
MICROSOIT®C

OPTIMIZING

COMPILER
FOR THE MS-DOS® OPERATING SYSTEM

USER'S GUIDE

5.0

Information in this document is subject to change without notice and does not
represent a commitment on the part of :Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose other than the purchaser's personal use without the written permis­
sion of :Microsoft Corporation.

©Copyright :Microsoft Corporation, 1984-1987. All rights reserved. Simultaneously
published in the U.S. and Canada.

If you have comments about the software, complete the Product Assistance
Request form at the back of this manual and return it to :Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback card at the back of this manual and return it to :Microsoft Cor­
poration.

:Microsoft®, MS®, MS-DOS®, CodeView®, and XENIX® are registered trademarks
and QuickCTH is a trademark of :Microsoft Corporation.

AT&T® is a registered trademark of American Telephone & Telegraph Company.

DEC® , PDP®, and V AX® are registered trademarks of the Digital Equipment Cor­
poration.

IBM® is a registered trademark of the International Business Machines Corpora­
tion.

Intel® is a registered trademark of Intel Corporation.

Olivetti® is a registered trademark of Olivetti SpA.

Texas Instruments® is a registered trademark of the Texas Instruments Corpora­
tion.

Turbo PascalTH is a trademark of Borland International, Inc.

UNIX® is a registered trademark of AT&T Bell Laboratories.

\Vang® is a registered trademark of "Vang Laboratories Incorporated.

Z8000® is a registered trademark of Zilog, Inc.

Document No. 410840001-500-R04-0887A
Part No. 00177

~~O~F CONTENTS

In trod uction ... 1
1.1 Overview .. 3
1.2 About This 1\1a,nual .. 4
1.3 New Features ... 6
1.4 Notational COnventions ... 8
1.5 J:k)oks about C ... 11
1.6 Requesting Assistance .. 11

2 Get ting Started ... 13
2.1 Introduction ... 15
2.2 Backing Up Your Disks .. 15
2.3 Disk Contents .. 15
2.4 The SETlJP Program ... 16

2.4.1 What SETlJP Does .. 16
2.4.2 Running SETlJP .. 17

2.4.2.1 Choosing SETUP
Command-Line Options 18

2.4.2.2 Choosing Floating";Point
Math Packages ...•.•...••.•.•...•.•..••.•••.•.•••. 20

2.4.2.3 Adding Graphics
to Combined Libraries ...•.•.•..•....•..•••.••.• 21

2.4.2.4 Building Libraries .•...•..••.•.•..•......•..•.••.. 22
2.4.2.5 Compiling Programs after Installation• 23

2.4.3 Library-Naming Conventions 23
2.4.4 How SETlJP Organizes Files 24
2.4.5 Setting Up the Environment 26

iii

2.4.6 Using Uncombined Libraries 26
2.4.7 Using the Microsoft C Graphics Library 28
Understanding the Compiler Software 28
2.5.1 Executable Files .. 28
2.5.2 Include Files .. 29
2.5.3 Library Files .. 30
2.5.4 Other Files .. 30
2.5.5 The Compiler Environment 32
2.5.6 Environment Variables 33

2.5.6.1 The PATH Variable ..•...••.•.••.•.••.•....•.... 34
2.5.6.2 The LIB Variable ..•.••.•..•.•••••.•••..••..•••••. 35
2.5.6.3 The INCLUDE Variable .••.•..•.•..•.•....•.••. 35
2.5.6.4 The T:NlP Variable ..••.••.••.•.•••••...••...•.••. 35
2.5.6.5 The CL Variable ••..•.•.••••••••••••.•.•••••••.••. 35
2.5.6.6 Defining Environment Variables•....•.... 36
2.5.6.7 Environment Variables

and CL Options ..•••..•.•....••..•.••....•..••.•.. 37
2.5.7 The CONFIG.SYS File 37

2.6 Using a RAM Disk ... 38
2.7 Converting Existing C Programs 38
2.8 Sample Compiler Command Lines 39

2.8.1 Listing CL Options .. 39
2.8.2 Simple Compile and Link 40
2.8.3 Using Wild-Card Characters 40
2.8.4 Compiling without Linking 40
2.8.5 Using the Alternate Math Library 40
2.8.6 Preparing to Use the Code View Debugger 41
2.8.7 Setting Titles and Subtitles 41

2. 9 Practice Session ... 41

3 Compiling with the
CL Command .. 45

3.1 Introduction ... 47

iv

3.2 The Basics:
Compiling and Linking C Programs 48
3.2.1 The CL Command•....•....... 48

3.2.1.1 Specifying Source and Object Files 48
3.2.1.2 Creating Executable Files 50
3.2.1.3 Stopping CL 51

3.2.2 Using the CL Environment Variable 51
3.3 Using ~ Options .. 53

3.3.1 Memory-Model (/ A) and
Floating-Point (/FP) Options 54

3.3.2 Listing the Compiler Options (/HELP) 56
3.3.3 Specifying Source Files (/Tc)•............ 56
3.3.4 Compiling without Linking (I c) 57
3.3.5 Compiling with QuickC (I qc, IZr, IZq) 57
3.3.6 Naming the Object File (/Fo)•............ 58
3.3.7 Naming the Executable File (/Fe) .•.••.•••.....••.•• 60
3.3.8 Creating Listing Files .•.....•............................. 61

3.3.8.1 Types of Listings
(/Fs, /Fl, /Fa, /Fc, /Fm)•............ 61

3.3.8.2 Special File Names 64
3.3.8.3 Setting Line Width (/Sl)

and Page Length (/Sp)•.•.•............ 65
3.3.8.4 Setting Titles (/St) and Subtitles (/Ss) 66
3.3.8.5 Formats for Listings •..•..•.•.....•.••..••••..... 67

3.3.9 Controlling the Preprocessor ..•...........•. 1 75
3.3.9.1 Defining Constants and Macros (/D) 75
3.3.9.2 Predefined Identifiers .•..•....•.•...•••.......... 77
3.3.9.3 Removing Definitions of

Predefined Identifiers (/U, /u)••........... 78
3.3.9.4 Producing a Preprocessed

Listing (/P, /E, /EP)•............ 79
3.3.9.5 Preserving Comments (/C) •..........•....•.••• 80
3.3.9.6 Searching for Include Files (/1, IX) 80

3.3.10 Using the 80186, 80188, or 80286 Processor
(/GO, IG1, IG2)•............ 81

3.3.11 Checking for Program Errors•...........• 82
3.3.11.1 Understanding Error Messages ...•............ 82
3.3.11.2 Setting the Warning Level (/W, /w) 84
3.3.11.3 Checking Syntax (/Zs) .•.•...................... 85
3.3.11.4 Generating Function Declarations (/Zg) ...• 86

v

3.3.12 Preparing for Debugging (/Zi, IZd, 10d) 87
3.3.13 Optimizing .. 88

3.3.13.1 Controlling Optimization (/0 Options) ••.. 89
3.3.13.2 Removing Stack Probes (/Gs) ••••••••••.•••••• 97

3.3.14 Enabling and Disabling
Language Extensions (/Ze, IZa) 99

3.3.15 Packing Structure Members (/Zp) ..•..•••.•.•..•.• 100
3.3.16 Setting the Stack Size (IF) .••••.••••••••••••••.•••••• 102
3.3.17 Restricting the Length

of External Names (/H)•...•...•.••••••••.••.•.•..• 103
3.3.18 Labeling the Object File (IV) 103
3.3.19 Suppressing Default-Library Selection (/ZI) .••• 104
3.3.20 Changing the Default char Type (I J)•..... 105
3.3.21 Controlling Stack and Heap Allocation•..... 105
3.3.22 Controlling the

Calling Convention (/Gc) .•........•..•••.....•.•..•.• 106
3.3.23 Compiling for

Windows Applications (lAw, IGw)•.•..... 109
3.3.24 XENIX-Compatible Options 109

3.4 Controlling Binary and Text Modes 111

4 Linking with
the CL Command 113

4.1 Introduction ... 115
4.2 The Default Linking Process 115
4.3 Passing Linker Information:

The jlink Option .. 115

vi

4.3.1 Specifying Libraries•........................... 116
4.3.1.1 Linking with Additional Libraries .••.•..•.• 117
4.3.1.2 Looking in Different Locations

for Libraries •.....•.•.•......••.•..•..•••.•.•...•• 117
4.3.1.3 Overriding Libraries Named

in Object Files ..••...•.•...•••.•.....•.•.•.•....• 117
4.3.2 Specifying Linker Options•..... 119

4.3.2.1 Defining Linker Options on
the CL Command Line .•......•.....•.•.•....• 119

4.3.2.2 Defining Linker Options in
the Environment ..•...••.•.........•....•.•..•.• 120

4.4 Linker Options ... 120

5 Running C Programs
on MS-DOS ... 125

5.1 Introduction ... 127
5.2 Passing Command-Line

Data to a Program ... 127
5.2.1 Expanding Wild-Card Arguments 130
5.2.2 Suppressing Command-Line Processing 131

5.3 Returning an Exit Code ... 131
5.4 Suppressing Null-Pointer Checks 132

6 Working with Memory Models 135
6.1 Introduction ... 137
6.2 Near, Far, and Huge Addressing 137
6.3 Using the Standard Memory Models 139

6.3.1 Creating Small-Model Programs 140
6.3.2 Creating Medium-Model Programs 141
6.3.3 Creating Compact-Model Programs 141
6.3.4 Creating Large-Model Programs 142
6.3.5 Creating Huge-Model Programs 143

6.4 Using the near, far, and huge I(eywords 144
6.4.1 Library Support for near, far, and huge 145
6.4.2 Declaring Data with near, far, 'and huge 146
6.4.3 Declaring Functions with the

near and far I<eywords 148
6.4.4 Pointer Conversions 150

6.5 Creating Customized Memory Models 152
6.5.1 Code Pointers .. 153
6.5.2 Data Pointers .. 153
6.5.3 Setting Up Segments 154
6.5.4 Library Support for Customized

