background color.

Notice that to implement the FlashColor property's behavior, two new functions,
InC; rcl e and Fl ashCol or, have been introduced. These functions are described in
the following sections.

Hit Testing

306

The rule governing the Circle control flash behavior is that the circle should flash
only if the mouse is within the circular area of the control. To achieve this effect, you
must implement "hit testing," which checks the coordinates of every mouse click
within the control to see if they are within the circle. Hit testing is implemented in
the Circle control by the InC; r c 1 e function. InC; r c 1 e returns TRUE if the given
point is within the area of the circle or the ellipse.

~ To implement InCircle

1 Add the following line to your CIRCCTL.H file:

BOOl InC;rcle(CPoint& point);

as shown in the following example:

cl ass CCi rcCtrl : publ i c COl eControl
{

protected:
-CCircCtrl();

} ;

void GetDrawRect(CRect* rc);
short m_circleOffset;
BOOl InBounds(short nOffset);
BOOl InCircle(CPoint& point);

2 Add the function implementation at the end of your CIRCCTL.CPP file:

BOOl CCircCtrl ::InCircle(CPoint& point)
{

CRect rc;
GetClientRect(rc);
GetDrawRect(&rc);

Chapter 24 Adding Special Effects

II Determine radii
double a - (rc.right - rc.left) I 2;
double b - (rc.bottom - rc.top) I 2;

II Determine x. y
double x - point.x - (rc.left + rc.right) I 2;
double y - point.y - (rc.top + rc.bottom) I 2;

II Apply ellipse formula
return «x * x) I (a * a) + (y * y) I (b * b) <- I);

The function works by calculating whether the point is within the boundary of the
ellipse. The GetDrawRect function is called to make the necessary adjustments to
the bounding rectangle if the value of the Circ1eShape property is TRUE.

The variables a and b are set to the horizontal and vertical radii of the ellipse. Based
on the given point, the variables x and y are translated into the coordinates that are
offsets from the center of the ellipse. The last line returns the Boolean result of the
calculation, using the standard formula for an ellipse. Note that this calculation is
also valid for a circle because a circle is simply a special case of an ellipse.

The mouse message handlers perform hit testing by passing the point coordinates that
they receive as parameters to the InC i r c 1 e member function. If InC i r c 1 e returns
TRUE, the circle is painted appropriately.

Adding the FlashColor Function
The F 1 ash Color function paints the circle using the color value stored as the value
of the FlashColor property. The code is similar to the code in the 0 n D raw function.
The difference is that the F 1 ash Color function paints the circle itself using the
value of the FlashColor property, rather than that of the BackColor property, to fill
the background of the ellipse.

~ To implement the FlashColor function

1 Add the following line to your CIRCCTL.H file:

void FlashColor(CDC* pdc);

as shown in the following example:

class CCircCtrl : public COleControl
{

protected:
-CCircCtrl();
void GetDrawRect(CRect* rc);
short m_circleOffset;
BOOl InBounds(short nOffset);

307

Tutorials

} ;

BOOl InCircle(CPoint& point);
void FlashColor(CDC* pdc);

2 Add the function implementation at the end of your CIRCCTL.CPP file:

void CCircCtrl ::FlashColor(CDC* pdc)
{

CBrush* pOldBrush;
CBrush flashBrush(TranslateColor(m_flashColor»;
CPen* pOldPen;
CRect rc;

GetClientRect(rc);
GetDrawRect(&rc);
pOldBrush = pdc-)SelectObject(&flashBrush);
pOldPen - (CPen*)pdc-)SelectStockObject(BlACK_PEN);
pdc-)Ellipse(rc);
pdc-)SelectObject(pOldPen);
pdc-)SelectObject(pOldBrush);

The f 1 ash B r u s h variable constructs a solid brush using the value of the FlashColor
property stored in m_fl ashBrush. Because m_fl ashBrush is an OLE_COLOR
value, the TranslateColor function is called to convert it to a COLORREF value
first. The code selects the brush into the device context pdc, making sure to retain
the old brush value in pO 1 dB r u s h. A stock black pen is also selected into the device
context. The old pen value is saved in pal dPen. The ellipse is then drawn with the
black pen and filled in with the color specified by the value of the FlashColor
property. Finally, the code selects the original pen and brush back into the device
context pdc. The solid brush created when fl ashBrush is constructed is deleted
when the f 1 ash B r u s h destructor is called. This occurs when the F 1 ash Color
function returns and the f 1 ash B r u s h variable goes out of scope.

Rebuilding the Control with FlashColor
Implemented

Now that the FlashColor property modifications are complete, you need to rebuild the
control.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

Testing the FlashColor Property

308

FlashColor functionality has been implemented and you can test it using Test
Container.

Chapter 24 Adding Special Effects

~ To test the FlashColor property

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, select Circ Control.

4 Click OK to close the Insert OLE Control dialog box and insert a control into Test
Container.

The Circle control is displayed in the Test Container window. Move the mouse over
the circle and click once. The circle flashes red, the default value to which the
FlashColor property was initialized in the CCi rcCtrl : : DoPropExchange member
function.

~ To change the FlashColor property

1 From the View menu, choose Properties.

The Properties dialog box appears.

2 From the Property drop-down combo box, select FlashColor.

The Value edit control displays 255, the default value of the FlashColor property.

3 In the Value edit control, type 0 (zero), which corresponds to the color black.

4 Click Apply.

5 Click in the circle to verify that it flashes black.

You can use these color values to test the control.

Color Hex Value Decimal Value

White OxOOFFFFFF 16777215
Black OxOOOOOOOO 0
Gray Ox00808080 8421504
Red OxOOOOOOFF 255
Yellow OxOOOOFFFF 65535
Green OxOOOOFFOO 65280
Cyan OxOOFFFFOO 16776960
Blue OxOOFFOOOO 16711680
Magenta OxOOFFOOFF 16711935

Note You can specify hex values in the Properties dialog box by including the "Ox" prefix as
shown in the table.

309

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

CHAPTER 25

Adding Custom Events to the
Circle Control

This chapter illustrates how to add custom events to the Circle control. OLE controls
use events to notify a container that something has happened to a control. Commonly,
an event is caused by user interaction, such as mouse or keyboard input, a Windows
interaction, or a special condition occurring in the control itself. When one of these
actions occur, the control alerts the container by firing an event.

MFC supports two kinds of events: stock and custom. Stock events are those events
that class COleControl handles automatically. Custom events require extra work by
the developer, but allow a control to notify a container when an action specific to the
control occurs. For more information on stock and custom events, see the article
"Events" in Programming with MFC.

This part of the tutorial shows you how to add the ClickIn and ClickOut custom
events. The ClickIn event is fired when the user clicks the left mouse button with the
insertion point inside the control circle; ClickOut is fired when the user clicks the left
mouse button with the insertion point outside the circle.

Note You can find the code produced by working through this part of the tutorial in the CIRC2
sample source code directory.

In this chapter, you will:

• Add the ClickIn event to the Circle control.

• Implement the code to fire the ClickIn event.

• Add the ClickOut event to the Circle control.

• Implement the code to fire the ClickOut event.

Adding the ClickIn Event
Events, like properties, are added to a control using Class Wizard. When you add a
custom event, Class Wizard creates the code necessary to declare the event; however,
the control developer must write additional code to fire the event.

311

Tutorials

312

An event can also define parameters it can pass to the control's container when it
fires. Event parameters can be added using Class Wizard. In this part of the tutorial,
you will define two parameters for the Clicldn event: x and y, which represent the x
and y coordinates of the mouse position when the left mouse button is clicked.

~ To add the Clickln event

1 From the View menu, choose Class Wizard.

2 Choose the OLE Events tab.

3 From the Class name drop-down list box, select CCircCtrl.

4 Click Add Event.

The Add Event dialog box appears.

5 In the edit control of the External name drop-down combo box, type C lie kIn.

6 Use the grid control to add a parameter, called x (type 0 L E_X PO S _P I X E L S).

7 Use the grid control to add a second parameter, called y (type
o LE_ Y POS_P I X E LS).

8 Click OK to close the Add Event dialog box.

This returns you to the OLE Events tab. Notice that the implementation of the
Clicldn event appears as:

Implementation:
void FireClickIn(OLE_XPOS_PIXELS x. OLE_YPOS_PIXELS y);

9 Click OK to confirm your choices and close ClassWizard.

Class Wizard creates the code to add the Clicldn event, modifying both the
CCi rcCtrl class files and the CIRC.ODL file.

ClassWizard modifies the CCi rcCtrl class event map in CIRCCTL.CPP to add a
macro entry for the Clicldn event:

BEGIN_EVENT_MAP(CCircCtrl. COleControl)
//{{AFX_EVENT_MAP(CCircCtrl)
EVENT_CUSTOM("ClickIn". FireClickIn. VTS_XPOS_PIXELS VTS_YPOS_PIXELS)
//JJAFX_EVENT_MAP

END_EVENT_MAP()

The macro EVENT_CUSTOM associates the Clicldn event name with
Fir e C lie kIn, the function that actually fires the event, and with the type
definitions for the x and y parameters that Clicldn uses.

An inline function is added to the C C ire C t r 1 class declaration in CIRCCTL.H
which, when called, fires the Clicldn event. The Fi reCl i ckIn function simply calls
the Fir e Eve n t function to do its work. Event functions like Fir e C lie kIn are
added to provide a type-safe way of firing an event.

Chapter 25 Adding Custom Events to the Circle Control

class CCircCtrl : public COleControl
{

11{{AFX_EVENT(CCircCtrl)
void FireClickln(OLE_XPOS_PIXELS x. OLE_YPOS_PIXELS y)

{FireEvent(eventidClickln.EVENT_PARAM(VTS_XPOS_PIXELS VTS_YPOS_PIXELS).
x. y); J
I/} JAFX_EVENT

Firing the ClickIn Event
Now that the ClickIn event has been declared, it can be fired. The control itself
determines when a custom event should be fired. In this example, the ClickIn event
fires when the user clicks the left mouse button with the insertion point inside the
control circle.

The code that fires the ClickIn event should be triggered when a
WM_LBUTTONDOWN message is received from Windows. The Circle control
already has a message handler function defined for WM_LBUTTONDOWN-the
OnLButtonDown function in CIRCCTL.CPP.

Add the following lines to change 0 n L But ton 0 own to fire the ClickIn event:

II Fire the Clickln event
FireClickln(point.x. point.y);

as shown in the following code example:

void CCircCtrl::OnLButtonDown(UINT nFlags. CPoint point)
{

CDC* pdc;

II Flash the color of the control if within the ellipse.
if (InCircle(point»
{

pdc =0 GetDC();
FlashColor(pdc);
ReleaseDC(pdc);

II Fire the Clickln event
FireClickln(point.x. point.y);

COleControl ::OnLButtonDown(nFlags. point);

Modifying 0 n L But ton 0 own to fire the event requires a call to the F; r e C 1 ; c kIn
function. The call to F; reCl; ckIn is made only if the InC; rcl e function returns
TRUE, which means that the insertion point is within the circle.

313

Tutorials

Adding the ClickOut Event

314

When the user clicks the left mouse button and the insertion point is outside the
control circle, the ClickOut event should fire. The ClickOut event is simpler than the
ClickIn event in that it defines no arguments.

1 From the View menu, choose Class Wizard.

2 Choose the OLE Events tab.

3 From the Class Name drop-down list box, select CCircCtrl.

4 Click Add Event.

The Add Event dialog box appears.

5 In the edit control of the External Name drop-down combo box, type Cl i ckOut.

6 Click OK to close the Add Event dialog box.

This returns you to the OLE Events tab. Notice that the implementation of the
ClickOut event appears as:

Implementation:
void FireClickOut();

7 Click OK to confirm your choices and close ClassWizard.

As with the ClickIn event, ClassWizard creates the code to add the ClickOut event,
modifying the files CIRC.ODL, CIRCCTL.H, and CIRCCTL.CPP.

ClassWizard modifies the CCi rcCtrl class's event map in CIRCCTL.CPP to add a
macro entry for the ClickOut event:

BEGIN_EVENT_MAP(CCi rcCtrl. COl eControl)
11{{AFX_EVENT_MAP(CCircCtrl)
EVENT_CUSTOM("ClickIn". FireClickIn. VTS_XPOS_PIXELS VTS_YPOS_PIXELS)
EVENT_CUSTOM("ClickOut". FireClickOut. VTS_NONE>
IIJJAFX_EVENT_MAP

END_EVENT_MAP()

The macro EVENT_CUSTOM associates the ClickOut event name with the member
function Fi reCl i ckOut and with its argument type definition. The ClickOut
argument type definition is set to VTS_NONE, which indicates that the ClickOut
event passes no arguments.

An additional inline function is added to the C C ire C t r 1 class declaration. The
Fi reCl i ckOut function provides a type-safe call to fire the event:

class CCircCtrl : public COleControl
{

11{{AFX_EVENT(CCircCtrl)
void FireClickIn(OLE_XPOS_PIXELS x. OLE_YPOS_PIXELS y)

{FireEvent(eventidClickIn.EVENT_PARAM(VTS_XPOS_PIXELS VTS_YPOS_PIXELS).
x. y); J

Chapter 25 Adding Custom Events to the Circle Control

void FireClickOut()
{FireEvent(eventidClickOut,EVENT_PARAM(VTS_NONE»;}

I/} }AFX_EVENT

Firing the ClickOut Event
ClickOut fires under a condition opposite to the one that fires ClickIn. You must
modify the OnLButtonDown function in CIRCCTL.CPP to call Fi reCl i ckOut
when the insertion point is not within the circle (that is, the InCi rcl e function
returns FALSE). The Fi reCl i ckOut function fires the event.

Add the following lines of code to CRCCTL.CPP:

else
II Fire the ClickOut event
Fi reCl i ckOut () ;

as shown in the code example:

void CCircCtrl::OnLButtonDown(UINT nFlags, CPoint point)
{

CDC* pdc;

II Flash the color of the control if within the ellipse.
if (InCircle(point»
{

e'l se

pdc ... GetDC();
FlashColor(pdc);
ReleaseDC(pdc);

II Fire the Clickln event
FireClickln(point.x, point.y);

II Fire the ClickOut event
FireClickOut();

COleControl ::OnLButtonDown(nFlags. pOint);

Rebuilding the Control
Now that you have added the ClickIn and ClickOut events to the Circle control, you
need to rebuild it.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

315

Tutorials

Testing the ClickIn and ClickOut Events

316

The ClickIn and ClickOut events have been defined, and the code has been
implemented to fire the events. Now you can use Test Container to test them.

~ To test the Clickln and ClickOut events

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, select Circ Control.

4 Click OK to close the Insert OLE Control dialog box and insert a control into Test
Container.

S From the View menu, choose Event Log.

The Event Log dialog box appears, which lists events sent to Test Container as
theyoccur.

6 Position the mouse within the circle and click the left mouse button.

A ClickIn entry is added to the Event Log list, and the x and y mouse coordinates
are shown.

7 Position the mouse outside the circle and click the left mouse button.

A ClickOut entry is added to the Event Log list. Notice that no arguments are
shown because none were defined for this event.

CHAPTER 26

Handling Text and Fonts

This chapter explores the text and font support provided in the OLE control classes.
You will add three stock properties, Caption, Font, and ForeColor, to implement a
caption in the Circle control. With these properties, you can use any font to draw text
in the control.

Note You can find the code produced by working through this part of the tutorial in the CIRC3
sample source code directory.

The Circle sample uses the stock Caption property to hold the text of the caption. The
stock Font property holds the font that the Circle control uses to draw its caption. The
resulting caption text is drawn using the color stored as the value of the ForeColor
property.

For more information about stock properties, see the article "Properties" in
Programming with MFC. Also see the article "OLE Controls: Using Fonts in an OLE
Control," which contains information about font support in OLE controls.

In this chapter, you will:

• Add the stock Caption property.

• Add the stock Font property.

• Add the stock ForeColor property.

• Implement the Caption drawing behavior.

• Add stock color and font property pages.

Adding the Stock Caption Property
Use Class Wizard to add the stock Caption property to the Circle control.

~ To add the stock Caption property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

317

Tutorials

318

3 In the Class name drop-down list box, select CCircCtrl.

4 Click Add Property.

The Add Property dialog box appears.

5 From the External name drop-down combo box, select Caption.

6 Under Implementation, choose Stock (it may already be selected).

7 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the Caption property appears as:

Implementation:
Stock Property

8 Click OK to confirm your choices and close ClassWizard.

Class Wizard creates the code to add the Caption property, modifying both the
CCi rcCt rl class and the CIRC.ODL file.

ClassWizard modifies the CCi rcCtrl class dispatch map in CIRCCTL.CPP to add
the DISP _STOCKPROP _CAPTION macro entry for the Caption property:

BEGIN_DISPATCH_MAP(CCircCtrl, COleControl)
11{{AFX_DISPATCH_MAP(CCircCtrl)
DI SP _PROPERTY _NOTI FY (CCi rcCtrl, "Fl as hCo lor", m_fl as hCo lor, On Fl as hCo 1 orChanged,

VT_COLOR)
DISP_PROPERTY_NOTIFY(CCircCtrl, "CircleShape", m_circleShape, OnCircleShapeChanged,

VT _BOOl)
DISP_PROPERTY_EX(CCircCtrl, "CircleOffset", GetCircleOffset, SetCircleOffset,

VT_I2)
DISP_STOCKPROP_BACKCOLOR()
DISP_STOCKPROP_CAPTION()
DISP_FUNCTION_ID(CCircCtrl, "AboutBox", DISPID_ABOUTBOX,AboutBox, VT_EMPTY,

VTS_NONE)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

The DISP _STOCKPROP _CAPTION macro enables the stock Caption property in
the Circle control, implemented as a Get/Set property. Note that the Caption property
is an alias for the stock Text property. The Get and Set methods and notification
function for the Caption property are the GetText, SetText, and OnTextChanged
functions in class COleControl.

The OnTextChanged function is invoked when the Caption property is modified
through the SetText function. By default, OnTextChanged simply invalidates the
control.

Stock property notification functions such as OnTextChanged can be overridden in
the descendant control class. For example, you may wish to provide an optimal
solution for redrawing the caption other than invalidating the control, which forces
the whole control to repaint.

Chapter 26 Handling Text and Fonts

In addition to the GetText function, the Caption property can be accessed directly
through the InternalGetText function of COleControl. InternalGetText is useful
when the control developer accesses the Caption property internally, for example,
from the control's 0 nOr a w function. The C C ire C t r 1 : : 0 nOr a w function will be
changed to use the InternalGetText function to draw the caption text.

Adding the Stock Font Property
The Circle control uses the font information contained in the stock Font property to
draw the caption text. The Font property is actually a pointer to a font object that is
encapsulated by class CFontHolder. The font object contains several properties that
describe the current font. These properties are accessible through the font object's
IDispatch interface.

~ To add the stock Font property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class name drop-down list box, select CCircCtrl.

4 Click Add Property.

The Add Property dialog box appears.

5 From the External name drop-down combo box, select Font.

6 Under Implementation, choose Stock (it may already be selected).

7 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the Font property appears as:

Implementation:
Stock Property

8 Click OK to confirm your choices and close ClassWizard.

Class Wizard creates the code to add the Font property, modifying both the
CCi rcCtrl class and the CIRC.ODL file.

Class Wizard modifies the C C ire C t r 1 class dispatch map to add a
DISP _STOCKPROP _FONT macro entry for the Font property:

BEGIN_DISPATCH_MAP(CCircCtrl, COleControl)
11{{AFX_DISPATCH_MAP(CCircCtrl)
DISP_PROPERTY_NOTIFY(CCircCtrl, "FlashColor", m_flashColor, OnFlashColorChanged,

VT_COLOR)
DISP_PROPERTY_NOTIFY(CCircCtrl, "CircleShape", m_circleShape, OnCircleShapeChanged,

VT_BOOl)
DISP_PROPERTY_EX(CCircCtrl, "CircleOffset", GetCircleOffset, SetCircleOffset,

VT_I2)
DISP_STOCKPROP_BACKCOLOR()
DISP_STOCKPROP_CAPTION()

319

Tutorials

DISP_STOCKPROP_FONT()
II}}AFX_DISPATCH_MAP
DISP_FUNCTION_ID(CCircCtrl, "AboutBox",

DISPID_ABOUTBOX, AboutBox, VT_EMPTY, VTS_NONE)
END_DISPATCH_MAP()

Similar to the Caption property, the Font property is implemented as a Get/Set
property. The Font property supports a notification function called OnFontChanged,
which is defined in COleControl. By default, this function invalidates the control.
OnFontChanged can be overridden in the control class to provide an optimal
solution to reflecting the font change.

Adding the Stock ForeColor Property
The stock ForeColor property contains the foreground color that the control uses to
paint the caption text. Like the stock BackColor property, the ForeColor property is a
Get/Set property type.

~ To add the stock ForeColor property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class name drop-down list box, select CCircCtri.

4 Click Add Property.

The Add Property dialog box appears.

5 From the External name drop-down combo box, select ForeColor.

6 Under Implementation, choose Stock (it may already be selected).

7 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the ForeColor property appears as:

Implementation:
Stock Property

8 Click-OK to confirm your choices and close ClassWizard.

Class Wizard adds the code to create the ForeColor property to both the C C ire C t r 1
class and the CIRC.ODL file.

Implementing Caption Drawing Behavior

320

Now that all the required properties are in place, you can implement caption drawing.
To draw the caption text, you must modify the CCi rcCtrl : : OnDraw function in
CIRCCTL.CPP.

Chapter 26 Handling Text and Fonts

The drawing code changes require that the device context passed to the OnDraw
function be modified to reflect the background and foreground colors, stored as
values of the BackColor and ForeColor properties, respectively. The font contained in
the Font property must also be selected into the device context before the caption text
can be drawn. The InternalGetText function retrieves the caption text drawn using
the ExtTextOut function.

~ To implement caption drawing in the Circle control

• Modify the OnDraw member function in CIRCCTL.CPP by adding the two
following code blocks

Block 1:

CFont* pOldFont:
TEXTMETRIC tm;
const CString& strCaption - InternalGetText():

II Set the ForeColor property color and transparent background
mode into the device context

pdc->SetTextColor(TranslateColor(GetForeColor(»):
pdc->SetBkMode(TRANSPARENT):

Block 2:

II Draw the caption using the stock Font and ForeColor properties
pOldFont - SelectStockFont(pdc):
pdc->GetTextMetrics(&tm):
pdc->SetTextAlign(TA_CENTER ITA_TOP):
pdc->ExtTextOut«rc.left + rc.right) I 2. (rc.top + rc.bottom -

tm.tmHeight) I 2.
ETO_CLIPPED. rc. strCaption. strCaption.GetLength(). NULL):

pdc->SelectObject(pOldFont):

as show in the following example:

void CCircCtrl ::OnDraw(
CDC* pdc. const CRect& rcBounds. const CRect& rclnvalid)

CBrush* pOldBrush:
CBrush bkBrush(TranslateColor(GetBackColor(»):
CPen* pOldPen:
CRect rc - rcBounds:
CFont* pOldFont:
TEXTMETRIC tm:
const CString& strCaption - InternalGetText():

II Set the ForeColor property color and transparent background
mode into the device context

pdc->SetTextColo~(TranslateColor(~etForeColor(»):
pdc->SetBkMcide(TRANSPARENT):

II Paint the background using the BackColor property
pdc->FillRect(rcBounds. &bkBrush):

321

Tutorials

322

II Draw the ellipse
GetDrawRect(&rc);
pOldBrush - pdc-)SelectObject(&bkBrush);
pdc-)Ellipse(rc);

II Draw the caption using the stock Font and ForeColor properties
pOldFont - SelectStockFont(pdc);
pdc-)GetTextMetrics(&tm);
pdc-)SetTextAlign(TA_CENTER ITA_TOP);
pdc-)ExtTextOut«rc.left + rc.right) I 2, (rc.top + rc.bottom -

tm.tmHeight) I 2,
ETO_CLIPPED, rc, strCaption, strCaption.GetLength(), NULL);

pdc-)SelectObject(pOldFont);

pdc-)SelectObject(pOldPen);
pdc-)SelectObject(pOldBrush);

The code added in the first block in the preceding example starts by declaring three
new local variables. The pOl dFont variable holds the old font from the device
context. The tm variable holds text metric information about the font used to draw
the text. The s t rea p t ion variable is the text to be drawn. It is initialized by calling
the InternalGetText function to get the value of the Caption property. The
InternalGetText function should be used instead of the GetText function whenever
the returned text will not be modified. This is because GetText returns a string of
type BSTR, containing a copy of the caption text, that must be freed.

CFont pOldFont;
TEXTMETRIC tm;
const CString& strCaption = InternalGetText();

The text color of the device context is set to the current value of the ForeColor
property. The OLE_COLOR value returned by the GetForeColor function is
translated by the TranslateColor function into a COLORREF value. This value is
then passed as a parameter to the SetTextColor function to set the text color in the
device context. OLE_COLOR values must be translated by the TranslateColor
function whenever a COLORREF value is required.

pdc-)SetTextColor(TranslateColor(GetForeColor(»);

The background mode of the text is made transparent in the device context by calling
the SetBkMode function.

pdc-)SetBkMode(TRANSPARENT);

In the second block of code added in the previous example, calling the
SelectStockFont function (defined in the COleControl base class) selects the current
font, stored as the value of the stock Font property, into the device context. The font
that used to be selected into the device context is kept in the pOl d F 0 n t variable to be
selected back into the device context later.

pOldfont = SelectStockFont(pdc);

Chapter 26 Handling Text and Fonts

The text metrics for the font in the device context are retrieved by calling the
GetTextMetrics function and are used to center the text vertically. The text
alignment of the device context is set using the SetTextAlign function, and this
centers the text horizontally. The text is drawn by calling the ExtTextOut function.
The text is clipped to the bounding rectangle of the circle or ellipse (which may be
different from the bounding rectangle of the control if the CircleShape property is
TRUE) and centered both horizontally and vertically. Note that any function
affecting the device context passed to the OnDraw function must be among the subset
of functions that are allowed for both metafile device contexts and standard device
contexts. For more information on the 0 n D raw function and possible modifications,
see the article "OLE Controls: Painting an OLE Control" in Programming with MFC.

pde->GetTextMetries(&tm):
pde->SetTextAlign(TA_CENTER ITA_TOP):
pde->ExtTextOut«re.left + re.right) / 2, (re.top + re.bottom - tm.tmHeight) / 2,

ETO_CLIPPED, re, strCaption, strCaption.GetLength(), NULL):

The font that used to be selected in the device context is replaced using the
SelectObject function.

pde->SeleetObjeet(pOldFont);

Adding the Color and Font Property Pages
MFC supports stock color and font property pages that can be easily implemented in
a control by adding entries to a control's property page ID table. ClassWizard
produces a default property page ID table in CIRCCTL.CPP that looks like this:

BEGIN_PROPPAGEIDS(CCi reCtrl, 1)
PROPPAGEID(CCirePropPage::guid)

END_PROPPAGEIDS(CCireCtrl)

When editing the property page section, you must modify the page count number in
the BEGIN_PROPPAGEIDS macro to reflect the actual number of property pages
implemented by the control. In the case of the Circle control, this number is 3 when
the color and font property pages are added. The first property page is the default
generated by ControlWizard, the second is the color property page, and the third is
the font property page.

~ To change the 10 count and add lines for the color and font property pages

o Add two lines to the code generated by ClassWizard in CIRCCTL.CPP as follows:

BEGIN_PROPPAGEIDS(CCireCtrl, 3)
PROPPAGEID(CCirePropPage::guid)

PROPPAGEID(CLSID_CColorPropPage)
PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS(CCireCtrl)

323

Tutorials

The default property page allows properties to be viewed and edited. MFC also
provides stock property page support for picture properties. For more information on
property pages, see "OLE Controls: Property Pages" in Programming with MFC.

Rebuilding the Control with Font and Color
Support Implemented

Now that font and color support and two stock property pages have been added, you
need to rebuild the control. Since the CIRC.ODL file was changed, the type library is
automatically updated during the build.

~ To rebuild the control

• From the View menu, choose Build CIRC.OCX.

Testing the Caption Property

324

Use Test Container to test the caption drawing behavior.

~ To test the caption property

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, select Circ Control.

4 Click OK to close the Insert OLE Object dialog box and insert a control into Test
Container.

S From the View menu, choose Properties.

The Properties dialog box appears.

6 From the Property drop-down combo box, select Caption.

7 In the Value edit control, type He 110.

8 Click Apply.

The string "Hello" is displayed in the circle. Now try typing some longer phrases for
the caption. Notice that the phrase is clipped to the bounds of the circle.

Next, modify the caption color and font.

~ To modify the color and font properties

1 From the Edit menu, choose Properties ... Circ Control Object.

The Circ Control Properties property page dialog appears.

Chapter 26 Handling Text and Fonts

2 Choose the Fonts tabs.

Modify the different font properties. Click Apply whenever you want to see the
control reflect your changes.

3 Choose the Colors tabs.

Modify the different color properties. Click Apply whenever you want to see the
control reflect your changes. Notice that the Property Name drop-down list box
contains three entries-the stock BackColor, stock ForeColor, and custom
FlashColor properties

325

CHAPTER 27

Modifying the Default Property Page

This chapter illustrates how to work with the Circle control default property page.
The default property page is a dialog box that allows the user to add controls for
viewing and changing properties. ControlWizard supplies a default property page
when it creates the OLE control project.

Note You can find the code produced by working through this part of the tutorial in the CIRC3
sample source code directory.

A property page provides the interface for viewing and editing a control's properties
at design time. OLE controls use the default property page to display and modify
properties that are not handled by stock property pages, such as the stock Font
property page added to the Circle control in Chapter 26, "Handling Text and Fonts."
For more information about stock and custom property pages, see the article "OLE
Controls: Using Stock Property Pages" in Programming with MFC.

This part of the Circle tutorial modifies a default property page to display and modify
the Caption property.

In this chapter, you will:

• Add controls to the default property page.

• Link the controls to the Caption, CircleOffset, and CircleShape properties.

Adding Controls to the Default
Property Page

When ControlWizard created the Circle control, a default property page was included
as part of the project. Property pages are listed in the property page ID table in
CIRCCTL.CPP:

327

Tutorials

328

BEGIN_PROPPAGEIDS(CCi rcCtrl, 3)
PROPPAGEID(CCircPropPage::guid)
PROPPAGEID(CLSID_CColorPropPage)
PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS(CCircCtrl)

The first entry in the Property page ID table is the default (or general) property page.
The second and third entries are the stock color and font property pages that were
added in Chapter 26, "Handling Text and Fonts."

Initially, the default property page dialog box template is empty. You can use the
dialog editor to add controls to the default property page.

~ To add the Caption property to the default property page

1 In the Resource View pane, open the Circ project folder.

2 Open the Dialog folder.

3 Open the IDD_PROPPAGE_CIRC entry in the Dialog folder to edit the property
page template.

4 Click on the default static text control in the dialog template

5 From the Edit menu, choose Cut to delete the default static text control.

6 Select the Static Text tool in the Control Palette and place a static text control in
the dialog.

7 Double-click the static text control to bring up the Test Properties dialog box.

8 Using the Test Properties dialog box, change the static text control caption to
&Caption:.

9 Select the Edit Box tool in the Control Palette and place an edit box control next to
the static text control in the dialog.

10 Double-click the edit box control to bring up the Test Properties dialog box.

11 Using the Test Properties dialog box, change the edit control's ID to
IDe_CAPTION.

~ To add the CircleOffset property to the default property page

1 Select the Static Text tool in the Control Palette and place another static text
control in the dialog.

2 Double-click the static text control to bring up the Test Properties dialog box.

3 Using the Test Properties dialog box, change the static text control caption to
Circle&Offset: .

4 Select the Edit Box tool in the Control Palette and place an edit box control next to
the static text control in the dialog.

Chapter 27 Modifying the Default Property Page

5 Double-click the edit box control to bring up the Test Properties dialog box.

6 Using the Test Properties dialog box, change the edit control's ID to
IDC_CIRCLEOFFSET.

~ To add the CircleShape property to the default property page

1 Select the Check Box tool in the Control Palette and place a check box control in
the dialog.

2 Double-click the edit box control to bring up the Test Properties dialog box.

3 Using the Test Properties dialog box, change the check box's ID to
IDC_CIRCLESHAPE and change the check box's caption to Circle&Shape; on
the Styles property sheet, check the Left Text check box.

Once you have completed these procedures, arrange the controls to your liking and
choose Save from the File menu to save the property page template.

Linking Controls with Properties
Now that the property page has controls for displaying and modifying properties, the
controls need to be linked to the properties. You can link controls in the property
page with properties by using a shortcut to the Add Member Variable dialog box in
Class Wizard.

~ To link the property page controls to properties

1 In the Resource View pane, open the Circ project folder.

2 Open the Dialog folder.

3 Open the IDD_PROPPAGE_CIRC entry in the Dialog folder to load the property
page template.

4 While holding down the CTRL key, double-click the edit box control for the
Caption property.

The Add Member Variable dialog box of ClassWizard appears.

5 After the m_ that is already in the Member variable name edit control, type
capt; on, so the edit control contains m_caption.

6 In the Category drop-down list box, choose Value.

7 In the Variable type drop-down list box, choose CString.

8 In the Optional OLE property name drop-down combo box, choose Caption.

329

Tutorials

330

9 Click OK to close the Add Member Variable dialog box.

If you were to open Class Wizard, the Member Variable tab would contain the new
member variable mapping for the Caption property, as shown below:

Control IDs:
IDC_CAPTION
IDC_CIRClEOFFSET
IDC_CIRClESHAPE

Type Member
CString m_caption

10 Repeat steps 2 through 6, double-clicking the edit box control for the CircleOffset
property, typing ci rcl eOffset in the Member Variable Name edit control so
that it contains m_circleOffset, choosing int from the Variable Type drop-down list
box, and typing Ci rcl eOffset in the Optional OLE Property Name drop-down
combo box.

If you were to open Class Wizard, the Member Variable tab would contain the new
member variable mapping for the CircleOffset property, as shown below:

Control IDs: Type Member
IDC_CAPTION CString m_caption
IDC_CIRClEOFFSET int m_circleOffset
IDC_CIRClESHAPE

11 Repeat steps 2 through 7 double-clicking the check box for the CircleShape
property, typing c i r c 1 e S hap e in the Member Variable Name edit control so that
it contains m_circleShape, choosing BOOL from the Variable Type drop-down list
box, and typing Ci rcl eShape in the Optional OLE Property Name drop-down
combo box.

If you were to open Class Wizard, the Member Variable tab would contain the new
member variable mapping for the CircleShape property, as shown below:

Control IDs:
IDC_CAPTI ON
IDC_CI RClEOFFSET
IDC_CIRClESHAPE

Type
CString
int
BOOl

Member
m_caption
m_circleOffset
m_circleShape

ClassWizard adds the member variables to the CCi rcPropPage class. ClassWizard
also adds functions to the C C i r cPr a p P age class to initialize the member variables
and to handle the exchange of data between the dialog controls, the member
variables, and the properties.

The m_capt ion, m_ci rcl eOffset, and m_ci rcl eSha pe member variables are
declared in CIRCPPG.H:

class CCircPropPage : public COlePropertyPage
{

//{{AFX_DATA(CCircPropPage)

CString m_caption;
int m_circleOffset;

Chapter 27 Modifying the Default Property Page

1 ;

BOOl m_circleShape;
/ /} lAFX_DATA

The member variables are initialized in the constructor for the C C i r cPr a p P age
class, the CCi rcPrapPage function in CIRCPPG.CPP:

CCircPropPage::CCircPropPage() :

1

COlePropertyPage(AfxGetInstanceHandle(). IDD. IDS_CIRCCTRl_PPG_CAPTION)

//{{AFX_DATA_INIT(CCircPropPage)
m_ cap t ion =- _ T(" ") ;
m_circleOffset - 0;
m_circleShape - FALSE;
//llAFX_DATA_INIT

N atice that strings assigned to member variables are first passed through the _ T
macro. This is the same macro used for string parameters to PX_ functions in
CCi rcCt r 1 : : DaP rap Excha nge. The _T macro is used to maintain compatibility
between different string representations, and it must be used for all literal strings in
an OLE control project.

