

The Waite Group's

Microsoft® C
Programming for the PC

HOWARD W SAMS &.. COMPANY
HAYDEN BOOKS

Related Titles

The Waite Group's C Primer
Plus, Revised Edition
Mitchell Waite, Stephen Prata, and
Donald Martin

The Waite Group's
Advanced C Primer++
Stephen Prata

The Waite Group's C ++
Programming (Version 2.0)
Edited by The Waite Group

The Waite Group's Essential
Guide to ANSI C
Naba Barkakati

The Waite Group's Essential
Guide to Microsoft® C
(forthcoming)
Naba Barkakati

The Waite Group's Microsoft'R
C Bible
Naba Barkakati

The Waite Group's QuickC™
Bible
N aba Barkakati

The Waite Group's Essential
Guide to Turbo C®
The Waite Group

The Waite Group's Turbo C®
Bible
Naba Barkakati

The Waite Group's Turbo C®
Programming for the PC,
Revised Edition
Robert Lafore

The Waite Group's Inside the
Amiga® with C,
Second Edition
John Berry

The Waite Group's MS-DOS®
Bible, Second Edition
Steven Simrin

The Waite Group's MS-DOS®
Developer's Guide,
Revised Edition
John Angermeyer, Kevin Jaeger, et al

The Waite Group's
Understanding MS-DOS®
Kate O'Day and John Angermeyer

The Waite Group's Tricks of
the MS-DOS® Masters
John Angermeyer, Rich Fahringer,
Kevin Jaeger, and Dan Shafer

The Waite Group's
Discovering MS-DOS®
Kate O'Day

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

The Waite Group's

Microsoft® C
Programming for the PC

Revised Edition

Robert Lafore

HOWARD W. SAMS &.COMPANY
A Division of Macmillan, Inc.

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

©1989 by The Waite Group, Inc.

SECOND EDITION
SECOND PRINTING-1989

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. While every
precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-22661-8
Library of Congress Catalog Card Number: 88-64064

From The Waite Group, Inc.
Development Editor: Mitchell Waite
Editorial Director: James Stockford
Managing Editor, Revised Edition: Scott Calamar
Content Editor, Revised Edition: Kay Nelson

From Howard W. Sams & Company
Acquisitions Editor: James S. Hill
Development Editor: James Rounds
Manuscript Editor: Don MacLaren, BooksCraft, Inc., Indianapolis
Production Coordinator: Marjorie Hopper
Illustrators: William D. Basham, Ralph E. Lund, and T. R. Emrick
Cover Artist: Ron Troxell
Indexer: Northwind Editorial Services
Electronic Coding Processor: Automated Business Services
Compositor: Shepard Poorman Communications Corp.

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks are listed below. In addition, terms suspected of being
trademarks or service marks have been appropriately capitalized.
Howard W. Sams & Company cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

CodeView debugging program is a trademark of Microsoft
Corporation.

IBM AT is a registered trademark of International Business Machines
Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

PC-DOS is a trademark of CMC International Corporation.

UNIX is a registered trademark of Bell Laboratories.

This book is dedicated to RWL, GGL,
and all the gang at 10 Rose Hill Road.

About the Author

Robert Lafore has been involved in the computer industry since
1965, when he learned assembly language on the DEC PDP-5. He
holds degrees in mathematics and electrical engineering; founded
Interactive Fiction, a software games company; and has served as
managing editor of The Waite Group. Mr. Lafore is author or co
author of the books Soul of CPIM, Assembly Language Primer for
the IBM PC, Microsoft Macinations, Turbo C Programming for the

IBM, and Peter Norton's Inside OS/2. Mr. Lafore has also been a petroleum
engineer in Southeast Asia, a systems analyst at the Lawrence Berkeley
Laboratory, and has sailed his own boat to the South Pacific.

Acknowledgments

vi

I'd like to thank Mitchell Waite of The Waite Group for his dedicated and
painstaking editing (complete with humorous asides and subliminal suggestions)
and Harry Chesley, co-author of Supercharging C (Addison-Wesley), for his
expert advice.

I am also indebted to the following individuals at Howard W Sams &
Company: Jim Hill for having the faith to buy this book idea, Damon Davis for
publishing it, Jim Rounds for nursing it into the system, and Wendy Ford and
Marjorie Hopper for overseeing its production.

I would also like to thank Doug Adams for his technical edit; Bruce Webster of
Byte magazine, Ray Duncan, Herbert Schildt and Kay Nelson for reviewing the final
manuscript; and Don MacLaren of BooksCraft for his painstaking and skilled copy
editing.

Foreword by Ray Duncan xiii

Foreword by Douglas Adams xv

Introduction xvii

1. Getting Started 1
Compiling and Linking 2
Setting Up Your System 5
Developing Your First Program 12
The Basic Structure of C Programs 14
Syntax Errors and Debugging 17
Link Errors 19
Exploring the printf() Function 20
Summary 23
Questions 23
Exercises 24

2. C Building Blocks 25
Variables 26
Input/Output 33
Operators 46
Comments 55
Summary 57
Questions 58
Exercises 61

3. Loops 63
The for Loop 64
The while Loop 76
The do while Loop 86
Summary 89
Questions 90
Exercises 92

vii

Microsoft C Programming

4. Decisions 93
The if Statement 94
The if-else Statement 98
The else-if Construct 112
The switch Statement 11 7
The Conditional Operator 121
Summary 122
Questions 123
Exercises 125

5. Functions 127
What Do Functions Do? 128
Simple Functions 130
Functions that Return a Value 134
Using Arguments to Pass Data to a Function 139
Sending and Receiving 147
Using More than One Function 148
Prototypes vs. Classical Kand R 150
External Variables 152
Preprocessor Directives 153
Prototypes for Library Functions 162
Compiler Warning Levels 163
Summary 164
Questions 164
Exercises 16 7

6. Arrays and Strings 169
Arrays 170
Referring to Individual Elements of the Array 172
Strings 197
Summary 208
Questions 209
Exercises 212

7. Pointers 215
Pointer Overview 216
Returning Data from Functions 218
Pointers and Arrays 229
Pointers and Strings 237
Double Indirection: Pointers to Pointers 245
Summary 252
Questions 253
Exercises 257

8. Keyboard and Cursor 259
Extended Keyboard Codes 260

viii

Contents

ANSI.SYS 263
Cursor Control with ANSI.SYS 266
Character Attributes 273
Selectable Menu 275
Function Key Assignment Using ANSI.SYS 278
Command-Line Arguments 281
Redirection 284
Summary 289
Questions 290
Exercises 292

9. Structures, Unions, and ROM BIOS 293
Structures 294
Unions 323
Unions of Structures 325
The ROM BIOS 326
Summary 336
Questions 336
Exercises 339

10. Memory and the Character Display 341
The Bitwise Operators 342
The Character Display Memory 355
The Attribute Byte 365
Bit Fields 368
The Equipment List Word 374
Summary 376
Questions 376
Exercises 380

11. Direct-Access Color Graphics 381
Modes 382
Setting Modes 387
Displaying Pixels with ROM Routines 390
Setting Color Palette and Background 395
Direct Memory Access and the Graphics Display 398
EGA-Specific Modes 409
VGA-Specific Modes 429
Summary 431
Questions 432
Exercises 434

12. Microsoft Graphics Functions 437
The Graphics Environment 439
Graphics Shapes 443
Filling 454

ix

Microsoft C Programming

x

Colors
Text

465
476

Advanced Graphics 485
just for Fun 496
Summary 505
Questions 505
Exercises 507

13. Files
Types of Disk IIO 510
Standard Input/Output 512
Binary Mode and Text Mode 527
Record Input/Output 532
Random Access 540
Error Conditions 542
System-Level Input/Output 544
Redirection 552
When to Use What 554
Summary 554
Questions 555
Exercises 558

14. Larger Programs
Separate Compilation 562
Conditional Compilation Using #ifdef 571
Memory Models 574
Optimization 577
Summary 578
Questions 579

15. Advanced Variables
Storage Classes 582
Enumerated Data Type 590
Renaming Data Types with typedef 593
Identifiers and Naming Classes 595
Type Conversion and Casting 597
Functions as Addresses 598
Unraveling Complex C Declarations 600
Labels and the goto Statement 601
Summary 602
Questions 603

Appendix A. Reference

Appendix B. Supplementary Programs

Appendix C. Hexadecimal Numbering

509

561

581

606

624

642

Contents

Appendix D. Bibliography 649

Appendix E. ASCII Chart 651

Appendix F. The CodeView Debugger 658

Appendix G. The QuickC Debugger 667

Appendix H. The QuickC Editor 678

Appendix I. Graphics Functions Reference 685

Answers To Questions and Exercises 690

Index 739

xi

Foreword
by Ray Duncan

In just a decade, C has made the transition from an obscure Bell Laboratories
house language to the programming language of choice for professionals. C
has been used successfully for every type of programming problem imaginable
-from operating systems to spreadsheets to expert systems-and efficient
compilers are available for machines ranging in power from the Apple to the
Cray. On the new wave of the windowing, graphics-intensive 68000-based
personal computers such as the Macintosh, Amiga, and Atari, C is the de facto
standard for serious developers.

Why has C met with such success when other languages, born in the same
time frame and designed with similar objectives, have gained only limited
acceptance or have faded from view altogether? C's intimate association with
UNIX, and the penetration into academia that was made possible by Bell
Laboratory's broadminded licensing plans for universities, must be partly
responsible. But the largest measure of C's success seems to be based on purely
practical considerations: the portablility of the compiler; the standard library
concept; a powerful and varied repertoire of operators; a spare, elegant syntax;
ready access to the hardware when needed; and the ease with which ap
plications can be optimized by hand-coding isolated procedures.

The increasing dominance of C for both systems and applications
programming has created a tremendous market for C books. I must confess that
I am a compulsive buyer of computer books of every sort: an addiction based on
curiosity, on a desire to learn from the approaches and styles of other authors,
and on a continual search for excellent new books to recommend to readers of
my column in Dr. Dobb's journal. While indulging this pleasant but somewhat
expensive habit over the last few years, I have built up quite a collection of C
tutorials and reference works, but I have found nearly all of the introductory C
books to be unsatisfying. The authors either have difficulty discussing C without
blurring the issues with UNIX-specific details, or they succumb to a fascination
with clever C tricks, or they simply progress so quickly from elementary
concepts to lengthy, complex example programs that they leave the reader
behind.

When Mitchell Waite asked me if I would like to review Robert Lafore's
manuscript for this book, I was surprised but gratified. I have long considered
Robert's Assembly Language Primer for the IBM PC and XT (New American
Library) to set the standard of quality in its category, and I hoped that his C

xiii

Microsoft C Programming

xiv

primer would be equally well organized, lucid, and complete. I certainly was
not disappointed! I believe the book you are holding in your hands is the most
accessible book on C that has yet been published. The material is presented in
Robert's usual clear, forthright style, and the pace is steady but not intimidating.
Best of all, the example programs are short but interesting, clearly demonstrate
the concepts under discussion, and are relevant to everyday programming
problems on the IBM PC-you don't need to speak UNIX or buy your own VAX
to reap their benefits.

Ray Duncan is a software developer and columnist for Dr. Dobb's Journal. He is
also author of Advanced MS-DOS.

Foreword
by Douglas Adams

Before reading this book, I asked myself if there was really a need for yet
another book on C programming. I now feel the answer is a ringing yes. Robert
Lafore has done an outstanding job of presenting information for C
programmers who use the hardware of IBM and compatible personal computers
and want to understand the specifics of the Microsoft C compiler.

Because of the unique approach of this book it will be useful both to
beginning and advanced C programmers. The C programming language was
really designed for use with the UNIX operating system on minicomputers.
Compiler writers and Microsoft in particular have gone to a great deal of effort
to provide a powerful tool for personal computers. Other books on the topic
tend to ignore the PC-DOS/MS-DOS operating system and personal computers.
If this is your working environment, you need this book. There are three major
advantages to this book; I will mention each in turn.

First, the latest version of Microsoft C is now considered to be the most
powerful and efficient C compiler for personal computers. It has been
developed over a period of years by Microsoft, which used C to compile many of
its successful programs. Its libraries are unusually complete and it generates
very compact and efficient code. It also includes a source code debugging tool,
which is usually a costly extra with other compilers. It is thoroughly up-to-date
and includes most of the proposed ANSI enhancements. Microsoft continues to
improve the compiler, while offering program updates at a modest cost. If you
own another C compiler, this is still a fine book with which to learn C
programming.

Second, this book carefully makes clear how the C language is best used
with PC-DOS. With nominal understanding of PC-DOS/MS-DOS, you will be
able to begin C programming with a minimum of effort. The book, as well as the
compiler, supports the PC-DOS/MS-DOS operating system very well. It is well
known that Microsoft is always working on improving the operating system;
you can rest assured that as the operating system is improved, the C compiler
will also be upgraded.

Third, and perhaps most important of all, this book delves into how the
IBM hardware works. While there are several books treating these topics for the
assembly language programmer, this is the first book devoted to accessing
hardware for the C programmer. This is important since assembly language is
not necessary for most programming. Since C is much easier to understand,

xv

Microsoft C Programming

xvi

maintain, and enhance, most early programs written in assembler are now
being rewritten in C by software developers.

The monochrome display and graphics display treated here are not
discussed in other books. Finally, the chapter on PC-DOS files is indispensable,
since a program that cannot store data on a disk file is of little value. Most of this
information has previously been available only in Microsoft's technical
reference manuals. These are not the free manuals that came with your
computer, but are special publications that are very expensive and difficult to
obtain.

The book is fun. The explanations are clear. The programming examples
which you are encouraged to try out are interesting and useful. Questions and
exercises follow the chapters, with the answers supplied. This is a good book for
programming classes and an outstanding book for you to use to learn on your
own.

Douglas Adams' 18 years of computing experience includes the development of
programs in C for AT&T, which it is using nationwide. He is president of Century
System Corp., a consulting firm in San Francisco.

Introduction

This book has two interconnected goals: to teach the C programming language,
and to show how C can be used to write serious programs on the IBM family of
computers-the PC, XT, AT, and PS/2 series-and compatible machines from
other manufacturers.

The Microsoft C Optimizing Compiler is the most widely used professional
software development tool for the IBM. QuickC, which is included in the
Optimizing Compiler and can also be purchased separately, is an easy-to-use
integrated development environment, ideally suitable for those learning C. This
book works with both the Optimizing Compiler and QuickC.

Who This Book Is For
Almost anyone who has used a computer for any length of time has developed
an idea for a new program or an improvement to an existing one. If you've had
such an idea and would like to transform it into a working, marketable program
for the IBM, this book will show you how. If you're a student interested in
learning C, with an IBM computer at your disposal, this book will provide an
easy-to-follow but thorough introduction to the language. It is suitable for use in
school and university computer science courses.

What's Different about This Book?
Many introductory books on C present the language either in a UNIX-based
environment or in a theoretical context, ignoring the machine the language is
running on. This book uses a different approach: it teaches C in the context of
IBM computers and the PC-DOS (or MS-DOS) operating system. This method
offers several advantages.

First, concentrating on a specific machine makes learning the language
easier and more interesting. C running in a UNIX environment generally does
not have access to graphics or other hardware-related peripherals. Therefore
programming examples must concentrate on simple text-based interaction. In
the IBM world, on the other hand, we can make use of such features as graphics
characters, program control of the cursor, and color graphics-capabilities that
can enliven program examples and demonstrations.

xvii

Microsoft C Programming

Also, as we move on to more complex aspects of the C language, C con
structs that might otherwise seem theoretical and mysterious-such as far
pointers and unions-can be explained by relating them to actual applications on
the IBM.

Finally, if your goal is to write programs specifically for the IBM, then
learning C in the IBM environment, with examples using specific aspects of the
IBM hardware, will give you a head start in the creation of practical programs.

Learn by Doing

We have used a hands-on approach in this book. We believe that trying things
yourself is one of the best ways to learn, so examples are presented as complete
working programs, which can be typed in and executed. In general, we show
what the output from the examples looks like, so you can be sure your program
is functioning correctly. Very short examples are given at the beginning of the
book, working up to longer and more sophisticated programs at the end.

Illustrations and Exercises

We've also tried to make this a visual book. Many programming concepts are
best explained using pictures, so wherever possible we use figures to support
the text.

Each chapter concludes with a set of questions to test your general under
standing of the material covered, and programming exercises so you can be sure
you understand how to put the concepts to work. Answers to the questions and
exercises can be found in the back of the book.

Why Use C?

xviii

In the last several years, C has become the overwhelming choice of serious
programmers on IBMs. Why? C is unique among programming languages in that
it provides the convenience of a higher-level language such as BASIC or Pascal,
while allowing close control of hardware and peripherals, as assembly language
does. Most operations that can be performed on the IBM in assembly language
can be accomplished-usually far more conveniently-in C.

C has other advantages as well. The better C compilers (the Microsoft
compiler in particular) can now generate amazingly fast code. This code is so
efficient that it is often difficult to produce significant speed increases by rewrit
ing it in assembly language. C is also a well-structured language; its syntax
makes it easy to write programs that are modular and therefore easy to under
stand and maintain. The C language includes many features specifically de
signed to help create large or complex programs. Finally, C is more portable
(programs can be converted to run on a machine other than that originally
intended) than most languages.

Introduction

What You Should Know Before You Read This Book
Before you read this book, you should probably have at least some experience
with a higher-level language, such as Pascal or BASIC. It is certainly possible to
learn C as your first computer language. However, C is geared more to the
experienced programmer. Its syntax is not-at least at first glance-as easy to
understand as BASIC, and it incorporates some concepts that a beginning pro
grammer might find difficult. So we will assume that you have had some
experience with a higher-level language and that you are familiar with such
concepts as variables, looping, conditional statements, and functions (called
procedures or subroutines in other languages).

You should also be familiar with PC-DOS (called MS-DOS on non-IBM
computers) or OS/2 and how it works. You should be able to list directories and
create, execute, copy, and erase files, and you should also be familiar with tree
structured directories and be able to move about in them.

What Equipment You Need to Use This Book
You can use this book with a variety of hardware and software configurations.
Here's what you'll need.

Hardware

You should have access to an IBM PC, XT, AT, or PS/2, or a compatible machine.
Either a monochrome or color monitor will work fine for most of the book.
(We'll mention the exception in a moment.)

You'll need either dual floppy drives or a fixed (hard) disk drive with a
single floppy drive. Most modern C compilers are so large that juggling disk
space becomes a problem on floppies, and floppies are also much slower. A
student can probably get by with a floppy system, but if you want to develop
your own programs, you'll save so much time with a fixed disk that it is almost
an essential investment.

Chapters 11 and 12, on color graphics, require the use of a color monitor.
Almost any color monitor will work for the bulk of these chapters, since most of
the examples work with CGA graphics modes. You'll also need a CGA graphics
adaptor board. A few examples need EGA and VGA graphics, so an EGA or
VGA board, and a monitor to match, is preferable.

Finally, while it's not absolutely essential, you'll probably want a printer to
generate program listings and record program output.

Software

You should use the MS-DOS or PC-DOS operating system, version 2.0 or greater.
You can also run the Optimizing Compiler version 5.1 in OS/2 protected mode
and QuickC in the OS/2 compatibility box. (However, some example programs
will not run in OS/2 protected mode.)

You'll need either the Microsoft C Optimizing Compiler or QuickC.

xix

Microsoft C Programming

QuickC supports all the examples in this book. Optimizing Compiler versions
3.0, 4.0, 5.0, and 5.1 are all compatible with almost all the examples in this book.
The exception is the Microsoft graphics library, described in Chapter 12, which
is supported only by versions 5.0 and later of the Optimizing Compiler. Future
releases of these products will probably continue to be compatible.

Actually, much of the material in this book is applicable no matter which
compiler you're using. However, the descriptions of the installation procedures,
debuggers, and editors are specific to the Microsoft products. Also some library
functions, notably graphics, are Microsoft-specific, and some other library func
tions have minor variations between compilers.

QuickC has its own built-in editor, which is described in Appendix I.
However, if you're using the Optimizing Compiler, you'll need a text editor to
write the source files for your programs. Many of the common word processors
can be used for this purpose. In some, such as WordStar and WordPerfect, you'll
need to save the text in a special ASCII format so it will not contain control
characters that the compiler can't digest.

Many professionals use special editors designed for writing programs, such
as BRIEF, VEDIT, Epsilon, the Norton Editor, and so on. Version 5.1 of the
Optimizing Compiler includes such an editor, called "Microsoft Editor." You can
also use QuickC to generate source files, then save them to disk and compile
with the Optimizing Compiler.

7he Optimizing Compiler vs. QuickC
Should you use the Optimizing Compiler or QuickC with this book? The
Optimizing Compiler is the most widely used professional software develop
ment tool for the IBM. It generates highly optimized code, can accommodate
very large and complex programs, contains an excellent run-time library, and
comes with a rich assortment of utilities. As Dr. Dobbs journal put it after
comparing 18 different C compilers, "Microsoft's C compiler is the best MS
DOS development environment value today."

QuickC does not generate code that is as highly optimized, and it lacks
other features of the Optimizing Compiler, including the powerful Code View
debugger. QuickC's strength is the ease of use of its integrated environment: the
edit-compile-link-execute cycle is far faster and more convenient than that in the
Optimizing Compiler (or other traditional compilers).

You can certainly use QuickC for all the examples in this book. As you
grow in experience, and as your programs grow in complexity, you may find
QuickC too limiting. At this point, you can switch to the Optimizing Compiler.
Or you can start right off with the Optimizing Compiler. This book supports
both approaches.

What Version of C?

xx

The C language was created by Dennis Ritchie at Bell Laboratories in the early
1970s. (Its predecessor was a language called B.) In 1978 Brian Kernighan and

Introduction

Dennis Ritchie published a book, The C Programming Language, which until
recently served as an effective definition of the language. Now a new standard is
emerging from the American National Standards Institute, the ANSI-standard C.
Some compilers, including Microsoft's Optimizing Compiler and QuickC, at
tempt to adhere to this new standard as much as possible.

In this book, since we'll be basing our examples on the syntax acceptable
to the Optimizing Compiler and QuickC, we'll be following the ANSI standard.

How This Book Is Organized

The first seven chapters of this book cover the fundamentals of the C language.
In the first chapter you'll write a very simple C program, compile it, link it, and
run it. This will give you an idea of what the language looks like and how it's
used. The second chapter discusses some preliminaries you'll need to know
before moving on to larger programs: variables, simple input/output statements,
and operators, such as (=) and (+). Again, programming examples are used to
demonstrate the various topics. Chapters 3 and 4 cover the most basic of C
constructs: loops and decisions. Chapter 5 describes functions, Chapter 6 covers
arrays, and Chapter 7 explains pointers, a construct widely used in C but
unknown or little used in many other languages.

At this point the focus sh if ts from C to the IBM. In Chapter 8 we look
closely at how the keyboard and the display work, and how C can be used to
gain control of these devices. Chapter 9 discusses the advanced C constructs of
structures and unions, and shows how unions are used in accessing the impor
tant set of routines built into the IBM's hardware: the Read-Only Memory Basic
Input/Output System (ROM BIOS). Chapter 10 covers the monochrome display,
and Chapter 11 shows how to create color graphics using ROM BIOS routines
and directly accessing video memory. Chapter 12 describes the Microsoft graph
ics library.

Chapter 13 covers files and their use with floppy and fixed disk systems in
the PC-DOS environment. Chapter 14 explores a variety of topics that are useful
with larger and more complex programs, and Chapter 15 concludes the book
with a discussion of some of the finer points of using variables.

A number of appendices are also provided to help you learn C and to make
the book easier to use as a reference. The first appendix summarizes the syntax
of the major C constructions. If you've forgotten whether to use a colon or a
semicolon in the switch statement, for example, you can look it up there.
Appendix B contains a number of programs that are too large or too complex to
fit in the main part of the book. These programs give an idea of how larger
programs can be constructed out of smaller building blocks and demonstrate
some new programming techniques. Appendix C explains the hexadecimal (base
16) numbering system. Hexadecimal is used at various points in the book and is
useful for a thorough understanding of the IBM system. Appendices D and E
consist of a bibliography and a table of the character codes used on the IBM.
Appendix F describes the operation of the Microsoft CodeView debugging util
ity. Appendix G describes the debugging features built into QuickC, Appendix H

xxi

Microsoft C Programming

explores the QuickC editor, and Appendix I summarizes the Microsoft graphics
functions described in Chapter 12.

Typographical Conventions
In the text sections of this book (as opposed to program listings) all C keywords,
such as if, while, and switch, will be shown in boldface to better distinguish
them from the ordinary usage of these words. Likewise, all C library functions,
such as printf (), gets(), and lseek(), will be in bold as will user-written func
tions. Variable names will also be in bold to distinguish them from normal text.

Where string constants are used in the text they will be set off by double
quotes, just as they are in the C language itself: "Good morning" and "Fatal
error". Character constants will be set off by single quotes, again following the
convention of the C language: 'a' and 'b' are characters.

Operators, which often consist of a single character, will be surrounded by
parentheses for clarity: (+) and (I) .

Keyboard keys, such as [Ctrl] and [Return], are enclosed in square brackets.
Program names are not in bold, but include the file extension, such as .c

and .obj in myprog.c, yourprog.c, myprog.obj.

Good Luck, Lieutenant
This book covers a lot of territory-from simple one-line programs to complex
graphics and telecommunication applications. We intend to make the explora
tion of this territory as easy as possible, starting slowly and gradually working
up to more challenging concepts. We hope we've succeeded and that you have as
much fun reading this book as we had writing it.

Note on the Second Edition

xx ii

This revised edition of Microsoft C Programming for the IBM includes con
siderable new material designed to bring the book up to date with the
latest releases of Microsoft C products. There are three major additions:

First, a new chapter and appendix have been added to cover the new
library of Microsoft graphics functions.

Second, the text has been revised to include the installation and
operation of QuickC, and appendices have been added to describe
QuickC's editor and debugging features.

Third, the example programs have been revised to reflect the new
American National Standards Institute (ANSI) prototyping approach to
function usage.

There are other, less major, changes as well. For example, material on
the VGA graphics standard has been added.

Getting Started

Compiling and linking
Setting up the programming environment
Files used in C programs
Structure of C programs
Writing a simple program
The printf() function

1

1

1

This chapter has several goals. First, for those of you who are not familiar with
compiled languages, we will explain something about the compilation process. (If
you're an old hand at a compiled language like Pascal, you can probably skip this
first section.) Next, we want to help you get your system-the Optimizing Compiler
or QuickC-up and running. To this end, we'll discuss the various files that come
with your C compiler, how they are arranged, and how they communicate with
each other. Finally, with these preliminaries out of the way, we'll plunge into the C
language itself: you'll write your first C program and learn something about the
structure of C programs in general, and, in particular, about the printf () function.

Compiling and Linking

2

If your programming experience is restricted to BASIC or other interpreted
languages, you may find the operation of the C compiler somewhat mysterious.
In this section we'll explain briefly what a compiler does, why another program
called a "linker" is necessary, and how different files represent your program at
various stages of the development process.

Human to Machine

You write a computer program with words and symbols that are understandable
to human beings. To run on a computer, the program must be translated into
binary numbers understandable to the computer's Central Processing Unit
(CPU). These binary numbers are called "machine language," since the com
puter understands them.

It is the job of a compiler program to translate the human-readable version of
the program into the machine-readable version. Using a word processor or text
editor, you type in the program lines, creating a file called the "source file." The
compiler then uses this file to generate another file consisting of machine language.

Getting Started

Linking

It would be simple if that were the end of the story, and now you just executed
this new compiler-generated file to run your program. However, there's an
other step involved in most compiled languages, including C: a process called
''linking.''

Linking is necessary because you may not want to compile all of your
program at the same time. For instance, you may be writing a large program,
with parts of it working and debugged while other parts are under development.
Since it may take a fairly long time to compile a large program (from seconds to
many minutes, depending on the size), you may want to recompile each time
only those parts of the program that are under development.

Also, many compiled languages (C is a prime example) come with library
routines that can be added to your program. These are routines written by the
manufacturer of the compiler to perform a variety of tasks, from input/output to
mathematical functions. The manufacturer could provide source code files of
these functions, and require the user to compile them at the same time the user's
program is compiled, but it is far more efficient to provide the previously
compiled machine-language versions of the functions and have the user link
them to the machine-language version of the user's program. Thus you need a
way to link together previously compiled library and program files with recently
compiled files to produce a complete program.

For this reason the compiler generates an intermediate kind of file called
an "object file." This is a machine-language file that is incomplete: it needs to be
connected to other object files before it can work. Library files consist of groups
of object files. The linker combines all the necessary object files, both library
and user-written, to produce a final, executable program. The relationship of
compilation to linking is shown schematically in Figure 1-1.

Even if only one file is to be compiled it must still be compiled and linked
in two separate steps. However, almost all C programs use at least one library
function, thus requiring the linking of the user's program and the library file.

Program File-Naming Conventions

In most versions of C, you must give your source file the .c file extension, as in
"myprog.c". The intermediate object files are automatically given the .obj exten
sion by the compiler, and the executable program files are given the .exe exten
sion by the linker. (The compiler and linker may also generate various other
kinds of files, but we'll ignore them for the moment.) The operating system
recognizes files with the .exe extension as executable programs.

The text editor produces .c (source) files, which go to the linker, which
produces .obj (object) files, which go to the compiler, which produces .exe
(executable) files.

3

Chapter 1

4

r-6-----------------------------1
! stdio.h !
i ~ o@

0 -----------------""-----------.J
Possible
#include
Files ~

J Source File
[

l,... __ C_o_m_p-il-er ___ I

!
Object
File

rD------------------------------,
I I
I I
I I
I I
I I
I r

i, o@ o@
0 , __________ _O_ ________ ~

Library
File ~-----! __ /

I Linker I
Possible other
user-generated
Object Files

[myproy.exe l Executable
File

Figure 1-1. Relationship of Compiler and Linker

Both the Microsoft C Optimizing Compiler and QuickC hide this two-step
compile-link process to some extent. Both can compile and link with a single
command, which gives the impression that only one process is involved. Also,
QuickC generally does not generate .obj and .exe files on the disk. They are kept
(in altered form) in memory (although QuickC can generate these files when
necessary).

Getting Started

Even if it is somewhat disguised, the process of compiling source files into
object files, and linking these to create an executable file, is the underlying basis
for creating C programs.

We'll examine compiling and linking in more detail after we've seen how
the development system is organized.

Setting Up Your System
You install your system by running a utility program called SETUP. This pro
gram creates directories, copies files to them, generates library files, and per
forms various other tasks.

Some versions of Microsoft's setup programs, such as those in C 5.0 and
QuickC 1.0, require that information be supplied from arguments on the com
mand line. In newer versions, such as in C 5.1, the program queries the user once
it starts running. Regardless of format, you'll need to know what to tell the
program. We won't provide step-by-step instructions for running SETUP; the
manuals that accompany it do that. Rather, we'll provide an overview that should
make the setup process less mysterious. Don't be discouraged if setting up your
system seems complicated. Although many advanced topics are involved, an
intimate understanding of them is not necessary to perform the setup process.

Directory Structure

When you run SETUP you need to specify a directory for your entire C develop
ment system. This will be the master directory, which in turn will hold sub
directories. Usually you'll specify a directory in the root directory, using a
pathname like C:\C5, C:\QC, or C:\MSOFT.

In this master directory SETUP will install several subdirectories, such as
BIN, INCLUDE, LIB, and TMP. (There may be a few others as well.) Let's see
what sorts of files go in these subdirectories.

The BIN Subdirectory

The programs that actually do the work of compiling your program, linking it,
and carrying out other tasks are stored in a subdirectory named BIN.

The most important file is the compiler itself. If you have the Optimizing
Compiler, this consists of the file CL.EXE, which you invoke to compile {and
usually to link) your program. There are several other files, such as Cl.EXE and
CZ.EXE, that CL.EXE calls as it performs different phases of the compilation.
There are other support files for CL as well, such as CL.ERR, which contains
error messages, and CL.HLP, which contains help messages.

If you're using QuickC, fewer files are associated with the compiler.
There's QuickC itself, QC.EXE, and it's support files, such as QC.HLP, and
QC.OVR, for other QuickC activities.

The BIN directory in both the Optimizing Compiler and QuickC also contains
utility programs for specialized situations. LINK.EXE links files in special cases

5

Chapter 1

6

when CL or QuickC won't work. LIB.EXE manages library files. MAKE.EXE
automates the management of files with multiple source files. QuickC contains an
alternative compiler, QCL.EXE, for situations that are too complex for the normal
QuickC program, QC.EXE. There may be other utility programs as well, but you
won't need to worry about these until later in your study of C. Most of the example
programs in this book can be compiled and linked with QC.EXE if you're using
QuickC or CL.EXE if you' re using the Optimizing Compiler.

The INCLUDE Subdirectory

The INCLUDE subdirectory contains header files (also called "include files").
These files all have the .h file extension. Header files are difficult to explain
until you've actually programmed in C and seen how they're used, but a brief
description may give you a rough idea of their purpose.

The compiler of ten needs to be told things about specific functions or told
the names and values of constants. This information would be tedious to type
into your program every time you used a particular function. To save typing it
for a particular group of functions, the information is grouped together in a
separate file. By inserting a single line into your program listing you can cause
this entire file to be included in the source code of your program.

Including a header file in your program this way is similar to the way a
secretary using a word processor keeps files of standard headings for business
letters. The secretary calls up a header, inserts it at the beginning of the letter,
and starts the body of the letter below it.

In C, many programs include the header file STDIO.H, which contains
definitions for such standard input/output functions as printf ().

We'll talk more about header files as we go along. At this point, remember
that they are text files like the ones you generate with your editor, and they can
be combined with your program before it is compiled.

The LIB Subdirectory

We've already mentioned the existence of library files, which are groups of rou
tines for performing a variety of specific tasks, such as I/O, math, or data conver
sion. Library functions are precompiled routines that are added to your program by
the linker. C is especially rich in the number and variety of these routines. Many
activities that in other languages are built into the definition of the language (such
as input/output statements) are handled in C by library functions.

In recent versions of Microsoft C, library files have become more compli
cated because the files that come on your disk are not (usually) the files that end
up in your LIB directory. We'll learn more about this in the section on combined
libraries.

The TMP Subdirectory

While the compiler is working it generates temporary files. When the compila
tion process is complete, these files are erased, but in the meantime the com-

Getting Started

piler needs a place to put them. The TMP directory serves this purpose. When
you investigate it with DIR you'll almost always find it empty, but if you remove
it the compiler won't work.

Other Subdirectories

Some additional subdirectories may be produced during the setup process.
These can hold example programs, among other items.

You'll need to create your own subdirectories to hold your program files.
It's usually convenient to place these in the main directory with the rest of your
C system; for example, in C: \MSOFT\MYPROGS. You can develop programs
anywhere in your system, however.

Combined Libraries

The SETUP program will ask you several questions about libraries. To answer
these, you should have a rough idea of what SETUP does with library files. This
requires a very brief background in two topics: memory models and floating
point emulation. (We'll explore memory models more thoroughly in Chapter 14.)

Memory Models
The architecture of the Intel 8086 family of chips used in MS-DOS computers
imposes a fixed segment size on programs and data. A segment is 64K (65,536)
bytes. Many programs use the small memory model and are limited to one
segment of data and one of code. By using the other memory models, programs
can be created with more data segments (the compact model), or more code
segments (the medium model), or both (the large model). These programs will
not execute as fast as the small model, so a trade-off is involved.

A different library of routines is required for each memory model. When
you set up your system, you need to specify which memory model (or models)
you will be using, so the correct routines can be combined with your system.
For the programs in this book, you should specify the small model if you're
using the Optimizing Compiler. If you're using QuickC, you should specify the
medium model, which is QuickC's default.

Floating Point Routines
A different set of math routines must be used for floating point (or real) numbers
than for integers. Because executing floating point arithmetic operations is
comparatively time consuming, several alternative ways of carrying them out
have been developed.

If you have a math coprocessor chip (an 8087, 80287, or 80387) in your
computer, you can use special routines that take advantage of this chip to carry
out floating point operations. This is by far the fastest approach. However, not
all computers have a math coprocessor.

For computers without a coprocessor, a different, slower, set of floating
point routines is available. These use software to "emulate" the operation of the
math chip. These will work on machines with a math coprocessor as well.

The Optimizing Compiler includes another floating point option: the

7

Chapter 1

8

alternate math package. This is similar to the emulation package, but it generates
code that is faster although less accurate than the emulator's.

A different set of library routines is used, depending on which routines
you want to use for floating point operations. In this book we'll assume that you
specify the emulator.

Building Combined Libraries
The distribution disks that come in your system contain uncombined library files.
Usually the SETUP program combines an appropriate selection of these files,
depending on the memory model and floating point option you choose, to form
a single combined library file. Let's look for a moment at the uncombined files.

The bulk of all the library routines go in files called SLIBC.LIB,
MLIBC.LIB, CLIBC.LIB, and LLIBC.LIB. One of these four files is used,
depending on which memory model you choose. Parts of the floating point
routines are in model-specific files called SLIBFP.LIB, MLIBFP.LIB, and so on.
Other parts are in 87.LIB if you're using the math coprocessor or in EM.LIB if
you're using the emulator.

You can link these individual files to your program directly (this is called
using uncombined libraries), but the linking process is speeded up significantly
and made more convenient if these files are merged into a single combined
library file. This is one of the major tasks of the SETUP program. For instance, if
you've specified the small model and emulation, SETUP will combine
SLIBC.LIB, SLIBFP.LIB, EM.LIB (and perhaps a few other odds and ends) into a
single library file called SLIBCE.LIB. The first letter in SLIBCE reflects the
memory model (S, M, C, or L), and the last character reflects the emulation
mode (E for emulation or 7 for the math coprocessor). For the Optimizing
Compiler, SETUP should construct SLIBCE.LIB. For QuickC, which uses the
medium memory model, it should make MLIBCE.LIB.

The Graphics Library
Another question you will need to answer for the SETUP program is whether
you want to include the graphics library in your combined library. You should
include this file, since in Chapter 12 we'll be writing example programs that call
the functions in this library. These routines are in the uncombined library file
GRAPHICS.LIB and will be automatically added to your combined library file if
you so specify.

Files and More Files

We've talked about many kinds of files in many different directories. Why does
C use so many different files?

Dividing its various aspects into separate files gives the language more
flexibility. By keeping the input/output routines in separate library files, for
instance, it's easier to rewrite C to work on a different computer: all you need to
change are the files containing input/output functions; the language itself re
mains the same. The multiplicity of library files also means that the routines
used with a particular program can be tailored to that program's needs: if you
don't need the large memory model, for example, you won't need to use the
complex routines that go with it.

Getting Started

Don't worry at this point if the purpose of the various kinds of files still
seems a bit obscure. Once you've had some experience with the language itself
you'll be better able to see how they fit together.

The STARTUP.BAT File

The SETUP program generates a file that can replace (or be combined with)
your existing STARTUP.BAT file.

The STARTUP.BAT file needs to contain two kinds of commands. One tells
DOS where the compiler is, so you can compile programs no matter which
directory you're in. The other command sets up equivalencies between sym
bolic names known to the compiler and linker and the actual pathnames in your
system, so the compiler and linker can find the files they need. Let's look at the
necessary commands.

The PATH Command
To make the compiler and linker visible in the directory you are using to
develop programs, SETUP uses the DOS command PATH in the STARTUP.BAT
file. This command causes DOS to search in a specific directory for any files it
doesn't find in the current directory. Let's assume you chose a directory in the
C: drive called C: \MSOFT as the master development directory. The SETUP
program then puts CL.EXE (or QC.EXE, if you're using QuickC) and associated
files in the BIN subdirectory of your master directory. SETUP instructs DOS to
look for these files there with the command

PATH=C:\MSOFT\BIN

Now, suppose we're in a directory with the pathname C:\MSOFT
\MYDIR. To compile and link a program in this directory, we can use a
command like

qc myprog

even though QC.EXE is in the BIN directory.

The SET Command
The compiler and linker always look for header files using the pathname
INCLUDE and for library files using the pathname LIB. These are not the
correct pathnames, however. In the present example, we are assuming that
header and library files are in C: \MSOFT\INCLUDE and C: \MSOFT\LIB,
respectively. It is therefore necessary to translate the pathnames the compiler
and linker are using into the actual pathnames for a particular system.

The PATH command makes a directory visible in all other directories,
while the SET command causes one phrase in a DOS command to be
substituted for another.

9

Chapter 1

10

The DOS command SET performs this function by creating a sort of
dictionary, equating a name with a pathname. When DOS is given a name that is
in this dictionary, it substitutes the pathname supplied earlier by the SET
command. In our case, we use SET to equate the word INCLUDE with the
actual directory name, C:\MSOFT\INCLUDE, and LIB with the directory name
C: \MSOFT\LIB, using the commands

SET INCLUDE=C:\MSOFT\INCLUDE
SET LIB=C:\MSOFT\LIB

The compiler also needs to access the directory for temporary files; it looks
for it under the name TMP. This requires another command:

SET TMP=C:\MSOFT\TMP

Using a Batch File for DOS Environment Commands

It would be an inconvenience to have to type these PATH and SET commands to
DOS every time you start up your system, so SETUP places them in a batch file.
You could execute this batch file to set up the system, but it's more convenient to
incorporate the commands from this file into the AUTOEXEC.BAT file, where
they'll be executed each time the system is booted up. The resulting file looks
like this:

PATH=C:\MSOFT\BIN
SET INCLUDE=C:\MSOFT\INCLUDE
SET LIB=C:\MSOFT\LIB
SET TMP=C:\MSOFT\TMP

If you already have an AUTOEXEC.BAT file you can insert these commands in
it.

The program environment described above is shown schematically in Fig
ure 1-2.

The CONFIG.SYS File

When an MS-DOS or PC-DOS computer system is booted up, the operating
system first looks for the CONFIG.SYS file. If it is present, this file tells DOS
various things about how to configure the system, including how many files can
be open at one time and how many data buffers are available.

Files and Buffers
The Optimizing Compiler and QuickC require that DOS be able to open up to 20
files and that there be 10 buffers (temporary storage areas in memory) for
holding I/O data. Thus there must be a CONFIG .SYS file in the root directory
with lines like this:

FILES=20
BUFFERS=10

BIN
directory

CL. EXE
CL. HLP
C1 • EXE
C2.EXE
C3. EXE
LINK.EXE
etc.

or

QC.EXE
QC.HLP
LINK.EXE
etc.

SET INCLUOE=C:\MSOFT\INCLUDE

SET TMP=C:\MSOFT\TMP

SET LIB=C:\MSOFT\LIB

PATH=C:\MSOFT\BIN

Figure 1-2. The Program Environment

Getting Started

INCLUDE
directory

STOIO.H
MATH. H
MALLOC.H
CONIO.H
etc.

TMP
directory

LIB
directory

SLIBCE. LIB
or

MLIBCE.LIB

GRAPHICS. LIB
GRAPHICS.OBJ
etc.

PROG
directory

MYPROG.C
MYPROG2.C
etc.

The SETUP program generates a file that contains these lines. You can
place it in the root directory and rename it to CONFIG.SYS, or you can copy the
lines into your own CONFIG.SYS file.

The ANSI.SYS File
In order to use the cursor control commands, which we'll be discussing in
Chapter 8, it's necessary for the operating system to replace the standard
keyboard 1/0 routines with those in a file called ANSI.SYS, provided as one of
the utilities on the operating system disk. To do this, first install the ANSI.SYS

11

Chapter 1

file in the root directory. Second, add the following line to the CONFIG.SYS
file:

DEVICE=ANSI.SYS

With this arrangement, the ANSI.SYS driver will be loaded into place every time
you start up your system.

Environmental Space
The SET and PATH commands (described above in the section on the
AUTOEXEC.BAT file) become part of the operating system's environment. This
environment has a fixed size (160 bytes in DOS 3.2), so it may not be able to hold
all the commands you want to place in it. If this happens, you'll get the DOS
error message "out of environment space" when you boot up your system.

To fix this, you can expand the environment space by adding this line to
your CONFIG.SYS file:

SHELL C:\COMMAND.COM /E:400 /P

This tells DOS that COMMAND.COM is the shell (user interface) for the
system. (It was anyway, but that's not why we're using this command.) The /E
option specifies the new size of the environment: in this case 400 bytes. You may
need the IP option to cause the AUTOEXEC.BAT file to be executed. Thus the
complete CONFIG.SYS file should look like this:

FILES=20
BUFFERS=10
DEVICE=ANSI.SYS
SHELL C:\COMMAND.COM /E:400 /p

If you already have statements in a CONFIG.SYS file, you'll need to
combine these statements with them.

Developing Your First Program

12

We'll assume that you've sucessfully negotiated the installation process and that
the appropriate files are arranged in their proper places in the system. How do
you write, compile, link, and execute a C program?

Writing the Source File

The first step is to write a source file containing the program listing. We dis
cussed the issue of which editor to use in the introduction, so we'll assume
you're ready to write.

Type in the following short program:

mainO
{

Getting Started

printfC"I charge thee, speak!");
}

We won't talk about what this means now; instead, we'll concentrate on trans
forming this source code into an executable program. Make sure the program is
entered exactly as shown: pay attention to the paired braces, parentheses, and
quotes and don't forget the semicolon. Spelling and capitalization are also impor
tant.

Compiling and Linking with the Optimizing Compiler

If you're using the Optimizing Compiler, save this file from your editor to disk,
using the file name oneline.c. Exit from the editor to DOS. Now you can compile
and link the program in one step, by entering the command

C>cl oneline.c

If you examine the directory containing your source file, you'll find there
are now two additional files: oneline.obj and oneline.exe. The CL utility has
successfully compiled oneline.c into an object file, ONELINE.OBJ, and linked
this file into the executable file, ONELINE.EXE.

To run the program, type its name on the command line, as you would
with any other executable file. You should see the phrase (from Act I of Shake
speare's Hamlet) printed out:

C>oneline
I charge thee, speak!
C>

Compiling and Linking in QuickC

In QuickC you do all your work in the QuickC environment, without returning
to DOS. When you've typed the program into the view window, select Start
from the Run menu. Your program will be compiled, linked, and executed
automatically. The display will switch to the output window, and you'll see the
program's output immediately following the line in which you called up QuickC:

C>qc
I charge thee, speak!
Program returned (21). Press any key

When you press a key, you'll find yourself back in the QuickC view
window. To see the output again, select Output Screen from the View menu. To
save the source file to disk, select Save from the File menu.

Unless you specifically request it, QuickC will not create permanent object
or executable files, so you won't see these when you return to DOS. (You won't
see the source file either, unless you've saved it, but you're prompted to do this
when you exit.)

13

Chapter 1

Making a Permanent Executable File
You may want to create a permanent executable file, so you can run your program
without calling up QuickC. To do this, you'll need to compile and link in a different
way. Select Compile ... from the Run menu. When the options window appears,
select the Exe entry in the Output Options list. Then select Build Program. When
this process is finished (after some clicking and whirring from the disk) you can
exit from QuickC. You'll see that the ONELINE.OBJ and ONELINE.EXE files have
been created. You can run the ONELINE.EXE file directly from DOS.

The Basic Structure of C Programs

14

When most people first look at a C program they find it complicated, like an
algebra equation, packed with obscure symbols and long program lines. Uh oh,
they think, I'll never be able to understand this. However, most of this apparent
complexity is an illusion. A program written in C is really not much more
complicated than one written in any other language, once you've gotten used to
the syntax. Learning C, as is true with any language, is largely a matter of
practice. The more you look at C programs, the simpler they appear, until at
some point you wonder why you ever thought they looked complicated.

We'll introduce Cina carefully graded progression, so that each example
appears as simple as possible. We want to avoid suddenly confronting you with a
program so complicated that it looks like the blackboard scribblings of a mad
scientist, making your eyes turn glassy. (If the examples seem too simple, don't
worry; they won't stay that way long.)

We'll start by examining our oneline.c program in some detail.

Function Definition

First, note the term "main." All C programs are divided into units called "func
tions." A function in C is similar to a subroutine in BASIC or a function in
Pascal. We'll have more to say about functions in Chapter 5; for now, the thing
to note is that main() is a function. Every C program consists of one or more
functions; this program has only one. No matter how many functions there are
in a C program, the main() function is the one to which control is passed from
the operating system when the program is run; it's the first function executed.

C programs consist of functions. The function called main() is the one to
which control is passed when the program is executed.

Thus our program begins the way all C functions do: with a name, fol
lowed by parentheses (which may or may not be empty; we'll learn more about
that later). The name followed by parentheses signals the compiler that a func
tion is being defined.

Getting Started

Delimiters

Following the function definition are braces that signal the beginning and end
ing of the body of the function. The opening brace ({) says, "a block of code
that forms a distinct unit is about to begin." The closing brace (}) directly below
it terminates the block of code. Braces in C play a similar role to BEGIN and
END statements in Pascal, which also delimit a section of code.

Braces are used to delimit other blocks of code as well as functions: they
are used in loops and decision-making statements, for example. We'll find out
more about that in the next few chapters.

Do you think that the basic structure of C programs looks fairly easy and
that you could never make a mistake in putting it together? We'll bet that at
some point in your programming career you will either (1) forget the parenthe
ses after main or (2) forget one or both braces.

Program Statements

The line in the program

printfC"I charge thee, speak!");

is an example of a program statement. This is an instruction to the compiler to
create machine-language code in order to perform a certain action. In this case,
this action is executing the function printf ().

An important thing to notice about this statement is the semicolon at the
end. Every complete statement in C must be terminated with a semicolon. Note
(especially if you're a BASIC programmer) that it's the semicolon that terminates
the line, not the carriage return you type after the semicolon. C doesn't pay any
attention to carriage returns in your program listing (except those used inside
quotes as parts of strings). In fact, the C compiler doesn't pay any attention to
any of the "whitespace" characters: the carriage return, the space, and the tab.
You can put as many or as few whitespace characters in your program as you
like; they all look the same to the C compiler.

While we're on the subject of semicolons, we'll make another bet: at some
point you'll forget to use one at the end of a C statement.

Figure 1-3 shows the points of program structure discussed above.

Program Style, Round One

Since you can put as many whitespace characters as you want in your program,
it is an almost universal practice to use these characters to make the program
easier to read. This is done by conforming more or less to the style guidelines
used by Kernighan and Ritchie in The C Programming Language (see the Bibliog
raphy). For instance, you could write the oneline.c program above as

mainO{printfC"I charge thee, speak!");}

15

Chapter 1

16

function name
(parentheses could
enclose arguments)