Memory Models ... 155
6.6 Setting the Data Threshold 156

vii

Naming Modules and Segments 157

~~~We~~~~~t .. ~~~ ................................................ 159 

7 Controlling Floating-Point 
Math Operations ...................................... 161 

7.1 Introduction ........................................................... 163 
7.2 Summary of :Math Packages ................................... 163 

7.2.1 The Emulator Package ................................. 163 
7.2.2 The 8087 /80287 Package .............................. 164 
7.2.3 The Alternate Math Package ........................ 164 

7.3 Selecting Floating-Point (/FP) Options ................. 165 
7.3.1 The /FPi Option .......................................... 167 
7.3.2 The /FPi87 Option ...................................... 168 
7.3.3 The /FPc Option ......................................... 168 
7.3.4 The /FPc87 Option ...................................... 169 
7.3.5 The /FPa Option ......................................... 169 

7.4 Library Considerations 
for Floating-Point Options ..................................... 170 
7.4.1 In-Line Instructions or Calls .......................... 170 
7.4.2 Using ane Standard Library for Linking ........ 170 

7.5 Compatibility between 
Floating-Point Options .......................................... 173 

7.6 Using the N087 Environment Variable .................. 174 
7.7 If Your Computer Is Not IBM Compatible ............. 175 

8 Improving Program Speed ................. 177 
8.1 Introduction ........................................................... 179 
8.2 Using Register Variables ........................................ 179 
8.3 Optimization Options 

and Pragmas .......................................................... 181 
8.3.1 Default Optimization ................................... 181 
8.3.2 Generating Intrinsic Functions ...................... 181 

viii 



8.3.3 Relaxing Alias Checking ............................... 182 
8.3.4 Performing Loop Optimizations ..................... 182 
8.3.5 Removing Stack Probes ................................ 183 
8.3.6 Maximum Optimization ................................ 183 

8.4 Choosing the 
Function-Calling Convention ................................. 183 

8.5 Efficiency in Large Data Models ............................. 184 
8.5.1 Changing Addressing with near, far, 

and huge !(eywords ...................................... 184 
8.5.2 Setting the Data Threshold ........................... 185 
8.5.3 Controlling Segments Used 

for Allocation .............................................. 185 
8.6 Efficiency in Large Code Models ............................. 185 

Appendixes 
A Using Exit Codes ...................................... 189 
A1 Introduction ........................................................... 191 
A2 Exit Codes with MS-DOS Batch Files .................... 191 
A3 Compiler Exit Codes .............................................. 192 

B Converting from Previous 
Versions of the Compiler .................... 193 

B.1 Introduction ........................................................... 195 
B.2 Differences between Versions 5.0 and 4.0 ................ 195 

B.2.1 Enhancements and Additions ........................ 195 
B.2.2 Changes to the Language Syntax ................... 196 
B.2.3 New Features for the MS-DOS 

Implementation of C .................................... 198 
B.2.4 Changed Library Routines ............................ 199 

B.2.4.1 Graphics Routines .•••.......••...•........•.•.. 199 
B.2.4.2 Heap-Checking Functions ......•............. 199 
B.2.4.3 DOS and BIOS Interface Functions ...•.•.• 200 

ix 



~NTENTS~""""""""""""""""". 
B.2.4.4 Other New Functions ••....•......•..•.•....•.• 200 
B.2.4.5 New Include Files .•.•.••.•..•.•....•......••.•.. 201 

B.3 Differences between Versions 4.0 and 3.0 ................ 203 
B.3.1 Enhancements and Additions ........................ 203 
B.3.2 Changes in the Language Syntax ................... 204 
B.3.3 New Features for the MS-DOS 

Implementation of C .................................... 206 
B.3A New Library Routines and Include Files ......... 207 
B.3.5 Changes in Library-Function Syntax ............. 208 

C Writing Portable Programs .............. 209 
C.1 Introduction ........................................................... 211 
C.2 Program Portability ............................................... 212 
C.3 :rv1a,chine lfurdware ................................................. 212 

C.3.1 Byte Length ................................................ 212 
C.3.2 Word Length ............................................... 212 
C.3.3 Storage Alignment ....................................... 213 
C.3A Byte Order in a Word ................................... 214 
C.3.5 Bit Fields .................................................... 215 
C.3.6 Pointers ...................................................... 216 
C.3.7 Address Space ............................................. 217 
C.3.8 Character Set .............................................. 217 

C.4 Compiler Differences .............................................. 218 
CA.1 Signed/Unsigned char and Sign Extension ..... 218 
C.4.2 Shift Operations .......................................... 218 
C.4.3 Identifier Length .......................................... 219 
CAA Register Variables ........................................ 219 
C.4.5 Type Conversion .......................................... 220 
CA.6 Functions with a Variable 

Number of Arguments .................................. 221 
CA.7 Side Effects and Evaluation Order ................. 221 

C.5 Environment Differences ........................................ 222 
C.6 Portability of Data ................................................. 223 
C.7 Typ&Size Summary ............................................... 223 
C.8 Byt&Ordering Summary ........................................ 225 

x 



D Writing Programs 
for Read-Only Memory ........................ 227 

D.1 Introduction ........................................................... 229 
D.2 MS-DOS-Dependent 

Library Routines .................................................... 229 
D.3 Floating-Point Math Support ................................. 230 
D. 4 Modifying Start-Up Code ....................................... 231 

E Error Messages ........................................... 235 
E.1 Introduction ........................................................... 237 
E.2 Command-Line Error Messages .............................. 237 

E.2.1 Command-Line 
Fatal-Error Messages .................................... 238 

E.2.2 Command-Line Error Messages ...................... 238 
E.2.3 Command-Line Warning Messages ................. 241 

E.3 Compiler Error Messages ........................................ 243 
E.3.1 Fatal-Error Messages .................................... 244 
E.3.2 Compilation-Error Messages .......................... 251 
E.3.3 Warning Messages ........................................ 269 
E.3.4 Compiler Limits ........................................... 280 

E.4 Run-Time Error Messages ...................................... 281 
EA.1 Run-Time-Library Error Messages ................. 281 
EA.2 Floating-Point Exceptions ............................ 284 
E.4.3 Run-Time Limits .......................................... 286 

Glossary .................................................................... 287 

In d ex ........................................................................... 30 1 

xi 



Table 2.1 
Table 3.1 
Table 3.2 
Table 3.3 
Table 3.4 
Table 3.5 
Table 3.6 
Table 3.7 

Table 5.1 
Table 6.1 

Table 6.2 

Table 6.3 
Table 7.1 
Table C.1 
Table C.2 
Table C.3 
TableD.1 
Table E.1 

Default Environment Settings ........................ 26 
Q..; Options and Default Libraries .................. 55 
Default File Names and Extensions ................ 62 
Arguments to Listing Options ........................ 63 
Using the loop_ opt Pragma ........................... 95 
Using the check_ stack Pragma ...................... 98 
Using the pack Pragma ................................ 101 
XENIX Options Accepted 
by the ~ Command .................................... 110 
Argument Variables ..................................... 128 
Addressing of Code and Data 
Declared with near, far, and huge ................ 144 
Start-Up Routines for 
Custoll1lzed Memory Models ........................ 156 
Segment-Naming Conventions ..................... 158 
Summary of Floating-Point Options ............ 166 
C Type Sizes ................................................ 224 
Byte Ordering for Short Types ..................... 225 
Byte Ordering for Long Types ...................... 225 
MS-DOS-Dependent Library Routines ......... 229 
Limits Imposed by the C Compiler ............... 280 

Table E.2 Program Limits at Run Time ....................... 286 

xii 



II 

Ll 

n unl .000.' •• '.0,.0"'0.".0"0",,""0" 0"0",,00 

Nc\v R'-'('~l.tU r()~ 00' 0 00"'0""'0' 0 0'00" 0,,".0000.0'" 0 •• ' 0 0" 0 0' 0 0 0 0 0 0 0 o() 

L,· t i\rotational (1011 vcntions,.o.ooooooooooo •• ooooooo,oo ••••• 0 •• ' •• 0 ••• 8 

! .:') ~ll)Ollt ('; .0,'''0000000.0000''000000.00 .oooo.oooooooooooo.oooo.I ~ 

[ 0 () 00,00" 0 0 0"0000"000" 0 0 0, 0 0 0"" 0"" "c" c """"""""" 'I ! 





Introduction 

1.1 Overview 

The C language is a powerful general-purpose programming language that 
can generate efficient, compact, and portable code. The Microsoft® C 
Optimizing Compiler for the MS-DOS® operating system is a full imple­
mentation of the C language as defined by its authors, Brian W. Ker­
nighan and Dennis M. Ritchie, in The C Programming Language. Micro­
soft Corporation is actively involved in the development of the ANSI 
(American National Standards Institute) standard for the C language; this 
version of Microsoft C anticipates and conforms to the forthcoming stan­
dard in many areas. 

Microsoft C offers several important features to help you increase the 
efficiency of your C programs. You can choose between five standard 
memory models (small, medium, compact, large, and huge) to set up the 
combination of data and code storage that best suits your program. For 
flexibility and even greater efficiency, the Microsoft C Optimizing Com­
piler allows you to "mix" memory models by using special declarations in 
your program. 

The C language itself does not provide such standard features as input 
and output capabilities and string-manipulation features. These capa­
bilities are provided as part of the run-time library of functions that 
accompanies the Microsoft C Optimizing Compiler. Because the functions 
that require interaction with the operating system (for example, input and 
output) are logically separate from the language itself, the C language 
is especially suited for producing portable code. 

The portability of your Microsoft C programs is increased by the use of a 
common run-time library for MS-DOS and XENIX® installations. Using 
the routines in this library, you can transport programs easily from a 
XENIX development environment to an MS-DOS machine, or vice versa. 
See Appendix B of the Microsoft C Run- Time Library Reference (included 
in this package) for more information on the common library for MS-DOS 
and XENIX. 

Compared with other programming languages, C is extremely flexible con­
cerning data conversions and nonstandard constructions. The Microsoft C 
Optimizing Compiler offers several levels of warnings to help you control 
this flexibility; programs in an early stage of development can be processed 
using the full warning capabilities of the compiler to catch mistakes and 
unintentional data conversions. The experienced C programmer can use a 
lower warning level for programs that contain intentionally nonstandard 
constructions. See Section 3.3.11.2 for more information about this 
feature. 

3 



Microsoft C Optimizing Compiler User's Guide 

1.2 About This Manual 

This manual explains how to use the Microsoft C Optimizing Compiler to 
compile, link, and run C programs on your MS-DOS system. The manual 
assumes that you are familiar with the C language and with MS-DOS, and 
that you know how to create and edit a C-Ianguage source file on your 
system. 

Note 

Since MS-DOS and PC-DOS are essentially the same operating system, 
Microsoft manuals use the term MS-DOS to refer to both systems, 
except in those cases where the distinction is significant. 

If you have questions about the C language, turn to the Microsoft C Quick 
Reference Guide included in this package. The Microsoft C Run- Time 
Library Reference documents the run-time library routines you can use in 
your C programs. The Microsoft Code View and Utilities manual explains 
how to use the Code ViewlH symbolic debugger and the other utilities pro­
vided in the Microsoft C Optimizing Compiler package. The Microsoft 
Mixed-Language Programming Guide explains how to mix modules written 
in Microsoft C, Microsoft FORTRAN, Microsoft Pascal, and Microsoft 
BASIC. For more information about programming in the C language, refer 
to Section 1.5, "Books about C." 

The following list gives brief descriptions of the remaining chapters of the 
Microsoft C Optimizing Compiler User's Guide: 

Chapter 2, "Getting Started," covers installation and organization of the 
compiler software. This chapter explains how to set up an operating 
environment for the compiler by defining environment variables, and 
includes a practice session to acquaint you with the Microsoft C Optimiz­
ing Compiler. 

Chapter 3, "Compiling with the CL Command," discusses the process of 
compiling a program using the CL compiler driver. This chapter describes 
the options most commonly used to control preprocessing, compiling, and 
output of files. 

Chapter 4, "Linking with the CL Command," describes how to link object 
files using the CL command. This chapter explains how the linker searches 
for libraries, shows how to specify libraries for linking, and describes the 
linker options that can be used for C programs. 

4 



Introduction 

Chapter 5, "Running C Programs on MS-DOS," explains how to run your 
executable program file, and discusses features specific to the MS-DOS 
implementation of C. The chapter tells how to pass data from MS-DOS to 
a program at execution time, and how to return an exit code from your 
program to MS-DOS. 

Chapter 6, "Working with Memory Models," describes methods of manag­
ing memory models. These methods are useful for writing large programs 
that use more than 64K (kilobytes) of code or data. This chapter also . 
discusses "mixed-model" programming (combining features from the five 
standard memory models). 

Chapter 7, "Controlling Floating-Point Math Operations," describes the 
options of the CL command that control how Microsoft C programs han­
dle floating-point math and the libraries that support it. 

Chapter 8, "Improving Program Speed," gives suggestions and hints for 
maximizing program speed. 

Appendix A, "Using Exit aodes," lists the exit codes produced by the 
Microsoft a Optimizing Compiler. The chapter also briefly discusses how 
exit codes are used in description files for the MAKE program mainte­
nance utility and in batch files. 

Appendix B, "Converting from Previous Versions of the Compiler," sum­
marizes the differences between Version 5.0 of the Microsoft C Optimizing 
Compiler and previous versions. This appendix gives instructions for con­
verting programs written for versions prior to 5.0 to the format accepted 
by Version 5.0. 

Appendix C, "Writing Portable Programs," lists some of the a language 
features that are implementation dependent, and offers suggestions for 
increasing program portability. 

Appendix D, "Writing Programs for Read-Only Memory," gives informa­
tion about modifying start-up code and initializing floating-point support 
for programs that will be put in read-only memory. 

Appendix E, "Error Messages," lists and describes the error messages gen­
erated by the Microsoft C Optimizing Compiler and by the CL command. 
It also lists and explains run-time error messages produced by executable 
programs written in C. 

5 



Microsoft C Optimizing Compiler User's Guide 

1.3 New Features 

Several useful new features have been added to Version 5.0 of the Micro­
soft C Optimizing Compiler. This section summarizes features added since 
Version 4.0. For information about differences between Version 5.0 and 
versions prior to 4.0, see Appendix B, "Converting from Previous Versions 
of the Compiler." 

The new features include the following: 

6 

Feature 

Microsoft QuickC 
Compiler 

SETUP program 

Combined run­
time libraries 

New CL options 

Description 

The Microsoft QuickC Compiler is bundled with 
Version 5.0 of the Microsoft C Optimizing Com­
piler. The Microsoft QuickC Compiler provides 
an integrated programming environment includ­
ing program editor, compiler, debugger, and 
integrated program- and library-maintenance 
facilities. 

Batch files to automate installation of the 
Microsoft C Optimizing Compiler. 

Combined run-time libraries built by the instal­
lation program that include both standard 
library support and floating-point math support. 

Option 

/Oi 

/01 

lOp 

/qc 

/SI 

/Sp 

ISs 

Action 

Generates intrinsic forms for 
certain library functions 

Enables loop optimizations 

Forces consistent precision in 
the results of floating-point 
math operations 

Specifies compilation with the 
Microsoft QuickC Compiler 

Specifies line width for source 
listings 

Specifies lines per page for 
source listings 

Specifies subtitles for source 
listings 



const keyword 

New pragmas 

/St 

/Tc 

/Zp 

Introduction 

~pecifies titles for source list­
ings 

Specifies C source files for files 
without. C extensions 

Specifies structure packing on 
given byte boundaries 

Declares that a value will not change during 
program execution. 

Pragma 

alloc_ text 

function 

intrinsic 

loop_opt 

pack 

same_seg 

Action 

Names the code segment 
used to allocate specified 
functions 

Disables intrinsic-function 
generation for particular 
functions 

Specifies functions that will 
have intrinsic forms gen­
erated 

Controls program loop 
optimization on a local basis 

Specifies byte boundaries for 
structure packing 

Provides information about 
far data allocation that the 
compiler uses to perform. 
optimizations 

New Displays information about the linking process. 
/INFORMATION See Section 12.2.3 of the Microsoft CodeView 
linker option and Utilities manual for more information. 

Language changes The C language syntax and semantics have been 
modified in certain cases to correspond with 
recent updates to the Draft Proposed American 
National Standard-Programming Language C 
(hereinafter referred to as "the ANSI C stan­
dard"). See Appendix B, "Converting from Pre­
vious Versions of the Compiler," and Appendix 
A of the M£crosoft C Language Reference for 
more information. 

7 



Microsoft C Optimizing Compiler User~8 Guide 

New library 
functions 

All library functions defined in the the ANSI C 
standard are supported except the functions 
added for international-language support. Some 
existing functions have been modified and 
enhanced. In addition, a set of graphics func­
tions has been added. See Appendix B, "Con­
verting from Previous Versions of the Com­
piler," and the Microsoft C Run-Time Library 
Reference for more information. 

1.4 Notational Conventions 

The following notational conventions are used throughout this manual: 

8 

Example 
of Convention 

Examples 

Language 
elements 

COMMANDS, 
F~ES, 
REGISTERS, 
ENVIRONMENT, 
VARIABLES, and 
MACROS 

Description 
of Convention 

The typeface shown in the left column is used 
to simulate the appearance of information 
that would be printed on the screen or by the 
printer. For example, the following command 
line is printed in this special typeface: 

CL /FoOUT.OBJ /DTRUE=l FILE.C 

When discussing this command line in text, 
items appearing on the command line, such as 
OUT.OBJ, also appear in the special typeface. 

Bold type indicates elements of the C 
language that must appear in source pro­
grams as shown. Text that is normally shown 
in bold type includes operators, keywords, 
library functions, commands, options, and 
preprocessor directives. Examples are shown 
below: 

+= 
if 
main 

# if defined( ) 
/Fa 
sizeof 

int 
fopen 

Bold capital letters are used for the names of 
executable files and files provided with the 
product, and for environment variables, sym­
bolic constants, and macros. Commands 
typed at the MS-DOS level are also capital­
ized. These commands include built-in MS­
DOS commands such as SET, as well as 



placeholders 

Missing code 

[ optional items] 

Introduction 

program names such as eL, LINK, and LID. 
You are not required to use capital letters 
when you actually enter these commands. 

Words in italics are placeholders that you 
must supply in command-line and option 
specifications and in the text for types of 
information. Consider the following option: 

/H number 

Note that number is italicized to indicate that 
it represents a general form for the /H 
option. In an actual command, you would 
supply a particular number for the place­
holder number. 

Occasionally, italics are also used to 
emphasize particular words in the text. 

Vertical ellipses are used in program examples 
to indicate that a portion of the program is 
omitted. For instance, in the following 
excerpt, the ellipses between the statements 
indicate that intervening program lines occur 
but are not shown: 

count = 0; 

*pc++; 

Double square brackets enclose optional fields 
in command-line and option specifications. 
Consider the following option specification: 

/D ~·dent~:rier[= [string]] 

The placeholder identifier indicates that you 
must supply an identifier when you use the 
/D option. The outer square brackets indi­
cate that you are not required to supply an 
equal sign (= ) and a string following the 
identifier. the inner square brackets indicate 
that you are not required to enter a string fol­
lowing the equal sign, but if you do supply a 
string, you must also supply the equal sign. 

Single square brackets are used in C-language 
array declarations and subscript expressions. 
For instance, a [10] is an example of brack­
ets in a C subscript expression. 

9 



Microsoft C Optimizing Compiler User's Guide 

10 

Repeating 
elements ... 

{ cho£cell choice2} 

"Defined terms" 

KEY+KEY 

Horizontal ellipses are used in syntax exam­
ples to indicate that more items having the 
same form may be entered. For example, 
several paths can be specified in the PATH 
command, as shown in the following syntax: 

PATH[= ]path[;path] ... 

Braces and a vertical bar indicate that you 
have a choice between two or more' items. 
Braces enclose the choices, and vertical bars 
separate the choices. You must choose one of 
the items unless all of the items are also 
enclosed in double square brackets. 

For example, the /W (warning-level) compiler 
option has the following syntax: 

/W {O I 11 2 I 3} 

You can use /WI, /W2, or /W3 to display 
different levels of warning messages or /WO 
to suppress all warning messages. 

Quotation marks set off terms defined in the 
text. For example, the term "far" appears in 
quotation marks the first time it is defined. 