Data transfer is handled by the DDP _ and DDX_ macros in the DaData Exchange
function in CIRCPPG.CPP:

void CCircPropPage::DoDataExchange(CDataExchange* pDX)
{

1

//{{AFX_DATA_MAP(CCircPropPage)
DDP_Text(pDX. IDC_CAPTION. m_caption. _T("Caption"»;
DDX_Text(pDX. IDC_CAPTION. m_caption);
DDP_TextCpDX. IDC_CIRClEOFFSET. m_circleOffset. _T("CircleOffset"»;
DDX_Text(pDX. IDC_CIRClEOFFSET. m_circleOffset);
DDP_Check(pDX. IDC_CIRClESHAPE. m_circleShape. _T("CircleShape"»;
DDX_Check(pDX. IDC_CIRClESHAPE. m_circleShape);
//llAFX_DATA_MAP
DDP_PostProcessing(pDX);

The DDX_ macros are the same macros used for standard MFC dialog boxes. They
synchronize dialog controls with dialog member variables. The DDP _macros are
used only in OLE control property pages. They synchronize property page dialog
member variables with specific control properties. Translations between an edit
control and a short value and between a check box and a BOOL value are automatic.
Similar to strings assigned to member variables, strings passed as parameters to
DDP _ macros are first passed through the _T macro.

The Circle control now has a general property page that can be used to display and
modify the values of several of its properties. The I DC_CAPT I ON edit control,
I DC_C I RC LEO FFS ET edit control, and I DC_C I RC LESHAP E check box are linked
through property page member variables to the Caption, CircleOffset, and

331

Tutorials

Circle Shape properties, respectively. Between the default property page added in this
chapter, and the stock color and font property pages added earlier, all of the Circle
control properties can be accessed through property pages.

Rebuilding the Control with the
Property Page

You should rebuild the Circle control to reflect these latest changes. Because the
CIRC.ODL file was not changed, the type library will not be updated as part of
the build.

~ To rebuild the control

• From the View menu, choose Build CIRC.OCX.

Testing the Default Property Page

332

Use Test Container to verify that the default property page has controls linked to the
Caption, CircleOffset, and CircleShape properties.

~ To test the default property page

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, select Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, choose Circ Control.

4 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

S From the Edit menu, choose Circ Control, then choose Properties.

The Circ Control Properties dialog box appears.

6 From the Cire Control Properties drop-down list box, select General. The modified
property page appears.

7 Change the Caption, Circle Offset, and CircleShape properties using the property
page. Click Apply to see your changes reflected in the control.

CHAPTER 28

Simple Data Binding

Data binding is one of the more powerful features of OLE controls. Data binding is a
notification mechanism that links control properties through the container to a data
source, such as a database field. In this chapter, a bound property is added to the
Circle control to illustrate simple data binding.

Note There is a difference between a bindable property and a bound property. Bindable refers
to the fact that a property is available to be bound. A bindable property becomes a bound
property at run time, when the control is created and inserted into a container that responds to
bound property notifications.

Optimistic and Pessimistic Data Binding
There are two levels of data binding: optimistic and pessimistic. With optimistic data
binding, the control assumes that changes can be made to a bound property; with
pessimistic data binding, the control is required to ask the container's permission
before making changes to the bound property. Whenever a bound property is
changed, the control must notify the container by calling the appropriate function,
depending on the level of data binding supported.

When optimistic data binding is used, the control notifies the container by calling the
BoundPropertyChanged function. It is this form of data binding that is used for the
Note property in the Circle control.

When pessimistic data binding is used, the control requests permission from the
container by calling the BoundPropertyRequestEdit function. If the
BoundPropertyRequestEdit function returns TRUE, the control may change the
bound property. However, if the BoundPropertyRequestEdit function returns
FALSE, the control must not change the bound property.

Test Container's Notification Log dialog box helps you test bound properties that use
either optimistic or pessimistic data binding. When the BoundPropertyChanged
function is called, a notification is logged in the dialog box. You are also allowed to
choose the response to each call to the BoundPropertyRequestEdit function. A
different container might update a field in a database record when the

333

Tutorials

BoundPropertyChanged function is called. It might also return FALSE from a call
to the BoundPropertyRequestEdit function if the field or record was in use.

Note You can find the code produced by working through this part of the tutorial in the CIRC3
sample source code directory.

To clearly show the differences between bindable and non-bindable properties, a
custom Get/Set property, called Note, will be implemented and changed into a
bindable property in two separate steps.

In this chapter you will:

• Define the Note custom Get/Set property.

• Make the Note property bindable.

• Notify the control's container of changes.

Defining the Note Property

334

Initially, the Note property is a typical cu&tom Get/Set property of type BSTR. After
the Note property is added to the Circle control, the Get Note and SetNote
functions are completed, the property is made persistent, and a control to edit its
value is added to the property page.

~ To add the Note Get/Set property

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class name drop-down list box, select CCircCtrl.

4 Click Add Property.

The Add Property dialog box appears.

5 In the edit control of the External name drop-down combo box, type Note.

6 Under Implementation, select Get/Set Methods.

7 From the Type list box, select BSTR.

8 Click OK to close the Add Property dialog box.

This returns you to the OLE Automation tab. Notice that the implementation of
the Note property appears as:

Implementation:

BSTR GetNote();
void SetNote(LPCTSTR lpszNewValue);

Chapter 28 Simple Data Binding

9 Click OK to confirm your choices and close ClassWizard.

ClassWizard adds the Note property to the Circle control. As you've seen in earlier
chapters, ClassWizard modifies CIRC.ODL, CIRCCTL.CPP, and CIRCCTL.H to
define the Note property.

Completing the GetN ote and SetN ote Functions
To complete the GetNote and SetNote functions, add the m_note member variable
to the C C ire C t r 1 class to hold the value of the Note property. The Get Not e and
SetNote functions will be modified to use this member variable.

Because Note is a persistent property, the SetNote function must call the
SetModi fi edFl ag function to set the modified flag. A call to the
SetModi fi edFl ag function is already included in the Set Note function created by
ClassWizard. Because the Note property affects the visual appearance of the control,
the SetNote function must also call the Inval i dateControl function to redraw
the control.

~ To complete the GetNote and SetNote functions

1 Add the following line to CIRCCTL.H:

CString m_note:

as shown in the following example:

cl ass CCi rcCtrl : publ i c Cal eControl
{

protected:
-CCircCtrl():

} :

void GetDrawRect(CRect* rc):
short m_circleOffset:
Baal InBounds(short nOffset):
Baal InCircle(CPoint& point):
void FlashColor(CDC* pdc):

CString m_note:

2 Modify the Get Note and SetNote functions at the end of CIRCCTL.CPP as
shown below:

BSTR CCircCtrl ::GetNote()
{

return m_note.AllocSysString():

void CCircCtrl ::SetNote(lPCTSTR lpszNewValue)
{

if (m_note 1- lpszNewValue)
{

335

Tutorials

m_note - lpszNewValue;
SetModifiedFlag();
InvalidateControl();

Making the Note Property Persistent
To manage the persistence of the Note property and to initialize it to a default value
when the Circle control is created, add a call to a PX_ function in DoPropExchange
in CIRCCTL.CPP.

Add the following line to CIRCCTL.CPP:

PX_String(pPX, _T("Note"), m_note, _T(""));

as shown in the following code example:

void CCircCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
COleControl ::DoPropExchange(pPX);

PX_Bool(pPX, _T("CircleShape"), m_circleShape, TRUE);
PX_Short(pPX, _T("CircleOffset"), m_circleOffset, 0);
PX_Long(pPX, _T("FlashColor"), (long &)m_flashColor, RGB(0xFF, 0x00, 0x00));
PX_String(pPX, _T("Note"), m_note, _T(''''));

Since the Note property is of type BSTR, the PX_String function is used. The
m_note member variable (which holds the Note property value) and a zero-length
string (which is the default value for the Note property) are parameters to this
function. As with all literal strings, the property name string and default value string
are passed through the _ T macro before being passed as parameters to the PX_String
function.

Displaying the Note Property

336

To display the Note property, change the drawing behavior in the OnDraw function in
CIRCCTL.CPP. The Note property is drawn in the upper-left comer of the control's
bounding rectangle, using the stock Font and ForeColor properties.

~ To change the OnDraw function to display the Note property

• Change or add the following lines in the On Draw function in CIRCCTL.CPP:

II Draw the caption and note using the stock Font and ForeColor
properties

pdc->SetTextAlign(TA_LEFT ITA_TOP);
pdc->ExtTextOut(rc.left, rc.top.

ETO_CLIPPED, rc, m_note, m_note.GetLength(), NULL);

Chapter 28 Simple Data Binding

as shown in the following example:

void CCircCtrl ::OnDraw(
CDC* pdc. const CRect& rcBounds. const CRect& rcInvalid)

CBrush* pOldBrush;
CBrush bkBrush(TranslateColor(GetBackColor()));
CPen* pOldPen;
CRect rc = rcBounds;
CFont pOldFont;
TEXTMETRIC tm;
const CString& strCaption = InternalGetText();

II Set the ForeColor property color and transparent background
mode into the device context

pdc->SetTextColor(TranslateColor(GetForeColor()));
pdc->SetBkMode(TRANSPARENT);

II Paint the background using the BackColor property
pdc->FillRect(rcBounds. &bkBrush);

II Draw the ellipse using the BackColor property and a black pen
GetDrawRect(&rc);
pOldBrush = pdc->SelectObject(&bkBrush);
pOldPen = (CPen*)pdc->SelectStockObject(BLACK_PEN);
pdc->Ellipse(rc);

II Draw the caption and note using the stock Font and ForeColor
properties

pOldFont = SelectStockFont(pdc);
pdc->GetTextMetrics(&tm);
pdc->SetTextAlign(TA_CENTER ITA_TOP);
pdc->ExtTextOut«rc.left + rc.right) I 2. (rc.top + rc.bottom -

tm.tmHeight) I 2.
ETO_CLIPPED. rc. strCaption. strCaption.GetLength(). NULL);

pdc->SetTextAlign(TA_LEFT ITA_TOP);
pdc->ExtTextOut(rc.left. rc.top.

ETO_CLIPPED. rc. m_note. m_note.GetLength(). NULL);
pdc->SelectObject(pOldFont);

pdc->SelectObject(pOldPen);
pdc->SelectObject(pOldBrush);

Adding the Note Property to the Default Property Page
Add the Note property to the default property page to allow Circle control users to
change its value.

First, use the resource editor to add an edit control to the default property page.

337

Tutorials

338

~ To add an edit control to the default property page

1 In the Resource View pane, open the Circ project folder ..

2 Open the Dialog folder.

3 Open IDD_PROPPAGE_CIRC to edit the property page template.

4 Select the Static Text tool in the Control Palette and place a static text control in
the dialog.

5 Double-click the static text control to bring up the Test Properties dialog box.

6 Using the Test Properties dialog box, change the static text control's caption to
&Note:

7 In the Control Palette, select the Edit Box tool in the Control Palette and place an
edit box control next to the static text control in the dialog.

8 Double-click the edit box control to bring up the Test Properties Dialog box.

9 Using the Test Properties dialog box, change the edit control's ID to IDC_NOTE.

10 Save the changes to the dialog and exit the resource editor.

Link the Note property to the new edit control in the default property page using a
shortcut to the Add Member Variable dialog box in ClassWizard.

~ To link the edit control with the Note property

1 In the Resource View pane, open the Circ project folder.

2 Open the Dialog folder.

3 Open the IDD_PROPPAGE_CIRC entry in the Dialog folder to load the property
page template.

4 While holding down the CTRL key, double-click the edit box control for the Note
property.

This automatically brings up the ClassWizard Add Member Variable dialog box.

5 Type note into the Member variable name edit control, after the m_ that is
already there, so that the edit control contains m_note.

6 In the Category drop-down list box, select Value.

7 In the Variable type drop down list box, select CString.

8 Type Not e into the Optional OLE property name drop down combo box.

9 Click OK to confirm your choices and close the Add Member Variable
dialog box.

If you were to open Class Wizard, the Member Variable tab would contain the new
member variable mapping for the Caption property.

Chapter 28 Simple Data Binding

Control 105: Type Member

IDC_CAPT! ON CString m_caption
IDC_CIRClEOFFSET int m_circleOffset
IDC_CIRClESHAPE BOOl m_circleShape
IDC_NOTE CString m_note

ClassWizard adds the new m_note member variable to the CCi rcPropPage class.
ClassWizard also modifies the DoDataExchange function in the CCi rcPropPage
class.

Making the Note Property Bindable
At this point, the Note property is a fully implemented, normal Get/Set property. The
next step is to use the OLE Automation tab in ClassWizard to make the Note property
a bindable property.

~ To make the Note property bindable

1 From the View menu, choose Class Wizard.

2 Choose the OLE Automation tab.

3 In the Class name drop down list box, select CCircCtrl.

In the External name list box, select Note.

4 Click Data Binding.

The Data Binding dialog box appears.

6 Check the Bindable Property check box.

This specifies that this is a bindable property and that the container will be
notified of all changes to it.

7 Click OK to confirm the data binding settings and close the Data Binding dialog
box.

8 Click OK to confirm your choices and close ClassWizard.

ClassWizard changes the Note property definition in the file CIRC.ODL so that the
type library includes the information that the Note property is bindable.

Notifying the Container of Changes
A control must notify the container when changes are made to a bound property by
calling the BoundPropertyChanged function.

Because Note is a Get/Set property, all changes to the property are confined to the
SetNote function, which is where BoundPropertyChanged is called.

339

Tutorials

~ To modify the SetNote function to notify the container about changes to the Note
property

• Add the following line to the SetNote function in CIRCCTLCPP:

BoundPropertyChanged(dispidNote);

as shown in the following example:

void CCircCtrl ::SetNote(LPCTSTR lpszNewValue)
{

}

if (m_note != lpszNewValue)
{

m_note = lpszNewValue;
SetModifiedFlag();
InvalidateControl();

BoundPropertyChanged(dispidNote);

The call to BoundPropertyChanged is added after the m_note member variable is
updated, and all other actions involved in changing the Note property are completed.

The single parameter to BoundPropertyChanged, di spi dNote, is the dispatch ID
for the Note property. This parameter is defined in an enumeration in CIRCCTL.H:

II Dispatch and event IDs
public:

enum {
1/{{AFX_DISP_ID(CCircCtrl)

dispidNote -= 4L.

/ /} }AFX_DISP _10
} ;

Rebuilding the Control with Data Binding
Support

340

Now that a property with data binding support has been added, you need to rebuild
the control.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

Chapter 28 Simple Data Binding

Testing the Control Data Binding Changes
Because the Note property uses optimistic data binding, the Circle control assumes
that all changes to the Note property are allowed. The Set Note function simply
changes the Note property and notifies the container by calling the
BoundPropertyChanged function. This notification is displayed in Test
Container's Notification Log dialog box.

~ To test the control data binding changes

1 From the Tools menu, choose OLE Control Test Container.

2 From the View menu, choose Notification Log.

The Notification Log dialog box appears.

The option buttons at the bottom of the Notification Log dialog box can be used to
test control properties that use pessimistic data binding. However, the Note
property uses optimistic data binding, so they are not used here.

3 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

4 From the Object Type list box, select Circ Control.

5 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

Notice that the Notification Log dialog box is empty when the control is first
created.

6 From the Edit Menu, choose Embedded Object Functions and then Properties.

The Circ Control Properties dialog box appears.

7 Enter a new value for the Note property, and click Apply.

The Note property is displayed in the upper-left corner of the control.

Information about the change to the Note property appears in the Notification Log
dialog box as shown below:

00_Ci rc_Control: • Note' changed

This kind of information appears in the Notification Log dialog box every time the
BoundPropertyChanged function is called for a bound property. The line shows
the control number and type, and the property name, and states that the property
has changed.

341

Tutorials

342

8 Change the Note property several more times and watch the Notification Log
dialog. Close Test Container when you are finished.

Using the BoundPropertyChanged function to notify the container of changes to
bound properties illustrates the simplest level of data binding. For more information
on the other options in the Data Binding dialog box, see the article "OLE Controls:
Using Data Binding in an OLE Control" in Programming with MFC.

CHAPTER 29

Versions and Serialization

Because different versions of an OLE control might have different properties, support
is included in the OLE control classes for handling different versions of persistent
data. In this chapter, the Circle control is modified to reject persistent data that is of a
different version than the control itself. Selective loading and/or storing of persistent
data for different versions of controls is also discussed.

Note You can find the code produced by working through this part of the tutorial in the CIRC3
sample source code directory.

In this chapter, you will:

• Learn about serialization of control version information.

• Modify the Circle control so that it ignores other versions of persistent data.

• Learn how a control can serialize earlier versions of persistent data.

Serialization of Control Version
Information

Serialization is the process by which persistent data is loaded or stored through an
exchange object. One type of exchange object is used to initialize a control's
persistent properties to default values; another type is used to load and store persistent
data in persistent storage. A control's persistent data is serialized in the
DoPropExchange function.

The Circle control's version, stock properties, and persistent custom properties (in
that order) are serialized in the DoPropExchange function in CIRCCTL.CPP.

void CCircCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX. MAKELONG(_wVerMinor. _wVerMajor»;
COleControl ::DoPropExchange(pPX);

343

Tutorials

PX_Bool(pPX, _T("CircleShape"), m_circleShape, TRUE);
PX_Short(pPX, _T("CircleOffset"), m_circleOffset, 0);
PX_Long(pPX, _T("FlashColor"), (long &)m_flashColor, RGB(0xFF, 0x00, 0x00»;
PX_String(pPX, _T("Note"), m_note, _T(""»;

When the Circle control project was created, ControlWizard produced the code that
calls the ExchangeVersi on and COleControl::DoPropExchange functions.
ControlWizard also defined the global constants _wVerMaj 0 rand _wVerMi nor in
CIRC.CPP as 1 and 0 respectively, which represents version 1.0.

The ExchangeVersi on function serializes a control's version and sets the version
used by the exchange object, pPX. This call should always be made before any
version-sensitive persistent data is serialized. When persistent data is being
initialized or written into persistent storage through the exchange object, the
exchange object's version is set to the version parameter passed to the function. When
persistent data is being read from persistent storage through the exchange object, the
exchange object's version is read from persistent storage.

The COleControl::DoPropExchange function serializes all of a control's stock
properties. The PX_ functions serialize each of the Circle control's persistent custom
properties. These calls were added in previous chapters of the tutorial.

Serializing Different Versions of
Persistent Data

344

The control writer knows which properties earlier versions of the control have and in
what order they are serialized. Rather than ignoring the exchange object, the
persistent custom properties of the old version of the control can be loaded or stored
through the exchange object in a selective manner.

When an earlier version of persistent data is to be loaded, any new properties can be
initialized to their default values.

Note It is not recommended that new versions of a control remove features (such as
properties) of earlier versions.

When an earlier version of persistent data is to be stored, any new properties can be
skipped.

Consider a hypothetical version 2.0 of the Circle control that has a new custom
property called BorderWidth. The BorderWidth property is of type short and has a
default value of 1.

It is assumed that all versions of the Circle control will have all the properties of
earlier versions, and that the properties are stored in the same order as in earlier
versions. This is a recommendation for all OLE controls.

Chapter 29 Versions and Serialization

Here is what the version 2.0 Do Pro p Ex c han 9 e function might look like:

void CCircCtrl ::DoPropExchange(CPropExchange* pPX)
{

}

ExchangeVersion(pPX. MAKELONG(_wVerMinor. _wVerMajor). FALSE);
COleControl ::DoPropExchange(pPX);
PX_Bool(pPX. _T("CircleShape"). m_circleShape. TRUE);
PX_Short(pPX. _T("CircleOffset"). m_circleOffset. 0);
PX_Long(pPX. _T("FlashColor"). (long &)m_flashColor. RGB(0xFF.

0x00. 0x00»;
PX_String(pPX. _T("Note"). m_note. _T(""»;

if (pPx-)GetVersion())= (DWORD)MAKELONG(_wVerMinor. _wVerMajor»
PX_Short (pPX. _T("BorderWi dth"). m_borderWi dth. 1);

else
if (pPx-)IsLoading(»

m_borderWidth = 1;

Notice the third parameter to the ExchangeVers; on function. This is an optional
parameter that specifies whether or not the control should store the same version of
persistent data as was last loaded. By passing FALSE, the old version is maintained.
The default for this parameter is TRUE, which specifies that the control should
always store the current version of persistent data, no matter what version of
persistent data is loaded.

All stock properties and custom properties from versions before 2.0 are serialized as
usual, in the same order as they were in the earlier versions.

If the exchange object's version is greater than or equal to 2.0, the BorderWidth
property is serialized as usual.

If the exchange object's version is less than 2.0, and the Is Loa d; n 9 function returns
TRUE, the BorderWidth property is initialized to its default value.

Ignoring Different Versions of
Persistent Data

When a control is requested to load persistent data through an exchange object with a
version different from the control, it must do something reasonable to set the values
of its persistent custom properties. The simplest approach is to ignore the exchange
object and initialize each persistent custom property to its default value by modifying
the Circle control's DoPropExchange function. The changes involve using two
member functions of the exchange object, GetVers; on and I s Load; ng.

The Get Ve r s; on member function returns the exchange object's version. The
exchange object's I s Loa d ; n 9 member function returns TRUE if the control is to
load values through the exchange object; it returns FALSE if the control is to store
values through the exchange object.

345

Tutorials

346

The GetVers i on function is used to compare the exchange object's version and the
control's version. If the versions are the same, each persistent custom property is
serialized as usual. If the versions are different and the I s L a a din 9 function returns
TRUE, the Circle control's persistent properties are initialized to their default values.
If the versions are different and the I s L a a din 9 function returns FALSE, the Circle
control ignores the exchange object. Technically, this situation never occurs, because
the Circle control always stores the current version of persistent data.

Modify the DoPropExchange function to look like this:

void CCircCtrl ::DoPropExchange(CPropExchange* pPX)
{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor»;
COleControl ::DoPropExchange(pPX);
if (pPX-)GetVersion() == (DWORD)MAKELONG(_wVerMinor, _wVerMajor»
{

else

PX_Bool (pPX, _T("Ci rcl eShape"), m_ci rcl eShape, TRUE);
PX_Short(pPX, _T("CircleOffset"), m_circleOffset, 0);
PX_Long(pPX, _T("FlashColor"), (long &)m_flashColor, RGB(0xFF,
0x00, 0x00»;
PX_String(pPX, _T("Note"), m_note, _T(""»;

if (pPX-)IsLoading(»
{

m_circleShape = TRUE;
m_circleOffset = 0;
m_flashColor = RGB(0xFF, 0x00, 0x00);
m_note = _T("") ;

As described earlier, the Ex c han 9 eVe r s ion function sets the exchange object's
version. This is the version of persistent data that the control is to load or store
through the exchange object. This version is returned by the GetVersi on function.

The control version and stock properties are serialized as usual. The
COleControl::DoPropExchange function correctly loads or stores stock property
values for different versions because part of what is serialized is information about
which stock properties were stored for that version.

If the exchange object's version and the control's version are the same, the Circle
control's persistent custom properties are loaded or stored through the exchange
object as usual.

If the versions are different, and persistent data is to be loaded, all persistent
properties are initialized to their default values instead.

If the versions are different, and persistent data is to be stored, the exchange object is
ignored and no persistent data is stored through the exchange object. This case
should never happen with the Circle control because the exchange object's version
and the control's version may be different only when data is to be loaded through the

Chapter 29 Versions and Serialization

exchange object. Another fonn of the Ex c han 9 e Ve r s ion function, which allows a
control to specify that persistent data should be stored as the same version that was
last loaded, is shown in "Testing the Control."

Rebuilding the Control with Version
Support Implemented

Now that version support has been added, you need to rebuild the control.

~ To rebuild the control

• From the Build menu, choose Build CIRC.OCX.

Testing the Control
Testing different versions of the same control is not easy, simply because only one of
the versions can be registered at a time. This is one way in which you might check to
see if a newer version of the Circle control correctly ignores persistent data stored by
an earlier version of the control.

~ To test the version checking serialization code

1 From the Tools menu, choose OLE Control Test Container.

2 From the Edit menu, choose Insert OLE Control.

The Insert OLE Control dialog box appears.

3 From the Object Type list box, select Circ Control.

4 Click OK to close the Insert OLE Control dialog box and insert the control into
Test Container.

S From the Edit menu, choose Edit, then Embedded Object Functions, then
Properties, to show the Circle control's property page.

6 Change the value of the CircleShape property to FALSE (clear the check box and
then click OK).

7 From the File menu, choose Save to Stream or Save to Substorage.

8 From the Edit menu, choose Delete All.

9 From Microsoft Developer Studio, in the file CIRC.CPP, change the version
number to 2.0 by changing the value of the _wVe rMa j 0 r global constant to 2.

10 Choose Build CIRC.OCX to rebuild the control.

11 From Test Container's File menu, choose Load.

12 From the Edit menu, choose Edit then Circ Control Object, then Properties to
show the Circle control's property page.

347

Tutorials

348

13 View the value of the CircleShape property in the property page.

The persistent data saved in step 7 is version 1.0. When the control is recreated in
step 11, the control's version is 2.0. Because the persistent data and the control
have different versions, the control's persistent properties are initialized to their
default values. The stored values are ignored. In particular, the CircleShape
property should be TRUE (the check box checked).

14 Change the value of the CircleShape property to FALSE again (clear the
checkbox, then click OK).

15 From the File menu, choose Save to Stream or Save to Substorage.

16 From the Edit menu, choose Delete All.

17 From Test Container's File menu, choose Load.

18 From the Edit menu, choose Edit, then Circ Control Object, then Properties, to
show the Circle control's property page.

19 View the value of the CircleShape property using the property page.

The persistent data saved in step 15 is version 2.0. When the control is recreated
in step 17, the control's version is 2.0. Because the persistent data and the control
have the same version, the control's persistent properties are set to the stored
values. In particular, the CircleShape property should be FALSE (the check box
cleared).

If you want your Circle control to match the control found in the sample directories,
be sure to restore the control version to 1.0 (change the value of _wVerMaj or in
CIRC.CPP to 1 and rebuild the control.)

PAR T 4

The Database Tutorials

Chapter 30 Creating a Database Application 351

Chapter 31 A Simple Form 359

Chapter 32 Using a Second Recordset 371

Chapter 33 Adding and Deleting Records 385

Chapter 34 Data Access Objects (DAD) Tutorial 397

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CHAPTER 30

Creating a Database Application

This tutorial shows you how to develop a fonn-based Microsoft Foundation Class
Library (MFC) database application. You'll learn how to:

• Use AppWizard to create the skeletal database application.

• Create and use CRecordset objects to open tables and run queries.

• Create and use CRecordView objects for fonn-based applications.

• Use database support within the framework's document/view architecture.

• Add, update, and delete records.

• Manage multiple tables.

• Handle database exceptions.

Important This tutorial assumes you are familiar with Visual C++ and the Microsoft
Foundation Class Library. If you aren't, try the Scribble tutorial in Chapters 2 through 11 before
you begin this tutorial. The Scribble tutorial introduces important class library concepts and
techniques and teaches you to use the wizards and the resource editors.

The Tutorial Example: Enroll
The tutorial example program, Enroll, manages a student registration database
similar to, but simpler than, a college registration system. It will help you to follow
the tutorial if you understand the structure of the student registration database.

Enroll is based on a database, STDREG32.MDB, that you will register with ODBC as
the "Student Registration" data source name. Table 30.1 lists the tables, what they
store, and the columns in them.

351

Tutorials

352

Table 30.1 Tables in the Student Registration Database

Table name Contents

Course Think of each record as an entry in a course
catalog. Example: the MATHIOI course.

Sectiont

Student

A section record is a specific offering of a course
at a specific time. For example, MATHlOI may
have many sections.

A record for each student at the school.

Enrollment A record for each student in a particular section
of a course. For a given student, there is an
enrollment record for each course the student
is taking.

Instructor A record for each instructor at the school.

*Indicates the column (or columns) that comprise the table's primary key.

Column list

CourseID*

CourseTitle

Hours

SectionNo*

CourseID*

InstructorID

Schedule

RoomNo

StudentID*

Name

GradYear

CourseID*

SectionNo*

StudentID*

Grade

InstructorlD*

Name

RoomNo

tTbe Dynabind_Section table is used in the Dynabind sample, but not in the Enroll tutorial.

You can use Books Online to copy STDREG32.MDB to your local drive. You can
examine it, add records, and so on, using Microsoft Access.

Note You can also easily install the sample source project files for Enroll. For more
information, see "Installing the Sample Files."

Enroll lets you use a "form" - a view with dialog-style controls - to view
registration information for courses, section by section. Section information displayed
includes the course name, section number, instructor, room, and schedule (such as
"MWF 10-11"). For example, you can view section 1 of the course MATH 101, then
section 2, and so on. The initial tutorial step provides read-only viewing of all
sections. Later steps add more capabilities, including updates. Figure 30.1 shows
what the Enroll application looks like at the end of the tutorial.

Chapter 30 Creating a Database Application

Figure 30.1 The Enroll Tutorial Application

Room:

Schedlile

Capacity:

1~\AI~~~}1
I~o,.;;

Setting Up the Student Registration
Data Source

Before you start the Enroll tutorial, you need to set up the Student Registration
database and register it as an ODBC data source. Choose a database format for which
you have the corresponding database management system (DBMS) and 32-bit ODBC
driver. Microsoft Developer Studio ships 32-bit ODBC drivers for most standard
database formats, including: SQL Server, Access, Paradox, dBase, FoxPro, Excel,
Oracle and Microsoft Text.

• If you want to use MFC database support for SQL Server, you need the SQL
Server product in addition to the ODBC driver for SQL Server that is provided
with Developer Studio.

• If you want to use other database formats, you need the DBMS as well as the
ODBC driver.

• If you want to use the Microsoft Access database format, you need only the 32-bit
Microsoft Access ODBC driver to create a database schema. This driver is
installed automatically when you run a Typical setup. This is an exception to the
requirements listed above. You may find it helpful, however, to use Microsoft
Access itself in conjunction with MFC database support, as it will facilitate
working interactively with your database schema and data.

To set up the student registration database you must:

• Specify a database.

• Register the database with ODBC.

If you are using a DBMS other than the prebuilt Microsoft Access STDREG32.MDB
database file, you need to add tables to your database so that it matches the Student

353

Tutorials

354

Registration database schema. Additionally, you may need to install drivers other
than those that Visual C++ Setup installs for you. In this case, perform the following
procedure(s):

• Use the STDREG.EXE tool to add tables to the Student Registration database.

• Install additional 32-bit ODBC drivers for your DBMS.

This step is not necessary if your DBMS uses the dBase, FoxPro, Access or SQL
Server drivers, as Setup installs them automatically when you choose the Typical
installation option. Perform this step to install additional ODBC drivers, including
those supplied by Developer Studio: Paradox, Microsoft Text, Excel or Oracle.

Each of these procedures is described in the following topics.

Specify a Database
The easiest way to supply a database for the Enroll tutorial is to use the pre-built
STDREG32.MDB Microsoft Access database file, included for this purpose.
Alternatively, you can create your own database.

~ To use STDREG32.MDB

1 From Info View, expand the following folders:

Samples \ MFC Samples \ Database samples (ODBC and DAO)

2 Double-click the page node for the STDREG sample.

3 In the STDREG topic, click the button provided to copy sample project files.

4 In the Sample Application dialog box, select STDREG32.MDB and choose Copy.

5 In the Copy dialog box, navigate to the directory where you want to copy this file,
and click OK.

Developer Studio creates this directory for you, if necessary, and copies the file.

STDREG32.MDB already contains the tables and records used in the tutorial. If you
use this file, you do not need to use the STDREG.EXE tool to add any tables.

~ To create your own database

• Create a new database schema using the database administration capability of your
DBMS.

Depending on the type of DBMS, you "might create the new database on a server
that is different from the PC where you will be doing MFC database development.
In either case, you need to use the STDREG.EXE tool to add tables to the new
database.

Chapter 30 Creating a Database Application

Register the New Database with ODse
You'll register the new database with the ODBC data source name "Student
Registration." This data source name (DSN) is referred to by the Enroll application.
You must register the database even if you are using the pre-built STDREG32.MDB
Microsoft Access database file.

You can register the data source by using ODBC Administrator from the Control
Panel, or by running STDREG.EXE.

Note The STOREG tool is provided for use with this tutorial as a convenient method for
registering data sources with DOBC and for populating databases with the appropriate tables
and data. Normally, you will use DOBC Administrator from the Control Panel to register your
data sources with the appropriate tables and data if you are not going to use the pre-built

, STOREG32.MOB database.

The following two procedures describe how to register the data source if you are
using the Microsoft Access ODBC driver. If you are using another driver, the basic
procedure will vary somewhat. For more information, refer to the ODBC SDK topic,
"Adding Data Sources."

~ To register the data source by using OOBe

1 Open Control Panel, and double-click the ODBC icon.

2 In the Data Sources dialog box, choose Add.

The Add Data Source dialog box appears.

3 Choose the driver you want to use with your database, in this case, Microsoft
Access, and click OK.

The ODBC Setup dialog specific to the driver you specified appears.

4 In the Data Source Name box, type Student Regi strati on.

S Optionally, enter a description for the database.

6 In the Database group box, click the select button and then navigate to the location
of STDREG32.MDB

7 Click OK to select the database.

S Click OK to exit the ODBC Setup dialog, and click Close to exit the Data Sources
dialog.

For more information about using the ODBC Administrator, see the encyclopedia
articles" ODBC Administrator" and "Data Source (ODBC)," in Programming with
MFC.

355

Tutorials

356

~ To register the data source by using STDREG.EXE

1 First run STDREG.EXE, by using the following procedure:

• From InfoView, expand the following folders:

Samples \ MFC Samples \ Database Samples (ODBC and DAO)

• Double-click the page node for the STDREG sample.

• In the STDREG topic, click the button provided to copy sample project files.

• In the Sample Application dialog box, select STDREG.EXE and choose Run.

2 Choose Add Data Source.

3 Follow the instructions in steps 3 through 7 of the previous procedure.

Use STDREG.EXE to Add Tables
If you are using a DBMS other than the prebuilt Microsoft Access STDREG32.MDB
database file, use the STDREG tool to add tables to the Student Registration database.
This tool creates the Student Registration tables listed in Table 30.1. The tool also
adds records to the newly created tables for use as test data by the Enroll application.

The STDREG.EXE sources illustrate how to directly send SQL statements such as
CREATE TABLE, and how to use ODBC catalog functions such as SQLGetTypelnfo.

Note This procedure assumes you have used STDREG.EXE to register the Student
Registration data source.

~ To add tables by using STDREG.EXE

1 If necessary, start STDREG.EXE, and then choose the Initialize Data option.

Depending on the type of database you are using, you may need to respond to a
login dialog box, such as the SQL Server Login dialog box.

2 After logging in to the Student Registration data source, respond to a series of
three Enter SQL Column Syntax dialog boxes.

After you respond to three successive Enter SQL Column Syntax dialog boxes,
STDREG creates the tables in the new database.