opening }

~~~~i:o~ody /;ai~z;7-------
of function / 

"f+< 
\ pri ntf ("! charge thee, speak!"); 

1
1 

\}I ~ 
'"' .... ~ ~ : / semicolon -- ""'---------- ... -----------·.,¢" terminates 

' 

each 
closing one statement program 
brace to statement 

delimit ~ody This entire program 
of function consists of a function 

called main ( ) 

Figure 1-3. Structure of a Simple Program 

The compiler wouldn't know the difference. However, stretching the code out 
vertically results in a more comprehensible program, and aligning matching 
braces vertically makes it easier to ensure that each opening brace is matched by 
a closing brace. 

The whitespace characters (space, tab, newline) are invisible to the com
piler. 

Indentation of blocks of code enclosed in braces is an important aspect of 
making C programs readable. In Figure 1-3 the program line is indented 3 
spaces; that will be our standard indent throughout this book. Indenting the line 
of code isn't critical in this short example, but when there are many sets of 
nested braces in a program, indentation becomes an important way to increase 
the readability of programs. 

The printf() Function 

The program line 

printfC"I charge thee, speak!"); 

causes the phrase in quotes to be printed on the screen. The word "print£" is 
actually a function name, just as "main" is a function name. Since printf () is a 
function, it is followed by parentheses. In this case, the parentheses are not 
empty, but contain the phrase to be printed, surrounded by quotes. This phrase 
is a function argument-information passed from main() to the function 



Getting Started 

printf(). We won't dwell too much on arguments and the formal aspects of 
functions at this point; we'll save that for Chapter 5. Note, however, that when 
we mention function names such as printf() and main() we'll usually include 
the parentheses just to make it clear that we're talking about a function and not 
a variable or something else. 

Strings 

"I charge thee, speak!" is an example of a string; that is, a string of characters. In 
C, string constants such as this are surrounded by quotes; this is how the 
compiler recognizes a string. We'll be using and discussing strings as we go 
along, and we'll really dig into their complexities in Chapter 6. 

Library Functions 

Here's something else to notice about the printf() function. We've used this 
function in our program; that is, we called it, just as we would call a subroutine 
in BASIC or a function in Pascal. However, there is no code for the function in 
the source file of our program. Where is the function itself stored? 

If you're using the Optimizing Compiler, the code for the function is in the 
library file SLIBCE.LIB. The printf() file is extracted from this library file and 
automatically connected to your program during linking. A similar process is 
followed for all C library functions. 

If you're using QuickC, the code for printf() is actually stored in memory 
as part of QuickC itself, in the so-called "core library," not in a separate library 
file. The result is much the same, however: the code for the function ends up 
being linked to your program. 

C Is Case Sensitive 

One other aspect of our sample program deserves mention: the fact that the 
program (except for the I in the string) is written entirely in lowercase. Unlike 
some programming languages, C distinguishes between upper- and lowercase 
letters. Thus the functions PRINTF() or Printf() are not the same as the 
function printf (). A practice often followed in C is to keep pretty much every
thing in lowercase, for ease of typing. However, many programmers use both 
lower- and uppercase when naming functions and variables. 

Syntax Errors and Debugging 
If you've made a typing mistake in a program, the compiler will detect this and 
inform you of a syntax error. For example, suppose you type the oneline.c 
program, but forget the last set of quotes, so the program looks like this: 

mainO 
{ 

17 



Chapter 1 

18 

printf("I charge thee, speak!); 
} 

This will not compile correctly and will generate error messages. The way these 
errors are displayed depends on whether you're using the QuickC or Optimizing 
Compiler. 

Syntax Errors in QuickC 

In QuickC, when you attempt to compile and run your program by selecting 
Start from the Run menu, an error window will appear on the bottom of your 
screen. This window holds only one error at a time. In this case, it will say 

error C2001 : C1 of 2) 
newline in constant 

The number C2001 refers to compiler error 2001, which you can look up in the 
"Error Message Reference" appendix in the QuickC programmer's guide. Since 
the closing quotes are missing, the compiler thinks that the newline at the end of 
the line is part of the quoted string-an illegal construction. 

In many cases, one typing mistake leads the compiler to report several 
errors, and that's the case here. To see the second error message in QuickC, 
select Next Error from the Search menu or type [Shift] [F3]. The second error 
will be displayed in the error window: 

error C2143 : (2 of 2) 
syntax error : missing '>' before 1

}
1 

The compiler thinks the closing parenthesis is part of the string constant and not 
part of the program, so it reports it as missing when it gets to the closing brace. 

In a multiline program, the cursor in the view window automatically 
moves to the program line containing the error, so it's easy to correlate the 
message in the error window with the appropriate place in the program. 

Correct the error by changing the offending program line in the view 
window, and then select Start from the Run menu again. When you've fixed all 
the errors, the program will run, instead of displaying error messages. 

Syntax Errors in the Optimizing Compiler 

When you run CL to compile and link your program you'll see the same two 
error messages, but in this case they're printed on the normal DOS screen: 

oneline.cC4> 
oneline.cC4> 

error C2001 
error C2143 

newline in constant 
syntax error: missing '>' before '}' 

The number in parentheses is the line number in the program where the com
piler detected the error. You'll need to jot down the error messages, or print 



Getting Started 

them out, and then get back into your editor to see the offending program lines. 
Once in the editor you can make the necessary changes. Then exit the editor 
and compile again with CL. 

More Serious Bugs 

Your program may compile and link without generating error messages, but 
perform in unexpected ways when you execute it. Sometimes such errors can be 
discovered by examining the listing and trying mentally to execute each pro
gram line. When this approach fails, a debugger program can save the day. A 
debugger permits you to single-step through your program, to watch the values 
of variables change as the program runs, and to diagnose your program in other 
ways. 

We won't discuss debuggers in detail at this point, since your knowledge of 
C is still rudimentary. However, as you learn more about C and write longer and 
more sophisticated programs, you'll find more reason to use a debugger. The 
Optimizing Compiler comes with a powerful stand-alone debugger called 
CodeView. We describe its operation in Appendix F. In QuickC the debugging 
features are built in. We describe how to use these features in Appendix G. If 
you skim through the appropriate appendix now, you'll get a feel for the debug
ger's features. You can return to it later for a more detailed look when you find 
yourself with a program that, despite all your powers of mental analysis, still 
doesn't behave as it should. 

Link Errors 
Another category of errors may arise during the linking process. The most 
common of these is caused by using the wrong name for a library function. For 
example, suppose you mistype the oneline.c program this way: 

mainO 
{ 

printx("I charge thee, speak!"); 
} 

There is no "printx" library function, so the linker will be unable to connect 
oneline.obj to it. If you're using the Optimizing Compiler, you'll see this error 
message: 

LINK : error L2029: Unresolved externals: 
printx in fi le(s): 

ONELINE.OBJ Coneline.c) 

In QuickC you'll find a similar message in the error window: 

error C2175: (1 of 1) 
'printx' : unresolved external 

19 



Chapter 1 

The solution to this problem is to spell the name of the function correctly. (The 
linking process is described in more detail in Chapter 14.) If the problem per
sists, you probably don't have your system set up correctly. 

Non-Core Library Functions in QuickC 

This same link error may arise for a different reason in QuickC: the function 
you called is a valid library function, but is not in the core library that QuickC 
keeps in memory. You won't encounter this problem until later in this book, but 
you should be aware of it so you'll be ready when the time comes. So skim over 
this section now, but remember where it is. (This problem does not occur with 
the Optimizing Compiler, since this compiler always uses the SLIBCE.LIB (or 
similar) file, which contains all the library functions.) 

The common functions, such as printf(), are part of QuickC's core library; 
but many functions, including mathematics functions, exist only in 
MLIBCE.LIB. Incorporating non-core functions into a QuickC program involves 
the creation of a program list. 

Setting Up a Program List 

Let's say you're trying to use QuickC to compile a program called getsin.c that 
uses the sin() library function. This function is not in the QuickC core library, 
so when you try to link getsin.c you'll get the "unresolved external" message. To 
fix the problem, you must create a program list to tell QuickC you want to link 
with other files. The program list will specify the two files you want to link: 
your program getsin.c and the library file MLIBCE.LIB. The program list is 
actually a file with the extension .mak. It usually has the same name as the 
program, so in this case it's getsin.mak. 

To create this file, select Set Program List from the File menu. Enter the 
name getsin.mak in the window provided. Answer "yes" to whether you want 
to create the file. The screen will change automatically to one titled Edit Pro
gram List. In the box provided, enter getsin.c, which should also appear in the 
list at the bottom of the screen. Now type mlibce.lib; it should also appear on 
the list. Select Save List. This process automatically generates the getsin.mak 
file. Now you'll find that you can compile and run your program successfully by 
selecting Start from the Run menu. 

Exploring the printf() Function 

20 

The printf() function is a powerful and versatile output function. It's the work
horse output statement in C and we'll be using it extensively throughout the 
book. We're going to spend the remainder of this chapter exploring it. 

The printf () function uses a rather unique format for printing constants 
and variables. For a hint of its power let's look at another example: 

main() 
{ 



Getting Started 

printfC"This is the number two: %d", 2); 
} 

Can you guess what message will be printed if you compile (using the name, 
printwo), link, and run this program? Here's the output: 

C>printwo 
This is the number two: 2 
C> 

Why was the digit 2 printed, and what effect does the %d have? The 
function printf () can be given one or more arguments. In the previous example 
we gave it only one: the string, "I charge thee, speak!" Now, however, we're 
giving it two: a string ("This is the number two: %d") on the left and a value (2) 
on the right. These arguments are separated by a comma. The printf () function 
takes the value on the right of the comma and plugs it into the string on the left. 
Where does it plug it in? Where it finds a format specifier such as %d. 

Format Specifiers 

The format specifier tells printf() where to put a value in a string and what 
format to use in printing the value. In this example, the %d tells printf() to print 
the value 2 as a decimal integer. We could use other specifiers for the number 2. 
For instance, %f would cause the 2 to be printed as a floating point number, and 
%x would print it as a hexadecimal number. 

Why not simply put the number 2 into the original string? 

printfC"This is the number two: 2"); 

In this example, the output would not differ, since 2 is a constant. As we'll see in 
the next chapter, however, variables can be used in the printf () function as well 
as constants, giving it the capability to change what it prints while the program 
is running. 

Printing Strings 

We can also print string constants using format specifiers. Here's an example 
that shows both a string and a number being printed: 

mainO 
{ 

printfC"%s is %d million miles\nfrom the sun.", "Venus", 67); 
} 

The output of this program will be: 

Venus is 67 million miles 
from the sun. 

21 



Chapter 1 

22 

The printf {) function has replaced the %s symbol with the string "Venus" 
and the %d symbol with the number 67, as shown in Figure 1-4. 

The constants on the right are 
plugged in, in order, to the 
format specifiers in the string 
on the left. 

-----. ......, 
miles\n from the sun.","venus!',67); 

@ The resulting string is displayed on 
the monitor. 

Figure 1-4. The printf() Function 

The above example also includes a new symbol, the '\n'. In C, this means 
"newline" and stands for a single character which, when inserted in a string, 
has the effect of a carriage return and linefeed; that is, following a '\n' charac
ter, printing is resumed at the beginning of the next line. The newline character 
is actually stored in memory as a single character-a linefeed-but it has the 
effect of both a carriage return and linefeed. 

Printing Characters 

In our final example in this chapter we'll show how printf{) can be used to 
print a single character. 

You might think that a character is simply a string with only one character 
in it, but this is not the case in C; characters and strings are separate and distinct 
entities. Here's a program that prints a character and a string: 

mainO 
{ 

} 

printfC"The Letter %c is", 'j'); 
printf("pronounced %s.", "jay"); 

Here we've made two program lines, each with a printf {) function. The output 
of this program will be: 

The Letter j is pronounced jay. 

In this program 'j' is a character and "jay" is a string. Notice that 'j' is sur
rounded by single quotes, while "jay" is surrounded by double quotes. This is 
how the compiler tells the difference between a character and a string. The 
format specifier %c is used to print the character 'j'. 



Getting Started 

Also note that even though the output is printed by two separate program 
lines, it doesn't consist of two lines of text. The printf() function does not 
automatically print a newline character at the end of a line; if you want one, you 
must insert it explicitly. 

Summary 
In this chapter you've learned how your system is organized, and how to write, 
compile, link, and run C programs. You've learned what simple C programs look 
like and that even the main part of a C program is a function. You know some of 
the potential of the printf () function, including how to print number, character, 
and string constants; how to use format specifiers; and the purpose of the 
newline character. At this point you should be able to write one- or two-line C 
programs that display various phrases on the screen. 

In the next chapter we'll continue our exploration of the printf() function 
and look at other input and output functions. We'll also look at two other 
important C building blocks: variables and operators. 

Questions 

1. Linking permits the following to be combined with your program: 

a. header files 

b. library functions 

c. batch files 

d. previously compiled functions 

2. After the source file for a C program has been written, it must be 
c , 1 , and e _______ _ 

3. The library files that come with the C programming system contain: 

a. functions that perform input and output 

b. a text editor for program development 

c. functions for advanced math and other purposes 

d. the compiler and linker 

4. In a C program, statements are combined into basic building blocks called 

5. What is the purpose of the parentheses following the word main in a C 
program? 

6. The braces that surround the code in a C program: 

a. delimit a section of code 

23 



Chapter 1 

b. show what code goes in a particular function 

c. separate the code from the constants 

d. separate the source file from the object file 

7. True or false: a carriage return must be used at the end of every C 
program statement. 

8. What's wrong with the following C program? 

main 
( 

print"Oh, woe and suffering!" 
) 

9. What two sorts of things can go in the parentheses following the function 
printf()? 

10. What is the output of the following program? 

main() 
{ 

printf("%s\n%s\n%s", "one", "two", "three"); 
} 

Exercises 

24 

1. Write a two-statement program that will generate the following output: 

Mr. Green is 42, 
Mr. Brown is 48. 

Use string constants to represent the names and integer constants to rep
resent the ages. 

2. Write a program that will print the phrase: 

a, b, and c are all letters. 

Use character constants to represent the letters. 



C Building Blocks 

Variable types 
The printf() output function 
The scanf() and getche() input functions 
Special characters 
Arithmetic operators 
Relational operators 

2 

25 



2 

Before you can begin to write interesting programs in C you need to know at 
least some of the fundamentals of the language. In this chapter we present a 
selection of these basic building blocks. 

Three important aspects of any language are the way it stores data, how it 
accomplishes input and output, and the operators it uses to transform and 
combine data. These are the three kinds of building blocks we'll discuss in this 
chapter. Of course, in a single chapter we can't present every aspect of each of 
these topics; much will remain to be said in later chapters. However, what we 
cover here will be enough to get you off the ground. 

In the following chapters we' 11 put these building blocks to use exploring 
the control statements of the language: loops, decisions, and functions. 

Variables 

26 

Variables may be the most fundamental aspect of any computer language. A 
variable is a space in the computer's memory set aside for a certain kind of data 
and given a name for easy reference. 

Variables are used so that the same space in memory can hold different 
values at different times. For instance, suppose you're writing a program to 
calculate someone's paycheck. You'll need to store at least the hourly rate and 
the hours worked. If you want to do the calculation for more than one employee, 
you will need to use the same program and the same spaces in memory to store 
similar data for additional employees. A variable is a space in memory that plays 
the same role many times, but may contain a different value each time. 

What different kinds of variables does the language recognize? How is this 
data stored? How do you tell the computer what sort of data you want to store? 
These are the questions we'll be exploring in this section. 



C Building Blocks 

Constants and Variables 

In Chapter 1 we showed how the printf () function can be used to print constant 
numbers, strings, and characters. For example, this program 

mainO 
{ 

printfC"This is the number two: %d", 2); 
} 

printed the constant 2, plugging it into the format specifier, %d: 

This is the number two: 2 

Of course this is not very useful, since we could more easily have written: 

mainO 
{ 

printfC"This is the number two: 2"); 
} 

to achieve the same result. The power of the printf() function-indeed, the 
power of computer languages in general-comes from the ability to use vari
ables-which can hold many different values-in program statements. Let's re
write the program above to use a variable instead of a constant: 

mainO 
{ 

} 

int num; 
num = 2; 
printfC"This is the number two: %d", num); 

This program gives the same output as before, but it has achieved it in 
quite a different way. It creates a variable, num, assigns it the value 2, and then 
prints out the value contained in the variable. 

This program contains several new elements. In the first program state
ment, 

int num; 

a variable is declared: it is given a name and a type (type int, which we'll 
examine soon). 

In the second statement, 

num = 2; 

the variable is assigned a value. The assignment operator ( ) is used for this 

27 



Chapter 2 

28 

purpose. This operator has the same function as the ( = ) operator in BASIC or 
the ( : = ) operator in Pascal. (We'll have more to say about assignment operators 
in the last section of this chapter.) 

In the third statement of the program, the variable name, num, is used as 
one of the arguments of the printf() statement, replacing the constant 2 used in 
the example in Chapter 1. 

Variable Declarations 

The statement 

int num; 

is an example of a variable declaration. If you're a Pascal programmer you'll be 
familiar with this sort of statement; BASIC doesn't use (or at least doesn't need to 
use) variable declarations. The declaration consists of the type name, int, followed 
by the name of the variable, num. In a C program all variables must be declared. If 
you have more than one variable of the same type, you can declare them all with 
one type name, separating the variable names with commas: 

int apples, oranges, cherries; 

Declaring a variable tells the compiler the name of the variable, and the 
type of variable. Specifying the name at the beginning of the program enables 
the compiler to recognize the variable as "approved" when you use it later in the 
program. This is helpful if you commit the common error of misspelling a 
variable name deep within your program; the compiler will flag the error, 
whereas BASIC would simply assume you meant a different variable. Declaring 
variables also helps you organize your program; collecting the variables together 
at the beginning of the program helps you grasp the overall logic and structure 
of your program. 

All variables must be declared to specify their name and type. 

When you declare a variable, the compiler sets aside an appropriate 
amount of memory to store that variable. (There's a subtle distinction between 
the terms "declare" and "define" that's relevant here, but we won't worry about 
it until later.) In the present case we've declared a variable of type int. Most 
variables in Microsoft C always occupy the same memory space, but the num
ber of bytes occupied by type int changes, depending on the computer being 
used. (Nothing is ever simple.) For 8088-, 8086-, and 80286-based computers, 
type int occupies 2 bytes (16 bits), while for 80386-based machines it's 4 bytes 
(32 bits). This corresponds to the data path of the computer: it's the size that can 
be read and written most efficiently. Figure 2-1 shows how an integer looks in 
memory. 



this integer 
has the 
value 6 

C Building Blocks 

} 

each integer 
occupies two 

1-------11 bytes of memory 

each rectangle 
1-------11- is one byte 

computer 
memory 

Figure 2-1. An Integer in Memory 

The value of two-byte integers can vary from -32,768 to 32,767, while 
four-byte integers can vary from -2,147,483,648 to 2,147,483,647. 

If you want to guarantee a two-byte variable, regardless of the type of 
machine, use type short, which means short integer. If you want to guarantee a 
four-byte integer, use type long. This is a useful size for representing numbers 
like the purchase price of a home in Marin County, California. Usually type int 
is preferred, unless you know its value will exceed the limit for two-byte inte
gers, in which case you'll need to use type long. 

Note that the amount of memory used for any of the C data types is not 
specified in the C language itself, but rather by the particular compiler and 
machine being used. 

There are, of course, other types of variables besides integers. We'll sum
marize them here and then give examples of the uses of the more common 
types. 

Variable Types 

Most variable types are numeric, but there is one that isn't: the character type. 
You've already met character constants; you know that they consist of a letter or 
other character surrounded by single quotes. A character variable is a one-byte 
space in memory in which the character constants, such as 'a' or 'X', can be 
stored. The type name for a character is char. Thus, to declare two character 
variables, called chl and ch2, you would use the statement: 

char ch1, ch2; 

There are also two kinds of floating point variables. Floating point numbers 
are used to represent values that are measured, like the length of a room (which 
might have a value of 145.25 inches) as opposed to integers, which are used to 
represent values that are counted, like the number of rooms in a house. Floating 

29 



Chapter 2 

30 

point variables can be very large or small. The most usual type of floating point 
variable, type float, occupies four bytes and can hold numbers from about 1038 

to 10-38 with between six and seven digits of precision. (Precision means how 
many digits can actually be used in the number; if you attempt to store a 
number with too many digits, such as 2.12345678, in a floating point variable, 
only six digits will be retained: 2.12345.) 

A monster double-precision floating point variable, type double, occupies 
eight bytes and can hold numbers from about 10308 to 10-308 with about 15 digits 
of precision. (The slight vagueness in specifying these limits of precision arises 
from the fact that variables are actually stored in the computer in binary, which 
does not represent an integral number of decimal digits.) 

Figure 2-2 shows these variable types as they would look in the computer's 
memory. 

'b' } character 
-128 to 127 (type char) 

7. } short integer 
- 32,768 to 32,767 ---'?,:--- (type short Int) 

O" (also may be type Int) 

-{e---- I long integer 
-2,147,483,648 to O" (type long) 
2,147,483,647 --· ... a---

----et>-- (also may be type Int) 

__ CJ"---- I 10 - 38 to 1038 ·o floating point ---e ·--7 digits precision ----~~-
(type float) 

-------
,;·-----
-·~.)' ---- double-precision 10 - 308 to 1 Q308 ;r 
---~--- floating point 

15 digits precision 
----~-- (type double) 

(9.0 ----- ~ 

-------

Figure 2-2. Variable Types in Memory 

The character type and the integer types also have unsigned versions 
(type unsigned char, unsigned short, unsigned int, and unsigned long) 
which change the range of numbers the type can hold. For instance, the un-



C Building Blocks 

signed int type holds numbers from 0 to 65,535, rather than from - 32, 768 to 
32, 767 as the regular int type does. These unsigned types can be useful in 
special circumstances, but are not used as often as the signed versions. 

You may be wondering why we haven't mentioned a string type. The 
reason is simple: there is no string variable type in C. Instead, strings are 
represented by arrays of characters. We've shown some examples of string 
constants already. For string variables, we'll have to wait until Chapter 6. 

Let's look at a program that uses character, floating point, and integer 
variables. We'll call this program event.c. 

mainO 
{ 

} 

int event; 
char heat; 
f Loat time; 

event = 5; 
heat= 'c'; 
time= 27.25; 
printfC"The winning time in heat %c", heat); 
printf(" of event %d was %f.", event, time); 

Here's the output of this program: 

C>event 
The winning time in heat C of event 5 was 27.250000. 

This program uses the three most common variable types: int, char, and 
float. You'll notice that we've used a new format specifier, %f, to print out the 
floating point number. We'll discuss this and other format specifiers soon, in the 
section on input/output. For now, remember that %f is used to print floating 
point numbers the same way that %d is used to print integers and %c is used to 
print characters. 

Floating Point Variables 

Floating point numbers are different from integers in that they are stored in 
memory in two parts, rather than one. These two parts are called the "man
tissa" and the "exponent." The mantissa is the value of the number, and the 
exponent is the power to which it is raised. 

Scientists and engineers use a similar technique for representing numbers: 
it's called "exponential notation." For example, in exponential notation the num
ber 12,345 would be represented as l.2345e4, where the number 4, following 
thee, is the exponent-the power of 10 to which the number will be raised-and 
1.2345 is the value of the number. The exponent can also be negative: .0098765 
is represented in exponential notation as 9.8765e-3. The idea in exponential 
notation is to transform every number, no matter how large or how small, into a 

31 



Chapter 2 

32 

value with only one digit to the left of the decimal point, followed by the 
appropriate power of 10. In effect, the exponent represents how many places 
you need to move the decimal point to transform the number into this standard 
form. 

Exponential notation permits the storage Of far larger and far smaller 
numbers than is possible with integers. However, arithmetic and other opera
tions are performed more slowly on floating point numbers, so an integer 
variable is preferable unless the larger capacity of floating point numbers is 
necessary. 

In Microsoft Con the IBM, a floating point number of type float is stored 
in four bytes; one for the exponent, and three for the value of the number, as 
shown in Figure 2-3. 

mantissa stored 
in three bytes --'·<?j___ } 

---- c;i"s - «<f-----r-.23~6 
6 4 

exponent stored 
in one byte 

value in ordinary 
notation is 
1,234,500 

Figure 2-3. Floating Point Variable 

The format is actually not quite the same as the exponential notation used by 
humans, since the value of the number and the exponent are stored in the com
puter's memory in binary rather than decimal. However, the effect is the same. The 
one-byte exponent is large enough to hold exponents between 38 and - 38. For 
instance, the number 123,456,000,000,000,000,000,000,000,000,000,000,000.0 
(which has 38 digits following the 1) is close to the largest number that can be 
stored; it would be represented in exponential notation as 1.23456e38. 

Since only three bytes are available for holding the value of the number, 
only six or seven digits of precision are available in floating point variables. 
Thus, you can write numbers like 4345345.8476583746123, but the computer 
will store only 4.345345e6. 

Just because a floating point variable is stored in the computer in exponen
tial notation doesn't mean it must print out that way or that you need to type it 
in using exponential notation. In the event.c program shown earlier, the %f 
format specifier causes the number to be printed in the normal way with a 
decimal point. However, as we'll see in the next section, you can force printf () 
to print in exponential notation or even to make a choice between decimal and 
exponential. 



C Building Blocks 

Initializing Variables 

It's possible to combine a variable declaration with an assignment operator so 
that a variable is given a value at the same time it's declared. For example, the 
event.c program could be rewritten as: 

main() 
{ 

} 

int event = 5; 
char heat= 'c'; 
f Loat time = 27.25; 

printfC"The winning time in heat %c", heat); 
printf("of event %d was %f.", event, time); 

The output is just the same, but we've saved some program lines and simplified 
the program. This is a commonly used approach. 

Input/Output 
It's all very well to store data in the computer and make calculations with it, but 
you also need to be able to type new data into the computer and print out the 
results of your calculations. In this section we'll continue our examination of the 
ouput function printf(), and we'll introduce two input functions: scanf(), a 
versatile function that can handle many different kinds of input, and getche(), a 
specialized input function that tells your program which character you've typed 
the instant you type it. 

The printf() Function 

We've been using printf () up to now without too much explanation of all its 
possibilities. Let's take a closer look. 

Format Specifiers 
As we saw from Chapter 1, a format specifier (such as %d or %c) is used to 
control what format will be used by printf () to print out a particular variable. In 
general, you want to match the format specifier to the type of variable you're 
printing. You would, for example, usually use a %d specifier to print an integer, 
and you'd use a %c format specifier to print a character (although there are 
exceptions to this rule). 

We've already used four of the format specifiers available with printf(): 
%d to print integers, %c to print characters, %s to print strings, and o/of to print 
floating point numbers. While these are by far the most commonly used, there 
are others as well. Here's a list of the common format specifiers for printf(): 

o/oc single character 

%s string 

33 



Chapter 2 

34 

%d signed decimal integer 

%i signed decimal integer 

%f floating point (decimal notation) 

%e floating point (exponential notation) 

%g floating point (%for %e, whichever is shorter) 

%u unsigned decimal integer 

%x unsigned hexadecimal integer (uses "abcdef") 

%0 unsigned octal integer 

prefix used with d, u, x, o, and i, to denote long integer, and before 
%f, %e, and %g to denote double precision (examples: %Id, %If) 

h prefix used with d, u, x, o, and i to denote short integer 

'E' and 'G' used in place of 'e' and 'g' will cause the letter 'e', denoting the 
exponential in the number, to print out as 'E'. Also, 'X' in place of 'x' will cause 
uppercase letters "ABCDEF" to be used in hex numbers. 

Field· Width Specifiers 
The printf () function gives the programmer considerable power to format the 
printed output. Let's see how this is done. 

In our event.c program the floating point variable time was printed out 
with six digits to the right of the decimal, even though only two of these digits 
were significant: 

The winning time in heat C of event 5 was 27.250000. 

It would be nice to be able to suppress these extra zeros, and printf () includes a 
way to do just that. We'll rewrite the event.c program, inserting the string ".2" 
(period 2) between the '%' character and the 'f' in the second printf() 
statement: 

mainO 
{ 

} 

int event; 
char heat; 
float time; 

event = 5; 
heat= 'c'; 
time= 27.25; 
printf<"The winning time in heat %c", heat); 
printf(" of event %d was %.2f.", event, time>; 

Here's the output of this program: 

The winning time in heat C of event 5 was 27.25. 



C Building Blocks 

As you can see, a number following the decimal point in the field-width 
specifier controls how many characters will be printed following the decimal 
point. 

A digit preceding the decimal point in the field-width specifier controls the 
width of the space to be used to contain the number when it is printed. Think of 
this field width as an imaginary box containing the number. An example (with 
integer values) is shown in Figure 2-4. 

Figure 2-4. Field-Width Specifier 

Specifying the field width can be useful in creating tables of figures, as the 
following program demonstrates. 

mainO 
{ 

} 

pr i n t f( II%. 1f % • 1f % • 1f \ n II I 3 • 0 I 1 2 . 5 I 5 23 . 3) ; 
printfC 11 %.1f %.1f %.1f\n", 300.0, 1200.5, 5300.3); 

Here's the output: 

3.0 12.5 523.3 
300.0 1200.5 5300.3 

Even though we used spaces in the format strings to separate the numbers 
(the spaces in the format string are simply printed out as spaces in the output) 
and specified only one decimal place with the 11 .1 11 string, the numbers don't line 
up and so are hard to read. However, if we insert the number 8 before the 
decimal place in each field-width specification we can put each number in a box 
eight characters wide. Here's the modified program: 

35 



Chapter 2 

36 

main 
{ 

printf<"%8.1f%8.1f%8.1f\n", 3.0, 12.5, 523.3); 
pri ntf<"%8 .1 f%8 .1 f%8 .1f \n", 300 .0, 1200. 5, 5300.3); 

} 

We should acknowledge the cluttered appearance of the printf() 
statements. Instant legibility is not one of C's strong points (at least not until 
you've been programming in it for a while). Although you know the purpose of 
all the elements in these statements, your eye may have trouble unraveling 
them. It may help to draw lines between the individual format specifiers to 
clarify what's happening. Figure 2-5 shows this format string dissected. 

signals number of digits indicates 
format field to right of decimal decimal-format 
specification width place floating point 

i i i 
% 8 1 f 

pr i n t f(" I %8 • 1 f I %8 . 1 f I %8 . 1 f I 11 , 3 . 0 , 1 2 . 5 , 5 23 . 3) ; 

Figure 2-5. printf() Format String 

The format specifier in printf () determines the interpretation of a 
variable's type, the width of the field, the number of decimal . places 
printed, and the justification. 

Here's the output of the program, showing that, although the format 
specifiers may be hard to read, the output is a model of organization: 

3.0 
300.0 

12.5 
1200.5 

523.3 
5300.3 



C Building Blocks 

A minus sign preceding the field-width specifier will put the output on the 
left side of the field instead of the right. For instance, let's insert minus signs in 
the field-width specifiers in the program above: 

main 
{ 

printf<"%-8.1f%-8.1f%-8.1f\n", 3.0, 12.5, 523.3); 
printfC"%....;8.1f%-8.1f%-8.1f\n", 300.0, 1200.5, 5300.3); 

} 

the output will be lined up on the left side of the fields, like this: 

3.0 
300.0 

12.5 
1200.5 

523.3 
52300.3 

This format may be useful in certain circumstances, especially when 
printing strings. 

The various uses of the format specifier are summarized in Appendix A. 

Escape Sequences 
We saw in Chapter 1 how the newline character, '\n', when inserted in a 
printf () format string, would print the carriage return-linefeed combination. 
The newline character is an example of something called an "escape sequence," 
so called because the backslash symbol ( \ ) is considered an "escape" character: 
it causes an escape from the normal interpretation of a string, so that the next 
character is recognized as having a special meaning. Here's an example using the 
newline character and a new escape sequence, '\ t', which means "tab." 

mainO 
{ 

printf("Each\tword\tis\ntabbed\tover\tonce"); 
} 

Here's the output: 

C>tabtest 
Each word is 
tabbed over once 

C tabs over eight characters when it encounters the '\t' character; this is another 
useful technique for lining up columns of output. The '\n' character causes a 
new line to begin following "is." 

The tab and newline are probably the most often used escape sequences, 
but there are others as well. The following list shows the common escape 
sequences. 

37 



Chapter 2 

38 

\n Newline 

\t Tab 

\ b Backspace 

\ r Carriage return 

\f Formfeed 

\' Single quote 

\" Double quote 

\ \ Backslash 

\xdd ASCII code in hexadecimal notation (each d represents a digit) 

\ddd ASCII code in octal notation (each d represents a digit) 

The first few of these escape sequences are more or less self-explanatory. 
The newline, which we've already seen, has the effect of both a carriage return 
and linefeed. Tab moves over to the next eight-space-wide field. Backspace 
moves the cursor one space left. Formfeed advances to the top of the next page 
on the printer. 

Characters that are ordinarily used as delimeters-the single quote, double 
quote, and the backslash itself-can be printed by preceding them with the 
backslash. Thus, the statement 

printfC"Dick told Spot, \"Let's go!\"\n"); 

will print 

Dick told Spot, "Let's go!" 

Printing Graphics Characters 
What's the purpose of those last two escape sequences, \xdd and \ddd? 

As you probably know, every character (letters, numbers, punctuation, 
and so forth) is represented in the computer by a number. True ASCII (an 
acronym for American Standard Code for Information Interchange) codes run 
from 0 to 127 (decimal). These cover the upper- and lowercase letters, digits 
from 0 to 9, punctuation, and control characters such as linefeed and backspace. 

IBM computers use an additional 128 characters, with codes running from 
128 to 255. These additional characters consist of foreign-language symbols and 
graphics characters. IBM has also redefined a few characters below ASCII code 
32 to be graphics characters. The entire set of IBM character codes is listed in 
Appendix E. 

We've already seen how to print ordinary ASCII characters on the screen 
using characters or strings in printf(). We also know how to print certain 
special characters with a backslash escape sequence. But graphics and other 
nonstandard characters require a different approach; they can only be printed 
by sending the backslash and the number representing their character code. 



C Building Blocks 

The number can be represented in either octal or hexadecimal notation. 
Traditionally, octal has been used in UNIX-based systems, and to some extent 
this has carried over into C implementations on IBM computers. However, the 
rest of the IBM world, including all operating system and assembly language 
programming, speaks hexadecimal; so that's what we'll do in this book. There is 
no way to use decimal numbers as part of escape sequences-evidence of C's 
genesis in the world of systems programmers, who tend to think in terms of 
octal or hexadecimal, rather than decimal. (If you're not familiar with the 
hexadecimal system, consult Appendix C.) 

Let's look at a program that prints a simple graphics character, a small 
rectangle: 

mainO 
{ 

printfC"Here's the character: \xDB"); 
} 

The output of this program is shown in Figure 2-6. 

Here is the character: II 

Figure 2-6. Printing a Graphics Character 

We've used the hexadecimal number DB (219 in decimal), which represents a 
solid rectangle, as can be seen in Appendix A. 

Here's another example of the use of graphics characters: 

mainO 
{ 

} 

printf("\xC9\xCD\xBB\n"); 
printf("\xC8\xCD\xBC\n"); 

This program, which prints nothing but graphics characters, displays a box on 
the screen, as shown in Figure 2-7. 

Graphics characters are printed using their hex code in an escape se
quence, such as '\xBO'. 

These graphics characters are specific to the IBM world, so programs using 
them cannot be ported to UNIX or other systems without modification. How
ever, graphics characters offer an easy way to create graphics images on the IBM 

39 



Chapter 2 

40 

C9 CD BB 

\ l I r-----T----T----, 
I I I I 
I I I I 
I I I I 
I I I 
I I 
I I I 
I I I 
I I I 
I I I I .. _ --+----~- -~ 
I I I I 
I I I I 
I I I I 
I I I I 
I I 
I I 
I I 
I I 
I I I I 

L----""----~----.1 I t \ 
ca CD BC 

Figure 2-7. Box Made with Graphics Characters 

monochrome screen. Programs using this form of graphics can be run on any 
IBM system, even those without color graphics capabilities, making this the 
most universal form of graphics in the IBM world. While not as versatile as color 
graphics, graphics characters can be used in many applications where simple 
graphics are required. In Appendix B, for example, you'll find a maze-drawing 
program that makes use of them. 

We'll use other examples of graphics characters in programming examples 
in later chapters. 

The scant() Function 

You already know about C's most-used output statements, printf(). In this sec
tion we're going to introduce an important input function, scanf(). C has a 
bewilderingly large collection of input and output functions, but printf() and 
scanf() are the most versatile in that they can handle all of the different vari
ables and control their formatting. 

Here's a program that uses scanf(). You can give it the file name age.c: 

mainO 
{ 

} 

float years, days; 
printfC"Please type your age in years: "); 
scanf("%f", &years); 
days = years * 365; 
printfC"You are %.1f days old.\n", days); 

Besides scanf (), this program introduces two new symbols: the arithmetic 
operator for multiplication ( * ) , and the address operator, represented by the 



C Building Blocks 

ampersand ( & ). We'll talk about both of these later in the chapter. For the 
moment, simply note the surprising fact that scanf () requires the use of an 
ampersand before each variable name. 

A typical interaction between the program and a precocious youngster 
might look like this: 

C>age 
Please type your age in years: 2 
You are 730.0 days old. 

Since we're using floating point we can also input decimal fractions: 

C>age 
Please type your age in years: 48.5 
You are 17702.5 days old. 

As you can see, the format for scanf() looks very much like that for 
printf( ). As in printf(), the argument on the left is a string that contains format 
specifiers. In this case there is only one, %f. On the right is the variable name, 
&years. 

The format specifiers for scanf () are similar to those for printf (), but there 
are a few differences. The following table shows them side-by-side for compari
son: 

Format printf() scanf() 

single character %c %c 
string %s %s 
signed decimal integer %d %d 
signed decimal integer %i 
decimal, hex, or octal integer %i 
floating point (decimal notation) %f %for %e 
floating point (exponential notation) %e %for %e 
floating point (%for o/oe, whichever is shorter) o/og 
unsigned decimal integer o/ou o/ou 
unsigned hexadecimal integer (uses "ABCDEF") o/ox o/ox 
unsigned octal integer o/oo o/oo 

As we noted earlier, the first four type characters are the most commonly 
used. 

In scanf() [unlike printf( )] o/oe can be used in place of o/of; they have the 
same effect. You can type your input using either exponential or decimal nota
tion; either format is accepted by both o/oe and o/of. The o/og specifier, which 
allows printf() to choose exponential or decimal notation, whichever is shorter, 
is not necessary with scanf (), because the user makes the decision. 

Like printf(), scanf() uses a prefix letter 'l' following the percent sign and 
before the letters 'd', 'i', 'o', and 'u' to denote long integers, and the letter 'h' to 

41 



Chapter 2 

42 

denote short integers. (Older versions of C used capital letters 'D', 'I', 'O', and 
'U'with scanf() for this purpose, but they are no longer supported.) The 'l' can also 
be used before 'f' to denote a double-precision floating point. 

The scanf() function can accept input to several variables at once. To 
demonstrate this, let's revise our event.c program to use input from the user, 
rather than assigning values to the variables within the program: 

mainO 
{ 

} 

int event; 
char heat; 
float time; 

printfC"Type event number, heat letter, and time: "); 
scanfC"%d %c %f", &event, &heat, &time>; 
printf("The winning time in heat %c", heat); 
printfC" of event %d was %.2f.", event, time>; 

Here's the output: 

C>event2 
Type event number, heat letter, and time: 4 B 36.34 
The winning time in heat B of event 4 was 36.34. 

How does scanf() know when we've finished typing one value and started 
another? Let's look at the process. As we type our three input values, 4, 'B', and 
36.34, we separate them by spaces. The scanf () function matches each space we 
type with a corresponding space between the conversion type characters in the 
scanf() format string "%d %c %f". If we had tried to separate the values with 
another character-a dash or comma, for example-this would not have matched 
the space in the format string. The space we type serves as a delimiter because it 
matches the space in the format string. This process is shown in Figure 2-8. 

Actually, we can use any whitespace character (space, newline, or tab) 
as a delimiter when we type in our input values; each will match the space in 
the format string. Here's a sample using the [Return] key, which sends a '\n' 
to scanf(): 

C>event2 
Type event number, heat letter, and time: 
7 
A 
49.2 
The winning time in heat A of event 7 was 49.20. 

And here's an example using the [Tab]: 

C>event2 
Type event number, heat letter, and time: 3 A 14.7 
The winning time in heat A of event 3 was 14.70. 



C Building Blocks 

values and 
spaces typed 
by user 

/In\ 
4! ! !B ! 316

• 
34 

G) Vari~bles typed by user are interpreted by 
format string 

scanf("%d %c %f,&event,&heat,&time); 

0 Each 
format 
specifier 
matches 
a variable 

event - --4--- } ·-' 

heat "B" } 

__ s. ____ 

} time ---6.s.--____ .f __ 

0 values are 
stored in 
memory 
set aside 
for these 
variables 

Figure 2-8. Using scant() with Multiple Inputs 

There are other, more complex ways of handling the formatting of input to 
scanf(), but we won't be concerned about them now. 

The Address Operator ( & ) 

The scanf() function in the age.c and event.c programs above used a new 
symbol: the ampersand ( & ) preceding the variable names used as arguments. 

scanf("%f", &years); 
scanf( 11 %d %c %f", &event, &heat, &time); 

What is its purpose? It would seem more reasonable to use the name of the 
variable without the ampersand, as we did in printf () statements in the same 

43 



Chapter 2 

44 

programs. However (for reasons which will be clearer in the chapter on point
ers), the C compiler requires the arguments to scanf() to be the addresses of 
variables, rather than the variables themselves. This peculiarity of scanf () is 
one of C's least user-friendly characteristics; it is close to certain you will forget 
the ampersands before the variables in scanf() at least once. However, the idea 
of addresses is the key to one of C's most powerful and interesting capabilities, so 
let's explore it further. 

The memory of your computer is divided into bytes, and these bytes are 
numbered, from 0 to the upper limit of your memory (524,287, if you have 512K 
of memory). These numbers are called. the "addresses" of the bytes. Every 
variable occupies a certain location in memory, and its address is that of the first 
byte it occupies. Figure 2-9 shows an integer with a value of 2 at address 1367. 

address of 
integer 
variable 1365 

1366 
~~.~"'·'~""' 136 7 

1368 
1369 
1370 
1371 

---2---
t-------11 

} 
integer 
variable 

Figure 2-9. Address of Variable 

Suppose we have declared an integer variable, num, in a program, and 
assigned it the value 2. If the program later refers to the name of the variable, 
num, the compiler will give the value stored in that variable, or 2. However, if 
you refer to the name of the variable preceded by the ampersand, &num, the 
compiler will give the address where num is stored. 

Here's a program that demonstrates this operation: 

mainO 
{ 

} 

int num; 
num = 2; 
printf<"Value=%d, address=%d", num, &num>; 

And here's the output: 

Value=2, address=3536 

On our particular computer, the address where the variable num is stored is 
3536. In another computer it would almost certainly be different, because of 
variations in the size of the operating system and other factors. In any case, 



C Building Blocks 

knowing where a variable is stored will turn out to be very important in C 
programming, as we'll learn when we get to the chapter on pointers. 

In the meantime, all you need to remember about the address operator is 
that in using scanf {) you need to precede variable names with the ampersand 
(except in the case of strings, which we're coming to soon). 

The getche() Function 

For some situations, the scanf {) function has one glaring weakness: you need to 
type a [Return] before the function will digest what you've typed. But we often 
want a function that will read a single character the instant it's typed, without 
waiting for [Return]. For instance, in a game we might want a spaceship to move 
each time we pressed one of the cursor-control (arrow) keys; it would be awk
ward to type [Return] each time we pressed an arrow key. 

We can use the getche{) function for this purpose. The "get" means it gets 
something from the outside world; in other words, it's an input function. The 
"ch" means it gets a character, and the "e" means it echoes the character to the 
screen when you type it. (There is a similar function, getch{), which does not 
echo the typed character to the screen.) Another function, getchar{), is better 
known to programmers working on Unix systems, but in Microsoft C getchar is 
buffered, which means it doesn't pass the character typed by the user to the 
program until the user hits [Return]. 

Here's a simple program that uses getche{): 

mainO 
{ 

} 

char ch; 
printf("Type any character: "); 
ch= getcheO; 
printf("\nThe character you typed was %c.", ch >; 

And here's a sample interaction: 

C>getche 
Type any character: x 
The character you typed was x. 
C>getche 
Type any character: T 
The character you typed was T. 

If you run this program, you'll notice that the phrase "The cparacter you typed 
was" is printed immediately when you press any character key; you don't have 
to press the [Return] key. 

Another point to notice is that the function itself takes on or "returns" the 
value of the character typed. It's almost as if the function were a variable that 
assigned itself a value; the function becomes the character typed. This is con
siderably different from the technique used in scanf{), where the value re-

45 



Chapter 2 

turned was placed in a variable that was one of scanf ( )'s arguments. Figure 2-10 
shows the operation of the getche() function. 

® 

The user types a 
character, say 'x'. 

The function getche{) 
takes on the value 'x' . 

IX I 

ch = getcheO; 

(,;'\ The variable ch is 
\V assigned the value 'x '. 

Figure 2-10. Operation of getche() 

There is a downside to using getche(); if you make a mistake, you can't 
backspace to correct it, since as soon as you type a character, it's gobbled up by 
your program. 

We'll see how useful getche() can be in the next chapter, when we learn 
such skills as how to count characters in phrases typed in by the user. 

There is more to say about input/output, and we'll be returning to the topic 
throughout the book. 

Operators 

46 

Operators are words or symbols that cause a program to do something to vari
ables. For instance, the arithmetic operators ( + ) and ( - ) cause a program to 
add or subtract two numbers. There are many different kinds of operators; to list 
them all here would be to invite debilitating ennui. Instead we'll mention the 
most common: arithmetic and relational operators, and the less well-known (to 
non-C programmers) increment/decrement operators and arithmetic assignment 
operators. (Operators are summarized in Appendix A.) 

Arithmetic Operators 

In the age.c program we used the multiplication operator ( * ) to multiply two 
numbers together. C uses the four arithmetic operators that are common in most 



C Building Blocks 

programming languages, and one, the remainder operator, which is not so com
mon. 

+ addition 

subtraction 

* multiplication 

division 

% remainder 

Here's a program that uses several arithmetic operators. It converts tem
peratures in Fahrenheit to centigrade. 

mainO 
{ 

int ftemp, ctemp; 

printfC"Type temperature in degrees fahrenheit: "); 
scanf ("%d", &ftemp); 
ctemp = (ftemp-32) * 5 I 9; 
printfC"Temperature in degrees centigrade is %d", ctemp); 

} 

Here's some sample interaction with the program: 

C>ftemp 
Type temperature in degrees fahrenheit: 32 
Temperature in degrees centigrade is 0 
C>ftemp 
Type temperature in degrees fahrenheit: 70 
Temperature in degrees centigrade is 21 

This program uses the standard formula for converting degrees Fahrenheit into 
degrees centigrade: subtract 32 from the Fahrenheit temperature and multiply 
the result by five-ninths. 

ctemp = (ftemp-32) * 5 I 9; 

There are several things to note about this statement. First, you'll see that we've 
surrounded some of the operators, the ( * ) and the (I), with spaces but have not 
used spaces around the minus sign. The moral here is that the C compiler 
doesn't care whether you use spaces surrounding your operators or not, so 
you're free to arrange your expressions however they look best to you. If you 
don't like the way the spaces are arranged in the example, you can arrange them 
however you like when you type in the program. 

47 



Chapter 2 

48 

Operator Precedence 
The second point to notice about the ftemp.c program is that we've used 
parentheses around (ftemp-32). For those of you who remember your algebra 
the reason will be clear; we want the 32 subtracted from ftemp before we 
multiply it by 5 and divide by 9. Since multiplication and division are normally 
carried out before addition and subtraction, we use parentheses to ensure that 
the subtraction is carried out first. 

The fact that ( * ) and (I) are evaluated before ( + ) and ( - ) is an example 
of precedence; we say that ( * ) and ( I ) have a higher precedence than ( + ) and 
( - ). We'll be returning to this idea of precedence when we discuss different 
kinds of operators. 

The Remainder Operator 
The remainder operator (sometimes called the modulo operator) may be 
unfamiliar to you; it is used to find the remainder when one number is divided by 
another. ("Modulo" is the correct spelling.) For example, in the statement below, 
the variable answer will be assigned the value 3, since that's the remainder when 
the 13 is divided by 5. 

answer = 13 % 5; 

We'll find uses for all the arithmetic operators as we go along, but the remainder 
operator is useful in unexpected ways. 

Expressions versus Variables 
Where can you use expressions containing arithmetic operators? We've already 
shown examples of their use in assignment statements, such as 

days = years * 365; 

It's also possible to include expressions involving arithmetic operators (and other 
kinds of operators as well) directly into printf() and other kinds of statements. 
For example, the following usage is just fine: 

main() 
{ 

int num = 2; 
printf<"Number plus four is %d."; num + 4); 

} 

When this program is executed the following phrase will be printed out: 

Number plus four is 6. 

Instead of a constant or a variable, printf() has printed out the value of the 
expression 

num + 4 



C Building Blocks 

An "expression" is simply a combination of constants, variables, and 
operators that can be evaluated to yield a value. Since the variable number had 
the value 2, the expression evaluates to 6, and that's what is printed out. So you 
can use an expression almost anyplace you can use a variable. This is done more 
often in C than it is in most languages; we'll see examples as we go along. 

An entire expression can be used almost anyplace a variable can be used. 

While we're on the subject of arithmetic operators, we should mention two 
kinds of operators that you may not have encountered before in other languages: 
arithmetic assignment operators and increment/decrement operators. Both 
are widely used in C, and both help to give C source listings their distinctive 
appearance. 

Arithmetic Assignment Operators 
If you compare a C program with a program with a similar function written in 
another language, you may well find that the C program is shorter. One reason for 
this is that C has several operators that can compress often-used programming 
statements. Consider the following program fragment: 

total = total + number; 

Here the value in number is added to the value in total, and the result is placed 
in total. In C this statement can be rewritten: 

total += number; 

The effect is exactly the same, but the expression is more compact, as shown in 
Figure 2-11. 

yea r=yea r+ j anua ry; - this 

year+= j anua ry; --- this 

\ 
arithmetic assignment operator 

Figure 2-11. The Arithmetic Assignment Operator 

Here's a program that makes use of this "plus-equal" operator: 

49 



Chapter 2 

50 

mainO 
{ 

} 

int total = O; 
int count = 10; 
printfC"Total=%d\n", total>; 
total += count; 
pri ntf ("Tota l=%d\n", tot a L>; 
total += count; 
pri ntf ("Tota l=%d\n", tot a L>; 

And here's the output, showing the results of repeatedly adding the value of 
count, which is 10, to total. 

Total=O 
Total=10 
Total=20 

All the arithmetic operators listed earlier can be combined with the equal 
sign in the same way: 

+ = addition assignment operator 

subtraction assignment operator 

* = multiplication assignment operator 

I= division assignment operator 

% = remainder assignment operator 

There are assignment versions of some other operators as well, such as 
logical operators and bit-wise operators, but we'll ignore these for now. 

The Increment Operator 

C uses another operator that is not common in other languages: the increment 
operator. Consider the following program: 

mainO 
{ 

} 

int num=O; 
printf("Number=%d\n", num); 
printfC"Number=%d\n", num++); 
printf("Number=%d\n", num); 

Here's the output: 

Number=O 
Number=O 
Number=1 



C Building Blocks 

How did the variable num get to be 1? As you can guess by examination of the 
program, the ( + + ) operator had the effect of incrementing num; that is, adding 
1 to it. The first printf () statement printed the original value of num, which 
was 0. The second printf() statement also printed the original value of num; 
then, after num was printed, the ( + +) operator incremented it. Thus the third 
printf () statement printed out the incremented value. The effect of num( + +) is 
exactly the same as that of the statement 

num = num + 1; 

However, num ( + + ) is far more compact to write, as shown in Figure 2-12. It 
also compiles into more efficient code. 

days=days+1; -- this 

~\·\ \ \ + I //i_ ~~equivalent 
\.'"""~...,,,,,_.,,.,._,....x_"'""' .. ; ... ,,,._..,,...,,.,.,)' 

days ++; --- this .._.,..,. 

\ 
increment operator 

Figure 2-12. The Increment Operator 

Let's rewrite the program, making a subtle change: 

mainO 
{ 

} 

int num=O; 
printf("Number=%d\n", num); 
printf("Number=%d\n", ++num>; 
printf("Number=%d\n", num); 

What did we do? We moved the ( + + ) operator to the beginning of the num 
variable. Let's see what effect this has on the output: 

Number=O 
Number=1 
Number=1 

Now the variable num in the second printf () statement is incremented before it 
is printed. 

Since there's an increment operator you can guess there will be a decre
ment operator as well. Let's modify our program again, using ( - - ) , the decre
ment operator. 

51 



Chapter 2 

52 

mainO 
{ 

} 

int num=O; 
printf( 11Number=%d\n 11

, num); 
printf( 11 Number=%d\n 11

, num-->; 
printf( 11 Number=%d\n 11

, num>; 

Now instead of being incremented, the num variable is decremented: reduced 
by 1. 

Number=O 
Number=O 
Number=-1 

The effect is just the same as executing the statement 

num = num - 1; 

The ( + + ) and ( - - ) operators can increment and decrement a variable 
without the need for a separate program statement. 

The ability to increment (or decrement) a variable deep within an expres
sion, and to control whether it will be incremented before or after it is used, is 
one of the features that makes a single line of code so powerful in C. We'll see 
many examples of the use of these operators as we go along. 

Relational Operators 

In the next two chapters we'll be dealing with loops and decisions. These 
constructs require the program to ask questions about the relationship between 
variables; is a certain variable greater than 100? If so, stop looping. Is the 
character the user just typed equal to a space? If so, increment the count of the 
number of words. 

Relational operators are the vocabulary the program uses to ask questions 
about variables. Let's look at an example of a relational operator, in this case the 
"less than" ( < ) operator. 

main() 
{ 

} 

int age; 

age = 15; 
printfC 11 Is age less than 21? %d 11

, age < 21 >; 
age = 30; 
pr i n t f( 11 

\ n I s a less than 21 ? %d 11 ~ age < 21 > ; 



C Building Blocks 

Is age less than 21? 1 
Is age less than 21? 0 

In this program the printf() statements take the whole expression 

age < 21 

and print out its value. What is its value? That depends on the value of the 
variable age. When age is 15, which is less than 21, a 1 is printed out. When age 
is 30, which is not less than 21, a zero is printed. It would seem that 1 stands for 
true, and 0 stands for false. This turns out to be the case. In C, true is repre
sented by the integer 1, and false is represented by the integer 0. In some 
languages, such as Pascal, true and false values are represented by a special 
variable type called "boolean." In C, there is no such data type, so true and false 
values are represented by integers. The operation of the relational expression is 
shown in Figure 2-13. 

G) This expression 
evaluates to either 
true (1) or 
false (0). 

~ 

printfC"Is age less than 21? %d",age<21); 

Is age less than 21? 

@ The resulting value 
is plugged into 
the %d format 
specifier. 

0 The true/false 
value is 
printed out. 

Figure 2-13. Relational Expression in a printf() Statement 

The relational operators in C look much like those in other languages. 
There are six of them: 

< less than 

> greater than 

< = less than or equal to 

> = greater than or equal to 

equal to 

! = not equal to 

53 



Chapter 2 

54 

Note that the relational operator "equal to" is represented by two equal 
signs. A common mistake is to use a single equal sign as a relational operator. 
For reasons that we'll learn later, the compiler doesn't notice that this is an error, 
so it can be a particularly frustrating bug to track down. 

Here's an example using the equal-to ( = = ) operator (sometimes called the 
"equal-equal" operator). 

main() 
{ 

} 

int speed; 

speed = 75; 
printfC"Is speed equal to 55? %d", speed== 55 >; 
speed = 55; 
printf("\nis speed equal to 55? %d", speed== 55 >; 

Here's the output of the program. 

Is speed equal to 55? 0 
Is speed equal to 55? 1 

Note again how the expression 

speed == 55 

evaluates to either a false (0) or a true (1) value. 
An interesting point to notice about true and false values is that, although 

C will generate a 1 when it means true and a 0 when it means false, it will 
recognize any nonzero value as true. That is, there are a lot of integers that C 
thinks of as true, but only one-0-it thinks of as false. We'll make use of this 
fact in later programs. 

Precedence, Round II 
What will be printed out if you execute the following program? Remember that 
true is the integer 1 and false is the integer 0. These values can be used just like 
any other integer values. 

main() 
{ 

printf("Answer is %d", 2+1 < 4 >; 
} 

If you guessed "Answer is 1" you're right. First 2+ 1 is evaluated to yield 3, then 
this is compared with 4. It's less, so the expression 

2+1 < 4 

is true. True is 1, so that's what's printed. 



C Building Blocks 

Now watch closely: we're going to try something a little tricky. What will 
this program print? 

main() 
{ 

printfC"Answer is %d", 1<2 + 4 ); 
} 

Did you guess "Answer is 5"? If so, you probably decided that 1<2 would 
evaluate to true, or 1, and 1 added to 4 would give 5. Sorry, this is plausible but 
incorrect. We misled you with the use of spaces in the expression 1<2 + 4. 
Here's how we should have written it: 

1 < 2+4 

There are two lessons here. First, as we mentioned before, the compiler 
doesn't care where you put spaces; both forms of the expression compile into 
the same program. Second, arithmetic operators have a higher precedence than 
relational operators. That is, in the absence of parentheses, the arithmetic opera
tors are evaluated before the relational operators. In the expression above, the 
arithmetic operator ( + ) is evaluated first, yielding a value of 6 from the 
expression 2 + 4. Then the relational operator ( < ) is evaluated. Since 1 is less 
than 6, the value of the entire expression is true. Thus, the output of this 
program will be 

Answer is 1 

Arithmetic operators have a higher precedence-that is, are evaluated be
fore-relational operators. 

All operators in Care ranked according to their precedence. We have not 
encountered many of these operators yet, so we won't pursue the subject of 
precedence further here. It will, however, arise from time to time as we learn 
more about C. Precedence is a more important issue in C than it is in some 
languages because of the complexity of the expressions that are routinely cre
ated. Appendix A includes a table showing the precedence of all the C operators. 

Comments 
It's helpful to be able to put comments into the source code file that can be read 
by humans but are invisible to the compiler. Here's a revision of our age pro
gram, with comments added: 

/* age.c */ 

55 



Chapter 2 

56 

/* calculates age in days */ 
mainO 
{ 

float years, days; /* initialize variables */ 

printfC"Please type your age in years: "); /*print prompt */ 
scanfC"%f", &years>; /* get age in years from user */ 
days = years * 365; /* calculate age in days */ 
printfC"You are %.1f days old.\n", days>; /*print result*/ 

} 

A comment begins with the two-character symbol slash-asterisk ( /* ) and 
ends with an asterisk-slash ( */).These two-character symbols may seem awk
ward to type, especially in comparison to BASIC, where a single apostrophe ( ' ) 
at the beginning of the comment is all that's necessary. It also doesn't contribute 
to fast typing that the slash is lowercase while the asterisk is uppercase. As with 
other endeavors, however, if you type enough comments, it will start to seem 
easy. 

In this example we've used two full-line comments to name the program 
and to say what it does. We've also placed comments on the lines with the 
program code. The only problem with comments that share lines with code is 
that it's easy to run out of space. C's long program statements, and the fact that 
they are indented, combine to reduce the number of character spaces available 
on a line. 

Although a lot of comments are probably not necessary in this program, it 
is usually the case that programmers use too few comments rather than too 
many. Comments should be added anyplace there's a possibility of confusion. 
We'll refrain from repeating the standard lecture on how an adequate number of 
comments can save hours of misery and suffering when you later try to figure 
out what the program does. 

Since C ignores whitespace characters it's perfectly possible for comments 
to flow over two or more lines: 

'* This is 
a multi line 
comment 
*/ 

Often asterisks are placed at the beginning of each line in a multiline comment. 
This is for aesthetic reasons; the asterisks are not comment symbols themselves 
and are ignored by the compiler. 

/* This is a fancier 
*multi line 
* comment 
*/ 



C Building Blocks 

This is a common usage in C. 
It is illegal to nest comments. That is, you can't say 

I* Outer comment /* inner comment */ more outer comment */ 

This restriction can be annoying when you're debugging a program and 
you want to cause part of it to be invisible to the compiler by "commenting it 
out" (surrounding it with comment symbols). If the section of code you're 
commenting out contains comments, you'll be in trouble. 

It's easy to make errors with comment symbols, and the results of such 
errors can be particularly baffling to debug. For instance, if you forget the close
comment symbol ( *I ) at the end of a comment, the compiler will assume that 
your entire program from then on is a comment. It will not compile it and it also 
won't issue any error messages, or at least any messages that relate specifically 
to comments. Tracking down this sort of bug can be a major inconvenience, so 
be careful that every begin-comment operator is matched with a close-comment 
operator. 

We've included a C program called "comcheck.c" (for "comment check") 
in Appendix B. It will look through your source program and verify that each 
open-comment symbol is matched with a close-comment. If you have trouble 
with comments you might want to try this program. There are also programs 
available commercially that check the syntax of your C program in a more 
general way before it's compiled; these can also spot mismatched comment 
symbols. 

Summary 

In this chapter we've introduced some of the more fundamental parts of C: 
variables, input/output, and operators. 

You've learned that there are five major variable types in C: character, 
integer, long integer, floating point, and double-precision floating point. You've 
learned how to declare and initialize variables and how to use them in assign
ment and other kinds of statements. 

Among input/output functions, you've learned about format and field
width specifiers in the printf () function, about escape sequences, and about 
how to print graphics characters. You've been introduced to the scanf () and 
getche() input functions, and seen how scanf () is good for a variety of input 
and can handle multiple variables, while getche() returns any character typed 
in. 

We've covered two major categories of operators, arithmetic operators and 
relational operators, and mentioned two less important but very "C-like" opera
tors, the arithmetic assignment statement and the increment/decrement opera
tor. We've also discussed comments and operator precedence. 

With these fundamentals under your belt you should be ready to wade into 
the next few chapters, where we discuss program structures such as loops, 
decisions, and functions. 

57 



Chapter 2 

Questions 

58 

1. Declaring variables is advantageous because it: 

a. helps organize the program 

b. helps the compiler work efficiently 

c. avoids errors from misspelled variable names 

d. simplifies the writing of very short programs 

2. The five major data types in Care 

c 

d 

3. Which of these C statements are correct? 

a. int a; 

b. float b; 

c. double float c; 

d. unsigned chard; 

4. True or false: two variables can be declared in one statement. 

5. Type float occupies __ times as many bytes of memory as type char. 

6. Type int can accommodate numbers from --------- to 

7. Which of the following is an example of initializing a variable? 

a. num=2; 

b. int num; 

c. num < 2; 

d. int num=2; 

8. True or false: type long variables can hold numbers no larger than twice 
as big as type int variables. 

9. Floating point variables are used instead of integers to: 

a. avoid being too specific about what value a number has 

b. make possible the use of large numbers 



C Building Blocks 

c. permit the use of decimal points in numbers 

d. conceal the true value of the numbers 

10. What do the escape sequences '\x41' and '\xEO' print? 

11. Express the following numbers in exponential notation: 

a. 1,000,000 

b. 0.000,001 

c. 199.95 

d. -888.88 

12. Express the following numbers in decimal notation: 

a. 1.5e6 

b. 1.5e-6 

c. 7.6543e3 

d. -7.6543e-3 

13. What's wrong with this program? 

/* age.c */ 
/* calculates age in days */ 
mainO 
{ 

} 

float years, days; 
printfC"Please type your age in years: "); 
scanfC 11 %f 11

, years); 
days = years * 365; 
printfC"You are %f days old.\n", days); 

14. A field-width specifier in a printf () function: 

a. controls the margins of the program listing 

b. specifies the maximum value of a number 

c. controls the size of type used to print numbers 

/* print prompt */ 
/* get input */ 
/* find answer */ 
/* print answer */ 

d. specifies how many character positions will be used for a number 

15. True or false: a function can have a value. 

16. Which of the following are arithmetic operators? 

a. + 

b. & 

59 



Chapter 2 

60 

c. % 

d. < 

17. Rewrite the following statement using the increment operator: 

number= number+ 1; 

18. Rewrite the following statement using arithmetic assignment statement: 

usa = usa + calif; 

19. What is the meaning of the characters '\t' and '\r'? 

20. The function scanf() reads 

a. a single character 

b. characters and strings 

c. any possible number 

d. any possible variable type 

21. True or false: you need to press [Return] after typing a character in order 
for getche() to read it. 

22. A relational operator is used to: 

a. combine values 

b. compare values 

c. distinguish different types of variables 

d. change variables to logical values 

23. Are the following expressions true or false? 

a. 1 > 2 

b. 'a'< 'b' 

c. 1 = = 2 

d. '2' = = '2' 

24. Precedence determines which operator: 

a. is most important 

b. is used first 

c. is fastest 

d. operates on the largest numbers 

25. Is the following a correctly formed comment? 



C Building Blocks 

/* This is a 
/* comment which 
/* extends over several lines 

*' 
Exercises 

1. Modify the age.c program to print the age in minutes instead of days. 

2. Write a program that prints the square of a number the user types in. (The 
square is the number times itself.) Use floating point. 

3. Rewrite the box.c program so it draws a similar box, but one that is four 
characters wide and four characters tall. 

61 





Loops 

for loop 
while loop 
do while loop 
nested loops 
values of functions and assignment statements 
break and continue statements 

3 

63 



3 

In the last chapter we introduced variables, input/output functions, and 
operators. With these programming elements we could write programs that 
were almost useful: converting from Fahrenheit to centigrade, for example. 
However, the programs were limited because, when executed, they always 
performed the same series of actions, in the same way, exactly once. 

Almost always, if something is worth doing, it's worth doing more than 
once. You can probably think of several examples of this from real life, such as 
going to the movies and eating a good dinner. Programming is the same; we 
frequently need to perform an action over and over, often with variations in the 
details each time. The mechanism that meets this need is the "loop," and loops 
are the subject of this chapter. 

There are three major loop structures in C: the for loop, the while loop, 
and a cousin of the while loop called the do loop (or do while loop). We'll 
discuss each of these in turn. We're going to start with the for loop because it 
has close analogies in both BASIC and Pascal, whereas-at least in old-style 
BASIC-there is no equivalent to the while loop. Also, the for loop is 
conceptually easy to understand, although the details can get complicated. This 
is true because all its elements are stated explicitly at the beginning of the loop. 
In the other loops, the elements are scattered throughout the program. 

The for Loop 

64 

It is of ten the case in programming that you want to do something a fixed 
number of times. Perhaps you want to calculate the paychecks for 120 employ
ees or print out the squares of all the numbers from 1 to 50. The for loop is 
ideally suited for such cases. 

Let's look at a simple example of a for loop: 



/* forloop.c */ 
/* prints numbers from 0 to 9 */ 
mainO 

{ 

} 

int count; 
for Ccount=O; count<10; count++) 

printf("count=%d\n", count>; 

Loops 

Type in the program (you can call the source file forloop.c) and compile it. 
When executed, it will generate the following output: 

C>for Loop 
count=O 
count=1 
count=2 
count=3 
count=4 
count=S 
count=6 
count=? 
count=8 
count=9 

This program's role in life is to execute a printf () statement 10 times. The 
printf() prints out the phrase "count=" followed by the value of the variable 
count. Let's see how the for loop causes this to happen. 

Structure of the for Loop 

The parentheses following the keyword for contain what we'll call the "loop 
expression." This loop expression is divided by semicolons into three separate 
expressions: the "initialize expression," the "test expression," and the "incre
ment expresssion." Figure 3-1 shows the structure of the for loop. 

Expression 

1) count=O 
2) count< 10 
3) count++ 

Name 

Initialize expression 
Test expression 
Increment expression 

Purpose 

Initializes loop variable 
Tests loop variable 
Increments loop variable 

The variable count occupies a key role in this for loop. In conjunction 
with the three parts of the loop expression, count is used to control the opera-

65 



Chapter 3 

66 

I 
I 
I 
\ 
\ 

All this is a single C statement 
~1i¢WJIJ<.w--- _..~--~~...._~~ --- .- Loop expression 

for 

I 
Keyword 

semicolon semicolon 

initialize l test l increment 
expression expression expression no semicolon 

~here 
(count=O;count<10;count++) 
pri ntf ("count=%d\n"count) · - semicolon 

' terminates 
entire 

Body statement 
of 
loop 

Figure 3-1. Structure of the for Loop 

tion of the loop. Specifically, it keeps track of how many times we've been 
through the loop. 

Let's look in more detail at the three parts of the loop expression and how 
they operate on the variable count. 

The Initialize Expression 
The initialize expression, count= 0, initializes the count variable. The initialize 
expression is always executed as soon as the loop is entered. We can start at any 
number; in this case we initialize count to 0. However, loops are often started at 
1 or some other number. 

The Test Expression 
The second expression, count< 10, tests each time through the loop to see if 
count is less than 10. To do this, it makes use of the relational operator for "less 
than'' ( < ). If the test expression is true (count is less than 10), the loop will be 
executed. If the expression becomes false (count is 10 or more), the loop will be 
terminated and control will pass to the statements following the loop (in this 
case, there aren't any, so the entire program terminates). 

Here the test expression becomes false when count becomes 10, so the 
program terminates at that point, without executing the body of the loop (the 
printf() statement). 

The Increment Expression 
The third expression, count+ + , increments the variable count each time the 
loop is executed. To do this, it uses the increment operator ( + + ), described in 
the last chapter. 

The loop variable in a for loop doesn't have to be increased by 1 each time 
through the loop. It can also be decreased by 1, as we'll see later on in this 
chapter, or changed by some other number, using an expression such as: 



Loops 

count = count + 3 

In other words, practically any expression can be used for the increment 
expression. 

The Body of the for Loop 
Following the keyword for and the loop expression is the body of the loop: that 
is, the statement (or statements) that will be executed each time round the loop. 
In our example, there is only one statement: 

printf("count=%d\n", count>; 

Note that this statement is terminated with a semicolon, whereas the for with 
the loop expression is not. That's because the entire combination of the for 
keyword, the loop expression, and the statement constituting the body of the 
loop, are considered to be a single C statement. 

In a for loop, don't place a semicolon between the loop expression and the 
body of the loop, since the keyword for and the loop expression don't 
constitute a complete C statement. 

Operation of the for Loop 

Let's follow the operation of the loop, as depicted in Figure 3-2. First the initial
ization expression is executed, then the test condition is examined. If the test 
expression is false to begin with, the body of the loop will not be executed at all. 
If the condition is true, the body of the loop is executed and, following that, the 
increment expression is executed. This is why the first number printed out by 
our program is 0 and not 1; printing takes place be{ ore count is incremented by 
the ( + + ) operator. Finally the loop recycles and the test expression is queried 
again. This will continue until the test expression becomes false-count be
comes 10-at which time the loop will end. 

We should note here that C permits an unusual degree of flexibility in the 
writing of the for loop. For instance, if separated by commas, more than one 
expression can be used for the initialize expression and for the increment ex
pression, so that several variables can be initialized or incremented at once. 
Also, none of the three expressions actually needs to refer to the loop variable; a 
loop variable isn't even essential. In many cases, the for loop is used roughly as 
we've shown it in the example, but we'll see an instance of mulitiple initializa
tion in the next example. 

67 



Chapter 3 

68 

I 
I 

I 
I 

/ 

/ 
/ 

... -
/ 

I 
! 
I 
I 

I .,.-"' 
I "" I /" 
I / 
I / 
I I 
I I 
! I - ... , 
I I ' 
I I ' 
I I \ 
I I \ 
I I \ 
I : ~!......_ \ 
l I ' \ 
I I \ \ 
I \ I 
\ \ \ l 
\ \ I I 
\ ' I I 

\ \ I I 
\ \ I I ' \ / ~, \ // I 

' I / I 

main() 
{ 

\ I / I 
\ I I 

\ / / 

} 

int count;~~; ~r / 
for Ccount=O;count<10;count++) I!// 

(P-;:f ;tf (•7c-o~;:;t=%ci\n-;,~~~u-;,t)it" --------- ___________ .,.,.. 

Figure 3-2. Operation of the for Loop 

Multiple Statements in Loops 

The preceding example used only a single statement in the body of the loop. 
Two (or more) statements can also be used, as shown in the following program: 

/* forloop2.c */ 
I* prints numbers from 0 to 9, keeps running total */ 
main() 
{ 

int count, total; 
for Ccount=O, total=O; count<10; count++) 

{ 

total += count; /* same as total=total+count; */ 



} 

pri ntf C11 count=%d, tot a l=%d\n", count, tot a L>; 
} 

Loops 

Type the program in (call it forloop2.c) and compile it. This program not 
only prints the numbers from 0 to 9, it also prints a running total: 

C>for loop2 
count=O, total=O 
count=1, total=1 
count=2, total=3 
count=3, total=6 
count=4, total=10 
count=S, total=15 
count=6, total=21 
count=?, total=28 
count=8, total=36 
count=9, total=45 

Truly, a performance to make any power user envious. 
The most important new feature of this program is the use of braces ( { and 

} ) to encapsulate the two statements that form the body of the loop: 

{ 

total += count; 
print f ("count=%d, tot a l=%d\n", count, tot a L>; 
} 

There are two points to remember about this multistatement loop body. The first 
is that the whole package-the opening brace, the statements, and the closing 
brace-are treated as a single C statement, with the semicolon understood. This 
is often called a "compound statement" or a "block." Thus, you don't need to 
type a semicolon after the last brace. The second point is that each statement 
within the block .is also a C statement and must be terminated with a semicolon 
in the usual way. Figure 3-3 shows the operation of the for loop with multiple 
statements in the loop body. This figure is similar to that for the single-statement 
loop body; we've included it here partly to facilitate comparison with the opera
tion of the while loop in the next section. 

Another point to note about the program is that we've used the ( + =) 
arithmetic assignment operator to add the value of count to the value of total in 
the expression: 

total += count; 

As we saw in Chapter 2, we could just as well have written: 

total = total + count; 

69 



Chapter 3 

70 

main() 
{ 

{ 

int 
int 
for 

I 
I 
! 
! 
I 
I 
I 
! 
I 
! 

false 

! \ 
i I 

I 

I 
I 
I 
i 

f 
! 

\ ! 
\ 

count; 
total; .. 
Ccount=O~total=O;count<10;count++) 

{ 

total+ = count; 

; 
! 
i 
t 
I 

pri ntfC"count=%d, tot a l=%d\n", count++, total); 

} 

Figure 3-3. Multiple Statements in for Loop 

Loop Style Note 

body of loop 
includes open 
and close 
braces and 
any number 
of statements 

Many C programmers, including the venerable Kernighan and Ritchie (referred 
to in Chapter 1), handle braces in a somewhat different way than we've shown 
above. They put the opening brace on the same line as the loop expression: 

for Ccount=O, total=O; count<10; count++) { 
total += count; 
printf("count=%d, total=%d\n", count, total>; 

} 



Loops 

This has the advantage of saving a line in the listing. However, the compiler 
doesn't care which way you choose, and we feel that aligning the matching 
braces vertically makes it easier to ensure that each opening brace is matched by 
a closing one and helps to clarify the structure of the program. Both approaches 
are common. For ease of learning we'll use the one-brace-per-line approach for 
most of this book, but in the final chapters we'll switch to the more compact 
format. 

Multiple Initializations in the for Loop 

Another subtlety we've introduced into the forloop2.c program is that the 
initialization expression in the for loop contains two statements, separated by a 
comma: count= 0 and total= 0. As we mentioned, this is perfectly legal 
syntax. 

for Ccount=O, total=O; count<10; count++) 

In this particular program we didn't really need to put the initialization of total 
within the loop; we could also have said: 

total = O; 
for Ccount=O; count<10; count++) 

but we wanted to show how two (or more) statements can be used in the 
initialization expression, and we saved a line of code-a desirable end in the eyes 
of most C programmers. 

As we noted, multiple statements can also be used in this way in the 
increment expresssion; that is, you can increment two or more variables at the 
same time. However, only one expression is allowed in the test expression, since 
a single condition must determine when the loop terminates. 

The use of multiple statements in the initialization expression also demon
strates why semicolons are used to separate the three kinds of expressions in the 
for loop. If commas had been used (as commas are used to separate the argu
ments of a function, for example), they could not also have been used to separate 
multiple statements in the initialization expression, without confusing the com
piler. The comma is sometimes called the "sequential evaluation operator," since 
it serves to separate a list of similar items that will be evaluated in turn. Items 
separated by commas are evaluated from left to right. 

An ASCII Table Program 

Here's a program that uses a for loop to print out a table of ASCII codes. As you 
learned in Chapter 2, in the IBM PC family each of the numbers from 0 to 255 
represents a separate character. From 0 to 31 are control codes (such as the 
carriage return, tab, and linefeed) and some graphics characters; from 32 to 127 

71 



Chapter 3 

72 

are the usual printing characters, and from 128 to 255 are graphics and foreign 
language characters. 

/* asctab.c */ 
/*prints table of ascii characters */ 
mainO 
{ 

int n; 
for Cn = 1; n < 256; n++) /*codes from 1 to 255 */ 

printf C11%3d=%c\t", n, n>; /* print as number and as char */ 
} 

A section of the output is shown below: 

41=) 42=* 43=+ 44=, 45=- 46=. 47=/ 48=0 49=1 50=2 
51=3 52=4 53=5 54=6 55=7 56=8 57=9 58=: 59=; 60=< 
61== 62=> 63=? 64=@ 65=A 66=8 67=C 68=0 69=E 70=F 
71=G 72=H 73=1 74=J 75=K 76=L 77=M 78=N 79=0 80=P 
81=Q 82=R 83=S 84=T 85=U 86=V 87=W 88=X 89=Y 90=Z 
91=[ 92=\ 93=] 94:A 95= 96=' 97=a 98=b 99=c 100=d -101=e 102=f 103=g 104=h 105=i 106=j 107=k 108=l 109=m 110=n 

111=0 112=p 113=q 114=r 115=s 116=t 117=u 118=v 119=w 120=x 

This program uses the tab character ( '\t' ) in the printf() statement. This 
causes the next item printed to start eight spaces from the start of the last item. 
In other words, it divides the screen into columns eight characters wide. On an 
80-column screen then, we have room for 10 items. (In the listing above the 
columns are actually only six spaces wide; we compressed it so the printout 
would fit on the page.) The printf() function also uses a field-width specifier of 
3 so that each number is printed in a box three characters wide, even if it has 
only one or two digits. 

The printf() Function as a Conversion Device 
The printf () statement in our asctab.c program is performing a complex task 
with a minimum of fuss: printing both the character and its ASCII code. In most 
languages, this would require a separate conversion function to change the 
number n into the character whose ASCII value is n. 

In C, we can use the same variable, n, for both number and character; only 
the format specifier changes: %c prints the character, while %d prints the 
number. 

printf ("%3d=%c\t", n, n>; 

Format specifiers can interpret the same variable in different ways. 

What's actually stored in the computer's memory is an integer, n, as 



Loops 

specified in the type declaration statement. The %d format specifier prints the 
decimal representation of n, while the %c format specifier prints the character 
whose ASCII code is n. 

Drawing a Line with a Graphics Character 

In Chapter 2 we introduced a graphics character representing a rectangle (ASCII 
code DB hexadecimal). Let's use this character and a for loop to draw a line 
across the screen. Here's the program: 

/* Line.c */ 
/* draws a solid Line using rectangular graphics character */ 
main() 
{ 

} 

int cols; 
for (cols=1; cols<40; cols++) 

pri ntf (11 %c 11
, '\xDB'); 

Each time through the loop another rectangle is printed, creating a solid line of 
rectangles. The process is shown in Figure 3-4. 

-=z=,···> columns 

1 2 3 4 5 6 7 8 9 10 11 12 13 33 34 35 36 37 38 39 

.. 
"r./=>I 111 I II II I I I I Gl f I I I II I I I ~ row is filled 
j from left to right 
t 

! 
\\ 
\~:.:::~:;;;;;;;;;;;;;:z;::J solid line of 

rectangles 

Figure 3-4. Operation of the line.c Program 

Nested for Loops 

It is possible to nest one for loop inside another. To demonstrate this structure, 
we'll concoct a program that prints out the multiplication table: 

/* multab.c */ 
/* generates the multiplication table */ 
main() 
{ 

int cols, rows; 
for(rows=1; rows<13; rows++) /* outer Loop */ 

73 



Chapter 3 

74 

{ 

forCcols=1; cols<13; cols++) /* inner loop*/ 
printfC "%4d", cols * rows >; /*print product */ 

printfC"\n"); /*new line*/ 
} 

} 

When you run this program, you'll get the following output: 

C>multab 
1 2 3 4 5 6 7 8 9 10 11 12 
2 4 6 8 10 12 14 16 18 20 22 24 
3 6 9 12 15 18 21 24 27 30 33 36 
4 8 12 16 20 24 28 32 36 40 44 48 
5 10 15 20 25 30 35 40 45 50 55 60 
6 12 18 24 30 36 42 48 54 60 66 72 
7 14 21 28 35 42 49 56 63 70 77 84 
8 16 24 32 40 48 56 64 72 80 88 96 
9 18 27 36 45 54 63 72 81 90 99 108 

10 20 30 40 50 60 70 80 90 100 110 120 
11 22 33 44 55 66 77 88 99 110 121 132 
12 24 36 48 60 72 84 96 108 120 132 144 

In this program the inner loop steps through 12 columns, from 1 to 12, while the 
outer loop steps through 12 rows. For each row, the inner loop is cycled through 
once; then a newline is printed in preparation for the next row. Each time 
through the inner loop-that is, at each intersection of a column and a row-the 
product of the row number (rows) and the column number (cols) is printed by 
the printf function. For instance, if the variable cols was 8, meaning we're on 
the eighth column, and rows was 4, meaning we're on the fourth row, then the 
program multiplies 8 by 4 and prints the product at the intersection of this row 
and column. Since we used the "less than" operator ( < ), the loop variables 
cols and rows never reach the limit of 13; the loops both terminate at 12. 

To ensure that the columns line up, we use a field-width specifier of 4 in 
the printf () function. 

Indentation and Nesting 
As you can see, the body of the outer for loop is indented, and the body of the 
inner for loop (in this case a single line) is further indented. These multiple 
indentations make the program easier to read and understand. Although 
invisible to the compiler, some form of indentation is employed by almost all C 
programmers. 

The actual multiplication of cols times rows takes place inside the printf () 
function: 

printfC "%4d", cols * rows >; 

We could have used another variable, say product (which would need to 
be declared), and written the inner loop: 



{ 

product = rows * cols; 
printf ( "%4d", product >; 
} 

Loops 

However, as we've noted, C programmers usually try to telescope statements in 
order to achieve compactness and eliminate unnecessary variables. 

The fill.c Program 

Here's another example of the nested for loop construction. This one looks like 
the multiplication table example, but instead it fills a box-shaped area of the 
screen with a solid color. It's actually an extension of the line.c program: fill.c 
repeatedly prints lines of rectangles to create a solid area. Here's the listing: 

/* fill.c */ 
/*fills square area on screen*/ 
mainO 
{ 

} 

int cols, rows; 
for (rows=1; rows<=22; rows++) 

{ 

for (cols=1; cols<=40; cols++) 
pri ntf<"\xDB"); 

pri ntf<"\n"); 
} 

/* outer Loop */ 

/* inner Loop */ 
/* print rectangle */ 
/* new Line */ 

As in the multab.c program, fill.c uses an outer for loop to control the rows 
and an inner for loop to control the columns. That is, the inner loop cycles 
through the columns to write a single row of rectangles, then the outer loop 
increments to go on to the next row. Figure 3-5 shows what the ouput of the 
program looks like while the program is in progress. 

We've used a new relational operator in this program, the ( < = ) operator, 
meaning "less than or equal to." This means that the numbers used in the test 
expressions in the for loops, 22 and 40, are actually reached by the variables, as 
shown in Figure 3-5. In earlier programs the variables stopped one short of 
these limits, because the "less than" ( < ) operator was used. 

Notice also that since '\xDB' is a character, and a character can be part of a 
string, we've put '\xDB'directly into the printf() format string, making it a one
character string. We could have written 

printf("%c", '\xDB'>; 

as we did in the line.c program, but the representation used in fill.c is simpler. 

75 



Chapter 3 

2 

4 

w~--~>columns 

1 2 3 4 5 6 7 8 9 10 

Each row is 
""%=x~filled from 

left to right 

19 

20 

21 

22 

34 36 38 40 

Figure 3-5. Output of the fill.c Program 

The while Loop 

76 

The second kind of loop structure available in C is the while loop. Although at 
first glance this structure seems to be simpler than the for loop, it actually uses 
the same elements, but they are distributed throughout the program. 

Let's try to compare, as directly as possible, the operation of the for loop 
and the while loop. The following program uses a while loop to reproduce the 
operation of our earlier forloop2.c program, which printed the numbers from 0 
to 9 and gave a running total. 

/* wloop.c */ 
/* prints numbers from 0 to 9, keeps running total */ 
/*uses while loop*/ 
mainO 
{ 

} 

int count = O; 
int total = O; 
while C count< 10) 

{ 

/* initialize count */ 
/* initialize total */ 
/* loop until count is 10 */ 

total += count; /* same as total = total + count */ 
printfC"count=%d, total=%d\n", count++, total>; 
} 

As before, this program produces the following table: 

C>wloop2 
count=O, total=O 
count=1, total=1 



count=2, total=3 
count=3, total=6 
count=4, total=10 
count=S, total=15 
count=6, total=21 
count=?, total=28 
count=8, total=36 
count=9, total=45 

Loops 

Certainly the expression in parentheses following the keyword while is simpler 
than the three-part expression in the for loop. It dispenses with the initialization 
and increment expressions, retaining only the test expression: 

count < 10; 

The resulting structure is shown in Figure 3-6. 

Keyword 

\ Loop expression 

while Ccount<10) 

total+=count; 
printf("count=%d,total=%d\n",count++,total); 

} 

Body of loop 

Figure 3-6. Structure of the while Loop 

If the expressions that initialize and increment the counting variable are 
not in the while loop expression itself, where did they go? 

The initialization step is now included in a variable declaration: 

int count = O; 

The incrementing of the count variable can be seen in the print£ () state
ment, which includes, instead of the variable count you might expect, the 
expression count+ + instead. This means that, as soon as count is printed, it is 
incremented. 

Notice how easily we were able to increment the variable. In most other 
languages we would have needed a separate statement: 

count = count + 1; 

following the printf () statement; in C the expression count+ + has the same 
effect. 

The operation of the while loop is shown in Figure 3-7. 

77 



Chapter 3 

78 

/ 
I 

I 
l 
l 
I 
! 
l 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
\ 
\ 
\ 

,,,, 

/ 
I 
I 
I 
I 
I 
I 
l 
! 
I 
I 
I 
! 
I 
I 
I 

,,.....--~> 

....... 
'\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

mainO \ \ 
{ 

} 

int count=O; I 
int total=O;\!? 
while (count<10) 

\ 

~---------------------- ----~-~ ,,.. ........ { 

\ 
\ 
\ 

( total+=count; 
\ pri ntf ("count=%d, tota L=%d\n", count++, tot a L>; / 
\ / 
~,2 ______________________________ / .... 

Figure 3-7. Operation of the while Loop 

The loop variable count is initialized outside the loop in the declaration int 
count= 0. When the loop is first entered, the condition count< 10 is tested. If 
it's false, the loop terminates. If it's true, the body of the loop is executed. The 
increment expression is buried in the body of the loop. When the printf() 
statement which forms the loop body has finished printing, count is incre
mented by the ( + + ) operator. 

The Unexpected Condition 

In situations where the number of iterations in a loop are known in advance, as 
they are in the wloop.c example, while loops are actually less appropriate. In 



Loops 

this case the for loop is a more natural choice, since we can use its explicit 
initialize, test, and increment expressions to control the loop. So, when is the 
while loop the appropriate choice? 

The while loop shines in situations where a loop may be terminated 
unexpectedly by conditions developing within the loop. As an example, consider 
the following program: 

/* charcnt.c */ 
/* counts characters in a phrase typed in */ 
mainO 
{ 

} 

int count=O; 
printfC"Type in a phrase:\n"); 
while C getcheO != '\r' ) 

count++; 
printf("\nCharacter count is %d 11 , count>; 

This program invites you to type in a phrase. As you enter each character it 
keeps a count of how many characters you've typed, and when you hit [Return] 
it prints out the total. Here's how it looks in operation: 

C>charcnt 
Type in a phrase: 
cat 
Character count is 3 

C>charcnt 
Type in a phrase: 
Knowledge rests not upon truth alone, but also upon error. 
Character count is 58 

(This last phrase is from Carl Jung, and considering that it was written 
before the invention of computers, it is surprisingly applicable to the art of 
programming.) 

While loops are more appropriate than for loops when the condition that 
terminates the loop occurs unexpectedly. 

Why is the while loop more appropriate in charcnt.c than a for loop? The 
loop in this program terminates when the character typed at the keyboard is the 
[Return] character. There's no need for a loop variable, since we don't have to 
keep track of where we are in the loop, and thus no need for initialize or 
increment expressions, since there is no loop variable to initialize or increment. 
Thus the while loop, consisting only of the test expression, is the appropriate 
choice. 

79 



Chapter 3 

80 

Let's look more closely at the loop expression in the while loop: 

( getcheO != 1 \r' ) 

This incorporates the function getche(), which, as we saw in Chapter 2, returns 
the value of a character the instant the character is typed. As you also learned, 
this function takes on or "returns" the value of the character typed, so the 
function can be treated like a variable and compared with other variables or 
constants. In this program we compare it with the constant '\r', the carriage 
return character that getch() will return when the user presses the [Return] key. 
The evaluation of the loop expression is shown in Figure 3-8. 

The loop will continue to be executed 
as long as this does not equal this. 

getche( ) has th\ "--"I value of the 
character typed 

~ 

while (getche()!='\r') 

Condition: 
true or false 

Figure 3-8. A Function Has a Value 

Since we use the "not equal" operator ( ! = ), the while loop will continue to 
be executed as long as it does not encounter a '\r'. When it does encounter it, the 
loop will terminate and the total number of characters typed will be printed out. 

Using Functions as Elements in Expressions 
Putting the getche() function into the while loop expression certainly makes for 
unusual looking syntax (at least that's how it strikes non-C programmers). Do we 
really need to do this? Doesn't it complicate things unnecessarily? As Will 
Rogers said when someone complained of the evils of old age, consider the 
alternative. We'll rewrite the program to use an explicit variable, ch, in the 
while expression, instead of the getche() function: 

/* charcnt2.c */ 
/* counts characters in a phrase typed in */ 
mainO 
{ 

int count = -1; 
char ch; 

printf<"Type in a phrase:\n"); 
ch= 'a'; 
while ( ch != 1 \r' ) 

{ 



} 

ch = getche 0; 
count++; 
} 

printf("\nCharacter count is %d", count); 

Loops 

Now the while loop expression is simplified, but look at the effect of this change 
on the rest of the program. We now have an extra variable ch. We need to 
initialize ch to avoid the possibility {remote though it may be) that it would start 
out with the value '\r'. We have an extra statement in the body of the while loop. 
And, count must be initialized to an odd-looking -1 value because checking to 
see which character is read now occurs after the loop is entered instead of before. 
Altogether, it appears that including the getche() function in the while expression 
is a good idea. It's also a very popular sort of construction in C. 

ASCII Revisited 

The expression used in the while loop expression in the charcnt.c program was 
relatively complex, but loop expressions can also be very simple. As an example, 
consider the following program: 

/* ascii.c */ 
/* finds ascii code of a character*/ 
mainO 
{ 

} 

while C1) 
{ 

} 

char ch; 
printfC"Enter a character: \n"); 
ch=getcheO; 
printfC"\nThe code for %c is %d.\n", ch, ch); 

This program asks the user to type a character and then prints out the ASCII 
code for the character. It will do this over and over. It's sort of a shorthand 
version of the asctab.c program shown earlier, but it's more useful if you only 
want to check the ASCII codes for one or two keyboard characters, without 
looking at the entire table. Here's some sample output: 

C>ascii 
Enter a character: 
a 
The code for a is 97. 
Enter a character: 
b 
The code for b is 98. 
Enter a character: 

81 



Chapter 3 

82 

A 
The code for A is 65. 

Here the only purpose of the while loop is to keep recycling indefinitely, 
asking the user over and over to enter a character. Since 1 is by definition always 
true, the while expression will never be false. 

Are we stuck then in an infinite loop? In MS-DOS (PC-DOS) systems the 
key combination [Ctrl] [c] will terminate most programs that use keyboard input 
routines such as getche() or screen-printing routines such as printf(); this is a 
commonly used method for returning to the operating system. So terminating 
the program is an easy matter: hold down [Ctrl] and type [c]. The infinite loop is 
somewhat less than infinite after all! 

Since the getche() function is no longer included in the loop test expres
sion, it has become part of an assignment statement: 

ch = getche 0; 

(We could also have used the getche() expressions in the printf() statement, 
eliminating the ch variable altogether, but this would have made for a lengthy 
program line.) 

The printf() function, as in the asctab.c program, prints both the character 
version of ch, and the numeric version, using the %c and %d format specifiers. 
Note that we can print a numerical value of ch even though at the start of the 
program it was declared a variable of type char. This demonstrates a useful 
feature of C; character variables can be interpreted as either characters or nu
merical values (with a range of -128 to 127). 

Nested while Loops 

Just as for loops can be nested, so can while loops. The following program 
shows such nesting: 

/* guess */ 
/* lets you guess a letter */ 
main() 
{ 

} 

char ch; 
while ( 1 

{ 

printfC"\nType in a letter from 'a' to 'e':\n"); 
while ( Cch=getcheO) != 'd' ) 

{ 

printfC"\nSorry, %c is incorrect.\n", ch); 
printf("\nTry again.\n"); 
} 

printf("\nThat's it!\n"); 
} 



Loops 

This program lets you guess a lowercase letter from 'a' to 'e' and tells you 
if you're right or wrong. The outer while loop keeps cycling until you exit the 
program by typing [Ctrl] [c]. The inner loop determines whether your guess is 
correct. If not, it loops again, asking you to make another try. When you do 
guess correctly (which should take you no more than five tries, if you're on your 
toes) the inner loop terminates. The correct answer is always 'd' (unless you 
modify the program). 

Here's a sample interaction: 

Type in a Letter from 'a' to 'e': 
a 
Sorry, a is incorrect. 

Try again. 
c 
Sorry, c is incorrect. 

Try again. 
d 
That's it! 

As in the nested for loop example, each of the loops is indented to help 
clarify the operation of the program. 

Assignment Expressions as Values 

The most radical aspect of the guess.c program is the use in the inner while loop 
test expression of a complete assignment expression as a value: 

while ( Cch=getcheO> != 'd' ) 

In the charcnt.c program we saw that a function could be used as if it were a 
variable; here the idea is carried to even greater lengths. How is this loop 
expression interpreted? First the function getche() must return a value. Say it's 
the character 'a'. This value is then assigned to the character variable ch. 
Finally, the entire assignment expression 

ch=getcheO 

takes on the value of ch, which is 'a'. This value can then be compared with the 
character 'd' on the right side of the not-equal relational operator ( ! = ). Figure 
3-9 shows this process. The use of assignment expressions as values is a com
mon idiom in C. 

Precedence: Assignment versus Relational Operators 
Note that there is an extra set of parentheses around the assignment expression 
in the test expression of the inner while loop discussed above. 

while ( Cch=getcheO> != 'd' ) 

83 



Chapter 3 

84 

0 

@ Expressions 

are! comTed 

Cch!='d') 
"----" @ Yields true 
or false 
value 

Entire expression 
is given the 
value of ch 

while ((ch=getche())!='d') 

1
0 Function 
\.:.J returns 

a value 

0 yaiue 
IS 

assigned 
to ch 

Note extra 
parentheses 
to override 
procedure 

Figure 3-9. An Assignment Expression Has a Value 

If the parentheses weren't there, the compiler would interpret the expression 
like this: 

while ( ch= CgetcheO != 'd') ) 

This of course isn't what we want at all, since ch will now be set equal to the 
results of a true/false expression. The reason we need the parentheses is that the 
precedence of the relational operator ( ! = ) is greater than that of the assignment 
operator ( = ) . (This is shown in the table of operator precedence in Appendix 
A.) So, unless parentheses tell the compiler otherwise, the relational operator 
( ! = ) will be evaluated first. By inserting the parentheses we ensure that the 
expression is evaluated correctly. 

A Mathematical while Loop 

Before we leave the subject of while loops, let's look at one more example. This 
one calculates the factorial of a number. As you no doubt remember from Mr. 
Klemmer's high-school math class, the factorial of a number is the number 
multiplied by all the numbers smaller than itself. Thus the factorial of 4 is 
4*3*2* 1, or 24. 

Here's the listing: 



/* factor.c */ 
/* finds factorial of number typed in */ 
main() 
{ 

} 

long number, answer; 
while (1) 

{ 

print fC"\nType number: "); 
scanf ("%1", &number); % \J 
answer= 1; 
while (number> 1 ) 

answer = answer * number--; 
printfC"Factorial is: %ld\n", answer>; 
} 

Here's a sample of interaction with the program: 

Type number: 3 
Factorial is: 6 

Type number: 4 
Factorial is: 24 

Type number: 7 
Factorial is: 5040 

Type number: 16 
Factorial is: 2004189184 

Loops 

As in the guess.c program, factor.c uses an outer while loop to recycle 
until the [Ctrl] [c] keys are pressed. The inner loop uses the decrement operator 
to reduce the variable number-which starts out at the value typed in by the 
user-by 1 each time through the loop. When number reaches 1 the loop 
terminates. 

A new wrinkle in this program is the use of long integers. Because factori
als grow so rapidly, even an initial value of 8 would have exceded an integer 
variable's capacity of 32,767. Long integers provide an improvement in that they 
can hold numbers up to 2,147,483,647, as you learned in Chapter 1. To use long 
integers, we ha~ve used the variable type long in the declaration statement, used 
the uppercase ' · he format specifier in the scanf () function, and modified 
the format specifier t "ld" in the printf() function. 

Using while Loops and for Loops 

Now that we know how to write two different kinds of loops, how do we decide 
which one to use in a given situation? 

Generally speaking, if at the time you enter the loop you already know 
how many times you want to execute it, you're probably better off with the for 

85 



Chapter 3 

loop. If, on the other hand, the conditions for terminating the loop are imposed 
by the outside world, such as the user typing a certain character, then you're 
better off with the while loop. 

We'll use numerous examples of both kinds of loops throughout this book. 

The do while Loop 

86 

The last of the three loops in C is the do while loop. This loop is very similar to 
the while loop-the difference is that in the do loop the test condition is 
evaluated after the loop is executed, rather than before. 

Here's our familiar program that prints the numbers from 0 to 9 and a 
running total, revised to use a do loop: 

/* doloop.c */ 
/* prints numbers from 0 to 9, keeps running total */ 
/* uses do loop */ 
mainO 
{ 

} 

int count = O; 
int total = O; 
do 

{ 

total += count; 
printf("count=%d, total=%d\n", count++, total>; 
} 

while (count< 10 >; 

The output is the same as in previous versions of the program: 

C>doloop 
count=O, total=O 
count=1, total=1 
count=2, total=3 
count=3, total=6 
count=4, total=10 
count=S, total=15 
count=6, total=21 
count=?, total=28 
count=8, total=36 
count=9, total=45 

The do loop, unlike the other loops we've examined, has two keywords: do 
and while. The do keyword marks the beginning of the loop; it has no other 
function. The while keyword marks the end of the loop and contains the loop 
expression, as shown in Figure 3-10. 

An important detail to note is that this loop, unlike the for and while 



Loops 

Keyword 

\ 
do Body of loop 
,,..,,,~'~""{' $,C® 

( ~otal+=count; 
~~:f (" count=%d, total =%d \n", count++, tot a l l ; 

/while Ccount<10>;" 

Loop Semicolon Keyword 
expression 

Figure 3-10. Structure of the do Loop 

loops, is terminated with a semicolon; that is, the test condition in the parenthe
ses following while ends with a semicolon. 

The operation of the do loop is sort of an upside-down version of the 
while loop. The body of the loop is first executed, then the test condition is 
checked. If true, the loop is repeated; if the test condition is false the loop 
terminates, as can be seen in Figure 3-11. The important point to notice is that 
the body of the loop will always be executed at least once, since the test 
condition is not checked until the end of the loop. 

Pascal programmers might want to note that the do loop is similar to the 
"repeat until" loop in Pascal, except that it continues to loop while the test 
condition is true, while "repeat until" loops until the test condition is true. 

When would you use a do loop? Any time you want to be sure the loop 
body is executed at least once. This situation is less common than that where the 
loop might not be executed at all, so the do loop is used less often than the 
while loop. When in doubt, use the while loop; the operation of the program is 
clearer if the test condition is set forth at the beginning of the loop. If you find 
yourself writing a lot of do loops, you might want to try restructuring your 
program to turn some of them into whiles. 

Revised Guessing Game 

Here's an example of a situation that calls for a do loop. Suppose we want to play 
our guess-the-letter game, but now, instead of assuming you want to continue 
playing until you press the [Ctrl] [c] key combination, we want to know if you 
want to play again after each game. To achieve this effect we can rewrite the 
program as follows: 

/* guessdo.c */ 
/* lets you guess a letter */ 
/* uses do loop to ask if new game wanted */ 
mainO 
{ 

char ch; 
do 

87 



Chapter 3 

88 

} 

{ 

printfC"\n\nType in a digit from 'a' to 'e':\n">; 
while C Cch=getcheO) != 'c' ) 

{ 

printfC"\nSorry, %c is incorrect.\n", ch>; 
printfC"Try again.\n"); 
} 

printf("\nThat's it!\n"); 
pri ntf ("\nP lay again? (Type 
} 

I I 
y or 'n'): "); 

while C getcheC) == 'y'>; 
printfC"\nThanks for playing!"); 

I 
I 

I 
I 

I 

I 
I 

,,, ..... --{~ 
,,. --/ 

/ 

I 
I -- ...... ,, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Jv 
"<; 

true 

<1'. .... . ... 

'\~~, 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
I 
I 

' ' \ 

~--------------~-~ { I 

\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 

' '\ 
\ 

\ 
\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
! 

-
( total+=count; : 
\ pri ntf ("count=%d, tot a l=%dl\n", count++, total); i 
' } : ' 

''~- - --~ ..... ----- -- -- ....J. _________ _,_~~~ 
while Ccount<10); } 

/ ...... -.. ______ ,,.,,...,,, 

Figure 3-11. Operation of the do Loop 

Here's a sample session with the guessdo.c program: 



Type in a digit from 'a' to 'e': 
b 
Sorry, b is incorrect. 
Try again. 
c 
That's it! 

Play again? (Type 'y' or 'n'>: y 

Type in a digit from 'a' to 'e': 
d 
Sorry, d is incorrect. 
Try again. 
c 
That's it! 

Play again? (Type 'y' or 'n'): n 
Thanks for playing! 

Loops 

Notice that the body of the do loop will always be executed once. If you called 
up the program in the first place, we can assume that you want at least one 
game. After the first game, we ask if you want to continue. It is this situation, in 
which something must be done once before we ask if it should be done again, 
that is properly implemented with a do loop. 

The do loop is useful when the body of a loop will always be executed at 
least once. 

The break and continue Statements 
To round out our discussion of loops we should mention that C has two state
ments which can be used with any of the loops described above: break and 
continue. 

The break statement bails you out of a loop as soon as it's executed. It's 
often used when an unexpected condition occurs; one that the loop test condi
tion is not looking for. We'll see examples of this statement later. 

The continue statement is inserted in the body of the loop, and, when 
executed, takes you back to the beginning of the loop, bypassing any statements 
not yet executed. Continue is a bit suspect in that it can make a program 
difficult to read and debug by confusing the normal flow of operations in the 
loop, so it is avoided by C programmers whenever possible. 

Summary 
This chapter has focused on the three C loops: for, while, and do while. You've 
learned how to create these and use them in a variety of situations. You've also 

89 



Chapter 3 

learned how to nest one loop inside another, and how to use variables, func
tions, and assignment statements with relational operators in the loop expres
sion. In short, you're ready to do things again and again. 

Questions 

90 

1. The three parts of the loop expression in a for loop are 

the i expression 

the t _________ expression 

the i expression. 

2. A single-statement for loop is terminated with a 

a. right bracket 

b. right brace 

c. comma 

d. semicolon 

3. A is used to separate the three parts of the loop 
expression in a for loop. 

4. A multiple-statement while loop is terminated with a 

a. right bracket 

b. right brace 

c. comma 

d. semicolon 

5. Multiple increment expressions in a for loop expression are separated by 

6. A while loop is more appropriate than a for loop when: 

a. the terminating condition occurs unexpectedly 

b. the body of the loop will be executed at least once 

c. the program will be executed at least once 

d. the number of times the loop will be executed is known before the 
loop is executed 

7. True or false: the initialize expression and increment expression are 
contained in the loop expression in a while loop. 

8. An expression contains relational operators, assignment operators, and 



Loops 

arithmetic operators. In the absence of parentheses, they will be 
evaluated in the following order: 

a. assignment,. relational, arithmetic 

b. arithmetic, relational, assignment 

c. relational, arithmetic, assignment 

d. assignment, arithmetic, relational 

9. The more deeply a loop is nested, the more _________ it 
should be indented. 

10. An assignment statement can itself have a , just like ---------a variable. 

11. The advantage of putting complete assignment statements inside loop 
expressions is: 

a. to avoid awkward program constructions 

b. to simplify the flow of control in the program 

c. to reduce the number of program statements 

d. to clarify the operation of the program 

12. True or false: in almost every case where a variable can be used, an 
increment or decrement operator can be added to the variable. 

13. A do while loop is useful when: 

a. the body of the loop will never be executed 

b. the body of the loop will be executed at least once 

c. the body of the loop may never be executed 

d. the body of the executed loop was found by the butler 

14. The break statement is used to exit from which part of a loop? 

a. beginning 

b. middle 

c. end 

d. none of the above 

15. True or false: a continue statement causes an exit from a loop. 

91 



Chapter 3 

Exercises 

92 

1. Write a program that prints the squares of all the numbers from 1 to 20. 
(Perhaps you can adapt a similar exercise from the last chapter.) 

2. Rewrite the charcnt.c program so that it counts characters until a period ( . ) 
is typed, rather than [Return]. 

3. Write a program that repeatedly calculates how many characters separate 
two letters typed in by the user, until terminated with [Ctrl] [c]. For instance 
there are two characters ( 'b' and 'c' ) between 'a' and 'd'. Take advantage of 
the fact that the arithmetic operators work on character variables just as 
well as they do on numbers. 



Decisions 

The if statement 
The if -else statement 
The else-if construct 
The switch statement 
The conditional operator 

4 

93 



4 

We all need to be able to alter our actions in the face of changing circumstances. 
If the forecast is for rain, then I'll take my raincoat. If the freeway is under 
construction, then I'll take the back road. If, when I propose, she says yes, I'll 
buy her a ring; if she says no, I'll start dating Gladys. 

Computer languages, too, must be able to perform different sets of actions 
depending on the circumstances.Chas three major decision-making structures: 
the if statement, the if-else statement, and the switch statement. A fourth, 
somewhat less important structure, is the conditional operator. In this chapter 
we'll explore these four ways a C program can react to changing circumstances. 

The if Statement 

94 

Like most languages, C uses the keyword if to introduce the basic decision
making statement. Here's a simple example: 

/* testif.c */ 
/* demonstrat~s if statement */ 
mainO 
{ 

} 

char ch; 
ch = getcheO; 
if Ch :: I YI ) 

printf("\nYou typed y."); 

You can no doubt guess what will happen when this program is executed: 

C>testif 
y 
You typed y. 



C>testif 
n 
C> 

Decisions 

If you type 'y', the program will print "You typed y." If you type some other 
character, such as 'n', the program doesn't do anything. 

Figure 4-1 shows the structure of the if statement. This structure is surpris
ingly similar to that of the while statement described in Chapter 3. The key
word is followed by parentheses, which contain a conditional expression using a 
relational operator. Following this, there is the body of the statement, consisting 
of either a single statement terminated by a semicolon, or (as we'll see shortly) 
multiple statements enclosed by braces. In fact, the only difference between the 
structure of the if statement and that of the while is that the words "if" and 
"while" are different. 

Relational 
Conditional operator 

expression l / 
Keyword ~-

"-....if Cch=='y') /------------ ~ 
~ print f<"\n You typed y. "); ) 

/"-------------------- ---\ 
Body of if statement Terminating 

semicolon 

Figure 4-1. Structure of the if Statement 

Notice too that there is no "then" keyword following the conditional ex
pression, as there is in Pascal and usually is in BASIC. 

There is no "then" keyword in C. 

The if statement is similar to the while statement in operation as well as 
format. In both cases the statements making up the body of the statement will 
not be executed at all if the condition is false. However, in the while statement, 
if the condition is true, the statement (or statements) in the body of the loop will 
be executed over and over until the condition becomes false; whereas in the if 
statement they will be executed only once. Figure 4-2 shows the operation of the 
if statement. 

95 



Chapter A 

96 

false 

body of 
if statement 

if (ch=='y') 

printf("\n You typed y."); 
-'\ 

Figure 4-2. Operation of the if Statement 

A Word-Counting Program 

In the last chapter we included a program, charcnt.c, which counted the number 
of characters in a phrase typed by the user. Here's a slightly more complex 
program that counts not only the number of characters, but the number of 
words as well: 

/* wordcnt.c */ 
/* counts characters and words in a phrase typed in */ 
mainO 
{ 

} 

int charcnt=O; 
int wordcnt=O; 
char ch; 
printf<"Type in a phrase:\n"); 
while ( Cch=getcheO) != '\r' ) 

{ 

charcnt++; 
if ( ch == I I 

wordcnt++; 
} 

'* 
/* 
/* 
'* 
'* 

read character and */ 
quit loop on [Return] 
count character */ 
space? */ 
then count word */ 

printfC"\nCharacter count is %d", charcnt); 
printf("\nWord count is %d", wordcnt+1); 

*/ 



Decisions 

This program figures how many words there are by counting the number 
of spaces. (It could be fooled by multiple spaces between words, but we'll ignore 
that possibility.) Here's some sample interaction with the program: 

C>wordcnt 
Type in a phrase: 
cat and dog 
Character count is 11 
Word count is 3 

C>wordcnt 
Type in a phrase: 
This sentence actually uses nine words and sixty-five characters. 
Character count is 65 
Word count is 9 

A tip of the hat to Douglas Hofstadter and his book Metamagical Themas 
(Basic Books, 1985) for the second phrase, which is the sort of example that is 
hard to type correctly the first time. 

This program is similar to the charcnt.c program. The major addition is the 
if statement: 

if ( Ch :: I I 

wordcnt++; 

This statement causes the variable wordcnt to be incremented every time a 
space is detected in the input stream. There will always be one more word than 
there are spaces between them (assuming no multiple spaces), so we add 1 to the 
variable wordcnt before printing it out. (We could also have used + + wordcnt). 

Multiple Statements with if 

As in the case of the various loop statements, the body of the if statement may 
consist of either a single statement terminated by a semicolon (as shown in the 
example above) or by a number of statements enclosed in braces. Here's an 
example of such a compound statement: 

/* testif2.c */ 
/* demonstrates multiple statements following if */ 
mainO 
{ 

} 

char ch; 
ch = getcheO; 
if C ch == 'y' 

{ 

printfC"\nYou typed y. 11
); 

printfC"\nNot some other Letter."); 
} 

97 



Chapter 4 

In both testif .c programs we could have embedded the getche() function in 
the if expression, as we did in similar situations with the while loop in Chap
ter 3: 

if ( getche() == 'y' ) 

This is more C-like, but we thought using it would make what the if statement 
was doing a bit less clear. However, in this next example, which is a program 
that reads two characters from the keyboard, we'll use this more compact 
construction. 

Nested if Statements 

Like the loop statements of the last chapter, if statements can be nested. Here's a 
simple example: 

/* nestif.c */ 
/* demonstrates nested if statements */ 
mainO 
{ 

} 

if getche() == 'n' ) 
if C getche() == 'o' ) 

printfC"\nYou typed no."); 

Nesting here means that one if statement is part of the body of another if 
statement. In the example above, the inner if statement will not be reached 
unless the outer one is true, and the printf() statement will not be executed 
unless both if statements are true, as the following interaction with the program 
shows: 

C>nestif 
x +- a non 'n' to start with terminates the program 
C>nestif 
nx +- a non 'o' as the second letter does likewise 
C>nestif 
no +- only 'n' followed by 'o' gets to the printf( J 
You typed no. 
C> 

The operation of nested if statements is shown in Figure 4-3. 

The if-else Statement 

98 

The if statement by itself will execute a single statement, or a group of state
ments, when the test expression is true. It does nothing when it is false. Can we 
execute a group of statements if and only if the test expression is not true? Of 



J 
I 
I 

false .,.,,.,...,.,,.--,,. 
/ 

/ 
/ 

I 
I 

I 
I 

I 

I 
I 

I 
I 
I 
I 
! 
! 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 

/ 
I 

I 

,.. 
,-'' 

body Of 
if statement 

false 

', 
\ 

f Cgetche()=='n') 
- 1 ;if (getcheC>=='o') 

,, printfC"\n You typed no."); 

Figure 4-3. Nested if Statements 

\ 
\ 
\ 
\ 
\ 
\ 
I 
I 
! 
! 
I 
i 
! 

Decisions 

course. This is the purpose of the else statement, which is demonstrated in the 
following example: 

/* testelse.c */ 
/* demonstrates if-else statement */ 
mainO 
{ 

} 

char ch; 
ch= getcheO; 
if ( ch == 'y' 

printf("\nYou typed y."); 
else 

printf("\nYou didn't type y."); 

Typing 'y' elicits one response, while typing anything else elicits a different 
response. 

99 



Chapter 4 

100 

C>testif2 
y 
You typed y. 

C>testif2 
n 
You didn't type y. 

Figure 4-4 shows the structure of the if-else statement and Figure 4-5 flowcharts 
its operation. 

Keyword Conditional ~ody of 'x expression if statement 

;;_~~~~----------~-
! printf("\n You typed y."); ' 
'---------------else 

I 
Keyword 

pri~t"h;.\;;v~~-dici;;·t-t;p~-;:;.-;;-,, _____________________ '\ ____ , 

Body of 
else statement 

Figure 4-4. Structure of the if-else Statement 

Notice that the else is indented to line up with the if. This is a formatting 
convention, which, if consistently followed, will enable you to better under
stand the operation of your program. 

For clarity, each else should be indented the same amount as its matching if. 

Character Graphics and the Checkerboard 

As an example of the if-else statement at work, consider the following program, 
which prints a checkerboard on the monochrome screen. 

/* checker.c ".k/ 
/* draws a checkerboard on the screen */ 
main 0 
{ 

int XI Yi 
for (y=1; y<9; y++) 

{ 

for Cx=1; x<9; x++) 
if < Cx+y) % 2 == 0 ) 

printf("\xDB\xDB"); 

/* stepping down */ 

/* stepping across */ 
/* even numbered square? */ 
I* print filled square*/ 



} 

else 
printf<" "); 

pri ntf<"\n"); 
} 

Decisions 

/* print blank square */ 
/* new Line*/ 

Try out the program so you can see what it does. Figure 4-6 shows roughly 
what you'll see. 

This program is similar to those in Chapter 3 that drew a line and a 
rectangle, in that it uses the graphics character '\xDB' and nested loops to scan 
part of the screen. Here, however, the if-else construction gives the program the 
power to alter its operation, depending on which part of the screen it's about to 
write on. 

How does this program work? The outer for loop (the variable y) moves 
down the screen one row at a time. That is, y marks what row we're on, starting 
at y= 1 for the top row, and moving down to y=8. The inner loop (the variable x) 
moves across the screen one column at a time. That is, x marks what column 
we're on, starting at X= 1 for the left-most column and moving across until x=8. 

Actually, each of the columns pointed to by xis two characters wide. This 
glitch in the program is necessary because the characters on the IBM screen are 

! 
I 

false 

body of body of 
if statement else statement 

if (ch=='y') 
printf("\n You typed y."); 

else 
printf("\n You didn't type y. 11

); 

Figure 4-5. Operation of the if-else Statement 

\ 

\ 

101 



Chapter 4 

102 

c>checker 

c> 

each square is 
actually two 
characters wide 

Figure 4-6. Output of the Checker Program 

about twice as high as they are wide, so to create a correctly proportioned 
checkerboard each square must consist of two characters side-by-side: either 
two spaces or two solid rectangles. The purpose of the two printf () functions is 
just this: one prints two spaces, the other prints two solid rectangles using the 
'\xDB' character. 

Getting Even with the Remainder Operator 

How does the program decide when to print a square and when not to? In effect, 
the program numbers the squares and then colors only the even-numbered 
squares, leaving the odd-numbered squares blank. It determines whether a 
square is odd or even in the statement: 

if < Cx+y) % 2 == 0 ) 

Each square is numbered, as shown in Figure 4-7. The number is obtained by 
adding the x and y coordinates of the square: x + y. 

These numbers are not unique (more than one square has the same num
ber) but they do exhibit the desired alternation between odd and even. 

How then does the statement shown above reveal when a number is odd 
and when it is even? The remainder operator ( % J, which we mentioned in 
Chapter 1, is used for this purpose. With a divisor of two, the remainder will be 
0 if the dividend is even, and 1 if the dividend is odd. The if-else statement can 
then determine whether to print two colored rectangles or two spaces for a 
given square (that is, for a particular value of x and y). 

Drawing Lines 

As another example of character graphics and the if-else statement, let's look at 
a pair of programs that draw lines on the monochrome screen. Actually, "line" 
may be too strong a word; it's really more of a diagonal "staircase" pattern. 



Decisions 

x 
2 3 4 

1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 
= 2 = 3 = 4 = 5 = 6 

y 
1 + 2 2 + 2 3 + 2 4 + 2 

! 
2 = 3 = 4 = 5 = 6 

1 + 3 2 + 3 3 + 3 4 + 3 
3 = 4 5 = 6 = = 7 

1 + 4 2 + 4 3 + 4 4 + 4 
4 = 5 = 6 = 7 = 8 

1 + 5 

= 6 

Figure 4-7. Numbering Squares on the Checkerboard 

Here's the first program: 

I* Lines.c */ 
/* prints diagonal Lines on screen */ 
main 0 
{ 

} 

int x, y; 
for Cy=1; y<24; y++) 

{ 

for <x=1; x<24; x++) 
if ( x == y ) 

printf("\xDB"); 
else 

printfC"\xBO"); 
pri ntfC"\n"); 
} 

I* step down the screen */ 

/* step across the screen */ 
I* are we on diagonal?*/ 
I* yes, draw dark rectangle */ 

I* no, draw Light rectangle */ 

This program is similar to the checkerboard program, except that instead of 
printing on even-numbered squares, it prints wherever the x coordinate and the 
y coordinate are equal. This will create a diagonal line extending from the upper 
left corner of the screen, where x = 1 and y = 1, down to the bottom of the screen, 
where x=23 and y=23. 

Where the line is not drawn, the background is filled in with a light gray. 
For this purpose the program uses another graphics character, '\BO'. This is the 
same size as the solid rectangle created by '\DB', but consists of a pattern of tiny 

103 



Chapter 4 

104 

dots, creating a gray effect. Part of the output of the program is shown in Figure 
4-8. 

x~ 

123456789 

2 

y 3 

! 4 

5 

6 

7 

Figure 4-8. Output of the lines.c Program 

In this program we have not attempted to compensate for the aspect ratio 
of the characters on the screen as we did in the checkerboard program. As a 
consequence, each of the rectangles making up the line is twice as high as it is 
wide, and the line, which should appear to be at a 45-degree angle, actually 
slopes downward more steeply than that. 

Nested if -else Statements 

It is perfectly possible to nest an entire if-else construct within either the body 
of an if statement or the body of an else statement. The latter construction, 
shown in the following example, is quite common. 

I* lines2.c */ 
/* prints two diagonal lines on screen */ 
mainO 
{ 

int x, Yi 
for (y=1; y<24; y++) 

{ 

for <x=1; x<24; x++) 
if ( x == y ) 

printf("\xDB"); 

/* step down the screen */ 

/* step across the screen */ 
/*NW-SE diagonal? */ 
/* print solid color */ 



Decisions 

} 

else 
if ( x == 24 - y ) 

printf("\xDB"); 
else 

printf( 11 \xB011 >; 
pri ntfC"\n"); 
} 

/* SW-NE diagonal? */ 
/* print solid color */ 

I* print gray */ 
I* next line */ 

This program is similar to the last one, except that it draws two lines on the 
screen, as shown in Figure 4-9. The first line is the same as in the last program. 
The second line goes in the opposite direction, from upper right to lower left. 
Thus the two lines create a dark X shape in the middle of a gray rectangle. 

Note how the second if-else construction, which draws the second line, is 
nested inside the first else statement. If the test expression in the first if state
ment is false, then the test expression in the second if statement is checked. If it 
is false as well, the final else statement is executed. The process is shown in 
Figure 4-10. 

You can see in the listing how each time a structure is nested in another 
structure, it is also indented for clarity. This is similar to the way nested loops 
are indented. 

There are several alternatives to this nested if-else structure. One involves 
a format change, one involves a new C statement, switch; and the third involves 
logical operators. We'll look at this last alternative in a moment. First, however, 
let's examine a possible pitfall in the use of nested if-else statements. 

Which if Gets the else? 

Consider the following program, which looks as if it would respond with an 
appropriate comment when the user types in the temperature (in degrees Fahr
enheit). 

/* temper.c */ 
/* makes remark about temperature */ 
mainO 
{ 

} 

int temp; 
printf<"Please type in the temperature: "); 
scanf("%d", &temp); 
if < temp < 80 ) 

if < temp> 60 > 
printf("Nice day!"); 

else 
printf("Sure is hot!"); 

Suppose temp is 32. What will be printed when this program is executed? 
Would you guess nothing at all? That seems reasonable: the first if condition 

105 



Chapter 4 

x----~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

2 

3 

4 

5 

6 

7 

8 

9 

y 

l 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Figure 4-9. Output of the lines2.c Program 

106 



Decisions 

body of first 
~ if statement 

't: ~ '--. 

\ 

\ 
! 

body of second I 
if statement I 

I 
I 

I 
l 

·l I \ I 

! I \ I 

l \ i 

I body of last \ ! 
I I else statement ,"'> I I 

I I 
I " I ,, 
I 

G 
i 

! I 

I 
j I 
l, 
j / --- --- ( 

--- --- \ I' -..... ' 11 
\ 

,, 
I \ 

J \ I if <x==y) I/ 
pri ntf ("\xDB"); ·. 

_.,., 
' ! 

else 
if <x==24-y) '# 

/ pri ntf<"\xDB"); 
else 

printf("\xBQ 11 ); 
. '~ 

Figure 4-10. Nested if-else Statements 

( temp < 80 ) will be true, so the second if condition ( temp > 60 ) will be 
evaluated. It will be false, so it looks as if the program will exit from the entire 
nested if-else construct. 

However, we have attempted to mislead you by altering the indentation. 
You may have been fooled, but the compiler won't be. Here's what happens: 

Please type in the temperature: 32 
Sure is hot! 

The problem is that the else is actually associated with the if immediately 

107 



Chapter 4 

108 

preceding it, not the first if as the indentation would lead you to believe. The 
rule is that an else is associated with the last if that doesn't have its own else. 
Here's a modified version of the program which will operate correctly: 

/* temper2.c */ 
/* makes remark about temperature */ 
mainO 
{ 

} 

int temp; 
printfC"Please type in the temperature: "); 
scanf("%d", &temp>; 
if C temp < 80 ) 

if C temp > 60 ) 
printfC"Nice day!"); 

else 
printfC"Sure is chilly!"); 

else 
printfC"Sure is hot!"); 

Here the inner else is paired with the inner if, and the outer else is paired with 
the outer if. The indentation in this case is not misleading. 

An else is associated with the last if that doesn't have its own else. 

If you want to ensure that an else goes with an earlier if than the one it 
would ordinarily be matched with, you can use braces to surround the interven
ing if structure. Surrounding the if with braces makes it invisible to the else, 
which then matches up with the earliest non braced if. We've modified the 
example to show how this looks (note that this program doesn't print anything if 
the temperature is colder than 60). 

/* temper3.c */ 
/* makes remark about temperature */ 
mainO 
{ 

} 

int temp; 
printfC"Please type 
scanfC 11 %d 11

, &temp); 
if C temp < 80 ) 

in the temperature: ">; 

{ 

if ( temp > 60 > 
printf("Nice day!"); 

} 

else 
printfC"Sure is hot!"); 

/* these braces make */ 
/* this "if" */ 
/* invisible */ 
/* to */ 
/* this "else" */ 



Decisions 

Logical Operators 

We can simplify the lines2.c program from earlier in this chapter by using an 
operator we have not yet encountered: the logical operator. Logical operators are 
a powerful way to condense and clarify complicated if-else structures (and 
other constructions as well). Let's see what effect a logical operator, in this case 
the OR operator, represented by two vertical bars ( 11 ), will have on the 
program. Then we'll explore logical operators in general. 

/* lines3.c */ 
/* prints two diagonal lines on screen */ 
mainO 
{ 

int XI Yi 
for Cy=1; y<24; y++) 

{ 

for Cx=1; x<24; x++) 
/* if either condition */ if ( x==y II x==24-y 

printf("\xDB"); 
else 

/* is true, print solid box */ 
/* otherwise */ 

} 

printf("\xBO">; 
printf("\n"); 
} 

/* print gray box */ 

This program yields the same output as the previous example-a pair of crossed 
diagonal lines, but does so in a more elegant way. The logical OR operator ( 11 ) 
means if either the expression on the right side of the operator (x= =24-y), or 
the expression on the left (x= =y) is true, then the entire expression ( X= =y 11 
X= =24-y ) is true. 

Note that the logical operator ( 11 ) performs an inclusive OR. That is, if 
either the expression on one side of the operator, or the expression on the other, 
or both expressions, are true, then the entire expression is true. (An exclusive OR, 
by contrast, would provide a false result if the expressions on both sides were 
true; C does not have an exclusive OR operator.) 

There are three logical (sometimes called "Boolean") operators in C: 

I I 
I I 

&& 

logical OR 

logical AND 

logical NOT 

Here's a program that uses the logical AND operator ( && ): 

/* digitcnt.c */ 
/* counts characters and numerical digits in a phrase */ 
mainO 
{ 

int charcnt=O; 

109 



Chapter 4 

110 

} 

int digitcnt=O; 
char ch; 
printf("Type in a phrase:\n"); 
while ( Cch=getcheO) != '\r' ) 

{ 

charcnt++; 
if < ch > 47 && ch < 58 ) 

digitcnt++; 
} 

/* until [return] typed */ 

/* count character */ 
/* if ch is digit */ 
/* count digit */ 

pri ntfC"\nCharacter count is %d", charcnt); 
printfC"\nDigit count is %d", digitcnt); 

This program is a modification of our earlier charcnt.c and wordcnt.c 
programs. In addition to counting the characters in a phrase, it also counts any 
of the numeric digits 0 through 9 which are part of the phrase. Here's an 
example: 

C>digitcnt 
Type in a phrase: 
He packed 4 socks, 12 shirts, and 1,000 hopes for the future. 
Character count is 61 
Digit count is 7 

The key to this program is the logical AND operator ( && ) . This operator 
says: if both the expression on the left (ch>47) and the expression on the right 
(ch<58) are true, then the entire expression ( ch>47 && ch<58) is true. This 
will only be true if ch is between 48 and 57; these are the ASCII codes for the 
digits from 0 to 9. 

There are several things to note about these logical operators. Most obvi
ously, they are composed of double symbols: ( : : ) and ( && ). Don't use the 
single symbols: ( : ) and ( & ). These single symbols also have a meaning (they 
are bitwise operators, which we'll examine later), but it isn't the meaning we 
want at the moment. 

Perhaps it is not so obvious, though, that the logical operators have a lower 
precedence than the relational operators, such as ( = = ). It's for this reason that 
we don't need to use parentheses around the relational expressions x = = y, ch 
> 47, and so on. The relational operators are evaluated first, then the logical 
operators. (We'll summarize operator precedence in a moment.) 

Logical operators have lower precedence than relational operators. 

Although we don't make use of the fact here, you should know that logical 
operators are always evaluated from left to right. Thus, if you have a condition 
such as: 



Decisions 

if C a<b && b<c ) 

you know that (a< b) will be evaluated first. Also, in this case, C is smart enough 
to know that if the condition to the left of the && is false, then there's no point in 
evaluating the rest of the expression, since the result will be false anyway. 

The third logical operator is the NOT operator, represented by the exclama
tion point ( ! ), and sometimes called the "bang" operator. This operator reverses 
the logical value of the expression it operates on; it makes a true expression false 
and a false expression true. 

The NOT operator is a unary operator: that is, it takes only one operand. In 
this way it's similar to the negative sign in arithmetic: the ( - ) in - 5 also takes 
only one operand. 

Here's an example of the NOT operator applied to a relational expression. 

!Cx < 5) 

This means "not x less than five." In other words, if x is less than 5, the 
expression will be false, since (x < 5) is true. We could express the same 
condition as (x > = 5). 

The NOT operator is often used to reverse the logical value of a single 
variable, as in the expression 

if< !flag ) 

This is more concise than the equivalent 

i fC flag==O > 

Operator Precedence, Revisited 
Since we've now added the logical operators to the list of operators we know 
how to use, it is probably time to review all of these operators and their 
precedence. Table 4-1 summarizes the operators we've seen so far. The higher 
an operator is in the table, the higher its precedence. (A more complete 
precedence table can be found in Appendix A.) 

Table 4·1. Operator Order of Precedence 

!
*I% 
+ -

Operators 

< > <= >= 
= = l= 
&& :: 
= + = *=I= o/o= 

Type 

unary: logical NOT, arithmetic minus 
arithmetic (multiplicative) 
arithmetic (additive) 
relational (inequality) 
relational (equality) 
logical AND and OR 
assignment 

111 



Chapter 4 

Unary operators-those which act on only one value-have the highest 
priority. Then come arithmetic operators; here multiplication and division have 
higher precedence than addition and subtraction. Similarly, those relational 
operators that test for inequality have a higher precedence than those that test for 
equality. Next come the logical operators and finally the assignment operators. As 
you know, parentheses can be used to override any of these precedence relations. 

The else-if Construct 

112 

We've seen how if-else statements can be nested. Let's look at a more complex 
example of this arrangement: 

/* calc.c */ 
/* four-function calculator */ 
mainO 
{ 

} 

float num1, num2; 
char op; 
while (1) 

{ 

printfC"Type number, operator, number\n"); 
scanfC"%f %c %f", &num1, &op, &num2); 
i f ( Op :: I+ I ) 

printf(" = %f", num1 + num2); 
else 

if Cop == '-') 
printf(" = %f", num1 - num2); 

else 
if Cop == '*') 

printf(" = %f", num1 * num2); 
else 

if Cop== 1
/

1
) 

printf(" = %f", num1 I num2); 
printf("\n\n"); 
} 

This program gives your computer, for which you spent thousands of 
dollars, all the raw power of a four-function pocket calculator. You first type a 
number, then an operator-which can be any of the arithmetic operators { + ), 
I - ), { * ), or {I )-and finally a second number. The program then prints out the 
answer. 

Here we've used scanf () to read in the first number, the operator, and the 
second number in a single statement. As we discussed in Chapter 1, the white 
spaces between the variables in the format string in the scanf () statement 
permit you to separate the variables you type in with any sort of whitespace 
characters: spaces, tabs, or newlines. Actually, it's not even necessary to type 
any whitespace character in this example; scanf () will know we've finished 



Decisions 

typing the first number when it sees a non-numeric character, and it will then 
wait for the second number. Here are examples of different approaches used 
with the calc.c program: 

C>calc.c 
Type number, operator, number 
3 + 3 .-- separated by spaces 
= 6.000000 

Type number, operator, number 
1 .-- separated by newlines 
I 
3 
= 0.333333 

Type number, operator, number 
1000*1000 .-- no separation 
= 1000000.000000 

Type number, operator, number 
1000000/3 
= 333333.333333 

As in previous examples, we escape from the program by typing [Ctrl] [c]. 
Structurally, the important point to notice about this program is how the if

else constructs are nested. Since there are so many, the nesting and the resulting 
indentation gets quite deep, making the program difficult to read. There's an
other way to write, and think about, this situation. This involves the creation of 
a sort of imaginary construct called "else-if." We reformat the program, but not 
in a way the compiler will notice: 

I* calc2.c */ 
I* four-function calculator */ 
main() 
{ 

} 

float num1, num2; 
char op; 
while (1) 

{ 

printf("Type number, operator, number\n"); 
scanfC 11%f %c %f", &num1, &op, &num2>; 
if C op == '+') 

printfC" = %f", num1 + num2); 
else if Cop == '-'> 

printf(" = %f", num1 - num2); 
else if Cop == '*') 

printfC" = %f", num1 * num2>; 
else if Cop=='!'> 

printfC" = %f", num1 I num2); 
printf("\n\n"); 
} 

113 



Chapter 4 

114 

This operates exactly as before, but we've rearranged the whitespace to make 
the program easier to read. By simply deleting spaces and the newline, each if is 
moved up next to the preceding else, thus making a new construction: else-if. 
We think of else-if as meaning, "if the test expression that follows is true, 
execute the statement in the body of the else-if (in this case a printf () state
ment) and go to the end of the entire else-if chain; otherwise, go to the next 
else-if statement in the chain." Figure 4-11 shows this process in a flowchart. 

The else-if construction is a reformatting of nested if-else statements. 

The break Statement 

In the next section we'll look at the switch statement, which provides an 
alternative to the else-if construct. However, the switch statement relies on 
another statement, break. So we'll digress briefly to see how break is used to 
escape from a loop; then we'll go on to explore the role it plays in the switch 
statement. 

We'll demonstrate break with a guessing game program. In this game the 
user picks a number between 1 and 99 and the program tries to guess what it is. 
The user replies to the computer's guesses by saying whether the guess is higher 
or lower than the number the computer is thinking of. Here's the listing: 

/* numguess.c */ 
/* program guesses number user is thinking of */ 
mainO 
{ 

} 

float guess, incr; 
char ch; 
printf<"Think of a number between 1 and 99, and\n"); 
printf<"I'll guess what it is. Type 'e' for equals,\n"); 
printf<"'g' for greater than, and 'l' for less than.\n"); 
incr = guess = 50; /* two assignments at once */ 
while ( incr > 1.0) /*while not close enough*/ 

{ 

printf("\n!s your number greater or less than %.Of?\n", 
guess>; 

incr = incr I 2; 
if ( (ch=getche 0) I I ) /* if guessed it already */ -- e 

break; /* escape from loop */ 
else if (ch == I g I) /* if guess too low, */ 

guess = guess + incr; /* try higher */ 
else /* if guess too high, */ 

guess = guess - incr; /* try lower */ 
} 

printfC"\nThe number is %.Of. Am I not clever?", guess); 



I 

f -;--
1 
! I 
l ! 

i ! 
I I 
! I 

I 
I 

! I I 
,-r-1-1 
I I l ! 
! I I I 

l I 
l I 

I 
I 
l 
! 
I 
I 
! 
l 
\ 
"'--~----

body 2 

.·-. 
~ 

' 

body 3 

"" ' 

body 4 

" "I 
\·-. 
I 1 

I 
I 
l 
l 
l 
I 
I 
I 
I 

l 

I 
, ..., I 

r, I 
I h 
I ! '1, 
I I l 
l ! 

if Ctest1) l ! : 
body1; - ---- __ _; 1 l 

e Lse if Ctest2) 1 1 

body2; -- -- --- _J 1 

- - - - - -:- e Ls e i f ( t es t3) : 
body3; -- - ---- I 

--------- else if Ctest4) ! 
body4; -~------- ___ .) 

Figure 4-11. The else-if Construct 

Decisions 

The strategy employed by numguess.c is to ask questions that cut in half 
the range in which the number might lie. Thus the program first asks if the 
number is greater or less than 50. If the number is greater than 50, the program 
asks if the number is greater or less than 75, while if it's less than 50 the program 
asks if it's greater or less than 25. The process continues until the program 
deduces the number. Here's a sample interaction, with the user thinking of the 
number 62: 

115 



Chapter 4 

116 

Think of a number between 1 and 99, 
and I'll guess what it is. Type 'e' for equals, 
'g' for greater than, and 'l' for less than. 

Is your number greater or less than 50? 
g 
Is your number greater or less than 75? 
l 
Is your number greater or less than 63? 
l 
Is your number greater or less than 56? 
g 
Is your number greater or less than 59? 
g 
Is your number greater or less than 61? 
g 
The number is 62. Am I not clever? 

The test expression in the while loop waits for the variable incr (for 
increment)-which is added to or subtracted from guess and then divided by 2 
each time through the loop-to become 1. At that point the program knows that 
the number has been guessed, so it prints out the guess. However, there is the 
possibility the program will actually print the number the user is thinking of 
when it's trying to narrow down the range; it might ask if the number is greater 
or less than 75, for example, when in fact the user is thinking of 75. At this 
point, the honorable user will type 'e'. Now the program knows it can stop 
trying to guess the number, so it needs to get out of the loop right away. The 
break statement is used for this purpose. 

Break is often useful when a condition suddenly occurs that makes it 
necessary to leave a loop before the loop expression becomes false. And, as we'll 
see next, it is essential in the switch statement. 

Several other points about numguess.c should be noted. First, the follow
ing statement is written on two lines: 

printfC"\nis your number greater or less than %.Of?\n", 
guess>; 

This linebreak was necessary because the one line exceeded the width of the 
page. The C compiler doesn't mind if you break a line in the middle this way, as 
long as you don't break it in the middle of a string. 

Second, in the statement 

incr = guess = 50; 

we've assigned two variables a value using only one statement. This is possible 
because an assignment statement itself has a value (as we mentioned in Chapter 
3). In this case, the statement 

guess = 50; 



Decisions 

takes on the value 50, and the variable guess can then be set equal to this value. 

The switch Statement 
Now that we know how the break statement works, we're ready to move on to 
switch. The switch statement is similar to the else-if construct but has more 
flexibility and a clearer format. It is analogous to the case statement in Pascal; 
there is no equivalent in BASIC. Let's rewrite our calc2.c program to use switch: 

/* calc3.c */ 
/* four-function calculator */ 
main() 
{ 

} 

float num1, num2; 
char op; 

while (1) 
{ 

printf("Type number, operator, number\n"); 
scanfC"%f %c %f", &num1, &op, &num2); 
switch C op ) 

{ 

case '+': 
printf (" = 
break; 

I I case - · 
printf (" = 
break; 

case '*' : 
printf (" = 
break; 

case 'I' : 
printf (11 = 
break; 

default: 

%f", num1 + num2); 

%f", num1 - num2>; 

%f", num1 * num2); 

%f", num1 I num2); 

printf("Unknown operator"); 
} 

printf("\n\n"); 
} 

Structurally, the statement starts out with the keyword switch, followed 
by parentheses containing an integer or character variable which we'll call the 
"switch variable" (although it can also be an expression, like a+ b). The struc
ture of the switch statement is shown in Figure 4-12. 

Following each of the case keywords is an integer or character constant. (It 
can be a constant expression, like 'a' + 2, but it must evaluate to a constant; 
variables are not allowed here.) This constant is terminated with a colon (not a 
semicolon). There can be one or more statements following each case keyword. 

117 



Chapter 4 

118 

"Switch variable" 
integer 
or ~haracter . Integer 
vanable (or expression) or Character \ I constant 

swi~ch Copy 

l ease 'a': 
statement; } Body of statements 
statement; executed if 
break; switch variable= 'a' 

Braces case , b, . 
enclose • 
body of statement; } Body of statements 
switch st at ement; executed if 
statement break; switch variable= 'b' 

L_ default: 
Body of statements 

statement; } executed if no 
statement; other case applies 

} 

Figure 4-12. The Structure of the switch Statement 

These statements need not be enclosed by braces, although the entire body of 
the switch statement-all the cases-is enclosed in braces. 

When the switch is entered, the switch variable should already have been 
set to some value, probably the value of one of the integer or character constants 
that follow the case keywords. If so, control is immediately transferred to the 
body of statements following this particular case keyword. The operation of the 
switch statement in the calc3.c program is shown in Figure 4-13. 

If the switch variable does not match any of the case constants, control 
goes to the keyword default, which is usually at the end of the switch state
ment. Using the default keyword can be a great convenience; it acts as a sort of 
master else statement, saying in effect, "if none of the above, then do this." (If 
there is no default keyword, the whole switch statement simply terminates 
when there is no match.) In the example above, if the user has typed a character 
that isn't one of the four for which there is a case constant, then control will 
pass to the statements following the default keyword. Here's how that possibil
ity looks in operation when an illegal operator symbol is typed: 

Type number, operator, number 
2 q 2 
Unknown operator 

The break statements are necessary to terminate the switch statement 
when the body of statements in a particular case has been executed. As it did in 
the numguess.c exampJe earlier, the break statement has the effect of immedi
ately taking the program out of the structure it finds itself in: a loop in 
numguess.c and a switch here. 



body 1 

-.. 
' ' 

l 
break; 

body 2 \ 
' ' ' 

break; --- \ 
body 3 

I 
l 
I 
I 
I 

I 

o~!='*' 
l 
l 

'- I 
-.. " l l 

'1, I 
I 'k 

break; 

I t 
I I 
l l 
l I 
l I 

I I I 
1-1- • - r body 4 

--\ 
I I) 
I I 

I I ! I 

I lop'1=• I' 
I I I' 
! I I 
t I I 
I I I 
! I I 
I I I 
i I I 
I l 
1 I switch (op) 
I I { I ! I I • '------ _ _,,,,,.case + • 
I body 1; 
l break; 
I ______ .;;, .. case '-': 
I body 2; 
1 break; 
! --------;c»case '*': 
I body 3; 
! break; 
I I I I • 

I 
. 'I 

't ..,_I 
I l' 
i ! 
I 
! 
! 
I 
I 
l 
I 

-·- _J 

! 
I 
! 
I 
I 
I 
I 
I 
I 
l 
l 
! 
! 
I ______ .) 

i 
I 
l 
! 
I 
I 
I 
l 
I 
I 
I 
! 
I 
I \.. __________ -;::""case • 

body 4; 
break; 

- _______ .) 
} 

Figure 4-13. Operation of the switch Statement 

Decisions 

119 



Chapter 4 

120 

If no break statement is used following a case, control will fall through to 
the next case. 

Without the break, the program will execute not only the statements for a 
particular case, but all the statements for the following cases as well. (This is 
unlike the operation of the Pascal case statement.) Needing to write all the 
breaks may sound like an inconvenience, but it actually makes for a more 
flexible construction, as shown in the following variation of the calc3 .c pro
gram: 

/* calc4.c */ 
/* four-function calculator */ 
main() 
{ 

} 

float num1, num2; 
char op; 

while (1) 
{ 

printfC"Type number, operator, number\n"); 
scanf("%f %c %f", &num1, &op, &num2); 
switch ( op ) 

{ 

case '+': 
printf(" = %f", num1 + num2); 
break; 

case '-': 
printf(" = %f", num1 - num2>; 
break; 

case '*': 
case 'x': 

printf(" = %f", num1 * num2); 
break; 

case '!': 
case 1

\\
1

: 

print fC" = %f", num1 I num2); 
break; 

default: 
printfC"Unknown operator">; 

} 

print fC"\n \n"); 
} 

This program tries to be a little more friendly to the user by dealing with the 
instances when the user types an 'x' instead of a'*' to mean multiply, or a '\' 



Decisions 

instead of a '/' to mean divide. Since control falls right through one case to the 
case below in the absence of a break statement, this construction makes it easy 
for several values of the switch variable to execute the same body of code. 

Note that, since the backslash is already the escape character, we must 
type '\ \' to indicate the backslash itself. 

Here's what happens when you type the new operators: 

C>calc4 

Type number, operator, number 
2 \ 3 
= 0.666667 

Type number, operator, number 
10 x 10 
= 100.000000 

The Conditional Operator 
We'll finish off this chapter with a brief look at one of C's stranger constructions, 
a decision-making operator called the "conditional operator." It consists of two 
operators used on three different expressions, and thus it has the distinction of 
being the only ternary operator in C. (Ternary operators work on three vari
ables, as opposed to the more common binary operators, such as ( + ), which 
operate on two expressions, and unary operators, such as ( ! ), which operate on 
only one.) The conditional operator has the form: condition ? expressionl : expres
sion2. 

The conditional operator consists of both the question mark and the colon. 
Condition is a logical expression that evaluates to either true or false, while 
expressionl and expression2 are either values or expressions that evaluate to 
values. 

Here's how it works. The condition is evaluated. If it's true, then the entire 
conditional expression takes on the value of expression!. If it's false, the condi
tional expression takes on the value of expression2. Note that the entire condi
tional expression-the three expressions and two operators-takes on a value 
and can therefore be used in an assignment statement. 

Here's an example: 

max = Cnum1 > num2) ? num1 : num2; 

The purpose of this statement is to assign to the variable max the value of 
either numl or num2, whichever is larger. First the condition (numl >num2) 
is evaluated. If it's true, the entire conditional expression takes on the value of 
numl; this value is then assigned to max. If (numl>num2) is false, the 
conditional expression takes on the value of num2, and this vah1e is assigned to 
max. This operation is shown in Figure 4-14. 

This expression is equivalent to the if-else statement: 

121 



Chapter 4 

if (num1 < num2) 
max = num2; 

else 
max= num1; 

But it is more compact than the if-else; since the entire statement takes on a 
value, two separate assignment statements are not needed. This operator can be 
used very elegantly in the right sort of situation. 

Here's another example: 

abs = (num < Q) ? -num : num; 

This statement evaluates to the absolute value of num, which is simply num if 
num is greater than zero, but - num if num is less than zero. 

7= 
One or the 
other 
expression 
is assigned 
to max 

Expression takes 
on value of num 1 

/ .. , ~~~~.°' 
if true 't . j / 

(num1>num2)?~u~1:num2; 
if false / 

I question 
mark 
operator 

Expression takes on 
value of num 2 

Figure 4-14. The Conditional Operator 

Summary 

122 

You now know a good deal about the major elements of decision-making in C. 
You've learned about the three major decision-making statements-if, if-else, 
and switch. You've seen how if statements and if-else statements can be nested 
and how a series of if-else statements can be transformed into the else-if 
construction. You've learned the elements of the switch statement: the switch 
variable, switch constants, and the case and default keywords. You've also 
learned about the three logical operators NOT ( ! ), OR ( 11 ), and AND ( && J 

and about the break statement, which causes an immediate exit from a loop or 
switch structure. Finally, you learned about the conditional operator, which 
returns one or the other of two values, depending on whether a condition is true 
or false. 



Decisions 

Questions 

1. In a simple if statement with no else, what happens if the condition 
following the if is false? 

a. the program searches for the last else in the program 

b. nothing 

c. control "falls through" to the statement following the if 

d. the body of the if statement is executed 

2. Is the following a correct C program? 

mainO 
{ 

if getcheC) == 'a' ) then 
printfC"\nYou typed a."); 

} 

3. True or false: nesting one if inside another should be avoided for clarity. 

4. The main difference in operation between an if statement and a while 
statement is: 

a. the conditional expression following the keyword is evaluated 
differently 

b. the while loop body is always executed, the if loop body only if the 
condition is true 

c. the body of the while statement may be executed many times, the 
body of the if statement only once 

d. the conditional expression is evaluated before the while loop body is 
executed but after the if loop body 

5. The statements following else in an if-else construction are executed 
when: 

a. the conditional expression following if is false 

b. the conditional expression following if is true 

c. the conditional expression following else is false 

d. the conditional expression following else is true 

6. Is this C program correct? 

mainO 
{ 

ifCgetchO=='a') printfC"It's an a"); else printfC"It's not"); 
} 

123 



Chapter 4 

124 

7. True or false: the compiler interprets else-if differently than it does an 
equivalent if-else. 

8. The statements following a particular else-if in an else-if ladder are 
executed when: 

a. the conditional expression following the else-if is true and all 
previous conditions are true 

b. the conditional expression following the else-if is true and all 
previous conditions are false 

c. the conditional expression following the else-if is false and all 
previous conditions are true 

d. the conditional expression following the else-if is false and all 
previous conditions are false 

9. Which if in a program does an else pair up with? 

a. the last if with the same indentation as the else 

b. the last if not matched with its own else 

c. the last if not enclosed in braces 

d. the last if not enclosed in braces and not matched with its own else 

10. The advantage of a switch statement over an else-if construction is: 

a. a default condition can be used in the switch 

b. the switch is easier to understand 

c. several different statements can be executed for each case in a switch 

d. several different conditions can cause one set of statements to be 
executed in a switch 

11. Is this a correct switch statement? 

switch(num) 
{ 

case 1; 
printf<"Num is 1"); 

case 2; 
printf<"Num is 211

); 

default; 
printf<"Num is neither 1 nor 2"); 

} 

12. True or false: a break statement must be used following the statements 
for each case in a switch statement. 

13. Is this a correct switch statement? 



switch (temp) 
{ 

case temp<60: 
printfC"lt's really cold!"); 
break; 

case temp<80: 
printf("What charming weather!"); 
break; 

default: 
printfC"Sure is hot!); 

} 

Decisions 

14. The purpose of the conditional operator is to 

a. select the highest of two values 

b. select the more equal of two values 

c. select one of two values alternately 

d. select one of two values depending on a condition 

15. If num is -42, what is the value of this conditional expression? 

( num < 0 ) ? 0 : num*num; 

Exercises 

1. Write a program that will ask the user how fast he or she drives, and then 
print out what response a police officer would make to the following speed 
ranges: > 75, > 65, > 55, > 45, < 45. Use nested if-else statements. 

2. Modify the checker.c program to draw a checkerboard where each square, 
instead of being one row high and two columns wide, is three rows high and 
six columns wide. 

3. Modify the lines2.c program to draw four lines, the first two the same as in 
lines2.c, the third a vertical line passing through the center of the rectangle 
(where the first two lines cross) and the fourth a horizontal line passing 
through the center of the rectangle. The effect is something like a British 
flag. Use the else-if ladder construction (no logical operators). 

4. Change the program in example 3 to work with logical operators, eliminat
ing the else-if ladder. 

5. (Extra credit) Write a program to draw a quarter circle on the screen, with a 
radius of 20 characters, centered at the upper-lefthand corner of the screen. 
Make use of the formula for plotting circles: 

rs = X*X + Y*Y 

where rs stands for radius squared (which will be 400). Interpret this formu
la as being correct if x*x + Y*Y is within 20 of rs. 

125 





Functions 

Functions 
Returning a value from a function 
Sending values to a function 
Arguments 
External variables 
Preprocessor directives 

5 

127 ' 



5 

No one can perform all of life's tasks personally. You may ask a repairperson to 
fix your TV set, hire someone to mow your lawn, or rely on a store to provide 
fresh vegetables rather than growing your own. A computer program (except for 
a very simple one) is in much the same situation; it cannot handle every task 
alone. Instead, it calls on other programlike entities-called "functions" in C-to 
carry out specific tasks. In this chapter we'll explore the topic of functions. We'll 
look at a variety of ways functions are used, starting with the simplest case and 
working up to examples that demonstrate some of the power and versatility of 
functions in C. 

At the end of the chapter we'll explore another area of C that ties into the 
idea of functions in several ways: that of "preprocessor directives." 

What Do Functions Do? 

128 

As we noted in Chapter 1, a function in C serves a similar purpose to a subrou
tine in BASIC and to functions or procedures in Pascal. Let's examine in more 
detail why a function is used. 

Avoiding Unnecessary Repetition of Code 

Probably the original reason functions (or subroutines, as they were first known) 
were invented was to avoid having to write the same code over and over. Suppose 
you have a section of code in your program that calculates the square root of a 
number. If, later in the program, you want to calculate the square root of a 
different number, you don't want to have to write the same instructions all over 
again. Instead, in effect, you want to jump to the section of code that calculates 
square roots and then jump back again to the normal program flow when you're 
done. In this way, a single section of code can be used many times in the same 
program. The saving of code is depicted in Figure 5-1. 



E 
~ 
Cl 
0 
a. 
Cl> 
c: 
0 
(ij 
-0 
c: 
~ 
en 

E 
C1l 

Ci 
0 
a. 
Cl 
c: 

mainO 
{ 

,, K\Aill&W!Mtl'\ 
IW~JllMf~ 
..,..~·~ 
1Ailllt&4Cl4lr!4t 

~I ... ~~ 

Uli'JM\' "'II 
1111.IW\~ 

MUllltf~'4#'1 
•\ .... ~#iAl-IW1 

I l4JM ~ lt\o4t0 

"~~ 

,4.ft11l~oe~ 
ll'ltM1oOt ... , 

} 

mainO. 
{ 

} 

funcC); 
"'9 1 '11ift~ii1 ... '4 
~lt1Mlio'IMll 
,. M'ttt« 

func 0; 
M"'V\t\~.,W. 
lff1t"ltl""1 

code written twice 
if function not 
used 

} 

11.ti~h""A•"\I.., 
... ~ ... .w ...... 11o, 

........ *' ....... "'"""' 
""-.. h.....,1-'f~ 

Figure 5-1. Code Savings Using Function 

Program Organization 

Functions 

code 
written 
only once 
if function 
used 

This is all the early subroutines did, and is still all the subroutine construction 
does in BASIC. However, over the years it was found that using the subroutine 
idea made it easier to organize programs and keep track of what they were 
doing. If the operation of a program could be divided into separate activities, 
and each activity placed in a separate subroutine, then each subroutine could be 
written and checked out more or less independently. Separating the code into 
modular functions also made programs easier to design and understand. 

Independence 

As this idea took hold it became clear that there was an advantage in making 
subroutines as independent from the main program and from one another as 
possible. For instance, subroutines were invented that had their own "private" 

129 



Chapter 5 

variables; that is, variables that could not be accessed from the main program or 
the other subroutines. This meant that a programmer didn't need to worry about 
accidentally using the same variable names in different subroutines; the vari
ables in each subroutine were protected from inadvertent tampering by other 
subroutines. Thus it was easier to write large and complex programs. Pascal and 
most other modern programming languages make use of this independence, and 
C does too, as we'll find out soon. 

C Functions and Pascal Procedures and Functions 

For Pascal programmers, we should mention at this point a difference between C 
and Pascal that might cause some initial confusion. In Pascal, functions and 
procedures are two separate entities. A function in that language returns a value, 
whereas a procedure carries out a task or returns data via arguments. In C these 
two constructs are combined: a C function can return data via arguments and can 
also return a value. We'll note other differences between C and Pascal as we go 
along. 

Simple Functions 

130 

As we noted, using a function is in some ways like hiring someone to perform a 
specific job for you. Sometimes the interaction with such a person is very 
simple; sometimes it's more complex. Let's start with a simple case. 

Suppose you have a task which is always performed in exactly the same 
way-mowing your lawn, say. When you want it done, you get on the phone to 
the lawn person and say, "It's time, do it now." You don't need to give instruc
tions, since that task is all the person does. You don't need to be told when the 
job is done. You assume the lawn will be mowed in the usual way, the person 
does it, and that's that. 

Let's look at a simple C function that operates in the same way. Actually, 
we'll be looking at two things: a program that "calls" or activates the function 
(just as you call the lawn person on the phone) and the function itself. Here's the 
program: 

/* textbox.c */ 
/* puts box around text */ 
void line(void); /* prototype for line() */ 

main() 
{ 

} 

line 0; 
printfC"\xDB TITUS ANDRONICUS \xDB\n"); 
line 0; 

/* line() -- this is function definition */ 
/*draws solid line on screen */ 

/* draw Line */ 
/* message */ 
/* 2nd line */ 

void line(void) /* function declarator */ 



Functions 

{ 

int j ; /* counter */ 

for ( j =1; j <=20; j ++) /* print block 20 times */ 
printf("\xDB"); /* solid block */ 

printf("\n"); /* print carriage return */ 
} 

This program draws a box around the words "TITUS ANDRONICUS" (one of the 
lesser-known Roman emperors). Figure 5-2 shows what the output looks like. 

Figure 5-2. Output of textbox.c 

To achieve this effect we've first drawn a line of rectangles across the 
screen (using the graphics character '\xDB'), then printed the emperor's 
name-preceded and ended by a rectangle to form the ends of the box-and 
finally drawn another line. However, instead of writing the code to draw the line 
twice, we made it into a function, called line. 

Structure of Functions 

The textbox.c program looks almost like two little programs. Actually, it 
contains two functions: the first is called main() and the second is called 
line(). As we saw in Chapter 1, main() is a function, so it's not surprising 
that line(), which is also a function, looks like it. The only thing special 
about main() is that it is always executed first. It doesn't even matter if 
main() is the first function in the listing; you can place other functions 
before it and main() will still be executed first. 

In this example, main() calls the function line(). "Calls" means that it 
causes it to be executed. To draw the two lines of boxes, main() calls line() 
twice. 

There are three program elements involved in using a function: the func
tion definition, the call to the function, and the function prototype. Let's look at 
each of these in turn. 

The Function Definition 
The function itself is referred to as the function definition. The definition starts 
with a line that includes the function name, among other elements: 

void line(void) /* note: no semicolon */ 

131 



Chapter 5 

132 

This line is the declarator (a name only a lexicographer could love). The first 
void means that line() doesn't return anything and the second means that it 
takes no arguments. We'll examine return values and arguments later in the 
chapter; for now, just be sure to include these voids. They're both necessary. 

Note that the declarator does not end with a semicolon. It is not a program 
statement, whose execution causes something to happen. Rather, it tells the 
compiler that a function is being defined. 

The function definition continues with the body of the function: the lines of 
code that do the work. Figure 5-3 shows the declarator and the function body 
that make up the function definition. 

note: no semicolon 

void line (voi d)L declarator 

{ --------------int j; 
for (j=1;j<20;j++) 

\ pri ntfC"\xDB"); 
\, pri ntf ("\n"); ,/ 
} - - - b~dy ~f-f:;-n-;;tio~ -- - - -

Figure 5-3. Function Definition 

The body of the function is enclosed in braces. Usually these braces are 
placed at the left margin, as we have seen already in numerous examples of the 
function main(). 

Calling the Function 
As with the C library functions we've met, such as printf() and getche(), our 
user-written function line() is called from main() simply by using its name, 
including the parentheses following the name. The parentheses are needed for 
the compiler to know you are referring to a function and not a variable or 
something else. Calling a function like this is a C statement, so it ends with a 
semicolon. 

line 0; /* function call -- note semicolon*/ 

This function call causes control to be transferred to the code in the definition of 
line(). This function draws its row of squares on the screen, and then returns to 
main(), to the statement following the function call. 

Function Prototype (Declaration) 
There's a third function-related element in the textbox.c example. This is a line 
before the beginning of main(): 

void line(void); /*function prototype -- note semicolon*/ 



Functions 

This looks very much like the declarator line at the start of the function 
definition, except that it ends with a semicolon. What is its purpose? 

You've already seen many examples of variables in C programs. All the 
variables were declared by name and data type at the beginning of the function 
in which they were used. A function is declared in the same way at the beginning 
of a program. The function declaration (or prototype-the terms mean the same 
thing) tells the compiler the name of the function, the data type the function 
returns (if any), and the number and data types of the function's arguments (if 
any). In this case, the function returns nothing and takes no arguments. 

Notice that the prototype is written before the main( J function. This causes 
the prototype to be visible to all the functions in a file. We'll learn more about 
this when we talk about external variables later in this chapter. 

The key thing to remember about the prototype is that the data types (the 
two uses of void in this example) must agree with those in the declarator in the 
function's definition. If they don't, you'll get unhappy messages from the 
compiler. 

A prototype declares a function. 
A function call executes a function. 
A function definition is the function itself. 
A function declarator (in the definition) names the function and specifies its 
return type and arguments. 

Local Variables 

The variable j used in the line() function is known only to line(); it is 
invisible to the main() function. If we added this statement to main() (with
out declaring a variable j there): 

printfC 11 %d 11
, j); 

we'd get a compiler error because main() wouldn't know anything about this 
variable. We could declare another variable, also called j, in the main() func
tion; it would be a completely separate variable, known to main() but not to 
line(). This is a key point in the writing of C functions: variables used in a 
function are unknown outside the function. The question of which functions 
know about a variable and which don't is called the "visibility" of the vari
able. A local variable will be visible to the function it is defined in, but not to 
other functions. 

A local variable used in this way in a function is known in C as an 
"automatic" variable, because it is automatically created when a function is 
called and destroyed when the function returns. The length of time a variable 
lasts is called its "lifetime." We'll have more to say about visibility and lifetime 
in Chapter 15, when we discuss storage types. 

133 



Chapter 5 

A Sound Example 

Let's reinforce our understanding of functions with another example. This one 
uses the special character '\x7', which is called BELL in the standard ASCII 
code. On the IBM, printing this character, instead of ringing a bell, causes a 
beeping sound. Here's the program: 

/* beeptest.c */ 
/* tests the twobeep function */ 
void twobeep(void); /* function prototype */ 

mainO 
{ 

twobeep(); /* function call */ 
printfC"Type any character: "); 
getcheC>; /*wait for keypress */ 
twobeepC); /* function call */ 

} 

/* twobeep() function definition */ 
/* beeps the speaker twice */ 
void twobeep(void) /* function declarator */ 
{ 

long j; 

pri ntfC"\x7"); 
for Cj=1; j<100000; j++) 

I 

printf("\x7"); 
} 

/* first beep*/ 
/* delay */ 
/* (null statement) */ 
/* second beep */ 

This program first calls a subroutine, twobeep(), which does just what its name 
says: sounds two beeps separated by a short silent interval. Then the program 
asks you to strike a key; when you do, it sounds the two beeps again. 

Note how the delay is constructed: A for loop is set up to cycle 100,000 
times. However, there is no body of program statements in this loop. Instead, 
there is a statement consisting of only the semicolon. This constitutes a "null" 
statement: a statement with nothing in it. It's only role is to terminate the for 
loop. 

Functions that Return a Value 

134 

Let's look at a slightly more complicated kind of function: one that returns a 
value. An analogy can be made here with hiring someone to find out something 
for you. In a way, you do this when you dial 767-8900 to find out what time it is. 
You make the call, the person (or computer) on the other end of the line gives 
you the time, and that's that. You don't need to tell them what you want; that's 
understood when you call that number. No information flows from you to the 
phone company, but some flows from it back to you. 



Functions 

A function that uses no arguments but returns a value performs a similar 
role. You call the function, it gets a certain piece of information and returns it to 
you. The function getche() operates in just this way; you call it-without giving 
it any information-and it returns the value of the first character typed on the 
keyboard. 

Suppose we wanted a function that returned a character as getche() does, 
but that also automatically translated any uppercase characters into lowercase. 
Such a function, with a calling program that uses a switch statement to create a 
rudimentary menu program, is shown below: 

/* getlower.c */ 
/* tests getlc function */ 
char getlc(void); /* function prototype*/ 

mainO 
{ 

char chlc; /* char returned */ 

printf<"Type 'a' for first selection, 'b' for second: "); 

} 

chlc = getlc<>; /* get converted character */ 
switch (chlc) /* print msg, depending on char */ 

{ 

case 'a' : 
printfC"\nYou typed an 'a'."); 
break; 

case 'b' : 
printf("\nYou typed a 'b' ."); 
break; 

default: 
printf<"\nYou chose a non-existent selection."); 

} 

/* getlc */ 
/* returns character */ 
/* converts to lowercase if in uppercase */ 
char getlc(void) 
{ 

char ch; /* char from keyboard */ 

ch= getcheO; /* get character */ 
/* if it's uppercase, */ if ch>64 && ch<91 

ch = ch + 32; 
return (ch>; 

/* add 32 to convert to lower */ 
/* return character to caller */ 

} 

Our new function, getlc() (for "get lowercase"), is called from the main program 
with the statement: 

chlc = getlcO; 

135 



Chapter 5 

136 

Just as in the case of getche(), the function itself appears to "take on the value" 
it is returning. It can thus be used as if it were a variable in an assignment 
statement. In getlower.c the value returned (a lowercase character) will be 
assigned to the variable chic, which is then used in the switch statement to 
determine which message will be printed. Here's an example of output from the 
program: 

C>menu 
Type 'a' for first selection, 'b' for second: a 
You typed an 'a'. 
C>menu 
Type 'a' for first selection, 'b' for second: A 
You typed an 'a'. 
C>menu 
Type 'a' for first selection, 'b' for second: c 
You chose a nonexistent selection. 

Notice how the capital 'A' typed by the user is successfully converted to lower
case. (We should mention that Microsoft C includes library functions for case 
conversion: toupper() and tolower().) 

The return Statement 

In the textbox.c and beeptest.c programs shown earlier the functions re
turned Uumped back to) the calling program when they encountered the final 
closing brace ( } ) which defined the end of the function. No separate "re
turn" statement was necessary. 

This approach is fine if the function is not going to return a value to the 
calling program. In the case of our menu.c program, however, we want to return 
the value of the character read from the keyboard. In fact, we want to return 
one of two possible values: the character itself, if it is in lowercase already, or a 
modified version of the character, if it is in uppercase. So we use the if statement 
to check if ch is in uppercase (uppercase letters run from ASCII 65 to 90). If so, 
we add 32 (the difference between ASCII's 'A' = 65 and 'a' = 97) to ch. Finally, 
we return to the calling program with the new value of the character, by placing 
the variable name between the parentheses following return(). 

The return() statement has two purposes. First, executing it immediately 
transfers control from the function back to the calling program. And second, 
whatever is inside the parentheses following return is returned as a value to the 
calling program. 

Figure 5-4 shows a function returning a value to the calling program. 
The return statement need not be at the end of the function. It can occur 

anywhere in the function; as soon as it's encountered control will return to the 
calling program. For instance, we could have rewritten the getlc() function like 
this: 

/* getlcO */ 



Functions 

/* returns character */ 
/* converts to Lowercase if in uppercase */ 
char getlcCvoid) 
{ 

} 

char ch; 
ch = getche 0; 
if C ch>64 && ch<91 

return Cch+32>; 
else 

return (ch>; 

/* read character */ 
/* 
/* 
/* 
/* 

if uppercase, */ 
return converted value */ 

otherwise, 
return original value */ 

Here different return statements will be used depending on whether ch is 
uppercase or not. 

The return statement can also consist of the word "return" used alone. 
When this is the case, no value is returned to the calling program. 

Calling program 

mainO 
{ 

} 

~· .... ~ 
-~·'4ilt'"' 
lll"V\UllJttlj 

ans=f unc () ; ~ 
l'WW,lk"'ll&tl'I 
Mtl~N"f~ 
..,,.~."""" 

Function 

int func(void) 
{ 

} 

~1>A-rl1Ct>f, 

"~"' ..... 
x=3; 
return(x); 

The value of x, 
which is 3, is 
returned to main ( ) 
and assigned to ans. 

Figure 5-4. Function Returning a Value 

The return statement in getlc() returns the value of the variable ch, which 
is type char. This must be reflected in both the prototype for getlc() and in the 
declarator in the function definition. The prototype is 

char getlcCvoid); 

The declarator is the same but has no semicolon. The type specifier void, used 
to indicate the return value in previous examples, meant that no value was 
returned from the function. In getlower.c this specifier has been replaced with 
the specifier char to indicate that the function returns a value of that type. 

137 



Chapter 5 

138 

Hours and Minutes 
Here's another example of a function that returns a value. This one, called 
getmins(), gets a time in hours and minutes from the user and converts it to 
minutes. The main program uses this function to calculate the difference in 
seconds between two times: 

/* intimes.c */ 
/* calculates difference between two times */ 
int getmins(void); /* func prototype*/ 

mainO 
{ 

int mins1, mins2; /* minutes */ 

printf("Type first time (form 3:22): "); 

} 

mins1 = getmins(); /*get minutes */ 
printf("Type second Clater) time: "); 
mins2 = getmins<>; /*get minutes */ 

/* find difference */ 
printf<"Difference is %d minutes.", mins2-mins1 ); 

/* getmins function */ 
/* gets time in hours:minutes format */ 
/* returns time in minutes */ 
int getmins(void) 
{ 

} 

int hours, minutes; 

scanf< 11%d:%d 11
, &hours, &minutes); 

return ( hours*60 +minutes ); 
/* get user input */ 
/* convert to minutes */ 

Essentially, what the function getmins does is to accept a time in hours and 
minutes from the user and convert it into minutes by multiplying the hours by 
60 and adding the minutes. 

Note that the getmins() function returns a value of type int. This is 
reflected in the prototype for the function: 

int getmins(void); 

Again, the declarator is the same, but without the semicolon. The void in 
parentheses does not change, since the function takes no arguments. 

New Wrinkle in scant() 
If you are very attentive you may have noticed something new in the scan£() 
statement: there is a colon between the two format specifiers, %d and %d, rather 
than a space as in the past. 

scanf< 11 %d:%d 11
, &hours, &minutes); 



Functions 

This has the effect of requiring the user to type a colon between the two numbers 
for the two %d's, rather than permitting only whitespace characters (space, tab, 
newline). Thus, the user can type the time in standard hours and minutes format, 
using a colon to separate them. Here's a sample session with intimes.c: 

C>intimes 
Type first time (form 3:22): 6:00 
Type second <Later) time: 7:45 
Difference is 105 minutes. 

You may notice that scanf () is not a very forgiving function; if you type anything 
but a colon, scanf () will terminate immediately without waiting for the minutes to 
be typed and without giving you any warning that it's doing so. A truly user-friendly 
program would add some code to give better feedback to the user. 

Limitation of return() 
There is a key limitation in the use of the return statement: it can return only one 
value. If you want your function to return two or more values to the calling 
program, you need another mechanism. In the following sections we'll see how, 
using arguments, it's possible to pass more than one piece of information to a 
function. However, getting more than one piece of information back will be a 
topic for a later chapter, since it requires a knowledge of the concepts of addresses 
and pointers. 

Using a return statement, only one value can be returned by a function. 

Using Arguments to Pass Data to a Function 
So far the functions we've used haven't been very flexible. We call them and they 
do what they're designed to do, either returning a value or not. Like our lawn 
person who always mows the grass exactly the same way, we can't influence 
them in the way they carry out their tasks. It would be nice to have a little more 
control over what functions do, in the same way it would be nice to be able to tell 
the lawn person, "Just do the front yard today, we're having a barbecue out back." 

The mechanism used to convey information to a function is the argument. 
(The word "parameter" is often used as a synonym for "argument.") You've 
already used arguments in the printf () and scanf () functions; the format strings 
and the values used inside the parentheses in these functions are arguments. 

Here's an example of a program in which a single argument is passed to a 
function: 

/* bargraph.c */ 
/* draws bargraph, demonstrates function arguments */ 
void bar(int); /*function prototype*/ 

139 



Chapter 5 

140 

mainO 
{ 

} 

printfC"Terry\t"); 
barC27>; 
printf("Chris\t"); 
barC41>; 
printfC"Reggie\t"); 
bar(34); 
printfC"Cindy\t"); 
bar(22); 
printfC"Harold\t"); 
bar(15); 

/* barO */ 

'* 
/* 
/* 
'* 
'* 

print name */ 
draw line 27 chars long *' 
print name */ 
draw line 41 chars long *' 
and so on */ 

/* function draws horizontal bar, 'score' characters long */ 
void bar(int score) /* function declarator */ 
{ 

} 

int j; 

for(j=1; j<=score; j++) 
printf("\xCD"); 

pri ntfC"\n"); 

/* draw 'score' number of */ 
/* double-line characters */ 
/* newline at end of bar */ 

This program generates a bargraph of names and bars representing, say, the 
scores in a spelling test. The output of the program is shown in Figure 5-5. 

Terry 

Chris 

Reggie 

Cindy 

Harold 

Figure 5-5. Output of the bargraph.c Program 

In this program the purpose of the function bar() is to draw a horizontal line, 
made up of the double-line graphics character ('\xCD'J on the screen. For each 
person (Terry, Chris, etc.), the main program prints the name and then calls the 
function, using as an argument the score received by that person on the test. 

Structure of a Function Call with Arguments 

There are a number of things to notice about this program. First, in the main 
program, the number we want to pass to the function bar() is included in the 
parentheses following "bar" in the function call: 



Functions 

barC27>; 

We could have used a variable name instead of the constant 27; we'll see an 
example of this shortly. 

In the declarator at the beginning of the function bar(), the variable name 
score is placed inside the parentheses, along with its data type: 

void bar(int score) /* declarator */ 

See how the value of score is transferred, as if by magic, to the function. The 
value placed in the parentheses in the call to the function is automatically 
assigned to the corresponding variable in the function when the function is 
called. In the first call to the function, the value 27 will be assigned to score. 
This is shown schematically in Figure 5-6. The second time bar() is called, the 
value 41 will be assigned, and so forth. 

The prototype reflects the data type of the argument: 

void bar(int>; /* prototype */ 

Note that the prototype differs from the declarator in that no variable name is 
used for the argument in the prototype, only the data type. (A name can be used 
here, as we'll see soon, but it's optional.) 

Because the function bar() doesn't return anything, its return type is void. 

mainO 
{ 

} 

1oll,,....#~IW 

"JM~~ 
~~ 

bar(27); 

Calling program 

The value of 27 is 
assigned to the 
variable score 
in the function. 

27 
void bar(int score) 

{ 

} 

.~w.~~"' 
•1•t1/•Moe ...... 
I Mflflt4'f fflW~ 

Function 

Figure 5-6. Passing a Value to a Function 

The variable score in the function bar() is not declared the same way 
normal variables are. Nonetheless, it is declared; its inclusion in the function 
declarator serves not only to specify that it is a function argument, but to declare 
it as well. It can be used like any other variable in the function; the only 

141 



Chapter 5 

142 

difference is that it is passed an initial value from the calling program when the 
function is first called. 

The definition of a function with an argument is shown in Figure 5-7. 

formal 
argument 

\ 
void bar(int score)-declarator 

{ ------------------, 
/ int j; ' 

/ for Cj=1; j <=score; j++) \ 
~ pri ntf ("\xCD"); 1 

' printf("\n")· / 
' I I 

} ------------------~ body of function 

Figure 5-7. Structure of Function with Argument 

Passing Variables as Arguments 

In the example above we passed constants (such as the number 27) as arguments 
to the function bar(). We can also use a variable in the calling program, as this 
variation on the bargraph.c program demonstrates: 

/* bargr2.c */ 
/* draws bargraph, demonstrates function arguments */ 
void barCint inscore); /* function prototype */ 

/* with identifier */ 
mainO 
{ 

int inscore; 

} 

while (1) 
{ 

printf("Score="); 
scanfC 11%d 11

, &inscore); 
barCinscore); 
} 

/* bar */ 

/* prompt the user */ 
/* get score from user */ 
/* draw line */ 

/* function to draw horizontal bar */ 
void barCint score) 
{ 

} 

int j; 

forCj=1; j<=score; j++) 
printf("\xCD"); 

printf("\n"); 

/* draw 'score' number of */ 
/* double-line characters */ 
/* newline at end of bar */ 



Functions 

In this program the function bar() is the same as before. The prototype is also 
the same. However, the main program has been modified to accept scores from 
the keyboard. Figure 5-8 shows a sample of interaction with the program. 

Score=20 

Score=30 

Score=15 

Score= 5 

Figure 5-8. Output of the bargr2.c Program 

Since the scores we pass to bar() are no longer known in advance, we must 
use a variable to pass them to the bar() function. We do this in the statement: 

bar(inscore>; 

Now, whatever value the user types is recorded by scanf() and assigned to the 
variable inscore. When bar() is called, this is the value passed to it as an 
argument. Figure 5-9 shows this process. 

mainO 
{ 

""'*~"111n_,,."" 
It-~ ... ,,.~, 
4tflt4tlltullltf~ 

inscore=33; 
bar Cinscore>; 
K.li~'1 ... ,fttll,fll ' 

Whatever value inscore 
has is assigned to 
the variable score 
in the function. 

33 

......... .w~Mol "" 
~. iw11i11 ~ inscore is called 

} the "actual argument" 

Calling program 

void bar(int 

{ 

} 

ltf lf4M!lllH1+41f 

""~".._"'~ 
'"''"'- lfl1I "'HI 

Function 

Figure 5-9. Variable Used as Argument 

score is called 
the "formal 
argument" 

j_ 
I 

score) 

Different names have been assigned to the arguments in the calling and called 
functions: inscore in the calling program and score in the function. Actually, we 
could have used the same name for both variables; since they are in different 
functions, the compiler would still consider them to be separate variables. 

143 



Chapter 5 

144 

Note that the argument in the calling program is referred to as the "actual 
argument," while the argument in the called function is the "formal argu
ment." In this case, the variable inscore in the calling program is the actual 
argument, and the variable score in the function is the formal argument. 
Knowing these terms will not help you program better, but it may impress 
people at parties. 

Passing Multiple Arguments 

We can pass as many arguments as we like to a function. Here's an example of a 
program that passes two arguments to a function, rectang(), whose purpose is to 
draw variously sized rectangles on the screen. The two arguments are the length 
and width of the rectangle, where each rectangle represents a room in a house. 

/* roomplot.c */ 
/* tests the rectang function */ 
void rectangCint, int); /* function prototype*/ 

mainO 
{ 

} 

pri ntf<"\nli vi ng room\n"); 
rectangC22,12); 
printfC"\nCloset\n"); 
rectangC4,4); 
printf("\nKitchen\n"); 
rectangC16,16); 
printf("\nBathroom\n"); 
rectangC6,8>; 
printf("\nBedroom\n"); 
rectangC12,12); 

/* rectang function */ 

/* print room name */ 
/* draw room */ 
/* etc. */ 

/* draws rectangle of length, width */ 
/* length goes across screen, width goes up-and-down */ 
void rectangCint length, int width) 
{ 

} 

int j I k i 

length /= 2; 
width /= 4; 
for Cj=1; j<=width; j++) 

{ 

pri ntfC"\t\t"); 
for Ck=1; k<=Length; k++) 

printf("\xDB"); 
printfC"\n"); 
} 

/* horizontal scale factor */ 
I* vertical scale factor */ 
/*number of lines */ 

/* tab over */ 
/* line of rectangles */ 
/* print one rectangle */ 
/*next line*/ 



Functions 

This program prints the name of a room and then draws a rectangle representing 
the dimensions of the room. A sample of the output from the program is shown 
in Figure 5-10. 

living room 

D 
kitchen 

D 
bathroom 

D 
bedroom 

Figure 5-10. Output of the roomplot.c Program 

The operation of the function is very much like that of the rectangle
drawing program in Chapter 3. Our new wdnkle here is the use of scale factors. 
These are necessary so the room dimensions can be expressed in feet. The 
function divides the length (the horizontal dimension on the screen) by 2 and the 
width (the vertical dimension) by 4. This makes it possible for a series of typical 
rooms to fit on the screen, and also compensates for the fact that a character on 
the screen is twice as high as it is long. To make a square room look square, we 
must divide its vertical dimension by twice as much as its horizontal dimension. 
The division operation for the scale factors is carried out using an assignment 
operator. As we saw in Chapter 2, the statement 

length /= 2; 

is equivalent to 

length = length I 2; 

The process of passing two arguments is similar to passing one. The value 
of the first actual argument in the calling program is assigned to the first formal 

145 



Chapter 5 

146 

argument in the function, and the value of the second actual argument is as
signed to the second formal argument, as shown in Figure 5-11. 

12 

mainO void rec tang (int Length, int 
{ { 

-~"14'"' 
lll'V\WI..., ko.,-~Mlf'olWlo 

rectang(22,12); 
,,...,...,~ 

1 .. ~l4ff1W• 

~*~"""' 
Mtl ll\Nll"' Ml~ 

} 

Calling program 

} 

The first actual argument is assigned 
to the first formal argument; the 
second actual argument is assigned 
to the second formal argument. 

.... ~ .. 

Function 

Figure 5-11. Multiple Arguments Passed to Function 

width) 

Of course, three or more arguments could be used in the same way. 

Identifiers in the Prototype 

Here's another wrinkle in the use of the prototype: you can use names as well 
as data types for the arguments. For instance, instead of saying 

void rectang(int, int); 

you could say something like 

void rectang(int Length, int width); 

The advantage in using names is that the prototype can convey information 
about the purpose of the arguments. In this case, we make it clear to anyone 
looking at the prototype which of the two arguments is the width and which the 
length. Note that these names in the prototype have nothing to do with the 
names of the variables used later as the actual arguments when the function is 
called; they are merely a convenience to the person looking at the listing. We'll 
use them occasionally in program examples. 



Functions 

Sending and Receiving 

We've seen examples of functions that return a value and of functions that 
accept arguments from the calling program. Let's look at a function that both 
accepts an argument and returns a value. For variety, we'll use the floating point 
data type for both the argument and return value. 

In this program the main() function asks the user for the radius of a 
sphere and then calls a function named area() to calculate the area of the 
sphere. It sends the radius as a floating point argument. The area() function 
returns the area of the sphere as a floating point number. 

/* sphere.c */ 
/* calculates area of a sphere */ 
float area(float); /*prototype */ 

mainO 
{ 

} 

float radius; 

printf("Enter radius of sphere: "); 
scanf( 11 %f 11 , &radius); 
printf("Area of sphere is %.2f", area(radius) >; 

/* areaO */ 
/* returns area of sphere */ 
float area(float rad) 
{ 

return( 4 * 3.14159 * rad* rad >; 
} 

You'll see that the function prototype and the declarator reflect the float 
data type for both the argument and the return value of area(). Since the 
function uses floating point numbers, the format specifier %f has been used in 
the scanf () and printf () functions. In printf () the .2 in the specifier restricts the 
output to two decimal places. 

Here's a sample of interaction with the program: 

C>sphere 
Enter radius of sphere: 10 
Area of sphere is 1256.64 
C>sphere 
Enter radius of sphere: 4000 
Area of sphere is 201061760.00 

The last interchange calculates the approximate surface area of the earth: a 
little over 200 million square miles. With so much space available it's surprising 
people are willing to pay such high prices for land in Manhattan. 

147 



Chapter 5 

Using More than One Function 

148 

You can use as many functions as you like in a program, and any of the 
functions can call any of the other functions. There is an important difference 
here between C and Pascal. In Pascal, a function (or a procedure), call it Alpha, 
can be defined inside another function, Beta, so that it is not visible to other 
functions, like Gamma, that are not in Beta. In C, however, all functions are 
visible to all other functions. This situation is shown in Figure 5-12. 

Pascal communication 

beta 

Beta and alpha 
can communicate Beta and gamma 

can communicate 

\\EJlpha _ :==:D \: .. -- \ LJ 
No communication 

C communication 

between alpha 
and gamma 

B tJ 
with each other 

Figure 5-12. Communication Between Functions 

In this respect, C is more like BASIC, where it is impossible to nest or "hide" 
one subroutine inside another. 

In C, all functions, including main(), have equal status and are visible to 
all other functions. 



Functions 

Which approach is better? Being able to nest functions, as in Pascal, does 
provide some added flexibility in certain situations-you could use the same 
function name for two different functions, for example, which might be advan
tageous in large programs. However, the C approach-all functions are equal-is 
conceptually easier and usually doesn't result in any inconvenience to the pro
grammer. 

Let's look at a program involving several functions. This program calcu
lates the sum of the squares of two integers typed in by the user. The program 
actually uses three functions as well as main(). The first function does the 
actual calculation, while main() simply gets the numbers from the user and 
prints out the result. The second function returns the square of a number (the 
number multiplied by itself), and the third function returns the sum of two 
numbers. 

/* multifun.c */ 
/* tests sumsqr() function */ 

int sumsqr(int, int>; 
int sqr(int>; 
int sum(int, int); 

mainO 
{ 

int num1, num2; 

/* function prototypes */ 

/* user-supplied values */ 

printfC"Type two numbers: ">; /*gets two numbers, */ 
scanfC 11 %d %d", &num1, &num2); /*prints sum of squares*/ 
printfC"Sum of the squares is %d", sumsqr(num1,num2) >; 

} 

/* sumsqr function */ 
/* returns sum of squares of two arguments */ 
sumsqr(int j,int k) 
{ 

return( sum( sqr(j), sqr(k) ) >; 
} 

/* sqr function */ 
/* returns square of argument */ 
sqr(int z) 
{ 

return(z * z>; 
} 

/* sum function */ 
/* returns sum of two arguments */ 
sum(int x, int y) 
{ 

return(x + y); 
} 

149 



Chapter 5 

Notice that none of the functions is nested inside any other. In Pascal, we could 
have placed, for instance, the sum() and sqr() functions inside the sumsqr() 
function. In C, all the functions are visible to all other functions. The main 
program, for instance, could call sum() or sqr() directly if it needed to. 

Another point to note is that functions can appear in any order in the 
program listing. They can be arranged alphabetically, in the order in which they 
are called, by functional group, or any other way the programmer wishes. 
Arranging the functions in an order that makes them easier to ref er to can be a 
real advantage for the programmer, especially in larger programs with dozens of 
functions. Note too that the main() function does not need to be the first one in 
the program, although it usually is. 

Prototypes versus Classical K and R 

150 

When Kernighan and Ritchie defined the C language in their 1978 book (see the 
Bibliography), they did not include prototypes. Prototypes are a refinement 
introduced by the evolving ANSI standard. The ANSI standard has generally 
been adopted by all the leading compiler vendors, including Microsoft, so all 
programs should be written using prototypes. However, since many existing 
programs were written using the older K and R approach, you should have at 
least some familiarity with it. Also, comparing the prototype system with the 
classical K and R approach helps to clarify the advantages of prototypes. 

Examples of the Two Approaches 

Let's look at two versions of a simple program. The first uses the prototype 
approach: 

/* proto.c */ 
/* uses prototyping */ 
void funcCint>; 
main() 
{ 

int actarg = 1234; 

func(actarg); 
} 

/* funcC> */ 

/* function prototype */ 

/* function call */ 

/* function prints out value of argument */ 
void funcCint formarg) /* function declarator */ 
{ /* and variable declaration*/ 

pri ntfC"Argument is %d", formarg); 
} 

There should be no surprises here. The main() function passes a value to 
func(), which prints it out. 



Functions 

Now let's look at the older K and R approach, without prototypes: 

/* noproto.c */ 
/* program doesn't use prototyping */ 
main() /* no prototype */ 
{ 

int actarg = 1234; 
func(actarg); /* function call */ 

} 

/* func 0 */ 
out value of argument */ /* function prints 

func Cformarg) 
int formarg; 

/* function declarator */ 
/* declare argument */ 

{ 

pri ntfC"Argument is %d 11
, formarg); 

} 

Although it uses the obsolete format, this program will compile and run in 
Microsoft C. The ANSI standard, to which Microsoft adheres, allows the old
style approach so that older source files can be compiled. 

There are two major differences between tJ;iis and the prototype approach. 
First, as its name suggests, noproto.c does not use a prototype. This works, 
provided the function doesn't return anything or returns type int. If the func
tion returns some other type, like float, then it must be declared. However, the 
declaration need not include the data types of the arguments. (A full prototype 
always includes the data types of the arguments or void.) 

Second, in the function, the function declarator and the declaration of the 
argument are on separate lines. This works the same as the single-line format 
although it does make the listing longer. The single-line format is favored in the 
prototype approach so that the prototype and the declarator have a similar 
format. 

If no prototype is used, the compiler constructs one for its own use from 
the first reference to the function it comes across, whether it is a call to the 
function or the function definition. 

Advantages of Prototyping 

Why were prototypes adopted for the ANSI standard? The major advantage is 
that the data types of a function's arguments are clearly specified at the begin
ning of a program. A common error has been to call a function using the wrong 
data type for an argument; int, for instance, instead of long. If the function call 
and the function definition are in different files this led to program failure in a 
way that was difficult to debug. (We'll explore the use of different files in C 
programs in Chapter 14.) When a prototype is used, however, the compiler 
knows what data types to expect for the function, and it is always able to flag a 
mismatch as an error. Also-as in declaring variables-the prototype clarifies for 

151 



Chapter 5 

the programmer and anyone else looking at a listing what each function is and 
what its arguments should be. 

The ANSI standard also introduced the type void for a function that 
doesn't return anything. Previously, a function with no return value was consid
ered to be type int, an inconsistent and potentially confusing approach. ANSI 
also introduced type void with a second usage, to indicate that the function 
takes no arguments. 

External Variables 

152 

So far, the variables we have used in our example programs have been con
fined to the functions using them; that is, they have been "visible" or accessi
ble only to the function in which they were declared. Such variables, which 
are declared inside a particular function and used only there, are called "lo
cal" (or "automatic") variables. While local variables are preferred for most 
purposes, it is sometimes desirable to use a variable known to all the functions 
in a program rather than just one. This is true when many different functions 
must read or modify a variable, making it clumsy or impractical to communi
cate the value of the variable from function to function using arguments and 
return values. In this case, we use an "external" variable (sometimes called a 
"global" variable). 

Here's an example of a program that uses an external variable: 

/* extern.c */ 
/* tests use of external variables */ 
void oddevenCvoid); /* function prototypes */ 
void negativeCvoid>; 

int keynumb; 

main() 
{ 

} 

printfC"Type keynumb: "); 
scanf("%d", &keynumb); 
oddevenC>; 
negative(); 

/* oddevenO */ 

/* external variable */ 

/* function call */ 
/* function call */ 

/* checks if keynumb is odd or even */ 
void oddevenCvoid) 
{ 

if C keynumb % 2 /* reference external var */ 
printf("Keynumb is odd.\n"); 

else 
printfC"Keynumb is even.\n"); 

} 



/* negative() */ 
/* checks if keynumb is negative */ 
void negative(void) 
{ 

Functions 

if ( keynumb < a /* reference external var */ 
printf<"Keynumb is negative.\n"); 

else 
printf<"Keynumb is positive.\n"); 

} 

In this program,main() and two other functions, oddeven() and negative(), all 
have access to the variable keynumb. To achieve this new global status for 
keynum it was necessary to declare it outside of all of the functions, including 
main(). Thus it appears before the definition of main. 

Here's a sample interaction with the program: 

C>extern 
Type keynumb: -21 
Keynumb is odd. 
Keynumb is negative. 

C>extern 
Type keynumb: 44 
Keynumb is even. 
Keynumb is positive. 

As you can see, main() is able to place a value in the variable keynumb, 
and both oddeven() and negative() are able to read the value of the variable. 

There is more to be said about the visibility of variables to various func
tions and the related question of how long a variable lasts: its lifetime. These 
questions relate to another important topic: C's capability of combining sepa
rately compiled object files together at link time into a single executable pro
gram. We'll return to these topics in Chapter 15. 

We should, however, point out the dangers of indiscriminate use of exter
nal variables. It may seem tempting to simplify things by making all variables 
external; BASIC programmers in particular tend to fall victim to this practice. 
However, there are several reasons why it is not a good idea. First, external 
variables are not protected from accidental alteration by functions that have no 
business modifying them. Second, as we'll see in Chapter 15, external variables 
use memory less efficiently than local variables. The rule is, variables should be 
local unless there's a very good reason to make them external. 

Preprocessor Directives 
At this point, we'll shift gears a little and explore a topic which at first glance 
might not seem to have much to do with functions: the use of preprocessor 
directives. Preprocessor directives form what can almost be considered a lan
guage within the language of C. This is a capability that does not exist in many 

153 



Chapter 5 

154 

other higher-level languages (although there are similar features in assembly 
language). 

To understand preprocessor directives, let's first review what a compiler 
does. When you write a line of program code 

num = 44; 

you are asking the compiler to translate this code into machine-language instruc
tions which can be executed by the microprocessor chip in the computer. Thus, 
most of your listing consists of instructions to the microprocessor. Preprocessor 
directives, on the other hand, are instructions to the compiler itself Rather than being 
translated into machine language, they are operated on directly by the compiler 
before the compilation process even begins; hence the name preprocessor. 

Normal program statements are instructions to the microprocessor; prepro
cessor directives are instructions to the compiler. 

Here we'll examine two of the most common preprocessor directives, 
#define and #include. There are others, some of which we'll look at in Chapter 
14. 

Preprocessor directives always start with a number sign ( # ) . The direc
tives can be placed anywhere in a program, but are most often used at the 
beginning of a file, before main(), or before the beginning of particular func
tions. 

The #define Directive 

The simplest use for the define directive is to assign names (such as DAYS_ 
YEAR or PI) to constants (such as 365 or 3.14159). As an example, let's modify 
the sphere.c program from earlier in the chapter. In its original incarnation, the 
constant 3.14159 appeared in this program in the area() function in the line 

return( 4 * 3.14159 * rad* rad >; 

Here's the modified program: 

/* sphere2.c */ 
/* calculates area of a sphere */ 

#define PI 3.14159 
float area(float); 

mainO 
{ 

float radius; 

/*#define directive */ 
/* prototype */ 



} 

printf<"Enter radius of sphere: "); 
scanf("%f", &radius>; 
printf<"Area of sphere is %.2f", area(radius) >; 

/* areaO */ 
/* returns area of sphere */ 
float area(f loat rad) 
{ 

Functions 

return( 4 * PI * rad* rad >; /* use of identifier */ 
} 

In this new version the preprocessor first looks for all program lines beginning 
with the number sign ( # ). When it sees the #define directive, it goes through 
the entire program, and at every place it finds PI it substitutes the phrase 3.14159. 
This is a mechanical process: simply the substituting of one group of characters, 
"3.14159" for another, "PI." It's very much like a "global search and replace" 
using a word processor. Figure 5-13 shows the structure of the #define directive. 

space separates rntifier and text 

#define PI 3.14159 
--- .....,..... '---y--.J 

p reprocess or 1 phrase to replace 
directive it with: "text" 

phrase to be 
searched for: "identifier" 

Figure 5-13. Structure of the #define Directive 

The phrase on the left (PI), which will be searched for, is called the 
"identifier." The phrase on the right (3.14159), which will be substituted for it, is 
called the "text." A space separates the identifier from the text. By convention, 
the identifier (in this case, PI) is written in all caps. This makes it easy when 
looking at the program to tell which parts of the program will be altered by 
#define directives. 

Why Use #define? 
Perhaps you wonder what we've gained by substituting PI for 3.14159 in our 
program. Hopefully, we've made the program easier to read. Although 3.14159 is 
such a common constant it is easily recognizable, there are many instances 
where a constant does not reveal its purpose so readily. For example, as we'll 
find out later, the phrase "\xlB[C" causes the cursor to move one space to the 
right. But which would you find easier to understand in the middle of your 
program, "\xlB[C", or "CURSOR_RIGHT"? Thus, we would use the #define 
directive 

#define CURSOR_RIGHT "\x1B[C" 

155 



Chapter 5 

156 

Then whenever CURSOR_RIGHT appeared in the program it would 
automatically be replaced by "\xlB[C" before compilation began. 

There is another, perhaps more important reason for using the #define 
directive in this way. Suppose a constant like 3.14159 appears many times in your 
program. Further suppose that you now decide you want an extra place of 
precision; you need to change all instances of 3.14159 to 3.141592. Ordinarily, you 
would need to go through the program and manually change each occurrence of 
the constant. However, if you have defined 3 .14159 to be PI in a #define 
directive, you only need to make one change, in the #define directive itself: 

#define PI 3.141592 

The change will be made automatically to all occurrences of PI before 
compilation begins. 

Why Not Use Variable Names? 
Couldn't we use a variable for the same purpose as a #define directive? A 
variable could also provide a meaningful name for a constant and permit one 
change to effect many occurrences of the constant. It's true, a variable can be 
used in this way. However, there are at least three reasons why it's a bad idea. 
First, it is inefficient, since the compiler can generate faster and more compact 
code for constants than it can for variables. Second, using a variable for what is 
really a constant encourages sloppy thinking and makes the program more 
difficult to understand: if something never changes it is confusing to make it a 
variable. And third, there is always the danger that a variable will be altered 
inadvertently during execution of the program, so that it is no longer the 
"constant" you think it is. 

In other words, using #define can produce more efficient and more easily 
understood programs. It is used extensively by C programmers-you'll see many 
examples as we go along. 

Macros 

The #define directive is actually considerably more powerful than we have 
shown so far. This additional power comes from #define's ability to use argu
ments. Before we tackle this, let's look at one more example of #define without 
an argument to make the transition clearer. In this example we show that 
#define can be used, not only for constants, but to substitute for any phrase we 
like. Suppose your program needs to print the message "Error" at several places 
in the program. You use the directive: 

#define ERROR printfC"\nError.\n"); 

Then if you have a program statement such as 

i f (input > 640> 
ERROR 



it will be expanded into 

if Ci nput > 640> 
printfC"\nError.\n"); 

Functions 

by the preprocessor before compilation begins. The moral here is that an identi
fier defined by #define can be used as an entire C statement. 

Now let's look at an example of #define with an argument. If you've ever 
thought that the printf() function makes you go to a lot of trouble just to print a 
number, consider this alternative: 

/* macroprn.c */ 
/* demonstrates macros, using printf () statement */ 
#define PR(n) printfC"%.2f\n",n); 
mainO 
{ 

} 

float num1 = 27.25; 
float num2; 

num2 = 1.0 I 3.0; 
PR(num1>; 
PR(num2>; 

Here's the output of the program: 

C>macroprn 
27.25 
0.33 

You can see that our abbreviated version of the print£ () statement, PR(n), 
actually prints out the two numbers. 

In this program, whenever the preprocessor sees the phrase "PR(n)" it 
expands it into the C statement: 

printfC"%.2f\n",n); 

A #define directive can take arguments, much as a function does. 

However, that's not all it does. In the #define directive, the n in the identifier 
PR(n) is an argument that matches the n in the printf() statement in the text. 
The statement PR(numl) in the program causes the variable numl to be 
substituted for n. Thus, the phrase PR(numl) is equivalent to: 

printfC"%.2f\n", num1); 

157 



Chapter 5 

158 

Figure 5-14 shows how this process works. 

the #define directive sets up 
a correspondence between the 
argument n in the identifier, and 
in the text 

#define PR(n) printf("%.2f\n",n); 

identifier text 

This identifier 
PR (num1) ___- in the program 

I \ 
I \ 

I \ 
I \ 

/the \ 
I argument \ 

I will be inserted \ 
/ unaltered \ will expand 

I \ ~ into this text 
print fC"%. 2f \n", num1); /' 

Figure 5-14. Arguments Used in the #define Directive 

A #define directive that uses arguments in this way is called a "macro." 
Macros have some of the characteristics of functions, as will be made clearer in 
the next example. 

Syntax note: whenever you use a #define directive you shouldn't use any 
spaces in the identifier. For instance, 

#define PR (n) printf("%.2f\n",n); 

would not work, because the space between PR and (n) would be interpreted as 
the end of the identifier. 

Macros and Functions 
Macros and functions can actually perform many of the same tasks. For 
instance, let's modify our sphere.c program from earlier in the chapter to use a 
macro, instead of the function area(), to do the actual calculation of the area of a 
sphere. Here's the revised program: 

/* sphereM.c */ 
/* calculates area of a sphere */ 
/* uses a macro */ 
#define PI 3.14159 
#define AREA(X) (4 * Pl * X * X) 
mainO 
{ 

/* definition of PI */ 
/* macro for area of sphere */ 



} 

float radius; 
printf<"Enter radius of sphere: "); 
scanf("%f", &radius>; 
printfC "Area of sphere is %.2f", AREA(radius) >; 

Here the preprocessor will substitute the text 

(4 * 3.14159 * radius * radius) 

Functions 

for the identifier AREA(radius). Note that we've used an identifier within an 
identifier: first AREA(radius) is expanded, then the PI within it is changed to 
3.14159. 

Use of Parentheses in Macros 
Liberal use of parentheses in a macro can save considerable grief. Why? Suppose 
your program contains the following lines: 

#define SUMCx,y) x + y 

ans = 10 * SUMC3,4) 

what value will ans be given when you run the program? You might think 3 
would be added to 4, giving 7, and that result, when multiplied by 10, would 
yield 70. Wrong. Look at the expansion of the assignment statement. SUM(3,4) 
turns into simply 3 + 4. Thus, the entire statement becomes: 

ans = 10 * 3 + 4 

Multiplication has a higher precedence than addition, so the result will be 30 + 
4, or 34. This is different enough from the correct answer of 70 to suggest that 
we have a problem. The solution is to put parentheses around the entire text 
part of the #define directive: 

#define SUMCx,y) Cx + y) 

Now the assignment statement is expanded into 

ans = 10 * (3 + 4) 

which yields the correct result. 
Even enclosing the entire text in parentheses, however, does not solve all 

possible problems. Consider a macro that does multiplication: 

#define PRODUCT(x,y) Cx * y) 

ans = PRODUCTC2+3,4) 

159 



Chapter 5 

160 

Here the programmer was rash enough to use an expression, 2 + 3, as an 
argument for the macro. One might hope that this would yield an answer of 20 
12+3 is 5, multiplied by 4). However, look what happens in the expansion: 

ans= (2+3*4). 

The multiplication will be done first, so we'll have 2 + 12, or 14. Here, the 
solution is to enclose each argument in parentheses. For clarity, we did not do 
this in the examples above, but we should have. Suppose in the sphereM.c 
program we had used an expression such as rad+ 3 as an argument to the 
AREAjradius) macro. It would have been expanded to 14 *PI *rad + 3 *rad + 
3) or l4*PI*rad + 3*rad + 3), which is no way to calculate the area of a sphere 
of radius rad+ 3. 

For safety's sake, put parentheses around the entire text of any define 
directive that uses arguments and also around each of the arguments. 

Thus, to be sure your macros will do what you want, enclose the entire text 
expression in parentheses and each variable in the text expression, as well. 

When to Use Macros 
Macros often can be used more conveniently than functions, as our example 
above demonstrates. Of course, the task to be carried out by the macro must not 
be too complex, as a #define statement is limited to one line in the Microsoft 
compiler. !Some compilers permit more, but most programmers try not to 
excede this limit anyway.) Assuming such a simple task however, when should 
you use a macro and when a function? 

Each time a macro is invoked, the code it generates is actually inserted in 
the executable file for the program. This leads to multiple copies of the same 
code. The code for a function, however, only appears once, so using a function is 
more efficient in terms of memory size. On the other hand, no time is wasted 
calling a macro; whereas, when you call a function the program has to arrange 
for the arguments to be transferred to the function and jump to the function's 
code. So a function takes less memory but is slower to execute, while a macro is 
faster but uses more memory. You have to decide which approach suits your 
particular program better. 

A macro generates more code but executes more quickly than a function. 

Excessive use of macros can also make a program difficult to read, since it 
requires constant reference back and forth between the #define directives at 



Functions 

the beginning of the program and the identifiers in the program body. Deciding 
when to use a macro and when not to is largely a matter of style. 

The #include Directive 

The second preprocessor directive we'll explore in this chapter is #include. The 
#include directive causes one source file to be included in another. 

Here's an example of why you might want to do such a thing. Suppose you 
write a lot of math-oriented programs that repeatedly refer to formulas for 
calculating areas of different shapes. You could place all these formulas, as 
macros, in a single separate source file. Then, instead of having to rewrite all the 
macros every time you wrote a program that used them, you could insert them 
into the .c source file using the #include directive. 

Such a separate source file might look like this: 

#define PI 3.14159 
#define AREA_CIRCLECradius) CPI*radius*radius) 
#define AREA_SQUAREClength,width) Clength*width) 
#define AREA_TRIANGLE(base,height) Cbase*height/2) 
#define AREA_ELLIPSE(radius1,radius2) CPI*radius1*radius2) 
#define AREA_TRAPEZOIDCheight,side1,side2) Cheight*Cside1+side2)/2) 

This is not something you would want to type over and over again if you 
could avoid it. Instead, you type it in once with your word processor and save it 
as a file. You might call the file AREAS.H. The .h extension is commonly used 
for "header" files, which this is: a group of statements that will go at the head of 
your program. 

When you write your source file for a program that needs to use these 
formulas, you simply include the directive 

#include "areas.h" 

at the beginning of your program. All the statements shown above will be added 
to your program as if you had typed them in. 

This is very similar to a word processor or editor being used to read, say, a 
standard heading into a business letter. In fact in this particular instance you 
could have used your word processor to read the file AREAS.H into your source 
file; the effect would have been similar. 

There are actually two ways to write #include statements. The variation in 
format tells the preprocessor where to look for the file you want included. 

The variation shown above 

#include "areas.h" 

shows the filename surrounded by quotes. This causes the preprocessor to start 
searching for the AREAS.H file in the directory containing the current source 
file. If it doesn't find it there it will look in other directories. 

161 



Chapter 5 

The other approach is to use angle brackets: 

#include <areas.h> 

This format causes the preprocessor to start searching in the standard header 
directory, which we'll discuss next. 

Prototypes for Library Functions 

162 

The astute reader may have noticed an inconsistency in our approach to func
tions. We use prototypes for user-written functions; but where are the proto
types for library functions? For instance, if we call the function getche(), 
shouldn't there be a line like 

int getche(void); 

at the start of our program? The answer is, yes there should. If we insert a 
prototype for each library function used in our program, the compiler will be 
able to detect mismatches in the data types and the number of arguments we 
send to the function and the data type the function returns. This is an obvious 
advantage. 

However, we don't need to write these prototypes ourselves. They're 
grouped together in header files, which are all in the INCLUDE directory, as we 
discussed in Chapter 1. To cause one of these files to be included in our program, 
we can use the #define directive. 

For instance, the header file that contains the prototype for printf () is in 
the header file STDIO.H (along with many other prototypes and various defini
tions and macros). You can find the appropriate header file by looking up the 
function in the Microsoft run-time library reference manual. To include this file 
in the source file for our program we need only place this line at the beginning 
of our listing: 

#include <stdio.h> 

Using header files in this way is highly recommended. In many programs 
in this book we leave off these #include directives in the interest of brevity. In 
writing your own program, however, do as we say, not as we do. Include the 
appropriate header file for every library function you use. For instance, here's a 
program with appropriate header files: 

/* header.c */ 
/*demonstrates correct use of header files*/ 
#include <stdio.h> /* for printf () */ 
#include (conio.h> /* for getche() */ 
main 0 
{ 

printf("Type 'y' or 'n': "); 



Functions 

getcheO; 
} 

What about main()? 

We've discussed the use of prototypes for user-written functions and library 
functions. What about the main() function? It's not necessary to use a prototype 
for main() (although you can). In some cases it may help to clarify main( )'s 
operation if you use a complete declarator for it: 

void main(void) 

Arguments can be used for main(), as we'll see later, so this usage makes it clear 
they're not being used in a particular circumstance. 

Macros in Header Files 

Some entities that look like functions are actually macros that are defined in 
header files. For example, getchar() and putchar( ), which are used as if they 
were functions to read a character from the keyboard and place a character on 
the screen, are actually macros. To use them, you must include stdio.h in your 
program; otherwise the linker will flag them as "unresolved externals." 

It's interesting to browse through the header files. They're source files, so 
you can look at them with the TYPE command or with your editor. (Be careful 
not to change them, of course.) They contain some features we haven't dis
cussed yet, but the broad outline of what they contain should be clear. 

Compiler Warning Levels 
You can use compiler warnings to guard against mistakes in using prototypes 
and header files. Until now you've probably been using the default warning 
level when you compiled your program. At this level you receive some warning 
messages, in addition to actual error messages (which keep your program from 
compiling). However, other, more nit-picky, warnings are not reported. 

Warning levels run from 0 to 3. At level 0 you get no warnings, and at level 
3 you get them all. Level 1 is the default. If you want your program to be as 
correct as the compiler can possibly make it, you can request level 3. 

On the Optimizing Compiler this is done using a switch in the command 
line. Invoke CL this way: 

C>cl /W3 myprog.c 

In QuickC, select 3 from the Warnings list in the window that appears 
when you choose Compile from the Run menu. 

If you use warning level 3 this way you'll find out immediately if you've 
used prototypes incorrectly. You'll also get messages if you haven't used proto-

163 



Chapter 5 

types at all; this will happen if you don't include the appropriate header file for 
a library function. You'll even get warnings if you haven't used a declarator for 
main(), as discussed above. 

Many programs work correctly even when they generate level 2 and level 
3 warnings. However, such warnings can be a symptom of incorrect operation or 
of bad programming style. It's a good idea to try compiling with level 3 to see 
what the warnings reveal. 

Pragmas 

Preprocessor directives tell the compiler to do something before compiling the 
program. Another kind of instruction to the compiler, the pragma, tells the 
compiler to do something during compilation. Pragmas often tell the compiler to 
start doing something (such as loop optimization or stack checking) at some 
point in the program listing and to stop doing it at another point. 

Pragmas start with the number sign and the word "pragma." Here's a 
pragma that activates pointer checking: 

#pragma check_pointer(on) 

Many pragmas apply to advanced C features we won't be exploring in this 
book. 

Summary 
In this chapter you've learned how to use functions: how to write them, how to 
use them to return values, and how to send them information using arguments. 
You've learned that a function commonly uses local variables which are visible 
only within the function itself and not to other functions. You've learned, too, to 
use external variables, which are visible to all functions. Finally you've learned 
about the preprocessor directives #define, which can be used to give names to 
constants or even whole C statements, creating a functionlike capability, and 
#include, which causes one source file to be included in another. 

Questions 

164 

1. Which of these are valid reasons for using functions? 

a. they use less memory than repeating the same code 

b. they run faster 

c. they keep different program activities separate 

d. they keep variables safe from other parts of the program 

2. True or false: a function can still be useful even if you can't pass it any 
information and can't get any information back from it. 



Functions 

3. Is this a correct call to the function abs(), which takes one argument? 

ans = abs(num) 

4. True or false: to return from a function you must use the keyword 
return. 

5. Write a prototype for a function called foo() that returns type char and 
takes two arguments of type float. 

6. Is this a correctly written function? 

void abs(int num); 
{ 

} 

if (num < O> 
num = -num; 

return(num>; 

7. Which of the following are differences between Pascal and C? 

a. Pascal uses functions and procedures, C only functions 

b. there is no way to return from a Pascal function as there is in C 

c. functions can be nested in Pascal but not in C 

d. Pascal functions are all of type int 

8. True or false: the variables commonly used in C functions are accessible 
to all other functions. 

9. Which of the following are valid reasons for using arguments in 
functions? 

a. to tell the function where to locate itself in memory 

b. to convey information to the function that it can operate on 

c. to return information from the function to the calling program 

d. to specify the type of the function 

10. Which of the following can be passed to a function via arguments? 

a. constants 

b. variables (with values) 

c. preprocessor directives 

d. expressions (that evaluate to a value) 

e. functions (that return values) 

11. Is the following a correctly structured program? 

165 



Chapter 5 

166 

void type(int>; 
mainO 
{ 

} 

int three=3; 
type(three>; 

void type(f loat num) 
{ 

printf("%f", num); 
} 

12. Which of the following is true? 

a. C functions are all equal 

b. C functions can be nested within each other 

c. C functions are arranged in a strict hierarchy 

d. C functions can only be called from main() 

13. External variables can be accessed by ________ function(s) in a 
program. 

14. An external variable is defined in a declaration 

a. in main() only 

b. in the first function that uses it 

c. in any function that uses it 

d. outside of any function 

15. An external variable can be referenced in a declaration 

a. in main() only 

b. in the first function that uses it 

c. in any function that uses it 

d. outside of any function 

16. What is a preprocessor directive? 

a. a message from the compiler to the programmer 

b. a message to the linker from the compiler 

c. a message from the programmer to the compiler 

d. a message from the programmer to the microprocessor 

17. The #define directive causes one phrase to be _________ for 
another. 

18. Is this a correctly formed #define statement? 



Functions 

#define CM PER INCH 2.54 

19. In this #define directive, which is the identifier and which is the text? 

#define EXP 2.71828 

20. What is a macro? 

a. a #define directive that acts like a function 

b. a #define directive that takes arguments 

c. a #define directive that returns a value 

d. a #define directive that simulates scanf () 

21. A variable should not be used to store values which never change 
because 

a. the program will run more slowly 

b. the program will be harder to understand 

c. there is no such data type 

d. the value of the "constant" might be altered 

22. Will the following code correctly calculate postage that is equal to a fixed 
rate times the sum of the combined girth and height of a parcel? 

#define SUM3(Length,width,height) Length + width + height 

postage = rate * SUM3(L,w,h) 

23. The #include directive causes one source file to be 
~~~~~~~~-

in another.