Some C constructs require quotation marks. 
Quotation marks required by the language 
have the form " "rather than" " . For 
example, a C string used in an example would 
be shown in the following form: 

"abc" 

Small capital letters are used for the names of 
keys and key sequences, such as ENTER and 
CTRL+C. Small capital letters are used for the 
names of keys (RETURN). Key sequences to be 
pressed simultaneously are indicated by the 
key names in small caps separated by a plus 
sign (CTRL+C), 



Introduction 

1.5 Books about C 

The manuals in this documentation package provide a complete 
programmer's reference for Microsoft C. They do not, however, teach you 
how to program in C. If you are new to C or to programming, you may 
want to familiarize yourself with the language by reading one or more of 
the following books: 

Hancock, Les, and Morris Krieger. The C Pr£mer. New York: McGraw­
Hill Book Co., Inc., 1982. 

Hansen, Augie. Proficz"ent C. Bellevue, Washington: Microsoft Press, 
1986. * 
Harbison, Samuel P., and Greg L. Steele. C: A Reference Manual. 
Englewood Cliffs, New Jersey: Prentice-Hall Software Series, 1987. 

Kernighan, Brian W., and Dennis M. Ritchie. The C Programm£ng 
Language. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978. 

Kochan, Stephen. Programming in C. Hasbrouck Heights, New Jersey: 
Hayden Book Company, Inc., 1983. 

Plum, Thomas. Learn£ng to Program in C. Cardiff, New Jersey: Plum 
Hall, Inc., 1983. 

Schildt, Herbert. C Made Easy. Berkeley, California: Osborne McGraw 
Hill, 1985. 

Schustack, Steve. Var£ations in C. Bellevue, Washington: Microsoft 
Press, 1985. 

These books are listed for your convenience only. Except for its own publi­
cations, Microsoft Corporation does not endorse these books or recom­
mend them over others on the same subject. 

1.6 Requesting Assistance 

If you feel you have discovered a problem in the software, please report the 
problem, using the Product Assistance Request at the back of this manual. 

If you have comments or suggestions regarding any of the manuals accom­
panying this product, please use the Documentation Feedback Card at the 
back of this manual. 

* Microsoft Press books are available wherever books and software are sold. To order by 
phone, call 1-800-638-3030; in Maryland, call collect 824-7300. For a complete catalog of 
Microsoft Press books, write to: Microsoft Press, 16011 NE 36th Way, Box 97017, Redmond, 
WA 98073-9717. 

11 





~HAPTER 

t 1 (~ t I () r1 """.,,,,,,,,,,,,, 0 ., Q , , , , " , , , , " , , , , , " , , , , , , , , , , , , , , " " , , , , , " , " , " , , 1 ;) 

Choosin g F II t 
Math p(l('kag(,~3,o"""c,,,,,,,o,,,,,,,o,c 

~J: ;~ /\cldillg C;ra.pllics 
t.o Combined Libraries ""0"''' "00 



CHAPTER 

2.5.6.3 The INCLUDE Variable ..................... 35 
2.5.6.4 The TNIP Variable ............................ 35 
2.5.6.5 The CL Variable ............................... 35 
2.5.6.6 Defining Environment Variables ........... 36 
2.5.6.7 Environment Variables 

and CL Options ................................ 37 
2.5.7 The CONFIG.SYS File ............................... 37 

2.6 Using a RAM Disk ................................................ 38 
2.7 Converting Existing C Programs .......................... 38 
2.8 Sample Compiler Command Lines ........................ 39 

2.8.1 Listing CL Options ..................................... 39 
2.8.2 Simple Compile and Link ............................ 40 
2.8.3 Using Wild-Card Characters ........................ 40 
2.8.4 Compiling without Linking .......................... 40 
2.8.5 Using the Alternate Math Library ................ 40 
2.8.6 Preparing to Use the Code View De bugger ..... 41 
2.8.7 Setting Titles and Subtitles ......................... 41 

2.9 Practice Session .................................................... 41 

14 



Getting Started 

2.1 Introduction 

This chapter explains how to use the SETUP program to install the com­
piler software on a hard disk and set up an operating environment for the 
compiler. 

To get your C compiler up and running requires that you do the following: 

1. Back up your disks (see Section 2.2). 

2. Check the contents of the disks (see Section 2.3). 

3. Read the README.DOC file on the Master distribution disk to 
learn about changes and additions made to the software after this 
manual was printed. 

4. Run the SETUP program to install the software. 

5. Read Section 2.8, "Sample Compiler Command Lines," or Section 
2.9, "Practice Session," to learn how to compile and link. 

Several MS-DOS procedu-res are mentioned in this chapter. In particular, 
the MS-DOS SET and PATH commands are used to give values to 
environment variables, which control the compiler environment. If you are 
unfamiliar with the SET and PATH commands, or with other MS-DOS 
procedures mentioned in this chapter, consult your DOS user's guide for 
instructions. 

2.2 Backing Up Your Disks 

Mter you have unwrapped your system disks, you should first make work­
ing copies, using the MS-DOS COPY command or the DISKCOPY util­
ity. Save the original disks for making future working copies. 

2.3 Disk Contents 

When you first open your compiler package, you may want to verify that 
you have a complete set of software. One of the distribution disks in your 
compiler package contains a·file named PACKING.LST on the Master 
distribution disk. This file lists and describes the files that make up the 
compiler software. It also lists the manuals and other materials included in 
the package that help you use the software. 

15 



Microsoft C Optimizing Compiler User's Guide 

You can use the P ACKING.LST file to get a quick overview of the com­
piler software, as well as to verify that your software package is complete. 

Note 

Named disks included with the Microsoft C Optimizing Compiler are 
referred to as distribution disks to distinguish them from disks you 
create and label as you use the SETUP program. 

2.4 The SETUP Program 

The SETUP program is a set of MS-DOS batch files that automatically 
install the compiler software. You will find the SETUP program on Disk 
1, the Master distribution disk (the disk may contain other files as well). 
The following sections explain what SETUP does and how to start 
SETUP. 

2.4.1 What SETUP Does 

The SETUP program performs the following tasks: 

• Copies all necessary files to the directories or disks you specify. 

• Builds run-time libraries based on your specifications. Each library 
includes support for the math, memory-model, and compatibility 
options you choose when you run SETUP. Under most cir­
cumstances, only one library is needed when you link. 

• Creates a batch file' named NEW-V ARS.BAT that you can use 
to set the values of your environment variables so that the com­
piler and linker can find the files they need. 

• Creates a file named NEW-CONF .SYS containing the appropri­
ate settings for the files and buffers parameters in your 
CONFIG.SYS file. 

See the P ACKING.LST file on the Master distribution disk for a com­
plete list of the files provided with the Microsoft C Optimizing Compiler. 
See Section 2.5.5, "The Compiler Environment," for more information 
about environment variables and the CONFIG.SYS file. 

16 



Getting Started 

2.4.2 Running SETUP 

To use the SETUP program, follow these two steps: 

1. Invoke the SETUP program and specify the following informa­
tion: 

• The memory model(s) you will use for your programs 

• Whether you will be linking with modules created by Versions 
3.0 and 4.0 of Microsoft C 

• The directories where you want to install the various compiler 
files 

2. At the SETUP prompt, type the names of the floating-point math 
packages you will use for your programs. 

Based on the options you choose on the command line and the answers you 
give to the prompts, SETUP installs the compiler software and builds the 
appropriate libraries for the memory-model and floating-point options you 
have chosen. 

To familiarize yourself with the options you will choose when you run 
SETUP, see Chapter 6, "Working with Memory Models," for descriptions 
of memory models and their uses and Chapter 7, "Con trolling Floating­
Point Math Operations," for descriptions of the available math packages 
and their uses. 

2.4.2.1 Choosing SETUP Command-Line Options 

Before you run SETUP, insert the Master distribution disk in a floppy­
disk drive and make that the current drive. 

To start SETUP, type a command line of this form and press ENTER: 

SETUP base models [cmpat] [b£ndir] [£ncld£r] [1£bd£1'] [srcdir] 

ltVarning 

The arguments you give SETUP include the names of several direc­
tories. If the directory you specify does not exist, SETUP creates the 
directory automatically. 

Be careful not to give SETUP the name of an existing directory, 
unless you know that no files in that directory have the same names as 
the compiler files, since SETUP overwrites the existing files as it is 
installing. 

17 



Microsoft 0 Optimizing Oompiler User's Guide 

To tell SETUP to use the appropriate default for an optional argument, 
simply omit the argument. Some optional arguments allow you to type a 
question mark (?) to choose the default. 

The following list explains each of the arguments you give on the SETUP 
command line: 

Argument 

base 

models 

cmpat 

18 

Meaning 

The name of the "base" directory for the installa­
tion. This name must begin with a drive name (for 
example, C:). All other directories that you give on 
the command line are created as su bdirectories of 
the base directory. 

One or more letters, separated by spaces, telling 
SETUP which memory models you will use for 
your programs. Type S for small model, M for 
medium model, C for compact model, or L for 
large or huge model. SETUP uses the letters you 
type to determine which combined libraries to 
build. Because the combined libraries are large, 
you should specify only the memory models you 
know you will need for your programs. (If you use 
more than one memory model, you may want to 
use the uncombined libraries instead of taking up 
disk space for combined libraries; see Section 2.4.6 
for more information.) 

Type c40 for this argument if you have batch files 
or MAKE description files that depend on model­
specific versions of the SETARGV.OBJ file. If 
you ask for compatibility with Version 4.0, 
SETUP installs copies of the SETARGV.OBJ 
file under the names mSETARGV.OBJ, where m 
is one of the letters you typed for the models argu­
ment (S for small, M for medium, C for compact, 
and L for large and huge). 



bindir 

incldir 

libdir 

srcdir 

Getting Started 

If you leave out this argument, SETUP installs 
only one copy, using the usual name, 
SETARGV.OBJ. See Section 2.5.4, "Other 
Files," for a description of SETARGV.OBJ. 

The subdirectory of base where you want to install 
the compiler executable files, including the com­
piler, linker, and utilities. This argument must 
begin with a backslash (\). 

If you leave out this argument or type a question 
mark (?) for it, SETUP uses the \BIN subdirec­
tory by default. 

The subdirectory of base where you want to install 
include files. This argument must begin with a 
backslash (\). 

If you leave out this argument or type a question 
mark (?) for it, SETUP uses the \INCLUDE 
subdirectory by default. 

The subdirectory of base where you want to install 
library files. This argument must begin with a 
backslash (\). 

If you leave out this argument or type a question 
mark (?) for it, SETUP uses the \LIB subdirec­
tory by default. 

The subdirectory' of base where SETUP copies the 
C start-up files lif desired) and where you will copy 
C source files. If specified, this argument must 
begin with a backslash (\). 

If you type a question mark (?) for this argument, 
SETUP uses the \SRC subdIrectory by default. 
If you do not give this argument, SETUP does not 
create a subdirectory for source files. 

19 



Microsoft C Optimizing Compiler User's Guide 

In addition to the subdirectories you tell SETUP to create, it creates the 
following subdirectories automatically: 

• A subdirectory named \ TMP, which the compiler will use for tem­
porary files during compilation. 

• A su bdirectory named \ bindir\ SAMPLE, where SETUP installs 
the demonstration programs provided with the Microsoft C Optim­
izing Compiler. 

• One or more subdirectories named base\ srcdir\ model, where model 
is one of the letters representing a memory model (S for small 
model, M for medium model, C for compact model, or L for large 
or huge model). Each \ srcdz"r\ model subdirectory contains one file 
named VERSION.INC. SETUP creates these subdirectories only 
if you have created a subdirectory for your source files. 

• Examples 

SETUP S c:\ ? ? ? 

The command line above tells SETUP to install the compiler software in 
the default subdirectories of the root directory (\). The default subdirec­
tories are \BIN for compiler and utility executable files, \INCLUDE for 
include files, and \LID for library files. No subdirectory is created for 
source files. Only the small-model library files are built. 

SETUP C:\C S M C L C40 \BINDIR \INC \LIBS \SOURCES 

The command line above tells SETUP to install the compiler software in 
the given subdirectories of the \C directory. Executable files are installed 
in the \C\BINDIR subdirectory; include files are installed in the \C\INC 
subdirectory; library files are installed in the \C\LIBS subdirectory; 
source files are installed in \C\SOURCES subdirectory; and demonstration 
files are installed in the \C\BINDIR\SAMPLE subdirectory. Library files 
are built, and mSETARGV.OBJ files are installed, for all available 
memory models. 

2.4.2.2 Choosing Floating-Point 
Math Packages 

Mter you enter the SETUP command line, SETUP displays a message 
telling you that it is ready to build combined run-time libraries. It then 
prompts you as shown below: 

Do you wish to use the Emulator floating point 
math package? [yjn] 

20 



Getting Started 

Do you wish to use the 8087/80287 floating point 
math package? [yin] 

Do you wish to use the Alternate floating point 
math package? [yin] 

Mter each prompt: 

• Type Y or y and press ENTER if you will use the given floating-point 
math package for your programs and you want to build combined 
libraries to support that package. Because the combined libraries 
are large, you should type .L Y only for the floating-point pack­
ages you know you will need for your programs. (If you use more 
than one floating-point math package, you may want to use the 
uncombined libraries instead of taking up disk s{>ace for combined 
libraries; see Section 2.4.6 for more information.) 

• Type N or n and press ENTER if you will not use the given floating­
point math package. 

If you do not answer Y or y to at least one of the prompts, SETUP 
displays the following message: 

You did not specify a floating point math option and, thus, 
setup will not build any combined libraries. 
Is this what you want? [yin] 

To answer this prompt: 

• Type N or n and press ENTER if you still want to build combined 
run-time libraries. SETUP returns to the earlier prompts for 
floating-point math packages. 

• Type Y or y and press ENTER if you do not want SETUP to build 
combined libraries. In this case, you must install the uncombined 
libraries manually; see Section 2.4.6, "Using Uncombined 
Libraries," for more information. 

2.4.2.3 Adding Graphics 
to Combined Libraries 

The last prompt that SETUP displays asks if you want to include Micro­
soft C graphics functions in the combined libraries: 

Do you want the graphics package included in your combined 
libraries [Yin]? 

21 



Microsoft C Optimizing Compiler User's Guide 

To answer this prompt: 

• Type Y or y if you will be using Microsoft C graphics functions in 
your programs and you want to include these functions in the com­
bined libraries that SETUP builds. Choosing this option adds 
approximately 50K to each combined library. However, you do not 
need to specify the graphics library GRAPmCS.Lm when you 
link programs that use graphics. 

• Type N or n if you do not want to include graphics in the combined 
libraries. If you want to use graphics functions in your programs 
but do not want to include the graphics package in your combined 
libraries, see Section 2.4.7, "Using the Microsoft C Graphics 
Library," 

2.4.2.4 Building Libraries 

If you have answered Y or y to at least one of the math-package prompts, 
SETUP displays the names of the combined libraries it is building in 
response to your choices of memory models (on the command line) and 
math packages (from your answers to prompts). SETUP builds combined 
libraries in order to speed linking. When SETUP has finished building 
libraries, it displays the following message: 

Library build complete. 

Setup no longer needs the library sub-components and you do not 
normally need them to compile and link your C program. Do you 
want to delete them? [yjn] 

If you use combinations of memory models and floating-point math pack­
ages other than the models and math packages you specified to SETUP, 
you may want to keep the uncombined libraries. However, if you will only 
be using the models and math packages supported by your combined 
libraries, you can delete the uncombined libraries. Enter Y or y to delete 
the uncombined libraries, or enter N or n if you want to keep the uncom­
bined libraries. 

Mter it finishes building libraries, SETUP finishes the rest of the installa­
tion process, including building the NEW-VARS.BAT and NEW­
CONF .SYS files. When the installation process is complete, SETUP 
displays the following message: 

Done! 

22 



Getting Sta.rted 

2.4.2.5 Compiling Programs after Installation 

After you have installed the compiler software, use the following procedure 
to compile your programs: 

1. Set up your environment as described in Section 2.4.5. You can 
type 

NEW-VARS 

to change environment variables so that you can use the Microsoft 
C Optimizing Compiler immediately. 

2. Use the MS-DOS CD command to move to the directory contain­
ing your program. 

3. Type a CL command line to start compiling. (See Chapters 3, 6, 
and 7 for descriptions of the options that you can specify on the 
CL command line to control the compilation process.) 

You can run the SETUP program without reading any further in this sec­
tion, since SETUP provides all the information you need. However, you 
may find the information in the following sections helpful if you should 
run into problems. 

2.4.3 Library-Naming Conventions 

SETUP gives the libraries it builds default names based on the memory 
models and math packages you choose. Each default name has the follow­
ing form: 

{S 1 M 1 C 1 L}LmC{E 171 A}.Lm 

The first character of the library base name is determined by the memory 
model you choose: S if you choose the small (default) memory model, M if 
you choose the medium memory model, C if you choose the compact 
memory model, or L if you choose the large or huge memory model. 

The last character of the default library base name is determined by the 
math package you choose: E if you choose the emulator package, 7 if you 
choose the 8087/80287 math package, or A if you choose the alternate 
math package. 

If you change the library name that SETUP assigns, you must explicitly 
specify the new library name when you link your program. (If you do not 
specify the new name, the linker expects that the library name is the 
default for the floating-point and memory-model compiler options you 
choose.) 

23 



Microsoft C Optimizing Compiler User's Guide 

Note 

For ease of discussion, the remainder of this manual uses the default 
names to identify libraries that support particular combinations of 
memory models and math packages. 

2.4.4 How SETUP Organizes Files 

The following lists show each subdirectory of the base directory that 
SETUP uses by default and the files that it copies to each default sub­
directory. Remember that you can tell SETUP to use subdirectory names 
other than the defaults; the same files are copied to the directory you 
specify in this case. 

\BIN subdirectory: 

Cl.ERR 
Cl.EXE 
C2.EXE 
C23.ERR 
C3.EXE 
CL.ERR 

CL.EXE 
CL.HLP 
CV.EXE 
CV.HLP 
ERROUT.EXE 
EXEMOD.EXE 

\INCLUDE subdirectory: 

ASSERT.H 
CONIO.H 
CTYPE.H 
DIRECT.H 
DOS.H 
ERRNO.H 
FCNTL.H 

FLOAT.H 
IO.H 
LIMITS.H 
MALLOC.H 
MATH.H 
MEMORY.H 
PROCESS.H 

\INCLUDE\SYS subdirectory: 

LOCKING.H 
STAT.H 
TIMEB.H 
TYPES.H 
UTIME.H 

\LID subdirectory: 

mLmCf.Lm 

24 

EXEPACK.EXE 
Lm.EXE 
LINK.EXE 
MAKE.EXE 
SETENV.EXE 

SEARCH.H 
SETJMP.H 
SHARE.H 
SIGNAL.H 
STDARG.H 
STDDEF.H 
STDIO.H 

STDLm.H 
STRING.H 
TIME.H 
VARARGS.H 



Getting Started 

Note that the Lm environment variable is not used to find the 
mVARSTCK.OBJ, SETARGV.OBJ, and BINMODE.OBJ files; if 
these files are not in your current working directory, you must specify a . 
path name at link time. 

Note 

Throughout the remainder of this manual, the convention 
mLmCj.Lm is· used to refer to the standard libraries built by 
SETUP. In this convention, the m refers to the standard memory 
model that the library supports: S for small model (the default), M for 
medium model, C for compact model, or L for large or huge model. 
The Jrefers to the floating-point math package that the library sup­
ports: E for the emulator package, 7 for the 8087/80287 package, and 
A for the alternate math package. 

This convention is also used for other files, such as 
mV ARSTCK.OBJ, that are supplied in multiple copies to handle 
each standard memory model. 

\BIN\SAMPLE subdirectory: 

cmCLE.C 
CmCLE.EXE 
CmCLE.R 
CmCLEB.BAT 
COUNT.C 
COUNT.EXE 
COUNT.R 
COUNT.TXT 
COUNTB.BAT 
DEMO.BAT 

\ SRC subdirectory: 

BRKCTL.INC 
CHKSTK.ASM 
CHKSUM.ASM 
CMACROS.INC 
CRTO.ASM 
CRTODAT.ASM 
CRTOFP.ASM 
CRTOMSG.ASM 
DOSSEG.C 
EMOEM.ASM 

DEMO.C 
MATH.C 
MENU.BAT 
NEW-CONF.SYS 
NEW-VAR8.BAT 
PI.C 
PI.EXE 
pm.BAT 
RESPOND.COM 
SAMPLE.BAT 

EXECMSG.ASM 
FMSGHDR.ASM 
HTOI.C 
HTOI.EXE 
HTOI.OBJ 
MSDOS.H 
MSDOS.INC 
NMSGHDR.ASM 
REGISTER.H 
SETARGV.ASM 

SI. 
S2. 
S3. 
84. 
85. 
S6. 
S7. 
88. 
89. 

STDALLOC.ASM 
STDARGV.ASM 
STDENVP .ASM 
WILD.C 

25 



Microsoft C Optimizing Compiler User's Guide 

2.4.5 Setting Up the Environment 

SETUP automatically creates a batch file named NEW-VARS.BAT in 
the \ BIN\ SAMPLE subdirectory of your base directory . You can use 
NEW-V ARS.BAT to change the values of your environment variables so 
that the compiler and linker can find the files they need. If you choose to 
install the compiler files in the default subdirectories, the NEW-
V ARS.BAT program sets these variables as shown in Table 2.1. 

Table 2.1 

Default Environment Settings 

Variable 

PATH 
INCLUDE 
Lm 
TMP 

Path 

base\BIN 
base\ INCLUDE 
base\Lm 
ba8e\ TMP 

Ordinarily, no temporary files will remain in the \ TMP subdirectory, 
since the CL.EXE program automatically removes them by the time pre­
cessing finishes. However, if you abort a compilation, you may find tem­
porary files remaining in the \ TMP subdirectory. 

If you wish, you can add the SET commands in the NEW-V ARS.BAT 
file to your AUTOEXEC.BAT file so that the environment is set up 
correctly each time you reboot. 

In addition to NEW-VARS.BAT, SETUP creates a file named NEW­
CONF .SYS in the \BIN\SAMPLE subdirectory. This file sets the files 
and buffers parameters to appropriate values for the Microsoft C Optim­