3 When STDREG has completed this task, choose Exit.

You can rerun the STDREG tool at any time to remove and recreate the tables in
the Student Registration data source.

For more information about using STDREG.EXE, see the "STDREG Sample" topic.

Installing Additional 32·Bit ODBe Drivers for Your DBMS
You need only install the ODBC driver for your DBMS once, and you can use it with
more than one data source. If you choose the Typical Setup option, Setup provides
MFC Database Support and installs the ODBC drivers for Access, dBase, FoxPro and
SQL Server automatically. You can install the additional drivers provided with Visual

Chapter 30 Creating a Database Application

c++ (Text, Paradox, Excel and Oracle) by running Setup again, as described in the
following procedure.

If you want to install other drivers not shipped with Visual C++, refer to the
documentation that came with your driver. You can also review the ODBC SDK
documentation, in particular, the "Installing Drivers" topic.

~ To install additional drivers provided with Visual C++

1 Run Setup, and under Installation Options, select Custom.

2 Click Next, and in the Microsoft Visual C++ Setup dialog, uncheck each option
except Database Options.

3 Highlight Database Options and then click the Details button.

4 In the Database Options dialog, highlight Microsoft ODBC Drivers, and again
Click the Details button. If you do not want to install DAO database support, clear
the Microsoft Data Access Objects check box.

5 In the Microsoft ODBC Drivers dialog, check the boxes next to any additional
drivers you want to install.

6 Click OK, and then click Next to start the installation.

Tutorial Steps
The tutorial consists of three steps. The following table describes the steps briefly.

Tutorial Step Chapter

31

2 32

3 33

Description

Use AppWizard to create an application with database support.
The document embeds a CRecordset object for the Section
table of the Student Registration data source. Use the dialog
editor to design the form. Use ClassWizard to bind controls on
the form to fields in the recordset.

Provide a combo box control on the form so the user can select
a course and view its sections. Fill the combo box from a
recordset object representing the Course table. Filter and
parameterize the recordset to constrain the records it selects.

Implement a user interface for adding, updating, and deleting
records. Handle database exceptions.

The ENROLL sample program directory contains a subdirectory for each step of the
tutorial, named STEPI, STEP2, and STEP3. Each step's subdirectory contains
complete source files, and other files needed for the step.

If you do not have local copies of the Sample files, you can easily install them. For
more information, see "Installing the Sample Files." While you don't need to have a
copy of these files locally in order to develop the project yourself, you might find it
useful, for example to compare source code.

357

Tutorials

358

Enroll Step 4: A Preview
The sample source code for ENROLL includes a fourth step, not covered in the
tutorial. Step 4 illustrates additional class library database programming techniques,
summarized below. See ENROLL in SAMPLES \ MFC Samples \Tutorials under
Samples\ MFC Samples \Tutorials in Books Online for a discussion of Enroll Step 4.
The main techniques illustrated by Enroll Step 4 are:

• Using multiple record view classes.

• Switching views in a frame window.

• Using the document object to coordinate multiple forms via UpdateAlIViews and
update hints.

CHAPTER 31

A Simple Form

This tutorial step implements an up datable database form that lets the user examine
the records in the Section table one record at a time. You'll create a form that looks
like the one shown in Figure 31.1.

Figure 31.1 Enroll's Section Form

Course: Section:

Instructor:

Room:

Schedule:

Capacity:

This chapter explains:

• Creating the Enroll application.

• Examining the Enroll Step 1 classes.

• Customizing Enroll's database form.

• Binding Enroll's form controls to recordset fields.

• Building and running Enroll Step 1.

If you choose to work along with the tutorial, perform all the steps in the procedures
in this chapter. At the end, you'll be able to build and run the Enroll Step 1
application.

359

Tutorials

About Step 1
Step 1 teaches the basics of:

• Using App Wizard to create an application with database support.

• U sing Class Wizard, Class View and the resource editors to bind controls on a fonn
to data.

• Using recordsets.

• Using record views.

A recordset object represents a set of records selected from a data source. The
recordset may represent a selection of one or more specified columns from rows of
one or more database tables. A CRecordset object represents both (a) this selection of
records and (b) the actual field values for one currently selected record. For more
infonnation, s.::e "Recordset (ODBC)" in Programming with MFC.

A record view is a specialized view class that uses controls laid out in a dialog
template resource to view and/or edit the fields of a recordset in a dialog-like form. A
CRecordView object is associated with both (a) a recordset object and (b) a dialog
template resource. The dialog template resource has an ID of the fonn
IDD_XXX_FORM, where XXX is based on the project name. CRecordView
derives its fonn behavior from class CFormView. CRecordView supports end-user
navigation through records, one at a time, using Move First, Move Next, Move
Previous, and Move Last commands of the associated CRecordset object. When you
update the value in a control on the form and navigate to another record, the
corresponding recordset field is automatically updated.

While in AppWizard, you identify an Open Database Connectivity (ODBC) data
source and a table in the data source. App Wizard creates a pair of classes: a recordset
class and a record view class.

For more infonnation, see the articles "Recordset (ODBC)," "Record Views,"
"AppWizard: Database Support," "Data Source (ODBC)," and "ODBC" in
Programming with MFC.

Creating a New Database Application

360

For more infonnation on how to use the Database Options page in App Wizard when
you're creating your starter application, see "AppWizard: Database Support" in
Programming with MFC. AppWizard lets you specify whether your database
application uses a file as well as a database. The Enroll application doesn't need a
file, so it is based on the "Database view without file support" option in App Wizard.

For more infonnation about applications that don't use file support, see
"Serialization: Serialization vs. Database Input/Output" in Programming with MFC

Chapter 31 A Simple Form

Note In order to successfully complete the following procedure, you must have completed the
steps required to register the Sudent Registration database with DDSC. If you have not done
so, see "Setting Up the Student Registration Data Source," in Chapter 30 of this book.

~ To create the tutorial database application

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace.

The New Project Workspace dialog box appears.

3 In the Name box, type En ro 11.

AppWizard creates a project directory with this name under the main (root)
directory specified in the Location box.

4 In the Type list box, make sure MFC App Wizard (exe) is specified.

5 If necessary, use the Location box to specify a different root directory for the
Enroll project files that App Wizard creates under the Enroll project directory.

6 If any check boxes other than Win32 appear in the Platforms box, clear them.

7 Click Create.

AppWizard creates the project directory, and the MFC AppWizard-Step 1 dialog
box appears.

8 Choose the Single Document radio button, and then click Next to continue to the
Step 2 (database options) dialog box.

When you create a database application without file support, AppWizard always
creates it as an SDI application.

9 In the AppWizard-Step 2 dialog box:

• Select the "Database view without file support" option.

This enables the Data Source button.

• Click Data Source.

The Database Options dialog box appears.

• Select ODBC and, from the drop-down list box, select Student Registration.

Depending on the database type, you may need to supply additional information
to log into the data source.

• Choose OK (there's no need to change the other default options in this dialog).

The Select Database Tables dialog box appears.

361

Tutorials

• Select the table name SECTION, and choose OK.

This returns you to the AppWizard-Step 2 dialog box.

Depending on the data source type you are using, additional qualifiers may
precede or follow the table name.

10 Click Next to proceed to the rest of the AppWizard dialog boxes, and click Next in
the AppWizard dialog boxes for Steps 3, 4, and 5 to accept the default options.

In the AppWizard-Step 6 dialog box, you can check and, if necessary, modify the
default names that AppWizard creates for your program's classes and files.

Note By default, AppWizard bases the names of classes on the project name you supply.
This naming is probably fine if your application has only one recordsetlview pair. If your
application has multiple recordsets and record views, it's a good idea to change the name
of the first recordsetlview pair created by AppWizard so the naming better reflects the name
of the table in the data source. For Enroll, you'll modify two class names and their related
header and implementation file names, even though the tutorial uses only one
recordsetlview pair.

11 In the Step 6 dialog box, make the following changes to class names:

• Select the class C En ro 11 Set, and change its name to CSect i onSet. Change
the header filename to SectionSet.h. Change the implementation file name to
SectionSet.cpp.

The base class is CRecordSet. The edit item is disabled to show that you can't
change it.

• Select the class C En ro 11 Vi ew, and change its name to CSect i on Form.
Change the header filename to SectionForm.h. Change the implementation file
name to SectionForm.cpp.

The base class is CRecordView.

12 Choose Finish.

The New Project Information dialog box appears, summarizing the settings and
features AppWizard will generate for you when it creates your project.

You might want to take a moment to examine the application type, classes, and
features that AppWizard automatically provides.

13 Click OK in the New Project Information dialog box.

AppWizard creates all necessary files, and opens the project.

You can view the classes that AppWizardjust created in ClassView. The next section,
"Examining the Step I Classes," describes this in more detail.

Examining the Step 1 Classes

362

Once App Wizard creates the Enroll project, you can use Class View to see a graphical
representation of the classes and any default member functions AppWizard created.

Chapter 31 A Simple Form

You can also use ClassWizard to view member variable bindings that AppWizard
specifies for you.

The CSectionSet Recordset Class
The following procedure describes how to view the new recordset class,
CSect; onSet. After examining CSect; onSet, you'll use the text editor to examine
the source files for classes CSect; on Fo rm and C En ro 11 Doc.

~ To examine the new recordset class

1 In Class View, expand the Enroll folder.

Notice the rich set of classes AppWizard created for you automatically to support
the Enroll application.

2 From the list of classes, choose CSectionSet.

Class View displays all the member variables that App Wizard created for you,
including a variable for each of the Section table's columns. You can use
ClassWizard to view how AppWizard has bound the Section table's columns to
these member variables.

3 From the View menu, choose ClassWizard.

4 Choose the Member Variables tab.

S In the Class Name box, select CSectionSet.

What you see in this tab corresponds to the variables displayed in Class View.
AppWizard has bound all of the table's columns to member variables of the
CSect; onSet class. These member variables are called "field data members."
AppWizard names the data members automatically, based on the column names
from the data source. App Wizard also assigns the correct C++ or class library data
type to the data members, based on the column type. In this example, all of the
columns are text columns, mapped to type CString, except the Capacity column,
which is an int.

6 Once you've finished examining the CSect; onSet recordset class, click OK to
exit Class Wizard.

363

Tutorials

Figure 31.2 shows what you see in ClassWizard's Column Names box.

Figure 31.2 Table Columns Mapped to Recordset Data Members

For this tutorial, you will need all of the column bindings. However, in your own
application, if you don't want all of a table's columns bound to your recordset, you
can delete the recordset field data members for those columns you don't want; from
within ClassWizard, select the data member and click the Delete Variable button.

Caution Don't delete any fields that are part of the table's primary key (in this case, the
Section No and CourselD fields).

In your own application, if you want to change the name of a field data member, use
ClassWizard to delete the member and add it again with the new name. For more
information, see "ClassWizard: Binding Recordset Fields to Table Columns" in
Programming with MFC.

In the next procedure, you'll examine the CSect i on Form record view class from
inside the text editor.

The CSectionForm Record View Class

364

~ To examine the source code for class CSectionForm,

• Use Class View to jump to the a n I nit i a 1 Up d ate member function of class
CSect ion Form.

SectionForm.cpp opens inside the text editor, with your cursor just before the
On I nit i a 1 U pd a te member function:

void CSectionForm::OnlnitialUpdate()
{

m_pSet = &GetDocument()->m_sectionSet;
CRecordView::OnlnitialUpdate();

Chapter 31 A Simple Form

The base class framework function CRecordView::OnInitiaIUpdate opens the
database if not already open, then opens the recordset, and initializes the form by
calling CForm View: :OnInitiaIUpdate.

For now, the "form" represented by class C Sec t ion For m is empty of controls. Later,
in "Customizing the Dialog Template for the Section Form," you'll use the dialog
editor to design the form and to map controls on the form to the recordset.

The CEnrollDoc Document Class
In ClassView, you can see that AppWizard created a class, CEn ro 11 Doc, derived
from CDocument.

~ To view the document class

• In Class View, double-click the icon for class C En r a 1 1 Doc.

This opens the file EnrollDoc.h in the text editor, placing your cursor beside the
C En roll Doc class declaration.

What is the role of a document in a database application? In most other applications,
the document stores data and serializes it to a file on disk. Often the application reads
the whole file into memory at once and writes it back to disk as a whole. In a
database application, however, the data is stored in the database, and the end user
usually views the data as records. Such an application doesn't need a file.

A document in a database application, then, isn't normally used for its serialization
support. So why does Enroll have a document class?

The following code, at the beginning of EnrollDoc.h, reveals that the role of the
document class in Enroll is to own the recordset.

class CEnrollDoc : public CDocument
{

} ;

II Attributes
public:

CSectionSet m_sectionSet;

The recordset object, m_secti onSet, is embedded in the document object.
Therefore, the recordset object is automatically constructed when the document object
is constructed, and automatically deleted when the document object is deleted.

The document class can own any number of recordset objects in this way. For
example, Step 4 of Enroll adds a second form and corresponding recordset; the
document embeds this second recordset.

In a sense, then, the document class is a proxy for the database. This approach isn't
strictly necessary, but if you (or App Wizard) design your database application to use
the document class this way, you can better take advantage of the framework's

365

Tutorials

document/view architecture. For example, if you have multiple views (forms)
simultaneously showing some of the contents of the database, you can take advantage
of the CDocument::UpdateAIlViews mechanism to conveniently notify all views
about an update that might have been initiated in one of the views.

If you look at the menu resource that App Wizard created when you chose the option
"Database view without file support," you'll see that there are no New, Open, Save, or
Save As commands on the File menu. The File menu has only the Print, Print
Preview, Print Setup, and Exit commands. If you had chosen "Both a database view
and file support," AppWizard would have supplied the missing File menu commands.

~ To view the Enroll menu resource

1 In Resource View, expand the Enroll.rc folder.

This displays the resources associated with a project.

2 Expand the Menu folder.

3 Double-click IDR_MAINFRAME.

The Menu Editor opens, displaying the default menu that App Wizard created for
the Enroll application.

4 Click the File menu item to view its structure.

5 Close the Menu Editor when you're finished.

Note If you choose the option "Both a database view and file support" in AppWizard, the
document class plays two roles. First, it serves as a proxy for the database. Second, it
represents the file that is opened and saved via the New, Open, Save, and Save As
commands on the File menu. This file might be used for a variety of purposes; for ideas, see
"MFC: Using Database Classes Without Documents and Views" and "Serialization:
Serialization vs. Database Input/Output" in Programming with MFG.

For more information about documents and views, see Chapter 3, "Working with
Frame Windows, Documents, and Views" and Chapter 4, "Working with Dialog
Boxes, Controls, and Control Bars" in Programming with MFC.

Customizing the Dialog Template for the
Section Form

366

Along with the classes, AppWizard creates a dialog template resource named
I DO_EN ROLL_FORM, which the CRecordView-derived class, CSect i on Form, uses
to display its form controls. Because CRecordView is derived from CFormView, a
record view's client area is laid out by a dialog template resource. The layout of the
form is up to you. App Wizard places one static text control on the dialog template
resource, labeled "TODO: Place form controls on this dialog."

Chapter 31 A Simple Form

In the following procedure, you'll replace this text with controls that correspond to
columns in the table (via the field data members of the recordset).

~ To customize Enroll's form

1 In Resource View, expand the Enroll Resources folder.

2 Expand the Dialog folder.

3 Double-click IDD _ENROLL_FORM.

The dialog editor opens and displays the dialog box with the corresponding ID.

For more information about the dialog editor, see Chapter 6, "Using the Dialog
Editor," in the Visual C++ User's Guide.

4 Select, and then delete the static control that says "TO DO: Place form controls on
this dialog."

5 Design Enroll's Section form to resemble Figure 31.3, using static controls and
edit controls.

Tip You can press CTRL before you click a dialog box control; then release the CTRL key
and click in the dialog box multiple times to add multiple copies of the control. For instance,
if you want six edit controls, click six times. Click the selection arrow to stop adding
controls.

Resize the dialog as needed. You can either add the controls in pairs (that is, first a
static text control and then the corresponding edit control, and so on) or later
change the Tab order of the controls so that they are paired in this way. This
becomes important when you bind the controls to recordset fields.

6 Choose Properties from the Edit menu to display the Properties window, and then
pin it down so that it stays open while you add and edit the dialog box controls.

7 For each edit control, use the ID box in the Properties window to specify an ID
based on the table column names (for example, I DC_COURSE). This is only a
convention, but it is used throughout the tutorial.

Note The "Edit" caption that appears in each edit control is not visible to the user at run
time, so you needn't worry about deleting it. To view the dialog as it will appear at run-time,
press CTRL+T to enter test mode for the dialog. Press ESC to cancel test mode.

367

Tutorials

368

Figure 31.3 The Layout of Enroll's Section Form

E)··s Enroll resources
·0 Acceleralor

. Dialog
! ~ 100 ABOUTBOX
. ~IIOO ENROLL FO

CJ Icon
m··CJ Menu
lt~ Siring Table
H:1-" CJ T oolbar
r4J ··0 Version

8 Make the Course and Section edit controls read-only. To do so, select the Styles
page in the Properties window and set the Read Only check box. (The other edit
controls are updatable.)

According to a common rule in the user-interface design of database forms, the
user shouldn't be able to update these key fields. If users want to change a course
number or section of a Section record, they must delete the old Section record and
add a new one to avoid possibly violating the referential integrity of the database.
Enroll tutorial Step 3 implements Add and Delete functionality.

9 Save ENROLL.RC.

It's a good idea to periodically back up your work.

If you did not add the static text and corresponding .edit controls in order, one after
the other, you need to change the tab order. In either case, you can easily check the
current tab order and change it if necessary.

~ To view or change the tab order of controls

1 With the dialog resource open, from the Layout menu choose Tab Order.

You'll see numbers depicting the current tab order of the controls.

2 Specify the tab order you want by clicking each control in that order.

As you click, you'll see the numbering change to reflect your choice.

For Enroll, specify a tab order such that each edit control is preceded in the tab
order by the static text control that describes it. By specifying this tab order, you
enable ClassWizard to derive a name for the edit control when you bind it to a data
member, as you'll do in the next section.

3 Press ESC to exit Tab Order mode.

Chapter 31 A Simple Form

Binding Enroll's Controls to Recordset
Fields

With the form designed, it's time to indicate which edit controls map to which table
columns-or, more precisely, which controls map to which recordset field data
members. To perform this task, you use ClassWizard's "foreign object" mechanism.
(For details about these foreign objects, see the article "ClassWizard: Foreign
Objects" in Programming with MFC.)

Normally, you use ClassWizard to bind controls in a dialog box or form to member
variables of your CDialog- or CForm View-derived class. In the case of
CRecordView, though, you bind the form's controls not to data members of the
record view class but to data members of the recordset class associated with the
record view.

Your CRecordView-derived class-CSect i on Form in this case-has a data
member called m_pSet. You can view m~pSet in the ClassView of CSecti on Form.
This data member is a pointer to CSecti onSet, Enroll's recordset class. Recall that
you viewed this recordset class on the Member Variables tab of ClassWizard (see
Figure 31.2).

The control bindings go through m_pSet to the corresponding field data members of
CSect i onSet. For example, in the following procedure, you will bind the Course
edit control to:

~ To bind a form control to a recordset data member

1 If necessary, choose I DD_ENROLL_FORM from the Dialog folder in ResourceView,
to open the dialog box inside the dialog editor.

For more information about the dialog editor, see Chapter 6, "Using the Dialog
Editor," in the Visual c++ User's Guide.

2 In the dialog editor window, hold down the CTRL key and double-click the Course
edit control.

ClassWizard's Add Member Variable dialog box appears, with a proposed field
name selected for you in the Member Variable Name box. ClassWizard chooses
this name based on the caption of a static text control that falls previous to the edit
control in the tab order.

For example, for I DC_COU RS E, the control's caption is "Course," and the Member
Variable Name box should display:

m_pSet->m_CourseID

3 Click OK in the Add Member Variable dialog box to accept the name.

4 Repeat steps 2 and 3 for each of the other edit controls on the form.

369

Tutorials

It isn't necessary to create mappings for the static text controls.

5 Save your work.

Note Using CTRL+double-click in the dialog editor is a ClassWizard shortcut for mapping form
controls to members of the associated dialog, form view, or record view class. Use it on a
pushbutton to create a command handler function for the button. Use it on other controls to
create a class member variable.

You can view the complete mappings in the Class Wizard Member Variables tab for
class CSect; onForm. For example, where IOC_COURSE appears in the Control IDs
column, you'll see -> m_ Co U r s e lOin the corresponding Member column.

Build and Run Enroll Step 1

370

Build and run Enroll Step 1. For information on building, see "Build the Starter
Application," in Chapter 3.

When the CSect; onSet recordset opens, it selects records from the Section table in
the Student Registration database. The first record becomes the "current record" in
the recordset. Enroll's database form displays the controls you designed, now filled
with data from the current record.

Try a few things:

• Take a look at the Record menu, which has First Record, Previous Record, Next
Record, and Last Record commands. (The toolbar has buttons that correspond to
the menu commands.) Try using the commands to scroll through the records in the
recordset.

• Update some of the fields. The new values are accepted into the data source when
you move to another record. As mentioned earlier, the key fields Course and
Section are read-only.

Note In order to make changes to the fields, you must have write access to the data
source.

This completes Step 1 of the database tutorial. Chapter 32 continues by showing you
how to add a second recordset and use it to fill a combo box control on the form.

CHAPTER 32

Using a Second Recordset

Although App Wizard starts you off with one initial pair of recordset and record view
classes, you can later use ClassWizard to add more recordset and record view classes.
Multiple record views can view the same recordset. Conversely, a record view class
can view more than one recordset, although only one of the recordsets can be its
primary recordset.

In this chapter, you'll add some code so that you can view more than one recordset
with the same record view.

This chapter explains:

• Replacing the Course edit box with a Course List combo box.

• Creating a second recordset class with ClassWizard.

• Filling the Course List combo box from the second recordset.

• Parameterizing the Section recordset.

• Requerying the Section recordset.

• Building and running Enroll Step 2.

If you choose to work along with the tutorial, perform all the steps in the procedures
in this chapter. At the end, you'll be able to build and run the Enroll Step 2
application.

About Step 2
Step 2 teaches:

• U sing more than one recordset in the same record view.

• Filling a combo box from a recordset.

• Using a recordset filter (CRecordset::m_strFilter).

• Sorting a record set (CRecordset::m_strSort).

371

Tutorials

• Using recordset parameters .

• Refreshing a recordset by calling the CRecordset::Requery member function-a
common task if you use filters and parameters.

Step 2 illustrates using two recordsets in one record view by implementing a second
recordset for the Course table, which is used to fill a combo box in the
CSect; on Form view. In this way, the CSect; on Form view has a primary
association with the CSect; onSet recordset-the form shows one record from
C Sec t ; 0 n Set - while the combo box is associated with a second recordset,
CCourseSet.

This step changes the CSect; onSet recordset so it selects only the available class
sections for a single course name, rather than selecting all class sections for all
courses. You'll change the Course edit control to a combo box control and fill the
combo box with all of the course names from the Course table. When the user selects
a different course name from the combo box, you'll requery the Section table to select
only those class sections for the course name the user chose.

Trying Out Step 2
Try Step 2 out now, if you like, by running it from Books Online. (For information
about how to do this, see "Previewing the Sample Applications.")

Enroll's database form now displays a list of course names in the combo box. The
other controls are filled from the first Section record for that course name.

Use the First Record, Next Record, Previous Record, and Last Record commands on
the Record menu (or the equivalent toolbar buttons) to move through the different
class sections for the same course name.

Note The CSect; on Form record view detects the end of a recordset only if the user has
moved past it. The user must move beyond the last record before the record view can tell that
it must disable any user-interface objects for moving to the next or last record.

Select a new course name from the Course combo box. The application then requeries
the CSect; onSet recordset for the new course name. Move through the class
sections for the new course name.

Exit Enroll Step 2 when you finish exploring.

Changing the Course Control to a Combo
Box

372

The Course edit control started out as an edit control in Step 1. In Step 2, you will use
the dialog editor to change it to a drop-list style combo box. For more information
about using the dialog editor, see Chapter 6, "Using the Dialog Editor," in the Visual
c++ User's Guide.

Chapter 32 Using a Second Recordset

To perform the procedures in Step 2, start with the version of ENROLL you created
in Step 1 of the Enroll Tutorial.

~ To change the Course control to a combo box

1 Open the dialog resource whose ID is IDD_ENROLL_FORM.

2 Select, and then delete the Course edit control.

3 Add a combo box where the edit control was.

4 Double-click the combo box control to open the Properties window, pin it down,
and then specify the following:

• In the ID box on the General property page, type IDC_COURSELIST.

• From the Type list box on the Styles property page, choose Drop List.

S Increase the size of the combo drop-down box so it can show more than two course
names at a time:

• Click the drop-down arrow on the right side of the combo box.

• Use the bottom sizing handle to extend the drop-down area downward enough
to hold several lines of text.

In the next step you'll change the tab order of the dialog to make sure that the new
control follows its associated static text label in the tab order. This enables
Class Wizard to match the recordset member to the static text caption.

6 From the Layout menu, choose Tab Order.

7 With the tab order showing, click the Course static text control, and then click the
Course combo box control.

The tab order should ripple through the other controls, keeping the sequential
relationship between each static text and its associated edit control.

See Chapter 6, "Using the Dialog Editor," in the Visual C++ User~ Guide for
information about setting the tab order. For general information about
ClassWizard, see the Visual C++ User's Guide.

S Press ESC, or click in the dialog box to exit Tab Order mode.

Leave the dialog editor open for the next procedure.

373

Tutorials

Figure 32.1 shows the final appearance of Enroll Step 2 with the combo box in place.

Figure 32.1 Enroll Step 2 With a Combo Box

Binding the Combo Box Control to a
Recordset Field and a CComboBox
Variable

374

Now that you've replaced the edit control for the m_ Co U r s e I D member of
CSect i onSet with a combo box, you need to:

• Unbind the old edit control.

• Bind the new combo box control to the CourseID field.

• Bind the combo box control to a second member variable, a CComboBox variable
in CSecti onForm.

You will later use member functions of CComboBox, such as AddString, to fill and
read the combo box.

When you complete the next three procedures, the combo box control will have two
member variables associated with it: (1) the foreign member variable, m_ Co U r s e I D,
in the recordset associated with the record view, and (2) the CComboBox member
variable in the record view class.

Class Wizard supports having two such member variables bound to the same control.

~ To remove the old edit control binding

1 From the View menu, choose Class Wizard.

2 Choose the Member Variables tab.

Chapter 32 Using a Second Recordset

3 In the Class Name box, select class CSectionForm (if it isn't already selected).

4 In the Control IDs box, select IDC_COURSE and choose Delete Variable.

S Click OK.

~ To bind the combo box control to the recordset member

1 In the dialog editor, press CTRL and double-click the combo box control to open
the Class Wizard Add Variable Member dialog box.

Recall that when you changed the edit control to a combo box, you also changed
the tab order so the combo box would directly follow the Course static text control.
ClassWizard chooses the member variable name based on the recordset member
associated with the static text control that directly precedes it in tab order.

2 Click OK to accept m_pSet- >m_Cou rseI 0 as the member variable name, and to
exit the Add Variable member dialog box.

~ To bind the combo box control to the view's CComboBox member variable

1 Open Class Wizard and if necessary, select the Member Variables tab.

2 In the Control IDs list, highlight IDC_COURSELIST, and choose Add Variable.

3 In the Member Variable Name box, type m_ctl CourseL i st.

4 In the Category box, select Control.

Note that this automatically selects CComboBox as the Variable Type.

S Click OK to exit the Add Member Variable dialog box.

6 Click OK to exit ClassWizard.

7 Save your work.

You'll probably want to close the dialog editor and property page.

Creating a Recordset for the Course Table
Enroll already has one recordset, for the Section table, which fills the controls on the
CSecti onForm record view with information about a single class section of the
currently selected course name. Now you'll add a second recordset, for the Course
table, used to fill the combo box control with a list of all available course names. '

375

Tutorials

376

~ To create a new recordset class

1 From the View menu, choose Class Wizard.

2 Select the Add Class menu button, and from the menu select New.

This opens the Create New Class dialog.

3 In the Name box under Class Information, type CCourseSet.

4 From the Base Class drop-list, select CRecordset.

5 Clear the Add to Component Gallery checkbox.

For more information about this option, see "Using Component Gallery" in
Chapter 15 of the Visual C++ User's Guide.

6 Click the Create button.

This opens the Database Options dialog box.

~ To connect the recordset class to the Course table

1 From the ODBC drop-list, select Student Registration, and click OK.

Depending on the database type, you may need to supply additional information to
log in to the data source.

The Select DatabaseTables dialog box opens.

2 Select the table name COURSE, and choose OK. Depending on the data source
type you are using, additional qualifiers may precede or follow the table name.

This connects the table name to class C C 0 u r s e Set and returns you to the
ClassWizard Member Variables tab. The Class Name box shows CCourseSet,
and three names are listed in the Column Names box.

Table 32.1 shows the column names, their data members, and their data types.

3 Choose OK to close ClassWizard.

Note On the Member Variables tab, you can see that all of the table's columns are already
assigned to field member variables. You can use ClassWizard to delete those variables if you
don't need to access or modify the columns-but be careful not to delete a field member
variable for a column that is part of the table's primary key.

Table 32.1 CCourseSet Data Members

Column name

CourseID

CourseTitle

Hours

Type

CString

CString

int

Data member

m_CourseID

m_CourseTitle

m_Hours

For more information about using ClassWizard to create record set classes, see the
article "ClassWizard: Creating a Recordset Class" in Programming with MFC.

Chapter 32 Using a Second Recordset

Embedding the Recordset Object in the
Document Object

In Step 1, AppWizard embedded the CSecti onSet object in the document. In this
step, you'll do the same for the second recordset object-an object of the
C C 0 u r s e Set class that you created earlier with Class Wizard.

~ To embed the recordset in the document

1 From File View, double-click file EnrollDoc.h to open it.

Header files can be found under the Dependencies folder

2 Declare an embedded CCourseSet object, by adding the following line to the
public Attributes section, just beneath the CSect i onSet declaration:

CCourseSet m_courseSet;

3 Similarly, open files EnrollDoc.cpp, Enroll.cpp, and SectionForm.cpp, and add a
#include directive for "CourseSet.h" before the existing #include directive for
"EnrollDoc.h", as shown in the following line:

1ii ncl ude "CourseSet. h"

4 Save EnrollDoc.h and the .cpp files.

The document's m_courseSet member is referred to in the implementation of
On I nit i a 1 U pd a te that you'll complete later.

Filling the Combo Box with a List of
Courses

A good place to fill the combo box with a list of course names is in CSect ion Form's
override of CRecordView's OnlnitialUpdate member function. As part of its own
initialization, the form fills the combo box. The overall logic is as follows:

1. Construct and open a CCourseSet recordset based on the Course table.

2. Remove any current entries in the combo box.

3. For each course name in CCourseSet, add the CourseID to the combo box.

4. Set the selection to the first course name (as sorted) in the combo box.

The code in the following procedure fills the combo box and also filters,
parameterizes, and sorts the C Sec t ion Set recordset. Filtering, parameterization,
and sorting are explained in sections that follow.

377

Tutorials

378

~ To fill the combo box

1 From the Window menu, select the file SectionForm.cpp. (This file should still be
open from the previous procedure.)

2 Use ClassView or WizardBar to navigate to the implementation of
OnIniti al Update.

3 Just after the first line- m_pSet = &GetDoeument () - >m_seet i onSet; -
add the code below (don't replace any code):

II Fill the combo box with all of the courses
CEnrollDoc* pDoc - GetDocument();
pDoc->m_courseSet.m_strSort - "CourseID";
if (!pDoc->m_courseSet.Open(»

return;

II Filter, parameterize and sort the CSectionSet recordset
m_pSet->m_strFilter ... "CourseID .,. 7";
m_pSet->m_strCourseIDParam ... pDoc->m_courseSet.m_CourseID;
m_pSet->m_strSort ... "SectionNo";
m_pSet->m_pDatabase ... pDoc->m_courseSet.m_pDatabase;

You'll add the necessary member declaration in the section "Setting Up the
Parameter. "

4 Next, after the last line (CReeo rdVi ew: : On I nit i a 1 Upda te () ;), add the
following code:

m_ctlCourseList.ResetContent();
if (pDoc->m_courseSet.IsOpen(»
{

while (!pDoc->m_courseSet.IsEOF(»
{

m_ctlCourseList.AddString(
pDoc->m_courseSet.m_CourseID);

pDoc->m_courseSet.MoveNext();

}

m_ctlCourseList.SetCurSel(0);

5 Save your work.

For more information, see the article "Record Views: Filling a List Box from a
Second Recordset" in Programming with MFC.

Chapter 32 Using a Second Recordset

Filtering and Parameterizing the Recordset
The Step I version of Enroll selects into CSect i on Set all of the records in the
Section table. In Step 2, only the class sections for a specific course name should be
selected. This discussion introduces the concepts of record set filters and parameters.

Setting Up the Filter
Note You've already added the code to filter and parameterize the C Sec t ion Set recordset
(in On I nit; a 1 Upda tel; the code in this section is for illustrative purposes only. Do not add
the code from this section to your source files.

A recordset filter determines what subset of records is selected from a table or query.
To add a filter, you simply set the value of CRecordset: :m_strFilter before calling
CRecordset::Open. For example, the following code selects just the class section
records for course MATH 101:

m_pSet->m_strFilter - "CourseID = 'MATH101 ''';
m_pSet->Open();

Since the base class CRecordView::OnlnitiaIUpdate calls CRecordset::Open, all
you need to do to initially select the records for MATHIOI, for example, is replace
the following App Wizard implementation of a n I nit i a 1 Up d ate:

void CSectionForm::OnlnitialUpdate()
{

}

m_pSet = &GetDocument()->m_sectionSet;
CRecordView::OnlnitialUpdate();

with:

void CSectionForm::OnlnitialUpdate()
{

m_pSet - &GetDocument()->m_sectionSet;
m_pSet->m_strFilter = "CourseID = 'MATH101"';
CRecordView::OnlnitialUpdate();

The filter can be any logical expression that is legal for the SQL WHERE clause. For
example, the following is legal:

m_pSet->m_strFilter =
"CourseID = 'MATH101' AND InstructorID = 'ROGERSN''';

Examine the a n I nit i a 1 Up d ate code you added earlier. It shows the filter for
CSecti onSet in Enroll Step 2.

379

Tutorials

Caution In Enroll, filter strings typically use a parameter placeholder, "?", rather than
assigning a specific literal value, such as "MATH 1 01", at compile time. If you do use literal
strings in your filters (or other parts of the Sal statement), you may have to "quote" such
strings with a DBMS-specific "literal prefix" and "literal suffix" character(s}. For example, the
code in this section uses a single quote character to bracket the value assigned as the filter,
"MATH 1 01". You may also encounter special syntactic requirements for operations such as
outer joins, depending on your DBMS. Use DDBC functions to obtain this information from
your driver for the DBMS. For example, call ::SQLGetTypelnfo for a particular data type, such
as SQL_VARCHAR, to request the LITERAL_PREFIX and LITERAL_SUFFIX characters.

If you're writing database-independent code, see Appendix C in the OOBC Programmer's
Reference for detailed syntax information.

Setting Up the Parameter

380

Enroll reselects, or "requeries," class section records every time the user selects a new
course name from the combo box. One way to implement this is to close the old
CSect i onSet object and reopen it by supplying a new m_strFilter value before
calling Open. This works but is somewhat inefficient, because the framework has to
completely reconstruct and invoke a new SQL SELECT statement. A more efficient
way to requery the same recordset is to "parameterize" the filter-call Requery with
a new filter value and a specific parameter value.