24. A header file is

a. a file which must precede all source code files

b. a source code file

c. a file that can be #included in other source code files

d. a source code file containing various definitions and macros

25. Standard header files can be found in the directory.
~~~~~~~~-

Exercises 

1. Write a program that prints out the larger of two numbers entered from the 
keyboard. Use a function to do the actual comparison of the two numbers. 

167 



Chapter 5 

168 

Pass the two numbers to the function as arguments, and have the function 
return the answer with return(). 

2. Rewrite the intimes.c program from this chapter so that instead of working 
only with hours and minutes, it works with hours, minutes, and seconds. 
Call this program times.c. 

3. Write a program that will swap two external variables. The variables should 
be typed in by the user, printed qut, swapped, then printed out again. Use a 
function to do the actual swapping. 

4. Rewrite the times.c program from exercise 2 to use a macro instead of a 
function. Getting the data from the user must take place in the main pro
gram, but the conversion from hours-minutes-seconds to seconds should 
take place in the macro. 



Arrays and Strings 

Arrays 
Initializing arrays 
Multidimensional arrays 
Arrays as function arguments 
Strings 
String functions 

6 

169 



6 

Arrays 

170 

You might wonder why we have placed the topics of arrays and strings together 
in one chapter. The answer is simple: strings are arrays: arrays of type char. 
Thus to understand strings we need to understand arrays. In this chapter we'll 
cover arrays first and then move on to strings. 

We should note that, in many C books and courses, arrays and strings are 
taught at the same time as pointers. We feel it is clearer to introduce these topics 
separately. Pointers will be a new concept for many readers, and it seems 
unfortunate to complicate the discussion of arrays and strings, which are not 
really that different from their counterparts in other languages, by introducing 
pointers at the same time. We'll get to pointers soon enough: they're the subject 
of Chapter 7. 

If you have a collection of similar data elements you may find it inconvenient to 
give each one a unique variable name. For instance, suppose you wanted to find 
the average temperature for a particular week. If each day's temperature had a 
unique variable name, you would end up reading in each value separately: 

printf("Enter Sunday temperature: "); 
scanf("%d", &suntmp); 
printf("Enter Monday temperature: "); 
scanf("%d", &montmp); 

and so on, for each day of the week, with an expression for the average such as 
this: 

Csuntmp + montmp + tuestmp + wedtmp + thutmp + fritmp + sattmp)/7 



Arrays and Strings 

This is an altogether unwieldy business, especially if you want to average the 
temperatures for a month or a year. 

Clearly we need a convenient way to refer to such collections of similar 
data elements. The array fills the bill. It provides a way to refer to individual 
items in a collection by using the same variable name, but differing subscripts, 
or numbers. Let's see how we'd solve our problem of averaging the temperatures 
for a week using arrays: 

/* temp.c *I 
/* averages one week's temperatures */ 
mainO 
{ 

} 

int temper[7J; 
int day, sum; 

for (day=O; day<7; day++) 
{ 

/* array declaration */ 

/* put temps in array */ 

printf<"Enter temperature for day %d: ", day); 
scanf( 11 %d 11 , &temper[dayJ); 
} 

sum = O; /* calculate average */ 
for Cday=O; day<7; day++) 

sum+= temper[dayJ; 
printf<"Average is %d.", sum/7); 

This program reads in seven temperatures, stores them in an array, shown 
symbolically in Figure 6-1, and then, to calculate an average temperature, reads 
them back out of the array, adding them together, and dividing by 7. Here's a 
sample run: 

C>temp 
Enter temperature for day 0: 74 
Enter temperature for day 1 : 76 
Enter temperature for day 2: 77 
Enter temperature for day 3: 77 
Enter temperature for day 4: 64 
Enter temperature for day 5: 66 
Enter temperature for day 6: 69 
Average is 71. 

(Meteorology buffs will notice that temperatures rose slowly during the 
first part of this particular week in August and that a cold front passed through 
on Wednesday night.) 

There's a lot of new material in this program, so let's take it apart slowly. 

171 



Chapter 6 

o'll-~ 
~ ,..~ ~ roCj o~ o~ o'll- ~..., 00~ o\:' .$-Cj • o'll-~ .§ 

c§>\:' ~o ~v ~ra ~'<::' «.'" 0~ 

1741761771771641661691- temperatures 

Figure 6-1. Symbolic Representation of an Array 

Array Declaration 

An array is a collection of variables of a certain type, placed contiguously in 
memory. Like other variables, the array needs to be declared, so the compiler 
will know what kind of array, and how large an array, we want. We do that in 
the example above with the line: 

int temper[7J; 

Here the int specifies the type of variable, just as it does with simple variables, 
and the word temper is the name of the variable. The [7], however, is new. This 
number tells how many variables of type int will be in our array. (Each of the 
separate variables in the array is called an "element.") The brackets tell the 
compiler that we are dealing with an array. Figure 6-2 is a schematic representa
tion of what the array looks like. 

name of array 

\ 
temper 

number of elements 
/in array 

7 

each element of the 
array is of type int 

int temper [7J; 
\\ 

brackets signal 
an array 

Figure 6-2. Array Declaration 

I 

Referring to Individual Elements of the Array 

172 

Once the array has been established, we need a way to refer to its individual 
elements. This is done with subscripts, the numbers in brackets following the 



Arrays and Strings 

array name. Note, however, that this number has a different meaning when 
referring to an array element than it does when declaring the array, when the 
number in brackets is the size of the array. When referring to an array element, 
this number specifies the.element's position in the array. All the array elements 
are numbered, starting at 0. The element of the array with the number 2 would 
be referred to as: 

temper[2J 

Note that, because the numbering starts with 0, this is not the second element of 
the array, but the third. Thus the last array element is one less than the size of 
the array. This arrangement is shown in Figure 6-3. 

7 elements 

0 2 3 4 5 6 Note: 
largest 

temper I I I element 
one less 
than size 

I I of array 

temper[2J temper[SJ 

Figure 6-3. Array References 

In our program we are using an integer variable, day, as a subscript to refer 
to the various elements of the array. This variable can take on any value we 
want and so can point to the different array elements in turn. This ability to use 
variables as subscripts is what makes arrays so useful. 

temper[day] 

Entering Data into the Array 

Here's the section of code that places data into the array: 

for Cday=O; day<?; day++) 
{ 

/* put temps in array */ 

printfC"Enter temperature for day %d: ", day>; 
scanfC 11 %d 11

, &temper[dayJ); 
} 

The for loop causes the process of asking for and receiving a temperature from 
the user to be repeated seven times. The first time through the loop, day has the 
value 0, so the scanf() statement will cause the value typed in to be stored in 
array element temper[O], the first element of the array. This process will be 
repeated until day becomes 6. That is the last time through the loop, which is a 
good thing, because there is no array element temper[7]. 

173 



Chapter 6 

174 

The first element in an array is numbered 0, so the last element is 1 less 
than the size of the array. 

This is a common idiom in C for dealing with arrays: a for loop that starts 
with 0 and goes up to, but does not include (note the "less-than" sign), the size 
of the array. 

In the scanf() statement, we've used the address operator ( & ) on the 
element of the &temper[day] array, just as we've used it earlier on other 
variables ( &num, for example) to be read in by the scanf() function. In so 
doing, we're passing the address of this particular array element to the function, 
rather than its value; this is what scanf() requires. 

Reading Data from the Array 

The balance of the program reads the data back out of the array and uses it to 
calculate an average. The for loop is much the same, but now the body of the 
loop causes each day's temperature to be added to a running total called sum. 
When all the temperatures have been added up, the result is divided by 7, the 
number of data items. 

sum = O; /* calculate average */ 
for Cday=O; day<?; day++) 

sum+= temper[dayJ; 
printfC"Average is %d.", sum/7>; 

Using Different Variable Types 

Although the example above used an array of type int, an array can be of any 
variable type. As an example, let's rewrite temp.c to be of type float: 

/* fltemp.c */ 
/* averages one week's temperatures */ 
mainO 
{ 

float temper [7]; 
float sum; 
int day; 

for Cday=O; day<?; day++) 
{ 

/* array declaration */ 

/* put temps in array */ 

printfC"Enter temperature for day %d: ", day>; 
scanf("%f", &temper[dayJ); 
} 

sum = 0.0; /* calculate average */ 
for Cday=O; day<?; day++) 



Arrays and Strings 

} 

sum += temper[dayJ; 
printfC"Average is %.1f", sum/7.0>; 

This program operates in much the same way as temp.c, except that now it can 
accept numbers with decimal fractions as input and so can calculate a more 
precise average. Here's a sample run: 

C>f ltemp 
Enter temperature for day 0: 80.5 
Enter temperature for day 1 : 78.2 
Enter temperature for day 2: 67.4 
Enter temperature for day 3: 71.4 
Enter temperature for day 4: 74.6 
Enter temperature for day 5: 78.3 
Enter temperature for day 6: 80.1 
Average is 75.8 

We had a cooling trend in the middle of the week, with ideal beach tempera
tures on the weekends. 

We've changed the array (and the variable sum) to type float, and we've 
altered the format specifiers in the scanf() and printf() statements accordingly. 

Reading in an Unknown Number of Elements 

So far we've worked with a fixed amount of input, requiring a data item for each 
of the days of the week. What if we don't know in advance how many items will 
be entered into the array? Here's a program that will accept any number of 
temperatures-up to 40- and average them: 

/* fl temp2. c */ 
/* averages arbitrary number of temperatures */ 
#define LIM 40 
mainO 
{ 

float temper[LIMJ; /* array declaration */ 
float sum=O.O; 
int num, day=O; 

do /* put temps in array */ 
{ 

printf("Enter temperature for day %d: ", day); 
scanf("%f", &temper[dayJ); 
} 

while C temper[day++J > 0 >; 

num = day-1; 
for Cday=O; day<num; day++) 

sum+= temper[dayJ; 

/* number of temps entered */ 
/* calculate average */ 

175 



Chapter 6 

176 

printf("Average is %.1f", sum/num); 
} 

Here's a run in which only three temperatures are entered: 

C>f Ltemp2 
Enter temperature for day 0: 71.3 
Enter temperature for day 1 : 80.9 
Enter temperature for day 2: 89.2 
Enter temperature for day 3: 0 
Average is 80.5 

As you can see, we've replaced the for loop with a do while loop. This loop 
repeatedly asks the user to enter a temperature and stores the responses in the array 
temper, until a temperature of 0 or less is entered. (Clearly, this is not a program for 
cold climates.) When the last item has been typed, the variable day will have 
reached a value 1 greater than the total number of items entered. This is true 
because it counts the 0 (or negative number), which the user entered to terminate 
the input. Thus to find the number of items entered, num, we subtract 1 from day. 
The variable num is then used as the limit in the second for loop, which adds up 
the temperatures, and it's also used as the divisor of the resulting sum. 

There's another change in the program as well. We've used a #define 
directive to give the identifier LIM the value of 40: 

#define LIM 40 

We then used LIM in the array declaration. Using a #defined value as an array 
size is common in C. Later, if we wish to change the size, all we need do is 
change the 40 in the #define statement, and the change will be reflected any
where this value appears. In this particular program the number is only used 
once, but we'll soon see examples in which the array dimension occurs repeat
edly in the program, making the use of the #define directive a real convenience. 

Bounds Checking 

We've made the size of the array to be 40 in the #define directive. This is large 
enough to hold one month's temperatures, with some left over. But suppose a 
user decided to enter two months worth of data? As it turns out, there probably 
would be Big Trouble. The reason is that in C there is no check to see if the 
subscript used for an array exceeds the size of the array. Data entered with too 
large a subscript will simply be placed in memory outside the array: probably on 
top of other data or the program itself. This will lead to unpredictable results, to 
say the least, and there will be no error message to warn you that it's happening. 

C does not warn you when an array subscript exceeds the size of the array. 



Arrays and Strings 

The solution, if there's the slightest reason to believe the user might enter 
too many items, is to check for this possibility in the program. For instance, we 
could modify the do-while loop as follows: 

do 
{ 

if ( day >= LIM ) 
{ 

printfC"Buffer full.\n"); 

/* beyond array end? */ 

day++; /* won't be incremented later */ 
break; /* exit loop */ 
} 

printfC"Enter temperature for day %d: ", day); 
scanf("%f", &temper[dayJ); 
} 

while ( temper[day++] > 0 >; 

Now if the loop is entered with day equal to 40, which is 1 past the end of the 
buffer at 39, the message "Buffer full" will be printed and the break statement 
will take us out of the loop to the second part of the program. (We need to 
increment day since the while statement won't be executed.) Here's a run 
showing the last few lines before the user oversteps the bounds: 

Enter temperature for day 38: 73.4 
Enter temperature for day 39: 62.2 
Buffer full. 
Average is 75.1 

As you can see, the temperature for day 39 is accepted, but then the program 
realizes that one more item would be one too many, prints the message, and 
breaks out of the loop. 

Initializing Arrays 

So far, we've shown arrays that started life with nothing in them. Suppose we 
want to compile our program with specific values already fixed in the array? 
This is analogous to initializing a simple variable: 

int george = 45; 

Here's a program demonstrating the initializing of an array. The program 
makes change; you type in a price in cents, and the program tells you how many 
half-dollars, quarters, dimes, nickels, and pennies it takes to make up this 
amount. 

/* change.c */ 
/* program to make change */ 

177 



Chapter 6 

178 

#define LIM S 
int table[LIMJ = { SO, 25, 10, 5, 1 }; 

mainO 
{ 

int dex, amount, quantity; 
printfC"Enter amount in cents (form 367): "); 
scanfC 11 %d 11

, &amount>; 
for Cdex=O; dex<LIM; dex++) 

{ 

quantity = amount I table[dexJ; 
printfC"Value of coin=%2d, ", table[dexJ >; 
printfC"number of coins=%2d\n", quantity>; 
amount =amount % table[dexJ; 
} 

} 

Here's a sample run: 

C>change 
Enter amount in cents (form 367): 143 
Value of coin=50, number of coins= 2 
Value of coin=25, number of coins= 1 
Value of coin=10, number of coins= 1 
Value of coin= 5, number of coins= 1 
Value of coin= 1, number of coins= 3 

The program has figured out that $1.43 is two half-dollars, one quarter, one 
dime, one nickel, and three pennies. This is smarter than some checkout people 
are. 

The program works by taking the value of the largest coin, 50, and dividing 
it into the amount typed in (the variable amount). It prints out the answer, 
which is the number of half-dollars necessary, and then it performs the same 
division but this time with the remainder operator ( % ) . This remainder, in turn, 
is used as the new amount, which is divided by the next smallest size of coin, 25. 
The process is repeated five times, once for each coin. 

The array is used to hold the values, expressed in cents, of the various 
coins. Here's the statement that initializes the array to these values: 

int table[LIMJ = { 50, 25, 10, 5, 1 }; 

The list of values is enclosed by braces, and the values are separated by com
mas. The values are assigned in turn to the elements of the array, so that table[O] 
is 50, table[l] is 25, and so on, up to table[4], which is 1. 

Storage Classes and Array Initialization 
You may be wondering why we put the array declaration outside of the main() 
function, thus making it an external variable. The reason is that you can't 
initialize an array that is a local (automatic) variable. Why not? Because C 



Arrays and Strings 

doesn't create such an array until the function containing it is called, and by 
then it's too late to put initial values in it. 

You can't initialize a local !automatic) array. 

Thus if you want to initialize an array, it must use a variable that stays in 
existence for the life of the program. There are two classes of variables that do 
this. One is the external storage class, which we've used in the example above. 
The other is the static class. Unlike external variables, static variables are not 
visible outside the function in which they're declared, but like external 
variables, they don't disappear when the function terminates. As we noted in 
Chapter 5, how long a variable lasts is called its "lifetime." Lifetime, and the 
related idea of visibility, are characteristics of a variable's storage class. We'll 
discuss storage classes in more detail in Chapter 15. 

Here's the change.c program rewritten to use a static variable class for the 
array table[]: 

/* change2.c */ 
/* program to make change */ 
#define LIM 5 

mainO 
{ 

} 

static int table[]= { 50, 25, 10, 5, 1 }; 
int dex, amount, quantity; 

printf("Enter amount in cents (form 367): "); 
scanfC 11 %d 11

, &amount); 
for Cdex=O; dex<LIM; dex++) 

{ 

quantity = amount I table[dex]; 
printfC"Value of coin=%2d, ", table[dex] >; 
printfC"number of coins=%2d\n", quantity >; 
amount = amount % table[dex]; 
} 

This is similar to the first version, but the array definition has been moved 
inside the function main() and the word "static" has been added to it. The two 
programs operate in exactly the same way, but if there were other functions in 
the program, they would be able to access the external array in change.c, while 
the static array in change2.c would be invisible to them. 

Array Size and Initialization 
We've made another kind of change in the array declaration between change.c 
and change2.c. 

179 



Chapter 6 

180 

The change.c program used the value LIM (which was #defined as 5) in 
the array declaration: 

int table[LIMJ = { 50, 25, 10, 5, 1 }; 

But in change2.c this number is simply left out, leaving an empty pair of 
brackets following "table": 

static int table[] = { 50, 25, 10, 5, 1 }; 

How can we get away with this? The answer is that if no number is supplied for 
the size of the array, the compiler will very kindly count the number of items in 
the initialization list and fix that as the array size. 

What happens if a number is supplied, but it does not agree with the actual 
number of items on the list? If the number is larger than the number of items, 
the extra spaces in the array will be filled in with zeros. If the number is too 
small, the compiler will complain (as well it might; where could it put the 
leftover values?). 

Array Contents and Initialization 

You should also know what the initial values of array elements will be if they 
are not initialized explicitly. In other words, if we execute an array declaration 
inside the function, like this: 

main() 
{ 

int array[1Q]; 

and then, without putting anything into the array, we say 

printfC"Array element 3 has the value %d", array[3]); 

what value will be printed out? Would you guess O? That's close, but not right. In 
fact, what you'll get is a garbage number: whatever value was sitting in that 
particular part of memory before the function was called and the array de
clared. At least that's true in the case of the automatic variable declaration 
shown. However, if the array was declared as an external or static variable, it 
will be initialized to 0. 

The lesson is that if you want your array initialized to all zeros, but don't 
want to do it yourself, make sure it's external or static. 

More than One Dimension 

So far we've looked at arrays with only one dimension: that is, only one sub
script. It's also possible for arrays to have two or more dimensions. This permits 



Arrays and Strings 

them to emulate or "model" multidimensional objects, such as graph paper with 
rows and columns, or the computer display screen itself. 

Here's a sample program that records, not one list of data as our previous 
programs have, but two lists side-by-side. This program stores the travel expenses 
for a number of secret agents who are known only by their code numbers. 

/* travel.c */ 
/* stores List of 
#define ROWS 10 
#define COLUMNS 2 
main() 
{ 

secret agents' travel expenses */ 
/* number of rows in array */ 
/* number of columns in array */ 

float agents [ROWS] [COLUMNS]; 
int index=O, outdex; 

printf("Enter 3-digit agent numbers,\n"); 
print fC"t hen t rave L expenses COO? 1642. SQ) \n"); 
pri ntfC"Enter 0 0 to quit. \n"); 

do /* get List of agents and expenses */ 
{ 

printf("Agent's number and expenses: "); 
scanfC "%f %f", &agents [index HOJ, &agents [index ][1] ) ; 
} 

while C agents[index++J[OJ != 0 ); 

for Coutdex=O; outdex<index-1; outdex++) /*print List */ 
{ 

} 

print fC"Agent %3. Of ", agents [outdex HOJ ) ; 
printfC"spent %7.2f.\n", agents[outdexH1J ); 
} 

There are two parts to the program: a do-while loop that gets the data from the 
user and stores it in the two-dimensional array table[] [], and a for loop that 
prints out the contents of the array. Here's a sample run: 

C>travel 
Enter 3-digit agent numbers, 
then travel expense COO? 1642.50) 
Enter 0 0 to quit. 
Agent's number and expenses: 101 2331.50 
Agent's number and expenses: 007 8640 
Agent's number and expenses: 901 123.25 
Agent's number and expenses: 904 500.6 
Agent's number and expenses: 0 0 
Agent 101 spent 2331.50. 
Agent 7 spent 8640.00. 
Agent 901 spent 123.25. 
Agent 904 spent 500.60. 

181 



Chapter 6 

182 

The do-while loop is similar to that in the fltemp3.c program which obtained 
the temperature from the user. However, instead of getting only one piece of 
data each time through the loop, we get two placing them in the variables 
agents[index][O] and agents[index][l] with the scanf() statement: 

scanfC "%f %f", &agents[indexHOJ, &agents[indexH1J >; 

The first subscript is the row number, which changes for each agent. The 
second subscript tells which of two columns we're talking about: the one on the 
left, which contains the agent numbers, or the one on the right, which lists 
expenses for a particular month. Each subscript goes in its own set of brackets 
following the variable name. The array arrangement is shown in Figure 6-4. 

Column O Column 1 

row ! agents ! 
0 101 2331.50 
1 007 8640.00 

agents [2] [OJ 
21-- 901 123. 25 
3 904 500.60 
4 - t--- agents[4J[1J 
5 

6 

7 

8 

9 

this is the row I th/is the column 

agent[indexJ [OJ 

Figure 6-4. Array Used in travel.c Program 

Notice that the entire array is of type float. We've tried to disguise this by 
not printing out decimal places with the agent numbers, but in reality the agent 
numbers are of type float just as the expenses are. We chose float because we 
wanted to use dollars and cents for the expenses. The ideal arrangement would 
be to have the agent numbers be of type int and the expenses of type float, but 
arrays must be of a single data type. This is an important limitation of arrays. In 
Chapter 9 we'll see how something called a "structure" will permit the use of 
multiple types in an array. 

Here's a program that plots a two-dimensional grid on the screen. Initially, 
the grid is filled with dots (periods). But after the grid is drawn, the program 
then cycles through a loop asking the user for a pair of coordinates. When the 
user types the two coordinates (separated by a comma), the program draws a 
gray box at the corresponding location on the screen (or a light green or light 
amber box, depending on the color of your monitor). 



Arrays and Strings 

Using this program provides a way to understand in a visual way how a 
two-dimensional coordinate system works. Try typing in pairs of numbers. 
Where will 0,0 be plotted? How about 5,0? Or 0,5? Remember that the horizon
tal, or x-coordinate, is typed in first, then the vertical, or y-coordinate. Here's the 
listing: 

/* plot.c */ 
/* plots coordinates on screen */ 
#define HEIGHT 5 
#define WIDTH 10 

mainO 
{ 

char matrix [HEIGHT] [WIDTHJ; 
int x,y; 

for(y=O; y<HEIGHT; y++) /*fill matrix with periods*/ 

} 

for(x=O; x<WIDTH; x++) 
matrix[yJ[xJ = '.'; 

printf<"Enter coordinates in form x,y (4,2). \n"); 
printf("Use negative numbers to quit.\n"); 

while < x >= 0 > /*until neg coordinates*/ 
{ 

for(y=O; y<HEIGHT; y++) /*print matrix */ 
{ 

forCx=O; x<WIDTH; x++) 
printf<"%c ", matrix[y][xJ >; 

printf<"\n\n">; 
} 

printf<"Coordinates: "); 
scanf( 11 %d,%d 11

, &x, &y>; 
matrix[yJ[xJ='\xBO'; 
} 

/* get coordinates */ 
/* put gray box there */ 

Figure 6-5 shows a sample of interaction with the program. The user has pre
viously entered the coordinates 2,1; on this turn, the coordinates are 5,2. The 
program has plotted both pairs on the screen. 

Remember that the results of typing coordinates that exceed the bounds of 
the array can be disastrous. Don't type an x-coordinate greater than 9, nor a y
coordinate greater than 4. (You probably will anyway. The worst that can hap
pen is a system crash.) Alternatively, you could modify the program to trap out
of-bounds entries, as we did earlier; for simplicity, we have not done this here. 

Initializing Two-Dimensional Arrays 
We've learned how to initialize a one-dimensional array; what about two dimen
sions? As an example, we'll modify the plot.c program to play the game of 
battleship. In this game one player (the computer) has concealed a number of 

183 



Chapter 6 

184 

coordinates:S,2 

• • • • • • • • • • 

• • • • • • • • • • 

• • • • • • • • • • 

• • • • • • • • • • 

• • • • • • • • • • 
Figure 6-5. Output of the plot.c Program 

ships at different locations in a 10-by-5 grid. The other player (the human) tries to 
guess where the ships are by typing in coordinates. If the human guesses right, a 
hit is scored, and the coordinates on the grid are marked with a solid rectangle. If 
the human guesses wrong, the coordinates are marked with a light gray rectangle, 
making it easier to remember what areas have already been tested. 

There are five ships concealed in the grid: one battleship 4 units long, two 
cruisers 3 units long, and two destroyers 2 units long. They are all placed either 
horizontally or vertically (not diagonally). In the program a ship will be repre
sented by the number 1, and coordinates where there is no ship by the number 0. 

We get the ships into the array by initializing the array when we write the 
program. Note that even though this is a character array (to save memory space), 
we use numbers as values: 

/* bship.c */ 
/* plays battleship game */ 
#define HEIGHT 5 
#define WIDTH 10 

char enemy [HEIGHT] [WIDTH] = 
{ { 0, 0, 0, 0, 0, 0, 0, 0, 

{ 0, 1 I 1 I 1 I 1 I 0, 0, 1 I 
{ 0, 0, 0, 0, 0, 0, 0, 1 I 
{ 1 I 0, 0, 0, 0, 0, 0, 1 I 
{ 1 I 0, 1 I 1 I 1 I 0, 0, 0, 

mainO 
{ 

char friend [HEIGHT] [WIDTH]; 
int x,y; 

for(y=O; y<HEIGHT; y++) 
forCx=O; x<WIDTH; x++) 

friend[yJ[xJ = '.', 

0, 0 }, 

0, 1 }, 

0, 1 }, 

0, 0 }, 
0, 0 } }· 

I 

/*fill array with periods*/ 



} 

Arrays and Strings 

printf<"Enter coordinates in form x,y (4,2). \n"); 
printf("Use negative numbers to quit.\n"); 

while ( x >= 0) 
{ 

for(y=O; y<HEIGHT; y++) 
{ 

/*until neg coordinates*/ 

/* print array */ 

for(x=O; x<WIDTH; x++) 
printf<"%c ", friend[y][x] >; 

printf("\n\n"); 
} 

printf<"Coordinates: "); 
scanf("%d,%d", &x, &y); 
if ( enemy[y][xl==1 ) 

friend[y][x]= 1 \xDB 1
; 

else 
friend[y][xl='\xB1'; 

} 

/* get coordinates */ 
/* if it's a hit */ 
/* put solid box there */ 
/* otherwise */ 
/* gray box */ 

The ships are located in the array initialization at the start of the program. You 
should be able to see the battleship on the left, oriented horizontally, in the 
second row down. A sample run is shown in Figure 6-6. 

• • • • • • 0 • • • 

0 0 0 II • • 0 0 0 

• • • • • • • • • • 

0 • 0 • • • • • • • 

Q Q Q Q Q Q Q Q Q Q 

Figure 6-6. Output of the bship.c Program 

In this figure the user tried 4,0, which was a miss, and then 4,1, which was 
a hit. Then, thinking the ship might be located vertically, the user tried 4,2 to no 
avail. Trying 5,1 proved that the ship didn't extend to the right. The next choice, 
3,1, was a hit, so now the user will see how big a ship it is by going further left. 
The other ships still lurk in the darkness, waiting to be discovered. 

(It would be fun to modify the program so that two people could compete, 
but that would take us too far afield.) 

Notice the format used to initialize the array: an outer set of braces, and 

185 



Chapter 6 

186 

then 5 inner sets of braces, each with 10 members separated by commas. The 
inner sets of braces are separated from each other by commas as well. 

We can conclude that lists go in braces, and that the elements of the list are 
separated by commas, whether the members of the list are composed of num
bers or other lists. 

The list of values used to initialize an array are separated by commas and 
surrounded by braces. 

Initializing Three-Dimensional Arrays 

We aren't going to show a programming example that uses a three-dimensional 
array. However, an example of initializing a three-dimensional array will consol
idate your understanding of subscripts: 

int threed[3J[2J[4J = 
{ { { 1 I 2, 3, 4 }, 

{ 5, 6, 7, 8 }, }, 
{ { 7, 9, 3, 2 }, 

{ 4, 6, 8, 3 }, }, 
{ { 7, 2, 6, 3 }, 

{ 0, 1 I 9, 4 } } }; 

This is an array of arrays of arrays. The outer array has three elements, each of 
which is a two-dimensional array of two elements, each of which is a one
dimensional array of four numbers. 

Quick now, how would you address the array element holding the only 0 
in this declaration? The first subscript is [2], since it's in the third group of three 
two-dimensional arrays; the second subscript is [1], since it's in the second of 
two one-dimensional arrays; and the third subscript is [O], since it's the first 
element in the one-dimensional array of numbers. We could say, therefore, that 
the expression 

threed[2J[1J[QJ -- 0 

is true. 

Arrays as Arguments 

We've seen examples of passing various kinds of variables as arguments to 
functions. Is it also possible to pass an array to a function? The answer is, sort of. 
Let's see what this means. 

Here's a program that uses a function called max() to find the element in 
an array with the largest value: 



Arrays and Strings 

/* maxnum.c */ 
/* tells largest number in array typed in */ 
#define MAXSIZE 20 /* size of array */ 
int max(int[], int>; /*prototype*/ 
mainO 
{ 

} 

int list[MAXSIZEJ; 
int size = O; 
int num; 
do 

{ 

printf("Type number: "); 
scanf( 11 %d 11 , &list[sizeJ>; 
} 

/* start at element [Q] */ 
/* temp storage */ 
/*get list of numbers */ 

while ( list[size++] != 0 >; /*exit loop on 0 */ 
num = maxClist,size-1>; /*get largest number */ 
printfC"Largest number is %d", num); /*print it*/ 

/* maxO */ 
/* returns largest number in array */ 
int max(int list[], int size) 
{ 

int dex, max; 
max = list[OJ; /* 
for Cdex=1; dex<size; dex++) /* 

if < max < list[dex] /* 

assume 1st element largest */ 
check remaining elements */ 
if one bigger, */ 

max = list[dexJ; /* make it the largest */ 
return(max); 

} 

The user types in a set of numbers (no more than 20) and the program prints out 
the largest one. Here's a sample run: 

C>maxnum 
Type number: 42 
Type number: 1 
Type number: 64 
Type number: 33 
Type number: 27 
Type number: 0 
Largest number is 64 

The first part of this program should look familiar: it's our usual do-while loop 
for reading in a list of numbers. The only new element here is the statement: 

num = max(list,size); 

This is the call to the function max(), which returns the largest number. There 
are two arguments to the function: the first is the array list, the second is the 
variable size. 

187 



Chapter 6 

188 

The critical thing to notice here is how we pass the array to the function: 
we use the name of the array, all by itself. We've seen array elements, which 
look like list[index], before, but what does the array name mean without any 
brackets? It turns out that the array name used alone is equivalent to the address 
of the array. Actually, it's equivalent to the address of the first element in the 
array, which is the same thing. 

Thinking about addresses and values can become confusing, so let's reca
pitulate what we know about the addresses of simple variables. Let's imagine an 
integer variable num with a value of 27. Perhaps it has been initialized like this: 

int num = 27; 

Figure 6-7 shows how this variable looks in memory . 

&num==1492 
num==27 

-- ..•. _ ...... - ..•. -- -·-··-name of address 

......... - - address of variable 

_ ...... -· .... value of variable 

name of variable 

Figure 6-7. The Address and Value of a Simple Variable 

There are four things to know about the variable: its name (num), its value (27), 
its address (which happens to be 1492, although this will vary from program to 
program and system to system), and-watch closely-the name of the address, 
which is &num. 

Now let's see what a similar representation looks like for an array. 

An array is referred to by its address, which is represented by the name of 
the array, used without subscripts. 

Figure 6-8 shows the array list[], which in this instance is located in 
memory starting at address 1500. Again there are four important aspects to the 
figure: the values of the elements in the array (64), the names of these elements 
(list[2]), the address of the array (1500), and the name of this address (list). Why 
isn't the address of the array called something like &list? This would be consis-



Arrays and Strings 

tent with the way the addresses of variables are named, but it would leave the 
word "list," which isn't used to name anything else about the variable, going 
begging. Thus list refers to an address if list is an array, but would refer to a 
value if list were a simple variable. 

name of address of array 

address of 
element -
in array 

Li st 

address of array 
/ 

I 
! 
I 
i 
I 

1500 
1501 
1502 
1503 
1504 
1505 
1506 
1507 

/ 
element in 
array 

Array in memory 

---42---

--- 1 ----

-- 64---

--,~ 33 ---,,,,,. 
/ 

·&Li s,H2J 

name of address of 
element in the array 

} 
} 
} 
} 

Symbolic representation 
of array 

0 1 2 3 

I 42 I 1641 33 

List[QJ 

List[1J 

Li st[2J ·· 

List[3J-

name of element 
in array 

I 

Figure 6-8. The Address and Elements of an Array 

Incidentally, can you think of another way to represent the address list? 
How about this? 

&List[QJ 

Since list[O] is the first element of the array, it will have the same address as the 
array itself. And since & is the address operator, &list[O] gives the address of the 
first element of the array. In other words, 

List == &List[QJ 

An understanding of addresses will become increasingly important as we move 
on to the study of pointers in the next chapter, since addresses are closely 
related to pointers. 

To summarize, to tell the compiler we want to talk about the address of an 
array, we use the name of the array, with no brackets following it. Thus (to 
return to the maxnum.c program), our call to the function max() passes the 
address of the array, represented by the word list, to the function. 

189 



Chapter 6 

190 

Addresses of Things versus Things 
It's important to realize that passing the address of something is not the same 
thing as passing the something. When a simple variable name is used as an 
argument passed to a function, the function takes the value corresponding to this 
variable name and installs it as a new variable in a new memory location 
created by the function for that purpose. 

But what happens when the address of an array is passed to a function as 
an argument? Does the function create another array and move the values into it 
from the array in the calling program? No. Since arrays can be very large, the 
designers of C determined that it would be better to have only one copy of an 
array no matter how many functions wanted to access it. So instead of passing 
the values in the array, only the address of the array is passed. The function then 
can use the address to access the original array. This process is shown in Figure 
6-9. Thus, in the max() function, when we reference elements of the array, as in 

main() 

1492 

Li st 1500 

r function call in main ( ) 

~ max<List,size) 

I 
I 

I 
I 

size is a value 

address, 
function max ( ) 
communicates 
directly with array list 
in main () 

maxO 

there is no array 
list 2 [ ] in the 
function 

Figure 6-9. Passing a Value and an Array Address to a Function 



Arrays and Strings 

the statement 

max = List2[dexJ; 

references to the array list2[] are actually references to the array list[]. We can 
give the array any name we want in the function, but all we are doing is telling 
the function where the original array, list[], is. There is no array list2[ ]: this is 
simply the way the function refers to the array list[]. 

Passing an array name to a function does not create a new copy of the 
array. 

Sorting an Array 
Before we go on to strings, let's look at a function that sorts the values in an 
array. Sorting is an important task in many applications, particularly database 
programs, in which a user wants to rearrange a list of items, in numerical or 
alphabetical order. Here's the listing: 

/* sortnum.c */ 
/* sorts numbers typed in to array */ 
#define MAXSIZE 20 /* size of buffer */ 
void sort(int[J, int); /*prototype*/ 

mainO 
{ 

} 

static int list[MAXSIZEJ; 
int size = O; 
int dex; 

do 
{ 

printfC"Type number: 11
); 

scanf( 11 %d 11
, &list[sizeJ); 

} 

while ( List[size++J != 0 ); 
sort(List,--size); 
for (dex=O; dex<size; dex++) 

pri ntfC 11%d\n11 , Li st[dex]); 

/* sortO */ 
/* sorts array of integers */ 
void sort(int List[], int size) 
{ 

int out, in, temp; 

/* buffer for numbers */ 
/* size 0 before input */ 
/* index to array */ 

/*get List of numbers*/ 

/* exit Loop on 0 */ 
/* sort numbers */ 
/*print sorted List*/ 

for (out=O; out<size-1; out++) 
for (in=out+1; in<size; in++) 

/* for each element */ 
/* Look at those Lower */ 

191 



Chapter 6 

192 

} 

if Clist[out] > list[in]) 
{ 

temp= list[inJ; 
list[inJ = list[outJ; 
list[outJ =temp; 
} 

/* if element greater than */ 
/* any lower down, */ 
/* swap them */ 

And here's an example of the program at work: 

C>sortnum 
Type number: 46 
Type number: 25 
Type number: 73 
Type number: 58 
Type number: 33 
Type number: 18 
Type number: 0 
18 
25 
33 
46 
58 
73 

The program first asks for a list of numbers (as you can see from the array 
declaration, you shouldn't type more than 20). As the user types in the numbers, 
they are placed in the array list[]. Once the user terminates the list by typing 0 
(which is not placed on the list), the program then calls the sort() function, 
which sorts the values in the list. 

The overall structure of the program is similar to that of maxnum.c. It first 
gets a series of numbers from the user and puts them in an array, list[]. Then it 
calls the sort() function, and finally it prints out the contents of the newly 
sorted array. 

In this program we've used the same name, list[], for the array in the 
function as in the calling program. A different name could be used to refer to the 
array; either way, it's the same array. 

The Bubble Sort 
The sorting process used in the sort() function may require a word of 
explanation. The function starts off thinking about the first array variable, 
list[O]. The goal is to place the smallest item on the list in this variable. So the 
function goes through all the remaining items on the list, from list[l] to list[size-
1 ], comparing each one with the first item. Whenever it finds one that is smaller 
than the first item, it swaps them. This will put the smallest item in list[O]. 

Once the smallest item is dealt with, the function wants to put the next 
smallest item in list[l]. So it goes through all the remaining items, from list[2] 
on, comparing them with list[l]. Whenever it finds one that is smaller, it swaps 
them. This will end up with list[l] containing the second smallest item. This 



Arrays and Strings 

process is continued until the entire list is sorted. This approach is called the 
"bubble sort," because the smaller values bubble up through the list. Figure 6-10 
shows how it works. (We should note that the bubble sort, while easy to 
program, is less efficient than many other sorting algorithms.) 

The outer loop, with the variable out, determines which element of the 
array will be used as the basis of comparison (as list[O] is the first time through 
the loop). The inner loop, with the variable out, steps through the remaining 
items, comparing each one with the first (from list(l] to the end of the list, the 
first time through). When the comparision of two items shows they are out of 
order, they're swapped. 

The swapping process requires us to put the value of the first variable, 
list[in], in a temporary location; put the second value, list(out), in the first 
variable; and finally return the temporary value (originally from list[in] to 
list[out]). 

Remember that all this swapping and rearranging of values takes place in 
the original array, list[], in the calling program. The sort() function finds out 
where the array is (from the address passed to it) and manipulates it by "remote 
control," without having to drag all the values from the array into the function. 

Two-Dimensional Arrays as Arguments 

We've seen how to pass a one-dimensional array as an argument, but what 
about a two-dimensional array? As an example, we'll blend our travel.c 
program, which recorded the travel expenses for a list of secret agents, and 
our maxnum.c program, which figured out the largest element in an array. 
The resulting program will print out the agent number and the amount spent 
by the agent with the highest travel expenses. 

Here's the program listing: 

/* highex.c */ 
/* stores List of secret agents' travel expenses */ 
/* reports number of agent with highest expenses */ 
#define ROWS 10 /* number of rows in array */ 
#define COLUMNS 2 /* number of columns in array */ 
int maxex(float[J[COLUMNSJ, int); /*prototype*/ 

mainO 
{ 

float agents [ROWS] [COLUMNS]; 
int index=O; 

printf("Enter 3-digit agent numbers,\n"); 
print f<"t hen t rave L expenses <007 1642. 50> \n"); 
printf<"Enter 0 0 to quit.\n"); 

do /*get List of agents and expenses */ 
{ 

printf("Agent's number and expenses: "); 

193 



Chapter 6 

194 

} 

scanfC "%f %f", &agents[indexJ [Q], &agents[index] [1] ) ; 
} 

while ( agents[index++J[OJ != (float>O.O >; 
index--; /* restore to size of array */ 

index= maxex(agents, index>; /*find agent's index*/ 
printfC"Agent with highest expenses: %03.0f. ", 

agents[indexJ[OJ >; 
printfC"Amount: %.2f.", agents[indexH1J >; 

/* maxexO */ 
/* returns array index to Largest amount in column 1 */ 
int maxexCfloat List[J[COLUMNSJ, int size) 
{ 

} 

int dex, maxdex; 
float max; 
max= List[0][1J; I* assume 1st element Largest */ 

/* save its index */ maxdex = O; 
for Cdex=1; 

if ( max 
{ 

dex<size; dex++) /* check remaining elements */ 
< List[dexJ[1] ) /* if one bigger, */ 

max= List[dex][1J; 
maxdex = dex; 
} 

return(maxdex>; 

/* make it the Largest */ 
/* save its index */ 

/* return index */ 

Here's a sample run. Now we've typed in a list of agent numbers and expenses, 
and the program has figured out the agent with the highest expenses and printed 
out the number and the amount. 

C>highex 
Enter 3-digit agent numbers, 
then travel expenses <007 1642. 50> 
Enter 0 0 to quit. 
Agent's number and expenses: 901 645.25 
Agent's number and expenses: 801 784.50 
Agent's number and expenses: 302 112.95 
Agent's number and expenses: 007 9456.99 
Agent's number and expenses: 405 298.60 
Agent's number and expenses: 006 5019.00 
Agent's number and expenses: 0 0 
Agent with highest expenses: 007. Amount: 9456.99. 

In many ways, passing a two-dimensional array is similar to passing an array of 
one dimension, but there is at least one surprise. 

The method of passing the address of the array to the function is identical 



Arrays and Strings 

out = 0 
in= 1 in =2 in =3 in =4 in =5 

0 46 ) 25 

) 
18 

1 25 46 46 
2 73 73 73 
3 58 58 58 
4 33 33 33 
5 18 18 25 

out = 1 
in =2 in =3 in =4 in =5 

18 18 18 18 
46 ) 46 25 
73 73 
58 58 
33 33 46 
25 25 25 33 

out = 2 
in =3 in =4 in =5 

18 18 18 18 
25 25 25 
73 ~ 33 
58 <,..,../) 73 
46 58 
33 46 

out = 3 
in =4 in =5 

18 18 18 
25 25 25 
33 33 33 

46 
73 

46 58 

out = 4 
in =5 

18 18 
25 25 
33 33 
46 46 
73 J 

58 
58 73 

Figure 6-10. Bubble Sort 

195 



Chapter 6 

196 

no matter how many dimensions the array has, since all we pass is the address 
of the array (in this case, agents): 

index= maxexCagents, index); 

However, the declaration of the array in the function may look a bit mysterious: 

float list[J[COLUMNSJ; 

We don't need to tell the function how many rows there are. Why not? Because 
the function isn't setting aside space in memory for the array. All it needs to 
know is that the array has two columns; this permits it to reference accurately 
any array variable. For instance, to find the space in memory where 
agents[3](1] is stored, the function multiplies the row index (3) by the number 
of elements per row (COLUMNS, which is 2), and then adds the column index 
(which is 1). The result is 3 * 2 + 1 = 7, as shown in Figure 6-11. 

rows 

3 

4 

5 

Schematic representation 
of array 

0 

columns~ 

agents [3] [1] corresponds to 
array element 7 in memory 

Array elements 
stored in memory 

3 

4 

5 

6 

7 

Figure 6-11. Two-Dimensional Array Stored in Memory 

(each 
element 
may 
be several 
bytes) 

We've had to modify the function max() from our earlier program in order 
to return the row index of the agent in question, rather than a numerical 
quantity as before. This involves saving the index whenever we save a new 
maximum. 

At this point you should be starting to feel comfortable with arrays. You 
know how to declare arrays of differing sizes and dimensions, how to initialize 
arrays, how to refer to particular array elements, and how to pass an array to a 
function. With this under your belt, you should be ready to handle strings, 
which are simply a special kind of array. 



Strings 

Arrays and Strings 

Strings are the form of data used in programming languages for storing and 
manipulating text, such as words, names, and sentences. In C, a string is not a 
formal data type as it is in some languages (e.g., Pascal and BASIC). Instead, it is 
an array of type char. When you think about it, this makes a good deal of sense; 
a string is a series of characters, and that's just what an array of type char is. 
Most languages actually treat strings as arrays of characters, but conceal this fact 
from the programmer to varying degrees. BASIC, for example, never lets on that 
strings are arrays, but Pascal, although treating strings as a separate data type, 
does permit you to reference individual string characters as array members. 

String Constants 

We've already seen examples of strings, as in the statement: 

printf("%s", "Greetings!"); 

"Greetings!" is a string constant. That means that the string itself is stored 
someplace in memory, but that it cannot be changed Oust as your program 
cannot change the 3 in the expression x = 3;). Figure 6-12 shows what this 
string constant looks like stored in memory. 

1449 
1450 G 
1451 r 
1452 e 
1453 e 
1454 t 
1455 i string 

1456 n 
1457 g 

1458 s 
1459 
1460 \0 ... __ terminating 

1461 
zero or 
"null" character 

1462 

Figure 6-12. String Constant Stored in Memory 

Each character occupies one byte of memory, and the last character of the string 
is the character '\O'. What character is that? It looks like two characters, but it's 
actually an escape sequence, like '\n'. It's called the "null character," and it 

197 



Chapter 6 

198 

stands for a character with a value of 0 (zero). Note that this is not the same as 
the character 0. 

All strings must end with a null character, '\O', which has a numerical 
value of 0. 

The terminating null ('\O') is important, because it is the only way func
tions that work with the string can know where the end of the string is. In fact, a 
string not terminated by a '\ O' character is not really a string at all, but merely a 
collection of characters. 

String Variables 

We've looked at a string constant, now let's see what a string variable looks like. 
Here's an example program that reads in a string from the keyboard, using 
scanf(), and prints it out as part of a longer phrase: 

/* ezstring.c */ 
/* reads string from keyboard and prints it */ 
main() 
{ 

} 

char fname[15J; 

printfC"Enter your name: "); 
scanf("%s", fname); 
printf("Greetings, %s.", fname); 

And here's a sample run: 

C>ezstring 
Enter your name: Hieronymous 
Greetings, Hieronymous. 

Before a string can be read into a program, some space in the computer's 
memory must be set aside for it. This shouldn't be too surprising; after all, 
memory must also be set aside before a simple variable can be stored in a 
program. For instance, before we can successfully execute the line 

scanf("%d", &num); 

we need to declare the variable num, causing the compiler to set aside an 
appropriately sized chunk of memory to store the value the user enters. 

The situation is similar for strings, except that, since there is going to be a 
series of characters arriving, a series of bytes must be set aside for them. In 



Arrays and Strings 

ezstring.c, we've declared an array of 15 characters. This should be enough for 
names 15 characters long, right? Well, not quite. Don't forget the terminating 
null character '\O'. When scanf() gets the name from the keyboard, it automati
cally includes the '\O' when it stores the string in memory; thus, if your array is 
15 characters long, you can only store strings of 14 characters. 

The operation of ezstring.c is shown in Figure 6-13. 

char fname[15J; 

sets aside 15 characters under 
array name fname 

fname 

array declaration 
sets aside space 
for string 

0 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

null character 

scanf("%s",fname); 

fills in the characters 
typed in until [Return] 
is typed 

fname H 0 

i 
e 2 

r 3 

0 4 

n 5 

y 6 

m 7 

u 8 

s 9 

automatically ---- \0 10 
added to 
string by 
scant( ) 

11 

scanf( ) function 
reads in the string 

12 

13 

14 

Figure 6-13. String Placed in Memory by scant() 

} unused 
bytes 

The warning applied to arrays in general applies to strings: don't overflow 
the array that holds the string. If the user of ezstring.c typed a name of more 
than 14 characters, the additional characters would be written over other data or 
the program itself. Perhaps a better choice for the array declaration would have 
been: 

char fname[81J 

199 



Chapter 6 

200 

This would permit a name to go all the way across the screen: 80 characters. 
Hardly anyone's name is that long! 

You may have noticed something odd about the scanf () statement in the 
ezstring.c program. That's right; there's no address operator ( & ) preceding the 
name of the string we're going to print: 

scanf("%s", fname); 

This is because fname is an address. We need to preface numerical and charac
ter variables with the & to change values into addresses, but fname is already 
the name of an array, and therefore it's an address and does not need the &. 

Since a string name is an address, no address operator need precede it in a 
scanf() function. 

The String 1/0 Functions gets() and puts() 

There are many C functions whose purpose is to manipulate strings. One of the 
most common (gets()) is used to input a string from the keyboard. Why is it 
needed? Because our old friend, the scanf () function, has some limitations 
when it comes to handling strings. For example, consider the following trial run 
with the ezstring.c program: 

C>ezstring 
Enter your name: Genghis Khan 
Greetings, Genghis. 

The program has suddenly adopted an informal style, dropping the last name 
(something it might be unwise to do unless you knew Genghis very well). 
Where did the second word of our string go? Remember that scanf () uses any 
whitespace character to terminate entry of a variable. The result is that there is 
no way to enter a multi word string into a single array using scanf () (at least 
without a lot of trouble). 

The solution to this problem is to use another C library function: gets(). 
The purpose of gets() is, as you may have guessed, to GET a String from the 
keyboard. It is not as versatile an input function as scanf (); it specializes in 
doing one thing: reading strings. It is terminated only when the [Return] key is 
struck; so spaces and tabs are perfectly acceptable as part of the input string. 

The gets() function is part of a matching pair; there is a function to output 
strings as well: puts() (for PUT String). 

Here's a revised version of our ezstring.c program that makes use of both of 
these functions: 

/* getput.c */ 
/* reads string and prints string using gets() and puts() */ 



main 0 
{ 

} 

char name[81J; 

puts("Enter your name: "); 
gets(name); 
puts("Greetings, "); 
puts(name>; 

Arrays and Strings 

Let's see what happens when our favorite Mongol warrior tries this new version 
of the program: 

C>getput 
Enter your name: 
Genghis Khan 
Greetings, 
Genghis Khan 

Now the program remembers the entire name and there's less chance of Genghis 
being offended. The gets() function has done just what we wanted. 

The puts() function is a special-purpose output function specializing in 
strings. Unlike printf(), it can only output one string at a time and, like gets(), it 
has no ability to format a string before printing it. The syntax of puts() is 
simpler than printf (), however, so it's the function to use when you want to 
output a single string. 

Initializing Strings 

Just as arrays can be initialized, so can strings. Since a string is an array of 
characters, we can initialize one in exactly that way, as the following example 
demonstrates: 

char feline[] = { 'c', 'a', 't', 1 \0' } ; 

However, C concedes that strings are a special kind of character array by 
providing a shortcut: 

char feline[] ="cat" ; 

As you can see, this is considerably easier to write (and read); but it means the 
same thing to the compiler. Notice that while the individual characters were 
surrounded by single quotes, the string is surrounded by double quotes. Notice 
too that we don't need to insert the null character '\O'. Using the string format 
causes this to happen automatically. 

Let's look at a variation on the last program, making use of an initialized 
string: 

201 



Chapter 6 

202 

/* strinit.c */ 
/* reads string and prints string, shows string 
initialization */ 
main() 
{ 

} 

static char salute[] = "Greetings,"; 
char name[81J; 

puts("Enter your name: "); 
gets(name); 
puts(salute>; 
puts(name>; 

The output will be exactly the same as before (assuming the same name is typed 
in). However, "Greetings," is no longer printed as a string constant in the puts() 
function; instead, it's included in the array declaration. The puts() function can 
then print it out using the array address as an argument. 

We've had to give the array name[] in this program the storage class 
static. As you'll remember from our discussion of arrays, only external arrays 
or arrays given the class static can be initialized. 

Here's a sample run with the program: 

C>strinit 
Enter your name: 
Cato the Elder 
Greetings, 
Cato the Elder 

So we see that our initialization process works just fine. However, the format of 
the output could be improved: it would have been nicer if the name was on the 
same line as the salutation: 

Greetings, Cato the Elder 

What's happened is that the puts() function automatically replaces the null 
character at the end of the string with a newline character as it prints the string, 
so that all strings printed by puts() end with a newline. So, sometimes puts() is 
not the ideal choice for outputting strings, and printf() must be used instead. 

Examining a String 

We've told you how a string looks in memory, but you shouldn't take our word 
for it; you can write a program to investigate this for yourself. The following 
program examines each memory location occupied by a string and prints out 
what it finds there. In the process it demonstrates a new C library function, 
strlen(): 



/* strexam.c */ 
/* looks at string in memory */ 
mainO 
{ 

char name[81J; 
int dex; 

puts("Enter your name: "); 
gets(name); 
for Cdex=O; dex < strlen(name)+4; dex++) 

printf("Addr=%5u char='%c'=%3d\n", 

Arrays and Strings 

&name[dexJ, name[dexJ, name[dexJ >; 
} 

Here's an example of the output: 

C>strexam 
Enter your name: 
Plato 
Addr= 3486 char='P'= 80 
Addr= 3487 char='i'=108 
Addr= 3488 char=' a'= 97 
Addr= 3489 char='t'=116 
Addr= 3490 char='o'=111 
Addr= 3491 char=''= 0 
Addr= 3492 char='<'= 60 
Addr= 3493 char='#'= 35 
Addr= 3494 char='u'=117 

To show what happens after the end of the string, we've printed out four 
characters beyond the end of the string that was typed in. First there's the 
terminating null character, which doesn't print out but has the value 0. Then 
there are garbage characters, which have whatever values were in memory 
before this part of memory was declared to be an array. If we had declared a 
static or external array these spaces would all have been 0, instead of garbage 
characters. 

We've used the address operator ( & ) to get the address of each of the 
characters that make up the string: 

&name[dexJ 

We've also used our old trick of printing the characters in two different formats: 
once as a character and once as a number. The last new thing in this program is 
the use of the new string function, strlen(). We use the value returned by this 
function to tell us how many characters to print out from the for loop. 

for Cdex=O; dex < strlen(name)+4; dex++) 

Let's examine the strlen() function and string-handling functions in general. 

203 



Chapter 6 

204 

String Functions 

In keeping with its philosophy of using a small language kernel and adding 
library functions to achieve greater power, C has no special string-handling 
operators. In BASIC you can assign a value to a string with an equal sign, and in 
Pascal you can compare two strings with a less-than sign. But in C, which thinks 
of strings as arrays, there are no special operators for dealing with them. 

However, C does have a large set of useful string-handling library func
tions. We've used one of the most common in the strexam.c program: the 
strlen() function. This function returns the length of the string whose address is 
given it as an argument. Thus in our program, the expression 

strlen(name) 

will return the value 5 if the string name has the value "Plato". (As you can see, 
Strlen() does not count the terminating null character.) 

An Array of Strings 

Earlier in the chapter we saw several examples of two-dimensional arrays. Let's 
look now at a similar phenomenon, but one dealing with strings: an array of 
strings. Since a string is itself an array, an array of strings is really an array of 
arrays, or a two-dimensional array. 

Our example program asks you to type in your name. When you do, it 
checks your name against a master list to see if you' re worthy of entry to the 
palace (or perhaps it's only an "in" restaurant on the Upper East Side). Here's the 
listing: 

/* compare.c */ 
/* compares word typed in with words in program */ 
#define MAX 5 
#define LEN 40 
mainO 
{ 

int dex; 
int enter=O; 
char name[40J; 
static char list[MAXJ[LENJ = 

{ "Katrina", 
"Nigel", 
"Alistair", 
"Francesca", 
"Gustav" 

pri ntfC"Enter your name: "); 
getsCname>; 
for Cdex=O; dex<MAX; dex++) 

if( strcmpC&list[dexJ[OJ,name>==O 
enter= 1; 

if C enter == 1 > 

}· 
I 

/* get name */ 

/*go thru list*/ 
/* if match */ 
/* set flag */ 
/* if flag set */ 



Arrays and Strings 

printf("You may enter, oh honored one.">; /*one response*/ 
else /* otherwise */ 

printf("Guards! Remove this person!"); /*different one*/ 
} 

There are two possible outcomes when you interract with this program. Either 
your name is on the list: 

C>compare 
Enter your name: Gustav 
You may enter, oh honored one. 

or it isn't: 

C>compare 
Enter your name: Robert 
Guards! Remove this person! 

Notice how our array of strings is initialized. Because a phrase in quotes is 
already a one-dimensional array, we don't need to use braces around each name 
as we did for two-dimensional character arrays. We do need braces around all 
the strings, however, since this is an array of strings. As before, the individual 
elements of the array-strings in this case-are separated by commas. 

The order of the subscripts in the array declaration is important. The first 
subscript, MAX, gives the number of items in the array, while the second 
subscript, LEN, gives the length of each string in the array. Having a fixed length 
array for each string, no matter how long it actually is, can lead to a consider
able waste of space. jln Chapter 7, when we explore pointers, we'll show how to 
avoid this problem.) 

We've used another string function, strcmp(), in this program, in the 
expression 

strcmp( &list[dexJ[OJ, name) == 0 

The strcmp() function, compares two strings and returns an integer value based 
on the comparison. If we assume that string! is on the right side within the 
parentheses and string2 is on the left 

strcmp(string2,string1) 

then the value returned will have the following meanings: 

Returned Value 

less than zero 
zero 
greater than zero 

Meaning 

string 1 less than string2 
stringl identical to string2 
stringl greater than string2 

205 



Chapter 6 

206 

In this context, "less than" and "greater than" mean that if you put stringl and 
string2 in alphabetical order, the one that appeared first (closer to the A's) would 
be considered "less than" those following. However, we don't make use of the 
"less than" and "greater than" capabilities of the function in this program; here 
we only need to know when the the strings are identical, which is true when the 
function returns a value of 0. 

A further wrinkle in this program is the use of a "flag" to remember 
whether there has been a match. The flag, a variable that remembers a condi
tion for a short time, is called enter, and it is set to 1 (true) if any of the names 
match and remains 0 if there are no matches at the end of the loop. The if-else 
statement then queries the flag to find out what to print. 

Deleting Characters 

It's often useful to be able to delete a character from the middle of a string (if 
you're writing a word processing program or text editor, for example). There are 
no library functions to do this with our C compiler, so we'll develop a routine to 
perform this function. (We'll leave as an exercise the complementary problem of 
inserting a character into a string.) 

Here's a program that demonstrates strdel(), our homemade STRing DE
Lete function: 

/* delete.c */ 
/* deletes a character from a string */ 
void strdeLCchar str[J, int n); /*prototype*/ 
mainO 
{ 

} 

char string[81J; 
int position; 

printfC"Type string [Return], 
gets(string); 
scanf( 11 %d 11

, &position>; 
strdel(string,position); 
puts(string); 

/* strdeLO */ 

/* buffer for string */ 
/* position of character */ 

position\n"); 
/* get string */ 
/* get character */ 
/* delete character */ 
/* print new string */ 

/* deletes character from string */ 
void strdeLCchar str[J, int n) /*buffer, size of buffer*/ 
{ 

strcpyC&str[n], &str[n+1J >; /*move 2nd part of string*/ 
} /* one space to Left */ 

This program asks for a string and for the position in the string of the character 
to be deleted (remember that the first character is 0). Then the program calls the 
strdel() function to delete the character at that position. Here's a sample interac
tion: 



Arrays and Strings 

C>delete 
Type string [Return], position 
cart 
2 
cat 

The program has deleted character number 2, 'r', from the string "cart". 
The strdel( J function works by moving one space to the left all characters 

that are to the right of the character being deleted. This is shown in Figure 6-14. 

this character 
will be deleted 

\ &string[3J 

c I • I r l t I '0 I I 
I I 

I I 
I I 

I I 
I I 

I I 

I c I • I t \0 I '0 I 
l &string[2J 

strcpyC&string[2J,&string[3J) 

Figure 6-14. Operation of the strdel() Function 

To move the characters, the function makes use of the strcpy library 
function. This function simply copies one string to another. For instance, if a 
program included the following statements: 

char buffer[10J; 

strcpy(buffer, "Dante"); 

the string "Dante" would be placed in the array buffer[]. The string would 
include the terminating null, which means that six characters in all would be 
copied. 

If you're a BASIC programmer, you may be wondering why we can't 
achieve the same effect more simply by saying: 

buffer = "Dante"; /*illegal construction*/ 

207 



Chapter 6 

We can't do this because C treats strings far more like arrays than BASIC does. 
Since it is impossible to set one array equal to another one with an assignment 
statement, it is also impossible to set one string equal to another in this way. A 
function must be used instead. 

Now let's look closely at which string is being copied and where it's being 
copied to. Two arguments are needed by the strcpy() function: the string to be 
copied is the second argument and the place it will be copied to is the first 
argument. 

We want to move one space to the left the string following the character 
being deleted. In the "cart" to "cat" example, the string we want to copy has 
only two characters: 't' and the null character '\O'. But what is the name of this 
string? How do we represent it as an argument to strcpy( )? Remember that we 
identify an array by the address where it begins. The same is true of strings. In 
this case, the string we want to move begins at the letter 't'. What's the address 
of this character? It's &string(3], which is also the address of the string we want 
to move, so this is the second argument we give strcpy(). 

Now we want to move this string one character to the left. That means 
putting it at the address of the 'r', which is the character we want to delete. The 
address of the 'r'is &string(2], since the 'r' is in position 2 in the string. 

Thus, assuming that n has the value 2, the statement 

strcpyC&str[n], &str[n+1] >; 

will copy the string "t\O" to position &str[2), blotting out the character 'r' as it 
does so. 

The Microsoft C compiler comes with many more string functions than 
we've shown here, including functions to duplicate a string, concatenate (put 
together) two strings, find a character in a string, convert a string to all lower- or 
all uppercase, and so on. Using some of these string operations requires an 
understanding of pointers, which will be our topic in Chapter 7. 

Summary 

208 

In this chapter we've learned how to handle arrays in a variety of forms. We've 
learned how to declare arrays, how to access their elements, and how to give 
them initial values when the program is compiled. We've covered one- and two
dimensional arrays and even taken a peek at initializing a three-dimensional 
array. We've learned that the addresses of arrays can be passed to functions, so 
that functions can access the elements of the array. 

Next, we looked at strings, which are simply arrays of type char. We've 
seen how to initialize strings and how to use two new I/O functions: gets() and 
puts(). We've also examined a trio of string functions: strlen(), which returns 
the length of a string; strcmp(), which compares two strings; and strcpy(), 
which copies one string into the space occupied by another. 



Arrays and Strings 

Questions 

1. An array is a collection of variables of 

a. different data types scattered throughout memory 

b. the same data type scattered throughout memory 

c. the same data type placed next to each other in memory 

d. different data types placed next to each other in memory 

2. Why is a string like an array? 

a. They are both character arrays 

b. An array is a kind of string 

c. They both access functions the same way 

d. A string is a kind of array 

3. An array declaration specifies the t _______ _ 
n , and s of the array. 

4. Is this a correct array declaration? 

int num(25); 

5. Which element of the array does this expression reference? 

num[4] 

6. What's the difference between the 3s in these two expressions? 

int num[3J; 
num[3] = 5; 

a. first is particular element, second is type 

b. first is size, second is particular element 

c. first is particular element, second is array size 

d. both specify array elements 

7. What does this combination of statements do? 

#define LIM 50 
char collect[LIMJ; 

a. makes LIM a subscript 

b. makes LIM a variable of type float 

209 



Chapter 6 

210 

c. makes collect[] an array of type LIM 

d. makes collect[] an array of size LIM 

8. If an array has been declared this way: 

float prices[MAXJ; 

is the following a good way to read values into all the elements of the 
array? 

forCj=O; j<=MAX; j++) 
scanfC 11 %f 11 , prices[jJ); 

9. Is this a correct way to initialize a one-dimensional array? 

int array= { 1, 2, 3, 4 }; 

10. What will happen if you try to put so many variables into an array when 
you initialize it that the size of the array is exceded? 

a. nothing 

b. possible system malfunction 

c. error message from the compiler 

d. other data may be overwritten 

11. What will happen if you put too few elements in an array when you 
initialize it? 

a. nothing 

b. possible system malfunction 

c. error message from the compiler 

d. unused elements will be filled with Os or garbage 

12. If you want to initialize an array it must be a ________ or a 

--------array. 

13. What will happen if you assign a value to an element of an array whose 
subscript exceeds the size of the array? 

a. the element will be set to 0 

b. nothing, it's done all the time 

c. other data may be overwritten 

d. possible system malfunction 

14. Can you initialize a two-dimensisional array this way? 



Arrays and Strings 

int array[3J[3J = { { 1, 2, 3 }, 
{ 4, 5, 6 }, 
{ 7, 8, 9} }· I 

15. In the array in the question immediately above, what is the name of the 
array variable with the value 4? 

16. If an array had been declared like this: 

int array[12J; 

the word array represents the a -------- of the array 

17. If you don't initialize a static array, what will the elements be set to? 

a. 0 

b. an undetermined value 

c. a floating point number 

d. the character constant '\O' 

18. When you pass an array as an argument to a function, what is actually 
passed? 

a. the address of the array 

b. the values of the elements in the array 

c. the address of the first element in the array 

d. the number of elements in the array 

19. True or false: a function operates on an integer array passed to it as an 
argument by placing the values of that array into a separate place in 
memory known only to the function. 

20. A string is: 

a. a list of characters 

b. a collection of characters 

c. an array of characters 

d. an exaltation of characters 

21. "A" is a while 'A' is a 

22. What is the following expression? 

"Mesopotamia\n" 

a. a string variable 

211 



Chapter 6 

b. a string array 

c. a string constant 

d. a string of characters 

23. A string is terminated by a ________ character, which is 
written 

24. The function ________ is designed specifically to read in one 
string from the keyboard. 

25. If you have declared a string like this: 

char name[10J; 

and you type in a string to this array, the string can consist of a 
maximum of characters. 

26. True or false: the function puts() always adds a '\n' to the end of the 
string it is printing. 

27. Which is more appropriate for reading in a multi-word string? 

a. gets() 

b. printf() 

c. scanf() 

d. puts() 

28. Assuming the following initialization: 

char string[] = "Blacksmith"; 

how would you refer to the string "smith" (the last five letters of the 
string)? 

29. What subtle format problem does this statement exhibit? 

name = "George"; 

30. What expression would you use to find the length of the string name? 

Exercises 

212 

1. Modify the temp.c program so that it not only accepts seven temperatures 
and calculates the average but also prints out the temperatures that have 
been read in. 



Arrays and Strings 

2. Modify the fltemp2.c program to use a while loop instead of a do-while 
loop. 

3. Write a function, and a program to test it, that will insert a character 
anywhere in a string. The call to the function should have the form 

strins(string, character, position>; 

Before writing this function, ask yourself which end of the string strcpy() 
starts copying from. 

4. Write a program that will print out all the rotations of a string typed into it. 
For example, the rotations of the word "space" are 

space 
paces 
acesp 
cespa 
espac 

Use a function that rotates the string one character position each time it is 
called. 

213 





Pointers 

Pointers 
Returning multiple values from functions 
Pointers and arrays 
Pointer arithmetic 
Pointers and strings 
Double indirection 
Pointers to arrays 

7 

215 



7 

Pointers are regarded by most people as one of the most difficult topics in C. 
There are several reasons for this. First, the concept behind pointers
indirection-may be a new one for many programmers, since it isn't commonly 
used in such languages as BASIC or Pascal. And second, the symbols used for 
pointer notation in C are not as clear as they might be; for example, the same 
symbol is used for two different but related purposes, as we'll see. 

Conceptually, however, pointers aren't really that obscure, and with a little 
practice the symbols start to make a sort of sense. In other words, pointers may 
be difficult, but they aren't too difficult. Our goal in this chapter is to demystify 
pointers, to explain as clearly as possible what they're for and how they work. 
To this end we start slowly, in an attempt to ensure that the groundwork is laid 
carefully before we go on to use pointers in more advanced situations. 

Pointer Overview 

216 

Before we show programming examples that demonstrate the use of pointers, 
we're going to examine generally what pointers are and why they're used. 

What Is a Pointer? 

A pointer provides a way of accessing a variable (or a more complex kind of 
data, such as an array) without referring to the variable directly. The mechanism 
used for this is the address of the variable. In effect, the address acts as an 
intermediary between the variable and the program accessing it. There is a 
somewhat analogous mechanism in the spy business, in which an agent in the 
field might leave his or her reports in a special place (a post office box or a 
hollow tree) and have no direct contact with the other members of the network. 
Thus if captured, there is very little information the agent can be forced to 



Pointers 

reveal about the organization. We can say that the agent has only indirect access 
to those for whom the information is intended. 

In a similar way, a program statement can refer to a variable indirectly, 
using the address of the variable as a sort of post office box or hollow tree for 
the passing of information. 

Why Are Pointers Used? 

Pointers are used in situations when passing actual values is difficult or undesir
able. (It's seldom the case that an enemy program will force a function to reveal 
the names of variables in the calling program!) Some reasons to use pointers are 
to: 

1. return more than one value from a function 

2. pass arrays and strings more conveniently from one function to another 

3. manipulate arrays more easily by moving pointers to them (or to parts of 
them), instead of moving the arrays themselves 

4. create complex data structures, such as linked lists and binary trees, where 
one data structure must contain references to other data structures 

5. communicate information about memory, as in the function malloc(), 
which returns the location of free memory by using a pointer. 

We'll explore some of these uses for pointers in this chapter. We'll save the 
use of pointers with structures, linked lists, and malloc() for Chapter 9. 

Another reason sometimes given for using pointers is that pointer notation 
compiles into faster or more efficient code than, for example, array notation. It's 
not clear that this is actually a major factor for modern compilers; probably 
many programmers become enamored of pointer notation and grasp at any 
excuse to use it. 

You've Already Used Pointers 

If you think that reason 2-passing arrays more conveniently from one function 
to another-sounds familiar, that's because it is; in Chapter 6 you used pointers 
to pass arrays and strings to functions. Instead of passing the array itself, you 
passed the address of the array. This address is an example of a pointer constant. 
There are also pointer variables; it's the interplay between pointer constants and 
pointer variables that gives pointers such power. We'll see further examples of 
pointers used with arrays later in this chapter. 

A pointer constant is an address; a pointer variable is a place to store 
addresses. 

217 



Chapter 7 

Returning Data from Functions 

218 

We're going to start our examination of pointers by finding out how functions 
can return multiple values to the program that called them. You've already seen 
that it's possible to pass many values to a function and return a single value from 
a function, but what happens when you want to return more than one value 
from a function to the calling program? Since there is no mechanism built into 
functions to do this, we must rely on pointers. Of the many ways pointers can be 
used, this is perhaps the simplest; at the same time, it is a technique that 
accomplishes an essential task. There are many situations in which a function 
must communicate more than one value to the calling program. 

Review: Passing Values to a Function 

Before we show how this works, let's review what happens when we pass values 
to a function. (You've already seen examples of such functions in Chapter 5-the 
function that adds two numbers, for example.) Here's a very simple program 
that passes two values, the integers 4 and 7, to a function called gets2(): 

/* values.c */ 
/* tests function which 
void gets2Cint, int); 
mainO 
{ 

int x=4, y=7; 

gets2Cx, y); 
} 

/* gets20 */ 

accepts two values */ 
/* prototype */ 

/* initialize variables */ 

/* pass vars to function */ 

/* prints out values of two arguments */ 
void gets2Cint xx, int yy) 
{ 

printfC"First is %d, second is %d", xx, yy); 
} 

This is not an enormously useful function: it simply prints out the two 
values passed to it. However, it demonstrates an important point: the function 
receives the two values from the calling program and stores them-or rather, 
stores duplicates of them-in its own private memory space. In fact, it can even 
give these values different names, known only to the function: in this case, xx 
and yy instead of x and y. Figure 7-1 shows how this looks. The function then 
can operate on the new variables, xx and yy, without affecting the original x 
and y in the calling program. 

Passing Addresses to a Function 

Now let's look at the reverse situation: passing two values from the function back to 
the calling program. How do we do this? A two-step process is used. First, the 



Pointers 

mainO 
{ 

void gets2Cint xx,int yy) 
{ 

} 

intx=4; 
inty=7; 
gets2Cx,y>; 
""4~,.,.,~ 

.. ...,,."it»I~~ 

--- 4'.:.:::..:..._ 

---7 ,'*'----

x 

y 

r, 

Values are passed to function 
and duplicated in the function's 
memory space. 

--- 4---

---7---

Figure 7-1. Values Duplicated in Function's Memory 

xx 

yy 

calling program, instead of passing values to the function, passes it addresses. These 
addresses are where the calling program wants the function to place the data it 
generates; in other words, they are the addresses of the variables in the calling 
program where we want to store the returned values. Here's the program: 

/* passback.c */ 
/* tests function that returns two values */ 
void rets2(int *, int *); '*prototype*/ 

main() 
{ 

int XI Yi /* variables */ 

rets2( &x, &y >; /* get values from function */ 
print fC"F i rst is %d, second is %d", x, y); 

} 

/* rets20 */ 
/* returns two numbers */ 
void rets2Cint *px, int *py) 
{ 

} 

*PX = 3; 
*PY = 5; 

I* set contents of px to 3 */ 
I* set contents of py to 5 */ 

219 



Chapter 7 

220 

And here's what happens when you run the program: 

First is 3, second is 5. 

This program again doesn't do anything very useful. The calling program, 
main(), calls the rets2() function, which supplies two values, 3 and 5, to the 
calling program. The calling program then prints out the values. While it may 
not be useful, the program is crammed with new ideas. Let's take it apart step
by-step. 

First, notice that the calling program itself never gives any values to the 
variables x and y. And yet, when the program is run, these variables have 
values; they are printed out by the calling program, as we can see from the 
output. We can infer that the rets2() function must somehow have supplied 
these values to the calling program. 

The calling program told rets2() where to put the values by passing it 
addresses. It did this using the address operator&. The expression 

rets2( &x, &y >; 

causes the addresses of x and y to be passed to the function and stored in the 
function's private memory space. These addresses have been given names by the 
function: px and py. That's how the function can refer to them, just as if they 
were any other kind of variables (of course we could have used any names we 
wanted here, like the more descriptive but longer ptr_to_x and ptr_to_y). 

Declaring Pointer Variables 

As with any variables, the places set aside for these addresses, px and py, must 
be declared, so the compiler will know how large a memory space to allot for 
them and what names we want to give them. Since we are storing addresses, or 
pointer constants, you might expect a whole new data type here, something 
along the lines of: 

ptr px, py; /* not exactly how pointers are declared */ 

where ptr might be the data type for pointers. After all, addresses are all the 
same size, and we want to set aside enough memory to hold an address. Ordi
narily, two bytes will hold an address. (When memory models other than 
"small" are used, this may not be true; however, the small model is used for all 
programs in this book. We'll have more to say about memory models in Chapter 
14.) 

Declaring a pointer variable does in fact set aside two bytes of memory, 
but there is an added complexity. For reasons which we'll explain later, the 
compiler needs to know, not only that we're declaring a pointer, but also to 
which kind of data item the pointer points. In other words, every time we set aside 
space to store the address of a variable, we need to tell the compiler the data 
type of the variable. This information must be communicated to the compiler, 



Pointers 

along with the fact that we're declaring a pointer. Let's make a second guess at 
what such a declaration might look like: 

int_ptr px, py; /*still not how pointers are declared*/ 

where int_ptr is the data type for pointers that point to integer variables. We're 
getting closer. However, C is a concise language, so instead of using the word 
"ptr", C uses the asterisk ( * ). The asterisk is used differently from the words 
representing simple data types (e.g., int and float); the asterisk is used immedi
ately before each variable, rather than being used once at the beginning of the 
declaration. Thus, the real declaration for two integer pointers is: 

int *PX, *PYi /* correct declaration of two pointers */ 

The declaration sets aside two bytes in which to store the address of an integer 
variable and gives this storage space the name px. It also sets aside another two 
bytes in which to store the address of another integer variable and gives this 
space the name py. The asterisks tell the compiler that these variables will 
contain addresses (not values), and the int tells it that the addresses will point to 
integer variables. Note that the declaration itself doesn't say anything about 
what will be placed in these variables. 

The format of this declaration is shown in Figure 7-2. 

names of 

IT pointer 
variables 

int 

\ 
~,.......... 

*PX,*PYi 

lL Indicates variable is 
a pointer (i.e., that 

indicates 
the pointers 
will point to 
variables of 
type int 

it will hold an address) 

Figure 7-2. Format of Pointer Declaration 

(Note that the asterisk as it's used here, as an indirection operator, is a 
unary operator: it operates on only one variable (such as px in *px). Thus, the 
compiler cannot confuse it with the same symbol used for multiplication, which 
is a binary operator, operating on two variables.) 

The concise nature of this declaration format is one of the causes of confu
sion about pointers, so we'll reiterate what's happening: for each variable name 
(px and py in this case) the declaration causes the compiler to set aside a two
byte space in memory into which an address can be placed, as shown in Figure 
7-3. 

221 



Chapter 7 

222 

.-----+-+-void rets(int *px,int *py) 
{ 

This statement 
sets aside 
space to hold 
two addresses 
in function's 
private 
memory space. 

(The compiler 
will remember 
these spaces 
will hold the 
addresses 
of integer 
variables.) 

} 

px 

PY 

two 
bytes 

two 
bytes 

Figure 7-3. Operation of Pointer Declaration 

In addition, the compiler is aware of the type of variable the address refers 
to; in this case, integers. 

Supplying Values to Pointer Variables 

Now, when the function is called by the calling program with the statement 

rets2( &x, &y ); 

the two addresses provided by the calling program, &x and &y, are placed in the 
spaces provided by the declaration in the function. Thus, control is passed to the 
function, but also these two addresses (which, in this case, might be 1310 and 
1312) are placed in the space set aside for px and py. This process is shown in 
Figure 7-4. 

Let's examine this process carefully to make sure we've got the terms 
straight. We can say that px and py are pointer variables, and that the addresses 
1310 and 1312 are pointer constants. Figure 7-5 shows a closeup view of these 
variables being assigned these constant values. 

The Indirection Operator 

The function now knows the addresses of the variables into which the calling 
program wants values placed. The big question is, how does the function access 
these variables? (To return to our spy analogy: how does the spy go about 
leaving a message in the hollow tree?) 

Think about this question for a moment, because in the answer lies the key 



mainO 
{ 

} 

int x,y; 
rets2C&x,&y) 

addresses 

1310 x 

y 

Pointers 

rets2(int *px,int *py) 
{ 

} 

Addresses are passed to 
function, and stored 
in the function's memory 
space. 

--1310-- px 

--1312-- PY 

Figure 7-4. Addresses Stored in Function's Memory 

1310' 

1310 and 1312 < 
are pointer 
constants 1312' 
(addresses of · 
data items) 

}px> 
} PY 

px and PY 
are pointer 
variables (space 
in memory which 
can hold any 
address) 

Figure 7-5. Pointer Constants Placed in Pointer Variables 

to what pointers really are. If the function knew the names for x and y (if they 
were external variables, for example), it could simply say: 

x = 3; 
y = 5; 

223 



Chapter 7 

224 

But it doesn't know the names of the variables; all it knows is the addresses 
where these variables are stored. We want a new kind of operator, something 
like place_pointed_to_by, so we can make such assignment statements as: 

place_pointed_to_by_px = 3; 
place_pointed_to_by_py = 5; 

/*not really how it's done*/ 

As you might expect, C uses a much more concise format for this operator. 
Here's how pointers are actually used: 

*PX = 3; 
*PY = 5; 

It's our old friend the asterisk again. However-and herein lies the source of 
much confusion-it's used in a slightly different way here than it is in pointer 
declarations. In a declaration it means "pointer data type," just as int means 
"integer data type." Here it means something else: "variable pointed to by." So 
the first statement above translates into "assign the variable pointed to by px the 
value of 3," and the second, "assign the variable pointed to by py the value 5." 
Figure 7-6 shows the effect. 

In a declaration the ( * ) symbol means "pointer type"; in other statements 
it means "variable pointed to by." 

mainO 
{ 

int x,y; 
gets <&x,&y); 
~119H)ltt!JMIH 

} 

1310 

1312 

void puts(int *PX I *PY) 
{ 

} 

Values are passed 
indirectly into main ( )'s 
memory space. 

*px=3; 
*py=5; 

PX 

--1312-- PY 

Figure 7-6. Values Returned to Calling Program 

L 
,, I 



Pointers 

The function has indirectly passed the values 3 and 5 to the variables x and 
y. It's indirect because the function didn't know the names of the variables, so it 
used their addresses (which were stored in the function, having been passed to it 
from the calling program), along with the indirection operator ( * ), to achieve 
the same effect. Figure 7-7 shows the structure of an assignment statement using 
the indirection operator. 

the contents of 
the variable whose 
address is in px, 
namely x. 

assign the value 3 
to the variable x. ,__,._.., 

..-"-\ 
*px=3· 

-

_ ___,/ I the indirection . 
operator 

a variable 
which happens 
to contain 
the address 
of the 
variable x 

Figure 7-7. The Indirection Operator 

We can conclude that the main() program has one way of accessing the 
variables x and y, while rets2() has another. Main() calls them x and y, while 
rets2() calls them *px and *py. This situation is depicted somewhat fancifully 
in Figure 7-8. 

So now, finally, we know how a function can return values to the calling 
program. 

Going Both Ways 
Once a function knows the addresses of variables in the calling program, it not 
only can place values in these variables, it can also take values out. That is, 
pointers can be used not only to pass values from a function to the calling program, 
but also to pass them from the program to the function. Of course, we've seen in 
earlier chapters that values can be passed directly to a function, but once pointers 
are being used to go one way, they can easily be used to go the other. 

Consider the following function, which adds a constant to two values in 
the calling program. The function reads the value from the calling program's 
address space, adds the constant to it, and returns the result to the same spot. 

/* addtotwo.c */ 
/* tests function that adds constant to two values */ 
void addcon(int *px, int *py); /* prototype*/ 

mainO 
{ 

int x=4, y=7; /* initialize variables */ 

addconC&x, &y); /* add 10 to both variables */ 
printfC"First is %d, second is %d", x, y); 

} 

225 



Chapter 7 

226 

/* addconO */ 
/* adds constant to values in calling program */ 
void addconCint *px, int *py) 
{ 

} 

*PX = *PX + 10; 
*PY = *PY + 10; 

/* add 10 to contents of px */ 
/* add 10 to contents of py */ 

When the program is run, it prints out: 

First is 14, second is 17. 

Here the values 4 and 7 are stored in the variables x and y in the calling 
program. The calling program passes the addresses of these variables to the 
function addcon(), which adds the constant 10 to them. 

This program looks much like passback.c, except for the assignment state
ments in the function: 

mainO rets20 

1310 

1312 

Figure 7-8. Different Perspectives 



*PX = *PX + 10; 
*PY = *PY + 10; 

Pointers 

Here the indirection operator has been used on both sides of the equal sign. The 
first statement means that we get the contents of the variable pointed to by px 
(this is x, whose value is 4), add 10 to it, and return the result to the same place 
(the variable pointed to by px-which is still x, but whose value will now be 14). 
In a similar way the second statement will cause the variable y to end up being 17. 

In other words, we can use the symbol * px, where px is a variable 
containing the address of x, almost exactly as we could have used the variable x 
itself, had it been accessible to us. 

Pointers Without Functions 

Our examples so far have dealt with pointers that store addresses passed to 
functions. This is a common use for pointers, and an easy one to implement, but 
it may tend to obscure some of the operation of pointers. The reason for this is 
that the function-call mechanism itself takes over the task of assigning an ad
dress to the pointer variable. That is, when we call a function with the statement 

addconC&x, &y); 

then the function addcon(), which starts with the statements 

addcon(px, py) 
int *PX, *py; 

will automatically assign the addresses of x and y to the pointer variables px and 
PY· 

Let's look at an example in which we need to perform this assignment "by 
hand" in the program itself, rather than using a call to a function to do it for us. 

The following program carries out the same task as did the addtotwo.c 
program. However, instead of calling a function to add a constant to the two 
variables, it does so directly in the program. 

/* addin.c */ 
/* shows use of pointers within program */ 
mainO 
{ 

int x=4, y=7; 
int *PX, *py; 

printf("x is %d, y is %d.\n", 
px = &x; 
PY = &y; 
*PX = *PX + 10; 
*PY = *PY + 10; 

/* pointer variables */ 

XI y); 
/* put addresses of numbers */ 
/* in pointers */ 
/* add constant to contents */ 
/* of pointers */ 

227 



Chapter 7 

228 

printf<"x is %d, y is %d.\n", x, y); 
} 

We use a printf () statement to print out the values of x and y, then add 10 to 
them, then use another printf () statement to print out the new values: 

C>addin 
x is 4, y is 7. 
x is 14, y is 17. 

Of course all this could have been handled much more easily with the 
statements 

x = x + 10; 
y = y + 10; 

However, directly assigning values to the variables would not reveal nearly as 
much about pointers. (Actually, as battle-scarred C programmers, we should be 
using 

x += 1 O; 
y += 10; 

but this tends to obscure the details of the operation for those not entirely 
comfortable with arithmetic assignment statements.) 

The new elements in the program are the assignment statements 

PX = &x; 
PY = &y; 

These statements take the addresses of the variables x and y and put them in the 
pointer variables px and py. This is what the function call addcon( &x, &y ) did 
automatically in the addtotwo.c program. The statements 

*PX = *PX + 10; 
*PY = *PY + 10; 

work just as they did in addtotwo.c; in fact, the output of the program is 
identical. The operation of the program is shown in Figure 7-9. 

An important lesson can be learned by imagining what would happen if 
the statements px = &x and py = &y were left out of the program. Would it still 
work? No, because then there would be no address or at least not a correct 
address in the variables px and py. So the references to * px and * py would 
refer not to x and y, but to whatever was located in the addresses that happened 
to be in px and py. Since these addresses could point to the program itself, or to 
the operating system, disaster could swiftly follow. 

The moral is, make sure you assign a pointer variable an appropriate 
address before you use it. 



949 
950 
951 
952 
953 
954 
955 

int x=4,y=7; 
int *pX,*PYi 

-----
---4 --- x 

---7--- y 

t------11 

------- px 

PY 

949 
950 
951 
952 
953 

px=&x; 
py=&y; 

1------11 

---4--- x 

--- 7--- y -----954 ___ _ 

955 

--950--- PX 

--952 -- PY 

949 

Pointers 

*px=*py+10; 
*py=*px+10; 

950 t-----11 

951 ---14--- x 

952 
953 

---17--- y 

954 t------11 

955 

--950--- px 

---952-- PY 

Figure 7-9. Operation of the addin.c Program 

* ptr is the contents of ptr 

&var is the address of var 

Pointers and Arrays 

In Chapter 6 we explored arrays and saw examples of array notation: how to 
reference array elements with such statements as table[x][y]. As it turns out, 
this array notation is really nothing more than a thinly disguised form of pointer 
notation. In fact, the compiler translates array notation into pointer notation 
when compiling, since the internal architecture of the microprocessor under
stands pointers but does not understand arrays. 

To make clearer the relationship between pointers and arrays, let's look at 
a simple program, expressed first in array notation and then in pointer notation. 

Here's the array version: 

229 



Chapter 7 

230 

/* array.c */ 
/* prints out values from array */ 
main() 
{ 

} 

static int nums[J = { 92, 81, 70, 69, 58 }; 
int dex; 
for Cdex=O; dex<5; dex++) 

printfC 11%d\n", nums[dexJ >; 

And here is the output-it should not come as a surprise to anyone: 

92 
81 
70 
69 
58 

This is a straightforward program. Array notation is used to access individual 
elements of the array in the expression nums[dex]. 

Now let's see how this program would look using pointer notation: 

/* parray.c */ 
/* uses pointers to print out values from array */ 
mainO 
{ 

} 

static int nums[J = { 92, 81, 70, 69, 58 }; 
int dex; 
for Cdex=O; dex<5; dex++) 

printfC 11%d\n", *(nums+dex) >; 

This version is identical to the first, except for the expression * (nums + dex). 
What does it mean? Its effect is exactly the same as that of nums[dex] in the 
earlier example; in other words, it accesses that element of the array nums 
whose subscript is contained in the variable dex. (Thus, if dex is 3, we'll get 
element nums[3], which is 69.) 

How do we interpret * (nums + dex)? First, as we know, nums is the 
address of the array. Now if we add, say, the number 3 to this address, what will 
we get? In other words, if dex is 3, what is nums + dex? Would you guess the 
result would be an address three bytes from the start of the array? If so, you 
have not counted on the extreme cleverness of the designers of C. 

After all, what we want is not an address three bytes from the start of the 
array, but the address of element number 3 in the array. If each element of the 
array is an integer, it takes up two bytes, so we want to look at the address six 
bytes from the start of the array. As shown in Figure 7-10, if the array nums 
starts at 1400, then when dex is 3 we want nums+dex to have the value 
1406-which is the address of nums[3]-not the value 1403 (which is the second 
half of nums[l] and meaningless). 



1399 
nu ms 1400 

1401 
---92---

nums+1 - 1402 ---81---
1403 

nums+2 -1404 ---70---
1405 

nums+3 -1406 ---69---
1407 

nums+4 - 1408 --·58---
1409 
1410 

nums+3=1400+3*2=1406 

\ 
number of 
bytes per 
integer 

nums [Q] 

nums[1] 

nums[2] 

nums[3] 

nums[4J 

Figure 7-10. Pointer Addition 

Pointers 

In other words, if we say nums + 3, we don't mean three bytes, we mean three 
elements of the array: three integers if it's an integer array, three floating point 
numbers if it's a floating point array, and so on. 

And that's exactly what the C compiler delivers. It looks at the context of 
the plus sign, and if we're adding 3 to a pointer, it doesn't add 3, it adds 3 times 
however many bytes each element of the array occupies. How does it know how 
many bytes per element? In this case, since we're adding something to an 
address at the start of an array, nums[], it looks at the array declaration, finds 
out it's an array of type int, and, since there are two bytes per integer, multiplies 
by 2. 

Now that you know this, you should be able to figure out the meaning of 
the expression 

*(nums+dex) 

If dex is 3, then this expression means "the contents of element 3 of the array 
nums[ ]"; this value is 69. Thus, as we've noted, * (nums + dex) is the same 
thing as nums[dex]. They are both ways of referring to the contents of an array 
element. 

*(array+ index) is the same as array[index] 

231 



Chapter 7 

232 

There are also two ways to refer to the address of an array element. We can 
say nums + dex in pointer notation, and &nums[dex] in array notation. These 
relationships are shown in Figure 7-11. 

Addresses 

Values nu ms ------:"\ l 

&nums[QJ} l~ 1400: -----} nums[QJ 
nums+O 1401 ---92--- *(nums+O> 
&nums[1J} 1402 } nums[1J 
nums+1 1403 ---81--- *(nums+1) 
&nums [2] } 1404 } nums [2] 
nums+2 1405 ---70--- *(nums+2) 

~ &nums[2J==(nums+2>==1404 
nums[2J== *(nums+2)==70 

Figure 7-11. Addresses and Values 

What do we gain by using pointer notation as opposed to array notation? 
Probably not very much in this context. However, pointer notation is commonly 
used with arrays in this way, so it's good to be familiar with it. More important, 
similar notation is used in many other instances where array notation would not 
work at all, as we'll see directly. 

Return of the Killer Averages 

As another example of the equivalence of array and pointer notation, we're 
going to translate the temperature-averaging program fltemp2.c from Chapter 6 
into pointer notation. We'll use this program, and a variant of it, to demonstrate 
some important aspects of pointer variables and constants. You might want to 
refer back to fltemp2.c before looking at this modified version: 

/* ptrtemp.c */ 
/* averages arbitrary number of temperatures */ 
/* uses pointer notation */ 
mainO 
{ 

float temper[40J; 
float sum=O.O; 
int num, day=O; 

do 
{ 

/* array declaration */ 

/* put temps in array */ 



} 

printf<"Enter temperature for day %d: ", day); 
scanf("%f", temper+day); 
} 

while ( *(temper+day++) > 0 ); /* lacks elegance*/ 

Pointers 

num = day-1; 
for Cday=O; day<num; day++) 

/* number of temps entered */ 
/* calculate average */ 

sum+= *(temper+day); 
printf("Average is %.1f", sum/num); 

This works as it did in Chapter 5; you type in an arbitrary number of tempera
tures, and the program prints out the average. 

We've modified three different expressions in this program, with the goal 
of changing the address &temper[ day] into temper+ day and the value stored 
there from temper[day] into *(temper+ day). Here are the three lines affected: 

scanf("%f", temper+day); 

while < *(temper+day++) > 0 ); 

sum+= *(temper+day); 

What we've done here is perform almost a literal translation from array notation 
to pointer notation. However, such a literal translation does not yield the most 
efficient or elegant programming. 

Pointer Constants and Pointer Variables 
Is there any way to simplify these three unwieldy expressions? In each, we're 
using the expression temper+ day as a way to reference individual items of the 
array by varying the value of day. Could we get rid of day by using the 
increment operator on the address itself, instead of using the variable day? For 
example, can we use an expression like this? 

while (*(temper++)> 0 >; /* can't do this */ 

The answer is no, and the reason is that temper is a pointer constant. It is not a 
variable. It is the address of the array temper, and this value will not change 
while the program is running. The linker has decided where this array will 
go-say address 810-and that's where it will stay. So trying to increment this 
address has no meaning; it's like saying 

x = 3++; /* can't do this either */ 

Since you can't increment a constant, the compiler will flag this as an error. 

233 



Chapter 7 

234 

You can't change the value of a pointer constant, only of a pointer variable. 

So we've run into a problem. It would be nice to use a statement as clear as 
*(temper+ +), but we can't increment a constant. However, we can increment 
variables. This is one of the real strengths of the C language: the ability to use 
pointer variables. So let's rewrite the program to make use of such variables. 

/* ptrtemp2.c */ 
/* averages arbitrary number of temperatures */ 
/* uses pointer variables */ 
main() 
{ 

} 

float temper[40J; 
float sum=O.O; 
int num, day=O; 
float *ptr; 

ptr = temper; 
do 

{ 

/* array declaration */ 

/* pointer variable */ 

I* set pointer to array */ 
/* put temps in array */ 

printf<"Enter temperature for day %d: ", day++); 
scanfC 11 %f 11

, ptr>; 
} 

while ( *(ptr++) > 0 >; 

ptr = temper; 
num = day-1; 
for Cday=O; day<num; day++) 

sum+= *(ptr++); 

/* reset pointer to array */ 
/* number of temps entered */ 
/* calculate average */ 

printf("Average is %.1f", sum/num); 

The strategy here is to place the address temper (say it's 810) into a pointer 
variable called ptr. Now we can refer to ptr in much the same way we refer to 
temper. We can use ptr as an address that will point to an array element, and 
we can use *ptr as the contents of that address. Moreover, since ptr is a 
variable, we don't need to add something to it to point to each element of the 
array in turn; all we need to do is increment it: 

ptr++ 

We set ptr equal to the address temper before we enter the loop to read in the 
temperatures, and we reset it again before we enter the loop to average them. 
Then in both these loops we increment ptr with the I + + ) operator so that it 
points to each array element in turn. !Because ptr points to an array of type 
float, the I + + ) operator causes it to be incremented by four bytes.) The process 
is shown in Figure 7-12. 



ptr 

following 

ptr=temper; 

---810 ·--

following 
ptr++ 

ptr --·814--

temper 

temper+1 

temper+2 

temper+3 

temper----

temper+2 -----.-

temper+3----

809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 

809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 

Figure 7-12. Incrementing a Pointer Variable 

Pointers 

-------
-------
-------

-------
-------
-------

-------
-------
-------

-------
-------
-------

-------
-------
-------

-------
-------
-------

By using pointer variables we have simplified the program and made it run 
faster, since only one variable, ptr, must be referenced each time through the 
loop, instead of both temper and dex. 

Pointers to Arrays in Functions 

We started this chapter by learning how pointers can be used for communica
tion among functions, and then we examined how pointers can be used to 

235 



Chapter 7 

236 

reference array elements. Let's combine these two techniques to see how a 
function can use pointers to access elements of an array whose address is passed 
to the function as an argument. 

As an example, we'll modify our program addtotwo.c, which adds a con
stant to two variables in the calling program, to add a constant to all the 
elements in an array. This is a function that might prove useful in a variety of 
circumstances. Here's the listing: 

/* addarray.c */ 
/* tests function to add constant to array values */ 
#define SIZE 5 /* size of array */ 
void addcon(int *, int, int); /*prototype */ 

main() 
{ 

static int array[SIZEJ 
int konst = 10; 

= { 3, 5, 7, 9, 11 }; 
/* constant to be added */ 

int j; 

addcon(array, SIZE, konst); /* call funct to add consts */ 
for Cj=O; j<SIZE; j++) /* print out array */ 

printf("%d ", *(array+j) ); 
} 

/* addcon 0 */ 
/* adds constant to each element of array */ 
void addcon(int *ptr, int size, int con) 
/* arguments: array, array size, constant */ 
{ 

int k; 
for(k=O; k<size; k++) /* add const to each element */ 

*(ptr+k) = *(ptr+k) + con; 
} 

Here the calling program supplies the address of the array, array; the size of the 
array, SIZE (which is #defined to be 5); and the constant to be added to each 
element, const (which is assigned the value 10). 

The function assigns the address of the array to the pointer ptr, the size to 
the variable num, and the constant to the variable con. Then a simple loop 
serves to add the constant to each element of the array. 

The output of this program shows the new contents of the array to verify 
that the function has done its work. Here's what it looks like: 

C>addarray 
13 15 17 19 21 

Pointer to Whatever: Type void * 
We'll mention here the use of the void type with pointers, although we won't 
see an example of its use until we explore malloc() in Chapter 9. 



Pointers 

Sometimes a function returns a pointer that can point to variables of 
different data types. In other words, it might return a pointer to char one time, a 
pointer to int another time, and so on. Many library functions are of this type. 
The declaration of a pointer of this type looks like this: 

void *vpointer; 

This signifies that the type the pointer will be applied to is unknown. 

Pointers and Strings 
Let's turn now to the relationship of pointers and strings. Since strings are arrays 
and arrays are closely connected with pointers, you might expect that strings 
and pointers are closely related, and this is correct. 

String Functions and Pointers 

Many of the C library functions that work with strings do so by using pointers. 
As an example, let's look at an example of a string function that returns a 
pointer. The function is strchr(), which returns a pointer to the first occurrence 
of a particular character in a string. If we say 

ptr = strchr(str, 'x'>; 

then the pointer variable ptr will be assigned the address of the first occurrence 
of the character 'x' in the string str. Note that this isn't the position in the string, 
from 0 to the end of the string, but the address, from 2343-or wherever the 
string happens to start-to the end of the string. 

Here is the function strchr() used in a simple program that allows the user 
to type in a sentence and a character to be searched for. The program then prints 
out the address of the start of the string, the address of the character, and the 
character's position relative to the start of the string (0 if it's the first character, 1 
if it's the second, and so forth). This relative position is simply the difference 
between the two addresses. 

/* search.c */ 
/* searches string for a given character */ 
main 0 
{ 

char ch, line[81J, *ptr, *strchrO; 

puts("Enter the sentence to be searched: "); 
gets(line); 
printf<"Enter character to search for: "); 
ch = getche 0; 

ptr = strchr(line,ch); /* return pointer to char*/ 
printf<"\nString starts at address %u.\n", line>; 

237 



Chapter 7 

238 

} 

printfC"First occurrence of char is address %u.\n", ptr); 
printfC"This is position %d (starting from 0>", ptr-line); 

Here's a sample run: 

C>search 
Enter the sentence to be searched: 
The quick brown fox jumped over the lazy dog. 
Enter character to search for: x 
String starts at address 3610. 
First occurrence of character is address 3628. 
This is character position 18. 

In the declaration statement, we've set aside a pointer variable, ptr, to hold the 
address returned by strchr(). Since this is the address of a character, ptr is of 
type char. Once the function has returned this address, we can print it out and 
use it to calculate the position of the character in the string: the value ptr-line. 

Are you wondering what the expression * strchr() is doing in the declara
tion statement? As we discussed in Chapter 5, any function that doesn't return 
an integer value must be declared. The strchr() function returns a pointer to a 
character, so it must be declared to be of this type. We could have left this 
declaration out if we'd included the preprocessor statement 

#include <string.h> 

at the beginning of the program. This would work just as well, since the header 
file STRING.H contains declarations for the string handling functions. 

Strings Initialized as Pointers 
We showed an example of initializing a string as an array in the program strinit.c 
in Chapter 6. Our next example shows how this program can be modified so that 
the string is initialized as a pointer. Here's the listing: 

/* strinitp.c */ 
/* shows string initialization */ 
/* uses pointers */ 
mainO 
{ 

} 

char *Salute = "Greetings,"; 
char name[81J; 

puts("Enter your name: "); 
getsCname); 
puts(salute); 
putsCname); 

Here, to initialize the string, we've used the statement 



Pointers 

char *salute = "Greetings,"; 

instead of 

static char salute[] = "Greetings,"; 

These two forms appear to have much the same effect in the program. Is 
there a difference? Yes, but it's quite a subtle one. The array version of this 
statement sets aside an array with enough bytes (in this case 10) to hold the word, 
plus one byte for the '\O' (null) character. The address of the first character of the 
array is given the name of the array, in this case, salute. In the pointer version, an 
array is set aside in the same way, but a pointer variable is also set aside; it is this 
pointer that is given the name salute. Figure 7-13 shows how this looks. 

salu? 
1400 
1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
1409 

G 
r 
e 
e 
t 

n 
g 
s 

\0 

char *salute= 
"Greetings,"; 
salute is a pointer 
variable 

salute ------.1400 G 
1401 r 
1402 e 
1403 e 
1404 t 
1405 i 
1406 n 
1407 g 
1408 s 
1409 \0 

static char salute[]= 
"Greetings,"; 
salute is a pointer 
constant 

Figure 7-13. String Array versus String Pointer 

In the array style of initialization, salute is a pointer constant, an address 
which cannot be changed. In the pointer style, salute is a pointer variable, 
which can be changed. For instance, the expression 

puts(++salute>; 

would print the string starting with the second character in the string: 

reetings, 

239 



Chapter 7 

240 

The added flexibility of the pointer approach can often be used to advantage, as 
we'll see shortly. 

Initializing an Array of Pointers to Strings 
There's another difference between initializing a string as an array or as a 
pointer. This difference is most easily seen when we talk about an array of 
strings (or if we use pointers, an array of pointers to strings). 

In Chapter 6 we showed how to initialize an array of strings in the program 
compare.c. In the following example we'll modify this program so that the 
strings are initialized as pointers. 

/* comparep.c */ 
/* compares word typed in with words in program */ 
/* uses pointers */ 
#define MAX 5 
main() 
{ 

} 

int dex; 
int enter=O; 
char name[40J; 
static char *list[MAXJ = 

{ "Katrina", 
"Nigel", 
"Alistair", 
"Francesca", 
"Gustav" }; 

printf("Enter your name: "); 
gets(name>; 
for Cdex=O; dex<MAX; dex++) 

if( strcmpClist[dexJ,name>==O 
enter= 1; 

if ( enter == 1 ) 
printfC"You may enter, oh honored one."); 

else 
printf("Guards! Remove this person!"); 

/* get name */ 

/*go thru list*/ 
/* if match */ 
/* set flag */ 
/* if flag set */ 
/* one response */ 
/* otherwise */ 
/* different one */ 

What does the expression char *list[MAX] mean? Such complex expres
sions are generally deciphered from right to left, so, as shown in Figure 7-14, 
this one means an array of pointers to characters. 

In the array version of this program the strings were stored in a rectangular 
array with 5 rows and 10 columns. In the new version the strings are stored 
contiguously in memory; they don't form an array so there is no wasted space 
between them. However, an array of pointers to these strings has been created. 
Figure 7-15 shows the differences between these two approaches. 

As you can see, the pointer version takes up less space in memory; it ends 
at 1038, while the array version ends at 1049. Thus, one reason to initialize 
strings as pointers is to use memory more efficiently. Another reason is to obtain 
greater flexibility in the manipulation of the strings in the array, as the next 
example will show. 



.___, 
~ 

decipher from 
right to left 

char *List[MAXJ 

IT L ~~,~~aljst 
of pointers 

'--------- to characters 

Figure 7-14. Declaration of Array of Pointers 

Array of strings 

Pointers 

01 23456789 

1000 

1008 

1013 

1022 

1032 

\ 

L i st [Q J ~ 1 000 

Li st[1J ~ 1010 

Li st [2J ~ 1020 

L i st [ 3 J ~ 1 03 0 

Li st [4J ~ 1040 

Array version 

--.. 

.... 
__. --... 

...... 
r 

List[QJ 

List[1J 

List[2J 

List[3J 

Li st[4J 

1000 

1008 

1013 

1022 

1032 

Array of pointers to strings 

Pointer version 

K 

N 

A 
F 

G 

K 

N 

A 

F 

G 

a t r ; n a 
; g e L \0 

L ; s t a ; 

r a n c e s 
u s t a v \0 

Strings stored in memory: 
not on array 

\0 

r 

c 

a t r ; n a_Eo 
; g e L \O[ 
L ; s t a ; r 

r a n c e s c 
u s t a v \o I 

I 
1038 

Figure 7-15. Array of Strings versus Array of Pointers 

\0 

a \0 

I 
1049 

\O[ 
a \O] 

241 



Chapter 7 

242 

Initializing a group of strings using pointer notation uses less memory than 
initializing them as a two-dimensional array. 

Lvalue and Rvalue 
Occasionally, when experimenting with pointers and strings, you may receive 
error messages from the compiler that use the term /value, as in "expression 
must be !value." What does this mean? 

Essentially, an !value is a variable, as opposed to an rvalue which is a 
constant. The terms arose from the left-right positions available in a typical 
assignment statement: 

var = 3; 

An expression that can appear on the left side of an assignment statement 
is a variable and is called an "!value." An expression that must remain on the 
right side of the equal sign because it is a constant is called an "rvalue." If you 
attempt to use a constant on the left side of the equal sign in the assignment 
statement, the compiler will flag it as an error. 

Manipulating Pointers to Strings 
As you know, when an array is passed as an argument to a function, it is not 
actually the array that is passed, but only its address. The array itself does not 
move. The same is true of strings: when we pass a string to a function, we are 
passing only its address. This ability to reference strings by addresses can be 
very helpful when we want to manipulate a group of strings. In the following 
example we will sort an array of strings, using an approach similar to that of the 
sortnum.c program in Chapter 6. However, we won't move the strings them
selves around in the array; instead, we'll sort an array of pointers to the strings. 

This program accepts a series of names typed in by the user, places them in 
an array, and sorts the pointers to the array so that, in effect, the names are 
rearranged into alphabetical order. Then, the resulting sorted list is printed out. 
Here's the program: 

/* sortstr.c */ 
/* sorts list of names 
#define MAXNUM 30 
#define MAXLEN 81 
mainO 
{ 

typed in to array */ 
/* maximum number of names */ 
/* maximum length of names */ 

static char name[MAXNUMJ[MAXLENJ; /* array of strings */ 
char *ptr[MAXNUMJ; /*array of pntrs to strings*/ 
char *temp; /* extra pointer */ 
int count = O; /* how many names */ 
int in, out; /* sorting indexes */ 



} 

while (count< MAXNUM 
{ 

/* get names */ 

printf<"Name %d: ", count+1); 
gets(name[countJ); 
if < strlen(name[countJ)==O 

break; /* quit if no name */ 

Pointers 

ptr[count++J = name[countJ; /* each ptr points to name */ 
} 

/* sort the pointers */ 
for (out=O; out<count-1; out++) /* for each string */ 

for Cin=out+1; in<count; in++) /* look at those smaller*/ 
if ( strcmp(ptr[outJ,ptr[inJ) > 0 ) /* compare*/ 

{ /* if any smaller, */ 
temp = ptr[inJ; /* swap pointers */ 
ptr[inJ = ptr[outJ; 
ptr[out] = temp; 
} 

printf("\nSorted list: \n"); 
for (out=O; out<count; out++) /*print sorted list */ 

printf<"Name %d: %s\n", out+1, ptr[outJ); 

And a sample run: 

C>sortstr 
Name 1: Thomas 
Name 2: Cummings 
Name 3: Sandburg 
Name 4: Masefield 
Name 5: Shelley 
Name 6: Auden 
Name 7: 

Sorted list: 
Name 1: Auden 
Name 2: Cummings 
Name 3: Masefield 
Name 4: Sandburg 
Name 5: Shelley 
Name 6: Thomas 

This program uses both an array of strings and an array of pointers. The 
pointers occupy the array declared by the expression: 

char *ptr[MAXNUMJ; 

The strings occupy a two-dimensional array: 

243 



Chapter 7 

244 

static char name[MAXNUMJ[MAXKENJ; 

Because we don't know in advance how long they will be, we must use a 
rectangular array to hold the strings that are typed in (rather than initializing 
them as pointers to strings J. We use rows 81 characters long; these will hold 
names extending across the entire screen. 

As the strings are read in, the statement 

ptr[count++J = name[countJ; 

assigns the address of each string, which is stored in the array name[][], to an 
element of the pointer array ptr[ ]. Then this array of pointers is sorted. Finally, 
the strings are printed out in alphabetical order, using the array of pointers as a 
reference. Figure 7-16 shows how the pointers look before and after sorting. The 
array name[][] itself remains unchanged; only the pointers to the elements of 
the array have been rearranged. 

pt r [QJ 
pt r [1 J 
pt r [2] 

pt r [3J 
pt r [4] 

ptr[SJ 

ptr[QJ 
pt r [1 J 
ptr[2J 
pt r [3] 

pt r [4J 
ptr[SJ 

array char*ptr[J 

\ 

v;;..y...~~ 

\__ pointers before sorting 

-I 1------i 

l J 

Y.,...AA...la.IU 
"'Y""Y""'.-

\_ pointers after sorting 

--.,.. 

array name[][] 
~ 

0123456789 

T h o m a s \0 
.... c u m m ; n g s \0 
.... s a n d b u r g \0 r 

M a s e f ; e l d \0 
.... s h e l l e Y \0 
..... A u d e n \0 

> 
"> 
~ 
~ 
~ 
~ 

~~~~ 

r--+-1 T h 0 m a s \0 ~
c u m m i n g s \0 :l

__.. S a n d b u r g \0 ~
....... M a s e f ; e l d \0 ~ r

s h e L L e Y \0 • __..
A u d e n \0 f -.-

............ .._ .. ~ ... IA~ ,,. ,.. ,,... 'VY ... ~ TV

Figure 7-16. Sorting Pointers to Strings

There is a subtle aspect to this program that may have slipped your notice.
Let's take a closer look.

Pointers

Parts of Arrays Are Arrays

The C language embodies an unusual but powerful capability: it can treat parts
of arrays as arrays. More specifically, each row of a two-dimensional array can be
thought of as a one-dimensional array. This can be very useful if one wishes to
rearrange the rows of a two-dimensional array, as we just did in the sortstr.c
example.

Do you see anything unusual about the following statement from sortstr.c?

ptr[count++] = name[countJ;

That's right: although the array name[][] is a two-dimensional array, we use
only one subscript when we refer to it in this statement: name[count]. What
does name[count] mean, if name[][] is a two-dimensional array?

Remember that we can think of a two-dimensional array as an array of
arrays. In this case, the declaration

static char name[MAXNUMJ[MAXLENJ;

can be thought of as setting up a one-dimensional array of MAXNUM elements,
each of which is a one-dimensional array MAXLEN characters long. In other
words, we have a one-dimensional array of MAXNUM strings. We refer to the
elements of a one-dimensional array with a single subscript, as in name[count],
where count can range up to MAXNUM. More specifically, name[O] is the
address of the first string in the array, name[l] is the address of the second
string, and so forth. Thus the expression name[count] makes sense and simpli
fies the coding of the program.

Double Indirection: Pointers to Pointers
The ability of the C language to treat part of an array as an array is actually a
disguised version of another C topic, double indirection, or pointers that point to
pointers. Being able to reference a pointer with a pointer gives C enormous
power and flexibility in creating complex arrangements of data. As a hint of
what's involved, let's look at an example of double indirection, derived from a
two-dimensional array.

In the sortstr.c program above we dealt with parts of arrays as strings. This
was in some ways easier than dealing with parts of arrays as arrays, which we
will now look at in a two-dimensional array of numbers.

We'll start off with a simple program that takes an existing two-dimen
sional array, adds a constant to each element, and prints out the result. We'll use
normal array notation for this program, so it should hold no surprises:

/* double.c */
/* shows use of 2-dimensional arrays */
#define ROWS 4
#define COLS 5

245

Chapter 7

246

mainO
{

}

static int table[ROWS][COLSJ =
{ { 13, 15, 17, 19, 21 } ,

{ 20, 22, 24, 26, 28 },
{ 31, 33, 35, 37, 39 },
{ 40, 42, 44, 46, 48 } };

int const = 10;
int j, k;

for(j=O; j<ROWS; j++)
forCk=O; k<COLS; k++)

table[j][kJ = table[jJ[k]
for(j=O; j<ROWS; j++)

{

/* constant to be added */

/* add const to each element */

+ const;
/* print out array */

for Ck=O; k<COLS; k++)
printfC 11%d ", table[j][k] >;

pri ntfC"\n");
}

Since the program adds a constant 10 to each element, the output looks like this:

C>double
23 25 27 29 31
30 32 34 36 38
41 43 45 47 49
50 52 54 56 58

Now, suppose we rewrite this program to use pointer notation instead of
array notation. The question is, how do we write the expression table[j][k] in
pointer notation? To do this, we make use of the fact that a two-dimensional
array is an array of one-dimensional arrays as shown in Figure 7-17.

Let's figure out how to use pointers to refer to the fourth element in the
third row of the array, or table[2](3], which is 37 (before the 10 is added).

First, the address of the entire array is table. Let's assume the array starts
at address 1000 in memory, so table== 1000. It's an integer array, so each
element takes two bytes. There are five elements in each row, so each row takes
10 bytes. Thus each row starts 10 bytes further along than the last one. And,
since each row is a one-dimensional array, each of these one-dimensional arrays
starts 10 bytes further along than the last one, as shown in the top part of Figure
7-18.

The compiler knows how many columns there are in the array, since we
specified this in the array declaration. So it knows how to interpret the expres
sion table+ 1; it takes the address of table (1000), and adds the number of bytes
in a row (5 columns times 2 bytes per column, equaling 10 bytes). Thus table+ 1
is interpreted as the address 1010. This is the address of the second one-dimen
sional array in the array, table+ 2 is the address of the third such array, and so

array
table[4J[5J

array
tab le [QJ

array
table[1J

array
table[2J

array
table[3J

13 15 17 19 21

20 22 24 26 28

31 33 35 37 39

40 42 44 46 48

l 13 I 1 s i 17 i 19 i 21 I

31 133 , 35 , 37, 39 I

Figure 7-17. Each Row of an Array Is an Array

Pointers

on. We're looking for an item in the third row, whose address is table+ 2, or
1020.

Now, how do we refer to the individual elements of a row? We've men
tioned before that the address of an array is the same as the address of the first
element in the array. For example, in the one-dimensional array list[SIZE], list
is the same as &list[O]. Again referring to Figure 7-18, we've already determined
that the address of the array formed by the third row of table[][] is table[2], or
table+ 2 in pointer notation. The address of the first element of this array is
&table[2][0], or *(table+ 2) in pointer notation. Both pointer expressions, ta
ble+ 2 and *(table+2), refer to the contents of the same address, 1020. Why
use two different expressions for the same thing? The difference between *(ta
ble+ 2) and table+ 2 is in the units of measurement. If you add 1 to table+ 2
you get table+ 3, or the address of the fourth row of table[][]; you've added 10
bytes. But if you add 1 to *(table+ 2), you get the address of the next element in
the row; you've added 2 bytes.

An element of a two-dimensional array can be referenced with a pointer to
a pointer.

247

Chapter 7

248

1000

1010

2 2
bytes bytes
,--.. ~

0 1 2

13 15 17

20 22 24

31 33 35

40 42 44

2
bytes
~

3 4

19 21

26 28

37 39

46 48 f
1020

1030

table==1000

table+2==1020
static int table [ROWSJ[COLSJ

*(table+2)==1020

*(table+2)+3==1026 31 33 35

((table+2)+3)==37~~.,--~~~~~---

Figure 7-18. Pointing to Element in Two-Dimensional Array

So the address of the fourth element is *(table+ 2) + 3. And, finally, the
contents of that element is * (*(table+ 2) + 3), which is 37. This expression is a
pointer to a pointer.

In other words,

table[jJ(kJ == *(*(table+j)+k)

We've figured out how to translate two-dimensional array notation into
pointer notation. Now we can rewrite our program, incorporating this new
notation:

Pointers

/* double2.c */
/* shows use of pointers on 2-dimensional arrays */
#define ROWS 4
#define COLS 5
mainO
{

static int table[ROWS][COLS] =
{ { 13, 15, 17, 19, 21 },

{ 20, 22, 24, 26, 28 },
{ 31 I 33, 35, 37, 39 },
{ 40, 42, 44, 46, 48 } }·

I

int con st = 10; /* constant to be
int j, k· I

added */

for(j=O; j<ROWS; j++) /* add const to each element */

}

forCk=O; k<COLS; k++)
((table+j)+k) = *(*(table+j)+k) + const;

for(j=O; j<ROWS; j++) /* print out array */
{

for Ck=O; k<COLS; k++)
printf(11 %d 11

, *(*(table+j)+k) >;
printf(11 \n 11

);

}

This version of the program will work just the same as the old one did.

The Rocketship Program

Let's look at a slightly more ambitious example that incorporates double indirec
tion. This program models a very crude rocketship taking off. As a spectacular
graphics display, the program leaves something to be desired (especially since
we haven't learned how to clear the screen between pictures), but it does
demonstrate how to manipulate array elements using pointers.

The program consists of a large loop. Each time through the loop, the
program draws a line, representing the ground, consisting of five double lines
(graphics character '\xCD'). It then draws the rocketship, defined in the pro
gram as four elements of a character array-a main body ('\DB'), a nose cone,
and two engines ('\xlE'). After drawing the rocket, the rows of the array that
contain the rocket are, in effect, rotated; each row moves up one character, and
the top row is placed on the bottom. (Actually we don't rotate the array itself, as
we'll see in a moment.) Then the array is printed again. The effect is of the
rocketship rising from the ground, as shown in Figure 7-19. Here's the listing for
the program:

/* move.c */
/* moves image on screen */

249

Chapter 7

250

#define ROWS 10
#define COLS 5

mainO
{

int count, j , k;
char *ptrCROWSJ;
char *temp;

static char pi ct CROWS] [COLS]
{ { 0, 0,

{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, 0,
{ 0, '\x1E',

static char gnd[J =
{ '\xCD', '\xCD',

=
0,
0,
0,
0,
0,
0,
0,
0,
'\x1E',
'\xDB',

1 \xCD 1
,

for(count=O; count<ROWS; count++)
*(ptr+count) = *(pict+count);

for(count=O; count<ROWS-1; count++)
{

forCj=O; j<ROWS; j++)
{

/* pointers to rows */
/* pointer storage */

/* rocketship */
0, 0 },
0, 0 },
0, 0 },

0, 0 },
0, 0 },
0, 0 },

0, 0 },
0, 0 },
0, 0 },
'\x1E', 0 } }· ,

/*ground line*/
1 \xCD 1

, '\xco' };

/* set up pointers */

/* print rocket */

forCk=O; k<COLS; k++)
printfC"%c", *(*(ptr+j)+k) >;

printf("%c", '\n' >;

}

}

printfC"%s\n", gnd);

temp = *ptr;
forCj=O; j<ROWS-1; j++)

*(ptr+j) = *(ptr+j+1);
*(ptr+ROWS-1) = temp;
}

/* print ground */

/* rotate pointers */

Here's how the program works. We declare an array of pointers to characters.

char *ptr[ROWSJ;

In each of the elements of this array, we place the address of one row of the
array pict[][] using the loop:

0

2

3

4

5

6

7

8

9

0 1 2 3 4

Initial
position

0

2

3

4

5

6

7

8

9

Pointers

0 1 2 3 4

- rocketship

: : : : = - ground

Position after
three cycles

Figure 7-19. Rocketship Rising from the Ground

for(count=O; count<ROWS; count++)
*(ptr+count) = *(pict+count);

We print out the elements of the array as individual characters using two
nested loops, a process we used in Chapter 6. In this case, however, we use
pointer notation to refer to individual elements of the array, in the expression

printfC"%c", *(*(ptr+j)+k) >;

Notice that we don't actually refer to the array pict[][] itself, but rather to
the array of pointers, ptr[], that point to it.

To make the rocket appear to rise off the ground line, we in effect move
the elements in each row of the array pict[][], upward one row at a time. If we
actually moved all the array elements we would need to move all 50 characters
in memory, and this would be time consuming. So instead of moving the rows of
the array, we simply move the pointers that point to these rows. There are only
10 pointers, so this is a much faster operation than moving 50 characters. (If we
were trying to move an object wider than five characters, the speed advantage
would be greater still.)

251

Chapter 7

The pointers are rotated in the array ptr[]: each element moves up one
location, and the top element goes to the bottom. We store the top row, ptr[O], in
the pointer variable tern p, then use a loop to move the contents of each row to
the row whose subscript is one less than where it came from, and finally we
insert the top element, stored in temp, back into the bottom row. (This is like
the technique employed for sorting strings earlier in this chapter.) Figure 7-20
shows the pointers after three cycles through the loop; each pointer has moved
up three rows in the array * pict[ROWS].

This pointer
started
at 9, moved
up to 6.

char *ptr[ROWSJ

0

2

3

4

5

6

7

8

9

Pointers
to rows Pointer configuration after

three cycles.

char pict[ROWSJ[COLSJ

0

2

3

4

5

6

7

8

9

Array

Figure 7-20. Rocketship Pointer Configuration

Now when we print out the array, we'll see that the rocket appears to have
risen one character from the ground line each time through the loop. Actually,
the array pict[][] remains unaltered, with the rocket still in the lowest position.
However, by printing out the rows of the array in a different order, the rocket
appears to move.

Summary

252

This chapter has introduced the subject of pointers and has covered some of the
less complex ways pointers can be used. We've seen how to declare pointer
variables with such statements as int * ptr2 and how to refer to the values

Pointers

pointed to by pointers, using such expressions as * ptr2 (the asterisk having a
different meaning in the two cases). We've used pointers to return multiple
values from a function to the calling program and to permit a function to modify
values contained in the calling program, with the use of expressions like
*ptrx= *ptfx+ 10.

The second major topic in the chapter was the relationship of pointers to
arrays. We saw how to reference individual array elements using pointer nota
tion and how to perform arithmetic on pointers. We've seen that pointer vari
ables can be modified, but that pointer constants-the addresses of data
structures-cannot.

We've investigated the use of pointers with strings, seeing how some string
library functions return pointers and the uses that can be made of such func
tions. We've also learned how to initialize strings using pointers instead of
arrays and the benefits of this approach.

Finally we've learned how to use pointer notation to refer to the elements
of a two-dimensional array, and we've seen how this relates to the idea of a
pointer to a pointer.

Questions

1. Why are pointers sometimes found to be difficult to understand?

a. They point to data beyond our control.

b. They use the same symbol to refer to two different things.

c. The idea of indirection is not used in some languages.

d. They require a knowledge of quantum mechanics.

2. Which of these are reasons for using pointers?

a. To manipulate parts of arrays

b. To refer to key words such as loop and if

c. To return more than one value from a function

d. To refer to particular programs more conveniently

3. True or false: the address of an array is a pointer constant.

4. True or false: passing the addresses of arrays to functions is beyond the
scope of this book.

5. True or false: passing a value to a function places the address of that
value in the function's private memory space.

6. For a function to return more than one value, it must first be passed the
addresses of the variables to be returned. This is because:

253

Chapter 7

254

a. The function must always contain the same amount of numbers,
whether addresses or values.

b. The addresses are actually a code that is deciphered into values by the
function.

c. The function needs to know where to find library routines.

d. The function needs to know where to put the values it returns.

7. If we call a function with the statement blotch(&white,&black), what
purpose do &white and &black serve?

a. They are integer values we're passing to the function.

b. They are the addresses of the function and the calling program.

c. They are the addresses of the variables where we want values
returned or modified in the calling program.

d. They are the addresses of library routines needed by the function.