izing Compiler. You can either replace your existing CONFIG.SYS file 
with NEW-CONF .SYS or copy the buffers and files settings from 
NEW-CONF .SYS to your existing CONFIG.SYS file. 

2.4.6 Using Uncombined Libraries 

The SETUP program builds combined libraries because linking with com­
bined libraries is faster than linking with uncombined libraries. However, 
if you use many different combinations of memory models and floating­
point math packages, you may not want to use up the disk space required 
for all of the combined libraries you need. 

26 



Getting Started 

If you choose not to combine libraries, you can copy the appropriate 
uncombined libraries to the subdirectory you chose for libraries (by 
default, base\LID). The following uncombined libraries are provIded with 
the Microsoft C Optimizing Compiler (with m indicating the appropriate 
memory model): 

Library 

mLIDC.LID 

mLIDFP.LID 

mLIDFA.LID 

EM.LID 

LIDH.LID 

87.LID 

Purpose 

Standard run-time library; contains all of the rou­
tines included in the Microsoft C run-time library 
except math routines that require floating-point 
support. 

Floating-point math library; required whenever 
your program uses EM.LID or 87.LID. 

Alternate floating-point library; can be used 
instead of EM.LID and mLmFP .Lm when speed 
is more important than precision in floating-point 
calculations. See the discussion of floating-point 
options in Chapter 7, "Controlling Floating-Point 
Math Operations," for more information. 

Model-independent floating-point emulator; used 
to perform floating-point operations. 

Model-independent "compiler helper" functions; 
used to handle complex operations such as 32-bit 
multiplication and division. 

Model-independent 8087/80287 floating-point 
library; provides minimal floating-point support 
and can only be used when an 8087 or 80287 
coprocessor is present. 

The following list shows each combined library built by SETUP and the 
corresponding uncombined libraries: 

Combined Library 

mLIDCE.LID 

mLIDC7.Lm 

mLIDCA.LID 

Uncombined Libraries 

mLIDC.LID, mLIDFP .LID, LIDH.LID, 
and EM.LID 

mLmC.Lm, mLmFP .Lm, LIDH.LID, 
and 87.LID 
mLIDC.LID, mLIDFA.Lm, and 
LIDH.LID 

27 



Microsoft C Optimizing Compiler User's Guide 

When you compile and link a program, you must give the /NOD linker 
option after the /link option on the CL command line and specify the 
uncombined libraries for the memory-model option and floating-point 
option you are using. See Section 4.3.1 for more information about specify­
ing uncombined libraries. 

2.4.7 Using the :Microsoft C Graphics Library 

If you decided not to include graphics in the combined libraries built by 
SETUP, but you still want to use Microsoft C graphics routines in your 
programs, you must explicitly link with the GRAPHICS.LID library in 
addition to the appropriate combined library (or uncombined libraries). 
First, copy GRAPHICS.LID to the subdirectory where you installed the 
other libraries. You then have the following alternatives: 

• Give GRAPHICS.LID explicitly on the CL command line. See 
Sections 4.3.1 and 4.3.1.1 for more information about specifying 
additional libraries on the CL command line. 

• Specify GRAPHICS.LID in the CL environment variable. This 
tells the CL command to link with GRAPHICS.LID automati­
cally. See Section 3.2.2 for information about the CL environment 
variable. 

2.5 Understanding the Compiler Software 

Sections 2.5.1 through 2.5.7 provide background information about the 
Microsoft C Optimizing Compiler software and the environment in which 
it operates. This information is not required to use the compiler; however, 
it may help you better understand the individual components of the com­
piler software and how they work together. 

Section 2.5.1, "Executable Files," Section 2.5.2, "Include Files," and Sec­
tion 2.5.3, "Library Files," describe the three main categories of files that 
make up the Microsoft C Optimizing Compiler. Section 2.5.4 describes 
several additional files that do not fall into the three main categories. 

Sections 2.5.5 through 2.5.7 describe the compiler environment and the 
ways in which you can control this environment. 

2.5.1 Executable Files 

Executable files have an .EXE extension. The following executable files 
are provided with the Microsoft C Optimizing Compiler: 

28 



File 

CL.EXE 

Cl.EXE, C2.EXE, 
C3.EXE 

LINK.EXE 

CV.EXE 

LID.EXE 

EXEPACK.EXE 
EXEMOD.EXE 

SETENV.EXE 

ERROUT.EXE 

Getting Started 

Purpose 

Control program for the compiler and linker. 

The three compiler stages, or "passes," which 
are executed in order when you process a file 
using CL.EXE. 

Linker utility, which produces an executable 
program file from your compiled files. 
LINK.EXE can either be automatically 
invoked by CL.EXE or invoked separately. 

The Microsoft CodeView symbolic debugger. 

Library-manager program that creates and 
organizes libraries of object modules. 

Utility used to pack executable files. 

Utility that changes the headers of executable 
files. 

Utility that changes the size of the MS-DOS 
environment table. 

Utility that redirects standard-error output. 

See Chapter 3 of this manual for information about the CL command. See 
the Microsoft CodeView and Utilities manual for information about the 
LINK, CV, LID, MAKE, EXEPACK, EXEMOD, SETENV, and 
ERROUT utilities. 

2.5.2 Include Files 

Include files have an extension of .H. Include files are C source files you 
can incorporate into your program by using the C preprocessor directive 
# include. These files contain definitions used by run-time library 
routines. 

By convention, some include files are stored in a subdirectory named 
\SYS. This convention originated with the practice of storing files that 
define "system-level" constants and types in a separate "system" subdirec­
tory on UNIX~ and XENIX systems. However, not all the include files that 
are traditionally stored in the \ SYS subdirectory contain system-level 
definitions, and some of the include files not in the \SYS subdirectory 
contain system-level definitions. Since many programs, particularly those 
created under the XENIX and UNIX operating systems, rely on the \ SYS 
subdirectory convention, Microsoft continues to recognize this convention 
in order to to maintain compatibility with existing programs. 

29 



Microsoft C Optimizing Compiler User's Guide 

2.5.3 Library Files 

Library files contain compiled run-time library routines to be linked with 
your program. The SETUP program builds a library for each combina­
tion of memory models and math packages you specify. In most cases, this 
library is the only library you need to use for linking programs. See Sec­
tion 2.4.3 for information about library-naming conventions. 

Each library built by SETUP also contains an object module named 
CRTO.OBJ, which is the program start-up routine. This routine per­
forms the following important tasks: 

• Allocates the stack for your program and initializes the segment 
registers 

• Sets up the argv, argc, and envp variables to allow command-line 
arguments and environment settings to be passed to the program 

• Sets up and maintains the operating environment for the program 

• Initializes the emulator, if the program uses the emulator 

2.5.4 Other Files 

Several of the files provided in the Microsoft C Optimizing Compiler pack­
age don't fit into any of the categories discussed so far. The following list 
describes these files: 

File 

*.HLP 

*.ERR 

mVARSTCK.OBJ 

30 

Purpose 

Help files for the CL compiler driver 
(CL.HLP) and the Microsoft CodeView sym­
bolic debugger (CV.HLP). 

Error-message files for the CL compiler driver 
(CL.ERR) and compiler passes (Cl.ERR 
and C23.ERR). 

Object files that, when linked with a program, 
allow the heap to compete with the stack for 
memory space. In this way, the heap can allo­
cate memory from unused stack space. See 
Section 3.3.21, "Controlling Stack and Heap 
Allocation," for more information about the 
mVARSTCK.OBJ files. 



BINMODE.OBJ 

COUNT.* 

DEMO.C 

EMOEM.ASM 

SETARGV.OBJ 

Getting Started 

Object file used to change the default mode 
for data files from text mode to binary mode. 
This file can be used with all five memory 
models. See Section 3.4 of this manual, "Con­
trolling Binary and Text Modes," for informa­
tion about using BINMODE.OBJ. 

Files used in the practice session for the 
Microsoft CodeView symbolic debugger. 

C program used in the sample compile-and­
link session described in Section 2.9, "Practice 
Session." Other demonstration programs may 
be included on your distribution disks. If so, 
they are described in the README.DOC 
file. 

Assembly-language program that allows you 
to customize floating-point software. See Sec­
tion 7.7, "If Your Computer Is Not IBM Com­
patible," for more information about 
EMOEM.ASM. 

Object file containing a routine that expands 
the MS-DOS wild-card characters (1' and *) in 
file-name arguments passed to C programs 
from the command line. Wild-card expansion 
is performed only if you explicitly link with 
SETARGV.OBJ. This file can be used with 
all five memory models. For more information 
about SETARGV.OBJ, see Section 5.2, 
"Passing Command-Line Data to a Program." 

Note that if you have chosen compatibility 
with Version 4.0 of Microsoft C, SETUP 
installs versions of SETARGV.OBJ under 
the name mSETARGV.OBJ, where m 
specifies the memory model. If you link with 
object files compiled with Version 4.0 of 
Microsoft C, you must link with the version 
that is appropriate for the memory model you 
are using. (See Chapter 6, "Working with 
Memory Models," for more information about 
memory models.) 

31 



Microsoft C Optimizing Compiler User's Guide 

Start-up source files Source files for the Microsoft C Optimizing 
Compiler start-up module are provided for 
users who wish to modify them for purposes 
of developing read-only memory programs or 
memory-resident programs. See the file named 
README.DOC in your base\SRC sub­
directory (or the directory you chose for 
source files) for more information about these 
files. 

Note 

Except for these source files, no support is 
provided for modification of the start-up 
code. The start-up source files are subject 
to change in future versions of the Micro­
soft C Optimizing Compiler. 

2.5.5 The Compiler Environment 

The compiler environment consists of environment variables that tell the 
compiler and linker where to find the files they need to process a program. 
They are called "environment" variables because they define the environ­
ment in which the compiler and linker operate. Environment variables are 
defined at the MS-DOS command level using the MS-DOS commands SET 
and PATH. 

The SETUP program creates a batch file named NEW-V ARS.BAT 
that automatically sets the values of environment variables. You can 
either type 

NEW-VARS 

to set up the environment for the Microsoft C Optimizing Compiler or 
copy the settings in NEW-VARS.BAT to your AUTOEXEC.BAT file 
so that the environment is set up correctly each time you reboot. 

NEW-V ARS.BAT does not set the value of one environment variable 
that is useful during compiling and linking: CL. This variable allows you 
to specify default options and input files for the CL command. 

In addition to changing the values of your environment variables, you may 
have to change your CONFIG.SYS file so that it satisfies the compiler 
requirements. The SETUP program also creates NEW-CONF .SYS, a 

32 



Getting Started 

file that contains settings that you can copy to your CONFIG.SYS file so 
that the compiler can work correctly. 

The following sections describe the environment variables and 
CONFIG.SYS settings used by the compiler and linker. 

2.5.6 Environment Variables 

The CL.EXE compiler driver looks for four environment variables: 
PATH, INCLUDE, T~, and CL. The linker, which is invoked by 
CL.EXE, looks for two environment variables: LID and LINK. (See the 
Microsoft Code View and Utilities manual for a description of the LINK 
environment variable.) 

The PATH, INCLUDE TMP, and LID variables are assigned one or 
more path specifications (in the case of T~, only one path specification) 
that tell the compiler or linker where to find a particular type of file, as 
shown in the following list: 

Environment 
Variable 

PATH 

LID 
TMP 

INCLUDE 

Type of File 

Executable files (any file ending with .EXE). These 
include the compiler control program (CL.EXE), 
the compiler passes, the linker, and all of the utili­
ties. 

Library files (any file ending with .LID). 

Temporary files created by the compiler; only one 
path specification may be used. 

Note 

If you have a memory-based disk emulator, 
commonly referred to as a "RAM disk," you 
can compile programs faster by assigning the 
drive name for the RAM disk to the TMP vari­
able. 

Include files. 

33 



Microsoft C Optimizing Compiler User's Guide 

The compiler or linker always searches the current working directory first 
before searching the locations given in an environment variable. Excep­
tions to this sequence are # include files, which are enclosed in angle 
brackets ( < > ). 
The CL variable does not tell the compiler and linker where to find files; 
instead, it defines default options for the CL command. It can also specify 
source files, object files, or libraries, although this use is less common. 

Although environment variables are usually helpful, you are not required 
to set them. If you do not set these variables, the current working direc­
tory is used to search for files and create temporary files. 

2.5.6.1 The PATH Variable 

The CL command searches for the compiler and linker in the following 
order: 

1. In the directory where CL.EXE resides (which, under Version 2.x 
of MS-DOS, always looks like the current working directory) 

Note 

This manual refers to all versions of a product in, for example, 
the Version 2 range, as Version 2.x. 

2. In the current working directory 

3. In all directories specified in the PATH command, in order of their 
appearance 

This search order makes it easy to store and use multiple versions of the 
compiler without worrying about using the wrong version. 

MS-DOS also uses the PATH setting to locate executable files. For exam­
ple, when you invoke CL.EXE (by typing CL), the MS-DOS system finds 
CL.EXE by looking in your default directory and in the directories 
specified in the PATH setting. If you include the path name of the direc­
tory containing CL.EXE in your PATH setting, you can execute the con­
trol program from any directory. 

34 



Getting Started 

2.5.6.2 The LID Variable 

The LID environment variable defines where the linker searches for 
libraries. (Section 4.3.1 gives the rules the linker follows when searching 
for libraries.) This variable can contain one or more path specifications, 
separated by semicolons. 

When you compile a source file using the Microsoft C Optimizing Com­
piler, the compiler places a library name in the object file it creates. This 
is the name of the library that supports the memory-model and floating­
point options you have given on the CL command line. 

The linker searches the standard places for this library. The linker also 
uses the LID setting to search for any other libraries that you specify on 
the command line at link time. See Section 4.3.1.3 for more information 
about changing libraries at link time. 

2.5.6.3 The INCLUDE Variable 

The INCLUDE environment variable defines the standard places where 
the compiler searches for each include file (a file incorporated into another 
source file with the # include preprocessor directive). The /1 and /X 
options, discussed in Section 3.3.9.6, let you temporarily change the search 
path for include files without affecting the INCLUDE variable. Section 
3.3.9.6 also lists the places that the compiler searches for include files and 
the order in which these places are searched. 

2.5.6.4 The T~ Variable 

The compiler creates a number of temporary files as it processes a pro­
gram. The T~ environment variable tells the compiler and the operat­
ing system where to create these files. The temporary files are removed by 
the time the compiler finishes processing. 

The space required for the temporary files is typically double the size of 
the source file. It is often helpful to create the temporary files on a 
memory-based disk emulator, commonly referred to as a "RAM disk," as 
described in Section 2.6. You can speed processing by assigning the drive 
name you use for a RAM disk to the T:rv1P variable. 

2.5.6.5 The CL Variable 

The CL environment variable allows you to define default options for the 
CL compiler driver. This variable is useful if you usually give a large 
number of options or if you usually use the same set of options when you 

35 



Microsoft C Optimizing Compiler User's Guide 

compile and link. Since the options you define in the environment are not 
counted in the 128-character limit for the command line, you can define 
the options you use most often with the CL variable and then give only 
the options you need for specific purposes on the command line. 

The CL variable may also name source files, object files, and libraries. Any 
specified source files are compiled; if you also link with the CL command, 
the specified object files are linked and the specified libraries are searched. 

The options and files in the CL variable are treated just as if you typed 
them on the command line following CL and before the rest of the com­
mand line. Conflicts between options given in the environment and options 
given on the command line are handled accordingly. 

Note that, in most cases, if you define a CL or linker option in the 
environment, you cannot turn the option off from the command line. In 
cases where you do not want to use an option, you must reset the CL 
environment variable and omit the option that you do not want to use. 
(See Section 3.3, "Using CL Options," for exceptions to this rule.) ... 

2.5.6.6 Defining Environment Variables 

Use the MS-DOS SET command to define the values of INCLUDE, LID, 
TMP, andCL. Use the MS-DOS PATH command to define the value of 
PATH. 

You must set the values of PATH, INCLUDE, and TMP before invok­
ing the compiler if you want the variables to he effective while the com­
piler is running. Similarly, you must set LID before the linking stage. 

The SET command has the following format for the INCLUDE, LID, 
and TMP variables: 

SET var£able= path[; path]. .. 

The TMP variable can be 'assigned only one path name. The INCLUDE 
and LID variables can each contain more than one path name. See Section 
3.2.2 for information about setting the CL variable. 

The PATH command has the following format: 

PATH[= ] path[;path]. .. 

For example, you might use the following command line: 

PATH C:\BIN;C:\LINKER 

36 



Getting Started 

This tells the compiler and the operating system to search for executable 
files on Drive C in the directory named \BIN, then, if necessary, in the 
\LINKER directory. Although you are allowed to define the PATH vari­
able with the SET command, using this method under versions of MS­
DOS earlier than 3.0 can cause the PATH variable to work incorrectly for 
some directory specifications using lowercase letters. 

Note 

The environment table, which holds any environment variables you 
have set and the values you have assigned, is 160 bytes by default. If 
you want to set up a complex environment, this may not be enough 
space. If you are running on IBM PC-DOS Version 3.1 or earlier, you 
can use the SETENV program to increase the size of the environment 
table. See Section 15.3 of the Microsoft Code View and Utilities manual 
for more information. 

Once you have set an environment variable, it remains in effect until you 
reset it to a different value (or to an empty value) or until you turn off 
your machine. 

2.5.6.7 Environment Variables 
and CL Options 

Certain command-line options available with the compiler override the 
effect of environment variables. For example, the IX option (described in 
Section 3.3.9.6) tells the compiler not to automatically search the standard 
places for include files. The result is that the compiler does not search for 
include files in the directories specified by the INCLUDE variable. 

2.5.7 The CONFIG.SYS File 

Before you can run the compiler you must make sure that your 
CONFIG.SYS file allows the compiler to open 20 files. The NEW­
CONF .SYS file created by SETUP contains the following line: 

files=20 

If the files= line in your CONFIG.SYS file specifies a number less than 
20, replace the line in your CONFIG.SYS file with the line from the 
NEW-CONF .SYS file. If you do not currently have a CONFIG.SYS 
file, copy the NEW-CONF .SYS file to a CONFIG.SYS file in the root 
directory, then reboot, before you compile programs. 

37 



Microsoft C Optimizing Compiler User's Guide 

Note 

If you do not specify at least 15 files in the CONFIG.SYS file, you 
may see one of the following fatal error messages during compilation: 

fatal error C1041: Cannot open compiler intermediate file 
- no more files 

or 

fatal error C1015: Cannot find 'includefile' 

It is recommended, though not required, that you also set the number of 
buffers allowed in your CONFIG.SYS file. Check your CONFIG.SYS 
for the following line: 

buffers=number 

If number is not already set, 10 is a reasonable number to choose. 

2.6 Using a RAM Disk 

If your computer has sufficient available memory, you can set it up to run 
portions of the compiler from a memory-based disk emulator, also known 
as a RAM disk. Using a RAM disk allows you to compile programs consid­
erably faster than you could otherwise. 

If you are using a RAM disk, you can set the value of the TMP environ­
ment variable to the drive name you are using for the RAM disk. In this 
way, you can use the RAM disk for temporary files during compilation. 
Since temporary files are typically twice the size of the source file, you 
need approximately twice as much available memory as the size of the 
source file you are compiling. 

2.7 Converting Existing C Programs 

If you are using an earlier version of the Microsoft C Optimizing Compiler, 
or if you have programs written for such a compiler, turn to Appendix B 
for a discussion of differences between this compiler and earlier versions. 

38 



Getting Started 

You may need to make minor changes to existing source programs to com­
pile them with Version 5.0; however, recompiling these programs will gen­
erally result in improved performance. 

2.8 Sample Compiler Command Lines 

This section helps you quickly begin compiling and linking programs by 
giving examples of common CL command lines and options. For a step­
by-step approach to the compiling and linking process, see Section 2.9, 
"Practice Session." 

The command lines given in the following sections illustrate some of the 
most common command-line options. You can use these command lines 
exactly as shown to get started with the compiler and linker, or you can 
use them as models and supply your own combination of options. 

See Chapter 3 for an in-depth discussion of how the CL command line 
works. Chapter 4 explains how to control linking using the CL command 
line. Chapter 12 of the Microsoft Code View and Utilities manual fully 
describes the linker and its options. 