In order to parameterize the filter, you'll perform the following procedures:

• Declare a parameter data member in the recordset's header file.

• Bind the parameter data member to the recordset.

To implement the Requery with a new filter and a specific parameter value supplied
at run time, you:

• Specify a parameterized filter.

• Supply the run-time parameter value.

The following sections describe these procedures.

~ To declare a parameter data member in the recordset's header file

1 Open file SectionSet.h.

2 Add the following member variable declaration for m_ s t r C 0 u r s e I D Par a m, just
before the IIOverrides section, after the / /} } A F X_ FIE L D line:

CString m_strCourseIDParam:

~ To bind the parameter data member to the recordset

1 Use Class View to navigate to the CSect i onSet constructor, and initialize the
parameter count variable, m_nParams, which by default is zero. Also initialize
Enroll's single parameter, m_strCourse I DPa ram.

Chapter 32 Using a Second Recordset

Place the following two lines of code after the line / /} } A F X_ FIE L D _ I NIT:

m_nParams ... 1;
m_strCourseIDParam - "";

2 Use ClassView or WizardBar to navigate to the DaF; el dExchange member
function definition, and add the following two lines of code to identify
m_s t rCa u r s e I D Par a m as a parameter data member. Add the code at the end of
the function, after the / /} }AFX_FI ELD_MAP line.

pFX->SetFieldType(CFieldExchange::param);
RFX_Text(pFX. "CourseIDParam". m_strCourseIDParam);

DaF; el dExchange recognizes two kinds of fields: columns and parameters. The
call to the CFieldExchange member function SetFieldType indicates what kind
of field(s) follow in the RFX function calls. In this example, there is one
parameter: m_strCaurseI DPa ram.

The name of the column for the parameter in the RFX_Text call
"CourseIDParam" -is arbitrary; you can provide any name you want.

3 Save your work.

~ To specify a parameterized filter

• Before the call to the base class function CRecordset: :Open, which is called by
CRecordView::OnlnitiaIUpdate, specify the parameterized filter, as shown in
this line (which you've already added):

m_pSet->m_strFilter "" "CourseID ... 7";

The question mark "?" indicates where the parameter value will be substituted at run
time. If you have more than one parameter in your m_strFilter, such as:

m_pSet->m_strFilter ... "CourseID'" 7 AND SectionNo'" 7";

you must make multiple RFX calls after the call to:

pFX->SetFieldType(CFieldExchange::param);

You must make the RFX calls for multiple parameters in exactly the same order as
the question marks in the m_strFilter and/or m_strSort.

Note If you have both a filter and a sort with parameters, specify the filter parameters first,
then the sort parameters. Not all OOSC drivers permit parameters on a sort. Consult the Help
file for your OOSC driver.

~ To supply the run-time parameter value

• Assign the value to the previously bound parameter data member, as shown in the
following line (which you've already added in the OnlnitialUpdate function).

m_pSet->m_strCourseIDParam "" pDoc->m_courseSet.m_CourseID;

381

Tutorials

This sets the parameter value to be the first course record retrieved from the
CCourseSet recordset. All parameter values must be assigned before calling
CRecordset::Open (or CRecordView::OnlnitiaIUpdate) or, as you will see later,
before calling CRecordset::Requery.

Reusing a Database Object Opened by
Another Recordset

382

Note You add no new code to Enroll in this section.

AppWizard and ClassWizard both implement CRecordset-derived classes such that
the recordset object owns its own CDatabase object. Up to now, the CDatabase
object has been transparent because the framework created it for you when you
constructed a recordset object. The default implementation of
CRecordView::OnlnitiaIUpdate indirectly calls the wizard-implemented
Get 0 e f au 1 t Con nee t function for the recordset. The implementation looks like
this:

CString CSectionSet::GetDefaultConnect()
{

return "ODBC:DSN-Student Registration:":

The framework passes this "connection" string to CDatabase: :Open for the
CDatabase object that the framework creates in its implementation of
CRecordset::Open. If your application has two or more recordsets, each recordset
will, by default, create and open its own CDatabase object. If multiple recordsets
access the same data source, it's a good idea to have them share the same CDatabase
object.

One way to share the same CDatabase object among multiple recordsets is to pass
the ID_pDatabase member of the first recordset object to the Open function of the
other recordsets. This is what you've already implemented in
CSectionForm::OnlnitialUpdate:

m_pSet->m_pDatabase = pDoc->m_courseSet.m_pDatabase:
CRecordView::OnInitialUpdate():

If CRecordset::Open finds that the ID_pDatabase member is already allocated, it
simply reuses the open CDatabase.

Another way to share the same CDatabase object among multiple recordsets is to
embed the CDatabase object in the document object. For an example of this
approach, see the source code for Enroll Step 4 in Samples \ MFC Samples \ Tutorials
in Books Online.

Chapter 32 Using a Second Recordset

Sorting the Recordset
The procedure for sorting a recordset is very simple: set the member variable
CRecordset::m_strSort before calling CRecordset::Open. The syntax for
m_strSort is exactly that of the SQL ORDER BY clause, which is one or more
columns separated by commas.

The CCourseSet records are all sorted by CourseID (which you have already
added):

pDoc->m_courseSet.m_strSort "" "CourseID";

Also, the CSect i onSet records for a given course name are sorted by class section:

m_pSet->m_strSort = "SectionNo";

For more information about using SQL with the database classes, see the article
"SQL" in Programming with MFC.

Requerying the CSectionSet Recordset
Whenever the user selects a new course name from the combo box, Enroll must
"requery" the C Sec t ion Set recordset to refresh its records. By selecting a new
course name, the user will see records only for the class sections of that course name.
The existing CSect i onSet recordset contains records for the previous course name.
Requerying the recordset brings it up to date for the new course name, using the
current values of the filter and sort strings.

When the user accepts a selection in the combo box, the CSect i on Form record view
gets a CBN_SELENDOK notification message. The record view uses its handler for
this message to reselect records based on the course name selected, passing the course
ID as a parameter.

The following procedure describes how to use WizardBar to create this handler. For
more information, see "Using WizardBar" in the Visual C++ User's Guide.

~ To requery the CSectionSet recordset

1 From the Window menu, select SectionForm.cpp.

2 In the WizardBar Object IDs drop-list, select IDC_COURSELIST.

3 In the Messages drop-list, select CBN_SELENDOK.

4 Respond Yes when prompted to create a handler.

383

Tutorials

5 In the editor window, add the following code in place of the I rrODO comment:

if (!m_pSet->IsOpen())
return;

m_ctlCourseList.GetLBText(m_ctlCourseList.GetCurSel().
m_pSet->m_strCourseIDParam);

m_pSet->Requery();
if (m_pSet->IsEOF(»
{

m_pSet->SetFieldNull(&(m_pSet->m_CourseID). FALSE);
m_pSet->m_CourseID = m_pSet->m_strCourseIDParam;

}

UpdateData(FALSE);

6 Save your work.

This code requeries records from the database into the recordset, based on the
parameter value in m_s t reo u r s e I D Par a m. The parameter value is set to the
currently selected course name from the Course List combo box before requerying the
database.

If you requery and it turns out that the selected course name has no class sections, the
recordset is initialized with Null database field values except for CourseID.

For more information, see "Recordset: Requerying a Recordset (ODBC)" in
Programming with MFC.

Build and Run Enroll Step 2

384

If you're working along, build and run your version of Enroll Step 2. Use the
navigation user interface to move through all class sections for the course name
currently selected in the Course combo box. Select a different course name in the
combo box and navigate through its class sections.

This completes Step 2 of the database tutorial. Chapter 33, "Adding and Deleting
Records," (Step 3) concludes the tutorial by showing you how to add and delete
records.

CHAPTER 33

Adding and Deleting Records

This tutorial step implements new commands for adding and deleting records and for
abandoning an update in progress. This chapter explains:

• Creating the Step 3 user interface.

• Adding, editing, and deleting records.

• Implementing the Add, Refresh, and Delete commands.

• Building and running Enroll Step 3.

If you choose to work along with the tutorial, perform all the steps in the procedures
in this chapter. At the end, you'll be able to build and run your Enroll Step 3
application.

About Step 3
Step 3 teaches:

• The basics of adding, editing, and deleting records.

• Implementing commands for these operations.

Up to now Enroll has supported editing (updating) records but not adding or deleting
records.

There are many different user-interface styles for adding records. For example, when
a Microsoft Access user reaches the end of a recordset, Access considers the next
record to be a new record. Other applications have an explicit Add command.
Enroll's user interface is only one among many possible user interfaces that you
might implement using MFC.

The user intelface in Step 3 includes three new commands on the Record menu, with
corresponding toolbar buttons:

• The Add command prepares a blank record into which the user enters data. The
user saves the new record by moving to another record, just as he or she saves an

385

Tutorials

edited record by moving to another record. The user can also save the new record
by issuing the Add command again.

• The Refresh command abandons an operation to add or edit a record. Refresh
restores the modified record to its original state or returns to the record shown
before Add.

• The Delete command deletes a record.

Try Step 3 out now, if you like. Run Enroll.exe from Books Online. For more
information, see "Previewing the Sample Applications."

Here are some things to try:

• Try the new Add, Refresh, and Delete commands.

• Try forcing the two exceptions handled by Enroll:

• Try to delete a section that has Enrollment records.

• Try to add a duplicate section.

When you finish, exit the program. Figure 33.1 shows the finished Enroll
application.

Figure 33.1 The Enroll Step 3 Application

Creating the Step 3 User Interface

386

In this section you'll use the menu editor to add menu commands to Enroll's default
menu. In later sections you'll add (optional) accelerators and message handler
member functions for these commands.

For more information about editing menu resources, see Chapter 6, "Using the Menu
Editor," in the Visual c++ User's Guide.

Chapter 33 Adding and Deleting Records

Add Menu Items for Add, Refresh, and Delete
In the following procedure, you'll add three new menu items to Enroll's Record
menu: Add, Refresh and Delete. The command IDs you assign to the new menu items
are application-specific IDs, not predefined by the framework as are
ID_RECORD_FIRST and the other commands on the Record menu.

Tip You may find it helpful to "pin down" the Menu Item Properties dialog during the following
procedure.

~ To add menu items for the commands

1 In Resource View, expand the Enroll resources folder if necessary, and then expand
the Menu folder.

2 Open the IDR_MAINFRAME menu resource, and open the Menu Item
Properties page by choosing Properties from the Edit menu.

3 At the top of the existing Record menu items, add an "Add" menu item with the
following caption, resource ID, and command prompt:

• &Add

• ID_RECORD_ADD

• Add a new section

4 Add a "Refresh" menu item with the following caption, resource ID, and
command prompt:

• &Refresh \tEsc

• ID_RECORD_REFRESH

• Cancel changes on form, or cancel Add

The "\t Esc" coding specifies that the ESC key can be used as an accelerator. If you
do not complete the next procedure, "Add an Accelerator for the Refresh
Command," don't include this code.

S Add a "Delete" menu item with the following caption, resource ID, and command
prompt:

• &Delete

• ID_RECORD_DELETE

• Delete section

6 Add a separator:

• Insert a new menu item and, in the Menu Item Properties dialog, select the
Separator checkbox.

7 Save your work and leave the menu editor window open.

You'll need the editor open to establish a context when you use ClassWizard to
create command handler functions for the menu commands you've just added.

387

Tutorials

Figure 33.2 shows the completed menu in the menu editor.

Figure 33.2 The Record Menu with New Commands

B e3 Enroll resources
$ 0 Acceleralor
$··0 Dialog
iBOlcon
a···a Menu

. ~ fji;):f.CMAI!!f..8AB.~
m·O Siring Table
r:iJ···CJ Toalbar
I±l 0 Version

Add an Accelerator for the Refresh Command

388

You can skip this step if you wish, since you can test the application without this
accelerator.

For information about creating and editing accelerators, see Chapter 8, "Using the
Accelerator Editor," in the Visual C++ User's Guide.

~ To add an accelerator

1 In Resource View, expand the Accelerator folder.

2 Open the IDR_MAINFRAME accelerator resource.

Note The name for this resource doesn't need to match the menu resource name, so long
as the 10 you assign to an accelerator matches the 10 for the corresponding menu item.

3 Create a new accelerator with the following ID: ID_RECORD_REFRESH.

4 From the Key drop-down list, choose VK_ESCAPE (or type it in).

5 Clear the "Ctd" modifier box.

6 Save your work but leave the accelerator editor open.

You'll need this editor or the menu editor open to establish a context when you use
Class Wizard to create command handler functions for the menu commands.

Chapter 33 Adding and Deleting Records

Create Handlers for Add,· Refresh, and Delete
Each of the new Record menu commands needs a command handler function in the
CSect; on Form class. Since the Enroll menu resource is associated with the
CMa; n Frame class, you need to make an association between the menu IDs and the
CSect; onForm class. You do this by giving focus to the IDR_MAINFRAME
resource (accelerator or menu) so ClassWizard can glean the available command IDs
from the resource.

~ To create handlers for the commands

1 With focus on the IDR_MAINFRAME resource, open ClassWizard and choose
the Message Maps tab.

Notice that the CMa; n Frame class is automatically selected.

2 In the Class Name box, select CSectionForm.

3 In the Object IDs list, select the ID_RECORD_ADD command ID; in the
Messages box, select COMMAND; and then choose Add Function to create a
command handler function.

Accept the default handler name: OnRecordAdd.

4 Repeat step 3 for the ID_RECORD_DELETE and ID_RECORD_REFRESH
command IDs.

5 Click OK to exit ClassWizard.

You can also close the resource editors at this point.

You'll fill in the command handlers in later sections.

The Basics of Adding, Editing, and
Deleting Records

Before you implement the new command handlers, you should know some basic facts
about how the framework supports database updating:

• CRecordView automatically updates the current record when the user moves to
another record.

• CRecordView takes three steps to modify an edited record in the associated
recordset when the user moves to another record. The record view:

• Prepares the current record for updating by calling the recordset's Edit member
function .

• Calls the UpdateData member function derived from CFormView, which
changes therecordset's member variables, usually by getting the new values
from the form's controls.

389

Tutorials

)

• Calls the recordset's Update member function to actually update the data
source with the modified values.

• CRecordView does not provide a default implementation for Add, since user
interfaces for Add functionality vary widely among database applications.

• The steps for adding a new record parallel the steps for updating a modified
record:

• Prepare a new record by calling the recordset's AddNew member function. The
fields of the new record are initially Null. (In database terminology, Null means
"having no value" and is not the same as NULL in C++.)

• Change the recordset's member variables, usually by getting the new values
from the form's controls with UpdateData.

• Call the recordset's Update member function to actually update the data source
with the values for the new record.

• Deleting a record is simpler than adding or editing one. The record view simply
calls the recordset's Delete member function.

There are two main concerns when you delete a record. First, if you delete a record
from one table and there are related records in other tables, you may damage the
integrity of your database. For example, deleting a class section for which there
are records in the Enrollment table makes the Section and Enrollment tables
inconsistent.

Second, after deleting a record, you or the user must move off the deleted record to
another record.

Implementing the Add Command

390

Step 3 implements a user interface for Add that closely parallels CRecordView's
default user interface for modifying an existing record. The user starts a new record
with the Add command on the Record menu.

Implementing the Command Handler
In response to the Add command, the record view calls its OnRecordAdd member
function and enters an "add mode" by setting an m_bAddMode data member to
TRUE. The add mode is completed when the user moves off the record. The Step 3
implementation overrides the record view's OnMove member function to implement
completion of the add mode. The following procedures implement the add mode, and
create a CEdit member variable used to tum on and off the read-only style of the
Section edit control.

Chapter 33 Adding and Deleting Records

~ To implement the Add mode

1 In the Attributes section of file SectionFonn.h, add the protected m_bAddMode
data member:

protected:
BOOl m_bAddMode;

2 Initialize m_bAddMode in the CSecti onForm constructor in file
SectionFonn.cpp. (You can jump directly to the constructor from ClassView.) Add
the following line after the / /} } A F X_D AT A_ I NIT line:

m_bAddMode - FALSE;

In Steps I and 2 of the tutorial, the Section control was read-only because it was
necessary to prevent the user from changing this primary key value of the Section
record. In Step 3, you need to tum off the read-only style of the Section control when
the user is in add mode. The control is still read-only if the user is in browse/update
mode rather than add mode.

To change the read-only style, you must call the CEdit member function
SetReadOnly with the appropriate parameter. This requires a member variable of
type CEdit in CSect i on Form. At this point, the class has a CString data member
representing the Section control, but you need a CEdit member variable as well.

~ To define the CEdit member variable

1 Open Class Wizard and choose the Member Variables tab.

2 In the Class Name box, select CSectionFonn.

3 In the Control IDs box, select IDC_SECTION, which is already associated with a
CString member.

4 Choose Add Variable to open the Add Member Variable dialog box.

5 In the Member Variable Name box, type the name m_ct 1 Sect ion.

6 In the Category box, select Control.

Notice that the Variable Type box changes appropriately to CEdit.

7 Choose OK to close the Add Member Variable dialog box.

Notice that a second member variable is now associated with the IDC_SECTION
control ID. You access the control's value through m_pSet - >m_Sect i anNa. You
access the control itself, to call its member functions, through m_ct 1 Sect ion.

a Choose OK to close ClassWizard.

The Add command initiates add mode and calls the recordset's AddNew function to
prepare a new record, but doesn't add the record to the data source. The record isn't
actually added to the data source until a subsequent call to OnMove calls the
recordset's Update function.

391

Tutorials

~ To implement the OnRecordAdd command handler function

1 Use ClassView to jump to the On Reeo rdAdd skeleton handler that ClassWizard
created in SectionForm.cpp.

2 Add the following code to implement the handler:

II If already in add mode, complete the previous new record
if (m_bAddMode)

OnMove(ID_RECORD_FIRST);

CString strCurrentCourse - m_pSet->m_CourseID;
m_pSet->AddNew();
m_pSet->SetFieldNull(&(m_pSet->m_CourseID), FALSE);
m_pSet->m_CourseID = strCurrentCourse;
m_bAddMode - TRUE;
m_ctlSection.SetReadOnly(FALSE);
UpdateData(FALSE);

The most important line of this code is the call to CRecordset::AddNew, which
prepares a new record. The rest of the code does the following:

• If the user is already in add mode, complete the current record by simulating the
user's moving to another record. Moving to another record is the normal user
interface for completing a record.

• Save the CourseID for the current record and use it as the default for the new
record, based on the assumption that more often than not the user will want to add
another section for the course currently being viewed.

• In add mode, change the Section control to read/write rather than read-only, so the
user can enter a new section number.

Updating the Data Source with the Added Record

392

Add mode is completed when the user moves off the record. Enroll implements this
by overriding the CRecordView::OnMove member function.

~ To implement Add functionality in the OnMove function override

1 With SectionForm.cpp open in the text editor, select class CSectionForm in the
WizardBar Object IDs drop-list.

2 In the Messages drop-list, select OnMove, and choose Yes when prompted to
create a handler.

3 Fill in the skeleton OnMove function with the following code:

if (m_bAddMode)
{

if (!UpdateData(»
return FALSE;

TRY
{

m_pSet->Update();

Chapter 33 Adding and Deleting Records

else
{

CATCH(CDBException. e)
{

AfxMessageBox(e-)m_strError);
return FALSE;

m_pSet-)Requery();
UpdateData(FALSE);
m_ctlSection.SetReadOnly(TRUE);
m_bAddMode - FALSE;
return TRUE;

return CRecordView::OnMove(nIDMoveCommand);

In its default CRecordView implementation, OnMove moves to the next, previous,
first, or last record. If the application has changed the recordset field data members
for the current record before the move, the framework updates the data source before
moving to another record.

Note Some ODBC drivers do not reflect newly added records in the recordset; others do. For
those drivers that don't display newly added records, to make the added records visible you
must requery the database. For more information, see "Recordset: Adding, Updating, and
Deleting Records (ODBC)" in Programming with MFG.

Step 3 augments the default CRecordView user interface for updating the current
record. If the user is in add mode and then moves off the new record, Enroll adds the
newly prepared record to the data source before moving to another record. But you
must decide whether it's important for added records to be immediately visible. For
the tutorial, the decision is to requery the recordset after each add operation so the
newly added record is included in the recordset.

Normally, the move commands behave as you might expect: Move Next moves to the
next record, and so on. But as a consequence of the decision to requery during the
add operation, when the user chooses any move command when adding a record,
Enroll always effectively moves to the first record. That's because requerying the
recordset automatically sets the recordset to the first record.

393

Tutorials

Disabling Combo Box Logic in Add Mode
Step 2 implemented a handler for selecting a course in the combo box. The handler
requeried the parameterized CSect i onSet for the newly selected course. In Step 3,
the combo box takes on the additional duty of allowing the user to specify the course
for a new section record being added. During add mode, you don't want to requery
the recordset when the user selects a course from the combo box. Therefore, you need
to put the requery logic inside an if clause that is executed only if add mode isn't in
effect.

~ To disable normal combo box logic while in add mode

1 Use ClassView to jump to the OnSe 1 endokCou rs eLi s t handler in class
CSect i on Form.

2 Place an if block around the requery code in the OnSel endokCourseL i st
handler, so the handler now appears as follows:

void CSectionForm::OnSelendokCourselist()
{

m_ctlCourseList.GetLBText(m_ctlCourseList.GetCurSel().
m_pSet->m_strCourseIDParam);

if (! m_bAddMode)
{

}

m_pSet->Requery();
if (m_pSet->IsEOF(»
{

m_pSet->SetFieldNull(&(m_pSet->m_CourseID). FALSE);
m_pSet->m_CourseID = m_pSet->m_strCourseIDParam;

}

UpdateData(FALSE);

Implementing the Delete Command

394

In response to a Delete command, the record view deletes the current record by
calling the Delete member function of its associated recordset.

~ To implement the Delete command

1 Use Class View to jump to the 0 n R e cor d Del e t e skeleton function in class
CSect i on Form.

2 Implement the handler with the following code:

TRY
{

m_pSet->Delete();
}

CATCH(CDBException. e)
{

Chapter 33 Adding and Deleting Records

AfxMessageBox(e-)m_strError);
return;

II Move to the next record after the one just deleted
m_pSet-)MoveNext();

II If we moved off the end of file, move back to last record
if (m_pSet-)IsEOF(»

m_pSet-)MoveLast();

II If the recordset is now empty, clear the fields left over
II from the deleted record

if (m_pSet-)IsBOF(»
m_pSet->SetFieldNull(NULL);

UpdateData(FALSE);

Catch any exceptions thrown by the recordset's Delete function so that errors are
reported to the user. The CDBException data member m_strError is a fairly user
friendly error message, prepared by the underlying ODBC driver.

If you want to customize the error message, you can force the error condition, then
examine m_strStateNativeOrigin for a particular state or native value. You can look
up error messages in the ODBC Programmer's Reference, Appendix A, "ODBC
Error Codes." Enroll takes the easy approach by displaying m_strError.

For Enroll, the decision was to move to the record following the deleted record. You
could move to the previous record after a delete operation or anywhere else as long as
you, or the user, moves off the deleted record.

Implementing the Refresh Command
The Refresh command cancels add mode, if the user had previously chosen Add, or it
discards any changes the user may have made on the form for the current record. In
the first case, Enroll cancels the add mode by calling:

CRecordset::Move(AFX_MOVE_REFRESH);

When you call AddNew to begin the add operation, the framework stores a copy of
the current record's fields before allowing the user to enter new values in the record
view's controls. Calling Move as shown here "refreshes" the current record-and
effectively cancels the add operation. It restores the record that was current before
add mode began. This also works if you called Edit instead of AddNew.

When the user cancels add mode, Enroll makes the Section control read-only again,
for reasons explained earlier.

395

Tutorials

~ To implement the Refresh command

1 Use ClassView to jump to the OnRecordRefresh skeleton handler in class
CSecti onForm.

2 Implement the handler function with the following code:

if (m_bAddMode)
{

}

m_pSet->Move(AFX_MOVE_REFRESH);
m_ctlSection.SetReadOnly(TRUE);
m_bAddMode = FALSE;

II Copy fields from recordset to form, thus
II overwriting any changes the user may have made
lion the form
UpdateData(FALSE);

Note The source files for Enroll Step 3 on your distribution CD-ROM include functional
toolbar buttons connected to the Add, Refresh, and Delete commands on the Record menu.
The installed Step 3 source code supplies these toolbar buttons for Enroll. For more
information on creating toolbar buttons, see "Edit Scribble's Toolbar" in Chapter 6, or "Using the
Toolbar Editor" in Chapter 11 of the Visual C++ User's Guide.

Building and Running Enroll Step 3

396

Build and run your version of Enroll Step 3. Try the new Add, Refresh, and Delete
commands. Try forcing the two exceptions handled by Enroll-try to delete a section
that has Enrollment records, and try to add a duplicate section.

When you finish, exit the program.

This completes the database tutorial.

Note The sample source code for Enroll includes a fourth step, not covered in this tutorial. For
a summary of what's included in Step 4, see "Enroll Step 4: A Preview."

CHAPTER 34

Data Access Objects (DAO) Tutorial

The DaoEnrol tutorial shows you how to develop an MFC database application
using the Data Access Objects (DAO) database classes. This tutorial uses similar
procedures and creates nearly the same application as the Enroll tutorial in
Chapters 30 through 33.

In the DaoEnrol tutorial, you'll learn how to:

• Use AppWizard and ClassWizard for DAO database support.

• Create and use CDaoRecordset objects to open tables and run queries.

• Create and use CDaoRecordView objects for form-based applications .

• Use database support within the framework's document/view architecture.

• Add, update, and delete records.

• Manage multiple tables.

• Handle database exceptions.

This chapter contains:

• Instructions for setting up the Student Registration database for DAO.

• A brief overview of DAO.

• Step 1 of the DaoEnrol tutorial, which explains how to create a database
application using App Wizard.

Once you have completed this chapter, you can go to Chapter 32 and follow the
instructions found in the Enroll tutorial to complete the DaoEnrol tutorial.

397

Tutorials

There are some differences in the code generated for DaoEnrol and the code
generated for Enroll. Consequently there are separate instructions for some sections
of DaoEnrol that need to be substituted for sections in Chapters 32 and 33. These
sections are included at the end of this chapter in "DaoEnrol Step 2" and "DaoEnrol
Step 3."

Note The DAOENROL sample reflects the completed DaoEnrol tutorial, plus an
undocumented fourth step. Separate source code is not provided for each of the DaoEnrol
tutorial steps either under Samples in Books Online or in the
\MSDEv\SAMPLES\M FC\DATABASE\DAOEN ROL subdirectory on the Visual C++
distribution CD.

Important This tutorial assumes you are familiar with Visual C++ and MFC. If you aren't, try
the Scribble tutorial in Chapters 2 through 11 before you begin this tutorial. The Scribble
tutorial introduces important class library concepts and techniques and teaches you to use the
wizards and the resource editors.

It is not necessary to complete Enroll, the ODBC database classes tutorial, before starting
DaoEnrol.

DaoEnrol and Enroll
DAO recordset, database, and record view class implementations are very similar to
that of the ODBC database classes. This means that skills and knowledge you may
already have as a result of using the ODBC database classes can apply to the DAO
database classes. By completing both the Enroll and DaoEnrol tutorials, you have the
opportunity to compare the code and study both implementations. You can also use
DaoEnrol as a basis for an application that uses more of MFC's DAO functionality.
For more information, see the articles "DAO: Writing a Database Application" and
"Database Overview" in Programming with MPC.

The Tutorial Example: DaoEnrol

398

The tutorial example program, DaoEnrol, manages a student registration database
similar to, but simpler than, a college registration system. It will help you to follow
the tutorial if you understand the structure of the student registration database.

DaoEnrol is based on the same student registration database, STDREG32.MDB, that
you use with the Enroll tutorial. However, it is not necessary to register this data
source with the ODBC Administrator to use it with the DAO database classes in the
DaoEnrol tutorial.

Chapter 34 Data Access Objects (DAO) Tutorial

Table 34.1 lists the database tables, what they store, and the columns in them.

Table 34.1 Tables in the Student Registration Database

Table name Contents Column list

Course Think of each record as an entry in a CourseID*

Sectiont

Student

Enrollment

Instructor

course catalog. Example: the MATH101 CourseTitle
course.

A section record is a specific offering of
a course at a specific time. For example,
MATH101 may have many sections.

A record for each student at the school.

A record for each student in a particular
section of a course. For a given student,
there is an Enrollment record for each
course the student is taking.

A record for each instructor at the
school.

Hours

SectionNo*

CourseID*

InstructorID

Schedule

RoomNo

StudentlD*

Name

GradYear

CourseID*

SectionNo*

StudentlD*

Grade

InstructorID*

Name

RoomNo

*Indicates the column (or columns) that comprise the table's primary key.

tTbe Dynabind_Section table is used in the Dynabind sample, but not in the DaoEnrol tutorial.

Note You can use Books Online to copy STDREG32.MDB to your local drive. You can also
easily install the sample source project files for DaoEnrol. For more information, see "Installing
the Sample Files."

DaoEnrollets you use a "form" - a view with dialog-style controls - to view
registration information for courses, section by section. Section information displayed
includes the course name, section number, instructor, room, and schedule (such as
"MWF 10-11"). For example, you can view section 1 of the course MATH 101, then
section 2, and so on. The initial tutorial step provides read-only viewing of all
sections. Steps 2 and 3 add more capabilities, including updates. Figure 34.1 shows
what the DaoEnrol application looks like at the end of the tutorial.

399

Tutorials

Figure 34.1 The Completed DaoEnrol Tutorial Application

Setting Up the Student Registration Data
Source for DaoEnrol

400

Before you begin the DaoEnrol tutorial you must specify a database. You can either:

• Copy and use the prebuilt STDREG32.MDB database

-or-

• Create your own database

MFC support for Data Access Objects (DAO) does not rely on Open Database
Connectivity (ODBC) for most database formats. Because of the flexibility of the
DAO database classes, you have several options for creating and using the DaoEnrol
database:

• The Microsoft Jet database engine works natively with Microsoft Access .MDB
files, but it can also directly read ISAM databases such as Paradox, dBase, and
FoxPro. For better performance, you will want to attach these external data sources
as tables in a Microsoft Access .MDB file. For more information, see "DAO
External: Attaching External Tables."

While you can create a database, tables, queries, fields, indexes, and recordsets
with DAO, it is'much easier to just use the STDREG32.MDB database supplied
with Visual C++ for this tutorial. You can use Books Online to copy
STDREG32.MDB to your local drive.

Note When you use AppWizard to create a DAD database application, the only database
type offered as a selection is a Microsoft Access .MOB file. This tutorial assumes that you
will use the STOREG32.MOB file. If you use another database type, you must use
Microsoft Access to create an .MOB file, attach the database table to that .MOB file, and
select that .MOB file during the selection of the Data Source in AppWizard-Step 2.

Chapter 34 Data Access Objects (DAO) Tutorial

• If you want to use another database format, you must install the corresponding
32-bit ODBC driver, as well as its related database management system (DBMS).
(Microsoft Visual C++ ships 32-bit ODBC drivers for most standard database
formats; for a complete list, see "ODBC Driver List" in Programming with MFG).
Use the DBMS to add tables to your database so that it matches the Student
Registration database schema. Then, use ODBC Administrator to register the
database using the instructions in the Enroll tutorial in Chapter 30. For more
information about using ODBC Administrator, see the articles "ODBC
Administrator" and "Data Source (ODBC)," in Programming with MFC.

Note When you run a Typical Visual C++ Setup, the DDBC drivers for dBase, FoxPro,
Access and SOL Server are installed automatically. You can rerun Setup (or choose a
Custom installation the first time you run Setup) to install drivers for Paradox, Microsoft
Test, Excel, and Oracle. If you need an ODBC driver not provided with Visual C++, you
must use the installation program shipped with the program to install it, and use ODBC
Administrator to register it.

Specify a Database for DaoEnrol
The easiest way to supply a database for the DaoEnrol tutorial is to use the pre-built
STDREG32.MDB Microsoft Access database file, included with Visual C++ for this
purpose. Alternatively, you can create your own database.

~ To use STDREG32.MDB with DaoEnrol

1 From InfoView, expand the following folders:

Samples \ MFC Samples \ Databases (ODBC and DAO)

2 Double-click the page node for the STDREG sample.

3 In the STDREG topic, click the button provided to copy sample project files.

4 In the Sample Application dialog box, select STDREG32.MDB and choose Copy.

5 In the Copy dialog box, navigate to the directory where you want to copy this file,
and click OK.

Visual C++ creates the directory for you, if necessary, and copies the file.
STDREG32.MDB already contains the tables and records used in the tutorial.

~ To create your own database for DaoEnrol

• Create a new database schema using the database administration capability of
your DBMS.

Depending on the type of DBMS, you might create the new database on a server
that is different from the machine where you will be doing MFC database
development. In either case, you need to add tables to the new database to match
the schema of STDREG32.MDB. You must also install the ODBC driver that
corresponds to your DBMS, and register the database with the ODBC
Administrator.

401

Tutorials

DAO Tutorial Steps
The following table briefly describes the DaoEnrol tutorial steps:

Tutorial Step Chapter

34
(this chapter)

2 32

3 33

Description

Use AppWizard to create an application with database
support. The document embeds a CDaoRecordset object
for the Section table of the Student Registration data
source. Use the dialog editor to design the form. Use
Class Wizard to bind controls on the form to fields in the
recordset.

Provide a combo box control on the form so the user can
select a course and view its sections. Fill the combo box
from a recordset object representing the Course table.
Filter and parameterize the recordset to constrain the
records it selects. (Use Enroll Step 2 with substituted
sections from DaoEnrol Step 2.)

Implement a user interface for adding, updating, and
deleting records. Handle database exceptions. (Use
Enroll Step 3 with substituted sections from DaoEnrol
Step 3.)

DaoEnrol Step 4: A Preview
The sample source code for DAOENROL consists of the code for Steps 1,2, and 3,
plus a Step 4 not covered in the tutorial. Step 4 illustrates additional database
programming techniques as summarized below. See DAOENROL under Samples in
Books Online for a discussion of DaoEnrol Step 4. The techniques illustrated by
DaoEnrol Step 4 include:

• Using multiple record view classes.

• Switching views in a frame window.

• Using the document object to coordinate multiple forms via UpdateAIlViews and
update hints.

A Brief Overview of DAO

402

MFC version 4.0 includes new database classes for programming with Data Access
Objects (DAO). DAO is an application programming interface (API) based on OLE.

In general, the DAO database classes offer more complete database functionality than
the ODBC database classes, which were first introduced in MFC 2.5. For a more
detailed overview of DAO, see the articles "Database Overview," "DAO and MFC,"
and "Data Access Objects (DAO)," in Programming with MFC.

Chapter 34 Data Access Objects (DAO) Tutorial

DAO supplies a hierarchical set of objects that use the Microsoft Jet database engine
to access data and database structure in:

• Microsoft Jet (.MDB) databases.

• ODBC data sources, using an ODBC driver.

• Installable ISAM databases, such as dBASE, Paradox, FoxPro, and Btrieve, which
the database engine can read directly.

DAO can access other types of databases through ODBC. For more information
about using the DAO database classes versus using the ODBC database classes,
see Chapter 7, "Working with Databases" in Programming with MFC.

Not all DAO objects are exposed in MFC, although most of the DAO functionality is
available. You can make direct calls to DAO, and the DAO Software Development
Kit (SDK) and DAO Help are included in Visual C++ version 4.0. For more
information on the relationship between DAO and MFC, see the articles "DAO
Collections," "DAO and MFC," "DAO: Writing a Database Application," and
"DAO: Database Tasks" in Programming with MFC.