8. To return more than one value from a function, we must pass the
function the of the values we want returned; then,
in the function, we must first pointers to hold these
values, and finally we access the values using

~~~~~~~~-

9. Which is the correct way to declare a pointer? 

a. int_ptr x; 

b. int *ptr; 

c. *int ptr; 

d. *x; 

10. Which are correct ways to refer to the variable ch, assuming the address 
of ch has been assigned to the pointer fingerch? 

a. *fingerch; 

b. int *fingerch; 

c. *finger; 

d. ch 

e. *ch 

11. In the expression float * fptr; what has type float? 

a. The variable fptr 

b. The address of fptr 

c. The variable pointed to by fptr 

d. None of the above 



Pointers 

12. Assuming that the address of the variable var has been assigned to the 
pointer variable pointvar, write an expression that does not use var and 
that will divide var by 10. 

13. Assuming that the address of vox has been assigned to the pointer 
variable invox, which of the following expressions are correct? 

a. vox - - &invox 

b. vox - - *invox 

c. invox - - *vox 

d. invox - - &vox 

14. When a function is called using &x as a parameter, where is the value of &x 
placed? 

15. What statement must be added to the following program to make it work 
correctly? 

main 0 
{ 

} 

int j , *pt r j; 
*ptrj = 3; 

16. Assuming we want to read in a value for x, and the address of x has been 
assigned to ptrx, does this statement look all right? 

scanf( 11 %d 11
, *ptrx); 

17. Assuming that spread[] is a one-dimensional array of type int, which of 
the following refers to the value of the third element in the array? 

a. *(spread+2) 

b. *(spread+4) 

c. spread+4 

d. spread+2 

18. Suppose an array has been declared as: 

int arr[3J; 

Can you use the expression arr + + ? 

19. What will the following program do when executed? 

main 0 
{ 

255 



Chapter 7 

256 

} 

static int arr[] = { 4, 5, 6 }; 
int j; 
for C j =O; j <3 ; j ++ > 

printfC 11%d ", *(arr+j) >; 

20. In the program above, the plus sign in the expression arr+ j means to add 
j times __ bytes, to arr. 

21. What will the following program do when executed? 

main() 
{ 

} 

static int arr[] = { 4, 5, 6 }; 
int j; 
for C j =O; j <3 ; j ++ > 

printfC"%d ", arr+j ); 

22. What will the following program do when executed? 

main() 
{ 

} 

static int arr[] = { 4, 5, 6 }; 
int j , *pt r; 
ptr = arr; 
for C j =O; j <3 ; j ++) 

print fC 11%d ", *Pt r++ ) ; 

23. Are the following statements equivalent? 

char errmsg[J = "Error!"; 
char *errmsg = "Error!"; 

24. One difference between using array notation to declare a group of strings 
and using pointer notation is that in array notation each string occupies 
_________ of memory, while using pointer notation each string 
occupies of memory. 

25. Given the declaration 

static char s7[J = "I come not to bury Caesar"; 

what will the following statements cause to be printed? 

printfC"%s", s7 >; 
printfC"%s", &s7[QJ >; 
printfC"%s", s7+11 >; 



Pointers 

26. When you declare a string using pointer notation, and the string is 10 
characters long, bytes are set aside in memory. (Note: this isn't as 
easy as it looks.) 

27. True or false: every column of a two-dimensional array can be considered 
to be another two-dimensional array. 

28. Given the following array declaration: 

static int arr7[2][3] = { { 10, 11, 12 }, 
{ 13, 14, 15 } }; 

ref er to the element occupied by the number 14 in array notation and 
then in pointer notation. 

29. If you want to exchange two rows in a two-dimensional array, the fastest 
way is to: 

a. exchange the elements of the two rows 

b. exchange the addresses of each element in the two rows 

c. set the address of one row equal to the address of the other, and vice 
versa 

d. store the addresses of the rows in an array of pointers and exchange 
the pointers 

30. How do you refer to arr7[x][y] using pointer notation? 

Exercises 
In the following exercises, use pointer notation wherever possible. 

1. Write a function, and a program to test it, that will place a zero in each of 
three variables in the calling program. 

2. Write a function, and a program to test it, that will place a zero in each 
element of an array passed to it from the calling program. 

3. Write a function, and a program to test it, that will change a string to the 
null string. The string is defined in the calling program. 

4. Write a program that contains two arrays and generates a third array in 
which each element is the sum of the corresponding elements from the 
other two arrays. 

257 





Keyboard and Cursor 

Extended keyboard codes 
ANSI.SYS cursor control 
Key reassignment 
Command-line arguments 
Redirection of input and output 

8 

259 



8 

In this chapter we're going to change our focus from the C language itself to C's 
interaction with the IBM computer. This doesn't mean that we've covered 
everything there is to know about C; we'll take up other key aspects of the 
language in later chapters. You now know enough, however, to begin exploring 
some of the features of the IBM PC computer family in order to put C to work in 
real-world situations. 

We'll cover two major topics in this chapter: first, the IBM extended 
character codes, which enable a program to read the function keys, cursor control 
keys, and special key combinations and second, the ANSI.SYS control functions, 
which give the programmer control over where the cursor is on the screen and 
permit other operations as well. Almost all applications programs-word 
processors, database programs, and even games-need to make use of these 
capabilities to provide a more sophisticated level of interaction with the user. 

At the end of the chapter we'll explain command-line arguments: 
arguments typed in the command line when you call your program from DOS. 
We'll show an example that uses the ANSI.SYS routines and command-line 
arguments to redefine the IBM's function keys. We'll show how redirection can 
be used to give even simple programs the ability to read and write files. As we 
go along, we'll also discuss several new C library functions. 

The material in this chapter, besides extending your capability to write 
interesting and powerful programs, also serves as an introduction to directly 
accessing the monochrome display memory, a topic we'll return to in Chapter 
10. 

Extended Keyboard Codes 

260 

We've already seen that the keyboard generates the usual ASCII codes for 
letters, numbers, and punctuation, as well as various other codes for foreign 
language characters and graphic symbols. These codes are numbered from 1 to 



Keyboard and Cursor 

255; each can be represented by just one byte. (See Appendix E for a table of 
these values.) 

However, there are a great many keys and key combinations not repre
sented by this one-byte character set. For instance, the function keys, Fl to FlO, 
are not represented, nor are the cursor control keys on the numeric keypad. 
How does a program determine when these keys are being pressed? 

The IBM provides a second set of 256 keys and key combinations by using 
an extended code. This code consists of two bytes; the first byte is 0 and the 
second byte is a number indicating the particular key or key combination. When 
a key that is not in the normal character set-the Fl key, for example-is 
pressed, it first sends a 0 to the keyboard buffer and then the specific code. (The 
keyboard buffer is a temporary storage area where characters typed at the 
keyboard are stored until they are read by a program.) Thus, when a nonstan
dard key is pressed, two characters are sent. A program that expects to read 
extended codes checks for a character with the value 0. If it finds one, it knows 
the next character will be an extended code, with a completely different inter
pretation than the normal code. 

Extended keyboard codes use two characters, the first of which has an 
ASCII value of 0. 

Because no character is represented by 0 in the normal IBM character set, 
there is no confusion when this character is received; it always indicates an 
extended code will follow. Figure 8-1 shows the format of the extended code. 

I 
Normal code 

97 - 1 byte ._ ___ ... letter 'a' 

always o - ._I _o _...I ] 
extended code 
2 bytes 

=====5-9_-_-_-_-.. .. I function key F1 

Figure 8-1. Normal and Extended Codes 

Exploring the Extended Codes 

Here's a program that will permit us to explore these extended keyboard codes: 

/* kbdtest.c */ 
/* prints code of keyboard key */ 

261 



Chapter 8 

262 

mainO 
{ 

char key, key2; 

while < Ckey=getchO) != 'x' ) 
if( key == 0 ) 

{ 

/* read keyboard */ 
/* if extended code, */ 

key2 = getch<>; /* read second code */ 
pri ntf ("%3d %3d\n", key, key2); 
} 

else 
printf("%3d\n", key); /* not extended code */ 

} 

This program prints out the code for any key typed: either the normal 
one-byte IBM character code or the two-byte extended code. We don't want to 
echo the character typed, since there is no printable equivalent for the extended 
codes, so we use the function getch(), which works just like getche(), except 
that the character is not printed on the screen. 

In the while test expression, the program reads the first code. If it's 0, the 
program knows it's dealing with an extended code, so it reads the second part of 
the code, using getch() again, and prints out the numerical value of both parts. 
If the first part is not 0, the program concludes it is simply a normal character, 
and prints out its value. 

Here's a sample run: 

C>kbdtest 
0 59 

97 
0 75 

The first code shown here results from pressing function key [F 1], the second is 
simply a lowercase 'a', and the third is the left arrow (on the number 4 of the 
numeric keypad). Typing in this program and experimenting with it will provide 
a variety of insights about the extended codes available. 

Table 8-1 shows the extended codes that can be obtained by typing a single 
key. The table shows the second byte of the code; the first byte is always 0. 
Many more codes can be accessed by using the [Alt], [Ctrl], or [Shift] keys in 
combination with another key, as shown in Table 8-2. These two-key codes are 
less often used than the single-key variety, but they do provide an amazing 
variety of choices for programs that need them. These two tables are found on 
page 264. 

Interpreting the Extended Codes 

A common approach to writing C functions to interpret the extended codes is to 
use the switch statement, as we do in the following demonstration: 



Keyboard and Cursor 

/* extend.c */ 
/* tests extended codes */ 
mainO 
{ 

int key, key2; 
while < Ckey=getchO> != 'X' > /* read keyboard */ 

} 

if( key == 0 ) 
{ 

/* if extended code, */ 

key2 = get ch 0; 
switch Ckey2) 

/* read second code */ 

} 

else 

{ 

case 59: 
printfC"Function key 1\n"); break; 

case 60: 
printf<"Function key 2\n"); break; 

case 75: 
printfC"Left arrow\n"); break; 

case 77: 
printf<"Right arrow\n"); break; 

default: 
printf("Some other extended code\n"); 

} 

print fC"No rma l code: %3d=%c \n", key, key) ; 

This program is similar to kbdtest.c, but it uses switch to analyze and print out 
interpretations of some of the codes. We'll be using this same format in a variety 
of programs later in this chapter. 

Notice that we've placed more than one statement on the same line in this 
program: 

printf<"Function key 1\n"); break; 

It is generally easier to read a C program when only one statement is used per 
line, but in the switch construct, statements are often doubled up this way to 
save space and provide a cleaner format. 

Typing an uppercase 'X' causes an exit from the while loop and terminates 
the program. 

Now that we've introduced the extended keyboard codes, let's see how 
they're used in a typical situation: for cursor control. 

ANSI.SYS 

The IBM PC family of computers, and most MS-DOS compatibles, comes with a 
system for directly controlling the position of the cursor on the screen. However, 
this capability is not built into the IBM's read-only memory (ROM) as are the 

263 



Chapter 8 

264 

normal routines for accessing I/O devices. Rather it is contained in a separate 
file called the ANSI.SYS file. 

Table 8·1. One-Key Extended Codes 

Second Byte (Decimal) 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
71 
72 
73 
75 
77 
79 
80 
81 
82 
83 

Key that Generates Extended Code 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FlO 
Home 
Up arrow 
Pg Up 
Left arrow 
Right arrow 
End 
Down arrow 
PgDn 
Ins 
Del 

Table 8·2. Two-Key Extended Codes 

Second Byte (Decimal) 

15 
16 to 25 
30 to 38 
44 to 50 
84 to 93 
94 to 103 
104 to 113 
114 
115 
116 
117 
118 
119 
120 to 131 
132 

Keys that Generate Extended Code 

Shift Tab 
Alt Q, W, E, R, T, Y, U, I, 0, P 
Alt A, S, D, F, G, H, J, K, L 
Alt Z, X, C, V, B, N, M 
Shift Fl to FlO 
Ctrl Fl to FlO 
Alt Fl to FlO 
Ctrl PrtSc (start and stop printer echo) 
Ctrl left arrow 
Ctrl right arrow 
Ctrl End 
Ctrl PgDn 
Ctrl Home 
Alt 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -, 
Ctrl PgUp 



Keyboard and Cursor 

ANSI stands for American National Standards Institute, and the ANSI.SYS 
file provides a standardized set of codes for cursor control. This file is actually 
an example of an installable device driver: a section of code written to control an 
I/O device, which is added to the operating system (DOS) after DOS is installed. 

Once placed in DOS, ANSI.SYS intercepts all the numeric codes being sent 
to the screen for printing. If any of these codes contains a special escape code (a 
special sequence of characters), the ANSI.SYS file deals with the code itself, 
moving the cursor or performing other functions. If the code arriving is a 
normal character, it is simply passed to the regular video routines in ROM, 
which display it on the screen in the usual way. 

As we'll see later, ANSI.SYS not only allows control of the cursor, it also 
lets us redefine keys on the keyboard; thus it also intercepts the code for any 
key typed and checks to see if any special action is necessary. We'll look at key 
redefinitions later in the chapter. 

Installing ANSI.SYS 

Since ANSI.SYS is an optional part of DOS, it must be installed each time you 
power up your computer. Fortunately, using the CONFIG .SYS file, this job is 
automated, so that once you've got your system set up, you don't need to worry 
about it again. Here's how it's done. 

To use ANSI.SYS, the ANSI.SYS driver must be installed in the operating 
system. 

CONFIG.SYS File Must Be Present 
You must have a CONFIG.SYS file in your main directory. The operating system 
examines this file when the system is first powered up and makes any changes 
or additions to the operating system this file requests. In fact, you should be 
using this file already (as we described in Chapter 1) to set the file and buffer 
parameters required by your C compiler. 

CONFIG.SYS File Must Refer to ANSI.SYS 
To use ANSI.SYS, the CONFIG.SYS file must contain this line: 

DEVICE=ANSI.SYS 

This tells DOS to look for the ANSI.SYS file and incorporate it into the operating 
system. 

The complete CONFIG.SYS file (as used in this book) looks like this: 

C>type config.sys 
files=15 
buffers=10 
DEVICE=ANSI.SYS 

265 



Chapter 8 

ANSI.SYS File Must Be Present 
ANSI.SYS is a file that comes with your operating system. It must be available 
somewhere in your disk system, so that the operating system can find it when it's 
told to do so by the CONFIG.SYS file, but it need not be in the main directory. 

(Some compatible computers, such as the TI Professional, include the 
functions of ANSI.SYS as part of the operating system, and in these cases, the 
installation procedure described here is not necessary.) 

Once it is installed, ANSI.SYS is actually incorporated into the operating 
system, so DOS will be increased by the size of ANSI.SYS: about 1,600 bytes. 

Cursor Control with ANSI.SYS 

266 

Cursor control is achieved with ANSI.SYS using escape sequences: a string of 
several special characters. ANSI.SYS looks for this escape sequence, which can 
be transmitted as part of a string in a printf () function, and interprets the 
commands that follow it. The escape sequence is always the same: the nonprint
ing character, '\xlB' (sometimes called the "escape character"), followed by a 
left bracket, '['. After the escape sequence comes either a single letter or a more 
complex set of characters. Using such sequences, the cursor can be moved up or 
down and left or right, or it can be positioned at a specific row or column. 

Here's a simple program that demonstrates the use of a cursor control 
sequence. The sequence involved is "\xlB[B". In other words, the normal 
escape sequence '\xlB' and'[', followed by a capital 'B', as shown in Figure 8-2. 

r------- escape character 
numerical value 1 B hex 
(27 decimal) 

bracket always 
precedes specific 
code 

specific action: 
,......,.--.,, 1 cursor down 

"\x1B[B" 

Figure 8-2. Format of ANSI.SYS Escape Sequence 

The effect of this sequence is to move the cursor down one line, keeping its 
horizontal position unaltered. The example program will print whatever you 
type at the keyboard, but it will do so diagonally; that is, the letters will go down 
at the same time they're going across. Here's the program: 

/* diag.c */ 
/*moves cursor diagonally*/ 
mainO 
{ 



} 

while ( getcheO != '.') 
printf<"\x1B[B"); 

Keyboard and Cursor 

/* print character */ 
/* cursor down */ 

Since you can't move the cursor below the bottom of the screen, this program 
will only work if you clear the screen, using the DOS command els, before you 
invoke the program. Then you type a short message, terminated by a period. 
Here's some sample output: 

C>cls 
C>diag 
H 

a 

C> 

c 
k 

e 
r 

s 

Using #define with Escape Sequences 
The escape sequence, 0 \xlB[B", is cryptic and difficult to read. As we get into 
more complicated programs it will be useful to use mnemonics to represent the 
sequences so our printf() statements won't look like an alchemist's equations. 
We can do this easily with the #define directive, as the following rewrite of 
diag.c shows: 

/* diag2.c */ 
/* moves cursor diagonally */ 
#define C_DOWN "\x1B[B" 
main 0 
{ 

} 

while ( getcheO != '.') 
pri ntf<C_DOWN); 

/* move cursor down */ 

/* print character */ 
/* cursor down */ 

Here #define permits us to substitute the easily understandable identifier C_ 
DOWN for the obscure "\xlB[B". We'll make extensive use of #define in the 
rest of the programs in this chapter. 

Cursor Command Summary 

Of course moving the cursor down is only one of the possible commands we can 
give. Table 8-3 lists the most common ones. 

These commands are listed in the IBM DOS Technical Reference manual. 
We'll explore many of them in this chapter. 

267 



Chapter 8 

268 

Table 8-3. ANSI.SYS Cursor Control Codes 

Code Effect 

II [2J" 
ll[K11 

Erase screen and home cursor 
Erase to end of line 

ll[A11 
ll[B11 
ll[C11 
ll[D" 
II [o/od; o/odf 
ll[s" 
ll[u" 
11 [o/odA" 
11 [%dB" 
11 [%dC" 
11 [o/odD" 

Cursor up one row 
Cursor down one row 
Cursor right one column 
Cursor left one row 
Cursor to row and column specified 
Save cursor position 
Restore position 
Cursor up number of rows specified 
Cursor down number of rows specified 
Cursor right number of columns specified 
Cursor left one row number of columns specified 

* All codes must be preceded by the character '\xlB'. The symbol 'o/od' is a 
placeholder for a number, to be filled in by a printf argument. 

Cursor Control from the Keyboard 

Now that we know about extended character codes and cursor control, we can 
put both ideas together to control the cursor with the arrow keys. 

Here's a program that permits you to draw simple designs on the screen: 

/* draw.c */ 
/*moves cursor on screen,leaves trail*/ 
#define CLEAR "\x1B[2J" 
#define C_LEFT "\x1B[D" 
#define C_RITE "\x1B[C" 
#define C_UPUP "\x1B[A" 
#define C_DOWN "\x1B[B" 
#define L_ARRO 75 
#define R_ARRO 77 
#define U_ARRO 72 
#define D_ARRO 80 
#define ACROSS 205 
#define UPDOWN 186 
main() 
{ 

int key; 

printf(CLEAR); 
while ( Ckey=getch() ) -- 0) 

{ 

key=getch 0; 
switch (key) 

{ 

case L_ARRO printf(C_LEFT); putchCACROSS); 



Keyboard and Cursor 

} 

break; 
case R_ARRO 

break; 
case U_ARRO 

break; 
case D ARRO -

break; 
} 

pri ntfCC_LEFT); 
} 

printf(C_RITE); putchCACROSS); 

printf(C_UPUP); putch(UPDOWN); 

printf(C_DOWN); putch(UPDOWN); 

This program waits for you to press any of the four arrow keys. (These keys 
share the number keys 8, 4, 6, and 2 on the numeric keypad, so the [NumLock] 
key must be toggled appropriately for the program to work.) 

The program begins by clearing the screen, using the escape sequence 
"\x1B[2J". This also puts the cursor in the "home" position: the upper left 
corner of the screen. 

All ANSI.SYS commands begin with the escape sequence, "\xlB[". 

The while loop then waits for an extended code. If a normal key is 
pressed, the program exits, but pressing any of the cursor keys will cause the 
cursor to move in the appropriate direction (down if the down-arrow is pressed, 
etc.). If the direction is up or down, the vertical double-line character is printed; 
if left or right, the horizontal double-line character is printed. The result is a 
crude line-drawing capability that generates what looks like piping diagrams for 
nuclear reactors. Figure 8-3 shows a sample drawing session. 

This program uses a switch statement to interpret the key being pressed. 
For each of the four cursor control keys, the cursor is first moved in the 
corresponding direction using a printf() statement; then the appropriate graph
ics character is printed using the putch() function. This function is analogous to 
the getch() function we've used before, except that it prints a character on the 
screen, rather than reading a character from the keyboard. 

Notice that we've used #define directives not only for the cursor escape 
sequences, but also for the values of the cursor control keys and graphics 
characters. This not only clarifies the program, it provides a convenient way, 
using comments following the directives, to explain what the codes mean. 

Printing a character causes an automatic right shift of the cursor. We must 
return the cursor to its position under the last character printed, so after any 
character is printed, we need to move the cursor back to the left. 

Moving the Cursor to an Arbitrary Position 
Besides moving the cursor one row or column at a time, we can also move it 
directly to any location on the screen using a somewhat more complex escape 

269 



Chapter 8 

270 

Figure 8-3. Session with draw.c 

sequence. This sequence starts with the usual escape character, '\xlB', followed 
by the left bracket. Then there is a number representing the row we want the 
cursor to move to, then a semicolon, then another number representing the 
column we want to move to, and finally a lowercase 'f'. Figure 8-4 shows the 
format of this sequence . 

.-------- 18 hex 

bracket 

Figure 8-4. Format of Cursor-Positioning Sequence 

The following program demonstrates this sequence in use: 

/* position.c */ 
/* demonstrates cursor 
#define TRUE 1 
#define CLEAR "\x18[2J" 
#define ERASE "\x1B[K" 
mainO 
{ 

position command */ 

/* clear screen */ 
/* erase line */ 



Keyboard and Cursor 

int row=1, col=1; 
print fC CLEAR); 
while (TRUE) 

{ 

pr i n t fC 11 \x1 B [ 23 ; 1 f 11
) ; 

pri ntfCERASE); 
/* cursor at row=23, col=1 */ 
/* erase line */ 

} 

number (form 10,40): 11
); printf( 11 Type row and column 

scanf( 11 %d,%d 11
, &row, &col); 

printfC 11 \x1B[%d;%df 11
, row, col>; 

printf( 11*(%d,%d) 11
, row, col>; 

} 

/* get coordinates */ 
/* position cursor */ 
/* print coordinates */ 

This program clears the screen with the sequence 11 \x1B[2J" and cycles in the 
while loop, waiting for the user to type a pair of coordinates. The prompt to the 
user is always printed low on the screen, at row 23, so it won't interfere with the 
coordinates to be plotted; this is accomplished with the statement: 

pr i n t fC 11 \x1 B [ 23 ; 1f 11
) ; 

Another escape sequence, 11 \xlB(K11
, then erases from the cursor position to the 

end of the line; finally the prompt itself is printed, inviting the user to type in 
the row and column numbers, separated by a comma. When the coordinates are 
typed in, the program moves the cursor to this location, prints an asterisk, and 
labels the location with the coordinates. 

Here's a sample session: 

*(2,35) 
* (3, 15) 

*(4,40) 
*(5,5) 

*(6,30> 
*(7,20> 

*(9,10> 
*(10,1) 

Lower down on the screen is the prompt: 

Type row and column number (form 10,40): 10,1 

which will remain in the same place while the program is running. 

Writing Anywhere on the Screen 

Here's another program that uses the cursor-positioning sequence. This one 
prints two menus, positioning them along the top of the screen. Menus are 
popular because they enable the user to make a selection from a list, rather than 
having to remember complex commands. Here's the listing: 

/* putmenus.c */ 
/* demonstrates placing text on screen */ 

271 



Chapter 8 

272 

#define SIZE1 5 /* # of items on menu1 */ 
#define SIZE2 4 /* # of items on menu2 */ 
#define CLEAR "\x1BE2J" /* clears screen */ 
void displayCchar **, int, int>; /*prototype*/ 

main() 
{ 

} 

static char *menu1[J = 
{ "Open", 

"Close", 
"Save", 
"Print", 
"Quit", }; 

/*first menu*/ 

static char *menu2EJ = /* second menu */ 
{ "Cut", 

"Copy", 
"Paste", 
"Reformat", }; 

printfCCLEAR); 
displayCmenu1,SIZE1,20); 
displayCmenu2,SIZE2,40>; 
get ch 0; 

/* clear screen */ 
/*display first menu*/ 
/* display second menu */ 
/* exit on any keystroke */ 

/*display() */ 
/* displays menu at given column number */ 
void displayCchar **arr, int size, int hpos) 
/* arguments: array, array size, column */ 
{ 

} 

int j; 

for C j =O; j <size; j ++) 
{ 

/* for each menu item */ 

printfC"\x1BE%d;%df", j+1, hpos); /*position cursor*/ 
printfC"%s\n", *(arr+j) >; /*print item*/ 
} 

The items for each menu are stored as an array of pointers to strings. The 
program then uses a function to display the menus. The function positions the 
cursor using the ANSI.SYS cursor-positioning sequence, taking the row number 
from the number of the item on the menu and the column number passed from 
the main program. The menu item is then printed out at that location. 

The output of the program looks like this: 

Open 
Close 
Save 
Print 
Quit 

Cut 
Copy 
Paste 
Reformat 



Keyboard and Cursor 

In a larger program a similar function could be used to print as many menus as 
desired or to print text in columns. 

We will soon show a more sophisticated version of this menu program, but 
first we need to explore another aspect of the ANSI.SYS file: the ability to 
change character attributes. 

Character Attributes 
Every character displayed on the monochrome screen is stored in the com
puter's memory as two bytes. One byte contains the normal code for the charac
ter; while the other byte contains the character's attribute. The "attribute" of a 
character describes its appearance: blinking, printed in bold (intensified), under
lined, or printed in reverse video-black on white instead of the normal white 
on black. 

Every character is stored in the monochrome display memory as two 
bytes: one for the ASCII code of the character and one for the attribute. 

The attribute of a character or string can be set using an ANSI.SYS escape 
sequence. The sequence, following the usual escape character and bracket, 
consists of a number, followed by the letter 'm'. Here's a list of the numbers that 
produce effects in the monochrome display: 

0 Turns off attributes: normal white on black 

1 Bold (high intensity) 

4 Underline 

5 Blinking 

7 Reverse video: black on white 

8 Invisible: black on black 

Figure 8-5 shows the format for the sequence to turn on blinking characters. 

~F. 
"\x1 B [5m" 

1 B hex 

bracket 

number indicates 
type of attribute 

letter m 

Figure 8-5. Format of Attribute Control Sequence 

273 



Chapter 8 

274 

These sequences are sent during the printing process. Once a particular 
attribute has been turned on, all characters printed from then on will have this 
attribute. The attribute will remain in effect until turned off with another 
escape sequence. 

Here's a program that demonstrates the character attributes: 

/* attrib.c */ 
/* changes graphics attributes */ 
#define NORMAL "\x1B[Qm" 
#define BOLD "\x1B[1m" 
#define UNDER "\x1B[4m" 
#define BLINK "\x1 B [Sm" 
#define REVERSE "\x1B[7m" 
main 0 
{ 

} 

printfC"Normal %s Blinking %s Normal \n\n", BLINK, NORMAL>; 
printf("Normal %s Bold %s Normal\n\n", BOLD, NORMAL>; 
printfC"Normal %s Underlined %s Normal\n\n", UNDER, NORMAL>; 
printf("Normal %s Reversed %s Normal\n\n", REVERSE, NORMAL>; 
pri ntfC"%s %s Reversed and blinking %s", BLINK, REVERSE, NORMAL); 

Figure 8-6 shows what the output looks like, although of course the blinking 
attribute cannot be effectively rendered on paper. (If you're using a color moni
tor, underlining may be shown by a different color.) 

this word blinks 
on and off 

I 
Normal Blinking Normal 

Normal bold Normal 

Normal Underlined Normal 

Norma l IU@§l@•i Norma l 

Rev~rsed and blinki~9: 

\ 
this phrase blinks 
on and off 

Figure 8-6. Output of the attrib.c Program 

As you can see from the last line of the program, attributes can be combined: 
you can use any combination you like as long as it's logically consistent. You 
can't combine reverse video and invisible, or reverse video and underlining. 



Keyboard and Cursor 

Selectable Menu 

Now that we know something about operating the ANSI.SYS file, we can put 
this knowledge to work in a more sophisticated program: a "selectable menu." 
By this we mean a menu on which different items will be "highlighted" (dis
played in reverse video) as the user moves up and down the menu with the 
arrow keys. 

When it is first started, the program displays a menu with five items: 
Open, Close, Save, Print, and Quit. By operating the up-arrow and down-arrow 
keys, the user can cause any of these items to be displayed in reverse video. If 
the user presses the [Enter] key while a particular item is highlighted, an action 
corresponding to that item will be performed. In this particular program the 
action on four of the items is the same: the name of the item selected is printed 
out. Of course in a real application program more substantive actions would 
follow from the menu selections. The fifth item, Quit, behaves just as it does in 
more serious programs; selecting it causes the program to terminate and control 
to return to the operating system. 

For brevity, we have not made all program listings in this book completely 
ANSI-compatible, but this one is. It includes all appropriate header files, de
clares main(), and should compile with no warning messages, even at level 3. 

Here's the listing: 

/* menu.c */ 
/* demonstrates simple menu */ 
#include <stdio.h> 
#include <conio.h> 
#include <process.h> 
#define TRUE 1 
#define NUM 5 
#define CLEAR "\x1B[2J" 
#define ERASE "\x1B[K" 
#define NORMAL "\x1B[Qm" 
#define REVERSE "\x1B[7m" 
#define HOME "\x1B[1;1f" 
#define BOTTOM "\x1B[20;1f" 
#define U_ARRO 72 
#define D_ARRO 80 
#define ENTER 13 

/* for printf () */ 
/* for getch() */ 
/* for exitO */ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

number of menu items */ 
clear screen */ 
erase line */ 
normal attribute */ 
reverse video attribute */ 
cursor to top left */ 
cursor to lower Left */ 
up-arrow key */ 
down-arrow key */ 
[Enter] key */ 

void display(char **, int, 
int getcode(void); 

int>; /* prototypes */ 

void action(int>; 

void main(void) 
{ 

static char *items[NUMJ = 
{ "Open", 

"Close", 
"Save", 
"Print", 

/* real ANSI usage */ 

/* menu items */ 

275 



Chapter 8 

276 

} 

"Quit", }· 
I 

int curpos; 
int code; 

I* position of selected item */ 

pri ntfCCLEAR); 
curpos=O; 
while (TRUE) 

/* clear screen */ 
/* select top of menu */ 

{ 

display(items,NUM,curpos); /*display menu */ 
code= getcode(); /*check keyboard*/ 
switch (code) /* act on key pressed */ 

{ 

case U_ARRO: /* move selection up */ 
if( curpos>O --curpos; break; 

case D_ARRO: /* move selection down */ 
if( curpos<NUM-1 ) ++curpos; break; 

case ENTER: /* take action */ 
action(curpos); break; 

default: /* wrong key: beep */ 
printf("\x7"); 

} 

} 

/* display() */ 
/* displays menu */ 
void display(char **arr, int size, int pos) 
/* arguments: array, array size, column */ 
{ 

} 

int j; 
pri ntfCHOME); 
for(j=O; j<size; j++) 

{ 

if Cj==pos) 
pri ntfCREVERSE); 

printfC"%s\n", *(arr+j) 
pri ntfCNORMAU; 
} 

pri ntfCBOTTOM); 

/* getcodeO */ 
/* gets keyboard code */ 
int getcode(void) 
{ 

} 

int key; 

if( Ckey=getchO) != Q) 

return(key); 
return( getch() >; 

/* cursor to top left */ 
/* for each menu item */ 

/* if selected, */ 
/* print in reverse video */ 
>; /*print item*/ 
/* restore normal attribute */ 

/* cursor to lower left */ 

/* if not extended code, */ 
/* return key code */ 
/* otherwise, return next code */ 



/* action() */ 
/* performs action based 
void action(int pos) 

on cursor 

{ 

} 

pri ntfCERASE); 
switch(pos) 

{ 

case 0: 
printf("Open"); 

case 1: 
break; 

pri ntfC"C lose"); break; 
case 2: 

printf("Save"); break; 
case 3: 

printf("Print"); break; 
case 4: 

exit CO>; 
} 

Keyboard and Cursor 

position */ 
/* pos is menu position */ 

/* erase Lower line */ 
/* depending on position, */ 

/* cal ls to routines */ 
/* could be inserted here */ 

/* exit from program */ 

This program consists of a main() function and three other functions: one 
to display the menu, one to get the extended code from the keyboard, and one to 
take action depending on the menu item selected. 

The main() function consists of a simple loop. In the loop, the menu is 
first displayed by calling display(), then the keyboard is checked by using 
getcode() to see if the user has pressed an up- or down-arrow or the [Ins] key. 
Moving up or down the menu with the arrows causes a variable, called curpos 
(for CURsor POSition), to be incremented (cursor going down) or decremented 
(cursor going up). If the [Ins] key is pressed, control goes to the action() func
tion, which either prints the name of the menu item or exits from the program if 
Quit has been selected. 

The exit() Function 
Notice the use of the C library exit() function. This function immediately 
terminates the program and passes control back to the calling entity, in this case 
the PC-DOS or MS-DOS operating system. It doesn't matter how deeply you're 
nested within functions; exit() still terminates the entire program. 

If an argument is placed in the parentheses of the exit() function, it is 
returned to the operating system, where it is available to the ERRORLEVEL 
subcommand in the batch file processor. That is, you can put such commands as 

IF ERRORLEVEL 1 GOTO ERR1 

in a batch file to sample the value placed in the exit() function by the program. 
This gives the batch file the chance to change its operation depending on the 
results of the program. 

We won't pursue this matter further here. Ordinarily we'll leave the 
parentheses empty in exit(), but it's nice to know this facility exists if needed in 
more sophisticated systems. 

277 



Chapter 8 

The display() and getcode() Functions 
The display() function uses the identifier HOME to position the cursor at row 1, 
column 1. Then it displays the menu by looping through each menu item, 
incrementing the row number so that each item is printed directly below the 
last. If the number of the row is the same as curpos, it means the menu item is 
selected (curpos keeps track of what's selected), and that item is printed in 
reverse video. 

The getcode() function is similar to the programs used before to read 
extended character codes, except that it waits for the first 0, ignoring ordinary 
one-byte codes. Once a 0 is detected it reads the second byte of the extended 
code and returns it to the calling program. 

Figure 8-7 shows how the top part of the screen looks with the Save item 
selected. If an item is printed out, it is shown farther down the screen, on line 20. 

Open 
Close 
m!m 
Print 
Quit l The highlighting moves from item 

to item in response to the cursor 
control keys. 

Figure 8-7. Operation of the menu.c Program 

The menu.c program could be used as the basis for a more powerful menu
driven program. Menus could be added, and these could be made into "pull
down" menus; that is, their contents normally would be hidden, but a particular 
menu would be displayed when selected with the left or right arrow. 

Function Key Assignment Using ANSI.SYS 

278 

Let's turn our attention to another capability of the ANSI.SYS file: assigning 
different strings to the function keys. 

Assigning strings to function keys enables you to configure your keyboard 
for the kind of work you usually do. For instance, if you write a lot of C 
programs, you might want to list the C source files in a particular directory: 

C>dir *.c 

If you could assign this string to a function key, you could save yourself a lot of 
time printing this phrase. The convenience would be even greater for longer 
commands: 

type \accounts\1987\march\receive.dat 

Here's a program that performs just this sort of function key reassignment. 

/* assign.c */ 
/* assigns function key to string typed by user */ 



Keyboard and Cursor 

main() 
{ 

} 

char string[81J; 
int key; 
printfC"Enter number of function key: "); 
gets(string>; 
key= atoi(string>; 
puts("Enter string to assign to that key:"); 
gets(string>; 
pri ntfC"\x1 B[Q;%d; \"%s\";13p", key+58, string); 

Probably the most difficult part of this program to unravel is the escape 
sequence in the final printf () statement. The escape sequence for assigning a 
string to a function key is shown in Figure 8-8. 

r--------- usual escape code: 1 B hex plus bracket 

..--------- first byte of extended code 
for function key 

.--------- semicolon 

..-------- second byte of extended 
code for function key 

..------- semicolon 

.....------ string to be assigned 
in quotes 

ft 
semicolon 

carriage return 

lletterp 

,->--.. ,..-. ~ i 
\x1srn;~~rJ'T(3p 

! d. . 
%d \ " % \" _use in printf() 
o oS statement 

Figure 8-8. Format of Function Key Assignment Sequence 

If this convoluted syntax isn't enough to make you abandon programming 
in favor of woodcarving, nothing will be. 

Because quotes cannot be used in a string in C, they must be represented by 
backslash-quotes ( \" ). Since we want to use variables for the number of the 
function key and the string to be assigned to it, we represent these with the format 
specifiers %d and %s, which the function replaces with the variables key+ 58 and 
string. The function obtains these values from the user, plugs them into the string, 
executes the printf () statement, and voila, the function key is reassigned. 

Avoiding scanf() 
Perhaps you're wondering why the gets() and atoi() functions are used to read 
the function key number in the program, rather than a scanf(). The reason is 

279 



Chapter 8 

280 

that scanf () has a number of peculiarities, and one of them is that a newline 
character may be left, unread, in the keyboard buffer after scanf () has finished 
reading a number. For example, if we execute the statement 

scanf("%d", &num); 

the user will type a number, press [Return], and wait for scanf() to digest the 
number. The number will be read and removed from the buffer all right, but 
often (depending on the system) the newline character will be left in the buffer. 
If so, then the next input command (a gets(), for example) will read the newline. 
If the input command is looking for a string, it will see the newline and think 
the user has entered a string with no characters but the newline. 

There are various ways around this problem. One that works on some 
systems is to include a newline in the format string of the scanf() function: 

scanf("%d\n", num); 

This should force scanf () to read the newline from the buffer, since any 
character in the format string matching one in the input string should be read 
and removed from the keyboard buffer. This doesn't work on all systems, 
however, including Microsoft C and MS-DOS. In any case, scanf() is a rather 
large function in terms of the number of bytes it adds to your compiled program, 
so it's nice to have an alternative approach to reading variables. The gets() 
function is preferable for strings, but what about numbers? 

The scanf() function is bulky and does not always behave as one would 
like. 

In this program we use a combination of two functions to read the number 
representing the function key. The first function is gets(), which reads in the 
number as a string. The second function is atoi(), which stands for "ASCII to 
integer." This function takes a string as an argument and returns an integer with 
the same value. In other words, if the string was "21", the function would return 
the number 21. The resulting program, using gets() and atoi(), requires 
substantially less memory than if we had used scanf(). 

Now, our assign.c program works just as it's supposed to, assigning any 
phrase we like to any function key we like. However, we'd like to improve it; 
we'd like to be able to assign the function keys by using this program in a batch 
file. This way, many keys could be automatically assigned when we power up 
our system. Unfortunately, the present version of assign.c requires that its input 
come from the user and not from the parameters of a batch file. What can we 
do? To solve this problem, we need to know about our next topic: command-line 
arguments. 



Keyboard and Cursor 

Command-Line Arguments 
You've probably used applications programs in which, when you invoke the 
program from the operating system, you can type not only the name of the 
program, but various other items as well, such as the name of a file the applica
tion is to work on. A typical example might be 

C>wordproc letter.txt 

where wordproc is an application program and letter.txt is a file this application 
will open and process. Here the string "letter.txt" is used as a "command-line 
argument": an argument that appears on the command line following the C > or 
A> prompt. 

Use of multiple arguments in the command line is clearly a useful feature. 
So how can we access these arguments from within the application? 

Here's another question: will we ever find anything to put inside the 
parentheses of the main() function? 

As you may have guessed, the answers to these seemingly unrelated ques
tions are in fact two sides of a coin. By putting the right things inside the 
parentheses of main(), we can allow our program to read command line argu
ments to its heart's content. C automatically adds the capability to read these 
arguments to all C programs. As programmers, all we need to do is make use of 
it. The following program shows how: 

/* comline.c */ 
/* demonstrates command line arguments */ 
main(argc,argv) 
int argc; 
char *argv[J; 
{ 

int j; 
printf("Number of arguments is %d\n", argc); 
for ( j =O; j <a rg c; j ++) 

printf<"Argument number %2d is %s\n", j, *(argv+j) >; 
} 

If you're using QuickC, there are two ways to handle command-line argu
ments. You can select Set Runtime Options from the Run menu, and type the 
command-line arguments in the Command Line box that appears there. Or, you 
can create an .exe file, quit QuickC, and execute the .exe file from DOS, typing 
in the command-line arguments when you invoke it. We'll assume you're fol
lowing this latter approach. 

Here's a sample run with the program, in which we simply type the words 
"one", "two", and "three" as command-line arguments following the program 
name: 

C>comline one two three 
Number of arguments is 4 

281 



Chapter 8 

282 

Argument number 
Argument number 
Argument number 
Argument number 

0 is C:\MSOFT\PROGS\COMLINE.EXE 
1 is one 
2 is two 
3 is three 

The two arguments used in the parentheses following main() are argc and 
argv. The variable argc is the total number of command-line arguments typed; 
in this case, 4 (the name of the program itself is counted as the first argument). 

The arguments in main(argc,argv) are the number of command-line argu
ments and an array of pointers to the individual arguments. 

The variable argv represents an array of pointers to strings. The strings 
can be accessed by referring to them as * (argv + 1), * (argv + 2), and so on (or in 
array notation, argv[l ], argv[2], etc.). The first string, * (argv + 0), returns the 
complete pathname of the program itself, as we can see in the program output. 

The names argc (for ARGument Count) and argv (for ARGument Values) 
are traditionally used in these roles, but any other name could be used instead 
(although you might confuse tradition-bound C programmers). 

Assigning Function Keys with Command-Line Arguments 

Now that we understand command-line arguments, we can incorporate them 
into the program described in the last section, which reassigns the function 
keys. We'll do this in two steps. 

Here's the first version of the program: 

I* funkeyO.c */ 
/* assigns function key to string typed by user */ 
/* uses command-Line arguments */ 
main(argc,argv) 
int argc; 
char *argv[J; 
{ 

} 

int key; 
ifCargc != 3) 

{ 

printf("example usage: C>funkeyO 2 dir"); 
exit 0; 
} 

key= atoi(argv[1J); 
printfC"\x1B[Q;%d;\"%s\";13p", key+58, argv[2]); 

For simplicity, we've restricted this version of the program to one-word 
strings; in other words, you can assign the string "dir" to a function key, but you 
can't assign "dir * .c" because this string contains two words, and they will be 



Keyboard and Cursor 

treated as two separate command-line arguments. We'll first investigate this 
program and then expand it to handle multiword strings. 

The funkeyO.c program first checks to be sure the user has entered exactly 
three command-line arguments. The first is the program name itself, the second 
is the number of the function key to be assigned, and the third is the one-word 
string to be assigned to that key. Users who have entered the wrong number of 
arguments are shown an example of correct usage; then the program exits so 
they can try again. It is common practice in dealing with command-line argu
ments to perform some of this kind of checking to see if the user appears to 
know what to type in. 

Assuming the number of arguments is correct, the program converts 
argv[l] (or * (argv + 1) if you prefer) into a number, using the atoi() function. 
The argv[2] argument is the one-word string to be typed in. The number and the 
string are then incorporated into the escape sequence, which is transmitted to 
ANSI.SYS using the printf() statement. 

Assigning Function Keys with Multiple Arguments 

Although what we type into the command line appears to be a string of charac
ters, the operating system interprets it as a series of separate variables, with 
each space signaling the end of a variable. To make it possible for our program 
to assign a string with multiple words ("dir * .c", for example) to a function key, 
we must combine the command-line arguments into a single string. 

The following program does this, using the function strcpy() to place the 
first argument in the empty buff er string, and then using the function strcat(), 
which concatenates one string with another, to add a space, and then each 
argument in turn, to string. Here's the listing: 

/* funkey.c */ 
/* assigns function key to string typed by user */ 
/* uses any number of command-Line arguments */ 
main(argc,argv) 
int argc; 
char *argv[l; 
{ 

int key, j; 
char string[80l; 
if(argc < 3) /*if too few*/ 

{ /* arguments, */ 
printfC"exampLe usage: A>funkey 2 dir *.c">; 
exitO; /*then exit*/ 
} 

key= atoi(argv[1]); 
strcpy(string,argv[2l>; 
for(j=3; j<argc; j++) 

/* funct key number */ 
/*first word in Line*/ 
I* if more words, */ 

{ 

strcat(string," "); 
strcat(string,argv[jl); 
} 

I* add space */ 
I* add word */ 

283 



Chapter 8 

if< strcmp(string, "null") == 0 ) /* if string is "null"*/ 
strcpy(string, ""); /* no string */ 

printf<"\x1B[Q;%d;\"%s\";13p", key+58, string); 
} 

If we want to erase the string that has been assigned to a function key, we type 
"null" as our string; the null string will then be assigned to the function key. 

Before we leave the subject of the ANSI.SYS file we should point out some 
of the pluses and minuses of using ANSI.SYS for cursor control. On the plus 
side, it's fairly easy to program the necessary escape sequences to move the 
cursor and perform the other functions of ANSI.SYS. However, it's not a particu
larly fast way to move the cursor, and it requires that the ANSI.SYS file be 
loaded into memory and that the CONFIG.SYS file be properly configured to 
reference it. For a commercial product this might present a problem, since some 
users would not want to go to the trouble of setting up these files. For less 
formal programs, and for exploring the capabilities of the system, ANSI.SYS 
provides a very convenient and powerful group of capabilties. 

In later chapters we'll show how some of these capabilities can be handled 
in ways that are faster and more convenient for the user, although more difficult 
to program. 

There is another programming technique that, like command-line argu
ments, lies in the gray area between C and MS-DOS. This is the process of 
redirection, which we'll examine now. 

Redirection 

284 

The PC-DOS (or MS-DOS) operating system incorporates (in versions 2.0 and 
later) a powerful feature that allows a program to read and write files, even 
when this capability has not been built into the program. This is done through a 
process called "redirection." 

Redirection provides an easy way to save the results of a program; its use is 
similar to that of the [Ctrl] [PrtSc] key combination to save program output to the 
printer, except that the results can be sent to a disk file. This is often a more 
convenient and flexible approach than providing a separate function in the 
program to write to the disk. Similarly, redirection can be used to read informa
tion from a disk file directly into a program. 

Ordinarily, a program derives its input from the "standard input device," 
which is assumed to be the keyboard, and sends its output to the "standard 
output device," which is assumed to be the display screen. In other words, DOS 
makes certain assumptions about where input should come from and output 
should go. Redirection permits us to change these assumptions. 

Output can be redirected to go to a file instead of the screen; input can be 
redirected to come from a file instead of the keyboard. 



Keyboard and Cursor 

If you're using QuickC, the most convenient way to use redirection is to 
compile an .exe file and execute it from the DOS prompt, inserting the redirec
tion symbols as appropriate. 

Redirecting Output 
Let's see how we might redirect the output of a program, from the screen to a 
file. We'll start by considering the simple program shown below: 

/* mirror.c */ 
/* echoes typing to the screen */ 
main() 
{ 

while( getcheO != 'X' ) 

} 

Ordinarily, when we run this program, the getche() function will cause what
ever we type to be printed on the screen, until the character 'X' is typed, at 
which point the program will terminate, as shown in this sample run: 

C>mirror 
All's well that ends well.X 
C> 

However, let's see what happens when we invoke the program from DOS in a 
different way, using redirection: 

C>mirror >file.txt 
C> 

Now when we call the program and type the same phrase, "All's well that ends 
well," nothing appears on the screen! Where did our typing go? We've caused it 
to be redirected to the file called file.txt. Can we prove that this has actually 
happened? Yes, by using the DOS command TYPE: 

C>type file.txt 
All's well that ends well.X 

There's the result of our typing, sitting in the file. The redirection operator, 
which is the "greater than" symbol ( > ), causes any output intended for the 
screen to be written to the file whose name follows the operator. 

The data to be redirected to a file doesn't need to be typed by a user at the 
keyboard; the program itself can generate it. Any output normally sent to the 
screen can be redirected to a disk file. As an example, we could invoke the 
putmenus.c program, developed earlier in this chapter, and redirect its output to 
a file: 

C>putmenus >file.txt 

285 



Chapter 8 

286 

Then if we were to examine file.txt with TYPE, we'd see that the output of 
putmenus.c had been written to the file. Even the cursor control commands 
are saved, so that using TYPE clears the screen before the menus are dis
played. 

This can be a useful capability any time you want to capture the output of 
a program on a file, rather than displaying it on the screen. 

DOS predefines a number of filenames for its own use. One of these names 
is PRN, which stands for the printer. Output can be redirected to the printer by 
using this filename. For example, if you invoke the mirror.c program this way: 

C>mirror >PRN 

anything you type will be printed on the printer. 

Indicating End of File 
You may have noticed the unpleasant-looking 'X' used as the terminating char
acter for the mirror program. When we use the TYPE command, this character 
is read back from the file and displayed on the screen. 

It would be nice if there was a character which indicated to TYPE and other 
commands that the end of the file had been reached. Stored in a file, this command 
would then cause the command to stop reading the file, without itself being 
displayed. There is such a character: '\xlA', which can be obtained by typing the 
[Ctrl] [z] key combination, and that prints out as a small right-facing arrow. 

Let's rewrite our program to terminate on this character: 

/* transfer.c */ 
/* echoes typing */ 
/*to be used with redirection*/ 
main() 
{ 

while( getcheO != '\x1A' ) 

} 

To use this program, we type in a message as before, but this time we terminate 
it with [Ctrl] [z]. This both terminates the program and places the '\xlA' charac
ter in the file. Now when we examine the file with TYPE there will be no visible 
terminating character, since the '\xlA' causes the reading of the file to be 
terminated. 

The '\xlA' character represents an end-of-file. 

Redirecting Input 
We can also redirect input to a program so that, instead of reading characters 
from the keyboard, the program reads them from a file. Happily, we can demon-



Keyboard and Cursor 

strate this with the same program, transfer.c, we used to demonstrate redirec
tion of output. This is because the program both accepts input from the 
keyboard and outputs it to the screen. 

To redirect the input, we need to have a file containing something to be 
printed. We'll assume we've placed the message "The greatest of these is char
ity" in the file called file.txt using a word processor (or redirecting the output of 
transfer.c). Then we use the "less than" sign ( < ) before the file name: 

C>transfer <file.txt 
The greatest of these is charity.> 
C> 

The phrase is printed on the screen with no further effort on our part. Using 
redirection we've made our transfer.c program perform the work of the DOS 
TYPE command. 

Figure 8-9 shows how redirected input and output look compared with 
normal input and output. 

I c>prog <f i Le1. txt I 

w-
f i Le1. txt redirected 

input 

c>prog 

program 

prog.c 

program 

prog.c 

normal 
output 

redirected 
output 

Screen 

~ 

D -
illl] 

......... _ ..... 

lc>prog >file2.txtj 

w 
file2.txt 

~ 

D illl] 

~ -' 

Figure 8-9. Normal and Redirected Input/Output 

287 



Chapter 8 

288 

Both Ways at Once 

Redirection of input and output can be used together; a program's input can come 
from a file via redirection, while at the same time its output is being redirected to a 
file. In DOS nomenclature, we can say the program acts as a filter. 

To demonstrate this process, we'll use a slightly fancier program than 
before. Instead of simply storing and retrieving files in their original form, we'll 
develop a pair of programs, one to code a message and another to decode it. 

Here's the program that does the coding: 

/* code.c */ 
/*encodes file*/ 
/*to be used with redirection*/ 
#define CTRL_Z '\x1A' 
mainO 
{ 

} 

char ch; 
while( (ch=getchO) != CTRL_Z 

putch(ch+1>; 
putch(CTRL_Z); 

This program reads a character, either from the keyboard or-using redirec
tion-from a file, and outputs it in coded form, either to the screen or to another 
file. The code is rudimentary; it consists of adding 1 to the ASCII code for the 
character. Of course any 10-year-old could break this code, but if you're inter
ested you can probably think of ways to make it tougher. 

Notice that we don't encode the '\xlA' character: that's why we leave the 
writing of this character outside the loop. As you can see, we've also #defined 
this character as CTRL_Z. 

Let's assume you've generated a file, called filel.txt, which contains the 
message you wish to code. You can create this file using either the transfer.c 
program with redirection (although it's hard to use because the characters aren't 
echoed to the screen) or by using your word processor. We can verify what's in 
the file this way: 

C>type file1.txt 
Meet me at the hollow tree. 

To code this file, we redirect our input from filel.txt, to code.c, and also redirect 
it to a different file, file2.txt, like this: 

C>code <file1.txt >file2.txt 

Data will be read from filel.txt, coded, and written to file2.txt. Having done 
this, we can use TYPE to see what the coded file looks like. 

C>type file2.txt 
Nffu!nf !bu!uif!ipmmpx!usff/ 



Keyboard and Cursor 

To decode the file, we use a program that looks very much like code.c: 

/* decode.c */ 
/*decodes file coded with code.c */ 
/*to be used with redirection*/ 
#define CTRL_Z '\x1A' 
mainO 
{ 

} 

char ch; 
while( Cch=getchO) != CTRL_Z 

putchCch-1); 
putch(CTRL_Z); 

This program subtracts 1 from the value of each character, thus reversing the 
coding process. We'll write the decoded results to file3.txt. Here's how we apply 
the program, again using double redirection, to our coded file: 

C>decode <file2.txt >file3.txt 

Finally, to prove that both the coding and decoding have worked correctly, we 
print out the file containing the decoded message: 

C>type file3.txt 
Meet me at the hollow tree. 

A point to note about redirection: the output file is erased before it's 
written to, so don't try to send output to the same file from which you're 
receiving input. 

Redirection can be a powerful tool for developing utility programs to 
examine or alter data in files. As an example, see Exercise 3 at the end of this 
chapter. 

Redirection is used to establish a relationship between a program and a 
file. Another DOS operator can be used to relate two programs directly, so that 
the output of one is fed directly into another, with no files involved. This is 
called "piping," and uses the bar character ( : ). We won't pursue this topic, but 
you can read about it in the Disk Operating System manual. 

Summary 
You now can read the codes of the extended character set, so that your program 
can tell when such keys as the function and cursor-control keys are pressed. 
You've also learned how to use the ANSI.SYS file for clearing the screen, 
controlling the cursor, and assigning strings to the function keys. 

You know how your program can interpret command-line arguments 
(words typed following a program name at the C> prompt), and you've seen 
how the input and output of a program can be redirected to come from and be 
sent to disk files, using the DOS redirection operators ( < ) and ( > ). 

289 



Chapter 8 

Finally, you've learned a handful of new functions: exit(), which permits a 
quick return from your program to DOS, putch(), which writes a single charac
ter to the screen, atoi(), which converts from a string to a number, and strcat(), 
which attaches or concatenates two strings together. 

In the next chapter we'll look into structures, an important topic in the C 
language, and we'll see how they and their cousin the union can help access 
other important features of the IBM. 

Questions 

290 

1. The purpose of the extended keyboard codes is to: 

a. read foreign language characters 

b. read letter keys typed with [Alt] and [Ctrl] 

c. read the function and cursor control keys 

d. read graphics characters 

2. How many extended codes are there (including codes that are not used)? 

3. How many bytes are used to represent an extended keyboard code? 

4. True or false: extended keyboard codes represent only single keys such as 
Fl. 

5. Which of the following is the extended code for the Fl key? 

a. 97 

b. 1 78 

c. '\xDB' 

d. 0 59 

6. ANSI.SYS is 

a. a rare nerve disease 

b. an installable device driver 

c. a file enabling expanded keyboard and cursor capability 

d. a file always searched for by DOS on startup 

7. CONFIG.SYS is 

a. a file always searched for by DOS on startup 

b. a file containing instructions for modifying DOS 

c. a file that can tell DOS to install ANSI.SYS 

d. none of the above 



Keyboard and Cursor 

8. Describe what needs to be in the system before ANSI.SYS can be used. 

9. All ANSI.SYS "escape sequences" start with 

a. '\x[' 

b. '[' 

c. '\xlB' 

d. '\xlB[' 

10. Write the escape sequence to clear the screen: ________ _ 

11. True or false: the cursor can be moved to any screen location, but only in 
increments of one row or column. 

12. Write four character attributes: 

a. Bo ---------
b. Bl 

c. Un ---------
d. Re 

13. Write the escape sequence to move the cursor right one column: 

14. True or false: the exit() function causes an exit from a function. 

15. Write a statement that will transform the string str into a number num, 
assuming that str equals "122". 

16. True or false: using ANSI.SYS escape sequences, an arbitrary string can 
be assigned to any function key. 

17. Command-line arguments are: 

a. something that happens in the military 

b. additional items following the C > prompt and a program name 

c. the arguments argc and argv 

d. the arguments argv[O], argv[l], and so forth 

18. Write two program statements which combine the word "steeple" with 
the word "chase" and leave the result in an array called str[]. 

19. Redirection is 

a. sending the output of a program somewhere besides the screen 

b. getting a program from somewhere besides a .exe file 

291 



Chapter 8 

c. getting input to a program from somewhere besides the keyboard 

d. changing the standard input and output devices 

20. Write a DOS command that will cause a program called progl to take its 
input from a file called f 1.c and send its output to a file called f2.c. 

Exercises 

292 

1. Write a program that will enable the user to type in a phrase, echoing 
characters to the screen. If the user presses the left-arrow key (not the 
backspace), the program should erase the character to the left of the cursor, 
so that the whole phrase can be erased one character at a time. Use extend
ed keyboard codes and ANSI.SYS cursor control. 

2. Write a program that uses a command-line argument to perform decimal to 
hexadecimal conversion; that is, the decimal number will be typed on the 
command line, following the program name: 

C>decihex 128 
Hex=80 
C> 

Use long integers so the program can convert values between 0 and 65535. 

3. Write a program that will read a C source code file using redirection, and 
determine if the file contains the same number of left and right braces. This 
program can then be used to check for mismatched braces before compiling. 
Its operation should look like this in the cases where there are unequal 
numbers of braces: 

C>braces <prog.c 
Mismatched braces 
C> 

4. Write a program that will enable a user to type in a phrase and then 
highlight individual letters in the phase in reverse video, as the user moves 
the cursor with the left- and right-arrow keys. 



Structures, Unions, 
and ROM BIOS 

Structures 
Nested structures 
Arrays of structures 
Linked lists 
Unions 
ROM BIOS routines 

9 

293 



9 

In this chapter we explore C's most versatile device for representing data: the 
structure. We'll also describe another data storage mechanism that is in some 
ways similar to a structure, but in other ways is completely different: the union. 
Finally we'll put our knowledge of structures and unions together to find out how 
to access the family of powerful routines built into the IBM's hardware: the Read
Only Memory Basic Input/Output System (ROM BIOS). Knowing how to use the 
ROM BIOS routines will be important when we investigate character and color 
graphics in following chapters. 

Structures 

294 

We have seen how simple variables can hold one piece of information at a time 
and how arrays can hold a number of pieces of information of the same data 
type. These two data storage mechanisms can handle a great variety of situa
tions. But we of ten want to operate on data items of different types together as a 
unit. In this case, neither the variable nor the array is adequate. 

For example, suppose you want a program to store data concerning an 
employee in an organization. You might want to store the employee's name (a 
character array), department number (an integer), salary (a floating point num
ber), and so forth. Perhaps you also have other employees, and you want your 
program to deal with them as elements of an array. 

Even a multidimensional array will not solve this problem, since all the 
elements of an array must be of the same data type. You could use several 
different arrays-a character array for names, a floating point array for salaries, 
and so on-but this is an unwieldy approach that obscures the fact that you're 
dealing with a group of characteristics relating to a single entity: the employee. 

To solve this sort of problem, C provides a special data type: the structure. 
A structure consists of a number of data items-which need not be of the same 
type-grouped together. In our example, a structure would consist of the em-



Structures, Unions, and ROM BIOS 

ployee's name, department number, salary, and any other pertinent information. 
The structure could hold as many of these items as we wanted. Figure 9-1 shows 
the differences among simple variables, arrays, and structures. 

structure: 
many data items 
of different types 

array: 
many data 
items of 
the same 
type 

G -------
simple 

e 
variable: 0 
single data -------
item 

r 

---63---
g -------e 

---41 -- --· 41---

~ 
---22·-- ~~~------

'S: 

-- 19 ---
6"6" ---- ·.so-

--·104-- -------

Figure 9-1. Simple Variables, Arrays, and Structures 

Pascal programmers will recognize a C structure as similar to a record; 
there is no equivalent in BASIC. 

Structures are useful, not only because they can hold different types of 
variables, but also because they can form the basis for more complex data 
constructions, such as linked lists. We'll provide an example of this later on. 

A Simple Structure 

Here's a program that uses a simple structure containing two data items: an 
integer variable num and a character variable ch. 

/* struct.c */ 
/* demonstrates structures *I 
mainO 
{ 

295 



Chapter 9 

296 

struct easy 
{ 

int num; 
char ch; 
}; 

/* defines data type 'struct easy' */ 

/* integer variable in structure */ 
/* character variable in structure */ 

struct easy ez1; /*declares 'ez1' to be */ 
/* of type 'struct easy' */ 

ez1.num = 2; /*reference elements of 'ez1' */ 
ez1.ch = 'z'; 
printf<"ez1.num=%d, ez1.ch=%c\n", ez1.num, ez1.ch >; 

} 

When run, this program will generate the following output: 

C>easy 
ez1.num=2, ez1.ch=Z 

This program demonstrates the three fundamental aspects of using structures: 
declaring the structure type, declaring structure variables, and accessing ele
ments of the structure. We'll look at these three operations in turn. 

Declaring a Structure Type 

The fundamental data types used in C, such as int and float, are predefined by 
the compiler. Thus, when you use an int variable, you know it will always 
consist of two bytes (at least on the IBM) and that the compiler will interpret the 
contents of these two bytes in a certain way. This is not true of structures. Since 
a structure may contain any number of elements of different types, the program
mer must tell the compiler what a particular structure is going to look like 
before using variables of that type. 

In the example program, the following statement declares the structure 
type: 

struct easy 
{ 

int num; 
char ch; 
}; 

This statement defines a new data type called struct easy. Each variable of this 
type will consist of two elements: an integer variable called num, and a charac
ter variable called ch. Note that this statement doesn't declare any variables, 
and so it isn't setting aside any storage in memory. It just tells the compiler what 
the data type struct easy looks like, conveying the plan for the structure. Figure 
9-2 shows the format of a structure type declaration. 

The keyword struct introduces the statement. The name easy is called the 
"tag." It names the kind of structure being defined. Note that the tag is not a 



Structures, Unions, and ROM BIOS 

keyword 

\ 
this name is 
called the "tag" 

I 
struct easy 
~{ elements 

elements~ int num;--- (or "members") 
surrounded char ch;..----- of the 

b b ----} • structure 
y races •\ 

semicolon terminates entire statement 

Figure 9-2. Format of a Structure Type Declaration 

variable name, since we are not declaring a variable; it is a type name. The 
elements of the structure are surrounded by braces, and the entire statement is 
terminated by a semicolon. 

A structure is a data type whose format is defined by the programmer. 

Declaring Structure Variables 

Once we've defined our new data type, we can declare one or more variables to 
be of that type. In our program, we declare a variable ezl to be of type struct 
easy: 

struct easy ez1; 

This statement does set aside space in memory. It establishes enough space to hold 
all the items in the structure: in this case, three bytes: two for the integer, and one 
for the character. (In some situations the compiler may allocate more bytes, so 
that the next variable in memory will come out on an even address.) The variable 
declaration struct easy ezl; performs a function similar to such variable declara
tions as float salary and int count; it tells the compiler to set aside storage for a 
variable of a specfic type and gives a name to the variable. Figure 9-3 shows what 
the structure variable ezl looks like, first grouped together conceptually and then 
as the elements of the structure would look in memory. 

Accessing Structure Elements 

Now how do we refer to individual elements of the structure? In arrays, we can 
access individual elements with a subscript: array[7]. Structures use a different 
approach: the "dot operator" ( . ), which is also called the "membership opera
tor." Here's how we would refer to the num part of the ezl structure: 

297 



Chapter 9 

298 

ez1.num 

The variable name preceding the dot is the structure name; the name following 
it is the specific element in the structure. Thus the statements 

ez1.num = 2; 
ez1.ch = 'z'; 

give a value of 2 to the num element of the structure ezl and a value of 'Z' to 
the ch element. Similarly, the statement 

printfC"ez1 .num=%d, ez1 .ch=%c\n", ez1 .num, ez1 .ch ) ; 

causes the values of these two variables to be printed out. 

structure variable 
ez1 

Symbolic representation 
of structure 

Structure stored 
in memory 

Figure 9-3. Structure ez1 Stored in Memory 

The dot operator I . ) connects a structure variable name with a member of 
the structure. 

The dot operator provides a powerful and clear way to specify members of 
a structure. An expression like employee.salary is more comprehensible than 
employee[27]. 



Structures, Unions, and ROM BIOS 

Multiple Structure Variables of the Same Type 

Just as there can be more than one int or float variable in a program, there also 
can be any number of variables of a given structure type. In the following 
program, for example, there are two variables, ezl and ez2, both of type struct 
easy: 

/* struct2.c */ 
/* uses two structure variables */ 
mainO 
{ 

struct easy 
{ 

/* defines data type 'struct easy' */ 

} 

int num; 
char ch; 
}; 

struct easy ez1; 
struct easy ez2; 

/*declares 'ez1' and 'ez2' to be*/ 
/* of type 'struct easy' */ 

ez1.num = 2· '* reference elements of I ez1 ' *' I 

ez1.ch = I z I; 
ez2.num = 3; /* reference elements of I ez2' *' 
ez2.ch = I y I; 

printf<"ez1 .num=%d, ez1.ch=%c\n", ez1.num, ez1.ch ) ; 
printf ("ez2.num=%d, ez2.ch=%c\n", ez2.num, ez2.ch ) ; 

Notice how the elements of the two different structures are accessed: ezl.num 
gets num from the structure ezl, while ez2.num gets it from ez2. 

Combining Declarations 

You can combine in one statement the declaration of the structure type and the 
structure variables. As an example, the struct2.c program can be rewritten 
like this: 

/* struct2a.c */ 
/* combines declarations for structure type and variables */ 
main() 
{ 

struct easy 
{ 

int num; 
char ch; 
} ez1, ez2; 

ez1.num = 2; 
ez1.ch = 'z'; 

/* declares data type 'struct easy' */ 

/*declares 'ez1' and 'ez2' to be*/ 
/* of type 'struct easy' */ 

/* reference elements of 'ez1' */ 

299 



Chapter 9 

300 

} 

ez2.num = 3; /* reference elements of 'ez2' */ 
ez2.ch = 'Y'; 
printfC"ez1.num=%d, ez1.ch=%c\n", ez1.num, ez1.ch >; 
printfC"ez2.num=%d, ez2.ch=%c\n", ez2.num, ez2.ch ); 

The effect is the same as that provided by the separate statements, but the 
format is more compact (though perhaps less clear). 

Entering Data into Structures 

Let's examine a slightly more realistic programming example. This involves 
placing data into structures and reading it out again. This will be the first 
version of a program that will evolve throughout the chapter. Our goal, which 
will require several intermediate steps, is to develop a simple database program 
that will demonstrate one of the most useful ways data can be organized in C: as 
an array of structures. 

In the following program we construct a database for a typical employee 
category: the secret agent. If you're setting up a clandestine operation in a 
foreign country, the program will be right up your dark alley. If your needs are 
more pedestrian, you'll find the program is easily adaptable to other sorts of 
personnel. 

In this program the database stores two items of information about each 
secret agent: a name, represented by a character array, and a code number, 
represented by an integer. This information is entered into the program by the 
user and is then printed out again by the program. In this version of the program 
there is space to store the data for only two agents; in later versions we'll show 
how to store the data for more agents. 

Here's the program: 

/* twoagent.c */ 
/* stores and retrieves 
#include "stdio.h" 
mainO 

data for two secret agents */ 

{ 

struct personnel 
{ 

char name [30J; 
int agnumb; 
}; 

struct personnel agent1; 
struct personnel agent2; 

/* define data structure */ 

/* name */ 
/* code number */ 

/* declares a struct variable */ 
/* declares another one */ 

printfC"\nAgent 1.\nEnter name: "); /*get first name*/ 
gets(agent1.name); 
printfC"Enter agent number (3 digits): "); /*get number*/ 
scanf("%d", &agent1.agnumb); 
fflush(stdin); /* clear buffer*/ 



Structures, Unions, and ROM BIOS 

} 

printfC"\nAgent 2. \nEnter name: "); /* get 2nd name */ 
gets(agent2.name); 
printfC"Enter agent number (3 digits): "); /*get number*/ 
scanf( 11 %d 11

, &agent2.agnumb); 

printf("\nList of agents:\n" ); 
printfC" Name: %s\n", agent1.name); /*first agent*/ 
printfC" Agent number: %03d\n", agent1.agnumb); 
printfC" Name: %s\n", agent2.name); /* second agent */ 
printf(" Agent number: %03d\n", agent2.agnumb); 

We declared a structure type called personnel, which will be used as the 
model for the structure variables that hold the data for the two agents. The 
structure variables agent! and agent2 are then declared to be of type struct 
personnel. 

Data is then placed into the appropriate structure elements using the state
ments 

gets(agent1.name); 

and 

scanf( 11 %d 11
, &agent1.agnumb>; 

These statements are similar to those that we would use for simple variables, 
but the dot operator indicates that we're dealing with structure elements. 

Similarly, the four printf () statements print out the contents of our small 
database. 

The scanf() Problem: Round Two 
Perhaps you noticed a new function in the program above: fflush(). What is its 
role in the program? In the last chapter we mentioned that scanf() left a newline 
character in the keyboard buffer, where it lay in wait to trick the next input 
statement into thinking that it had read nothing but the newline. Our earlier 
solution to this problem involved using a combination of the gets() and atoi() (or 
atof()) functions to eliminate scanf() altogether. 

The twoagent.c program uses another approach: the fflush() function, 
which is designed to remove or "flush out" any data remaining in a buffer. The 
function, though, must be told which input/output device to act on. C recognizes 
several standard names for I/O devices; here we use "stdin", which means the 
"standard input" device: the keyboard. (We'll learn more about these standard 
names in the chapter on files.) 

We need to define "stdin" so that the C compiler will understand it. This 
definition goes in the file STDIO.H, so we must compile that file along with our 
source code; hence the statement #include "stdio.h" at the beginning of the 
program. 

301 



Chapter 9 

302 

Here's a sample run: 

Agent 1 . 
Enter name: Harrison Tweedbury 
Enter agent number C3 digits): 

Agent 2. 
Enter name: James Bond 
Enter agent number (3 digits): 

List of agents: 
Name: Harrison Tweedbury 
Agent number: 102 
Name: James Bond 
Agent number: 007 

102 

007 

Notice that we can print out leading zeros: this is accomplished by 
preceding the field width in the printf () statement with a zero: %03d. 

Figure 9-4 shows how the structure variable agent! looks symbolically 
and how it looks stored in memory. 

[iE) 
agnumb 

structure agent1 

Symbolic representation 
of structure 

Structure 
stored in 
memory 

Figure 9-4. Structure agent1 Stored in Memory 



Structures, Unions, and ROM BIOS 

Let's look at some other structure operations that will be useful later on: 
initializing structures, passing their values in assignment statements, and using 
them as arguments to functions. 

Initializing Structures 

Like simple variables and arrays, structure variables can be initialized-given 
specific values-at the beginning of a program. The format used is quite similar 
to that used to initialize arrays. 

Here's an example, using a modified version of our twoagent.c program. In 
this case the data on the two agents is contained in initialization statements 
within the program, rather than being input by the user: 

/* initage.c */ 
/* demonstrates initialization of structures */ 

struct personnel '* defines data structure */ 
{ 

char name[30J; '* name */ 
int agnumb; '* code number */ 
}; 

struct personnel agent1 = I* initializes struct variable */ 
{ "Harrison Tweedbury", 012 }; 

struct personnel agent2 = 
{ "James Bond", 007 }; 

I* initializes another one */ 

mainO 
{ 

printf("\nList of agents:\n" >; 
printfC" Name: %s\n", agent1.name>; /*first agent*/ 
printfC" Agent number: %03d\n", agent1.agnumb>; 
printfC" Name: %s\n", agent2.name>; /*second agent */ 
printf(" Agent number: %03d\n", agent2.agnumb); 

} 

Here, after the usual declaration of the structure type, the two structure vari
ables are declared and initialized at the same time. As with array initialization, 
the equal sign is used, followed by braces enclosing a list of values, with the 
values separated by commas. 

When this program is executed it will generate output similar to that of our 
previous version. 

Assignment Statements Used with Structures 

In the original version of C defined by Kernighan and Ritchie, it was impossible 
to assign the values of one structure variable to another variable of the same 
type using a simple assignment statement. In modern versions of C, including 

303 



Chapter 9 

304 

the Microsoft C compiler, this is possible. That is, if agentl and agent2 are 
structure variables, the following statement can be used: agent2 = agentl;. 

The value of one structure variable can be assigned to another structure 
variable of the same type. 

This is an important capability, so let's look at an example of its use. In this 
modification of our secret agent program, information is obtained from the user 
about one agent and is then assigned to a second structure variable, using an 
assignment statement: 

/* twins.c */ 
/* demonstrates assignment of structures */ 
main() 
{ 

} 

struct personnel 
{ 

char name [30J; 
int agnumb; 
}; 

struct personnel agent1; 
struct personnel agent2; 

/* define data structure */ 

/* name */ 
/* code number */ 

/* declares a struct variable */ 
I* declares another one */ 

printf<"\nAgent 1. \nEnter name: "); /* get first name */ 
getsCagent1.name>; 
printf("Enter agent number (3 digits): "); /*get number*/ 
scanfC 11%d 11

, &agent1.agnumb); 

agent2 = agent1; 

printf("\nList of agents:\n" >; 

/* assigns one structure */ 
/* to another */ 

printf(" Name: %s\n", agent1.name>; /*first agent */ 
printf(" Agent number: %03d\n", agent1.agnumb); 
printf(" Name: %s\n", agent2.name); /*second agent */ 
printfC" Agent number: %03d\n", agent2.agnumb>; 

When we run this program, data on two agents will be printed out as before, but 
it will be exactly the same data for both agents. 

This is a rather amazing capability when you think about it: when you 
assign one structure to another, all the values in the structure are actually being 
assigned, all at once, to the corresponding structure elements. Only two values 
are assigned in this example, but there could be far more. Simple assignment 
statements cannot be used this way for arrays, which must be moved element by 
element. 



Structures, Unions, and ROM BIOS 

Nested Structures 

Just as there can be arrays of arrays, there can also be structures that contain 
other structures. This can be a powerful way to create complex data types. 

As a simple example, imagine that our secret agents are sent out as a team, 
consisting of one "chief" and one "indian." The following program creates a 
structure with the tag team. This structure consists of two other structures of 
type personnel. 

/* team.c */ 
/* demonstrates nested structures */ 

struct personnel 
{ 

char name [30J; 
int agnumb; 
}; 

struct team 
{ 

/* defines structure type */ 

/* name */ 
/* code number */ 

/* defines structure type */ 

struct personnel chief; 
struct personnel indian; 
}; 

/* structure within structure */ 
/* structure within structure */ 

struct team team1 = /* declares and */ 
{ { "Harrison Tweedbury", 102 }, 

{ "James Bond", 007 } }; 
/* initializes struct */ 
/* variable 'team1' */ 

main 0 
{ 

} 

printfC"\nChief:\n" >; 
printfC" Name: %s\n", team1.chief.name); 
printfC" Agent number: %03d\n", team1.chief.agnumb); 
printf("Indian:\n" >; 
printfC" Name: %s\n", team1.indian.name); 
printfC" Agent number: %03d\n", team1.indian.agnumb); 

Figure 9-5 shows the arrangement of nested structures. 
Let's look at some details in this program. 
First, we've declared a structure variable teaml, which is of type team, 

and initialized it to the values shown. As when multidimensional arrays are 
initialized, nested braces are used to initialize structures within structures. 

Second, notice the method we used to access the elements of a structure 
that is part of another structure. Here the dot operator is used twice, as in the 
expression 

team1.chief.name 

This refers to element name in the structure chief in the structure team 1. 

305 



Chapter 9 

306 

IH!alrll rm 
name[3QJ 

fJE) 
agnumb 

structure chief 

IJ I aim It rm 
name[30J 

I 007 I 
agnumb 

structure indian 

structure team1 

-- 102 -

J -------a -------
m 

Figure 9-5. Structure team1 Stored in Memory 

chief 

team1 

indian 

Of course, the nesting process need not stop at this level; we can nest a 
structure within a structure within a structure. Such constructions give rise to 
variable names that can be surprisingly self-descriptive, for instance: 

triumph.1962.engine.carb.bolt.Large 

Passing Structures to Functions 

In the same way that it can be passed in an assignment statement, the value of a 
structure variable can also be passed as a parameter to a function. This is a 
powerful feature that greatly simplifies the use of functions and thus the writing 
of well-constructed modular programs that use structures. 

As an example, we'll rewrite our twoagent.c program to use functions to 
obtain the data about the agents from the user and to print it out. This is another 
step along the road to being able to access an array of structures, which is one of 
the most natural ways to model a database. Here's the program: 

/* passtwo.c */ 
/* stores two agents */ 
/* demonstrates passing structures to functions */ 
#include <stdio.h> /*for printf(), etc. */ 
struct personel newname(void); /*prototypes */ 
void List(struct personel>; 



struct personel 
{ 

char name [30J; 
int agnumb; 
}; 

void main(void) 
{ 

} 

struct personel agent1; 
struct personel agent2; 

agent1 = newname(); 
agent2 = newname(); 
list(agent1); 
list(agent2); 

/* newnameO */ 

Structures, Unions, and ROM BIOS 

/* define data structure */ 

/* agent name */ 
/* agent number */ 

/* declare structure variable */ 
/* declare another one */ 

/* get data for first agent */ 
I* get data for 2nd agent */ 
/*print data for first agent */ 
I* print data for 2nd agent */ 

/* puts a new agent in the database */ 
struct personel newname(void) 
{ 

struct personel agent; 

printf ("\nNew agent\nEnter 
gets(agent.name); 
printf<"Enter agent number 
scanf (11 %d 11

, &agent.agnumb); 
fflush (stdi n); 
return(agent); 

} 

/* listO */ 
/* prints data on one agent */ 
void list(struct personel age) 
{ 

printf("\nAgent: \n 11
); 

name: II) ; 

(3 digits): 

printf( 11 Name: %s\n 11
, age.name); 

'* new structure */ 

I* get name */ 

II) ; /* get number */ 

'* clear buffer */ 
'* return struct */ 

/* from main */ 

printf< 11 Agent number: %03d\n", age.agnumb); 
} 

Since both functions, as well as the main program, need to know how the 
structure type personnel is declared, this declaration is made global by placing 
it outside of all functions, before main(). The functions main(), newname(), 
and list() declare their own internal structure variables, called agent 1 and 
agent2, agent, and age; to be of this type. 

The function newname is called from the main program to obtain infor
mation from the user about the two agents. This function places the information 
in the internally declared structure variable, agent, and returns the value of this 
variable to the main program using a return statement, just as if it were 
returning a simple variable. The function newname() must be declared to be of 
type struct personnel in main(), since it returns a value of this type. 

307 



Chapter 9 

308 

The main program assigns the values returned from newname() to the 
structure variables agentl and agent2. Finally main() calls the function list() 
to print out the values in agentl and agent2, passing the values of these two 
structures to the function as variables. The list() function assigns these values to 
an internal structure variable age and accesses the individual elements of this 
structure to print out the values. 

Arrays of Structures 
We now know enough to realize our goal of creating an array of structures, 
where each structure represents the data for one secret agent. This is a more 
ambitious program. We've provided a simple user interface, consisting of a 
choice of two single-letter selections. If the user types an 'e', the program will 
allow information on one agent to be entered. If the user types an 'l', the 
program will list all the agents in the database. 

We've also added an additional item of information: the agent's height (a 
floating point variable), just to prove that structures can have more than two 
elements. Here's the listing: 

/* agent1.c */ 
/*maintains list of agents in memory*/ 
#include <stdio.h> /* for printf() */ 
#include <conio.h> /* for getche() */ 
#define TRUE 1 
void newname(void); 
void listallCvoid); 

struct personel 
{ 

char name [30J; 
int agnumb; 
float height; 
}; 

/* prototypes */ 

/* define data structure */ 

/* name */ 
/* code number */ 
/* height in inches */ 

struct personel agent[SQJ; 
int n = O; 

/* array of 50 structures */ 
/*number of agents listed*/ 

void main(void) 
{ 

int ch; 
while CTRUE) 

{ 

printf("\nType 'e' to enter new agent"); 
printf("\n 'l' to list all agents:"); 
ch = getche 0; 
switch (ch) 

{ 

/* print */ 
/* selections */ 
/* get choice */ 

case 'e': /* enter new name */ 
newname(); break; 

case 'l': /* list entire file */ 
listallO; break; 

default: /* user mistake */ 



Structures, Unions, and ROM BIOS 

puts("\nEnter only selections listed">; 
} /* end switch */ 

} /*end while*/ 
} /* end main */ 

/* newnameO */ 
/* puts a new agent in the database */ 
void newname(void) 
{ 

} 

printfC"\nRecord %d.\nEnter name: ", n+1>; /*get name*/ 
gets(agentlbJ[nJ.name>; 
printf("Enter agent number (3 digits): 11 >; /*get number*/ 
scanfC 11%d 11

, &agent[nJ.agnumb>; 
printf("Enter height in inches: "); /*get height */ 
scanfC 11%f 11

, &agent[n++J.height); 
fflush(stdin); /*clear buffer*/ 

/* listallO */ 
/* lists all agents and data*/ 
void listallCvoid) 
{ 

} 

int j; 
if Cn < 1> 

printf("\nEmpty list.\n"); 
for C j =O; j < n; j ++) 

{ 

/* check for empty list */ 

/*print list */ 

printf("\nRecord number %d\n", j+1); 
printfC" Name: %s\n", agent[jJ.name); 
printf(" Agent number: %03d\n", agent[jJ.agnumb); 
printfC" Height: %4.2f\n", agent[jJ.height>; 
} 

And here's a sample run: 

Type 'e' to enter new agent 
'l' to list all agents: e 

Record 1. 
Enter name: Harrison Tweedbury 
Enter agent number (3 digits): 102 
Enter height in inches: 70.5 

Type 'e' to enter new agent 
'l' to list all agents: e 

Record 2. 
Enter name: Ursula Zimbowski 
Enter agent number (3 digits): 303 
Enter height in inches: 63.25 

Type 'e' to enter new agent 
'l' to list all agents: e 

309 



Chapter 9 

310 

Record 3. 
Enter name: James Bond 
Enter agent number (3 digits): 007 
Enter height in inches: 74.3 

Type 'e' to enter new agent 
'l' to list all agents: l 

Record number 1 
Name: Harrison Tweedbury 
Agent number: 102 
Height: 70.50 

Record number 2 
Name: Ursula Zimbowski 
Agent number: 303 
Height: 63.25 

Record number 3 
Name: James Bond 
Agent number: 007 
Height: 74.30 

Following this interaction we could then have continued by adding more 
agents, or listing the agents again, as the spirit moved us. 

Declaring an Array of Structures 
Notice how the array of structures is declared: 

struct personnel agent[50J; 

This statement provides space in memory for 50 structures of type personnel. 
This structure type is defined by the statement 

struct personnel 
{ 

char name [30J; 
int agnumb; 
float height; 
}; 

/* define data structure */ 

/* name */ 
/* code number */ 
/* height in inches */ 

Figure 9-6 shows conceptually what this array of structures looks like. 
For simplicity, we've declared the array of structures as a global variable, 

so that all the functions in the program can access it. 

Accessing Members of Array of Structures 
Individual elements of a structure in our array of structures are accessed by 
referring to the structure variable name agent, followed by a subscript, 
followed by the dot operator, and ending with the structure element desired, as 
in this example: 



Structures, Unions, and ROM BIOS 

/( I I? 
I 

~I 

,,'' III 
I 

/ I I I I I 
I I 

I I 
I I 

I 

I I....-!......,....-. /I J I a L(/ '?f I I - agent [2]. name 
I I 

,1' III agent[2J.agnumb 
I I 

/// ,-, -, -, .... ,-, agent[2J.height 
I I 

I I 
I I 

/I U I r !?/ ~~ .... , ........ -.., - agent [1 J. name 
I I 

1'11 14)" agent[1J.agnumb 
I _...·,.......,......._ 

/ I I I I I agent[1J.height 
I l 

/ l 
I I 

f HI a Ii/ l ....... ,---., - agent [QJ • name 

r:D agent [QJ. agnumb 

·'1 I I I agent [QJ. height 

Figure 9-6. Array of Structures 

agent[nJ.name 

The balance of the program uses constructions we've discussed before. 

The expression agent[n].name refers to element name of the nth 
structure in an array of structures of type agent. 

The overall scheme of this program can be applied to a wide variety of 
situations for storing data about particular entities. It could, for example, be 
used for inventory control, where each structure variable contained data about a 
particular item, such as the stock number, price, and number of items available. 
Or it could be used for a budgeting program, where each structure contained 

311 



Chapter 9 

312 

information about a budget category, such as name of the category, the budgeted 
amount, and the amount spent to date. 

About the only thing lacking to make this program a useful database 
application is a way to store the data as a disk file, a topic we'll explore in 
Chapter 12. 

Pointers and Structures: the Linked List 

Before we leave structures, let's look at one more way that structures can be 
used: the linked list. The linked-list approach to storing data is useful in itself, 
and it also provides a background for further study of the use of pointers with 
functions. This example will give us some insight into how structures can be 
used to create a wide variety of complex data types. 

A linked list consists of structures related to one another by pointers, 
rather than by being members of an array, as in the agent.c example. To demon
strate this construction, we'll rewrite our agent.c program to store data as a 
linked list. The basic idea is that each structure on the list contains a pointer that 
points to the next structure. The pointer in the last structure on the list doesn't 
point to anything, so we give it the value of 0, or null. Figure 9-7 shows how this 
looks. 

Before we can understand the program that will create and manipulate our 
linked list, we need to explore some of the building blocks used in its operation. 
There are two new ideas: how structure elements can be accessed using point
ers, and how an area of memory can be assigned to a variable using pointers and 
the malloc() function. Let's examine each of these in turn. 

Accessing Structure Elements Using Pointers 
Just as pointers can be used to contain the addresses of simple variables and 
arrays, they can also be used to hold the addresses of structures. Here's an 
example that demonstrates a pointer pointing to a structure: 

/* ptrstr.c */ 
/* demonstrates pointers to structures */ 
main() 
{ 

} 

struct xx 
{ 

int num1; 
char ch1; 
}; 

struct xx xx1; 
struct xx *ptr; 

ptr = &xx1; 
ptr->num1 = 303; 

/* declare structure type */ 

/* declare structure variable */ 
/* declare pointer to structure */ 

/* assign address of struct to ptr */ 
/* refer to structure members */ 

ptr->ch1 = 1
Q

1
; 

printf("ptr->num1=%d\n", ptr->num1 ); 
printf<"ptr->ch1=%c\n", ptr->ch1 >; 



.··- .... I __ _, 
ptrnext 

ptrnext 

ptrnext 

NULL 

Structures, Unions, and ROM BIOS 

first 
structure 
variable 

second 
structure 
variable 

third 
structure 
variable 

Figure 9-7. Linked List 

Here we've declared a structure xx and a structure variable xxl of type 
struct xx. You've seen this before, but the next step is new: we declare a 
variable of type "pointer to structure xx" in the statement: 

struct xx *ptr; 

Next we assign the address of the structure variable xxl to ptr using the line 

ptr = &xx1; 

Thus, if the structure xxl happened to be located at address 1000, the number 
1000 would be placed in the variable ptr. 

313 



Chapter 9 

314 

Now, can we refer to the elements of the structure using the pointer instead 
of the structure name itself? As you've learned, if we know the name of a given 
structure variable, we can access its elements using this name and the dot 
operator. For instance, in the example above, the expression xx.numl refers to 
the element num 1 in the structure xx. Is there an analogous construction using 
ptr instead of xx? We can't use ptr.numl because ptr is not a structure but a 
pointer to a structure, and the dot operator requires a structure on the left side. 

A literal approach would be to use the expression (*ptr).numl. Since we 
know that ptr points to xxl, it follows that *ptr is the contents of xxl. So 
substituting in the expression xxl.numl gives us ( *ptr).numl. The 
parentheses are needed around * ptr because the dot operator has higher 
priority than the indirection operator. However, this is an unwieldy expression, 
so C provides a simpler approach: the two-part operator -> is used: a 
combination of the minus and less-than signs called the "arrow operator," as in 
the expression ptr->numl. This has exactly the same effect as (*ptr).numl. 

The ( . ) operator connects a structure with a member of the structure; the 
( -> ) operator connects a pointer with a member of the structure. 

In the ptrstr.c program example above, we've used this construction to 
assign values to the members of the structure, as in the expression 

ptr->num1 = 303; 

Similar constructions are used to read those values back out again with printf() 
statements. 

Allocating Memory: the malloc() Function 
When we declare an array of structures, the compiler allocates enough memory 
to hold the entire array. This is not efficient if we don't come close to filling the 
entire array; in the agent.c example, for instance, we put 3 secret agents in an 
array that could hold 50, so the space for the 47 unused structure variables was 
wasted. 

One of the advantages of using the linked-list approach (which we really 
will demonstrate soon) is that we use only as much memory as is needed to hold 
the data actually entered. Each time we decide to add an agent to the list, the 
program will acquire just enough memory to do the job. The mechanism for 
acquiring this memory is the C library function malloc(). A program can tell 
malloc() how much memory it needs, and malloc() will return a pointer to a 
space in memory just that large. 

Let's look at a short example of the malloc() function at work: 

/* maltest.c */ 
I* tests malloc() */ 
mainO 



Structures, Unions, and ROM BIOS 

{ 

} 

struct xx 
{ 

int num1; 
char ch1; 
}; 

struct xx *ptr; 
int j ; 

printf<"sizeof<struct xx)=%d\n", sizeof<struct xx) >; 
for< j =O; j <4; j ++ > 

{ 

ptr = (struct xx*) malloc( sizeof(struct xx) >; 
printf<"ptr=%x\n", ptr >; 
} 

This program declares a structure type called xx. It calls malloc() four times. 
Each time, malloc() returns a pointer to an area of memory large enough to hold 
a new version of the structure. Note that we don't use a variable definition to set 
aside memory for the structure variables. In effect, the structure variables are 
created by the function malloc(); the program does not know the names of these 
structure variables, but it knows where they are in memory because malloc() has 
returned pointers to them. These structure variables can therefore be accessed, 
using pointers, just as if they had been declared at the beginning of the program. 

Here's the program's output: 

C>maltest 
sizeof(struct xx>=4 
ptr=e66 
ptr=e6c 
ptr=e72 
ptr=e78 

Each time we call malloc() we need to tell it the size of the structure we 
want to store. We could do this by adding up the bytes used by each of the 
elements in our structure, or we can turn the task over to a C library function 
called size of (). This function takes a data type as an argument and returns the 
size in bytes that the data type occupies. For instance, the expression 

sizeof(float) 

would return the value 4, since type float occupies four bytes in memory. 
In our program we've used sizeof() in a printf() statement so we can see 

what value it returns for the size of the structure xx. The surprise is that it 
returns 4, when we would expect it to return 3 (two bytes for the integer numl 
and one byte for the character chl). It does this because the C compiler likes to 
start variables on even-numbered addresses; thus structure sizes are always 
even numbers. 

315 



Chapter 9 

316 

Another surprise is that even though malloc( J is told to return a memory 
area of four bytes, it spaces the starting addresses of these areas six bytes apart. 
(We've used hexadecimal notation for the addresses, a common practice in C 
programming. If hexadecimal is unfamiliar to you, consult Appendix C.) The 
reason for this is less clear, but it doesn't matter too much if malloc(J wastes a 
few bytes here and there, as long as it sets aside enough space for each structure 
variable. 

The key statement in maltest.c is: 

ptr = Cstruct xx *) malloc( sizeof(struct xx) ); 

This statement assigns the pointer value (the address) returned by malloc(J to 
the pointer variable ptr. The argument taken by malloc( J, sizeof (struct xx), is 
the size of the structure. What is the expression (struct xx * J that precedes 
malloc( J? To understand the use of this expression, we need to know about a C 
feature called typecasting, so let's digress briefly to see what this means. 

Typecasting 
Sometimes we need to force the compiler to return the value of an expression as 
a particular data type. For example, suppose we've been using a floating point 
variable flovar in a program, and at some point we want to calculate the square 
root of its value. Microsoft C contains a library routine sqrt(), which will return 
a square root, but the argument sent to this function must be of type double. If 
we send the function a variable of type float, it will return a nonsense result. So 
we need to convert our variable flovar to type double. To do this, we use the 
cast operator, which consists of putting parentheses around the name of the data 
type. In this example we would say: 

answer= sqrt( Cdouble)flovar >; 

The expression (double) causes flovar to be converted from type float to type 
double before it is used. 

We need to perform a similar data conversion on the pointer returned by 
malloc( J, although for a different reason. Remember that the compiler needs to 
know two pieces of information about every pointer: the address of the item 
pointed to and its data type. The malloc(J function returns the address, but it 
conveys no information about the data type. In fact, malloc( J returns a pointer 
of type void*, meaning a pointer to an undetermined data type. In order to 
avoid confusing the compiler, we must ensure that the value returned by 
malloc( J is of type pointer to struct xx. We do this by using a typecast: the 
name of the data type enclosed in parentheses, preceding the value being 
assigned. This forces the value to be of that type, and ensures that the compiler 
will assign a pointer of the correct size to the variable ptr. 

When malloc() returns a pointer to a structure, the compiler must be told 
the type of the structure pointed to. 



Structures, Unions, and ROM BIOS 

Using malloc() 
As a simple example of malloc() at work, we'll rewrite our ptrstr.c example, this 
time using a pointer value obtained from malloc(), rather than using the 
address operator on a declared structure variable as we did in ptrstr.c. 

/* ptrstr2.c */ 
/*demonstrates pointers to structures, uses malloc() */ 
mainO 
{ 

} 

struct xx 
{ 

int num1; 
char ch1; 
}; 

struct xx *ptr; 

/* declare structure type */ 

/* declare pointer to structure */ 

/* get memory to hold structure */ 
ptr = (struct xx*) malloc( sizeof(struct xx) ); 

ptr->num1 = 303; /* refer to members of structure */ 
ptr->ch1 = 'Q'; 
print f<"pt r->num1 =%d\n", pt r->num1 ) ; 
printf<"ptr->ch1=%c\n", ptr->ch1 ); 

Notice the similarities to the earlier version of ptrstr.c. Everything is the same, 
except that the structure variable is not declared in the listing, it is created by 
malloc() at run time. 

With this background under our belts, it's time (finally) to take a look at the 
linked-list version of agent.c. 

The Agent Program Using Linked Lists 
Here's the listing for the program. In many ways it is similar to the earlier agent.c 
program that used an array of structures, but the differences are significant and 
will require some explanation. 

/* agent2.c */ 
/*maintains List of agents */ 
I* uses Linked List */ 
#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 

#define TRUE 1 
void newname(void); 
void Listall(void); 

struct prs 
{ 

char name [30J; 
int agnumb; 

/*for printfO, 'stdin' */ 
/* for getche() */ 
/* for malloc() */ 

/* prototypes */ 

/* define data structure */ 

/* agent's name*/ 
/* agent's number */ 

317 



Chapter 9 

318 

float height; /* height in inches */ 
struct prs *ptrnext; /* ptr to next structure */ 
}; 

struct prs *ptrfirst, *ptrthis, *ptrnew; 

void main(void) 
{ 

int ch; 
ptrfirst = (struct prs *)NULL; 
wh i le (TRUE) 

/* no input yet */ 

{ 

printfC"\nType 'e' to enter new agent"); /*print */ 
printfC"\n 'l' to list all agents:"); /*selections*/ 
ch = getcheO; /* get choice */ 
switch (ch) 

{ 

case 'e': /* enter new name */ 
newname(); break; 

case 'l': /*list entire file*/ 
listallC>; break; 

default: /* user mistake */ 
puts("\nEnter only selections listed"); 

} /* end switch */ 
} /*end while*/ 

} /* end main */ 

/* newname 0 *I 
/* puts a new agent in the database */ 
void newname(void) 
{ /* get space */ 

ptrnew = (struct prs *) malloc( sizeof(struct prs) ); 
if(ptrfirst == Cstruct prs *)NULL) /* if none already*/ 

ptrfirst = ptrthis = ptrnew; /*save addr */ 
else /*not first item*/ 

{ /*go to end of list */ 
ptrthis = ptrfirst; /* (start at begin) */ 
while( ptrthis->ptrnext != (struct prs *)NULL) 

ptrthis = ptrthis->ptrnext; /* find next item */ 
ptrthis->ptrnext = ptrnew; /* pt to new item */ 
ptrthis = ptrnew; /*.go to new item*/ 
} 

printfC"\nEnter name: II) ; /* get name */ 
gets(ptrthis->name); 
printf("Enter number: II) ; /* get number */ 
scanf( 11 %d 11

, &ptrthis->agnumb); 
printf ("Enter height: II) ; /* get height */ 
scanf( 11%f 11

, &ptrthis->height); 
fflush(stdin); /* clear buffer */ 
ptrthis->ptrnext = (struct prs *) NULL; '* this is end */ 

} 



Structures, Unions, and ROM BIOS 

/* ListaLLO */ 
/* Lists all agents and data */ 
void ListaLLCvoid) 
{ 

} 

if Cptrfirst == Cstruct prs *)NULL) /*if empty List */ 
{ printf("\nEmpty List.\n"); return; } /* return*/ 

ptrthis = ptrfirst; /*start at first item*/ 
do 

{ /* print contents */ 
printfC"\nName: %s\n", ptrthis->name >; 
printf("Number: %03d\n", ptrthis->agnumb >; 
printfC"Height: %4.2f\n", ptrthis->height >; 
ptrthis = ptrthis->ptrnext; /* move to next item */ 
} 

while (ptrthis != Cstruct prs *)NULL>; /*quit on null ptr */ 

In operation, this program is much like agent.c, except that it no longer prints 
record numbers; since we do not have an array subscript to work with, it 
complicates the program to keep track of the record numbers (although this 
capability could be easily added to the program if desired). Here's the sample 
interaction with the program: 

C>agent2 
Type 'e' to enter new agent 

'L' to List all agents: e 
Enter name: George Smiley 
Enter number: 999 
Enter height: 64.3 

Type 'e' to enter new agent 
'L' to Li st a LL agents: e 

Enter name: James Bond 
Enter number: 007 
Enter height: 74.25 

Type 'e' to enter new agent 
'L' to List all agents: e 

Enter name: Mata Hari 
Enter number: 121 
Enter height: 58.75 

Type 'e' to enter new agent 
'L' to List all agents: 

Name: George Smiley 
Number: 999 
Height: 64.30 

Name: James Bond 
Number: 007 
Height: 74.25 

319 



Chapter 9 

320 

Name: Mata Hari 
Number: 121 
Height: 58.75 

The challenging part of understanding this program is following what happens 
to the pointers. As we've noted, the basic idea is that each structure variable 
contains a pointer to the next structure on the list; the pointer in the last 
structure contains the null pointer. These pointers are called ptrnext, since they 
point to the next structure. Figure 9-8 shows how this looks, assuming that the 
first structure is assigned the address 3000. 

In addition to the ptrnext variable contained in each structure, the 
program also keeps track of three other pointers declared at the beginning of the 
program. 

One of these pointers, called ptrfirst, will be used to hold the address of the 
first structure in the list. This is a key address, since it's how the program finds the 
list. The pointer is set to null at the beginning of the program by the statement: 

ptrfirst = Cstruct prs *)NULL; 

Let's look at this statement. First, NULL is #defined to be 0 in the file stdio.h; 
this is a standard definition used by C programmers, and since we had included 
the file anyway, to define "stdin," it's easy to use NULL instead of 0. Since this 
value is going to be assigned to a pointer, it must be typecast to the same type as 
the other pointers, namely (struct prs *). 

The main() function is otherwise much the same as in agent.c; it consists 
mostly of a switch statement to route control to different functions. It's in the 
functions newname() and listall() that most of the pointer manipulation takes 
place. 

Adding an Agent to the Database 
If the user wants to add an agent to the database, the program calls on the function 
newname(). This function uses malloc() to get a pointer to a space big enough for 
the structure (40 bytes, as it turns out). This address is assigned temporarily to a 
pointer called ptrnew. If this is the first item to be placed on the list, the ptrfirst 
variable will still be set to null, as the program will discover with the statement 

if(ptrfirst == Cstruct prs *)NULL) 

The program then sets both ptrfirst and ptrthis to the new address in ptrnew. 
The individual items in the structure are then filled in by the user's replies, 
which are assigned to the variables ptrthis-> name, ptrthis-> agnumb, and 
so forth. 

However, if this isn't the first item on the list, the program must work its 
way to the end of the list, so it can change the pointer ptrnext (the last element 
of the structure) from null to the address in ptrnew, thus linking the new item. 
The while loop in newname() is used to move to the end of the list. It starts by 
assigning ptrfirst to ptrthis. Then it looks to see if the expression 

ptrthis->ptrnext 



-0 
c:: 
0 
u 
<ll 
rn 

<ll 

~ 
-cu 
-~ 2 
..c::
- rn 

NULL 

Structures, Unions, and ROM BIOS 

I I I 1srn~~----' 
name[30J CD.._ _____ _ 
agnumb 

I I I t~-----------
hei ght 

ptrnext 

I I I IS ill]~----
name [30J 

OJ-----+--.. 
agnumb 

I I I I 
height 

OJ-------
ptrnextJ 

I I I IJ ITD...._.-
name[30J 

OJ-----+---
agnumb 

I I I I 
height 

OJ-----+--... 
ptrnext 

3000 

--3040--

3040~ 

--3080--

3080~ 

--- 0 ---

Figure 9-8. Structures in the agent2.c Program 

first 
structure 

second 
structure 

third 
structure 

321 



Chapter 9 

322 

(the pointer in the structure currently being looked at) is null. If so, the end of 
the list has been reached. If not, the while loop continues by assigning the 
address in ptrthis-> ptrnext to ptrthis and cycling through the while loop 
again. The operation of moving through the list and adding a new structure to 
the end is shown in Figure 9-9. 

start at 
beginning 
of list 

ptrthis=ptrfirst; 

(ptrthis->ptrnext!=NULL) 

set pointer in 
this structure to 
new structure 

move to new 
structure 

give values to 
elements of 
structure 

move to 
no next item 

on list 

ptrthis=ptrthis->ptrnext; 

ptrthi s- >ptrnext=ptrnew; 

pt rt hi s=pt rnew; 

gets(ptrthis->name); 
etc. 

Figure 9-9. Adding a New Structure to the List 

Displaying the Data on the List 
Displaying the data on the list is a matter of following the chain of pointers from 
one structure to another. The function Iistall() first checks to see if the list is 
empty by checking ptrfirst to see if it is null. If not, it enters a do while loop that 
prints out the elements of the structure pointed to by ptrthis, gets the address of 
the next structure in line from ptrthis-> ptrnext, assigns this address to ptrthis, 
and repeats the process. The loop ends when ptrthis-> ptrnext turns out to be 
null. 

There are many refinements that can be made when using linked lists. For 
instance, the address of the last item on the list is often stored (sometimes as a 
pointer in the first item of the list, which is then treated as a dummy item). 
Having this pointer available avoids having to read through the entire list to add 
a new item to the end; the program can go directly to the last item. This is a 



Unions 

Structures, Unions, and ROM BIOS 

timesaver when the list becomes long. Also, lists can be linked in the backwards 
as well as the forward direction, as we've shown, or they can be circular. 

Deleting an item from a linked list is fairly easy. Say the structure to be 
deleted is B. Then the pointer in the preceding structure, A, is changed to point 
to C rather than B. If it is desired to free the memory used by the deleted 
structure, a library function free() can be used. This function takes as an 
argument a pointer to the structure to be deleted. This technique can result in 
significant memory savings when many items are being added and deleted. 

It is easy to search through linked lists for a particular name or other data 
item. The search program follows the chain of pointers, as in our example, and 
checks each structure to see if it contains the desired item. An exercise at the 
end of the chapter deals with this operation. 

Very complex data organizations can be built on the idea of a structure 
containing a pointer. 

Pointers to structures can be used for many other configurations besides 
the simple linked list we've shown here. For example, there is the tree, where 
each element points to two or more elements, each of which points to other 
elements, and so on. We'll leave these topics to other books. 

Unions have the same relationship to structures that you might have to a distant 
cousin who resembled you but turned out to be smuggling contraband in a third
world country; they may look the same, but they are engaged in different enter
prises. 

Both structures and unions are used to group a number of different variables 
together. But while a structure enables us to treat as a unit a number of different 
variables stored at different places in memory, a union enables us to treat the 
same space in memory as a number of different variables. That is, a union is a 
way for a section of memory to be treated as a variable of one type on one 
occasion, and as a different variable, of a different type, on another occasion. 

You might wonder why it would ever be necessary to do such a thing, but 
we'll be seeing a very practical application soon. First, let's look at a simple 
example: 

/* union.c */ 
/* demonstrates unions */ 
main 0 
{ 

union intflo 
{ 

int i ntnum; 

/* define union of type 'intf Lo' */ 

323 



Chapter 9 

324 

} 

float fltnum; 
} unex; /* declare 'unex' to be type intflo */ 

printfC"sizeofCunion intflo)=%d\n", sizeof(union intflo) >; 
unex.intnum = 734; 
printf("unex.intnum=%d\n", unex.intnum >; 
unex.fltnum = 867.43; 
printfC"unex.fltnum=%.2f\n", unex.fltnum >; 

As you can see, we declare a union type (intflo) and a union variable (unex) in 
much the same way we declare structure types and variables. However, the 
similarity ends there, as we can see from the output of the program: 

C>union 
sizeof(union inflo)=4 
unex.intnum=734 
unex.fltnum=867.43 

Although the union holds a floating point number (fltnum) and an integer 
(intnum) its size is only four bytes. Thus, it is big enough to hold one element 
or the other but not both at the same time. In the program we first give a value 
to the variable unex.intnum and read it out. Then we give a value to 
unex.fltnum and read it out. We can't give values to these two variables at the 
same time, because they occupy the same space in memory; if we assigned 
unex.intnum a value, and then tried to read out a value of unex.fltnum, we'd 
get nonsense because the program would try to interpret an integer as a floating 
point number. Figure 9-10 shows a conceptual view of the union intflo and its 
relationship to memory. 

intnum 

I I I I 1-
fl tnum 

union variable 
unex 

variables 
occupy 
the same 
space 
in memory 

Figure 9-10. Union Variable unex Stored in Memory 

Why use unions? One reason is to use a single variable name to pass data 
of different types. We could rewrite the C library function sqrt(), for example, 
so that instead of requiring an argument of type double, it would accept any 



Structures, Unions, and ROM BIOS 

data type. A union could be used in the function to store the incoming data: any 
data type would be acceptable. The union might look like this: 

union number 
{ 

double dnum; 
f Loat fnum; 
Long Lnum; 
int inum; 
char cnum; 
}; 

In this way the same function would serve for all data types. (The function 
would need to examine the data in the union to determine which type it was or 
it would need to be told the type via a second parameter.) 

Another use for unions is to give the same data different names and treat it 
as different types, depending on the needs of the function using it. We'll see an 
example of this in the next section. But before we go on to that topic we need to 
be familiar with one more C construction. 

A union provides a way to look at the same data in several different ways. 

Unions of Structures 
Just as structures can be nested within each other, so too can unions be nested in 
unions, unions in structures, and structures in unions. Here's an example of a 
structure nested in a union: 

/* unistruc.c */ 
/* demonstrates union of structures */ 

mainO 
{ 

struct twoints 
{ 

int i ntnum1; 
int intnum2; 
} stex; 

union intf Lo 
{ 

struct twoints stex; 
f Loat f Ltnum; 
} unex; 

/* define structure 'twoints' */ 

/* 'stex' is of type struct twoints */ 

/*define union 'intflo' */ 

/* union contains a structure */ 
/* and also a number of type f Loat */ 
/* 'unex' is of type union intflo */ 

printfC"sizeofCunion intflo)=%d\n", sizeofCunion intflo) >; 

325 



Chapter 9 

unex.stex.intnum1 = 734; 
unex.stex.intnum2 = -333; 
printfC"unex.stex.intnum1=%d\n", unex.stex.intnum1 >; 
printf("unex.stex.intnum2=%d\n", unex.stex.intnum2 >; 
unex.fltnum = 867.43; 
printfC"unex.fltnum=%f\n", unex.fltnum >; 
} 

Here's the output of unistruc.c: 

c>unistruc 
sizeof(union intflo>=4 
unex.stex.intnum1=734 
unex.stex.intnum2=-333 
unex.fltnum=867.429993 

In this program we declare a structure type twoints and a structure variable 
stex of that type. The elements of the structure are two integers, intnuml and 
intnum2. We also declare a union type intflo and a union variable unex of that 
type. The elements of the union are the structure stex and a floating point 
variable fltnum. 

As we do with nested structures, we access members of this union of 
structures using the dot operator twice. Thus, 

unex.stex.intnum1 

is the element intnuml in the structure stex in the union unex. 
This configuration, the union of structures, will be important when we 

explore the ROM BIOS. 

The ROM BIOS 

326 

As we noted at the beginning of this chapter, the computers in the IBM family 
come with a set of built-in routines collectively called the ROM BIOS. These 
routines are a permanent part of the machine; in this sense, they are more 
hardware than software. Our C programs can make use of these routines to 
perform a variety of input/output activities. In the remainder of this chapter we'll 
explore the ROM BIOS and see how it can be accessed from C. 

Advantages of Using ROM BIOS 

As the name implies, the BIOS routines mostly handle input/output operations. 
Some of the routines duplicate C library functions. For example, there is a ROM 
BIOS routine to put a character on the screen, similar in operation to putch(), 
and another routine similar to getche(). For many of the routines built into 
ROM, however, there is no equivalent in C. The most important capability 
lacking in the C library is in graphics. For instance, to change graphics modes or 
to put a dot on the graphics screen requires a call to a ROM BIOS routine. As a 



Structures, Unions, and ROM BIOS 

consequence, if you want to exercise control over various graphics operations, it 
is important to know how to access the ROM BIOS. 

Because the routines in ROM BIOS are so closely related to the hardware, 
they often operate faster than the corresponding routine in C. In fact, C func
tions often work by calling a ROM BIOS routine, so calling the routine directly 
from your program cuts out the intermediary and speeds execution. 

ROM BIOS and Non-IBM Compatibles 

IBM clones also contain ROM BIOS routines. In a compatible clone these routines 
exactly duplicate the operation of those in the corresponding IBM machine. 
However, in some MS-DOS computers that are not accurate duplicates of the 
IBM, the operation of the ROM BIOS is different. Thus there can be a disadvan
tage to using the ROM BIOS: you may make it harder to transport your program 
to different computers. 

Overview of the ROM BIOS Library 

There are dozens of ROM BIOS routines. The exact number depends on which 
computer in the IBM family you're using. 

The largest category of routines deals with the video display. There are 
routines to set the video mode, control the cursor size and position, read and 
write characters, and place dots on the color screen, among others. There are 
also ROM routines for other input/output devices, including the diskette drives, 
the serial port, the cassette reader (does anyone ever use this device?), joysticks, 
user-defined devices, the keyboard, and the printer. 

We cannot cover all the ROM BIOS routines in this book; there are far too 
many. For a complete explanation of all the ROM BIOS routines, you have two 
choices. The most fundamental source is the actual assembly language source 
code listing of the routines, which can be found in the IBM Technical Reference 
manual. Comments in these listings explain the workings of the routines. A 
more readable analysis may be found in popular computer books. See the 
bibliography for suggestions. 

In this section we'll explore several ROM BIOS routines; we'll cover more 
graphics-oriented ROM routines in Chapters 10 and 11. 

Accessing the ROM BIOS 

The ROM BIOS routines are written in assembly language and were designed to 
be called by assembly language programs. As a consequence, calling them from 
C is not as simple as calling C library functions. C compilers working on the 
IBM generally provide a method to access these routines, but using this method 
requires at least some understanding of the architecture of the microprocessor 
chip that powers the computer. This chip can be the 8088, 8086, 80286, or 
80386, depending on the particular machine. For our discussion we will assume 
that all these chips operate in the same way. 

327 



Chapter 9 

328 

Microprocessor Architecture for C Programmers 

When we call a C function from a C program, we can pass values using argu
ments placed in the parentheses following the function name, as in the expres
sion strcat(sl,s2). These values (in this example the addresses of strings) are 
placed in an area of memory called the stack, where the function can find and 
operate on them. 

When we use C to call a BIOS routine, the process is somewhat different. 
Instead of values being placed in an area of memory, they are placed in 
hardware devices called "registers." These are somewhat like memory loca
tions, but they have far more capabilities. Registers are the heart of the micro
processor; they are used to perform arithmetic and many other operations, but 
here we are concerned only with using them as locations for passing argu
ments to the BIOS. 

There are a number of registers in the microprocessor; the ones we will be 
most concerned with are shown in Figure 9-11. As you can see, each of these 
four registers, AX, BX, CX, and DX, consists of two bytes. (Either upper- or 
lowercase may be used for register names, so they can be called ax, bx, ex, and 
dx as well.) In some ways the registers are like integer variables in C. They can 
hold two bytes of data, and we can put whatever values we like into them, just 
as we can assign whatever value we want to a variable. Unlike C variables, 
however, the registers are fixed; they are always there, and they always have the 
same names. They can be thought of as special-purpose permanent variables. 

one byte one byte 

'-__ __. ____ ...... AX register 

"-____ .._ __ _.I BX register 

~-_ ..... ___ .... ex register 

DX register 

Figure 9-11. The Main 8086 Registers 

The Dual Role of the Registers 

Another difference between C variables and registers is that registers can be 
accessed in two different ways: either as four two-byte registers, or as eight one
byte registers, as shown in Figure 9-12. 

In the one-byte interpretation each register is split into a high half (AH, BH, 
CH, and DH) and a low half (AL, BL, CL, DL). Although the register itself is the 



Structures, Unions, and ROM BIOS 

one byte one byte 

AH register ._ __ .... I 1,. ___ .I AL register 

BH register I I I BL register 

CH register I I I CL register 

DH register t I t DL register 

Figure 9-12. Registers as One-Byte Storage 

same physical object whether used as one two-byte device or two one-byte 
devices, the rest of the hardware in the chip interprets each differently, and so, 
each must be accessed differently by the software. 

The idea of using the same variable storage in two different ways should 
sound familiar; it is similar to our description of a union in the last section. In 
fact, a union is the mechanism used to communicate with the registers. But 
before we show an example of this we need to explore one other idea. 

Interrupt Numbers 

The ROM BIOS routines are accessed through interrupts. We need not concern 
outselves with exactly how interrupts work; for our purposes an interrupt can 
be thought of as a group of functions. Each of these groups has its own interrupt 
number. For instance, all the routines that deal with the video display use 
interrupt number 10 (hex), and all those that deal with the disk drive use 
number 13 (hex). Thus, in order to call a ROM BIOS routine, we must first know 
its interrupt number. 

An interrupt provides access to a group of ROM BIOS routines. 

To specify a routine within one of these groups, we place a value in the 
one-byte AH register. Various other registers may also hold values, depending on 
the specific function called. 

The int86() Function 

The mechanism used to access a ROM BIOS routine is a C library function 
called int86(). The "int" stands for "interrupt" and the "86" refers to the 8088/ 
8086/80286/80386 family of chips. This function takes the interrupt number and 
two union variables as arguments. The first union represents the values in the 

329 



Chapter 9 

330 

registers being sent to the ROM routine, and the second represents the values in 
the registers being returned from the ROM routine to the C program. Figure 9-13 
shows the format of this function. Notice that the function actually requires the 
addresses of the unions, not the unions themselves (in the same way scanf () 
requires the addresses of numerical variables). 

interrupt number 
(type int) 

register values sent 
to ROM routine 
(type union REGS) 

register values returned r--- from ROM routine 
J (type union REGS) 

int86(INT,&inregs,&outregs) 

Figure 9-13. Format of the int86() Function 

Now, we're ready for an actual example of a program that accesses the 
ROM BIOS. 

Finding the Memory Size 

One of the routines built into the ROM BIOS will return the size of the RAM 
memory installed in the machine. This can be an interesting capability when 
used in a stand-alone program, if you don't happen to know how much memory 
there is in the machine you're using. It can be even more useful to a program 
that uses large amounts of memory, runs on various computers that may have a 
variety of memory sizes, and needs a way to find out just how much memory is 
available. 

The data required for this ROM BIOS routine is summarized in the box. 
We'll use similar boxes for other ROM BIOS routines as we go along. 

ROM BIOS routine: Memory size 

Interrupt 12 hex: Memory size 

Input registers: none. 

Output registers: AX=memory size in Kbytes. 

Here there are only two pertinent items of data about the routine; we 
invoke it by calling interrupt 12 hex and the memory size is read from the AX 
register. (Other ROM BIOS routines will use additional input and output param
eters.) 



Structures, Unions, and ROM BIOS 

Here's the program. 

/* memsizeO.c */ 
/* prints memory size */ 
#define MEM Ox12 
main() 
{ 

struct WORDREGS 
{ 

unsigned int 
unsigned int 
unsigned int 
unsigned int 
unsigned int 
unsigned int 
unsigned int 
}; 

struct BYTEREGS 
{ 

ax; 
bx; 
ex; I 

dx; 
s i; 
di; 
flags; 

unsigned char al, ah; 
unsigned char bl, bh; 
unsigned char cl, ch; 
unsigned char dl, dh; 
}; 

/* BIOS interrupt number */ 

/* registers as 16-bit words */ 

/* registers as 8-bit bytes */ 

union REGS /* either bytes or words */ 
{ 

struct WORDREGS x; 
struct BYTEREGS h; 
}; 

union REGS regs; /* regs to be type union REGS */ 
unsigned int size; 
int86CMEM, &regs, &regs); /*call memory interrupt */ 
size = regs.x.ax; /* get value from AX register */ 
printf("Memory size is %d Kbytes", size >; 

} 

And here's the output generated on a particular machine: 

C>memsizeO 
Memory size is 256 Kbytes 

A Union of Structures 

As you can see, the program uses two structures and a union. The first struc
ture, whose tag is WORDREGS, consists of all the registers in their two-byte 
interpretation. (In assembly language a two-byte piece of data is called a "word," 
hence the name WORD REGS, for "word registers.") The data type used is 

331 



Chapter 9 

332 

unsigned int, since the numbers stored in the registers are not considered to be 
signed. 

The structure declares the four two-byte registers we discussed: the AX, 
BX, CX, and DX registers. It also declares several registers we didn't mention: 
the SI, DI, and FLAGS registers. We don't need these registers in the ROM calls 
we use, but they must appear in the structure, since the int86 function is 
expecting them. 

The second structure, whose tag is BYTEREGS, consists of the same regis
ters interpreted as eight one-byte registers. 

The union consists of these two structures (a construction described in the 
last section). This union creates a set of variables that can be looked at either as 
four two-byte registers or as eight one-byte registers. The WORDREGS structure 
is given the variable name x (since all the two-byte registers end in this letter), 
while the BYTEREGS structure is given the name h (since the high half of the 
registers end in this letter). The union variable declared to be of type REGS is 
called regs. 

Thus to access a register we use the dot operator twice: 

regs.x.bx 

means the BX register, while 

regs.h.cl 

refers to the CL register. 
In our program, we don't need to send any values to the routine, so 

nothing is placed in any of the registers before we call int86( ). Interrupt number 
12 (hex) is unusual in this respect; most interrupt numbers require more infor
mation, as we'll see. Since one argument is not used, we can use the same union 
variable, regs, for both the outgoing and incoming values: 

int86CMEM, &regs, &regs); 

On the return from int86() the memory size has been placed in the AX 
register, which we access in the expression 

size = regs.x.ax 

The data type of size agrees with that of regs.x.ax since they are both unsigned 
integers. 

Using the Declarations in DOS.H 

Actually, in Microsoft C the structures WORDREGS and BYTEREGS and the 
union REGS are already declared in a file called DOS.H. Thus, if we #include 
this file in our program, we can dispense with the explicit declarations, as this 
version of the program shows: 



Structures, Unions, and ROM BIOS 

/* memsize.c */ 
/* prints memory size */ 
#include "dos.h" 
#define MEM Ox12 
main 0 
{ 

/* declares REGS */ 
/* BIOS interrupt number */ 

union REGS regs; /* regs to be type union REGS */ 
unsigned int size; 
int86(MEM, &regs, &regs); /* call video interrupt */ 
size = regs.x.ax; /* get value from AX register */ 
printf<"Memory size is %d Kbytes", size); 

} 

This is certainly a much handier format, although it does not reveal as 
much about what is going on. 

Setting the Cursor Size 

Let's look at an example that requires us to send values to a ROM routine. This 
program will call a ROM routine that changes the size of the cursor, so let's first 
examine how the cursor is created. 

On the monochrome screen the cursor consists of 14 short horizontal lines, 
numbered from 0 to 13 (reading from top to bottom), as shown in Figure 9-14. If 
you're using an EGA color display, there are only nine lines, numbered from 0 to 8. 

scan/ 

lines~ 

space occupied by 
one character 

/ 
0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

L line numbers 

Figure 9-14. The Monochrome Cursor 

The default cursor, the one you are most used to seeing, uses only two of these 

333 



Chapter 9 

334 

lines, 12 and 13, at the bottom of the character position (7 and 8 in EGA). To 
redefine the size of the cursor, we call the BIOS routine at interrupt 10 (hex), 
with the AH register containing 1. 

ROM BIOS routine: Set cursor size 

Interrupt 10 hex: video 

Input registers: AH= 01 

CH=starting scan line (0 to 13 dee) 

CL=ending scan line (0 to 13 dee) 

Output registers: none 

We also place the starting cursor line number in the CH register, and the ending 
line number in the CL register. 

Here's the program: 

/* setcur.c */ 
/* sets cursor size */ 
#include "dos.h" 
#define CURSIZE 1 
#define VIDEO Ox10 
main(argc,argv) 

/* declares REGS */ 
/* "set cursor size" service */ 
/* video BIOS interrupt number */ 

int argc; 
char *argv[J; 
{ 

union REGS regs; 
int start, end; 
if Cargc != 3) 

{ 

print fC"Examp Le usage: C>set cur 12 13"); 
exit 0; 

} 

} 

start= atoi( argv[1J >; 
end= atoi( argv[2J >; 
regs.h.ch = Cchar)start; 
regs.h.cl = Cchar)end; 
regs.h.ah = CURSIZE; 
int86CVIDEO, &regs, &regs); 

/* string to integer */ 

/* starting Line number */ 
/* ending Line number */ 
/* service number */ 
/* call video interrupt */ 

In this example we make use of command-line arguments (described in Chapter 
8) to get the starting and ending cursor lines numbers from the user. To cause the 
cursor to fill the entire character block, we would type: 

C>setcur 0 13 



Structures, Unions, and ROM BIOS 

To return to the normal cursor, we would type: 

C>setcur 12 13 

Specifying a starting number greater than the ending number causes a two-part 
cursor, as you'll see if you try this: 

C>setcur 12 1 

Making the Cursor Disappear 

You can make the cursor vanish if you set bit 5, in the byte placed in the CH 
register, to 1. What do we mean by bit 5? The bits in every byte are numbered 
from 0 to 7, with the least significant bit being 0, as shown in Figure 9-15. To set 
bit 5 on, we can place the hex number 20 in the CH register. Hex 20 is 00100000 
in binary, which is just the bit configuration we need. 

CH= 

7 

setting this bit to 1 turns r off the cursor; setting it to 
0 turns it on. 

I I I - one byte 

6 5 4 3 2 0 - bit numbers 

Figure 9-15. The Cursor On/Off Bit 

The following program accomplishes the task: 

/* curoff .c */ 

/* declares REGS */ 
/* turns cursor off */ 
#include "dos.h" 
#define CURSIZE 1 
#define VIDEO Ox10 
#define STOPBIT Ox20 
mainO 

/* "set cursor size" service */ 
/* video BIOS interrupt number */ 
/* this bit turns cursor off */ 

{ 

union REGS regs; 
regs.h.ch = STOPBIT; /* turns cursor off */ 
regs.h.ah = CURSIZE; /* service number */ 
int86CVIDEO, &regs, &regs); /* call video interrupt */ 

} 

This program is similar to setcur.c, except that we don't need to put anything 
into the CL register. When you run it, the cursor will vanish (which can be 
unnerving). 

335 



Chapter 9 

To turn the cursor back on, use the setcur.c program. Since it sends a value 
in CH that includes a 0 value for bit 5, the cursor will reappear no matter which 
values you use for the starting and stopping lines (provided they' re between 0 
and 13). 

There are many other ways to use ROM BIOS; we've only scratched the 
surface here. We'll return to the topic in Chapter 10. 

Using Interrupts to Call DOS 
In addition to the routines built into the ROM BIOS, there are also a number of 
routines in the PC-DOS (or MS-DOS) operating system that can be called by a C 
program. In general, these "DOS call" routines are less useful for the C 
programmer. Many of them deal with disk input/output, which is already 
handled very well by normal C library functions, and we will not explore them 
in this book. However, the method of accessing these interrupt routines is very 
similar to that for accessing the ROM BIOS routines. 

Summary 
In this chapter we've covered the use of structures, which allow us to combine 
several variables of different types into a single entity, and unions, which allow 
one area of memory to be treated in several different ways. We've also explored 
the use of structures and unions in accessing the routines built into the ROM 
BIOS of the IBM computer. 

Questions 

336 

1. Array elements must all be of the _______ _ 
, whereas structure members can be of ---------

2. True or false: an appropriate use for a structure is to store a list of prices. 

3. The purpose of declaring a structure type is to: 

a. set aside the appropriate amount of memory 

b. define the format of the structure 

c. specify a list of structure elements 

d. define a new data type 

4. Write a statement that declares a structure type consisting of two 
elements: a string of 10 characters and an integer. 

5. How many structure variables of a given type can you use in a program? 

a. one 

b. none 



Structures, Unions, and ROM BIOS 

c. as many as you like 

d. as many as there are elements in the structure 

6. Before you can access an element of a structure you must 

(a) declare the structure 
~~~~~~~~-

(b) declare a structure
~~-~-~~~-

(c) give the item in step b a _______ _

7. Write a statement that will declare a structure variable car to be of
structure type vehicle.

8. Assume the following declarations have been made:

struct body
{

int arms;
int legs;
};

struct body j; m;

write an assignment statement that will set the number of arms in jim's
body equal to 2.

9. Is it possible to declare a structure type and a structure variable in the
same statement? If so, rewrite the example in question 8 to use this
approach.

10. Assuming that structl and struct2 are structure variables of the same
type, is the following statement possible?

struct1 = struct2;

11. Given the statement

xxx.yyy.zzz = 5;

which of the following are true?

a. Structure zzz is nested within structure yyy.

b. Structure yyy is nested within structure xxx.

c. Structure xxx is nested within structure yyy.

d. Structure xxx is nested within structure zzz.

12. Write a statement that declares a structure of type partners containing
two structures of type body.

337

Chapter 9

338

13. True or false: it is possible to pass a structure to a function in the same
way a simple variable is passed.

14. Write a statement that declares a pointer to type struct book.

15. If temp is a member of the structure weather, and the statement

addweath = &weather;

has been executed, then which of the following represents temp?

a. weather.temp

b. (*weather).temp

c. addweath.temp

d. addweath-> temp

16. The function malloc() returns a pointer to
~~~~~~~~-

1 7. One advantage a linked list has over an array is that the linked list can 
use less 

18. In a linked list, each structure on the list contains a pointer to the 

19. True or false: the sizeof() function returns the size of a variable. 

20. A union consists of a number of elements that 

a. all have the same type 

b. must be structures 

c. are grouped next to each other in memory 

d. all occupy the same space in memory 

21. Write a statement that declares a union type with two elements: a string 
10 characters long and an integer. 

22. What does ROM BIOS stand for? 

23. The routines in the ROM BIOS are located 

a. in the operating system 

b. in the C compiler 

c. in the C library 

d. in the hardware of the computer 



Structures, Unions, and ROM BIOS 

24. True or false: the ROM BIOS consists mostly of routines that perform 
input/output operations. 

25. The registers used in microprocessors 

a. are used to hold floating point numbers 

b. are used to hold addresses of I/O devices 

c. act somewhat like C functions 

d. act somewhat like C variables 

26. Name the four main registers in the microprocessor of IBM computers. 

27. List eight other names that can be used for these four registers. 

28. A union is used to represent the registers because: 

a. there are so many registers 

b. the registers can hold either characters or integers 

c. the registers all have two names 

d. no one is sure what to call the registers 

29. If one wants to put the value 3 in the DL register, which of the following 
statements is appropriate? 

a. regs.l.dl = 3; 

b. regs.x.dx = 3; 

c. regs.h.dx = 3; 

d. regs.h.dl = 3; 

30. True or false: there is no way for a program to determine how large a 
memory it is running in. 

Exercises 

1. Write a short program that will: (a) set up a structure to hold a date. The 
structure will consist of three integer values, for the month, day, and year. 
(b) Assign values to the members of the structure and (c) print out the values 
in the format 12/31/88. 

2. Modify the program of exercise 1 so that the date is printed out by a 
function. Pass the structure to the function. 

3. Modify the program of exercise 2 so that the date is part of a larger struc
ture, representing books lent by a library. The structure should consist of 
the title of the book and an inner structure representing the due date. Assign 

339 



Chapter 9 

340 

values to the members of the structure. Have a function print out the values 
from the structure passed to it. 

4. There is a ROM BIOS routine that will set the position of the cursor. It uses 
interrupt number OxlO, with AH=2, DH=row number, and DL=column 
number (both of which start at 0, unlike the numbering for the ANSI.SYS 
command, in which numbering starts at 1). BH must contain 0. Modify the 
position.c program in Chapter 8 so that it performs in the same way, placing 
coordinates on the screen, but uses this ROM routine to position the cursor 
instead of the ANSI.SYS sequence. 

5. Extra credit: modify the agent.c program to include a new element in the 
structure personnel: a string that can contain a list of special skills an agent 
might possess (such as Spanish, explosives, skiing, scuba diving, first aid, 
and so forth). Add a function that will ask the user what skill to look for, and 
then search through the array of structures and print out the information on 
only those agents who possess the required skill. It may be easier to com
bine the functions of this new search function and the Iistall() function, 
taking advantage of the fact that every string contains the null character '\O'. 
You'll need to develop a routine that will search for one string in another 
one. 



Memory and 
the Character Display 

Bitwise operators 
Memory-mapped displays 
The I BM character display 
The attribute byte 
Segment/offset addressing 
Far pointers 
Equipment list word 

10 

341 



10 

This chapter focuses on manipulating the character display using direct memory 
access. The character display places characters on the screen, as opposed to 
graphics. It operates whether you have a monochrome or a color graphics display 
adaptor (CGA, EGA, etc.) In past chapters we've explored a variety of techniques 
to place characters on the screen, but all these techniques have made use of C 
library functions. Now we'll show how to access the screen directly, an approach 
that provides a much faster way to place characters on the screen and has other 
advantages as well. This chapter is a prerequisite for the next chapter, on CGA, 
EGA, and VGA Color Graphics, since an understanding of the techniques of direct 
memory access is important to working with the color graphics modes. 

Getting the maximum utility out of direct memory access requires an 
understanding of the C bitwise operators, which permit individual bits in 
memory to be accessed and manipulated. Accordingly, we'll start this chapter 
with a discussion of the bitwise operators. Then we'll explore the concept of 
memory-mapped displays, and show how direct memory access can be used for 
a very simple word processing program. This will involve the use of far pointers, 
a kind of pointer that can point to anyplace in memory. We'll also see how the 
attribute byte can be manipulated using the bitwise operators and look at a 
different way of operating on the bit level, using a construction called a "bit 
field." Finally, we'll explore a special area of the IBM's memory where various 
kinds of data about the system are stored, and see how, using this area, a 
program can find out what sorts of equipment are connected to the computer. 

This chapter requires some understanding of the hexadecimal and binary 
numbering systems. If these topics are unfamiliar to you, you should study 
Appendix C before continuing. 

The Bitwise Operators 

342 

So far we've dealt with fixed types of data: characters, integers, and so forth. We 
haven't attempted to look within these data types to see how they are con-



Memory and the Character Display 

structed out of individual bits and how these bits can be manipulated. Being 
able to operate on the bit level, however, can be very important in program
ming, especially when a program must interact directly with hardware. While 
programming languages are data oriented, hardware tends to be bit oriented; 
that is, a hardware device often requires input and output in the form of 
individual bits rather than in the form of byte-oriented data types such as 
characters and integers. 

One of C's unusual features is a powerful set of bit-manipulation operators. 
These make it possible for the programmer to perform any desired manipulation 
of individual bits within a piece of data. In this section we'll explore these 
operators. 

The Bitwise AND ( & ) Operator 

C uses six bitwise operators, summarized in the following table: 

Operation 

AND 
Inclusive OR 
Exclusive OR (XOR) 
Right shift 
Left shift 
Complement 

Symbol 

& 

/\ 

>> 
<< 

These operators can be applied to characters and integers (signed and 
unsigned) but not to floating point numbers. Since the operators affect individ
ual bits, it's important to know how to refer to the bits in a character or integer. 
The bits are numbered from right to left, as shown in Figure 10-1. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I 
integer 

7 6 5 4 3 2 1 0 

I I I I I I I I I 
character 

Figure 10-1. Bit Numbering 

We'll start off by looking at just one of these operators in action, the 
bitwise AND operator. This operator is represented by the ampersand ( & ) . 
Don't confuse this operator with the logical AND operator, represented by two 
ampersands ( && ) . 

The AND operator takes two operands, which must be of the same type. 
The idea is that the two operands are compared on a bit-by-bit basis. If bit 0 of 
the first operand is a one and bit 0 of the second operand is also a one, then bit 0 

343 



Chapter 10 

344 

of the answer is a one; otherwise bit 0 is a zero. This rule can be summarized as 
shown in Figure 10-2. 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Figure 10-2. Rules for Combining Bits Using AND ( & ) Operator 

The bitwise operators AND, OR, and XOR operate on a pair of bits to yield 
a third bit. The process is applied to each bit position of the operands in 
turn. 

The rule is applied to all the bits of a data item in turn. Unlike operations 
involving normal arithmetic, each pair of corresponding bits is completely inde
pendent; there is no carry from one column to another. Figure 10-3 shows an 
example of two variables of type char being bitwise ANDed together: 

this 
operand 

bitwise-AN Ded 
with 

this 
operand 

yields 

this result 

Figure 10-3. Example of Bitwise AND 



Memory and the Character Display 

A good way to become familiar with the logical operators is to write a 
program that allows experimentation with different inputs to see what results 
are produced by particular operators. The most convenient format for input and 
output is hexadecimal, since each hex digit corresponds to exactly four bits. 
Here's a simple program that permits testing of the AND operator, using hexa
decimal character variables: 

/* andtest.c */ 
I* demonstrates bitwise AND operator */ 
#define TRUE 1 
main() 
{ 

} 

unsigned char x1, x2; 
whileCTRUE) 

{ 

printfC"\nEnter two hex numbers (ff or less): "); 
scanfC 11 %x %x", &x1, &x2); 
print fC"%02x & %02x = %02x \n", x1 , x2, x1 & x2 ) ; 
} 

This program uses the ( & ) operator in the expression 

x1 & x2 

to find the appropriate answer, which is then printed out by the printf () state
ment. 

Here are some examples of the AND operator at work using the program. 
The first four examples summarize the four ways two bits can be ANDed: 

Enter two hex numbers (ff or less): 0 0 
00 & 00 = 00 

and (with the prompt line and user input not shown): 

01 & 00 = 00 

00 & 01 = 00 

01 & 01 = 01 

For a more advanced example, here are the two hex digits c and 7 ANDed 
together: 

Oc & 07 = 04 

The expansion of these hex digits into bits is shown in Figure 10-4. 

345 



Chapter 10 

346 

Figure 10-4. Two Hex Digits ANDed Together 

The bitwise AND operator is often used to test whether a particular bit in a 
data item is set to 0 or 1. The testing process works because 0 ANDed with either 
0 or 1 is still 0, while 1 ANDed with a bit is whatever the bit is. For example, to 
test if bit 3 of a character variable ch is 0 or 1, the following statement can be 
used: 

bit3 = ch & Ox08; 
Figure 10-5 shows this process in operation. Here if bit 3 of ch is 1, then the 
variable bit3 will be assigned the value 1, otherwise 0 will be assigned. 

/bit on 

11101111111110101 
& 1°1°1°1°111°1°1°1 

1°1°1°1°111°1°101 
/bit off 

111°11111°1 11°1°1 
& 1°1°1°1°1 11°101°1 

be 

08 

08 

b4 

08 

answer 
is 8 
(or TRUE) 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I = 00 --- ~n~wer 
(or FALSE) 

Figure 10-5. Bitwise AND Used for Test 

We'll see an example of the bitwise AND used for testing bits in the 
program hextobin.c, coming up soon. 

The Bitwise OR ( I ) Operator 

Another important bitwise operator is OR, represented by the vertical bar ( I ). 
When two bits are ORed together, the resulting bit is 1 if either or both of the two 



Memory and the Character Display 

operand bits is one. If neither of the two bits is 1, the result is 0. This rule is 
shown in Figure 10-6. 

bit in result 

rr= bit in second operand 

bit in result 

0 0 0 

0 1 1 
1---

1 0 1 

1 1 1 

Figure 10-6. Rules for Combining Bits Using OR ( l ) Operator 

Here's a program that demonstrates the OR operator: 

/* ortest.c */ 
/* demonstrates bitwise OR operator */ 
#define TRUE 1 
main() 
{ 

} 

unsigned char x1, x2; 
while(TRUE) 

{ 

printfC"\nEnter two hex numbers (ff or Less): "); 
scanf("%x %x", &x1, &x2); 
printfC"%02x l %02x = %02x\n", x1, x2, x1 l x2 >; 
} 

And here's some sample output (without the prompt lines): 

00 00 = 00 
00 01 = 01 
01 00 = 01 
01 01 = 01 
Oc 07 = Of 
ad cb = ef 

If you're hazy about these results-or those in the last section on AND-you 
should verify that they're correct by expanding them into their binary form, 

347 



Chapter 10 

348 

performing the OR operation on each pair of corresponding bits, and translating 
them back into hexadecimal. 

The bitwise OR operator is often used to combine bits from different 
variables into a single variable. For example, suppose we had two character 
variables, chl and ch2, and suppose bits 0 through 3 of chl contained a value 
we wanted, while bits 4 through 7 of ch2 were the ones we wanted. Assuming 
the unwanted part of both variables was set to all Os, we could then combine the 
two with the statement: 

ans = ch1 : ch2; 

Figure 10-7 shows how this works, assuming that chl is Ox07 and ch2 is OxdO. 

unwanted bits 

I 1 ! 1 I a ! 1 I a! 1 ! 1 ! 1 I = d7 

Figure 10-7. Bitwise OR Operator Used to Combine Values 

The Bitwise Right-Shift { > > ) Operator 

Besides bitwise operators that operate on two variables, there are several bitwise 
operators that operate on a single variable. An example is the right-shift operator, 
represented by two "greater than" symbols ( > > ). This operator moves each bit 
in the operand to the right. The number of places the bits are moved is deter
mined by the number following the operand. Thus, the expression 

ch » 3 

causes all the bits in ch to be shifted right three places. Figure 10-8 shows an 
example of the hex value 72 being shifted right two places. Note that shifting 
right one bit is the same as dividing the operand by 2. 

Here's a program that demonstrates the right-shift operator: 

/* shiftest.c */ 
/* demonstrates bitwise right shift operator */ 
#define TRUE 1 
main() 



Memory and the Character Display 

{ 

} 

unsigned char x1, x2; 
while(TRUE) 

{ 

printf<"\nEnter hex number (ff or less) and number of bits "); 
printf("\nto shift (8 or less; example 'cc 3'): "); 
scanf("%x %d", &x1, &x2); 
printf<"%02x » %d = %02x\n", x1, x2, x1 » x2 ) ; 
} 

0 value 
shifted 
in 

72>>2= = 1c 

bit disappears 

bit disappears 

Figure 10-8. Example of Right-Shift Operator 

Here's some sample output: 

Enter hex number (ff or less) and number of bits 
to shift (8 or less; example 'cc 3'): 80 1 
80 >> 1 = 40 

Here are some other examples: 

80 » 2 = 20 
80 » 7 = 01 
f 0 » 4 = Of 

Again, if this isn't clear, translate the hex numbers into binary, shift them by 
hand, and translate back into hex to verify that the results are correct. 

In the examples so far zeros are inserted into the left-most bit. This is 
because the data type being shifted is unsigned char. However, this may not be 
the case if the data type is char, which is assumed to be signed, with the left
most bit being the sign bit. If the left-most bit of a type char variable starts out 
equal to 1, the number is considered negative. To maintain the sign of the 
number when it is right-shifted, ls are inserted in the left-most bit. Thus the 
following statement will be true: 

80 >> 2 == eO 

349 



Chapter 10 

350 

If unsigned types are used, zero is always shifted in on the left, and if a signed 
number is positive, Os are also shifted in. The same is true also of signed and 
unsigned integer types. 

If the sign bit is set in a signed operand, right shifts will cause ls to be 
shifted in from the left. 

Hexadecimal to Binary Conversion 

We've mentioned several times that you might want to perform hex to binary 
conversions to verify our results. It would be nice if we could get the computer 
to do this, saving ourselves the trouble. As we've seen in the past, it's easy to 
perform conversion to and from hexadecimal in C by using the %x type speci
fier in printf () and scanf () functions. However, there is no corresponding 
specifier for binary, so let's write a program to carry out this conversion for us. 

Here's the program: 

/* hextobin.c */ 
/* converts hex number to binary */ 
#define TRUE 1 
mainO 
{ 

} 

i nt j , num, bi t; 
unsigned int mask; 
char string[10J; 
while(TRUE) 

{ 

mask = Ox8000; 
printf("\nEnter number: "); 
scanf("%x", &num>; 
printfC"Binary of %04x is: 
for < j =O; j <1 6; j ++ > 

} 

{ 

bit = (mask & num) ? 1 
printfC"%d ", bit); 
ifCj==7) 

printfC"-- "); 
mask>>= 1; 
} 

/* 1000000000000000 binary */ 

", num); 
/* for each bit */ 

O; /* bit is 1 or 0 */ 
/* print bit */ 
/* print dash between */ 
/* bytes */ 
/* shift mask to right */ 

This program operates on integers rather than characters as in previous exam
ples. Here's some sample interaction: 

C>hextobin 



Memory and the Character Display 

Enter number: 1 
Binary of 0001 is: 0 0 0 0 0 0 0 0--0 0 0 0 0 0 0 1 
Enter number: 80 
Binary of 0080 is: 0 0 0 0 0 0 0 0--1 0 0 0 0 0 0 0 
Enter number: 100 
Binary of 0100 is: 0 0 0 0 0 0 0 1--0 0 0 0 0 0 0 0 
Enter number: fOO 
Binary of OfOO is: 0 0 0 0 1 1 1 1--0 0 0 0 0 0 0 0 
Enter number: fOfO 
Binary of fOfO is: 1 1 1 1 0 0 0 0--1 1 1 1 0 0 0 0 

This program uses a for loop to go through all 16 bits of an integer variable, 
from left to right. The heart of the operation is contained in two statements that 
use bitwise operators: 

bit = (mask & num) ? 1 O; 

and 

mask>>= 1; 

In the first statement we make use of a mask. This is a variable that starts out 
with a single bit in the left-most position. The mask is then ANDed with the 
number that we want to express in binary, the variable num. If the result is 
nonzero (true), then we know the corresponding bit in num is 1; otherwise it's 
0. The conditional statement assigns the value 1 to the variable bit if the bit 
being tested in num is 1, and 0 otherwise. 

The left-shift statement then shifts the mask to the left, and the process is 
repeated for the next bit. The first time through the loop the mask will 
be 1000000000000000 binary, while the second time through it will be 
0100000000000000, and so forth. Eventually all 16 bits will be printed out. 

Other Logical Operators 

There are six bitwise operators in all, of which we've now looked at three. We'll 
briefly review the remaining three and then show a six-function bitwise calcula
tor which, if you type it in and compile it, will enable you to experiment with 
and learn more about the bitwise operators. 

The Bitwise XOR ( " ) Operator 
The ordinary bitwise OR operator ( l ), discussed earlier, returns a value of 1 
when either bit, or both bits, in the operand is 1. The bitwise exclusive OR, or 
XOR operator, by contrast, returns a value of 1 when either bit, but not both bits, 
is 1. This operator is represented by the caret ( /\ ) . Figure 10-9 shows the rules 
for this operator. 

The XOR operator can be useful for "toggling" a bit: that is, switching it 
back and forth between 0 and 1. This is true because a 1 XORed with 1 is 0, 
while a 1 XORed with a 0 is 1. 

351 



Chapter 10 

352 

......------- bit in first operand 

~---- bit in second operand 

..--- bit in result 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Figure 10-9. Rules for Combining Bits Using XOR Operator 

An XOR operation applied twice to particular bits in an operand yields the 
original operand. 

For instance, to toggle bit 3 in a variable ch of type char, we could use the 
statement: 

ch = ch " Ox08; 

Figure 10-10 shows how repeated application of this operation toggles bit 3 back 
and forth, while leaving the other bits unchanged. The variable ch is assumed to 
start out with the value OxBC. We'll see an example of a bit being toggled to 
produce a useful result later on in the chapter. 

The Bitwise Left-Shift Operator ( < < ) 
The left-shift operator is, as you might guess, similar to the right-shift operator, 
except that bits are shifted left instead of right. The value of the bits inserted on 
the right is always 0, regardless of the sign or data type of the operand. 

The Bitwise Complement Operator ( - ) 
The bitwise complement operator ( - J acts on a single operand; it takes every 
bit in the operand and makes it 1 if it was a 0 and 0 if it was a 1. For example, the 
following equalities are true: 

-03 == f c 
-ffff == 0 
cc -- 33 

-as == n 

Complementing a number twice always returns the original number. 



Memory and the Character Display 

7 6 5 4 

/z bit on 

3 1 0 

l1 1°1 1 l1 l1 l1 1°1°1 be 

/\ 10101010111010101 08 

11 1°1 1 11 1°1 1 1°1°1 b4 

) bit off 

11101111101110101 b4 

/\ 10101010111010101 08 

11 I o 11 11 11 11 Io Io 1 be 

'bit on again 

Figure 10-10. Bitwise XOR Operator Used as Toggle 

The Bitwise Calculator 

Let's put all the bitwise operators together into one program. This program acts 
as a bitwise calculator, into which we type any suitable operand and a bitwise 
operator; it then displays the result. It is a useful program for exploring and 
learning about all the bitwise operations. 

/* bitcalc.c */ 
/* performs bitwise calculations */ 
#define TRUE 1 
#include <stdio.h> 
void pbin(int); 
void pline(void); 

void main(void) 
{ 

char op[10J; 
int x1, x2; 
while(TRUE) 

{ 

/* prototypes */ 

printf<"\n\nEnter expression (example 'ffOD & 1111 1
): "); 

scanf( 11 %x %s %x", &x1, op, &x2>; 
pri ntf<"\n"); 
switch( op[QJ 

{ 

case '&': 
pbin(x1>; printf("& (and)\n"); pbin(x2); 
pline(); pbin(x1 & x2); 

353 



Chapter 10 

354 

} 

} 

break; 
case ' I ' : 

pbinCx1); printfC 11 I (incl 
pline(); pbinCx1 I x2); 
break; 

case 1
"

1
: 

pbinCx1); printfC 11
" Cexcl 

pline(); pbin(x1 " x2); 
break; 

case'>': 
pbinCx1); printfC 11>> 11

); 

pline(); pbinCx1 >> x2); 
break; 

case '<' : 
pbin(x1); printf("« 11 ); 

pline(); pbin(x1 << x2); 
break; 

case I -1 

or)\n"); pbinCx2); 

or)\n"); pbin(x2); 

printf( 11%d\n 11 , x2); 

printfC 11%d\n 11
, x2); 

pbin(x1); printf( 11 - (complement)\n11 ); 

pline(); pbinC-x1); 
break; 

default: printf("Not valid operator.\n"); 
} 

/* pbin */ 
/* prints number in hex and binary */ 
void pbin(int num) /* num = number to print */ 
{ 

} 

unsigned int mask; 
int j, bit; 
mask = Ox8000; 
printfC"%04x 11

, num); 
for C j =O; j <1 6; j ++) 

{ 

bit = (mask & num) ? 1 
pr i n t f( II %d II I bi t ) ; 
ifCj==7) 

printfC"-- 11
); 

mask>>= 1; 
} 

pri ntfC 11 \n11
); 

/* plineO */ 
void pline(void) 
{ 

/* one-bit mask */ 
/* print in hex */ 
/* for each bit in num */ 

O; /* bit is 1 or 0 */ 
/* print bit */ 
/* print dash between */ 
/* bytes */ 
/* shift mask to right */ 

pri ntf (11----------------------------------------\n"); 
} 

As you can see, this program consists mostly of a large switch statement con
taining all the bitwise operations. The user types in an operand, a bitwise 



Memory and the Character Display 

operator, and another operand. The program displays the result. The only anom
aly is in the complement operator, which takes only one operand but requires a 
second operand to be typed after the operator ( - ) to satisfy the variable list in 
the scanf() statement (any number will do). 

Here are some examples of interaction with the program. For brevity, the 
initial prompt is only shown on the first example: 

Enter expression (example 'ffOO & 1111'): fOfO 3333 
f OfO 1 1 1 1 0 0 0 0--1 1 1 1 0 0 0 0 
: (incl or) 
3333 0 0 1 1 0 0 1 1--0 0 1 1 0 0 1 1 

f3f3 1 1 1 1 0 0 1 1--1 1 1 1 0 0 1 1 

f Of O 1 1 1 0 0 0 0--1 1 1 1 0 0 0 0 
« 2 

c3c0 1 0 0 0 0 1 1--1 1 0 0 0 0 0 0 

f Of 0 1 1 1 0 0 0 0--1 1 1 1 0 0 0 0 
"' Cexc l or) 
3333 0 0 1 1 0 0 1 1--0 0 1 1 0 0 1 1 

c3c3 1 1 0 0 0 0 1 1--1 1 0 0 0 0 1 1 

fOfO 1 1 1 1 0 0 0 0--1 1 1 1 0 0 0 0 
- (complement) 

OfOf 0 0 0 0 1 1 1 1--0 0 0 0 1 1 1 1 

This program makes use of the routine from the hextobin.c program, trans
formed into the function pbin(), to print out binary versions of the operands 
and results. 

Now that you know how to manipulate bits, we're ready to explore mem
ory-mapped graphics and see what role bit manipulation plays in influencing 
the display. 

The Character Display Memory 
When you attach a video monitor to your IBM computer you must also install in 
the computer a printed circuit board called the Graphics Adaptor. This board 
has on it the circuitry necessary to convey information from the computer to the 
display. What does this hardware consist of, and how can we access it from our 
programs? 

Communication between the Graphics Adaptor and the computer takes 
place using a special section of memory as a sort of common ground. This 
section of memory is physically located on the Graphics Adaptor board and can 
be accessed both by the microprocessor and by the display screen. The micro
processor can insert values into this memory and read them out just as it can 

355 



Chapter 10 

356 

with ordinary random-access memory (RAM). The display hardware continu
ously takes the values from this memory and places the corresponding character 
on the screen. 

The normal character display consists of 25 lines of 80 characters each, for 
a total of 2,000 characters. Each of these characters is associated with a particu
lar address in the display memory. Two bytes in the memory are used for each 
character: one to hold the extended ASCII character code, a value from 0 to 255 
(0 to ff in hex), and one to hold the attribute. (We'll investigate the details of the 
attribute byte later in this chapter.) Thus 4,000 bytes of memory are needed to 
represent the 2,000 characters on the screen. 

The monochrome memory starts at address BOOOO (hex) and goes up to 
BOF9F (F9F hex is 3999 decimal). Figure 10-11 shows the relationship between 
this memory and the display. 

Memory 

19 

20 

21 

22 

23 

24 

BOF9A ext code } -----BO F9B attribute 
1-------.11 

BOF9C ext code } 
BO F9 D t---at-t r-i b-ut-e -t1 

rows 

BOF9E ext code } 

BO F9 F attribute 

Figure 10-11. The Monochrome Display and MA Memory 

If you have a color monitor attached to your computer and are using it for 
your text display, the text display memory occupies a different set of addresses. 
It starts at B8000 and runs up to B8F9F. Thus you should translate references to 
address BOOOO in the text to address B8000. 

When we call a C library routine to display a character on the screen it 



Memory and the Character Display 

calls a routine in ROM BIOS. The ROM BIOS routine puts the character on the 
screen by placing the values for the character's extended code and attribute byte 
in the appropriate address in the adaptor's memory. But we can take a shortcut. 
If our program inserts values for these bytes directly into memory, we can save a 
lot of time, because (among other reasons) we eliminate the overhead of calling 
one routine which calls another routine. 

Far Pointers 

When we know the address, the usual way we insert values into memory is to 
make use of pointers. Thus, you might expect that to place a character in the first 
location of the screen memory we might use statements such as the following: 

int *ptr; /* Looks plausible */ 

ptr = OxBOOOO; /* but */ 

*(ptr) = ch; /* won't work */ 

We first declare a pointer-to-int. We want to point to integers so we can treat the 
two-byte combination of extended character code and attribute together. We 
then set this pointer equal to the address of screen memory. Finally, we access 
this location using the indirection operator. 

Unfortunately, we've made a mistake: the normal pointer variable type (no 
matter what data type it points to) consists of a two-byte quantity, while the 
address BOOOO hex is a two and one-half byte (5-digit) number. No matter how 
hard we try, we can't cram this number into two bytes. 

Segments 
The reason for this embarrassing situation is that normal pointers are used to 
contain addresses in only one segment. In the 8086 family of microprocessors 
(the 8088, 8086, 80286, and 80386) a segment is a section of memory 
containing 10000 (hex), or 65,536 (decimal) bytes. Within the segment, 
addresses run from 0 to FFFF hex. Ordinarily (at least in the small memory 
model, which we are using in this book) all the data in a C program is located 
in one segment. Thus, the normal two-byte pointer works perfectly in most 
situations. To access addresses outside the segment, however, a different 
scheme must be used. 

Internally, the 8086 handles this situation with a special set of registers 
called "segment registers." Addresses outside a segment are formed by 
combining the starting address of a segment, called the "segment address," with 
the address within the segment, called the "offset address." The starting address 
of the segment is placed in a segment register. 

As an example, let's take an address half-way through the monochrome 
memory. This is the l,OOOth character, which is 2,000 decimal bytes or 7d0 hex. 
The segment containing the monochrome memory can be assumed to start at 
the same place the memory starts: at address BOOOO. The segment register holds 

357 



Chapter 10 

358 

only the top four of these digits, or BOOO. This arrangement is shown in Figure 
10-12. 

absolute 
addresses 

J 
80000 

80700-

80F9F~1--~~~--11 

segment register 
contains 
starting address 

I I ___- of segment ------11 8 0 0 0 (minus the lowest digit) 

offset address 
is address 
relative to 

._ 0700 __.- start of 
segment 

Figure 10-12. Segment Register and Video Memory 

To obtain the absolute address, the address in the segment register is 
combined with the offset address. This combination takes place in a strange 
way; in effect, the contents of the segment register are shifted left four bits and 
then added to the offset address. Figure 10-13 shows how this looks in the case 
of the address in the middle of the display memory. 

+ 

segment address 

8 0 0 0 I four digits 
---- (16 bits) 

.__.__..__..__.. shifted 4 bits left 

I 
offset adcfress 

0 - four digits 
~-...__...__.__.. (16 bits) 

0 7 0 

I 
absolute address 

0 - five digits 
.__.__..__..__.._ _ _. (20 bits) 

8 0 7 0 

Figure 10-13. Combining Segment and Offset Addresses 

In Figure 10-13 the segment address, BOOO, is shifted left four bits and then 
added to the offset address, 07DO. The result is the real-or absolute-memory 
address, B07DO. 



Memory and the Character Display 

In the microprocessor the absolute address is obtained by shifting the 
segment address left four bits and then adding the offset address. 

Using Segment-Offset Addresses in C 
In C, an address that is outside of the program's normal data segment also makes 
use of this segment-plus-offset combination. However, the address is 
represented slightly differently. Instead of using the absolute address, C requires 
a 32-bit (four-byte, 8-hex digits) representation consisting of the four digits of the 
segment address followed by the four digits of the offset address. Thus, in C, the 
absolute address B07DO is rendered as OxB00007DO (BOOO followed by 07DO). 

In C, 32-bit pointers are calculated by shifting the segment address left 16 
bits and then adding the offset address. 

Since a normal pointer can't hold these 32-bit addresses, how do we make 
use of them? There are several approaches. One is to use the large memory 
model. This approach, which is intended to accommodate programs that use 
more data than can fit in a single segment, automatically makes all data 
references using the segment-offset combination. (We'll have more to say about 
memory models in Chapter 14). In this model all pointers become four-byte 
quantities, rather than two-byte. The disadvantage of the large memory model is 
that references to all data now will be made with four-byte pointers. This is 
inefficient, since it takes the computer longer to access memory using a four
byte pointer. 

A better approach is to use the small memory model but to declare a far 
pointer specifically in those cases when we need to point outside the normal 
data segment. A far pointer is one that holds a four-byte address, rather than the 
usual two-byte address. Thus it can hold the segment-offset combination. We 
declare a far pointer by inserting the far keyword just before the variable name. 
Our skeleton program can thus be rewritten like this: 

int far *ptr; /* declares far pointer */ 

ptr = OxBOOOOOOO; /* segment BODO plus offset 0000 */ 

*(ptr) = ch; /*now this will work*/ 

Compiler Option: the far Keyword 
If you're using version 4.0 of the Microsoft compiler you can skip this section. 
However, if you're using version 3.0, you'll need to give special instructions to 
the compiler so it will recognize the far keyword used in the declaration above. 
For the compiler to recognize far, an "option" must be used in the command 

359 



Chapter 10 

360 

line typed to invoke the compiler. An option adds a new capability to the 
compiler. The capability to recognize the far keyword (and several other 
keywords as well) is invoked with the characters "/Ze". Normally the compiler 
command line reads 

msc prog; 

With the option, the command line becomes 

msc /Ze prog; 

Or, if you're using a batch file to automate the compile-link cycle (see Chapter 1): 

msc /Ze %1; 
link %1; 

Don't forget to use this option when using version 3.0 to compile any program 
that uses a far pointer. It's easy to forget to type the option, but if you do, the 
compiler will flood you with error messages. 

QuickC and the Video Memory 
Because QuickC maintains a copy of the output screen, rather than using the 
real thing, it sometimes produces unexpected results when direct memory 
access and normal output using printf () and other library functions are mixed 
in the same program. For instance, if you clear the screen using direct access, 
then write to it with a library function; you may find the screen you're writing 
to hasn't been cleared after all. 

The simplest way to avoid such problems is to compile all programs to .exe 
files before running them. Choose Exe from the Output Options list in the 
Compile option in the Run menu. Another ploy is to make sure all programs 
begin with a call to a library function such as printf () or get ch(), even if it 
doesn't do much, before the video memory is accessed directly. 

We suggest compiling the examples in this chapter to .exe files before 
running them. 

Filling the Screen with a Character 
Let's use the far-pointer approach to fill the screen with 2,000 copies of a single 
character. To show how rapid this approach is, compared with using such C 
library routines as putch, we'll make it possible to change the character by 
pressing a key. Each time the user presses a new key, the entire screen is filled, 
almost instantaneously, with the new character. The program terminates when 
the user types an 'X'. Here's the listing: 

/* dfi ll.c */ 
/*uses direct memory access to fill screen*/ 
#define LENGTH 2000 
mainO 
{ 

int far *farptr; 



Memory and the Character Display 

int addr; 
char ch; 
printfC"Type character to start, type again to change"); 
farptr = (int far *) OxBOOOOOOO; 

} 

while( Cch=getcheO> != 'X' ) 
forCaddr=O; addr<LENGTH; addr++) 

*(farptr + addr) = ch : Ox0700; 

Remember that if you are using a color monitor (either EGA or CGA) for 
text display, you should use the constant OxB8000000 instead of OxBOOOOOOO in 
dfill.c, since the text memory of the color display occupies a different space in 
memory. This is true of all programs in this chapter that directly address the 
display memory; if you're using color, change the address. 

This program uses a simple for loop, running from 0 to 2,000, to fill in all 
the memory addresses in the monochrome memory. The statement that does the 
job is 

*(farptr + addr) = ch : Ox0700; 

This statement references each address in turn by adding the number addr, 
which runs from 0 to 1999, to the starting address of video memory, which we 
set farptr to before the loop. 

On the right side of this assignment statement the variable ch is the 
character we want to place in memory; it was obtained from the keyboard. The 
constant Ox0700 is the attribute byte, shifted left one byte to place it on the left 
side of the two-byte (integer) quantity. This constant, Ox07, is the "normal" 
attribute; that is, the one that creates nonblinking, nonbold, white-on-black text. 
We'll see why soon. 

Cycling through the loop 2,000 times inserts 2,000 integers in memory; the 
high byte of the integer being the extended character code and the low byte 
being the attribute. 

Another statement that requires explanation is 

farptr = Cint far *) OxBOOOOOOO; 

What is the expression in parentheses, and why is it necessary? The 
problem here is that the constant OxBOOOOOOO and the variable farptr are of 
different types: the constant looks like a long integer, while farptr is a far 
pointer to int. To avoid a warning from the compiler, we force the constant to be 
a far pointer to int, by preceding it with the name of the type in parentheses. 
This is another example of "typecasting," mentioned in Chapter 9. 

The attribute byte also requires more explanation; we'll further investigate 
its format later in this chapter. First, however, let's make a small change to the 
program. 

I* dfill2.c */ 
/*uses direct memory access to fill screen*/ 
#define ROMAX 25 

361 



Chapter 10 

362 

#define COMAX 80 
mainO 
{ 

} 

int far *farptr; 
i nt col , row; 
char ch; 
printfC"Type character to start, type again to change">; 
farptr = Cint far *) OxBOOOOOOO; 
while( Cch=getcheO> != 'X' > 

for(row=O; row<ROMAX; row++) 
forCcol=O; col<COMAX; col++) 

*(farptr + row*COMAX + col) = ch Ox0700; 

In future programs we'll make use of functions that accept as input the 
row and column number of a character and then display the character on the 
screen at the appropriate place using direct memory access. This program shows 
how it's done. In the last line, the variables row and col represent the row and 
column number of the character to be inserted. The corresponding memory 
address is found by multiplying the row number by the number of columns in a 
row, then adding the result and the column number to the starting address of 
the monochrome memory in farptr. Since we are now imagining the screen as a 
two-dimensional entity of rows and columns (rather than a one-dimensional 
group of memory addresses), we use two nested loops to insert the characters. 

Speed Comparison 
To get an idea of the speed advantage provided by direct memory access using 
far pointers, we'll rewrite dfill2.c to use the putch() library function. Here's the 
listing: 

I* cfill.c */ 
/*uses putch() to fill screen*/ 
#define ROMAX 25 
#define COMAX 80 
#define CLEAR "\x1B[2J" 
mainO 
{ 

} 

int col, row; 
char ch; 
printf("Type character to start, type again to change"); 
while( Cch=getcheO> != 'x' > 

{ 

printf(CLEAR>; 
for(row=O; row<ROMAX; row++) 

for(col=O; col<COMAX; col++) 
putchCch>; 

} 

This program also fills the screen with a single character, but, at least on our 
system, it takes about 20 times longer than dfill2.c. 



Memory and the Character Display 

In Chapter 15 we'll see another way to speed up this program: the use of 
register variables. 

One-Line Word Processor 

To see how far pointers might be used in a somewhat more useful situation than 
filling the screen with a single character, let's create a very simple word process
ing program-one that is so simple it operates on only a single line of text. We'll 
do this in two steps. First we'll show a program which allows the user to type in 
a line of characters and to move the cursor back and forth along the line. Any 
character can be erased by moving the cursor to it and typing over it. Later, 
when we've learned more about attributes, we'll show an improved model of 
the program that permits insertion, deletion, and underlining. (Again, remember 
that if you're using a color display you should use the address OxB8000000; for 
the monochrome display, use OxBOOOOOOO.) 

Here's the first version: 

/* wpro1.c */ 
/* rudimentary word-processing program */ 
/* with delete, insert and underlining */ 
#include <stdio.h> /* for printf() */ 
#include <conio.h> /* for getch() */ 
#include <dos.h> /*for int86(), REGS d~finition */ 

#define VIDEO_ADDR 
#define TRUE 1 
#define COMAX 80 
#define R_ARRO 77 
#define L_ARRO 75 
#define VIDEO Ox10 
char col=O; 

OxB8000000 /* start of video memory */ 

int far *farptr; 
union REGS regs; 
void cursor(void); 
void insert(int); 
void clear(void); 

void mainCvoid) 
{ 

int ch; 

/* max number of columns */ 
/* right arrow */ 
/* left arrow */ 
/* video ROM BIOS service */ 
/* cursor position */ 
/* pointer to video memory */ 
/* for ROM BIOS calls */ 
/* prototypes */ 

/* keyboard key */ 

farptr = (int far *)VIDEO_ADDR; 
c Lear 0; 

'* 
/* 

start of screen mem 
clear screen */ 

cursor 0; 
while(TRUE) 

{ 

if( Cch=getch()) -- 0 ) 
{ 

ch= getchO; 

'* position cursor *' 

'* if char is 0 */ 

/* read extended code 

*/ 

*' 

363 



Chapter 10 

364 

switch(ch) 
{ 

case R_ARRO: if(col<COMAX> ++col; break; 
case L_ARRO: if(col>O> --col; break; 
} 

} 

else 
if(col<COMAX) insert(ch); 

cursor(); 

/* not extended code */ 
/* print char at col */ 
/* reset cursor */ 

} 

} 

/* cursorO */ 
/* move cursor to row=O, col */ 
void cursor(void) 
{ 

regs.h.ah = 2· /* I set service I cursor pos 
regs.h.dl = col; '* column varies */ 
regs.h.dh = O; /* always top row */ 
regs.h.bh = O· '* page zero */ I 

i nt86 CV IDEO, &regs, &regs); /* call video interrupt 
} 

/* insertO */ 
/* inserts character at cursor position */ 
void insert(int ch) 
{ 

int j; 

/* insert char */ 

*/ 

*(farptr + col) = ch I Ox0700; 
++col; /* move cursor right */ 

} 

/* clearO */ 
/* clears screen using direct memory access */ 
void clearCvoid) 
{ 

int j; 

/*fill screen memory*/ 

*/ 

forCj=O; j<2000; j++) 
*(farptr + j) = Ox0720; /* with spaces Cattr=07) */ 

} 

Almost everything in this program should already be familiar to you. The 
program first clears the screen, using a routine that fills the screen memory with 
Os; this is the same approach we used to fill the screen with a character in dfill.c. 
Then the cursor is moved to the beginning of the single line (the top line of the 
screen) using the "Set cursor position" video ROM BIOS service, which we 
described in Exercise 4 in Chapter 9. 



Memory and the Character Display 

ROM BIOS routine: Position cursor 

Interrupt 10 hex: Video 

Input registers: AH= 02 

DH= row number 

DL=column number 

BH =page number (usually 0) 

Output registers: none 

The switch statement approach to deciphering the cursor keys was used in 
Chapter 8. Pressing the appropriate cursor key increments or decrements the 
variable col, which indicates the column the cursor is on. A call to the cursor() 
function moves the cursor to this column. 

If the character typed is not an extended character (namely a cursor key) it 
is inserted into the display at column col using the insert() subroutine, which 
should be familiar from the discussion of far pointers above. The col variable is 
incremented when a character is inserted so that the next character will be 
typed just to its right. 

Now it's time to explore the oft-postponed subject of the attribute byte. 

The Attribute Byte 
As we've noted before;· the location in the monochrome memory corresponding 
to a single character position on the screen consists of two bytes: one to hold the 
extended code of the character, the other to hold its attribute. In Chapter 8 we 
discussed the attributes: underline, intensified, blinking, and reverse video. 
How do these relate to the attribute byte? 

Figure 10-14 shows how the attribute byte is divided into sections. Two of 
these sections consist of a single bit. Bit 3 controls intensity, and bit 7 controls 
blinking. If one of these bits is set to l, the corresponding attribute (blinking or 
intensified) is turned on; when the bit is set to 0, the attribute is off. 

The two other sections of the attribute byte consist of three bits each. Bits 
0, 1, and 2 make up the "foreground color," while bits 4, 5, and 6 make up the 
"background color." (Of course in the monochrome display there is no color, but 
the same attribute byte format is used in the color display.) There are three 
choices for the monochrome display foreground color: black, white (really green 
or amber, depending on your display), and underline. The underline attribute is 
treated as a color, for some reason. For the background there are only two color 
choices: black or white. Figure 10-14 shows the four meaningful ways these 
"colors" can be combined, yielding nondisplay (invisible), underline, normal 
video (white on black), and reverse video (black on white). 

Here's a revision of our dfill2.c program that fills the screen with charac-

365 



Chapter 10 

366 

7 6 

I I 
I 

blinking 

background foreground 

5 4 3 2 0 

I I I I I I 

~lr-J 
000 000 nondisplay 
000 001 underline 
000 111 dark background 
111 000 reverse video 

Figure 10-14. The Attribute Byte 

ters all having the blinking attribute. The operating system won't reset the 
attribute bytes to normal when the program is done, so to make the screen stop 
blinking you'll need to use the DOS command CLS, which does reset the attri
bute bytes. 

I* dfill3.c */ 
I* fills screen using blinking attribute */ 
#define ROMAX 25 
#define COMAX 80 
mainO 
{ 

int far *farptr; 
int col, row; 
char ch; 
printf("Type character to start, type again to change"); 
farptr = (int far *) OxBOOOOOOO; 

} 

while( Cch=getcheO) != 'x' ) 
{ 

for(row=O; row<ROMAX; row++) 

} 

for<col=O; col<COMAX; col++) 
*(farptr + row*COMAX + col) = ch Ox8700; 

In the last program we used the attribute 07, which is 00000111 in binary. That 
is, the three bits of the foreground color are set to ls, while everything else is a 
0. To turn on blinking, we want to set bit 7 to 1, so we use the hex number 87, 
which is 10000111 in binary. This byte then is in effect shifted left eight bits, as 
described earlier, so it's on the left side of the integer which will be placed in 
memory. 



Memory and the Character Display 

The Attribute Fill Program 

To get a better idea of the attributes and how they interact, type in and compile 
the following program. This is a variation of dfill.c, but it includes a switch 
statement that permits different attributes to be selected when the screen is 
filled. Besides demonstrating the attribute byte, this program also provides a 
good example of the bitwise operators at work. 

/* attrfill.c */ 
fill screen*/ /*uses direct memory access to 

#define VIDEO_ADDR OxBBOOOOOO 
#define ROMAX 25 

/* start of video memory */ 
/* rows in display */ 

#define COMAX 80 /* columns in display */ 
#define TRUE 1 
void fil L<char, char); 

main 0 
{ 

char ch, attr; 

printf<"Type I I n 
printf (" I I u 
printf (" I• I 

1 

printf (" 'b' 
printf (" I I r 

for 
for 
for 
for 
for 

while( Cch=getchO) 
{ 

switch (ch) 
{ 

I I case n : 

/* prototype */ 

normal,\n"); 
underlined,\n"); 
intensified,\n"); 
blinking,\n"); 
reverse video,\n"); 

!= I 
XI) 

attr = Ox07; /* set to normal */ 
break; /* ODDO 0111 */ 

I I case u 
attr = attr & Ox88; /* set to underline 
attr = attr I Ox01; /* xOOO x001 */ 
break; 

I• I case 1 : 

*/ 

attr = attr " Ox08; I* toggle intensified 
break; 

case I b I: 
attr = attr "' OxBO; 

} 

break; 
I I case r 

attr = attr 
attr = attr 
break; 

} 

fill <ch,attr); 
} 

/*fill()*/ 

& Ox BB; 
I Ox70; 

/* xxxx Txxx */ 

/* toggle blinking */ 
/* Txxx xxxx */ 

/* set to reverse */ 
/* x111 xOOO */ 

*/ 

367 



Chapter 10 

/*fills screen with character 'ch', attribute 'attr' */ 
void fillCchar ch, char attr) 
{ 

} 

int far *farptr; 
int col, row; 

farptr = (int far *)VIDEO_ADDR ; 
for(row=O; row<ROMAX; row++) 

for(col=O; col<COMAX; col++) 
*(farptr + row*COMAX + col) = ch I attr<<8; 

When the screen is filled, using the fill() function, the variable attr is used for 
the attribute byte, rather than a constant as before. This value of attr is set by 
the various options in the switch statement. 

Different options are handled in differing ways. Typing 'n' for normal 
always resets attr to 07 hex, which provides the standard attribute. The two 
one-bit attributes, blinking and intensified, can be toggled on and off, using the 
bitwise XOR operator on the appropriate bit. Reverse video and underline are 
set by masking off only the "color" attributes and resetting them without dis
turbing the one-bit attributes. 

In previous programs we placed the attribute in an integer: Ox0700. Here 
we use a character for the attribute, so we need to shift it left one byte before 
combining it with the character ch. We do this using the left-shift ( < < ) 
operator in the last statement in fill(). 

A style note: for clarity we've written the bitwise operations as separate 
statements. To achieve compactness, however, they could have been combined, 
so that, for example, these lines 

attr = attr & Ox88; 
attr = attr Ox01; 

would become 

attr = (attr & Ox88) 

I* set to underline*/ 
/* xOOO x001 */ 

Ox01; 

Bit Fields 

368 

In the attrfill.c program we accessed individual bits and groups of bits using the 
bitwise operators. We can take an entirely different approach to accessing bits: 
the use of "bit fields." A bit field is a special kind of structure. Each of the 
members of such a structure occupies a certain number of bits. The number of 
bits each occupies is specified following a colon in the structure declaration. The 
members of the structure then are packed into an integer. The members must all 
be of type unsigned int. Here's an example of a bit-field declaration: 

struct 
{ 



Memory and the Character Display 

unsigned int twobits 
unsigned int sixbits 
unsigned int againsix 
unsigned int onebit 
unsigned int extrabit 
} sample; 

2; /* bits 0 and 1 */ 
6; /* bits 2 through 7 */ 
6; I* bits 8 through 13 
1; '*bit 14 */ 
1; '*bit 15 *' 

Figure 10-15 shows how the integer represented by this structure looks. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ill 11111111111111 
) I T 

sample.extrabit sample.againsix sample.twobits 

sample.onebit sample.sixbits 

Figure 10-15. Bit Fields 

Accessing the members of a field requires the same format as accessing 
members of other structures: the dot operator is used to connect the name of the 
structure variable with the name of the member, as in these examples: 

sample.twobits = 3; 
sample.sixbits = 63; 
sample.onebit = 1; 

Note that you can't give a field element a value that exceeds its capacity; a one
bit field can have only two values, 0 and l, while a six-bit field can have values 
from 0 up to 63. Thus the values assigned above are all maximums. 

The version of the attrfill.c program shown below uses bit fields to access 
the various parts of the attribute byte. 

/* attrf2.c */ 
I* uses direct memory access to 
#define VIDEO_ADDR OxB8000000 
#define ROMAX 25 
#define COMAX 80 
#define TRUE 1 
void fillCchar, unsigned int); 

mainO 
{ 

struct 
{ 

unsigned int foregnd 
unsigned int intense 

3· I 

1 . 
I 

f il L screen */ 
'* start of video 
'* screen rows */ 
'* screen columns 

'* prototype */ 

I* bits 0, 1, 2 */ 

'* bit 3 *' 

memory *' 

*' 

369 



Chapter 10 

370 

} 

unsigned int backgnd 
unsigned int blinker 
} attr; 

char ch; 

3; 
1 ; 

/* bits 4, 5, 6 */ 
/* bit 7 *' 

unsigned int *ptrattr; /* pointer to attr */ 

printf("Type I n I for normal,\n"); 
printfC" I I for underlined,\n"); u 
printfC" I• I for intensified,\n">; 1 

printfC" 'b' for blinking,\n"); 
pri ntfC" I r I 

attr.intense = O; 
attr.blinker = O; 

for reverse 

while( Cch=getchO) != 'x'> 
{ 

switch (ch) 
{ 

case 'n' : 
attr.foregnd = 7; 
attr.backgnd = O; 
break; 

case 'u': 
attr.foregnd = 1; 
break; 

video,\n">; 

/* initialize intensity*/ 
/* and blinking */ 

I* set to normal */ 

I* set to underline*/ 

case 'i ': 
attr.intense = 
break; 

/* toggle intensity */ 
Cattr.intense==1) ? 0 : 1; 

case 'b' : 
attr.blinker = 

I* toggle blinking */ 
Cattr.blinker==1) ? 0 : 1; 

break; 
case 'r': 

attr.foregnd = O; 
attr.backgnd = 7; 
break; 

} 

/* set to reverse */ 

ptrattr = (unsigned int *)&attr; 
fillCch, *ptrattr); 

/* pointer to attr */ 
/* contents is attr */ 

} 

/*fill()*/ 
/*fills screen with character 'ch', attribute 'attr' */ 
void fillCchar ch, unsigned int attr) 
{ 

int far *farptr; 
int col, row; 

farptr = (int far *) VIDEO_ADDR; 
for(row=O; row<ROMAX; row++) 

/* point to video mem */ 
I* down rows */ 



Memory and the Character Display 

for<col=O; col<COMAX; col++) /* across columns */ 
*(farptr + row*COMAX + col) = ch I attr<<8; 

} 

To set foreground and background colors, the appropriate fields are assigned the 
desired values. To toggle the blinking and intensity attributes, the conditional 
operator is used to assign values to the appropriate bits. 

Bit fields provide an organized approach to accessing individual bits and 
groups of bits. 

Using fields probably gives a cleaner-looking approach, while the bitwise 
operators, which closely mirror the underlying assembly language instructions, 
are faster. 

Word Processing Revisited 

Now that we know about attributes we can expand our rudimentary word 
processing program. We'll give it the capability to underline words. To start 
underlining, the user types the [Alt] [u] key combination; to stop underlining, 
the user repeats the combination. 

In addition to adding underlining, we'll also give the program the capabil
ity to insert and delete characters. To insert a character, the user simply moves 
the cursor to the desired spot and starts typing. The characters to the right will 
be shifted further right to make room. To delete, the user hits the backspace 
key; this deletes the character to the left of the cursor. Any characters to the 
right will be shifted left to fill in the space. 

Here's the listing: 

/* wpro2.c */ 
/* rudimentary word-processing program */ 
/* with delete, insert and underlining */ 
#include <dos.h> /* for int86() and REGS definition */ 
#include <conio.h> /* for getch() */ 
#define VIDEO_ADDR OxB8000000 /* start of video memory */ 
#define TRUE 1 
#define COMAX 80 
#define R_ARRO 77 
#define L_ARRO 75 
#define BK_SPC 8 
#define ALT_U 22 
#define VIDEO Ox10 
#define NORM Ox07 
#define UNDR Ox01 
int col=O; 
int Length=O; 

/* max number of columns */ 
I* right arrow */ 
/* Left arrow */ 
I* backspace */ 
/* [Alt] and [u] keys */ 
/* video ROM BIOS service */ 
I* normal attribute */ 
/* underline attribute*/ 
/* cursor position */ 
I* Length of phrase */ 

371 



Chapter 10 

372 

int far *farptr; 
union REGS regs; 
void cursor(void); 

/* pointer to video memory */ 
/* for ROM BIOS calls */ 
/* prototypes */ 

void insert(char, char); 
void delete(void); 
void clear(void); 

void main(void) 
{ 

char ch, attr=NORM; 
farptr = (int far *)VIDEO_ADDR; 
c learO; 
cursor 0; 
while(TRUE) 

{ 

if ( (ch=getch()) -- 0 ) 
{ 

/* start of screen 
/* clear screen */ 
/* position cursor 

/* if char is 0 */ 

mem 

*' 

ch= getchO; 
switch(ch) 

/* read extended code 

} 

} 

else 

{ 

case R_ARRO: if Ccol<length) ++col; break; 
case L_ARRO: if(col>O) --col; break; 
case ALT_U: 

attr = (attr==NORM) ? UNDR : NORM; 
} 

switchCch) 
{ 

case BK_SPC: if(length>O) delete(); break; 
default: if(length<COMAX) insert(ch,attr); 
} 

cursor 0; 
} 

/* cursor() */ 
/* move cursor to row=O, col */ 
void cursor(void) 
{ 

regs.h.ah = 2; /* 'set cursor pos I service 
regs.h.dl = col; /* column varies */ 
regs.h.dh = O; /* always top row */ 
regs.h.bh = O; /* page zero */ 
i nt86 CV IDEO, &regs, &regs); /* call video interrupt 

} 

/* insert() */ 
/* inserts character at cursor position */ 
void insert(char ch, char attr) 
{ 

*' 

*/ 

*/ 

*/ 



Memory and the Character Display 

} 

int j; 
for(j=Length; j>col; j--) 

*(farptr + j) = *(farptr + j - 1>; 
*(farptr + col) = ch I attr<<8 ; 
++Length; 
++co L; 

/* delete() */ 

/* shift chars Left */ 
/* to make room */ 
/* insert char */ 
/* increment count */ 
/* move cursor right */ 

/* deletes character at position one Left of cursor */ 
void delete(void) 
{ 

} 

int j; 
for(j=col; j<=Length; j++) 

*(farptr + j - 1) = *(farptr + j); 
--Length; 
--co L; 

I* clearO */ 

/* shift chars right */ 

/* decrement count */ 
/* move cursor Left */ 

/* clears screen by inserting 0 at every Location */ 
void clear(void) 
{ 

} 

int j; 
for(j=O; j<2000; j++) 

*(farptr + j) = Ox0700; 
/*fill screen memory*/ 
/* with O's (attr=07> */ 

When the [Alt] [u] key combination is typed, the conditional expression at 
the end of the switch construct, 

attr = (attr==NORM) ? UNDR : NORM; 

toggles the attr variable back and forth between UNDR and NORM, which are 
the 07 (normal) and 01 (underline) attribute bytes. 

The insert() function now sports a new for loop. This loop uses direct 
memory access and a far pointer to shift all the characters that are right of the 
cursor, one space to the right. This shifting process must start at the right-hand 
end of the existing phrase; if the shifting were to start on the left, the left-most 
character would overwrite the character next to it before it could be shifted. 
When all the characters have been shifted out of the way, the character typed by 
the user is inserted at the cursor position. Figure 10-16 shows this process. 

Deletion is carried out in a similar way; all the characters to the right of the 
cursor are shifted left one space; the left-most character writes over the charac
ter to be deleted. In this case the shifting starts on the left-hand end. 

This word processing program should give at least some idea of the possi
bilities of direct memory access. 

373 



Chapter 10 

Before calling 

insert 0 

After 

cursor 
position 

! 
0 2 3 4 5 6 7 8 910 

I t s h 0 t,.,~ 
'-.__,IJJJ 
©®®CD 

0 2 3 4 5 6 7 8 9 10 

I t I i I s In I h I 0 I t I 
new / t 
character cursor 
inserted position 

Figure 10-16. The insert() Function 

11 

length= 10 
col =6 

~ length= 11 
col =7 

The Equipment List Word 

374 

Before we leave this chapter we should examine one other feature of the IBM 
computer: the equipment list word. This is a two-byte area in low mem
ory-absolute address 410 hex-that contains information about the equipment 
connected to the computer. When the IBM is first turned on, the ROM BIOS 
startup routine examines the computer's various connectors to see what per
ipherals are in use and then sets the bits in this word accordingly. 

This word can be useful in two ways. First, a program often needs to know 
if a certain piece of equipment is present. There's no use trying to print on the 
serial printer, for instance, if one isn't hooked up to the system. Second, as we'll 
see in Chapter 11, it's sometimes necessary to alter the settings in the equipment 
list word. 

Figure 10-17 shows the layout of the equipment list word. To access the 
word, we use a far pointer, as we did with video memory. In this case, however, 
the pointer will point to segment 0000, offset address 0410 (hex), which is 
represented in C as 00000410 hex, or simply Ox410. (This same address could 
also be represented as segment 0040, offset 10, which is how it's shown in the 
ROM BIOS listings in the IBM Technical Reference manual. J 

To examine the individual bits and groups of bits in the word, we'll use the 
bitwise operators (we could also have used fields). In general, we'll shift the 
equipment list word to the right, to put the bits we want on the right of the 
word, and then we'll mask any unwanted bits on the left with the bitwise AND 
operator. 

In addition to the equipment list word, we also read a word that contains 
the size of installed memory in Kbytes. We showed earlier how to check the 
memory size using a ROM BIOS routine; accessing this word directly is another, 
probably slightly faster method. 

The memory size word is located at absolute address 413 hex, so to access it 
we need to reset the variable farptr to point to this new address. 



Memory and the Character Display 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11111111111111111 
number j'----' ~~~ t 1 if any 
of printers disk drives 
installed present 

serial printer not used 
installed 

game 
adaptor 
installed 

number of 
RS-232 -----~ 

serial ports 

OMA 
chip 
installed 

system board RAM .__ ____ 00 = 16K 

01=32K 
11=64K 

video mode 
,____ ___ 01 = 40 column color 

number of 
disk drives 
00=1 drive 
01=2 drives 
10=3 drives 
11=4 drives 

10 = 80 column color 
11 = 80 column monochrome 

Figure 10-17. The Equipment List Word 

Here's the listing: 

/* eqlist.c */ 
/* Lists equipment attached to computer*/ 
#define EQLIST Ox410 /* Location of equipment List word */ 
#define MEMSIZ Ox413 /* Location of memory size word */ 
mainO 
{ 

int far *farptr; 
unsigned int eq, data; 
farptr = (int far *) EQLIST; 
eq = *(farptr); 
data = eq >> 14; /* printers */ 
printf("Number of printers is %d.\n", data); 
if(eq & Ox2000) /* serial printer */ 

printfC"Serial printer is present.\n">; 
data = Ceq >> 9) & 7; /* serial ports */ 
printfC"Number of serial ports is %d.\n", data); 
ifCeq & 1) /*diskette drives */ 

{ 

data = Ceq >> 6) & 3; 
printfC"Number of diskette drives is %d.\n", data+1); 
} 

else 
printfC"No diskette drives attached.\n"); 

375 



Chapter 10 

} 

data = (eq >> 4) & 3; 
switch (data) 

{ 

/* video mode */ 

case 1: printf("Video is 40 column color.\n"); break; 
case 2: printf("Video is 80 column color.\n"); break; 
case 3: printfC"Video is 80 column monochrome.\n"); 
} 

farptr = (int far *) MEMSIZ; /* reset to mem size word */ 
printfC"Memory is %d Kbytes.\n", *(farptr) ); 

And here's a sample run for a particular installation: 

C>eqlist 
Number of printers is 1. 
Number of serial ports is 1. 
Number of diskette drives is 2. 
Video is 80 column monochrome. 
Memory is 256 Kbytes. 

There's a variety of useful words and bytes stored in the data area from 400 
to 600 hex. To learn more about this area, you can consult the IBM Technical 
Reference manual or one of the books referred to in Appendix D. 

Summary 
This chapter has focused on the character display and its relation to a special 
area of memory. We've learned that, for each character on the screen, there 
corresponds a two-byte area of memory: one byte to hold the extended ASCII 
character code, the other byte to hold the attribute. To help manipulate such 
hardware-oriented data as attribute bytes, we learned about the bitwise opera
tors: AND, OR, XOR, left shift, right shift, and complement. We explored a 
simple one-line word processing program, and finally we saw how to access 
various areas in low memory, specifically the equipment list word, which tells 
what equipment is connected to the computer. 

In the next chapter we'll put what we've learned here to use in investigat
ing color graphics on the IBM. 

Questions 

1. Express the following hexadecimal values in binary: 

a. OxOl 

b. Oxf8 

c. Ox1234 

d. OxfcOa 

376 



Memory and the Character Display 

2. Numbers are represented internally in the computer as 

a. decimal 

b. binary 

c. hexadecimal 

d. none of the above 

3. True or false: the bitwise operators treat all variables as true or false 
values. 

4. Which of the following will be true if bit 5 of the character variable ch is 
a 1? 

a. (ch & 8) 

b. (ch & 10) 

c. (ch & 20) 

d. (ch & 40) 

5. The bitwise AND operator is often used to -------- off 
unwanted bits. 

6. What does the expression (Oxff : Ox32) evaluate to? 

a. Ox32 

b. OxOO 

c. Oxff 

d. Oxcd 

7. If num is of type int, what does (num > > 8) evaluate to when num has 
the value OxfOOO? 

a. OxOOOf 

b. OxOOfO 

c. OxffOO 

d. OxfffO 

8. The bitwise OR operator is often used to ________ different 
bits in different variables. 

9. The 8086 family of chips uses a combination of two addresses to access 
data outside the normal segment. These addresses are called the 

address and the address. 
~-------

10. A normal two-byte pointer cannot hold addresses outside a given segment 
because: 

377 



Chapter 10 

378 

a. it can't get through the segment barrier 

b. it isn't large enough 

c. it doesn't· know where other segments are 

d. it's not a segment register 

11. Before being added to the offset address, the value in the segment register 
is: 

a. shifted left four bits 

b. multiplied by OxlO 

c. converted to decimal 

d. complemented 

12. When the segment address is combined with the offset address, the result 
is the address. 

13. A far pointer is a variable that can hold addresses 
~~~~~~~~ 

bytes long.

14. Suppose the segment address is AlOO (hex) and the offset address is 1234
(hex). The resulting absolute address, expressed as a C far pointer
constant, is

a. OxA1234

b. OxA234

c. OxA2234

d. OxA1001234

15. True or false: the following is a valid way to declare a far pointer:

char far *farptr;

16. One reason to use direct memory access to put characters on the screen,
rather than going through C library routines, is to make the process

17. The phrase "memory-mapped video" means that:

a. the program must remember what it drew on the display.

b. for each location on the screen there corresponds a location in
memory.

c. the display is usually used for drawing maps.

d. display characters are mapped from ROM.

Memory and the Character Display

18. True or false: the following is a valid way to assign a value to a far
pointer:

farptr = DxA1001234;

19. To use far pointers in a program it is necessary to

a. know the address of the segment to be used

b. use a compiler option (in 3.0) that permits the far keyword

c. know the offset address of the data

d. use the indirection operator

20. True or false: the following is a valid way to access the memory location
pointed to by a far pointer:

value= *(farptr);

21. The attribute byte is located

a. in low memory

b. at the beginning of each segment

c. after each character

d. in the display memory

22. The intensity and blinking attributes are controlled by individual

~-------
in the attribute byte, while the foreground and

background "colors" are controlled by--------

23. Bit fields provide a way to

a. access individual bits

b. simplify access to arrays of data

c. access groups of bits

d. modify bits

24. The monochrome screen memory starts at absolute memory address
________ (hex) and ends at (hex).

25. The equipment list word provides information about

a. the video display

b. the diskette drive

c. serial and parallel printers

d. serial ports

379

Chapter 10

Exercises

380

1. Write a program that resembles ortest.c but which allows the user to play
with the XOR bitwise operator rather than the OR bitwise operator.

2. Write a program that will allow the user to type a binary number (up to 16
ls and Os) and that will then convert this number into both hexadecimal and
decimal.

3. Write a program that in operation resembles the draw.c program from
Chapter 8, which draws lines on the screen in response to the user pressing
the cursor keys. But instead of using the ANSI.SYS codes to place each
character, use direct access to the display memory (a far pointer). Note:
when the character being placed on the screen is one of the extended
character set (such as the cursor keys), a problem may arise because the
character will be interpreted as being negative. Use bitwise operators to
remove the offending bits.

4. Add a function to the wpro2.c word processing program that will permit the
user to erase an entire word at once, using the [Ctrl] and backspace keys
pressed together (127 decimal). All characters to the left of the cursor, up to
the first space character, should be deleted. If the first word in the line is to
be deleted, the cursor should end up in column 0.