Each option illustrated in this section is fully described elsewhere in this 
manual. Use the index at the back of this manual to find more information 
about particular options. 

The CL command invokes the compiler, the linker, or both so you do not 
need to give separate commands for compiling and linking (although you 
may). Notice that no library names are given at link time in the commands 
shown below, since you are not required to give a library name when you 
link unless you have changed the names of the libraries created by 
SETUP. 

2.8.1 Listing CL Options 

For a quick overview of commonly used compiler options, type the follow­
ing at the MS-DOS prompt: 

CL /HELP 

The /HELP option displays a categorized summary of CL options. 

The Mz'crosoft C Quz'ck Reference Guz'de that accompanies this manual is 
another good source for a quick overview. It lists the CL options in alpha­
betical order. 

39 



Microsoft C Optimizing Compiler User's Guide 

2.8.2 Simple Compile and Link 

CL FILE1.C FILE2.C 

The example above demonstrates compiling and linking two files named 
FILE1. C and FILE2. C. Two object files, FILE1. OBJ and FILE2. OBJ, 
are created. Since no memory-model or floating-point options are given, 
these object files are linked with the appropriate library for the default 
memory model (small) and floating-point math package (emulator): 
SLmCE.Lm. The executable file is named FILE1. EXE. 

2.8.3 Using Wild-Card Characters 

CL /FePROGRAM /Fs *.c 

The command above compiles and links all C source files in the current 
working directory. The /Fe option gives the resulting executable file the 
name PROGRAM. EXE. The /Fs option creates a source-listing file for each 
source file; each source-listing file has the same base name as the 
corresponding source file, but has the extension .LST instead of .C. (The 
base name of a file is the portion of the name preceding the period.) 

2.8.4 Compiling without Linking 

CL /e FILE.C 

The command above compiles but does not link the given file. You can 
also use the CL command to link without compiling by just giving object 
files on the command line. For example, 

CL FILE.OBJ 

invokes the linker to create an executable program named FILE. EXE. 

2.8.5 Using the Alternate Math Library 

CL /FPa EMULAT.C 

By default, Microsoft C programs handle floating-point operations by gen­
erating in-line instructions for an 8087 or 80287 math coprocessor; if a 
coprocessor is present, the program uses it, but if a coprocessor is not 
present, the program uses an emulator library instead. 

40 



Getting Started 

The command shown above creates a program that handles floating-point 
math differently: the program generates calls to floating-point functions in 
an alternate math library (SLmF A.Lm). The alternate math library pro­
vides the smallest, fastest option if no coprocessor is installed, although 
the program sacrifices some accuracy for speed. If a coprocessor is 
installed, the program ignores it. See Section 7.2.3 for information about 
this option. 

2.8.6 Preparing to Use the CodeView Debugger 

CL /Zi EILE.C 

The example above uses the IZi option to create object and executable 
files that contain symbol-table information for debugging with the Micro­
soft CodeView window-oriented debugger. When the lZi option is given 
with no explicit optimization option, in order to make program debugging 
easier some complex optimizations are not performed. If you do not want 
the compiler to perform any optimization, specify the IOd option along 
with the IZi option. See Section 3.3.12, "Preparing for Debugging," for 
more information about the IZi option and Section 3.3.13.1, "Controlling 
Optimization," for more information about the IOd option. 

2.8.7 Setting Titles and Subtitles 

CL /Es /St "Main Title" ISs "Subtitle" /Sp20 /S190 EILE.C 

The example above compiles and links FILE. C, creating an executable file 
named FILE. EXE. The IFs option creates a source-listing file named 
FILE. LST. The listing has a main title and subtitle; it is 20 lines long 
and 90 characters wide. See Sections 3.3.8.1, "Types of Listings," and 
3.3.8.4, "Setting Titles and Subtitles," for more information. 

2.9 Practice Session 

This section shows you the steps involved in compiling and linking a pro­
gram using the Microsoft C Optimizing Compiler. By following these steps 
you can produce and run an executable program file. 

The source file used for this practice session is the sample source file 
DEMO.C, which the SETUP program installs in your base\SAMPLE 
subdirectory. DEMO.C is a simple C program that contains only one 
function, the main function. The main function in this program displays 
any command-line arguments you pass to the program at execution time 

41 



Microsoft C Optimizing Compiler User's Guide 

and displays the current values of environment settings. See Chapter 5, 
"Running C Programs on MS-DOS," for a full discussion of passing 
command-line data to programs, accessing the program environment from 
within a program, and declaring the argc, argv, and envp parameters. 

This practice session assumes that you have used the SETUP program to 
install the software and build the libraries you need; that you have set up 
the compiler environment using the NEW-V ARS.BAT program created 
by SETUP; and that you have copied DEMO.C to the directory or disk 
where you want to do your compiling and linking. 

You can verify that the compiler environment is set up correctly by typing 
SET and pressing ENTER. This command lists all environment variables 
and their current settings. Make sure the PATH, INCLUDE, TMP, and 
LIB variables are in the list and that they are set appropriately for your 
system. If you have installed the compiler using the SETUP program, 
these variables should have the values shown in the following list: 

Variable 

PATH 

INCLUDE 

Lm 
TMP 

Path 

base\BIN 

base\INCLUDE 

base\Lm 

base\TMP 

If your settings do not match the above settings, turn back to Section 
2.5.5 or 2.5.6 to review the disk setup and environment settings that are 
appropriate to your system. 

Once you have set up the environment, you are ready to begin processing 
DEMO.C by using the following procedure: 

42 

1. Make sure that the directory containing DEMO.C is your current 
working directory. (Use the MS-DOS CD command to change 
directories, if necessary.) 

2. Type 

CL /Fs DEMO.C 

First, the CL command invokes the compiler, which prints the fol­
lowing message on your screen and begins to compile the source 
file: 

Microsoft (R) C Optimizing Compiler Version 5.00 
(C) Copyright Microsoft Corp 1984, 1985, 1986, 1987. All rights reserved. 

The /Fs option creates a source listing named DEMO.LST in the 
current working directory. 



Getting Started 

3. The next message you see is similar to the following: 

Microsoft (R) Overlay Linker Version 3.60 
Copyright (C) Microsoft Corp 1983-1987. All rights reserved. 

This means that compilation is completed and the file is now being 
linked to form an executable program. 

4. When the linking process is finished, the MS-DOS prompt reap­
pears. Your current working directory now has an executable file 
named DEMO.EXE. It also contains an object file named 
DEMO.OBJ and a source-listing file named DEMO.LST. 

You may want to examine the source-listing file to familiarize your­
self with its format. However, the file is not required for running 
the program, and you can delete it. 

You can also delete the object file (DEMO.OBJ); since you have 
the executable program file, it is no longer needed. 

5. You can run the sample program by simply typing DEMO. How­
ever, since the sample program is designed to take command-line 
arguments and print them, give command-line arguments when 
you run the program. For instance, you can run the program and 
pass three arguments by typing: 

DEMO ONE TWO THREE 

The program name is displayed on your screen, followed by the 
arguments ONE, TWO, and THREE and a listing of all current 
environment settings. The environment settings include PATH, 
Lill, INCLUDE, and TMP, as well as any other settings that are 
curren tly in effect (whether or not they apply to the C program or 
to the compilation and linking processes). 

Note 

Under versions of MS-DOS earlier than 3.0, the program name 
is not available. The letter C is always given as the program 
name. 

43 





I-IAPTER 

1 Intro(l uction .000, •••••• ' •• 0 •••••••••••••• 0 0 •••••• 00 ••••• 0 ••• 0 ••• 0.00.47 

2 'The Basics: 
C0l11piling and Linking Prognll11S.oo.o.00ooooooo.oQQooA18 

3.2.1 The CL Cornn1and 00000000000 •• 00.0000000000' ... 0.000.,,48 

3.:2 .1.1 Specifying Sonrce and Object Files .. , 00 •• 48 
3.2.1.2 Creating Executa.hIe Fileso ..... o, ••••• 0 ••••• 50 
3.2.1.3 St.opping CL .. 00.00.00 •• "".00.00000000.0 ••••••• )")1 

302.2 Using the CL Environment \far! leooo.ooooooo. 1 

Ol)tlons 00'.' 0 O. O. 0" •• 00.00000." ••• ' 0 •••• 000. '0 •• 00 •• 0 .~53 
3.~{o j l\1ernory-l\1odcI (/~I'\) and 

Floating-Point (/FP) Options 0000.0000000.00000000054 

3.3.2 Listing the Cornpiler Options (/HELP) 00000000056 

3.3.3 Specifying Source Files (/'1'e) .. 0 ... 000.00000000000 •• 56 
3.3A Compiling without Linking (/e) 00.,000000000000000 

303.S COlnpiling with quickC (/qc? /Zl', /Zq) 0'.0000 

::L3J) Namlng the 01)jcct Ie (/F'o) 000000000000"'0000000058 

~~o~).'7 l\Talning the utable File (/ 000000.00000000000 

3.3.8 Creating Listing Filesoo •• oooooooooooooooooooo.oooooooo061 

3.3.8.1 Types of Listings 
( 

! 1 , ! v' ! T ' . 1 ! F \ .~ 1 
/ l' S, / I' a, / l' C, ano / 'Ill) .0000000000000 

'~.3.0.'p C . 1 F'l r'T 04 
oJ) C £., k.JPCCI<l 0 Ie 1\lan1CSooooooooooooooooooooooooooool) 

3.3.8.3 Setting Linr \Vid th (lSI) 
and Page Length (lSp)oooo,"",ocoooc,""oo,,65 

3.3.8.4 Setting Titles (1St) and Subtitles (lSs).'(3G 
3.3.8.5 Formats for Listin~!;so ... oooo"ooooo",ooo.oooo 

3030 9 Controlling the 0., 0 00 00., 00 H 0 00 0 0 0 ° 0 0 0 0 075 
:3.3.9.1 Dcf1ning Constants anel :\1acros ( 
~3.;3.9.2 Predefined Identifiers. 0'" 00'0'''''00'"''"00>0 

WM 



CHAPTER 

3.3.9.3 Removing Definitions of 
Predefined Identifiers (/U, lu) ............. 78 

3.3.9.4 Producing a Preprocessed 
Listing UP, IE, IEP) ......................... 79 

3.3.9.5 Preserving Comments (/C) ••.•••••••••.•.•• 80 
3.3.9.6 Searching for Include Files (II, IX) ....... 80 

3.3.10 Using the 80186, 80188, or 80286 Processor 
(/GO, /Gl, /G2) ......................................... 81 

3.3.11 Checking for Program Errors ....................... 82 
3.3.11.1 Understanding Error Messages •.......•.•. 82 
3.3.11.2 Setting the Warning Level (/W, /w) ..... 84 
3.3.11.3 Checking Syntax (/Zs) ••••••••••••••••••.•••• 85 
3.3.11.4 Generating Function Declarations (/Zg) 86 

3.3.12 Preparing for Debugging (/Zi, IZd, /Od) ...... 87 
3.3.13 Optimi zing ................................................. 88 

3.3.13.1 Controlling Optimization 
(/0 Options) •..•..••...•.•••••••.•.•....•..•.•• 89 

3.3.13.2 Removing Stack Probes (/Gs) •••••••••.•••• 97 
3.3.14 Enabling and Disabling 

Language Extensions (/Ze, /Za) ................... 99 
3.3.15 Packing Structure Members (/Zp) .............. 100 
3.3.16 Setting the Stack Size (IF) ••••••••.••••••••••••••• 102 
3.3.17 Restricting the Length 

of External Names (/H) ............................. 103 
3.3.18 Labeling the Object File (/V) ..................... 103 
3.3.19 Suppressing Default-Library Selection (/Zl) 104 
3.3.20 Changing the Default char Type (I J) .....•... 105 
3.3.21 Controlling Stack and Heap Allocation ....... 105 
3.3.22 Controlling the 

Calling Convention (/ Gc) .......................... 106 
3.3.23 Compiling for 

Windows Applications (lAw, IGw) ............. 109 
3.3.24 XENIX-Compatible Options ...................... 109 

3.4 Controlling Binary and Text Modes .................... 111 

46 



Compiling with the CL Command 

3.1 Introduction 

This chapter explains how to compile and link using the CL command and 
discusses commonly used CL options. The CL command is the only com­
mand you need to compile and link your C source files. CL executes the 
three compiler passes, then automatically invokes LINK, the Microsoft 
Overlay Linker, to link your files. 

Using the CL options described in this chapter, you can control and 
modify the tasks performed by the command. For example, you can direct 
CL to create an object-listing file or a preprocessed listing. Options also 
let you give information that applies to the compilation process; you can 
specify the definitions for manifest (symbolic) constants and macros, and 
the kinds of warning messages you want to see. 

For a quick overview of the more commonly used options, type 

CL /HELP 

after the MS-DOS prompt. The /HELP option is described in greater 
detail in Section 3.3.2, "Listing the Compiler Options." 

The CL command automatically optimizes your program. You never have 
to give an optimizing instruction unless you either want to change the way 
CL optimizes, request more sophisticated optimizations, or disable optimi­
zation altogether. See Section 3.3.13, "Optimizing," for more on these 
choices. 

Section 3.2 explains the basic use of the CL command to produce an exe­
cu table program. 

Sections 3.3.1-3.3.24 describe the commonly used CL options. 

See Chapter 4 for information about linking object files and libraries using 
the CL command. See Chapter 12 of the Microsoft Code View and Utilities 
manual for a detailed description of the linker and its options. 

See Chapter 6 for a discussion of the CL options that control memory 
models. 

See Chapter 7 for a discussion of the CL options that control floating­
poin t math operations. 

See the Microsoft C Quick Reference Guide, provided with this package, for 
a summary of the CL command and its options. 

47 



Microsoft C Optimizing Compiler User's Guide 

3.2 The Basics: 
Compiling and Linking C Programs 

This section explains how to use CL to compile and link C programs and 
discusses the rules and conventions that apply to file names and options 
used with CL. 

3.2.1 The CL Command 

The CL command has the following form: 

CL [option]. .. Fie ... [option ... Fie ... ] [/link[link-libinfo]] 

Each option is one of the command-line options described in Sections 
3.3.1-3.3.24, in Chapter 6, or in Chapter 7. 

Each file names a source or object file to be processed or a library to be 
searched at link time. See Section 3.2.1.1 for information about specifying 
source and object files. 

The CL command automatically specifies the appropriate library to be 
used during linking; however, you can use the /link option with the 
optional link-libinfo field to specify additional or different libraries, library 
search paths, and options to be used during linking. See Section 4.3, 
"Passing Linker Information: The /link Option," for information about 
specifying different libraries and linker options. 

You can give any number of options, file names, and library names on the 
command line, provided that the command line does not exceed 128 char­
acters. 

3.2.1.1 Specifying Source and Object Files 

The CL command can process source files, object files, library files, or any 
combination of these. It uses the file-name extension (the period plus any 
letters that follow it) to determine what kind of processing the file needs, 
as shown in the following list: 

48 

• If the file has a .C extension, CL compiles the file. 

• If the file has an .ASM extension, CL displays the following error 
message to indicate that it cannot invoke the Microsoft Macro 
Assembler: 

command-line error D2015: assembly files are not handled 



Compiling with the CL Command 

• If the file has an .OBJ extension, CL processes the file by invoking 
the linker. 

• If the file has a .LIB extension, CL passes the file to the linker to 
be searched, unless the I c option is given to suppress linking. See 
Section 3.3.4 for a description of the I c option. 

• If the extension is omitted, CL assumes an extension of .OBJ. If 
the extension is anything other than .C, .OBJ, or .LIB, CL 
assumes the file is an object file unless the file name is specified in 
association with the ITc option. If the file name is specified with 
the ITc option, CL assumes the file is a C source file. See Section 
3.3.3 for a description of the ITc option. 

• Examples 

CL A.C B.C C.OBJ D 

The command line above compiles the files A. C and B . C, creating object 
files named A.OBJ and B.OBJ. These object files are then linked with 
C.OBJ and D.OBJ to form an executable file namedA.EXE (since the base 
name of the first file on the command line is A). Note that the extension 
.OBJ is assumed for D since no extension is given on the command line. 

CL A.C B.C C.OBJ /TcD.SRC 

The command line above performs the same operations as the preceding 
command line, except that the fTc option indicates that D. SRC is a 
source file, not an object file. Thus, the files A. C, B. C, and D. SRC are 
compiled, creating object files named A. OBJ, and B. OBJ, and D. OBJ. 
These object files are then linked with C. OBJ to form an executable file 
named A. EXE (since the base name of the first file on the command line 
is A). 

Wild-Card Characters 

You can use the MS-DOS wild-card characters (* and ?) to process all files 
whose names match the wild-card specification, if the files have the 
required extensions. See your DOS user's guide for more information on 
wild-card characters. 

Some CL options (such as lTc, IFo, and II) take one or more file names 
as arguments. Do not use wild-card characters in file names used as argu­
men ts to these options. 

49 



Microsoft C Optimizing Compiler User's Guide 

• Examples 

CL *.C 

The command line above compiles all source files with the default exten­
sion (.C) in the current working directory. The resulting object files are 
linked to form an executable file whose base name is the same as the base 
nan1e of the first file compiled. 

CL * .OBJ 

The command above links all object files with the default extension 
(.OBJ) in the current working directory. 

Path Specifications 

Any file on the CL command line can include a full or partial path 
specification. A full path specification starts with the drive name; a partial 
path specification gives one or more directory names before the name of 
the file, but does not give a drive name. 

Specifying paths with file names allows you to process files in different 
directories or on different drives. 

Uppercase and Lowercase Letters in File Names 

You can use uppercase letters, lowercase letters, or a combination of both 
for the file names on the CL command line. For example, the following 
three file names are equivalent: 

abcde.C 
ABCDE.C 
aBcDe.c 

Note that, unlike file names, CL command options are case sensitive. 

3.2.1.2 Creating Executable Files 

When CL compiles source files it creates object files. By default, these 
object files have the same base names as the corresponding source files, but 
with the extension .OBJ instead of .C. (The base name of a file extension 
is the portion of the name preceding the period, but excluding the path 
specification and drive name, if any.) You can use the /Fo option to give 
a different name to an object file. 

50 



Compiling with the CL Command 

Unless the / c option is given, CL links these object files, along with any 
.OBJ files you give on the command line, to form an executable file. The 
executable file has the base name of the first file (source or object) given on 
the command line, plus an .EXE extension. If only .OBJ files are given on 
the command line, CL skips the compilation stage and simply links the 
files. 

You can tell whether CL is compiling or linking by the messages that 
appear on the screen. When CL invokes the compiler, a message similar to 
the following message appears on your screen: 

Microsoft (R) C Optimizing Compiler Version 5.00 
Copyright (C) Microsoft Corp 1984, 1985, 1986, 1987. All rights reserved. 

As each source file on the command line is compiled, its name appears on 
the screen. When all source files have been compiled and the linker is 
invoked, a message similar to the following message appears: 

Microsoft (R) Overlay Linker Version 3.60 
Copyright (C) Microsoft Corp 1983-1987. All rights reserved. 

This message is followed by several lines showing Microsoft LINK. 
prompts and the responses provided by CL. 

3.2.1.3 Stopping CL 

If you want to stop the compiling and linking session for any reason, press 
CTRL+C or CTRL+BREAK. You will be returned to the MS-DOS command 
level. If, after doing this, you discover new files beginning with 00 or 01 in 
the directory specified by the T:MP environment variable, you can safely 
delete them; because the compiling session was interrupted, these tem­
porary compiler files were not deleted. 

Certain nonstandard DOS environments (including some commonly used 
networks) often intercept some or all of the MS-DOS system calls and han­
dle the calls themselves to provide additional or different capabilities. 
When running the compiler under such environments, the different opera­
tion of the system calls may cause CL to differ from its documented 
behavior. 

3.2.2 Using the CL Environment Variable 

You can also use the CL environment variable to specify files and options 
without giving them on the command line. This variable has the following 
format: 

SET CL= [[ opt£on] ... [1£[ espec] ... ] [/link[ [£nk-[£b£nfo]] 

51 



Microsoft C Optimizing Compiler User's Guide 

This variable is useful if you usually give a large number of files and 
options when you compile. Since the files and options that you define with 
this variable are not counted in the 128-character limit for the command 
line, you can define the files and options you use most often with the CL 
variable and then give only the files and options you need for specific pur­
poses on the command line. 

The information you define in the CL variable is treated as though it 
appeared before the corresponding information you give on the CL com­
mand line. For example, if you use a command sequence of the form 

SET CL = opU file1 /link link-libinfol 

CL opt2 file2 /link I£nk-libinfo2 

the effect would be the same as entering the following CL command: 

CL opU f£1e1 opt2 f~'le2 /link link-libinfol link-libinfo2 

Note that if you have given an option in the CL environment variable, you 
generally cannot turn off or change the option from the command line. 
You must reset the CL environment variable and omit the file or option 
that you do not want to use. 

Also note that you cannot use CL to set options that use an equal sign 
(for example, the ID identifier = string option described in Section 
3.3.9.1), and you cannot use wild-card characters in file names to specify 
mUltiple files to CL. 

• Examples 

SET CL=/Zp lOx II\INCLUDE\MYINCLS \LIB\BINMODE.OBJ 

CL INPUT.C 

In the example above, the CL environment variable tells the CL command 
to use the IZp , lOx, and II options during compilation and then link 
with the object file \Lm\BINMODE.OBJ. The CL command that fol­
lows would then have the same effect ,as the following command line: 

CL IZp lOx II\INCLUDE\MYINCLS \LIB\BINMODE.OBJ INPUT.C 

That is, it would specify structure packing on two-byte boundaries (Sec­
tion 3.3.15); perform maximum optimizations (Section 3.3.13.1); search for 
include files in the \INCLUDE\MYINCLS directory (Section 3.3.9.6); and 