Data Access Objects in MFC
The DAO objects encapsulated by MFC are listed below in hierarchical order.

Workspace
In DAO, the Workspace object defines a session for a user. It contains open databases
and provides mechanisms for simultaneous transactions. MFC includes access to the
DB Engine object that controls the Microsoft Jet database engine and manipulates its
properties. For more information on MFC's Workspace object, see class
CDaoWorkspace in the Class Library Reference, and the articles "DAO
Workspace," and "DAO Workspace: The Database Engine" in Programming with
MFC.

Database
The Database object represents a connection to the database. The DAO database
classes have greater ability to manipulate databases than do the ODBC database
classes. DAO can read Microsoft Access .MDB files directly. DAO can also read
installable ISAM databases directly (dBASE, Paradox, FoxPro, and Btrieve) if they
are used as attached tables. Other databases, such as Oracle and SQL Server, can be
read by using ODBC and their corresponding drivers. For more information, see
class CDaoDatabase in the Class Library Reference, and the articles "DAO
Database," and "DAO External: Working with External Data Sources" in
Programming with MFC.

403

Tutorials

Tabledef
The Tabledef object represents the schema (structure) of a table. The DAO database
classes let you create and manipulate tables in a database using the Data
Manipulation Language (DML) subset of SQL. You can use the DAO database
classes to create and delete fields (columns) in a table and to create and delete
indexes for a table. For more information, see class CDaoTableDef in the Class
Library Reference, and the article "DAO Tabledef' in Programming with MFC.

Querydef
Most of the applications you create require only a subset of database records. The
Querydef object represents a query you create and execute, or use to create a
recordset, filtering and sorting records as desired. You can also create and execute
action queries and SQL pass-through queries. For more information, see class
CDaoQueryDef in the Class Library Reference, and the articles "DAO Querydef'
and "DAO Querydef: Action Queries and SQL Pass-Through Queries" in
Programming with MFC.

Recordset
A Recordset object represents a set of records selected from a data source. The
recordset may represent a selection of one or more specified columns from rows of
one or more database tables. A CDaoRecordset object represents both (a) this
selection of records and (b) the actual field values for one currently selected record.

For more information, see class CDaoRecordset in the Class Library Reference, and
the articles "DAO Recordset," "DAO Recordset: Recordset Navigation," "DAO
Record Field Exchange (DFX)," and "DAO Record Field Exchange: Double
Buffering Records" in Programming with MFC.

Exceptions
DAO error handling is accomplished through the use of MFC exceptions. For more
information, see class CDaoException in the Class Library Reference, and the article
"Exceptions: Database Exceptions" in Programming with MFC.

DaoEnrol Step 1

404

Step 1 of the DaoEnrol tutorial implements an updatable database form that lets the
user examine the records in the Section table one record at a time. You'll create a
form that looks like the one shown in Figure 34.2 .

Chapter 34 Data Access Objects (DAO) Tutorial

Figure 34.2 DaoEnrol's Section Form

Course: Section:

Instructor:

Room:

Schedule:

Capacity:

In Step 1 you will:

• Create the DaoEnrol application.

• Examine the DaoEnrol Step 1 classes.

• Customize DaoEnrol's database form.

• Bind DaoEnrol's form controls to recordset fields.

• Build and run DaoEnrol Step 1.

If you choose to work along with the tutorial, perform all the steps in the procedures
in this chapter. At the end, you'll be able to build and run the DaoEnrol Step 1
application.

Creating a New DAO Database Application
When you use AppWizard to create a DAO database application, the only database
type offered as a selection is the Microsoft Access .MDB database. Using either
Access data in an .MDB file or an installable ISAM database as an attached table to
an .MDB file gives your application the best performance for data retrieval and
manipulation. The procedures in this tutorial assume that you are using the
STDREG32.MDB file supplied on the Visual C++ distribution CD.

For more information on how to use the AppWizard Database Options page in
AppWizard when you're creating your starter application, see "AppWizard: Database
Support" in Programming with MFC. AppWizard lets you specify whether your
database application uses a file as well as a database. The DaoEnrol application does
not need a file, so it is based on the "Database view without file support" option in
AppWizard.

For more information about applications that do not use file support, see
"Serialization: Serialization vs. Database Input/Output" in Programming with MFC.

405

Tutorials

406

Note The following procedure describes how to enter the correct values in the AppWizard
Steps to create the DaoEnrol application. Many of the Steps contain choices that you will not
use to create the starter files for DaoEnrol. For more information on the various options that
appear in these Steps, see Chapter 1, "Creating Applications Using AppWizard," in the Visual
C++ User's Guide.

~ To create the tutorial database application

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace.

The New Workspace dialog box appears.

3 In the Project N an:e box, type D a 0 E n r 0 1 .

AppWizard creates a project directory with this name under the main (root)
directory specified in the Location box.

4 In the Type list box, make sure MFC App Wizard (exe) is specified.

5 If necessary, use the Location box to specify a different root directory for the
DaoEnrol project files.

Depending on the directory you last worked in, you may want to change where the
Location box currently points. You can use the Browse button to navigate to an
existing directory, or type a directory name directly into the Location box.
AppWizard creates this directory if it doesn't exist.

6 If any check boxes other than Win32 appear in the Platforms box, clear them.

7 Click Create.

AppWizard creates the project directory, and MFC's AppWizard-Step 1 appears.
Click the Single Document Interface radio button.

S Click Next to continue to Step 2.

This is the App Wizard database options Step.

9 In AppWizard-Step 2 (the database options page):

• Select the "Database view without file support" option.

This enables the Data Source button.

• Click the Data Source button.

The Database Options dialog box appears.

• Click the radio button to select the DAO option. click the browse button (...) to
open the Open dialog. Navigate to and select the Microsoft Access file
STDREG32.MDB, then click OK.

Chapter 34 Data Access Objects (DAO) Tutorial

• App Wizard uses Dynaset .as the default recordset type. The check boxes for
Dirty Fields and Bind All Columns are also checked by default. click OK. This
returns you to AppWizard-Step 2. The Select Database Tables dialog box
appears.

• Select the table name Section, and click OK.

10 Click Next to proceed with the rest of the AppWizard Steps, and click Next in
AppWizard for Steps 3, 4 and 5 to accept the default options.

In the AppWizard-Step 6 dialog box, you can check and, if necessary, modify the
default names that AppWizard creates for your program's classes and files.

Note By default, AppWizard bases the names of classes on the project name you supply.
This naming is probably fine if your application has only one recordsetlrecord view pair. If
your application has multiple recordsets and record views, it's a good idea to change the
name of the first recordsetlrecord view pair created by AppWizard so the naming better
reflects the name of the table in the data source. For DaoEnrol, you'll modify two class
names and their related header and implementation file names, even though the tutorial
uses only one recordsetlrecord view pair.

11 In AppWizard-Step 6, make the following changes to class names:

• Select the class CD a a En r olD 0 c, and change the header file name to .
DENRLDOC.H. Change the implementation file name to DENRLDOC.CPP.

• Select the class CDaoEnrol Vi ew, and change its name to CSecti onForm.
Change the header filename to SECTFORM.H. Change the implementation file
name to SECTFORM.CPP.

The base class is CDaoRecordView.

• Select the class CDaoEnrol Set, and change its name to CSecti onSet.
Change the header filename to SECTSET.H. Change the implementation file
name to SECTSET.CPP.

The base class is CDaoRecordset. The edit item is disabled to show that you
can't change it.

12 Choose Finish.

The New Project Information dialog box appears, summarizing the settings and
features App Wizard will generate for you when it creates your project.

You might want to take a moment to examine the application type, classes, and
features that App Wizard automatically provides.

13 Click OK in the New Project Information dialog box.

App Wizard creates all necessary files, and opens the project.

407

Tutorials

Use Class View to view the classes that AppWizard just created. The next section,
"Examining the DAOEnrol Step 1 Classes," describes this in more detail.

Examining the DaoEnrol Step 1 Classes

408

Once App Wizard creates the DaoEnrol project, you can use Class View to see a
graphical representation of the classes and any default member functions App Wizard
created. You can also use ClassWizard to view member variable bindings that
App Wizard specifies for you.

The CSectionSet Recordset Class (DAO)
The following procedure describes how to view the new recordset class,
CSect; onSet. After examining CSect; onSet, you'll use the text editor to examine
the source files for classes CSect; on Fo rm and CDaoEn ro 1 Doc.

~ To examine the new recordset class

1 In Class View, expand the DaoEnrol folder.

Notice the rich set of classes AppWizard created for you automatically to support
the DaoEnrol application.

2 From the list of classes, choose CSect; onSet.

Class View displays all the member variables that App Wizard created, including a
variable for each of the Section table's columns. You can use ClassWizard to view
how AppWizard has bound the Section table's columns to these member variables.

3 From the View menu, choose Class Wizard.

4 Choose the Member Variables tab.

S In the Class Name box, select CSectionSet.

What you see in this tab corresponds to the variables displayed in Class View.
AppWizard has bound all of the table's columns to member variables of the
CSect; onSet class. These member variables are called "field data members."
AppWizard names the data members automatically, based on the column names
from the data source. App Wizard also assigns the correct C++ or class library data
type to the data members, based on the column type. In this example, all of the
columns are text columns, mapped to type CString, except the Capacity column,
which is a short.

6 Once you've finished examining the CSect; onSet recordset class, click Cancel
to exit Class Wizard.

Figure 34.3 shows the ClassWizard Column Names list.

Chapter 34 Data Access Objects (DAO) Tutorial

Figure 34.3 Table Columns Mapped to Recordset Data Members

: froiect:

I p;9oEnrol ir I CSectionSet

;: .' 0 :\ ... \Enroll\SectionSet.h. D:\ .. \Enroll\SectionSet.cPfl

Type Membel

~----'~~~~C~S~trin~g~~~m~_~~~~~~~~~~i ·~~~~~I
CString mJnstructoriD
CString m_RoomNo
CString m_Schedule
CString m_SectionNo

.: Description: binding short wi(h range validation [FOREIGN VARIABLE]

If you don't want all of a table's columns bound to your recordset, you can delete the
recordset field data members for those columns you don't want by selecting the data
member and clicking the Delete Variable button. For the tutorial, you will need them
all.

Caution Don't delete any fields that are part of the table's primary key (in this case, the
SectionNo and CourselD fields).

To change the name of a field data member, delete the member and add it again with
the new name. For more information, see "Class Wizard: Binding Recordset Fields to
Table Columns" in Programming with MFC.

In the next procedure, you'll examine the CSect ion Form record view class from
inside the text editor.

The CSectionForm Record View Class (CAO)
As stated earlier, C Sec t ion For m is derived from CDaoRecordView, which is one of
the MFC record view classes. A record view is a specialized class that uses controls
laid out in a dialog template resource to view and/or edit the fields of a recordset in a
dialog-like form. A CDaoRecordView object is associated with both (a) a recordset
object and (b) a dialog template resource. The dialog template resource has an ID of
the form IDD_XXX_FORM, where XXX is based on the project name.

409

Tutorials

410

CDaoRecordView derives its behavior from class CFormView. CDaoRecordView
supports navigation through records, one record at a time, using commands in the
associated CDaoRecordset object. When you update the value in a control on the
form and navigate to another record, the corresponding recordset field is
automatically updated. For more information, see the article "Record Views" in
Programming with MFC.

~ To examine the source code for the record view class

• Use Class View to jump to the 0 n I nit i a 1 Up d ate member function of class
CSecti onForm.

SECTFORM.CPP opens inside the text editor, with your cursor just before the
On I ni t i a 1 Update member function:

void CSectionForm::OnlnitialUpdate()
{

}

m_pSet - &GetDocument()->m_sectionSet;
CDaoRecordView::OnlnitialUpdate();

The base class framework function CDaoRecordView::OnlnitiaIUpdate opens
the database if it is not already open, then opens the recordset, and initializes the
form by calling CFormView::OnlnitiaIUpdate.

For now, the "form" represented by class C Sec t ion For m is empty of controls. Later,
in "Customizing the Dialog Template for the DaoEnrol Section Form," you'll use the
dialog editor to design the form and to map controls on the form to the recordset.

The CDaoEnrolDoc Document Class
In ClassView, you can see that AppWizard created a class, CDaoEnrol Doc, derived
from CDocument.

~ To view the document class

• In Class View, double-click the icon for class CD a 0 E n r olD 0 c.

This opens the file DENRLDOC.H in the text editor, placing the insertion point
beside the CD a 0 En r olD 0 c class declaration.

What is the document's role in a database application? In most other applications, the
document stores data and serializes it to a file on disk. Often the application reads the
whole file into memory at once and writes it back to disk as a whole. In a database
application, however, the data is stored in the database, and the user usually views the
data as records. Such an application doesn't need a file.

A document in a database application, then, isn't normally used for its serialization
support. So why does DaoEnrol have a document class?

The following code, at the beginning of DENRLDOC.H, reveals that the role of the
document class in DaoEnrol is to own the recordset.

Chapter 34 Data Access Objects (DAO) Tutorial

class CDaoEnrolDoc public CDocument
{

} :

II Attributes
public:

CSectionSet m_sectionSet:

The recordset object, m_s e c t ion Set, is embedded in the document object.
Therefore, the recordset object is automatically constructed when the document object
is constructed, and automatically deleted when the document object is deleted.

The document class can own any number of recordset objects in this way. For
example, Step 4 of DaoEnrol adds a second form and corresponding recordset; the
document embeds this second recordset.

In a sense, then, the document class is a proxy for the database. This approach isn't
strictly necessary, but if you (or App Wizard) design your database application to use
the document class this way, you can better take advantage of the framework's
document/view architecture. For example, if you have multiple views (forms)
simultaneously showing some of the contents of the database, you can take advantage
of the CDocument::UpdateAllViews mechanism to conveniently notify all views
about an update that might have been initiated in one of the views.

If you look at the menu resource that App Wizard created when you chose the option
"Database view without file support," you'll see that there are no New, Open, Save, or
Save As commands on the File menu. The File menu has only the Print, Print
Preview, Print Setup, and Exit commands. If you had chosen "Database view with file
support," AppWizard would have supplied the missing File menu commands.

~ To view the DaoEnrol menu resource

1 From the Resource View, expand the DaoEnrol folder.

This displays the resource browser, which shows the resources associated with a
project.

2 In the resource browser, expand the Menu folder.

3 Double-click IDR_MAINFRAME.

The Menu Editor opens, displaying the default menu that AppWizard created for
the DaoEnrol application.

4 Click the File menu item to view its structure. Notice the absence of New, Open,
Save, and Save As.

5 Close the Menu Editor when you're finished.

411

Tutorials

Note If you choose the option "Database view with file support" in AppWizard, the document
class plays two roles. First, it serves as a proxy for the database. Second, it represents the file
that is opened and saved via the New, Open, Save, and Save As commands on the File menu.
This file might be used for a variety of purposes; for ideas, see "MFC: Using Database Classes
With Documents and Views" and "Serialization: Serialization vs. Database Input/Output" in
Programming with MFG.

For more information about documents and views, see Chapter 3, "Working with
Frame Windows, Documents and Views," and Chapter 4, "Working with Dialog
Boxes, Controls, and Control Bars" in Programming with MFC.

Customizing the Dialog Template for the
DaoEnrol Section Form

412

Along with the classes, AppWizard creates a dialog template resource named
I DD_DAOENRO L_FORM, which the CDaoRecordView-derived class, CSect i on Form,
uses to display its form controls. Because CDaoRecordView is derived from
CFormView, a record view's client area is laid out by a dialog template resource.
The layout of the form is up to you. App Wizard places one static text control on the
dialog template resource, labeled "TODO: Place form controls on this dialog."

In the following procedure, you'll replace this text with controls that correspond to
columns in the table (via the field data members of the recordset).

~ To customize DaoEnrol's form

1 In the Resource View, double-click the DaoEnrol folder.

2 Expand the Dialog folder.

3 Double-click IDD_DAOENROL_FORM.

The dialog editor opens and displays the dialog box with the corresponding ID.

For more information about the dialog editor, see Chapter 6, "Using the Dialog
Editor," in the Visual c++ User's Guide.

4 Select, and then delete the static control that says "TO DO: Place fmID controls on
this dialog."

5 Design DaoEnrol's Section form to resemble Figure 34.4, using static controls and
edit controls.

Tip Press ALT +ENTER to display the Properties window, and then pin it down so it stays
open while you add and edit the dialog box controls.

Resize the dialog box as needed. You may want to add the controls in pairs, for
example: static text control, then the corresponding edit control, and so on.

Chapter 34 Data Access Objects (DAO) Tutorial

6 For each edit control, use the ID box in the Properties window to specify-an ID
based on the table column names (for example, I DC_COURSE). This is only a
convention, but it is used throughout the tutorial.

Note The "Edit" caption that appears in each edit control is not visible to the user' at run
time, so you needn't worry about deleting it. To view the dialog box as it will appear at run
time, press CTRL+ T to enter test mode for the dialog box. Press ESC to cancel test mode.

7 Make the Course and Section edit controls read-only. To do so, select the Styles
page in the Properties window and set the Read-Only check box. (The other edit
controls are updatable.)

According to a common rule in the user interface design of database forms, the
user shouldn't be able to update these key fields. If users want to change a course
number or section of a Section record, they must delete the old Section record and
add a new one to avoid possibly violating the referential integrity of the database.
DaoEnrol Step 3 implements Add and Delete functionality.

8 Save the DaoEnrol Resources (DAOENROL.RC).

It's a good idea to periodically back up your work.

Figure 34.4 The Layout of OaoEnrol's Section Form

EJ-··a Enroll resources
~···CJ Accelerator
~··a Dialog

i····~ IDD_ABOUTBOX
, L .. ~IIDD DAOENROL
~···CJ Icon
~··CJ Menu
~··CJ String Table
m·· CJ T oolbar
m··CJ Version

If you did not add the static text and corresponding edit controls in order, one after
the other, you need to change the tab order. You can easily check the current tab order
and change it if necessary.

413

Tutorials

~ To view or change the tab order of controls

1 With the dialog resource open, from the Layout menu choose Tab Order.

You'll see numbers depicting the current tab order of the controls.

2 Specify the tab order you want by clicking each control in that order.

As you click, you'll see the ilUmbering change to reflect your choices.

For DaoEnol, specify a tab order such that each edit control is preceded in the tab
order by the static text control that describes it. By specifying this tab order, you
enable ClassWizard to derive a name for the edit control when you bind it to a data
member, as you'll do in the next section.

Binding DaoEnrol's Controls to Recordset
Fields

414

With the form designed, it's time to indicate which edit controls map to which table
columns-or, more precisely, which controls map to which recordset field data
members. To perform this task, you use ClassWizard's "foreign object" mechanism.
(For details about foreign objects, see the article "ClassWizard: Foreign Objects" in
Programming with MFC.)

Normally, you use ClassWizard to bind controls in a dialog box or form to member
variables of your CDialog- or CForm View-derived class. In the case of
CDaoRecordView, though, you bind the form's controls not to data members of the
record view class but to data members of the recordset class associated with the
record view.

Your CDaoRecordView-derived class-CSecti onForm in this case-has a data
member called m_pSet. You can view m_pSet in the ClassView of CSect i on Form.
This data member is a p()inter to C Sec t ion Set, DaoEnrol' s recordset class. Recall
that you viewed this recordset class in the Member Variables tab of ClassWizard (see
Figure 34.3).

The control bindings go through m_pSet to the corresponding field data members of
CSect i onSet. For example, in the following procedure, you will bind the Course
edit control to:

~ To bind a form control to a recordset data member

1 If necessary, choose IDD_DAOENROL_FORM from the resource browser to open
the dialog box inside the dialog editor.

For more information about the dialog editor, see Chapter 6 in the Visual c++
User's Guide.

Chapter 34 Data Access Objects (DAO) Tutorial

2 In the dialog editor window, hold down the CTRL key and double-click the Course
edit control.

ClassWizard's Add Member Variable dialog box appears, with a proposed field
name selected for you in the Member Variable Name box. Class Wizard chooses
this name based on the caption of a static text control that falls previous to the edit
control in the tab order.

For example, for I DC_COURSE, the control's caption is "Course," and the Member
Variable Name box should display:

m_pSet->m_CourseID

3 Click OK in the Add Member Variable dialog box to accept the name.

4 Repeat steps 2 and 3 for each of the other edit controls on the form.

It isn't necessary to create mappings for the static text controls.

5 Save your work.

Note Using CTRL+double-click in the dialog editor is a ClassWizard shortcut for mapping form
controls to members of the associated dialog box, form view, or record view class. Use it on a
pushbutton to create a command handler function for the button. Use it on other controls to
create a class member variable.

You can view the complete mappings for class CSecti onForm in the ClassWizard
Member Variables tab. For example, where I DC_COU RS E appears in the Control IDs
column, you'll see - > m_ Co U r s e I D in the corresponding Member column.

Build and Run DaoEnrol Step 1
Build and run DaoEnrol Step 1. For information on building, see "Build the Starter
Application," in Chapter 3.

When the C Sec t ion Set recordset opens, it selects records from the Section table in
the Student Registration database. The first record becomes the "current record" in
the recordset. DaoEnrol's database form displays the controls you designed, now
filled with data from the current record.

Here are some things to try:

• Take a look at the Record menu, which has First Record, Previous Record, Next
Record, and Last Record commands. (The toolbar has buttons that correspond to
the menu commands.) Try using the commands to scroll through the records in the
recordset.

• Try updating some of the fields. The new values are accepted into the database
when you move to another record. As mentioned earlier, the key fields Course and
Section are read-only.

415

Tutorials

Important You must have write access to the database in order to update records. You
can use File Manager to view the database properties and, if necessary, clear the Read
Only checkbox.

When you finish, exit the program.

This completes Step 1 of the DaoEnrol. To continue with this tutorial, use the
instructions in Chapters 32 and 33 to complete the application. See "DaoEnrol
Step 2" and "DaoEnrol Step 3" for more information.

Completing the DaoEnrol Tutorial
Most of the procedures you follow to create the Enroll and DaoEnrol applications are
identical. Some of the implementation details of DAO, however, require substitutions
for some of the procedures you use in Chapters 32 and 33 (Steps 2 and 3 of Enroll).
The procedures you use instead are provided in "DaoEnrol Step 2" and "DaoEnrol
Step 3." DaoEnrol Step 4 is the DAOENROL sample.

DaoEnrol Step 2

416

Chapter 32, "Using a Second Recordset," continues both the DaoEnrol and Enroll
tutorials by showing you how to add a second recordset and use it to fill a combo box
control on the form. Follow the sections in Chapter 32 and the substitutions listed
below to complete Step 2 of DaoEnrol.

In Chapter 32:

• "Using a Second Recordset"

• "About Step 2"

• "Changing the Course Control to a Combo Box"

• "Binding the Combo Box Control to a Recordset Field and a CComboBox
Variable"

Next, in Chapter 34:

• "Creating a Recordset for the Course Table in DaoEnrol"

The steps for selecting a data source are different for a DAO-based database
application.

• "Embedding the Recordset Object in the Document Object in DaoEnrol"

The names of files you use differ in DaoEnrol.

• "Filling the Combo Boxes in DaoEnrol"

A substitute code block for DaoEnrol is provided because the DAO database
classes handle parameterizing a query differently than the ODBC database classes.

Chapter 34 Data Access Objects (DAO) Tutorial

• "Filtering and Parameterizing the Recordset in DaoEnrol"

This section does not add code to the tutorial, but provides details on how the
DAO database classes handle parameterized queries.

• "Parameterizing the Filter in DaoEnrol"

Discussion of how the DAO database classes handle parameters.

Finally, finish in Chapter 32:

• "Reusing a Database Object Opened by Another Recordset"

• "Sorting the Recordset"

• "Requerying the CSectionSet Recordset"

Note The figures in Chapter 32 show "Enroll" in the title bar of the mainframe window. Your
application will show "DaoEnrol". Remember to substitute CDaoRecordset for CRecordset,
CDaoRecordView for CRecordView, and so on.

Creating a Recordset for the Course Table in DaoEnrol
Note Before starting this section, you should have already completed the instructions in
Chapter 32 for "Using a Second Recordset" through "Binding the Combo Box Control to a
Recordset Field and a CComboBox Variable."

DaoEnrol already has one recordset, for the Section table, which fills the controls on
the C Sec t ion For m record view with information about a single class section of the
currently selected course name. Now you'll add a second recordset, for the Course
table, used to fill the combo box control with a list of all available course names.

~ To create a new recordset class

1 From the View menu, choose Class Wizard.

2 Click the Add Class menu button, and from the menu select New.

This opens the Create New Class dialog.

3 In the Name box under Class Information, type CCourseSet.

4 From the Base Class drop-list, select CDaoRecordset.

5 Click the Change push button in the File group box, shorten the filenames to
COURSESE.H and COURSESE.CPP, and click OK.

6 Clear the Add to Component Gallery checkbox.

For more information about this option, see "Using Component Gallery" in the
Visual C++ User's Guide.

7 Click Create.

This opens the Database Options dialog box.

417

Tutorials

~ To connect the recordset class to the Course table

1 Click the browse button [... J next to the DAO DataSource option.

This displays the Open dialog box.

2 Navigate to the STDREG32.MDB file and select it. Click OK to return to the
Database Options dialog box, then click OK again.

The Select DatabaseTables dialog box opens.

3 Select the table name "Course," and click OK.

This connects the table name to class C C 0 u r s e Set and returns you to the
ClassWizard Member Variables tab. The Class Name box shows CCou rseSet,
and three names are listed in the Column Names box. Table 34.2 shows the
column names, their data members, and their data types.

4 Click OK to close ClassWizard.

Note On the Member Variables tab, you can see that all of the table's columns are already
assigned to field member variables. You can use ClassWizard to delete those variables if you
don't need to access or modify the columns-but be careful not to delete a field member
variable for a column that is part of the table's primary key.

Table 34.2 CCourseSet Data Members

Column name

CourseID

CourseTitle

Hours

Type

CString

CString

short

Data member

m_CourseID

m_CourseTitle

m_Hours

For more information about using ClassWizard to create recordset classes, see the
article "ClassWizard: Creating a Recordset Class" in Programming with MFC.

Embedding the Recordset Object in the Document
Object in DaoEnrol

418

In DaoEnrol Step 1, AppWizard embedded the CSect i onSet object in the
document. In this step, you'll do the same for the second recordset object-an object
of the C C 0 u r s e Set class that you created earlier with Class Wizard.

~ To embed the recordset in the document

1 From File View, open the Dependencies folder and double-click on the file
DENRLDOC.H to open it.

2 Declare an embedded CCourseSet object by adding the following line to the
public Attributes section, just beneath the C Sec t ion Set declaration:

CCourseSet m_courseSet;

Chapter 34 Data Access Objects (DAO) Tutorial

3 Similarly, open files DENRLDOC.CPP, DAOENROL.CPP, and SECTFORM.CPP,
and add a #include directive for "COURSESE.H" before the existing #include
directive for "DENRLDOC.H", as shown in the following line:

1F inc 1 u de" C 0 u r s e S e . h "

4 Save DENRLDOC.H and the .CPP files.

The document's m_courseSet member is referred to in the implementation of
On I nit i a 1 Update that you'll complete later.

Filling the Combo Box in DaoEnrol
A good place to fill the combo box with a list of course names is the CSect i on Form
override of CDaoRecordView's OnlnitialUpdate member function. As part of its
own initialization, the form fills the combo box. The overall logic is as follows:

1. Construct and open a C C 0 u r s e Set recordset based on the Course table.

2. Remove any current entries in the combo box.

3. For each course name in CCourseSet, add the CourseID to the combo box.

4. Set the selection to the first course name (as sorted) in the combo box.

The code in the following procedure fills the combo box and also filters,
parameterizes, and sorts the C Sec t ion Set recordset. Filtering, parameterization,
and sorting are explained in sections that follow.

~ To fill the combo box

1 From the Window menu, select the file SECTFORM.CPP (this file should still be
open from the previous procedure), or use FileView to find and open the file.

2 Use ClassView or WizardBar to navigate to the implementation of
OnlnitialUpdate.

3 Just after the first line-m_pSet = &GetDocument() ->m_secti onSet:-
add the code below (don't replace any code):

II Fill the combo box with all of the courses
CDaoEnrolDoc* pDoc = GetDocument();
pDoc->m_courseSet.m_strSort = "CourseID";

try
{

pDoc->m_courseSet.Open();

catch(CDaoException* e)
{

AfxMessageBox(e->
m_pErrorlnfo->m_strDescription);

e->Del ete();
return;

419

Tutorials

II Filter. parameterize and sort the
II CSectionSet recordset

m_pSet->m_strFilter =
"CourseID = CourseIDParam";

m_pSet->m_strCourseIDParam =

pDoc->m_courseSet.m_CourseID;
m_pSet->m_strSort = "SectionNo";
m_pSet->m_pDatabase =

pDoc->m_courseSet.m_pDatabase;

You'll add the necessary member declaration in the section "Parameterizing the
Filter in DaoEnrol."

4 Next, after the last line (CDaoRecordVi ew: : On I nit i a 1 Upda te () :), add the
following code:

m_ctlCourseList.ResetContent();
if (pDoc->m_courseSet.IsOpen())
{

while (!pDoc->m_courseSet.IsEOF())
{

m_ctlCourseList.AddString(
pDoc->m_courseSet.m_CourseID);

pDoc->m_courseSet.MoveNext();

m_ctlCourseList.SetCurSel(0);

5 Save your work.

For more information, see the article "Record Views: Filling a List Box from a
Second Recordset" in Programming with MFC.

Filtering and Parameterizing the Recordset in DaoEnrol

420

The Step 1 version of DaoEnrol selects all of the records in the Section table into
CSecti onSet. In Step 2, only the class sections for a specific course name should be
selected. This discussion introduces the concepts of recordset filters and parameters.

Setting Up the Filter in DaoEnrol
Note You've already added the code to filter and parameterize the CSect i onSet recordset
(in On I nit i a 1 Upda te); the code in this section is for illustrative purposes only. Do not add
the code from this section to your source files.

A recordset filter determines what subset of records are selected from a table or query.
To add a filter, you simply set the value of CDaoRecordset::m_strFilter before
calling CDaoRecordset::Open. For example, the following code selects just the class
section records for course MATHIOI:

m_pSet->m_strFilter = "CourseID = 'MATH101"';
m_pSet->Open();

Chapter 34 Data Access Objects (DAO) Tutorial

Since the base class CDaoRecordView::OnlnitiaIUpdate calls
CDaoRecordset::Open, all you need to do to initially select the records for
MATHIOI, for example, is replace the following AppWizard implementation of
OnlnitialUpdate:

void CSectionForm::OnlnitialUpdate()
{

m_pSet - &GetDocument()->m_sectionSet;
CDaoRecordView::OnlnitialUpdate();

with:

void CSectionForm::OnlnitialUpdate()
{

}

m_pSet - &GetDocument()->m_sectionSet;
m_pSet->m_strFilter - "CourseID - 'MATH101 "';
CDaoRecordView::OnlnitialUpdate();

The filter can be any logical expression that is legal for the SQL WHERE clause. For
example, the following is legal:

m_pSet->m_strFilter -
"CourseID - 'MATH101' AND InstructorID - 'ROGERSN"';

As an alternative, you can specify a complete SQL SELECT statement with a
WHERE clause. In that case, you don't use m_strFilter. For more information about
filtering recordsets in the MFC DAO classes, see the article "DAO Queries: Filtering
and Parameterizing Queries" in Programming with MFC.

Examine the 0 n I nit i a 1 Up d ate code you added earlier. It shows the filter for
CSect i onSet in Enroll Step 2.

Parameterizing the Filter in OaoEnrol
DaoEnrol reselects, or "requeries," class section records every time the user selects a
new course name from the combo box. One way to implement this is to close the old
CSect i onSet object and reopen it, supplying a new m_strFilter value before
calling Open. This works, but is somewhat inefficient, because the framework has to
completely reconstruct and run a new SQL SELECT statement. A more efficient way
to requery the same recordset is to "parameterize" the filter-call Requery with a
new filter value and a specific parameter value.

In order to parameterize the filter, you'll perform the following procedures:

• Declare a parameter data member in the recordset's header file.

• Bind the parameter data member to the recordset.

421

Tutorials

422

To implement the Requery with a new filter and a specific parameter value supplied
at run time, you:

• Specify a parameterized filter.

• Supply the run-time parameter value.

The following sections describe these procedures.

~ To declare a parameter data member in the recordset's header file

1 Open the SECTSET.H file.

2 Add the following member variable declaration for m_s t rCa u r s e lOP a ram, just
before the I IOverri des section, after the I I} } AFX_FI E LO line:

CString m_strCourseIDParam:

~ To bind the parameter data member to the recordset

1 Use ClassView to navigate to the CSecti onSet constructor, and initialize the
parameter count variable, m_nParams, which by default is zero. Also initialize
DaoEnrol's single parameter, m_strCou rse I OPa ram.

Place the following two lines of code after the line
m_bCheckCacheForDirtyFields = FALSE;:

m_nParams -= 1:
m_strCourseIDParam - "":

2 Use ClassView or WizardBar to navigate to the OoFi e 1 dExchange member
function definition, and add the following two lines of code to identify
m_s t rCa u r s e lOP a ram as a parameter data member. Add the code at the end of
the function, after the I I} } AFX_F IE LO_MAP line. .

pFX->SetFieldType(CDaoFieldExchange::param):
DFX_Text(pFX. "CourseIDParam".

m_strCourseIDParam):

OaF i e 1 d Ex c han 9 e recognizes two kinds of fields: columns and parameters. The
call to the CDaoFieldExchange member function SetFieldType indicates what
kind of field(s) follow in the DFX function calls: In this example, there is one
parameter: m_strCou rse I OPa ram.

The name of the column for the parameter in the DFX_Text call
"CourseIDParam" - is arbitrary; you can provide any name you want.

3 Save your work.

Note No code is added during the next two procedures; the code already exists in the
previous code block.

Chapter 34 Data Access Objects (DAO) Tutorial

~ To specify a parameterized filter

• Before the call to the base class function CDaoRecordset::Open, which is called
by CDaoRecordView::OnlnitiaIUpdate, specify the parameterized filter, as
shown in this line (which you've already added):

m_pSet->m_strFilter .. "CourseID ... CourseIDParam";

Course I 0 is a column (field) name, and CourseI OPa ram is a named parameter
associated with the column. Its value will be substituted at run time. DAO parameters
are always named, rather than positional, as in most ODBC code. If you have more
than one parameter in m_strFilter, such as:

m_pSet->m_strFilter "" "CourseID .. CourseIDParam AND SectionNo - SectionNoParam";

you must make multiple RFX calls after the call to:

pFX->SetFieldType(CDaoFieldExchange::param);

~ To supply the run-time parameter value

• Assign the value to the previously bound parameter data member, as shown in the
following line (which you've already added in the OnlnitialUpdate function).

m_pSet->m_strCourseIDParam -
pDoc->m_courseSet.m_CourseID;

This sets the parameter value to be the first course record retrieved from the
C C 0 u r s e Set recordset. All parameter values must be assigned before calling
CDaoRecordset::Open (or CDaoRecordView::OnlnitiaIUpdate) or, as you will
see later, before calling CDaoRecordset::Requery.

Note The technique just described for parameterizing a query is not the only approach
available. The MFC DAD classes provide two alternative ways to manage recordsets, including
any parameters you might give them. The approach described here relies on the wizards and
uses the DAD record field exchange (DFX) mechanism to move data between the database
and the recordset and to manage parameters. The alternative approach uses a different
mechanism, called dynamic binding, which is described in the article "DAD Queries: Filtering
and Parameterizing Queries" in Programming with MFG.