Direct-Access Color Graphics

Graphics modes
ROM BIOS graphics routines
Direct access to graphics memory
CGA graphics modes
EGA bit-plane graphics
VGA 256 color mode

11

381

11

Modes

382

The ability to draw pictures-in color, in a few seconds-is one of the most
fascinating capabilities of modern computers. Graphics can be used in almost
any computer program; graphs can help the user make sense of the numbers
produced in spreadsheet or database programs, most games rely heavily on
graphics, and entire operating systems are now using graphics-oriented user
interfaces. The chances are that the program you're writing could profit from
graphics too.

In this and the next chapter we'll show how a C programmer can produce
graphics images on the IBM family of computers. This chapter explores the
direct approach: using ROM BIOS routines and direct access to the video
memory. These techniques are the fastest and most flexible. They will also work
(with some variations) with C compilers other than Microsoft C, and they teach
you the most about using C and about the computer itself. In the next chapter
we'll look at the special-purpose functions Microsoft C makes available for
graphics.

The first part of this chapter is applicable to the Color Graphics Adaptor
(CGA), the Enhanced Graphics Adaptor (EGA), and the Video Graphics Array
(VGA), so no matter which board you have you'll be able to follow what we're
doing. In the second part of the chapter we'll explore some capabilities of EGA
and VGA systems that are not shared by the CGA.

Just as an artist can choose from a variety of media when creating a picture (oils,
etching, watercolors, collage, and so forth), so an IBM graphics programmer can
choose from a variety of modes, or formats. Each mode provides a different
combination of graphics characteristics. These characteristics include the reso
lution, the number of possible colors, whether text or graphics are to be dis
played, and other elements. Each mode requires certain hardware (monitors and

Direct-Access Color Graphics

adaptor boards) and programming approaches. This can be confusing for some
one new to graphics, so in this section we'll briefly discuss the various graphics
elements and how they come together to make up each of the modes.

In the following section we'll show how to change to the desired mode,
and then we'll get down to the business at hand: putting pixels on the screen.

Table 11-1 summarizes the available modes and the graphics characteristics
of each one. We'll explain the elements of this table in the following sections.

Table 11·1. IBM Color Graphics Modes

Mode Minimum Starting
(dee) Colors Resolution Adaptor Monitor Memory Pages Address

0 text 16 grey 40x25* CGA CD 2K 8 (16K) B8000
1 text 16 40x25* CGA CD 2K 8 (16K) B8000
2 text 16 grey 80x25* CGA CD 4K 4 (16K) B8000
3 text 16 80x25* CGA CD 4K 4 (16K) B8000
4 grph 4 320x200 CGA CD 16K 1 (16K) BSOOO
5 grph 4 grey 320x200 CGA CD 16K 1 (16K) B8000
6 grph 2 (B&W) 640x200 CGA CD 16K 1 (16K) B8000
7 text 2 (B&W) 80x25* MA MD 4K 1 (4K) BOOOO

Modes 8, 9, and 10 are for the PC jr.
Modes 11 and 12 are used internally by the EGA board.

13 grph 16 320x200 EGA ECD 32K 2 (64K) AOOOO
14 grph 16 640x200 EGA ECD 64K 1 (64K) AOOOO
15 grph 2 (B&W) 640x350 EGA ECD 64K 1 (64K) AOOOO
16 grph 16 640x350 EGA ECD 128K 1(128K) AOOOO
17 grph 2 (B&W) 640x480 VGA VD 64K 4(256K) AOOOO
18 grph 16 640x480 VGA VD 256K 1(256K) AOOOO
19 grph 256 320x200 VGA VD 64K 4(256K) AOOOO

*Characters. Other resolutions in pixels

grph = graphics

MD = Monochrome Display

CD = Color Display

ECD = Enhanced Color Display

VD = VGA Display

MA = Monochrome Adaptor

CGA = Color Graphics Adaptor

EGA = Enhanced Graphics Adaptor

VGA = Video Graphics Array

Resolution

Graphics images on a computer screen are composed of tiny dots called pixels, for
"picture elements." (For some reason, IBM calls them "pels," but we'll stick with
the more common term.) Pixels are arranged on the screen in horizontal rows;

383

Chapter 11

384

there are a fixed number of rows and each row contains a certain number of pixels.
The number of pixels used on the screen is called the "resolution." Each graphics
mode uses a particular resolution: for example, mode 4 uses a resolution of 200
rows, each 350 pixels across. This is abbreviated 350 by 200, or 350x200.

In general, the higher the resolution, the more pleasing the picture. Higher
resolution means a sharper, clearer picture, with less pronounced "jaggies" (the
stairstep effect on diagonal lines). On the other hand, higher resolution also
requires more memory for the display.

Each pixel can appear in a variety of colors (assuming the correct mode is
set and the correct hardware is available). The arrangement of pixels on the
screen is shown in Figure 11-1.

graphics display

~ each dot represents a pixel and
each pixel can be one
of several colors

Figure 11-1. Graphic Images Are Made from Pixels

Text or Graphics

Some modes exist only to place text on the color screen, others are made for
graphics.

In the graphics modes, each bit, or each group of bits, corresponds to a
particular pixel on the screen. In the text modes, as we saw in Chapter 9, a
group of bits (actually two bytes) corresponds to a character. In this chapter
we'll be concentrating on the graphics modes; we covered many of the basic
aspects of the text modes in Chapters 9 and 10.

Color

Some graphics modes permit more colors than others. Several modes permit
only 2 colors: black and white (or perhaps black and green or amber, depending
on your monitor). Other modes permit 4 colors, 16 colors, or 256 colors.

The situation is actually slightly more complicated than this. For example,
a particular mode may allow only four colors, but it may be possible to switch to
a second group of four colors (although the second group cannot appear on the
screen at the same time as the first). These groups of colors are called "palettes."

Direct-Access Color Graphics

Display Monitors
IBM currently makes available several different types of monitors or display
devices. (Don't confuse these with graphics adaptors, which we'll cover in the
next section.) You're probably already familiar with the monochrome display
(MD), the standard monitor used to output text on the majority of IBMs sold. A
color monitor was also introduced along with the IBM PC. It was called, appro
priately, the Color Display (CD). This display provided a maximum resolution of
640x200 pixels (that is, 640 pixels across and 200 rows). Later IBM introduced a
third monitor, the Enhanced Color Display (ECD). This monitor allows for an
increased resolution of 640x350 pixels. More recently several new monitors
were introduced with the PS/2 series to display VGA graphics. A multisync
monitor will display all the modes, from CGA to VGA.

Not all monitors can be used in all modes. The older CD cannot be used
with modes 15 and 16, for example, since it lacks the ability to display 350 lines;
and the MD can only be used in mode 7, since it is normally a text-only display.

Of course, other vendors besides IBM make monitors that can be used
with the IBM family of computers. Any suitable monitor can be connected to
the IBM and may work just as well (or in some cases, better) than the IBM
products.

The Display Adaptor
Except for the PS/2 series, IBM computers and clones do not come with the
ability to send the signals necessary to produce images on a display screen. To
do this, a printed circuit board called a "graphics adaptor" must be plugged into
one of the slots inside the computer. A monitor is usually matched with the
appropriate display adaptor. The MD display goes with the MA (Monochrome
Adaptor), the CD monitor requires a CGA (Color Graphics Adaptor), the ECD
display matches the EGA (Enhanced Graphics Adaptor), and VGA monitors
require the VGA (Video Graphics Array) adaptor.

Each graphics adaptor can emulate the features of the less powerful
adaptors. That is, the VGA can create all the CGA and EGA modes, and the EGA
can create all the CGA modes.

VGA capability is built into PS/2 machines, but a VGA adaptor can be
purchased as a separate item for PC and AT class computers.

Display Memory
As we saw in Chapter 10, one of the key elements on any of the graphics
adaptors is memory. This random-access memory is similar to that in the com
puter, except that data placed in it causes an immediate change in the picture on
the monitor.

The different display adaptors come with differing amounts of memory.
The monochrome adaptor has only 4K, enough for two bytes for each of 2,000
characters (80 columns times 25 rows). The CGA has more memory: 16K. This is
enough for 640x200 pixels if only two colors are used. In this case, each bit in
memory corresponds to one pixel. We get the figure 16K by finding the total

385

Chapter 11

386

number of pixels: 640 times 200 is 128,000 pixels. Then, since each pixel corres
ponds to one bit, we divide by 8 bits per byte to arrive at 16,000 bytes (this is
actually slightly less that 16K, which is 16,384 bytes).

If the resolution is cut in half, to 320x200, we can now use two bits for
each pixel, and two bits can represent four colors. This is another mode avail
able on the CGA.

The EGA by contrast comes standard with 64K of memory. This allows 16
colors with a resolution of 640x200. (We can verify this by doing the arithmetic
as shown above, remembering that 16 colors requires four bits per pixel.)

Additional memory can also be added to the EGA to provide a total of
either 128K or 256K. If 128K is available, another mode becomes possible:
640x350 with 16 colors. (Extending the memory to 256K makes possible addi
tional pages, a feature we describe below.)

The following table summarizes the amount of memory necessary to sup
port different numbers of colors at different resolutions:

Colors
Resolution 2 4 16 256

320x200 BK 16K 32K 64K
640x200 16K 32K 64K 128K
640x350 32K 64K 128K 256K
640x480 64K 128K 256K 512K

Pages

When enough graphics memory is available in the adaptor, it's possible to keep
several screensfull of data in the memory at the same time. Thus, on the EGA
board, mode 13 (320x200, 16 colors) requires only 32K, but 64K is available. The
extra memory can be used to hold a second screen image (page). By switching from
one page to another, very rapid changes can be made to the image on the screen.

Starting Address

As with other parts of RAM, a memory location in a graphics adaptor card is
identified by its address. We've already learned that the monochrome memory
starts at absolute address BOOOO. The memory in the color adaptors starts at differ
ent addresses, depending on the mode. In the CGA modes (modes 0 to 6) it starts at
BBOOO, and in the EGA- and VGA-only modes (13 to 19) it starts at AOOOO. These
addresses are important if we want to access the display memory directly from our
program.

Summarizing the Modes

Mode 7 is the normal monochrome mode, used with the monochrome display
and the monochrome adaptor.

Modes 0, 2, and 5 are called "color suppressed" modes; they generate

Direct-Access Color Graphics

images in shades of grey for use on monitors that display graphics but not colors.
We won't be concerned with these modes.

Modes 1 and 3 are the normal text modes for the color monitors, providing
25 lines of 40 characters or 25 lines of 80 characters, respectively. If you have
only a color display, the operating system will automatically use one of these
modes.

Modes 13 through 16 were added with the EGA, and provide increased
resolution, additional colors, or both. Modes 15 and 16 require the ECD (or its
equivalent from another vendor, such as a multisync monitor), which has special
circuitry permitting 350 rows to be displayed. Mode 16 also requires 128K of
memory on the EGA board, rather than the standard 64K.

Modes 17 through 19 were introduced with the VGA. Again they provide
increased resolution and more colors. The VGA modes require a special display
that uses analogue circuitry. You can also use many of the multisync monitors
with these modes. The 640 by 480 modes are noteworthy in that they permit
square pixels; we'll have more to say about this in the next chapter.

In this chapter we'll concentrate on mode 4, which is a four-color 320x200
mode available for the CGA, EGA, and VGA adaptors, and mode 13, which is
available only on the EGA and VGA adaptors. These modes can be used regardless
of the type of color monitor you have, and both can be used with a VGA graphics
system. First, we need to know how to switch from one mode to another.

Setting Modes
If you're using the monochrome monitor and the monochrome adaptor,
when you first turn on your computer, it will boot up in mode 7. If you're
using a color display with the CGA or EGA, you'll probably boot up in mode
3, a text-only mode. Neither of these modes permits you to do graphics. Even
if you have both a color display and the monochrome display connected at
the same time, it's likely you'll end up in mode 7; if you don't switch modes,
your color screen will remain blank.

To draw graphics on the color screen, you'll need to know how to switch
from mode 7 (or mode 3) to a graphics mode. Depending on the kind of equip
ment you're using, this either involves one or two steps.

The Equipment Word

If you're already using a color monitor, with the CGA, EGA, or VGA adaptor as
your primary display, then you don't have to worry too much about the equip
ment word (although you should read this section anyway, to understand the
program that follows).

However, if you have both a monochrome display and a color display
attached to your system, each with its own adaptor card, and the monochrome
display is the primary display (the one that starts displaying operating system
messages when you boot up your system), then you'll need to know about the
equipment word and its role in changing modes.

387

Chapter 11

388

Actually, we discussed the equipment word at the end of Chapter 10, where
we took it apart to see what equipment was connected to the computer. Now we
need to do more; we need to modify this word. Why? When the computer is first
turned on, the operating system investigates its environment to see what equip
ment is connected. If it finds the monochrome adaptor plugged in (and if its
switch settings show that this is the primary adaptor), it will route all display
output to this adaptor, ignoring the color adaptor.

Changing modes may involve telling the operating system which of several
monitors to use.

There are several ways to convince the operating system that we want to
send output to the color monitor. One way is for the user to type the command
MODE from DOS. There are a number of graphics options for the MODE
command: BW40, BWBO, C040, COBO, and MONO. Except for MONO, any of
these options will cause the computer to switch to the color adaptor, but the BW
commands will not allow a color display. (MONO will cause it to switch back to
the monochrome adaptor.) Switching to a color graphics mode can be accom
plished with either C040 or COBO.

To use the MODE command, though, means that we must be human, not a
program; and we must be in DOS. Usually, it is more convenient to have our
program switch automatically to the desired display device, but to do this, we
need a method other than the MODE command. The alternative is to modify the
equipment word, and the program we're about to examine will do that for us.
Before we look at the program, however, we need to examine the second step
necessary for changing graphics modes.

The ROM BIOS Set Mode Command

Once the operating system knows to which display device we want our output
sent, we're in a position to select the mode. To do this we make use of a ROM
BIOS routine called "Set Video Mode." This involves putting 0 in the AH regis
ter, the desired mode number in the AL register, and executing an interrupt
number 10 (hex).

ROM BIOS routine: Set video mode

Interrupt 10 hex: video

Input registers: AH= 0

AL= mode number

Output registers: none

Direct-Access Color Graphics

The setmode.c Program
Here's the program that lets us switch graphics modes. It reads the command
line argument to know which mode we want. Thus, to switch to mode 4 from
DOS, we would type

C>setmode 4

Here's the program:

/* setmode.c */
/* sets graphics mode to
#include "dos.h"

value supplied */
/* declares REGS */
/* "set video mode" service */
/* video BIOS interrupt number */

#define SETMODE 0
#define VIDEO Ox10
#define MASK OxCF
main(argc,argv)

/* mask for video bits in equip word */

int argc;
char *argv[J;
{

}

union REGS regs;
int mode;
unsigned char far *farptr;
unsigned char ch;
unsigned char vidbits;
if (argc != 2)

{

/* pointer to equip flag */

/* code for video card */

printfC"Example usage: C>setmode 7");
exit 0;
}

mode= atoi(argv[1]);
if (mode == 7)

vidbits = Ox30;
else

/* string to integer */
I* if mono display */
/* 00110000 mono card */

vidbits = Ox10; /* 00010000 color, 40 columns */
farptr = (int far *) Ox410; /* set pointer to address */
ch= *(farptr); /*get byte at address */
ch = ch & MASK; /* mask off video bits 11001111 */
(farptr) = ch : vidbits; / OR vidbits to eq flag */
regs.h.al = (char)mode; /* mode number in AL register */
regs.h.ah = SETMODE; /* service # in AH register */
int86(VIDEO, ®s, ®s); /* call video interrupt */

There are two parts to this program. The first changes the appropriate bits in the
equipment word to the value necessary to choose between the monochrome
adaptor and the color adaptor. The bits that must be modified occupy positions 4
and 5 in the byte at absolute address 410 hex. To switch to mode 7 (the mono
chrome display), we turn both these bits on (put ls in them). To use any of the
other modes, all of which require the color adaptor, we turn the left bit off and
the right bit on.

389

Chapter 11

If you use a color monitor as your primary display device, you won't need
to modify the equipment word, so you can simply delete this whole first part of
the program.

In the second part of the program we call ROM BIOS interrupt 10 (hex)
with the appropriate values in the AH and AL registers. This switches us into
the mode specified in the command line.

Assuming you've got your color board (CGA or EGA) plugged in, and your
color monitor connected, try out the program. Switch to mode 4 by typing

C>setmode 4

The A> or C> prompt should appear on the color display, but you won't see
the flashing cursor: that's because the graphics modes don't support the cursor.
Want to see the cursor? Switch to a text mode, say mode 3. There's the prompt
with the cursor. Now switch back to mode 7; the monochrome screen will clear,
and you'll see the prompt and the cursor. Notice that switching modes clears the
screen. This can be a useful (though slow) way to clear the screen, either by
using setmode.c or by calling the Set Mode ROM routine from within a pro
gram.

If you're using QuickC, you should compile all the example programs in
this chapter to .exe files before running them. (Select Exe from the Output
Options list in the Compile option in the Run menu.) You can't execute the
examples from the QuickC environment because you need to set the mode
immediately before running the program. So compile an .exe file, exit to DOS,
change the mode with setmode.c, execute the example program, and then set
the mode back to the appropriate text mode (probably mode 3).

Displaying Pixels with ROM Routines

390

Now that we know something about graphics, and have a way to change to a
graphics mode, we're finally ready to put some pixels on the screen.

The simplest way to display graphics images is to use a ROM routine called
"Write Dot." The ROM routines for video displays are not especially fast, but
they are easy to program. (We'll see how to speed things up later.)

The following program, cstripes.c, is designed for use with mode 4, which
is available whether you're using the CGA or EGA adaptor. Before you execute
this program you must use the setmode.c program developed in the last section
to switch to mode 4.

The cstripes.c program draws four vertical stripes on the screen, each in a
different color, as shown in Figure 11-2.

This program shows all the colors that can be displayed at one time in this
mode. (Later we'll see how to double the number of colors by changing palet
tes.) Here's the listing:

/* cstripes.c */
/* fills CGA screen with 4 color bars. Use mode 4 C320x2~0) */

#include 11dos.h 11

#define MAXR 200
#define MAXC 320
#define VIDEO Ox10
#define WDOT OxOC
mainO
{

union REGS regs;
int row, col;
for(row=O; row<MAXR; row++)

for(col=O; col<MAXC; col++)
{

regs.h.ah = WDOT;
regs.x.dx = row;
regs.x.cx = col;
regs.h.al = col/80;
regs.h.bh = O·

' i nt86 (VIDEO, ®s, ®s);
}

}

cyan

Direct-Access Color Graphics

'* to declare REGS */
'* rows */
'* columns */
'* video interrupt # *'
'* 'write dot' ROM BIOS */

'*
I write dot' service *'

'* row in DX */
'* column in ex *'
'* colr chng evry 80 rows *'
'* page number */

'* call video services */

magenta white

Figure 11-2. Output of the cstripes.c Program

This program consists of an inner for loop to draw each row (in this mode each
row has 320 pixels) and an outer loop to step through the 200 rows. For each

391

Chapter 11

392

pixel the program calls interrupt 10, the video services interrupt. The AH
register contains 12 (dee) to specify the ROM BIOS Write Dot service; DX and
CX contain the row and column; BH contains the page number, which must be 0
in this mode; and AL contains the color. Set the graphics mode to 4 before
running the program.

ROM BIOS routine: Write dot

Interrupt 10 hex: video

Input registers: AH= OC hex

CX=column number

DX= row number

AL=color

BH =page number

Output registers: none

The normal or "default" set of colors in this mode is as follows:

Number

0
1
2
3

Palette 1

Color

black
cyan
magenta
white

To specify the color for a particular pixel we simply put the appropriate
color number, from 0 to 3, in the AL register when calling the Write Dot ROM
BIOS routine. In the cstripes.c program we want to create four vertical stripes,
each of a different color. The column numbers (the variable col) run from 0 to
319, so we divide this number by 80 to arrive at color numbers that run from 0 to
3 across each row, using the statement:

regs.h.al = col/80;

This results in four vertical stripes being drawn. Since the first stripe is black, it
will look as if nothing is being drawn in the left quarter of the screen.

We noted earlier that the Write Dot ROM BIOS routine is not too fast. How
slow it is depends on which member of the IBM computer family you're using.
On the slowest machine, a PC or XT running at 4. 77 megahertz, it takes 40
seconds to generate the display in cstripes.c. We'll soon see how to speed this up.

Direct-Access Color Graphics

Drawing Rectangles

Now that we know how to put a dot on the screen we can create patterns other
than stripes. The next program draws a series of concentric rectangles on the
screen, as shown in Figure 11-3.

magenta

white

Figure 11-3. Output of the conrect.c Program

Here's the listing:

/* conrect.c */
/* draws concentric rectangle of different colors */
#define VIDEO_ADDR OxB8000000 /* address of video memory */
void rect(int, int, int, int, unsigned char); /*prototypes */
void putpt(int, int, unsigned char);

void mainCvoid)
{

int z;

for(z=SO; z>=10; z-=10) /* do each rectangle */
rect(100-z, 100+z, 160-z, 160+z, (z/10>%4);

}

/* rect 0 */

393

Chapter 11

394

/*draws rectangle on screen using putpt() */
void rect(int top, int bot, int left, int rite,

{

}

int XI Yi

forCy=top; y<=bot; y++)
forCx=left; x<=rite; x++)

putptCx,y,color);

unsigned char color)

/* for each line */
/* for each pixel */
/* color the pixel */

/* putpt 0 */
/* displays point at location col, row */
#define BYTES 40 /* (bytes per row) I 2 */
#define PIX 4 /* pixels per byte */
void putpt(int col, int row, unsigned char color)
{

}

int addr, j, bitpos;
int mask=OxFF3F;
unsigned char temp;
unsigned char far *farptr;
farptr = (char far *)VIDEO_ADDR;

/* 11111111 00111111 */

/* to hold screen address */
/* set ptr to screen addr */

/* calculate offset address of byte to be altered */
addr = row*BYTES + col/PIX; /* calculate address */
if(row & 1) /* if odd row number */

addr += 8152; /* use 2nd memory bank */

I* shift two-bit color & mask to
color <<= 6;
bitpos = col & Ox03;
for(j=O; j<bitpos; j++)

{

mask >>= 2;
color >>= 2;
}

appropriate place in byte */
/* put color on left */
/* get lower 2 bits */
/* shift mask & color */
/* to right */
/* bitpos times */

/* put two color bits in screen memory location */
temp = *(farptr+addr) & Cchar)mask; /* and off color bits */
(farptr+addr) = temp I color; / or on new color */

We've broken the program into three parts: a function putpt(), which uses the
ROM BIOS routine to put a point on the screen; a function rect(), which draws a
rectangle, given the column numbers of the left and right sides of the rectangle
and the row numbers of the top and bottom; and the main() program, which
calls the rect() routine five times, asking for a smaller rectangle each time. The
variable color cycles repeatedly through the series 0, 1, 2, 3, as each new
rectangle is drawn.

Direct-Access Color Graphics

Setting Color Palette and Background
As we've noted, we can choose a different set of four colors if we wish. Let's see
how this is done.

In mode 4 there are two possible sets of colors or palettes. We've already
seen the first one: black, cyan, magenta, and white. How do we switch to the
second set? Once again, a ROM BIOS routine, this one called "Set Color Pal
ette," does the job.

ROM BIOS routine: Set color palette

Interrupt 10 hex: video

Input registers: AH= OB (hex)

BH = 1 (to change palette)

BL= palette number

Output registers: none

Here's a program that allows you to switch to any desired palette. Like
setmode.c, it uses a command-line argument to specify the palette. Here's the
listing:

/* setpal.c */
to one of two values */

/* declares REGS */
/* sets color palette
#include "dos.h"
#define SETPAL OxOB
#define VIDEO Ox10
main(argc,argv)

/* "set color palette" service */
/* video BIOS interrupt number */

int argc;
char *argv[J;
{

union REGS regs;
int pal;
if (argc ! = 2)

{

/* palette number */

printfC"Example usage: C>setpal 011
);

exit 0;

}

}

pal= atoi(argv[1J >;
regs.h.bh = 1;
regs.h.bl = pal;
regs.h.ah = SETPAL;
int86CVIDEO, ®s, ®s);

/* string to integer */
/* BH=1 to set palette */
/* palette # from user */
/* service # in AH register */
/* call video interrupt */

To try out this program, first switch to mode 4, then run the conrect.c program.

395

Chapter 11

396

This will give you a picture of concentric rectangles on the screen, in the default
palette, which is number 1. Then switch to the second palette, type

C>setmode 4
C>conrect
C>setpal 0

Now you'll see the same pattern, but this time in the colors of the second
palette.

Number

0
1
2
3

Palette O

Color

black
green
red
brown

The color black remains the same for both palettes; this is the background
color-the color on the screen where nothing has been written.

Changing the Background

Both the CGA and EGA adaptors are capable of generating 16 colors (in other
modes the EGA can generate even more). Even in mode 4, which allows only 8
colors (two palettes of four colors each), we can see all 16 colors by changing the
background color from black. ·

ROM BIOS routine: Set background

Interrupt 10 hex: video

Input registers: AH= OB (hex)

BH=O (to change background)

BL= palette number

Output registers: none

Here's a program that uses a variation of the Set Color Palette ROM routine
to change the background. We specify that we want to change the background
by placing a 0 in the BH register instead of a 1, as we do for changing the palette.

/* setback.c */
/* sets color of background to one of 16 values */
#include "dos.h" /* declares REGS */

#define SETPAL OxOB
#define VIDEO Ox10
main(argc,argv)
int argc;
char *argv[J;
{

union REGS regs;
int pal;
if (argc != 2)

{

Direct-Access Color Graphics

/* "set color palette" service */
/* video BIOS interrupt number */

/* palette number */

print f<"Examp le usage: C>setbac k 15");
exit 0;

}

}

pal= atoi(argv[1] >;
regs.h.bh = O;
regs.h.bl =pal;
regs.h.ah = SETPAL;
int86CVIDEO, ®s, ®s>;

/* string to integer */
/* BH=O to set background */
/* palette # from user */
/* service # in AH register */
/* call video interrupt */

Now when you invoke this program in mode 4, you have a choice of 16 possible
colors. Table 11-2 lists them.

Table 11·2. Available Colors

Num Color Num Color

0 Black 8 Grey
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Light magenta
6 Brown 14 Yellow
7 White 15 Intense white

You can use setback.c to experiment with colors. In graphics modes the
background and the border both change to the color specified. In the text modes
only the border (the area of the screen outside where printing can appear)
changes. By changing the background color you can alter the effective color of
the pixels you put on the screen, making all 16 colors available in mode 4,
although not at the same time.

Color Generation

Where do these 16 colors come from? The CGA, and the EGA in this mode,
generate four signals that are sent to the display for each pixel. These signals
are blue, green, red, and intensity.

These four signals can be combined in specific ways to produce the 16 colors

397

Chapter 11

shown in Table 11-2. First, any combination of blue, green, and red signals can be
made to yield one of 8 colors. Then, if the intensity signal is added, 8 more colors
!lighter versions of the first eight) are generated. Table 11-3 shows how the signals
are combined to produce the colors. A 1 indicates that the signal is present and a 0
indicates it's not. Later we'll see how these combinations of signals can be repre
sented as combinations of bits in the EGA-specific graphics modes.

Table 11·3. Signal Combinations

Num Color Components

Intensity Red Green Blue

0 Black 0 0 0 0
1 Blue 0 0 0 1
2 Green 0 0 1 0
3 Cyan 0 0 1 1
4 Red 0 1 0 0
5 Magenta 0 1 0 1
6 Brown 0 1 1 0
7 White 0 1 1 1
8 Grey 1 0 0 0
9 Light blue 1 0 0 1
10 Light green 1 0 1 0
11 Light cyan 1 0 1 1
12 Light red 1 1 0 0
13 Light magenta 1 1 0 1
14 Yellow 1 1 1 0
15 Intense white 1 1 1 1

Direct Memory Access and the Graphics Display

398

So far we've used ROM routines to put pixels on the screen. As we've noted, this
is easy but slow. Now let's look at an alternative method that is harder to
program, but that can have a significant speed advantage: direct memory access
to the display memory. We've already explored this topic as it relates to the
memory in the character display !see Chapter 10), so you should understand the
fundamentals of the process. The difference is that we will be accessing bits
representing pixels, rather than bytes representing characters.

Memory Usage in Mode 4

Before we can manipulate the bits in the display adaptor's memory, we need to
understand how these bits relate to the pixels on the screen.

In mode 4, two bits are used to represent each pixel, since there are four
possible colors associated with the pixel. Figure 11-4 shows how these combina
tions look. Four of these two-bit combinations are placed in each byte of the

Direct-Access Color Graphics

screen memory, so that, for example, the top row of 320 pixels requires 320
divided by 4, or 80 bytes of memory.

color two-bit
combination

0 ([@)

@Iil
2 [ill)
3 OJI)

Figure 11-4. Two-Bit Combinations Used for Colors

There is an added complexity in the way the memory relates to the screen.
The even rows of pixels go in one part of memory, while odd rows go in another.
This scheme was designed to make the hardware more efficient, but it compli
cates life for the programmer. The part of the memory holding the even rows
starts at B8000, while that for the odd rows starts at BAOOO. BAOOO is B8000 plus
2000 hex; 2000 hex is 8192 decimal, and we need 8,000 decimal bytes to hold the
information for all the even lines, since we have 80 bytes per row times 100
rows. We need another 8,000 bytes for odd lines.

In CGA memory, the even scan lines occupy a different area of memory
than the odd lines.

Figure 11-5 shows how pixels on the screen relate to the display memory. A
two-bit combination represents each pixel, so each byte represents four pixels.

Putting Bytes in Memory

For filling large patterns on the screen with color, it's more efficient to place
whole bytes-each of which represents four pixels-in memory at once, rather
than placing individual pixels. The following program imitates the behavior of
the earlier cstripes.c program but operates more briskly: about 15 times faster.
This speed increase is made possible by using direct memory access rather than
a ROM routine and by putting four pixels on the screen at once, rather than one.

Here's the listing:

/* fstripes.c */
/*fills CGA screen with 4 color bars. Use mode 4 C320x200) */
/*uses direct memory access*/
#define MAXR 200 /* rows */

399

Chapter 11

400

88000

88001

88002

88003

89F3E

89F3F

8AOOO

8A001

8A002

88F3E

88F3F
row 199

row 198

Figure 11-5. Memory Organization for Mode 4

#define MAXC 320
#define MAX8 CMAXC/4)
#define BPC CMAX8/4)
char table[4J =

mainO
{

{ OxOO, OxSS, OxAA, OxFF };

char color, far *farptr;
int addr, index, row, col;

'* columns */
/* bytes in a row (80) */
'* bytes per color (20) */

'* color byte table */

farptr = (int far *) Ox88000000; /* set ptr to EGA mem */
for(row=O; row<MAXR; row++)

}

for (col=O; col<MAXB; col++)
{

index = Ccol/BPC) & Ox03;
color = table[indexJ;
addr = Crow/2)*MAXB + col;
if(row & 1)

addr += (8192-40);
*(farptr + addr) = color;
}

Direct-Access Color Graphics

/* colr chng evry 20 bytes */
/* get color pattern */
/* address of byte */
/* if odd row number */
/* use second bank */
/* set 4 pixels */

As in the cstripes.c, this program is built around two nested for loops; the
inner loop moves across a row, while the outer loop steps down from row to
row. There are several complexities in this program, though, that weren't pres
ent in cstripes.c.

First, because there are four pixels per byte, and we want to address each
byte in turn rather than each pixel, the variable col actually counts across the 80
bytes in a row, rather than the 320 pixels. Thus, the limit in this loop is MAXB,
the number of pixels in a row divided by the number of pixels in a byte.

The second complexity is that the program must calculate the memory
address that corresponds to a particular group of four pixels. For even rows, this
address will be the row number (the variable row) divided by 2 (since we're
only counting the even rows) times the number of bytes per row, which is
MAXB, all added to the column number (the number of bytes across). This is
calculated in the line:

addr = (row/2)*MAXB + col;

For odd rows we must add a constant to this address. The constant is the
number of bytes between B8000, where the section of memory for the even
rows begins, and BAOOO, where the section of memory for the odd rows begins.
This is 2000 hex, or 8,192 decimal. From this must be subtracted MAXB/2,
because, although we're on row 1, for example, this is really row 0 in the second
memory bank; the effect is the same as using row - 1.

The third complexity is to figure out what color information to place in
each byte before inserting it in memory.

In the fstripes.c program all four pixels in each byte will be the same color,
since the wide stripes we're drawing don't require fine detail. Thus, a byte can
be configured in any of four possible ways, depending on the color being used.
Each of these configurations can be represented by a hex number, as shown in
Figure 11-6.

In fstripes.c these four bytes are stored in the array called table. The
program selects which of these four representations to use by dividing the
column number by the number of bytes to be devoted to each color stripe: in
this case, MAXB divided by 4, or 20 bytes per stripe.

Finally, using a far pointer, the program inserts the correct byte into
memory.

Try this program. You'll be amazed at the speed increase over cstripes.c.

401

Chapter 11

402

Hex
Color number

D D
black o:o QIQ oxoo

I

cyan 0: 1 OX55
I

magenta 1 IQ
I

1 10 I OXAA

white 1 : 1 1 : 1 1 : 1 OXFF
I

1..-..,.-1 .__,.._; .__,.._;

~
fourth pixel

third pixel

second pixel

first pixel

Figure 11-6. Hex Representations of Solid-Color Bytes

Putting Single Pixels in Memory

Now that we know how to access a particular byte in the display memory, there
is nothing to stop us getting at the individual bit-pairs that represent an individ
ual pixel. This will give us the power to imitate the Write Dot ROM BIOS
routine, using direct memory access. This is not only educational, in that it
shows what Write Dot has to do to access a given pixel, it also provides us with a
faster routine than Write Dot.

The following program uses a function called putpt() (for "put point" J to
emulate the operation of the Write Dot routine. To test this function, the main
part of the program draws four lines, two diagonal-colored cyan and ma
genta-and one vertical and one horizontal-colored white-as shown in Figure
11-7.

Here's the listing:

/* diagline.c */
/* draws diagonal Lines on screen using putpt() */
#define CYAN Ox01 /* 2-bit patterns */
#define MAGENTA Ox02 /* for CGA colors */
#define WHITE Ox03
void putpt(int, int, unsigned char); /*prototype */
mainO
{

int x;

Direct-Access Color Graphics

}

white

white cyan

Figure 11-7. Output of the diagline.c Program

for(x=O; x<200; x++)
{

putpt(x,x,CYAN);
putpt(x,199-x,MAGENTA);
putpt(x,100,WHITE);
putpt(100,x,WHITE);
}

/*diagonal line */
/*diagonal line */
/* horizontal line */
/* vertical line*/

/* putptO */
/* displays point at location col, row*/
#define BYTES 40 /* (bytes per row) I 2 */
void putpt(int col, int row, unsigned char color)
{

int addr, j, bitpos;
int mask=OxFF3F; /* 11111111 00111111 */
unsigned char temp;
unsigned char far *farptr; /* to hold screen address */
farptr = (char far *) OxB8000000;/* set ptr to screen addr */

/* calculate offset address of byte to be altered */
addr = row*BYTES + (col >> 2); /* calculate address */
if(row & 1) /* if odd row number */

addr += 8152; /* use 2nd memory bank */

403

Chapter 11

404

}

/* shift two-bit color & mask to
color <<= 6;
bitpos = col & Ox03;
for(j=O; j<bitpos; j++)

{

mask >>= 2;
color >>= 2;
}

appropriate place in byte */
/* put color on left */
/* get lower 2 bits */
/* shift mask & color */
/* to right */
/* bitpos times */

/* put two color bits in screen memory location */
temp = *(farptr+addr) & (char)mask; /* and off color bits */
(farptr+addr) = temp : color; / or on new color */

In the following discussion we make extensive use of the bitwise opera
tors. If you're hazy on these, you may want to review the appropriate section of
Chapter 10.

The putpt() function has three parts. First it must find the address of the
memory byte to be modified. This is handled in a way similar to that in the
fstripes.c program, except that the variable col now actually represents a pixel
location from 0 to 319. This column number must be divided by the number of
pixels per byte before being used to calculate the address. For example, if we
want to access a location on the screen 102 pixels from the left edge of the
screen, this is 102/4 or the 25th byte from the start of the row.

Actually, instead of dividing by 4, we shift the column number to the right
two bits, which has the same effect but is faster (since the shift instructions in
the microprocessor are faster than the division instructions). This approach also
emphasizes that the lower two bits of the column number have no effect on
which byte we're addressing.

The bitwise left-shift and right-shift operators have the same effect and are
faster than multiplying and dividing by powers of 2.

The second part of putpt() positions the two color bits correctly so that
they can be placed in the appropriate location within the byte whose address
we've just calculated. This is done by starting with these two color bits (which
are passed to putpt() from the calling program) on the left side of the byte, and
then shifting them right, as many times as is necessary to put them in the
appropriate place in the byte. The number of times to shift is determined by the
lower two bits of the column number: a value from 0 to 3, which is the position
of the two color bits in the byte. This is found in the statement

bitpos = col & Ox03;

Thus, if our column number is 102, by masking off all but the lower two bits, we

Direct-Access Color Graphics

retain only the 2, which is assigned to bitpos. Now we know not only the
address of the byte being accessed, but the position in the byte of the two bits
representing the pixel.

There may be a color other than black already on the screen when we want
to put our pixel there. If this is true, it's important that we don't change the six
other bits in the byte we're addressing, otherwise we'd erase the underlying color.
For this reason, we must first read the byte, then AND off (remove) the two bits
we want to change, leaving the other six unaltered; then OR on (insert) the two
color bits. We use a mask to AND off the appropriate bits. To create the mask, we
start with the constant OxFF3F, which is 11111111-00111111 binary. We then shift
this constant to the right the same number of times we shift the two color bits.
(We use an integer so we can guarantee ls will be shifted in on the left.)

The shifting of the color bits and the mask can take place in the same loop,
since they're shifted the same number of times. Figure 11-8 shows this process
where the color bits are 01 (cyan) and the last two bits of the column number are
the number 2, meaning that we must shift the color bits and the mask to the
right twice (shifting two bits each time).

color
bits mask

o:o o:o o:o
I I

1 : 1 1 : 1 1 : 1 0 11 111 1 11 1 : 1 1 I 1 QIQ
I I I I I I

~ ~ ~

<D ® ®

! !
QIQ 0 I 0 Q 11 QIQ 1 11 1 11 0 IQ 1 : 1

I I I I I I I I

Figure 11-8. Shifting the Color Bits and Mask

Once we've got the color bits and the mask in the right place, we read the
value of the byte from the video memory, AND it with the mask, OR on the
color bits, and put it back into memory. This is the function of the statements in
the third and final part of the program:

temp = *(farptr+addr) & (char)mask; /* AND off color bits */
(farptr+addr) = temp color; / OR on new color */

To prove that the putpt() function can write over other colors without
disturbing them, run fstripes.c to put colored stripes on the screen, then run
diagline.c to draw lines over it. You'll see that the colors in the background
stripes remain undisturbed.

405

Chapter 11

406

The Bouncing Ball

Besides drawing rectangles and lines on the screen, we can also draw other
shapes. And we can make these shapes appear to move, by drawing and redraw
ing them in different positions. In the following program we create a ball and set
it in motion on the screen, at a 45-degree angle. Every time it hits the edge of the
screen it reflects or "bounces," like a ball on a pool table, so it ends up travers
ing a complicated pattern, as shown in Figure 11-9.

Figure 11-9. Bouncing Ball

/* bounce.c */
/*draws bouncing ball */
#define MAXC 320
#define MAXR 200
#define RED 2
#define BLACK 0
void drawball(int, int, unsigned char>;
void putpt(int, int, unsigned char>;

mainO
{

int x=10, y=10, dx=4, dy=4;

while(kbhit<>==O)

/*pixels per line*/
/* lines */
/* 2-bit color value */
/* 2-bit color value */
/* prototypes */

/*bounce until key*/

}

{

drawball(x, y, BLACK>;
x+=dx; y+=dy;
if(x<10 I I x>MAXC-20)
if(y<10 I I y>MAXR-20)
drawballCx,y,RED);
}

dx *= -1;
dy *= -1;

Direct-Access Color Graphics

/* erase old ball */
/* move coordinates */
/* if at edge, */
/* change direction */
/*draw ball */

/* drawba l l 0 */
/*draws ball, radius 16 pixels. Upper-left corner at col, row */
void drawball(int col, int row, unsigned char color)
{

}

unsigned int mask;
int x, y, dotpat;
static unsigned int ball[16J = /* picture of ball */

{ Ox07EO, Ox1FF8, Ox3FFC, Ox7FFE,
Ox7FFE, OxFFFF, OxFFFF, OxFFFF,
OxFFFF, OxFFFF, OxFFFF, Ox7FFE,
Ox7FFE, Ox3FFC, Ox1FF8, Ox07EO };

for(y=O; y<16; y++) /* each of 16 rows */
{

dotpat = ball[yJ;
mask = Ox8000;
for<x=O; x<16; x++)

{

/* pattern for this row */
/* one-bit mask on left */
/* each of 16 columns */

if(mask & dotpat) /* if part of pattern */
putpt(col+x, row+y, color>; /*draw dot */

mask>>= 1; /*move mask right */
}

}

/* putpt 0 */
/* displays point at location col, row */
#define BYTES 40 /* (bytes per row) I 2 */
#define BANK 8192-BYTES /* 2nd bank - one row */
void putpt(int col, int row, unsigned char color)
{

int addr, j, bitpos;
unsigned int mask=OxFF3F; /* 11111111 00111111 */
unsigned char temp;
unsigned char far *farptr; /* to hold screen address */
farptr = (char far *) OxB8000000;/* set ptr to screen addr */

/* calculate offset address of
addr = row*BYTES + Ccol >> 2);
i fC row & 1)

byte to be altered */

addr += BANK;
/* shift two-bit color & mask to
color <<= 6;

/* calculate address */
/* if odd row number */
/* use 2nd memory bank */
appropriate place in byte */
/* put color on left */

407

Chapter 11

408

}

bitpos = col & Ox03;
forCj=O; j<bitpos; j++)

{

mask >>= 2;
color >>= 2;
}

/* get lower 2 bits */
/* shift mask & color */
/* 2 bits right */
/* bitpos times */

/* put two color bits in screen memory location */
temp = *(farptr+addr) & Cchar)mask; /* AND off color bits */
(farptr+addr) = temp I color; / OR on new color */

This program uses the putpt() function from the last example. It also introduces
a new function, draw ball(). This function uses a pattern, consisting of an array
of integers, to represent the ball. Each integer has 16 bits, and there are 16
integers, so this array can define a rectangular object of 16 by 16 pixels. The
relationship between the hex numbers and the pattern is shown in Figure 11-10.

bit patterns

I I J_ I
I I~ ~ I ~ ""'-~ I ...L

I ~ I N
I v l I ! I
I IZ I I I
I _J

I j_ I I I

'J_ l j I
I I I I

...L ...I..

I I
-l- L.-'-- _T_.__ - '--1-""' - i _..._,_

(sequence is reversed
for the lower half
of the ball)

I
I
I
I

""\ I
I

~ I

~:
_lJ

11

-'---i

hex
numbers

07EO
1 FF8
3FFC

--- 7FFE
--- 7FFE

FFFF
FFFF
FFFF

Figure 11-10. Hex Numbers Representing Ball

The draw ball() function uses a for loop to go through each of the 16
integers in turn. For each number, an inner for loop uses a one-bit mask to test
each bit of the pattern word. If the bit is on, a dot is written to the screen using
putpt(). If it's not on, no bit is drawn. The result is a drawing of a ball,
reproduced on the screen.

To move the ball, the main program draws it, then erases it, then calculates
the new location and draws it again. When the ball comes too close to the edge
of the screen, which is checked for by the if statements, the signs of dy and
dx-the increments by which the x and y coordinates of the ball are in
creased-are reversed, thus reversing the ball's direction of motion.

Of course other patterns could be used here as well- spaceships, running
men, icons representing disks or files, or whatever. The size of the pattern could

Direct-Access Color Graphics

also be changed: an array of type char, with 64 pixels, could be drawn faster
than the present 256-pixel pattern.

The C library function kb bit() returns a 0 if no key was struck, and 1
when the user hits any key.

EGA-Specific Modes
The EGA adaptor makes available several modes that don't exist on the CGA
board. These modes use a different conceptual approach to putting colors on the
screen than do the CGA modes, so in this section we'll explore a representative
EGA-specific mode, number 13. Mode 13 provides a resolution of 320x200, with
16 colors (instead of the 4 colors provided by CGA mode 4). Mode 13 doesn't
require the ECD, but it can be used with this display, and the principles in
volved are the same for the higher-resolution modes 15 and 16, which do require
the ECD.

ROM Routines and the EGA

As with the CGA modes, the simplest approach to putting color on the screen
with the EGA modes is to use the Write Dot ROM BIOS routine. Here's an
example that draws 16 differently colored vertical bars. The effect is shown in
Figure 11-11. (Don't forget to switch to mode 13.)

(1j

.~ c c: (l) .c
(1j

Q) (l) c: Ol :;;::
::i (l) (1j "O (1j c :0 Oi >.

~ E :;;::
(l)

c: c: u Cf)

(l) c (l)
$ ~ >- E ~ c

OJ E E E E ~ C'J

~
{\l e .c (!) Qi

(l)

>- 0, ~ .~ ~ ~ ~ c Cl (.) E ..0 5: >-

Figure 11-11. Output of the estripes.c Program

409

Chapter 11

410

/* estripes.c */
/*fills EGA screen with 16 color
#include "dos.h"
#define MAXR 200
#define MAXC 320
#define VIDEO Ox10
#define WDOT OxOC
mainO
{

union REGS regs;
int row, col;
for(row=O; row<MAXR; row++)

for(col=O; col<MAXC; col++)
{

regs.h.ah = WDOT;
regs.x.dx = row;
regs.x.cx = col;
regs.h.al = col/20;
regs.h.bh = O;

bars. Use mode 13 C320x200) */
/* to declare REGS */
/* rows */
/* columns */
/* video interrupt # */
/* 'write dot' ROM BIOS */

'*
I write dot' service *'

'* row in DX */
'* column in ex */
'* colr chng evry 20 rows *'
/* page number */

int86CVIDEO, ®s, ®s); '* call video services */
}

}

This program is similar to the cstripes.c program used for mode 4, except that
we can now display 16 colors (15 not counting black) instead of four. Thus we
must change colors every 20 columns.

With the Write Dot routine we can do anything in mode 13 we did in mode
4: draw rectangles, lines, bouncing balls, and so forth. As with the CGA modes,
however, the Write Dot routine is easy to program but slow. To speed things up
we can access the EGA memory directly, but to do that we need to know
something about how the EGA works with colors.

Bit Planes

Earlier we saw how the CGA board forms pixels of varying colors by combining
two bits in all possible ways, yielding four colors. Each pixel is represented by
two adjacent bits in a byte; so each byte can hold the information for four pixels.
You might think that to achieve 16 colors we would use more bits; four bits
would do the job, and we could pack two pixels in a byte. However, the EGA
uses a different approach.

The EGA thinks of each color as occupying a separate area of memory. The
64K standard EGA memory is divided into four sections, or "planes," one for
red, one for blue, orie for green, and one for intensified. In any given plane, each
bit represents one pixel, so eight blue pixels are packed into a byte in the blue
plane, eight red pixels into a byte in the red plane, and so on. Figure 11-12 shows
how this looks.

If you're only going to work with, say, blue pixels, then you can do all your
work in bit plane 0. However, to combine colors, you'll need to work in several

Direct-Access Color Graphics

l ~
T ~ ...

tt bit plane 0

~ ,1_(((// ~~

l
J ~,//// green

r"e ri r1 r1 o
ltlt bit plane 1

=:- /_(////
,,. l...i!! Wi
~~

l
ll ~,//// red

jtlt bit plane 2

/~· I
~~vv'

blue

bit plane 3

memory

Figure 11-12. Bit Planes and Pixels

bit planes at the same time. For instance, to set a pixel to light cyan, you'll need
to set the appropriate bit to 1 in plane 0 (blue), in plane 1 (green), and in plane 3
(intensified).

Now you might suppose that each of the four bit planes would occupy a
different address space (range of addresses) in memory, so that accessing a
particular byte in a particular bit plane would simply be a matter of figuring out
the appropriate address. However, the designers of the EGA were more devious
than that. Why? Suppose the bit planes were in separate address spaces (perhaps
AOOO, A2000, A4000, and A6000). Then, to put a light cyan pixel on the screen,
we'd need to put a bit in three different places in memory; this would require
three separate write operations (using far pointers). Not very efficient.

Instead, the EGA is designed so that-hold onto your hat-all four bit planes
occupy the same address space. They all start at address AOOOO hex. In the case of
mode 13, with 320 times 200 or 64,000 pixels, the amount of memory needed is
64,000 divided by 8 pixels per byte, which is 8,000 (dee) or 1F40 (hex) bytes. So
all four bit planes start at AOOOO and run up to A1F3F.

411

Chapter 11

412

All four EGA bit planes occupy the same memory address space.

But, if all the bit planes are in the same place in memory, how can we specify
that we want to turn on a pixel in only one color-blue, say? It looks as if, to turn on
one bit, we end up turning on four bits, one in each bit plane, at the same time.
How can we select only the bit planes we want? To answer this question, we must
know how to program something called the "map mask register."

The Map Mask Register

The EGA board contains a custom integrated circuit chip called the "sequencer."
This device contains several registers, including the map mask register. By
placing an appropriate value in the lower four bits of the map mask register, we
can specify which of the four bit planes we want to write to. We can specify one
plane or a group of planes. Figure 11-13 shows the map mask register in relation
to the bit planes.

3»ff ffl! 1 •

2»Jm!J'
'l1J»»t'

"JYYYY»Y'
I I I I I I I I I

CPU

unused

76543210

Map mask register -I I I I I I I I I

Data from CPU is written
to those bit planes for
which the corresponding bit
is set to 1 in the map mask
register.

;ntensmed I

red

green

blue

Figure 11-13. The Map Mask Register

For a pixel to be set to a particular color, the bits in the correct bit planes
must be turned on. For this to happen, the bit must be set to 1 in the byte sent
from the CPU, and the bit in the map mask register at the position correspond-

Direct-Access Color Graphics

ing to the desired color must also be set to 1. Figure 11-14 shows a single bit being
set to the color red. We could turn on several different bits at once and several
different bit planes could be activated as well, so that the pixels could be colored
with composite colors.

I I I I I I I I 1~4t--~~~~~~~~~~in_te_n_si_fie_d~~I
llllllll

10!0!0!0!1!0!0!01~~----------------------re_d ______ __.
!!!II!!!

I I I I I I I I I ~~,__ _______________________ gr_ee_n ________ _,

!!!Ill!!
I I I I I I I I I ~*r--------------------------bl_ue __________ __.

11111111
10!0!0!0!1!0!0!01

I
Bit position 3

Figure 11-14. Turning on Red Bit at Bit Position 3

But how do we go about putting values into the map mask register? To
answer this question, we need to know how to use C to communicate with a
generalized set of I/O devices called "ports."

Input/Output Ports

So far in this book we've learned to communicate with a variety of I/O devices:
the character display, the keyboard, the printer, and, in this chapter, the color
graphics display. Most of this communication has been performed by calling a C
library routine, as when we print something on the screen using print£ (), or a
ROM BIOS routine, as when we put a dot on the screen using the Write Dot
routine. Using ROM BIOS gets us closer to the hardware than do the routines in
the C library, but sometimes we need an even closer connection between our
program and the hardware. At the most fundamental level, hardware on the
IBM is accessed through the medium of input/output ports.

A port is an eight-bit register. It can be accessed by software, but it is also
physically connected to a hardware device; in fact, it is usually part of a hard
ware device. The IBM can have 65,536 ports connected to it; they are numbered
from 0 to FFFF hex. However, only a small number of these addresses are
actually used.

The ROM BIOS communicates with almost all I/O devices using ports.

413

Chapter 11

414

Usually we can use a ROM BIOS routine to access a device, so we don't need to
know how the program accesses the ports. For some devices, though, there are
no ROM BIOS routines available to our program. One example of this is the
IBM's speaker; if we want our computer to make noise (other than a simple
beep), we must use ports. Another instance where we can directly access ports
is in programming the EGA.

How do we access a port using the C language? C provides two functions
for this purpose: outp(), which writes a byte to a port, and inp(), which reads a
byte from a port. Here's an example of the inp() function. The statement

result = inp(portno);

reads the byte from the port with the address portno. The variable portno
must be an unsigned integer between 0 and FFFF hex, and the function returns
an integer value (although only the lower byte contains information).

Similarly, the C statement

outp(portno,value);

causes the information in value to be written to the port with the address
portno. Here portno is an unsigned integer as before and value is also an
integer, though it cannot have a value greater than FF (hex).

Thus, to output a value to an 1/0 port, all we need to know is the address of
the port and the value to be sent to it; then we use outp().

Writing to the Map Mask Register

At this point we know almost everything necessary to put the appropriate bit
plane value in the map mask register. However, there is one added complexity.
There are several registers associated with the sequencer (a clocking mode
register, a character map select register, a memory mode register, and so on) in
addition to the one we want, the map mask register. To simplify the hardware,
all these registers use the same port address: 3C5 hex. Therefore, we need to be
able to specify which of these registers we want to access through the port. This
is done with yet another register in the sequencer; this one is called the "address
register," and its address is 3C4 hex. First we put an index number in the
address register to tell it which register we want to refer to; for the map mask
register, the index is 2. Then we put a number, representing the bit plane we
want to reference, into 3C5.

Accessing a register in the EGA generally requires writing to two ports:
one to select the register, one to send it a value.

Direct-Access Color Graphics

Writing Bytes to the EGA Memory

Now, finally, we're ready to write colors to the screen using EGA mode 13. The
following program places 16 horizontal stripes on the screen, each one with a
different color. ·

/* hstripes.c */
/* horizontal stripes. Use
/* use EGA write mode 0 */
#define MAXR 200
#define MAXC 320
#define MAXB CMAXC/8)
main()
{

char far *farptr;
int row, col;
unsigned char color;

mode 13 C320x200> */

/* rows */
'* columns */
/* bytes in a row */

farptr = (char far *) OxAOOOOOOO; /* set ptr to EGA mem */
for(row=O; row<MAXR; row++) /* draw rows of pixels */

{

color = Crow/12) & OxOf; /* colr chng evry 12 rows */
outp(Ox3C4,2>; /* set color to write */
outp(Ox3CS,color>; /* in map mask register*/
for Ccol=O; col<MAXB; col++)

*(farptr + row*MAXB + col) = Oxff; /* set 8 pixels */
}

}

While similar to the fstripes.c program for mode 4, in this program changing
colors involves the two outp() functions and the stripes are drawn horizontally
instead of vertically. Figure 11-15 shows how this looks.

Because eight pixels are set with each memory access, it's a fast program,
as you can see by comparing it with estripes.c.

Writing Bits to the EGA Memory

It's not necessary to display whole bytes at a time; we can also turn on individ
ual bits. The following program draws 20 vertical lines on the screen. Each line
is two pixels wide, so in the appropriate bytes, two bits are set to 1, while the
remaining six are set to 0. Here's the listing:

/* vlines.c */
/* draws vertical lines. Use
/* use EGA write mode 0 */
#define MAXR 200
#define MAXC 320
#define PIX 8
#define MAXB CMAXC/PIX)
mainO

mode 13 C320x200) */

/* rows */
/* columns */
/* pixels per byte */
/* bytes in a row */

415

Chapter 11

416

{

}

grey

light blue

light green

light cyan

light red

light magenta

yellow

Figure 11-15. Output of the hstripes.c Program

char far *farptr;
int row, col, addr;
unsigned char color, temp;
farptr = (char far *) OxAOOOOOOO; /* set ptr to EGA mem */

/* vertical lines, each two pixels wide */
for(col=O; col<MAXC; col+=16) /* space vertical lines */

{ /* every 16 pixels */
color = col/16; /* change color every line */
outpCOx3C4,2); /* set color to write */
outpCOx3CS,color>; /* in map mask register*/
forCrow=O; row<MAXR; row++) /* draw one vertical line */

}

{

addr = row*MAXB + col/PIX; /* calculate address */
(farptr+addr) = OxCO; / turn on bits 7, 6 only */
}

The output of this program is shown in Figure 11-16.
For simplicity, the lines are separated by 16 pixels, or two bytes. Thus, the

left-most two bits (numbers 7 and 6) of every other byte are set to the appropri
ate color, using the statement

Direct-Access Color Graphics

*(farptr+addr) = OxCO;

lllllllllllll!llllll
\

l

; ;

I

.i :
.4 .f
t ;
~

,,

; !
;

! ~

Figure 11-16. Output of the vlines.c Program

As before, the color is selected with the map mask register.
For some simple operations, the technique used in hstripes.c and vlines.c

will suffice. However, when we try to use this technique in a more complicated
situation, such as drawing one color on top of another, we run into trouble. To
see the problem, clear the graphics screen (using the setmode.c program), run
hstripes.c and then, without clearing the screen, run vlines.c:

C>setmode 13
C>hstripes
C>vlines

The vertical stripes will be drawn over the horizontal stripes. This is a rigorous
test of a graphics system; if there is any inadequacy in the approach used, it will
show up when one color is written on top of another. And, as it turns out, there
is a problem; where a line crosses a stripe, in most cases there is an area to the

417

Chapter 11

418

right of the line where the stripe's color is changed or set to black, as shown in
Figure 11-17.

Figure 11-17. Incorrect Interaction of Stripes and Lines

The problem is that when a byte is written to a certain address on a given
bit plane, those bits that are set to 1 are turned on, while those that are set to 0
are turned off. So, when we run vstripes.c, the two left-most bits in the byte
being written to are set to the appropriate color, but the remaining six bits are
turned off, causing a loss of that color in the six pixels to the right of each line.

In the CGA modes the solution to this problem was to read the contents of
the existing byte from the CGA memory, OR on the appropriate bits, and
rewrite the entire byte. This technique cannot be applied so simply in the EGA
because there are four separate bit planes to read; doing four reads to achieve
one write would not be very efficient. So the designers of the EGA provided
another solution: a way to protect some bits from being changed.

Changing selected bits in a byte in the EGA bit planes requires protecting
those bits that will not be changed.

The Bit Mask Register

We know that the map mask register can specify which bit planes are to be
accessed when a byte is written to the EGA memory. In this case, those bit
planes for which a bit is set to 1 in the map mask register can be written to,
while those for which the bit is set to 0 will be unaffected by a write.

In a similar way it is possible to specify which bits in a byte (in all four bit
planes) can be written to and which will be immune to change. The mechanism

Direct-Access Color Graphics

for this is the bit mask register. Figure 11-18 shows the relation of this register to
the bit planes. To write to a certain bit in a particular bit plane, the correspond
ing bits in both the map mask register and the bit mask register must be set to 1.

bit mask register

1J7'HH)' 1

3)'/Y/Y/YJ1
2!111»11 1

'jffl»J11
o)'J!ffl»I
I I I I I I I I I

CPU

Data from CPU will be written to
a bit in a bit plane only when the
corresponding bits in both the
map mask register and the bit
mask register are set to 1.

Figure 11-18. The Map Mask Register

map mask register

I I I I I I I

When the EGA is first powered up, the bit mask register is set to all ls, so
all the bits can be written to. To protect a bit from being written to, we change
this bit to 0. Like the map mask register, the bit mask register is accessed using
I/O ports. And, again like the map mask register, it requires that an index
number be sent to a different port before the register itself can be accessed.
Here's what the necessary program statements look like:

outp<Ox3CE,8);
outpCOx3CF,OxC0);

/* select the bit mask register */
/* specify bits to be changed */

The bit mask register is part of a chip called the graphics controller regis
ter. To select the bit mask register, an 8 is sent to port Ox3CE. Then the desired
bit configuration is sent to port Ox3CF.

The ecross.c Program
Now that we know how to prevent certain bits from being altered when we
write to a byte in the EGA memory, we can solve the problem uncovered when
we attempted to write vertical lines on top of horizontal stripes. The following

419

Chapter 11

420

program combines the earlier hstripes.c and vlines.c programs. The stripes part
of the program is the same, but the line-drawing routine has been altered so that
all but the left-most two bits of each byte being written to are rendered immune
to change. This is done by setting the right-most six bits to 0 in the bit mask
register. The appropriate constant is OxCO, which is 11000000 in binary. Here's
the listing:

/* ecross.c */
/* horizontal stripes, vertical lines. Use mode 13 C320x200> */
/* use EGA write mode 0 */
#define MAXR 200 /* rows */
#define MAXC 320 /* columns */
#define PIX 8 /* pixels per byte */
#define MAXB CMAXC/PIX) /* bytes in a row */
mainO
{

}

char far *farptr;
int row, col, addr;
unsigned char color, temp;
farptr = (char far *) OxAOOOOOOO;
/* horizontal stripes */
for(row=O; row<MAXR; row++) /*

{

color = Crow/12> & OxOf; /*
outp(Ox3C4,2>; /*
outpCOx3C5,color); /*
for Ccol=O; col<MAXB; col++)

*(farptr + row*MAXB + col)
}

/* set ptr to EGA mem

draw rows of pixels */

colr chng evry 12 rows
set color to write */

in map mask register

= Oxff; /* set 8 pixels

pixels wide */
/* select bit mask reg */

*/

*/

*/

*/

/* vertical lines, each two
outp<Ox3CE,8);
outpCOx3CF,0xC0);
for(col=O; col<MAXC; col+=16)

{

/* change bits 7 and 6 only */
/* space vertical lines */

color = col/16;
outp<Ox3C4,2);
outpCOx3CS,color);
for(row=O; row<200;

{

/* every 16 pixels */
/* change color every line */
/* set color to write */
/* in map mask register */

row++) /* draw one vertical line */

addr = row*MAXB + col/PIX; /* calculate address */
temp= *(farptr+addr>; /* read byte into latches */
(farptr+addr) = OxFF; / send all bits */
}

}

outp<Ox3CE,8);
outpCOx3CF,OxFF);

/* restore settings */
/* select bit mask reg */
I* restore 'all bits' mode */

There's another important addition to the ecrosss.c program, one that
demonstrates how the bit mask register is used. Before writing the OxCO byte,

Direct-Access Color Graphics

the program reads the contents of the existing byte from EGA memory.
However, the contents of this read, placed in temp, are never used. What then
is the purpose of the read? To understand why reading is necessary before
writing you need to know about another set of EGA registers called the "latch
registers."

The Latch Registers

Our earlier diagrams of the bit planes simplified the situation; they showed data
from the CPU going directly into the bit planes in EGA memory. Actually, there
is another element in the data path between the CPU and the EGA memory: the
latch registers. There is one latch register for each bit plane. When a byte is
written by the CPU to the EGA, it actually goes to the latch registers first, then
into memory. When it's read from memory, it goes to the latch registers on it's
way to the CPU. This arrangement is shown in Figure 11-19.

byte in
EGA memory

CPU
communicates
with latch
registers

~I
11

~I I
1111

CPU

I I I

I I I I I

Figure 11-19. The Latch Registers

latch
registers
communicate
with
memory

421

Chapter 11

422

The latch registers are important in the functioning of the bit mask register.
Here's the sequence of events when a byte is written by the CPU to EGA
memory. First, the byte arrives at the latch registers. (If some of the bit positions
have been made immune to change by the bit mask register, though, the bits
from the CPU will be blocked at these positions before they can get to the latch
registers.) Finally, the contents of the latch registers are written into the EGA
memory.

The latch registers are an intermediate storage area between the CPU and
the EGA memory.

The bits in the latch registers that did not receive CPU data are sent to
memory as well. To ensure that these bits do not alter the data in memory, we
read the data from memory into the latch registers before doing a write. Then
when the write is performed, the new bits from the CPU are placed in the
latches, the old bits remain as they were read from memory, and finally the
complete contents of the latch registers are written back into memory. This
process is shown in Figure 11-20. The figure shows only one of the four bit
planes. However, a read or write operation transfers data between all four latch
registers and all four bit planes simultaneously.

There is another detail to notice about the ecross.c program; it is necessary
to restore the bit mask register to all ls when the program is finished. If this is
not done, only two bits in each byte can be written to by other programs
accessing the EGA (including the operating system). This produces strange ef
fects on the screen, so it's important for every program that uses the bit mask
register to restore it before exiting.

The ecross.c program generates a much more pleasing picture on the
screen than did the execution of hstripes.c followed by vlines.c. The lines no
longer cause the unwritten pixels on their right to be destroyed. In fact, using
the map mask register and the bit mask register as we've shown is a good way to
handle a variety of situations, especially those involving complicated shapes.
This system is, however, only one of three possible write modes available on the
EGA; it is write mode 0.

In the following sections we'll examine the other two write modes. We'll
start with write mode 2, which is more closely related to mode 0, and then we'll
examine mode 1, which is used in special situations.

EGA Write Mode 2

The EGA write mode 0 provides good control of individual pixels, since a write
operation can turn each one of eight pixels either on or off. It is thus suitable for
operating on complex shapes. Write mode 2, on the other hand, puts its empha
sis on fine control of color, at the expense of detailed shape manipulation. Let's
look at the difference in operation of these two modes.

memory

latch

CPU

memory

latch

CPU

memory

latch

a

10!0!0!0!1 !1 !1 !1 I
t t t t t t t t

10!0!0!0!1 !1 !1 !1 I

b

11 !1 !0!0!1 !1 !1 !1 I
t t I ••••• r

11 !1 !o!o!o!o!o!ol

c

11 !1 !0!0!1 !1 !1 !1 I
t t t t t t t t

11 !1 !0!0!1 !1 !1 !1 I

Direct-Access Color Graphics

read operation
places EGA memory
contents in latch

write operation first
places CPU data in
latches (except where
bits are made immune
to change by bit mask
register)

write then sends
contents of latches
to memory

Figure 11-20. Reading Sets Latch Registers Before Writing

In EGA write mode 0, CPU data forms a pattern of bits; in write mode 2 it
forms a color.

In write mode 0 the map mask register determined which bit planes could
be changed, the bit mask register determined which bits could be changed, and
the data from the CPU specified which bits in the bit planes would be set to 0
and which to 1 (the bit configuration). Write mode 2 uses a different approach.
In mode 2, the data from the CPU determines the color instead of the bit
configuration. This is effected by sending the CPU data directly to the map
mask register rather than to the latches. The write operation, in addition to
specifying the color, then automatically sets all the bits in the byte addressed, to

423

Chapter 11

424

the color specified, unless they are protected by the bit mask register. Figure 11-
21 shows how this looks.

Bit mask register

})'}'}'}))'}'I
YYYJ'}'}'}'}' I

YYYYYYYY'
Yl7'JYYYY'

I I I I I I I I I

Figure 11-21. EGA Write Mode 2

CPU

unused

Map mask

register

The various write modes are selected by placing values in the mode regis
ter. This is another register in the graphics controller register. It's index number
is 5, so the following outp() statements change to write mode 2:

outp<Ox3CE,5);
outp<Ox3CF ,2);

/* select mode register */
/* set to write mode 2 */

Here's a modification of the earlier ecross.c program, rewritten to work in
write mode 2:

/* ecross2.c */
/* horizontal stripes,
/* uses EGA write mode
#define MAXR 200
#define MAXC 320
#define PIX 8
#define MAXB CMAXC/PIX)
mainO
{

char far *farptr;
int row, col, addr;

vertical Lines. Use mode 13 C320x200) */
2 */

/* rows */
/* columns */
/* pixels per byte */
/* bytes in a row */

}

Direct-Access Color Graphics

unsigned char color, temp;
farptr = (char far *) OxAOOOOOOO; /* set ptr to EGA mem */

select mode register */
set to mode 2 */

outp(Ox3CE,5); /*
outpCOx3CF,2); /*
outpCOx3C4,2>; /* select map mask register */

activate all bit planes */ outpCOx3CS,OxF>; /*

/* horizontal stripes */
outp<Ox3CE,8);
outpCOx3CF,OxFF);
for(row=O; row<MAXR; row++)

{

/* select bit mask reg */
/* make all bits writeable */

color = Crow/12) & OxOf; /* colr chng evry 12 rows */
for Ccol=O; col<MAXB; col++)

*(farptr + row*MAXB + col) = color; /* set 8 pixels */
}

/* vertical lines, each two
outp<Ox3CE,8);
outpCOx3CF,OxCO>;

pixels wide */

for(col=O; col<MAXC; col+=16)
{

/* select bit mask reg */
/* change bits 7 and 6 only */
/* vertical lines */
/* every 16 pixels */

color = col/16; /* change color every line */
for(row=O; row<200; row++) /* draw vertical line */

{

addr = row*MAXB + col/PIX; /* calculate address */
temp= *(farptr+addr); /* read byte into latches */
(farptr+addr) = color; / send color to address */
}

}

outp<Ox3CE,8);
outpCOx3CF,OxFF>;
outp<Ox3CE,S>;
outp<Ox3CF,0>;

/* restore settings: */
/* select bit mask reg */
/* make all bits writeable */
/* select mode register */
/* set write mode a *'

There are a number of things to note about this program. First, it's neces
sary to select the correct mode, as described earlier. Then, using the map mask
register, all the bit planes must be made active so that subsequent writes will be
accepted. This is accomplished with the statements

outp<Ox3C4,2>;
outp<Ox3C5,0xF);

/* select map mask register */
/* activate all bit planes */

For the horizontal stripes, all eight bit positions in each byte must be
writeable; the following statements do that:

outp<Ox3CE,8);
outpCOx3CF,OxFF);

/* select bit mask register */
/* make all bits writeable */

The loops for writing both the stripes and the lines look much the same as in

425

Chapter 11

426

ecross.c, except that instead of being set to the bit configuration, the address
pointed to is set to the color in the statements

*(farptr + row*MAXB + col) = color;

and

*(farptr+addr) = color;

At the end of the program it's important to reset the write mode to 0 and
make all bits writeable in the bit mask register, so other programs can use the
EGA.

The screen image created by the ecross2.c program is much the same as
that created by ecross.c. There is a difference, however, in the way colors
interact when written over each other, which points up a difference in the
operation of EGA write modes 0 and 2. The distinction is shown in Figures 11-22
and 11-23.

In write mode 0 (shown in Figure 11-22), when a color is written over
another color, only those bit planes that are being turned on are affected. If
other bit planes are already on, they remain on. This is because a single write
operation will affect all four bit planes at a particular bit position the same way,
turning them all either on or off (provided they are selected by the map mask
register). Thus, where the blue line crosses the green stripe, the line appears
cyan because the blue and the green are combined. Similar color mixtures
appear at the other intersections.

Figure 11-22. Section of Output of ecross.c Program

The background could be set to black in write mode 0 by sending a 0 to all
the bit planes and then, in a second write operation, sending the bit of the
desired color. Write mode 2 is more efficient. In write mode 2 (shown in Figure
11-23), the values sent to the map mask register can turn bit planes off as well as
on. Thus there is no mixing of colors at the intersections. This also means that
it's possible to draw black images on a colored background, since all four bit
planes can be turned off where black is desired.

Direct-Access Color Graphics

blue

green

cyan

7
I

---- blue line is really blue

Figure 11-23. Section of Output of ecross2.c Program

EGA Write Mode 1

EGA write mode 1 is a special write mode intended for rapidly copying an
image from one part of the screen to another. This is useful in operations such as
scrolling the screen, or scrolling parts of the screen. A read operation in mode 1
reads all four bit planes at a particular address into the latch registers. A write
operation then writes all four bit planes into a different address. Thus a single
read followed by a single write can transfer a byte in all four bit planes at the
same time, allowing a far more efficient operation than if four separate reads
and writes had to be made. Figure 11-24 shows the operation of write mode 1.

The program following uses write mode 1 to scroll the entire screen down
ward.

/* escroll.c */
/* scrolls entire screen downward. Use mode 13 C320x200) */
/* uses EGA write mode 1 */
#define MAXR 200
#define MAXC 320
#define MAXB CMAXC/8)
main()
{

/* rows */
/* columns */
/* bytes in a row */

/* make it faster */
OxAOOOOOOO; /* set ptr to EGA mem */

char far *farptr;
register int addr;
farptr = (int far *)
outp COx3C4, 2);
outpCOx3C5 ,OxF);
for(addr=O; addr<MAXB;

}

*(farptr+addr) = O;
outp COx3CE, 5);
outpCOx3CF, 1);
while (! kbhi t 0

for(addr=MAXR*MAXB;
*(farptr+addr) =

outp C0x3CE, 5);
outpCOx3CF ,Q);

/* select map mask register */
/* activate all planes */

addr++) /* erase top row by */
/* setting all bits to 0 */
/* select mode register */
/* set write mode 1 */
/*until key pressed,*/

addr>MAXB; addr--) /*move all bytes */
*(farptr+addr-MAXB); /*down one row*/

/* select mode register */
/* set write mode 0 */

427

Chapter 11

428

b. Write operation
in mode 1
writes all four
planes from
latches to byte
in EGA memory.

a. Read operation
places all four
planes of one
byte in latch
registers.

zt I
11

~II
111

~II
II 11

I I

I I I

I I I I

I I I I
Figure 11-24. Write Mode 1

different
byte in EGA
memory

registers

byte in EGA
memory

This program first erases the top row to avoid duplicating the line at the
top of the screen. Then, using write mode 1, it shifts all the bytes in the EGA
memory one row downward. The shifting process starts with the last address on
the screen, which is MAXR*MAXB, and writes into it the contents of the
address one row up, which is the same address minus MAXB (the number of
bytes in a row). The shifting process then works its way up to the top of the
screen.

Similar uses of write mode 1 can quickly copy any area of memory to any
other area, making possible a variety of scrolling and animation effects.

Direct-Access Color Graphics

VGA-Specific Modes

The Video Graphics Array is built into most of the models in IBM's PS/2 series,
and it is also available from IBM and other vendors as a board to plug into PC
and AT class computers. VGA provides all the modes of CGA and EGA graphics,
as well as three new modes: 17, 18, and 19. Mode 17 is a black and white mode;
we won't cover it here. Mode 18 provides the same 16 colors as EGA, but with
higher resolution. Mode 19 permits the simultaneous display of 256 colors. We'll
examine these two modes in turn.

VGA High Resolution

VGA mode 18 provides 640x480 resolution, using 16 colors. This mode operates
almost exactly the same as EGA mode 13. It uses bit planes and registers (such
as the map mask register and the bit mask register) in the same way the EGA
does. Thus programming mode 18 is almost identical to programming for EGA
mode 13, except that the vertical resolution must be changed to accommodate
480 lines instead of 350.

For example, here's the earlier hstripes.c program rewritten to run in VGA
mode 18:

/* vgastrip.c */
/* horizontal stripes. Use mode 18 C640x480) */
/* uses VGA write mode 0 */
#define MAXR 480
#define MAXC 640
#define MAXB CMAXC/8)
mainO
{

char far *farptr;
int row, col;
unsigned char color;

/* rows */
/* columns */
/* bytes in a row */

farptr = (char far *) OxAODOOOOO;
for(row=O; row<MAXR; row++)

/* set ptr to VGA mem */
/* draw rows of pixels */

{

color = Crow/30) & OxOf; /* color chng evry 30 rows */
outpCOx3C4,2); /*set color to write*/
outpCOx3C5,color>; /* in map mask register*/
for Ccol=O; col<MAXB; col++)

*(farptr + row*MAXB + col) = Oxff; /* set 8 pixels */
}

}

The effect is similar to that shown in Figure 11-15. This program uses write
mode 0 to put the same 16 horizontal color bars on the screen as did hstripes,
but does it with the higher resolution of mode 18. The other write modes can
also be used in VGA mode 18.

429

Chapter 11

430

VGA 256 Colors

VGA mode 19 can display 256 colors simultaneously, with a resolution of
320x200. (If you change palettes, you can access up to 262,144 colors, as we'll
see in the next chapter.)

Conceptually, mode 19 is the simplest of the graphics modes. There are
64,000 pixels on the screen (320x200). Each pixel is represented by one byte in
memory, so each pixel can have up to ZS, or 256 colors. The pixels are mapped
onto the bytes in memory in the most straightforward way, starting with the
upper-right pixel and scanning line by line down the screen. You don't need to
set any registers or worry about memory banks or bit planes.

This example program draws 256 boxes on the screen, each in a different
color.

/* vga256.c */
/* draws 256 different
#define MAXX 320
#define MAXY 192
#define PPBX CMAXX/16)
#define PPBY CMAXY/16)

mainO
{

char far *farptr;
int XI Yi
int row, col;
unsigned char color;

colored squares. Use VGA mode 19 */
/* horizontal pixels */
/* vert pixels (divisible by 16) */
/* pixels per color box, horizontal */
/* pixels per color box, vertical */

/* pointer to video memory */
/* pixel coordinates C0-319, 0-191) */
/* color box coordinates C0-15) */
/* color of box C0-255) */

farptr = (char far *) OxAOOOOOOO;
forCy=O; y<MAXY; y++)

/* set ptr to VGA */
/* cycle down */

}

forCx=O; x<MAXX; x++)
{

col = x/PPBX;
row = y/PPBY;
color = col + row*16;
*(farptr + Y*MAXX + x) =
}

/* cycle across */

/* find box coords */

/* calculate color */
color; /* set the pixel */

Each box is 20 pixels wide and 12 pixels high, and there are 256 boxes on
the screen, in a 16 by 16 matrix, as shown in Figure 11-25. Each box has a
different color, starting with color 0 at the upper-left corner and continuing to
color 255 at the lower right.

The program keeps track of two sets of coordinates: x and y specify the
pixel location, and col and row specify the color-box location. For each pixel
location the program calculates the box location and colors the pixel accordingly.
(There are faster ways to do this, but they complicate the program.) The first
row of boxes displays the 16 EGA colors, the second row is a gray scale, and
subsequent rows contain a variety of color blends.

Direct-Access Color Graphics

Figure 11-25. Output of the vga256.c Program

Summary
Graphics is a complex topic, with an almost infinite number of possibilities.
There is much more to know about the CGA, EGA, and VGA adaptors than we
have presented here. The EGA and VGA especially are complicated pieces of
hardware, and a complete discusssion of their features and the way they can be
put to use would require a book in itself. However, we have at least had an
introduction to graphics programming in C on the IBM.

We've discussed the IBM's graphics modes and the various characteristics
that distinguish one mode from another: resolution, number of colors, text or
graphics, type of display adaptor and monitor necessary, amount of graphics
memory needed and its starting address, and number of pages. We've presented
a program for switching from one mode to another, altering the equipment word
in low memory and calling a ROM BIOS routine.

We've looked at mode 4, which is common to the CGA, EGA, and VGA
displays, in some detail. We've shown how to use a ROM BIOS routine to write
a pixel on the screen in this mode and used other ROM BIOS routines to change
the color palette and background color. We've also seen how to address the
graphics memory directly in this mode and developed programs to draw lines
and bouncing balls.

As an example of an EGA-specific mode, we've looked at mode 13. We've
seen that the Write Dot ROM BIOS routine works well for this mode, but that,
as in other modes, direct memory access is faster. We've seen how direct mem-

431

Chapter 11

ory access for the EGA modes differs from that for the CGA and how bit planes
are used to store color data. Finally, we've looked at the three EGA write modes
and their specialized uses and at the VGA modes.

Questions

432

1. List eight characteristics of a graphics mode.

2. In computer graphics, resolution is

a. the clarity of the displayed image

b. the number of bits per byte

c. the number of colors per pixel

d. the number of pixels in the display

3. Without counting palette changes, how many colors are there in mode 4?
How many, if you count palette changes?

4. In mode 4, a pixel gets its color value from a combination of

a. bit planes

b. bits in a byte

c. rows and columns

d. text and graphics

5. From a programmer's viewpoint, the easiest way to put a pixel on the
screen is to use a . The fastest
way to fill an area with color is to use -----------

6. What four signals are combined to form background colors in the display
monitor?

7. Which of the following is necessary for direct memory access?

a. setting a pointer to the start of display memory

b. calculating how far into the memory a pixel is

c. using the indirection operator to access a byte

d. modifying only those bits corresponding to the pixel

8. How many pixels per byte are there in mode 4?

9. The second memory bank in mode 4 is used for

a. attributes

Direct-Access Color Graphics

b. unused in this mode

c. the cyan and magenta pixels

d. the odd-numbered rows

10. Mode 6 has a resolution of 640x200, with two colors: black and white.
Which expression will find the address of the byte containing the pixel at
row and col? (Ignore the memory bank correction.)

a. addr = row*40 + col/16

b. addr = row*80 + col/8

c. addr = row*40 + col/4

d. addr = row*60 + col/4

11. In mode 13 there are colors.
~~~~~~~~-

12. One bit plane holds 

a. the information about a single color 

b. the even-numbered rows 

c. the color values for certain pixels 

d. the bits in certain positions in a byte 

13. True or false: writing can take place to only one bit plane at a time. 

14. To send information to a register in the EGA, one must use 

a. direct memory access 

b. the outp() function 

c. a port 

d. a ROM BIOS routine 

15. The map mask register is used to tell the EGA what _______ _ 
pixels we want to write. 

16. Which of the following statements is appropriate for sending a value to a 
port? 

a. outp(portno, value); 

b. value = inp(portno); 

c. * (portno) = value; 

d. port(number, value); 

17. In mode 13 how many pixels are there per byte? 

18. What is the correct bit plane number for the color cyan? 

a. 0 

433 



Chapter 11 

b. 1 

c. 2 

d. 3 

19. The bit mask register is used to select which will be 
~~~~~~~~ 

written to.

20. The latch registers serve as an intermediate storage area between

a. EGA memory and the bit map register

b. the CPU and the map mask register

c. the map mask register and the CPU

d. EGA memory and the CPU

21. After the bit mask register has been set, a byte must be
to set the latch registers.

~~~~~~~~ 

22. The mode register of the EGA board is used to 

a. switch the EGA to different graphics modes 

b. make sure certain bit planes are not used 

c. select an EGA write mode 

d. make sure certain bits are not used 

23. True or false: in EGA write mode 0, any pixel in any bit plane can be 
turned either on or off by a single write operation. 

24. In EGA write mode 2, the data from the CPU goes to 

a. the bit planes at the memory address specified 

b. the map mask register 

c. the bit mask register 

d. the latch registers 

25. EGA write mode 1 is used to rapidly a group of 
~~~~~~~~ 

pixels.

Exercises

434

1. Write a program for mode 4 that will fill the screen with a color of the user's
choice from palette 1.

2. Modify the conrect.c program to write concentric rectangles using direct
memory access, rather than the ROM BIOS Write Dot routine. Speed it up

Direct-Access Color Graphics

by writing one byte at a time. Don't worry if the rectangles are not com
pletely concentric.

3. Write a program for mode 4 that puts a small northeast-pointing arrow in
the center of the screen and then moves the arrow around the screen in
response to the cursor keys. Use the pattern method from bounce.c to
generate a 16-by-16 pixel arrow.

4. Write a program that creates a bar chart with 16 bars. For variety, do the
program in mode 14: 640x200, 16 colors. Have the color of each bar reflect
its height: blue for the lowest bars, then green, yellow, red, and finally
intense white for the highest bars. Use direct memory access and EGA write
mode 0.

5. Write a program that duplicates the action of the diagline.c program (draw
ing four lines of different colors that cross at the center of the screen) but
uses graphics mode 13, direct memory access, and EGA write mode 2.
Develop a putpte() function for this program that can be called with the
arguments row, column, and color, and that puts the appropriate pixel on
the screen.

435

Microsoft Graphics Functions

Rectangles, Ellipses, and Polygons
Filling and Patterns
Bar and Pie Charts
Color and Palettes
Text and Windows
Viewports and Pages
Fractals and Mandelbrot

12

437

12

438

With the introduction of QuickC and version 5.0 of the Optimizing C Compiler,
Microsoft has made available a library of rich and powerful graphics functions.
Using a single call to a function, you can now draw a circle or rectangle, fill a
shape with a solid color or pattern, draw lines in different styles, combine text
with graphics, and much more.

These graphics library functions can be used for many of the effects
described in the preceding chapters, where we used ROM BIOS routines or
direct access to video memory. The Microsoft C library functions are often more
convenient than those earlier techniques. They may not be as fast, and there are
some effects they cannot achieve. But to quickly put together a prototype
program, or to create a program where the highest performance is not
necessary, the Microsoft graphics functions are a great convenience. They are
also fun to play with. There are only a few new C concepts in this chapter, so
you can relax, enjoy making pictures, and consolidate your knowledge of C.

There are more than 40 graphics functions. We describe most of them in
this chapter and give examples of their use. As each function is introduced, its
arguments are summarized in a box. Appendix J lists all the graphics functions,
along with their arguments and the various structures and constants needed for
their use. You'll find that this appendix is a convenient reference when you are
writing graphics-oriented programs.

In general, we'll show a short easy-to-follow example program that
demonstrates each function as it's introduced. Toward the end of the chapter
there are a few more ambitious examples that demonstrate some of the effects
possible with graphics functions. These include a hypnotic kinetic painting, a
fractal generator, and a program that explores the extraordinary images of the
Mandelbrot set.

Most of the example programs use CGA graphics. These examples can be
used without modification on CGA, EGA, and VGA systems. In a few cases
CGA is inadequate to a particular task, so the example uses EGA graphics. Text-

Microsoft Graphics Functions

oriented graphics functions, such as _settextwindow() and _outtext(), can be
used on a monochrome text-only display.

The Graphics Environment
Writing programs that use the Microsoft graphics functions requires a little
more preparation than do normal C programs. In this section we'll discuss how
to set up your development environment to write graphics programs and how
the program itself must be structured to operate in the desired graphics mode.

Two additional files are necessary for graphics programs: the library file
GRAPHICS.LIB and the include file GRAPH.H. The first contains the code for
the graphics functions that will be linked to your program. We'll return to this
file in a moment.

The GRAPH.H header file contains prototypes for the graphics functions
and various constant and structure definitions. You combine it with the source
code of your program by using an #include statement:

#include <graph.h>

This header file is not an option; you must include it in your source file when
using the graphics functions.

How you combine the library file GRAPHICS.LIB with your program
depends on whether you're using the Optimizing Compiler or QuickC. We'll
look at these cases in turn.

The Graphics System for the Optimizing Compiler
The simplest way to make the graphics functions available under the Optimizing
Compiler is to include the file GRAPHICS.LIB in your combined library when
you install your system. We recommended this course of action in Chapter 1: all
you need to do is answer "yes" when the installation program asks if you want
the graphics package included in your combined libraries.

If you've done this, then you can compile and link your program in the
usual way; no further action is necessary. Including the graphics library adds
about 60K to the size of SLIBCE.LIB (or whatever combined library you're
using). If you have not added the graphics library to your combined library, then
you'll need to invoke the file GRAPHICS.LIB explicitly when you compile and
link your program. If you're using the CL utility, you type:

cl progname.c graphics.lib

It's most convenient to install this command in a batch file, as described in
Chapter 1.

The Graphics System in QuickC
The built-in QuickC core library does not include the graphics functions, so a
library that contains them must be invoked explicitly whenever a program calls

439

Chapter 12

440

these functions. This can be done in two ways: from the command line or from a
.mak file.

The Command Line
The simplest approach is from the command line. When you installed
your system, the installation program automatically created a file called
GRAPHICS.QLB. This is a QuickC version of GRAPHICS.LIB. To combine this
library file with the other built-in library functions, call up QuickC like this:

C>qc /l graphics.qlb progname.c

The slash is followed by a lowercase letter 'l' and the name of the library. This
causes the graphics routines to be made available to QuickC at link time. Now
you can write or edit your program and compile it in the usual way, using the
Start option from the Run menu or creating a stand-alone .exe file.

Most of the examples in this chapter can be compiled using this approach.
A few, however, use math functions such as sin() and cos(). These functions are
not included in the built-in QuickC core library, so you must link the complete
combined MLIBCE.LIB to your program. Because this is not a special QuickC
.QLB library, you can't use the /1 command-line option. So you create a .mak file
with the Program List option in QuickC.

Using a .mak File and a Program List
We'll assume that you specified that the graphics library be included in
MLIBCE.LIB when you set up your system. If MLIBCE.LIB includes the
graphics functions, once you've created the program list and the .mak file that
cause MLIBCE.LIB to be linked to your file, you no longer need to worry about
the graphics routines. Chapter 1 describes how to use program lists to create
.mak files.

Graphics Modes
As we discussed in Chapter 11, you must switch the hardware of your computer
to a suitable mode if your graphics program is to generate appropriate images on
the screen. In that chapter we used a program, setmode.c, to perform this
operation. A Microsoft C graphics function accomplishes the same task:
_setvideomode().

Select Display Mode

setvideomodeCmode)
short mode; /* mode: number or constant */

This function can use a manifest constant to select the mode. These constants
are defined in GRAPH.Hand listed in Table 12-1. The mode number can be used
in place of the constant.

Microsoft Graphics Functions

Table 12-1. Graphics Modes

Constant Value Resolution Adaptor Mode Type

_DEFAULTMODE -1 (restore screen to previous mode)
_TEXTBW40 0 40x25 CGA text
_TEXTC40 1 40x25 CGA text, color
_TEXTBW80 2 80x25 CGA text
_TEXTC80 3 80x25 CGA text, color
_MRES4COLOR 4 320x200 CGA graphics, 4 color
_MRESNOCOLOR 5 320x200 CGA graphics, 4 gray
_HRESBW 6 640x200 CGA graphics, B&W
_TEXTMONO 7 80x25 MGA text, B&W
_MRES16COLOR 13 320x200 EGA graphics, 16 color
_HRES16COLOR 14 640x200 EGA graphics, 16 color
_ERESNOCOLOR 15 640x350 EGA graphics, B&W
_ERESCOLOR 16 640x350 EGA graphics, 16 color
_ VRESZCOLOR 17 640x480 VGA graphics, 2 color
_ VRES16COLOR 18 640x480 VGA graphics, 16 color
_MRES256COLOR 19 320x200 VGA graphics, 256 color

In this chapter we'll largely be concerned with mode 4, the four-color CGA
mode, and with mode 16, a 16-color EGA mode.

Setting the Mode
Here's a short program that sets your system to any desired mode. Note that it
leaves the system in the mode you've specified; to return to text mode you'll
need to run the program again, usually specifying mode 3. (If you have a
monochrome text monitor as well as a color monitor, you can return to mode 7.)

/* setgmode.c */
/* sets graphics mode specified on command Line */
#include <graph.h> /* needed for graphics functions */

main(argc,argv)
int argc;
char *argv[J;
{

}

if< argc != 2)
{ printf<"Syntax: C>chmode mode#"); exitO;}

if(_setvideomode(atoi(argv[1]) >==O) /*set mode*/
printf<"Can't set mode %s", argv[1J >;

else
printf("Mode %s sucessfully set", argv[1] >;

The program checks that the command line has the correct number of
arguments: the user should type the mode number following the program name.
The _setvideomode() function then attempts to set the mode specified. If it

441

Chapter 12

442

can't set it, the function returns the value 0, and the program prints an error
message. This happens if, for instance, you attempt to set a VGA mode (like 19)
on an EGA or CGA system. The program also informs you if the mode was
sucessfully set.

Note that the program starts by including the GRAPH.H file. As noted, this
is necessary in all programs using graphics functions.

Finding Mode Information
Once you've set a particular mode, you can discover its characteristics using the
_getvideoconfig() function. Here's a program that does just that:

/* getgmode.c */
/* displays information on current graphics mode */
#include <graph.h>
main{)
{

struct videoconfig vc;

_getvideoconfig(&vc >;
printf<"X pixels: %d\n", vc.numxpixels);
printf<"Y pixels: %d\n", vc.numypixels);
printf<"Cols: %d\n", vc.numtextcols);
printf<"Rows: %d\n", vc.numtextrows);
printf("Colors: %d\n", vc.numcolors);
printf<"Bits/pixel: %d\n", vc.bitsperpixeL>;
printf("Pages: %d\n", vc.numvideopages);

}

Use this program in conjunction with setgmode.c. Set a mode with
setgmode.c, and then use getgmode.c to discover the details about it.

Get Current Video Mode Information

_getvideoconfig(&config)
struct videoconfig config; /* structure for video info *I

The _getvideoconfig() function returns its mode information in a
structure called videoconfig, which is defined in GRAPH.H. The structure
looks like this:

struct videoconfig {
short numxpixels;
short numypixels;
short numtextcols;
short numtextrows;
short numcolors;
short bitsperpixel;

/* horiz pixels */
I* vert pixels */
/* text columns */
/* text rows */
/* actual colors */
/* bits per pixel */

Microsoft Graphics Functions

short numvideopages; /* video memory pages */
};

The program simply prints out the information found in the members of the
structure. Here's the output if the program is executed while the system is in
mode 4:

X pixels: 320
Y pi x els: 200
Cols: 40
Rows: 25
Colors: 4
Bits/pixel: 2
Pages: 1

The pixel resolution is given; in this case, the display has 320 horizontal
pixels by 200 vertical. There are 40 text columns by 25 rows and four possible
colors. The system uses two bits to represent each pixel (see Chapter 11 for a
discussion of CGA graphics formats). There is enough memory for only one
page at this resolution. (If you have a multimode board it may actually have
more memory than this, but CGA can only access 16K of it.)

The mode information can be useful for graphics programs that operate in
several different modes, as we'll see in the next example.

Graphics Shapes
One of the most useful features of the Microsoft graphics package is the ability
to draw complete graphics shapes using only one call to a library function. Such
shapes include rectangles, ellipses (and the circle, a special case of the ellipse),
arcs, and polygons. Also, shapes of any complexity can be drawn using single
pixels.

In this section we'll see how such shapes are created.

Rectangles

A library function appropriately called _rectangle() creates rectangles of any
size or shape. The example program uses this function to draw a border around
the edge of the screen. The user selects the mode on the command line when the
program is invoked, so the program does not know in advance what mode it will
find itself in. It needs to know the size of the screen (in pixels) to compute the
dimensions of the rectangle, so it invokes _getvideoconfig().

/* border.c */
/* draws border around screen */
/* works in all graphics modes */
#include <graph.h> /* needed for graphics */

main(argc,argv)

443

Chapter 12

444

int argc;
char *argv[J;
{

}

struct videoconfig vc;

if(argc != 2) /* check number of arguments */
{ printf<"Syntax: C>border mode#"); exitO;}

/* set mode */
if(_setvideomode(atoi(argv[1]))==O)

{ printf<"Can't set mode %s", argv[1J); exit(1);}

_getvideoconfig(&vc); /*get mode information */
/* draw border around screen */

_rectangle(_GBORDER, 0, 0, vc.numxpixels-1, vc.numypixels-1);

getch(); /* keep image unti L keypress */
_setvideomode(_DEFAULTMODE); /* restore previous mode*/

Common Graphics Program Elements
This program demonstrates several features that will be common to most of the
graphics examples in this chapter.

First, it begins by setting the mode, using _setvideomode(), and returns
an error message if the mode cannot be set.

Second, the last line of the program again uses _setvideomode() to reset
the mode to its original value; this is accomplished with the constant
_DEFAULTMODE. The system does not take care of this, so you must include
this instruction at the end of every program (unless you don't mind the system
remaining in the new mode).

Third, the next-to-last line in the program uses getch() so the program will
wait for a keypress before returning to the operating system. This instruction
keeps the image on the screen long enough to see; without it, the image would
vanish immediately when the program returned to the operating system or
QuickC.

The _rectangle() Function
The _rectangle() function needs to know whether the rectangle will be filled
or not and the coordinates of the top left corner and the bottom right corner of
the rectangle.

Draw a Rectangle

_rectangle(fill, Left, top, right, bot)
short fill; /* GFILLINTERIOR or GBORDER */
short Left, top; /* top Left corner */
short right, bot; /* bottom right corner */

Microsoft Graphics Functions

The _GBORDER and _GFILLINTERIOR constants are defined in
GRAPH.H. The first causes only the outline of the rectangle to be drawn, while
the second causes the rectangle to be filled with the current color and pattern.
The present example draws the rectangle's outline; we'll see how to use the fill
option later.

The pixel coordinate system assumes that the upper-left corner of the
screen is at 0,0. The program places the upper-right corner of the rectangle here.
The coordinates of the lower-right corner are obtained from the appropriate
members of the videoconfig structure. The result is a border around the entire
screen display area.

Circles and Ellipses

Ellipses are specified in Microsoft C by a bounding rectangle. This is a rectangle
into which the ellipse will exactly fit. There are other ways to describe an
ellipse, such as specifying the center and x and y radii. The Microsoft approach
is advantageous in some but not all circumstances, as we'll see.

The next program draws both a circle (an ellipse with the same width and
height) and a rectangle. The rectangle happens to be drawn in the same place as
the bounding rectangle for the circle.

/* circbox.c */
/*draws circle and box */
#include <graph.h>
#define LEFT 0
#define TOP 0
#define RIGHT 199
#define BOT 199
mainO
{

/* needed for graphics */
/* rectangle */

/* initialize graphics */
if(_setvideomode(_MRES4COLOR)==O)

{ printfC"Can't set mode"); exit(1);}

_rectangle(_GBORDER, LEFT, TOP, RIGHT, BOT); /*draw box*/
_ellipse(_GBORDER, LEFT, TOP, RIGHT, BOT); /*draw circle */

getch(); /* keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore old mode*/

}

The result is a circle exactly circumscribed by a box, as shown in Figure 12-1.
The function that draws the circle is _ellipse().

You may notice that, although the _ellipse() function is given the same
height and width for the bounding rectangle, the circle does not appear exactly
circular. It is somewhat squashed in at the middle. The rectangle is also a bit
higher than it is wide. This results from the fact that the pixels in CGA mode 4
are not "square." We'll see what this means and how to correct it when we
discuss the aspect-ratio problem at the end of this section.

445

Chapter 12

446

Figure 12-1. Output of circbox.c

Draw an Ellipse

_ellipse(fill, left, top, right, bot)
short fill; /* _GFILLINTERIOR or _GBORDER */
short left, top; /* boundary rectangle top left corner */
short right, bot; /* boundary rectangle bottom right corner */

If you change the RIGHT constant in circbox.c you can see how ellipses
look, as opposed to circles. Giving it a value of 300 will make the ellipse
considerably wider than it is high.

Lines and Polygons

A function called _lineto() is used for drawing a line to a specified point. Thus
_lineto(l00,200) draws a line to X= 100 and y=200. Where does the line start?
Wherever the current position (or CP) was. Think of the CP as the position of an
imaginary pen used to draw graphics figures. If you draw a line, the CP remains
at the end of the line when you're done, so the next line starts from that point.

You can also move the CP without drawing a line by using the _moveto()
function. This is the usual way to position the pen at the start of a drawing.

Microsoft Graphics Functions

The _moveto() and _lineto() functions can be used to construct polygons.
A polygon is simply a closed figure formed from straight lines. Our next ex
ample program forms a three-dimensional representation of a box from a rect
angle and two polygons, as shown in Figure 12-2.

Side

Front

(50,180) (150,180)

Figure 12-2. Box in poly.c Program

The front rectangle is drawn using the _rectangle() function. The top and
side of the box are constructed from polygons: a series of lines generated with
the _lineto() function. Both polygons use four lines, but the side polygon uses
only three line segments; the fourth line is the edge of the original rectangle.
The top polygon is raised 3 pixels up from the rest of the box, so it needs all four
edges. For both polygons the _moveto() function is used to position the pen
before starting to draw the lines.

/* poly.c */
/* draws polygons */
#include <graph.h>
main()

/* needed for graphics */

{

/* initialize graphics */
if(setvideomode(MRES4COLOR)==O) - -

{ printf<"Can't set mode"); exit(1); }
/* draw front rectangle */

_rectangle(_GBORDER, 50, 50, 150, 180);

447

Chapter 12

448

}

_movetoC150,50);
_linetoC180,20);
_linetoC180,135);
_linetoC150,180);

_movetoCS0,47>;
_linetoC150,47);
_linetoC180,17>;
_linetoC95,17);
_linetoCS0,47);

/* draw right polygon */
/* top */
/* right */
/* bottom */

/* draw top polygon */
/* front */
/* right */
/* back */
/* left */

getchC>; /* keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore previous mode */

Both _moveto() and _lineto() take only two parameters.

Move Current Position to x, y

_moveto(x, y)
short x; /* x-coordinate to position CP */
short y; /* y-coordinate to position CP */

Draw Line from Current Position to x, y

_lineto(x, y)
short x; /* x-coordinate of end of line */
short y; /* y-coordinate of end of line */

Note in the program that, as is shown in the figure, not all the diagonal
lines are drawn at exactly 45 degrees. To achieve correct perspective, the
diagonal lines must appear to converge on an imaginary "vanishing point"
behind the figure. On the screen the figure looks as if all the diagonal lines are
parallel, but measurement will confirm that they actually converge.

Arcs

An arc is a section of an ellipse or circle. Our next example uses four arcs to join
four straight lines, thus creating a box with rounded corners, as shown in Figure
12-3. A new function, called _arc(), is used to draw the four arcs. The

Microsoft Graphics Functions

_moveto() and _lineto() functions are used to draw the line segments on the
edges of the box.

End
vector

(Left, Top)

(Left,

Top+FL)

Start
vector

(Left+ FL, Top)
Right

Figure 12-3. Rounded Corners in arc.c Program

/* arc.c */
/* draws rounded corners,
#include <graph.h>

using arcO */

#define LEFT 120
#define TOP 10
#define RIGHT 200
#define BOT 80
#define FL 10

main 0
{

/* needed for graphics */
I* coordinates of box */

I* size of fillet*/

double dataSum, startAngle, endAngle, reLAngle;
double startVecX, startVecY, endVecX, endVecY;
int j;

if(_setvideomode(_MRES4COLOR)==O)
{ printf<"Can't set mode"); exit(1); }

_moveto(LEFT+FL,
_lineto(RIGHT-FL,
_moveto(LEFT,
_lineto(LEFT,
_moveto(LEFT+FL,

TOP);
TOP);
TOP+FU;
BOT-FL);
BOT);

I* draw four Line segments */
/* top Line */

Left Line*/

bottom Line */

449

Chapter 12

450

}

_lineto(RIGHT-FL, BOT);
_moveto(RIGHT, TOP+FL); /* right line*/
_lineto(RIGHT, BOT-FL);

/* upper left arc */
_arc(LEFT, TOP, LEFT+2*FL, TOP+2*FL, LEFT+FL, TOP,

LEFT, TOP+FL);
/* upper right arc */

_arc(RIGHT-2*FL, TOP, RIGHT, TOP+2*FL, RIGHT, TOP+FL,
RIGHT-FL, TOP >;

/* ~ower left arc */
_arc(LEFT, BOT-2*FL, LEFT+2*FL, BOT, LEFT, BOT-FL,

LEFT+FL, BOT);
/* lower right arc */

_arc(RIGHT-2*FL, BOT-2*FL, RIGHT, BOT, RIGHT-FL, BOT,
RIGHT, BOT-FL);

getch(); I* hold image until keypress */
_setvideomode(_DEFAULTMODE); /* restore previous mode *I

The _arc() function is similar to the _ellipse() function, except that it has
four more parameters which specify the beginning and ending points of the arc.
To understand how the beginning and end of the arc are defined, remember that
the arc is a section of an ellipse. The center of the ellipse is the same as the
center of the box that defines the ellipse. Draw a line from the center of this box
outward past the edge of the rectangle, as shown in Figure 12-4.

Where this line crosses the ellipse defines the start of the arc. Draw
another line from the center in a different direction to define the end of the arc.
These start and end lines can be specified using any pair of coordinates that lie
on them; not just the coordinates where the line crosses the ellipse.

Bounding
rectangle

Figure 12-4. Specifying an Arc

Microsoft Graphics Functions

Draw Arc (Section of Ellipse)

_arcCleft, top, right, bot, xStart, yStart, xEnd, yEnd)
short left, top; /* boundary rectangle upper left corner */
short right, bot; /* boundary rectangle bottom right corner */
short xStart, yStart; /* start vector coordinates */
short xEnd, yEnd; /* end vector coordinates */

Pixels

If you wish to draw a shape for which there is no appropriate function, you can
always construct it from in_dividual pixels. The function that does this is
_ setpixel().

Put One Pixel on the Screen

_setpixel(x, y)

short x; /* x coordinate of pixel */
short y; /* y coordinate of pixel */

This function requires only the coordinates of the pixel. The next example
shows the _setpixel() function used to plot the sine of an angle from 0 to 360
degrees.

/* plot.c */
/* plots sin function,
#include <graph.h>
#include <math.h>
#define LEFT 0
#define RIGHT 200
#define VCTR 100
mainO

demonstrates _setpixel() */

{

I* needed for graphics */
I* for sinO */

double angle, sinofA; /* angle and sine of angle */
int x, y; /* screen coordinates */

/* initialize cga graphics */
if(_setvideomodeC_MRES4COLOR)==O)

{ printfC"Can't set mode"); exit(1); }

_moveto(LEFT, VCTR >;
_lineto(RIGHT, VCTR >;
for(x=LEFT; x<RIGHT; x++

{

f* draw line along x-axis */

451

Chapter 12

452

}

angle= ((double)x I (RIGHT-LEFT)) * (2 * 3.14159265);
sinofA =sin(angle);
y = VCTR - VCTR*sinofA;
_setpixel(x, y);
}

getche(); /*keep figure until keypress */
_setvideomode(_DEFAULTMODE); /* restore old video mode*/

QuickC programmers will need to construct a program list to use this
program, because the sin() library function is not built into the QuickC core
library. See Chapter 1 for a description of program lists.

At the beginning of the program the horizontal axis is drawn. The sine
curve is controlled by a loop variable x, which starts at the left edge of the
screen and moves pixel by pixel to the right. Pixels are plotted at each point,
with the y variable determining their vertical position.

The sin() library function operates on angles measured in radians. There
are 2*pi radians in 360 degrees, so the angle to be plotted goes from 0 to 2*pi
radians (about 6.2) as x goes from left to right. The sine of the angle starts at 0 at
0 radians, increases to 1 at 1.6 radians, decreases to 0 again at 3.1 radians,
continues falling to - 1 at 4. 7 radians, and finally returns to 0 at 6.2 radians. The
y variable is actually at 100 when the sine of the angle is 0. This offset permits
the angle to go both above and below the origin. Figure 12-5 shows the effect.

Figure 12-5. Output of plot.c

Microsoft Graphics Functions

The Aspect-Ratio Problem

As we noted earlier, in some graphics modes, including the one we've been
using (CGA mode 4), a circle may appear a bit higher than it is wide: it looks
elliptical, rather than truly round. This happens because the pixels used to
create graphics images in this mode are not square; that is, they are not quite as
wide as they are high. A video screen typically has a width-to-height ratio of 4 to
3; it might be 12 inches wide by 9 inches high. In mode 4 there are 320 pixels
across by 200 pixels down, so for a 12x9 screen size there would be 320/12 or
26.67 pixels per inch horizontally, and 200/9 or 22.22 pixels per inch vertically.
Or, to turn the fractions upside down, a pixel is 0.038 inch wide and 0.045 inch
high. This is not a square pixel, since it does not have the same width and
height. (We might note that even a square pixel might not look square on the
screen; the little blob of light may actually be round.)

On this screen, if you draw a circle that is 100 pixels wide and 100 pixels
high, it will be narrower than it is high by a ratio of 0.038/0.045. To make a
circle look round, its width must be made somewhat larger to compensate for
this disparity.

The area of the screen actually used for the display varies not only from
one monitor to another, but from one display adaptor board to another and from
one mode to another. The most accurate way to determine the ratio of width to
height on a particular system is to run a program like border.c that shows the
edges of the display, and measure them.

The following program draws our circle-in-a-box design, but takes into
account the aspect ratio of the particular system and graphics mode. The actual
dimensions of the screen as measured using the border.c program are 9.5 inches
wide by 6.4 inches high. You can modify the WIDTH and HEIGHT constants to
reflect your particular display. The program uses the _getvideoconfig() func
tion to obtain the number of horizontal and vertical pixels. This makes it easier
to modify the program to work in different graphics modes.

/* aspect.c */
/*draws circle and
#include <graph.h>
#define LEFT 0
#define TOP 0
#define BOT 199
#define WIDTH 9.5
#define HEIGHT 6.4
mainO
{

int right;
float xPPU, yPPU;
float ratio;

box with correct proportions */

/* boundary of rectangle */

/* actual screen dimensions */
/* (inches or cm) */

I* right boundary */
I* pixels per unit */
I* aspect ratio */

struct videoconfig config;
/* initialize graphics */

if (_setvideomode(_MRES4COLOR)==O)
{ printf<"Can't set mode"); exit(1);}

453

Chapter 12

Filling

454

}

_getvideoconfigC&config); /*get pixel info*/
xPPU = Cf loat)config.numxpixels I WIDTH;
yPPU = Cf loat)config.numypixels I HEIGHT;
ratio = xPPU I yPPU; /* calculate aspect ratio */
right = ratio * BOT; /* calculate right boundary */

_rectangle(_GBORDER, LEFT, TOP, right, BOT); /*draw box */
_ellipse(_GBORDER, LEFT, TOP, right, BOT); /*draw circle*/

getchO;
printf("ratio=%f", ratio);
getchC>; /*keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore old mode*/

When you run this program you'll see that the circle appears round and the
box square. The program also prints out the aspect ratio: 1.0778 in this case. You
can apply this technique in any program where correctly proportioned figures
are important.

Any graphics shape that is completely surrounded by solid lines or curves can
be filled with a solid color or with a pattern. Three functions let you fill a shape
at the same time you draw it: _rectangle(), _ellipse(), and _pie(). Other
shapes can be filled with the function _floodfill(). If a pattern is set prior to
filling, shapes can be filled with different patterns. In this section we'll see how
filling is handled.

Filling with Solid Colors

The next example is a variation on the poly.c program. It draws the same view of
a three-dimensional box, but it fills the front, side, and top of the box with
different colors.

I* f i l l poly. c *I
/*draws and fills polygons*/
#include <graph.h> /* needed for graphics */

mainO
{

/* initialize graphics */
if(setvideomode(MRES4COLOR)==O)

{ printfC"Can't set mode"); exit(1);}
/* draw front rectangle */

_setcolor(1 >; /* solid light cyan */
_rectangle(_GFILLINTERIOR, 50, 50, 150, 180);

}

_moveto(150,50>;
_lineto(180,20>;
_lineto(180,135);
_lineto(150,180);
_setcolor(2 >;
_floodfillC165, 100, 1>;

_setcolor(1 >;
_moveto(S0,47);
_lineto(150,47>;
_l ineto(180, 17);
_lineto(95,17);
_lineto(S0,47);
_setcolor(3 >;
_floodfill(125, 35, 1>;

Microsoft Graphics Functions

I* draw right polygon */
I* top */
I* right */
I* bottom */
/* fi LL with light magenta */
I* fill polygon*/

/* reset outline light cyan */
/* draw top polygon */
I* front *I
I* right */
/* back */
I* left */
/* fi LL with white*/
/* fill polygon*/

getche<>; I* keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore previous mode*/

The front rectangle of the box is filled using the _GFILLINTERIOR option
to the _rectangle() function. This causes the shape being drawn to be filled
with the current color. This color is set using the _setcolor() function. The
default palette in CGA mode 4 is the following:

Number

0
1
2
3

Color

Black (background color)
Light cyan
Light magenta
White

The default color is the highest numbered one available in a particular
palette, in this case white. The numbers used as arguments to _setcolor() are
called pixel values, rather than colors, since they don't always refer to the same
colors. We'll see in the section on color how different palettes of colors can be
selected in CGA mode.

Set Current Pixel Value (Color)

_setcolor(pixelValue)
short pixelValue; /*pixel value (0, 1, 2, 3) */

The appropriate number is supplied as a parameter to _setcolor() to select
the color. Once a color is set, all subsequent drawing activity-lines, rectangles,
ellipses, and so on-will take place in this color until it is changed.

455

Chapter 12

456

The _rectangle() function both outlines the rectangle and fills it, using
the same color. We have more flexibility with the polygons that form the top and
side of the box, since they are filled with a separate function, _floodfill(). In
fillpoly.c the current color is set to one value to create the outline, and then to
another color before filling.

Fill Area with Color or Pattern

_floodfillCx, y, boundaryColor)
short x; /* x coordinate of seed point *'
short y; /* y coordinate of seed point */
short boundaryColor; /*color bounding shape to be filled*/

The _floodfill() function is given the coordinates of the point where
filling should begin: the "seed point." This point must be inside the shape to be
filled (unless you want to fill everything but the shape). You must also specify
the color of the line that forms the boundary of the shape. The fill process will
fill up to this color, but not beyond. Figure 12-6 shows the result of filling the
surfaces of the box with solid colors.

Figure 12-6. Output of fillpoly.c

Microsoft Graphics Functions

Filling with Patterns

Any shape that can be filled with a solid color can also be filled with a pattern.
To do this, the current pattern is set using the function _setfillmask().

Creating a Fill Pattern
In some graphics packages the programmer can choose from a handful of preset
patterns. Microsoft C takes a different approach. The good news is that you can
create any pattern you want. The bad news is that it takes a little extra trouble to
specify the pattern.

Patterns are specified using an 8x8 grid. Any pixel in the grid can be either
on or off. To construct a pattern, begin by drawing the grid and darkening in the
pattern, as shown in Figure 12-7.

Binary Hex
~ . l

10001000 = Ox88

00010001 = Ox11

00100010 = Ox22

01000100 = Ox44

10001000 = Ox88

00010001 = Ox11

00100010 = Ox22

01000100 = Ox44

Figure 12-7. Creating a Fill Pattern

This pattern consists of diagonal lines. Now, assume that the darkened
squares are ls and the open squares are Os. Write the hexadecimal equivalent of
each line of the pattern. There will be eight of these hex numbers. Create an
array of type char or unsigned char that is initialized to these eight values. The
pattern.c program shows three such arrays: one makes a pattern of squares, one
makes vertical lines, and one makes horizontal lines.

/* pattern.c */
/*draws and fills polygons with pattern */
#include <graph.h> /* needed for graphics */

char pattern1[J = { OxOO, OxOO, Ox3C, Ox3C, /* square */
Ox3C, Ox3C, OxOO, OxOO };

char pattern2[J = { Ox88, Ox88, Ox88, Ox88, /* vert lines */
Ox88, Ox88, Ox88, Ox88 };

char pattern3[J = { Ox FF, OxOO, OxOO, OxOO, /* horiz lines */
Ox FF, OxOO, OxOO, OxOO };

457

Chapter 12

458

mainO
{ /* initialize graphics */

if(_setvideomodeC_MRES4COLOR)==O)

}

{ printfC"Can't set mode"); exitC1>;}

_setcolor(1 >;
_setfillmask(pattern1>;
_rectangleC_GBORDER,
_rectangleC_GFILLINTERIOR,

_move to (150, 50>;
_ l i neto C180, 20>;
_linetoC180,135);
_linetoC150,180);
_setcolor(2 >;
_setfillmask(pattern2);
_flood f i l l C 165, 100, 1 > ;
_setcolor(1 >;

_movetoC50,47>;
_linetoC150,47>;
_lineto(180,17>;
_lineto(95,17>;
_linetoC50,47>;
_setcolor(3 >;
_setfillmask(pattern3>;
_floodfillC125, 35, 1>;

/* draw front rectangle */
/* fill with light green*/
/* fill with squares*/

50, 50, 150, 180>; /* border*/
50, 50, 150, 180); /*fill*/

/* draw right polygon */
/* top */
/* right */
/* bottom */
/* use light red, */
/* and vertical lines, */
/* to fill polygon*/
/* reset outline color */

/* draw top polygon */
/* front */
/* right */
/* back */
/* left */

'* /*

'*
use yellow, */
and horizontal lines, */
to fill polygon*/

getchC>; /* keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore previous mode */

This program is an extension of poly.c and fillpoly.c. Here the three shapes
are filled, but with different patterns instead of a solid color. The result is shown
in Figure 12-8.

The _setfillmask() function takes as its only argument the address of the
array containing the pattern to be set.

Set Fill Pattern

_setfillmask(array)
unsigned char far *array; /* array specifying pattern */

Patterns in Lines

Lines can also be given a pattern, although the pattern is one-dimensional. The
pattern for a line is specified by a single variable of type unsigned short. This
provides 16 bits, which correspond into a line segment 16 pixels long.

Microsoft Graphics Functions

Figure 12-8. Output of pattern.c

The next example draws three lines, each with a different line style. The
first is a dashed line with long dashes, the second has dashes only half as long,
and in the third the dashes are shorter still.

/* Linetype.c */
/* draws Lines with different styles */
#include <graph.h>
main 0
{

unsigned short mask;
/* initialize graphics */

if(setvideomodeC_MRES4COLOR)==O)
{ printfC"Can't set

mask = OxFFOO;
_setlinestyleCmask);
_moveto CO, 1 O>;
_LinetoC200, 10);
mask = OxFOFO;
_setlinestyle(mask);
_moveto CO, 20>;
_LinetoC200, 20);
mask = OxCCCC;
_setlinestyleCmask);
_moveto CO, 30>;
_LinetoC200, 30);

mode"); exit(1); }
/* 1111111100000000 */

/* 1111000011110000 */

'* 1100110011001100 */

459

Chapter 12

460

getchC>; /*keep picture until keypress */
_setvideomodeC_DEFAULTMODE>; /* restore old mode*/

}

Figure 12-9 shows the output of this program.

Figure 12-9. Output of linetype.c

Even shorter dashes can be created if you wish. Or you can alternate long
and short dashes with a constant such as OxFCFC.

Bar and Pie Charts

One important application for filling graphics shapes is in the creation of bar
and pie charts. In this section we'll see how to create both kinds.

The bar chart consists of a series of rectangles usually filled with solid
colors or patterns. Our next example graphs 10 data values, as shown in Figure
12-10.

The program is written so that the number of data values can be easily
changed: simply insert an appropriate value for N and put the new data values
in the array data[N]. It's easy to change other characteristics of the graph by
changing define# statements. The width of the bars, the spacing between them,
and the vertical range of the graph (pixels per data unit) can all be varied to
accommodate different amounts and types of data.

Microsoft Graphics Functions

Figure 12-10. Output of bargraph.c

/* bargraph.c */
/* generates bar graph */
#include <graph.h> /* needed for graphics */
#define N 10 /*
#define BWIDTH 10 /*
#define SEP 12 /*
#define DI (BWIDTH+SEP) /*
#define SHFT 15 /*
#define WIDTH ((N+1) * DI /*

number of values to graph */
width of each bar */
separation between bars */
distance from bar to bar */
between border and 1st bar */
width of chart */

#define LEFT 5 /* Left side of graph */
#define BOT 170 I* bottom of graph */
#define TOP 5 /* top of graph */
#define PPD (float)(BOT-TOP)/100 /* pixels per data unit */

I* data to display */
int data[N] = { 41, 47, 54, 62, 63, 59, 75, 83, 89, 96 };

mainO
{

int j ;
I* set cga mode 4 */

if(setvideomode(_MRES4COLOR)==O)
{ printf<"Can't set mode">; exit<1>;}

I* draw border */
_rectangle(_GBORDER, LEFT, TOP, LEFT+WIDTH, BOT);

for < j =O; j <N; j ++) /* draw bars */

461

Chapter 12

462

{

_setcolor(1+j%3 >; /*alternate 3 colors*/
_rectangle(_GFILLINTERIOR,

LEFT+SHFT+j*DI, BOT-data[j]*PPD,
LEFT+SHFT+j*DI+BWIDTH, BOT >;

}

getche<>; /*keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore old mode*/

}

The program draws a rectangle around the chart and then, in a loop, it
repeatedly sets the color of the bar with _setcolor() and draws the bar with
_rectangle(). The bars are filled with solid colors since the fill flag is set to
_GFILLINTERIOR.

We'll see a more sophisticated bar chart later in this chapter when we
investigate how to place text in a graphics image.

The _pie() Function
The _pie() function is similar to the _arc() function, except that it draws lines
connecting the ends of the arc to its center and fills the resulting pie slice. It is
commonly used to create pie charts.

The next example displays six data items in the form of a pie chart. The
program first finds the total of all the data items. A particular data item is a
certain percent of the total, and the pie slice representing that data item occupies
the same percentage of the circle. The first slice begins at the 3 o'clock position
and grows counter-clockwise. Each succeeding slice begins where the last one
ended. The slices are filled with color by cycling through the three CGA color
values: 1, 2, and 3. The output of the program is shown in Figure 12-11.

/* pie.c */
/* generates pie chart */
#include <graph.h>
#include <math.h>

'* needed for graphics */
/* for sinO and cos() */

#define N 6 /* number of data items */
#define XCTR 100 /* x-coordinate of pie center
#define YCTR 100 /* y-coordinate of pie center
#define XRAD 75 /* x-radius of pie */
#define YRAD 70 '* y-radius of pie */
#define LEFT CXCTR-XRAD) '* rectangle holding pie */
#define TOP CYCTR-YRAD)
#define RIGHT CXCTR+XRAD)
#define BOT CYCTR+YRAD)
#define RAD 500 /* large for accuracy */

int data[N] = { 11, 19, 41, 32, 15, 7, }; /*data items*/
mainO
{

double dataSum, startAngle, endAngle, relAngle;
double startVecX, startVecY, endVecX, endVecY;
int j;

*/
*/

}

Microsoft Graphics Functions

if(setvideomode(_MRES4COLOR)==O)
{ printfC"Can't set mode">; exit(1);}

for(j=O, dataSum=O; j<N;
dataSum += data[jJ;

endAngle = O;
for < j =O; j <N; j ++)

{

j++)
I* sum the data values */

I* start at 3 o'clock angle */
/*draw slices */

startAngle = endAngle; /* start at end of Last slice */
/* find angle for this data */

reLAngle = 2 * 3.1415927 * data[j] I dataSum;
endAngle = startAngle + reLAngle; /* find end angle */
_setcolor(1 + j % 3); /* cycle 3 colors */
startVecX = XCTR + RAD*cos(startAngle>; /*translate*/
startVecY = YCTR - RAD*sin(startAngle); /* angles*/
endVecX = XCTR + RAD*cos(endAngle); /* to*/
endVecY = YCTR - RAD*sin(endAngle>; /* vectors */

/*draw one slice*/
_pie(_GFILLINTERIOR, LEFT, TOP, RIGHT, BOT,

startVecX, startVecY,
endVecX, endVecY >;

} /* end for */
getch<>; /* hold image unti L keypress */
_setvideomode(_DEFAULTMODE>; /* restore previous mode*/

Figure 12-11. Output of pie.c

463

Chapter 12

464

The _pie() function takes nine arguments. These are the fill control flag,
the coordinates of a rectangle bounding the ellipse of which the pie slice is a
part, and the coordinates of the start and stop vectors that determine where the
ellipse starts and ends.

Draw Pie Slice

_pie(fi LL, left, top,
short fill;
short left, top;
short right, bot;
short xStart, yStart;
short xEnd, yEnd;

right, bot, xStart, yStart, xEnd, yEnd)
/* _GFILLINTERIOR or _GBORDER */
/* boundary rectangle upper left corner */
/* boundary rectangle bottom right corner */
/* start vector coordinates */
/* end vector coordinates */

If the _pie() function specified the start and end points of the pie slice
using angles instead of the coordinates of vectors, this program would have
been simpler. As it is, we need to translate the angle for each slice into an
appropriate set of vector coordinates; essentially a polar-to-rectangular
coordinates transformation. This requires calculating the sine and cosine of
the angles. Figure 12-12 shows the relationship of the angle and the vector
coordinates.

y = RAD•sin(angle)
x = RAD•cos(angle)

RAD• sin (angle)

Figure 12-12. Transformation of Angles to Vectors

Colors

Microsoft Graphics Functions

As we noted earlier, the point specifying the vector does not need to lie on
the ellipse. In fact, the farther away it is, the more accurately the angles of the
pie slices will be drawn. Accuracy is important so the end of the last pie slice
will coincide with the same 3 o'clock position where the first slice started. In
the program we use a radius of 500.

To use the sin() and cos() library functions in QuickC, the program must
be compiled using a program list, since these functions are not part of the core
library.

Ordinarily pie charts should be as round as possible, so it's important to
compensate for the aspect ratio of your particular graphics mode and screen.
We've taken a quick-and-dirty approach to the problem by making the
horizontal radius of the pie slice 75 and the vertical radius 70. In other graphics
modes this ratio would be different, and a similar approach to that described in
the aspect.c program should be used.

So far we've used only the three colors available from the default CGA color
palette. Other colors can be displayed in CGA, and the EGA and VGA adaptors
provide an even richer assortment of colors. Let's see how to generate the colors
that each of these adaptors makes available.

Colors in CGA

In _MRES4COLOR-the normal CGA graphics mode-there are four different
palettes. A palette can be thought of as a mapping of the CGA pixel values (0, 1,
2, and 3) into actual colors. The default palette, which we've used until now,
causes these four pixel values to be mapped into the colors black (or whatever
the background color is), light cyan, light magenta, and white. Three other
palettes are available, as shown in Table 12-2.

Palette

CGAO
CGA 1
CGA2
CGA 3

0

Backgrnd
Backgrnd
Backgrnd
Backgrnd

Table 12·2. CGA Palettes

Pixel Value

Green
Cyan
Light green
Light cyan

2

Red
Magenta
Light red
Light magenta

3

Brown
Light gray
Yellow
White

The palette in use is changed with the _selectpalette() function. Chang
ing the palette changes all the colors on the screen at once. If an image has
been drawn using one palette, changing the current palette causes every color
in the image to be transformed into a different color without the image being
redrawn.

465

Chapter 12

466

Select CGA Palette

_selectpalette(palette)
short palette; /* number of palette: 0 to 3 */

The next example program demonstrates palette changes. It draws four
color bars on the screen, using the default colors. Then, each time a keyboard
key is pressed, it changes the palette. All four colors change simultaneously.
(Press the [Esc] key to quit the program.)

/* cgacolor.c */
/* demonstrates cga colors */
#include <graph.h>
#define XMAX 320 /* x pixels from 0 to 319 */

/* y pixels from 0 to 199 */
/* four colors at once */

#define YMAX 200
#define COLORS 4
#define PALETTES 4 /* four possible palettes */

/* column width for 1 color */
/* [EscJ key ASCII code */

#define INC CXMAX/COLORS)
#define ESC 27
main()
{

}

int pal, color, x;
/* initialize graphics */

if(setvideomode(_MRES4COLOR)==O)
{ printf<"Can't set mode"); exit(1); }

setbkcolor(GREEN >; /*set background color*/

printf<"Default"); /*default palette */
/* draw four color bars */

for(color=O, x=O; color<COLORS; color++, x+=INC)
{ /* colors from 0 to 3 */
_setcolor(color); /* bars from left to right */
_rectangle(_GFILLINTERIOR, x, 10, x+INC, YMAX-10);
}

pal = O;
while(getchO != ESC)

{

/* cycle thru palettes */
/* exit on [EscJ */

_selectpalette(pal);
_settextposition(O, 0);
printf<"Palette %d", pal);
pal = ++pal<COLORS ? pal :
}

/* change palette */
/* print at top left */
/* print palette # */

O; /* increment pal */

_setvideomode(_DEFAULTMODE); /* restore old mode */

The palette number is displayed in the upper-left corner of the screen, as
shown in Figure 12-13.

Microsoft Graphics Functions

green
(background)

light
cyan

light
magenta

Figure 12-13. Output of cgacolor.c

white

The _settextposition() function positions the cursor at the upper-left
corner of the screen before writing takes place. We'll examine this function in
the section on text.

The Background Color
The background color remains unchanged when the palette changes. That is,
color 0 always produces the background color, no matter which palette is used.
In cgacolor.c we set the background color to green, using the _setbkcolor()
function.

Set Background Color

setbkcolor<color)
long color; /* background color constant (_BLUE, etc.) */

The argument for this function is not the same as that for _setcolor().
We've seen how the _setcolor() function takes a short integer value as its
argument. Depending on the palette used, this integer pixel value is then
mapped into one of several different screen colors.

The argument to _setbkcolor(), on the other hand, is an actual color

467

Chapter 12

468

value that is not changed by changing the palette. These color values require the
long int data type. The following list shows these color constants.

_BLACK
_BLUE
_GREEN
_CYAN
_RED
_MAGENTA
_BROWN
_WHITE

_GRAY
_LIGHTBLLUE
_LIGHTGREEN
_LIGHTCYAN
_LIGHTRED
_LIGHTMAGENTA
_LIGHTYELLOW
_BRIGHTWHITE

These constants are #defined in GRAPH.H to have rather complex
hexadecimal values. We'll see the purpose of these values when we examine
VGA graphics. In CGA graphics you can use these constant names without
worrying about the numerical values they represent.

The _setbkcolor() function can also set the background color in text
mode, as we'll see in the section on text. When used with text, numerical values
from OL to 15L can be substituted for the #defined constants.

Colors in EGA

An EGA graphics adaptor provides higher resolution than CGA graphics and
more colors. There are normally 16 colors available. These are the same 16
colors used as background colors in the CGA mode. The following example
program displays all 16 colors, using the _setcolor() function with arguments
from 0 to 15. It draws 16 vertical color bars, surrounded by a white border, as
shown in Figure 12-14.

/* egacolor.c */
/* demonstrates ega colors */
#include <graph.h>
#define TOP 10 /* tops of bars */
#define BOT 340 /* bottoms of bars */
#define LEFT 0 /* left edge of screen */
#define RIGHT 639 /* right edge of screen */
#define COLORS 16 /* 16 colors */
#define INC ((RIGHT-LEFT)/COLORS) /* column width per color */ -

mainO
{

int color, x;
/* initialize graphics */

if(_setvideomode(_ERESCOLOR)==O)
{ printfC"Can't set mode"); exit(1); }

/* draw 16 color bars */
for(color=O, x=LEFT; color<COLORS; color++, x+=INC)

{ /* colors from 0 to 15 */

}

Microsoft Graphics Functions

_setcolor(15); /*draw white border*/
_rectangle(_GBORDER, x, TOP, x+INC, BOT);
_setcolor(color); /*fill interior with color*/
_rectangle(_GFILLINTERIOR, x+1, TOP+1, x+INC-1, BOT-1);
}

getchC); /* keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore old mode */

Figure 12-14. Output of egacolor.c

Pixel value 0 produces the background color, as it does in CGA modes.
Here we don't set the background color, so pixel value 0, the bar on the right, is
a white outline filled with black, the default background. Values 1 through 15
produce different colors, as you can see by trying out the program.

Notice that pixel values from 0 to 15 are used as arguments to _setcolor();
the long int color constants needed by _setbkcolor() are not appropriate for
this function. Table 12-3 shows the colors and the corresponding pixel values.

Remapping Colors
The _setpalette() function does not work in EGA graphics. It is possible,
however, to remap the 16 EGA pixel values so that each refers to a different
color. This produces an effect similar to _setpalette(), in that a single function
can immediately change every color on the screen. The function that
accomplishes this is _remapallpalette().

469

Chapter 12

470

Table 12·3. Pixel Values for EGA Colors

Color Pixel Value

Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
White 7
Gray 8
Light blue 9
Light green 10
Light cyan 11
Light red 12
Light magenta 13
Light yellow 14
Bright white 15

Remaps All Pixel Values to Different Colors

_remapallpaletteCarray)
long far •array; /* array of color values •/

To use this function, you first set up an array. Each element in the array
contains one of the long int color constants, such as _BLUE. The constant
placed in array element 0 specifies the color that pixel value 0 will generate, the
constant placed in element 1 specifies the color that pixel value 1 will generate,
and so on for all 16 array elements. Thus if array element 5 contains _GREEN,
_setpixel(5) will produce a green dot (even though the default color for 5 is
magenta).

The following example shows this remapping in action. The first part of
the program is similar to egacolor.c in that 16 color bars are drawn. After
drawing the bars, however, the program goes into a loop in which each tap of a
keyboard key remaps the colors in a different way.

/* remap.c */
/* demonstrates remapping •/
#include <graph.h>
#define TOP 10
#define BOT 340
#define LEFT 0

/* tops of bars •/
/* bottoms of bars */
/* left edge of screen */

Microsoft Graphics Functions

#define RIGHT 639 /* right edge of screen */
#define COLORS 16 /* 16 colors */
#define INC ((RIGHT-LEFT)/COLORS) /* column width per color */
#define ESC 27 /* [Esc] key ASCII value */

long palette[16J = /* normal color palette */

main()
{

{ _BLACK, _BLUE, _GREEN, _CYAN, _RED, _MAGENTA, _BROWN,
_WHITE, _GRAY, _LIGHTBLUE, _LIGHTGREEN, _LIGHTCYAN,
_LIGHTRED, _LIGHTMAGENTA, _LIGHTYELLOW, _BRIGHTWHITE };

int color, x, j;
long temp;

/* initialize graphics */
if(_setvideomodeC_ERESCOLOR)==O)

{ printf("Can't set mode"); exit(1); }
/* draw 16 color bars */

forCcolor=O, x=LEFT; color<COLORS; color++, x+=INC)
{ /* colors from 0 to 15 */
_setcolorC15); /*draw white border */
_rectangleC_GBORDER, x, TOP, x+INC, BOT);
_setcolorCcolor>; /* fi LL bars with colors */
_rectangleC_GFILLINTERIOR, x+1, TOP+1, x+INC-1, BOT-1);
}

while(getchO != ESC
{

/* change palette on keypress */
/* exit on [Escl */

}

temp = palette[OJ;
forCj=O; j<COLORS-1; j++)

palette[jJ = palette[j+1J;
palette[15J = temp;
_remapallpalette(palette);
}

/* save color 1 */
/* move each color left */
/* in palette */
/* color 0 to color 15 */
/* remap all colors */

_setvideomodeC_DEFAULTMODE); /* restore old mode */

The array is initialized with the colors in their normal order. The
remapping is done by rotating the color constants around the array. Each time
through the loop the program shifts the constants one array element to the left,
and moves element 0 to element 15. It then remaps this new arrangement of
colors to the hardware, using _remapallpalette(). The effect is of the colors
shifting across the screen. No redrawing of the image is necessary to achieve
this effect, so a complex display can be recolored very quickly.

If you modify the program so that it cycles through the palette changes
rapidly, rather than waiting for a keypress, you'll see that the pattern appears to
move from right to left across the screen. In this way complex images can be
given the appearance of motion.

Another function, _remappalette(), can be used to remap a single color
rather than the entire palette. We'll see an example of its use in the next section.

471

Chapter 12

472

Colors in VGA

VGA graphics can put 256 colors on the screen at the same time, using mode
_MRES256COLOR. These colors can be obtained by supplying pixel values
from 0 to 255 to the _setcolor() function. The following example draws 256
rectangles to the screen, each with a different color. These rectangles form a
16x16 matrix.

/* vgacolor.c */
/* demonstrates 256 VGA
#include <graph.h>
#define XMAX 320
#define YMAX 200
#define COLORS 256
#define XINC CXMAX/16)
#define YINC CYMAX/16)
mainO

colors */
/* needed for graphics */
/* x pixels from 0 to 319 */
/* y pixels from 0 to 199 */
/* 256 colors (16*16) */
/* width of 1 column */
/* width of 1 row */

{

}

int color, x, Yi
/* initialize graphics */

if(_setvideomodeC_MRES256COLOR)==O)
{ printfC"Can't set mode"); exit(1);}

color = O;
for(y=O; y<YMAX-1; y+=YINC)

for(x=O; x<XMAX-1; x+=XINC)
{

/* start colors at 0 */
/* go down rows */
/* go across columns */

_setcolor(color++); /*set and incr color*/
/* draw box at x, y */

_rectangle(_GFILLINTERIOR, x, y, x+XINC, y+YINC);
}

get ch 0;
_setvideomode(_DEFAULTMODE);

/*save until keypress */
/* restore old mode */

The first 16 colors (the top row of rectangles) produced by the vgacolor.c
program are the same as those available with EGA graphics and listed in Table
12-3. The second row contains 16 shades of gray, and the remaining rows contain
a large spectrum of colors.

Remapping VGA Colors
The 256 colors demonstrated by vgacolor.c may seem like a lot, especially
compared with the 16 available under EGA. By remapping, however, you can
create 262,144 colors, although only 256 can be on the screen at one time. That
is, there are 256 pixel values, but 262,144 colors. The VGA hardware maps the
pixel values into a palette of 256 colors, but you can select these colors from a
262,144-color palette, using the _remappalette() and _remapallpalette()
functions.

How are the VGA color values defined? Each of the primary colors-blue,
green, and red-is represented by six bits which determine the intensity of the

Microsoft Graphics Functions

primary color. Actually, each primary color requires one byte, but the topmost
two bits are not used, leaving values from 0 to 3F hex or from 0 to 63 decimal.
Each of the three colors can have one of 64 intensities. The total number of
colors that can be represented in this scheme is 64x64x64, or 262,144.

The constant denoting a particular color can be readily created using a six
digit hexadecimal value. The first two digits specify the blue intensity, the
second two specify the green intensity, and the last two (the low-order byte)
represent the red intensity. For instance, the number Ox3f0000 produces a bright
blue. The first two digits are set to their maximum value of 3F hex, and the pairs
of digits representing green and red are set to 00. The number Ox2a002a
produces magenta, since moderate amounts of blue and red, but not green, are
specified. Gray is Oxlflflf. Here each color is exactly in the middle of its range.
Bright white is Ox3f3f3f, the maximum for each primary. The color constants in
GRAPH.H are defined to be equal to the hex values shown in Table 12-4.

Table 12-4. Color Constants in GRAPH.H

Constant

_BLACK
_BLUE
_GREEN
_CYAN
_RED
_MAGENTA
_BROWN
_WHITE
_GRAY
_LIGHTBLUE
_LIGHTGREEN
_LIGHTCYAN
_LIGHTRED
_LIGHTMAGENTA
_LIGHTYELLOW
_BRIGHTWHITE

Hex Value

OxOOOOOOL
Ox2aOOOOL
OxOOZaOOL
Ox2a2aOOL
Ox00002aL
Ox2a002aL
Ox00152aL
Ox2a2a2aL
Ox151515L
Ox3F1515L
Ox153f15L
Ox3f3f15L
Ox15153fL
Ox3f153fL
Ox153f3fL
Ox3f3f3fL

To see how these values produce colors, run the following program. It will
generate any of the 262,144 colors, filling a rectangle on the screen with the
color. The values of the three primary colors are selected from the keyboard, so
you can easily mix a color to your specification. It's as if you had a book with
almost three hundred thousand color samples, making the program a natural for
interior decorators-or anyone thinking of repainting the kitchen.

/* allcolor.c */
/* displays all 262,144
#include <graph.h>
#define LEFT 20
#define TOP 20

VGA colors */
/* needed for graphics */
/* dimensions of color box */

473

Chapter 12

474

#define RIGHT
#define BOT
#define ESC
#define MAX
mainO

300
180

27
Ox3f

/* [Esc] key ASCII value */
/* maximum 6-bit color value */

{

}

char ch;
Long color, red, green, blue; /* color values */

if(
/* initialize graphics */

setvideomodeC_MRES256COLOR>==O)
{ printf<"Can't set mode"); exit(1); }

_setbkcolor(Ox1f1f1fl);
red = Ox1 fl;
green = Ox1fl;
blue = Ox1fl;

while((ch=getch()) != ESC)
{

switchCch)
{

case I r I : if(red>Q)
case IR I: if(red<MAX)
case I g I: i f<green>O>
case I GI : if(green<MAX)
case I b I: i f(b Lue>O>
case I BI: ifCblue<MAX)
}

/* set background to gray */
/* set color box to gray */

I* quit on [Esc] key */

I* change color value */

--red; break;
++red; break;
--green; break;
++green; break;
--blue; break;
++blue; break;

color = blue<<16 I green<<8 I red; /* construct color */
_remappalette(1, color>; /* remap color 1 *'
_setcolorC1>; /* set color 1 */

/*fill rectangle*/
_rectangle(_GFILLINTERIOR, LEFT, TOP, RIGHT, BOT >;

/* print values */
_settextposition(O,O>; /* in upper-Left */
printf<"blue=%02Lx green=%02Lx red=%02Lx",

} /*end while*/
_setvideomode(_DEFAULTMODE);

blue, green, red);

I* restore old mode */

When you first start the program you'll see a completely gray screen. This
is actually a gray rectangle on a gray background. Press the 'B' key to increase
the amount of blue, and the 'b' key to decrease it. Green and red are adjusted
similarly with 'G' and 'g' or 'R' and 'r' keys. The program displays the current
hex values of the three colors, so you can see the color, and the values used to
create it, at the same time. Figure 12-15 shows how this looks.

The program uses the _remappalette(J function to map the desired color
onto the pixel value 1. This pixel value is then set with _setcolor(J, and a
rectangle is drawn and filled with the color using _rectangle().

Microsoft Graphics Functions

Figure 12-15. Output of allcolor.c

Remap a Single Pixel Value

_remappa lette 0
short pixel; /*pixel value to be reassigned CO, 1, etc.) */
long color; /* new color for pixel value <Ox1f1f1f, etc.) */

The color value is created from three separate values for the primary
colors, represented by the variables blue, green, and red. The value for blue
is shifted left 16 bits, the value for green is shifted left 8 bits, and then all three
variables are bitwise ORed together to produce the complete color value.

It's fun to experiment with this program. Increasing blue and red
together creates purple, just as when you mix paint. Decreasing the amount of
red, while leaving blue and green at a medium value, produces cyan. Similarly,
any shade of any color can be displayed. A change of only one unit is usually
not perceptible; one color blends smoothly into another as you hold down a
key.

475

Chapter 12

Text

476

Many Microsoft C graphics functions exist to manipulate text, rather than pixel
images. These text-oriented functions can be used for text alone or to combine
text with graphics. In this section we'll examine these functions.

One aspect of the text functions that's different from the graphics functions
we've used so far is that you don't usually need to change modes when using
them. They operate perfectly well in text modes such as _ TEXTC80 and
_ TEXTMONO. For this reason, the next few programs don't invoke the
_setvideomode() function. Only if text and graphics are combined does a
graphics mode need to be selected.

Text-oriented functions do require that the library file GRAPHIC.LIB (or
GRAPHICS.QLB) be linked with the program and that the header file GRAPH.H
be included in the source file.

Text Windows

One of the most important features provided by the text-oriented graphics
functions is the ability to create windows. A window is a rectangular area of the
screen used to constrain text output. When text is written into a window, it
starts at the left edge of the window instead of the left edge of the screen and it
wraps down to the next line at the right edge of the window. The entire window
full of text scrolls upward when additional text is written at the bottom of the
window. In other words, the window acts like a small version of the screen.

Windows are useful in constructing a variety of applications. QuickC uses
several windows in its display. There's one window to hold the text of your
program. As you scroll your program listing you'll see that it is bounded by the
top and bottom of the window, not the entire screen. You may also see an error
window at the bottom of the screen and another window at the top to hold
watch expressions. The use of text windows to separate different functional
screen areas is becoming increasingly popular in today's applications.

Our example program creates a text window and then writes the word
"Greetings" to it one hundred times. You'll see that the text is all written inside
the window, wrapping at the right edge and scrolling upward when the window
is filled. Before exiting, the program prints "THE END" in the middle of the
window. The result is shown in Figure 12-16.

/* window.c */
/* tests character graphics functions
#include <graph.h>
#define TOP 8
#define LEFT 10
#define BOT 21
#define RIGHT 52
#define HEIGHT CBOT-TOP+1)
#define DELAY 12000

mainO
{

*/
/*
/*
/*

/*
/*

needed for graphics */
define window */

rows and columns */

screen height */
delay Loop constant */

}

Microsoft Graphics Functions

int j I k i

_clearscreen(_GCLEARSCREEN); /* clear entire screen*/
_settextwindow(TOP,LEFT,BOT,RIGHT); /*specify window*/
_settextcolor(1); /*set text color*/
_setbkcolor(2L); /* set text background*/

for < j =O; j <100; j ++
{

_outtext("Greetings" >;
for(k=O; k<DELAY; k++);
}

_settextposition(8, 15 >;
_out text< " THE END ") ;
_settextposition(HEIGHT,1 >;

/* 100 words */

/* print word */
/* slow down the Loop */

/* go to window center */
/* print phrase */
/* cursor to bottom Line */

Figure 12-16. Output of window.c Program

Clearing the Screen
Because we don't change modes at the beginning of the program, it's necessary
to clear the screen so our image will not compete with existing text. The
_clearscreen() function is used for this purpose.

Clear Screen, Viewport, or Window

_clearscreen(areaType)
short areaType; /* GCLEARSCREEN = screen,

GVIEWPORT = viewport,
GWINDOW = text window */

477

Chapter 12

478

Three possible values can be given to this function's single argument. The
one we want clears the entire screen. Other options clear a viewport (which
we'll explore later) and the text window.

Defining the Window
The window is defined using the _settextwindow() function. This function
takes as arguments the row and column numbers defining the window.
Annoyingly, these arguments are in a different order than those used in such
pixel-oriented functions as _rectangle(). Instead of a left, top, right, bottom
order, _settextwindow() uses a top, left, bottom, right order. In other words,
for each row-column pair, the row comes first. Rows and columns start at 1,1 at
the upper-left corner, rather than at 0,0 as do the pixel-oriented functions.