would suppress translation of carriage-return-line-feed character combina­
tions for the source file INPUT. C (Section 3.4). 

52 



Compiling with the CL Command 

3.3 Using CL Options 

The CL command offers a large number of command options to control 
and modify the compiler's operation. Options begin with the forward slash 
character (I) and contain one or more letters. You can use a dash (-) 
instead of the forward slash if you prefer. For example, /Zg and -Zg are 
both acceptable forms of the Zg option. In this manual, forward slashes 
are used for options, although in error messages dashes are used. 

Important 

Although file names can be given in either uppercase or lowercase 
letters, options must be given exactly as shown in this manual. For 
example, /Wand /w are two different options. 

Options can be defined in the CL environment variable, or they can 
appear anywhere on the CL command line. In general, an option applies 
to all files that follow it on the command line, and it does not affect files 
preceding it on the command line, However, not all options follow this 
rule; see the discussion of a particular option for information on its 
behavior. Keep in mind that most CL options apply only to the compila­
tion process. Unless specifically noted, options do not affect any object files 
given on the command line. 

Since options defined in the en~ironment are treated as if they appeared 
before options given on the command line, they affect any files given on 
the command line. Although, in some cases, conflicting options can be 
given on the command line to override options defined in the environment, 
it is usually 'safer to reset the CL variable because conflicts between the 
environment and command line may cause compilation to fail. 

• Examples 

SET CL = IFPi87 IAL lOx 

CL IFPa lAM FILE1.c 

In the example above, the conflictiIl:g floating-point and memory-model 
options given in the CL variable and on the CL command line would 
cause compilation to fail. 

53 



Microsoft C Optimizing Compiler User's Guide 

The following example illustrates how to turn off the effects of a CL 
option defined in the environment: 

SET CL = /2a 

CL FILE1.C /2e FILE2.C 

In the example above, the CL environment variable is set to the jZa 
option, described in Section 3.3.14, which tells the compiler to treat Micro­
soft extensions to the C language as ordinary identifiers rather than 
reserved words. The CL command specifies the inverse option, jZe, which 
tells the compiler to treat language extensions as reserved words. Since the 
effect is the same as compiling with the command line 

CL /2a FILE1.C /2e FILE2.C 

FILE1. C is compiled with language extensions disabled and FILE2 . C is 
compiled with language extensions enabled. 

3.3.1 Memory-Model (I A) and 
Floating-Point (7FP) Options 

Two important options that you specify with the CL command are the 
memory model used for your program, and how your program handles 
floating-point math operations. 

You use the CL command to specify the memory model your program will 
use. The memory model defines the rules that the compiler will use to set 
up the program's code and data segments in memory. CL offers the follow­
ing memory-model options: . 

Option 

JAS 
JAM 
JAC 
jAL 

JAR 

Effect 

Chooses the small memory model (default) 

Chooses the medium memory model 

Chooses the compact memory model 

Chooses the large memory model 

Chooses the huge memory model 

See Chapter 6 for a description of these options and the memory models 
they specify. 

The CL command includes the following options that allow you to choose 
how the program you are compiling will handle floating-point operations: 

54 



Option 

/FPi87 

/FPi 

/FPc87 

/FPc 

/FPa 

Compiling with the CL Command 

Effect 

Generates in-line instructions and selects the 
8087 /80287 math package 

Generates in-line instructions and selects the emu­
lator math package 

Generates floating-point calls and selects the 
8087 /80287 math package 

Generates floating-point calls and selects the emu­
lator math package 

Generates floating-point calls and selects the alter­
nate math package. 

See Chapter 7, "Controlling Floating-Point Math Operations," for a 
description of these options and their effects. 

The floating-point and memory-model options you choose determine the 
name of the standard library that CL places in the object file it creates. 
This library is then considered the default library, since the linker searches 
for it by default. Table 3.1 shows each combination of memory-model and 
floating-point options and the corresponding library name that CL 
embeds in the object file. 

Table 3.1 

CL Options and Default Libraries 

Floating-Point 
Option 

IFPi87 or IFPc87 

IFPi or IFPc 

IFPa 

MeIIlory-Model 
Option 

lAS 
lAM 
lAC 
IALor IAR 
lAS 
lAM 
lAC 
IALor IAR 
lAS 
lAM 
lAC 
IAL or IAR 

Default 
Library 

SLmC7.Lm 
MLmC7.Lm 
CLmC7.Lm 
LLmC7.Lm 
SLmCE.Lm 
MLmCE.Lm 
CLmCE.Lm 
LLmCE.Lm 
SLmCA.Lm 
MLmCA.Lm 
CLmCA.Lm 
LLmCA.Lm 

55 



Microsoft C Optimizing Compiler User's Guide 

Note 

If you are linking with any objects compiled with Version 4.0 of Micro­
soft C, rou must explicitly give the /NOD ("no default library 
search" ) linker option after the /link option on the CL command line, 
then specify the name of the Version 5.0 combined library explicitly. 

3.3.2 Listing the Compiler Options (/HELP) 

• Option 

/HELP 
/help 

This option displays a list of the most commonly used compiler options. 
CL processes all information on the line containing the /help option, and 
displays the command list. 

This option is not case sensitive: any combination of uppercase and lower­
case letters is acceptable. For example, /hELp is a valid form of this 
option. 

If you specify the / qc option (described in Section 3.3.5) before the 
/HELP option on the command line, only the options that work under 
I qc are displayed. 

3.3.3 Specifying Source Files (/Tc) 

• Option 

/Tc sourcefile 

The /Tc option tells the CL command that the given file is a C source 
file. bne or more spaces can appear between /Tc and the source-file name. 

If this option does not appear, CL assumes that files with the extension .C 
are C source files, files with the extension .Lm are libraries, and files with 
any other extension or with no extension are object files. If you use the 
/Tc option, CL treats the given file as a C source file, regardless of its 
extension, if any. A separate /Tc option must appear for each source file 
that has an extension other than .C. 

If you have to specify more than one source file with an extension other 
than .C, you must specify each source file in a separate /Tc option. 

56 



Compiling with the CL Command 

• Example 

CL MAIN.C ITc TEST.PRG /Tc COLLATE.PRG PRINT.PRG 

In the example above, the CL command compiles the three source files 
MAIN. C, TEST. PRG, and COLLATE. PRG. Since the file PRINT. PRG is 
given without a /Tc option, CL treats it as an object file. Thus, after 
compiling the three source files, CL links the object files MAIN. OBJ, 
TEST.OBJ,COLLATE.OBJ,andPRINT.PRG. 

3.3.4 Compiling without Linking (/c) 

• Option 

/e 

The / c (for "compile-only") option suppresses linking. Source files given 
on the command line are compiled, but the resulting object files are not 
linked, no executable file is created, and any object files specified on the 
command line are ignored. This option is useful when you are compiling 
individual source files that do not make up a complete program. 

The / c option applies to the entire CL command line, regardless of the 
option's position in the command line. 

• Example 

CL Ic *.C 

This command line compiles, but does not link, all files with the extension 
.C in the current working directory. 

3.3.5 Compiling with QuickC (/qc, /Zr, /Zci) 

• Option 

/qe 

The / qc option tells the compiler to compile any source files specified on 
the remainder of the command line using the Microsoft QuickC Compiler. 
Because only limited optimizations are performed, programs produced 
using this option are generally slower and larger than programs produced 
without it. However, they can be compiled much faster using this option. 

57 



Microsoft 0 Optimizing Oompiler User's Guide 

If you give the / qc option, only the following CL options have any effect 
on the program: 

/A 
Ic 
ID 
IF 
/Fc 

/Fm 
IFo 
IFPi 
IGs 
/Gt 

/help 
II 
llink 
IP 
/Tc 

/U 
lu 
IW Iw 
/X 

/Ze 
IZp 
/Zs 

The following options affect compilation only if you also specify the / qc 
option; otherwise, the CL command ignores them: 

Option 

/Zr 

/Zq 

Effect 

Checks for null pointers and out-of-range far 
po in ters at run time 

Generates debugging interrupts for programs that 
will be debugged within the QuickC environment 

Also, the following features are illegal or have no effect in source programs 
compiled with the / qc option: 

• Use of the huge keyword, which is ignored if language extensions 
are enabled (that is, if the program is compiled with the default 
language-extensions option, /Ze) 

• Redeclaration of extern items as static items, which causes a 
redefinition error 

• Use of the loop_ opt, intrinsic, function, alloc_ text, and 
same_ seg pragmas 

Refer to the M£crosojt Qu£ckC Programmer's Gu£de provided in this pack­
age for complete documentation of the Microsoft QuickC Compiler. 

3.3.6 Naming the Object File (/Fo) 

• Option 

/Foobifile 

By default, CL gives each object file it creates the base name of the 
corresponding source file plus the extension .OBJ. The /Fo option lets 
you give different names to object files or create them in a different direc­
tory. If you are compiling more than one source file, you can give an /Fo 
option for each source file to rename the corresponding object file. 

58 



Compiling with the CL Command 

Keep the following rules in mind when using this option: 

• The objfile argument must appear immediately after the option, 
with no intervening spaces. 

• Each /Fo option applies to the next source file that appears on the 
command line after the option. 

You are free to supply any name and any extension you like for the objfile. 
However, it is recommended that you use the conventional .OBJ extension 
because the linker and the LID library manager use .OBJ as the default 
extension when processing object files. 

If you do not give a complete object file name with the /Fo option (that 
is, if you do not give an object file name with a base and an extension), CL 
names the object files according to the following rules: 

• 

• 

If you give an object-file name without an extension (such as 
TEST), CL automatically appends the .OBJ extension. 

If you ~ive an object-file name with a blank extension (such as 
TEST.), CL leaves the extension blank. 

• If you give only a drive or directory specification following the /Fo 
option, CL creates the object file on the given drive or directory 
and uses the default file name (the base name of the source file plus 
.OBJ). 

You can use this option to create the object file in another directory or on 
another disk. When you give only a directory specification, the directory 
specification must end with a backslash (\) so that CL can distinguish 
between a directory specification and a file name. 

• Examples 

CL /FoB:\OBJECT\ THIS.C 

In the example above, the source file THI S . C is compiled; the resulting 
object file is named THI S. OBJ (by default). The directory specification 
B: \OBJECT\ tells CL to create THIS. OBJ in the directory named 
\OBJECT on Drive B. 

CL /Fo\OBJECT\ THIS.C THAT.C /Fo\SRC\NEWTHOSE.OBJ THOSE.C 

In the example above, the first /Fo option tells the compiler to create, in 
the \OBJECT directory, the object files THIS. OBJ (created as a result of 
compiling THI S . C) and THAT. OBJ (created as a result of compiling 

59 



Microsoft C Optimizing Compiler User's Guide 

THAT. C). The second /Fo option tells the compiler to create the object 
file named NEWTHOSE .OBJ, l created as a result of compiling THOSE. C) in 
the \SRC directory. 

3.3.7 Naming the Executable File (/Fe) 

• Option 

/Feexef£le 

By default, CL gives the base name of the first file (source or object) on 
the command line, plus the extension .EXE, to the executable file it 
creates. The /Fe option lets you give the executable file a different name 
or create it in a different directory. 

Since CL creates only one executable file, you can give the /Fe option 
anywhere on the command line. If more than one /Fe option appears, CL 
gives the executable file the name specified in the last /Fe option on the 
command line. 

The /Fe option applies only in the linking stage. If you specify the / c 
option to suppress linking, /Fe has no effect. 

The exefile argument must appear immediately after the option, with no 
intervening spaces. The exefile argument can be a file specification, a drive 
name, or a path specification. If exefile is a drive name or path 
specification, the CL command creates the executable file in the given 
location, using the default name (base name of the first file plus .EXE). 
When you give a path specification as the exefile argument, the path 
specification must end with a backslash (\) so that CL can distinguish it 
from an ordinary file name. 

You are free to supply any name and any extension you like for the exefile. 
If you give a file name without an extension, CL automatically appends 
the .EXE extension. 

• Examples 

CL /FeC:\BIN\PROCESS *.c 

The example above compiles and links all source files with the extension 
.C in the current working directory. The resulting executable file is named 
PROCESS. EXE and is created in the directory C: \BIN. 

60 



Compiling with the CL Command 

CL /FeC:\BIN\ *.C 

The example above is similar to the first example except that the execut­
able file, instead of being named PROCESS. EXE, is given the same base 
name as the first file compiled. The executable file is created in the direc­
tory c: \BIN. 

3.3.8 Creating Listing Files 

A number of listing options are available with the CL command. You can 
create a source listing, a map listing, or one of several kinds of object list­
ings. You can also set title and subtitle of the source listing from the com­
mand line and control the length of source-listing lines and pages. 

The options available for producing listings and controlling their appear­
ance are described in the following sections. 

Note 

Listings produced by the CL command may contain names that begin 
with more than one underscore (for example, __ chkstk) or that end 
with the suffix QQ. Names that use these conventions are reserved for 
internal use by the compiler, and should not be used in your programs, 
except for those documented in the Mz'crosoft C Run-Tz'me Lz'brary 
Reference such as _ psp, _ amblksiz, and _ fpreset(). Moreover, you 
should avoid creating global names that begin with an underscore. 
Since the compiler automatically adds another leading underscore, 
these names will have two leading underscores and might conflict with 
the names reserved by the compiler. 

3.3.S.1 Types of Listings 
(/Fs, /FI, /Fa, /Fc, /Fm) 

• Options 

/Fs[lz'stJiles] 
/FI [lz's tJil e] 
/Fa[listf£le] 
/F c[ lis tf£l e] 
/Fm[ mapf£le] 

Source listing 
Object listing 
Assembly listing 
Combined source and object listing 
Map file that lists segments, in order 

This section describes how to use command-line options to create listings. 
For an example of each type of listing and a description of the information 
it contains, see Section 3.3.8.5, "Formats for Listings." 

61 



Microsoft C Optimizing Compiler User's Guide 

When using the options described in this section, the list file argument, if 
given, must follow the option immediately, with no intervening spaces. 
The listfile can be a file specification, a drive name, or a path specification. 
It can also be omitted. 

Important 

When you give just a path specification as the listfile argument, the 
path specification must end with a backslash (\) so that CL can dis­
tinguish it from an ordinary file name. 

When you give a drive name or path specification as the argument to a 
listing option, or if you omit the argument altogether, CL uses the default 
file name for the listing type. Table 3.2 gives the default names used for 
each type of listing. The table also shows the default extensions, which are 
used when you give a file-name argument that lacks an extension. 

Table 3.2 

Default File Names and Extensions 

Default Default 
Option Listing Type File Name! Extension2 

/Fs Source Base name of source .LST 
file plus .LST 

/Fl Object Base name of source .COD 
file plus .COD 

/Fa Assembly Base name of source .ASM 
file plus .ASM 

/Fe Combined Base name of source .COD 
source-object file plus .COD 

/Fm Map Base name of first .MAP 
source or object file 
on the command 
line plus .MAP 

1 The default file name is used when the option is given with no argument or 
with a drive name or path specification as the argument. 

2 The default extension is used when a file name lacking an extension is given. 

Since you can process more than one file at a time with the CL command, 
the order in which you give listing options and the kind of argument you 

62 



Compiling with the CL Command 

give for each option (file specification, path specification, or drive name) 
affect the result. Table 3.3 summarizes the effects of each option with each 
type of argument. 

Table 3.3 

Arguments to Listing Options 

Option 

/Fa, LFc, 
IFl, /Fs 

/Fm 

File-Name 
Argument 

Oreates a listing 
for next source 
file on command 
line; uses de­
fault exten-
sion if no 
extension is 
supplied 
Uses given file 
name for the 
map file; uses 
default exten­
sion if no 
extension is 
supplied 

Drive-Name 
or Path 
Argument! 

Oreates listings in 
the given location 
for every source file 
listed after the 
option on the 
command line; uses 
default names 

Oreates map file in 
the given directory; 
uses default name 

No 
Argument 

Oreates listings in the 
current directory for 
every source file listed 
after the option on the 
command line; uses 
default names 

Uses default name 

1 When you give just a path specification as the argument, the path specification must end 
with a backslash (\ ) so that CL can distinguish it from an ordinary file name. 

Only one type of object or assembly listin~ can be produced for each 
source file. The /Fc option overrides the /Fa and IFI options; whenever 
you use /Fc, a combined listing is produced. If you apply both the /Fa 
and the IFI options to one source file, only the last listing specified on the 
command line is produced. If you specify both the /Fa and the /Fs 
options to one source file, a combined listing is produced. 

Note 

The CL command optimizes by default, so listing files reflect the 
optimized code. Since optimization may involve rearrangement of 
code, the correspondence between your source file and the machine 
instructions may not be clear, especially when you use the /Fc option 
to mingle the source and assembly codes. To produce a listing without 
optimizing, use the /Od option (discussed in Section 3.3.12, "Prepar­
ing for Debugging") with the listIng option. 

63 



Microsoft C Optimizing Compiler User's Guide 

The map file is produced during the linking stage. If linking is suppressed 
with the I c option, the IFm option has no effect. 

• Examples 

CL /FsHELLO.SRC /FcHELLO.CMB HELLO.C 

In the first example, CL creates a source listing called HELLO. SRC and a 
combined source and assembly listing called HELLO. CMB. The object file 
has the default name HELLO. OBJ. 

CL /FsHELLO.SRC /FsHELLO.LST /FcHELLO.COD HELLO.C 

The example above produces a source listing called HELLO. LST rather 
than HELLO. SRC, since the last name provided has precedence. This 
example also produces an object-listing file named HELLO. COD. The 
object file in this example has the default name HELLO. OBJ. 

3.3.8.2 Special File Names 

You can use the MS-DOS device names listed below as file-name argu­
men ts to the listing options. These special names allow you to direct list­
ing files to your terminal or printer: 

Name 

AUX 
CON 
PRN 
NUL 

Device 

Refers to an auxiliary device. 

Refers to the console (terminal). 

Refers to the printer device. 

Specifies a "null" (nonexistent) file. Giving NUL as a 
file name means that no file is created. 

Even if you add device designations or file-name extensions to these special 
file names, they remain associated with the devices listed above. For exam­
ple, A: CON. XXX still refers to the console and is not a disk-file name. 

64 



Compiling with the CL Command 

Note 

When using these device names, do not append a colon. The Microsoft 
C Optimizing Compiler does not recognize the colon. For example, use 
CON or PRN, not CON: or PRN: . 

3.3.8.3 Setting Line Width (/SI) 
and Page Length (/Sp) 

• Options 

/SI linewidth 
/Sp pagelength 

The /SI and /Sp options let you change the line width and page length, 
respectively, for source listings. These options are useful in preparing 
source listings for a printer that uses nonstandard page lengths. The space 
is optional between /SI and lz'newz'dth or /Sp and pagelength. 

The lz'newz'dth argument gives the width of the listing line in columns (on 
line printers, columns usually correspond to characters). The number given 
must be a positive integer between 79 and 132, inclusive. If you specify any 
number outside this range, the compiler generates a diagnos-
tic message and uses the default line width (79 columns). Any line that 
exceeds the listing width is truncated. 

The pagelength argument gives the number of lines to appear on each page 
of the listing. The number given must be a positive integer between 15 and 
255, inclusive. If you specify any number outside this range, the compiler 
generates a diagnostic message and uses the default page length (63 lines). 

The /SI or /Sp option applies to the remainder of the command line or 
until the next occurrence of /SI or /Sp on the command line. These 
options do not create source listings; they take effect only if you also 
specify the /Fs option to create a source listing. 

• Example 

CL Ie jFs IS1 90 ISp 70 *.C 

65 



Microsoft C Optimizing Compiler User's Guide 

The example above compiles all C source files with the default extension 
(.C) in the current working directory, creating a source-listing file for each 
source file. Each page of the source-listing file is 90 columns wide and 70 
lines long. 

3.3.8.4 Setting Titles (1St) and Subtitles (ISs) 

• Options 

1St IItitie ll 

ISs IIsubtitle" 

The 1St and ISs options set the title and subtitle, respectively, for source 
listings. The quotation marks (-. ") around the tz"tle or subtitle argument 
can be omitted if the title or subtitle does not contain space or tab charac­
ters. The space between 1St or ISs and their arguments is optional. 

The title appears in the upper left corner of each page of the source listing. 
The subtitle appears below the title. 

The 1St or ISs option applies to the remainder of the command line or 
until the next occurrence of 1St or ISs on the command line. These 
options do not cause source listings to be created. They take effect only 
when the IFs option is also used to create a source listing. 

• Examples 