Finishing DaoEnrol Step 2
Use the remainder of the instructions in the Enroll tutorial to complete the DaoEnrol
tutorial. Begin with the section titled "Reusing a Database Object Opened by Another
Recordset" in Chapter 32. At the end of Step 2, compile and run the application.

423

Tutorials

DaoEnrol Step 3
In Chapter 33, "Adding and Deleting Records," you will learn how to add and delete
records. Follow the sections in Chapter 33 and the substitutions listed below to
complete Step 2 of DaoEnrol.

In Chapter 33:

• "Adding and Deleting Records"

• "About Step 3"

• "Creating the Step 3 User Interface"

• "Add an Accelerator for the Refresh Command"

• "Create Handlers for Add, Refresh, and Delete"

• "The Basics of Adding, Editing, and Deleting Records"

• "Implementing the Add Command"

Next, in Chapter 34:

• "Updating the Data Source with the Added Record in DaoEnrol"

The steps for updating a data source are different for a DAO-based database
application.

• "Disabling Combo Box Logic in Add Mode in DaoEnrol"

The instructions here are identical, but are provided for your convenience.

• "Implementing the Delete Command in DaoEnrol"

Exception handling differs in the DAO database classes, so an appropriate code
block is provided in this section.

• "Implementing the Refresh Command in DaoEnrol"

The Move operations in CDaoRecordSet are slightly different than those in
CRecordset.

Note The figures in Chapter 33 show "Enroll" in the title bar of the mainframe window. Your
application will show "DaoEnrol". Remember to substitute CDaoRecordset for CRecordset
and CDaoRecordView for CRecordView as appropriate.

Updating the Data Source with the Added Record in
DaoEnrol

424

Note You should have completed the sections "Adding and Deleting Records" through
"Implementing the Add Command" in Chapter 33 before starting this section.

Chapter 34 Data Access Objects (DAO) Tutorial

Add mode is completed when the user moves off the record. DaoEnrol implements
this by overriding the CDaoRecordView::OnMove member function.

~ To implement Add functionality in the OnMove function override

1 With SECTFORM.CPP open in the text editor, select class CSectionForm in the
WizardBar Object IDs drop-list.

2 In the Messages drop-list, select OnMove, and choose Yes when prompted to
create a handler.

3 Fill in the skeleton 0 n M 0 v e function with the following code:

if (m_bAddMode)
{

}

else

if (!UpdateData(»
return FALSE:

try
{

m_pSet->Update():

catch(CDaoException* e)
{

AfxMessageBox(e->
m_pErrorlnfo->m_strDescription):

e->Delete():

m_pSet->Requery():
UpdateData(FALSE):
m_ctlSection.SetReadOnly(TRUE):
m_bAddMode - FALSE:
return TRUE:

AfxMessageBox(e->
m_pErrorlnfo->m_strDescription):

return FALSE:

Error handling in the DAO database classes differs from that of the ODBC database
classes. The implementation of else in this code block requires a message box with
error information to complete the if/else control structure.

In its default CDaoRecordView implementation, OnMove moves to the next,
previous, first, or last record. If the application has changed the recordset field data
members for the current record before the move, the framework updates the data
source before moving to another record.

Normally, the Move commands behave as you might expect: MoveNext moves to the
next record, and so on. But as a consequence of the decision to Requery during the
Add operation, when the user chooses any move command when adding a record,

425

Tutorials

DaoEnrol always effectively moves to the first record. That's because requerying the
recordset automatically sets the recordset to the first record.

Disabling Combo Box Logic in Add Mode in DaoEnrol
Step 2 implemented a handler for selecting a course in the combo box. The handler
requeried the parameterized CSect i onSet for the newly selected course. In Step 3,
the combo box takes on the additional duty of allowing the user to specify the course
for a new section record being added. During add mode, you don't want to requery
the recordset when the user selects a course from the combo box. Therefore, you need
to put the requery logic inside an if clause that is executed only if add mode isn't in
effect.

~ To disable normal combo box logic while in add mode

1 Use Class View to jump to the 0 n S e 1 end 0 k Co u r s eLi s t handler in class
CS£::cti onForm.

2 Place an if block around the requery code in the OnSel endokCourseL i st
handler, so the handler now appears as follows:

void CSectionForm::OnSelendokCourselist()
{

if (!m_pSet->IsOpen())
return:

m_ctlCourseList.GetLBText(m_ctlCourseList.GetCurSel().
m_pSet->m_strCourseIDParam):

if (!m_bAddMode)
{

m_pSet->Requery():
if (m_pSet->IsEOF(»
{

m_pSet->SetFieldNull(&(m_pSet->m_CourseID). FALSE):
m_pSet->m_CourseID - m_pSet->m_strCourseIDParam:

}

UpdateData(FALSE):

Implementing the Delete Command in DaoEnrol

426

In response to a Delete command, the record view deletes the current record by
calling the De 1 ete member function of its associated recordset.

~ To implement the Delete command

1 Use ClassView to jump to the OnRecordDel ete skeleton function in class
CSecti onForm.

Chapter 34 Data Access Objects (DAO) Tutorial

2 Implement the handler with the following code:

try
{

m_pSet->Delete();

catch(CDaoException* e)
{

}

AfxMessageBox(e->
m_pErrorInfo->m_strDescription);

e->Delete();

II Move to the next record after the one just deleted
m_pSet->MoveNext();
II If we moved off the end of file, move back to last record
if (m_pSet->IsEOF(»

m_pSet->MoveLast();
II If the recordset is now empty, clear the fields left over
II from the deleted record
if (m_pSet->IsBOF(»

m_pSet->SetFieldNull(NULL);
UpdateData(FALSE);

Catch any exceptions thrown by the recordset's De 1 ete function so that errors are
reported to the user. The CDaoException data member ffi_pErrorInfo retrieves
fairly user-friendly error messages prepared by the underlying DAOException object.

For DaoEnrol, the decision was made to move to the record following the deleted
record. You could move to the previous record after a delete operation or anywhere
else as long as you, or the user, moves off the deleted record.

Implementing the Refresh Command in DaoEnrol
The Refresh command cancels add mode, if the user had previously chosen Add, or it
discards any changes the user may have made on the form for the current record. In
the first case, DaoEnrol cancels add mode by calling:

CDaoRecordset::Move(0); .

When you call AddNew to begin the add operation, the framework stores a copy of
the current record's fields before allowing the user to enter new values in the record
view's controls. Calling Move as shown here "refreshes" the current record - and
effectively cancels the add operation. It restores the record that was current before
add mode began. This also works if you called Edit instead of AddNew.

When the user cancels add mode, DaoEnrol makes the Section control read-only
again, for reasons explained earlier.

427

Tutorials

~ To implement the Refresh command

1 Use ClassView to jump to the OnRecordRefresh skeleton handler in class
CSecti onForm.

2 Implement the handler function with the following code:

if (m_bAddMode)
{

}

m_pSet->CancelUpdate();
m_pSet->Move(0);
m_ctlSection.SetReadOnly(TRUE);
m_bAddMode = FALSE;

II Copy fields from recordset to form. thus
II overwriting any changes the user may have made
lion the form
UpdateData(FALSE);

You are now ready to build and run Step 3 of DaoEnrol. Try the new Add, Refresh,
and Delete commands. Try forcing the two exceptions handled by DaoEnrol
deleting a section that has Enrollment records, or to adding a duplicate section.

This concludes the DaoEnrol tutorial.

DaoEnrol Step 4: The DAOENROL
Sample

428

The DAOENROL sample is Step 4 of the DaoEnrol tutorial, but this step is not
documented, nor is separate source code provided for each of the DaoEnrol tutorial
steps.

The ENROLL sample, which is Step 4 of the Enroll tutorial, is also not documented,
but the code is very similar to that of DAOENROL. You may find it useful to
compare the source code for the two samples to understand some of the differences in
the implementation of the ODBC and DAO database classes.

PAR T 5

Windows 95 Compliance

Chapter 35 Adding Windows 95 Functionality 431

CHAPTER 35

Adding Windows 95 Functionality

Microsoft Visual C++ 4.0 and the Microsoft Foundation Class Library are designed to
help you write applications for Windows 95. Several of the requirements for the
Windows 95 logo are satisifed automatically by any MFC application built using
Visual C++. Fulfilling the remaining requirements, such as OLE support, requires
knowledge of the specific nature of your application, making it impossible for MFC
to generate a completely Windows 95-logo compliant application automatically.
However, MFC provides classes containing all the generic code needed, so that all
you have to do is add the code specific to your application. This chapter describes the
process of meeting the logo requirements for a sample MFC application.

Note This chapter is not a substitute for the Windows 95 Logo Criteria document. To get a
copy of the Logo Criteria document and related documents, see the section "For More
Information on the Windows 95 Logo."

Summary of the Logo Requirements
There are five basic requirements your application must meet to qualify for the
Windows 95 logo, no matter what type of application it is:

• Win32 executable

Your application must be a Win32 executable using the PE (Portable Executable)
format. This requirement is satisfied automatically, because Visual C++ for the
Intel platform always produces executables in the PE format.

If you have a 16-bit application that you need to port, see "Porting 16-Bit Code to
32-Bit Windows" in Programming Techniques.

• UI and Shell support

Your application must follow the Windows 95 application setup guidelines,
register large and small icons, and use system color and metrics. It's also
recommended that your application provide context menus through the right
mouse button, use the common dialogs and controls, and follow the user-interface

431

Tutorials

432

guidelines set forth in the Windows Inteiface Guidelines for Software Design on
MSDN, in the "SDK" section of the "Product Documentation" category.

The section "Following VI Recommendations" below discusses how to add this
support using MFC.

• Windows NT compatibility

Your application must run successfully on both Windows 95 and Windows NT 3.5
(or greater). If your application uses functionality specific to either operating
system, its behavior must degrade gracefully when run on the other operating
system (that is, an execution error should not result).

Meeting this requirement depends on your use of API functions specific to
Windows 95 or Windows NT. For a list of these APIs, see the paper "Diving into
the Requirements for the Windows 95 Logo" on MSDN, in the "Operating
Systems" category of the "Backgrounders and White Papers" section.

• Long filename support

Your application must be able to accept and store long filenames and display them
in its title bar, in dialogs and controls, and so on.

The MFC library supports the use of long filenames, so you can pass a long
filename to any MFC function taking a filename as a parameter. You should also
use the MFC common dialog class CFileDiaiog when requesting a filename from
the user. Make sure that any filename-handling code of your own can handle
filenames longer than eight characters and filenames containing spaces or other
special characters. For more information on long filenames, see "Supporting Long
Filenames" on MSDN, in the "Programming the Windows 95 Vser Interface"
volume of the "Books and Periodicals" section.

• Plug and Play support

This is recommended, but not required. Your application should respond
appropriately to the WM_DEVICECHANGE, WM_DISPLAYCHANGE, and
WM_POWERBROADCAST messages, which signal changes in peripheral
devices, the display resolution, or the system power status, respectively.

The MFC library responds to the WM_DISPLAYCHANGE message and resizes
windows and toolbars according to the new system metrics. How an application
should respond to the WM_DEVICECHANGE and
WM_POWERBROADCAST messages depends on the specific application; for
an example of the most common response to these messages, see the Plug-and
Play awareness component in the Component Gallery.

Chapter 35 Adding Windows 95 Functionality

There are also three other requirements your application must meet if it is file-based
(that is, if your application's primary purpose is to create, edit, and save files):

• UNC path support

Your application must support Universal Naming Convention (UNC) paths. That
means your application must be able to accept and store paths of the form
"\\server\share\directory" directly, without requiring the user to assign a drive
letter to the server beforehand.

The MFC library supports the use of UNC paths, so you can pass a UNC path to
any MFC function taking a pathname as a parameter. You should also use the
MFC common dialog class CFileDiaiog when requesting a filename from the user.
Make sure that any pathname-handling code that you write can handle double
backslashes instead of a drive letter at the beginning of a path.

• OLE support

Your application must either be an OLE container or an OLE server, or both. In
addition, if it's an OLE container, it must act as a target for drag-and-drop
operations, and if it's an OLE server, it must act as a source for drag-and-drop
operations. It's also recommended (thought not required) that you support OLE
Automation, and provide summary information with your documents.

The section "Adding OLE Support" later in this chapter discusses how to add this
functionality using MFC.

• MAPI support

Your application must include a Send Mail command on the File menu to enable
the user to send the current document as a piece of mail, using MAPI or the
Common Messaging Call (CMC) API.

The section "Adding MAPI Support" later in this chapter discusses how to add
this functionality using MFC.

There are certain additions and exceptions to the previous requirements, depending
on the type of application you're developing; these additions and exceptions are
described in the Logo Criteria document.

The remainder of this chapter describes the changes made to the DRA WCLI sample
application to make it meet the Windows 95 logo requirements, as well as certain
user-interface recommendations; you can use this chapter as a guide for modifying
your own MFC application.

433

Tutorials

Following UI Recommendations
Your Windows 95 application must define both large and small icons. AppWizard
automatically defines default 32x32 and 16x16 icons for both the application and the
document type when generating MFC applications. If you replace the default icons
with your own, remember to replace both the large and small versions. In addition,
you have to register the icon for your document type with the system registry under
the DefaultIcon key. MFC does this with the CWinApp::RegisterShellFileTypes
function; AppWizard inserts a call this function automatically if you specify a three
letter filetype extension for your application's document. You can also register the
icon in your setup application; see "Creating a Setup and an Uninstall Program"
below for more information.

Your Windows 95 application must use the system colors and metrics for its dialogs
to be consistent with the user's settings. The MFC library calls the GetSysColor and
GetSystemMetrics API functions to determine how dialogs and controls should be
displayed. As a result, your MFC application's appearance will automatically reflect
the system colors and metrics, even if the user changes some attribute while the
application is running.

It's also recommended, though not required, that your Windows 95 application use
the Windows common dialogs where applicable. The common dialogs provide a great
deal of functionality in their support of long filenames and UNC pathnames, as
mentioned above. An application that uses the MFC framework automatically uses
the common file and print dialogs, and if you want to use any of the other common
dialogs, you can use the MFC library's wrappers for those dialogs. See Technical
Note 60 and the descriptions of CFileDialog, CPrintDialog, CFindReplaceDialog,
CColorDialog, and CFontDialog in the Class Library Reference.

Using Tabbed Property Pages

434

It's recommended that your Windows 95 application use tabbed property pages where
applicable. Tabbed property pages are useful for dialogs whose purpose is to let the
user modify the attributes of some object on the screen. MFC provides support for
property pages through the classes CPropertySheet and CPropertyPage.

The DRA WCLI sample previously used a dialog box to allow the user to set the fill
mode and the pen size. For consistency with the Windows 95 user-interface
guidelines, DRA WCLI now uses a property page to do so.

You can use the Component Gallery to add a property sheet to your application.
However, for DRA WCLI, the task is not adding a property sheet, but converting an
existing dialog into a property sheet. Depending on your application's needs, you can
use Component Gallery to add property sheets and modify them as needed, or you can
add them manually.

Chapter 35 Adding Windows 95 Functionality

If you're converting an existing dialog into a property page, use the following
procedure:

• From within Visual C++'s dialog editor, do the following:

• Check the Disabled and Titlebar properties for the dialog.

• Choose the Child style and Thin borders.

• Optional: Modify the caption for the dialog. This caption will now appear on
the tab for the property page instead of in the dialog's title bar.

• Change the base class of your dialog class from CDialog to CPropertyPage and
modify the constructor for your dialog class to call CPropertyPage's constructor
in its base-initializer list.

To display the property page, attach it to a CPropertySheet object and call Dol\1odal
on the CPropertySheet object. Here's how DRAWCLI does it, in its implementation
of CDrawObj : : OnOpen:

CPropertySheet sheet("Shape Properties"):
CRectDlg dlg: II derived from CPropertyPage

dlg.m_bNoFill - !m_bBrush:
dlg.m_penSize - m_bPen ? m_logpen.lopnWidth.x 0:
sheet.AddPage(&dlg):

if (sheet.DoModal() !- roOK)
return:

m_bBrush = !dlg.m_bNoFill:
m_bPen - dlg.m_penSize > 0:
if (m_bPen)
{

m_logpen.lopnWidth.x = dlg.m_penSize:
m_logpen.lopnWidth.y - dlg.m_penSize:

The string passed to the constructor for CPropertySheet is used as the title in the
dialog's title bar. Before calling DoModal, the current values are copied into the
property sheet. After DoModal returns, the new values are copied back.

Figure 35.1 shows what DRAWCLI's property page looks like. For more information
on implementing property pages with MFC, see "Property Sheets" in Programming
with MFC and the descriptions of CPropertyPage and CPropertySheet in the Class
Library Reference. For a demonstration of different types of property sheets, see the
PROPDLG sample application in the MFC samples.

435

Tutorials

Figure 35.1 DRAWCU's New Property Sheet

U sing Common Controls

436

It's recommended that your Windows 95 application use the common controls where
applicable. Visual C++'s dialog editor offers the common controls on its control
palette, and MFC provides classes for all the Windows common controls

One place in the DRA WCLI sample where a common control can be used is in the
dialog for specifying the thickness of the drawing pen. DRA WCLI formerly used a
simple edit control in which the user typed the pen thickness; now DRAWCLI adds a
spin control, allowing the user to use the mouse or the arrow keys to increment or
decrement the pen thickness.

You can add a spin control to your application by using the Visual C++ dialog editor;
associate the spin control with an edit control by checking the Auto Buddy and Set
Buddy Integer properties on the control's property page. Next, use the Member
Variables tab of the ClassWizard dialog to add a member variable for the spin control.
This causes ClassWizard to do two things:

o Declare a member of type CSpinButtonCtrl in the dialog class .

• Add a call to DDX_Control in the dialog's DoDataExchange member function,
associating the spin control with the member variable.

You must manually add the statement /Ii ncl ude <afxcmn. h> to your STDAFX.H
file to include MFC's common control support in an existing application. If you
generate a new application 'Yith App Wizard, App Wizard now inserts this statement
into STDAFX.H automatically.

Finally, override the OnlnitDialog member function of the dialog class to initialize
the spin control. Here's what the function looks like in DRAWCLI:

Chapter 35 Adding Windows 95 Functionality

BOOl CRectDlg::OnlnitDialog()
{

CDialog::OnlnitDialog();

m_SpinCtrl.SetRange(0, 100);
m_SpinCtrl.SetBase(10);
m_SpinCtrl.SetPos(1);
return TRUE;

This function sets the initial, minimum, and maximum values for the spin control. It
also sets the spin control to use decimal notation.

For more information on using MFC's common control classes, see "MFC: Windows
95 Support" in Programming with MFC and the descriptions of CAnimateCtrl,
CHeaderCtrl, CHotKeyCtrl, CListCtrl, CProgressCtrl, CSliderCtrl,
CSpinButtonCtrl, CStatusBarCtrl, CTabCtrl, CToolBarCtrl, CToolTipCtrl, and
CTreeCtrl in the Class Library Reference. For a demonstration of various common
controls, see the CMNCTRLS and FIRE sample applications in the MFC samples.

Displaying a Shortcut Menu
It's recommended that your Windows 95 application use the right mouse button for
displaying a shortcut menu, providing easy access to the most commonly used
commands. What commands you offer on your shortcut menu will depend on whether
the menu is invoked for a particular window, a particular object, and so on. See
Windows Interface Guidelines for Software Design on MSDN for guidelines on what
kind of commands you should offer.

You can use Component Gallery to add a shortcut menu that applies to a given view
class in your application. However, DRA WCLI displays the shortcut menu only when
the right button is clicked over a selected object. Depending on your own
application's needs, you can use the shortcut menu offered by Component Gallery as
is, you can make modifications as required, or you can add one manually.

The DRA WCLI sample provides a shortcut menu containing several commands from
the Edit menu.

To add a shortcut menu to your application, first use the Visual C++ menu editor to
create a menu bar without a title, and then define the shortcut menu as the first menu.

To display the shortcut menu, your application needs a handler for the
WM_CONTEXTMENU message. You can use ClassWizard to make the following
changes to your source files:

• Add a declaration for an OnContextMenu member function in the declaration of
your view class.

• Add an ON_ WM_ CONTEXTMENU macro in the message map for your view
class.

• Add a skeletal definition for the OnContextMenu member function.

437

Tutorials

438

You then fill in the definition of OnContextMenu. Here's DRAWCLI's
implementation of CDrawVi ew: : OnContextMenu:

void CDrawView::OnContextMenu(CWnd* l*pWnd*l, CPoint point)
{

II make sure window is active
GetParentFrame()-)ActivateFrame();

CPoint local = point;
ScreenToClient(&local);
ClientToDoc(local);

CDrawObj* pObj;
pObj .,. GetDocument()-)ObjectAt(local);
if (pObj != NULL)
{

if (!IsSelected(pObj))
Select(pObj, FALSE);

UpdateWindow();

CMenu menu;
if (menu.LoadMenu(ID_POPUP_MENU))
{

CMenu* pPopup = menu.GetSubMenu(0);
ASSERT(pPopup != NULL);

pPopup-)TrackPopupMenu(TPM_LEFTALIGN I TPM_RIGHTBUTTON,
point.x, point.y,
AfxGetMainWnd()); II use main window for cmds

DRA WCLI displays a pop-up menu only when the right mouse button is clicked over
an object, so this function first checks whether an object lies where the mouse event
occurred, and if so, the function selects it. (OnContextMenu receives the location of
the mouse event in screen coordinates, not in client coordinates like handlers such as
OnLButtonDown. Accordingly, the function converts the coordinates using
CWnd::ScreenToClient before doing hit-testing.) The function then loads the
ID_POPUP _MENU menu and calls CMenu::GetSubMenu to get its first sub-menu.
Finally the function calls CMenu::TrackPopupMenu on the sub-menu to display it
as a pop-up.

Note that, as long as the pop-up menu commands are duplicates of commands you've
defined elsewhere, there's no need to define any new ON_COMMAND or
ON_UPDATE_COMMAND_UI macros.

You can also support shortcut menus in the Windows 95 shell. A shortcut menu that
offers basic commands such as Delete and Rename is available for all files in the
shell. Some commands, such as Open or Print, are enabled only if there is an
application associated with the file's extension. You can enable these commands for

Chapter 35 Adding Windows 95 Functionality

files created by your MFC application by calling
CWinApp: :RegisterShellFileTypes, passing TRUE as a parameter; the parameter is
needed for shell registration to work properly under Windows 95. (AppWizard inserts
a call to this automatically if you specify a filename extension for your files.) This
function adds entries to the system registry that let the shell invoke your application
to open or print a file. You can also write a shell-extension DLL that customizes the
shortcut menu for your application's files; for more information, see "Context Menu
Handlers" in the Programmer's Guide to Windows 95 on MSDN.

U sing the System Registry
Your Windows 95 application must not store any information in the WIN.INI and
SYSTEM.INI files; instead, use the system registry to store any initialization
information. MFC applications never store information in WIN.INI or SYSTEM.INI.
Instead, they normally use a private .INI file to store information such as the MRU
(most recently used) file list, the position of dockable toolbars, etc. Private .INI files
are permissible for Windows 95 applications (though they are not recommended), as
long as they are stored in the application directory and are deleted· when the
application is uninstalled.

You can make your MFC application compliant by using the
CWinApp::SetRegistryKey function; this function makes your application use the
registry instead of a private .INI file. Call this function from the Initlnstance
member function of your CWinApp-derived class, specifying the name of your
software company (in string form) as the parameter; this creates a subkey in the
registry (under HKEY_CURRENT_USER) with your software company's name.
After this function is called, all the information that your application would normally
write to its .INI file is instead stored in the registry under that key.

Creating a Setup and an Uninstall Program
Your Windows 95 application must be accompanied by a setup program having a
graphical user interface. This program must be named SETUP.EXE so it can be
identified by the AddlRemove Programs applet in the Control Panel. Your application
must also add entries to the system registry specifying the command needed to
uninstall your application. Again, this allows your uninstall program to be identified
by the AddlRemove Programs applet.

A complete discussion of what's involved in writing your own setup and uninstall
programs is beyond the scope of this chapter. For information on the requirements for
setup and uninstall programs, see the article "Windows 95 Application Setup
Guidelines for ISVs" on MSDN, in the "Windows Articles" section of the "Technical
Articles" category.

439

Tutorials

440

However, as a shortcut for developing setup and uninstall programs, Visual C++
includes the SDK Edition of Stirling Software's InstallSHIELD. Using this toolkit,
you can write a script that specifies the steps you want performed during installation;
the InstallSHIELD SETUP application uses this script to install your product. The
DRAWCLI sample includes a setup script for use with InstallSHIELD.

The script for DRAWCLI's setup program installs the executable for DRAWCLI, the
DLLs needed by DRAWCLI, a help file, and some sample files. You can use the
script as a basis for creating your own setup program using InstallSHIELD.

At a minimum, the changes you need to make to the script are as follows:

• Change the size requirements to reflect the sizes of your program files, help files,
and sample files.

• Change the application name.

• Change the version number.

• Change the company name. (This must be consistent with the one you specify in
your call to CWinApp::SetRegistryKey).

• Change the command lines for the program group items.

• Change the filetype extension. (This must be consistent with the extension you
specified in AppWizard; this is used by CWinApp::RegisterSheIlFileTypes).

• Change the filetype name. (This must be consistent with the one generated by
App Wizard for CDocTempiate: :regFileTypeld; this is used by
CWinApp: : RegisterShellFileTypes).

Other changes may be necessary depending on the details of the installation process
for your application.

With InstallSHIELD, you don't have to write a separate script for uninstallation.
InstallSHIELD's uninstall program, UNINST, uses a log file that is created
automatically during the setup process. This log file enables UNINST to reverse the
steps performed during setup.

For more information on using InstallSHIELD, see the InstallSHIELD User's Guide.
For more information on using the system registry, see "Integrating with the System"
in the Windows Inteiface Guidelines for Software Design on MSDN.

For a list of the files that you can redistribute with your application, see "DLLs:
Redistribution" in Programming with MFC or the document REDISTRB.WRI in the
MSDEV\REDIST subdirectory.

Chapter 35 Adding Windows 95 Functionality

Adding OLE Support
The MFC library defines nunierous classes for supporting OLE functionality,
including classes that implement the standard OLE dialog boxes. App Wizard also
provides support for the automated creation of OLE container and OLE server
applications. See the OLE tutorials in Tutorials for information on using MFC and
AppWizard to write OLE applications. The section "Creating an OLE Server"
describes how to make the SCRIBBLE sample an OLE server. The section "Creating
an OLE Container" describes how to write an OLE container, using the
CONTAINER sample as an example.

The previous version of the DRA WCLI sample already had OLE container
functionality implemented, so it was not necessary to add this feature to meet
Windows 95 logo requirements. However, DRA WCLI previously did not have drag
and-drop support; the following section describes the addition of that functionality.

For other examples of OLE containers, see the CONTAINER and OCLIENT sample
applications in the MFC samples. For examples of OLE servers, see the HIERSVR
sample application and Step 7 of the SCRIBBLE tutorial sample in the MFC
samples. MFC Samples are found under Samples in Books Online.

Being a Drop Target
Because DRA WCLI is an OLE container, it needs drop target functionality to meet
the Windows 95 requirements. (Conversely, an OLE server needs drop source
functionality.)

MFC provides support for drop-target functionality through the COleDropTarget
class and certain member functions in the CView class. Being a drop target involves
the following tasks:

• Registering your window as a drop target.

• Checking a COleDataObject object to see if you can accept a drop operation from
it.

• Providing target feedback for the user.

• Scrolling the document when the mouse cursor moves near the border of the
document window.

• Performing a paste operation from a COleDataObject object.

Most of these tasks are application-specific, so MFC can't complete them for you.
However, MFC does provide support for scrolling a document during a drag-and-drop
operation, which is traditionally one of the more difficult tasks involved in being a
drop target. The following sections describe how the other tasks are completed by the
DRA WCLI sample.

441

Tutorials

442

One requirement for being a drop target was already satisfied by the previous version
of DRA WCLI: the ability to perform a paste operation from a COleDataObject
object. The previous version of DRA WCLI allowed OLE embedded objects to be
inserted with the Paste command; the new version of DRA WCLI takes advantage of
this fact by reusing the existing CDrawVi ew: : Pa s t Embedded function. If your
container application doesn't support this use of the Paste command, you should add
that before implementing drop-target functionality. For information on creating
embedded objects with the Paste command, see "Data Objects and Data Sources
(OLE)" and "Clipboard: Copying and Pasting Data" in Programming with MFC.

Registration
In order for DRAWCLI to be informed of drag-and-drop operations, it must register
its windows as drop targets. This requires adding a member variable to CDrawVi ew:

COleDropTarget m_dropTarget;

The COleDropTarget member is used to register the view as a drop target.

A DRAWCLI window should be registered as a drop target as soon as it's created.
Consequently, DRAWCLI needs a handler for the WM_CREATE message, which
requires three modifications to the source files:

• Adding a declaration for an OnCreate member function in the declaration of
CDrawVi ew .

• Adding an ON_WM_CREATE macro in the message map for CDrawVi ew .

• Adding a definition for CDrawVi ew: : OnCreate.

You can use ClassWizard to provide the necessary declarations and provide a skeletal
function definition.

Here's what the implementation of CDrawVi ew: : OnCreate looks like:

int CDrawView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CScrollView::OnCreate(lpCreateStruct) == -1)
return -1;

II register drop target
if(m_dropTarget.Register(this))

return 0;
else

return -1;

This function calls COleDropTarget::Register on the m_d ropTa rget member
variable. This informs the OLE system DLLs that DRAWCLI windows are willing to
accept dragged objects.

The function COleDropTarget: : Revoke is called automatically when the destructor
is called.

Chapter 35 Adding Windows 95 Functionality

Providing Target Feedback
A drop target must provide user feedback, that is, the visual indication to the user of
how the window would respond to a drag-and-drop operation. For an application
such as a word processor, this might consist of a shaded caret indicating where the
dropped object would be inserted. For DRAWCLI, user feedback consists of a focus
rectangle indicating the size and position of the object if it were to be dropped.

DRA WCLI declares some new member variables to manage this user feedback. The
relevant declarations in CDrawVi ew are as follows:

CPoint m_dragPoint:
CSize m_dragSize:
CSize m_dragOffset:
DROPEFFECT m_prevOropEffect:

II current position
II size of dragged object
II offset of focus rect

static ClIPFORMAT m_cfObjectDescriptor:
BOOl m_bOragDataAcceptable:

BOOl GetObjectlnfo(COleDataObject* pDataObject.
CSize* pSize. CSize* pOffset):

Some of the member variables store the size and position of the focus rectangle. The
m_b D rag D a t a A c c e pta b 1 e is a flag indicating whether usable data is available from
the drag-and-drop operation. The GetObj ect I nfo function is a helper function
described below.

Two of the member variables must be initialized. One of them is
m_prevDropEffect, which gets initialized in the CDrawVi ew constructor:

m_prevOropEffect = DROPEFFECT_NONE:

The other one is m_cfObjectDescri ptor; this was declared as a static member,
which means that it must be initialized at file scope, outside of the CDr a wV i ew
constructor:

ClIPFORMAT COrawView::m_cfObjectDescriptor =
(CLI PFORMAT) : : Regi sterCl i pboa rdFormat (_ T("Obj ect Oescri ptor")) :

DRA WCLI registers the string "Object Descriptor" so it can get the handle for the
CF _OBJECTDESCRIPTOR Clipboard format defined by OLE. This handle is used
below in the CDrawVi ew: : GetObj ect I nfo helper function.

Before DRA WCLI can draw this focus rectangle, it needs to know the size of the
object. This is the purpose of the GetObj ect In f 0 helper function; this function
queries a data object for the CF _OBJECTDESCRIPTOR clipboard format:

BOOl COrawView::GetObjectlnfo(COleOataObject* pDataObject.
CSize* pSize. CSize* pOffset)

ASSERT(pSize != NUll);

II get object descriptor data
HGlOBAl hObjDesc =

pDataObject-)GetGlobalOata(m_cfObjectDescriptor):

443

Tutorials

444

}

if (hObjDesc -= NULL)
{

}

if (pOffset 1- NULL)
*pOffset - CSize(0. 0): II fill in defaults instead

*pSize - CSize(0. 0):
return FALSE:

ASSERT(hObjDesc 1- NULL):

II else. got CF_OBJECTDESCRIPTOR. Lock it down and extract size.
LPOBJECTDESCRIPTOR pObjDesc =

(LPOBJECTDESCRIPTOR)GlobalLock(hObjDesc):
ASSERT(pObjDesc 1- NULL):
pSize->cx - (int)pObjDesc->sizel .cx:
pSize->cy - (int)pObjDesc->sizel.cy:
if (pOffset 1- NULL)
{

pOffset->cx - (int)pObjDesc->pointl.x:
pOffset->cy - (int)pObjDesc->pointl.y:

}

GlobalUnlock(hObjDesc):
GlobalFree(hObjDesc):

II successfully retrieved pSize & pOffset info
return TRUE:

This function calls COleDataObject::GetGlobalData and acquires the
CF_OBJECTDESCRIPTOR data in a block of global memory. The function locks
the memory down, reads the size attributes, and then unlocks and frees the block of
memory. This function is used by OnDragEnter in the code samples in "Handling a
Drag-and-Drop Operation," following.

Handling a Drag-and-Drop Operation
The actual work of handling a drag-and-drop operation is done by overriding four
member functions defined by CView:

virtual BOOL OnDrop(COleDataObject* pDataObject.
DROPEFFECT dropEffect. CPoint point):

virtual DROPEFFECT OnDragEnter(COleDataObject* pDataObject.
DWORD grfKeyState. CPoint point):

virtual DROPEFFECT OnDragOver(COleDataObject* pDataObject.
DWORD grfKeyState. CPoint point):

virtual void OnDragLeave():

These functions are called by the OLE system DLL (via the MFC framework) during
a drag-and-drop operation.

The first function called during an actual drag-and-drop operation is OnDragEnter,
which is called when the mouse first enters the window:

DROPEFFECT CDrawView::OnDragEnter(COleDataObject* pDataObject.
DWORD grfKeyState. CPoint pOint)

Chapter 35 Adding Windows 95 Functionality

{

ASSERT(m_prevDropEffect -- DROPEFFECT_NONE):
m_bDragDataAcceptable - FALSE:
if (!COleClientltem::CanCreateFromData(pDataObject »

return DROPEFFECT_NONE:

GetObjectlnfo(pDataObject, &m_dragSize, &m_dragOffset):
CClientDC dc(NULL):
dC.HIMETRICtoDP(&m_dragSize):
dc.HIMETRICtoDP(&m_dragOffset):

return OnDragOver(pDataObject, grfKeyState, point):

This function first checks whether the COleDataObject provided by the drop source
contains data that DRAWCLI can use. If not, the function sets a flag indicating that
the data is unacceptable, and returns DROPEFFECT_NONE, indicating that a drop
operation would have no effect. On the other hand, if DRAWCLI can use the data,
then the function computes the size and position of the focus rectangle. It does this by
using the Get 0 b j e c tIn f 0 helper function to get the size of the object in the
COleDataObject object.