Define a Text Window

_settextwindow(topRow, leftCol, botRow, rightCol)
short topRow; /* top row of window */
short leftCol; /* left column of window */
short botRow; /* bottom row of window */
showrt rightCol; /* right column of window */

You can only define one window at a time, but that doesn't mean you can't
have more than one window on the screen. To display multiple windows, use
the _window() function to define one of several windows just before writing
to it.

Specifying Text and Background Colors
The color of the text to be written into the window can be changed with the
_settextcolor() function.

Set Text Color

_settextcolor(pixelValue)
short pixeLValue; /*pixel value (0, 1, 2, etc.) */

The possible pixel values used as arguments to this function run from 0 to
15. They produce the same colors as those used by _setcolor() in EGA mode. In
window.c we set the text color to 1, which corresponds to blue.

If you use pixel values from 16 to 32 with _settextcolor(), you'll get the
same range of values, but with the blinking attribute. In other words, add 16 to
the pixel value to turn on blinking.

We also set the background to 2, or green, using _setbkcolor(). Because
we are setting a text background rather than graphics, we set the color using a

Microsoft Graphics Functions

number from 0 to 15, rather than a constant like _BLUE. However, it is still of
type long int.

Writing Text to a Window
Normal text output functions such as printf() can't be used to write to a
window because they don't recognize the window's boundaries. If you want text
to wrap at the right edge of the window and scroll the window upward when it
reaches the bottom, you must use the _outtext() function.

Write Text to Window

_outtext(textString)
char far *textString; /* string to be written */

This function's only argument is the address of the text string to be written.
It writes to the window at the current text position (TP). When the window is
first opened, this position is the upper-left corner, at 1,1. Thus in our window .c
program, writing starts at this point and continues down the window, each
write starting at the end of the previous one. The cursor ordinarily follows the
TP.

Positioning Text
To write at an arbitrary point in the window it's necessary to reposition the TP.
This is handled by the _settextposition() function, which requires the row and
column number to which the text position will be reset. This function works
with such normal text output functions as printf(), as well as with _outtext().

Set Text Position

_settextposition(row, col)
short row; /* text position row */
short col; /* text position column */

In window .c we use this function to reposition the TP before writing "THE
END" in the middle of the window. We also use it to set the TP to the bottom of
the window at the end of the program. This prevents the DOS prompt from
overwriting the window when the program terminates.

Notice that _settextposition() operates on window coordinates (if a
window is defined), rather than screen coordinates. Thus the coordinates (8,15)
given this function in the window .c program specify the center of the window,
rather than the center of the screen, and (HEIGHT,1) is the bottom of the
window.

479

Chapter 12

480

A Simple Text Editor

Let's put what we've learned about text functions together in a simple editor
program. This example is derived from the wprol.c and wpro2.c programs in
Chapter 10, but it edits text in a window, rather than the entire screen. You can
use all four cursor keys to move around in the window, so you can insert text
anywhere, as shown in Figure 12-17. You can also change the color of the text by
pressing the [Alt] [c] key combination and then typing a digit from 1 to 9. Press
[Esc] to leave the program.

Figure 12-17. Using the ezedit.c Program

/* ezedit.c */
/* mini editor works in text
#include <graph.h>
#define LEFT 10
#define TOP 8
#define RIGHT 50
#define BOT 21
#define WIDTH (RIGHT-LEFT+1)
#define HEIGHT (BOT-TOP+1)
#define ESC 27
#define L_ARRO 75
#define R_ARRO 77
#define U_ARRO 72
#define
#define

main 0
{

D_ARRO
ALT_C

char key;

80
46

window */
/* needed for graphics *'
/* left side of window *'
/* top of window */
/* right side of window */
/* bottom of window */
/* width of window */
'* height of window */
/* escape key */
/* cursor control keys */

/* keys for color change */

/* keyboard char */

}

int row, col;
char string[2J;
struct rccoord re;

_clearscreen(_GCLEARSCREEN);
_settextwindowCTOP, LEFT, BOT,
row = HEIGHT/2; col = WIDTH/2;
_settextposition(row, col>;
_setbkco Lor (1 L);

while(Ckey=getchO> != ESC)
{

if(key == 0)
{

switch(getchO
{

case L_ARRO:
ifCcol > 1)

Microsoft Graphics Functions

/* cursor row & column */
/* 1-char string */
/* for text position */

/* clear entire screen*/
RIGHT>; /*define window*/

/* cursor to middle */

/* set background color */

/* if [EscJ, exit loop*/

/* if extended code, */

/* read second character */

/* move cursor left */

_settextposition(row, --col);
break;

case R_ARRO: /* move cursor right */
ifCcol <WIDTH)

_settextposition(row, ++col>;
break;

case U_ARRO: /* move cursor up */
if(row > 1)

_settextposition(--row, col);
break;

case D_ARRO: /* move cursor down */
ifCrow <HEIGHT>

_settextposition(++row, col>;
break;

case ALT_C: /* change text color */
_settextcolor(getch()-'0');
break;

} /* end switch */
} /* end if */

else
{

*string = key;
*(string+1) = O;
_outtext(string);
re = _gettextposition();
row = re.row;
col = re.col;
}

} /*end while*/

/* not extended code */

/* make 1-char string */
/* terminate string */
/* print character */
/* get new cursor pos */

If the user presses a key with an extended code, the program checks if it is
a cursor key or the color-change key combination and takes appropriate action.

481

Chapter 12

482

The variables row and col always indicate the current cursor position. Pressing
a cursor key changes one of these variables and then uses _settextposition(J to
update the cursor position.

If it is not an extended code, the character must be printed on the screen.
Since only one function, _outtext(J, exists to place text in a window, the
process of echoing a character to the screen is somewhat complicated. The
single character is first made into a string by placing it in a buffer called
string[2] and appending a '\O' to terminate it. Then this one-character string is
written to the window with _outtext(J.

More complex strings can be written to a window using sprintf (J. This
library function works the same as printf (J, except that its output is written to a
buffer rather than to the screen. From the buffer, the string can be displayed in
the window using _ outtext(J.

The text position must be reset after every use of _outtext, because this
function may have wrapped the cursor to the next line. The function _get
textposition(J is used to discover the text position (where the cursor is).

Get Current Text Position

_gettextposition<>
/* coordinates returned in struct rccoord */

The function returns the row and column information in a structure called
rccoords, defined in GRAPH.H like this:

struct rccoord {
short row;
short col;

};

/* row text position */
/* column text position */

The program uses the variable re, of type struct rccoords, to hold this
information.

The backspace key does not work in this program. We'll add a working
backspace in an exercise at the end of the chapter. We'll see another example of
a text window in the section on viewports, later in this chapter.

Combining Text and Graphics

Our next example combines text and graphics in one display. This is a somewhat
more complicated program-an extension of the bargraph.c example earlier in
this chapter. In addition to drawing vertical bars as that program did, barega.c
also adds a title to the graph, draws tick marks on the vertical edges, numbers
the tick marks, and labels each bar with the name of a month. Figure 12-18
shows the output of the program.

Microsoft Graphics Functions

Figure 12-18. Output of barega.c

Because it is difficult to create satisfactory text in CGA graphics modes,
this program uses EGA mode _ERESCOLOR (640x350 resolution, 16 colors).

/* barega.c */
/* generates bar graph,
#include <graph.h>
#define N 12
#define BWIDTH 22

uses EGA 640x350 graphics */

#define SEP 18
#define SHFT 30
#define LEFT 5
#define BOT 285
#define TOP 5
#define TICKS 10
#define TWIDTH 10
#define UNDER 28
#define BESIDE 28
#define MAXDATA 100
#define TITLEROW 5
#define TITLECOL 10
#define PPCOL (640/80
#define PPROW (350/25

#define DI
#define WIDTH

#define PBT

(BWIDTH+SEP)
((N+1) * DI

(float)(BOT-TOP

/* needed for graphics */
I* number of values to graph */
I* width of each bar */
I* separation between bars */
/* between border and 1st bar */
I* Left side of graph */
/* bottom of graph */
/* top of graph */
I* number of tick marks */
I* width of tick marks */
/* from bottom to months */
/* from right edge to numbers */
/* maximum data units */
/* Location of title */

/* pixels per text column */
/* pixels per text row */

/* distance from bar to bar */
/* width of chart */
/* pixels between ticks */
I TICKS)
/* pixels per data unit */

#define PPD (float)(BOT-TOP) I MAXDATA)
/* data to display */

int data[NJ = { 41, 47, 54, 62, 63, 59, 75, 83, 89, 96, 55, 22 };

483

Chapter 12

484

/* names of months */
char months[12J[4J={ "Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
mainO
{

}

int j;
char string[40J;

/* set ega mode 16 */
if(setvideomode(ERESCOLOR)==O) - -

{ printfC"Can't set mode"); exit(1); }
/* draw border */

_rectangle(_GBORDER, LEFT, TOP, LEFT+WIDTH, BOT+1);
/* draw title */

_settextposition(TITLEROW, TITLECOL);
_outtext("1990 SALES");

for(j=O; j<TICKS; j++)
{

/* draw ticks and numbers */

_moveto(LEFT, BOT-j*PBT);
_lineto(LEFT+TWIDTH, BOT-j*PBT);
_moveto(LEFT+WIDTH-TWIDTH, BOT-j*PBT);
_lineto(LEFT+WIDTH, BOT-j*PBT);

/* left tick */

/* right tick */

/* y axis */
_settextposition(CBOT-j*PBT+14)/PPROW, /* positions */

CLEFT+WIDTH+BESIDE)/PPCOL);
itoa(j*CMAXDATA/TICKS), string, 10); /*get number*/
_outtext(string >; /*display it */
}

for C j =O; j <N; j ++)
{

/* draw bars and months */

_setcolorC 1+j >; /* set bar color */
_rectangleC_GFILLINTERIOR, /* draw bar */

LEFT+SHFT+j*DI, BOT-data[j]*PPD,
LEFT+SHFT+j*DI+BWIDTH, BOT >;

_settextposition(CBOT+UNDER)/PPROW, /* print month */
CLEFT+SHFT+j*DI)/PPCOL+1);

_outtextCmonths[jJ);
}

getcheC>; /*keep image until keypress */
_setvideomodeC_DEFAULTMODE); /* restore old mode */

As in bargraph.c, this program uses #defined constants to specify the
dimensions of the graph elements. By changing these constants, the program
can be adapted to work in different graphics modes and to display different
numbers of bars and different magnitudes of data.

Placing Text
This program demonstrates one of the problems of combining text with
graphics: you can't place a text character anywhere you want; it can only be
written at the standard row and column coordinates. In the present mode there

Microsoft Graphics Functions

are 640 pixel positions horizontally, but only 80 columns. 640 divided by 80
gives 8 pixels per column. Thus a character must go at pixel position 0, or 8, or
16, and so on.

This inflexibility on the part of the text dictates the dimensions of the graph.
Each bar must be separated from the next by an integral number of columns, so the
months will line up with the bars. In the program the width of each bar is set at 22
and the separation at 18, so the bar-to-bar distance is 40, a multiple of 8. Likewise,
the tick marks on the vertical axis must correspond with text rows, so the numbers
will line up with the marks. There are 350/25 or 14 pixels per row. The graph is
made 280 pixels high, with 10 divisions. As 28 is a multiple of 14, each of the
numbers on the vertical axis is adjacent to a tick mark.

Another potential disappointment with Microsoft's approach to text is that
only one character size and font is available. This limits the effects possible for
presentation graphics. However, multiple fonts impose considerable overhead
and complexity on a graphics system.

Advanced Graphics
In this section we'll explore several more complex graphics topics: logical coor
dinates, storage of graphics images in memory, video memory pages, and
viewports.

Logical Coordinates

We've learned that the screen coordinates-those used as arguments for such
graphics functions as _rectangle() and _setpixel()-start with (0,0) in the
upper-left corner. Actually, the coordinates used for these functions are logical
coordinates; they are not necessarily the same as the physical coordinates of the
screen. It is possible to redefine the logical coordinate system so that (0,0) no
longer corresponds to the upper-left corner.

In the following example a function draws our circle-in-a-box image over
and over .using the same logical coordinates, but the image appears at different
places on the screen. The location where the image is actually drawn is specified
by changing the logical origin. The program creates a matrix of these images, as
shown in Figure 12-19.

A function, boxcirc(), is used to draw the design. It always draws it at the
same place: with the top left corner at (0,0). Using two nested loops, the pro
gram moves the logical origin down from row to row and across from column to
column, calling boxcirc() each time.

/* Logico.c */
/* uses Logical coordinates to */
/* draw many circle-and-box figures*/
#include <graph.h>
#define LEFT 0 I* boundary rectangle */
#define TOP 0 /* coordinates */
#define RIGHT 33

485

Chapter 12

486

Figure 12-19. Output of logico.c

#define BOT 30
#define WIDTH CRIGHT-LEFT+3)
#define HEIGHT CBOT-TOP+3)
void boxcirc(void);

/* width of rectangle */
/* height of rectangle */
/* function prototype */

mainO
{

}

int x, Yi /* logical or1g1n */
/* initialize graphics */

if(setvideomode(MRES4COLOR)==O) - -
{ printfC"Can't set mode"); exitC1>; }

for(y=O; y<200-HEIGHT; y+=HEIGHT)
forCx=O; x<320-WIDTH; x+=WIDTH)

{

/* move down */
/* move across */

_setlogorg(x,y);
boxci re 0;

/* move logical origin */
/* design at logical origin */

}

getcheC>; /*keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore old mode *I

/* boxcirc() function*/
/*draws box and circle at logical origin*/
void boxcirc(void)

Microsoft Graphics Functions

{

}

_rectangle(_GBORDER, LEFT, TOP, RIGHT, BOT);
_ellipse(_GBORDER, LEFT, TOP, RIGHT, BOT);

I* box */
/* circle*/

The logical origin is changed with the _setlogorg() function, which takes
as its two arguments the physical x and y coordinates where the logical origin
will be placed.

Set Logical Origin

_setlogorg Cx, y)
short x; /* physical x coordinate to place logical origin */
short y; /* physical y coordinate to place logical origin */

Changing the logical origin is also useful in plots of negative numbers. For
example, in our plot.c program, the sin function was plotted above and below
the x axis: it took on both positive and negative values. We had to add a constant
so the entire curve would be plotted on the screen, since there are no negative
physical coordinates. We could have set the logical y coordinate at the center of
the screen, thereby simplifying the equation used for the plot. The logical origin
is frequently set to the center of the screen so the screen can emulate the
coordinate system used in geometry or complex number calculations.

Storing Graphics Images

A graphics image can be taken from the screen and saved in memory. Later, it can
be written back to the screen at the same place or a different one. There are several
reasons why this might be useful. It is usually faster to copy a completed image
from memory to the screen than it is to draw the image in the first place-especially
if the image is complex or makes extensive use of curves and filled areas.

One application in which the rapid drawing of images is important is in
animation, where an image gives the illusion of motion by being drawn and
rapidly redrawn at successive locations on the screen.

Our next example shows an animated bouncing ball. A rectangle forms a
border around the screen, and a ball appears to bounce endlessly inside this
border, reflected from the sides of the rectangle like a ball on a pool table.

/* image.c */
/* bouncing ball created
#include <graph.h>
#define LEFT 0
#define TOP 0
#define RIGHT 319
#define BOTTOM 199

from bit image */
/* needed for graphics */
/* screen border */

487

Chapter 12

488

#define RAD 8 /* radius of ball */

mainO
{

}

int x, y, dx, dy, oldx, oldy;
char *ballbuff;
Long size;

/* ball coordinates */
/* pointer to buffer */
/* size of buffer */

if(_setvideomode(_MRES4COLOR)==O) /* set cga mode */
{ printf("Can't set mode"); exit(1); }

/* draw boundary */
_rectangle(_GBORDER, LEFT, TOP, RIGHT, BOTTOM);

x = y = RAD+10;
_setcolor(1 >;

/* set center of ball */
/* create image of ball */
/* Light green in cga 0 */
/*draw circle at x,y */

_ellipse(_GFILLINTERIOR, x+RAD, y+RAD, x-RAD, y-RAD);
/* get size of image */

size= _imagesize(O, 0, 2*RAD, 2*RAD);
ballbuff = (char *)malloc(size); /*get memory for image*/

_get image(
dx = 2;

/* place image in memory */
x-RAD, y-RAD, x+RAD, y+RAD, ballbuff);

/* set speed of ball */
dy = 1;
while (!kbhit()) /*exit on keypress */

{ /* memory image to screen */
_putimage(x-RAD, y-RAD, ballbuff, _GPSET);
oldx = x; oldy = y; /* remember where it was */
x += dx; y += dy; /* move its coordinates */

if(x<=LEFT+RAD+2 I I
dx = -dx;

/* ref Lect it at edges */
x>=RIGHT-RAD-2)

if(y<=TOP+RAD+2 I I y>=BOTTOM-RAD-2
dy = -dy; /* erase old image */

_putimage(oldx-RAD, oldy-RAD, ballbuff, _GXOR);
}

_setvideomode(_DEFAULTMODE); /* restore previous mode */

There are two parts to this program. In the first part the image of the ball is
created, using _ellipse() and the _GFILLINTERIOR option. The result is
shown in Figure 12-20. The image of the ball is then stored in a memory buffer
using the _getimage() function. It's usually best to determine the size of this
buffer at run-time and allocate memory with malloc(). Use the function
_imagesize() to find how large the buffer should be.

This function returns the number of bytes needed for the image in a
variable of type long int. Once the size needed to store the image is known, the
malloc() function is used to obtain a pointer to the storage area. This pointer,
and the coordinates of the image, are then used as arguments to _getimage() to
store the image in the buff er.

Microsoft Graphics Functions

Figure 12-20. Initial Position of Ball in image.c

Determine Size of Screen Image

long _imagesize(left, top, right, bot)
short left; /* coordinates of image */
short top;
short right;
short bot;

Store Screen Image in Memory

_getimage(left, top, right, bot, buffer)
short left; /* coordinates of image */
short top;
short right;
short bot;
char far *buffer; /* memory storage for screen image */

489

Chapter 12

490

In the second part of the program the image is copied from the buff er to
the screen, using the function _ putimage().

Transfer Image from Memory to Screen

_put image Cleft,
short left;
short top;

top, buffer, action)
/* coordinate for left edge of image */
/* coordinate for top edge of image */
/* buffer where image is stored */ char far *buffer;

short action; /* way to combining image with background */

The first two arguments are the x and y coordinates where the top left
corner of the image will be placed. Next is the address of the buffer where the
image is stored. The last argument, action, specifies which of several
techniques will be used to combine the image with the background. These are
shown in Table 12-5.

Constant

_GPSET
_GPRESET

_GAND

_GOR

_GXOR

Table 12·5. Image-Background Combinations

Purpose

Erases background, inserts image
Erases background, inserts inverted image (black becomes
white, green becomes magenta, etc.)
ANDs color values of image and background (image unchanged
on white, disappears on black)
ORs color values of image and background (image unchanged
on black, disappears on white)
XORs color values of image and background (image unchanged
on black, inverted on white)

The image is placed on the screen using the _GPSET option. This simply
obliterates anything already on the screen, and copies the image from
memory.

The image is repeatedly copied to the screen in a loop, and the
coordinates where the ball is placed vary continuously, producing the effect of
the moving ball. If the coordinates of the ball reach the border, the ball's
direction in the appropriate coordinate is reversed, so the ball seems to bounce
off the walls.

Before a new image of the ball is drawn, the old image must be erased.
This is done by writing the image over top of the old one with the action
parameter set to _GXOR. This has the effect of erasing the image, since two 1
bits XORed with each other produce a 0 bit, and two 0 bits also produce a 0
bit.

Microsoft Graphics Functions

Video Pages

In some video modes there is more graphics memory available than is actually
used. This extra memory can be put to use holding alternate images of the
screen. For example, EGA graphics mode _MRES16COLOR requires 32K of
memory (320x200/2, since each byte holds two pixels). However, many EGA
graphics boards have 256K of memory installed. This is eight times as much as is
necessary for a screen image, so eight screen images can be stored at one time,
each in a separate page of memory. Ordinarily only the lowest page of memory
is mapped to the screen, but a graphics function can be used to switch pages. If
each page has a different image, these images can be displayed almost instantly
by selecting the appropriate page.

To run the example program you need an EGA (or VGA) system with 256K of
memory. The program first creates a series of eight ellipses and stores one in each
page of memory. The ellipses are all the same height. They start out narrow (in fact
the first one is actually a tall thin rectangle), and grow progressively larger. The
eighth ellipse is a circle. The program then cycles through a loop, switching pages
each time. First it displays the pages in ascending order, so the ellipses get bigger.
Then it displays them in reverse order, so the images get smaller. The effect is that
of a coin spinning about a vertical axis, as shown in Figure 12-21.

Figure 12-21. Output of coin.c

/* coin.c */
/* uses pages to display coin rotating about vertical axis */

491

Chapter 12

492

/* must have 256K of
#include <graph.h>

graphics memory */

#define XC 160 /* center of ellipse*/
#define YC 100
#define RAD 90 /* vertical radius */
#define N 8 /* number of views (256/32) */

/* delay between views */ #define DELAY 10000

main()
{

}

int xRad;
int j, k;

/* 320x200, 16 colors */
if(_setvideomode(_MRES16COLOR)==O) /* uses 32K of memory */

{ printfC"Can't set mode"); exit(1); }

for(j=O; j<N; j++ /* make and store */
{ /* images of ellipses*/
if(_setactivepage(j) < 0) /* set page to write image */

{ print fC"Can' t set page"); exit (1); }
if(j == 0) /* rectangle edge-on */

_rectangle(_GBORDER, XC-2, YC-RAD, XC+2, YC+RAD);
else

{

xRad = j * RAD I CN-1) ; /* find x radius */
/*draw ellipse*/

_ellipse(_GBORDER, XC-xRad, YC-RAD, XC+xRad, YC+RAD);
}

} /* end for */
while(!kbhitO)

{

for C j =O; j <N ; j ++)
{

_setvisualpage(j);
for(k=O; k<DELAY; k++);
}

for (j =N-2; j >O; j--)
{

_setvisualpage(j);
forCk=O; k<DELAY; k++);
}

} /*end while*/
_setvideomode(_DEFAULTMODE);

/* display ellipses */
/* until keypress */
/* increasing width */

/* select page to display */
/* delay */

/* decreasing width */

/* select page */
/* delay */

/* restore previous mode */

Pages can be switched very rapidly. In the program, a delay loop slows
down the page switching, otherwise the images would blur together rather than
appearing to rotate.

The _setactivepage() function is used before drawing a graphics image.
This function causes all subsequent drawing activities to be written to the page

Microsoft Graphics Functions

specified. This is usually not the page being displayed, so the images created
will be invisible.

Specify Page Where Graphics Output Is Written

short _setactivepage(pageNumber)
short pageNumber; /*page number CO, 1, etc.) */

This function returns a negative number if the page specified is not
available. Such a return may be an indication of insufficient graphics memory.

A particular page is called up for display using the _setvisualpage()
function.

Specify Page to Be Displayed

short _setvisualpage(pageNumber)
short pageNumber; /*page number CO, 1, etc.) */

This function also returns a negative value if the page specified is
unavailable.

Viewports

A viewport does for graphics images what a window does for text: it restricts an
image to a rectangular area of the screen. Any pixels drawn outside an active
viewport are simply not displayed; they are "clipped" at the edges of the
viewport. This is useful when a display contains several graphics images that
should not overwrite one another or when it contains graphics and text win
dows that should remain separate.

The example program uses both a viewport to hold graphics output and a
window to hold text-based interaction with the user. The program prompts the
user to enter the coordinates of the center of a circle and prompts again for the
diameter of the circle. The circle specified, or that part of it that will fit, is then
drawn in the viewport. A sample interaction is shown in Figure 12-22.

The user can enter data for as many circles as desired. The text scrolls off
the top of the window, without interfering with the graphics. The graphics
output is confined by the viewport and doesn't conflict with the text window.

/* viewport.c */
/* tests character graphics functions */
#include <graph.h> /* needed for graphics */

493

Chapter 12

494

Figure 12-22. Sample Interaction with viewport.c

#define GLEFT 0
#define GTOP 0
#define GRIGHT 319
#define GBOT 155
#define TLEFT 1
#define TTOP 21
#define TRIG HT 80
#define TBOT 25
void getsnoe(char

main 0
{

*pt r);

char string[80J;
int x, y, rad=1 ;

/* define viewport */

/* define text window */

I* function prototype */

/* user input buffer */
/* circle specs*/

if(_setvideomodeC_MRES4COLOR)==O /* set mode */
{ printfC"setvideomode error\n"); exit(1); }

/* viewport */
_setviewport(GLEFT, GTOP, GRIGHT, GBOT);
_rectangle(_GBORDER, GLEFT, GTOP, GRIGHT, GBOT);

_settextwindow(TTOP,TLEFT,TBOT,TRIGHT); /* text window*/
_displaycursor(_GCURSORON); /*cursor on*/

while(rad != 0)
{ /*get circle center */

}

Microsoft Graphics Functions

_outtext("\nEnter x and y for circle center\n");
getsnoe(string);
sscanfCstring, 11 %d %d 11

, &x, &y>;
/*get circle radius */

_outtext("\nEnter circle radius">;
_outtext("\n (Enter 0 to quit)\n");
getsnoe(string);
sscanfCstring, 11 %d 11

, &rad>;
/* repeat the input */

sprintfCstring, 11 \nCircle center at %d, %d\n", x, y);
_outtext(string);
sprintfCstring,"Circle radius is %d\n", rad);
_outtext(string);

/* construct circle*/
_ellipse(_GBORDER, x-rad, y-rad, x+rad, y+rad);
}

_setvideomode(_DEFAULTMODE);

/* getsnoe() function */
/* reads string from keyboard with _outtext() echo */
void getsnoeCchar *ptr) /* arg is pntr to buffer */
{

}

char ch;
char stringchar[2J;

while(Cch=getchO> != '\r')
{

/* character read */
/* 1-character string */

/* quit on [Enter] */

/* put char in buffer */
/* save char for echo */

*ptr++ = ch;
stringchar[Q] = ch;
stringchar[1J = 1 \0';
_outtext(stringchar>;
}

/* terminate 1-char string */
/* echo 1-char string */

*ptr = 1 \0 1
; /* terminate buffer */

The viewport is defined using the _ setviewport() function.

Define a Viewport

_setviewport(left, top, right, bot>
short left; /* viewport coordinates */
short top;
short right;
short bot;

Note that once the viewport is defined, the origin of the graphics

495

Chapter 12

coordinate system is changed to the upper-left corner of the viewport. Another
function, _setcliprgn(), works the same way but does not change the logical
origin.

Ordinarily, a function like scanf () would be used to accept the coordinates
of the circle and its diameter when the user typed them. However, this function,
and possible substitutes like gets() and getche(), doesn't recognize the text
window boundaries. Any text output-even if it's only the echo of input-must
be written with _outtext() if it is to remain within the window.

To work around this problem, the program uses a "homemade" function
called getsnoe(). It reads a string from the keyboard, like gets(), but each
character is echoed with _outtext. The technique used is similar to that used to
echo characters in the ezedit.c program. The string typed by the user is placed
in a buffer. Once the string (presumably consisting of several digits) has been
read, the sscanf () function takes the string from the buffer and assigns the
numbers entered to the appropriate variables. (The sscanf() function works like
scanf (), except that its input comes from a buffer rather than the keyboard.)

The cursor is ordinarily turned off in graphics mode. When using graphics
and text at the same time, however, it may be necessary to turn the cursor back
on. A function called _displaycursor() is used for this purpose.

Turn Cursor On and Off

short far _displaycursor(mode)
short mode; /* GCURSORON or GCURSOROFF */

This function takes one argument, which can have one of two values, as
shown in the box.

Just for Fun

496

This section contains several longer programs. These don't introduce any new
graphics functions, but they do demonstrate how the functions we've learned so
far can be used to create some fascinating and even educational effects.

Bouncing Lines

This example works on a simple principle. Two points bounce (at different
speeds) around the screen, as the ball did in the image.c program. At each
position a line is drawn between the two points. The resulting series of lines is
displayed as the two points follow their separate trajectories around the screen.
The line color changes every few hundred lines, with the result that colored
shapes are drawn on top of each other in an ever-changing kaleidoscopic pat
tern. Surprisingly, curved and wave-like shapes are produced.

Microsoft Graphics Functions

The effect is much more dazzling in EGA graphics, with its higher resolu
tion and 16 colors, than it is in CGA, so the example is written in _ERESCOLOR
mode. It can easily be converted to other modes. Because the effect of this
program depends so much on color and the rapid changing of the design, a
figure cannot do it justice, but a rough idea can be gained from Figure 12-23.

Figure 12-23. Output of linerega.c

/* Linerega.c */
/* bouncing Line creates
#include <graph.h>
#define LEFT 0
#define TOP 0
#define RIGHT 639
#define BOTTOM 349
#define LINES 200
#define MAXCOLOR 15
mainO
{

int x1 I y1;
int x2, y2;

abstract patterns */
/* needed for graphics */
/* screen borders */

/* Lines per color change
/* maximum color value */

/* one end of Line *I
'* the other end of Line

*'

*/
int dx1 I dy1, dx2, dy2; /* increments to move points
int count=O; /* how many Lines drawn */
int color=O; '* color being used */

if(_setvideomode(_ERESCOLOR)==O)
{ printfC"Can't set mode"); exit(1);}

x1 = x2 = y1 = y2 = 10; /* start points */

*/

dx1 = 1; /*point 1: pixels per cycle*/

497

Chapter 12

498

}

dy1 = 2· I

dx2 = 3· '* point 2: pixels per cycle I

dy2 = 4· I

whi Le (! kbhi t 0 '* terminate on keypress */
{

_moveto(x1, y1);
_Lineto(x2, y2 >;
x1 += dx1; y1 += dy1;
x2 += dx2; y2 += dy2;

/* go to start of Line */
/*draw Line */

/* move points */

if(x1<=LEFT I I x1>=RIGHT)
dx1 = -dx1;

/* if points are */
/* off the screen, */

*'

if(y1<=TOP I I y1>=BOTTOM)
dy1 = -dy1;

/* reverse direction*/

if(x2<=LEFT I I x2>=RIGHT
dx2 = -dx2;

if(y2<=TOP I I y2>=BOTTOM)
dy2 = -dy2;

if(++count > LINES)
{

setcolor(color >;
color = (color >= MAXCOLOR)
count = O;
}

}

_setvideomodeC_DEFAULTMODE);

/* every LINES Lines, */
/* change color */
/* MAXCOLOR colors */

? 0 ++color;

/* restore old mode */

This program will run until a key pressed.

Fractals

Fractals are complex and fascinating mathematical entities. They are the subject
of much research and are used to create mountain ranges, trees, and other
lifelike natural forms in computer graphics.

A fractal begins with a pattern. Each element of the original pat
tern-which consists of a simple graphics element such as a straight line-is
then transformed to the same pattern on a smaller scale. Then each element of
the smaller pattern is transformed to the same pattern on an even smaller scale.

To put this in more concrete terms, let's say you're watching an ant walk
ing on a tabletop. The ant is trying to go from point A to point B, which is 3
inches to the right. The ant can walk only in straight line segments 1 inch long,
and it can only make right-angle turns.

The shortest route is R, R, R: three segments 1 inch long, heading to the
right, straight at the destination, as shown in Figure 12-24a. (R stands for Right,
U for Up, L for Left, and D for down.)

There are other routes, however. Let's assume the ant follows the route R,
D, R, U, R. It will cover 5 inches instead of 3, but it will still reach the same
destination. This is shown in Figure 12-24b.

Now let's put the ant back at its starting point and set it off again to the same

Microsoft Graphics Functions

Point A Point B

/ R R R ~
a.

R R - --

D u

b. R

... --- -

c.

Figure 12-24. Fractal Development

destination. The basic outline of the path it takes is the same as before: R, D, R, U,
R. This time, however, the line segments it follows will be only 1/3 inch long. On
each of the five 1-inch segments, it will follow the same pattern in miniature,
making five 1/3-inch straight lines. The result is shown in Figure 12-24c. The ant will
now cover SxS, or 25, line segments, each 1/3 inch long (81/3 inches).

When it accomplishes this task, we'll start it over again, with 1/g-inch line
segments, dividing each 1'3-inch segment into the same pattern. Then we'll
divide these into l/z1-inch segments, and so on. If we keep doing this, the
resulting route will become more and more complex. It will also grow longer
and longer and cover the surface of the table more and more densely. The result
is a representation of a fractal.

The program fractal.c is designed to construct fractals, using a pattern of
the programmer's choice. To create a pleasing and symmetrical effect, the design
begins as four straight-line segments in the shape of a square. The pattern is
then applied to each of these four sides. This process is then repeated on each of
the resulting line segments as often as desired; by the time the segments have
been divided four or five times they are usually too small to see.

499

Chapter 12

500

/* fractal.c */
/* makes fractal designs */
#include <graph.h>
#define DEPTH 4
#define LEN 4
#define SEGS 8
#define PIXELS 192.0
#define LEFT 150.0
#define TOP 65.0
#define R 0
#define D 1
#define L 2
#define U 3

/* depth of recursion */
/* Length of pattern (in segments) */
/* number of segments in pattern */
/* pixels per original segment */
/* upper Left hand corner */
/* of original box */
/*values for directions*/

void frac(int direction, float pixels); /* prototype */

f Loat x, y;
int Level;

/* current pen position */
/* current recursion Level */
/* pattern */

char pattern[SEGS] = { R, U, R, D, D, R, U, R };

main()
{

if(_setvideomode(_ERESCOLOR)==O) /* set mode */
{ printf("Can't set mode"); exit(1); }

x = LEFT; /* set initial position */
y = TOP;
_moveto(x,y); /* start drawing there*/
Level = DEPTH; /* set initial recursion Level */
frac(R, PIXELS); /*top of box */
frac(D, PIXELS); /* right side of box */
frac(L, PIXELS); /* bottom of box */
frac(U, PIXELS); /* Left side of box */
getch(); /*keep image until keypress */
_setvideomode(_DEFAULTMODE); /* restore old mode*/

}

void frac(int dir, float pix) /* function draws pattern*/
I* dir=orientation to start drawing, pix=pixels per segment */
{

int j, newdir;

--Level;
if(Level==O)

{

switch(dir)
{

case R:
case L:
case D:
case U:

x
x
y
y

+= pix;
- = pix;
+= pix;
-= pix;

/*counter and new direction*/

/* drop down one Level */
/* if bottom Level, */
/* draw straight Line */
/* instead of pattern */

break;
break;
break;
break;

/* move coordinates */
I* to end of Line */

}

}

_Lineto(x, y);
}

else
{

pix /= LEN;

Microsoft Graphics Functions

/* draw Line */

/*not at bottom Level, so call */
/* frac() again to draw segment */

for(j = 0; j<SEGS; j++)
{

/* Length of new seg */
/* for each segment */
/* in the pattern */

newdir = (pattern[j]+dir) % 4; /*get new direction*/
frac(newdir, pix >; /*draw segment */
}

}

++Level; /* pop back up one Level */

The pattern used in fractal.c is shown in the array pattern[SEGS], where
SEGS is the number of line segments used in the pattern. This is a somewhat
more complicated pattern than that shown in the previous figure.

DEPTH is the number of times to repeat the process of redrawing the
pattern with smaller line segments, in this case 4. The result at this depth is
shown in Figure 12-25.

Figure 12-25. Output of fractal.c

You can experiment with this program by changing the pattern, the num
ber of segments in the pattern, and the depth. A depth of 1 draws the square. A
depth of 2 draws the original version of the pattern on each side of the square~ A
depth of 3 imposes the pattern on each segment of the pattern in level 2, and so
on. All sorts of patterns are possible. Try R, U, U, R, D, D, D, D, R, U, U, U, U,

501

Chapter 12

502

R, D, D, R. It makes a sort of oriental snowflake. You may need to adjust the
number of pixels per segment for different patterns, so you have an integral
number of pixels for the smallest line segment.

This program makes use of recursion: a function that calls itself. The main
part of the program draws the square. To draw each of the four line segments of
the square, it calls the function frac(). This function reproduces the pattern
specified, so it goes through a loop SEGS times, drawing SEGS line segments,
each in the appropriate direction. However, until the lowest level each line
segment is made up of the original pattern in smaller form, so it calls itself to
draw this smaller pattern of segments.

Each of these smaller segments may require another call to frac(), and so
on. Only when segments have reached the smallest size (that is, when the
variable level is equal to DEPTH) does frac() actually draw any straight lines.

Notice how the directions are calculated. The pattern R, U, D, etc., can be
drawn moving to the right, in which case R really means to go right. But if it's
drawn moving down, then R means down, D means left, and so on. To calculate
the true direction, we add the direction from the pattern pattern[j], to the
overall direction given frac() when it was called: dir. The result is the true
direction.

The Mandelbrot Program

In the past few years a mathematical construct called "the Mandelbrot set"
has emerged as one of the most fascinating- and beautiful-objects in math
ematics. The set consists of those points on a two-dimensional plane that
satisfy certain characteristics. The boundary of the set, which occupies the
area between about -2 and 0.5 on the x axis, and 1.25 and -1.25 on the y
axis, is astonishingly complex. Looked at in its entirety, the boundary con
sists of several rounded shapes with other rounded shapes attached to them,
and strange lightninglike filaments radiating from them. If we "zoom in" on
small areas of this boundary, details are visible: more rounded shapes, fern
like curlicues, spirals. It turns out that the boundary is a fractal. Each time
you zoom in to a smaller area, more details and more astonishing shapes are
revealed. There is no end to how far you can zoom in. It is easy to zoom down
to a detail never before seen by human eyes.

The mandel.c program shown here permits you to explore the Mandelbrot
set. You can view the complete set or, by changing parameters in the program,
zoom in for more detailed views.

The program contains two nested loops. The outer loop steps down from
line to line, and the inner one steps across from pixel to pixel on each line. At
each pixel location the program calculates whether the corresponding point is a
member of the Mandelbrot set. If it is, the pixel is drawn as black. If not, the
pixel is colored. How are the colors chosen? This has to do with how the set is
defined. Before we get into that, here's the listing:

/* mandel.c */
/* generates the mandelbrot set */

Microsoft Graphics Functions

/* needed for graphics */ #include <graph.h>
#define XMAX 100
#define YMAX 100
#define MAXCOUNT 16
main 0

I* change these to change size */

{

int XI Yi
float xscale, yscale;
float left, top;
float xside, yside;
float zx, zy;
float ex, cy;
float tempx;
int count;

left = -2.0;
top= 1.25;
xside = 2.5;
yside = -2.5;
xscale = xside I XMAX;
yscale = yside I YMAX;

I* of picture */
I* number of iterations */

'* location of pixel on screen
'* distance between pixels */
'* location of top left corner
'* length of sides */
'* real and imag parts of z */
'* real and imag parts of c *'
'* briefly holds zx */
'* number of iterations */

I* coordinates for entire*/
I* mandelbrot set */

'* '* '*
change to see details*/
of set */

set scale factors */

if(_setvideomode(_ERESCOLOR)==O)
{ printf<"Can't set mode"); exit(1); }

_rectangle(_GBORDER, 0, 0, XMAX+1, YMAX+1);

for(y=1; y<=YMAX; y++)
{

for(x=1; x<=XMAX; x++)
{

ex = X*xscale+left;
cy = Y*yscale+top;
zx = zy = O;
count = O;

'* for each pixel column *'

'* for each pixel row */

/* set c to pixel location */

'* set z = 0 *'
'* reset count */
/* size of z < 2 */

while(zx*zx+zy*zy<4
{

&& count<MAXCOUNT

tempx = ZX*ZX - ZY*ZY + ex; '* set z = Z*Z + c *'
zy = 2*ZX*ZY + cy;
zx = tempx;
count++;
}

if(count < MAXCOUNT
{

_setcolor(count);
_setpixel(x, y);
}

if(kbh it())
break;

/* another iteration */

/* if count not max */

/* set color to count */
/* draw pixel (don't */
/* draw black pixels) */

/* to abort program */
/* before image completed */

*'

*'

} /* end for(x) */
} /* end for(y) */

getcheO; /*keep image until keypress */

503

Chapter 12

504

_setvideomodeC_DEFAULTMODE); /* restore old mode*/
}

The program runs in EGA graphics, which provides a far more satisfactory
picture than in CGA. As shown, the program generates a picture 100 pixels high
and 100 pixels wide. This is a small part of the EGA screen. The reason for using
a small picture is that it takes the program a considerable time to generate its
output. The lOOxlOO pixel picture takes several minutes. (It will be much faster
if you have a math coprocessor in your system.) A good way to use the program
is to generate a small picture to preview what you want to see. When you like
the image, expand the picture size by changing XMAX and YMAX to, say,
400x300, and let the program run all night. The effect is shown in Figure 12-26.
(Unfortunately, the figure cannot do justice to the intricate colored image pro
duced by the program.)

Figure 12-26. Output of mandel.c

A description of the algorithm used to generate the Mandelbrot set is
beyond the scope of this book. Very roughly, a point is in the set if a certain
iterated calculation performed on it does not escape to infinity. If the calculation
does escape to infinity, the point is outside the set, and the speed with which it
escapes determines the color of the pixel at that point. Refer to the Mathematical
Recreations column in Scientific American for August 1985 and November 1987
for a very lucid presentation. (These articles are reprinted in The Armchair
Universe by A. K. Dewdney, W H. Freeman Company, 1988.)

Almost any spot on the boundary provides an interesting place to start
exploring the details of the Mandelbrot set. For instance, try the following
settings:

left= -1.5;
top = -0.2;

Microsoft Graphics Functions

Summary

xside = 0.25;
yside = 0.4;

This chapter has focused on the graphics functions provided in Microsoft C.
We've seen how to organize the system to use the graphics library. The GRAPH
ICS.LIB file must be available to the linker, and the GRAPH.H file must be
#included with the source file. In the program, a graphics mode must be set
with _setvideomode().

Graphics functions are used to draw rectangles, ellipses, lines, arcs, and
pixels. These shapes may need to have their aspect ratio adjusted to compensate
for unsquare pixels. Shapes can be filled with a color and pattern. We saw some
applications of these techniques in the creation of bar and pie charts.

The number of colors available depends on the graphics mode. Different
palettes can be used, or colors can be remapped, to change the colors already on
the screen.

Some graphics functions exist to handle text. A text window can be created
and text written to it will be confined by the borders of the window. Text can
also be combined with graphics.

The logical coordinate system can be moved around on the screen. Graph
ics images can be stored in memory, a technique valuable for animation. In
some modes, more than one page of video memory is available; pages can also
be used for animated effects. A viewport can be used to restrict the screen area
in which graphics appear.

Questions

1. What are the advantages of the Microsoft C graphics functions over ROM
BIOS or direct memory access?

2. What are the advantages of direct memory access over the Microsoft C
graphics functions?

3. The library file needed with most graphics functions is

4. A viewport is a screen area in which

a. colors can be confined

b. text can be confined

c. graphics can be confined

d. both text and graphics can be confined

5. To use the _ellipse() function, the file ________ must be
#included in your program.

505

Chapter 12

506

6. The function _settextposition() positions the following item(s):

a. the text posilion (TP)

b. the text about to be written

c. the next line to be drawn

d. the cursor

7. The number of bytes required to store an image when using _getimage()
depends on:

a. the graphics mode in use

b. the size of the image

c. the color of the image

d. the amount of detail in the image

8. True or false: a Microsoft C graphics function can be used to determine if
a particular program requires text or graphics mode.

9. The data type void * indicates

a. nothing is returned by a function

b. a null pointer

c. a function takes no arguments

d. a pointer to any data type

10. Which library file must be available to your program if you want to write
text in a window?

11. True or false: the origin of the logical coordinate system is always at the
upper-left corner of the screen.

12. Graphics pages hold

a. different parts of a manuscript

b. different screen images

c. different parts of the same screen image

d. the same screen image in different colors

13. A graphics mode is initialized with the ________ function.

14. True or false: all graphics functions return a negative value if they cannot
perform their task.

15. The purpose of the _remappalette() function is to assign

a. a different palette to a color

Microsoft Graphics Functions

b. a different color to a pixel value

c. a different pixel value to a palette

d. a different palette to the display

16. The pattern in a dashed line is created by the function

1 7. In Microsoft C the angles for arcs and pie slices are measured starting at

a. the coordinates 0,0

b. the straight up direction

c. the 3 o'clock position

d. 180 degrees

18. A window is a screen area in which

a. graphics can be confined

b. text can be confined

c. colors can be confined

d. both text and graphics can be confined

19. Functions that perform relative line drawing do so relative to

a. the cursor position

b. the last text written

c. the last relative line drawn

d. the last pixel drawn

20. Square pixels

a. have an aspect ratio of 1.0

b. have the same height and width

c. cause no distortion of images

d. are often really round

Exercises

1. Write a program that allows the user to draw on the screen, using the cursor
keys. Each time a cursor key is pressed, the program should place a dot, so
that patterns of vertical and horizontal lines can be created. Use only
Microsoft C graphics functions-no ROM BIOS calls or direct memory
access for these exercises.

2. Revise the coin.c program (which created the animated image of a coin

507

Chapter 12

508

rotating about its vertical axis) so that it uses the _getimage() and
_ putimage() functions instead of paging to create the animation.

3. Revise the ezedit.c program so that a backspace will delete the character to
the left of the cursor, leaving the cursor in that position. (Don't worry about
deleting the character in the right-most column.)

Files

Standard file 1/0
Character, string, and formatted 1/0
Block 1/0
Binary and text modes
System-level 1/0
Standard files and redirection

13

509

13

Most programs need to read and write data to disk-based storage systems. Word
processors need to store text files, spreadsheets need to store the contents of
cells, and databases need to store records. In this chapter we explore the
facilities that C makes available for input and output (I/O) to a disk system.

Disk I/O operations are performed on entities called "files." A file is a
collection of bytes that is given a name. In most microcomputer systems, files
are used as a unit of storage primarily on floppy-disk and fixed-disk data storage
systems (although they can be used with other devices as well, such as CD-ROM
players, RAM-disk storage, tape backup systems, and other computers). The
major use of the MS-DOS or PC-DOS operating system is to handle files: to
manage their storage on the disk, load them into memory, list them, delete
them, and so forth.

A C-language program can read and write files in a variety of different
ways. In fact, there are so many options that sorting them all out can prove
rather confusing. So in the first section of this chapter we'll discuss the various
categories of disk I/O. Then we'll examine the individual techniques.

Types of Disk 1/0

510

A group of objects can be divided into categories in more than one way. For
instance, automobiles can be categorized as foreign or domestic; cheap or expen
sive; four, six, or eight cylinders; and so on. A car will fit into more than one
category at the same time; it might be a cheap foreign car with four cylinders,
for example. Similarly, the various ways file I/O can be performed in C form a
number of overlapping categories. In this section we'll give a brief overview of
the most important of these categories: a view of the forest before we enter the
trees.

Files

Standard 1/0 versus System 1/0

Probably the broadest division in C file 1/0 is between standard IIO (often called
stream I/O), and system-level (or low-level IIO). Each of these is a more or less
complete system for performing disk 1/0. Each has functions for reading and
writing files and performing other necessary tasks, and each provides variations
in the way reading and writing can be performed. In many ways these two
systems are similar, and in fact, most 1/0 tasks can be handled by either system.
But there are also important differences between the two.

Standard 1/0, as the name implies, is the most common way of performing
1/0 in C programs. It has a wider range of commands, and in many respects is
easier to use than system 1/0. Standard 1/0 conceals from the user some of the
details of file 1/0 operations, such as buffering, and it automatically performs
data conversion (we'll see what this means later). If there were only one system
available for disk 1/0 in C, standard 1/0 probably would be it.

System 1/0 provides fewer ways to handle data than standard 1/0, and it
can be considered a more primitive system. The techniques it employs are very
much like those used by the operating system. The programmer must set up,
and keep track of, the buffer used to transfer data, and the system does not
perform any format translations. Thus, in some ways, system 1/0 is harder to
program than standard 1/0. Since it is more closely related to the operating
system, however, it is often more efficient, both in terms of speed of operation
and the amount of memory used by the program.

Character, String, Formatted, and Record 1/0

The standard I/O package makes available four different ways of reading and
writing data. (System-level 1/0, by contrast, only uses one of these ways.) Hap
pily, three of these four ways of transferring data correspond closely to methods
you've already learned for reading data from the keyboard and writing it to the
display.

First, data can be read or written one character at a time. This is analogous
to how such functions as putchar() and getche() read data from the keyboard
and write it to the screen.

Second, data can be read or written as strings, as such functions as gets()
and puts() do with the keyboard and display.

Third, data can be read or written in a format analogous to that generated
by printf () and scanf () functions: as a collection of values that may be mixed
characters, strings, floating point, and integer numbers.

And fourth, data may be read or written in a new format called a "record,"
or "block." This is a fixed-length group of data, and is commonly used to store a
succession of similar data items, such as array elements or structures.

We'll look at each of these ways to transfer data in the section on standard
1/0. Figure 13-1 shows the relationship of standard and system 1/0 to these four
categories and the functions used to read and write data for each one.

511

Chapter 13

fwrite() fprintf ()

read()
write 0

Figure 13-1. Categories of Disk 1/0

Text versus Binary
Another way to categorize file 1/0 operations is whether files are opened in text
mode or binary mode. Which of these two modes is used to open the file deter
mines how various details of file management are handled: how newlines are
stored, for example, and how end-of-file is indicated. The reason that these two
modes exist is historical: Unix systems (on which C was first developed) do
things one way, while MS-DOS does them another. The two modes are, as we'll
see, an attempt to reconcile the standards of the two operating systems.

Just to confuse matters, there is a second distinction between text and
binary: the format used for storing numbers on the disk. In text format, numbers
are stored as strings of characters, while in binary format they are stored as they
are in memory: two bytes for an integer, four for floating point, and so on, as we
learned in Chapter 2. Some file 1/0 functions store numbers as text, while others
store them as binary.

Text versus binary mode is concerned with newline and EOF translation;
text versus binary format is concerned with number representation.

These two formats arise not from different operating system standards (as
with text versus binary modes), but because different formats work more con
veniently in different situations.

We'll have more to say about both these text-versus-binary distinctions
later on. At this point we'll narrow our focus from an overview of 1/0 categories
to the details of the various techniques.

Standard Input/Output

512

Standard I/O is probably the easier to program and understand, so we'll start
with it, leaving system-level 1/0 for later in the chapter.

Of the four kinds of standard 1/0, we'll explore the first three in this
section: character 1/0, string 1/0, and formatted 1/0. (We'll save record I/O for a

Files

later section.) We'll initially look at these three approaches using text mode; later
we'll see what differences occur when binary mode· is used.

Character Input/Output

Our first example program will take characters typed at the keyboard and, one
at a time, write them to a disk file. We'll list the program and show what it does,
then dissect it line by line. Here's the listing:

/* writec.c */
/*writes one character at a time to a file*/
#include "stdio.h" /* defines FILE */
mainO
{

}

FILE *fptr;
char ch;
fptr = fopen("textfi Le.txt","w");
while((ch=getcheO) != '\r')

putc(ch,fptr);
fclose(fptr);

/* ptr to FILE */

/*open file, set fptr */
/* get char from kbd */
/* write it fo fi Le */
/*close file*/

In operation the program sits there and waits for you to type a line of text. When
you've finished, you hit the [Return] key to terminate the program. Here's a
sample run (with a phrase from the nineteenth-century poet William Blake):

C>writec
Tiger, tiger, burning bright I In the forests of the night
C>

What you've typed will be written to a file called textfile.txt. To see that the file
has in fact been created, you can use the MS-DOS TYPE function, which will
read the contents of the file:

C>type textfile.txt
Tiger, tiger, burning bright I In the forests of the night
C>

Now that we know what the program does, let's look at how it does it.

Opening a File
Before we can write a file to a disk, or read it, we must open it. Opening a file
establishes an understanding between our program and the operating system
about which file we're going to access and how we're going to do it. We provide
the operating system with the name of the file and other information, such as
whether we plan to read or write to it. Communication areas are then set up
between the file and our program. One of these areas is a C structure that holds
information about the file.

This structure, which is defined to be of type struct FILE, is our contact

513

Chapter 13

514

point. When we make a request to open a file, what we receive back (if the
request is indeed granted) is a pointer to a particular FILE structure. Each file
we open will have its own FILE structure, with a pointer to it. Figure 13-2 shows
this process.

c
program

file name

read, write, etc.

pointer to FILE

(l.D. number for
this file)

operating
system

Figure 13-2. Opening a File

The FILE structure contains information about the file being used, such as
its current size and the location of its data buffers. The FILE structure is
declared in the header file STDIO.H (for "standard I/O"). It is necessary to
#include this file with your program whenever you use standard I/O (although
not system-level I/O). In addition to defining the FILE structure, STDIO.H also
defines a variety of other identifiers and variables that are useful in file-oriented
programs; we'll come across some of them later.

In the writec.c program we first declare a variable of type pointer-to
FILE, in the statement:

FILE *fptr;

Then, we open the file with the statement

fptr = fopen("textfile.txt","w");

This tells the operating system to open a file called "textfile.txt". (We could also
have specified a complete MS-DOS pathname here, such as \samples\jan
\textfile.txt.) This statement also indicates, via the "w", that we'll be writing to
the file. The fopen() function returns a pointer to the FILE structure for our file,
which we store in the variable fptr.

Files

The one-letter string "w" (note that it is a string and not a character; hence
the double- and not single-quotes) is called a "type." The "w" is but one of
several types we can specify when we open a file. Here are the other
possibilities:

"r" Open for reading. The file must already exist.

''w'' Open for writing. If the file exists its contents will be written
over. If it does not exist it will be created.

"a" Open for append. Material will be added to the end of an
existing file, or a new file will be created.

''r + '' Open for both reading and writing. The file must already exist.

''w + '' Open for both reading and writing. If the file exists its contents
are written over.

''a+'' Open for both reading and appending. If the file does not exist it
will be created.

In this section we'll be concerned mostly with the "r" and "w" types.

Writing to a File
Once we've established a line of communication with a particular file by
opening it, we can write to it. In the writec.c program we do this one character
at a time, using the statement:

putc(ch,fptr>;

The putc() function is similar to the putch() and putchar() functions. However,
these functions always write to the console (unless redirection is employed),
while putc() writes to a file. What file? The file whose FILE structure is pointed
to by the variable fptr, which we obtained when we opened the file. This pointer
has become our key to the file; we no longer refer to the file by name, but by the
address stored in fptr.

The writing process continues in the while loop; each time the putc()
function is executed another character is written to the file. When the user
types [Return], the loop terminates.

Closing the File
When we've finished writing to the file we need to close it. This is carried out
with the statement

fclose(fptr>;

Again we tell the system what file we mean by referring to the address stored in
fptr.

Closing the file has several effects. First, any characters remaining in the
buffer are written out to the disk. What buffer? We haven't said much about a
buffer before, because it is invisible to the programmer when using standard

515

Chapter 13

516

I/O. However, a buffer is necessary even if it is invisible. Consider, for example,
how inefficient it would be to actually access the disk just to write one
character. It takes a while for the disk system to position the head correctly and
wait for the right sector of the track to come around. On a floppy disk system
the motor actually has to start the disk from a standstill every time the disk is
accessed. If you typed several characters rapidly, and each one required a
completely separate disk access, some of the characters would probably be lost.
This is where the buffer comes in.

When you send a character off to a file with putc(), it is actually stored in
a buffer-an area of memory-rather than being written immediately to the
disk. When the buffer is full, its contents are written to the disk all at once. Or, if
the program knows the last character has been received, it forces the buffer to
be written to the disk by closing the file. A major advantage of using standard
I/O (as opposed to system I/O) is that these activities take place automatically;
the programmer doesn't need to worry about them. Figure 13-3 shows this
"invisible" buffer.

G) Data sent to disk by program is
stored in buffer.

® Contents of buffer are sent to file
when buffer is full, file is closed,
or program terminates.

invisible
buffer

Figure 13-3. Invisible Buffer

disk file

l

Another reason to close the file is to free the communications areas used
by that particular file so they are available for other files. These areas include
the FILE structure and the buffer itself.

Reading from a File
If we can write to a file, we should be able to read from one. Here's a program
that does just that, using the function getc():

Files

/* readc.c */
/*reads one character at a time from a file*/
#include <stdio.h> /* defines FILE */
mainO
{

}

FILE *fptr;
int ch;
fpt r = fopen ("textf i le. txt", "r");
while((ch=getc(fptr)) != EOF)

printf("%c", ch);
fclose(fptr);

/* ptr to FILE */
/* character of type int */
/*open file, set fptr */
/*get char from file*/
/* print it */
/* c Lose file */

As you can see, this program is quite similar to writec.c. The pointer FILE is
declared the same wey, and the file is opened and closed in the same way. The
getc() function reads one cha'racter from the file "textfile.txt"; this function is
the complement of the putc() function. (When you try this program, make sure
that the file has already been created by writec.c.)

End-of-File
A major difference between this program and writec.c is that readc.c must be
concerned with knowing when it has read the last character in the file. It does
this by looking for an end-of-file (EOF) signal from the operating system. If it
tries to read a character, and reads the EOF signal instead, it knows it's come to
the end of the file.

What does EOF consist of? It's important to understand that it is not a
character. It is actually an integer value, sent to the program by the operating
system and defined in the STDIO.H file to have a value of -1. No character with
this value is stored in the file on the disk; rather, when the operating system
realizes that the last character in a file has been sent, it transmits the EOF signal.
(We'll have more to say about how the operating system knows where the file
ends when we look at binary mode files later on.)

The EOF signal sent by the operating system to a C program is not a
character, but an integer with a value of - 1.

So our program goes along reading characters and printing them, looking
for a value of -1, or EOF. When it finds this value, the program terminates. We
use an integer variable to hold the character being read so we can interpret the
EOF signal as the integer -1. What difference does it make? If we used a
variable of type char, the character with the ASCII code 255 decimal (FF hex)
would be interpreted as an EOF. We want to be able to use all the character
codes from 0 to 255-all possible 8-bit combinations, that is; so by using an
integer variable we ensure that only a 16-bit value of - 1, which is not the same
as any of our character codes, will signal EOF.

517

Chapter 13

518

Trouble Opening the File
The two programs we've presented so far have a potential flaw; if the file
specified in the fopen() function cannot be opened, the programs will not run.
Why couldn't a file be opened? If you're trying to open a file for writing, it's
probably because there's no more space on the disk. If for reading, it's much
more common that a file can't be opened; you can't read it if it hasn't been
created yet.

Thus it's important for any program that accesses disk files to check
whether a file has been opened successfully before trying to read or write to the
file. If the file cannot be opened, the fopen() function returns a value of 0
(defined as NULL in STDIO.HJ. Since in C this is not considered a valid address,
the program infers that the file could not be opened.

Here's a variation of readc.c that handles this situation:

/* readc2.c */
/*reads one character at a time from a file*/
#include <stdio.h> /* defines FILE */
mainO
{

}

FILE *fptr; /* ptr to FILE */
int ch;
if(Cfptr=fopen("textfi le.txt","r"»==NULL) /*open file*/

{

printfC"Can't open file textfi le.txt.");
exit 0;
}

while(Cch=getc(fptr)) != EOF)
printf("%c", ch);

fclose(fptr);

/*get char from file*/
/* print it */
/*close file*/

Here the fopen() function is enclosed in an if statement. If the function returns
NULL, then an explanatory message is printed and the exit() is executed,
causing the program to terminate immediately, and avoiding the embarrassment
of trying to read from a nonexistent file.

Counting Characters
The ability to read and write to files on a character-by-character basis has many
useful applications. For example, here's a variation on our readc.c program that
counts the characters in a file:

/* charcnt.c */
/*counts characters in a file*/
#include <stdio.h>
main(argc,argv)
int argc;
char *argv[J;
{

FILE *fptr;
char string[81J;

Files

int count=O;
if(argc != 2) /* check # of args */

{ printfC"Format: C>type2 filename"); exitO;}
if< Cfptr=fopenCargv[1], "r"» ==NULL> /*open file*/

{ printfC"Can't open file %s.", argv[1]); exitO;}
whi Le(getc(fptr) != EOF) /* get char from fi Le */

count++; /* count it */
fclose(fptr>; /* close fi Le */
printfC"File %s contains %d characters.", argv[1l, count>;

}

In this program we've used a command-line argument to obtain the name
of the file to be examined, rather than writing it into the fopen() statement. We
start by checking the number of arguments; if there are two, then the second
one, argv(l], is the name of the file. For compactness, we've also placed the two
statements following the if on one line.

The program opens the file, checking to make sure it can be opened, and
cycles through a loop, reading one character at a time and incrementing the
variable count each time a character is read.

If you try out the charcnt'.c program on files whose length you've checked
with a different program-say the DOS DIR command-you may find that the
results don't quite agree. The reason for this has to do with the difference
between text and binary mode files; we'll explore this further in the section on
string 1/0.

Counting Words
It's easy to modify our character-counting program to count words. This can be a
useful utility for writers or anyone else who needs to know how many words an
article, chapter, or composition comprises. Here's the program:

I* wordcnt.c */
/*counts words in a text file*/
#include <stdio.h>
main(argc,argv)
int argc;
char *argv[l;
{

FILE *fptr;
int ch, string[81l;
int white=1; /*whitespace flag */
int count=O; /* word count */
ifCargc != 2) /* check # of args */

{ printfC"Format: C>type2 filename"); exitO;}
if< Cfptr=fopenCargv[1], "r")) ==NULL> /*open file*/

{ printfC"Can't open file %s.", argv[1]); exitO; }

whi Le< Cch=getc(fptr)) != EOF)
switchCch)

{
I I case

/*get char from file*/

/* if space, tab, or */

519

Chapter 13

520

}

case 1 \t': /*newline, set flag*/
case 1 \n': white++; break;
default: if(white) { white=O; count++; }
}

fc lose (fpt r); /* close file */
printf<"File %s contains %d words.", argv[1J, count>;

What we really count in this program is the change from whitespace characters
(spaces, newlines, and tabs) to actual (nonwhitespace) characters. In other
words, if there's a string of spaces or carriage returns, the program reads them,
waiting patiently for the first actual character. It counts this transition as a word.
Then it reads actual characters until another whitespace character appears. A
"flag" variable keeps track of whether the program is in the middle of a word or
in the middle of whitespace; the variable white is 1 in the middle of whitespace,
0 in the middle of a word. Figure 13-4 shows the operation of the program.

read
character
ch

no

set
whitespace
flag

whitespace
flag =0

increment
word count

Figure 13-4. Operation of the wordcnt.c Program

This program may not work accurately with files produced by some word
processing programs, such as WordStar in document mode, which use

Files

nonstandard characters for spaces and carriage returns. However, it will work
with standard ASCII files.

The wordcnt.c program shows the versatility of character I/O in C. For many
purposes, character I/O is just what's needed. However, in other situations,
different functions may be more efficient: for instance, in reading and writing
whole strings of characters at a time, which is our next topic.

String (line) Input/Output

Reading and writing strings of characters from and to files is almost as easy as
reading and writing individual characters. Here's a program that writes strings
to a file, using the string I/O function fputs().

/* writes.c */
/* writes strings typed at keyboard, to file */
#include <stdio.h>
mainO
{

}

FILE *fptr;
char string[81J;
fptr = fopen("textfile.txt", "w">;
while(strlen(gets(string)) > 0)

{

fputs(string,fptr);
fputs("\n",fptr>;
}

fclose(fptr>;

/* declare ptr to FILE */
/* storage for strings */
/*open file*/
/* get string from keybd */

'* write string to file*/
/* write newline to file*/

'* close file*/

The user types a series of strings, terminating each by hitting [Return]. To
terminate the entire program, the user hits [Return] at the beginning of a line.
This creates a string of zero length, which the program recognizes as the signal
to close the file and exit.

We've set up a character array to store the string; the fputs() function then
writes the contents of the array to the disk. Since fputs() does not automatically
add a newline character to the end of the line, we must do this explicitly to make
it easier to read the string back from the file.

Note that-for simplicity-in this and the next program we have not in
cluded a test for an error condition on opening the file, as we did in previous
examples. In any serious program this test should be included.

Here's a program that reads strings from a disk file:

/* reads.c */
/*reads strings from file, displays them on screen*/
#include <stdio.h>
mainO
{

FILE *fptr; /* ptr to FILE */
char string[81J; /* stores strings */

521

Chapter 13

522

fptr = fopen("textfile.txt", "r"); I* open file */
while(fgets(string,80,fptr) != NULL) /* read string */

printfC"%s",string); /*print string */
fclose(fptr>; /* close file */

}

The function fgets() takes three parameters. The first is the address where the
string is stored, and the second is the maximum length of the string. This
parameter keeps the fgets() function from reading in too long a string and
overflowing the array. The third parameter, as usual, is the pointer to the FILE
structure for the file.

Here's a sample run (again courtesy of William Blake), showing the opera
tion of both writes.c and reads.c:

C>writes
I told my love, I told my love,
I told her all my heart,
Trembling, cold, in ghastly fears,
Ah! she did depart!

C>reads
I told my love, I told my love,
I told her all my heart,
Trembling, cold, in ghastly fears,
Ah! she did depart!

The Newline Problem
Earlier we mentioned that our charcnt.c program might not always return the
same results as other character-counting programs, such as the DOS DIR
command. Now that we can write a file containing several strings, let's investigate
this further.

Here's what happens when we try to verify the length of the four-line
William Blake excerpt shown above:

C>dir textfile.txt
TEXTFILE TXT 116 10-27-87 2:36a

1 File(s) 1568768 bytes free

C>charcnt textfile.txt
File textfile.txt contains 112 characters.

Using DIR we find 116 characters in the textfile.txt file, whereas using our
homemade charcnt.c program we find 112.

This discrepancy occurs because of the difference in the way C and MS
DOS represent the end of a line. In C the end of a line is signalled by a single
character: the newline character, '\n' (ASCII value 10 decimal). In DOS, on the
other hand, the end of a line is marked by two characters, the carriage return
(ASCII 13 decimal), and the linefeed (which is the same as the C newline: ASCII
10 decimal).

Files

The end of a line of text is represented by a single character in C (the
newline), but by two characters in MS-DOS files (carriage return and
linefeed).

When your program writes a C text file to disk, the operating system
causes all the newlines to be translated into the carriage return plus linefeed
(CR/LF) combination. When your program reads in a text file, the CR/LF
combination is translated back into a single newline character. Thus, DOS
oriented programs such as DIR will count two characters at each end of line,
while C-oriented programs, such as charcnt.c, will count one. In our example
there are four lines, so there is a discrepancy of four characters.

As we'll see later, binary mode files handle this translation differently from
text files.

Reproducing the DOS TYPE Command
As a practical use for string I/O, we can reproduce the DOS TYPE command, as
demonstrated in this example:

/* type2.c */
/*reads strings from file*/
#include <stdio.h>
main(argc,argv)
int argc;
char *argv[J;
{

}

FILE *fptr;
char string[81J;
if<argc != 2) /* check args */

{ printf("C>type2 filename"); exitO;}
if< (fptr=fopen(argv[1J, "r")) ==NULL) /*open file*/

{ printf<"Can't open file %s.", argv[1]); exitO;}
whi Le(fgets(string,80,fptr) !=NULL) /* read string */

printf("%s",string); /*print string */
fc Lose(fptr); /* c Lose fi Le */

This program takes the content of a text file and displays it on the screen, just as
the DOS TYPE command does. The advantage of using a homemade command
is that you can customize it; you could, for example, add line numbers to your
printout or interpret certain characters differently.

Standard Files and the Printer
We've seen how, by using the fopen() function, we can obtain a pointer that
refers to a particular file. MS-DOS also predefines the pointers for five standard
files. These pointers are available without using the fopen() function. They are:

523

Chapter 13

524

Name

st din
std out
std err
stdaux
stdprn

Device

standard input device (keyboard)
standard output device (display)
standard error device (display)
standard auxiliary device (serial port)
standard printing device (parallel printer)

Thus, the statement fgets(string,80,stdin) would read a string from the
keyboard rather than from a file. We could use this statement without any
fopen() or fclose() statements.

We can make use of this technique to access the printer. Here's a program
that uses fgets() and fputs() to print the contents of a disk file on the printer:

/* print.c */
/*prints file on printer*/
#include "stdio.h"
main(argc,argv)
int argc;
char *argv[J;
{

}

FILE *fptr;
char string[81J;
if<argc != 2) /* check args */

{ printf<"Format: C>type2 filename"); exitO;}
if< (fptr=fopen(argv[1J, "r")) ==NULL) /*open file */

{ printf<"Can't open file %s.", argv[1]); exitO;}
while(fgets(string,80,fptr) !=NULL) /*read string*/

fputs(string,stdprn>; /* send to prntr */
fclose(fptr); /*close file*/

The statement

fputs(string,stdprn);

writes a string to the printer. Although we opened the file on the disk, argv[l],
we didn't need to open stdprn, the printer.

We'll have more to say about standard files and their use with redirection
in the section on system-level 1/0.

Formatted Input/Output

So far we have dealt with reading and writing only characters and text. How
about numbers? To see how we can handle numerical data, let's take a leaf
from our secret agent dossier in Chapter 9: we'll use the same three items we
used there to record the data for an agent: name (a string), code number (an

Files

integer), and height (a floating point number). Then, we'll write these items to
a disk file.

This program reads the data from the keyboard, then writes it to our
"textfile.txt" file. Here's the listing:

/* writef .c */
/*writes formatted data to file*/
#include <stdio.h>
mainO
{

FILE *fptr;
char name[40J;
int code;
float height;

/* declare ptr to FILE */
/* agent's name*/

}

fptr = fopen("textfile.txt", "w");
do {

/* code number */
/* agent's height */
/*open file */

printfC"Type name, code number, and height: ");
scanfC"%s %d %f", name, &code, &height>;
fprintf<fptr, "%s %d %f", name, code, height);
}

while(strlen(name) > 1);
fclose(fptr);

/* no name given? */
/*close file*/

The key to this program is the fprintf() function, which writes the values
of the three variables to the file. This function is similar to printf(), except that
a FILE pointer is included as the first argument. As in printf (), we can format
the data in a variety of ways; in fact, all the format conventions of printf ()
operate with fprintf () as well.

For simplicity this program requires the user to indicate that input is
complete by typing a one-letter agent name followed by dummy numbers; this
avoids using extra program statements to check if the user is done, but it's not
very user-friendly. Here's some sample input:

C>writef
Type name, code number, and height: Bond 007 74.5
Type name, code number, and height: Salsbury 009 72.25
Type name, code number, and height: Fleming 999 69.75
Type name, code number, and height: x 0 0

This information is now in the "textfile.txt" file. We can look at it there with the
DOS TYPE command-or with type2.c-although when we use these programs
all the output will be on the same line, since there are no newlines in the data.
To format the output more conveniently, we can write a program specifically to
read textfile.txt:

/* readf .c */
/*reads formatted data from file*/
#include <stdio.h>

525

Chapter 13

526

main()
{

}

FILE *fptr; /* declare ptr to FILE */
char name[40J; /* agent's name */
int code; /* code number */
float height; /* agent's height */
fptr = fopen("textfi le.txt", "r">; /*open file*/
while(fscanfCfptr, 11%s %d %f", name, &code, &height) != EOF)

printf("%s %03d %.2f\n", name, code, height>;
fclose(fptr>; /*close file*/

This program uses the fscanf () function to read the data from the disk. This
function is similar to scanf(), except that, as with fprintf (), a pointer to FILE is
included as the first argument.

We can now print out the data in a more readable format, using printf():

C>readf
Bond 007 74.50
Salsbury 009 72.25
Fleming 999 69.75
x 000 0.00

Of course, we can use similar techniques with fprintf () and fscanf () for other
sorts of formatted data: any combination of characters, strings, integers, and
floating point numbers.

Number Storage in Text Format
It's important to understand how numerical data is stored on the disk by
fprintf(). Text and characters are stored one character per byte, as we would
expect. Are numbers stored as they are in memory, two bytes for an integer, four
bytes for floating point, and so on? No. They are stored as strings of characters.
Thus, the integer 999 is stored in two bytes of memory, but requires three bytes
in a disk file, one for each '9' character. The floating point number 69.75
requires four bytes when stored in memory, but five when stored on the disk:
one for each digit and one for the decimal point. Numbers with more digits
require even more disk space. Figure 13-5 shows how this looks.

Numbers with more than a few significant digits require substantially
more space on the disk using formatted I/O than they do in memory. Thus, if a
large amount of numerical data is to be stored on a disk file, using text format
can be inefficient. The solution is to use a function that stores numbers in binary
format. We'll explore this option in the section on record I/O.

We've now described three methods in standard I/O for reading and
writing data. These three methods write data in text format. The fourth method,
record I/O, writes data in binary format. When writing data in binary format it
is often desirable to use binary mode, so we'll investigate the differences
between binary and text modes before discussing record I/O.

Files

memory disk file

-----,,
;nteger- -- 999 -- }

-------- }~------r --~~~-~=~- l l'6'l'9'l'. 'l'7'l'5'l s
usually more bytes

floaUng po;nt ~ on d;sk than ;n

~ ~~~2~~~~~ J { 1·1 ·1·3·1·2·1·. ·1·s·!·4·1~:~
0

;

Figure 13-5. Storage of Numbers in Text Format

Binary Mode and Text Mode

As we noted at the beginning of this chapter, the distinction between text and
binary can be applied to two different areas of disk I/O. On the one hand, there
is the question of how numbers are stored; this is the distinction between text
versus binary format. On the other hand, we can talk about how files are opened
and the format interpretations this leads to; this can be called text versus binary
mode. It's this second distinction we want to examine in this section.

The need for two different modes arose from incompatibilities between C
and the MS-DOS (or PC-DOS) operating system. C originated on UNIX systems
and used UNIX file conventions. MS-DOS, which evolved separately from
UNIX, has its own, somewhat different, conventions. When C was ported over
to the MS-DOS operating system, compiler-writers had to resolve these incom
patibilities. The solution decided on by Microsoft (but not by all C compiler
writers on the IBM) was to have two modes. One, the text mode, made files look
to C programs as if they were UNIX files. The other, binary mode, made files
look more like MS-DOS files.

Text mode imitates UNIX files, while binary mode imitates MS-DOS files.

There are two main areas where text and binary mode files are different:
the handling of newlines and the representation of end-of-file. We'll explore
these two areas here.

527

Chapter 13

528

Text versus Binary Mode: Newlines

We've already seen that, in text mode, a newline character is translated into the
carriage return-linefeed (CR/LF) combination before being written to the disk.
Likewise, the CR/LF on the disk is translated back into a newline when the file
is read by the C program. However, if a file is opened in binary mode, as
opposed to text mode, these translations will not take place.

As an example, let's revise our charcnt.c program to open a file in binary
mode and see what effect this has on the number of characters counted in the
file. As you may recall, charcnt.c counted fewer characters in a file than did the
DOS command DIR, because DIR counted each end-of-line as two characters,
while charcnt.c counted it as one. Perhaps we can eliminate this discrepancy.
Here's the listing:

/* charcnt2.c */
/*counts characters in a file opened as binary*/
#include <stdio.h>
main(argc,argv)
int argc;
char *argv[J;
{

}

FILE *fptr;
char string[81J;
int count=O;
if(argc != 2) /* check # of args */

{ print fC"Fo rm at: C>cha rcnt2 filename"); exit 0; }
if((fptr=fopen Cargv[1 J, "rb")) == NULL) /* open file */

{ printfC"Can't open file %s.", argv[1]); exitO; }
while(getc(fptr) != EOF) /* get char from file */

count++; /* count it */
fclose(fptr); /* close file */
printfC"File %s contains %d characters.", argv[1J, count);

There is only one difference between this program and the original charcnt.c;
we have introduced the letter "b" as part of the type string, following the "r":

fptr=fopen(argv[1 J, "rb")

The "b" means that the file should be opened in binary mode. (We could also
use a "t" to specify text mode, but since this is the default for character I/O, this
is not normally necessary.)

Now if we apply charcnt2.c to our earlier example of the William Blake
poem, we'll get the same character count we got using the DOS DIR com
mand-116 characters; while with the text mode charcnt.c we get 112 charac
ters:

C>charcnt2 textfi Le.txt
File textfile.txt contains 116 characters.

Files

C>charcnt textfile.txt
File textfile.txt contains 112 characters.

There are four carriage return-linefeed combinations in the file. Each counts as
one character in the text mode program charcnt.c, but as two characters in the
binary mode program charcnt2.c; hence the difference of four characters. In
binary mode the translation of the CR/LF pair into a new line does not take
place: the binary charcnt2.c program reads each CR/LF as two characters, just
as it's stored on the file.

Text versus Binary: End-of-File

The second difference between text and binary modes is in the way end-of-file is
detected. Both systems actually keep track of the total length of the file and will
signal an EOF when this length has been reached. In text mode, however, a
special character, lA hex (26 decimal), inserted after the last character in the
file, is also used to indicate EOF. (This character can be generated from the
keyboard by typing [Ctrl] [z] and is often written "Z.) If this character is encoun
tered at any point in the file, the read function will return the EOF signal (-1) to
the program.

This convention arose in the days of CP/M, when all files consisted of
blocks of a certain minimum length. To indicate that a file ended in the middle
of a block, the "Z character was used, and its use has carried over into
MS-DOS.

There is a moral to be derived from the text-mode conversion of lA hex to
EOF. If a file stores numbers in binary format, it's important that binary mode
be used in reading the file back, since one of the numbers we store might well
be the number lA hex (26 decimal). If this number were detected while we were
reading a file in text mode, reading would be terminated (prematurely) at that
point.

Also, when writing in binary format, we don't want numbers that happen
to have the value 10 decimal to be interpreted as newlines and expanded into
CR/LFs. Thus, both in reading and writing binary format numbers, we should
use binary mode when accessing the file.

Figure 13-6 shows the differences between text and binary mode.

Binary Dump Program

Before leaving the subject of binary versus text modes, let's look at a program
that uses binary mode to investigate files. This program looks at a file byte-by
byte, in binary mode, and displays what it finds there. The display consists of
two parts: the hexadecimal code for each character and-if the character is
displayable-the character itself. This program provides a sort of x-ray of a
disk file. It is modelled after the "dump" function in the DEBUG utility in
MS-DOS.

529

Chapter 13

530

Text mode

C program MS-DOS

'\n' CR/LF

EOF ..._ 1A ~

Binary mode

C program MS-DOS

'\n' __. LF

'\r"\n' CR/LF -
just another 1A
number

Figure 13-6. Text and Binary Modes

Here's the listing:

/* bindump.c */
/*does binary dump of disk file*/
/* each Line is ten ASCII codes followed by ten characters */
#include <stdio.h>
#define LENGTH 10
#define TRUE 0
#define FALSE -1

main(argc,argv)
int argc;
char *argv[J;
{

FILE *fileptr; /*pointer to file*/
unsigned int ch;
int j, not_eof;
unsigned char string[LENGTH+1J; /* buffer for chars */
ifCargc != 2)

{ printfC"Format: C> bindump file.xxx"); exitO;}
if((fileptr = fopen(argv[1J,"rb"))==NULL) /*binary read*/

{ printfC"Can't open fi Le %s.", argv[1]); exitO; }
not_eof = TRUE; /* not EOF f Lag */
do

{

for C j =O;
{

< LENGTH; j ++) /* chars in one Line */
"

}

if (Cch=getc(fileptr))
not_eof = FALSE;

pr i n t f (II %3 x II I ch) ;
if (ch > 31)

*(string+j) =
else

*(string+j) =
}

ch;

I I

• I

* (string+ j) = '\0' ;
printfC 11 %s\n", string);
}

while (not_eof ==TRUE>;
fclose(fi leptr);

Files

-- EOF) /* read character */
/* clear flag on EOF */
/* print ASCII code */

/* save printable char */
/* use period for */
I* nonprintable char */

/* end string */
/* print string */

/* quit on EOF */
/* close file */

To use this program, you type the name of the program followed by the
name of the file to be investigated. If the file is too big to fit on one screen,
scrolling can be paused with the [Ctrl] [s] key combination.

Earlier we wrote a William Blake poem to the file textfile.txt. Let's see
what happens when we apply bindump.c to that file.

C>bindump textfile.txt
49 20 74 6f 6c 64 20 6d 79 20 I told my
6c 6f 76 65 2c 20 49 20 74 6f love, I to
6c 64 20 6d 79 20 6c 6f 76 65 ld my love
2c d a 49 20 74 6f 6c 64 20 , .. I told
68 65 72 20 61 6c 6c 20 6d 79 her all my
20 68 65 61 72 74 2c d a 54 heart, .. T
72 65 6d 62 6c 69 6e 67 2c 20 rembling,
63 6f 6c 64 2c 20 69 6e 20 67 cold, in g
68 61 73 74 6c 79 20 66 65 61 hastly fea
72 73 2c d a 41 68 21 20 73 rs, .. Ah! s
68 65 20 64 69 64 20 64 65 70 he did dep
61 72 74 21 d a ff ff ffff ffff ffff art! .. ----

In each row the numbers correspond to the characters printed on the right:
49 hex is 'I', 20 is a space, 74 is 't', and so on. Notice that the CR/LF combination
is represented as D hex followed by A hex. If we had opened the file in text
mode, we would have seen only the a's. Also, if the program encounters the
number lA hex, it will print it out just like any other number; it will not be
interpreted as EOF, as it would have been in text mode.

At the end of the file the program starts to read real EOFs, which are
printed as ffff hex. The program reads until the end of a line, even if it has found
an EOF, so the rest of the line is filled out with ffff. With a modest increase in
complexity, the program could be rewritten to terminate on the first EOF. Also,
if you prefer decimal to hexadecimal output, changing the format specifier in
the printf() statement will do the trick.

531

Chapter 13

Binary mode is ordinarily used for binary format data and text mode for
text format data, although there are exceptions.

Now that we know something about binary mode, let's investigate the
fourth method of performing standard I/O: record I/0.

Record Input/Output

532

Earlier we saw how numbers can be stored using the formatted 1/0 functions
fscanf () and fprintf (). However, we also saw that storing numbers in the format
provided by these functions can take up a lot of disk space, because each digit is
stored as a character. Formatted 1/0 presents another problem; there is no direct
way to read and write complex data types such as arrays and structures. Arrays
can be handled, but inefficiently, by writing each array element one at a time.
Structures must also be written piecemeal.

In standard I/O one answer to these problems is record 1/0, sometimes
called "block I/0." Record I/O writes numbers to disk files in binary (or "un
translated") format, so that integers are stored in two bytes, floating point
numbers in four bytes, and so on for the other numerical types-the same
format used to store. numbers in memory. Record I/O also permits writing any
amount of data at once; the process is not limited to a single character or string
or to the few values that can be placed in a fprintf() or fscanf() function.
Arrays, structures, structures of arrays, and other data constructions can be
written with a single statement.

Writing Structures with fwrite()

Taking the structure used for secret agent data in Chapter 9, we'll devise a pair
of programs to read and write such structures directly. The first one, listed here,
will write a file consisting of a number of agent records, each one consisting of
the structure agent defined in the program.

/* writer.c */
/*writes agent's records to file*/
#include "stdio.h"
mainO
{

struct
{

char name[40J;
int agnumb;
float height;
} agent;

float dummy=O.O;

/*

/*
/*
/*

'*

define structure */

name */
code number *'
height */

see text */

}

Files

FILE *fptr; /* file pointer */
if((fptr=fopen("agents.rec 11

,
11 wb 11))==NULL) /*open file */

{ printfC"Can't open file agents.rec"); exitO;}
do

{

/* get name */

/* get number */

/* get height */

printfC"\nEnter name: ");
gets(agent.name);
printfC"Enter number: ");
scanf(11 %d 11

, &agent.agnumb);
printfC"Enter height: ");
scanf("%f", &agent.height);
fflush Cstdi n); /* flush kbd buffer */

/*write struct to file*/
fwriteC&agent, sizeof(agent), 1, fptr);
printf("Add another agent (y/n)? ");
}

while(getche()=='y');
fclose(fptr); /*close file*/

This program will accept input concerning name, number, and height of each
agent, and will then write the data to a disk file called "agents.rec". Any number
of agents can be entered. Here's a sample interaction:

C>writer
Enter name: Holmes, Sherlock
Enter number: 010
Enter height: 73.75
Add another agent Cy/n)? y
Enter name: Bond, James
Enter number: 007
Enter height: 74.5
Add another agent Cy/n)? n

Most of this program should be familiar to you from Chapter 9 and from earlier
examples in this chapter. Note, however, that the agents.rec file is opened in
binary mode.

The information obtained from the user at the keyboard is placed in the
structure agent. Then the following statement writes the structure to the file:

fwriteC&agent, sizeof(agent), 1, fptr);

The first argument of this function is the address of the structure to be written.
The second argument is the size of the structure. Instead of counting bytes, we
let the program do it for us by using the size of {) function. The third argument is
the number of such structures we want to write at one time. If we had an array
of structures, for example, we might want to write the entire array all at once.
This number could then be adjusted accordingly, as we'll see shortly. In this

533

Chapter 13

534

case, however, we want to write only one structure at a time. The last argument
is the pointer to the file we want to write to.

Finally, we should note the statement:

float dummy=O.O;

This circumvents a peculiarity of at least some versions of the Microsoft C
compiler. When the program is executed without this statement, the message

Floating point not loaded

appears. The reason for this is that the floating point package is not linked with
the program file unless the compiler decides it is needed. The statement

scanf("%f", &agent.height>;

requires the floating point package at run time, but it doesn't alert the compiler to
this fact at compile time. So the compiler doesn't tell the linker to provide the
package, and the fact that the package is needed but not available isn't discovered
until the program is running. Initializing a dummy floating point number causes
the compiler to include the floating point package and solves the problem.

If your version of the compiler doesn't need this statement, then by all
means remove it.

Writing Arrays with fwrite()

The fwrite() function need not be restricted to writing structures to the disk.
We can use it (and its complementary function, fread(), which we'll examine
next) to work with other data as well. For example, suppose we wanted to store
an integer array of 10 elements in a disk file. We could write the 10 items one at
a time using fprintf(), but it is far more efficient to take the following approach:

/* warray.c */
/*writes array to file*/
#include "stdio.h"
int table[10J = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
mainO
{

}

FILE *fptr;
if< (fptr=fopen("table.rec","wb"»==NULL)

{ printfC"Can't open file agents.rec");
fwrite(table, sizeof(table), 1, fptr>;
fclose(fptr>;

/*file pointer*/
/*open file*/

exitO;}
/* write array */
/*close file*/

This program doesn't accomplish anything useful, but it does demonstrate that
the writing of an array to the disk is similar to the writing of a structure. (We'll
soon see an example of writing an array of structures.)

Files

Reading Structures with f read()

To read the structure written by writer.c, we can concoct another program,
similar to writer.c:

/* readr.c */
/*reads agent's records from file*/
#include "stdio.h"
mainO
{

struct
{

/* name */ char name[40J;
int agnumb;
float height;
} agent;

/* code number */
/* height */

}

FILE *fptr;
if((fptr=fopen("agents.rec","rb"))==NULL

{ printf<"Can't open file agents.rec"); exitO;}
while(fread(&agent,sizeof(agent),1,fptr>==1)

{ /* read file */
printf<"\nName: %s\n", agent.name>; /*print
printf<"Number: %03d\n", agent.agnumb); /*print
printf<"Height: %.2f\n", agent.height); /*print
}

fclose(fptr); /* close file */

The heart of this program is the expression

fread(&agent,sizeof(agent),1,fptr)

name */
number */
height */

This causes data read from the disk to be placed in the structure agent; the
format is the same as fwrite(). The fread() function returns the number of
items read. Ordinarily this should correspond to the third argument, the num
ber of items we asked for-in this case, 1. If we've reached the end of the file,
however, the number will be smaller-in this case, 0. By testing for this situa
tion, we know when to stop reading.

The fread() function places the data from the file into the structure; to
display it, we access the structure members with printf () in the usual way.
Here's how it looks:

C>readr

Holmes, Sherlock
010
73.75

535

Chapter 13

536

Bond, James
007
74.50

In record 1/0, numerical data is stored in binary mode. This means that an
integer always occupies two bytes, a floating point number always occupies four
bytes, and so on. Figure 13-7 shows the relationship of data stored in memory
and on the disk in binary format. As you can see, record 1/0, because it makes
use of binary format, is more efficient for the storage of numerical data than
functions that use text format, such as fprintf().

memory

disk file

} '\
integer - --·qqq ___

r-"--.

l !999! ~

]· ' I
--~ 1? __ t:) •

1 \ ~9:.7~ I~ -------
floating point

L - -----~-
--~ 'b~-- ' :'; . _!\ _____]- l I 1~2~8441~

same number of bytes on disk
as in memory

Figure 13-7. Storage of Numbers in Binary Format

Since data is stored in binary format, it's important to open the file in
binary mode. If it were opened in text mode, and should the number 26 decimal
be used in the file (as an agent number, for instance), the program would
interpret it as an EOF and stop reading the file at that point. We also want to
suppress the conversion of newlines to CR/LFs.

A Database Example
As a more ambitious example of record 1/0 at work, we'll add disk reading and
writing capability to our agent.c program from Chapter 9. The resulting
program will allow data for up to 50 agents to be entered into an array of
structures in memory. Then a single command will write the entire array to
disk, thus saving the database for future access. Another command reads the
array back in again.

Here's the listing:

I* agentr.c */
/*maintains list of agents in file*/
#include <stdio.h> /* for FILE, etc. */

#include <conio.h>
#define TRUE 1
void newname(void);
void listall(void);
void wfile(void);
void rfile(void);

struct personel
{

char name [40];
int agnumb;
float height;
};

struct personel agent[50J;
int n = O;

void main(void)
{

int ch;

while (TRUE)
{

I* for getch() */

I* prototypes */

/* define data structure */

/* name */
/* code number */
/* height in inches */

I* array of 50 structures */
/*number of agents listed*/

pri ntfC"\n' e' enter new agent\n' L' list all agents");
printfC"\n'w' write file\n'r' read file:");
ch = getche 0;
switch (ch)

{

case 'e': newname(); break;
case 'L': listallC); break;
case 'w': wfile(); break;
case 'r': rfile(); break;
default: /* user mistake */

puts("\nEnter only selections listed");
} /* end switch */

} /*end while*/
} /* end main */

/* newnameO */
/* puts a new agent in the database */
void newname(void)
{

}

printfC"\nRecord %d.\nEnter name:", n+1>; /*get name*/
gets(agent[nJ.name);
printf("Enter agent number (3 digits): "); /*get number */
scanf(11 %d 11

, &agent[nJ.agnumb);
printf("Enter height in inches: "); /*get height*/
scanfC"%f", &agent[n++J.height);
fflush(stdin); /* clear buffer */

/* listallO */
/* lists all agents and data*/
void listall(void)
{

Files

537

Chapter 13

538

}

int j;
if (n < 1)

printfC"\nEmpty list.\n");
for (j=O; j < n; j++)

{

/*check for empty list*/

/*print list*/

printf("\nRecord number %d\n", j+1);
printfC" Name: %s\n", agent[jJ.name);
printfC" Agent number: %03d\n", agent[jJ.agnumb);
printf(" Height: %4.2f\n", agent[jJ.height);
}

/*wfileO */
/*writes array of structures to file*/
void wfile(void)
{

}

FILE *fptr;
if<n < 1)

{ printf("\nCan't write empty list.\n"); return; }
if((fptr=fopen("agents.rec","wb"))==NULL)

printfC"\nCan't open file agents.rec\n");
else

{

fwrite(agent, sizeof(agent[OJ), n, fptr);
fclose(fptr);
printfC"\nFile of %d records written.\n", n);
}

/* rfileO */
/*reads records from file into array*/
void rfile(void)
{

}

FILE *fptr;
if((fpt r=fopen ("agents. rec", "rb")) ==NULL

printfC"\nCan't open file agents.rec\n");
else

{

while(freadC&agent[nJ,sizeof(agent[nJ),1,fptr)==1
n++; /* count records */

fclose(fptr);
printf("\nFile read. Total agents is now %d.\n", n);
}

In use, we can enter a number of secret agents, using the 'e' option:

C>agentr

'e' enter new agent
'l' list all agents

'w' write file
'r' read file: e
Record 1.
Enter name: Mike Hammer
Enter agent number (3 digits): 004
Enter height in inches: 74.25

Files

We can continue this process for as many names as we want. Once we've
entered the names as we write them to disk with the 'w' option. Then we can
quit the program, turn off the computer, whatever; it doesn't matter if the array
in memory is destroyed. When we run the program again, we can read the list
back in from the disk. The following sequence shows that there is nothing in the
list until we read the file; then we can list the contents:

C>agentrS

'e' enter new agent
'l' list all agents
'w' write file
' r' read f i le:
Empty list.

'e' enter new agent
'l' list all agents
'w' write file
'r' read file: r
File read. Total agents is now 3.

'e' enter new agent
'l' list all agents
'w' write file
'r' read file: l

Record number 1
Name: Mike Hammer
Agent number: 004
Height: 74.25

Record number 2
Name: Lew Archer
Agent number: 026
Height: 71.50

Record number 3
Name: Sam Spade
Agent number: 492
Height: 71.75

The new capabilities of this program are in the functions wfile{) and
rfile{). In the wfile{) function the statement

fwrite(agent, sizeof(agent[OJ), n, fptr);

539

Chapter 13

causes the entire array of n structures to be written to disk all at once. The
address of the data is at agent; the size of one record is sizeof(agent[O]), which
is the size of the first record; the number of such records is n; and the file
pointer is fptr.

When the function rfile() reads the data back in, it must do so one
record-that is, one structure-at a time, since it doesn't know in advance how
many agents are in the database. Thus, the expression

freadC&agent(nJ,sizeof(agent(n]),1,fptr)

is embedded in a while loop, which waits for the fread() function to report that
no bytes were read, indicating end-of-file. This expression causes the data in the
structure to be stored at address &agent[n], and to have the size of agent[n]. It
causes one such structure to be read at a time, from the file pointed to by fptr.

The fread() and fwrite() functions work with any kind of data, including
arrays and structures, and store numbers in binary format.

This program, although it deals with secret agents, could serve as a
skeleton for all sorts of database applications, from recipes and stamp collecting
to employee records and inventory control.

Random Access

540

So far all our file reading and writing has been sequential. That is, when writing
a file we've taken a group of items-whether characters, strings, or more com
plex structures-and placed them on the disk one at a time. Likewise, when
reading, we've started at the beginning of the file and gone on until we came to
the end.

It's also possible to access files "randomly." This means directly accessing a
particular data item, even though it may be in the middle of the file.

The following program allows random access of the file agents.rec, created
with the agentr.c program above.

/* randr.c */
I* reads one agent's record, selected by user, from file*/
#include "stdio.h"
mainO
{

struct
{

char name [40J;
int agnumb;
float height;
} agent;

/* name */
/* code number */
/* height */

}

Files

FILE *fptr;
int recno;
long int offset;

/* record number */
/* must be long */
/*open file*/

if((fptr=fopen("agents.rec","r">>==NULL)
{ printfC"Can't open file agents.rec">; exitO;}

printfC"Enter record number: "); /* get record num */
scanf(11 %d 11

, &recno>;
offset= recno * sizeof(agent>; /*find offset */
ifCfseekCfptr, offset, 0) != 0) /* go there */

{ printfC"Can't move pointer there."); exitO;}
freadC&agent,sizeof(agent),1,fptr); /*read record*/
printfC"\nName: %s\n", agent.name>; /*print name*/
printfC"Number: %03d\n", agent.agnumb); /*print number*/
printfC"Height: %.2f\n", agent.height>; /*print height */
fclose(fptr); /* close file */

And here-assuming the same database exists that we created with the agentr.c
program earlier-is what it looks like if we use randr.c to ask for the second
record in the file:

C>randr
Enter record number: 2

Name: Lew Archer
Number: 026
Height: 71.50

File Pointers

To understand how this program works, you need to be familiar with the
concept of file pointers. A file pointer is a pointer to a particular byte in a file.
The functions we've examined in this chapter all made use of the file pointer:
each time we wrote something to a file, the file pointer moved to the end of that
something-whether character, string, structure, or whatever-so that writing
would continue at that point with the next write function.

When we closed a file and then reopened it, the file pointer was set back to
the beginning of the file, so that if we then read from the file, we would start at
the beginning. If we had opened a file for append (using the "a" type option),
then the file pointer would have been placed at the end of an existing file before
we began writing.

The file pointer points to the byte in the file where the next access will
take place. The fseek() function lets us move this pointer.

541

Chapter 13

The function fseek() gives us control over the file pointer. Thus, to access a
record in the middle of a file, we use this function to move the file pointer to
that record. In the program above the file pointer is set to the desired value in
the expression:

if(fseek(fptr, offset, O> != O>

The first argument of the fseek() function is the pointer to the FILE structure
for this file. (As you know, this is also referred to as a "file pointer," but it means
something quite different from the file pointer that indicates where we are in
the file. We have to trust to context to indicate which file pointer we mean.)

The second argument in fseek() is called the "offset." This is the number
of bytes from a particular place to start reading. Often this place is the begin
ning of the file; that's the case here. (We'll see other possibilities in a moment.)
In our program the offset is calculated by multiplying the size of one record-the
structure agent-by the number of the record we want to access. In the example
we access the second record, but the program thinks of this as record number 1
(since the first record is OJ so the multiplication will be by 1. It is essential that
the off set be a long integer.

The last argument of the fseek() function is called the mode. There are
three possible mode numbers, and they determine where the offset will be
measured from.

Mode

0
1
2

Offset is measured from

beginning of file
current position of file pointer
end of file

Once the file pointer has been set, we read the contents of the record at
that point into the structure agent and print out its contents.

For simplicity we've demonstrated random access to the agents.rec file as a
separate program, but it could easily be incorporated into agentr.c as a function,
becoming another option for the user.

Another function, ftell(), returns the position of the file pointer. We exam
ine this function in an exercise at the end of the chapter.

Error Conditions

542

In most cases, if a file can be opened, it can be read from or written to. There
are situations, however, when this is not the case. A hardware problem might
occur while either reading or writing is taking place, a write operation might
run out of disk space, or some other problem might occur.

In our programs so far, we have assumed that no such read or write errors
occur. But in some situations, such as programs where data integrity is critical, it
may be desirable to check explicitly for errors.

Files

Most standard I/O functions do not have an explicit error return. For
example, if putc() returns an EOF, this might indicate either a true end-of-file or
an error; if fgets() returns a NULL value, this might indicate either an EOF or
an error, and so forth.

To determine whether an error has occurred we can use the function
£error(). This function takes one argument: the file pointer (to FILE). It returns
a value of 0 if no error has occurred, and a nonzero (TRUE) value if there is an
error. This function should be reset by closing the file after it has been used.

Another function is also useful in conjunction with £error(). This one is
called perror(). It takes a string supplied by the program as an argument; this
string is usually an error message indicating where in the program the error
occurred. The function prints out the program's error message and then goes on
to print out a system-error message.

Here's how we could rewrite the earlier writef.c program to incorporate
these two error-handling functions:

/* writef2.c */
/*writes formatted data to file*/
/* includes error-handling functions */
#include <stdio.h>
main 0
{

FILE *fptr;
char name[40J;
int code;

/* declare ptr to FILE */
/* agent's name */

}

f Loat height;
/* code number */
/*agent's height */
/*open file*/

if((fptr=fopen("textfi Le.txt","w"))==NULL)
{ printfC"Can't open textfile.txt"); exitO; }

do {
printf("Type name, code number, and height: ");
scanf("%s %d %f", name, &code, &height);
fprintf(fptr, 11 %s %d %f", name, code, height);
if(ferror(fptr)) /* check for error */

}

{

perrorC"Write error");
fclose(fptr);
exitO;
}

while(strlen(name) > 1);
fclose(fptr);

I* write message */
/*close file*/

I* no name given? */
/*close file*/

In the event that, for example, the disk becomes full during a write operation,
£error() will return a nonzero value and perror() will print out the following
message:

Write error: No space Left on device.

543

Chapter 13

The first part of this message is supplied by the program and the second part,
from the colon on, is supplied by the system.

Explicit error messages of this type can be informative both for the user
and for the programmer during development.

We've completed our exploration of standard 110 so we're ready to move
into the second type of C-language input/output: system-level 110.

System-Level Input/Output

544

System-level (sometimes called low-level) I/O parallels the methods used by MS
DOS for reading and writing files. In system-level I/O, data cannot be written as
individual characters, or as strings, or as formatted data, as is possible using
standard 110. There is only one way data can be written: as a buffer full of
bytes.

Writing a buffer full of data resembles record 110 in the standard 110
package. However, unlike standard 110, the programmer must set up the buffer
for the data, place the appropriate values in it before writing, and take them out
after reading. Figure 13-8 shows that the buffer in system 110 is part of the
program, .rather than being invisible as in standard I/O.

program

CD

0

data is placed in the buffer by the
program

write() function sends contents of
buffer to disk file

Figure 13-8. Visible Buffer

J

There are advantages to system-level I/0. Because it parallels the methods
that MS-DOS uses to write to the disk, system-level 110 is more efficient than
standard 110. The amount of code used by the C library routines is less than

Files

with standard I/O, so programs can be smaller. Finally, because there are fewer
layers of routines to go through, system I/O can also operate faster. Actually,
because it is the more basic system, system I/O routines are used by many
compiler writers to create the standard 1/0 package.

Reading Files in System 1/0

Our first example is a program that reads a file from the disk and displays it on
the screen. We've seen several examples of how this operation is carried out in
standard 1/0, so this program will point up the differences between the two
approaches.

As an example of the program's operation, we'll use it to display its own
source file:

C>sysread sysread.c
/* sysread.c */
/*reads and displays file*/
#include "fcntl.h"
#define BUFFSIZE 512
char buff[BUFFSIZEJ;
main(argc,argv)
int argc;
char *argv[];
{

int inhandle, bytes, j;

/* needed for of lags */
/* buffer size */
/* buffer */

if(argc != 2) /* check arguments */

}

{ printfC"Format: C>sysread file.xxx"); exitO; }
/*open file*/

if(Cinhandle = open(argv[1J, O_RDONLY I O_BINARY)) < 0)
{printfC"Can't open file %s.", argv[1J); exitO;}

/* read one buffer */
while((bytes= read(inhandle,buff,BUFFSIZE)) > 0)

for(j=O; j<bytes; j++) /* print buffer */
putchCbuff[jJ);

close(inhandle>; /*close file*/

Setting Up the Buffer
The first difference you'll notice in this program is that we declare a character
buffer with the statements:

#define BUFFSIZE 512
char buff[BUFFSIZEJ;

This is the buffer in which the data read from the disk will be placed. The size of
this buffer is important for efficient operation. Depending on the operating
system, buffers of certain sizes are handled more efficiently than others. In MS
DOS, the optimum buffer size is a multiple of 512 bytes. As we'll see later, the

545

Chapter 13

546

absolute size of the buffer is also important. In some cases a large buffer is more
efficient, so multiples of 512, such as 2048 or 4096, should be used.

Opening the File
As in standard I/O, we must open the file before we can access it. This is done in
the expression

if(Cinhandle = open(argv[1J, O_RDONLY I O_BINARY)) < 0)

We open the file for the same reason we did in standard I/O: to establish
communications with the operating system about the file. We tell the system the
name of the file we want to open-in this case, the name placed in the
command-line array argv[l] by the user. We also indicate whether we want to
read or write to the file and whether we want the file opened in binary or text
mode. However, the method used to indicate this information is different in
system I/0. Each characteristic is indicated by a constant called an "oflag." A
list of oflags is shown in Table 13-1.

Oflag

O_APPEND
O_CREAT

O_EXCEL

O_RDONLY
O_RDWR
O_TRUNC
O_WRONLY
O_BINARY
O_TEXT

Table 13-1. System-Level Oflags

Meaning

Place file pointer at end of file
Create a new file for writing (has no effect if file already
exists)
Return error value if file already exists (used only with
O_CREAT)
Open a new file for reading only
Open file for both reading and writing
Open and truncate existing file to 0 length
Open file for writing only
Open file in binary mode
Open file in text mode

Some of the possibilities listed in Table 13-1 are mutually exclusive: you
can't open a file for read-only and read-write at the same time, for example.

In our sysread.c program we open a file using the oflags O_RDONLY and
O_BINARY. We'll see examples of other oflags in use as we go along. The oflags
are defined in the file FCNTL.H, so this file must be #included in programs
using system I/O. (Note, though, that the STDIO.H file, which was necessary in
standard I/O, is not necessary here.)

When two or more oflags are used together, they are combined using the
bitwise OR operator (I).

File Handles
Instead of returning a pointer, as fopen() did in standard I/O, open() returns an
integer value called a "file handle." This is a number assigned to a particular
file, which is used thereafter to refer to the file.

Files

If open() returns a value of -1 rather than a valid file handle (which must
be greater than 0), an error has occurred. (We can find out more about the error
by using another function, as we'll see in the next example.)

The system-level function open() returns a file handle, which is not a
pointer, but simply a reference number to identify a file.

Reading the File into the Buffer
The following statement reads the file-or as much of it as will fit-into the
buffer:

bytes = read(inhandle,buff ,BUFFSIZE)

The read() function takes three arguments. The first is the file handle. The
second is the address of the buffer-in this case, the variable buff. The third
argument is the maximum number of bytes we want to read. In this case we'll
allow the function to fill the entire buffer, but in some situations reading fewer
bytes might be desirable. Reading more bytes than the buffer can hold is not, of
course, recommended.

The read() function returns the number of bytes actually read. This is an
important number, since it may very well be less than the buffer size, and we'll
need to know just how full the buffer is before we can do anything with its
contents. We assign this number to the variable bytes.

Once the buff er is full we can print it out. We do this with a for loop
running from 0 to bytes, printing one character at a time.

Closing the File
No surprises here: we use the close() function to close the file. This releases the
communications areas and the file handle for use by other files.

Error Messages

As with standard 1/0, it is possible in system 1/0 to query the system about what
went wrong in the event that an error condition is encountered when an open()
or other file operation is attemped. A return value of - 1 indicates an error, and
the type of error can be determined with the function perror(). This function,
as we saw earlier, uses as its argument an error message from the program and,
when executed, prints not only the program's message, but also the system-error
message.

Here's a modification of sysread.c that incorporates this function to check
for errors on opening the file:

/* sysread2.c */
/*reads and displays file, uses perror() */
#include "fcntl.h" /*needed for oflags */

547

Chapter 13

548

#define BUFFSIZE 512
char buff[BUFFSIZEJ;
main(argc,argv)
int argc;
char *argv[J;
{

int inhandle, bytes, j;

/* buffer size */
/* buffer */

if(argc != 2) /* check arguments */
{ printfC"Format: C>search file.xxx">; exitO; }

/*open file*/
if(Cinhandle = open(argv[1J, O_RDONLY : O_BINARY)) < 0)

perror("Can't open input file">;
/* read one buffer */

while((bytes= read(inhandle,buff,BUFFSIZE)) > 0)
for(j=O; j<bytes; j++) /* print buffer */

putchCbuff[jJ);
close(inhandle); /*close file*/

}

Here's a sample of the program's operation when the user attempts to
operate on a nonexistent file:

C>sysread2 nofile.xxx
Can't open input file: No such file or directory

The first part of the message is the program's, the second comes from the
system.

This technique can be used to provide information about read and write
errors as well as errors in opening a file.

Buffer Operations

Putting the contents of a file in a buffer has certain advantages; we can perform
various operations on the contents of the buffer without having to access the file
again. There are several functions that can speed up operations on buffered
data, as our next example demonstrates. This program searches a text file for a
word or phrase typed by the user.

/* fsearch.c */
/*searches file for phrase*/
#include <fcntl.h>
#include <i o. h>
#include <stdio.h>
#include <memory.h>
#include <process.h>
#include <string.h>
#define BUFFSIZE 1024
char buff[BUFFSIZEl;
void searchCchar *, int);

/* needed for of lags */
/*for open(), etc. */
/* needed for NULL etc */
/* needed for memchr() */
/* for exit() */
/* for strlen() */
/* buffer size */
/* buffer */
/* prototype */

void main(argc, argv)
int argc;
char *argv[J;
{

int inhandle, bytes;

if(argc != 3) /* check arguments */

Files

{ printf<"Format: C>search source.xxx phrase"); exit<O);}
/*open file*/

}

if(Cinhandle = open(argv[1J, O_RDONLY)) < 0)
{ printf<"Can't open fi Le %s.", argv[1]); exit CO>; }

/*read file*/
while((bytes= read(inhandle,buff,BUFFSIZE)) > 0)

search(argv[2J,bytes); /*search for phrase*/
close(inhandle); /*close file*/
printf("Phrase not found");

/* search() */
/* searches buffer for phrase */
void search(char *phrase, int buf len)
{

}

char *ptr, *Pi /*pointers into file*/

ptr = buff; /* beginning of buffer */
/* Look for first char*/

whi Le((ptr=memchr(ptr,phrase[OJ ,but Len)) != NULL)
/* Look for phrase */

if(memcmp(ptr,phrase,strlen(phrase)) == 0)
{

printf<"First occurrance of phrase:\n.">;
for(p=ptr-100; p<ptr+100; p++)

putchar(*p);
exit CO>;
}

else ptr++;

This program requires the user to type two arguments on the command line (in
addition to the program name): the name of the file to be searched and the
phrase to be searched for. The program then finds the first occurrence of this
phrase. To show where the phrase is in the file, the characters on each side of
the phrase are printed out so that it can be seen in context.

Here's an example of the program searching the manuscript version of
Chapter 9 of this book for the word "aside":

C>fsearch chp9.ms aside
First occurrence of phrase:

549

Chapter 13

550

list of prices.
3. The purpose of declaring a structure type is to

a. set aside the appropriate amount of memory
b. define the format of the structure
c. specify

The main part of this program is similar to sysread.c. One difference is that
the file has been opened in text mode. This is the default when no mode is
specified, and we did not include the O_BINARY oflag. This means that CR/LFs
will be translated into newlines when we read the file.

Buffer Manipulation Functions
The function search(), called by the main program, makes use of several buffer
manipulation functions. The first such function is memchr(). This function
searches a buffer for a specific character. In our example, the expression

ptr=memchr(ptr,phrase[OJ,buflen)

shows the three arguments necessary for memchr(). The first is the address of
the buffer. Here we've assigned the address to the pointer variable ptr. The
second argument is the character to be searched for-in this case, the first
character of the phrase typed by the user, argv[2]. This is passed to the function
search() and stored in the variable phrase. The third parameter is the length of
the buffer to be searched.

The memchr() function returns a NULL if the character is not found,
otherwise it returns a pointer to the character in the buff er. Here it assigns the
pointer to the variable ptr.

The search() function then enters an if statement to see if the character
actually marks the beginning of the sought-after phrase. This comparison is
handled by the function memcmp(), in the expression

if(memcmp(ptr,phrase,strlen(phrase)) == Q)

This function also takes three arguments: a pointer to the place in the buffer
where the comparison should begin, the address of the phrase to be compared,
and the length of the phrase. The function then compares the phrase with the
characters in the buffer; if they match, it returns 0.

If a match is found, the search() function prints the characters on both
sides of the match and exits. Otherwise, the process is repeated until memchr()
can no longer find the character in the file.

The buffer manipulation functions require that the memory.h file be
#included with the program.

Writing Files in System 1/0

Writing a file in system I/O is somewhat more complicated than reading a file.
As an example, let's look at a program that copies one file to another; that is, it
imitates the DOS COPY command.

Files

To use this function, the user types the name of the source file (which
should already exist) and the destination file (which will be created) on the
command line.

C>copy2 source.txt dest.txt

Since the files are opened in binary, any file can be copied, whether a text file or
a binary file such as an executable program.

Here's the listing:

/* copy2.c */
/*copies one file to another
#include "fcntl.h"
#include "sys\types.h"
#include "sys\stat.h"
#define BUFSIZ 4096
char buff[BUFSIZJ;
main(argc,argv)
int argc;
char *argv[J;
{

*'

int inhandle, outhandle, bytes;

/*
/*
/*
'*
/*

needed for oflags */
needed for sys\stat.h
needed for pmode */
buffer size *'
buffer */

if(argc != 3) /* check arguments */

*'

{ printfC"Format: C>copy2 source.xxx dest.xxx"); exitO;}
/*open files*/

}

if(Cinhandle = openCargv[1], O_RDONLY l O_BINARY)) < 0)
{printfC"Can't open file %s.", argv[1]); exitO; }

if(Couthandle = open(argv[2],
O_CREAT l O_WRONLY : O_BINARY, S_IWRITE)) < 0)

{ printfC"Can't open file %s.", argv[2]); exitO; }
/*copy file*/

while((bytes= readCinhandle,buff,BUFSIZ)) > 0)
write(outhandle,buff,bytes);

closeCinhandle); /* close fi Les */
close(outhandle);

Two files are opened. One is the source file, whose handle is assigned to
the variable inhandle. The other is the destination file, whose handle will be in
outhandle. The expression that opens the source file should look familiar from
previous examples. The one that opens the destination file, though, has some
unfamiliar features:

if(Couthandle = open(argv[2],
O_CREAT l O_WRONLY l O_BINARY, S_IWRITE)) < 0)

This expression is so large it must be written on two lines. To create a nonexis
tent file, we use the O_CREAT oflag. We want to write and not read to this

551

Chapter 13

file, so we also use O_ WRONLY. And we want to use binary mode, so we use
O_BINARY.

Whenever the O _ CREAT oflag is used, another variable must be added to
the open() function to indicate the read/write status of the file to be created.
These options are called the "pmode" (for "permission") arguments. There are
three possibilities:

Pm ode

S_IWRITE
S_IREAD
S_IREAD l S_IWRITE

Meaning

Writing permitted
Reading permitted
Reading and writing permitted

Actually, all files are readable in MS-DOS, so some of these possibilities are not
relevant and are included only for compatibility with other systems. The only
one necessary is S_IWRITE.

Inconveniently, if the pmode flags are to be recognized, both the files sys
\types.hand sys\stat.h must be #included with the source file for this program,
along with fcntl.h.

The write() function is similar in format to read(). Like read(), it takes
three arguments: the handle of the file to be written to, the address of the buffer,
and the number of bytes to be written.

To copy the file, we use both the read() and write() functions in a while
loop. The read() function returns the number of bytes actually read; this is
assigned to the variable bytes. This value will be equal to the buffer size until
the end of the file, when the buffer probably will be only partially full. The
variable bytes therefore is used to tell the write() function how many bytes to
write from the buffer to the destination file.

Notice that we've used a larger buffer size in this program than in previous
examples. The larger the buffer, the fewer disk accesses the program must
make, so increasing the size of the buffer significantly speeds up the operation
of the program; it copies an BOK file twice as fast with a buffer size of 4096 as it
does with 512. You can experiment with buffer size to see which works best in
your particular application.

When large buffers are used they must be made global variables, other
wise stack overflow occurs.

Redirection

552

In Chapter 8 we discussed redirection: the capability built into DOS and the C
runtime system to redirect output to a disk file that would normally go to the
screen and to take input from a disk file that would normally come from the
keyboard.

It is also possible to modify disk-oriented programs, such as those in this
chapter, so that they make use of redirection. This can be helpful if the

Files

programs are to be used, Unix-style, in such a way that they act as filters,
taking input from one program via indirection, modifying it, and passing it on
to another program, again via indirection. (For more on filters and the related
subject of pipes, see your DOS manual, or the other books listed in the bibliog
raphy.)

Let's see how we would modify the copy2.c program to use indirection .
. Essentially we rewrite the program so that its input, instead of coming from a

file, comes from the keyboard, and its output, instead of going to a file, goes to
the display. Then, when the program is used, indirection can be employed to
specify that input should again come from a file and that output should also go
to a file (or be piped to another program).

The simplest way to invoke this new version of the program would be:

C>copy3 <source.ext >dest.ext

where source.ext is the file we want to copy and <lest.ext is the destination file.
However, if we wanted to copy the output of another program, say progl, and
send the copied file to a third program, say prog2, we could write:

C>prog1 : copy3 : prog2

A fringe benefit of using redirection is that the programming is somewhat
simplified. Here's the modified version of copy2.c:

/* copy3.c */
/*copies one file to another*/
/*uses redirection; format is C>copy3 <source.xxx >dest.xxx */
#include "fcntl.h" /* needed for oflags */
#define inhandle 0 I* stdin file*/
#define outhandle 1 /* stdout file*/
#define BUFSIZ 4096 /* buffer size */
char buff[BUFSIZJ; /*buffer */
mainO
{

}

int bytes;
setmode(inhandle, O_BINARY);
setmode(outhandle, O_BINARY);

/* set f i Le mode */
I* to binary */
/*copy file*/

while((bytes= read(inhandle,buff,BUFSIZ)) > Q)

write(outhandle,buff,bytes>;

The numbers 0 and 1 are predefined by DOS to be file handles for the key
board and the display, respectively. These numbers correspond to the standard
input and output devices stdin and stdout described earlier. Here's a complete
list:

We can use these numbers as file handles without having to open any files.

553

Chapter 13

Device

st din
std out
std err
stdaux
stdprn

Number

0
1
2
3
4

Since we don't need to open files, we can't use the open() function to
specify which mode-text or binary-we want the file to be in. However, there
is another way to do this: the setmode() function. Setmode() can take one of
two arguments: O_ TEXT and O_BINARY. You'll recognize these from our
discussion of the open() function; they're defined in the file FCNTL.H.

The actual reading and writing of the files is done the same way in this
program as in the earlier copy2.c.

When to Use What
With the multiplicity of functions available for file access in C it's sometimes
hard to know which method to use.

Standard I/O is probably most valuable where it's natural to handle data as
characters, strings, or formatted printf() style form. System I/O is more natural
in situations where blocks of data, such as arrays, are to be handled. In many
cases, standard I/O is simpler to program, while system I/O usually generates
more efficient code, both in terms of speed and the size of the executable file.

It's important not to mix standard and system-level I/O. If a file has been
opened with fopen(), don't try to use read() or write() with it, and vice versa.
Thus, while system-level I/O would usually be used for reading blocks of data,
for compatibility, fread() and fwrite() might be used if the file is already being
used by other standard I/O functions.

Text mode is usually used with files containing text, and binary mode is
used for files that may contain numbers other than ASCII codes. This avoids
translation problems that would corrupt numerical data. However, as in the
bindump.c program, it is occasionally useful to use binary mode on text files.

Summary

554

The subject of file input/output in Microsoft C is a rich and complex one. In this
chapter we've only covered the highlights. But you probably have enough of a
head start to finish the exploration of files on your own.

We've shown that there are two main families of file-handling functions:
standard I/O and system-level I/O. Standard I/O can deal with data in a larger
variety of ways, but system I/O is generally the more efficient. In standard I/O
we showed examples of the four ways to handle data: as characters, as strings,
as formatted data in the style of printf (), and as fixed-length records or blocks.

Files

We saw that the first three of these ways store data-whether text or num
bers-as ASCII characters, while the fourth way, record I/O, causes numerical
data to be stored in binary format.

We also explored the difference between text and binary modes (not to be
confused with text and binary formats). In text modes C newlines are translated
into the MS-DOS CR/LF pair, and the character lA indicates an EOF; in binary
mode neither of these is true.

We finished the chapter with a look at system-level I/O. This family of
commands requires that the programmer set up a buffer for the data and use
only one system for reading and writing; data is always considered to consist of
a block of bytes. Buffer manipulation functions can help with operations on the
data in the buff er.

Questions

1. The two main systems of I/O available in C are ________ I/O
and I/O.

2. A file must be opened so that

a. the program knows how to access the file

b. the operating system knows what file to access

c. the operating system knows if the file should be read from or written
to

d. communications areas are established for communicating with the file

3. A file opened with fopen() will thereafter be referred to by its

4. The function fopen() can specify which of the following?

a. The file may be opened for appending.

b. The file may be opened in binary mode.

c. The file may be given read-only status.

d. Numbers in the file will be written in binary format.

5. In standard 1/0 the function used to close a file is --------

6. When reading one character at a time, which of the following functions is
appropriate?

a. fread()

b. read()

c. fgets()

d. getc()

555

Chapter 13

556

7. True or false: closing a file after writing to it is optional.

8. Text and binary mode have to do with

a. the way numbers are stored on the disk

b. the way numbers are stored in memory

c. the way newlines are handled

d. the way EOF's are handled

9. To examine every single byte of a file, is text or binary mode more
suitable?

10. Which of the following are valid parts of standard input/output?

a. record I/O

b. structure I/O

c. character I/O

d. array I/O

e. string I/O

f. formatted I/O

11. When writing numbers to disk, the file should usually be opened in
mode.

12. To write a small number of mixed string and integer variables to a file,
the appropriate function is

a. fputs()

b. fgets()

c. fprintf ()

d. fwrite()

13. True or false: since files must be read sequentially, there is no way to
read data from the middle of a file without starting at the beginning.

14. Whenever a file is open, a number indicates at what position in the file
the next access will be made. This number is called the

a. read/write status (type int)

b. file handle (type int)

c. file pointer (type pointer to char)

d. file pointer (type long int)

e. file handle (type long int)

Files

15. To write a block of data to a file in standard I/O, the appropriate function
is --------

16. The offset is the number of-------- from a certain point in
a file.

1 7. The function f seek()

a. finds a given word or phrase in a file

b. finds the correct file

c. helps access records in the middle of a file

d. moves the file pointer to the desired location

18. A file opened by open() will thereafter be referred to by its file

19. Which of the following describes system I/O?

a. closer to DOS methods

b. slower

c. more data formats

d. smaller executable programs

20. In system-level I/O, the function used to read from a file is

21. When a predefined file handle is used, text or binary mode may be
specified using the function.

22. Which of the following functions will search a block of data for a specific
character?

a. search()

b. strchr()

c. memchr()

d. buffcmp()