CL 1St "INCOME TAX" ISs 4-14 IFs TAX*.C 

The example above compiles and links all source files beginning with TAX 
and ending with the default extension (.C) in the current working direc­
tory. Each page of the source listing contains the title INCOME TAX in the 
upper left corner. The subtitle 4-14 appears below the title on each page. 

CL /e /Fs /St"CALC PROG" /Ss"COUNT" CT.C /Ss"SORT" SRT.C 

The example above compiles two source files and creates two source list­
ings. Each source listing has a unique subtitle, but both listings have the 
title CALC PROG. 

66 



Compiling with the CL Command 

3.3.8.5 Formats for Listings 

This section describes and shows examples of the five types of listings 
available with the CL command. See Section 3.3.8.1, "Types of Listings," 
for information on how to create these listings. 

Source Listing 

Source listings are helpful in debugging programs as they are being devel­
oped. These listings are also useful for documenting the structure of a 
finished program. 

The source listing contains the numbered source-code lines of each pro­
cedure in the source file, along with any diagnostic messages that were 
generated. If the source file compiles with no errors more serious than 
warning errors, the source listing also includes tables of local symbols, glo­
bal symbols, and parameter symbols for each function. If the compiler is 
unable to finish compilation, it does not generate symbol tables. 

At the end of the source listing is a summary of the segment sizes in your 
program. This summary is useful for analyzing the memory requirements 
of your program. 

Any error messages that occurred during compilation appear in the listing 
after the line that caused the error, as shown in the following example: 

1 char hexvalue[10]; 
2 
3 main 0 
4 { 
5 long htoi(); 
6 printff"Please enter the hex value you want to convert:\n"); 
7 scanf ('l%sll, hexvalue); 
8 printf ("The integer value of the hex value is %ld\n", hexvalue»; 
9 } 

10 
11 long htoi(hexvalue) 
12 char *hexvalue; 
13 { 
14 
15 
16 
17 
18 
19 
20 

register char *ptr=hexvalue; 
int i=O; 
long n=O; 
long exp16 0 ; 
while (*ptr != '\0') { 
if (*ptr >= 'a' && *ptr <= 'f') 

*ptr -= 87; 
21 
22 

else if (*ptr >= 'A' && *ptr <= 'F') 
*ptr -= 55; 

23 else 
24 *ptr -= 48; 
25 ptr+; 
bomb.c(25) : error C2059: syntax error ,. , 

26 } 

67 



Microsoft C Optimizing Compiler User's Guide 

The line number given in the error message corresponds to the number of 
the source line immediately above the message in the source listing. 

The following example shows the source listing for a simple C program: 

Hex to ASCII 
2/25/87 

PAGE 1 
02-25-87 
10:44:23 

Line# Source Line Microsoft C Compiler Version 5.00 

1 char hexvalue[10]; 
2 
3 MainO 
4 { 
5 long htoi(); 
6 printfl"Please enter the hex value you want to convert:O); 
7 scanf (,l%s", hexvalue); 
8 printf("The integer value of the hex value is %ldO, htoi(hexvalue»; 
9 } 
10 
11 long htoi(hexvalue) 
12 char *hexvalue; 
13 { 
14 register char *ptr=hexvalue; 
15 int i=O; 
16 long n=O; 
17 long exp16(); 
18 while (*ptr != ' ') { 
19 if (*ptr >= 'a' && *ptr <= If') 
20 *ptr -= 87; 
21 else if (*ptr >= 'A' && *ptr <= 'F') 
22 *ptr -= 55; 
23 else 
24 *ptr -= 48; 
25 ptr++; 
26 } 
27 ptr -= 1; 
28 while (ptr>=hexvalue) 
29 { 
30 n+= (*ptr*exp16(i»; 
31 i++; 
32 ptr--; 
33 } 
34 return(n); 

htoi Local SymbQls 

Name Class Type Size Offset Register 

i .. 
ptr . 
n .. 
hexvalue. 

35 } 
36 
37 long exp16(exp) 
38 int exp; 
39 { 

auto 
auto 
auto 
param 

40 long result=l; 
41 int j; 
42 for (j=l; j<=exp; j++) 
43 result *= 16· 
44 return(result); , 

68 

-0008 
*** 
-0004 
0004 

si 



Hex to A 
2/25/87 

Compiling with the CL Command 

02-25-87 
10:44:23 

Microsoft C Compiler Version 5.00 

exp16 Local Symbols 

Name 

j ... 
result. 
exp .. 

Global Symbols 

Name 

exp16 
hexvalue. 
htoi .. 
main .. 
printf .. 
scanf .. 

Class Type Size Offset Register 

auto 
auto 
param 

Class 

global 
common 
global 
global 
extern 
extern 

Type 

near function 
struct/array 
near function 
near function 
near function 
near function 

-0006 
-0004 
0004 

Size Offset 

*** OOae 
10 *** 

*** 0038 
*** 0000 
*** *** 
*** *** 

Code size = OOe8 !232) 
Data size = 005f 95) 
Bss size = 0000 0) 

No errors detected 

At the end of each function, a table of local symbols is given, as shown 
below for the function htoi: 

htoi Local Symbols 

Name 

i .. 
ptr . 
n .. 
hexvalue. 

Class Type 

auto 
auto 
auto 
param 

Size Offset Register 

-0008 
*** 
-0004 
0004 

si 

The following list shows the contents of each column: 

Column 

Name 

Class 

Offset 

Register 

Contents 

The name of each local symbol in the function. 

Either auto if the symbol is a nonstatic local variable, 
or param if the symbol is a formal parameter. 

The symbol's offset address relative to the frame 
pointer (that is, the BP register). The Offset number 
is positive for param symbols and negative for auto 
symbols with auto storage class. 

Blank unless the variable is stored in a register; if the 
variable is stored in a register, this column indicates the 
register (SI or DI). 

69 



Microsoft C Optimizing Compiler User's Guide 

At the end of the source code, a table of global symbols is given, as shown 
below: 

Name Class Type Size Offset 

exp16 global near function *** OOae 
hexvalue. common structjarray 10 *** 
htoi. global near function *** 0038 
main. global near function *** 0000 
printf. extern near function *** *** 
scanf extern near function *** *** 

The following list shows the contents of each column: 

Column 

Name 

Class 

Type 

Size 

Offset 

70 

Contents 

Each global symbol, external symbol, and stati­
cally allocated variable declared in the source file. 

Either global, common, extern, or static, 
depending on how the symbol was defined in the 
source file. 

A simplified version of the symbol's type as 
declared in the source file. 

For functions, this entry is either near func­
tion or far function, depending on which 
memory model was used and how the function was 
declared. For a pointer, this entry is near 
pointer, far pointer,orhuge pointer. 
For enumeration variables, this entry is into For 
structures, unions, and arrays, this entry is 
struct/array. 

Used only for variables. Specifies the number of 
bytes of storage allocated for the variable. Since 
the amount of storage allocated for an external 
array may not be known, its Size entry may be 
undefined. 

Used only for symbols with an entry of global or 
static in the Class column. 

For variables, this entry gives the relative offset of 
the variable's storage in the logical data segment 
for the program file being compiled. Since the 
linker usually combines several logical data seg­
ments into a physical segment, this number is use­
ful only for determining the relative position of 
storage of variables. For functions, this entry gives 
the relative offset of the start of the function in the 
logical code segment. For small-model programs, 
the linker combines logical code in to a single 



Compiling with the CL Command 

physical segment, so this entry is useful for deter­
mining the relative positions of different functions 
defined in the same source file. However, for 
medium-, large-, and huge-model programs, each 
logical code segment becomes a unique physical 
segment. In these cases, this entry gives the actual 
offset of the function in its run-time code segment. 

The last table in the source listing shows the segments used and their size, 
as shown below: 

Code size 
Data size 
Bss size 

0103 (259) 
005f (95) 
0000 (0) 

The number of bytes in each segment is given first in hexadecimal, and 
then in decimal (in parentheses). 

Object Listing 

The IFI option produces an object listing. The object listing contains 
the instruction encoding and assembly code for your program. The line 
numbers are shown in the listing as comments. The instruction encoding is 
on the left and assembly code on the right, as shown in the sample below: 

; Line 4 
PUBLIC _main 

_main PROC NEAR 

Line 6 

*** 00000o 
*** 000001 
*** 000003 
*** 000005 

55 
8b ec 
33 cO 
e8 00 00 

push bp 
mov bp,sp 
xor aX,ax 
call _chkstk 

*** 000008 
*** OOOOOb 
*** OOOOOc 
*** OOOOOf 

b8 00 00 
50 

mov aX,OFFSET DGROUP:$S G12 
push ax 

Assembly Listing 

e8 00 00 
83 c4 02 

call _printf 
add sp,2 

The IFa option produces an assembly listing. The assembly listing con­
tains the assembly code corresponding to your C source file, as shown 
below: 

71 



Microsoft C Optimizing Compiler User's Guide 

; Line 4 

Line 6 

PUBLIC _main 
PROC NEAR 
push bp 
mov bp,sp 
xor ax, ax 
call __ chkstk 

mov aX,OFFSET DGROUP:$SG12 
push ax 
call _printf 
add sp,2 

Note that the sample shows the same code as in the object listing sample, 
except that the instruction encoding is omitted. 

The listing generated by the /Fa option in Versions 5.0 and later of the 
Microsoft C Optimizing Compiler can be used as input to the Microsoft 
Macro Assembler (MASM). 

Combined Source and Object Listing 

The /Fc option produces a combined source and object listing. The com­
bined source and object listing shows each line of your source program fol­
lowed by the corresponding line (or lines) of machine instructions, as in 
the following sample: 

_TEXT SEGMENT 
; :*** char hexvalue[10]; 
; : *** 
; : *** main () 
; :*** { 
; Line 4 

; : *** 

PUBLIC _main 
PROC NEAR 
*** 00000o 
*** 000001 
*** 000003 
*** 000005 

long htoi 0 ; 

55 
8b ec 
33 cO 
e8 00 00 

mov 
push bp 

bp,sp 
xor aX,ax 
call __ chkstk 

; : *** 
; Line 

printf("Please enter the hex value you want to convert:O); 
6 

*** 000008 b8 00 00 mov aX,OFFSET DGROUP:$SG12 
*** OOOOOb 50 push ax 
*** OOOOOc e8 00 00 call _printf 
*** OOOOOf 83 c4 02 add sp,2 

; 1*** scanf ("%s", hexvalue); 

Note that this sample is like the object-listing sample, except that the 
source-program line is provided in addition to the line number. 

When you examine a listing file, you will notice that the names of globally 
visible functions and variables begin with an underscore, as shown below 
(this part of the listing is the same for all three kinds of listings): 

72 



EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 
EXTRN 

_pr int f: NEAR 
_scanf: NEAR 
__ chkstk:NEAR 
__ aNlmul:NEAR 
__ aNNalshl:NEAR 
_hexvalue:TBYTE 

Compiling with the CL Command 

The Microsoft C Optimizing Compiler automatically prefixes an under­
score to all global names to preserve compatibility with XENIX C com­
pilers. If you write assembly-language routines to interface with your C 
program, this naming convention is important; see Section 3.3.8 for more 
information. 

The listing may also contain names that begin with more than one under­
score (for example, __ chkstk in the sample). Identifiers with more than 
one leading underscore are reserved for internal use by the compiler, and 
should not be used in your programs, except for those documented in the 
Microsoft C Run- Time Library Reference such as _ psp, _ amblksiz, and 
_ fpreset(). Moreover, you should avoid creating global names that begin 
with an underscore. Since the compiler automatically adds another leading 
underscore, these names will have two leading underscores and might 
conflict with the names reserved by the compiler. 

Map File 

The /Fm option produces a map file. The map file contains a list of seg­
ments in order of their appearance within the load module. An example is 
shown below: 

Start Stop Length Name 
OOOOOH OlE9FH OlEAOH _TEXT 
OlEAOH OlEAOH OOOOOH C_ETEXT 

Class 
CODE 
ENDCODE 

The information in the Start and Stop columns shows the 20-bit address 
(in hexadecimal) of each segment, relative to the beginning of the load 
module. The load module begins at location zero. The Length column 
gives the length of the segment in bytes. The Name column gives the name 
of the segment, and the Class column gives information about the seg­
ment type. See Chapter 12 of the Microsoft CodeView and Utilities 
manual for information about groups, segments, and classes. 

The starting address and name of each group appear after the list of seg­
ments. A sample group listing is shown below: 

Origin 
OlEA:O 

Group 
DGROUP 

73 



Microsoft C Optimizing Compiler User's Guide 

In the example above, DGROUP is the name of the data group. 
DGROUP is the only group used for data segments by programs com­
piled with the Microsoft C Optimizing Compiler, Versions 4.0 and 5.0. 

The map file shown below contains two lists of global symbols: the first list 
is sorted in ASCII-character order by symbol name and the second is by 
symbol address. A maximum of 2048 symbols are sorted in each list. (To 
increase the number of sorted symbols, you must specify the /MAP linker 
option with the number argument to create the map file; see Section 4.4 for 
details.) The notation Abs appears next to the names of absolute symbols 
(symbols containing 16-bit constant values that are not associated with 
program addresses). 

Many of the global symbols that appear in the map file are symbols used 
internally by the Microsoft C Optimizing Compiler. These symbols usually 
begin with one or more leading underscores or end with QQ. 

Address 

OlEA: 0096 
0000:lD86 
01EA:04BO 
OlEA: 0910 

01EA:00EC 
01EA:009C 
01EA:00EC 
0000:9876 Abs 
0000:9876 Abs 

OlEA: 0240 
OlEA: 0242 

Address 

0000:0010 
0000:0047 
OOOO:OODA 
0000:0113 
0000:0129 
OOOO:OlCS 

Publics by Name 

STKHQQ 
_brkctl 
_edata 
_end 

_abrkp 
_abrktb 
_abrktbe 
_acrtmsg 
__ acrtused 

_argc 
_argv 

Publics by Value 

_main 
_htoi 
_exp16 
__ chkstk 
__ as tart 
__ cintDIV 

The addresses of the external symbols are in the "Jrame:offsef' format, 
showing the location of the symbol relative to zero (the beginning of the 
load module). 

74 



Compiling with the CL Command 

Following the lists of symbols, the map file gives the program entry point, 
as shown in the following example: 

Program entry point at 0000:0129 

3.3.9 Controlling the Preprocessor 

The CL command provides several options that control the operation of 
the C preprocessor. You can define macros and manifest (symbolic) con­
stants from the command line, change the search path for include files, 
and stop compilation of a source file after the preprocessing stage to pro­
duce a preprocessed source-file listing. The options that perform these 
tasks are described in Sections 3.3.9.1-3.3.9.4. 

The C preprocessor recognizes only preprocessor directives. It treats the 
source file as a text file, processing substitutions and definitions as 
directed. The preprocessor can be run on a file at any stage of develop­
ment, whether or not the file is a complete C source file. In fact, the 
preprocessor is not restricted to processing C files; it can be run on any 
kind of file. However, input files to the preprocessor must follow the 
preprocessor rules; therefore, not all arbitrary text files may be suitable for 
use with the preprocessor. See Chapter 8 of the Microsoft C Quick Refer­
ence Guide for a complete discussion of C preprocessor directives and the 
format expected for preprocessor input. 

3.3.9.1 Defining Constants and Macros (/D) 

• Option 

/D identzlier[= [string]] 

The ID option lets you define a constant or macro used in your source file. 
The identzjier is the name of the constant or macro and string is its value 
or meaning. Note that spaces are permitted (but not required) between ID 
and the identifier. 

If you leave out both the equal sign and string, the given constant or 
macro is assumed to be defined, and its value is set to 1. For example, 
/DSET is sufficient to define SET. 

If you give the equal sign with an empty string, the given constant or 
macro is considered defined; its definition is the empty string. This 
definition effectively removes all occurrences of the identifier from the 
source file. For example, to remove all occurrences of register, use the 
following option: 

/Dregister= 

75 



Microsoft C Optimizing Compiler User's Guide 

Note that the identifier register is still considered to be defined. 

Note 

The ID identifier form of this option can be defined using the CL 
environment variable; however, the ID identifier = and ID identifier 
= string forms cannot. 

The effect of using the ID option is the same as using a preprocessor 
# define directive at the beginning of your source file: the identifier is 
defined in the source file being compiled either until an #undef directive 
removes the definition or until the end of the file is reached. 

You can supply a command-line definition for an identifier that is also 
defined within the source file. However, you must use #undef to remove 
the source-file definition, unless the source-file definition is identical to the 
command-line definition. The command-line definition remains in effect 
until the identifier is removed with an #undef directive. 

Normally, up to 17 definitions are allowed on the command line. Using 
either the /Za option or the / J option on the command line reduces to 16 
the number of definitions allowed; using both of these options reduces the 
number to 15. If you need to define more than the maximum number of 
identifiers, you can remove certain predefined definitions from the com­
mand line; see the discussion of thejU and lu options in Section 3.3.9.3, 
"Removing Definitions of Predefine Identifiers," for more information. 

The /D option is especially useful with the # if and # ifdef directives 
because you can control conditional-compilation directives in the source 
file from the command line. 

• Examples 

CL jD NEED=2 MAIN.C 

The example above defines the manifest constant NEED in the source file 
MAIN. c. This definition is equivalent to placing the directive 

#define NEED 2 

at the top of the source file. 

76 



Compiling with the CL Command 

For the next example, suppose a source file named OTHER. C contains the 
following fragment: 

#if defined(NEED) 

#endif 

Suppose further that OTHER. C does not explicitly define NEED (that is, no 
# define directive for NEED is present). Then all statements between the 
#if and the #endif directives are compiled only if you supply a definition 
of NEED by using /D. For instance, the command 

CL jDNEED MAIN.C 

is sufficient to compile all statements following the # if directive. Note 
that NEED does not have to be set to a specific value to be considered 
defined. The following command, in contrast, causes the statements in the 
#if block to be ignored (not compiled): 

CL MAIN.C 

3.3.9.2 Predefined Identifiers 

The compiler defines four identifiers that are useful in writing portable 
programs. You can use these identifiers to conditionally compile code sec­
tions, depending on the processor and operating system being used. The 
predefined identifiers and their functions are listed below: 

Identifier 

MSDOS 

M-I86 

M-I86mM 

Function 

Always defined. Identifies target operating 
system as MS-DOS. 

Always defined. Identifies target machine as 
a member of the 186 family. 

Always defined. Identifies memory model, 
where m is either S (small model), C (com­
pact moden, M (medium model), L (large 
mode!), or H (huge model). If huge model is 
used, both M- I86LM and M- I86HM are 
defined. Small model is the default. 
Memory models are discussed in Chapter 6, 
"Working with Memory Models." 

77 



Microsoft C Optimizing Compiler User's Guide 

NO_EXT_KEYS 

_ CHAlL UNSIGNED 

Defined only when the /Za option is given, 
thus disabling Microsoft-specific language 
extensions and extended keywords. See Sec­
tion 3.3.14, "Enabling and Disabling 
Language Extensions," for more informa­
tion. 

Defined only when the I J option is given to 
make the char type unsigned by default. 
See Section 3.3.20, "Changing the Default 
char Type," for more information. 

3.3.9.3 Removing Definitions of 
Predefined Identifiers (/U, I u) 

• Options 

IU identifier 
lu 
The IU (for "undefine") option turns off the definition of one of the 
predefined identifiers discussed in the previous section; one or more spaces 
may separate the IU and identifier. You can specify more than one /U 
option on the same command line. The lu option turns off all four 
definitions. 

These options are useful if you want t0l.ive more than the maximum 
number of definitions (16 if the IZa or J option is used, 15 if both 
options are given, or 17 otherwise) on t e command line, or if you have 
other uses for the predefined identifiers. For each definition of a predefined 
identifier you remove, you can substitute a definition of your own on the 
command line. When the definitions of all four predefined identifiers are 
removed, you can specify up to 20 command-line definitions. However, 
note that MS-DOS limits the number of characters you can type on a com­
mand line, so the number of definitions you can specify in practice is prob­
ably fewer than 20. 

• Example 

CL /UMSDOS fUM_l86 WORK.C; 

This example removes the definitions of two predefined identifiers. Note 
that the /U option must be given twice to do this. 

78 



3.3.9.4 Producing a Preprocessed 
Listing (/P, /E, /EP) 

• Options 

IP Writes preprocessed output to a file 

Compiling with the CL Command 

IE Writes preprocessed output to standard output; includes # line directives 
IEP Writes preprocessed output to a file and standard output 

The /P, IE, and /EP options produce listings of preprocessed files. These 
options a)low you to examine the output of the C preprocessor. 

The preprocessed listing file is identical to the original source file except 
that all preprocessor directives are carried out, macro expansions are per­
formed, and comments are removed. All three options suppress compila­
tion; no object file or listing is produced, even if you specify an /Fo option 
or a listing-file option on the CL command line. 

The /P option writes the preprocessed listing to a file with the same base 
name as the source file, but with an .1 extension. 

The /E option co~ies the preprocessed listing to the standard output (usu­
ally your terminal). It places a # line directive in the output at the begin­
ning and end of each included file and around lines removed by preproces­
sor commands that specify conditional compilation. You can use MS-DOS 
redirection to save this output in a disk file. 

The /E option is useful when you want to resubmit the preprocessed list­
ing for compilation. The # line directives renumber the lines of the 
preprocessed file so that errors generated in later stages of processing refer 
to the original source file rather than to the preprocessed file. 

Using the /EP option combines features of the /E and /P options; the file 
is preprocessed and copied to the standard output, but no # line direc­
tives are added. 

• Examples 

CL /p MAIN.C 

The example above creates the preprocessed file MAIN. I from the source 
file MAIN. C. 

CL IE ADD.C > PREADD.C 

79 



Microsoft C Optimizing Compiler User's Guide 

The command above creates a preprocessed file with inserted # line direc­
tives from the source file ADD. c. The output is redirected to the file 
PREADD.C. 

CL IEP ADD.C 

The command above produces the same preprocessed output as the second 
example, but without the # line directives. The output appears on the 
screen. 

3.3.9.5 Preserving Comments (/C) 

• Option 

/e 

Normally, comments are stripped from a source file in the preprocessing 