The next function called during a drag-and-drop operation is OnDragOver, which is
called whenever the mouse moves within the window. This function is responsible for
determining whether the window can accept the drop operation, and if so, for
providing target feedback:

DROP EFFECT CDrawView::OnDragOver(COleDataObject*,
DWORD grfKeyState, CPoint point)

if (m_bDragDataAcceptable -- FALSE)
return DROPEFFECT_NONE:

point -- m_dragOffset: II adjust target rect by cursor offset

II check for point outside logical area
II GetTotalSize() returns the size passed to SetScrollSizes()
CRect rectScroll(CPoint(0, 0), GetTotalSize(»:

CRect rectltem(point,m_dragSize);
rectltem.OffsetRect(GetDeviceScrollPosition(»;

DROPEFFECT de - DROPEFFECT_NONE;
CRect rectTemp:
if (rectTemp.lntersectRect(rectScroll, rectltem»
{

II check for force link
if «grfKeyState & (MK_CONTROL/MK_SHIFT»

(MK_CONTROL/MK_SHIFT»
de - DROPEFFECT_NONE: II we don't support linking

II check for force copy
else if «grfKeyState & MK_CONTROL) -- MK_CONTROL)

de - DROPEFFECT_COPY;

445

Tutorials

446

II check for force move
else if «grfKeyState & MK_ALT) -- MK_ALT)

de - DROPEFFECT_MOVE;
II default -- recommended action is move
else

de - DROPEFFECT_MOVE;

if (point -- m_dragPoint)
return de;

II else, cursor has moved -- need to update the drag feedback
CClientDC dc(this);
if (m_prevDropEffect !- DROPEFFECT_NONE)
{ ,

II erase previous focus rect
dc.DrawFocusRect(CRect(m_dragPoint, m_dragSize»;

m_prevDropEffect - de;
if (m_prevDropEffect !- DROPEFFECT_NONE)
{

m_dragPoint - pOint;
dc.DrawFocusRect(CRect(point, m_dragSize»;

return de;

This function first checks the flag m_b D rag D a t a Ace e pta b 1 e to see if it's necessary
to do any more processing. If so, the function then checks which, if any, keys are
being depressed, determining whether the user wants a link operation, a move, or a
copy. Since DRAWCLI isn't a linking container, this function returns
DROPEFFECT_NONE when a link operation is specified, meaning that the view
won't accept the dragged object. DRAWCLI does accept copy or move operations, so
the function returns DROPEFFECT_COPY and DROPEFFECT_MOVE in those
instances. (The drop source receives these DROPEFFECT values and modifies the
mouse cursor appropriately.) Finally, if the operationis a copy or a move, the function
draws the focus rectangle to indicate where the object would land if it wert~ dropped.

If the mouse leaves the window without having dropped the object, the function that
gets called is OnDragLeave. This function simply performs a little clean-up:

void CDrawView::OnDragLeave()
{

CClientDC dc(this);
if (m_prevDropEffect !- DROPEFFECT_NONE)
{

II erase previous focus rect
dc.DrawFocusRect(CRect(m_dragPoint,m_dragSize»;
m_prevDropEffect = DROPEFFECT_NONE;

Chapter 35 Adding Windows 95 Functionality

If the drag-and-drop operation was one that DRAWCLl was willing to accept, the
function removes the target feedback by erasing the last focus rectangle drawn.

Finally, the function that gets called if the user actually performs the drop is
OnDrop:

BOOL CDrawView::OnDrop(COleDataObject* pDataObject.

{
DROPEFFECT dropEffect. CPoint point)

ASSERT_VALID(this);

II clean up focus rect
OnDragLeave();

II offset point as appropriate for dragging
GetObjectlnfo(pDataObject. &m_dragSize. &m_dragOffset);
CClientDC dc(NULL);
dc.HIMETRICtoDP(&m_dragSize);
dc.HIMETRICtoDP(&m_dragOffset);
point -= m_dragOffset;

II invalidate current selection since it will be deselected
OnUpdate(NULL. HINT_UPDATE_SELECTION. NULL);
m_selection.RemoveAll();
if (m_bDragDataAcceptable)

PasteEmbedded(*pDataObject. point);

II update the document and all views
GetDocument()-)SetModifiedFlag():
GetDocument()-)UpdateAllViews(NULL. 0. NULL);

return TRUE;

This function determines the point at which the dropped object resides, deselects the
currently selected object, and creates an OLE embedded object using the
COleDataObject object provided by the drop source. Note that the
CDrawVi ew: : Paste Embedded function now takes an additional parameter
compared with the previous version of DRAWCLl; this parameter lets the caller
specify the location of a new embedded object, something that is unnecessary for
Paste operations but is useful for drag-and-drop operations.

It would also be possible to make DRA WCLl a drop source, allowing the user to drag
a selection from one of DRA WCLl's windows into another application's. However,
DRAWCLl doesn't offer any common Clipboard formats, nor is DRAWCLl an OLE
server, so there are no applications that could accept a dragged object originating
from DRA WCLl. Consequently, the current version of DRAWCLl would not be a
useful drop source.

For more information on MFC's drag-and-drop support, see "Drag and Drop (OLE)"
in Programming with MFC. For more information about drag-and-drop in general,
see Inside OLE or the OLE documentation on MSDN.

447

Tutorials

Providing Summary Information

448

It's recommended that, as part of its OLE support, your Windows 95 application store
Summary Information with each file. This means offering a Summary Info command
on your File menu, allowing the user to associate a title, keywords, or other attributes
with a document. This also means using the compound file format (by calling
COleDocument::EnableCompoundFile in the constructor for your document class)
and writing these attributes as an OLE property set into a stream named
"\005Summary Information" off the root storage of your document's compound file.
A Windows 95 user can view the Summary Information when examining the
properties of a file from within the Explorer.

MFC does not currently provide classes that manage Summary Information.
However, the DRA WCLI application does include a sample implementation, in the
form of the class C S umm In f 0, which you can use as an example when implementing
your own; this class is used by the document class CDrawDoc. DRAWCLI also
include property pages for displaying and modifying Summary Information; figure
35.2 shows what the interface for using Summary Information looks like.

For more information on OLE property sets in general and Summary Information in
particular, see the article "OLE 2.0 Property Sets Exposed" on MSDN (in the
''Windows Articles" section of the "Technical Articles" category) or the appendix
"OLE Property Sets" in the OLE documentation.

Figure 35.2 DRAWCLI's Summary Information Property Sheet

Chapter 35 Adding Windows 95 Functionality

Adding MAPI Support
Your Windows 95 application must include a Send Mail command on its File menu.
The MFC library supplies an implementation of the Send Mail command in the form
of two member functions of the CDocument class: OnFileSendMail and
OnUpdateFileSendMaiI.

The OnFileSendMail member function saves the current document as an attachment
to a mail message, and then invokes the mail client installed on the user's machine;
the mail client allows the user to address the mail, add text, and then send the
message. The OnUpdateFileSendMail member function enables or disables the
Send Mail command depending on whether MAPI support is present on the user's
machine.

Binding these functions to a menu item in DRA WCLI involves the following
modifications to the source files:

• Adding a menu item to the File menu with the command ID
ID_FILE_SEND_MAIL .

• Adding the following macros to the message map for CDrawDoc:

ON_COMMAND(ID_FILE_SEND_MAIL. OnFileSendMail)
ON_UPDATE_COMMAND_UI(ID_FILE_SEND_MAIL. OnUpdateFileSendMail)

These macros go outside of the special / / {{AFX delimeter comments because
they're entered manually instead of through ClassWizard.

There's no need to override these functions; their definitions in the base class are
invoked if the derived class doesn't provide new ones. For CDrawDoc, the
COleDocument definitions of these functions get invoked. For a non-OLE document
class, the CDocument definitions of these functions get invoked.

If you're creating a new MFC application, you can have AppWizard add the entries
listed above by checking the Add MAPI Support checkbox.

For more information, see the article "MAPI Support" in MFC in Programming with
MFC.

449

Tutorials

For More Information on the
Windows 95 Logo

450

For more information on meeting the Windows 95 logo requirements, see the paper
"Diving into the Requirements for the Windows 95 Logo" on MSDN, in the
"Operating Systems" category of the "Backgrounders and White Papers" section.

There are a few special requirements for utilities and development tools. For details,
please see the document on the Windows 95 Logo Technical Criteria, available in the
locations listed below. In general, these locations will always include the most up-to
date information available on the Windows 95 logo:

• On the Internet use ftp or the World-Wide-Web
(ftp:llftp.microsoft.com/PerOpSyslWin_N ews, http://www.microsoft.com).

• On The Microsoft Network, open Computers and Software, Software Companies,
Microsoft, Windows 95, WinNews.

• On CompuServe®, type GO WINNEWS.

• On ProdigyTM, JUMP WINNEWS.

• On America Online®, use keyword WINNEWS.

• On GEnie™, download files from the WinNews area under the Windows RTC.

You can access the Microsoft Developer Solutions Phone-Fax service by calling (800)
426-9400. Choose option 2 for Developer Solutions, then option 1 for the Faxback
service; or dial (206) 635-2222. You can request a complete index of available
documents. Documents on the Windows Logo are numbered in the 130s range.

You can also get answers to logo-related questions or request a pre-testing kit from
the Windows Logo Department:

by email:

by fax:

by phone:

by mail:

"winlogo@microsoft.com"

(206) 936-7329, Attn: Windows Logo Department

(206) 936-8220

Microsoft Corporation

Attn: Windows Logo Department, Bldg. 20

Redmond, W A 98052-6399

PAR T 6

Appendix

Appendix A Accessibility for People with Disabilities 453

APPENDIX A

Accessibility for People with
Disabilities

Microsoft is committed to making its products and services easier for everyone to use.
This appendix provides information about the following features, products and
services, which make Microsoft Windows, Microsoft Windows NT, and Microsoft
Visual C++ more accessible for people with disabilities:

• Microsoft services for people who are deaf or hard-of-hearing

• Access Packs for either Microsoft Windows or Microsoft Windows NT, a software
utility that makes using Windows or Windows NT easier for people with motion or
hearing disabilities

• Keyboard layouts designed for people who type with one hand or a wand

• Microsoft software documentation on audio cassette, floppy disk, or compact
disc (CD)

• Third-party utilities to enhance accessibility

• Hints for customizing Microsoft Windows or Microsoft Windows NT

• Other products and services for people with disabilities

Note The information in this section applies only to users who purchased Microsoft products
in the United States. If you purchased Windows or Windows NT outside the United States,
your package contains a subsidiary information card listing Microsoft support services
telephone numbers and addresses. You can contact your subsidiary to find out whether the
type of products and services described in this appendix are available in your area.

453

Tutorials

Microsoft Services for People Who Are
Deaf or Hard-of-Hearing

Through a text telephone (TTffDD) service, Microsoft provides people who are deaf
or hard-of-hearing with complete access to Microsoft product and customer services.

You can contact Microsoft Sales Information Center on a text telephone by dialing
(800) 892-5234 between 6:30 A.M. and 5:30 P.M. Pacific time. For technical
assistance in the United States, you can contact Microsoft Support Network on a text
telephone at (206) 635-4948 between 6:00 A.M. and 6:00 P.M. Pacific time, Monday
through Friday, excluding holidays. In Canada, dial (905) 568-9641 between 8:00
A.M. and 8:00 P.M. Eastern time, Monday through Friday, excluding holidays.
Microsoft support services are subject to Microsoft prices, terms, and conditions in
place at the time the service is used.

Access Packs for Microsoft Windows and
Microsoft Windows NT

454

Microsoft distributes Access Packs for Microsoft Windows and Microsoft Windows
NT, which provide people with motion or hearing disabilities better access to
computers running Windows or Windows NT. (If you are running Microsoft
Windows 95, these same Access Pack features are already built in. See online Help
for more information.) Microsoft Windows and Microsoft Windows NT Access Packs
contain several features that:

• Allow single-finger typing of SHIFf, CTRL, and ALT key combinations.

• Ignore accidental keystrokes.

• Adjust the rate at which a character is repeated when you hold down a key, or tum
off character repeating entirely.

• Prevent extra characters if you unintentionally press a key more than once.

• Enable you to control the mouse cursor by using the keyboard.

• Enable you to control the computer keyboard and mouse by using an alternate
input device.

• Provide a visual cue when the computer beeps or makes other sounds.

Access Pack for Microsoft Windows is included on the Microsoft Windows Driver
Library in the file ACCP.EXE. Access Pack for Microsoft Windows NT is included in
the Microsoft Application Note WN0789.lfyou have a modem, you can download
ACCP.EXE or WN0789.EXE, which are self-extracting archive files, from the
following network services:

Appendix A Accessibility for People with Disabilities

• CompuServe®

• GEnie™

• The Microsoft Network

• Microsoft Download Service (MSDL), which you can reach by calling (206) 936-
6735 any time except between 1 :00 A.M. and 2:30 A.M. Pacific time. Use the
following communications settings:

For this setting Specify

Baud rate

Parity

Data bits

Stop bits

1200, 2400, 9600, or 14400

None

8

• Various user-group bulletin boards (such as the bulletin-board services on the
Association of PC User Groups network)

• In /SOFfLIBIMSLFILES on the Internet servers FfP.MICROSOFf.COM and
WWW.MICROSOFf.COM

People within the United States who do not have a modem can order the Access
Packs on disks by calling Microsoft Sales Information Center at (800) 426-9400
(voice) or (800) 892-5234 (text telephone). In Canada, you can call (905) 568-3503
or (905) 568-9641 (text telephone).

Keyboard Layouts for Single-Handed Users
Microsoft distributes Dvorak keyboard layouts that make the most frequently typed
characters on a keyboard more accessible to people who have difficulty using the
standard "QWERTY" layout. There are three Dvorak layouts: one for two-handed
users, one for people who type with their left hand only, and one for people who type
with their right hand only. The left-handed or right-handed keyboard layouts can also
be used by people who type with a single finger or a wand. You do not need to
purchase any special equipment to use these features.

Microsoft Windows and Microsoft Windows NT already support the two-handed
Dvorak layout, which can be useful for coping with or avoiding types of repetitive
motion injuries associated with typing. To get this layout use the Windows Control
Panel; consult your on-line documentation for detailed instructions. The two layouts
for people who type with one hand are distributed as Microsoft Application Note
GA0650. This application note is also contained in file GA0650.EXE on most
network services and on the Microsoft Download Service. For instructions on
obtaining this application note, see the preceding section, "Access Packs for
Microsoft Windows and Microsoft Windows NT."

455

Tutorials

Microsoft Documentation in Alternative
Formats

People who have difficulty reading or handling printed documentation may obtain
many Microsoft publications from Recording for the Blind, Inc. Recording for the
Blind distributes these documents to registered, eligible members of their distribution
service, either on audio cassettes or on floppy disks. The Recording for the Blind
collection contains more than 80,000 titles, including Microsoft product
documentation and books from Microsoft Press. You can contact Recording for the
Blind at the following address or phone numbers for information on eligibility and
availability of Microsoft product documentation and books from Microsoft Press:

Recording for the Blind, Inc.
20 Roszel Road
Princeton, NJ 08540

Phone: (609) 452-0606
Fax: (609) 987-8116

Third-Party Utilities to Enhance
Accessibility

456

A wide variety of third-party hardware and software products are available to make
personal computers easier to use for people with disabilities. Among the different
types of products available for the MS-DOS, Microsoft Windows, and Microsoft
Windows NT operating systems are:

• Programs that enlarge or alter the color of information on the screen for people
with visual impairments.

• Programs that describe information on the screen in braille or synthesized speech
for people who are blind or have difficulty reading.

• Hardware and software utilities that modify the behavior of the mouse and
keyboard.

• Programs that enable users to "type" using a mouse or their voice.

• Word or phrase prediction software that allows one to type more quickly and with
fewer keystrokes.

• Alternate input devices, such as single switch or puff-and-sip devices, for those
who cannot use a mouse or a keyboard.

For more information on obtaining third-party utilities, see "Getting More
Information for People with Disabilities," later in this section.

Appendix A Accessibility for People with Disabilities

Customizing Windows or Windows NT
There are many ways you can adjust the appearance and behavior of Windows or
Windows NT to suit varying vision and motor abilities without requiring any
additional software or hardware. These include ways to adjust the appearance as well
as the behavior of the mouse and keyboard. The specific methods available depend on
which operating system you are using. Application notes are available describing the
specific methods available for each operating system.

See the appropriate application note for information related to customizing your
operating system for people with disabilities. For information on obtaining
application notes, see "Access Packs for Microsoft Windows and Microsoft Windows
NT," earlier in this section.

Operating system

Microsoft Windows 3.0

Microsoft Windows 3.1

Microsoft Windows for Workgroups 3.1

Microsoft Windows NT 3.1 and 3.5

Microsoft Windows 95

Application note

WW0786.TXT

WW0787.TXT

WG0788.TXT

WN0789.EXE

WN1062

Getting More Information for People
with Disabilities

For more information on Microsoft products and services for people with disabilities,
contact:

Microsoft Sales Information Center
One Microsoft Way Redmond, W A
98052-6393

Voice telephone:
Text telephone:
Fax:

(800) 426-9400
(800) 892-5234
(206) 635-6100

The Trace R&D Center at the University of Wisconsin-Madison produces a book and
a compact disc that describe products that help people with disabilities use
computers. The book, titled Trace ResourceBook, provides descriptions and
photographs of about 2,000 products. The compact disc, titled CO-NET CD, provides
a database of more than 18,000 products and other information for people with
disabilities. It is issued twice a year. To obtain these directories, contact:

Trace R&D Center
S-151 Waisman Center
1500 Highland Avenue
Madison, WI 53705-2280

Voice telephone:
Text telephone:
Fax:

(608) 263-2309
(608) 263-5408
(608) 262-8848

457

Tutorials

458

For general information and recommendations on how computers can help specific
people, you should consult a trained evaluator who can best match your needs with
the available solutions. An assistive technology program in your area will provide
referrals to programs and services that are available to you. To locate the assistive
technology program nearest you, you can contact:

National Infonnation System Center
for Developmental Disabilities
Benson Building
University of South Carolina
Columbia, SC 29208

Voice/text telephone:
Fax:

(803) 777-4435
(803) 777-6058

A
AboutBox, method for 269
Accelerator keys, specifying in menu 72
Accelerators

copying 157
Enroll sample 388

Access keys See Accelerator keys
Accessibility for people with disabilities 453
Activating servers 213
Add Class dialog box, ClassWizard 102, 104-105
Add Member Function, Scribble's use 37
Adding

AppWizard options later 148
files to project list, App Wizard generated OLE

server 172
handler function

changes to source files 88
WizardBar 87

member variables to Scribble 91
message-handler functions 62
records

described 385,390
recordset 385

toolbar buttons 76
AddTail member function, class CObList 47
AFX_DATA delimiter, described 105
AFX_IDS_HELPMODEMESSAGE string 158
AFX_IDS_IDLEMESSAGE string 158
AFX_MOVE_REFRESH, example 395, 427
AFX_MSG delimiter, described 105
AfxOleInit, calling from Contain 203
Applications

creating new 19
discussed 19
run time, at 30
sample, previewing 14
skeleton starter 19
starter, compiling 20
tutorial, basic information for building 16

Index

Applications (continued)
Windows 95

common control usage 436
display shortcut menus 437
drag-and-drop operations 442
drop target functionality 441
logo requirements 431, 450
MAPI support 449
OLE support, adding 441
providing Summary information 448
setup programs, creating 439
system registry usage 439
tabbed property pages 434
UI recommendations 434
uninstall programs, creating 439

AppWizard
adding full-server support to existing

applications 169
automation server

examining application class 239
examining document class 240

class CScribbleDoc 35
class CScribble View 57
class CScrib ViCView 57
classes

button 22,151,236,361
created by 19
Data Sources button 406
dialog box 22, 151,236,361,406

commands 19
context-sensitive Help option 150-151
creating OLE automation servers 235
creating skeleton OLE containers 199
DaoEnrol tutorial 406
database applications 360
DECLARE_DYNCREATE macro 48
default extensions 22
described 19
description of AppWizard generated code,

Contain 203
description of InitInstance, OLE container

application 203

459

Index

460

App Wizard (continued)
dispatch maps 240
Edit Copy, Paste, generated support for 219
editing class names

DaoEnrol tutorial 407
described 22,201,362

editing filenames
DaoEnrol tutorial 407
described 201,362

Enroll sample 361
generated code in an existing application,

using 168
help files created, conditions of use 148
naming projects 21, 235
options

adding later 148, 156
context-sensitive help 150
MDI, SDI applications 22
printing 22
toolbar, status bar 22

project directories, setting 21, 170,200,235,361,
406

provided in-place toolbar 184
README.TXT file 19
running 19,21,235
Serialize member function 49
setting

directories 21, 170,200,235,361,406
full-server options, Scribble, Step 7 169

Arranging controls in dialog boxes 101
Assigning

IDs in dialog boxes 99
objects to commands 83

Associating buttons with commands 80
Attributes, class 85
AutoClickDoc class, Refresh member function

defined 243
AutoClik tutorial

accessing one dispatch interface through
another 259

adding
Change Text command to Edit menu 245
member variables to document class 242
ShowWindow method 254

application class, examining AppWizard created
code 239

CAutoClickPoint class
creating in Class Wizard 258
declaring the class 261

AutoClik tutorial (continued)
CAutoClickPoint class (continued)

dispatch map, described 259
not OLE creatable 262

CAutoClickPoint objects, creating 261
Change Text dialog box, creating 244
changing

dispatch interface names 237
text 232

command list 232
creating

new dispatch interfaces 258
with AppWizard 235

defining class ID 240
differences in creating dispatch maps 260
dispatch interface names 238-239
dispatch interface objects, declaring as

properties 260
dispatch interfaces

implementing properties 247
supplied 230

dispatch maps
described 240
parameter lists 253

document class
App Wizard created code, examining 240
member variables, adding, initializing,

serializing 242-243
Edit menu, adding Change Text command 245
enabling automation 241
exploring features 232
exposing data members

as dispatch interface properties 247
directly exposing m_str 249
two methods 247

exposing member functions, setting the external
name 251

exposing methods 251-252
exposing the Refresh member function 251
features, described 230
frame windows, showing 253
GetPosition method, getting the IDispatch

pointer 261
goals 229
implementing drawing code 243
initializing

member variables of document class 242
OLEDLLs 239

Initlnstance 239

AutoClik tutorial (continued)
installing 231
list of commands 232
location, files 233
locking and unlocking the application 241
m_str, exposing using ClassWizard 248-249
multiple dispatch interfaces 257
previewing

discussed 230
each Step 233
two methods 231

referring between dispatch interfaces 259
registering with OLE

alternative methods 240
COleTemplate, using 240
discussed 231

running stand-alone 230
second dispatch interface 257
serializing members of document class 243
Set Text vs. Set X methods 255
SetPosition method, how views get updated 261
showing frame windows 253
Step 1 235, 246
Step 2

building and running 255
exposed member functions (list) 251
features, described 247
goals 233,247

Step 3
building and running 262
features 257
goals 234, 257

Step overview 233
testing 230
view class

implementing drawing 243
mouse click handler defined 243

Autodriv, accessing the Position property 259
Automation clients

automation servers, driving 230
described 229
differences in creating dispatch maps 260

Automation server
accessing one dispatch interface through

another 259
automation clients, how driven by 230
creating new dispatch interfaces 258
creating with AppWizard 235

Automation server (continued)
declaring dispatch interface objects as a

properties 260
defining class ID 240
described 229

Index

dispatch interfaces, implementing properties 247
dispatch maps

described 240
parameter lists 253

enabling automation 241
exposing data members 247-248
exposing member functions, setting external

names 251
features 230
frame windows, showing 253
implementing methods 251
initializing OLE DLLs 239
locking and unlocking the application 241
multiple dispatch interfaces 257
referring between dispatch interfaces 259
registering with OLE

alternative methods 240
COleTemplate, with 240

showing frame windows 253
ShowWindow method, adding 254
vs. OLE object servers 230

Automation, OLE
advantages 229
creating automation servers with AppWizard 235
dispatch interface names 238-239

8

dispatch interfaces 230
dispatch maps, parameter lists 253
examples of use 229
exposing data members 247-248
methods, properties 230

Backcolor property
enabling 273-275
Get/Set methods 274

BackColor stock property, adding 273
Background color 273
Beginning strokes 63
Bindable properties, examples of 339
Binding

Clear All command 86
commands, Scribble 85
controls, CRTL+Double-click 369-370,414-415

461

Index

462

Binding (continued)
messages to code 61
Thick Line command 89

Bitmap editor
modifying control bitmaps 268-269
selection rectangle 79

Bitmaps
editing See Bitmap editor
modifying control 268
toolbar 76

Bold type, document conventions xx
Bound properties, notifying the container 339
BoundPropertyChanged function 339
BoundPropertyRequestEdit 333
Brackets ([]), document conventions xx
Browsing resources 77
Build information, project 23
Building

programs, Scribble tutorial example 16
Scribble, Step 1 65
starter applications 26

Buttons

c

mapping to commands 80
toolbar, deleting 77

Calling document members from view 55
Capabilities, ClassWizard 84
Caption stock property

adding 317
alias for Text property 318
description of 317
implementation of 320
testing 324

Captions, menu 75
Capturing the mouse 63
CArchive class

data independence 51
extraction operator 49
IsStoring member function 49

CArchive object 49
Cast serialization, example 51
CATCH macro 47
CBN_SELENDOK message, Enroll sample 383
CClickDoc class, OnEditChangetext member

function 245
CClientDC class, example 128

CClikView class
OnDraw member function defined 243
OnLButtonDown member function defined 243

CCmdUI structure example
OnUpdateEditClearAll member function 93
OnUpdatePenThickOrThin member function 94

CContainerItem class
constructor defined 208
derived from COleClientItem, described 207
m_rect data member defined 208
OnChange member function

defined 207
when called 226
updating rectangle when extent changes 227

OnChangeItemPosition member function
defined 208-209
supporting hints 224
when called 226

OnGetItemPosition member function, defined 207,
209

serialization 209
UpdateFromServerExtedate member function,

defined 226
CContainerView class

hit testing 210
HitTestItems member function, defined 210
Insert Object dialog box, using 205
IsSelected member function, defined 204
OnDraw member function, defined 204, 214
OnEditCopy member function, defined 219
OnEditDelete member function, defined 216
OnEditPaste member function, defined 220
OnInsertObject member function

defined 205
updating rectangle when extent changes 228

OnLButtonDblClick member function, defined 213
OnLButtonDown member function

defined 212
supporting hints 224

OnSetCursor member function, defined 214
OnSetFocus member function, defined 206
OnSize member function, defined 206
OnUpdate member function, defined 222
OnUpdateEditDelete member function, defined 216
selecting items hit by mouse click, code for 210
SetS election member function

defined 210
updating client item 223

CDaoEnrolDoc class, DaoEnrol tutorial 410

CDatabase objects, Recordset 382
CDBException 395
CDC class, used in DrawStroke 60
CDC object, encapsulates device context 60
CDialog class, member functions

CDialog 106
DoModal 111, 113

CDocTemplate class
SetContainerInfo member function 203
SetServerInfo member function 179

CDocument class
introduced 33
member functions, UpdateAllViews 116-117

CDWordArray class, serialization of 50
CEnrollDoc class, Enroll sample 365
CFormView, and record views 366,412
CFrameWnd class, OnCreateClient member

functions 131
Changing cursor, CRectTracker class 214
Checked state

menus 94
toolbar buttons 94

Checking
menu items 94
toolbar buttons 94

Circle control
creating 265
custom events, examples of 311
described 263
enabling versioning, code modifications 344-345
Hit testing, using 306
modifying bitmap of 268
property pages 327
responding to mouse events 304

. support for serialization 343
CircleOffset custom property

adding 292, 298
default value of 294
described 290
enabling

code modifications 293, 295, 297
described 291

resetting 298
CircleOffset property

modifications to GetDrawRect 296
setting 294

CircleShape custom property
adding 282
default value of 284

CircleShape custom property (continued)
description of 280
enabling

code modifications 285-286
described 284

Classes

Index

adding with ClassWizard, example 102, 104-105
button, AppWizard 22, 151,236,361
CArchive 49
CDC 60
CDocument 33
CObList 46
CPen 45
created by App Wizard 19
CScribbleDoc (Scribble) 34
CScribbleView (Scribble) 56
CStroke (Scribble) 37
CView 54
Data Sources button, AppWizard 406
dialog, AppWizard 22, 151,236,406,361
naming conventions 40
starter, viewing 23

Class Wizard
adding

custom events 312
custom properties 273
handlers, changes to source files 88
message handlers 298
mouse event handlers 304
new classes, example 102-106
stock properties 317

connecting messages to handlers 61
Control property 375
creating new dispatch interfaces 258
database applications 360
declaring dispatch interface objects as

properties 260
described 53
dialog boxes 107
dispatch maps

described 240
parameter lists 253

examples, OnUpdateEditClearAll member
function 93

exposing member functions, setting the external
name 251

exposing methods 251-252
flexibility 85
handling messages 60

463

Index

464

ClassWizard (continued)
Member Functions list box, described 88
OLE Automation

directly exposing data members 249
exposing member functions 251
indirectly exposing data members 248

safety 85
splitter windows, creating 131
uses of, connecting messages to code 61

Cleanup, documents 46
Clear All command

binding, procedure 86
discussed 70, 83
location 85
Scribble 85

Clear All menu item, updating state 92
Clearing drawings in Scribble, OnEditClearAll

member function 88
ClickIn custom event 311-313
ClickOut custom event 311-315
Client area, of window and view objects 54
Client items

described, creating 207
determining size of objects 226
getting extent 226
rectangles, implementing 208
resizing 206
updating when extent changes 227-228
using 207

Clipboard
putting link formats on 187
toolbar buttons 77

CObList class 46
Code, navigating through 24
COleClientItem class, GetCachedExtent member

function, when called 226
Colors, hex/decimal value of 309
Combo boxes

Enroll sample 373
filling from recordsets 377

Command handler, Enroll sample 389
Command ill 74
Command line, compiling Help files from 154
Command target, which class gets handler 85
Command updating 372
Commands

andID 74
assigned to user-interface objects 83
associating with buttons 80

Commands (continued)
binding

Clear All 86
Scribble 85

Clear All 70,85-86
Cut, Copy, Paste 77
discussed 83
framework

implementations 47
invoking 76

mapping to handlers 83
messages 77, 83
New, implementation 44
Open, implementation and serialization 44,47
Pen Widths 70, 75, 85
prompt strings

discussed 73
status bar 147

Save, Save As, implementation and serialization 47
Scribble

Clear All 83, 85
described 70, 74
Thick Line 83, 85

Thick Line
binding 89
discussed 70, 75, 85
toolbar button 76

WizardBar, Messages list box 86
Comments, TODO, by App Wizard 49
Common controls, Windows 95 applications 436
Compiling

Help files
described 153
from the command line 154
from within Microsoft Developer Studio 154

starter application 20, 26
starter files 26

Connecting messages to code, with Class Wizard 61
Constructing pen objects, two stages 60
Constructors, CStroke class 43
Contain serialization, CcontainerItem class 209
Container application defined 195
Container sample application

building
Step 1 216
Step 2 196

calling
AfxOlelnit 203
CDocTemplate 203

Container sample application (continued)
creating Scribble drawing from inside 202
deactivating Scribble items 197
deleting embedded objects 215
determining size of contained objects 209
drawing embedded objects 214
editing in-place activated objects 202
embedded objects

deleting 215
drawing 214

embedding Scribble items 168
features

described 195
Step 1 197, 199
Step 2 198,219

goals
Step 1 199
Step 2 198,219

hit testing, implementation 210
in-place editing Scribble items 197
initializing OLE libraries 203
inserting

OLE items 196
Scribble Step 7 items 196

installing OLE container applications 168
menu merging

described 203
with Scribble, Step 7 196

negotiating size of objects 225
prerequisites, running servers 196
previewing program 196
redrawing tracker rectangle 197
resizing Scribble items 197
Step 1 216
Step 2 196
summary of App Wizard generated code 203
tracker rectangle 196
using 202

Container, creating with AppWizard 199
Context-sensitive Help

See also Help
described 149-150, 156
fine-tuning 151
Help menu, support for 149
implementing with AppWizard 150
option 150-152
trying it out 152

Control properties, linkage with property page 329
Control property, ClassWizard 375

Index

Controls
adding to default property page 327
binding 369,414
custom, using with Visual c++ applications 174
DaoEnrol tutorial 412
dialog

creating data maps 108 -11 0
discussed 109
modifying properties 99

Enroll sample 367
iconic representation of 268
linking with properties 329
painting 273
rebuilding with

CircleOffset implemented 299
CircleShape implemented 287
data binding support 340
FlashColor implemented 308
font and color support implemented 324
painting implemented 276
the property page 332
version support implemented 347

testing
CircleOffset property 299
CircleShape property 287
data binding changes 341
drawing behavior 276
FlashColor property implemented 308
version support 347

ControlWizard
creating projects with 266
files created by 267

Copying resources
accelerators, menus 157
discussed 156

CPen class 45, 60
CPenWidthsDlg class, Scribble example, creating 103
Create member function, CSplitterWnd class,

example 133
CreatePen member function

called in DrawStroke 60
called in ReplacePen 90
class CPen 60

Creating
AppWizard project directory 21, 170,200,235,

406,361
class CScribbleDoc 35
document objects 32
new applications, process 19

465

Index

466

Creating (continued)
objects dynamically 48
OLE automation servers with AppWizard 235
view objects 55-56

CRecordset introduced, tutorial 360
CRecordView introduced, tutorial 360
CRectTracker class

changing cursors 214
SetCursor member function 214
usage during selection 211

CRectTracker objects 215
CScribbleDoc class

adding access function 177
App Wizard, and 35
changing base class to COleServerDoc 176
code for 37
creation of 35
declaration of 36
described See InitDocument
GetEmbeddedltem member function 177
implementing embedded item support 176
initialization 45
member functions 40
member variables 40
OnGetEmbeddedltem member function, adding

embedded item support 176
role of, described 34
Serialize member function 49

CScribbleltem class
OnDraw member function implemented 188
OnGetExtent member function 188-189

CScribble View class
App Wizard, and 57
calls strokes to draw themselves 59
declaration of, code for 58
described 56
member functions, variables of 58
OnDraw member function, defined 58
OnInitialUpdate member function, calling

ResyncScrollSizes 191
OnPrepareDC member function, overriding to

implement logical sizes 190
ResyncScrollSizes member function, overriding to

implement logical sizes 191
CScrollView class 123-125
CSectionForm class,

DaoEnrol tutorial 409
Enroll sample 364

CSectionSet class 372

CSplitterWnd class 130-133
CStroke class

code for 42
constructors 43
declaration of 42
described 41
forward declaration of 37
IMPLEMENT_SERIAL macro 50
incremental versions of 50
member functions, variables of 43
members used by view 59
Serialize member function, code for 50

CTRL+Double-click
binding controls 369-370,414-415
described 375
pushbuttons 370,415

Current record, updating 389
Cursor, changing when moving over selected item 214
Custom events 311
Custom properties

Circle Offset 290
examples of, CircleShape 280
FlashColor 301
Note 334
types of 279

CView class
derived classes of 54, 56
member functions

OnPrepareDC 126
OnUpdate 117

your view class derived from 54
CWnd class member functions

DoDataExchange 110-113
UpdateData 111, 113

o
DAO database classes

API based on OLE 402
brief overview 402
CDaoDatabase object 403
CDaoException object 404
CDaoQueryDef object 404
CDaoRecordset object 404
CDao Workspace object 403
completeness of functionality 402
document role 410
Microsoft Jet database engine, tables read by 400
objects found in MFC 403

DAO database classes (continued)
similarity to DAO hierarchy 403
tables that can be read 403

DaoEnrol tutorial
AppWizard 406
binding controls 414
CDaoEnrolDoc class 410
class and files created 408
code block substitution

filling combo box with courses 419
setting up the parameter 420
updating the data source with added record 424

controls
binding to recordsets 414
discussed 412

creating the application 406
CSectionForm class 409
data sources, selecting 406
database options, adding 406
described 399
dialog template resource, customizing 412
DoFieldExchange 422
File menu, role of 411
filter 422
location 399
m_pSet member 414
m_sectionSet member 411
OnInitialUpdate function 410
parameter data member 422
parameters 423
recordsets, opening 410
similarity to Enroll tutorial 398, 404
STDREG32.MDB, using with DaoEnrol 400
Step 1, results 415
Step 2 416
Step 3 424
Step 4 428
student registration database 398
tables, selecting 406
tutorial 398
using Enroll tutorial instructions 428