23. True or false: a system-level file can be opened for reading and writing at
the same time.

24. An oflag can

a. signal when a file is unreadable

b. specify if a file should be read or written

c. signal when EOF is detected

d. specify binary mode

557

Chapter 13

25. If O_CREAT is used, the argument must be added
to indicate the read/write protection mode for the file.

26. If data is to be treated in large blocks, the 110
~~~~~~~~ 

system is usually more appropriate. 

27. The advantage of using redirection is that the input to a program may 
then come from 

a. the keyboard 

b. pipes 

c. filters 

d. other programs 

28. Write a DOS command to use indirection to read input data from the file 
file 1. txt to the program encrypt, and then write the output of this 
program to the file file2.txt. 

29. If a system-level program employs redirection, it should 

a. use standard file handles for keyboard and display 

b. open files in binary mode 

c. set binary mode using the setmode() function 

d. use the redir() function 

30. True or false: there is only one right way to do things in the world of C 
files. 

Exercises 

558 

1. Write a program that will read a C source file and verify that the number of 
right and left braces in the file are equal. Use a command-line argument for 
the name of the file and the getc() function to read in the file. 

2. It is sometimes desirable to store a group of strings of different lengths in 
the same file. It is also sometimes desirable to access these strings random
ly-that is, to read only the desired one, without starting at the beginning of 
a file. To do this, the offset of each string can be placed in a table. To 
compile the table of offsets, one can use the function ftell(), which returns 
the current offset, taking only the file pointer (fptr) as an argument. 

Write a program that uses string I/O, permitting the user to type a group of 
phrases, and that tells the user the offset of each phrase typed in, like this: 

C>writedex 
Open the pod bay doors, Hal. 
Of fset=O 



Klingons attacking! 
Off set=29 

Your fuel is dangerously Low. 
Off set=49 

Unknown craft approaching at warp factor 7. 
Off set=79 

Files 

3. Write a program that will read any given string from the file created in the 
previous exercise and display it on the screen. The program should use a 
table of offsets and random access to locate the string. Sample interaction 
with the program should look like this: 

C>readdex 
Enter index number CO to 3) of string: 0 
Open the pod bay doors, Hal. 

Enter index number CO to 3) of string: 3 
Unknown craft approaching at warp factor 7. 

4. Write a function that can be added to the agentr.c program, so that an agent's 
record can be deleted from the database. The file is first read in, the deletion 
is made in memory, then the revised list of agents is written out to the file. 

5. Write a program that will concatenate two files: that is, add the contents of 
one file to another and write the result into a third file. Use system-level 
I/O, and command-line arguments that look like this: 

C>concat source1.ext source2.ext dest.ext 

559 





Larger Programs 

Separate compilation 
External variables and separately compiled files 
Modular programming and separate compilation 
Conditional compilation using #ifdef 
Memory models 

14 

561 



14 

The C language is particularly rich in tools for creating large, sophisticated 
programs. However, in this book our program examples have, of necessity, been 
comparatively small. In this chapter we'll examine some of the techniques used 
when programs become larger and more complex. 

In particular, we'll discuss how sections of larger programs can be 
compiled separately and linked together, and we'll explore the related issue of 
how data can be shared by such separately compiled modules. We'll show how 
parts of a source file can be compiled under some circumstances but not others, 
and finally we'll discuss memory models, which permit programs and data to 
occupy very large amounts of memory. 

Separate Compilation 

562 

So far in this book we have always written, compiled, and linked one program at 
a time. The program might have had several functions in it, but they were all 
treated as a single entity for the purpose of compilation. However, it is possible 
to break a program apart into separate files, each file consisting of one or more 
functions. These files can be compiled separately and then linked together to 
form the final executable program. 

Let's examine some simple examples of this process; then we'll discuss 
why we might want to use separate compilation. 

Here's a complete C source file, called mainprog.c. 

/* mainprog.c */ 
/*main program to test separate compilation*/ 
int sumsqr(int, int>; /*prototype */ 
main() 
{ 

int a, b, ans; 



Larger Programs 

printf("Type two integers: "); 
scanfC"%d %d", &a, &b>; /*get two integers*/ 
ans = sumsqr(a,b>; /* find sum of squares */ 
printfC"Sum of squares of %d and% d is %d", a, b, ans); 

} 

This is a variation of a program from Chapter 5, multifun.c, which calcu
lates the sum of the squares of two numbers. However, part of the multifun.c 
program is missing here. We'll see where it went in a moment. 

Type in this source file, but don't try to compile or link it. Why not? 
Because the linker would produce the error message "unresolved external" 
when it encountered the reference to the function sumsqr(): 

ans = sumsqr(a, b); 

Save mainprog.c to disk. Now type in a completely separate file called 
sumsqr.c and save it to disk in the same way. 

/* sumsqr.c */ 
/* function returns sum of squares of arguments */ 
int sumsqr(int x, int y) 
{ 

return( x*x + Y*Y >; 
} 

We have now produced two separate source files, mainprog.c and 
sumsqr.c. Our goal is to compile these files separately and then link the resulting 
.obj files into a single executable .exe file. This .exe file, called MAIN
PROG.EXE, will contain the function main() and the function sumsqr(), con
nected properly so they work together. Figure 14-1 shows this process. 

How do we compile the files separately, and link them? That depends on 
whether you're using the Optimizing Compiler or QuickC. 

Separate Compilation with the Optimizing Compiler 

Only one step is required both to compile and link the two files with the 
Optimizing Compiler. From DOS, type the following: 

C>cl mainprog.c sumsqr.c 

CL will first generate two .obj files: MAINPROG.OBJ and SUMSQR.OBJ. It 
will then link these together to produce MAINPROG .EXE. (The name of the 
first file on the command line is given to the .exe file.) You can see all three new 
files if you examine your directory with DIR. 

Versions of the Optimizing Compiler prior to 5.0 required several steps to 
perform the same operation. Two commands compiled the .C files into .obj files, 

563 



Chapter 14 

564 

and a final invocation of LINK.EXE linked them into mainprog.c. The sequence 
was: 

C>msc mainprog; 
C>msc sumsqr; 
C>link mainprog+sumsqr; 

The new one-step process is more convenient, but it tends to obscure 
what's happening. 

Separate Compilation with QuickC 

To compile and link separate files in QuickC you must create a program list in 
the following manner. 

Bring up QuickC with the mainprog.c file. Select Set Program List from the 
File menu. Enter "mainprog.mak" in the File Name box. Answer "yes" to the 
"does not exist, create?" question. When the new window appears, enter "main
prog.c"; it will appear in the File List. Then enter "sumsqr.c." It will also appear 
in the File List. Select Save List. This writes the program list MAINPROG.MAK 
to disk and returns you to the view window. 

Now that the program list is created, you can select Start from the Run 
menu in the usual way. QuickC will automatically compile mainprog.c, see from 
the program list that it needs to compile sumsqr.c, compile that, and finally link 
the two .obj files together and run the program. 

If you compile in memory, no .obj or .exe files will be generated. However, 
if you select Compile from the Run menu and request an .exe file, then both the 
.obj and the .exe files will be created; you can see them with DIR when you exit 
QuickC. 

Does this actually work? Of course. Here's some sample output from the 
program: 

C>mainprog 
Type two integers: 3 4 
The sum of the squares is 25 

Advantages of Separate Compilation 

Now that we've shown how to generate a single .exe file from two source files, 
what have we accomplished? With a program this small, not much. But when 
programs start to get larger, with many functions and hundreds or thousands of 
lines of code, then separate compilation starts to have some real advantages. 
Why? 

One reason is that compile time is proportional to the size of the file being 
compiled. And, usually, a programmer is only working on one part of a program at 
a time. So to minimize compile time, a programmer compiles only those parts of a 
program that have been changed since the last compilation. The parts of the 
program that are already working and debugged are not recompiled; they form a 



Larger Programs 

Gsqr.c 

Grog.obj 

Grog.exe 
resulting .exe file 

--has same name 
as first name 
given linker 

Figure 14-1. Separate Compilation of Functions 

group of permanent object files. Each time a new version of the current file-the 
part of the program that is being written and debugged-is compiled, it can be 
linked with the previously compiled files. Using this approach, only a small part of 
the program need be compiled at any one time; the rest already exists in the form of 
.obj files. If several programmers are working on a project they can share pre
viously developed object files. Since a module need not be recompiled after it is 

565 



Chapter 14 

566 

developed and debugged, there is less chance that it will be inadvertently modified 
or that two programmers will be using different versions of one function. 

A more important reason for using separate compilation is that it enables you 
to write well-structured, modular programs. We'll say more about this in the next 
section. Now let's look at how functions in separately compiled files share data. 

External Variables and Separately Compiled Files 

In our example, in which mainprog() and sumsqr() were linked, two numbers 
were passed from mainprog() to sumsqr() using arguments, and the result from 
sumsqr() was returned to mainprog() with a return statement. This kind of 
data communication between separately compiled functions is easy to implement; 
it requires no special statement in either function. But suppose we wanted func
tions in separately compiled files to have access to the same external variable? 

A function in one file can access an external variable located in another file 
if it declares the variable using the keyword extern. To show how this works, 
we'll rewrite the mainprog() and sumsqr() functions this way: 

/* mainpro2.c */ 
/* main program to test global variables */ 
int sumsqr(void); /*prototype */ 

int a, b; /* global variables */ 

mainO 
{ 

} 

int ans; 
printf<"Type two integers: "); 
scanf< 11 %d %d", &a, &b); 
ans = sumsqr 0; 
printf("Sum of squares of %d and %d is %d", a, b, ans); 

This is similar to the mainprog.c file shown earlier, except that we've moved the 
variables a and b, which hold the two integers the user types in, to a position 
outside the function. They are now external variables. Now when mainpro2.c 
calls sumsqr2(), it no longer needs to pass any arguments. 

Here's the revised sumsqr.c file: 

I* sumsqr2.c */ 
/* function returns sum of squares of external variables */ 
int sumsqr(void) 
{ 

extern int a, b; /* declaration of external variables */ 

return(a*a + b*b); /* return sum of squares */ 
} 

Here you can see that we no longer need to declare any variables as formal 



Larger Programs 

arguments to the function, but that we do declare the two variables a and b to 
be of type extern int. What does this mean? 

The word extern is an example of a storage class, which we'll discuss in 
detail in Chapter 15. For the moment, what we need to know is that, for an 
external variable to be visible in a file other than the one in which it's defined, it 
must be declared using the extern keyword. This keyword tells the compiler: 
"Somewhere in another file we've defined these variables. Don't worry that 
they aren't defined in this file, but let the linker know about them." When the 
linker gets the message from the compiler that these variables are external, it 
looks for them in different files. When it finds them, it makes the appropriate 
connections. From then on, references in sumsqr2() to a and b will be correctly 
linked to the a and b defined in the mainpro2.c file. Figure 14-2 shows an 
external variable declared in two different files. 

fi Le1 .c 

int var1; 
main() 
{ 

} 

~IJ .. ~Kt--.fK.til\lol. 
11.,..Atl\f1tti'lltf 

file2.c 

func10 
{ 

} 

extern int var1; 
U"1M\' t44 ..., it- !Ct•• 
L•ll· Mi ""'-ltff 

this 
definition 
sets aside 
space in 
memory 
for var1 

--~~{ -------- } var1 

this declaration 
makes var1 visible 
in func1 

Figure 14-2. External Variable Declared in Different Files 

There is more to be said about the use of external variables in different 
files. We'll look into this in Chapter 15. 

Library Files 

We've seen how a number of functions constituting a program can either be kept 
together in a single file or divided among several files that are compiled sepa
rately and linked together. There is a third possibility we should mention here. 
Functions can also be included in a special kind of file called a "library." A 
library is a file consisting of a number of functions. The functions are combined 
into groups called modules, which have a special characteristic; when you link a 
program with the library, only those modules containing functions that are 
actually referenced by the program will be included in the resulting .exe file. 

567 



Chapter 14 

568 

You've already used library files, perhaps without thinking much about it. 
Every time you use a C library function, such as printf (), it is a library file that 
supplies the actual code for the function. The object files of whatever C func
tions you referenced are linked with your program to generate the final .exe file. 
But not all the functions in the library file are added to your program; this 
would make every C program huge. The linker extracts only those functions you 
need and links them with your object file. This is an important characteristic of 
C, since it helps to minimize the size of the final program. 

Most C programmers will purchase specialized libraries of functions not 
available in the standard C library. Commercially available libraries include those 
for window and menu creation, statistical functions, database handling, special
ized I/O, and many others. Also programmers will develop their own libraries, 
which will include families of functions they use frequently. For a working 
programmer such libraries can significantly increase speed and productivity. 

Creating Library Files 

You can easily create your own library files. Here, briefly, is how it's done. 
A library file consists of modules created from .obj files. Each .obj file can 

contain one or more functions. As an example, consider the following two 
source files: 

/* add.c *' 
/* file contains functions to add and subtract */ 

int plusCint a, int b) 
{ 

returnCa+b); 
} 

int minusCint a, int b) 
{ 

return(a-b); 
} 

/* mult.c */ 
/* file contains functions to multiply and divide */ 

int timesCint a, int b) 
{ 

return(a*b); 
} 

int divbyCint a, int b) 
{ 

return(a/b); 
} 

Each of these files contains two functions for performing arithmetic. (Of 



Larger Programs 

course C has its own arithmetic operators; presumably a real library would be 
constructed of more useful functions.) 

Before they can be made into a library, the source files must be compiled 
into .obj files. In QuickC, select Compile ... from the Run menu, and choose 
Obj from the Output Options list. In the Optimizing Compiler, use the switch /c 
in the CL command line; this suppresses linking, leaving only the .obj file. 

Use the LIB utility to combine the two .obj files into a single library file. 
Make sure the .obj files are in the current directory and then type 

C>lib arith +add +mult 

This produces a library file called ARITH.LIB, which contains all four 
functions, divided into two modules. To use these functions, you must link the 
library to your program. Suppose your program looks like this: 

/* artest.c */ 
/*tests arith.Lib Library functions*/ 
main 0 
{ 

int x=20, y=10; 

printf ("x plus y = %d\n", plus(x, 
printf("x minus y = %d\n", minus(x, 
printf ("x times y = %d\n", times(x, 
printf ("x divby y = %d\n", divby(x, 

} 

y) ) . , 
y) ) . 

I 

y) ) . 
I 

y) ) . 
I 

If you're using the Optimizing Compiler, invoke CL like this: 

C>cl artest.c arith.Lib 

In QuickC, put artest.c and ARITH.LIB on a program list before compiling. 
Both modules in ARITH.LIB will be linked with artest.c, since it calls func

tions from both. However, if you had used only the plus() function, for example, 
the ADD module (derived from add.c) would have been linked, but the MULT 
module would not have. By placing related functions together in the same module, 
the creator of a library can optimize the efficiency of function linking. 

Prototypes should be added to the program calling the functions in the 
library (we've left them out for clarity). These can be placed directly into the 
program, but it's more common to bundle them into a header file, where they 
can all be added to the source file with a single #include directive, as they are 
in the Microsoft library. 

Modular Programming and Separate Compilation 

Perhaps the most important reason for using separate compilation is that it is an 
important aid in writing well-structured, modular programs. Let's examine the 
relation of C to modular programming. 

569 



Chapter 14 

570 

Dividing a program into separately compiled files can help make it modular. 

You probably know that it isn't considered good programming practice to 
write a large program as a single unit. Instead, the program should be broken 
down into smaller, easily understood parts. A C program usually consists of a 
main() function which calls several other functions to carry out the important 
tasks of the program. Each of these functions in turn calls other functions, and 
so on, until the functions being called are so simple that they need make no 
further calls. 

Each function should carry out a single clearly defined task. At the upper 
level a function might calculate a payroll, for example. This function might call 
another function to calculate withholding tax. This function might call still an
other function to look up tax rates in a table. The important points are these: first, 
the role of a function should be clearly defined, and second, the function should 
not be too large. Some programmers use a rule of thumb that no function should 
exceed one page in length, but of course many functions should be smaller. 

How does separate compilation fit into modular programming? Using sepa
rate files gives us a different size building block to use when constructing 
programs. A program can be broken down into files and each file can be broken 
down into functions, as shown in Figure 14-3. 

Program 

I 

I function 1 I function 4 I I function a I 
I function 2 I I function 5 I I function 9 I 

function 31 I function 6 I File C 

File A I function 7 I 
File 8 

Figure 14-3. Separate Compilation and Modular Programming 

As we'll see in Chapter 15, it's possible to restrict variables, not only to one 
function {as we've seen earlier with automatic variables), but to only one file as 
well. This ability to hide data from parts of the program is another aid to modular 
programming, since it is important that the variables in one part of a program not 
have access to variables in another part unless it is absolutely necessary. 



Larger Programs 

Program Design 

C provides the tools for designing well-structured programs, but it's up to the 
programmer to use them effectively. 

Any large program should be planned in considerable detail before a single 
line of code is written. Each function should be specified. The specification 
should include the purpose of the function, the arguments to be passed to it and 
returned by it, and the functions it will call. Most programmers recommend a 
"top down" approach. This means specifying the most general functions-prob
ably starting with main( )-first, and working down to the specific functions 
that perform low-level tasks, such as putting a character on the screen. In some 
situations, however, low-level functions must be planned concurrently with the 
higher-level ones. 

Data storage should also be thoroughly specified before code is written. 
Special care must be paid to large data items such as arrays and structures. 
External variables should be used only when absolutely necessary. As we have 
noted, external variables are vulnerable to being altered inadvertently by 
functions that shouldn't be accessing them. Special care should be paid to the 
naming of external variables, so that their names do not conflict with other 
variables. Long, descriptive names are better than short ones. For instance, 
the variable names a and b, used earlier in this chapter, would not be appro
priate in a large program; it would be too easy to confuse them with other 
variables. Names like SystemTemperature and GlobalErrorStatus would 
be better. Automatic variables should be given meaningful names as well, but 
it's less critical. 

The programmer must decide how to divide the program into different files. 
Major sections of the program, or those to be worked on by different program
mers, might be placed in different files. A group of routines that can be used with 
other programs as well as the one under development might be placed in a library 
file to facilitate its use in different situations. 

If a program is thoroughly specified before the code is written, it is pos
sible to write almost any individual function before those functions that it calls, 
and that call it, are written. Dummy functions can supply it with data, so it can 
be tested and debugged independently from the other parts of the program. 
Once all the functions have been tested and shown to work independently, it's 
far more likely that they will work together in the final program. 

Conditional Compilation Using #ifdef 

In certain situations it may be useful to compile parts of a source file under some 
circumstances but not others. This capability is often used in larger programs, but 
let's first look at an application that can be used in programs of any size. 

Suppose you want to measure the speed of a section in your program. You 
insert statements that will print "start" and "stop" messages at the beginning 
and end of the crucial section of code. This way, you can time the execution of 
the code with a stopwatch (assuming the program is slow enough). However, 

571 



Chapter 14 

572 

you only want these messages to be printed when you're testing the program, 
not when it's running normally. 

The directive if, along with other directives, permits sections of a program 
to be compiled in some circumstances but not others. 

You could simply insert statements to print the "start" and "stop" mes
sages each time you wanted to test the program and then remove them and 
recompile the program when testing was over. However, if there are a lot of such 
messages in a program, or they are complex, this could be inconvenient. A 
better way is to use a combination of preprocessor directives: #define, #if, and 
#endif. Using this system, you can keep your test statements in the listing at all 
times, but activate them only when you wish-by changing one #define state
ment at the beginning of the program. You will still need to recompile your 
program to activate or deactivate the test mode, but the rewriting of code is 
minimized. 

Here's an example: 

/* define.c */ 
/* demonstrates #if, #else, #endif */ 
#define TIMER /* remove if no test */ 
mainO 
{ 

} 

int j, k; 

#if defined(TIMER) 
printf<"Starting test\n"); 

#endif 

forCj=O; j<3000; j++) 
for(k=O; k<100; k++) 

#if defined(TIMER) 
printf("Ending test\n"); 

#else 
printf<"Done\n"); 

#endif 

/* executed only if */ 
/* TIMER is defined */ 

/* main part of program */ 
/* lengthy loop */ 

I* executed only if */ 
/* timer is defined */ 
/* executed only if */ 
/* timer is not defined */ 

In this program we want to test how long a timing loop, consisting of two 
nested for loops, takes to execute. We insert a statement to print "Starting test" 
at the beginning of the loop and another, to print "Ending test" at the end of the 
loop. By enclosing these statements in the #if-#endif combination, we ensure 
that they will be executed only if the directive #define TIMER is executed. If 
the program is compiled and executed as shown above, it will print 



C>define 
Starting test 
Ending test 

Larger Programs 

with a delay of several seconds between the two messages. If we remove the 
#define TIMER directive, or make it into a comment like this, 

/* #define TIMER */ 

our "test" statements will not be executed. The program will run, printing out 
"Done" but not the test messages. 

The #if and #endif Directives 

The first #if tells the compiler to compile the statements that follow it, only if 
TIMER is #defined. The #endif indicates that this conditional part of the 
compilation is over, and the compiler can go back to the normal mode of 
compiling all statements. Thus, #define acts as a switch, while #if and #endif 
act as delimiters for the section of code switched by #define. 

The #else Directive 

In the program above, if TIMER is not defined, another message ("Done") will 
be printed out when the loop is over. This is arranged with the #else directive. It 
fulfills a role analogous to the else in a normal C if ... else statement: what
ever follows it is compiled only when the matching #define directive has not 
been executed. 

Other Uses for Conditional Compilation 

There are many other circumstances in which conditional compilation might 
prove useful. For instance, you might need two versions of a program: one to 
run on the IBM AT, for example, and one to run on the PS/2 series. Instead of 
creating two complete source files, you could group those statements in the 
program that varied from one version to another and enclose them by appropri
ate #if, #else, and #endif statements. Then, inserting a single statement at the 
beginning of the program, such as 

#define AT 

would convert the program from the PS/2 version to the AT version. 
There are additional possibilities with conditional compilation. Another 

directive, #elif, can be used the same way the else-if construction is used in 
programs: to create a ladder of possibilities, depending on the value of a con
stant. Also, #if-#endif pairs can be nested. We won't explore these complexities 
here. 

573 



Chapter 14 

(A previous construction for #if defined() was #if def, but this does not 
conform to the ANSI standard and should no longer be used.) 

The #undef Directive 

Another related preprocessor directive is the #undef directive, which cancels 
the action of a previous #define directive. For example, if at some point in your 
program you insert the directive 

#define TEST 

and later in the program you insert 

#undef TEST 

then at this point TEST will no longer be defined. You can use this directive to 
make conditional compilation specific to certain sections of the program. 

Another use for #undef is to "turn off" macros that you have previously 
defined with a #define directive. This might be useful in a large and complex 
program where the same name is used for different macros in different parts of 
the program, and you want to avoid the possibility of conflict. Turning off a 
macro with #undef makes your macro a "local" macro, known only in a limited 
section of the program. 

Memory Models 

574 

In Microsoft C a memory model is the specification for how much memory 
different parts of the program can occupy. Microsoft C version 4.0 specifies five 
possible options: small, compact, medium, large, and huge. So far we have used 
only the small memory model (or the medium model in QuickC). This is the 
default model-what you get if you don't specify otherwise. What are memory 
models, and why might you want to use one besides small? 

To appreciate the necessity for different memory models it's important to 
understand the way the microprocessor used in the IBM computer family ad
dresses memory. We discussed the topic of segments and segment/offset ad
dressing in Chapter 10. Let's review the situation to see how it applies to 
memory models. 

Segment/Offset Addressing 

The microprocessor uses 16-bit registers for addresses. A register this size can 
hold an address up to FFFF hex, which is 65,536 decimal, or 64K. This amount 
of memory is called a segment. To access addresses outside of this segment, the 
processor must use two registers. One, called the segment register, holds a 
number that is the starting address of a 64K segment. The other holds the offset 
address, which is the number of bytes from the start of the segment. To find the 



Larger Programs 

"real" or absolute address, the number in the segment register is multiplied by 
16 (shifted left four bits) and added to the offset address. (See Chapter 10 if any 
of this is unclear.) This permits addressing FFFFF hex (1,048,576 decimal) bytes 
(although, with MS-DOS versions 2.x or 3.x, only 640K bytes are available for 
the user's program). 

Two Kinds of Microprocessor Instructions 
The microprocessor uses two different techniques for referring to memory 
locations: if the location is within the 64K segment already specified in a segment 
register, the processor can use a single instruction to access data or change 
program flow. This approach, which corresponds to using near pointers in C, 
executes quickly. On the other hand, if the microprocessor needs to refer to an 
address in a segment outside the segment register, it must first alter the segment 
register, then perform the appropriate action using the offset address, and, 
finally, restore the segment register to its former value. This corresponds to 
using far pointers in C and is comparatively slow to execute. 

We can categorize microprocessor instructions in a different way. There 
are instructions that deal with addresses in the program code itself, such as 
jumps and calls to subroutines, and there are instructions that reference data, 
such as fetching a data item from memory and placing it in a register. 
Instructions that refer to program code can be either near or far, and 
instructions that refer to data can also be either near or far. So we can think of 
four different types of microprocessor instructions: near instructions for 
program control and for data and far instructions for program control and data. 

References to memory can accomplish program control or data access, and 
can refer to addresses inside the current segment or outside it. 

These four possibilities for microprocessor instructions correspond to four 
of the five memory models available in Microsoft C, as shown in Figure 14-4. 

References References 
Model to code to data 

small near near 

medium far near 

compact near far 

large far far 

Figure 14-4. Four Memory Models 

575 



Chapter 14 

576 

If the code for your program fits inside one 64K segment and the data fits 
inside another 64K segment, you can use the small memory model. Most 
programs don't require more program or data space than this. If the code for 
your program is larger than 64K but the data fits inside 64K, you should use the 
medium model. If the code is less than 64K but the data is larger, the compact 
model is appropriate. If both code and data require more than 64K, the large 
model is necessary. 

Note that these models all involve a trade-off; far instructions take longer 
to execute than near instructions, so programs written in memory models other 
than small will take longer to execute. The moral is, don't use a larger model 
than you need. 

Huge Arrays 
What about the fifth model? This is provided for the case of a single data item, 
usually an array, that by itself is larger than 64K. (If you think this is unlikely, 
imagine an array of structures used for storing a database; for many applications, 
such an array could profitably use all available memory.) 

A compiled program refers to an array in two ways: it specifies the base or 
starting address of the array and it refers to individual items within the array. 
The base address may be specified with a far instruction and references to 
individual elements in the array made with near instructions. This is the system 
used for the compact and large memory models. However, if the array is larger 
than one 64K segment, references to individual elements, as well as to the base, 
must be made using far instructions; this is what the huge memory model 
provides. 

Compiler Options 

In the Optimizing Compiler the choice of memory model is specified with a 
compiler option (characters typed in the command line when invoking the 
compiler). These options are shown in Figure 14-5. 

Segments 
Compiler Code Data for one 

Model option segments segments data item 

small /AS* 1 1 1 

medium /AM many 1 1 

compact /AC 1 many 1 

large /AL many many 1 

huge /AH many many many 

*default option; need not be given explicitly 

Figure 14-5. Memory Models and Compiler Options 



Larger Programs 

For example, to specify the medium memory model using the Optimizing 
Compiler, you would type the following when invoking CL: 

C>cl /AM filename.c 

Memory models can't be used from the QuickC environment. However, 
QuickC owners can use the QCL compiler with the same options as the Optimiz
ing Compiler. 

Since the library routines must be accessed with the same kind of instruc
tions as the rest of the program, a complete set of C library functions is provided 
for each of the memory models (except huge, which uses the large model's 
routines). The compiler ensures that the correct set of routines is linked to the 
program. 

Fine Tuning 

We've already seen that, when using the small memory model, it is possible to 
use the far keyword when a variable is outside the normal data segment. 
Similarly, if we use the compact or large models, we can declare a near data 
type to refer to variables that we know are in the normal 64K data segment. This 
can reduce the time needed to access these variables. 

By combining memory models and near and far data references in differ
ent ways, it's possible to achieve a good compromise between execution speed 
and program size. 

Optimization 

Both QuickC and the Optimizing Compiler give you some control over the 
amount of optimization performed by the compiler. Optimization is the pro
cess of altering the code generated by the compiler so the resulting program 
will run faster or take up less space. 

Optimization in QuickC 

There are several optimization choices in QuickC. They're all selected by check
ing the appropriate box in the Miscellaneous list in the Compile . . . window of 
the Run menu. 

First, you can select Optimization. This performs a number of changes in 
your source code that will make your code run faster, but it might generate 
slightly larger code. Second, you can select Pointer Check, which inserts code in 
your program that makes sure you don't use pointers to reference data outside 
your program's data area. Third, you can select Stack Check, which inserts in 
your program code that ensures, each time a function is called, that there is 
enough room on the stack for the function's local variables. 

These last two options are useful during program development to catch 

577 



Chapter 14 

programming mistakes, but should probably not be enabled when you compile 
the final version of your program, since they make it run more slowly. 

If you use the QCL compiler that comes with QuickC you can use com
mand-line switches to achieve these same effects-and a few more besides. 

Optimization and the Optimizing Compiler 

The Optimizing Compiler, as its name implies, offers more optimization options 
than does QuickC. The desired optimization is set using a command-line switch. 
The options are shown in the following table: 

Switch 

/Od 
/Os 
/Ot 
IOI 
/Oa 
/Oi 
/Op 
/Ox 
/Gs 

Effect 

Disable optimization 
Smaller code size at the expense of speed 
Speed at the expense of code size 
Loop optimization 
No alias checking 
Enable intrinsic functions 
Improve floating point consistency 
Maximize optimization 
Disable stack checking 

Disabling optimization is desirable when using CodeView, since optimized 
code may be in a different order than the source code. A complete description of 
these options can be found in the Optimizing Compiler user's guide. 

Summary 

578 

In this chapter we've reviewed some of the techniques that can be used when 
programs become large and complex. We've covered separate compilation of 
program files and discussed how external variables can be shared between such 
files using the extern keyword. We also mentioned library files and explored 
the advantages of separate compilation to speed up the compiling process and 
contribute to modular programming. 

We examined conditional compilation, which uses the #define, #if, #else, 
and #endif preprocessor directives to permit selective compiling of various 
parts of a source file under different circumstances. And finally we discussed 
the use of different memory models, which permit a program to expand beyond 
the normal bounds of two 64K segments. 

With these techniques you should be able to construct programs of almost 
any size, up to the limit of the memory in your computer. 



Larger Programs 

Questions 

1. One advantage of separate compilation of program modules is 

a. the resulting program will be more modular. 

b. compilation time can be faster. 

c. program modules can be protected from inadvertent alteration during 
program development. 

d. the program will run faster. 

2. Separately compiled modules are combined using the 

3. For a variable to be visible in a file other than that where it was defined, 
it must be using the keyword. 

4. Which of the following are ways to pass information from one function to 
another function in a separately compiled file? 

a. as arguments 

b. as static variables 

c. as external variables 

d. as automatic variables 

5. True or false: when a library file is linked to a program, all the functions 
in the library file are used in the final program. 

6. Separate compilation is an aid to modular programming because 

a. functions cannot access variables in other files 

b. only functions relating to the same program can be combined in one 
file 

c. external variables can be restricted to one file 

d. related functions can be combined in a file 

7. Conditional compilation is used to 

a. compile only those programs that are error free 

b. compile some sections of programs and not others 

c. remove comments and compress the source file 

d. none of the above 

8. The preprocessor directive is used as a switch to 
turn compilation on and off. 

579 



Chapter 14 

580 

9. The preprocessor directive #ifdefine (ADV) causes the code that follows 
it to be compiled only when 

a. ADV is an integer 

b. ADV is equal to a predefined constant 

c. ADV is TRUE 

d. ADV is #defined 

10. Using different memory models is useful when a program or data 
becomes too 

11. The medium memory model permits 

a. more than one code segment 

b. more than one data segment 

c. only one code segment 

d. only one data segment 

12. True or false: selecting the correct memory model determines the size of 
the stack segment. 

13. Memory models are necessary because of the 

a. stack-based architecture of the microprocessor 

b. segmentation of memory 

c. large size of the data or code in some programs 

d. need to keep programmers guessing 

14. The compiler option used to create the large memory model is 

15. The disadvantage of using a memory model that is larger than necessary 
is 

a. memory is wasted 

b. simple data type cannot be used 

c. program files are harder to link 

d. program instructions take longer to execute 



Advanced Variables 

Storage classes 
Lifetime and visibility 
Enumerated data types 
Typedef 
Identifiers and naming classes 
Type conversion and casting 

15 

581 



15 

Although we have been using variables all along in this book, we have, to avoid 
complicating the explanations of other topics, made certain assumptions about 
variables and their usage. We have also alluded to various properties of 
variables without explaining these properties in detail. In this chapter we'll take 
a more careful look at variables and investigate some of the advanced features 
the C language makes available for variable usage. 

Storage Classes 

582 

Every C variable possesses a characteristic called its "storage class." The storage 
class defines two characteristics of the variable: its lifetime, and its visibility (or 
scope). We've mentioned these characteristics before; now let's take a closer 
look. 

First, why are storage classes necessary? The answer is that by using 
variables with the appropriate lifetime and visibility we can write programs that 
use memory more efficiently, run faster, and are less prone to programming 
errors. Correct use of storage class is especially important in large programs. 

Lifetime 

The lifetime of a variable is the length of time it retains a particular value. In 
terms of their lifetime, variables can be divided into two categories: automatic 
variables have shorter lifetimes than do static and external variables. We'll look 
at these cases in turn. 

Lifetime of Automatic Variables 
Automatic variables are the most commonly used in C; the majority of the 
variables we've used so far have been of this class. In a program's source file 
automatic variables are written inside the braces that serve as delimiters for a 



Advanced Variables 

function. They are created (that is, memory space is allocated to them) when the 
function containing them is called, and destroyed (their memory space is 
"deallocated") when the function terminates. In the following function, 

func() 
{ 

} 

int alpha; 
auto int beta; 
register int gamma; 

all three variables are created when the function func() is called and disappear 
when it has finished and control returns to the calling function. Such variables 
are called "automatic" because they are created and destroyed automatically. 

Variables of type auto and register are created when the function 
containing them is called and destroyed when control returns to the calling 
program. 

The variable alpha is automatic by default, while beta has been made 
automatic explicitly, using the auto keyword. The effect is exactly the same, but 
the keyword auto is sometimes used to avoid confusion. The gamma variable is 
a special kind of automatic variable called a register variable; the compiler will 
assign it to one of the CPU registers-leading to faster operation-provided a 
register is available. We'll show an example of register variables later in this 
chapter. 

Lifetime of Static and External Variables 
If we want a variable to retain its value after the function that defines it is 
terminated, we have several choices. First, the variable can be declared to be of 
type static, as shown in this example. 

funcC) 
{ 

static int delta; 
} 

A static variable is known only to the function in which it is defined, but, 
unlike automatic variables, it does not disappear when the function terminates. 
Instead it keeps its place in memory and therefore its value. In the example 
above, even after the function func() has terminated, delta will retain the value 
it was given in the function. If program control returns to the function again, the 
value of delta will be there for the function to use. 

Another way to ensure that a variable retains its value throughout the 
course of a program is to make it external, as we've mentioned in earlier 

583 



Chapter 15 

584 

chapters. This is done by placing the variable outside of any function, as zeta is 
in this example: 

int zeta; 
mainO 
{ 

} 

func<> 
{ 

} 

Like static variables, external variables exist for the life of the program. The 
difference between them has to do with their visibility, which we'll examine in 
the next section. 

Variables of type external, static, and external static exist for the life of 
a program. 

Reasons for Different Lifetimes 
Why do some variables have longer lifetimes than others? The advantage of 
eliminating a variable when the function containing it terminates is that the 
memory space used for the variable can be freed and made available for other 
variables. Depending on the program, this can result in a considerable saving in 
memory. This is a good reason for using automatic variables whenever possible. 

Static variables can be used in those situations when a variable in a 
function must retain its value between calls to the function. 

Visibility 

The visibility (or scope) of a variable refers to which parts of a program will be 
able to recognize it. There are more distinctions involved in visibility than there 
are in lifetime: a variable may be visible in a block, a function, a file, a group of 
files, or an entire program. In this section we'll examine these possibilities in 
more detail. 

Visibility of Automatic and Static Variables 
An automatic variable is only recognized within the function in which it is 
defined; therefore, it is sometimes called a "local" variable. For instance, in this 
example: 

mainO 
{ 

} 

funcO 
{ 



Advanced Variables 

int eta; 
} 

the variable eta is recognized only in the function func(), not in main(). In fact, 
we could have another variable called eta in main(); the two would be 
completely different. 

The same is true of static variables (unless they're external, a possibility 
we'll examine later). They are visible only in the function where they are 
defined. 

Blocks 
The visibility of automatic and static variables can be restricted even further; 
they can be defined inside a block. A block is a section of code set off by braces. 
Here's an example of a block within a function: 

mainO 
{ 

int epsilon; 
{ 

int pi; 
} 

} 

In this example the variable pi is visible only within the inner set of braces, 
while epsilon is visible throughout the function main(). The braces used to 
group statements in an if or while construction form blocks; variables defined 
within such blocks won't be visible outside of the block. 

It is not common practice to define variables within blocks, but in some 
complicated functions it can provide increased flexibility. Two variables with 
the same name could be used in the same function, for example. 

Visibility of External Variables 
To create a variable that is visible to more than one function, we must make it 
external. As noted above in the discussion of lifetime, this means defining the 
variable outside of any function. Thus, in the example 

int theta; 
mainO 
{ 

} 

funcC) 
{ 

} 

the variable theta will be visible to both main() and func(), or to any functions 
placed after the definition of theta in this file. 

An external variable (unless it is declared elsewhere) is visible only to 
those functions that follow it in the file. If we rearranged our example like this: 

main() 
{ 

} 

585 



Chapter 15 

586 

int theta; 

funcO 
{ 
} 

the variable theta will be visible only to the function func( ); it will be invisible 
to main(). 

In Chapter 14 we discussed how separate files, each containing part of a 
program, can be compiled separately and linked together to create a final 
program. As we saw there, it is possible for an external variable to be visible in 
files other than the one in which it is defined, provided it is declared in the other 
files with the keyword extern. We'll pursue this topic in a moment, but first 
let's clarify some definitions. 

Defining and Declaring 

We've been using the terms "define" and "declare" often in this chapter, in 
ways that may be confusing. Let's backtrack for a moment and see how these 
terms are properly used in C. 

According to Kernighan and Ritchie (see the bibliography), a variable is 
"defined" when it is named, its type is selected, and-most important-memory 
space is actually set aside to hold it. Such common expressions as 

int num; 
char ch; 

are actually examples of definitions. On the other hand, a variable is declared 
when it is named and given a data type, but not necessarily any storage. 

A declaration is an announcement that a variable with a particular name 
and type exists. The variable is defined, meaning that memory is set aside for it, 
elsewhere. Typically, a variable is defined in one file and then declared in every 
other file in which it will be used. In the multifile program example in Chapter 
14, two variables a and b were defined (in the file containing mainpro2.c) with 
the statement 

int a, b; /* external variables defined in one file */ 

and declared (in the file containing sumsqr2.c) with the statement 

extern int a, b; /* and declared in another file */ 

A variable can be defined only once (since it can only exist in one place in 
memory), but it must be declared in any file that wishes to access it. 

The distinction between declarations and definitions made above is reason
ably clear. Unfortunately, due to historical usage, many texts-including this 
one-often use "declaration" to describe what is actually a definition. Microsoft 



Advanced Variables 

explains this away by making a distinction between "defining" declarations (that set 
aside memory) and "referencing" declarations (such as those using extern). 

Whatever terms are used, the point is that some declarations set aside 
memory, while others merely reference previously defined variables. 

In any case, external variables are visible only in the file in which they are 
defined, unless they are declared in other files. Figure 15-1 shows the visibility 
of a variety of different variables. 

int uno; 
6 int dos; I). int tres; !). int quatro; 

~ 
- ------/\.-

int quinque; 
J. >--,.... -c auto int sex; ..... 

<O register int sept em; 
E 

static int octo; 
7 ---- ------ -

int novem; 
0 

-- ------ -,.... - int dee em; ~ 

'+-

---- ------ -

----------~---\i7---~--¥-- I 

extern int uno; 

N extern int dos; 
'+-

I I 
I I 

---------------~----~--- -I I 
I I 
I I 

I I 
I I 

---------------~---~---- -
I I 
I I 

extern int tres; ~~~~~...-~~~~~~----;:~--x 
I 

~ extern int quatro; 

""====-----------------------------~--------------------

Figure 15-1. Visibility of Variables 

arrows indicate 
visibility range 

587 



Chapter 15 

588 

The declaration of variables using the extern keyword follows the same 
visibility rules as the definition of variables. In Figure 15-1, the variables uno, 
dos, tres, and quatro are all defined at the same place in File 1, but they all 
have different visibilities in File 2, depending on where they are declared. 

Register Variables 

Another storage class specifier is register. This specifier is like auto in that it 
indicates a variable with a visibility and a lifetime limited to the function in 
which it is defined. The difference is that the compiler, if possible, will assign a 
register variable to one of the microprocessor's registers instead of storing it in 
memory. Registers can be accessed much faster than memory locations, so using 
the register class for variables that are frequently accessed can result in signifi
cantly increasing a program's speed. 

There are also drawbacks to the use of register variables. Only a few 
variables can be register variables in a given program. The exact number is 
determined by the compiler, and it depends on how many registers the program 
needs for other purposes. When you define a variable to have the storage class 
register, you're making a request to the compiler; it will honor it if it can, but 
you have no guarantee your request will be carried out. However, with the 
Microsoft C compiler, you can normally count on two registers being free from 
register variables. 

Also, not all types of variables can be register variables. The Microsoft 
compiler only guarantees register storage of type int and normal pointer types 
(not far pointers). 

What variables should be made register variables? The obvious candidates 
are those variables the program spends the majority of its time operating on. 
This may be hard to figure out, but if your program has loops, a good guess is to 
make the loop variables the register variables. If there are nested loops, the 
variables in the innermost loop will be executed most often. 

One area where execution speed is important is graphics. As you learned 
in Chapter 10, many graphics operations require large numbers of pixels to be 
written to the screen in the shortest possible time. Thus graphics operations are 
a natural place for the use of register variables. We'll revise our dfill2.c program 
from Chapter 10 to use register variables for the loop variables and and see what 
speed increase this gives. 

Since register is a storage class specifier, it precedes the variable type, as 
in the expression: 

register int x, y; 

The revision of dfill2.c uses register variables for the loop variables col 
and row. 

/* dfill3.c */ 
/* tests register variables */ 
#define ROMAX 25 



#define COMAX 80 
main() 
{ 

int far *farptr; 

Advanced Variables 

register int col, row; /* register variables */ 
char ch; 
printfC"Type character to start, type again to change">; 
farptr = Cint far *) OxBOOOOOOO; 
while( Cch=getcheO> != 'x' > 

forCrow=O; row<ROMAX; row++) 
for(col=O; col<COMAX; col++) 

*(farptr + row*COMAX + col) = Cint)ch Ox0700; 
} 

This change results in a 20 percent speed increase over the old version. While 
not as dramatic as the improvement provided by using direct memory access 
instead of the C library function putch(), it's not bad considering that only one 
word needed to be added to the program. 

Learning how much speed increase you can expect from register variables is 
largely a matter of experimentation. Try giving different variables the register 
class and then time the resulting program. You may need to time several itera
tions, enclosing the active part of your program in a for loop, to slow the pro
gram's operation enough to measure. 

Summary of Storage Classes 

Table 15-1 summarizes the lifetime and visibility of various types of variables. 

Table 15·1. Storage Classes 

Where Declared Keyword Lifetime Visibility (scope) 

function auto (default) function function 
function register function function 
function static program function 
external static program one file only 
external (not decl) program one file 
external (declared) extern program multifile 

The first three variable types shown in the table are local variables: those 
defined within a function. Their visibility is confined to that function, and their 
lifetime-except for static variables-is also the same as that of the function. 
These first three variable types can also be defined within a block (a pair of 
braces); in that case, they will only be visible within the block. 

The second group of three variable types are defined external to any 
function. 

The first case, that of an external static variable, is confined to a single file; 
the extern keyword cannot be used to reference it from other files. We use this 

589 



Chapter 15 

storage class when we wish to hide the variables in one file-a library file, for 
instance-from other files. 

The second case of external variables is probably the most common; the 
variable is defined externally but is not declared in any other files. The visibility 
of such a variable is confined to a single file. In this case (and in the case of 
external static variables) the variable is visible only from the place in the file 
where it's defined to the end of the file. It is invisible to functions occurring 
before it in the file. 

In the third case, a variable is defined in one file, but also declared in other 
files. In this case, its visibility will extend to the appropriate parts of all the files 
in which it is declared. 

By using the correct storage class for a variable, the programmer can 
economize on memory requirements by restricting the lifetime of the variables, 
and help maintain a modular, well-structured program by allowing access to 
variables only to those files and functions that need it. The number of ways to 
vary the visibility and lifetime of variables is an important reason for C's popu
larity with developers of large programs and systems. 

Enumerated Data Type 

590 

Let's examine another data type, one we haven't seen before. The enumerated 
(enum) type gives you the opportunity to invent your own data type and define 
what values it can take on. This can help to make listings more readable, which 
can be an advantage when a program gets complicated or when more than one 
programmer will be working on it. Using enumerated types can also help you 
reduce programming errors. 

As an example, one could invent a data type called birds which had as its 
possible values sparrow, robin, eagle, and egret. Don't confuse these values 
with variable names; sparrow, for instance, has the same relationship to the 
variable birds that the number 12 has to an integer variable. 

The format of the enum definition is similar to that of a structure. Here's 
how the preceding example would be implemented: 

enum birds { 
sparrow, 
robin, 
eagle, 
egret }; 

enum birds thisbird, thatbird; 

/* define data type */ 
/* specify values */ 

/* declare variables */ 

Like structures, the declaration has two parts. The first declares the data 
type itself-type enum birds-and specifies its possible values, which are 
called "enumerators." The second declares one or more variables- thisbird 
and thatbird-to be of this type. Now we can give values to these variables: 

thisbird =sparrow; 
thatbird =egret; 



Advanced Variables 

We can't use values that aren't in the original declaration. The expression 

thisbird = magpie; 

would cause an error. 
Internally, the compiler treats enumerated variables as integers. Each value 

on the list of permissible values corresponds to an integer, starting with 0. Thus, 
in the birds example, sparrow is stored as 0, robin as 1, eagle as 2, and egret as 3. 

This way of assigning numbers can be overridden by the programmer by 
initializing the enumerators to different integer values, as shown in this ex
ample: 

en um birds { /* define data type */ 
sparrow = 10, /* specify and */ 
robin = 20, /* initialize values *' 
eagle = 30, 
egret = 40 }; 

en um birds thisbird, thatbird; /* declare variables *' 

Just because the enumerators are compiled into integers doesn't mean the 
compiler will let you treat them that way in the source file. The following 
expressions are illegal: 

/*illegal*/ thisbird = 1; 
num = eagle; /*illegal if num is not type enum birds*/ 

Also, most numerical operations are illegal when applied to enumerated 
variables, and only two of the comparison operators can be used: = = and ! =. 
These restrictions usually make sense. What meaning could be reasonably imag
ined for the following illegal expressions? 

eagle = 2*sparrow; 
if(wren<sparrow) 

magpie++; 

/* can't do arithmetic */ 
/* or comparisons */ 
I* with enum variables */ 

Using the Enumerated Data Type 

Enumerated variables are usually used to clarify the operation of a program. For 
instance, if we need to use a group of employee categories in a payroll program, 
it makes the listing easier to read if we use values like management and 
clerical rather than integer values like 0 and 2. 

Here's a short example that makes use of enumerated variables, and also 
points out one of their weaknesses. (This approach would ordinarily be part of a 
larger program.) 

I* enums.c */ 
/* uses enumerated variables */ 
main 0 

591 



Chapter 15 

592 

{ 

} 

enum empcats {management, research, clerical, sales}; 
struct { 

char name[30J; 
float salary; 
enum empcats category; 

} employee; 

strcpy(employee.name, "Benjamin Franklin"); 
employee.salary = 118.50; 
employee.category = research; 

printf<"Name = %s\n", employee.name); 
printf<"Salary = %6.2f\n", employee.salary); 
printf("Category = %d\n", employee.category); 

if(employee.category==clerical) 
printf<"Employee category is clerical.\n">; 

else 
printf<"Employee category is not clerical.\n"); 

We first define the type enum empcats (for "employee categories") and specify 
four possible values: management, research, clerical, and sales. A variable of 
type enum empcats, called category, is then defined in a structure. The 
structure, employee, has three variables containing employee information. 

The program first assigns values to the variables in the structure. The 
expression 

employee.category = research; 

assigns the value research to the employee.category variable. This is much 
more informative to anyone reading the listing than a statement like 

employee.category= 1; 

The next part of the program shows the weakness of using enum variables: 
there is no way to use the enum values directly in input and output functions 
such as printf() and scanf (). Here's the output of the program: 

C>enums 
Name= Benjamin Franklin 
Salary = 118.50 
Category = 1 
Employee category is not clerical. 

The printf () function is not sophisticated enough to perform the translation; the 
category is printed out as 11 l", not as "research". Of course we could write a 
routine to print out the correct enumerated values, using a table or a switch 
statement, but that would decrease the clarity of the program. 



Advanced Variables 

Even with this limitation, however, there are many situations in which 
enumerated variables are a useful addition to the C language. 

Renaming Data Types with typedef 
Let's look at another technique which in some situations can help to clarify the 
source code for a C program. This is the use of the typedef declaration, whose 
purpose is to redefine the name of an existing variable type. Its use can result in 
clearer programs because the name of a type can be shortened and made more 
meaningful. 

As an example, consider the following statement in which the type un
signed char is redefined to be of type BYTE: 

typedef unsigned char BYTE; 

Now we can declare variables of type unsigned char by writing 

BYTE var1, var2; 

instead of 

unsigned char var1, var2; 

Our assumption here is that varl and var2 will be used in a context in which 
declaring them to be of type BYTE is more meaningful than declaring them to 
be of type unsigned char (for example, they might be values to be placed in a 
one-byte register during a ROM BIOS call). Using the name BYTE suggests to 
anyone reading the program that the variables are used in one-byte registers. 
Uppercase letters are often used to make it clear that we're dealing with a 
renamed data type. 

The typedef declaration causes the compiler to recognize a different name 
for a variable type. 

While the increase in readability is probably not great in this example, it 
can be significant when the name of a particular type is long and unwieldy, as it 
often is with structure declarations. 

For example, the passtwo2.c program in Chapter 14 contained the declara
tion: 

typedef struct personnel { 
char name [30J; 
int agnumb; 

}· 
I 

/* define data structure */ 
/* agent name */ 
/* agent number */ 

593 



Chapter 15 

594 

Using typedef, we could rewrite this: 

typedef struct personnel AGENT; /* new name for this type */ 
AGENT { /* define data structure */ 

char name [30J; /* agent name */ 
int agnumb; /* agent number */ 

}· 
I 

Subsequent references to struct personnel can now be replaced with AG ENT 
throughout the program, for example: 

AGENT agent1; 
AGENT agent2; 

/* declare structure variable */ 
/* declare another one */ 

Typedef looks something like the #define directive, but it actually works 
in a different way. Using #define causes the preprocessor to perform a simple 
substitution of one phrase for another throughout the program. Using typedef, 
on the other hand, causes the compiler to actually recognize a new name for a 
specific type. This can make a difference when pointers are concerned, as the 
following statement demonstrates: 

typedef struct personnel *PTRAGENT; 

This statement defines PTRAGENT to be a synonym for the data type "pointer 
to struct personnel." Now we can use the declaration 

PTRAGENT agent1, agent2; 

which is equivalent to 

struct personnel *agent1, *agent2; 

A #define directive could not have been used in this situation, since the aster
isks are repeated for each variable. 

By reducing the length and apparent complexity of data types, typedef can 
help to clarify source listings. 

Other Data Type Specifiers 

The ANSI standard has introduced several data types that did not exist in the 
original K and R specification of C. We've already looked at the void type, 
which can specify three kinds of variables: a function with no return value, a 
function that takes no arguments, and a pointer to any data type. There are two 
other new type-specifiers as well. 

The con st Specifier 
Variables of type const may not be modified during the course of the program. 
This type is commonly used to declare variables stored in read-only portions of 



Advanced Variables 

memory. An attempt to modify such a variable later in the program generates a 
compiler error. The format is 

canst int alpha; 

We show an int here, but const can modify any data type, including structures 
and pointers. 

The const specifier can also be used for any variable that does not change 
in the course of a program. For instance, a string constant can be defined like 
this: 

canst char *StringCon = "This is a string constant"; 

This usage makes it clear that StringCon will not be changed during the course 
of a program. Any attempt to write into it will elicit a compiler error. 

The volatile Specifier 
Variables of type volatile may be modified by actions external to the program 
while the program is running. An example is a memory address that is modified 
by hardware during program execution. If the compiler does not know such a 
variable can change unexpectedly, it may be tempted to perform optimizations 
that will fail when the variable is altered. The volatile keyword alerts the 
compiler to this situation. The format is 

volati Le Long beta; 

Identifiers and Naming Classes 
So far we've named variables and functions without saying too much about 
what the restrictions are on such names. In this section we'll mention these 
restrictions, and then go on to show how the same name can be used, under 
some circumstances, for different elements in a program. 

The names given to variables and functions (and various other program
ming elements) are called "identifiers." Allowable characters in identifiers are 
the letters from A to Z (in both upper- and lowercase), the digits from 0 to 9, and 
the underscore character ( _ ). The identifier must begin with a letter or an 
underscore. C distinguishes between upper- and lowercase, so the compiler will 
treat 

BigVar 

as a different variable from 

bigvar 

Identifiers can have any number of characters, but only the first 31 will be 
recognized by the compiler. It's not clear why anyone would want to use more 

595 



Chapter 15 

596 

than 31 characters anyway. For those of us who wrote programs in early ver
sions of BASIC, which only recognized variable names of 2 characters, 31 is the 
ultimate in luxury. 

As in most other computer languages, identifiers in C cannot be the same 
as certain keywords used in the language itself. Fortunately, there are fewer 
keywords in C than in many languages. These keywords fall into two classes. 
Those used for defining data are auto, char, double, enum, extern, float, int, 
long, register, short, static, typedef, and void. Those used for program con
trol are break, const, continue, default, do, else, for, goto, if, return, 
sizeof, struct, switch, union, and while. The const keyword is not imple
mented in current versions of Microsoft C, but is reserved for future use. 

Naming Classes 

The various program elements that are named with identifiers, such as func
tions and variables, are divided into naming classes. Within a naming class, each 
item must have a distinct identifier (in other words, you can't have two variables 
with the same name). However, you can use the same name for different ele
ments if the elements are in different naming classes. The five naming classes 
are described next. 

1. Variables and Functions 
A variable cannot have the same name as a function in which it is visible. A 
function's formal parameters also fall into this naming class, so they cannot have 
the same name as any of the variables used in the function. (However, as we 
discussed in the section on storage classes, several variables within a function 
can have the same name if they are in separate blocks.) Enumeration constants 
are also part of this naming class; you can't use the same name for an 
enumeration constant as for a variable (unless they have different visibilities). 

2. Tags 
As you may recall, structures, unions, and classes of enumeration variables are 
named with a tag. For instance, in the structure definition 

struct ex1 { 
int intnum; 
float fltnum; 
} svar1; 

the identifier exl is the tag, while svarl is a variable name. Tags form their 
own naming class, so it would be legal, for instance, to change the variable 
name svarl to exl in this example, since the same identifier can be used for 
two elements if they are in different naming classes. 

3. Members 
Members of structures and unions, such as intnum and fltnum in our example, 
form a separate naming class. They must be distinct from other members of the 
same structure or union, but they can be the same as other identifiers in the 
program. 



Advanced Variables 

In the following example the identifier apple is used in three different 
places. Since each use is a different naming class, the compiler will find this 
perfectly acceptable. 

struct apple { 
int apple; 
float pear; 
} apple; 

4. Statement Labels 

/* 'apple' names a tag */ 
/* 'apple' names a member */ 
/* could not be 'apple' here*/ 
/* 'apple' names a variable */ 

Statement labels form a distinct naming class. Within a function, statement 
labels must all have distinct names, but these can be the same as those of 
variables or members of other naming classes. We'll discuss labels further at the 
end of this chapter. 

5. Typedef Names 
The names of types defined with typedef are treated by the compiler as if they 
were keywords. Thus, once a name has been defined in a typedef statement, no 
other program elements, no matter what naming class they are in, can use the 
same identifer. 

Of course, none of the rules about naming classes alter the rules about 
visibility. If the visibility of two program elements is different, then they can 
have the same identifier, even if they are in the same naming class (for example, 
two automatic variables in different functions). 

Type Conversion and Casting 
You have probably noticed by this time that it's possible to mix data types in C 
expressions. Thus the following program will elicit no error message from the 
compiler (as a similar construction would in Pascal, for instance): 

mainO 
{ 

} 

int intnum = 2; 
float f Ltnum = 3.3; 
double ans; 
ans = intnum + fltnum; 

/* integer type */ 
/* floating point type */ 
/* double precision type */ 
/* mixed expression is legal */ 

There are dangers involved in mixing types; that's why some languages make 
such mixing illegal. But the philosophy in C is that it's better to give the pro
grammer the freedom to mix types, which often leads to simpler code, than to 
try to keep the programmer out of trouble by flagging type mismatches as an 
error. Of course, with the freedom to mix data types comes the responsibility to 
make sure that such mixing is not the result of a mistake, such as assuming a 
variable is of one type when it really is of another. 

When data types are mixed in an expression, the compiler converts the 
variables to compatible types before carrying out the intended operation. In 

597 



Chapter 15 

these conversions, variables of lower rank are converted to the rank of the 
higher-ranking operand. The ranking corresponds roughly to how many bytes 
each type occupies in memory. This is shown in Figure 15-2. 

lower 
rank 

higher 
rank 

char< int < long < float <double 

Figure 15-2. Ranking of Data Types 

As an example, consider the following program: 

main() 
{ 

} 

char ch; 
int intnum; 
long longnum; 
float fltnum; 
double doubnum; 
int answer; 
answer= (ch * intnum) + (ch * longnum) + (fltnum * doubnum); 

Before each operator is applied to the appropriate pair of variables, the variable 
with the lower rank is converted to the rank of the higher-ranking variable. This 
process is shown in Figure 15-3. 

Promotion, or moving from a lower rank to a higher rank, usually doesn't 
cause problems. Demotion, however, can easily result in a loss of precision or 
even yield a completely incorrect result. Table 15-2 details what happens when 
demotion occurs. 

Roughly speaking, we can say that if a number is too large to fit into the 
type to which it is being demoted, its value will be corrupted. Some loss of 
precision can even occur in the promotion of long to float, since these two types 
both use four bytes. 

The moral is, avoid type conversions unless there's a good reason for them, 
and be especially careful when demoting a variable, since you may lose data. 

Functions as Addresses 

598 

Sooner or later in your study of C you'll run into a situation in which you use a 
pointer to a function to refer to the function. For example, you might want to 
place the addresses of a group of related functions in a table and jump to the 
appropriate function. Or you might encounter a library function that returns a 
function address. How do you execute a function whose name you don't know, 
but whose address you do? 



Advanced Variables 

..... ~ 
..... ~ ..... <&- (;;:(:); 0'11 ~ 

·$' Cf ·$' Cf ~ ~ ~ 

I I I I I I I 
answer=Cch*intnum)+(ch*Longnum)+(fltnum*doubnum); 

answer 

Demotion 

int to char 
long to char 
float to char 
double to char 

long to int 
float to int 
double to int 

float to long 

double to long 

\ 

Figure 15-3. Data Type Conversion 

Table 15·2. Data Type Demotion 

low-order byte is used 
low-order byte is used 

Result 

float converted to long and low-order byte used 
double converted to float, float to long, and low-order 
byte used 
low-order word (two bytes) used 
float converted to long and low-order word used 
double converted to float, float to long, and low-order 
word used 
truncate at decimal point; if result is too large for long, 
it is undefined 
truncate at decimal point; if result is too large for long, 
it is undefined 

It turns out that the address of a function is the function name itself, 

599 



Chapter 15 

without the parentheses. This is similar to using an array name without the 
brackets to denote the address of the array. 

Here's a short example program that demonstrates assigning a function 
address to a pointer and executing the function by referring to the pointer. 

/* funcaddr.c */ 
/* shows use of function addresses */ 
#include <stdio.h> /* for printf() */ 
int func(int, int); /*prototype for function*/ 

void main(void) 
{ 

} 

int ans; 
int (*fptr)(int, int>; /*declare pointer to function*/ 

fptr = func; /* put function address in pointer */ 
ans= (*fptr)(3, S>; /*call function using pointer*/ 
printf("ans=%d\n", ans); 

int func(int a1, int a2) /*function definition*/ 
{ 

return(a1 + a2); /* returns sum of arguments */ 
} 

The function is very simple: it returns the sum of the two arguments 
passed to it. However, the declaration of the pointer to the function is not so 
simple. This declaration is read "fptr is a pointer to a function taking two 
arguments of type int and returning type int." (We'll discuss how such declara
tions are unraveled in the next section.) Also note the statement that assigns the 
address of the function func to the pointer. 

When we call the function we refer to the contents of the pointer, * (fptr) (); 
we don't need to use the name of the function itself. 

Unraveling Complex C Declarations 

600 

The declaration of the pointer fptr in the funcaddr.c program above may not be 
immediately obvious. Earlier we said that C declarations can be unraveled by 
working from right to left. It's true that the data type (and possibly storage class 
and other modifiers) on the left are the last elements to be translated, but that's 
only part of the story. Let's see how complex C declarations can be understood. 

Suppose you have a declaration like this: 

int *aptr[J; 

How do you know whether this is a pointer to an array or an array of pointers? It 
turns out C declarations use strict precedence rules, in fact the same precedence 
rules as those used for C operators. Here's what you need to know: brackets [], 



Advanced Variables 

denoting arrays, and parentheses ( ), denoting functions, have a higher priority 
than the indirection operator *. 

So the expression above is interpreted "aptr is an array of pointers to int." 
You translate "array" first because it has a higher priority than *, meaning 
"pointer to." 

As with other C operators, parentheses can be used to override the normal 
precedence. Thus the declaration 

int (*aptrHJ; 

means "aptr is (1) a pointer to (2) an array of int." You translate what's inside 
the parentheses first. 

The situation is similar for pointers to functions. The declaration 

void *func<>; 

means "func is (1) a function (2) returning a pointer to void." Again, the 
parentheses denoting a function have higher priority than the indirection opera
tor. While 

void (*func> 0; 

means "func is (1) a pointer to (2) a function returning type void." This is the 
usage in the funcaddr.c program above. 

Things can get more complicated, but the same rules apply. Start with the 
variable name, look to the right to see if it's a function or array, then look to the 
left to see if it's a pointer. Interpret things inside parentheses first. 

How about 

int **arr[]; 

Here, arr is (1) an array (2) of pointers (3) to pointers to int. On the other hand, 
in 

int * (*func) 0; 

func is (1) a pointer to (2) a function returning (3) a pointer to int. 
One more: 

float *(*arr[])(); 

means arr is (1) an array of (2) pointers to (3) functions returning (4) pointers to 
float. 

With these rules you should be able to decipher most C declarations. 

Labels and the goto Statement 
We have deliberately put off a discussion of the goto statement until the end of 
the book. There is seldom a legitimate reason for goto, and its use is one of the 

601 



Chapter 15 

leading reasons that programs become unreliable, unreadable, and hard to de
bug. And yet many programmers (especially those using BASIC) find goto se
ductive. In a difficult programming situation it seems so easy to throw in a goto 
to get where you want to go. Almost always, however, there is a more elegant 
construction using an if or switch statement or a loop. Such constructions are 
far easier to understand than goto statements. A goto statement can cause 
program control to end up almost anywhere in the program, for reasons that are 
of ten hard to unravel. 

We trust that, by getting this far in the book without using a goto, we have 
provided proof that, at least in most cases, its use can be avoided. If you turned 
to this page from the index, desperate to use a goto, try very hard to employ 
another approach. 

For completeness, however, here's how goto is used. Consider the follow
ing program fragment: 

if(temp>max) 
goto scramble; 

scramble: 
printf("Emergency!"); 

/*goto label*/ 

/*note colon after label */ 

The goto statement transfers control to the label scramble, causing the 
printf () statement to be executed immediately after the goto. The goto must 
specify a label, and the label must exist or a compiler error will result. Since the 
compiler doesn't care about whitespace, the label can be on a separate line or on 
the same line as another statement. 

scramble: printfC"Emergency!"); 

Labels are used only with goto statements. Other statements on the same 
line as a label will operate as if the label didn't exist. As we noted earlier in this 
chapter, labels form a naming class and are formed in the same way as other 
identifiers. 

Summary 

602 

This chapter has covered some of the less common aspects of variables. We've 
examined storage classes, which permit control of the lifetime and visibility of a 
variable; enumerated data types, which permit the programmer to define a data 
type and its values; and typedef, which lets the programmer give a new name 
to an existing data type. We've also examined the conventions used for naming 
variables and other elements in C programs, and we've seen how these names 
or identifiers apply to different categories of program elements called naming 
classes. We've seen how variables are converted automatically from one type to 



Advanced Variables 

another and how this conversion can be overridden with typecasting. Finally we 
looked at labels and their use with the goto statement. 

Questions 

1. The storage class of a variable is related to 

a. the amount of memory space the variable occupies 

b. the quality of the memory space occupied 

c. how long the variable will occupy a space in memory 

d. what parts of the program can "see" the function 

2. For a variable to be visible in a file other than the one where it is 
defined, it must be using the ________ _ 
keyword. 

3. A variable definition differs from a declaration in that 

a. the declaration sets aside storage space 

b. the declaration specifies the name and type of the variable 

c. the definition sets aside storage space 

d. the definition specifies the name and type of the variable 

4. An automatic variable is one that is automatically c ---------and d 

5. A static (nonexternal) variable can be seen only within 

a. a block 

b. a function 

c. a file 

d. many files 

6. True or false: an external variable is always visible throughout the file in 
which it is defined. 

7. To restrict the visibility of an external variable to one file, it must be of 
type _________ ---------

8. In an enumerated data type, the programmer can define 

a. whether the new type will be integer or floating point 

b. the number of bytes used by variables of the new type 

c. the values of the new type 

603 



Chapter 15 

604 

d. many types of the same storage class 

9. If fish has already been defined to an enumerated data type, what 
statement will define the variable gamefish to be of this type? 

10. The typedef declaration is used to 

a. declare a new data type 

b. perform a #define-style substitution of one identifier for another 

c. define a new data type 

d. give a new name to a data type 

11. Identifiers are the --------- given to variables and other 
elements in a program. 

12. A naming class is 

a. a category of variables of the same type 

b. a place to learn how to name variables 

c. a category in which identifiers must be distinct 

d. the category of functions and variables 

13. True or false: the same identifier can be used for a structure and a 
member of that structure. 

14. The rank of a variable in data conversions is roughly indicated by the 
number of 
________ used by the character. 

15. A typecast is used to 

a. force a value to be of a particular variable type 

b. define a new data type 

c. rename an old data type 

d. provide harder than usual data 



Appendices 

A. Reference 
8. Supplementary Programs 
C. Hexadecimal Numbering 
D. Bibliography 
E. ASCII Chart 
F. CodeView Debugging Program 

G. The QuickC Debugger 
H. The QuickC Editor 
I. Graphics Functions Reference 

605 



A 
Reference 

This appendix provides a reference for some of the more fundamental 
constructions in the C programming language. Our goal is not to cover the entire 
language; the manuals that accompany your compiler perform that task. Rather, 
we want to present, in an easily accessible format, those aspects of the language 
that will be most useful for readers of this book. 

Wherever possible we've used examples, as this is the quickest and most 
easily grasped way to communicate particular formats. For more detailed 
explanations, see the relevant sections of the book. Note that the examples only 
demonstrate format; they are not intended as working programs. Also, they are 
not intended to cover all possible situations, only the most general ones. 

A. Control Constructions 

606 

In the following examples, the word "statement" represents any suitable pro
gram statement. 

1. Structure of Simple C Program 

main() 
{ 

} 

statement; 
statement; 

2. The for Loop 

for < j =O; j <10; j ++ > 
statement; 

for < j =O; j <10; j ++ > 
{ 

statement; 
statement; 
} 

/* single-statement loop */ 

/* multistatement loop */ 



/* multiple initialization and increments */ 
for(j=O, other=O; j<20; j++, other++) 

statement; 

3. The while Loop 

while (ch != 'X') 
statement; 

while (y < 10> 
{ 

statement; 
statement; 
} 

/* single-statement Loop */ 

/* multistatement Loop */ 

Reference 

while (getcheO != 'X') 
statement; 

/* function used as variable */ 

while ((ch=getche()) != 'X') 
statement; 

/* assignment statement used */ 
/* as variable */ 

4. The do while Loop 

do 
statememt; 

while <ch != 'x'>; 

do 
{ 

statememt; 
statement; 
} 

while (x <= 42); 

/* single-statement Loop */ 

/* multistatement Loop */ 

5. The if and if ... else Statements 

i f<x==42) 
statememnt; 

if(x < 19) 
{ 

statement; 
statement; 
} 

if(ch=='a') 
statement; 

/* single statement if */ 

/* multistatement if */ 

/* if-else */ 

607 



Appendix A 

608 

else 
statement; 

if<x < 10> 
if(y > 5) 

statement; 

if(ch=='a') 
statement; 

else if(ch=='b') 
statement; 

else if(ch=='c') 
statement; 

if(x > 5) 
i f(y < 10) 

statement; 
else 

statement; 

if<x > 5) 
{ 

i f(y < 10) 
statement; 

} 

else 
statement; 

/* nested ifs */ 

/* "else-if" construct */ 

/* else paired with second of two ifs */ 

/*else paired with first of two ifs*/ 
/* (braces are necessary) */ 

6. The break Statement 

whi leCch != "X") 
{ 

statement; 
if( count>MAX 

break; 
statement; 
} 

/* causes exit from loop */ 

7. The continue Statement 

while(ch != 'X') 
{ 

if (ch==SPACE) 
continue; 

statement; 
statement; 
} 

/* skip other loop statements, */ 
/* go to start of loop */ 



Reference 

8. The switch Statement 

switch (j) 
{ 

/* integer switch */ 

case 1: 
printfC"j is 1"); 
break; 

case 2: 
printfC"j is 2"); 
statement; 
break; 

default; 
printfC"j is anything else"); 

} 

switch (ch) 
{ 

/* character switch */ 

I I case a : 
case 'b' : 

printf("ch is 'a' or 'b' ."); 
break; 

I I case c : 
printf("ch is 'c' ."); 

} 

8. Function Formats 

1. Function with No Return, No Arguments 

void fun1(void); 
main() 
{ 

} 

puts("Main program"); 
fun1 0; 

/* function definition */ 

/* function prototype */ 

/* function call */ 

void fun1(void) /*function declarator*/ 
{ 

puts("Function fun10"); /*function body*/ 
} 

2. Function Returns a Value 

int return7(void); 
main() 

/* function prototype */ 

609 



Appendix A 

610 

{ 

pri ntfC"Va Lue returned is %d", return? 0 ) ; 
} 

/* function definition */ 
int return7Cvoid) /* function declarator */ 
{ 

return (7); 
} 

3. Send Values to a Function 

void sends2Cint, int); 
mainO 
{ 

/* function body */ 

/* function prototype */ 

int x=4, y=7; /* values to pass to function */ 

sends2Cx, y); /* function call */ 
} 

/* function definition */ 
void sends2Cint arg1, int arg2) /*declarator*/ 
{ 

printfC"arg1=%d, arg2=%d", arg1, arg2); /*function body*/ 
} 

4. Return Values from a Function Using Pointers 

void rets2Cint *, int *>; 
mainO 
{ 

} 

int x, y; 
int *ptrx, *ptry; 

ptrx = &x; 
ptry = &y; 
rets2Cptrx, ptry); 
printfC"x=%d, y=%d", x, y); 

/* function definition */ 
void rets2Cint *ptr1, int *ptr2) 
{ 

} 

*ptr1 = 4; 
*ptr2 = 7; 

/* function prototype */ 

/* variables */ 
/* pointers */ 

/* initialize pointers 
/* to variables */ 
'* function call */ 
'* values returned */ 

/* declarator */ 

/* function body */ 
/* returns values */ 

*/ 



Reference 

C. Data Constructions 

1. Arrays 

main() 
{ 

} 

int list[3J; 
char table[4J[3J; 
list[2J = 333; 
table[1J[3J = 'c'; 

/* declaring arrays */ 

/* one-dimensional array; 3 items */ 
/* 2-dimen array, 4 rows, 3 columns */ 
I* referring to array elements */ 

/* initializing arrays */ 
int lista[3J = { 23, 34, 45 }; /* initialize as external var */ 
main() 
{ 

static int listb[2J[3J = /* initialize as static var*/ 
{ { 2, 4, 6 }, 

{ 3, 5, 7 } }; 
} 

2. Strings 

char name[30J; 
static char salute[] ="Greetings!"; 
static char *salute = "Greetings!"; 
puts(salute); 
salute[2J=='e' 
static char names[3J[30J = 

/* string is char array */ 
/* initialize string*/ 
/* initialize string */ 
/* refer to string */ 
/* character in string */ 
/* array of strings */ 

{ "Katrina", "Sam", "Rodney" }; 
static char *names[30J = /* array of strings */ 

{ "Nancy", "Robert", "Laurie" }; 
putsC&names[2][QJ); /* ref to string in array*/ 

3. Pointers 

/* initializing pointers */ 
int *pt r; 
char *charptr; 
/* other variables used in 
int numb; 
int table[3J = {5, 6, 7}; 

/* using pointers */ 
ptr = &numb; 
*ptr = 8; 
prt=table; 

/* pointer to int (or int array) */ 
/* pntr to char (or char array) */ 

example below */ 
/* integer variable */ 
/* array */ 

/* assign address to pointer */ 
/* assign 8 to numb */ 
/* assign array address to pointer */ 

611 



Appendix A 

printf< 11 %d 11
, *ptr >; 

printf<"%d", *(ptr+1> >; 

4. Structures 

struct employee 
{ 

int empno; 
float salary; 
char name[40J; 
}; 

struct employee clerks; 

struct employee staff; 

/*print first element of array */ 
/* print second element of array */ 

/* declare structure of type employee */ 

/* three items in this structure */ 

/* declare clerk to be variable of */ 
/* type struct employee */ 
/* declare other variables */ 
/* reference elements of structure */ 

printfC"Clerk's employee number is %d", clerks.empno >; 
printf("Clerk's salary is %f", clerks.salary >; 

/* shorthand way to declare a structure variable */ 
struct /* no need to name structure type */ 

{ 

int empno; 
float salary; 
char name[40J; 
} clerks; 

5. Unions 

union intf lo 
{ 

int i ntnum; 
float fltnum; 
} unionex; 

unionex.intnum; 
unionex.fltnum; 

/* declare clerk var of type struct */ 

/* declare union */ 
/* memory location can be referred to */ 
/* as either float or int */ 

/* reference to two-byte int */ 
/* reference to four-byte float */ 

D. Operators 

1. Arithmetic Operators 

Symbol 

+ 

* 

% 

612 

Operator 

addition 
subtraction 
multiplication 
division 
remainder 

Example 

a+b 
a-b 
a*b 
alb 
ao/ob 



2. Increment and Decrement Operators 

++ increment 
decrement 

a++ or+ +a 
a- or -a 

3. Relational Operators 

Symbol Operator Example 

< less than a<b 
> greater than a>b 
<= less than or equal a< =b 
>= greater than or equal a> =b 

equal a= =b 
!= not equal a!=b 

4. Logical Operators 

&& 
I I 
I I 

! 

5. Bitwise Operators 

& 

/\ 

>> 
<< 

AND 
OR 
NOT 

AND 
inclusive OR 
exclusive OR 
complement 
right shift 
left shift 

a<b && c>d 
a<b ll c>d 
!(a<b) 

a&b 
alb 
a" b 
-a 
a>>2 
b < < 3 

6. Assignment Operators 

equal a= b 
+= addition a + = b (same as a=a+ b) 

subtraction a - = b (same as a=a-b) 
*= multiplication a * = b (same as a=a*b) 
'= division a I= b (same as a=a/b} 
%= remainder a%= b (same as a=ao/ob} 
&= bitwise AND a&= b (same as a=a&b) 
I bitwise inclusive OR a l = b (same as a=alb) 1= 

Reference 

613 



Appendix A 

614 

"= 
<<= 
>>= 

bitwise exclusive OR 
left shift 

a"= b (same as a=a"b) 
a < < = 2 (same as a=a< <2) 
a > > = 3 (same as a=a> >3) right shift 

7. Conditional Operator 

result = (expression) ? value1 : value2; max = Ca>b) ? a b· I 

8. Address and Indirection Operators 

Symbol 

& 

* 

9. Sizeof Operator 

sizeofO 

Operator 

address 
indirection 

Example 

addr = &var 
value = *addr 

sizeof(int), sizeof(struct emp) 

10. Precedence and Associativity of Operators 

Operators Type Associativity 

( J [] . -> groups, membership left to right 
--!*& unary right to left 
+ + - - sizeof casts unary right to left 
*I% multiplicative left to right 
+ - additive left to right 
<< >> shift Jeft to right 
< > <= >= relational left to right 
= = != equality left to right 
& bitwise AND left to right 
/\ bitwise excl OR left to right 
I bitwise incl OR left to right I 

&& logical AND left to right 
11 logical OR left to right 11 

?: conditional right to left 
=*=I= o/o= + = -= 
<<= >>= &= "= I_ assignment right to left 1-

comma (series) left to right 



Reference 

E. Data Types 

1. Character (char) 

Characters occupy one byte, and have a range from -128 to 127 (-80 to 7F hex). 
Unsigned characters have a range from 0 to 255 (0 to FF hex). 

char ch; /* declare character variable */ 
unsigned char k· I /* declare unsigned character variable */ 
char c1 = I I ; /* initialize character variable */ a 
char c2 = 97; /* initialize using decimal value */ 
char c3 = Ox61; /* initialize using hexadecimal value */ 

/* special character constants */ 
1 \n' /* newline (Linefeed); OxOA */ 
1 \b' /* backspace; Ox08 */ 
1 \r' /* carriage return; OxOD */ 
1 \f' /* formfeed; COxOC) */ 
1 \t' /* tab; Ox09 */ 
1 \v' /* vertical tab; OxOB */ 
1
\\

1 /*backslash; OxSC */ 
'\'' /* single quote; Ox27 */ 
1

\
111 /* double quote; Ox22 */ 

1 \0' /* null; OxOO */ 

2. Short Integer (short) 

Short integers occupy two bytes and have a range from - 32, 768 to 32, 767 
(-8,000 to 7FFF hex). Unsigned short integers have a range from 0 to 65,535 (0 
to FFFF hex). 

short x; 
short y = 12; 
unsigned short c; 
12 
OxOc 
014 

3. Integer (int) 

/* declare short integer */ 
/* initialize short integer */ 
/* declare unsigned short integer */ 
/* decimal canst (no initial 0) */ 
/* hex constant (initial Ox) */ 
/* octal constant (initial 0) */ 

Integers are the same as type short or type long, depending on the machine 
used by the Microsoft compiler. For 8088, 8086, and 80286 machines, they're 
two bytes, similar to type short. On 80386 machines they're four bytes, as is 
type long. 

int x; 
int y = 12; 
unsigned int c; 

/* declare integer */ 
/* initialize integer */ 
/* declare unsigned integer */ 
/* constants same as for short int */ 

615 



Appendix A 

616 

4. Long Integer ( long ) 

Long integers occupy four bytes in memory and have a range from 
-2,147,483,648 to 2,147,483,647 (-80000000 to 7FFFFFFF hex). Unsigned long 
integers have a range from 0 to 4,294,967,295 (0 to FFFFFFFF hex). 

long int bignum; 
long bignum; 
long bn1 = 12L; 
10L 
OxOAL 
012L 

/* declare long integer */ 
/* alternative form */ 
/* initialize long integer */ 
/* decimal constant */ 
/* hexadecimal constant */ 
/* octal constant */ 

5. Floating Point (float) 

Floating point numbers occupy four bytes of memory. The exponent has a range 
of 10-38 to 1038 • The mantissa has up to six digits of precision. 

float flnumb; 
float fnb = 37.42; 
99.99 

/*declaring floating point number */ 
/* initializing floating point number */ 
/* constant in decimal notation */ 

9999E-2 
/* floating point 

/* constant in exponential notation */ 
constants always have type double */ 

6. Double-Precision Floating Point (double) 

Double-precision floating point numbers occupy eight bytes of memory. The 
exponent has a range of 10-308 to 10308 • The mantissa has up to 15 digits of 
precision. 

double verybig; 
long float verybig; 
double vb= 7.1416; 
320000 
3.2ES 

/* declaring double prec1s1on fp number */ 
I* alternative form for declaration */ 
I* initializing double precision number*/ 
/* constant in decimal notation */ 
/* constant in exponential notation */ 

7. Strings (Array of Type char) 

Strings are arrays of characters, terminated with the null character (' \ O'). They 
occupy as many bytes as there are characters in the string, plus one for the 
null. 

char name[30J; /*declaring character array for string */ 
char phrase[] ="Error."; /* initializing string as array*/ 
char *phrase= "Error."; /*initializing string as pointer*/ 
"Greetings!\n" /* string constant */ 



Reference 

8. Void 

The void type has three uses. The first indicates that a function does not return 
a value. 

void func 0 

The second indicates that a function takes no arguments. 

funcCvoid) 

The third declares a pointer to any data type (rather than to a specific type). 

void *ptr; 

9. Enumeration Types 

Creates a new type with a limited, user-defined set of values. (Actual values are 
stored as integers.) 

enum change I* creates new type */ 
/* specifies allowable values */ { penny, nickel, 

dime, quarter }; 
enum change ch1; 
ch1 = penny; 

/* declare variable of type change */ 
/* give value to variable */ 

10. Typecasts 

Changes the type of a variable. 

long num = 12L; 
printfC 11%d 11

, Cint)num >; 

11. Typedef 

/* num starts off as type long */ 
I* is cast as type int before use */ 

Defines a new name for a data type. 

/* renames type long to be type big */ typedef long big; 
big num; /* declares num to be of type big Clang) */ 

12. Logical Types 

There is no specific logical or binary type in C. An integer with a value of 0 
represents false, and an integer with a value of 1 (or any other nonzero value) 
represents true. 

F. Storage Classes 
The storage class of a variable determines the lifetime and scope of the 
variable. Lifetime refers to how long a variable will retain its value. Visibility 

617 



Appendix A 

618 

(or scope) refers to where the variable will be recognized. The storage class is 
determined by the placement of the variable in the source file and by the use 
of the keywords auto, extern, static, and register. 

Table of Storage Classes 

Where Declared Keyword Lifetime Visibility (Scope) 

function auto (default) function function ( 1) 
function register function function ( 1) 
function static program function ( 1) 
external static program one file only (2) 
external (not decl) program one file (2) 
external (declared) extern (3) program multifile (4) 

Ill if defined in block, only visible in block 
12) visible from variable definition to end-of-file 
13) keyword extern used to declare variable in one or more files 
14) when variable is declared in file using extern, visibility is entire file jor 
multiple files, if declared in each one) 

Examples of Storage Classes 

/*file 1 */ 
/* ("vis" 
int ex1; 
int ex2; 
static int 
main 0 

means visibility)*/ 
/*external; vis=file 1 */ 
/*external; vis=files 1 and 2 */ 

ex3; /* static external; vis=this fi Le only */ 

{ 

} 

int Loc1; 
auto int Loc2; 
register int Loc3; 
static int Loc4; 
{ 

int LocS; 
} 

int ex4; 
func() 
{ 

} 

I* file 2 */ 
extern int ex2; 
int exS; 
func2 0 
{ 

} 

/* automatic; vis=this function */ 
/* automatic; vis=this function */ 
/* register; vis=this function */ 
/* static; vis=this function */ 

/* automatic; vis=this block only */ 

/* external; vis=from here to eof */ 

/*declaration; extends vis to file 2 */ 
/*external; vis=file 2 */ 



Reference 

G. Library Functions 
This section lists the C library functions used in this book. For more complete 
explanations, use the index to find the description of the function in the text. 
(The functions shown are only a fraction of the total available library func
tions.) 

1. Screen and Keyboard 1/0 

Character 110 

getcharO '* returns kbd char ([Return] key needed) */ 
getchO '* returns kbd char Cno [Return] needed, no echo) 
getcheO /* returns kbd char (echo, no [Return] needed) */ 
putchar(ch) I* displays char */ 
putch(ch) /* displays char */ 

String 110 

gets(str) 
puts(str) 

/* inputs string */ 
/* outputs string */ 

Formatted 110 

scanf 0 
printfO 

2. File 1/0 

Standard 110 

/* formatted input */ 
/* formatted output */ 

*' 

fopen(name,type) 
fclose(ptr) 
fseek(ptr,offset,type) 
fflush (pt r) 
ferror(ptr) 
perror(str) 

I* open file, return pointer*/ 
/*close file*/ 

Standard Character 110 

getc(ptr) 
putc(ch,ptr) 

Standard String 110 

fgets(str,n,ptr) 
fputs(str,ptr) 

/*position file pointer*/ 
/* flush buffer */ 
/* returns nonzero on error */ 
/* prints str and system error */ 

I* returns char */ 
/* writes char */ 

/* reads string */ 
I* writes string */ 

619 



Appendix A 

Standard Formatted 110 

fscanf 0 
fprintfO 

Standard Block 110 

freadCbuff ,size,cnt,ptr) 
fwriteCbuff ,size,cnt,ptr) 

System Level 110 

open(name,of lag,pmode) 
close Chnd l) 

readChndl,buff ,cnt) 
writeChndl,buff ,cnt) 
setmodeChndl,mode) 

3. String Manipulation 

/* reads formatted data */ 
/* writes formatted data */ 

/*read from file into buffer*/ 
/*write from buffer onto file*/ 

/*open file, return handle*/ 
/* close file */ 
/* read cnt bytes into buff */ 
/* write cnt ·bytes from buff */ 
/* set mode to text or binary */ 

strcpy(s2,s1) 
strcmp(s1,s2) 
strlen(s) 
strcat(s1,s2) 

/* copies string1 to string2 */ 
/* compares two strings */ 
/* returns length of string */ 
I* appends string2 to string1 */ 

4. Buffer Manipulation 

memcmp(buf1,buf2,cnt) 
memchr(buff ,ch,cnt) 

/* compares two buffers */ 
/* searches for ch in buff */ 

5. Miscellaneous Functions 

sizeof(type) /* returns size of given data type */ 
int86CFILE,&inregs,&outregs) /* interrupt */ 
inp(port) /* read char from port */ 
outp(port,ch) /* write char to port */ 
ftimeC&timebuff) /* get time, place in structure */ 
atoi(str) /*converts string to integer*/ 

H. printf{) and scanf{) Formats 

620 

Note that letter 'l' is used as a prefix to denote a long integer or double-precision 
floating point; "h" denotes a short integer. Examples: %ld, %1£. 



Reference 

Type 

signed decimal integer 
signed decimal integer 
decimal, hex, or octal integer 
unsigned dee integer 
unsigned octal integer 
unsigned hex integer (abcdef) 
unsigned hex integer (ABCDEF) 
floating point (decimal) 
floating point (exp, e) 
floating point (exp, E) 
fore, whichever shorter 
for E, whichever shorter 
character 
string 

Examples of printf() Format Specifiers 

field */ 
:25: 

printf() scanf() 

o/od o/od 
o/oi 

o/oi 
o/ou o/ou 
o/oo o/oo 
o/ox o/ox 
o/oX o/ox 
o/of o/of, o/oe 
o/oe o/of, o/oe 
o/oE o/of, o/oe 
o/og 
o/oG 
o/oc o/oc 
o/os o/os 

decimal */ 
/* colons show margins of 
printf("%d", num>; /* 
printf("%7d", num>; /* 
printf<"%-7d", num>; /* 
printf<"%07d", num>; /* 
printf("%f", fnum); /* 
printf<"%7.2f", fnum); /* 

25: 
:25 
:0000025: 
:7.333333: 

7.33: 

specify field width */ 
left-justify */ 
leading zeros */ 
floating point */ 
decimal places */ 

I. IBM Specific 

1. Common Extended Character Codes 

Second Code 

59-68 
71 
72 
73 
75 
77 
79 
80 
81 
82 
83 

84-93 

Key 

Function keys [Fl] to [FlO] 
[Home] 
Up arrow 
[Pg Up] 
Left arrow 
Right arrow 
[End] 
Down arrow 
[PgDn] 
[Ins] 
[Del] 
Uppercase function keys 

jSee the IBM Technical Reference manual for a complete list of extended codes.) 

621 



Appendix A 

2. ANSI.SYS Cursor Control 

Escape Sequence 

II \x1B[2J" 
II \xlB[A" 
11 \xlB[B" 
11 \xlB[C" 
11 \xlB[D" 
11 \xlB[#;#H 

11 \xlB[K" 
11 \xlB[s" 
"\xlB[u" 

Action 

Clear screen, home cursor 
Cursor up one line 
Cursor down one line 
Cursor right one character 
Cursor left one character 
Cursor to position: first 11 # 11 is row (1 to 25), second 
11 #" is column ( 1 to 80) 
Erase from cursor to end of line 
Save current cursor position 
Restore cursor position 

(See the IBM Technical Reference manual for a complete list of escape sequences.) 

J. Miscellaneous 

622 

1. Command-Line Arguments 

main(argv,argc) 
char *argv[J; 
int argc; 
{ 

I* array of pointers to argument strings */ 
/* number of arguments */ 

for(j=O, j<argc; j++) 
printf<"%s\n", argv[j] ); 

/*print all command line */ 
/* arguments in order */ 

} 

2. Redirection 

C> prog <source.xxx >dest.xxx /*input from file source.xxx, */ 
/* output to file dest.xxx */ 

3. Preprocessor Directives 

#include <stdio.h> 

#include "user.h" 

#define MAX 10 
#define SUMCX,Y) X+Y 

#define TEST 
#if defineCTEST> 

statement; 

I* includes file stdio.h in source file*/ 
/* start search in standard directory */ 
/*includes file user.h in source file*/ 
/* start search in current directory */ 
I* replace MAX by 10 in source file*/ 
/* replace SUMCx,y) with x+y, */ 
I* for all values of x and y */ 
/* makes TEST true (remove to make false) */ 
/* if it's true, */ 
/* this will be done*/ 



#else TEST 
statement; 

#endif TEST 
#undef TEST 

I* otherwise, */ 
I* this will be done*/ 
/*delimiter for #ifdef and #else*/ 
/* undefines TEST 

Reference 

623 



B 
Supplementary Programs 

In this appendix we present several C programs that were either too large or too 
far removed from the main discussion for inclusion earlier. These programs 
show some additional programming techniques, and they also provide examples 
of how larger programs can be constructed from simple functions. 

Space limitations preclude a detailed discussion of the operation of these 
programs. In general it is not too hard to figure out how they work by following 
the comments; this should constitute an interesting series of exercises for the 
motivated reader. 

All the examples work on the monochrome display. In some examples 
(life.c, saveimag.c, maze.c) you may need to change the address of the video 
memory to correspond to your monitor. Usually OxB8000000 works on color 
monitors and OxBOOOOOOO on the monochrome display. See Chapter 10 for more 
details. 

Conway's Life 

624 

Conway's game of Life is an old standby, and has been implemented on almost 
every computer with even a rudimentary graphics capability. It involves the 
birth, growth, and death of cells according to these rules: if a cell has three 
neighbors, it will be born. If it has two or three neighbors, it will live if it 
already exists. If it has more or fewer neighbors it will die. The application of 
these rules leads to a fascinating display of evolving patterns (provided an 
appropriate initial configuration of cells is specified). We can't explain Life in 
detail here; if you've seen it, you know what a hypnotic game it can be. 

When the program is started, screen prompts will tell you to use the cursor 
keys to create the starting configuration-a pattern of squares. Press the [Ins] 
key wherever you want a square; when you're done, press [End]. The pattern 
will start to change and perhaps to grow. A good first pattern is a "U" shape, 
three squares wide and three high. 

This program makes use of a novel graphics mode: 80x50 resolution on a 
normal monochrome display. Since the monochrome screen ordinarily shows 80 
columns of 25 rows, how do we double the resolution? The extended character 
set includes two useful graphics characters; one is a box in the upper half of the 
character and the other is a box in the lower half of the character. By printing 



Supplementary Programs 

the appropriate box, we in effect double the resolution of the display. These half
height boxes have another advantage; they are square, instead of being twice as 
tall as they are wide, as a full-character box is. The square boxes make for a far 
more pleasing display in the Life program. 

This program uses two graphics routines. One, putscr(), puts a half-height 
box on the screen at a particular location, and the other, getscr( ), reads a 
particular screen location to see if there is a half-height box already there. These 
routines operate on the 80x50 coordinate system. The putscr() routine must read 
the full-size character at a particular location and combine the half-height char
acter accordingly. For instance, if a box is to be placed in the bottom half, and 
the top half is already full, then the full-height box must be written into the 
character position. 

The program first erases the screen and gets the initial pattern from the 
user. Then, in a loop that is repeated once for each "generation," it transfers the 
contents of the screen to an array, erases the screen, reconstructs on the screen 
the new generation of cells based on the old generation in the array, and erases 
the array. 

The program uses the ANSI.SYS escape code to erase the screen, so you 
must load the ANSI.SYS driver in the operating system. Since it uses far point
ers, it must be compiled with the \Ze option if you're using version 3.0 of the 
Microsoft compiler. 

/* life2.c */ 
/* Conways's game of 'Life' */ 
#include <stdio.h> 
#include <conio.h> 
#define MAXCOL 80 
#define MAXROW 50 
#define ERASE "\x1B[2J" 
#define VIDEO_ADDR OxB8000000 

void getinit(void); 
void putscr(int col, int row); 
char getscr(int col, int row>; 

void main(void) 
{ 

/* for printf () */ 
I* for kbhit() */ 
/* screen width */ 
/* screen height */ 
/* code to erase scr */ 
/* video address */ 
I* (use OxBOOOOOOO for mono) */ 
/* function prototypes */ 

static char array[MAXCOLJ[MAXROWJ; 
char neigh; 
int col, row; 

/* array echoes screen */ 
/* how many neighbors */ 
/* cell coordinates */ 

int count=O; /* generation counter */ 

getinitO; /*get initial cells*/ 
while ( !kbhit() /*cycle generations*/ 

{ /* until keypress */ 
for(col=1; col<MAXCOL-1; col++) /*transfer screen*/ 

for(row=1; row<MAXROW-1; row++) /* to array*/ 
array[col][row] = getscr(col,row); 

printf(ERASE); /*erase screen*/ 

625 



Appendix B 

626 

printfC"\x1B[24;1H"); /*position cursor */ 
printf("Generation %d", ++count); /*print generation*/ 
for(col=1; col<MAXCOL-1; col++) /* for every cell */ 

for(row=1; row<MAXROW-1; row++) 
{ 

neigh= array[col-1J[row-1J + 
array[col J[row-1] + 
array[col+1J[row-1J + 
array[col-1J[row J + 
array[col+1J[row J + 
array[col-1J[row+1J + 
array[col J[row+1J + 
array[col+1J[row+1J; 

if (array[coLJ[rowJ==O) /* 
{ 

/* find number */ 
/* of neighbors */ 

if no cell */ 

if Cneigh==3) 
putscr(col,row); 

/* and 3 neighbors */ 
/* a cell is born*/ 

} 

else /* cell already alive*/ 
if ( neigh==2 I I neigh==3) /* if 2 or 3 nbors */ 

putscr(col,row); /* cell Lives */ 
} /*done one cell */ 

for(col=O; col<MAXCOL; col++) /* clear array */ 
for(row=O; row<MAXROW; row++) 

array[coLJ[rowJ = O; 
} /* end whi Le */ /* done generation */ 

} /* end main */ /* end program */ 

/* getinitO */ 
/* gets 
#define 
#define 
#define 
#define 
#define 
#define 

elements, puts them on screen */ 
/* key codes */ 

initial 
END 79 
INSERT 82 
C_UPUP 72 
C_DOWN 80 
C_LEFT 75 
C_RITE 77 

void getinit(void) 
{ 

int col, row; 
char keycode; 

/* cell coordinates */ 
/* from keyboard */ 

printf(ERASE); /*erase screen */ 
printfC"\x1B[22;1H"); /*position cursor */ 
printfC"Move cursor with arrow keys.\n"); 
printfC"Place cell with [Ins] key, [End] when done."); 
col=40; row=25; 
while ( keycode !=END) 

{ 

if( kbhi t () ) 
if( getch() -- 0 ) 

{ 

/* return on [End] */ 

/* true if key struck */ 
/* extended code */ 



Supplementary Programs 

} /* 
} /* 

switch ( Ckeycode=getch()) ) /* read code */ 
{ 

case C_UPUP: --row; break; 
case c - DOWN: ++row; break; 
case c - RITE: ++col; break; 
case c - LEFT: --col; break; 
case INSERT: putscr(col,row); break; 
} /* end switch */ 

} /* end i f(getch) */ 
end ifCkbhit) */ 

end getinit */ 

I* puts c r 0 *I 
/* puts small square in screen memory at col, row */ 
/* cols from 0 to 79, rows from 0 to 49 */ 
#define TOP 1 \xDF 1 /*upper half of character */ 
#define BOT 1 \xDC 1 /* lower half of character */ 
#define BOTH 1 \xDB 1 /* full character rectangle */ 
void putscr(int col, int row) 
{ 

char newch, ch; 
int far *farptr; 
int actrow; 

/* ptr to screen mem */ 
/* actual row number */ 

int topbot; /* top or bottom of row */ 

farptr = (int far *) VIDEO_ADDR; 
actrow = row>> 1; 

/* pointer to video mem */ 
/* row divided by 2 */ 

topbot =row & Ox0001; /* odd or even row */ 
I* get actual char */ ch= *(farptr + actrow*80 +col); 

if (topbot) /* if we're placing bot */ 
if ( ch==TOP I I ch==BOTH 

newch = BOTH; 
else 

newch = BOT; 
else /* if we're placing top*/ 

} 

if ch==BOT I I ch==BOTH 
newch = BOTH; 

else 
newch = TOP; 

/* insert character */ 
*( farptr + actrow*80 + col ) = (newch & OxOOff) I Ox0700; 

/* getscrO */ 
/* returns 1 or 0 from screen location col, row */ 
I* cols from 0 to 79, rows from 0 to 49 */ 
#define TOP 1 \xDF 1 /*upper half of character */ 
#define BOT 1 \xDC 1 /* lower half of character */ 
#define BOTH 1 \xDB 1 /* full character rectangle */ 
#define TRUE 1 
#define FALSE 0 

627 



Appendix B 

char getscr(int col, int row) 
{ 

char ch; 
int far *farptr; 
int actrow; 
int bottom; 

fa rpt r = Ci nt far *) VIDEO_ADDR; 
act row = row>> 1; 
bottom = row & Ox0001; 
ch = *( farptr + actrow*80 
if (ch==BOTH) 

return <TRUE); 
else 

+ col ) 

/* ptr to screen mem */ 
/* actual row number */ 
/* top or bottom of row */ 

'* point to video mem */ 
'* row divided by 2 */ 
'* odd or even row */ 

; /* get actual char *' 

if ( (bottom && ch==BOT) 11 (!bottom && ch==TOP) ) 
return <TRUE) ; 

else 
returnCFALSE); 

} 

Checking Comments in C Source Files 

628 

It's easy to forget either the opening or the closing comment symbol in a C 
source file. The result of doing this (or of mistyping a comment symbol) can 
result in program bugs that are difficult to figure out. 

The following program searches through a C source file and makes sure 
that each opening comment symbol ( I* J is matched with a closing comment 
symbol ( *I ). 

/* comcheck.c */ 
/* verifies that all comment symbols in C listing are paired*/ 
/* (signals first mis-pairing) */ 
#include "stdio.h" 
#define TRUE 1 
#define FALSE 0 
main(argc,argv) 
int argc; 
char *argv[J; 
{ 

FILE *fptr; 
char ch; 
int slash=FALSE, star=FALSE, comments=O; 
int line = 1; 
void chcount(), finalcnt(); 

if ( a rg c ! = 2 ) 
{ printfC"Type \"comcheck filename\"."); exitO; } 

if ( ( fptr=fopen(argv[1J,"r") ) ==NULL) 
{ printfC"Can't open file %s", argv[1]); exitO;} 



Supplementary Programs 

whi Le C Cch=getcCfpt r)) ! = EOF ) { 
switch (ch) { 

case '*': 
star = TRUE; 
if (slash == TRUE) { /* found start comment? */ 

comments++; /* toggle 'comments' */ 
if C comments > 1 ) { /* unmatched start comm */ 

printf("Unexpected start comment, Line %d", 
Line>; 

exitO; 
} 

slash = star = FALSE; /* reset f Lags */ 
} 

break; 
case 'I': 

slash = TRUE; 
if (star == TRUE) { /* found end comment? */ 

comments--; /* toggle 'comments' */ 
if ( comments < 0 ) { /* unmatched end comment */ 

printf("Unexpected end comment, Line %d", Line); 
exit 0; 

} 

slash = star = FALSE; /* reset f Lags */ 
} 

break; 
case 1 \n': /*count Lines*/ 

Line++; 
default: /*not 1

/
1 or '*' */ 

slash = star = FALSE; /* reset f Lags */ 
} /* end switch */ 

} /*end while*/ 
fclose(fptr); 
if (comments > 0) /* open comment at EOF */ 

printfC"Unmatched open comment."); 
} /* end main */ 

Saving the Screen to a File 

It's easy to print out an image of the screen on the printer: the [Shift] and [PrtSc] 
key combination can be used for this purpose. This can be a useful way to 
record what the screen looks like in situations where a program doesn't save its 
own output in a file. (For instance, you might want to record the interaction 
between the user and the compiler's question-and-answer format.) But suppose 
you want to save what's on the screen to a disk file instead of to the printer? The 
saveimag.c program, shown here, does the trick. 

To record the screen image, you type the name of the program, followed by 
the name of the file you want the screen image saved to. The program does the 
rest. 

The program looks at each line of the display in turn. As it reads the 

629 



Appendix B 

630 

characters from a line, it stores them in buff[]. The buffer is used so that only 
the number of characters actually used in a given line are stored in the disk file, 
instead of all 80 characters from the display. Most text lines don't contain 80 
characters and it's wasteful to store sequences of spaces. As the program exam
ines each character in turn from a single screen line, it places the character in a 
buffer. As it does so, it· remembers the last nonspace character. When all 80 
characters have been read, it inserts a newline and a null into the buffer imme
diately following the last nonspace character. The resulting string, which can be 
from 0 to 80 characters long, is then written from the buffer to the file. The 
process is repeated for all 25 lines. 

/* saveimag.c */ 
/*writes a screen image to a file*/ 
#include <stdio.h> /* for printf 0 */ 

for exit */ 
ASCII char */ 

#include <process.h> 
#define SPACE '\x20' 
#define VIDEO_ADDR Ox88000000 

char whatchar(int col, int row); 

void main(argc, argv) 
int argc; 
char *argv[J; 
{ 

FILE *fptr; 
int col, row, lastchar; 
char ch; 
char buff[80J; 

if Cargc != 2) 

'* '* '* '* '* 
start of video mem */ 
OxBOOOOOOO for mono */ 
function prototype */ 

/*file pointer*/ 
/* screen coordinates */ 
/* char from screen */ 
/* buffer to hold one row */ 

{ printfC"Type \"saveimag filename\"."); exitC1>; } 
if CC fptr=fopen(argv[1],"w") ) ==NULL) 

} 

{ printfC"Can't open file %s.", argv[1]); exit(1);} 
for Crow=1; row<25; row++) 

{ 

lastchar = O; 
for Ccol=1; col<80; col++) 

{ 

ch= whatchar(col,row); 
buff[col-1] = ch; 
if (ch !=SPACE) 

lastchar = col; 
} 

buff[++lastchar-1] = 1 \n'; 
buff[++lastchar-1] = 1 \0'; 
fputsCbuff, fptr); 
} 

fclose(fptr); 

/* to store last */ 
/* non-space char */ 

/* get character */ 
/* store in buffer */ 
/* remember pos of last */ 
/* non-space char */ 

/* insert \n and \0 after */ 
/* last non-space char */ 
/* write row to file */ 



Supplementary Prag rams 

/* returns character at screen location col, row */ 
I* cols from 1 to 80, rows from 1 to 25 */ 
char whatchar(int col, int row) 
{ 

int far *farptr; 
char ch; 

/* far pointer to int */ 
/* screen character */ 

farptr = (int far *) VIDEO_ADDR; /* point to screen mem */ 
ch = *( farptr + Crow-1)*80 + col-1 ) /* get character */ 
return(ch>; /* return char */ 

} 

Anagrams 

This program generates all possible arrangements of letters in a given word. For 
instance, if you give it the word "post," it will print out pots, stop, spot, opts, 
and tops, as well as many four-letter combinations that aren't words: 24 permu
tations in all. If the word has n letters, there will be n factorial permutations. 
Thus, a four-letter word will have 24 permutations (4*3*2* 1 =24), and a five
letter word will have 120. 

This probably isn't very useful, except for people who like word games; 
but the program does make use of an interesting programming technique: recur
sion. A recursive function is one that calls itself. Recursive functions are pos
sible in C because all the variables for a particular function are kept on the 
stack. When the function calls itself, a new set of variables is created and placed 
on the stack; the new variables don't interfere with the variables created by a 
previous call to the same function. 

An exception to this is when a function calls itself so many times that the stack 
overflows. The normal stack in Microsoft C contains about 2,048 bytes; if you get 
the error message "stack overflow" you know you've exceeded this capacity. 

The recursive function in this program is called permute(). Permute() 
prints out all the permutations of whatever word is given it. It does this by 
printing out all the permutations of the word that is one letter shorter than the 
word passed to it. It then rotates the entire word, printing out all the permuta
tions for the resulting word that again is one shorter than the original, and so on. 
For example, if the word is cat, permute() will permute the last two letters of 
the word, printing out cat and eta. Then it will rotate cat, getting ate. Then it will 
permute the last two letters of ate, printing ate and act. And so on. (Actually, for 
simplicity, the entire word is not passed to permute(), but only the initial 
position in the original word, starting with 0 for the left-most letter; this position 
is conveyed in the argument startperm.) The function rotate() simply rotates 
all the characters in the string word, starting at position startrot. 

How does permute() permute all but one of the letters in a word? It calls 
itself, using the starting position of the shortened word as the argument. No 
matter how long a word it starts with, permute() keeps calling itself with shorter 
and shorter words, until finally it is left with a two-letter word. Since permute() 
rotates the word it is working on, it rotates these two letters, which is the same as 

631 



Appendix B 

632 

permuting them. Then, instead of calling itself again, it returns-back up through 
all the calls to itself. 

By using recursion, the function sidesteps the problem of how to permute 
the word; it just keeps rotating smaller and smaller parts of the word, and the 
result is to permute the word by a series of rotations. 

If recursion is new to you, this process may require some thought. Here's 
the listing: 

/* anagram.c */ 
/*prints all possible permutations of a word*/ 
#include <stdio.h> /* for printf() */ 
#include <string.h> /* for strlen() */ 

void permuteCint position); 
void rotateCint position); 

I* function prototypes */ 

char word[40J; 
int Length; 
void mainCvoid) 
{ 

printfC"Type word: "); 
getsCword); /* get word */ 
Length = strlenCword); 
permute CO); /* call permute */ 

} 

/* permute() */ 
/*prints all permutations of word2 */ 
void permuteCint startperm) 
{ 

} 

int j; 
if C Length-startperm < 2 ) 

return; 
forCj=startperm; j<length-1; 

permuteCstartperm+1); 
rotate(startperm); 
printf("%s\n", word); 

} 

permuteCstartperm+1); 
rotateCstartperm); 

/* rotate 0 */ 

/* exit if one char */ 

j++) { /* # chars in word -1 */ 
/* permute all but first */ 
/* rotate all chars */ 
/* print result */ 

/* restore word to */ 
/* form at entry */ 

/* rotates word one character left */ 
/* word begins at character position startrot */ 
void rotateCint startrot) 
{ 

int j; 
char ch; 
ch = word[startrotJ; /*save first char*/ 



Supplementary Programs 

for Cj=startrot; j<length-1; j++) /*move other chars left */ 
word[j] = word[j+1J; /* one position*/ 

word[length-1J =ch; /*first char to last */ 
} 

WordStar Control Code Checker 
Although this program applies specifically to the (original) WordStar word pro
cessing program, it can be modified to work with many other word processing 
programs as well, provided the programmer knows a little about the internal 
operation of the specific program. 

In WordStar, special characters are used to signal the beginning and end of 
such text attributes as underlining and boldface. These characters show up on 
the screen as "S (for underlining) and "B (for bold). They are stored using the 
ASCII numbers for unused control codes: 13 hex for "Sand 2 hex for "B. Usually 
the writer wants a pair of "S symbols or a pair of "B symbols, because if one 
member of a pair is left out, or the wrong symbol is typed, the entire text from 
that point on will be underlined or printed in bold. This sort of mistake is very 
common on large files. 

The program shown here eliminates the problem by reading through a file 
and signalling instances of missing or unmatched control codes, giving the page 
and line number. The user can then edit the file to correct the mistakes. 

A message is printed if matching codes are not found on the same line. 
This is a most conservative approach; messages will be printed, for example, in 
the case where an underlined phrase flows from one line to the next. This is 
easy to identify however; messages for two consecutive line numbers will be 
printed out. 

This program not only checks for bold and underlining, but also for super
script codes: "T. It assumes pages will be 55 lines long. 

/* ccc.c */ 
/* control character check */ 
/* verifies that WordStar control codes are paired */ 
#include <stdio.h> 
#define SS '\x13' 
#define BB '\x02' 
#define TT '\x14' 
#define LPP 55 
main(argc,argv) 
int argc; 
char *argv[]; 
{ 

FILE *fptr; 
char ch, oldch; 
int linecnt = O; 
int charcnt = O; 
if ( argc != 2 ) 

/* underline control code */ 
/* boldface control code */ 
/* superscript control code */ 
I* lines per page */ 

{ printf<"Type \"comcheck filename\"."); exitO;} 

633 



Appendix B 

if C C fptr=fopen(argv[1J,"r") ) ==NULL ) 
{ printfC"Can't open file %s", argv[1J); exitO; } 

while ( Cch=getc(fptr)) != EOF) { 
ch= ch & '\x7F'; /*mask off high bit*/ 
if ( ch==SS : : ch==BB : : ch==TT ) { /* control code? */ 

charcnt++; /* count cc's */ 
if ( charcnt % 2 == 0 ) /* even number of cc's? */ 

if (ch != oldch) { /* matches last cc? */ 

} 

printf("Mismatched control codes"); 
printfC" on line %d", linecnt % LPP + 1 ); 
printfC" page %d\n", linecnt I LPP + 1 ); 

oldch = ch; /* new one becomes old */ 
} 

else 
if ( ch == '\n' ) { /* end of line? */ 

if Ccharcnt % 2 != Q) { /* even number of 
printfC"Odd no of control codes"); 
printfC" on line %d", 
printf(" page %d\n", 

} 

linecnt++; 
charcnt = O; 

} 

} /*end while*/ 
fclose(fptr); 

l i necnt % LPP + 1 
l i necnt I LPP + 1 

'* count lines */ 
'* reset cc count 

if ( charcnt % 2 != 0) /* check at EOF */ 
printfC"Odd no of control codes in last line."); 

} /* end main */ 

cc's? *' 

) ; 
) ; 

*' 

"Plumber's Nightmare" Maze 

634 

The IBM extended character set contains a family of characters that consist of 
double lines. There's a character with two vertical lines close together, one with 
two horizontal lines, and characters with bends to connect vertical to horizon
tal-both Land T bends are supplied. 

With this assortment of parts it's possible to create, on the monochrome 
display, mazes that look like they were made from sections of pipe. That's what 
the program maze.c is designed to do. 

This program starts by drawing a random line, using straight pipe sections 
and L bends. The line starts at the middle of the left side of the screen, and 
heads generally to the right, although it will take many random bends and 
twists-up, down, and back on itself. Eventually the line will make so many 
twists and turns that it will trap itself and be unable to continue (since lines 
can't cross each other). At this point, the program looks for anyplace in the maze 
having a vertical or horizontal line (not a bend). Finding a straight stretch, it 
installs a T intersection and starts another random line coming off the T. This 
process continues until the entire screen is filled with lines. The result looks like 
the proverbial plumber's nightmare. 



Supplementary Programs 

When the maze is complete, you can either attempt to solve it right on the 
screen, or you can print it out, if you have a printer that supports the extended 
character set. Solving the maze is amusing, but the real fun comes from watch
ing the program create the maze. The random lines hurry across the screen like 
maniacal worms; no one can tell what they'll do next. 

The heart of the program is the randline() routine, which draws the 
random lines. A random number function, random() provides a random num
ber between 1 and 7. (This routine uses the system clock as a starting point to 
generate the random number, so there's no need to "seed" the number before 
starting the program, as there is with many random-number generators.) A 
switch statement then selects the direction to go based on the random number. 
Four of the seven choices are to go right. This division of choice is done for two 
reasons. First, the initial line-or its descendants-eventually needs to reach the 
right side of the screen so there will be a complete path from left to right. Thus 
going too much to the left is a bad idea. Second, characters on the IBM are twice 
as high as they are wide, so it's important to minimize the amount of up and 
down motion in relation to the amount of left and right motion. Four moves to 
the right for each move in the other directions seems to provide about the right 
proportion. 

Another important part of the program is the function turn(), which 
inserts the correct pipe connection for a particular kind of bend. For instance, if 
the random line finds itself going toward the right and is forced to turn upward 
by obstructions, then a right-to-up L-shaped connector must be inserted in the 
line at that point. Each such combination of initial direction and final direction 
requires a connection. The connections are placed in the array table[4][4]; and 
turn() uses this table to insert the correct fitting into the maze. Another func
tion, tee(), selects the correct T-shaped fitting when a new random line is to 
start in the middle of an existing line. 

After 200 random lines have been drawn, the program calls the drawexit() 
function to draw the exit. The exit consists of a T and a horizontal line; these are 
plugged into any straight section of pipe that lies on the right-hand border of the 
maze. 

Maze.c requires the ANSI.SYS driver, since it clears the screen and posi
tions the cursor using an escape sequence. Also, for version 3.0, it must be 
compiled with the \Ze option, since it uses far pointers to directly access the 
screen. 

/* maze.c */ 
/* draws maze on screen */ 
/*uses direct screen memory access*/ 
#include <stdio.h> /* for printf () etc. */ 
#include <conio.h> /* for kbhit() */ 
#include <time.h> 
#include <process.h> 
#define VIDEO_ADDR OxB8000000 

/* 
/* 
/* 
'* 

for time() *' 
for exit 0 *' 
video address */ 

use 80000000 for mono 
#define MAXROWS 23 '* dimensions within border 

*' 
*/ 

635 



Appendix B 

636 

#define MAXCOLS 78 
#define FALSE 0 
#define TRUE 1 
#define RIGHT 0 
#define LEFT 1 
#define UP 2 
#define DOWN 3 
#define BLANK 32 
#define HORZ 205 
#define VERT 186 
#define NONE 7 
#define L_UP 188 
#define L_DN 187 
#define R_UP 200 
#define R_DN 201 
#define T_DN 203 
#define T_UP 202 
#define T_RT 204 
#define T_LF 185 
#define BORDER 178 

int lastd; 

/* logic values */ 

/*directions */ 

/* ASCII blank */ 
/* horizontal double line */ 
/* vertical double line */ 

/* L connections */ 
/* made from */ 
/*double lines */ 

/* gray block */ 

char table[4J[4J={ {HORZ, NONE, L_UP, L_DN}, 
{NONE, HORZ, R_UP, R_DN}, 
{R_DN, L_DN, VERT, NONE}, 
{R_UP, L_UP, NONE, VERT} } 

void randline(int x, int y); /* function prototypes */ 
int random(int rmax); 
void turn(int direction, int x, int y); 
void border(void); 
void tee(char spot, int col, int row); 
void drawexit(void); 
void goexit(void); 
void putscrCchar ch, int col, int row); 
char getscr(int col, int row>; 

void main(void) 
{ 

int col, row, j; 
char spot; 
int k; 

pri ntfC"\x1 B [2J"); 
border(); 
col=O; row=12; Lastd=RIGHT; 
randline(col, row); 

for Cj=1; kbhit() == O; j++ ) 
{ 

do 

/* clear screen */ 
/* draw border */ 

/*draw first Line */ 

/*draw more lines */ 



Supplementary Programs 

{ 

col = randomCMAXCOLS-1); /* choose random spot */ 
row = randomCMAXROWS-1); 
spot = getscr(col, row); 
} /* find spot with line */ 

while (spot != '\xCD' && spot != '\xBA' >; 
tee(spot, col, row>; /* insert T in line, draw new line*/ 
if (j == 200) /* after 200 lines */ 

drawexitC); /*draw exit */ 
} /* end of for */ 

goexitO; /* all over */ 
} /* end of main */ 

/* randline */ 
/*draws random line on screen, starting at x, y */ 
void randlineCint x, int y) 
{ 

char trapped = FALSE; 

while (trapped== FALSE) 
{ 

switch C random(?) ) 
{ 

case 1 /* Draw line to the right */ 
case 2 
case 3 
case 4 

if ( getscr(x+1, y) ==BLANK 
turn (RIGHT, x++, y); 

break; 
case 5 : I* Draw line to the left */ 

if C getscr(x-1, y) ==BLANK 
turn CLEFT, x--, y); 

break; 
case 6 : I* Draw line up (decrease y) */ 

if ( getscr(x, y-1) == BLANK ) 
turn CUP, x, y--); 

break; 
case 7 : I* Draw line down (increase y) */ 

if ( getscr(x, y+1) == BLANK 
turn (DOWN, x, y++); 

break; 
} /* end of switch */ 

if C Cgetscr(x+1,y)!=BLANK) && (getscr(x-1, y)!=BLANK) && 
CgetscrCx,y+1)!=BLANK) && CgetscrCx, y-1) !=BLANK) ) 

trapped=TRUE; 
if CkbhitO != O> 

goexitO; 
} /*end of while*/ 

} /* end of randline */ 

637 



Appendix B 

638 

/* random */ 
/* returns random number between 1 and rmax */ 
int random(int rmax) 
{ 

long seconds; 
static int rand; 
timeC&seconds); 
rand = Ox7fff & Cint)seconds + rand*273 ) >> 4; 
return( (rand% rmax) + 1 ); 

} 

/* turn */ 
/* function to print correct character to make turn */ 
/*direction is where we're going */ 
I* lastd is where we're coming from*/ 
/* turn characters are in array table */ 
void turn(int direction, int x, int y) 
{ 

} 

putscr( table [lastdJ [direction], x, y ); 
lastd=direction; 

/* border */ 
/* draws border around screen */ 
void border(void) 
{ 

int j; 
for Cj=O; j < MAXCOLS+2; j++) 

{ 

putscr(BORDER, j, 0); 
putscr(BORDER, j, MAXROWS+1); 
} 

/* draw top */ 

} 

for Cj=O; j < MAXROWS+2; j++) 
{ 

putscr(BORDER, 0, j); 
putscr(BORDER, MAXCOLS+1, j); 
} 

/* draw bottom */ 

/* draw right */ 
/* draw left */ 

/* tee */ 
/* inserts T in existing horiz or vert line at col, row*/ 
void tee(char spot, int col, int row) 
{ 

if (spot=='\xCD') 
{ 

if (getscr(col, row+1)==BLANK) 
{ 

putscr(T_DN,col,row); lastd=DOWN; 
randline(col,++row); 
} 

I* horiz line */ 

/* go down */ 



Supplementary Programs 

else 

} 

else 
{ 

if Cgetscr(col, row-1)==BLANK) 
{ 

putscr(T_UP,col,row); lastd=UP; 
randline(col,--row); 
} 

if Cgetscr(col+1, row)==BLANK) 
{ 

putscr(T_RT,col,row); lastd=RIGHT; 
randline(++col,row); 
} 

else 
if CgetscrCcol-1, row>==BLANK) 

{ 

putscr(T_LF,col,row); lastd=LEFT; 
randline(--col,row); 
} 

} /* end of else */ 
} /* end of tee */ 

/* drawexit */ 
/*draws exit line on right edge of maze*/ 

/* go up */ 

/* vert line */ 

/* go right */ 

/* go left */ 

/* looks for vertical line C\xBA) to start on */ 
void drawexitCvoid) 
{ 

int j ; 

for ( j=8; getscrCMAXCOLS, j) != 1 \xBA 1
; j++) 

I 

putscr(T_RT, MAXCOLS,j); 
putscrCHORZ, MAXCOLS+1,j); 

} 

/* goexit */ 

/* right tee */ 
/* horiz line */ 

/* puts cursor in lower right corner and exits */ 
void goexit(void) 
{ 

printfC"\x1B[%d;%dH", 24, 1); /*move cursor*/ 
getchC>; /*digest keystroke */ 
getchC>; /*wait for another key*/ 
exit CO>; 

} 

/* putscr */ 
/* puts character ch on screen */ 
/* at location col, row */ 
void putscr(char ch, int col, int row) 

639 



Appendix B 

{ 

in~ far *farptr; 
int attr=Ox0700; /* attribute for normal text */ 

farptr = (int far *) VIDEO_ADDR; /* screen memory */ 
*< farptr + row*80 + col ) = ( Cint)ch & OxOOff) I attr; 

} 

/* getscr */ 
/* returns character stored in screen memory */ 
/* at Location col, row */ 
char getscr(int col, int row) 
{ 

int far *farptr; 
char ch; 
farptr = (int far *) VIDEO_ADDR; 
ch=*( farptr + row*80 + col >; 
return(ch); 

Sieve of Eratosthenes 

640 

The sieve of Eratosthenes is a way of calculating prime numbers. (A prime is an 
integer with no divisors but itself and 1.) The method works like this. We start 
with a list of integers. First, all the even numbers (except 2) are crossed off the 
list, since no number that is divisible by 2 can be a prime. Then all the numbers 
divisible by 3 (except 3) are crossed off, since they can't be primes. Then all the 
numbers divisible by 4 (except 4) are crossed off, and so on, until nothing but 
primes are left. 

Using this method to calculate the primes up to 16,381 is widely used as a 
test for comparing the computational speed of different languages. 

Here's a version of the Sieve of Eratosthenes written in Microsoft C version 
4.0: 

/* prime10.c */ 
/* calculates primes using 
/* does 10 iterations */ 
/* #define PRINT */ 

sieve of Eratosthenes */ 

char mark[16382J; 
mainO 
{ 

int count, n; 
register int j, k; 
printf<"Starting\n"); 
for<n=O; n<10; n++) 

{ 

count = O; 
for(j=3; j<16382; j+=2) 

mark[jJ = O; 

/* define to print primes */ 
/* character array */ 

/* register variables */ 
/* start timing */ 
/* ten iterations */ 

/* count number of primes */ 
/* set all even numbers */ 
/* in array to 0 */ 



} 

Supplementary Programs 

for(j=3; j<16382; j+=2) /* examine even mumbers */ 
if< !mark[j] ) 

{ 

#i fdef PRINT 
printf( 11 %8d 11

, j); 
#endif PRINT 

/* if not crossed off List, */ 
/* it's a prime */ 
/* if in print mode, */ 
/* print it */ 

count++; /* count it */ 
for(k=j+j; k<16382; k+=j) /*cross it, and all*/ 

mark[k] = 1; /*multiples, off List */ 
} 

#ifdef PRINT /* if in print mode, */ 
printf("\nCounted %d primes.\n", count); /*print total */ 
#endif PRINT 
} 

printf( 11 \nDone.\n 11
); /* stop timing */ 

When a timing test is run, the primes are not actually printed out, since the 
printing process would slow down the program and make comparison with 
other languages difficult. When the program is not used for timing, the PRINT 
identifier and #if def directives are used to activate print£ () statements to print 
out the primes. 

To improve timing accuracy, the program uses 10 iterations of the process. 
In interpreted Microsoft BASIC, on a standard IBM XT, the process takes 

1,830 seconds to complete the 10 iterations. In assembly language it takes 8 
seconds. In Microsoft C 4.0 it also takes 8 seconds, which shows that, at least in 
this instance, the C compiler generates code that is about as good as assembly 
language. 

To achieve this speed, the array must be of type char (not int), and j and k 
must be made register variables. Without this fine-tuning, the program takes 18 
seconds. 

641 



c 
Hexadecimal Numbering 

When dealing with the internal operations of the IBM family of computers it is 
generally more convenient to use the hexadecimal numbering system than the 
decimal numbering system. This is because computers themselves actually use a 
third numbering system: binary. 

If you're not familiar with numbering systems as they apply to computers, 
these statements may sound cryptic. You'll find, though, that there's a perfectly 
reasonable explanation for hexadecimal. In this appendix we'll discuss what 
numbering systems are, why computers use binary, how this relates to 
hexadecimal, and how to use hexadecimal in everyday life. 

Numbering Systems 

642 

When we talk about different numbering systems we're really talking about the 
base of the numbering systems. The decimal system is base 10, the hexadecimal 
system is base 16, and so forth. What is the base of a numbering system? Simply 
put, it's how many digits you use before you run out and have to start using a 
different column (sometimes called a "place-holder") instead of different digits. 

For instance, in the decimal system, we count from 0 to 9; then we've run 
out of digits, so we put a 1 in the column to the left-the ten's column-and start 
out again in the one's column with 0: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 +- last available digit 

10 +- start using a new column 
11 
12 



Hexadecimal Numbering 

(The three dots indicate that the numbers go on and on-to infinity, if we want.) 
The 0 means there's nothing in a particular column, and each column represents 
numbers that are 10 times bigger than those in the column to the right. 

This all seems perfectly natural to those of us who have graduated from 
third grade. However, the choice of 10 as a base is actually quite arbitrary, 
having its origins in the fact that we have 10 fingers. It's perfectly possible to use 
other bases as well. For instance, if we wanted to use a base 8 or octal system, 
which uses only eight digits (0 to 7), here's how counting would look: 

0 
1 
2 
3 
4 
5 
6 
7 ~ last available digit 

1 0 ~ start using a new column 
11 
12 

Many other numbering systems can be imagined. The Mesopotamians used a 
base 60 system, which survives in our era for measuring minutes and seconds, 
both for time and for angles. The number 12 has also been used as a base. From 
this system we retain our 12-hour system for time, the number of inches in a 
foot, and so on. The moral is that any base can be used in a numbering system, 
although some bases are more convenient than others. 

Computers and Binary 
As it turns out, computers are most comfortable with a binary numbering 
system. In a binary system, instead of ten digits as in decimal, there are only 
two digits: 0 and 1. This means you can't count very far before you need to start 
using the next column: 

0 
1 ~ last available digit 

10 ~ start using a new column 
11 

Binary is a natural system for computers because each of the thousands of 
electronic circuits in the computer can be in one of two states: on or off. These 
circuits are like the switches that turn on the lights in your house (unless you 
use dimmer switches): they can be either on or off, with nothing in between. 
Thus, the binary system corresponds nicely with the circuits in the computer: 0 
means off, and 1 means on. 

643 



Appendix C 

644 

A unit of information that can have one of two possible values like this is 
called a "bit," a synonym for a binary digit. 

These binary circuits are generally arranged in groups. Let's look at a very 
small group: two circuits. We'll list all the combinations of on and off the two 
circuits can represent: 

First Circuit 

off 
off 
on 
on 

Second Circuit 

off 
on 
off 
on 

Thus the two circuits can be placed in four different states. Another way of 
saying this is that they can represent four different binary numbers: 

First Circuit Second Circuit Binary Number 

off off 00 
off on 01 
on off 10 
on on 11 

Suppose we used three circuits instead of two? We could represent twice as 
many binary numbers. 

First Circuit Second Circuit Third Circuit Binary Number Decimal Number 

off off off 000 0 
off off on 001 1 
off on off 010 2 
off on on 011 3 
on off off 100 4 
on off on 101 5 
on on off 110 6 
on on on 111 7 

Note that each time another circuit is added, the number of numbers that 
can be represented is doubled. 

Using a group of three circuits like this to represent eight numbers corres
ponds to the octal system. In some computer systems, the octal system is a 
natural one because the number of circuits, or bits, grouped together is divisible 
by 3. A 12-bit number, for instance, could be represented by four octal (3-bit) 
numbers. 



Hexadecimal Numbering 

Bytes and Four-Bit Combinations 
However, on the IBM, groups of eight bits are typically placed together. This 
forms a byte. The eight-bit byte is useful because it provides a convenient way to 
represent characters. Actually, a seven-bit byte would be big enough to represent 
a character, since seven bits holds numbers up to 128 decimal, enough for 
upper- and lowercase letters, punctuation, digits, and some control characters. 
However, seven is an awkward number, being odd, so an eight-bit byte became 
the standard. 

The eight-bit byte, however, is not divisible by 3, so octal is not so conven
ient for representing eight-bit bytes. However, the eight-bit byte is divisible by 4. 
Four bits can represent numbers from 0 to 15: 

Binary Decimal Binary Decimal 

0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 10 
0011 3 1011 11 
0100 4 1100 12 
0101 5 1101 13 
0110 6 1110 14 
0111 7 1111 15 

Placing two such four-bit groups together then forms an eight-bit byte: 

Left Side Right Side Eight-Bit Byte 

0000 and 0001 make 00000001 
0001 and 0010 make 00010010 
1110 and 0101 make 11100101 
and so on. 

From the table of correspondences between binary and decimal numbers, 
shown above, we can figure out the decimal equivalent of each four-bit combi
nation, and from this we can calculate the value of the eight-bit byte. 

0000 and 0001 make 00000001 
0 and 1 make 1 

+- binary 
+- decimal 

This seems reasonable: 1 binary is 1 decimal. What about 

0001 and 0010 make 00010010 
and 2 make 18 

+- binary 
+- decimal 

Here 00010010 binary is 18 decimal. How do we know that 1 on the left 

645 



Appendix C 

and 2 on the right combine to make 18? The four-bit combination on the left is 
worth 16 times more than the four bits on the right, so we multiply it by 16: 1 
times 16 is 16. We multiply the combination on the right by one, which gives us 
2. Adding 16 and 2 gives us 18. 

Similarly, 

1110 and 0101 form 11100101 
14 and 5 form 229 

+-- binary 
+-- decimal 

Here, 14 times 16 is 224. Adding 5 gives us 229. 

Hexadecimal 
So we can figure out what binary numbers mean, by translating them into 
decimal. But the process is difficult. We need to look up the decimal values of 
the numbers in the table, and remember to multiply the 4-bit combination on 
the left by 16 before adding the 4-bit combination on the right. If we wanted to 
talk about numbers twice as big-2 bytes, or 16 bits-things would be harder 
still. 

Worst of all, the decimal number doesn't immediately tell us anything 
about the bit configuration of the binary number it represents. You can't look at 
229 decimal, for instance, and immediately see that the last four bits are 0101. 

The problem is that one decimal digit does not represent an integral num
ber of binary digits. A one-digit decimal number covers binary numbers up to 
1001; the binary number after that, 1010, still uses four digits, while the decimal 
number shifts from one digit to two. When the binary number shifts from four 
digits (1111) to five digits (10000), the decimal representation remains at two 
digits, going from 15 to 16. This relationship between binary and decimal is 
complex; translating from one system to another is time-consuming and nonin
tuitive. 

Using the hexadecimal numbering system solves these problems. Hexade
cimal is base 16; there are 16 digits in the system. Since one hex digit can 
represent 16 numbers, it corresponds to exactly four binary digits. This makes 
for a very clean correspondence between binary and hexadecimal. 

But representing 16 distinct digits poses a typographical problem. Which 
symbols should be used to represent the digits greater than 9? The ordinary 
decimal digits 0 to 9 are fine for the first 10 digits, but there are still 6 to go. An 
obvious solution is to use letters of the alphabet for the remaining digits. So the 
sixteen hex digits are commonly represented as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 
D, E, and F. (Lowercase versions of the letters may also be used.) 

Correspondence Between Hex and Binary 

646 

Now each four bits is represented by exactly one hex digit. When the binary 
number changes from four to five digits, the hex number changes from 1 to two 
digits, as you can see in the table. 



Hexadecimal Numbering 

Binary Hex Decimal Binary Hex Decimal 

0000 0 0 1011 B 11 
0001 1 1 1100 c 12 
0010 2 2 1101 D 13 
0011 3 3 1110 E 14 
0100 4 4 1111 F 15 
0101 5 5 10000 10 16 
0110 6 6 10001 11 17 
0111 7 7 10010 12 18 
1000 8 8 
1001 9 9 
1010 A 10 

Now let's see how much more easily the translations of the binary num
bers, shown above as binary to decimal, can be carried out from binary to 
hexadecimal: 

0001 and 0010 make 00010010 
1 and 2 make 12 

1110 and 0101 form 11100101 
E and 5 form ES 

~ binary 
~ hexadecimal 
~ binary 
~ hexadecimal 

Multiplication is not needed, nor is addition. All we need to do is look up the 
correspondence between binary and hex: 1 binary is 1 hex, 10 binary is 2 hex, 
1110 binary is E hex, 0101 binary is 5 hex. Then we write down the hex digits 
side by side. 

In fact, since there are only 16 hex digits, it's fairly easy to memorize the 
binary equivalent for each one. Quick now, what's binary 1101 in hex? That's 
right, D. You're already getting the hang of it. With a little practice it's easy to 
translate even long numbers into hex: 0100 1111 0110 1101 binary is 4F6D hex. 
This is how the two-byte quantities used to indicate integers in C are repre
sented. 

A useful thing to do until you've memorized the binary equivalents of the 
hex numbers is to write them on a card and paste it on the front of your 
computer. 

Using Hexadecimal 

Hexadecimal numbers are used for a variety of purposes in the IBM computer 
system. One common use is to represent memory addresses. Assembly language 
programmers like this system because the hex numbers correspond so well with 
the binary pattern used in the microprocessor's registers to represent the ad
dress. Address registers on the IBM typically are 16-bit registers; they can hold 
four hex bits. Addresses run from 0 to FFFF hex (65,535 decimal). 

647 



Appendix C 

648 

Hex numbers are also used to indicate particular bit patterns in the micro
processor's registers and ports. Bits are numbered starting with 0 on the right; so 
for one byte the bits are numbered from 0 to 7. If bit 0 is to be set in a particular 
byte, this corresponds to the bit pattern 00000001, which is 01 hexadecimal. If 
bit 7 and bit 1 are to be set, this is 10000001 binary, which is 81 hex. In a 
program, rather than writing all those Os and ls, we can write 01 hex or 81 hex; 
it's much simpler and more compact than using binary (and, in any case, there is 
no binary representation of numbers in CJ. 

As with most unfamiliar subjects, learning hexadecimal requires a little 
practice. Try writing down binary numbers and translating them into hex; then 
try going the other way. Then try going from decimal to hex and back again. 
Before long you'll be speaking hexadecimal as if you'd known it all your life. 



D 
Bibliography 

There are hundreds of books on various aspects of C available. This 
bibliography covers only a very few of them-those we like and find especially 
useful for programming in Con the IBM. 

Because C was originally developed on UNIX systems, many books on it 
assume a Unix environment. This assumption is not ideal for those working in 
MS-DOS on the IBM (or clones), but it is not fatal either. Here are some Unix
oriented C books that are nevertheless very helpful for the IBM C programmer. 

Bolski, M. I., The C Programmer's Handbook, Prentice Hall, 1985. A well-organized small 
reference book, packed full of brief examples and explanations. A useful place to look 
something up in a hurry. 

Feuer, Alan, The C Puzzle Book, Prentice Hall, 1982. Using this book will hone your 
programming ability to a fine edge. If you can answer all the questions it poses you're 
ready for anything. 

Gehani, Narain, Advanced C: Food for the Educated Palate, Computer Science Press, 1985. 
A literate exploration of some of the finer points of C. This book is fun to read after 
you've digested the fundamentals. 

Kernighan, Brian and Dennis Ritchie, The C Programming Language, Prentice Hall, 1978. 
This book defined the C language, at least for the UNIX-based systems on which C 
was originally developed. In C, the watchword still is: when in doubt, follow 
Kernighan and Ritchie. This is not a beginner's book, but it is useful and interesting 
and it covers C thoroughly. Serious C programmers will want to own a copy. 

Kernighan, Brian and Dennis Ritchie, The C Programming Language, The Second Edition, 
Prentice Hall, 1988. Latest edition of this work. 

Waite, Mitchell, Stephen Prata, and Donald Martin, C Primer Plus, Howard W. Sams & 
Co., 1987. A classic generic C tutorial, clearly written and easy to learn from, full of 
valuable insights about C. 

Many recent books deal specifically with Con the IBM. We've listed some 
of these here. We've also included several books which, although they don't deal 
with C specifically, may be of interest to the C programmer working in the IBM 
environment. 

Chesley, Harry and Mitchell Waite, Supercharging C with Assembly Language, Addison 
Wesley, 1987. This book explores ways to squeeze the last ounce of speed and 
capability from your C program. A principal method is the use of assembly language 
routines in critical places in the program. 

Jordain, Robert, Programmer's Problem Solver, A Brady book (Prentice Hall Press), 1986. 
This book is crammed full of examples of how to get the IBM to do what you want. 

649 



Appendix D 

650 

Examples are in BASIC and assembly, and explanations are sometimes cryptic, but it's 
an extremely useful book for serious IBM programmers. 

Laforc, Robert, Assembly Language Primer for the IBM PC and XT, New American Library, 
1984. People tell us that this is still one of the best books for learning assembly 
language from scratch, should you want to incorporate AL routines into your C 
programs. It works on the AT as well as the PC and XT. 

Norton, Peter, The Peter Norton Programmer's Guide to the IBM PC, Microsoft Press, 1985. 
This is essentially a guide to the ROM BIOS routines built into the IBM, although 
other topics are covered as well. It's a lot more fun trying to figure out the ROM BIOS 
from this book than it is from the cryptic program comments in IBM's Technical 
Reference manual. 

Prata, Stephen, Advanced C Primer++, Howard W. Sams & Co., 1986. Dr. Prata provides 
an in-depth exploration of C on the IBM, including a very readable description of 
using assembly language routines with C programs. 



E 
ASCII Chart 

Table E-1. IBM Character Codes 

DEC HEX Symbol Key Use in C 

0 00 (NULL) Ctrl 2 
1 01 © Ctr-A 
2 02 ~ Ctrl B 
3 03 ., Ctrl C 
4 04 • Ctrl D 
5 05 + Ctrl E 
6 06 ~ Ctrl F 
7 07 0 Ctrl G Beep 
8 08 a Backspace Backspace 
9 09 0 Tab Tab 

10 OA m Ctrl J Linefeed (newline) 
11 OB 0 Ctrl K Vertical Tab 
12 oc <;? Ctrl L Form feed 
13 OD -~ Enter Carriage Return 
14 OE n Ctrl N 
15 OF ~ Ctrl 0 
16 10 .... Ctrl P 
17 11 ~ Ctrl Q 
18 12 ! Ctrl R 
19 13 !! Ctrl S 
20 14 ~ Ctrl T 
21 15 § Ctrl U 
22 16 Ctrl V 
23 17 Ctrl W 
24 18 i Ctrl X 
25 19 i Ctrl Y 
26 lA ~ Ctrl Z 
27 1B ~ Esc Escape 
28 lC Ctrl \ 
29 lD ~ Ctrl] 
30 1E A Ctrl 6 

651 



Appendix E 

Table E-1 (cont) 

DEC HEX Symbol Key 

31 IF T Ctrl -
32 20 SPACE BAR 
33 21 
34 22 " " 
35 23 # # 
36 24 $ $ 

37 25 % % 
38 26 & & 
39 27 
40 28 
41 29 
42 2A * * 
43 2B + + 
44 2C 
45 2D 
46 2E 
47 2F I 
48 30 0 0 
49 31 1 1 
50 32 2 2 
51 33 3 3 
52 34 4 4 
53 35 5 5 
54 36 6 6 
55 37 7 7 
56 38 8 8 
57 39 9 9 
58 3A 
59 3B 
60 3C < < 
61 3D 
62 3E > > 
63 3F ? ? 
64 40 @ @ 

65 41 A A 
66 42 B B 
67 43 c c 
68 44 D D 
69 45 E E 
70 46 F F 
71 47 G G 
72 48 H H 
73 49 I I 

652 



ASCII Chart 

Table E-1 (cont) 

DEC HEX Symbol Key 

74 4A J J 
7S 4B K K 
76 4C L L 
77 4D M M 
78 4E N N 
79 4F 0 0 
80 so p p 

81 Sl Q Q 
82 S2 R R 
83 S3 s s 
84 S4 T T 
8S SS u u 
86 S6 v v 
87 S7 w w 
88 S8 x x 
89 S9 y y 

90 SA z z 
91 SB [ [ 
92 SC \ \ 
93 SD ] ] 
94 SE I\ I\ 

9S SF 
~ 

96 60 
97 61 a a 
98 62 b b 
99 63 c c 

100 64 d d 
101 6S e e 
102 66 f f 
103 67 g g 
104 68 h h 
lOS 69 
106 6A j j 
107 6B k k 
108 6C 1 1 
109 6D m m 
110 6E n n 
111 6F 0 0 

112 70 p p 
113 71 q q 
114 72 r r 
llS 73 s s 
116 74 t t 

653 



Appendix E 

Table E-1 (cont) 

DEC HEX Symbol Key 

117 75 u u 
118 76 v v 
119 77 w w 
120 78 x x 
121 79 y y 
122 7A z z 
123 7B { { 
124 7C I I 

I I 

125 7D } } 
126 7E 
127 7F A Ctrl +-

128 80 (; Alt 128 
129 81 ii Alt 129 
130 82 e Alt 130 
131 83 a Alt 131 
132 84 a Alt 132 
133 85 a Alt 133 
134 86 a Alt 134 
135 87 ~ Alt 135 
136 88 e Alt 136 
137 89 e Alt 137 
138 BA e Alt 138 
139 BB i Alt 139 
140 BC i Alt 140 
141 SD Alt 141 
142 BE A Alt 142 
143 BF A Alt 143 
144 90 E Alt 144 
145 91 re Alt 145 
146 92 1E Alt 146 
147 93 0 Alt 147 
148 94 0 Alt 148 
149 95 0 Alt 149 
150 96 ii Alt 150 
151 97 u Alt 151 
152 98 ¥. Alt 152 
153 99 0 Alt 153 
154 9A u Alt 154 
155 9B ¢ Alt 155 
156 9C £ Alt 156 
157 9D ¥ Alt 157 
158 9E Pt Alt 158 
159 9F f Alt 159 

654 



ASCII Chart 

Table E-1 (cont) 

DEC HEX Symbol Key 

160 AO a Alt 160 
161 Al Alt 161 
16Z AZ 6 Alt 16Z 
163 A3 u Alt 163 
164 A4 ii Alt 164 
165 AS N Alt 165 
166 A6 a Alt 166 

-
167 A7 0 Alt 167 -
16S AS Alt 16S 
169 A9 r Alt 169 
170 AA , Alt 170 
171 AB l/z Alt 171 
172 AC 1/4 Alt 172 
173 AD Alt 173 
174 AE (( Alt 174 
175 AF » Alt 175 
176 BO Alt 176 
177 Bl :::: Alt 177 
17S BZ ~=~:~ Alt 17S 
179 B3 I Alt 179 
180 B4 -4 Alt lSO 
lSl B5 9 Alt lSl 
18Z B6 11 Alt lSZ 
1S3 B7 11 Alt 1S3 
1S4 BS I Alt 1S4 
1S5 B9 ~I Alt lSS 
186 BA Alt 186 
1S7 BB ~ Alt 1S7 
18S BC :iJ Alt lSS 
1S9 BD Jl Alt 1S9 
190 BE .J Alt 190 
191 BF l Alt 191 
19Z co L Alt 19Z 
193 Cl 1 Alt 193 
194 CZ T Alt 194 
195 C3 ~ Alt 195 
196 C4 Alt 196 
197 cs + Alt 197 
19S C6 ~ Alt 19S 
199 C7 !~ Alt 199 
zoo cs l!: Alt ZOO 
ZOl C9 rr Alt ZOl 
zoz CA J1 Alt ZOZ 

655 



Appendix E 

Table E-1 (cont) 

DEC HEX Symbol Key 

203 CB ii' Alt 203 
204 cc I~ Alt 204 
205 CD Alt 205 
206 CE Jl Alt 206 ir 

207 CF :lo Alt 207 
20B DO li Alt 20B 
209 Dl f Alt 209 
210 DZ IT Alt 210 
211 D3 ~ Alt 211 
212 D4 b Alt 212 
213 D5 F Alt 213 
214 D6 rr Alt 214 
215 D7 ~ Alt 215 
216 DB t Alt 216 
217 D9 J Alt 217 
218 DA r Alt 218 
219 DB I Alt 219 
220 DC • Alt 220 
221 DD Alt 221 
222 DE Alt 222 
223 DF • Alt 223 
224 EO a Alt 224 
225 El {3 Alt 225 
226 E2 r Alt 226 
227 E3 '7r Alt 227 
22B E4 E Alt 22B 
229 E5 (f Alt 229 
230 E6 µ Alt 230 
231 E7 T Alt 231 
232 EB 4> Alt 232 
233 E9 e Alt 233 
234 EA n Alt 234 
235 EB 0 Alt 235 
236 EC 00 Alt 236 
237 ED 'P Alt 237 
23B EE € Alt 23B 
239 EF n Alt 240 
240 FO - Alt 241 
241 Fl ± Alt 242 
242 F2 ~ Alt 243 
243 F3 s Alt 244 
244 F4 r Alt 245 
245 F5 J Alt 246 

656 



Table E-1 (cont) 

DEC HEX Symbol Key 

246 F6 Alt 246 
247 F7 :::::: Alt 247 
248 F8 0 Alt 248 
249 F9 Alt 249 
250 FA Alt 250 
251 FB -J Alt 251 
252 FC 1/ Alt 252 
253 FD Alt 253 
254 FE • Alt 254 
255 FF (blank) Alt 255 

Those key sequences consisting of "Ctrl" are typed in by pressing the 
CTRL key, and while it is being held down, pressing the key indicated. 
These sequences are based on those defined for the IBM Personal 
Computer series keyboards. The key sequences may be defined 
differently on other keyboards. 

IBM Extended ASCII characters can be displayed by pressing the Alt 
key and then typing the decimal code of the character on the keypad. 

ASCII Chart 

657 



F 
The CodeView Debugger 

658 

Debugging is a difficult process to describe. By their nature, program bugs are 
unexpected and irrational, so it is hard to develop a way of finding them that 
will work in all programming situations. 

Staring hard at the program listing will uncover a fair number of bugs. 
Look for typos that have slipped by the compiler and for simple logic errors. Are 
the loop limits what they should be? Have you confused the ( = ) and ( = = ) 
operators? Have you used the correct format specifiers in printf () and scanf() 
statements? Mentally step through the program, line-by-line. Does it really do 
what you intended? 

If you've done all this and still can't see what's wrong, further steps are in 
order. 

For short programs such as those in this book, the simple strategem of 
inserting printf () statements at appropriate places in the code may uncover 
most bugs. Such diagnostic statements print out the values of relevant variables 
at particular points in the program, so that the error eventually becomes clear. 
Many programmers use this system exclusively, but it has its disadvantages. One 
disadvantage is that each time the diagnostic printf () statements are changed, 
the program must be recompiled. This is time-consuming. Also, printf() 
statements are a cumbersome way to follow the path a program is taking from 
place to place in the listing, unless you put printf () statements almost 
everywhere. And in long loops, where trouble may not show up until after 
hundreds of iterations, a great deal of useless output may be generated before 
the error shows up. 

It would be nice if we could step through a program, line-by-line, at 
whatever speed we wanted, checking the values of variables and expressions as 
we went along, without having to modify the program itself. Happily, the 
CodeView debugging program, included with the Microsoft C compiler 4.0, 
does just that. Code View is so good and so versatile that it provides a reason, all 
by itself, for buying the Microsoft compiler. 

Unlike most earlier debuggers (such as the DEBUG program included with 
MS-DOS), CodeView operates directly on the C source code of your program, 
rather than the machine language executable code (although you can use 
Code View to debug that too, if you want). With Code View, you see the listing of 
your C program on the screen. You can single-step through the program lines, 
examine variables, execute particular parts of the program, and watch both the 



The CodeView Debugger 

program listing and the output it generates. In general, it will do almost anything 
you've ever dreamed of a debugger doing. 

In this appendix we'll touch on some of the highlights of the CodeView 
debugger. This is by no means a comprehensive explanation of CodeView; the 
Microsoft manual and software tutorials do an excellent job of explaining its 
operations in detail. But we'll show the sorts of things the program can do, and 
we'll demonstrate a simple but useful way to set it up. 

The Operating Environment 
CodeView comes with a great many files, most of which are for instructional 
purposes. The only ones you actually need to operate CodeView are cv.exe and 
cv.hlp. You'll probably want to put these in the same directory as your word 
processing program, so you can quickly create or modify the source file, com
pile and link it, and then debug the resulting executable file. 

Preparing a Program for CodeView 

Before you can use Code View on a program, the program must be compiled and 
linked. CodeView needs both the source file (prog.c) and the executable file 
(prog.exe) in order to operate. You must start with an error-free compilation; 
CodeView can't deal with errors of syntax in the source file. It's strength is in 
finding logical errors in your program's operation. 

You must use several command-line options when using CL to compile and 
link your program. This is because CodeView requires a symbol table in order to 
operate, and this symbol table is not generated by the normal compile-link 
process. 

The first option is /Zi. This causes an object file with a symbol table and 
line numbers to be created. The second option (which may not be necessary) is 
/Od. This disables optimization, which might rearrange the order in which 
statements are executed. 

Let's consider a real program with a real bug. The program is called 
badloop.c. Its purpose is to calculate the sum of the squares of the integers from 
1 to 10. (We want the program to add 1, which is 1 squared, to 4, which is 2 
squared, add that to 9, which is 3 squared, and so on up to 100, which is 10 
squared.) Here's the listing: 

/* badloop.c */ 
/* sums the squares of the numbers from 1 to 10 */ 
mainO 
{ 

int count, countsq, total; 
for(count=1; count<=10; count++) 

{ 

countsq = count * count; 
total += countsq; 
} 

659 



Appendix F 

printfC"Sum of squares is %d", total>; 
} 

Type in this program exactly as shown. If you spot the error, resist the urge 
to correct it. 

Compile and link badloop.c by typing: 

C>cl /Zi /Od badloop .. c 

Now you can run the program in the usual way, by typing 

C>badloop 

You'll get this output: 

Sum of squares is 18444 

This seems a little high. After all, 10 squared is 100, so the sum of the squares of 
the integers from 1 to 10 can't be more than 1,000, and is probably considerably 
less. What's wrong with the program? Let's use CodeView to find out. 

Invoking CodeView 
Once you've used the appropriate options to compile and link a version of your 
program that is acceptable to Code View, you can invoke Code View and your 
program at the same time by typing "cv" followed by the program's name. 

C>cv badloop 

At this point, the standard CodeView screen will appear, as shown in Figure F-1. 
As the figure shows, the program listing appears in a window in the upper 

part of the screen, called the "display window." The window at the bottom of 
the screen is called the "dialog window." It's here that you type instructions to 
Code View. The line at the top of the screen, with the words "File", "Search", 
and so on, is the menu bar. 

Operating CodeView 

660 

Code View offers an extremely versatile user-interface. You can use a mouse to 
select menu options, you can select menu options with the keyboard, you can 
use function keys, and you can type commands into the dialog window. Many 
operations can be invoked using several or all of these approaches. As a result, it 
can be confusing to figure out which method to apply to a given operation. 

In this discussion we'll assume that you don't have a mouse. Without a 
mouse, the menu approach is less efficient, usually involving more keystrokes 
than other methods, so we'll describe all operations using function keys and 



The CodeView Debugger 

File View Search Run Watch Options Language Calls Help F8=Trace FS=Go 
bad loop. c !============= 

1 : 
2: /* badloop.c */ 
3: /* sums the squares of numbers from 1 to 10 */ 
4: mainO 
5: { 
6: int count, countsq, total; 
7: for(count=1; count<=10; count++) 
8: { 
9: countsq = count * count; 
10: total += countsq; 
11: } 
12: printfC 11 Sum of squares is %d 11

, total>; 
13: } 

Microsoft CR) CodeView CTM) Version 2.10 
Copyright CC) Microsoft Corp 1986. All rights reverved. 

> 

Figure F-1. The CodeView Screen 

commands typed into the command window. (The curious can experiment with 
the menus by holding down the [Alt] key and typing the first letter of a menu's 
name, then using the cursor keys to move down the menu's items, or left and 
right to different menus.) 

Moving the Cursor 

We've seen that the Code View screen has two parts: the display window and the 
dialog window. The cursor can be used in either window. You can move it back 
and forth with the [F6] function key. Try pressing [F6] and you'll see the cursor 
jump from one window to the other. Within either window you can move the 
cursor up and down using the cursor keys on the numeric keypad. 

Another useful thing to know is that the display and dialog windows can 
be made larger and smaller (one expands as the other shrinks). [Ctrl] [G] makes 
the window bigger and [Ctrl] [T] makes it smaller. These commands work for 
whichever window the cursor is in. Expanding the dialog window can be useful 
when its contents get complicated. 

Running Programs from Within CodeView 

Running a program from within Code View is as easy as running it from DOS. 
Make sure that the cursor is in the dialog window, and then type "g" (or "G") 
for Go, followed by [Return]. A message will appear in the dialog window: 

661 



Appendix F 

662 

"Program terminated normally." That sounds promising, but where is the pro
gram's output? It's not in the display window, and it's not in the dialog windov;. 

The Output Screen 

CodeView actually operates on two screens at the same time. The first was 
shown in Figure F-1. The second contains the output of the program being 
debugged. In a sense, this output screen is the "real" screen: the one you would 
see if you weren't using CodeView but merely running your program in the 
usual way from DOS. It's easy to switch to the output screen: simply press 
function key [F4]. Here's what you'll see: 

C>cv badloop 
Sum of squares is 5658 

The first line shown above was placed on the screen when CodeView was 
called. (There may be other lines above it on the screen, of course.) The second 
line is the output generated by badloop.c. It's still the wrong answer: 5658 (or 
some other number). Press [F4] again to return to the display window. 

Can you run the program again? Try typing "g". You'll get a message 
"restart program to debug." You must tell CodeView to start over at the begin
ning of the program. To do this, enter "l" (or "L") for Load. 

Tracing Through the Program 

Let's trace through the program one line at a time. Make sure the program is 
initialized with "l". Then, to trace one program line, press the [F8] function key. 
The program line being executed will be shown on the screen in reverse video 
(or complementary colors, if you're using a color display). Each time you press 
[F8] the highlight moves down one line. Only lines that actually generate ma
chine language code in the executable file are traced. Comments are skipped, as 
are variable declarations and statements with nothing but a brace. Note that the 
marked line is the statement about to be executed. 

You can now see exactly where the program is going. It starts at the 
opening brace, executes the for statement, and then cycles through the loop 
over and over. Finally it comes out of the loop and displays the "Program 
terminated normally" message (this time on the display window instead of the 
dialog window). 

There are actually two ways to step through a program. The Trace com
mand described above will trace into functions. If your program calls a function 
(other than a library function), the steps of the function will be traced when it is 
reached. By contrast, the Step command (activated with the [F 10] function key), 
steps over functions; it executes the function, but in one step. If you know a 
function works, this is the command to use. If you think it might harbor a bug, 
trace into it with Trace. 

Using the Trace command showed that our program was going to the right 
places and executing the instructions in the right order. But the answer gener-



The CodeView Debugger 

ated by the program is still wrong. We need to find out what the program's 
variables are doing as the program executes. 

Variables and Watch Statements 
We can examine the values of variables by placing them in a "watch window" 
on the screen. To do this, we enter "w?" into the dialog window, followed by the 
variable (or expression) whose value we want to display. 

There is a potential glitch here. To tell CodeView about a variable, the 
variable must be known to the program being debugged. The only way the 
program can know about the variable is if it has already been initialized in the 
program. So we must trace through the program far enough to initialize its 
variables. 

To do this in badloop.c, enter "l" to initialize the entire program, then press 
[F8] twice. This will move the highlight to the for statement, executing the 
variable declarations on the way. Now the variables are known to Code View. 
Enter the command 

w? count 

in the dialog window. You'll see a new window open at the top of the screen, 
containing the variable name count and its value (which could be anything, 
since count has not yet been initialized in the for loop). The new window is 
called the "watch window." 

Follow the same procedure with the variables countsq and total. Figure 
F-2 shows what the screen should look like now. 

Now when you trace through the program with the [F8] key you can see 
the values of the variables change right before your eyes. Executing the for 
statement sets count to 1. Executing the next statement sets countsq to 1. And 
then in the next statement total is set to . . . but what's this? Why is total set to 
5658 (or some other number), when it should also be 1? Of course-we forgot to 
initialize it, so 1 is added to whatever garbage quantity was in total before. 
We've found our bug. 

Other commands can be typed into the dialog window to manipulate 
watch statements. The command 

>w 

with no parameters will cause all the watch statements to be listed in the dialog 
window. Entering 

>y 1 3 

will cause watch statements 1 and 3 to be deleted. The watch window will 
shrink to accommodate the remaining variables. The command 

>y * 

663 



Appendix F 

File View Search Run Watch Options Language Calls Help F8=Trace F5=Go 
badloop.c !============= 

Q) count 
1) countsq 
2) total 

15540 
25 

22 

3: /* sums the squares of numbers from 1 to 10, prints result */ 
4: mai no 
5: { 
6: int count, countsq, total; 
7: for(count=1; count<=10; count++) 
8: { 
9: countsq = count * count; 
10: total += countsq; 
11: } 
12: print("Sum of squares is %d", total>; 
13: } 

>w? count 
>w? countsq 
>w? total 
> 

Figure F-2. The Watch Window 

will delete all the watch statements. This will cause the watch window to 
disappear entirely. 

Breakpoints 

664 

Often when debugging you will want to run the program full speed, up to a certain 
point, and then stop it at a particular line so you can investigate things at your 
leisure. This might be true if your program contains a long loop, for instance; you 
wouldn't want to step through every cycle of the loop, you only want to see what 
will happen when the loop terminates. Breakpoints can accomplish this. 

For example, suppose we want to see what the state of badloop.c is after 
the loop has been completed but before the print£ () statement on line 12 has 
been executed. To do this, we install a breakpoint on line 12. A program must be 
initialized with the "l" command before a breakpoint can be installed, so make 
sure this has been done. 

There are several ways to install a breakpoint. Here's one: in the dialog 
window, enter the command "bp" followed by a period and the line number 
where you want to install the breakpoint: 

>bp .12 



The CodeView Debugger 

You'll see the indicated line appear in bold (or a different color) to indicate it 
contains a breakpoint. 

Now when you run the program all the statements up to the printf() on 
line 12 will be executed. Line 12 will appear in reverse video, since this is the 
line about to be executed. 

Finding the Values of Variables or Expressions 

Once you've stopped the program at a given point you can find the value of any 
variable or expression by typing a question mark followed by the expression. 
For instance, to find the value of the variable count, you can enter 

>? count 

The value (which should be 11) is printed out in the dialog window. You can also 
find the value of any C expression, such as 

>? count * count 

Enabling and Disabling Breakpoints 

You can set as many breakpoints as you like. To see which ones you've set, enter 
"bl". This will show you the breakpoints, listing first the number of the break
point (starting with 0), then the address (in hexadecimal segment-offset form), 
then the function and line number. In the case of the breakpoint installed above, 
the output is 

>bl 
0 e 3CB3:0038 main:12 

This shows that breakpoint 0 is installed in the 12th line of main(). The "e" 
following the breakpoint number indicates that the breakpoint is enabled. 

You can disable one or more breakpoints by typing "bd" followed by a list 
of their numbers (separated by spaces). To disable our breakpoint on line 12, we 
would type 

>bd 0 

Now listing the breakpoints will show this one with a letter "d" for disabled: 

>bl 
0 d 3CB3:0038 _main:12 

The breakpoint now will have no effect on program operation. However, it can 
be enabled again by entering "be" followed by its number: 

>be 0 

665 



Appendix F 

Breakpoints have another feature that can be helpful if you're having 
trouble debugging a loop. It's often useful to go through most of the loop at full 
speed, but stop just before the end to see what happens when the loop is exited. 
For example, in the badloop.c example, we might want to execute the loop eight 
times and then stop so we can trace through the last two iterations. 

To do this, reset the program with the I command, deactivate any 
breakpoints you don't want set, and type: 

>bp .10 8 

This sets a breakpoint on line 10 in the middle of the loop, but specifies that it 
not stop the program until it has been passed eight times. Enter "g" to run the 
program. Line 10, where the program stopped, will be shown in reverse video. 
If you check the value of count you'll see that the loop has been executed eight 
times: 

>g 
>? count 

8 

Now you can trace through the remaining cycles of the loop to see what 
happens when it exits (presumably there will be no surprises in this simple 
example). 

The Iceberg 

666 

What we have said about Code View in this appendix is only the tip of the 
iceberg. CodeView has many more features than we've covered, and the fea
tures we have covered have many options and variations we didn't mention. 
One of the most exciting aspects of CodeView is how easy it makes working 
with the assembly language version of a C program. This provides a powerful 
tool for studying assembly language and for learning how to use assembly 
language to optimize C programs. 

We hope this summary will whet your appitite for further exploration of 
this powerful utility. 



G 
The QuickC Debugger 

If you're writing in QuickC, you can use its built-in debugger. This appendix 
describes how to debug programs in the QuickC environment. 

The QuickC debugger is simple yet powerful. It doesn't have all the bells 
and whistles of CodeView, but it incorporates the major features necessary for 
efficient debugging. You can single-step through programs, see variables change 
as the program runs, and execute sections of the program at full speed, stopping 
where you want. 

We discussed in Chapter 1 how to correct syntax errors discovered by the 
QuickC compiler, so we won't cover that here. You might also want to refer to 
the first few pages of the Code View appendix for some general thoughts on the 
debugging process. 

Single-Stepping 

The first thing the debugger can do for you is slow down the operation of the 
program. One trouble with finding errors is that a typical program executes in a 
few milliseconds, so all you can see is its final state. By invoking QuickC's 
single-stepping ability you can execute just one line of the program at a time. 
This way you can follow where the program is going. 

Here's a small example program: 

I* errelse.c */ 
/* demonstrates single stepping */ 
mainO 
{ 

int number, answer= -1; 

number = -50; /* test value */ 
i fCnumber < 100) 

i fCnumber > Q) 

answer= 1; 
else 

answer = O; 
printf("answer is %d\n", answer); 

} 

667 



Appendix G 

668 

Type the program and run it by selecting Start from the Run menu. Our 
intention in this program is that when number is between 0 and 100, ansv:e:r 
will be 1; when number is 100 or greater, answer will be O; and when number 
is less than 0, answer will retain its initialized value of -1. 

Unfortunately, when we run the program with a test value of -50 for 
number, as shown, we find that answer is set to 0 at the end of the program, 
instead of staying - 1. What's wrong? (You may see the problem already, but bear 
with us.) 

Perhaps we can understand where the problem is if we single-step through 
the program. To do this, press the [FlO] key. (You can also use [F8]; it operates 
the same as [FlO] unless functions are involved.) 

When you first press [FlO] you'll see the Compile window from the Run 
menu appear briefly. The program must be compiled with the Debug option set 
in this window, but this usually happens automatically when you start single
stepping. In some circumstances a window will appear with the message "Pro
gram must be compiled with debug option. Build with debug?" Press [Enter] or 
click on the "Yes" box. 

Pressing [F 10] the first time causes the opening brace of the program, 
following main(), to be highlighted. Press [FlO) again. The highlight will move to 
the next program line. (It skips over the declarations.) The line about to be 
executed is highlighted; in other words, pressing [FlO] causes the highlighted line 
to be executed. The highlighted line is called the currently executing line. We'll 
shorten this to CEL. 

Execute each line of the errelse.c program in turn by pressing [FlO]. Even
tually you'll reach the first if statement: 

i fCnum < 100> 

This statement is true (since number is -50); so, as we would expect, the CEL 
moves to the second if statement: 

i fCnum > Q) 

This is false. Since there's no else matched with the second if, we would expect 
the CEL to move to the printf(} statement. But it doesn't! It goes to the line 

answer = O; 

The screen when the CEL has reached this line is shown in Figure G-1. 
Now that we see where the program actually goes, the source of the bug 

should become clear: the else goes with the last if, not the first if as the 
indenting would lead us to believe. So the else is executed when the second if 
statement is false, which leads to the erroneous result. We need to put braces 
around the second if or rewrite the program in some other way. We've sucess
fully used the single-stepping feature to track down a bug. 

In this short example, single-stepping may not be necessary to discover the 
bug, but in a more complex program, with multiple nested ifs, loops, and 



The QuickC Debugger 

Figure G-1. The Currently Executing Line (GEL) 

functions, it's often an essential technique. Try single-stepping through some 
programs containing loops and complex if statements. 

Resetting the Debugger 
Suppose you've single-stepped part of the way through a program, and want to 
start over at the beginning. How do you put the CEL back at the top of the 
listing? Select Restart from the Run menu. The highlight on the CEL will disap
pear, and will reappear on the opening brace the first time you press [F 1 O]. 

Examining the Output Screen 

You can examine the output screen (where the program's output goes) by press
ing the [F4] key. In the errelse.c example the only output comes at the last line of 
the program, which you'll see anyway when you execute the closing brace of the 
program. So in this case there isn't much reason to use [F4]. But in most 
programs you'll want to switch back and forth between the program and the 
output screen. To return to your program from the output screen, press [F4] 
again (or any other key). 

Watch Expressions 
Single-stepping is usually used with watch expressions. A watch expression is a 
sort of magic microscope that lets you see how the value of a variable changes as 
the program runs. 

669 



Appendix G 

670 

Here's a short example. This program is intended to calculate the factorial 
of a number entered by the user. It's similar to the factor.c program in Chapter 3, 
but it uses a for loop instead of a while loop. 

/* errloop.c */ 
/* attempts to calculate factorials */ 
/* demonstrates watchpoints */ 
main 0 
{ 

} 

long number, j, answer; 

printfC"Enter number: "); 
scanf("%D", &number >; 
answer= 1; 
for( j=O; j<number; j++ ) 

answer*= j; 
printfC"Factorial of %d = %ld\n", number, answer >; 

Unfortunately, no matter what number we enter when we run this program, it 
always prints the same result: 

Factorial of 5 is 0 

The factorial of 5 should be 120. Can we find the problem with the 
debugger? Single-stepping by itself isn't much help, as the program seems to go 
around the loop the correct number of times (5 in this case). Let's see if watch 
expressions can cast more light on the problem. 

We'll assume that you've typed the program into the view window. Select 
Add Watch ... from the Debug menu. A window will appear. Enter the vari
able name number in the box provided. You'll see a watch window appear at 
the top of the screen. This window will contain the line number: <No debug 
information> . 

When you press [FlO], the line in the watch window will change to num
ber: <Unknown identifier>. Debug is now in effect, but the variable is 
unknown because we have not yet executed the program statement that declares 
it. 

Set up watch expressions for j and answer the same way. Lines for these 
variables will appear in the watch window. You can put a variable into the 
watch window at any point in the program, and you can add as many variables 
as you want. You can enter two or more variable names at once by separating 
them with semicolons. 

Single-step through the program, using the [FlO] key. You'll see the CEL 
move down through the listing as before. You'll also see the values of the 
variables change in the watch window. When you've executed the program 
lines where the variables are declared, the watch window will change to some
thing like this: 



answer: 43234244L 
j: -72319873L 
number: 930986876L 

The QuickC Debugger 

The variables are declared, but have garbage values because they have not yet 
been initialized. When you execute the scanf () statement, the output screen will 
appear. Enter a small value, like 5. Continue single-stepping through the pro
gram. In the watch window you'll see number acquire the value 5, answer the 
value 1. When you enter the loop, j becomes 0. 

When you execute the loop you'll see that the CEL does not appear to 
move; this is because there is only one statement in the loop. However, the 
program is going around the loop. You can tell this because the values in the 
watch window change. Figure G-2 shows the screen after several cycles through 
the loop. 

Figure G-2. The Watch Window and errloop.c 

Can you figure out what the bug is? The variable answer is initialized to 1, 
but on the first cycle through the loop, it becomes 0, as you can see in the watch 
window. From then on it remains 0, since anything times 0 is 0. Why did it 
become O? As we can also see in the watch window, j is 0 the first time through 
the loop, and the program multiplies j by answer. The bug is that we start j at 0 
instead of 1. To fix this, we must change j = 0 to j = 1 in the for loop expression 
and j <number to j < =number. When we make these changes the program 
works correctly. 

You can delete the last watch expression you entered by selecting Delete 

671 



Appendix G 

Last Watch from the Debug menu, or you can delete all the Watch expressions 
with Delete All Watch. 

Watch expressions can contain simple variables, array elements, structure 
members, structure-pointer members, and pointers. Arithmetic operators, as in 
var1+3, are not allowed, nor is pointer arithmetic, such as *(ptr+j). 

Ordinarily, a variable is displayed as whatever data type it was declared. 
However, you can display a variable as a different type. Follow a variable name 
by a comma and and a single-letter format specifier. These specifiers, listed in 
Table G-1, are similar to those used in the printf() function. For example, 
entering number,x into the watch window would cause number to be dis
played as a hex value, and number,hd would display it as a two-byte signed 
decimal number, using the lower two bytes even if it is a four-byte integer. 

Table G·1. QuickC Format Specifiers 

Format Specifier Value Displayed As 

d signed decimal integer 
u unsigned decimal integer 
x hexadecimal integer 
f floating point 
e exponential notation 
g floating point or exponential 
c character 
s string 
h before integer specifiers: two-byte integer 
1 before integer specifiers: four-byte integer 

Breakpoints 

672 

It often happens that you've debugged part of your program but must deal with 
a bug in another section, and you don't want to single-step through all the 
statements in the first part to get to the section with the bug. Or you may have a 
loop with many iterations that would be tedious to single-step through. 

499. 
Here's an example. This program attempts to average the integers from 0 to 

/* errbreak.c */ 
/*attempts to average first 500 integers */ 
/* demonstrates breakpoints */ 
mainO 
{ 

int j, total=O, average; 

for( j=O; j<SOO; j++ 
total+= j; 

average= total I j; 



The QuickC Debugger 

printf("average = %d\n", average >; 
} 

When we run the program, it says the average is -12. This doesn't look 
right; the average should be around 250. To figure out what's wrong, set up 
watch expressions for j, total, and average. Now try single-stepping into the 
loop. Everything looks good for the first dozen or so cycles; j starts at 0 and is 
incremented each time, and total starts at 0 and is increased by whatever j is. 
We could go on stepping through the loop, but 500 iterations is too time consum
ing. We really want to run the program full speed until the end of the loop and 
stop it there so we can check the values of the variables. 

The way to do this is with a breakpoint. A breakpoint marks a line where 
the program will stop. You start the program in the usual way, and it executes all 
the statements up to the breakpoint, then stops. You can now use the watch 
window to examine the state of the variables at that point. 

Installing Breakpoints 

To set a breakpoint, position the cursor on the appropriate line. In the errbreak.c 
program this is the line where the average is calculated. Now select Toggle 
Breakpoint from the Debug menu. The line with the breakpoint will be high
lighted (differently from the CEL). You can also use [F9], a shortcut key, to 
install a breakpoint at the cursor position. 

To run the program down to the breakpoint, select Start from the Run 
menu. All the instructions in the loop will be executed. The program stops on 
the line with the breakpoint, which becomes the CEL. Now look at the Watch 
expressions. The total variable is - 6,322. A large negative number often results 
from the overflow of a positive number, so perhaps at this point we can guess 
that we've exceeded the capacity of signed integers. In fact the actual total is 
499x250, or 124, 750, which is far larger than the 32, 767 limit. The cure is to use 
variables of type long int. 

You can install as many breakpoints as you wish in a program. This is 
useful if the program can take several different paths, depending on the result of 
if statements or other branching constructs. You can block all the paths with 
breakpoints, and then see where the program stops. 

You can remove a single breakpoint by positioning the cursor on the line 
with the breakpoint and selecting Toggle Breakpoint from the Debug menu Oust 
as you did to install the breakpoint). The breakpoint highlight will vanish. You 
can remove all breakpoints in a program by selecting Clear Breakpoints. 

Go to Cursor 

If you only need to install one breakpoint, you can take a shortcut approach. 
Position the cursor where you want the program to stop and press the [F7] key. 
This causes all the program lines up to the cursor position to be executed. 
Similarly, you can execute up to the line containing the mouse pointer by 
clicking the right-hand mouse button. 

673 



Appendix G 

Function Debugging 

674 

When one function calls another, certain complexities occur in the debugging 
process. In this section we'll see how the QuickC debugger handles these func
tion-related situations. 

Trace Into versus Step Over 

Suppose you're single-stepping through the main() function, and it calls another 
function, say func(). Do you want to single-step into func(), stepping through 
the lines of code that constitute the function, or do you want to step over it, 
treating it as a single line of code? The answer is, it depends: sometimes you 
want to single-step into a function, and sometimes you want to execute it as a 
single line of code. 

This is the purpose of the [FlO] and [F8] keys. Both provide single-stepping, 
but the [FlO] key steps over any function it encounters, while the [F8] key traces 
into it. By selecting the appropriate key at each step you can determine whether 
you step over or trace into a particular function. 

For example, consider the following example program. 

/* errfunc.c */ 
/*demonstrates trace, step, call stack */ 
mainO 
{ 

} 

func1 0; 
func1 0; 

func1 0 
{ 

func20; 
} 

func20 
{ 

} 

Try single-stepping through this program with the [FlO] key. You'll see the 
CEL go from the opening brace of main() to the first funcl(); line, to the 
second funcl(); line, and then to the closing brace of main(). It never goes to 
the functions themselves. 

Now use [F8] to trace into the functions. The CEL goes to the opening 
brace of main(), then to the call to funcl();, then to the opening brace of 
funcl() itself, then to the call to func2();, then to the opening brace of func2(), 
and so on. All the code will be traced into all the functions, no matter how 
deeply they are nested. 

Even using the [F8] key you can't trace into QuickC library routines such 



The QuickC Debugger 

as printf(). For a routine to be debugged, its source file must be available, and 
the source files for library routines are not included in the sytem. Also, these 
routines are presumably bug free, so there is no need to debug them. 

The Calls Menu 

When tracing into several levels of functions it's easy to forget where you came 
from. You may know you're in a particular function, but you've forgotten which 
function called the one you're in. 

QuickC gives you a handy way to see the whole chain of function calls that 
led to your present location in the program. 

For instance, suppose you're single-stepping through the errfunc.c pro
gram, using the [F8] key to trace into every function. The main() function has 
called func 1 (), and func 1 () has called func2 (). To see the function calls that 
have taken place up to this point, select the Calls menu. The result is shown in 
Figure G-3. 

Contcd: crrfuuc.c:fum:l 

Figure G-3. The Calls Menu 

It would be nice to watch new functions being added to and removed from 
the Calls menu as you single-stepped through a program, but this is not possible. 
You can't leave the Calls menu in the window as you single-step. Pressing [F8] 
when the Calls menu is on the screen results in petulant beeping from QuickC, 
but no action. This feature is quite useful in programs that have large numbers 
of nested functions, however. 

675 



Appendix G 

If a call to a function has arguments, the values of the arguments will also 
be shown on the Calls menu. 

You can display the line immediately following the line currently being 
executed in any of the functions shown in the Calls menu. (The line currently 
being executed is, except for the last function in the chain, a call to the next 
function.) To see the line, move the highlight to the desired function name and 
press [Enter]. The appropriate section of the function will appear in the Edit 
window. This makes it easy to move back and forth between the called function 
and the calling function. 

In addition to seeing where the call to a function is, you can also start 
executing at the point following the call to the function. Select the function 
name from the Calls menu and start executing by pressing [F7]. This takes you 
to the cursor location, one line past the function call. 

Tracing and Swapping 

When you set a breakpoint and then start the program running by selecting Start 
from the Run menu, the lines executed are not ordinarily highlighted. They are 
executed roughly in the normal way until the breakpoint is encountered. 

It's possible to cause each line to be highlighted as it's executed. This is 
done by selecting the Trace On command from the Debug menu. The effect is 
that of a very fast typist repeatedly pressing the [FS] key. If the program is in a 
tight loop you can see the highlight flying around in the loop. The row number 
in the lower-right corner of the screen blurs, and the vertical scroll bar jiggles. 
Program operation also slows down markedly. 

You can't halt the program from the keyboard or with the mouse, so be 
careful not to enter a long loop with Trace On set; you'll have to reboot. This 
option does provide an impressionistic view of where the program is going, 
however, and it can be helpful in some circumstances. 

You can also cause the output screen to appear following the execution of 
each program line. The resulting rapid screen-switching makes both screens 
difficult to read, but again, in some circumstances this might be a useful feature, 
permitting you to keep an eye on both the screen and the program at the same 
time. 

Summary 

676 

Table G-2 summarizes the key combinations used for debugging in QuickC. 
We've covered the most important features of the QuickC debugging facility. 
You learned how to single-step through programs with the [F 10] key and how 
to monitor the values of variables as the program runs, using watch expres
sions. You learned that (FlO] steps over functions while [FS] traces into them 
and that a list of the function calls currently in use can be seen in the Calls 
menu. 



The QuickC Debugger 

Table G-2. QuickC Debugging Key Combinations 

Key 

[F4] 
[F7] 
[F8] 
[F9] 
[FlO] 
[Shift] [F2] 

Purpose 

Display output screen 
Execute to cursor 
Single-step: trace into functions 
Toggle breakpoint 
Single-step: step over functions 
Delete last watch expression 

677 



H 
The QuickC Editor 

If you're using QuickC as your development environment, you'll need to know 
how to operate the QuickC editor. Even if you're developing with the 
Optimizing Compiler you may want to write your source files with the QuickC 
editor. It's a simple but effective editor that is easy to learn. 

This appendix shows you how to use the QuickC editor. We don't cover all 
its capabilities; the manuals that accompany the compiler do that. Rather we 
cover the important features, which should be enough to get you started and 
enable you to write the program examples in this book. 

Starting the Editor 

678 

The editor is part of the QuickC integrated programming environment. To start 
QuickC, type qc at the DOS prompt, as described in Chapter 1. 

The cursor will be flashing in the upper-left corner of the view window. 
This is where you'll do your writing and editing. 

Type a few sentences. Press [Enter] to go to the next line down. Use the 
backspace key to delete mistyped characters. You can move around the screen 
by pressing the cursor keys. To insert text, move the cursor to the desired place 
and type the new text. The previous text will shift right to make room. 

One important difference between QuickC and a typical word processor is 
that QuickC has no automatic word wrap. When you reach the end of a line, the 
screen simply scrolls left to accommodate more characters. You can type up to 
256 characters on a line (although it's not clear why you would want to; usually 
you want to see the entire line at once). 

Another way QuickC differs from word processors is that you can move 
the cursor into the blank area to the left of text lines, or into blank lines, and 
start typing wherever the cursor is. This makes it easier to place material in 
columns (to line up comments, for example) without having to type a lot of 
spaces and tabs. Also, QuickC does not insert non-ASCII control characters into 
the file, the way such word processors as WordStar and WordPerfect do. These 
characters cannot be digested by the compiler, which requires a pure ASCII file. 



The QuickC Editor 

Getting Around the Menu System 
Commands to QuickC let you load and save files, cut and paste blocks of text, 
and search for particular text strings and perform other actions. Most com
mands to the QuickC editor are made by selecting items from menus. You can 
see the names of the menus-File, Edit, View, and so on-in the Menu bar, the 
highlighted line at the top of the screen. You select an item from a menu with 
the keyboard or a mouse. Although you don't need a mouse to use QuickC, if 
you have one you'll find that it performs many operations more conveniently 
than the keyboard. 

Using the Mouse to Select Menu Items 

If you have a mouse installed in your system, QuickC will automatically connect 
with it when you start the program. You'll see the mouse pointer-a small 
rectangle-in the upper-left corner of the screen. When you move the mouse, 
the pointer moves in unison on the screen. 

To see the selections on a menu, move the mouse pointer to the name of 
the menu on the menu bar. For instance, move it to the word "Files." Now press 
the left mouse button. (The left mouse button is used for almost all actions in 
QuickC). The menu will "drop down" from the menu bar. You'll see a list of 
commands: Open, Merge, Save, and so on. To select one of these commands, 
hold the mouse button down and drag the pointer down the menu until the 
command you want is highlighted. Then release the button. 

For example, suppose you've typed in a source file and you want to save it 
to disk. Place the mouse pointer on the File menu, press [Enter], and drag the 
pointer down to the Save as . . . option. Release the button and a window will 
appear. On the line provided, type the name you want to give your source file. 
There is a small box labelled "OK" in the window. When you've entered the file 
name correctly, move the mouse pointer to this box and press the mouse button 
once, quickly. This is called "clicking on" the box. The file will be saved and 
you'll find yourself back in the view window. 

Using the Keyboard to Select Menu Items 

To see the contents of a menu using the keyboard keys, hold down [Alt] and type 
the first letter of the menu's name. For example, to see what's on the file menu, 
type [Alt] [F]. (You can use upper- or lowercase letters.) To select a particular 
item from the menu, press the letter that's highlighted in that particular item. In 
most cases this will be the first letter of the selection, but if there's a conflict it 
may be another letter. 

For example, to save a file, select the file menu by pressing [Alt] [F]. Then 
press [A], which is the highlighted letter in the Save As ... option. Type in the 
file name and then press [Enter]. The file will be saved. The [A] key is used for 
Save As ... because the [S] key is assigned to the Save option. 

When boxes appear in response to a command, you select the appropriate 
option by typing the letter that's highlighted in the appropriate box. 

679 



Appendix H 

Exiting from the Editor 

Now that you know how to use the menus, you can exil from QuickC. Type [Alt] 
[F] to select the file menu, and press [X] to select the Exit option. Or, if you're 
using the mouse, drag the mouse pointer down to Exit. You'll find yourself back 
in DOS. If you haven't saved your file, a box will ask if you want to save it 
before exiting. 

Basic Editor Commands 

680 

At the heart of any editor are commands that move the cursor on the screen, 
scroll the screen, and insert and delete text. We've mentioned several of these 
already. Table H-1 provides a summary of the most useful of these commands. 
(The usage [Down] means the down cursor key, and so on.) 

Table H·1. Editor Commands 

Key Moves the Cursor 

[Left] one character left 
[Right] one character right 
[Down] one line down 
[Up] one line up 
[Ctrl] [Left] one word left 
[Ctrl] [Right] one word right 
[Home] to beginning of line 
[End) to end of line 
[Ctrl] [Home] to beginning of file 
[Ctrl] [End] to end of file 

Key Scrolls 

[Pg Up) up one screen 
[PgDn] down one screen 
[Ctrl] [W] up one line 
[Ctrl] [Z] down one line 

Key Insert and Delete 

[Ins] Toggles insert mode on/off 
[Ctrl] [NJ Inserts blank line 
[Backspace] Deletes character to left of cursor 
[Del] Deletes character under cursor 
[Ctrl] [T) Deletes word 
[Ctrl] [Y] Deletes line 

When you have insert mode toggled off, you type over any existing text, 
obliterating it in the process. When the insert mode is toggled on (the default), 
what you type is inserted between the letters of existing text. 



The QuickC Editor 

If you know the classic WordStar commands you'll find that you can 
substitute them for many of the commands shown above. In fact, you can use 
WordStar commands for most of the editing functions in QuickC. 

Using the Mouse to Move the Cursor 

If you want to move the cursor more than a few characters, it's usually easier to 
use the mouse than the keyboard commands. Move the pointer to the desired 
location, and click the left mouse button. The cursor will jump to the new 
location. 

Block Commands 

You can select a block of text-anything from a character to many pages-and 
perform various operations on it. Once it's selected, a block can be moved to a 
different place in the file, copied, deleted, or written to disk. 

Using the Mouse to Select Text 

Selecting a block of text with the mouse is easy. First, position the pointer at the 
beginning of the block, as described above. To select the text, hold down the 
mouse button and drag the pointer to the end of the block. As you move the 
pointer, the selected text is highlighted. If you want to go below the bottom line 
of text, move the pointer to the bottom of the screen. The text will scroll 
upward. 

When you've selected the text block, let go of the mouse button. The 
selected block will remain highlighted. 

There is a shortcut to selecting a single word with the mouse: move the 
pointer to the word and "double-click" on it by quickly pressing the left-hand 
mouse button twice. 

Using the Keyboard to Select Text 

To select text with the keyboard, move the cursor to the beginning of the block 
with the keyboard key commands. Now, hold down the [Shift] key, and use 
keyboard commands to move the cursor to the end of the block. For instance, 
you might hold down [Shift] and press [Down] until a paragraph is highlighted. 
You can use any of the common cursor control commands while [Shift] is being 
pressed. 

Operations on a Text Block 

Once the block of text is selected, you can perform the desired operation on 
it. 

To delete the block, select Clear from the Edit menu. The block is gone 

681 



Appendix H 

forever. If you want to replace marked text with new text, you don't need to use 
Clear; just start typing. The selected text will vanish, replaced with what you 
have just typed. 

To move a selected block of text to another location takes two steps. First, 
select Cut from the Edit menu. This deletes the selected block of text, but saves 
it in an internal buffer called the ClipBoard. Now move the cursor to the place 
you want the block to go and select Paste from the Edit menu. The text block 
will reappear in the new location. 

Copying a block of text is similar. Select Copy from the Edit menu. This 
writes the block to the ClipBoard, but does not delete it. Now move the cursor to 
the desired location and select Paste from the Edit menu. A copy of the text 
block will appear at the new location. 

The Clear, Copy, Cut, and Paste operations can also be activated using key 
combinations rather than selections from the edit menu. Once you learn it, 
typing the key combination is faster than making a menu selection, but it's 
harder to remember. The block commands are summarized in Table H-2. 

Edit Menu 

Clear 
Copy 
Cut 
Paste 

Table H-2. Text Block Operations 

Keyboard Shortcut 

[Del] 
[ Ctrl] [Ins] 
[Shift] [Del] 
[Shift] [Ins] 

Action 

Deletes block 
Saves block in ClipBoard 
Deletes block, saves it in ClipBoard 
Writes ClipBoard to cursor location 

File Handling 

682 

Files are manipulated from the File menu. If you don't specify a file name when 
you invoke QuickC, the file being edited is called untitled.c. To save a file under 
a different name, select Save As ... from the File menu. To save it under the 
name it already has, select Save. To insert a file from the disk into your file at 
the cursor position, select Merge . . . and enter the name of the file to be 
merged. To open a file previously saved to disk, select Open . . . and enter the 
file name. To start work on a new file, select New. 

You can switch between two files by using Open . . . to open file A, and 
then using Open ... again to open file B. (You can't exit from QuickC during 
this process.) Now if you're working on A, you can immediately shift to B by 
selecting Select Last File and vice versa. This is useful if you're comparing files, 
for example. The [F2] key provides a shortcut to Select Last File. Table H-3 lists 
the file-handling options. 

Printing Files 

To print a file, select Print from the File menu. 



The QuickC Editor 

Table H-3. File-Handling Options 

File Menu 

New 
Open ... 
Open last file 
Merge ... 
Save 
Save as ... 

Searching and Replacing 

Action 

Opens a new file 
Opens named file 
Opens previous file 
Loads named file at cursor position 
Saves file, using current name 
Saves file, asks for new name 

To search for an arbitrary text string, select Find from the Search menu. When 
it prompts you, enter the string to be searched for. This command will find the 
first occurrence of the string. To find subsequent occurrences of the same 
string, select Repeat Last Find from the Edit menu or use the shortcut key [F3]. 

You can also select a block of text and search for it using the Selected Text 
option in the Edit menu. The block selected must all be on the same line. Again, 
to find subsequent occurrences of the same text, select Repeat Last Find or press 
[F3]. 

To perform a search and replace, select Change ... from the Edit menu. 
Enter the string to be searched for, and the string to replace it, in the spaces 
provided. Table H-4 summarizes the search options. 

Table H-4. Search Commands 

Search Menu Commands 

Find 
Selected text 
Repeat last find 
Change ... 

Keyboard Shortcut 

[Ctrl] [\] 
[F3] 

Other QuickC Editing Commands 

Action 

Finds specified text 
Finds selected block of text 
Finds next occurrence 
Search and replace 

Here are some other useful commands you can give the editor. 

Place Markers 

You can place a marker in your text and then return immediately to the marker. 
You could use this feature to return quickly to the place in the listing where 
variables were declared, for instance. You can set up to four markers, numbered 
0, 1, 2, and 3. Type [Ctrl] [K], [O] to place marker 0, and [Ctrl] [Q], [O] to jump to 
marker 0. 

683 



Appendix H 

684 

Matching Braces 

Sometimes you can find an opening brace in a listing but lose sight of the closing 
brace that matches it. To find the closing brace, position the cursor on the 
opening brace and type [Ctrl]] (the Ctrl key and either bracket key). The cursor 
will move to the closing brace. Pressing [Ctrl] ] again takes you back to the 
opening brace. This works with braces {}, brackets [], parentheses ( ) , and angle 
brackets < > . 

Undo Command 

If you've made an editing mistake and you're still on the line the mistake is on, 
you can restore the original line by selecting Undo from the Edit menu or by 
typing [Alt] [Backspace]. You can't undo a line once the cursor has moved to a 
different line, though, and you can't restore a line deleted with [Ctrl] [Y]. (If you 
think you might want to restore a line, delete it by selecting Cut from the Edit 
menu.) 

Read-Only Mode 

If you want to browse through a listing, while being sure you don't alter it, you 
can select the Read Only option from the Edit menu. This locks out all insert 
and delete operations. 

DOS Shell 

You can call up a copy of DOS from within the editor by selecting DOS Shell 
from the File menu. Once in DOS you can display directories, copy files, and so 
forth. To return to the place you left off in QuickC, type "exit" at the DOS 
prompt. 



I 
Graphics Functions Reference 

This appendix summarizes the Microsoft C graphics functions, grouping them 
into categories. For a more complete description, see Chapter 12. Most 
arguments in these functions are of type short, so data types are not indicated 
unless they are a type other than short. 

Configuration 

_getvideoconfigC&config) get video mode information 
returned in videoconfig struct 
/* defined in graph.h */ struct videoconfig { 

short numxpixels; 
short numypixels; 
short numtextcols; 
short numtextrows; 
short numcolors; 
short bitsperpixel; 
short numvideopages; 

}; 

/* horiz pixels */ 
/* vert pixels */ 
/* text columns */ 
/* text rows */ 
/* actual colors */ 
/* bits per pixel */ 
/* video memory pages */ 

setvideomode(mode) set video mode 
DEFAULTMODE mode -1 restore screen to previous mode 
TEXTBW40 mode 0 40x25 CGA text -
TEXTC40 mode 1 4Dx25 CGA text, color 
TEXTBW80 mode 2 80x25 CGA text -

- TEXTC80 mode 3 80x25 CGA text, color 
MRES4COLOR mode 4 320x200 CGA graphics, 4 color 
MRESNOCOLOR mode 5 320x200 CGA graphics, 4 gray 
HRESBW mode 6 640x200 CGA graphics, B&W 

- TEXTMONO mode 7 80x25 MA text, B&W 

- MRES16COLOR mode 13 320x200 EGA graphics, 16 color 
HRES16COLOR mode 14 640x200 EGA graphics, 16 color 
ERESNOCOLOR mode 15 640x350 EGA graphics, B&W 
ER ES COLOR mode 16 640x350 EGA graphics, 64 color 
VRES2COLOR mode 17 640x480 VGA graphics, 2 color 
VRES16COLOR mode 18 640x480 VGA graphics, 16 color 

- MRES256COLOR mode 19 320x200 VGA graphics, 256 color 

_clearscreen(type) clear screen, viewport, or window 

685 



Appendix I 

type = GCLEARSCREEN 
type = _GVIEWPORT 
type = _GWINDOW 

clear screen 
clear viewport 
clear text window 

Coordinates 

Text 

(Upper-left corner is 0,0 in graphics coordinates) 

_getcurrentposition() returns current logical position CCP) 
returned in struct xycoords 

_getlogcoord(x,y) return logical coords of physical x,y 
returned in struct xycoords 

_setlogorgCx,y> 

_getphyscoordCx,y) 

set logical origin to physical x,y 
previous x,y in struct xycoords 

return physical coords of logical x,y 
returned in struct xycoords 

struct xycoord { 
short xcoord; 
short ycoord; 

}; 

/* defined in graph.h */ 
/* x coordinate returned */ 
/* y coordinate returned */ 

(Upper-left corner is 1,1 in text coordinates) 

_settextcolor(color) 
color = _gettextcolor() 
_setbkcolorClong color) 
_settextposition(row,col) 

_gettextposition() 

struct rccoord { 
short row; 
short col; 

}; 

_outtextCchar far *string) 
_settextwindowCr1,c1,r2,c2) 
_wraponCwrapOption) 

GWRAPON 
GWRAPOFF 

set text color C0-15) 
get text color C0-15) 
set text background C0-8) 
set text position 

previous pos in struct rcoord 
get current text position 

returned in struct rcoord 
I* defined in graph.h */ 
/* text row */ 
/* text column */ 

output at current position, color 
define text window 
clip or wrap line at window border 
clip line at window border 
wrap line at window border 

Viewports and Clipping 

686 

_setcliprgnCx1, y1, x2, y2) 
_setviewportCx1, y1, x2, y2) 

define clipping region 
define graphics viewport 



Color 

_setcolorCcolorNumber) 
color = _getcolor() 

Graphics Functions Reference 

set color 

long color = _getbkcolor<> 
_setbkcolorClong color) 
_selectpalette(paletteNumber> 
_remappalette(value, long color) 
_remapallpaletteC&colors) 

get color at pixel x,y 
get background color 
set background color 
select color palette 
reassign value to color 
reassign all values 
array of new values long colors[16J; 

Pixel Values and VGA Constants 

Color Pixel Value Constant VGA Value 

Black 0 _BLACK OxOOOOOOL 
Blue 1 _BLUE Ox2aOOOOL 
Green 2 _GREEN Ox002aOOL 
Cyan 3 _CYAN Ox2a2aOOL 
Red 4 _RED Ox00002aL 
Magenta 5 _MAGENTA Ox2a002aL 
Brown 6 _BROWN Ox00152aL 
Light gray 7 _WHITE Ox2a2a2aL 
Dark gray 8 _GRAY Ox151515L 
Light blue 9 _LIGHTBLUE Ox3f1515L 
Light green 10 _LIGHTGREEN Ox153f15L 
Light cyan 11 _LIGHTCYAN Ox3f3f15L 
Light red 12 _LIGHTRED Ox15153fL 
Light magenta 13 _LIGHTMAGENTA Ox3f153fL 
Yellow 14 _LIGHTYELLOW Ox153f3fL 
White 15 _LIGHTWHITE Ox3f3f3fL 

CGA Palettes 

Pixel Value 
Palette 0 1 2 3 

CGAO Backgrnd Green Red Brown 
CGA 1 Backgrnd Cyan Magenta Light gray 
CGA2 Backgrnd Light green Light red Yellow 
CGA3 Backgrnd Light cyan Light magenta White 

687 



Appendix I 

Drawing 

Fill 

_setpixeLCx,y) 
color = _getpixeLCx,y) 
_movetoCx,y) 
_LinetoCx,y> 

_rectangleCfill, x1, y1, x2, y2) 
fill= GFILLINTERIOR 
fill= GBORDER 

_arcCx1,y1,x2,y2,x3,y3,x4,y4) 

_ellipseCfill,x1,y1,x2,y2) 

f i LL = 
fil L = 

GFILLINTERIOR 
GBORDER 

_pieCfill,x1,y1,x2,y2,x3,y3,x4,y4) 

f i LL = 
f i LL = 

GF I LLINTERIOR 
GBORDER 

set pixel to current color 
get color value of pixel 
move Current Position to x,y 
draw Line from CP to x,y 

draw rectangle 
fill with current color 
don't fill 

draw arc bounded by 
rectangle x1,y1,x2,y2 
from vector x3,y3 to x4,y4 

draw ellipse bounded by 
rectangle x1,y1,x2,y2 
fill ellipse 
don't fill ellipse 

draw pie-slice bounded by 
rectangle x1,y1,x2,y2 
from vector x3,y3 to x4,y4 

fill pie-slice 
don't fill pie-slice 

_getfillmaskCunsigned char far *mask) 
_setfillmaskCunsigned char far *mask) 
_floodfiLLCx,y,boundaryColor> 
_setlinestyleCunsigned short mask) 
unsigned short mask = _getlinestyle() 

set fill pattern array 
get fill pattern array 
fill inside area 
set Line to bits of mask 
returns mask 

Storing Images in Memory 

Cursor 

688 

_getimageCx1,y1,x2,y2, char far *buff) 
_putimageCx,y, char far *buff, action) 

action = GPSET 
action = _GPRESET 
action = _GANO 
action = GOR 
action = _GXOR 

Long size= _imagesizeCx1,y1,x2,y2) 

store image in buffer 
get image from buffer 

erase existing pixel 
invert new pixels 
point by point AND 
point by point OR 
point by point XOR 

bytes needed for image 

_displaycursorCtoggle> 
GCURSORON 
GCURSOROFF 

restore cursor at exit from graphics 
restore cursor at exit 
Leave cursor off at exit 



Pages 

_setactivepage(page) 
_setvisualpage(page) 

Graphics Functions Reference 

set page to accept graphics output 
set page to be displayed 

689 



Answers to Questions and Exercises 

Chapter 1 
Answers to Questions 

690 

1. band d 

2. compiled, linked, and executed 

3. a and c are both correct 

4. functions 

5. The parentheses following main() indicate that "main" is a function and 
provide a place to put arguments. 

6. a and b 

7. False: only the semicolon signals the end of a statement. 

8. Here's what's wrong with the example: 

a. no parentheses following main 

b. parentheses used instead of braces around body of program 

c. "print" used instead of "printf" 

d. no parentheses surrounding printf()'s argument 

e. no semicolon at the end of the statement 

f. program statement not indented 

9. On the left there is a string which will be printed; on the right is a series 
of constants (or variables) which will be placed in the string. 

10. The output is: 

one 



Answers to Questions and Exercises 

Chapter 1 

two 
three 

Suggested Answers to Exercises 

Exercise 1 

Here's one possibility, although there are others: 

mainO 
{ 

} 

printfC"Mr. %s is %d,", "Green", 42); 
printfC"Mr. %sis %d.", "Brown", 48>; 

Exercise 2 

mainO 
{ 

printfC"%c, %c, and %c are all letters.", I I 
a I lbl I 'c'>; 

} 

Chapter 2 
Answers to Questions 

1. a, b, and care correct. 

2. character (char), integer (int), floating point (float), long integer (long), 
and double-precision floating point (double) 

3. a, b, and d are correct; there is no type "double float," except in ice 
cream parlors. However, long float is the same as double. 

4. True 

5. four 

6. - 32768 to 32767 

7. d 

8. False: it can hold numbers 65,536 times as large. 

9. b and c are correct 

691 



Chapter 2 

692 

10. 1 \x41' prints 1 A' and 1 \xEO'prints the Greek letter alpha. 

11. decimal exponential 

a. 1,000,000 1.0e6 

b. 0.000,001 1.0e-6 

c. 199.95 1.9995e2 

d. -888.88 -8.8888e2 

12. exponential decimal 

a. 1.5e6 1,500,000 

b. 1.5e-6 0.000,001,5 

c. 7.6543e3 7,654.3 

d. - 7.6543e-3 -0.007,654,3 

13. There's no address operator preceding the years variable in the scanf() 
function. 

14. d 

15. True 

16. a and c 

17. number++; 

18. usa += calif; 

19. '\t' is the tab character, '\r' is the return character which prints a 
carriage return (but no linefeed), not to be confused with the newline 
character, '\n', which prints both a carriage return and a linefeed. 

20. d 

21. False 

22. b 

23. a. 1 > 2 false 

b. 'a' < 'b' true (the ASCII codes are compared) 

c. 1 = = 2 false 

d. 12' = = '2' true 



Answers to Questions and Exercises 

24. b 

25. No. The begin-comment symbol ( /* ) can't be used within a comment. 

Chapter 2 

Suggested Answers to Exercises 

Exercise 1 

/* age.c */ 
/* calculates age in minutes */ 
main 0 
{ 

} 

float years, minutes; 
printf<"Please type your age in years: "); 
scanf("%f", &years); 
minutes = years * 365 * 24 * 60; 
printf<"You are %.1f minutes old.\n", minutes); 

Exercise 2 

/* square.c */ 
/* finds square of typed-in number */ 
mainO 
{ 

} 

float square, number; 

printf<"Type in number to be squared: "); 
scanf("%f", &number); 
square = number * number; 
printf<"Square is: %f", number>; 

Exercise 3 

/* box2.c */ 
/* draws 4x4 box */ 
main() 
{ 

/* top line */ printf("\xC9\xCD\xCD\xBB\n"); 
printfC"\xBA \xBA\n"); 
printfC"\xBA \xBA\n"); 
printf("\xC8\xCD\xCD\xBC\n"); 

/* two spaces in the middle */ 
/* ditto */ 
/* bottom line */ 

} 

693 



Chapter 3 

Chapter 3 
Ans\r·1ers to Questions 

1. initialize, test, increment 

2. d 

3. semicolon 

4. b 

5. commas 

6. a 

7. False 

8. b 

9. deeply 

10. value 

11. a, b, c, and d are all correct 

12. True 

13. b 

14. b 

15. False: it causes a return to the beginning of the loop. 

Chapter 3 
Suggested Answers to Exercises 

694 

Exercise 1 

/* square.c */ 
/* prints out the square of the first 20 integers */ 
mainO 
{ 

int n; 
for Cn=1; n<21; n++) 

printfC"The square of %2d is %3d\n", n, n * n>; 
} 

Exercise 2 

/* charcnt2.c */ 
/* counts characters in a phrase typed in */ 
I* until period is typed*/ 
mainO 
{ 



Answers to Questions and Exercises 

} 

int count=O; 
printfC"Type in a phrase:\n"); 
while ( getcheO != '.') 

count++; 
printfC"\nCharacter count is %d", count); 

Exercise 3 

/* between.c */ 
/* tells how many Letters between two Letters */ 
main() 
{ 

char ch1, ch2; 
while (1) 

{ 

printfC"\n\nType first character: "); 
ch1 = getcheO; 
printfC"\nType second character: "); 
ch2 = getcheO; 
printfC"\nThere are %d characters between.", ch2-ch1-1 >; 
} 

} 

Chapter 4 
Answers to Questions 

1. b and c are both correct 

2. Yes, except for the keyword then, which doesn't exist in C. 

3. False 

4. c 

5. a-there is no conditional expression following else. 

6. Yes: the compiler doesn't care if you put multiple statements on one line, 
although it is more difficult to read. 

7. False 

8. b 

9. d 

10. b 

11. No: colons must be used after the case statements, and break statements 
are needed after the print£(} statements. 

12. False: break statements are not used if two cases trigger the same set of 
statements. 

695 



Chapter 4 

13. No: variables, such as temp, cannot be used in case expressions. 

14. d 

15. 0 

Chapter 4 
Suggested Answers to Exercises 

696 

Exercise 1 

/* speed.c */ 
I* prints appropriate response to user's speed */ 
mainO 
{ 

} 

int speed; 
printfC"Please type the speed you normally"); 
printfC"travel in a 55 mph zone: "); 
scanf( 11%d 11

, &speed>; 
if C speed > 75 ) 

printf("I'm taking you to headquarters, buddy."); 
else 

if (speed > 65 ) 
printfC"I'm gonna hafta write you up, mac."); 

else 
if (speed> 55 ) 

printf<"I'll let you off with a warning, this time."); 
else 

if (speed > 45 ) 
printf("Have a good day, sir."); 

else 
printfC"Can't you get the Lead out, buddy?"); 

Exercise 2 

/* checker2.c */ 
/* draws a checkerboard on the screen */ 
main() 
{ 

int XI YI Z; 
for Cy=1; y<=8; y++) 

for Cz=1; z<=3; z++) 
{ 

for Cx=1; x<=8; x++) 
if ( (x+y) % 2 == a ) 

/* stepping down screen */ 
/* 3 lines per square*/ 

/* stepping across screen */ 
/* even numbered square? */ 
/* print 6 rectangles */ 

printf("\xDB\xDB\xDB\xDB\xDB\xDB"); 
else 



} 

printfC" 
if Cy * z < 24 

pri ntfC"\n"); 
} 

II) ; 

Answers to Questions and Exercises 

/* print 6 blank spaces */ 
/* print newline, */ 
/* except on Last Line */ 

Exercise 3 

/* LinesX.c */ 
I* prints four crossed Lines on screen */ 
mainO 
{ 

} 

int XI Y; 
for Cy=1; y<24; y++) 

{ 

for Cx=1; x<24; x++) 
if ( x == y ) 

printf("\xDB"); 
else if ( x == 24 - y ) 

print fC"\xDB"); 
else if ( x == 12 ) 

printf("\xDB"); 
else if ( y == 12 ) 

printf("\xDB"); 
else 

printf("\xBO"); 
printf<"\n"); 
} 

Exercise 4 

/* LinesX2.c */ 

/* step down screen */ 

/* step across screen */ 
/*NW-SE diagonal?*/ 
/* print solid color */ 
/* SW-NE diagonal? */ 
/* print solid color */ 
/* vertical Line? */ 
/* print solid color */ 
/* horizontal Line? */ 
/* print solid color */ 

/* print gray */ 
/* next Line */ 

/* prints four crossed Lines on screen */ 
mainO 
{ 

} 

int x, Yi 
for Cy=1; y<24; y++) 

{ 

for Cx=1; x<24; x++) 
if < x==y : : x==24-y : : x==12 : : y==12 ) 

print fC"\xDB"); 
else 

printf("\xBO"); 
pri ntfC"\n"); 
} 

697 



Chapter 4 

Exercise 5 

/* circle.c */ 
/*draws quarter circle on screen*/ 
mainO 
{ 

} 

int x, y, rs; 
for Cy=1; y<24; y++) 

{ 

for <x=1; x<48; x++) 
{ 

rs = X*X + Y*Y; 
if ( rs < 420 && rs > 380 ) 

printf("\xDB"); 
else 

printfC" "); 
} 

printf("\n">; 
} 

Chapter 5 
Answers to Questions 

698 

1. All except b are valid reasons for using functions. Functions don't run 
faster than inline code or macros. 

2. True 

3. No: the call to the function must be terminated with a semicolon. 

4. False: you can return from a function by simply "falling through" the 
closing brace. 

5. char foo(float, float>; 
or 
char foo(float arg1, float arg2); 

6. No, the declarator at the start of the function should not be terminated 
with a semicolon. 

7. a and c 

8. False: functions commonly use local variables which are accessible only 
to the function in which they're defined. 

9. band c, although we won't learn about c until the chapter on pointers. 



Answers to Questions and Exercises 

10. a, b, d, and e 

11. No: the argument passed to the function is type int in the calling program 
but ty:pe float in the function. 

12. a 

13. many 

14. d 

15. c 

16. c 

17. substituted 

18. No: you can't have spaces in the left-hand part of the statement {the 
identifier). 

19. "EXP" is the identifier and "2.71828" is the text. 

20. a and bare both correct. 

21. a, b, and d 

22. No: the macro expands into the incorrect 

postage = rate*l + w + h 

23. inserted 

24. b, c, and d 

25. INCLUDE 

Chapter 5 
Suggested Answers to Exercises 

Exercise 1 

/* maxnum.c */ 
/* tells largest number in array typed in */ 
#include <stdio.h> /* for printf () */ 
#define MAXSIZE 20 I* size of array */ 
int maxnum(int[J, int); /*prototype*/ 

699 



Chapter 5 

700 

void mainCvoid) 
{ 

int list[MAXSIZEJ; 
int size = O; 
int num; 

do 
{ 

printfC"Type number: "); 
scanfC 11 %d 11

, &list [size]); 
} 

while C list[size++J != 0 >; 

I* start at element [QJ */ 
/* temp storage */ 

/* get list of numbers */ 

num = maxnum(list, size-1); /*get largest number*/ 
printfC"Largest number is %d", num); /* print it */ 

} 

/* maxnumO */ 
/* returns largest number in array */ 
int maxnumCint list[], int size) 
{ 

} 

int dex, max; 

max = list [QJ; 
for Cdex=1; dex<size; dex++) 

if C max < list[dexJ 
max= list[dexJ; 

return(max>; 

/* assume 1st element largest */ 
/* check remaining elements */ 
/* if one bigger, */ 
/* make it the largest */ 

Exercise 2 

/* times.c */ 
/* calculates difference between two times */ 
#include <stdio.h> /* for printf(), etc. */ 
float getsecsCvoid>; /*prototype*/ 

void mainCvoid) 
{ 

} 

float secs1, secs2; /* declare variables */ 

printfC"Type first time (form 12:22:55): "); 
secs1 = getsecsC>; 
printf("Type second Clater) time: "); 
secs2 = getsecsC>; 
printf("Difference is %.Of seconds.", secs2-secs1>; 

/* getsecsO */ 
/* gets time from kbd in hours-minutes-seconds format */ 



Answers to Questions and Exercises 

/* returns time in seconds */ 
float getsecs(void) 
{ 

} 

float hours, minutes, seconds; 

scanfC"%f:%f:%f", &hours, &minutes, &seconds>; 
return ( hours*60*60 + minutes*60 +seconds >; 

Exercise 3 

I* swapprog.c */ 
/* program to test swap function */ 
#include <stdio.h> /*for printf(), etc. */ 
void swap(void>; /* prototype */ 
int num1, num2; /*external variables*/ 

void main(void) 
{ 

} 

printfC"Enter two integers: "); 
scanf("%d %d", &num1, &num2>; 
printf("num1=%d num2=%d\n", num1, num2); 
printf("Swapping.\n"); 
swap(); 
printfC"num1=%d num2=%d\n", num1, num2>; 

/* swap() */ 
/* exchanges values of two external variables */ 
void swap(void) 
{ 

} 

extern int num1, num2; 
int temp; 

temp= num1; 
num1 = num2; 
num2 = temp; 

Exercise 4 

/* timesM.c */ 
/* calculates difference between two times */ 
/* uses macro */ 
#define HMSTOSECChrs,mins,secs) Chrs*3600 + mins*60 + secs) 

mainO 
{ 

float secs1, secs2; /* declare variables */ 

701 



Chapter 5 

} 

float hours, minutes, seconds; 
printfC"Type first time (form 12:22:55): "); 
scanf<"%f:%f:%f", &hours, &minutes, &seconds); 
secs1 = HMSTOSECChours, minutes, seconds); 
printfC"Type second Clater) time: "); 
scanfC"%f:%f:%f", &hours, &minutes, &seconds>; 
secs2 = HMSTOSECChours, minutes, seconds); 
printf("Difference is %.2f seconds.", secs2-secs1>; 

Chapter 6 
Answers to Questions 

1. c 

2. d 

3. type, name, size 

4. No: brackets are used in array declarations, not parentheses. 

5. The fifth element 

6. b 

7. d 

8. No: use j<MAX, and &pricesUJ. 

9. No: must use brackets following the name. 

10. c 

11. d 

12. external, static 

13. c and d 

14. sure 

15. array[l ][OJ 

16. address 

17. a 

18. a and c, which are the same thing. 

19. False: the function doesn't move the values stored in the array. 

20. c, although some other choices aren't clearly false. 

21. string, character. 

22. c 

23. null '\O'. 

24. gets( ) 

25. 9 (space must be left for the '\O' character). 

702 



Answers to Questions and Exercises 

26. True 

27. a 

28. &string[S] 

29. You can't use assignment statements with strings. 

30. strlen(name) 

Chapter 6 
Suggested Answers to Exercises 

Exercise 1 

/* temp.c */ 
/* averages one week's temperatures */ 
/* prints them out along with average */ 
main() 
{ 

} 

int temper[7J; 
int day, sum; 
for Cday=O; day<7; day++) 

{ 

/* array declaration */ 

/* put temps in array */ 

pri ntfC 11 Enter temperature for day %d: 11
, day); 

scanf( 11 %d 11
, &temper[dayl); 

} 

sum = O; 
for Cday=O; day<7; day++) 

{ 

/* calculate average */ 
/* and print temperatures */ 

printfC 11Temperature for day %dis %d.\n11
, day, temper[dayl); 

sum += temper[dayl; 
} 

pri ntfC 11Average is %d. 11
, sum/7); 

Exercise 2 

/* fl temp3. c */ 
/* averages arbitrary number of temperatures */ 
#define LIM 5 
mainO 
{ 

float temper[LIMJ; /* array declaration */ 
float sum=O.O; 
int num, day=O; 
printf("Enter temperature for day 0: 11 >; 
scanfC 11 %f 11

, &temper[Qkrt]); 
while ( temper[day++] > 0) /*put temps in array*/ 

{ 

703 



Chapter 6 

704 

printf<"Enter temperature for day %d: ", day); 
scanf("%f", &temper[dayJ); 
} 

num = day-1; 
for Cday=O; day<num; day++) 

/* number of temps entered */ 
/* calculate average */ 

sum+= temper[dayJ; 
printf("Average is %.1f", sum/num); 

} 

Exercise 3 

/* insert.c */ 
/* inserts a character into a string */ 
mainO 
{ 

char charac; 
char string[81J; 
int position; 
printf<"Type string [Return], character, position\n"); 
gets(string); 
scanfC"%c %d", &charac, &position>; 
strins(string,charac,position>; 
puts(string>; 

} 

/* strinsO */ 
/* inserts character into string */ 
strins(str,ch,n) 
char str[J, ch; 
int n; 
{ 

} 

char scratch[81J; 
strcpy( scratch, &str[n] >; 
str[n] = ch; 
strcpyC &str[n+1J, scratch >; 

Exercise 4 

/* rotate */ 

/* temporary space */ 
/* save 2nd half in scratch */ 
/* insert character */ 
/* shift 2nd half right */ 

/* prints all possible 
#include <stdio.h> 
#include <string.h> 
void rotate(void); 

rotations of a word */ 

char word[] = "medieval"; 
int Length; 

void mainCvoid) 
{ 

int k; 

/* for printf() */ 
/* for strlen() */ 
/* prototype */ 



Answers to Questions and Exercises 

length= strlen(word>; 
for Ck=1; k<=length; k++) 

{ 

rotate(); 
printfC 11 %d. Word=%s\n", k, word); 
} 

} 

/* rotate 0 *I 
/* rotates external string "word" one position */ 
void rotate(void) 
{ 

} 

int j ; 
char ch; 

ch = word [QJ; 
for Cj=O; j<length-1; j++) 

word[j] = word[j+1J; 
word[length-1J = ch; 

Chapter 7 
Answers to Questions 

1. band c 

2. a and c 

3. True 

/* save first char */ 
/* move other chars left */ 
/* one position */ 
/*put first char on end*/ 

4. False: we learned how to pass the addresses of arrays to functions in the last 
chapter. 

5. False: when a value is passed to a function, the value itself (not its address) 
is stored in the function's memory space. 

6. d 

7. c 

8. addresses, declare, indirection 

9. b 

10. Both a and d will work (provided they are known to the function where the 
reference is made). 

11. c 

12. *pointvar = *pointvar I 10; 

13. band d 

14. In the function's memory space 

705 



Chapter 7 

15. ptrj = &j; 

16. No: it should be scanf("o/od", pirx); 

17. a 

18. No: you can't increment an address, which is a pointer constant. 

19. Print the array elements: "4 5 6". 

20. 2 

21. Print the addresses of the array elements. 

22. Print the array elements: "4 5 6". 

23. Almost: the second creates a pointer as well as an array. 

24. The same amount, different amounts 

25. "I come not to bury Caesar" 

"I come not to bury Caesar" 

"to bury Caesar" 

26. 13 bytes: 11 for the string plus null character and 2 for the pointer to the 
string 

27. False: every row of a two-dimensional array can be considered to be a one-
dimensional array. 

28. arr7[1][1], *(*(arr+l)+l) 

29. d 

30. *(*(arr7+x)+y) 

Chapter 7 
Suggested Answers to Exercises 

706 

Exercise 1 

/* zerovars.c */ 
I* tests function which zeros three variables */ 
#include <stdio.h> /* for printf() */ 
void zero(int *, int *, int *); /*prototype*/ 

void main<void) 
{ 

int x=4, y=7, z=11; 

zero( &x, &y, &z >; 
printf("x=%d, y=%d, z=%d.", x, y, z>; 

} 

/* zeroO */ 
/*puts zero in three variables in calling program*/ 



Answers to Questions and Exercises 

void zeroCint *px, int *py, int *pz) 
{ 

} 

*PX = O; 
*PY = 0; 
*PZ = O; 

Exercise 2 

/* zeroarr.c */ 
/* tests function to zero array elements */ 
#include <stdio.h> /* for printf() */ 
void zero(int *, int); /*prototype */ 
#define SIZE 5 /* size of array */ 

void main(void) 
{ 

static int array[SIZE] = { 3, 5, 7, 9, 11 }; 
int j; 

zero(array, SIZE); /* call funct to add consts */ 
for Cj=O; j<SIZE; j++) /* print out array */ 

printf< 11 %d ", *(array+j) >; 
} 

/* zeroO */ 
/* zeros out elements of array in calling program*/ 
void zero(int *ptr, int num) 
{ 

} 

int k; 
for<k=O; k<num; k++) 

*(ptr+k> = O; 

Exercise 3 

/* zerostr.c */ 
/* tests function which puts null character in string */ 
#include <stdio.h> /* for printf () */ 
void zero<char *>; /* prototype */ 

void main(void) 
{ 

} 

char *phrase = "Don't test the river with both feet"; 

printf("Phrase=%s.\n", phrase>; 
zero(phrase>; 
printf("Phrase=%s.\n", phrase>; 

707 



Chapter 7 

/* zeroO */ 
/* function to put null character at start of string */ 
void zero(char *str) 
{ 

*str = 1 \0'; 
} 

Exercise 4 

/* mergarr.c */ 
/* adds elements of two arrays */ 
#define ROWS 4 
#define COLS 5 
main() 
{ 

int j, k; 
static int 

static int 

arr1[ROWS][COLSJ = 
{ { 13 I 15, 

{ 20, 22, 
{ 31, 33, 
{ 40, 42, 

arr2[ROWSJ[COLSJ = 
{ { 10, 11, 

{ 15 I 16, 
{ 20, 21 I 

{ 25, 26, 
int arr3[ROWSJ[COLSJ; 

17, 19 I 21 }, 
24, 26, 28 }, 
35, 37, 39 }, 
44, 46, 48 } }· 

' 

12, 13, 14 }, 
17 I 18, 19 }, 
22, 23, 24 }, 
27, 28, 29 } }; 

for(j=O; j<ROWS; j++) /* add arrays */ 

} 

for(k=O; k<COLS; k++) 
*(*(arr3+j)+k) = *(*(arr1+j)+k) + *(*(arr2+j)+k); 

for(j=O; j<ROWS; j++) /* print out new array */ 
{ 

for Ck=O; k<COLS; k++) 
pr i n t f( 11 %d 11 , * ( * (a r r 3 + j ) + k) ) ; 

printf( 11 \n 11 >; 
} 

Chapter 8 
Answers to Questions 

1. band c 

2. 256 

3. 2 

708 



Answers to Questions and Exercises 

4. False: key combinations such as [Alt] [z] can be represented as well. 

5. d 

6. band c 

7. a, b, and c 

8. a. The CONFIG.SYS file must be in the main directory and must contain 
the line DEVICE= ANSI.SYS. The ANSI.SYS file must be in the system. 

9. d is the most correct, although a case could be made for c. 

10. II \x1B[2Jll 

11. False: it can be moved immediately to any location. 

12. bold, blinking, underlined, reverse video 

13. 11 \xlB[C" 

14. False: it causes an exit from the entire program. 

15. num=atoi(str); 

16. True 

17. band d 

18. strcpy(str,"steeple"); 
strcat(str,"chase"); 

19. a, c, and d 

20. C>progl <fl.c >f2.c 

Chapter 8 
Suggested Answers to Exercises 

Exercise 1 

/* backsp.c */ 
/* prints letters, backspaces with left arrow key */ 
#define C_LEFT "\x1B[D" /* move cursor left */ 

709 



Chapter 8 

710 

#define L_ARRO 75 
main() 
{ 

char key; 
while C Ckey=getchO> != 'X' > 

i fC key == 0 ) 
{ 

if( getch() == L_ARRO ) 
{ 

} 

pri ntf CC_LEFT>; 
printfC" "); 
pri ntf CC_LEFT>; 
} 

/* left arrow key */ 

'* read keyboard */ 
'* if extended code, */ 

'* read second code *' 
'* if left arrow */ 
/* move cursor left *' 
'* print space over char *' 
'* reset cursor */ 

else 
putchCkey); /* not ext code, print char */ 

} 

Exercise 2 

/* decihex.c */ 
/* translates decimal number into hexadecimal */ 
/* uses command-line arguments */ 
mainCargc,argv) 
int argc; 
char *argv[J; 
{ 

} 

long num; 
if< argc != 2 ) 

printfC"Example usage: decihex 12811 >; 
else 

{ 

num = atolC *(argv+1) >; 
printfC"Hex=%x", num >; 
} 

Exercise 3 

/* braces.c */ 
/* checks if numbers of right and left braces are equal */ 
#define EOF '\x1A' 
mainO 
{ 

int left=O, right=O; 
char ch; 
while( Cch=getcheO> != EOF ) 

{ 

if{ ch== I {I ) 

left++; 



Answers to Questions and Exercises 

ifC ch=='}' ) 
right++; 

} 

if Cleft != right) 
printfC"\n\nMismatched braces\n">; 

} 

Exercise 4 

/* hiletter.c */ 
a phrase 

'* '* '* '* /* 

/* highlights letters in 
#include <stdio.h> 
#include <conio.h> 
#include <string.h> 
#define CLEAR "\x1B[2J" 
#define ERASE "\x1B[K" 
#define C_LEFT "\x1B[D" 
#define C_RITE "\x1B[C" 
#define START "\x1BE2;1f" 
#define L_ARRO 75 
#define R_ARRO 77 
#define REVERSE "\x1B[7m" 
#define NORMAL "\x1 B [Qm" 

'* '* '* /* 

'* '* '* 

*' for printf(), etc. */ 
for get ch 0 */ 
for strlenO */ 
clear screen */ 
erase line */ 
move cursor left */ 
move cursor right */ 
cursor at start of line */ 
left arrow key code */ 
right arrow key code */ 
reverse video attribute */ 
normal attribute */ 

void displayCchar *, int>; /* prototype */ 

void mainCvoid) 
{ 

} 

char key, phrase[80J; 
int curpos=O; /* position of hi lited char */ 

printf(CLEAR>; /* clear screen*/ 
puts("Type phrase:">; 
gets(phrase>; 
while C Ckey=getch() ) -- 0) /*quit of not ext code*/ 

{ 

key=getchC>; /*get extended code*/ 
switch Ckey) 

{ 

case L_ARRO 
if C curpos > 0 ) --curpos; break; 

case R_ARRO : 
if C curpos < strlenCphrase>-1 > ++curpos; break; 

} 

displayCphrase, curpos>; /*display phrase*/ 
} 

/*display() */ 
/* displays phrase, highlight at cursor position */ 

711 



Chapter 8 

void display(char *string, int position) 
{ 

} 

int j; 

pri ntfCSTART>; 
printf(ERASE); 
for(j=O; j<strlen(string); j++) 

{ 

if C j==position ) 
print fCREVERSE); 

printfC "%c", *(string+j) >; 
pri ntfCNORMAL>; 
} 

/* cursor to line start */ 
/* erase line */ 
/* one letter at a time */ 

/* if cursor position, */ 
/* reverse video */ 
/* print letter */ 
/* normal display */ 

Chapter 9 
Answers to Questions 

712 

1. same type, different types 

2. False: arrays are more appropriate for elements of the same type. 

3. b, c, and d are all correct 

4. st ruct xxx 
{ 

5. c 

char string[10J; 
int num; 
}; 

6. type, variable, value 

7. st ruct vehicle car; 

8. jim.arms = 2; 

9. st ruct body 
{ 

int arms; 
int legs; 
}jim; 

10. Yes, at least in modern compilers. 

11. a and b 



Answers to Questions and Exercises 

12. struct partners 
( 

struct body sandy; 
struct body pat; 
}; 

13. True (in modern compilers) 

14. struct book *ptrbook; 

15. a and d. This expression will also work. 

(*addweath).temp 

16. a free section of memory 

17. memory 

18. next structure 

19. False: the sizeof{) function returns the size of a data type. 

20. d 

21. union intstr 
{ 

char string[10J; 
int num; 
}; 

22. Read-Only Memory Basic Input/Output System 

23. d 

24. True 

25. d 

26. AX, BX, ex, DX 

27. AH,AL,BH,BL,CH,CL,DH,DL 

28. band c 

29. d 

30. False: there is a ROM service routine that returns the memory size. 

713 



Chapter 9 

Chapter 9 
~I ll"lt'U:.5torl A n~IAlftP.r" ·- c--.. -=--
""'-~~- "-"' 1""'111~ww~1 ~ 'V L.ACI \,l~C~ 

714 

Exercise 1 

/* date.c */ 
/* demonstrates structure to hold date */ 
main() 
{ 

struct date 
{ 

int month; 
int day; 
int year; 
}· I 

struct date today; 

today.month = 12; 
today.day= 31; 
today.year = 88; 

printf("date is %d/%d/%d", 
today.month, today.day, today.year >; 

} 

Exercise 2 

/* date2.c */ 
/* demonstrates passing structure to function */ 
#include <stdio.h> /* for printf() */ 

struct date /* structure definition */ 
{ 

int month; /* structure members */ 
int day; 
int year; 
}; 

void prindate(struct date mmddyy); /* prototype (follows */ 

void main(void) 
{ 

} 

struct date today; 

today.month = 12; 
today.day= 31; 
today.year = 88; 
prindate(today); 

/* struct def) */ 

/* structure variable */ 

/* give values to */ 
/* structure variables */ 

/* print date from structure */ 



Answers to Questions and Exercises 

/* prindateO */ 
/* prints date passed via structure */ 
void prindate(struct date mmddyy) 
{ 

printf("date is %d/%d/%d", 
mmddyy.month, mmddyy.day, mmddyy.year >; 

} 

Exercise 3 

/* book.c */ 
/* demonstrates nested structures */ 
#include <stdio.h> /* for printf() */ 
#include <string.h> /* for strcpy() */ 

struct date 
{ 

int month; 
int day; 
int year; 
}; 

struct book 
{ 

char title[30J; 
struct date duedate; 
}; 

void prinbook(struct book bk); 

void main(void) 
{ 

/* structure for date */ 

I* structure for book */ 

I* prototype */ 

char *thistitle = "Day and Knight"; 
struct book thisb; 

} 

struct date today; 

strcpy(thisb.title,thistitle); 
thisb.duedate.month = 12; 
thisb.duedate.day = 31; 
thisb.duedate.year = 89; 
prinbookCthisb); 

/* put title in struct */ 
/* put date in struct */ 
I* day */ 
I* year */ 
/* print out structure */ 

/* prinbookO */ 
/* prints book info passed via structure */ 
void prinbookCstruct book bk) 
{ 

printfC"Title: %s\n", bk.title >; 
printfC"Due date: %d/%d/%d 11

, 

bk.duedate.month, bk.duedate.day, bk.duedate.year >; 
} 

715 



Chapter 9 

716 

Exercise 4 

/* position2.c */ 
/* demonstrates ROM 'cursor position' service */ 
#include "dos.h" 
#define TRUE 1 
#define CLEAR "\x18[2J" 
#define ERASE "\x1B[K" 
#define VIDEO Ox10 
#define SETC 2 
main() 
{ 

union REGS regs; 
int row=1, col=1; 
pri ntfCCLEAR); 
while ( TRUE ) 

{ 

/* clear screen */ 
/* erase line */ 

regs.h.ah = SETC; /* 'set cur pos' service */ 
regs.h.dh = 22; /* row in DH */ 
regs.h.dl = O; /* column in DL */ 
int86CVIDEO, &regs, &regs); /* call video services */ 
printf(ERASE); /*erase line*/ 
printfC"Type row and column number (form 10,40>: "); 
scanfC 11%d,%d 11

, &row, &col>; /*get coordinates */ 
regs.h.ah = SETC; /* 'set cur pos' service*/ 
regs.h.dh = row; /* row in DH */ 
regs.h.dl = col; /* column in DL */ 
int86CVIDEO, &regs, &regs); /* call video services */ 
printf<"*(%d,%d)", row, col>; /*print coordinates*/ 
} 

} 

Exercise 5 

/* agent4.c */ 
/* maintains list of agents 
/*can search for skills*/ 
#include <stdio.h> 
#include <conio.h> 
#include <string.h> 
#define TRUE 1 
void newname(void); 
void search(char *); 
int instrCchar *, char*); 

struct personel 
{ 

char name [30J; 
int agnumb; 
float height; 

in memory */ 

'* for printfO, etc *' 
'* for get ch 0 */ 
'* for strcmpO, etc *' 

'* prototypes */ 

/* define data structure */ 

/* name */ 
I* code number */ 
/* height in inches */ 



Answers to Questions and Exercises 

char ski LL [80]; 
}; 

struct personel agent[SOJ; 
int n=O; 

void main(void) 
{ 

char ch, inskill[20J; 

while <TRUE) 
{ 

/*special skills*/ 

/* array of 50 structures */ 
/* number of agents */ 

/* print */ printf<"\nType 'e' to enter new agent,"); 
printf("\n 'L' to List all agents,"); 
printf<"\n 's' to search for skills: "); 
ch = getcheO; 

/* selections */ 

/* get choice */ 
switch (ch) 

{ 

case 'e': /*enter new name*/ 
newname(); break; 

case 'L': /* List all agents*/ 
search('\O'>; break; /* (all contain '\0') */ 

case 's': /* List agents with ski LL*/ 
printf<"\nEnter skill to be searched for: "); 
gets(inskill>; /*get skill */ 
search(inskill); break; /* List those agents*/ 

default: /* user mistake */ 
puts("\nEnter only selections Listed"); 

} /* end switch */ 
} /*end while*/ 

} /* end main */ 

/* newnameO */ 
/* puts a new agent in the database */ 
void newname(void) 
{ 

printf<"\nRecord %d.\nEnter name: ",n+1); /*get name*/ 
gets(agent[nJ.name>; 
printf<"Enter agent number (3 digits): "); /*get number*/ 

/* get height */ 
scanf( 11 %d 11

, &agent[nJ.agnumb); 
printf<"Enter height in inches: "); 
scanf( 11%f 11

, &agent[nJ.height); 
fflush(stdin); 
printf<"Enter skills Cone Line):"); 
gets(agent[n++J.skiLL>; 

/* clear buffer */ 
/*get skills*/ 

} 

/* search() */ 
/*search database for agents with Listed skill*/ 
void search(char *inskill) 
{ 

int j; 

717 



Chapter 9 

} 

if Cn < 1) /* check empty list */ 
printf("\nEmpty list.\n">; 

for Cj=O; j < n; j++) /* search list */ 
ifC instrCagent[jJ.skill, inskilL> >= 0 > 

{ /*if agent has skill*/ 
printfC"\nRecord number %d\n", j+1>; /*list agent*/ 
printfC" Name: %s\n", agent[jJ.name>; 
printfC" Agent number: %03d\n", agent[jJ.agnumb); 
printfC" Height: %4.2f\n", agent[jJ.height>; 
printfC" Skills: %s\n", agent[jJ.skiLL>; 
} 

/* instrO */ 
I* returns position of word in sentence */ 
int instrCchar *sent, char *word) 
{ 

} 

int n, slen, wlen; 

slen = strlenCsent>; /* length of sentence */ 
wlen = strlenCword>; /* length of word */ 
forCn = O; n <= slen-wlen; n++) /* move along sentence */ 

/* to wlen from end */ 
if C strncmp(sent+n, word, wlen) == 0 ) 

return(n); /*match, return index */ 
returnC-1>; /*no match, return -1 */ 

Chapter 10 
Answers to Questions 

1. a. 00000001, 

b. 11111000, 

c. 0001001000110100, 

d. 1111110000001010 

2. b 

3. False: the bitwise operators treat variables as sequences of bits. 

4. c 

5. mask 

6. c 

7. d (since the sign bit will be shifted in on the left) 

718 



Answers to Questions and Exercises 

8. combine 

9. segment, offset 

10. b 

11. a and b are equivalent and both are correct 

12. absolute 

13. four 

14. d 

15. True 

16. faster 

17. b 

18. False: the pointer must be typecast: 

farptr = (int far *) OxA1001234; 

19. a, b, c, and d are all correct 

20. True 

21. c and d are both true 

22. bits, groups of bits 

23. a, c, and d are all correct 

24. OxBOOOO, OxBOF9F 

25. a, b, c, and d are all correct 

Chapter 10 
Suggested Answers to Exercises 

Exercise 1 

/* exortest.c */ 
/* demonstrates bitwise EXCLUSIVE OR operator */ 

719 



Chapter 10 

720 

#define TRUE 1 
mainO 
{ 

} 

unsigned char x1, x2; 
whileCTRUE) 

{ 

printf("\nEnter two hex numbers (ff or less, example 'cc 7 1
): "); 

scanf("%x %x", &x1, &x2>; 
printf("%02x "%02x = %02x\n", x1, x2, x1 "x2 >; 
} 

Exercise 2 

/* bintohex.c */ 
/* converts binary number typed by user to hex and decimal */ 
#define TRUE 1 
mainO 
{ 

} 

int count, ans; 
char ch; 
whileCTRUE) 

{ 

printfC"Type binary numberCterminate with spacebar):\n">; 
count=O; ans=O; 
while( count++< 16) 

{ 

if( Cch=getche()) == 'O' > 
ans <<= 1; 

else if( ch== '1') 
ans= Cans << 1) + 1; 

else break; 
} 

printfC"= %x Chex) = %u Cdec)\n\n", ans, ans >; 
} 

Exercise 3 

I* ddraw.c */ 
/*moves cursor on screen, leaves trail*/ 
/*uses direct display memory access */ 
#define COMAX 80 
#define ROMAX 25 
#define L_ARRO 75 
#define R_ARRO 77 
#define U_ARRO 72 



Answers to Questions and Exercises 

#define D_ARRO 80 
#define ACROSS 205 
#define UPDOWN 186 
#define BOX 219 
#define TRUE 1 
int far *farptr; 
int col=40, row=12; 
mainO 
{ 

char ch; 

/* insert position */ 

farptr = (int far *) OxBOOOOOOO; /* start of screen mem */ 
clear(); /* clear screen */ 
while(TRUE) 

{ 

if ( (ch=getch()) -- 0 ) 
{ 

/* if char is 0 */ 

ch= getchO; 
switchCch) 

/* read extended code */ 

{ 

case R_ARRO: i fCcol<COMAX) ++col; ch=ACROSS; break; 
case L_ARRO: if (co l>O> --col; ch=ACROSS; break; 
case D_ARRO: if(row<ROMAX) ++row; ch=UPDOWN; break; 
case U_ARRO: i fC row>O> --row; ch=UPDOWN; break; 
default: ch=BOX; /* rectangle at corners *' 

} 

} 

} 

insert(ch); 
} 

/* insert char */ 

/*add clear() function from wpro1.c */ 

Exercise 4 

Start with wpro2.c. Add the following line to the #define section: 

#define CTR_BK 127 /* [CtrlJ and backspace keys */ 

Add a line to the second switch section so it looks like this: 

switch(ch) 
{ 

case BK_SPC: if(col>O) delete(); break; 
case CTR_BK: if(col>1) delword(); break; 
default: ifClength<COMAX) insertCch,attr); 
} 

Then add the following function: 

/* delword */ 

721 



Chapter 10 

/* deletes word to left of cursor position */ 
de lword 0 
{ 

} 

/*while not space, */ 
while( (*(farptr+col-1) & OxFF) !=' ' && col> 0) 

deleteO; /* del char to left */ 
ifCcol > 0) 

delete(); /* delete space */ 

Chapter 11 
Answers to Questions 

1. resolution, text/graphics, number of colors, monitor type, display adaptor 
type, memory size, number of pages, memory starting address 

2. d 

3. 4, 8 

4. b 

5. ROM BIOS routine, direct memory access 

6. blue, green, red, intensity 

7. all four choices 

8. 4 

9. d 

10. b 

11. sixteen (including black) 

12. a 

13. False 

14. band c 

15. color 

16. a 

17. On each bit plane, eight. 

18. None is correct; a single bit plane cannot represent cyan. 

19. bit 

20. d 

21. read 

22. c 

23. False 

24. b 

25. move 

722 



Answers to Questions and Exercises 

Chapter 11 
Suggested Answers to Exercises 

Exercise 1 

/* fillco.c */ 
/*fills screen with color*/ 

mainO 
{ 

char far *farptr; 
int j; 
char cocon; 
char color[20J; 
printfC"Type black, cyan, magenta or white: "); 
gets(color); 

} 

switch Ccolor[QJ) 
{ 

I I co con = Ox55; break; case c : 
case I m I co con = OxAA; break; : 

I I = Ox FF; break; case w : co con 
default: co con = OxOO; break; 
} 

farptr = (int far *) OxB8000000; 
forCj=O; j<Ox3F3F; j++) 

*(farptr+j) = cocon; 

Exercise 2 

/* conrect2.c */ 
/* draws concentric rectangle of different colors */ 
void rect(int, int, int, int, unsigned char); /* prototypes */ 
void putpt(int, int, unsigned char); 

void mainCvoid) 
{ 

int z; 
for<z=SO; z>=10; z-=10) 

rectC100-z, 100+z, 160-z, 160+z, (z/10)%4); 
} 

/* rect 0 */ 
/* draws rectangle on screen using putpt() */ 
void rect(int top, int bot, int left, int rite, 

unsigned char color) 
{ 

int XI Yi 
forCy=top; y<=bot; y++) 

723 



Chapter 11 

724 

} 

forCx=left; x<=rite; x++) 
putpt(x,y,color>; 

/* putpt 0 */ 
/* displays point at location col, row */ 
#define BYTES 40 /* (bytes per row) I 2 */ 
#define PIX 4 /* pixels per byte */ 
void putpt(int col, int row, unsigned char color) 
{ 

} 

int addr, j, bitpos; 
unsigned int mask=OxFF3F; /* 11111111 00111111 */ 
unsigned char temp; 
unsigned char far *farptr; /* to hold screen address */ 
farptr = <char far *) OxB8000000;/* set ptr to screen addr */ 

/* calculate offset address of byte to be altered */ 
addr = row*BYTES + col/PIX; /* calculate address */ 
if(row & 1) /* if odd row number */ 

addr += 8152; /* use 2nd memory bank */ 

/* shift two-bit color & mask to 
color <<= 6; 
bitpos = col & Ox03; 
for(j=O; j<bitpos; j++) 

{ 

mask >>= 2; 
color >>= 2; 
} 

appropriate place in byte */ 
/* put color on left */ 
/* get lower 2 bits */ 
/* shift mask & color */ 
/* to right */ 
/* bitpos times */ 

/* put two color bits in screen memory location */ 
temp = *(farptr+addr) & Cchar)mask; /* and off color bits */ 
*(farptr+addr) = temp I color; /* or on new color */ 

Exercise 3 

/* arrow.c */ 
/* draws arrow, which 
#include <conio.h> 
#define MAXC 320 
#define MAXR 200 
#define RED 2 
#define BLACK 0 
#define L_ARRO 75 
#define R_ARRO 77 
#define U_ARRO 72 
#define D_ARRO 80 

moves as directed by cursor keys */ 
/* for getchC> */ 
I* horizontal resolution */ 
/* vertical resolution */ 
I* 2-bit color values */ 

/* cursor control keys */ 

void drawarro(int, int, unsigned char); /* prototypes */ 
void putpt(int, int, unsigned char); 



Answers to Questions and Exercises 

void main(void) 
{ 

} 

int x=160, y=100; 
int dx=4, dy=4; 
int nux=160, nuy=100; 
int ch; 

drawarro<x, y, RED); 
while( getch<>==O 

{ 

ch = getchO; 
switch(ch) 

{ 

case R_ARRO: 
case L_ARRO: 
case U_ARRO: 
case D_ARRO: 
} 

nux 
nux 
nuy 
nuy 

= x 
= x 
= y 
= y 

drawarro(x, y, BLACK); 
drawarro(nux, nuy, RED); 
x=nux; y=nuy; 
} 

+ dx; 
- dx; 
- dy; 
+ dy; 

/* starting location */ 
/* speed to move arrow */ 
/* new position */ 
I* keyboard char */ 

I* draw initial arrow */ 
/* exit if not ext code */ 

I* read extended code */ 
I* change new coords */ 

break; 
break; 
break; 
break; 

/* erase old arrow */ 
/* draw new arrow */ 
/* make old = new */ 

/* drawarroO */ 
/* draws arrow 16x16 pattern. Upper-left corner at col, row */ 
void drawarro(int col, int row, unsigned char color) 
{ 

} 

unsigned int mask; 
int x, y, dotpat; 

static unsigned int arro[16J = 
{ Ox03FF, Ox01FF, 

OxOOFF, Ox01FF, 
Ox0FE3, Ox1FC1, 
OxFEOO, Ox7COO, 

for(y=O; y<16; y++) 
{ 

dotpat = arro[yJ; 
mask = Ox8000; 
for<x=O; x<16; x++) 

{ 

/* picture of arrow */ 
OxOOFF, Ox007F, 
Ox03FF, Ox07F7, 
Ox3F80, Ox7FOO, 
Ox3800, Ox1000 }; 

/* each of 16 rows */ 

/* pattern for this row */ 
/* one-bit mask on left */ 
/* each of 16 columns */ 

if(mask & dotpat) /* if part of pattern */ 
putpt(col+x, row+y, color>; /*draw dot */ 

mask>>= 1; /* move mask right */ 
} 

} 

725 



Chapter 11 

726 

/* put pt 0 */ 
/*displays point at Location col, row */ 
#define BYTES 40 /* (bytes per row) I 2 */ 
#define BANK 8192-BYTES /* 2nd bank - one row */ 
void putptCint col, int row, unsigned char color) 
{ 

int addr, j, bitpos; 
unsigned int mask=OxFF3F; 
unsigned char temp; 

'* 11111111 00111111 *' 

unsigned char far *farptr; /* 
farptr = (char far *) OxB8000000;/* 
addr = row*BYTES + Ccol >> 2); /* 
i f( row & 1 ) I* 

addr += BANK; /* 
color <<= 6; /* 
bitpos = col & Ox03; /* 
forCj=O; j<bitpos; j++) /* 

{ /* 
mask >>= 2; /* 
color >>= 2; 
} 

to hold screen address */ 
set ptr to screen addr */ 
calculate address *I 
if odd row number */ 
use 2nd memory bank */ 
put color on Left */ 
get Lower 2 bits */ 
shift mask & color */ 

2 bits right */ 
bitpos times */ 

temp = *(farptr+addr) & Cchar)mask; /* AND off color bits */ 
*(farptr+addr) = temp I color; /* OR on new color */ 

} 

Exercise 4 

/* bar.c */ 
/* draws bargraph; for EGA mode 14 C640x200) */ 
#include <conio.h> /* for outp() */ 
#define BLUE 1 /* EGA colors */ 
#define GREEN 2 
#define YELLOW 14 
#define RED 4 
#define !WHITE 15 
void rectCint, int, int, int, unsigned char>; /* prototype */ 

int data[16J = /* height of bars */ 
{ 25,85,50,100,125,150,180,140,70,170,80,35,70,90,110,30 }; 

void mainCvoid) 
{ 

int count; 
unsigned char color; 

forCcount=O; count<16; count++) 
{ 

if(data[countl<40) color = BLUE; 

/* once for each bar */ 

else ifCdata[countl<80) color = GREEN; 
else if(data[countl<120) color = YELLOW; 
else if(data[countl<160) color = RED; 



Answers to Questions and Exercises 

} 

else color = !WHITE; 
rectC200-data[countJ,190,count*40,count*40+20,color>; 
} 

/* rect 0 */ 
/* draws rectangular, mode 14 C640x200) */ 
/* rectangle must be integral number of bytes wide */ 
#define MAXB C640/8) /* bytes in a row */ 
void rectCint top, int bot, int left, int rite, 

unsigned char color) 
{ 

unsigned char far *farptr; 
int row, byte; 
outpCOx3C4,2); /* set address in sequencer */ 
outpCOx3CS,color>; /* set color in map mask*/ 
farptr = (unsigned char far *)OxAOOOOOOO; /* ptr EGA mem */ 
forCrow=top; row<=bot; row++) 

forCbyte=left/8; byte<rite/8; byte++) 
*(farptr + row*MAXB + byte ) = Oxff; /* set 8 pixls */ 

} 

Exercise 5 

/* ediag.c */ 
/* draws diagonal lines on screen. Use mode 13 C320x200) */ 
/* uses EGA write mode 2 */ 
#include <conio.h> 
#define BLUE Ox01 
#define YELLOW OxOE 
#define RED Ox04 
#define BLACK 0 

/* for outpO */ 
/* ega colors */ 

void putpte(int, int, unsigned char); /*prototype*/ 

void mainCvoid) 
{ 

} 

int x; 
forCx=O; x<200; x++) 

{ 

putpteCx,x,BLUE); 
putpteCx,199-x,YELLOW>; 
putpteCx,100,RED>; 
putpteC100,x,BLACK); 
} 

/* putpteO */ 

/* diagonal line */ 
/* diagonal line */ 
/* horizontal line */ 
/* vertical line */ 

/* displays colored pixel at location col, row */ 
/* uses EGA write mode 2 */ 
#define MAXR 200 /* rows */ 

727 



Chapter 11 

#define MAXC 320 /* columns */ 
#define PIX 8 /* pixels per byte */ 
#define MAXB CMAXC/PIX) /* bytes in a row */ 
void putpte(int col, int row, unsigned char color) 
{ 

} 

static unsigned char table[8J = { Ox80, Ox40, Ox20, Ox10, 
Ox08, Ox04, Ox02, Ox01 }; 

char far *farptr; 
int addr, bitpos; 
unsigned char temp; 

farptr = (int far 
outp<Ox3CE,5); 
outp<Ox3CF ,2); 
outp <Ox3C4, 2); 
outp<Ox3C5,0xF>; 

*) OxAOOOOOOO; /* set ptr to EGA mem */ 
/* select mode register */ 

addr = row*MAXB + col/PIX; 
bitpos = col & 7; 
outp<Ox3CE,8); 
outpCOx3CF,table[bitposJ>; 
temp= *(farptr+addr>; 
*(farptr+addr) = color; 

outp<Ox3CE,8); 
outpCOx3CF,OxFF); 
outp<Ox3CE,5); 
outp<Ox3CF ,O>; 

/* set to mode 2 */ 
/* select map mask register */ 
/* activate all bit planes */ 

/* calculate address */ 
/* lower 3 bits are bitpos */ 
/* select bit mask reg */ 
/* set bit to be changed */ 
/* read byte into latches */ 
I* send color to address */ 

I* select bit mask reg */ 
/*make all bits writeable */ 
/* select mode register */ 
I* set write mode 0 */ 

Chapter 12 
Answers to Questions 

1. Microsoft C library functions are more convenient. 

2. Direct memory access is generally faster and more flexible. 

3. GRAPHICS.LIB (or GRAPHICS.QLB in Quick C) 

4. a and c 

5. GRAPH.H 

6. a, b, and d 

7. a and b 

8. False 

9. d 

10. GRAPHICS.LIB (or GRAPHICS.QLB in Quick C) 

11. False 

12. b 

728 



Answers to Questions and Exercises 

13. _setvideomode() 

14. False 

15. b 

16. _setlinestyle() 

17. c 

18. b 

19. c 

20. a, b, c, and d 

Chapter 12 
Suggested Answers to Exercises 

Exercise 1 

/* paint.c */ 
draw, using cursor */ 

/* screen edges */ 

/* escape key */ 

/* permits user to 
#include <graph.h> 
#define RIGHT 319 
#define BOT 199 
#define ESC 27 
#define L_ARRO 75 
#define R_ARRO 77 
#define U_ARRO 72 
#define D_ARRO 80 
mainO 

/* cursor control keys */ 

{ 

int XI Yi 
char key; 

/* initialize graphics */ 
if(_setvideomode(_MRES4COLOR)==O ) 

{ printf("Can't set mode">; exitC1>; } 
x = RIGHT/2; /* put dot in middle */ 
y = BOT/2; 
_setpixelCx, y); 
while( (key=getch()) != ESC) 

{ 

i fC key == 0 ) 
{ 

switch( getchO 
{ 

/* 

/* 

/* 

Q) 

if [EscJ, exit loop */ 

if extended code, */ 

read second character 

--x; break; /* left */ 

*' 

case L_ARRO: if(x > 
case R_ARRO: if(x < 
case U_ARRO: ifCy > 
case D_ARRO: if Cy < 
} /* end switch */ 

RIGHT> ++x; break; /* right */ 
Q) --y; break; /* up */ 
BOT> ++y; break; /* down */ 

729 



Chapter 12 

730 

} 

_setpixelCx, y); 
} /* end if */ 

} /*end while*/ 
_setvideomodeC_DEFAULTMODE); 

Exercise 2 

/* coin2.c */ 

/* draw dot */ 

/* restore previous mode */ 

/* displays a coin rotating about vertical axis */ 
I* uses _getimage() and _putimage() */ 
#include <graph.h> 
#include <malloc.h> 
#define XC 160 
#define YC 100 
#define RAD 50 
#define N 8 
#define DELAY 10000 

mainO 
{ 

int xRad; 
char *buff[NJ; 
long size; 
int j, k; 

/* center of ellipse */ 

/* vertical radius */ 
/* number of views */ 
/* delay between views */ 

/* horizontal radius */ 
/* pointers to buffers */ 
/* size of buffer */ 

/* set video mode */ 
ifC_setvideomodeC_MRES4COLOR)==O ) 

{ printfC"Can't set mode">; exitC1>; } 
/* get image size */ 

size = _imagesize( XC-RAD, YC-RAD, XC+RAD, YC+RAD ); 

fo r C j =O; j <N ; j ++ ) 
{ 

xRad = j * RAD I CN-1) 
if( j==O ) xRad = 1; 
_clearscreenC_GCLEARSCREEN); 

/* make and store */ 
/* images of ellipses*/ 
/* find x radius */ 
/* vertical line */ 
/* get rid of old image */ 
/*draw ellipse */ 

_ellipse( _GBORDER, XC-xRad, YC-RAD, XC+xRad, YC+RAD ); 
buff[j] = mallocCsize>; /* get image memory *I 

_getimageCXC-RAD, YC-RAD, 
} 

/* place image in memory */ 
XC+RAD, YC+RAD, buff[jJ); 

while( !kbhit() ) 
{ 

for C j =O; j <N; j ++ > 
{ 

_putimageC XC-RAD, YC-RAD, 
forCk=O; k<DELAY; k++); 
_putimage( XC-RAD, YC-RAD, 
} 

/*draw ellipses */ 
/* until keypress */ 
/* increasing width */ 
/* draw image */ 
buff[j], _GPSET >; 
/* delay, erase image */ 
buff[j], _GXOR ); 



Answers to Questions and Exercises 

for( j=N-2; j>O; j--) 
{ 

_putimage( XC-RAD, YC-RAD, 
for(k=O; k<DELAY; k++); 
_putimage( XC-RAD, YC-RAD, 
} 

/* decreasing width */ 
/* draw image */ 
buff[j], _GPSET ); 
/* delay, erase image */ 
buff[j], _GXOR >; 

} /*end while*/ 
_setvideomode(_DEFAULTMODE); /* restore previous mode */ 

} 

Exercise 3 

/* ezedit.c */ 
/* mini editor works in text 
#include <graph.h> 
#define LEFT 10 
#define TOP 8 
#define RIGHT 50 
#define BOT 21 
#define WIDTH (RIGHT-LEFT+1) 
#defirie HEIGHT (BOT-TOP+1) 
#define ESC 27 
#define L_ARRO 75 
#define R_ARRO 77 
#define U_ARRO 72 
#define D_ARRO 80 

window */ 
/* needed for graphics */ 
/* left side of window */ 
/* top of window */ 
/* right side of window */ 
/* bottom of window */ 
/* width of window */ 
/* height of window */ 
/* escape key */ 
/* cursor control keys */ 

#define ALT_C 46 
#define BACKS 8 

/* key combo for color change */ 
/* backspace */ 

mainO 
{ 

char key; 
int row, col; 
char string[2J; 
struct rccoord re; 

_clearscreen(_GCLEARSCREEN); 
_settextwindow(TOP, LEFT, BOT, 
row = HEIGHT/2; col = WIDTH/2; 
_settextposition<row, col); 
_setbkco Lor (1 L); 

while( (key=getch()) != ESC) 
{ 

if( key == 0 ) 
{ 

switch( getchO 
{ 

case L_ARRO: 

/* keyboard char */ 
/* cursor row & column */ 
/* 1-char string */ 
/* for text position */ 

/*clear entire screen*/ 
RIGHT); /*define window*/ 

/* cursor to middle */ 

/* set background color */ 

/* if [Esc], exit loop*/ 

/* if extended code, */ 

/* read second character */ 

/* move cursor left */ 

731 



Chapter 12 

} 

ifCcol > 1) 
_settextposition(row, --col>; 

break; 
case R_ARRO: /* move cursor right */ 

ifCcol <WIDTH) 
_settextposition(row, ++col); 

break; 
case U_ARRO: /* move cursor up */ 

if( row > 1) 
_settextposition(--row, col); 

break; 
case D_ARRO: /* move cursor down */ 

if( row < HEIGHT) 
_settextposition(++row, col); 

break; 
case ALT C: /* change text color */ 

_settextcolor(getch<>-'O'>; 
break; 

} /* end switch */ 
} /* end if */ 

else /* not extended code */ 
{ 

if(key==BACKS) 
{ 

/* if backspace */ 

if(col > 1) /* and not at left edge */ 
{ /* move TP left */ 
_settextposition(row, --col); /* move TP left */ 
_outtext(" "); /*print blank */ 
_settextposition(row, col); /* reset TP */ 
} 

} 

else 
{ 

/* normal printing char */ 

} 

*String = key; 
*(string+1) = O; 
_outtext(string); 
re = _gettextposition<>; 
row= re.row; 
col = re.col; 
} 

} /*end while*/ 

/* make 1-char string */ 
/* terminate string */ 
/* print character */ 
/* get new cursor pos */ 
/* reset row and col */ 

Chapter 13 
Answers to Questions 

1. standard I/O and system I/O 

2. a, b, c, and d are all correct 

732 



Answers to Questions and Exercises 

3. file pointer 

4. a and b 

5. fclose() 

6. d 

7. False: a file that is written to but not closed may lose data when the program 
is terminated. 

8. c and d 

9. binary mode 

10. a, c, e, and f 

11. binary, unless using formatted I/O 

12. c 

13. False 

14. d (not to be confused with c) 

15. fwrite() 

16. bytes 

17. c and d 

18. handle 

19. a and d 

20. read() 

21. setmode() 

22. c 

23. True 

24. band d 

25. pmode 

26. system-level 

27. d 

28. C >encrypt < filel.txt > file2.txt 

29. a and c 

30. False 

Chapter 13 
Suggested Answers to Exercises 

Exercise 1 

/* braces.c */ 
/* checks numbers of right and Left braces are equal */ 

733 



Chapter 13 

734 

#include <stdio.h> 
main(argc,argv) 
int argc; 
char *argv[J; 
{ 

FILE *fptr; 
char string[81J; 
int left=O, right=O; 
char ch; 

if(argc != 2) /* check # of args */ 
{ printfC"Format: C>type2 filename"); exitO;} 

if( (fptr=fopen(argv[1J, "r"» ==NULL> /*open file*/ 
{ printfC"Can't open file %s.", argv[1J>; exitO; } 

while( (ch=getc(fptr» != EOF ) /* get char */ 

} 

{ 

if< ch=='{' ) left++; 
if( ch=='}' ) right++; 
} 

if Cleft != right) 
printf("\nMismatched braces\n"); 

else 
printfC"\nBraces match.\n"); 

fclose(fptr>; 

Exercise 2 

/* writedex.c */ 

/* count lefts */ 
/* count rights */ 

/* check if equal */ 

/* close file */ 

/*writes strings typed at keyboard, to file*/ 
/* prints offset for each phrase */ 
#include <stdio.h> 
mainO 
{ 

FILE *fptr; 
char string[81J; 
fptr = fopen("textfi le.txt","wb">; 
while(strlen(gets(string)) > O> 

{ 

/* declare ptr to FILE */ 
/* storage for strings */ 
/*open file*/ 
/* get string from keybd */ 

printfC"Offset=%d\n\n", ftell(fptr) >; /*print offset */ 
fputs(string,fptr>; /*write string to file*/ 
fputs("\n",fptr>; /*write newline to file*/ 
} 

fclose(fptr>; /*close file*/ 
} 

Exercise 3 

/* readdex.c */ 
I* reads strings from file*/ 



Answers to Questions and Exercises 

#include <stdio.h> 
#include <process.h> 

/*for fopen(), etc. */ 
/* for exitO */ 

int table[4] = { 0, 29, 49, 79 }; 
void rdex(int); 

/*for textfile.txt */ 
/* prototype */ 

void main(void) 
{ 

} 

int index; 

while(1) 
{ 

printfC"\n\nEnter index number CO to 3) of string: "); 
scanf (11 %d 11

, &index); /* get index */ 
rdex(table[indexJ); /*print string */ 
} 

/* rdex 0 */ 
/*reads string from file at offset, displays it on screen*/ 
void rdex(int offset) 
{ 

} 

FILE *fptr; 
char string[81J; 

/* ptr to FILE */ 
/* stores strings */ 
/*open file*/ 

if( (fptr=fopen("textfi le.txt","rb"))==NULL) 
{ printf<"Can't open file."); exit(1); } 

if(fseek(fptr,(long)offset,0) != 0) /*set file ptr */ 
{ printfC"Can't put pointer there."); exit<O>; } 

if( fgets(string,80,fptr) ==NULL ) /* read string */ 
{ printf<"Can't read string."); exit<O); } 

printf<"%s",string); /*print string */ 
fclose(fptr); /* close file*/ 

Exercise 4 

Make appropriate changes to the interface part of the program, and add this 
routine: 

/* delrecO */ 
/* deletes selected record */ 
delrecO 
{ 

int recno, j; 
printf("\nEnter record number to be deleted: "); 
scanf("%d", &recno); 
if ( recno<1 : : recno>n) 

{ printf<"Invalid record number.\n"); return;} 
for (j=--recno; j<n-1; j++) /*write each structure*/ 

agent[j] = agent[j+1J; /* over preceding one */ 

735 



Chapter 13 

} 
n--· I 

Exercise 5 

/* concat.c */ 

/* one Less structure */ 

third*/ /*concatenates two files to form a 
#inc Lude "fcnt L. h" /* needed for of Lags */ 
#include "sys\types.h" /* needed for 
sys\stat.h */ 
#include "sys\stat.h" '* needed for pmode *' 
#define BUFSIZ 4096 /* buffer size *' 
char buff[BUFSIZJ; '* buffer *' 
main(argc,argv) 
int argc; 
char *argv[J; 
{ 

} 

int inhandle1, inhandle2, outhandle, bytes; 
if(argc != 4) /* check arguments */ 

{ printf 
("format: C>concat source1.xxx source2.xxx dest.xxx">; 
exitO; } 

/*open files*/ 
if( Cinhandle1 = open(argv[1J, O_RDONLY : O_BINARY)) < 0) 

{printfC"Can't open file %s.", argv[1]); exitO; } 
if( Cinhandle2 = open(argv[2J, O_RDONLY : O_BINARY)) < 0) 

{printfC"Can't open file %s.", argv[2]); exitO; } 
if( Couthandle = open(argv[3J, 

O_CREAT : O_WRONLY : O_BINARY, S_IWRITE)) < 0) 
{ printfC"Can't open file %s.", argv[3]); exitO; } 

/*copy first file*/ 
while( (bytes= read(inhandle1,buff,BUFSIZ)) > 0) 

write(outhandle,buff,bytes); /*add second file*/ 
while( (bytes= read(inhandle2,buff,BUFSIZ)) > 0) 

write(outhandle,buff,bytes); 
close(inhandle1); /* close fi Les */ 
close(inhandle2>; 
close<outhandle); 

Chapter 14 
Answers to Questions 

1. a, b, and c 

2. linker 

3. declared, extern 

4. a and c 

736 



Answers to Questions and Exercises 

5. False: only modules containing functions referred to in the program are 
included. 

6. c and d 

7. b 

8. #define 

9. d 

10. large 

11. a and d 

12. False: except that the stack segment can share the data segment. 

13. band c 

14. /AL 

15. d 

Chapter 15 
Answers to Questions 

1. c and d 

2. declared, external 

3. c 

4. created and destroyed 

5. a and b 

6. False: it is only visible from the point where it is defined onward. 

7. external static 

8. c 

9. enum fish gamefish; 

10. d 

11. names 

12. c 

13. True 

14. bytes of memory 

15. a 

737 





Index 

A 
action( I function, 277 
Address 

of arrays, 188, 190-91 
functions as, 598-600 
graphics and starting, 386 
offset, 357-59 
operators, 43-45, 614 
passing addresses to a function, 218-20 
segment, 357-59 
segment-offset, 359, 574-75 

Ampersand, scanf ( J function and, 43-45 
Anagrams, 631-33 
AND bitwise operator, 343-46 
AND logical operator, 109-11 
ANSI.SYS, 263-73 

cursor control with, 266-73, 622 
driver, 265 
file, 11-12, 265, 266 
function key assignment using, 278-80 

_arc( J function, 448-51 
Arcs, creating, 448-51 
Arguments 

arrays as, 186-91, 193-94, 196 
command line, 281-84, 622 
example of, 139-40 
passing multiple, 144-46 
passing variables as, 142-44 
structure of a function call with, 140-42 
two-dimensional arrays as, 193-94, 196 
using names, 146 

Arithmetic assignment operators, 49-50, 
613-14 

Arithmetic operators, 46-50, 612 
Array(s) 

address of, 188, 190-91 
as arguments, 186-91, 193-94, 196 
checking size of, 176-77 
contents of, and initialization, 180 
data constructions for, 611 
declaration, 172 

Array(s)-cont 
entering data into, 173-74 
fwrite( J function and writing, 534 
how to use, 170-71 
initializing, 177-86 
initializing three-dimensional, 186 
initializing two-dimensional, 183-86 
pointers and, 229-37 
pointers to, in functions, 235-36 
programs with two or more, 180-83 
reading data from, 174 
reading in an unknown number of 

elements, 175-76 
referring to individual elements of, 

172-73 
size of, and initialization, 179-80 
sorting, 191-93 
storage classes and initialization of, 

178-79 
of strings, 204-6 
of structures, 308-12 
treating parts of arrays as arrays, 245 
using different variable types, 174-75 

ASCII codes 
chart of, 651-57 
for loop program for printing, 71-73 
while loop program for printing, 81-82 

Assignment statements used with structures, 
303-4 

atoi() function, 279, 280 
Attribute(sJ 

byte, 365-68 
character, 273-74 

AUTOEXEC.BAT file, 10 
Automatic variables, 133, 582-83, 584-85 

B 
Bars, creating, 460-65 
Batch file, use of, 10 
Binary dump program, 529-32 
Binary mode versus text mode, 512, 527-32 
Binary numbering system, 643-44 

739 



Microsoft C Programming 

BIN subdirectory, 5-6 
Bit fields, 368-74 
Bit mask register, 418-21 
Bitwise calculator, 353-55 
Bitwise operators, 342, 613 

AND, 343-46 
complement, 352 
left shift, 352 
OR, 346-48 
right shift, 348-50 
XOR, 351-52 

Blocks, 585 
boxcirc( J function, 485 
Braces, use of, 15 

in loops, 70-71 
break statement, 89, 114-17, 608 
Bubble sort, 192-93 
Buffer manipulation, 620 
Buffer operations in System 1/0, 548-50 
Buffers, 10 
Byte, attribute, 365-68 

c 
c 
case sensitive, 17 
reasons for using, xviii 
structure of simple program, 606 

Case conversion, 136 
Case sensitivity, 17 
CGA. See Color Graphics Adaptor 
Character(s) 

attributes, 273-74 
counting characters in files, 518-19 
data type (char), 615 
IBM character codes, 651-57 
IBM extended character codes, 621 
printing, 22-23 

Character display memory, 355-56 
far keyword, 359-60 
far pointers, 357-65 

Character 1/0, 511, 513-21, 619 
Character variables, 29, 30, 31 

unsigned, 30-31 
Circles, creating, 445-46 
_clearscreen() function, 477 
close() function, 547 
Code View, 19, 658-67 
Color graphics. See Graphic modes, color 
Color Graphics Adaptor (CGA), 382, 438 

colors in, 465-68 
Color monitors, 385 
Combined libraries, building, 8 
COMMAND.COM, 12 
Command line arguments, 281-84, 622 
Comments, 55-57 

checking, 628-29 

740 

Comments-cont 
nesting of, 57 

Compilation, conditional, 571-74 
Compilation, separate, 562 

advantages of, 564-66 
external variables and, 566-67 
library files and, 567-69 
modular programming and, 569-70 
with the Optimizing Compiler, 563-64 
with QuickC, 564 

Compiler warning levels, 163-64 
Compiling and linking, 2-5 

with the Optimizing Compiler, 13 
in QuickC, 13 

Complement operator, bitwise, 352 
Conditional operators, 121-22, 614 
CONFIG.SYS file, 10-12, 265 
const, 594-95 
Constants 

pointer, 217, 233-35 
string, 197-98 
variables and, 27-28 

continue statement, 89, 608 
Control constructions, 606-9 
Conway's Life, 624-28 
Counting 

characters, 518-19 
words, 519-21 

curpos, 277, 278 
Cursor, deleting, 335-36 
Cursor control 

and ANSI.SYS, 263-73, 622 
commands, 267-68 
from the keyboard, 268-69 

Cursor-positioning sequence, 269-73 
Cursor size, setting, 333-35 

D 
Data constructions, 611-12 
Data types 

character (char), 615 
const, 594-95 
conversion and casting, 597-98 
double-precision floating point, 616 
enumerated, 590-93, 617 
floating point, 616 
integer (int), 615 
logical, 617 
long integer, 616 
renaming, 593-94 
short integer, 615 
strings, 616 
typecasts, 617 
typedef, 617 
void, 617 
volatile, 595 



Debugging, 19 
Code View, 19, 658-66 
QuickC, 19, 667-77 

Decrement operators, 50-52, 613 
#define directive, 154-61 

escape sequences and, 267 
example of, 154-55 
macros and, 156-58 
why use, 155-56 

Delimiters, 15 
Direct memory access and graphics display 

memory usage in mode 4, 398-99 
putting bytes in memory, 399-401 
putting single pixels in memory, 402-5 

Directory, master, 5 
Display adaptor, 385 
_displaycursor() function, 496 
display() function, 277, 278 
Display memory, 385-86 
Display monitors, 385 
DOS 

TYPE command, 523 
using interrupts to call, 336 

DOS.H, 332-33 
Dot operator, 297-98 
Double indirection, 245-52 
Double-precision floating point variable, 30, 

616 
do while loop 

control constructions for, 607 
example of, 86, 87-89 
operation of, 87 
when to use, 87, 89 

E 
Editor, QuickC, 678-89 
EGA. See Enhanced Graphics Adaptor 
_ellipse() function, 445-46, 454 
Ellipses, creating, 445-46 
#else directive, 573 
else-if construct, 112-14 
#endif directive, 573 
End-of-file 

indicating, 286, 517 
text mode versus binary mode, 529 

Enhanced Graphics Adaptor jEGA), 382, 438 
bit mask register, 418-21 
bit planes, 410-12 
colors in, 468-71 
input/output ports, 413-14 
latch registers, 421-22 
map mask register, 412-13, 414 
ROM routines and, 409-10 
write mode 1, 427-28 
write mode 2, 422-27 
writing bits to memory, 415-18 

Index 

Enhanced Graphics Adaptor jEGA)-cont 
writing bytes to memory, 415 

Enumerated data type, 590-93, 617 
Environmental space, 12 
Equipment list word, 374-76, 387-88 
Errors 

link, 19-20 
non-core library functions, 20 
reading and writing errors, 542-44 
syntax, 17-19 
in System 1/0, 54 7-48 

Escape sequences, 37-38 
printing graphics characters and, 38-40 
using #define with, 267 

exit() function, 277 
Exponential notation, 31-32 
Expressions versus variables, 48-49 
External variables, 152-53, 179 

lifetime of, 583-84 
separate compilation and, 566-67 
visibility of, 585-86 

F 
far keyword, 359-60 
far pointers, 357 

filling a screen with a character, 360-62 
QuickC and video memory, 360 
segment-offset addresses, 359 
segments, 357-59 
simple one-line word processor program, 

363-65 
speed of, 362 

ferror() function, 543 
fflush() function, 301 
fgets() function, 522, 524 
Field-width specifiers, 34-37 
File(s) 

closing, 515-16 
closing files in System 1/0, 547 
counting characters, 518-19 
counting words, 519-21 
definition of, 510 
end-of-, 517 
library, 567-69, 619 
naming, 3-5 
opening, 513-15, 518 
opening files in System 1/0, 546 
pointers, 541-42 
random access of, 540-42 
reading errors, 542-44 
reading files in System 1/0, 545-4 7 
reading from, 516-17 
writing errors, 542-44 
writing files in System 1/0, 550-52 
writing to, 515 
See also Input/output 

741 



Microsoft C Programming 

fill.c program, 75-76 
Floating point, 29-30, 31-32, 616 

double-precision, 30, 616 
Floating point routines, 7-8 
_floodfill() function, 454, 456 
fopen function, 514, 518, 523-24 
for loop 

control constructions for, 606-7 
drawing a line with a graphics character, 

73 
example of, 64-65 
fill.c program, 75-76 
multiple initializations in, 71 
nesting of, 73-76 
operation of, 67-68 
program for printing ASCII codes, 71-73 
structure of, 65-67 
when to use, 85-86 

Format specifiers, 21 
printf() function and, 21, 33-34, 620-21 
printf() function and field-width, 34-37 
printing strings and, 21-22 
scanf() function and, 41-42, 620-21 

Formatted 1/0, 511, 524-26, 619 
fprintf() function, 525-26 
fptr, 600 
fputs() function, 521, 524 
Fractals, 498-502 
fread() function, 535-40 
fscanf () function, 526 
fseek() function, 541-42 
ftell() function, 542 
Functionjs) 

as addresses, 598-600 
argument, 16 
calling the, 132 
definition, 14, 131-32 
external variables and, 152-53 
formats, 609-10 
library, 17, 20, 619-20 
local variables and, 133 
macros and, 158-59 
naming, 596 
in Pascal, 130, 148 
passing addresses to a, 218-20 
passing structures to, 306-8 
passing values to a, 218, 610 
passing values to and from a, 225-27 
pointers to arrays in, 235-36 
pointers without, 227-29 
prototype jdeclaration), 132-33, 150, 

151-52 
prototypes for library, 162-63 
purpose of, 128-30 
sending and receiving, 147 
simple, 130-34 

742 

Function Is )-cont 
string, 204 
structure of, 131-33 
that return a value, 134-39, 609-10 
using arguments to pass data to a, 139-46 
using more than one, 148-50 

Function key assignment 
using ANSI.SYS, 278-80 
with command-line arguments, 282-83 
with multiple arguments, 283-84 

fwrite() function 
writing arrays with, 534 
writing structures with, 532-34 

G 
getc() function, 516-17 
getch() function, 45, 444 
getchar() function, 45 
getche() function, 45-46, 285 
getcode() function, 277, 278 
_getimage() function, 488 
getlc() function, 135-36 
getmins() function, 138 
gets(), 200-201, 279, 280 
getsnoe(), 496 
_getvideoconfig() function, 442, 443 
Global variable, 152 
goto statement, labels and, 601-2 
GRAPH.H, 439 
Graphic modes, color, 382 

creating movement, 406-9 
direct memory access and, 398-409 
display adaptor, 385 
displaying pixels with ROM routines, 

390-94 
display memory, 385-86 
display monitors, 385 
drawing rectangles, 393-94 
EGA-specific modes, 409-28 
IBM, 383 
number of colors, 384 
resolution, 383-84 
setting, 387-90 
setting color palette and background, 

395-98, 465-68 
setting colors in CGA, 465-68 
setting colors in EGA, 468-71 
setting colors in VGA, 4 72-75 
starting address, 386 
summary of, 386-87 
VGA-specific modes, 429-30 

Graphics, Microsoft 
aspect-ratio problem, 453-54 
combining text and graphics, 482-85 
creating arcs, 448-51 
creating bar and pie charts, 460-65 



Graphics-cont 
creating bouncing lines, 496-98 
creating circles and ellipses, 445-46 
creating lines and polygons, 446-48 
creating rectangles, 443-45 
creating shapes with pixels, 451-52 
filling with patterns, 457-58 
filling with solid colors, 454-56 
fractals, 498-502 
logical coordinates, 485-87 
Mandelbrot program, 502-5 
modes, 440-43 
for the Optimizing Compiler, 439 
patterns in lines, 458-60 
in QuickC, 439-40 
storing images, 487-90 
text windows, 476-79 
video pages, 491-93 
viewports, 493-96 

Graphics characters 
escape sequences for printing, 38-40 
for loop and, 73 
if-else statement used to draw lines, 

102-4 
if-else statement used to print a 

checkerboard, 100-102 
Graphics functions reference, 685-89 
GRAPHICS.LIB, 439 
Graphics library, 8 

H 
Header files, 6 

macros in, 163 
Hexadecimal numbering, 642-48 
Hexadecimal to binary conversion, 350-51 
Hofstadter, Douglas, 97 

IBM 
character codes, 38, 621, 651-57 
color graphics modes, 383 
color monitors, 385 
extended keyboard codes, 260-63, 651-57 
ROM BIOS, 326-36 

Identifiers and naming classes, 595-97 
#ifdef, 571-74 
#if directive, 573 
if-else statement 

associating else with if, 105-8 
control constructions for, 607-8 
example of, 99-100, 100-102 
drawing lines with, 102-4 
logical operators and, 109-12 
nesting of, 104-5 
operation of, 101 
printing of a checkerboard with, 100-102 

Index 

if-else statement-cont 
structure of, 100 
when to use, 98-99 

if statement 
control constructions for, 607-8 
example of, 94-95 
multiple statements with, 97-98 
nesting of, 98 
operation of, 95-96 
structure of, 95 
used in a word-counting program, 96-97 

_imagesize function, 488 
#include directive, 161-62 
Include files, 6 
INCLUDE subdirectory, 6 
Increment expression, 65, 66-67 
Increment operators, 50-52, 613 
Indirection operators, 222-25, 614 
Initialize expression, 65, 66 

multiple, in for loop, 71 
Initializing an array of pointers to strings, 

240 
Initializing arrays, 177 

array contents and, 180 
array size and, 179-80 
storage classes and, 178-79 
three-dimensional, 186 
two-dimensional, 183-86 

Initializing strings, 201-2 
as pointers, 238-40 

Initializing structures, 303 
Input, redirecting, 286-89 
Input/output (1/0) functions 

character, 511, 513-21, 619 
file, 619 
formatted, 511, 524-26, 619 
getche( ), 45-46 
gets(), 200-201 
printf( ), 33-38 
puts(), 200-201 
record, 511, 532-40 
scanf( ), 40-45 
standard, 511, 512-26, 554, 619-20 
standard 1/0 versus system, 511 
string, 200-201, 511, 521-24, 619 
system-level, 544-52, 620 
text versus binary mode, 512, 527-32 
types of disk, 510-12 
See also File(s) 

Integers 
data type, 615 
long, 29, 616 
in memory, 28-29 
short, 29, 615 
unsigned, 30-31 

Interrupts, 329-30 

743 



Microsoft C Programming 

Interrupts-cont 
DOS called by using, 336 

int86() function, 329-30 

K 
Kand R approach to writing programs, 150, 

151 
Keyboard codes, extended, 38, 260-63, 264, 

651-57 

L 
Labels, goto statement and, 601-2 
Latch registers, 421-22 
Left-shift bitwise operator, 352 
Libraries, combined, 7-8 
Library files, 567-69 
Library functions, 17, 619-20 

non-core, 20 
LIB subdirectory, 6 
Lifetime of variables, 133, 179, 582-84 
Lines 

creating, 446-48 
creating bouncing, 496-98 
patterns in, 458-60 

_lineto() function, 446-48 
Linking, 3 

errors, 19-20 
with the Optimizing Compiler, 13 
in QuickC, 13 

Local variables, 133 
Logical coordinates, 485-87 
Logical data types, 617 
Logical operators, 109-12, 613 
Long integer, 29, 616 
Loop(s) 

body, 67 
break and continue statements, 89, 

114-17 
do while, 86-89 
expression, 65-67 
for, 64-76 
multiple statements in, 68-70 
use of braces in, 70-71 
while, 76-86 

Lvalue, 242 

M 
Machine language, 2 
Macros 

#define and, 156-58 
functions and, 158-59 
in header files, 163 
use of parentheses in, 159-60 
when to use, 160-61 

main() function, 14, 277 
prototypes and, 163 

malloc() function, 314-20, 488 

744 

Mandelbrot program, 502-5 
Map mask register, 412-13, 414 
Members, 596-97 
memchr() function, 550 
Memory 

display, 385-86 
finding memory size, 330-31 
models, 7, 574-77 
See also Character display memory; 

Direct memory access and graphics 
display 

Menu, selectable, 275-78 
Metamagical Themas, 97 
Modular programming, separate compilation 

and, 569-70 
Modulo operator, 48 
Monitors, color display, 385 
_moveto() function, 446-48 

N 
Naming classes, 596-97 
Newlines, text mode versus binary mode, 

528-29 
NOT logical operator, 111 

0 
Object file, 3 
open() function, 54 7 
Operator(s) 

arithmetic, 46-50, 612 
arithmetic assignment, 49-50, 613-14 
bitwise, 342-55, 613 
conditional, 121-22, 614 
equal-to (equal-equal), 54 
increment/decrement, 50-52, 613 
logical, 109-12, 613 
precedence, 48, 54-55, 110, 111-12, 614 
relational, 52-55, 613 
remainder/modulo, 48 
unary, 112 

Optimization 
and the Optimizing Compiler, 578 
in QuickC, 577-78 

Optimizing Compiler 
compiling and linking with, 13 
graphics system for the, 439 
memory models and, 576-77 
optimization and the, 578 
separate compilation with the, 563-64 
syntax errors in, 18-19 

OR bitwise operator, 346-48 
OR logical operator, 109 
Output, redirecting, 285-86, 288-89 
_outtext() function, 439, 479 

p 
Pages, 386 



Pascal, procedures and functions in, 130, 148 
PATH command, 9 
Permanent executable file, making a, 14 
perror{ J function, 543 
Pie charts, creating, 460-65 
_pie() function, 454, 462-64 
Pixels, 383-84 

creating shapes with, 451-52 
displaying, with ROM routines, 390-94 
putting single pixels in memory, 402-5 

"Plumber's Nightmare" maze, 634-40 
plus{ J function, 569 
Pointer(s) 

arrays and, 229-37 
to arrays in functions, 235-36 
constants, 217, 233-35 
data constructions for, 611-12 
declaring variables, 220-22 
definition of, 216-17 
double indirection, 245-52 
far, 357 
indirection operator, 222-25 
initializing an array of pointers to strings, 

240 
manipulating to strings, 242-44 
passing addresses to a function, 218-20 
passing values to a function, 218 
passing values to and from a function, 

225-27 
reasons for using, 217 
strings and, 237-45 
strings initialized as, 238-40 
structures and, 312-23 
variables, 217, 233-35 
void *, 236-37 
without functions, 227-29 

Polygons, creating, 446-48 
Pragmas, 164 
Precedence, 48 

arithmetic operators and, 54-55 
logical operators and, 110, 111-12 
of operators, 614 
in while loops, 83-84 

Preprocessor directives, 153, 622-23 
#define directive, 154-61 
#include directive, 161-62 

printf{) function, 16-17, 20-23, 620-21 
characters, 22-23 
as a conversion device, 72-73 
escape sequences, 37-38 
field-width specifiers and, 34-37 
format specifiers and, 21, 33-34, 621 
strings and, 21-22 

Procedures in Pascal, 130 
Program design, 571 
Program list, setting up a, 20 

Index 

Programming, separate compilation and 
modular, 569-70 

Program statements, 15 
Prototypes 

advantages of, 151-52 
compiler warning levels and, 163-64 
example of, 150 
for library functions, 162-63 

putc{) function, 515 
putch(J, 269 
_putimage(J function, 490 
putpt(J, 394, 402-5 
puts{), 200-201 

a 
QuickC 

compiling and linking in, 13 
debugging in, 19, 667-77 
editor, 678-84 
graphics system in, 439-40 
memory models and, 577 
optimization in, 577-78 
separate compilation with, 564 
syntax errors in, 18 
video memory and, 360 

R 
Random access of files, 540-42 
read{ J function, 54 7 
Record 1/0, 511, 532-40 
_rectangle() function, 443, 444, 454, 456 
Rectangles, drawing, 393-94, 443-45 
rect{ J function, 394 
Redkection, 284-89, 552-54, 622 
Registers, 328-29 
Register variables, 588-89 
Relational operators, 52-55, 613 
Remainder operator, 48 
_remapallpalette(J function, 469, 471, 472, 

474 
_remappalette{ J function, 472, 474 
Resolution, 383-84 
return statement, 136-37 

limitation of, 139 
Right-shift bitwise operator, 348-50 
ROM BIOS 

accessing, 327 
advantages of, 326-27 
displaying pixels with, 390-94 
DOS.H, 332-33 
EGA and, 409-10 
finding memory size, 330-31 
interrupts, 329-30 
making cursor disappear, 335-36 
and non-IBM compatibles, 327 
registers and, 328-29 

745 



Microsoft C Programming 

ROM BIOS-cont 
set mode command, 388-90 
setting cursor size, 333-35 
union of structures, 331-32 
See also Enhanced Graphics Adaptor 

Rvalue, 242 

s 
Saving screen image, 629-31 
scanf() function, 40, 620-21 

ampersand and, 43-45 
disadvantages of, 279-80, 301-2 
format specifiers and, 41-42 
use of colon in, 138-39 

search() function, 550 
_selectpalette() function, 465-66 
Semicolons to complete statements, 15 
_setactivepage() function, 492-93 
_setbkcolor() function, 467-68, 478 
_setcliprgn() function, 496 
_setcolor() function, 455, 467, 468-69, 478 
SET command, 9-10 
_ setfillmask() function, 457-58 
_setlogorg() function, 487 
setmode.c program, 389-90 
_setpalette() function, 469 
_setpixel() function, 451-52 
_settextcolor() function, 478 
_settextpostion() function, 467, 479 
_settextwindow() function, 439, 478 
SETUP, 5 
_setvideomode() function, 440, 441, 444 
_setvisualpage() function, 493 
Short integer, 29, 615 
Sieve of Eratosthenes, 640-41 
sin() function, 452 
sizeof() operator, 614 
Sorting 

arrays, 191-93 
bubble, 192-93 

Source file, 2 
checking comments in, 628-29 
writing a, 12-13 

Standard 1/0, 511, 512, 554, 619-20 
character, 511, 513-21 
formatted, 511, 524-26 
record, 511, 532-40 
string, 200-201, 511, 521-24 

STARTUP.BAT file, 9 
Statement labels, 597 
Static variables, 179, 583-85 
Storage classes of variables, 179, 582-90, 

617-18 
Storage in text format, number, 526 
Storing graphics images, 487-90 
strcat() function, 283 

746 

strchr() function, 237-38 
strcmp() function, 205 
strcpy() function, 207, 208, 283 
strdel() function, 206-7 
String(s) 

array of, 204-6, 616 
constants, 197-98 
data constructions for, 611 
definition of, 197 
deleting characters, 206-8 
example of, 17, 202-3 
functions, 204 
initialized as pointers, 238-40 
initializing, 201-2 
initializing an array of pointers to, 240 
1/0 functions, 200-201, 511, 521-24, 619 
manipulating pointers to, 242-44, 620 
pointers and, 237-45 
printing, 21-22 
variables, 198-200 

strlen() function, 204 
Struct easy, 296-97 
Structure(s) 

accessing elements, 297-98 
accessing elements using pointers, 312-14 
accessing members of array of, 310-12 
arrays of, 308-12 
assignment statements used with, 303-4 
data constructions for, 612 
declaring an array of, 310 
declaring type, 296-97, 299-300 
declaring variables, 297, 299-300 
description of, 294-95 
entering data into, 300-303 
fread() function and reading, 535-40 
fwrite() function and writing, 532-34 
initializing, 303 
malloc() function, 314-20 
nesting of, 305-6 
passing to functions, 306-8 
pointers and, 312-23 
simple, 295-96 
unions of, 325-26 

Subdirectories, 5-7 
sumsqr() function, 563, 566 
switch statement, 117-21, 609 
Syntax errors, 17 

in Optimizing Compiler, 18-19 
in QuickC, 18 

System-level 1/0, 511, 544-52, 620 
advantages of, 544-45 
buffer operations in, 548-50 
closing files in, 547 
error messages in, 54 7-48 
opening files in, 546 
reading files in, 545-4 7 



System-level I/0-cont 
writing files in, 550-52 

T 
Tags, 596 
Test expression, 65, 66 
Text and graphics, combining, 482-85 
Text editor, simple, 480-82 
Text mode versus binary mode, 512, 527-32 
TMP subdirectory, 6-7 
Typecasting, 316 
Typecasts, 617 
typedef declaration, 593-94, 617 

names, 597 

u 
Unary operators, 112 
Uncombined libraries, 8 
#undef directive, 574 
Union(s) 

data constructions for, 612 
example of, 323-24 
purpose of, 323, 324-25 
of structures, 325-26 

Unsigned characters and integers, 30-31 

v 
Variable(s) 

automatic, 133, 582-83, 584-85 
constants and, 27-28 
declarations, 28-29, 586-88 
declaring pointer, 220-22 
declaring structure, 297, 299-300 
defining, 586-88 
definition of, 26 
enumerated, 590-93 
expressions versus, 48-49 
external, 152-53, 179, 566-67, 583-84, 

585-86 
floating point, 29-30, 31-32 
functions and external, 152-53 
functions and local, 133 
identifiers and naming classes, 595-97 
initializing, 33 
lifetime of, 133, 179, 582-84 
local, 133 
naming, 596 
passing, as arguments, 142-44 
pointer, 217, 233-35 

Variable{s)-cont 
register, 588-89 
static, 179, 583-85 
storage classes, 179, 582-90, 617-18 
string, 198-200 
types, 29-31 
visibility of, 133, 179, 584-86 

videoconfig() function, 442 
Video Graphics Array (VGA), 382, 438 

colors in, 472-75 
high resolution, 429 
256 colors, 430 

Video pages, 491-93 
Viewports, 493-96 
Visibility of variables, 133, 179, 584-86 
void *, 236-37, 617 
volatile, 595 

w 
while loop 

Index 

assignment expressions as values, 83-84 
control constructions for, 607 
example of, 76-78 
mathematical, 84-85 
nesting of, 82-83 
operation of the, 77-78 
precedence in, 83-84 
program for printing ASCII codes, 81-82 
structure of the, 77 
using functions as elements in 

expressions, 80-81 
when to use, 78-79, 85-86 

Whitespace, use of, 15-16 
Windows 

clearing the screen, 477-78 
defining, 478 
example of, 476-77 
positioning text, 4 79 
setting text and background colors, 

478-79 
writing text to, 479 

Words, counting, 519-21 
WordStar control code checker, 633-34 
Write Dot, 390-92, 402, 409-10 
write{) function, 552 

x 
XOR bitwise operator, 351-52 

747 





The Waite Group's 
C Primer Plus, Revised Edition 

Mtlchc!! Waite, Stephen Prata, 
and Donald Martin 

This revised and expanded 
edition of a best-seller presents 
everything you should know to 
begin programming in the excit
ing C language, now used by 
over 80 percent of the software 
community. The book is organ
ized for quick learning and en
courages problem solving through 
questions and exercises. 
The authors have updated the 
text with information on C + +, 
AT&T's successor to C, which is 
used for object-oriented 
programming. 
Topics covered include: 
• Structure of a Simple C 

Program 
II Variables, Constants, and Data 

Types 
El Character Strings, #define, 

print!(), and scan!() 
l!!I Operators, Expressions, and 

Statements 
• Input/Output Functions and 

Redirection 
• Choosing Alternatives: 1f, else, 

Relational and Conditional 
Operators 

m Storage Classes and Program 
Development 

• The C Preprocessor 
a Arrays and Pointers 
• Character Strings and String 

Functions 
• Structures and Other Data 

Delights 
• The C Library and File 1/0 
• Bit Fiddling, Keywords, Binary 

Numbers, IBM® PC Music, 
and More 

5 76 Pages, 71/z x 9 % , Softbound 
ISBN: 0-672-22582-4 
No. 22582, $24.95 

The Waite Group's 
Advanced C Primer + + 

Stephen Prata 

Programmers, students, managers, 
and hackers alike, will learn to 
master the C programming lan
guage. Anyone who knows the 
basics of C will learn practical C 
tips never before published. This 
indepth coverage gives you a rare 
and complete examination of 
video access ports, segmented 
memory, and registers. 
Advanced C Primer+ +takes the 
reader further than most C books 
on the market, showing how to 
manipulate the hardware of the 
IBM PC family of computers 
directly from C. Readers learn 
how to access routines in the 
Read Only Memory (ROM) of an 
IBM PC, how to use system calls 
in PC DOS from C and i/o ports, 
how to control the video screen, 
and to integrate assembly rou
tines into C programs. 
Topics covered include: 
Cl Advanced C Programming 
II Register and Bit Level System 

Control 
II Hardware Operation for Begin

ners and Experienced Users 
• Advanced Use of Pointers, 

Functions, Storage Classes, 
Arrays and Structures 

l!I C Library Access 
II Use of Assembly Language 

Modules 
• Binary and Text File Input 

and Output 
Includes chapter questions and 
answers. 
512 Pages, 7 1/z x 9 3/4, Softbound 
ISBN: 0-672-22486-0 
No. 22486, $24.95 

The Waite Group's 
C + + Programming 

John Berry 

This new guide and tutorial is 
aimed at developers and 
intermediate-level students who 
already know the C language. It 
teaches the use of object-oriented 
programming skills and in
troduces the major features of the 
C + + language with explanations 
followed by practical examples 
that will work on both UNIX and 
MS-DOS systems. 
The book includes quizzes, exer
cises, and key words and is ideal 
for self study or as a complete 
course. 
Topics covered include: 
I! How the C + + Translator 

Works 
m New Structure Operators and 

Data Types 
El Input and Output Message 

Streams in C + + 
Cl Pointers and Reference 
r:iJ Classes and Inheritance 
m Function and Operator Over-

loading 
a Jn-line Functions 
• All About C + + Pointers 
• Private and Public Structures 
• The Operator Function 
• Derived Classes 
336 Pages, 7112 x 9 3/4, Softbound 
ISBN: 0-672-22619-7 
No. 22619, $24.95 

Visit your local book retailer or call 
800-428-SAMS. 

The Waite Group's 
Essential Guide to ANSI C 

Naba Barkakati 

An intermediate-level pocket guide 
for programmers, this book con
forms to the American National 
Standards Institute's (ANSI) C 
draft and is the first book on the 
newly adopted standard for C. It 
provides a convenient and fast 
reference to all C functions, with 
examples for each, in a handy 
"shirt-pocket" size. 
The book concentrates on the 
146 functions in the ANSI C 
library and contains debugged 
real-world examples for every 
routine. Each function page in
cludes a brief tutorial and states 
the purpose, syntax, example call, 
includes, returns, and "see also" 
references in alphabetical format. 
Topics covered include: 
CJ How to Use This Essential 

Guide 
IJ Overview of ANSI C 
IJ The ANSI C Preprocess, 

Language, and Library 
CJ Streams and Files in C 
C ANSI C File Routine Reference 
l!I Process Control 
II Variable-length Argument Lists 
• Memory Allocation and 

Management 
lil Data Conversion and Math 

Routines 
li:I Character Classification and 

Conversion 
m String Comparison and 

Manipulation 
CJ Searching and Sorting 
ll Time Routines 
224 Pages, 4 1/4 x 8 1h, Softbound 
ISBN: 0-672-22673-1 
No. 22673, $6.95 



The Waite Group's 
Essential Guide to Turbo C® 

Naba Barkakati 

This user-friendly reference book 
explains all of the functions of 
the Turbo C library. 
Compact and concise, the book 
covers all version 2.0 features in
cluding 8086 segments and off
sets, paragraphs, code and data 
segments, heap, near and far 
data, and memory models. Each 
function is treated separately and 
provides a brief tutorial along 
with its purpose, syntax, example 
call, and references. 
Topics covered include: 
m Overview of the Turbo C 

Language 
El The Turbo C Programming 

Environment 
CJ Process Control 
Cl Variable Arguments 
m Memory Allocation 
!I Buffer Manipulation 
13 Data Conversion 
El Math Functions 
L':!l Character Classification and 

Conversion 
Cl String Manipulation 
m Searching and Sorting 
El Time and Date Functions 
CJ File and Directory Manipulation 
Cl Input and Output Routines 
Cl System Calls 
CJ Graphics Modes, Coordinates, 

and Attributes 
C Drawing and Animation 
Cl Combining Graphics and Text 
Cl Text Mode Routines 
288 Pages, 43/4 x 81/z, Softbound 
ISBN: 0-672-22675-8 
No. 22675, $7.95 

The Waite Group's 
Turbo C® Bible 

Naba Barkakati 

Clear and well-written tutorials 
point out the different purposes 
and appropriate uses of each 
Turbo C function to make 
programming more organized, 
complete, and powerful. The 
library routines are organized into 
functional categories with explana
tions that include the purpose, 
syntax, example call, includes, 
common uses, returns, comments, 
cautions and pitfalls, and cross
reference for that function. 
Unique compatibility check boxes 
show portability with Microsoft C · 
versions 3.0, 4.0, and 5.0; 
Microsoft QuickC, and the UNIX 
System V compilers. 
Topics covered include: 
El Turbo C 1.0 Compiler 

Features and Options 
Cl Process Control 
Cl Variable-Length Argument 

Lists 
CJ Memory Allocation and 

Management 
El Buffer Manipulation 
Cl Data Conversion Routines 
la Math Routines 
Cl Character Classification and 

Conversion 
Cl String Comparison and 

Manipulation 
II Searching and Sorting 
El Time Routines 
C File and Directory Manipu-

lation 
Ell Input and Output Routines 
Cl System Calls 
• Graphics Modes 
Ell Drawing and Animation 
El Combining Graphics and Text 
950 Pages, 71/z x 9314, Softbound 
ISBN: 0-672-22631-6 
No. 22631, $24.95 

The Waite Group's 
Turbo C® Programming 

for the PC, Revised Edition 
Robert Lafore 

This entry-level book moves 
quickly through the fundamentals 
of the latest version of Turbo C 
using step-by-step, hands-on ' 
tutorials to show readers how to 
write useful and marketable C 
programs. 
Based on the newest Turbo C 
compiler but compatible with 
Turbo C 1.0 and 1.5, it contains 
new information on the Turbo C 
graphics library, the graphics 
model, and Debugging Tracer, as 
it highlights ANSI C features. The 
language concepts are presented 
in an orderly, graded fashion to 
allow readers to move smoothly 
from simple topics to the more 
advanced. 

Topics covered include: 
• Getting Started 
• C Building Blocks 
• Loops, Decisions, Functions 
• Arrays and Strings, Pointers 
• Keyboard and Cursor 
• Structures, Unions, and ROM 

BIOS 
• Memory and the Monochrome 

Display 
• Direct CGA and EGA Color 

Graphics 
m Files and Larger Programs 
• Advanced Variables 
• Appendices: Reference, Sup

plementary Programs, Hex
adecimal Numbering, Bibliog
raphy, ASCII Chart, The 
Turbo C Debugger, Answers 
to Questions and Exercises 

700 Pages, 71/2 x 9 3/4, Softbound 
ISBN: 0-672-22660-X 
No. 22660, $22.95 

Visit your local book retailer or call 
800-428-SAMS. 

The Waite Group's 
Inside the AMIGA® with C 

Second Edition 
John Berry 

Everyone who has recently up
graded their AMIGA computer 
system, or is thinking about 
doing it, needs this revised edi
tion of Inside the AMIGA with C. 
The book covers the AmigaDOS™ 
operating system in greater detail, 
and is compatible with the new 
AmigaDOS 1.2. Paying particular 
attention to the AMIGA 500, the 
book presents special AMIGA 
graphics features including 
sprites, Genlock, and blitter 
objects, with updated information 
on lntuitionrM. 
Like the original book, code list
ings in each chapter are carefully 
constructed both as practical 
routines and as instructional ex
amples for beginning to inter
mediate C programmers. The new 
edition features several new pro
grams that demonstrate the use 
of color palettes and registers and 
a software toolkit that contains a 
library of C routines to create 
?nd manage screens, windows, 
mput from gadgets, and control 
graphics. 
Topics covered include: 
• The AMIGA Programming 

Environment 
lil Using Intuition 
• Process Control. and 

AmigaDOS 
• Drawing in Intuition 
• Animating the Sprites 
• Programming Sound 
• Artificial Speech 
• Programming with Disk Files 
400 Pages, 71/2 x 9 3/4, Softbound 
ISBN: 0-672-22625-1 
No. 22625, $24.95 



The Waite Group's 
Essential Guide to 

Microsoft® C 
Naba Barkakati 

This conveniently sized reference 
organizes and simplifies all 370 
functions in the popular Microsoft 
C library. In a user-friendly for
mat, it shows the many "hidden" 
routines available to program
mers, providing instant access to 
the power of the Microsoft C 5.1 
compiler. The book includes com
plete new ANSI features such as 
const, volatile and void proto
types and details 80x86 segments 
and offsets, paragraphs, code and 
data segments, near and far data, 
and memory models. 
Topics covered include: 
• Microsoft C 5.0 Compiler 

Features and Options 
a Process Control 
• Variable Arguments and 

Memory Allocation 
• Buffer Manipulation 
m Data Conversion and Math 

Functions 
II Character Classification and 

Conversion 
II String Manipulation 
• Searching and Sorting 
• Time and Date Functions 
• File and Directory 

Manipulation 
• Input and Output Routines 
• System Calls 
• Graphics Modes, Coordinates, 

and Attributes 
• Drawing and Animation 
• Combining Graphics and Text 

304 Pages, 4 V4 x 8 1h, Softbound 
ISBN: 0-672-22674-X 
No. 22674, $7.95 

The Waite Group's 
Microsoft® C Bible 

Naba Barkakati 

Microsofi C Bible provides a 
thorough description of the 370 
functions of the Microsoft C 
library, complete with practical, 
real-world MS-DOS-based exam
ples for each function. Library 
routines are broken down into 
functional categories with an 
intermediate-level tutorial followed 
by the functions and examples. 
lnclt:ded are two "quick-start" 
tutorials, complete ANSI proto
types for each function, extensive 
program examples, and handy 
jump tables to help enhance 
learning. 
Topics covered include: 
II Overview of the C Language 
• Microsoft C 5.0 Compiler 

Features and Options 
El Process Control 
II Variable Length Argument 

Lists 
Cl Memory Allocation and 

Management 
1:1 Buffer Manipulation 
I! Data Conversion Routines 
• Math Routines 
• Character Classification and 

Conversion 
• String Comparison and 

Manipulation 
II Searching and Sorting 
IB Time Routines 

· • File and Directory Manipulation 
• Input and Output Routines 
• System Calls 
Cl Graphics Modes, Coordinates, 

and Attributes 
• Drawing and Animation 
• Combining Graphics and Text 
824 Pages, 7112 x 9 3/4, Softbound 
ISBN: 0-672-22620-0 
No. 22620, $24.95 

The Waite Group's 
QuickC™ Bible 

Naba Barkakati 

This book, written for first-time 
programmers making the transi
tion from Pascal or BASIC to C, 
is a complete, user-friendly refer
ence to Microsoft's QuickC 
compiler. 
The book shows how to accom
plish such sophisticated pro
cedures as using the environment 
and the PSP, provides complete 
details on video and graphics 
modes, and drawing and anima
tion. It reveals iittle-known 
secrets of C programming, provid
ing helpful, in-depth tips to make 
programming more organized and 
powerful. A pocket-size foldout 
reference card of all QuickC 
functions and commands is in
cluded, and unique compatibility 
boxes show portability with other 
compilers. 
Topics covered include: 
a Overview of the C Language 
Iii Process Control 
Cl Variable-Length Argument 

Lists 
• Memory Allocation and 

Management 
• Buffer Manipulation 
• Data Conversion and Math 

Routines 
m Character Classification and 

Conversion 
• String Comparison and 

Manipulation 
• Searching and Sorting 
e! Time Routines 
• File and Directory Manipulation 
Ill Input and Output Routines 
• System Calls and Graphics 

Modes 
900 Pages, 7112 x 93/4, Softbound 
ISBN: 0-672-22632-4 
No. 22632, $24.95 

Visit your local book retailer or call 
800-428-SAMS. 

The Waite Group's 
MS-DOS® Bible, Second Edition 

Steven Simrin 

This revised edition of the best 
seller is ideally targeted for the 
intermediate level user and 
programmer of the operating sys
tem, especially those who have 
upgraded to the new version 3.3. 
The comprehensive tutorial 
emphasizes the new features 
found in DOS 3.3 and provides 
expanded coverage of batch files, 
device drivers, memory manage
ment, and network commands. 
The new expanded batch lan
guage, disk structure, terminate 
and stay resident programs 
(TSRs), and the Lotus-Intel ex
panded memory model 4.0 are 
highlighted. The new commands 
are explained in detail, and a 
unique "Information Jump Table" 
is included and enhanced for 
easy reference. 
Topics covered include: 
l!I Starting MS-DOS 
m MS-DOS Files and Batch Files 
Ei1I Directories, Paths, and Trees 
Cl Installing a Fixed Disk 
• Redirection, Filters, and Pipes 
• EDLIN 
• Extended Keyboard and 

Display Control 
• Debug 
•Link 
• Disk Structure 
• MS-DOS Device Drivers 
• MS-DOS Commands 
• Appendices: Undocumented 

Features; MS-DOS Interrupts 
and Function Calls; Practical 
Batch Files; ASCII Cross 
Reference Table 

568 pages, 71/z x 93/4, softbound 
ISBN: 0-672-22617-0 
No. 22617, $22.95 



The Waite Group's 
MS DOS® Developer's Guide, 

Second Edition 
John Angermeyer and Kevin Jaeger 

This new and expanded develop
er's guide covers the MS-DOS 
and PC-DOSTM operating systems 
up to Version 3.3, concentrating 
on techniques for developing ap
plication programs as well as 
memory resident programs and 
device drivers. The book is aimed 
at the serious programmer, de
veloper, or "power user" with a 
significant understanding of 
MS-DOS. 
Topics covered include: 
m Structured Programming 
13 Program and Memory 

Management in the MS-DOS 
Environment 

DI TSRs 
C1 EMS 
11 Real-Time Programming Under 

MS-DOS 
El Installable Device Drivers 
D Writing Programs for the Intel 

8087 /80287 Math Coprocessor 
m LANs and MS-DOS 
Cl Programming the Serial Port 
m Programming the EGA and 

VGA 
Cl Disk Layout and File Recovery 

Information 
I! Recovering Data Lost in 

Memory 
liil Differences Between MS-DOS 

Versions 
Cl High-Level Languages 
m Debugging 

550 Pages, 7 'h x 9 3/4, Softbound 
ISBN: 0-672-22630-8 
No. 22630, $24.95 

The Waite Group's 
Understanding MS-DOS® 

O'Day and Angermeyer 

MS-DOS is a very powerful and 
intricate operating system, with 
millions of users. This operating 
system can be explored by begin
ning programmers in a hands-on 
approach at the keyboard. 
Understanding MS-DOS in
troduces the use and operation of 
this popular operating system for 
those with little previous ex
perience in computer hardware or 
software. The fundamentals of the 
operating system such as EDLIN, 
tree structured directories and 
pathnames, and such advanced 
features as redirection and filter
ing are presented in a way that 
is easy to understand and use. 
Topics covered include: 
• Organizing Data and Files 
• Redirecting Input and Output 
II Using the Text Editor EDLIN 

to Create and Edit Files 
• Special Function Keys and 

Key Combinations 
• Creating Batch Files of Often 

Repeated Commands 
II Create and Use Tree 

Structured Directories 
240 Pages, 7 x 9, Softbound 
ISBN: 0-672-27067-6 
No. 27067, $17.95 

The Waite Group's 
Tricks of the MS-DOS® Masters 

John Angermeyer, Rich Fahringer, 
Kevin Jaeger, and Dan Shafer 

This title provides the personal 
user (not necessarily the program
mer or software developer) with a 
wealth of advanced tips about the 
operating system and tricks for 
using it most successfully. 
Also included are advanced tips 
on using popular software pack
ages such as WordStar® 
Topics covered include: 
B Secrets of the Batch File 

Command Language 
• Secrets of Pipes, Filters, and 

Redirection 
• Secrets of Tree-Structured 

Directories 
II Discovering Secrets: A Debug-

ger Tutorial 
• Secrets of DOS Commands 
• Secrets of Files 
• Secrets of Free and Low-Cost 

Software 
• Secrets ·of Add-On Software, 

Boards, and Mass Storage 
• Secrets of System 

Configuration 
• Secrets of Data Encryption 
568 Pages, 71/z x 9 3/4, Softbound 
ISBN: 0-672-22525-5 
No. 22525, $24.95 

Visit your local book retailer or call 
800-428-SAMS. 

The Waite Group's 
Discovering MS-DOS® 

Kate O'Day 

This comprehensive study of MS
DOS commands such as DEBUG, 
LINK, and EDLIN begins with 
general information about operat
ing systems. It then shows how 
to use MS-DOS to produce letters 
and documents; create, name, and 
manipulate files; use the keyboard 
and function keys to perform jobs 
faster; and direct, sort, and find 
data quickly. 
It features a command summary 
card for quick reference. 
Topics covered include: 
II Introduction to MS-DOS 
II What is a Computer System? 
• What is an Operating System? 
11 Getting MS-DOS off the 

Ground 
• System Insurance 
m Editing 
11 Filing 
• Batch Files 
• Paths 
II Input/Output 
II Hard Disks 
II Appendices: Error Messages, 

Reference Card 
296 Pages, 71/z x 9 3/4, Softbound 
ISBN: 0-672-22407-0 
No. 22407, $19.95 



Dear Reader: 
If you enjoyed this book, you may be interested in these additional subjects and titles from 

The Waite Group and Howard W. Sams & Company. Reader level is as follows: * = introductory, * * = intermediate, * * * = advanced. You can order these books by calling 800-428-SAMS. 

Level Title 

C and C ++ Programming Language 

Tutorial, UNIX & ANSI 

* C Primer Plus, Revised Edition, Waite, Prata, & Martin 
* * C + + Programming, Berry * * * Advanced C Primer ++, Prata 

Tutorial, Product Specific 

* Microsoft C Programming for the PC, Revised Edition, Lafore * Turbo C Programming for the PC, Revised Edition, Lafore * * Inside the Amiga with C, Second Edition, Berry 

Reference, Product Specific 

* * Microsoft C Bible, Barkakati * * Quick C Bible, Barkakati * * Turbo C. Bible, Barkakati * * Essential Guide to ANSI C, Barkakati * * Essential Guide to Turbo C, Barkakati * * Essential Guide to Microsoft C, Barkakati 

DOS and OS/2 Operating System 

Tutorial, General Users 

* Discovering MS-DOS, O'Day * Understanding MS-DOS, O'Day & Angermeyer 

Tutorial/Reference, General Users 

** MS-DOS Bible, Second Edition, Simrin 

Tutorial/Reference, Power Users 

* * Tricks of the MS-DOS Masters, Angermeyer & Jaeger 

Tutorial, Programmers 

** MS-DOS Papers, Edited by The Waite Group ** OS/2 Programmer's Reference, Dror *** MS-DOS Developer's Guide, Revised Edition, Angermeyer, 
Jaeger, et al. 

UNIX Operating System 

Tutorial, General Users 

* UNIX Primer Plus, Waite, Prata, & Martin * UNIX System V Primer, Revised Edition, Waite, Prata, & Martin 
** UNIX System V Bible, Prata and Martin * * UNIX Communications, Henderson, Anderson, Costales * * UNIX Papers, Edited by Mitchell Waite 

Tutorial/Reference, Power Users and Programmers 

* * Tricks of the UNIX Masters, Sage *** Advanced UNIX-A Programmer's Guide, Prata 

Macintosh 

Tutorial, General Users 

* HyperTalk Bible, The Waite Group 

Tutorial/Reference, Power Users and Programmers 

** Tricks of the HyperTalk Masters, Edited by The Waite Group 

Catalog # Price 

22582 $24.95 
22619 $24.95 m3!1J 
22486 $24.95 

22661 $24.95 ~ 
22660 $22.95 ~ 
22625 $24.95 ~ 

22620 $24.95 ~ 
22632 $24.95 ~ 
22631 $24.95 ll§!l1 
22673 $7.95 ll§!l1 
22675 $7.95 ll§!l1 
22674 $7.95 ~ 

22407 $19.95 
27067 $17.95 

22617 $22.95 ~ 

22525 $24.95 

22594 $26.95 lmi'lJ 
22645 $24.95 ~ 
22630 $24.95 ~ 

22028 $22.95 
22570 $22.95 
22562 $24.95 
22511 $24.95 
22570 $26.95 

22449 $24.95 
22403 $24.95 

48430 $24.95 Gla!ll 

48431 $24.95 ~ 



HOWARD W. SAMS&. COMPANY 

Best-Seller 

The Waite Group's 

Microsoft® C 
Programming for the PC 
''I believe the book you are holding in your hands is the most accessible book on 
C that has yet been published .".-Ray Duncan, columnist for Dr. Dobb 's Journal. 

Shows how to write useful and marketable C programs for the I BM® PC, XT™, AT®, 
or PS/2® computers . 

The revised edition of a proven best-seller has been thoroughly updated to cover Microsoft C 5 .1, 
including Quick( and the new ANSI standard . It features in-depth coverage of the newest graphics 
features, including VGA graphics, and the latest additions to the CodeView® debugger. 

Written by respected computer book author Robert Lafore, The Waite Group's Microsoft C Pro
gramming for the PC, Revised Edition, teaches the C language using a carefully graded approach 
that assumes no previous knowledge of C. It takes you in easy-to-understand steps, from simple 
programs to sophisticated up-to-date examples that demonstrate all of C's power for program 
development. Ideal for students learning C on an IBM or compatible computer, as well as for 
professional and experienced programmers, this book includes end-of-chapter questions and exer
cises and an extensive reference section . 

This revision: 

• Focuses on the Microsoft C 5 .1 optimizing compiler and the friendly Quick( compiler, 
but is also compatible with earlier versions 

• Covers the powerful new Microsoft C library 
• Shows how to access CGA, EGA, and VGA color graphics directly 
• Details the Microsoft CodeView and Quick( debuggers 
• Includes many programs updated with the latest ANSI C prototypes 

Whether you ' re a computer hobbyist, student, teacher, or a professional programmer, 
this is the C book for you . 

The Waite Group is a developer of computer, science, and technology books. Acknowledged as a 
leader in its field , The Waite Group creates book ideas, finds authors, and provides developme nt 
support throughout the book cycle, including editing, reviewing, testing, and production control for 
each title . The Waite Group has produced over 70 titles, including such best-sellers as C Primer' 
Plus, Microsoft C Bible, MS-DOS® Bible, Tricks of the MS-DOS Masters, and UNIX® System V 
Primer. The Waite Group produces 15 to 20 new computer books each year and has yearly sales of 
a half-million books. The Waite Group can be reached at 100 Shoreline Highway, Building A, Suite 
285, Mill Valley, CA 94941 , (415) 331 -0575 . 

$24.95 US/22661 (Replaces 22515) 

#f 
HOWARD W. SAMS&. COMPANY 
A Division of Macmillan. Inc. 

4300 West 62nd Street 

Indianapolis, Indiana 46268 USA 

ISBN 0-672-22661-8 

90000 

9 780672 226618 