Data
delegating drawings to 59
loading from disk See Serialization
management of, in document 31
Scribble

m_strokeList variable 35
stroke list 35
stroke 34

Index

Data (continued)
storage of, in document 32
storing to disk See Serialization
view's access to document 55

Data binding changes, testing controls with 341
Data binding support, rebuilding controls with 340
Data binding 333
Data map for dialog controls 108-110
Data sources, selecting

DaoEnrol tutorial 406
Enroll sample 361

Data types 51
Database applications

AppWizard 360
ClassWizard 360
document

as proxy for database 365,411
role 365
uses 366,412

File menu, role of 366, 411
user interface guidelines 385

Database connection, Recordset 382
Database options, adding

DaoEnrol tutorial 406
Enroll sample 361

DDP _ macros 331
DDX_ macros 331
Declaration

class CScribbleDoc 36
class CScribble View 58
class CStroke 42
forward, of class CStroke 37

DECLARE_DYNCREA TE macro 48
DECLARE_SERIAL macro 50
Default extensions, AppWizard 22
Default menus, created by AppWizard 70
Default property page 327,332
Delegating drawings to data objects 59
Delete operator, C++, examples 88
DeleteContents member function

called from OnEditClearAll 88
described 46,88
overriding, code for, in Scribble 38,46
Scribble 46
when called 46

DeleteObject member function, called in
ReplacePen 90

467

Index

468

Deleting
column bindings, tip 409
embedded objects 215
records 385, 390
recordsetrecords 385
strokes in Scribble, OnEditClearAll member

function 88
toolbar buttons 77

Description of new files, Scribble, Step 7 173
Device coordinates, converting 127-128
Device-context object

class CDC 60
encapsulated by CDC object 60
OnDraw member function use 59

Dialog boxes
connecting to code 102
controls

arranging 101
modifying properties 99

creating 99
data map for controls 108-110
defining message handlers 102
designing 99
displaying 111
IDs, assigning 99
property page 99
setting tab order 101
using WizardBar 102

Dialog Data Exchange functions 110
Dialog Data Validation functions 110
Dialog editor 99
Dialog template resource, customizing 366,412
Dimming user-interface objects 92
Directory, AppWizard project

DAO 406
described 21,170,200,235,361

Disabled, access for the 453
Disabling user-interface objects 92
DISP _PROPERTY_EX 279
DISP _PROPERTY_NOTIFY 279-280
DISP _PROPERTY _PARAM 279
DISP _PROPERTY 279
Dispatch interface 230
Dispatch maps 240
Document classes

See also CScribbleDoc class
code for 37
Scribble, introduced 34, 43
serialization of 48-49

Document conventions xx
Document objects

cleanup 46
creating 32-33
defined 31
derived from class CDocument 33
frame windows 31
in framework 31
initializing 44
interaction with view 55
introduced 30
-mUltiple views 55
relation to other objects 31
responsibilities of 31
role of frameworks 32
separation from data view 32
updated by view 56
user interaction with, through view 54
view, interaction with, described 33

Document role, database applications 365, 410
Documents

as proxy for database 365, 411
frame windows and view objects 54
marking dirty when contained item changes,

Container application 209
member functions, calling from view 53
notifying view of changes 116-117
Recordsets, embedded in 377,418
views, and 31-33

DoDataExchange member function, CWnd class 110-
111, 113

DoFieldExchange
DaoEnrol tutorial 422
Enroll sample 381

DoModal member function, CDialog class 111, 113
DoPreparePrinting member function, CView class 145
DoPropExchange

modifications to support versioning 346
use in serialization 343

Double-click event, activating server 213
DPtoLP member function, CDC class, example 139
Drag-and-drop operations

handling 444
Windows 95 applications 442

Drawing
delegating to data objects 59
embedded objects 214
environment, restoring 60
in view objects 55

Drawing (continued)
Scribble's document 58
strokes 63-64
views 33
with mouse 55, 60

Drawing environment See Device context
DrawStroke member function

class CScribble View 60
class CStroke 59
pen used in 60

Drop targets
functionality, Windows 95 applications 441
providing user feedback 443

Dynamic creation of objects 48

E
Edit control, changing to combo box, Enroll

sample 373
Edit menu

Clear All command 70
Copy command 219
Cut, Copy, Paste commands 77
Insert New Object menu item, differences from Edit

Paste 221
Paste command

AppWizard generated support 219
differences from Edit Insert New Object 221
implementing 220

Editing
bitmaps, toolbar buttons 77
class names, ClassWizard

DaoEnrol tutorial 407
described 201,362

code from WizardBar 84
controls, modifying properties, example 100
dialog boxes 99
filenames with AppWizard

DaoEnrol tutorial 407
described 201,362

graphics 77
menus 70-71
message maps 85
opening files for 25
records 389

Editor
graphics 77
menu 70

Embedded CDatabase object, document 382

Embedded objects
deleting 215
described 49
drawing 214

Index

serialization of using Serialize member function 49
vs. pointer to object 49

Enabling
menu items, example 92
user-interface objects 92

Ending strokes 64
Enroll sample

accelerators, adding 388
added records, reflecting 393
AppWizard 361
binding controls 369
CBN_SELENDOK message 383
CCourseSet class 372
CEnrollDoc class 365
class and files created 362
combo boxes

binding to recordset 374
described 373
filling from recordsets 377

command handlers
adding 389
described 389
OnRecordAdd 390
OnRecordDelete 394
OnRecordRefresh 395,427

command updating, limitation 372
controls

binding to recordset 374
binding to recordsets 369
discussed 367
unbinding 374

creating the application 361
CSectionForm class 364
CSectionSet class 372
data sources, selecting 361
database options, adding 361
described 352
dialog template resource, customizing 366
DoFieldExchange 381
edit control, changing to combo box 373
error handling 395
exceptions 395
File menu, role of 366
filter 380-381
location 352

469

Index

470

Enroll sample (continued)
m_pSet member 369
m_sectionSet member 365
menu commands 387
message handlers 389
move behavior 393
OnInitialUpdate function 364
OnRecordAdd handler, and OnMove 392
OnRecordDelete 394
OnRecordRefresh 395,427
parameter data member 380-381
parameters 381
records, basics of adding, editing, deleting 389
recordsets

AddNew member function 392
opening 364

requerying with filter 380
results, Step 1 370
second recordset, creating 375
student registration database 351
tables, selecting 361
tutorial 351
user interface design 385

Error handling, Enroll sample 395
Error strings, CDBException 395
Exceptions

catching in Scribble 47
Enroll sample 395

Exchange version 344-345
Extent changes, updating client item 227-228
Extraction operator, class CArchive 49

F
FI Help 149
Filenames, long 13
Files

Help, App Wizard-created, conditions of use 148
opening for editing 25
resource 76

Filter strings 380, 421
Filtering recordsets 379,420
Fine tuning context-sensitive help 151
FinishStroke member function, CStroke, Scribble

example 118
FireClickI~ function 312
FireClickOut function 314

FlashColor custom property
default value of 303
described 301
enabling

code modifications 305
mouse events 304

implementation of 306
FlashColor function 307-308
Font stock property

adding 319
selecting into device context 322

Fonts, document conventions xx
ForeColor stock property, adding 320
Form-based applications, tutorial 359, 404
Forms introduced, tutorial 360
Frame windows

as view creators 55
documents and view objects 54

Framework
command implementations 47
creating view objects 55
described 19
document

and view, separation of 32
role of, in 31

help, role in supporting 149
implementing commands 44
role of documents in 32
views in 55

Full-server, adding AppWizard-generated code to
existing applications 169

Function handlers 83
Function templates 84

G
Generating commands 83
Get/Set methods

BackColor 274
benefits of 289
Font, examples of 320

Get/Set methods property
Caption, examples of 318
Note, examples of 334

GetCachedExtent member function, class
COleClientltem, when called 226

GetCapture member function, class CWnd, called in
OnMouseMove 65

GetDocument member function
called by OnDraw 59
class CScribble View 57
class CView 55

GetDrawRect function
described 285
using with CircleOffset property 296

GetEmbeddedItem member function, CScribbleDoc
class 177

GetFirstStrokePos member function, called by
OnDraw 59

GetNextStroke member function, called by
OnDraw 59

GetNote/SetNote function, code modifications 335
Getting extent, client items 226
GetVersion, using 345
Graphical user interface See GUI
Graphics editing See Bitmap editor
GUI (graphical user interface) 11

H
Handlers

exception, in Scribble 47
function

creating with ClassWizard 61
discussed 83
menu items 76
toolbar buttons 76

messages, in view objects 60
OnEditClearAll member function, Scribble 88

Handling Windows messages 60
Hearing disabled, accessibility for the 453
Hello world program, replaced by Scribble 11
Help

See also Context-sensitive Help
button, toolbar 77
FI 149
files See Help files
support 149

Help files
AppWizard-created 148
compiling 153-154

Help mode See SHIff +FI
Help project files, upgrading to Windows 95 155
Hints, sending update 223

Hit testing
Container application, implementing 210
usage in FlashColor property 306

Index

HitTestitems member function, class CContainerView,
defined 210

ill, command 74
illR_MAINFRAME, menu ID 71
Image editor See Bitmap editor
IMPLEMENT_SERIAL macro

and DECLARE_SERIAL macro 50
class CStroke 50
code for, in Scribble 50
example 118
in Scribble 50
schema number in 50

Implementing views 56
In-place toolbars, order of buttons provided by

AppWizard 184
InCircle function 306-307
Inherited behavior, replacing 64
InitDocument member function 44-45
Initializing

Scribble's document 45
the document, described 44
views 55

Initiating stroke drawing, in Scribble 63
Initlnstance description of AppWizard generated code

Contain 203
OLE container application 203

Input/output See Serialization
Insert Object dialog box, use in CContainerView 205
Installing

OLE container applications, Container 168
sample files 12

Interaction between documents and views 33
IntemalGetText, accessing Caption property 319
InvalidateRect member function, CWnd class,

example 128
Invalidating

deselected objects, Smart invalidation 223
object when moved by server, Smart

Invalidation 224
selected objects, Smart invalidation 223
tracked object, Smart invalidation 224
view, Smart invalidation 222· .

471

Index

472

Invoking
AppWizard 19
commands in framework 76

IsKindOf member function, called by GetDocument 57
IsLoading, using 345
IsSelected member function, class CContainerView,

defined 204
IsStoring member function, class CArchive 49
Italics, document conventions xx

J
Jumping to code from WizardBar 84

L
LineTo member function, class CDC 60
Link formats, putting on the Clipboard, Server

application 187
Loading data from disk See Serialization
Locating handlers, guidelines 86
Logical coordinates 127 -128
Logo requirements, Windows 95 431
Long filenames 13 I

Lowercase letters, document conventions xx

M
m_caption 330
m_circleOffset 330
m_circleShape 330
m_flashBrush 308
m_flashColor 303
m_note, enabling, Note custom property 335
m_pSelection member, CContainerItem class,

Contain 204
m_pSet member

DaoEnrol tutorial 414
Enroll sample 369

m_rect data member, defined, CContainerItem
class 208

m_sectionSet member
DaoEnrol tutorial 411
Enroll sample 365

m_strFilter member, recordset 379,420
m_strokeList

cleanup of See DeleteContents
variable, Scribble 35

Macros
DECLARE_DYNCREATE 48
IMPLEMENT_SERIAL 50
ON_ WM_LBUTTONDOWN 61
RUNTIME_CLASS 57

MAPI support, Windows 95 applications 449
Mapping

buttons to commands 80
commands to handlers 83
dialog controls to member variables 108-110
messages to code 61
modes

metric 137
MM_LOENGLISH, in Scribble 66
MM_TEXT, in Scribble Step 1 66
printing 137-138

MDI applications
See also MUltiple document interface
and view objects 54
default menus 70
menus 71

Member function template See Member functions,
definition

Member functions
AddTail, class CObList 47
CreatePen, class CPen 60
definition 87
DeleteContents, class CDocument 46
DrawStroke, class CStroke 59
GetCapture, class CWnd 65
GetDocument, class CView 55
IsKindOf, class CObject 57
IsStoring, class CArchive 49
LineTo, class CDC 60
message handlers 83
MoveTo, class CDC 60
OnDraw, class CView 55
OnInitialUpdate, class CView 55
OnLButtonDown, class CWnd 61,63
OnLButtonUp, class CWnd 64
OnMouseMove, class CWnd 64
OnNewDocument, class CDocument 44
OnOpenDocument, class CDocument 44
OnUpdate, class CView 55
ReleaseCapture, class CWnd 64
RemoveHead, class CObList 46
SelectObject, class CDC 60

Member functions (continued)
Serialize

class Cdocument 48
class CObject 48

SetCapture, class CWnd 63
SetModifiedFlag, class CDocument 47
UpdateAllViews, class CDocument 56

Member Functions list box, ClassWizard 88
Member variable property 301
Member variables

adding to Scribble 91
naming conventions 40

Menu commands, Enroll sample 387
Menu editor

described 70-71, 74
saving work 73

Menu items, checking, enabling 92
Menus

adding 71, 74
automatic saving of edits 73
caption 72, 75
checked state 94
copying 157
default 70
dragging 74
Edit Cut, Copy, Paste 77
editing 70-71
items See Menu items
MDI application 70
merging 203
new, adding 71
Pen (Scribble) 70, 74
specifying accelerator keys 72
window 70

Message handlers
classes 85
dialog boxes,example 102, 107-108, 110-111
Enroll sample 389
for menu commands, example 112
in Scribble, mouse tracking 61
location, guidelines 86
update, making update handlers fast 93

Message map
copying help entries 159
editing 85
OnUpdateEditClearAll member function,

example 93
OnUpdatePenThickOrThin member function 94

Index

Message map (continued)
update handler entry 93
view objects 60

Message-driven programs 83
Message-handler functions, adding to code 62
Message-handler member function 83
Messages

command 77
connecting to code 61
discussed 83
list box, Class Wizard 86
responding to 83
sending 83
sent to windows, currently active view 60
Windows, handling 60
WM_LBUTTONDOWN 60
WM_LBUTTONUP 60
WM_MOUSEMOVE 60

Methods, persistence of 343
Metric mapping modes See Mapping modes, metric
MFCNOTES.HLP file 151
Microsoft Developer Studio, compiling help files from

within 154
Microsoft Foundation Class Library, questions and

answers 174
MKTYPLIB, creating OLE type library with 242
MM_LOENGLISH mapping mode

described 137, 139
in Scribble 66

MM_ TEXT mapping mode
described 137, 139
in Scribble 66

Motion disabled, accessibility for the 453
Mouse

capturing 63
drawing

discussed 55, 83
in Scribble 60
why handled by view 61

event handlers, enabling FlashColor property 305
related messages, in Scribble 60
releasing, tracking 64

Mouse-driven drawing See Drawing
MoveTo member function, class CDC 60
Multiple document interface See MDI
Multiple recordsets, record views 371

473

Index

474

N
Naming conventions, classes and member

variables 35,40
Navigating through code 24
Negotiating size of objects, Container application 225
New command, framework, implementation of 44
New menus, adding 71
new operator 47
NewStroke member function 47
Note custom property

adding 334
binding of 339
container notification 339
description of 334
enabling, code modifications 335-336,339
GetNote/SetNote function 335

Note property
adding to default p~operty page 337
making persistent 336

Notification Log dialog box 333
NT, Windows, and serialization 51

o
Objects

See also Applications
application, table of 31
document, introduced 30
dynamic creation of 48
embedded 49
view, introduced 30

ODBC
filter strings 380,421
registering Student Registration database 353

ODBC Administrator
adding data sources 355
found in Control Panel 355

ODBC database drivers
installation 356
obtaining 32-bit drivers 353, 401

OLE
Automation See OLE Automation
containers, creating with App Wizard 199
items

editing in-place activated items, from
Contain 202

inserting, Container sample 196

OLE (continued)
type library, creating 242
verbs, editing 203

OLE Automation
creating an automation server with App Wizard 235
dispatch interface 230
dispatch interface name 238-239
examples of use 229
method, property 230
tutorial 229

OLE controls
building 263,269
creating basic 266
creating with ControlWizard 266
overview of properties 279
registering 270
testing 270 .

OLE support, adding to Windows 95 applications 441
ON_UPDATE_COMMAND_UI macro, example 93
ON WM LBUTIONDOWN macro 61
OnChang~ member function, class CContainerItem

defined 207
updating rectangle when extent changes 227
when called 226

OnChangeltemPosition member function, class
CContainerItem

defined 208-209
supporting hints 224
when called 226

OnCircleShapeChanged
description of 286
modifications to 297

OnCreateClient member function, CFrameWnd
class 131

OnDefaultPen Widths member function,
CPen WidthsDlg class, Scribble example 107, 110

OnDraw member function
class CClikView 243
class CContainerView

defined 204
drawing embedded items 214

class CScribbleltem, implemented 188
class CScribbleView, defined 58
class CView 55, 58, 122
must override 55

OnDraw modifications
BackColor property 321
Caption property 321
ForeColor property 321

OnDraw modifications (continued)
implementation of, CircleShape 286
Note property 336
using BackColor property 275

OnEditChangetext member function, AutoClickDoc
class, defined 245

OnEditClearAll member function 88
OnEditCopy member function, class CContainerView,

defined 219
OnEditDelete member function, class CContainerView,

drawing embedded items 216
OnEditPaste member function, class CContainerView,

defined 220
OnFontChanged 320
OnGetEmbeddedItem member function, CScribbleDoc

class, adding embedded item support 176
OnGetExtent member function, CScribbleItem class

discussed 189
setting size of document 188

OnGetltemPosition member function, class
CContainerItem, defined 207, 209

OnInitialUpdate function
DaoEnrol tutorial 410
Enroll sample 364

OnInitialUpdate member function
class CView 55
CScribble View class, calling

ResyncScrollSizes 191
CView class, example 125, 139
overriding 55

OnInsertObject member function, class
CContainerView

defined 205
updating rectangle when extent changes 228

OnLButtonDblClick member function, class
CContainerView 213

OnLButtonDown member function
CClikView class, defined 243
class CContainerView

defined 212
selecting embedded objects 211
supporting hints 224

class CScribbleView, creating 61
CWnd class, example 127
default definition 62
described, creating 63
replacing inherited behavior 64

Index

OnLButtonUp member function
class Cwnd, example 128
creating 64

OnMouseMove member function
class CWnd, example 128
defined, in Scribble 65
described, creating 64

OnMove member function, examples of use 392
OnNewDocument member function

and AppWizard 45
code for overriding, in Scribble 45

OnOpenDocument member function
code for overriding, in Scribble 45
overriding 38,44

OnPenThickOrThin member function 89
OnPen Widths member function, CScribDoc class,

Scribble example 112
OnPrepareDC member function

CScribble View class, overriding to implement
logical sizes 190

CView class
CScrollView version 126
example 127-128

OnPreparePrinting member function, CView class,
example 141, 145

OnPrint member function, CView class, example 141-
142

OnRecordRefresh, Enroll sample 395, 427
OnSetCursor member function, class CContainerView,

defined 214
OnSetFocus member function, class CContainerView,

defined 206
OnSize function, adding 298
OnSize member function, class CContainerView,

defined 206
OnTextChanged 318
OnUpdate member function

class CContainerView, defined 222
class CView 55
described 117
example 120, 128
overriding 55

OnUpdateEditClearAll member function
CCmdUI argument to 93
code for 92
described 93
enabling menu item 92
message map 93

475

Index

476

OnUpdateEditDelete member function, class
CContainerView, drawing embedded items 216

OnUpdatePenThickOrThin member function 93-94
Open command

framework
implementation in 44
implementation of 47

implementation, in Scribble 49
Opening files for editing 25
Operators, CArchive extraction 49
Optimistic data binding, defined 333
Options

AppWizard
adding later 148
default, advanced 22

context-sensitive Help 150
setting in tutorial program 16

Overriding
DeleteContents 46

p

OnInitialUpdate member function 55
OnNewDocument 45
OnOpenDocument 45
OnUpdate member function 55
Serialize, in Scribble document 49

Page headers and footers, example 144
Painting controls 273
Panes, splitter window 129-130
Parameter data member

DaoEnrol tutorial 422
Enroll sample 380

Parameterizing, recordset 378
Parameters, multiple

DaoEnrol tutorial 423
Enroll sample 381

Path, AppWizard, setting 21, 170,200,235,361,406
Pen

drawing in Scribble 77
initialization, in Scribble 45
menus 70
objects

See also CPen class
construction of, two stage 60
initializing pens 60

Scribble, OnPenThickOrThin 89
thickness 77

Pen Widths
command, Scribble example 97, 112
dialog box, Scribble example 98

PEN.RTF file 160
Persistent, making Note property 336
Persistent data

examples of 344-345
handling differences in 344-345

Persistent storage See Serialization
Pessimistic data binding, defined 333
Pointer to object, vs. embedded objects 49
Portability, serialization 51
Positioning the pen, MoveTo member function 60
Primary key, caution deleting 376
Print preview, example 144-145
Printing

described 136
headers and footers 144
Scribble Step 1, MM_TEXT mapping mode 66

Procedures
adding

member variables 91
message-handler functions 62
update handler for Clear All menu item 92
update handler for Thick Line menu item 93
update handlers 156

binding
Clear All command 86
Scribble's Thick Line command 89

building, Scribble 65
connecting messages to Scribble's code 61
copying

accelerators 157
menus 157
resources 156

creating MyHELP application 156
selecting

context-sensitive Help in AppWizard 150
Debug or Release options 17

trying context-sensitive Help 152
using Class Wizard 61
using WizardBar 85

Programs
samples

Microsoft Foundation Classes, HIERSVR 196
OLE SDK, locations of 195
OLE SDK, Program Manager group

reference 195
tutorial, building, basic information 16

Projects
build information 23
viewing 23

Prompt
command 73, 75
strings 147

Properties
binding of 339
caption 75
custom, types of 279
default value of 275
ID, selecting 72
persistence of

described 284, 343
usage of SetModifiedFlag 286

Property page dialog 99
Property pages

adding
controls to 327
stock color 323

default, adding Note property 337
described 327
ID table 323
linking controls to properties 329
testing default 332
using Class Wizard 329

Pushbutton controls, modifying properties,
example 100

Pushbuttons, CTRL+Double-click 370,415
PX_ functions 284
PX_Long, examples 303
PX_Short, examples 294
PX_String, examples 336

Q
Quote character, filter strings 380,421

R
Receiving hints, Smart invalidation 222
Record views

and CForm View 366, 412
controls, binding to recordset 369,414
dialog template resources, customizing 366,412
introduced, tutorial 360
on multiple recordsets 371

Records, adding, editing, deleting 385, 389-390

Recordsets
adding records 385
and documents 377,418
CDatabase objects 382
combo boxes, filling from 377
database connection 382
deleting records 385
filter strings, caution 380, 421
filtering example 379, 420
introduced, tutorial 360
m_strFilter data member 379,420
opening

DaoEnrol tutorial 410
Enroll sample 364

parameterizing 378
requerying 372, 383
sorting 383
using a second 371

Redrawing views
See also Drawing views
optimizing, in OnUpdate override 55

Refresh member function, AutoClickDoc class
defined 243

Registering server applications 196

Index

ReleaseCapture member function, class CWnd, called
in OnLButtonUp 64

Releasing the mouse 64
RemoveHead member function, class CObList 46
ReplacePen member function

code for 89
described 90

Requerying
no records returned 384
recordsets 372

Resizing Client Items 206
Resource files

discussed 76
Scribble example 70

Resources
browsing 77
copying 156-157
type, Menu 70

Restoring the device context 60
ResyncScrollSizes member function, CScribble View

class, overriding to implement logical sizes 191
RUNTIME_CLASS macro 57

477

Index

478

s
Sample applications, previewing 14
Sample files, installing 12
Sample programs, location of 264
Save, Save As commands

framework, implementation of 47
implementation, in Scribble 49

Schema number, described 50
Scribble

adding member variables 91 .
binding commands 85
building, basic information 16
class CScribble View 58
class CStroke 41, 59
Clear All command 85
Clear All menu item, updating 92
commands

Clear All 85
discussed 74
Thick Line 85

compiling, Step 1 65
creating drawing from inside Contain 202
DeleteContents member function 88
document class (CScribbleDoc) 34
drawing strokes 59
exception handling 47
features

Step 1 66
Step 7 167

incremental versions of 50
InitDocument member function 45
installing

as an OLE server 168
OLE container applications 168

m_strokeList variable 35
message-driven program 83
NewStroke member function 47
OnEditClearAll member function 88
OnLButtonDown member function 63
OnPenThickOrThin member function 89
options, setting 16
overriding Serialize member function of

document 49
Pen Widths command 75
previewing program 30
printing, mapping mode problem 66
prompt strings, command 147
registering with Windows 174

Scribble (continued)
serialization, of strokes 49
speed drawing, sampling points 67
status bar, prompt strings 147
Step 1, testing 67
Step 7

adding AFXOLE.H to precompiled header 174
adding application-specific server support 186
adding embedded item support ·176
adding files to project list 172
adding m_server data member to

CScribbleApp 175
adding OLE menu resources 182
adding OLE standard resources 181
changes in position or size of embedded

items 177
changing initial size of the document 187
converting document base class from

CDocument to COleServerDoc 175
copying accelerator resources 185
copying Step 6 resources 183
copying toolbar resources 184
defining class ID 180
description of new files 173
difference from copying from samples 168
getting pointers to embedded items 177
implementing logical sizes 190
implementing server items 187
in-place toolbars, use of 184
initial size of the document, changing 187
InitInstance, explained 179
interaction between scroll bars and embedded

items 177
m_sizeDoc, initialization 187
notification when items change size or

location 186
notifying OLE when item changes 192
overview of procedure 167
putting link formats on the Clipboard 187
registering applications 180
SCRIBBLE.REG, described 173
SCRIBITM, described 173
separator bars, use of 182
setting AppWizard options 169
updating scroll bars when window sized 191

strokes
drawing 60
illustrated 41

Scribble (continued)
strokes (continued)

(list) 35
serializing 49

Thick Line command
binding 89
described 75,85

toolbars 76-77
tutorial program 11
versions of, described 15
view class, CScribble View 56
Windows messages

handling 60
mouse-related 60

Scrolling, view
described 122-123,126-127
example 124-125, 127-129

SDI applications, and view objects 54
Selecting

bitmap files 79
pen into the device context, SelectObject member

function 60
SelectObject member function, class CDC 60
Sending hints, Smart invalidation 223
Separator bars, used in server applications 182
Serialization

CArchive object, introduced 49
CContainerItem class 209
DECLARE_DYNCREA TE macro 48
DECLARE~SERIAL and IMPLEMENT_SERIAL

macros 50
described 47
dialog boxes, Open and Save As 47
documents 48-49
embedded objects 49
fixed-sze data types 51
in Scribble, illustrated 47
incremental versions 50
loading from disk 49
of CD Word Array object 50
overview of 343
portability 51
schema number 50
Scribble, implementation 49
Serialize member function, class CStroke 50
strokes (Scribble) 49
through pointers 49

Index

Serialization (continued)
usage of

Exchange Version 344
_wVerMajor 344
_wVerMinor 344

Serialize member function
AppWizard 49
class CStroke 50
described 49
of document class 48

Serializing documents 48
Server application

adding
OLE standard resources 181
OLE menu resrouces 182

defining class ID 180
described 167
in-place toolbar uses 184
InitInstance 179
menu resources, use of separator bars 182
notifying OLE when item changes 192
putting link formats on the Clipboard 187
registering 174, 196
required capabilities 167
updating scroll bars when window sized 191

Server items
implementing 187
OnDraw 188

SetCapture member function, class CWnd, called in
OnLButtonDown 63

SetCheck member function 94
SetContainerInfo member function, class

CDocTemplate, calling from Contain 203
SetCursor member function, class CRectTracker 214
SetModifiedFlag member function, class CDocument

called in NewStroke 47
described 47,286

SetScrollSizes member function, class CScrollView
described 123
examples 125, 139

SetSelection member function, class CContainerView
defined 210
supporting hints 223

SetServerInfo member function, class CDocTemplate
179

Setting
AppWizard path 21, 170,200,235,361,406
options in tutorial program 16

Setup programs, creating 439

479

Index

480

SHIFf+Fl help 149
Shipping AppWizard-created help files 148
Shortcut menus, Windows 95 usage 437
Single document interface See SDI
Size of contained object, Container application 209
Size of object, Client items 226
Skeleton application 19
Smart invalidation

described 221
objects when moved by server 224
selected objects 223
sending hints 223
tracked objects 224
views 222

Sorting recordsets 383
Split bar, defined 130
Splitbox,defined 130
Splitter windows

adding with AppWizard 131, 133
adding with Class Wizard 131
described 129-130
example 131-133
views 55

Starter application
building 26
compiling 20, 26
described 19-20,26-27
features 27
procedure 26-27
running 27

Starter classes, viewing 23
Starter files, compiling 26
Starting AppWizard 19
Status bar, prompt strings, command 147
STDREG tool 356
STDREG.MDB file

location 352, 399
student registration database

described 351,357
inDAO 398
using with DaoEnrol 401

Step 0 subdirectory See Starter application
Steps, tutorial

Step 0 20
Step 1 53
Step 2 30, 69, 84
subdirectories for 197
table of 15

Stock color property page, adding 323

Stock font property page, adding 323
Stock methods, AboutBox 269
Stock properties

BackColor 273
Caption 317-318
Font 317

Storage of data in document 32
Storing data on disk See Serialization
String segment 0, strings in 158
Stroke

drawing
DrawStroke member function 60
initiating 63
itself in view 59
tracking mouse 64

in Scribble program

list

defined 41
introduced 34
serializing, described 49

already exists 49
discussed See m_strokeList
embedded objects 49
iterating 59
Scribble, introduced 35
Serialize member function of 48

Student Registration database
location 352, 399
preparation for DaoEnrol tutorial 401
registering with ODBC 355
setting up for DaoEnrol 400
setup 354
STDREG.MDB file 351,398
tables for DAO 398
tables 351
tutorial, DAO 398
tutorial, Enroll 351

Subdirectories
discussed 21, 170,200,235,361,406
for tutorial steps 197
tutorial, table of 15

Summary information, providing in Windows 95
applications 448

System registry, Windows 95 applications usage 439

T
_Tmacro

CircleShape 284
usage of 331

Tab order, setting 101
Tabbed property pages, Windows 95 applications 434
Tables, selecting

DaoEnrol tutorial 406
Enroll sample 361

Technical notes, Note 28, help 151
Template classes, Scribble's use of 37
Terminating stroke drawing, in Scribble 64
Test command 101
Test Container, Notification Log dialog 333
Testing

default property page 332
Scribble, Step 1 67

Text colors, setting 322
Text controls, modifying properties, example 100
Thick Line command

binding 89
described 83
location 85
menu item 76
Scribble 85
toolbar button 76
update handler for 93

Thick Line toolbar button 83
Tips, deleting colum~ bindings 409
Toolbar editor

discussed 76
example 77

Toolbars
bitmaps 76
buttons

adding 76
checked state 94
checking 92
clipboard commands 77
command ID of 76
creating 396
Cut, Copy, Paste 77
editing 77
enabling 92
help 77
Open, Save, Print commands 77

example 76
generating commands 83

Toolbars (continued)
Scribble 76-77
Thick Line button 76, 83

Tracked objects, invalidating 224
Tracking the mouse 61, 64
TRY macro 47
Tutorials

adding server support, two cases 167
assumptions 195, 351
Autoclik

goals 229
step overview 233

Container
features 199, 219
goa~ 197,199,219
using before adding code 202

DAO
assumptions 398
list, tasks 397
overview 397
Step 4 402

DaoEnrol tutorial 398
Enroll sample 351
example application, setting options 16
files used in (list) 15
form-based applications 359,404
list, tasks 351
Scribble

build information 16
program, described 11
Step 4 358
Step 7 167

step subdirectories 197
Steps

described 357,402
project files 357
Step 1 30
subdirectories for 15
subdirectories 357
table of 15

student registration 351,398
using 357

Type library, creating 242

u
UI recommendations, Windows 95 434
Uninstall programs, creating 439
Update hint, defining, Smart invalidation 222

Index

481

Index

482

UpdateAllViews member function
called from OnEditClearAll 88
class CDocument 56
described 116-117
example 120

UpdateData member function, class CWnd 111, 113
UpdateFromServerExtent member function

class CContainerItem, getting extent of client
item 226

Updating
current record 389
multiple views 56
Scribble's Clear All menu item 92
user interface 372
user-interface objects

checking items 94
command-based method 92
discussed 92
example, OnUpdateEditClearAll member

function 92
making handlers fast 93
OnUpdatePenThickOrThin member function 93

views 33,56
Uppercase letters, document conventions xx
User interface

v

design, Enroll sample 385
guidelines, database applications 385
objects, updating 92

Variables, member See Member variables
Version control

of OLE controls, overview of Steps 347
rebuilding controls with 347
support for 343

Versions, support for 343
View menu, toggling status bar and toolbar 70
View objects

access to document data 55
calling document members from 55
created by frame window 55
creating 55-56
described 54
functionality 55
handling mouse messages 61
in relation to documents 54
interaction with documents 55
introduced 30

View objects (continued)
message handlers 60
Scribble

delegates stroke drawing 59
tasks, redrawing a stroke 56

separation from document 32
splitter windows 55
updating of 33
user interaction with documents 54
usually one per document 55
when view changes 56
window client areas 54

Viewing
projects 23
starter classes 23

Viewport origin, used for scrolling 126
Views

w

See also View objects
and document, illustrated 54
as child window 54
documents

illustrated 31
interactions between 33

multiple, updating all 56
printing with 136
scrolling

described 122-123, 126-127
examples 124-125, 127, 129

updating 116-120

Window menu, MDI applications only 70
Windows

client area of, and view object 54
device context, encapsulated by class CDC 60
message-driven programming 83
messages

handling 60
WizardBar, Messages list box 86

splitter
described 129-130
example 131-133

Windows 95
and serialization 173
applications 431

common control usage 436
display shortcut menus 437
drag-and-drop operations 442

Windows 95 (continued)
applications 431 (continued)

drop target functionality 441
logo requirements 431, 450
MAPI support 449
OLE support, adding 441
providing Summary information 448
setup programs, creating 439
system registry usage 439

functionality, adding 431
logo requirements 431
logo 450
VI recommendations 434
upgrading Help project files to 155

Windows NT, and serialization 51
Wizardbar

adding handlers 87
binding commands, Clear All 86
building dialog boxes 102
capabilities 84
deleting message-map entries, necessary follow-

up 85
editing code 84
examples, Clear All update handler 92
mapping commands to handlers 83
message map entries 84
Messages list box 86
scenarios for using 85
using 25

WM_LBVTTONDOWN message 60, 63
WM_LBVTTONVP message 60, 64
WM_MOVSEMOVE message 60, 64
Working with WizardBar 85
_wVerMajor 344
_wVerMinor 344

Index

483

Contributors to Tutorials

Gail Brown, Editor

Richard Carlson, Index Editor

Ted Chiang, Writer

Frank Crockett, Writer

David Adam Edelstein, Art Director

Pat Fenn, Production

Cathy Fisher, Proofreader

Jocelyn Garner, Writer

Kerry Lehto, Editor

Sibyl Lundy, Proofreader

Robert Reynolds, Illustrator

Chuck Sphar, Writer

Laura Wall, Writer