stage, since they do not serve any purpos~ in later stages of compiling. The 
/C (for "comment") option preserves comments during preprocessing. The 
/C option is valid only when the IE, IP, or IEP option is also used. 

• Example 

CL /P IC SAMPLE.C 

The example produces a listing named SAMPLE. I. The listing file contains 
the original source file, including comments, with all preprocessor direc­
tives expanded or replaced. 

3.3.9.6 Searching for Include Files (II, IX) 

• Options 

/1 d£rectory 
/X 

The II and IX options temporarily override or change the effects of the 
environment variable INCLUDE. These options let you give a particular 
file special handling without changing the compiler environment you nor­
mally use. (See Section 2.4.5, "Setting Up the Environment," for a discus­
sion of environment variables.) 

80 



Compiling with the CL Command 

You can add to the list of directories searched for include files by using the 
/1 (for "include") option. This option causes the compiler to search the 
directory or directories you specify before searching the standard places 
given by the INCLUDE environment variable. The space between /1 and 
directory is optional. You can add more than one include directory by giv­
ing the /1 option more than once in the CL command. The directories are 
searched in order of their appearance in the command line. 

The directories are searched only until the specified include file is found. If 
the file is not found in the given directories or the standard places, the 
compiler prints an error message and stops processing. When this occurs, 
you must restart compilation with a corrected directory specification. 

You can prevent the C compiler from searching the standard places for 
include files by using the /X (for "exclude") option. When CL sees the /X 
option, it considers the list of standard places to be empty. This option is 
often used with the /1 option to define the location of include files that 
have the same names as include files found in other directories, but that 
contain different definitions. 

• Examples 

CL II \INCLUDE II\MY\INCLUDE MAIN.C 

In the example above, CL looks for the include files requested by MAIN. C 
in the following order: first in the directory \INCLUDE, then in the direc-

. tory \MY\INCLUDE, and finally in the directory or directories assigned to 
the INCLUDE environment variable. 

CL IX II \ALT\INCLUDE MAIN.C 

In the example above, the compiler looks for include files only in the direc­
tory \ALT\INCLUDE. First the IX option tells CL to consider the list of 
standard places empty; then the II option specifies one directory to be 
searched. 

3.3.10 Using the 80186, 80188, or 80286 Processor 
(/GO, /G1, /G2) 

• Options 

IGO Enables instruction set for 8086/8088 processor (default) 
IGI Enables instruction set for 80186/80188 processor 
IG2 Enables instruction set for 80286 processor 

81 



Microsoft C Optimizing Compiler User's Guide 

If you have an 80186, 80188, or 80286 processor, you can use the IG1 or 
/G2 option to enable the instruction set for your processor. Use lGl for 
the 80186 and 80188 processors; use /G2 for the 80286. Although it is 
usually advantageous to enable the appropriate instruction set, you are 
not required to do so. If you have an 80286 processor, for example, but you 
want your code to be able to run on an 8086, you should not use the 
80186/80188 or 80286 instruction set. 

The IGO option enables the instruction set for the 8086/8088 processor. 
You do not have to specify this option explicitly, since the 8086/8088 
instruction set is used by default. Programs compiled this way will also 
run on the machines with the 80186, 80188, or 80286 processor. 

3.3.11 Checking for Program Errors 

You may encounter several different kinds of error messages when you 
compile, link, and run a Microsoft C program. Section 3.3.11.1 gives an 
overview of Microsoft C error messages. 

Several CL options are available to control the types of warnings gen­
erated at compile time, help with syntax checking, and verify compatibil­
ity between the actual arguments and formal parameters of a function 
during the early stages of program development. Sections 3.3.11.2-3.3.11.4 
describe these options. 

3.3.11.1 Understanding Error Messages 

Error messages can appear at different stages of program development: 

• In the compiling stage, the compiler generates a broad range of 
error and warning messages to help you locate errors and potential 
problems in your source files. 

• During the linking stage, the linker is responsible for generating 
error messages. 

• During program execution, any error messages you see are run-time 
error messages. This category includes messages about floating­
point exceptions, which are errors generated by an 8087 or 80287 
coprocessor. 

Other utilities included in this package, such as the Microsoft Overlay 
Linker (LINK), the MAKE program-maintenance utility, and the LID 
library manager, generate their own error messages. See the Microsoft 
Code View and Utilities manual for a complete list of utility error 
messages. 

82 



Compiling with the CL Comma.nd 

When you are compiling and linking using the CL command, you may see 
both compiler and linker messages. The LINK program banner appears on 
the screen when the linking process begins. Compiler messages, if any, 
appear before the LINK banner, and linker messages, if any, appear after 
the banner. Compiler messages have numbers preceded by the letter c, 
and linker messages have numbers preceded by the letter L. 

You can also distinguish the type of a message by its format. See Appen­
dix E of this manual for a description of compiler error-message formats, a 
list of actual compiler error messages, and explanations of the cir­
cumstances that cause them. See Section C.2 of the Microsoft Code View 
and Utilities manual for information about linker error messages. 

Compiler error messages are sent to the standard output, which is usually 
your terminal. You .can redirect the messages to a file or printer by using 
one of the MS-DOS redirection symbols: > or > >. Error redirection is 
especially useful in batch-file processing. 

• Example 

Assume the following source file named RM. C: 

#include <stdio.h> 

main (argc, argv) 
int argc; 
char argv[]; 

{ 
,register int i; 
char *name; 

for (i = 1; i < arg; ++i) 

} 

if (unlink(name = argv[i]» { 
printf(ltcouldn't delete %s 
perror(ltlt); 
} 

It name); 

The following command line redirects error messages to a file named 
RM.ERR: 

CL RM.C > RM.ERR 

In the command above, only output that ordinarily goes to the console 
screen is redirected. The error-message file RM. ERR contains the following 
information: 

rm.c(11) 
rm.c(12) 

error C2065: 'arg' 
warning C4047: '=' 

undefined 
different levels of indirection 

83 



Microsoft C Optimizing Compiler User's Guide 

Based on the errors generated, you can correct RM. C as shown below: 

#include <stdio.h> 

main (argc, argv) 
int argc; 
char *argv[]; 

{ 
register int i; 
char *name; 

/* corrects warning C4047 */ 

for (i = 1; i < argc; ++i) /* corrects error C2065 */ 

} 

if (unlink(name = argv[i]» { 
printf(ttcouldn't delete %s : tt, name); 
perror(tttt); 
} 

3.3.11.2 Setting the Warning Level (/W, /w) 

• Option 

/W{OI11213} 
/w 

You can suppress warning messages produced by the compiler by using the 
/W (for "warning") option. Compiler warning messages are any messages 
beginning with C4; see Appendix E, "Error Messages," for a full listing of 
these messages. Warnings indicate potential problems (rather than actual 
errors) with statements that may not be compiled as you intend. The /W 
options affect only source files given on the command line; they do not 
apply to object files. 

The /WO option turns off warning messages. This option is useful when 
you compile programs that deliberately include questionable statements. 
The /WO option applies to the remainder of the command line or until 
the next occurrence of a /Woption on the command line. The /w option 
has the same effect as the /WO option. 

The /Wl option (the default) causes the compiler to display most warning 
messages. 

The /W2 option causes the compiler to display an intermediate level of 
warning messages. Level-2 warnings mayor may not indicate serious prob­
lems; they include warnings such as the following: 

84 



Compiling with the CL Command 

• Use of functions with no declared return type 

• Failure to put return statements in functions with non-void 
return types 

• Data conversions that would cause loss of data or precision 

The !W3 option displays the highest level of warning messages, including 
warnings about the uses of non-ANSI features and extended keywords and 
about function calls before the appearance of function prototypes in the 
program. 

Note that the warning messages in Appendix E, "Error Messages," indi­
cate the warning level that must be set (that is, the number for the 
appropriate /W option) for the message to appear. 

• Example 

CL /W3 CRUNCH.C PRINT.C 

This example enables all possible warning messages when the CRUNCH. C 
and PRINT. C source files are compiled. 

3.3.11.3 Checking Syntax (/Zs) 

• Option 

/Zs 

The /Zs option causes the compiler to perform only a syntax check on the 
source files that follow the option on the command line. This option pro­
vides a quick way to find and correct syntax errors before you try to com­
pile and link a source file. 

When you give the /Zs option, the compiler does not generate code or pro­
duce object files, object listings, or executable files. However, the compiler 
does display error messages if the source file has syntax errors. You can 
specify the /Fs option on the same command line to generate a source list­
ing that shows these error messages. See Section 3.3.8.1 for more informa­
tion about the /Fs option. 

85 



Microsoft C Optimizing Compiler User's Guide 

• Example 

CL /Zs TEST*.C 

This command causes the compiler to perform a syntax check on all source 
files in the current working directory that begin with TEST and end with 
the default extension (.C). The compiler displays messages for any errors 
found. 

3.3.11.4 Generating Function Declarations (/Zg) 

• Option 

/Zg 

The /Zg option generates a function declaration for each function defined 
in the source file. The function declaration includes the function return 
type and an argument-type list created from the types of the formal 
parameters of the function. Any function declarations already present in 
the source file are ignored. 

The generated list of declarations is written to the standard output. It can 
be saved in a file using MS-DOS redirection. 

When the /Zg option is used, the source file is not compiled. As a result, 
no object hIe or listing is produced. 

The list of declarations is helpful for verifying that actual arguments and 
formal parameters of a function are compatible. You can save the list and 
include it in your source file to cause the compiler to perform type check­
ing. The presence of a declared argument-type list for a function "turns 
on" the compiler's type checking between actual arguments to a function 
(given in the function call) and the formal parameters of a function. 

This type checking can be a helpful feature in writing and debugging C 
programs, especially when working with older C programs. Argument type 
checking is a recent addition to the C language, so many existing C pro­
grams will not have argument-type lists. See Chapters 4 and 7 of the 
Microsoft C Language Reference for more information about function 
declarations and argument-type lists. 

You can use the /Zg option even if your source program already contains 
some function declarations. The compiler accepts more than one 
occurrence of a function declaration, as long as the declarations do not 
conflict. No conflict occurs when one declaration has an argument-type list 
and another declaration of the same function does not, as long as the 
return types are identical. 

86 



Compiling with the CL Command 

Note 

If you use the /Zg option and your program contains formal parame­
ters that have structure, enumeration, or union type (or pointers to 
such types), then the declaration for each structure, enumeration, or 
union type must have a tag. For example, use the following form: 

struct tagA { 

} A; 

Your program can include calls to Microsoft C run-time library routines. 
The include files provided with the Microsoft C run-time library contain 
function declarations that enable type checking on library calls. 

• Example 

CL /2g FILE.C > FILEDECLS.H 

The example above causes the compiler to generate argument-type lists for 
functions defined in FILE. C. The list of declarations is redirected to 
FILEDECLS .R. 

3.3.12 Preparing for Debugging (/Zi, /Zd, /Od) 

• Options 

/Zi Creates object file for use with Microsoft CodeView debugger 
/Zd Creates object file for use with Microsoft SYMDEB symbolic debug utility 
/Od Disables code optimization to help with debugging 

The /Zi option produces an object file containing full symbolic-debugging 
information for use with the CodeView debugger. This object file includes 
full symbol-table information and line numbers. If the /Zi option is given 
with no explicit /0 options, all optimizations involving code motion and 
rearrangement are suppressed, although simple optimizations are still per­
formed. If any explicit /0 options are given, all requested optimizations 
are performed. 

87 



Microsoft C Optimizing Compiler User's Guide 

The IZd option produces an object file containing line-number records 
corresponding to the line numbers of the source file. The LZd option is 
useful when you want to pass an object file to the SYMDEB debugger, 
available with other Microsoft products. The debugger can use the line 
numbers to refer to program locations; however, only global symbol-table 
information is available with this product. 

The IOd option tells the compiler not to perform most optimizations. 
Some peephole optimizations and other simple optimizations are still per­
formed. (Without the IOd option, the default is to optimize.) You may 
want to use this option when you plan to use a symbolic debugger with 
your object file, since optimization can involve rearrangement of instruc­
tions that make it difficult for you to recognize and correct your code 
when debugging. However, turning off optimizations may increase the size 
of the code generated to the point where it might not be possible to link 
your program. 

Other optimization options are discussed in Section 3.3.13, "Optimizing." 

• Example 

CL 121 IOd TEST.C 

This command produces an object file named TEST. OBJ that contains line 
numbers corresponding to the line numbers of TEST. C. A source-listing 
file, TEST. LST, is also created. Limited optimization is performed. 

3.3.13 Optimizing 

The optimizing capabilities available with the Microsoft C Optimizing 
Compiler can reduce the storage space or execution time required for a 
program. This is achieved by eliminating unnecessary instructions and 
rearranging code. The compiler performs some optimizations by default. 
You can use the /0 options, the loop_ opt pragma (described in Section 
3.3.13.1 under "Loop Optimization"), and the intrinsic pragma (described 
in Section 3.3.13.1 under "Generating Intrinsic Functions") to exercise 
greater control over the optimizations performed. In addition, you can use 
the IGs option or check_stack pragma to reduce program size and speed 
up execution. 

88 



Compiling with the CL Command 

3.3.13.1 Controlling Optimization (/0 Options) 

• Option 

/Ostring 
# pragma loop_ opt([{ onlofT} ]) 
# pragma intrinsic(functionl[,function2]' .. ) 
# pragma function(functionl[,function2] ... ) 

The 10 options give you control over the optimization procedures that 
the compiler performs. One or more of the letters in string following the 
10 let you choose how the compiler performs optimization: 

Letter 

a 

d 

i 

I 

p 

8 

t 

x 

Optimizing Procedure 

Relaxes alias checking 

Disables optimization 

Enables intrinsic functions 

Enables loop optimization 

Improves consistency of floating-point results 

Favors code size during optimization 

Favors execution speed during optimization (the 
default) 

Maximizes optimization 

The letters can appear in any order; for example, 10at and IOta have 
the same effect. More than one 10 option can be given; the compiler uses 
the last /0 option given if any conflict arises. Each option applies to all 
source files following that option on the command line. 

The following sections discuss the various optimization options and their 
effects. 

Relaxing Alias Checking (lOa) 

The a option letter can be used with the 1, s, or t option letter to relax the 
assumptions the compiler makes about the use of "aliases~' in the program. 
Aliases are multiple names (that is, symbolic references) for the same 
memory location in a program. Most commonly, aliases occur as a result of 
code similar to that shown below: 

89 



Microsoft C Optimizing Compiler User's Guide 

funcO 
{ 
int x, *p; 

p = &x; /* now "x" and "*p" refer to the same */ 
/* memory location */ 

} 

Use of the lOa option can reduce the size of executable files and speed 
program execution. Its use is especially recommended when you also 
specify the 101 option, since the compiler can detect a number of loop 
optimizations when the lOa option is in effect that it cannot detect when 
lOa is not in effect. However, before you specify lOa, you must make 
sure that your program does not use aliases either directly or indirectly. 

The use of aliases is important only if both names are actually used to 
reference the memory location. Otherwise the use is benign, and the lOa 
option may be specified. The following example illustrates a benign use of 
aliases: 

funcO 
{ 

int x, *p; 

p = &x; 

/* ... expressions involving only *p */ 

} 

Since all access to the memory location labeled x is through the pointer 
p, x has no significance in the function. To illustrate, fune could be 
rewritten as the following pair of functions: 



Compiling with the CL Command 

funcl () 
{ 

} 

func2(p) 

int *p; 
{ 

int x; 

func2(&x); 

/* ..• expressions involving *p */ 

} 

In this equivalent form, the alias created in funei is insignificant, since 
the memory location is not referenced at all and func2 does not use 
aliases since x is not even in the scope of the function. The lOa option 
can be safely specified in compiling either of these equivalent forms. 

In addition to the obvious cases discussed above, aliases can be created 
through the use of pointers in other, more subtle ways. Two such cases 
involving the use of pointers as function arguments are illustrated below: 

int x; 

func(p) 

int *p; 
{ 

/* ..• expressions involving *p and x */ 

} 

In the example above, x is a communal variable, so the function can be 
called with fune (&x) . The lOa option can be used safely only if it is 
known that fune is never invoked with the address of x as an argument. 

91 



Microsoft C Optimizing Compiler User's Guide 

func (pI I p2) 

int *pI I *p2 ; 
{ 

/* ... expressions involving *pI and *p2 */ 

} 

In the example above, the function may be invoked with the same value 
for both arguments (that is, fune (P,P) or fune (&x , &x»). Thus, the 
I Oa option can be safely specified only if it is known that the function is 
always called with distinct values for the two arguments. 

One use of aliases occurs so frequently that a special provision has been 
made for it. When the compiler encounters a call to a function with 
address-type arguments, it always assumes that all variables whose 
addresses are passed to the function are modified. If such function calls 
appear in a program, the lOa option can be specified safely even though 
the function call results in an alias for each variable whose address is 
passed. The example below illustrates how the compiler handles this case: 

funcI () 
{ 

int x, Y, a , b; 

X = a + b; 

func2(&a); 

y = a + b; 
} 

In the example above, when the compiler encounters the function call 
fune2 (&a) , it assumes that the function modifies a, even if the lOa 
option has been specified. The compiler generates code to evaluate each 
instance of the expression a + b rather than eliminating a common 
su bexpression incorrectly. 

Although you should convert programs that use aliases if you plan to com­
pile them with the lOa option, it is helpful to know the units of a pro­
gram where the optimizations affected by the use of lOa are applied. This 
information indicates where the uses of aliases are most likely to cause 
incorrect optimizations if lOa is specified. The following list describes the 
program units where such optimizations are performed: 

92 



Compiling with the CL Command 

• All of the C optimizations, except for loop optimizations, that may 
be affected by the incorrect use of lOa are applied at the level of 
basic blocks. In the Microsoft C Optimizing Compiler, the lOa 
option can generally be used even if aliases are used, provided no 
memory location is referenced by more than one name within any 
basic block. (A "basic block" is a contiguous sequence of state­
ments, with a unique entry point and exit point and no branching 
in between. In C programs, basic blocks most often appear as the 
clauses of if statements, switch statements, loop bodies, or func­
tion bodies, although they may also occur as sequences of state­
ments delimited by user labels.) 

• Loop optimizations are applied at the level of whole loop bodies. 
Thus, if loop optimization is enabled, lOa can generally be used 
even if aliases are used, provided that no memory location is refer­
enced by more than one name within any basic block or loop body. 

Disabling Optimization (/Od) 

The IOd option turns off most optimizations. This option is useful in the 
early stages of program development to avoid optimizing code that will 
later be changed. Because optimization may involve rearrangement of 
instructions, you may also want to specify the IOd option when you use a 
debugger with your program or when you want to examine an object-file 
listing. If you optimize before debugging, it can be difficult to recognize 
and correct your code. However, note that turning off or restricting optim­
ization of a program usually increases the size of the generated code. If 
your program contains a module that is close to the 64K limit on compiled 
code, turning off optimization may cause the module to exceed the limit. 

Generating Intrinsic Functions (/Oi) 

The IOi option tells the compiler to generate intrinsic functions instead of 
function calls for certain functions. Intrinsic functions may be in-line func­
tions, may use special argument-passing conventions, or (in some cases) 
may do nothing. Programs that use intrinsic functions are faster because 
they do not include the overhead associated with function calls. However, 
they may be larger because of the additional code that is generated. 

The following functions have intrinsic forms: 

• memset, memcpy, and memcmp 

• strset, strcpy, strcmp, and strcat 

• inp and outp 

• Jotl, Jotr, Jrotl, and Jrotr 

• min, max, and abs 



Microsoft C Optimizing Compiler User's Guide 

• pow, log, loglO, and exp 

• sin, cos, and tan 

• asin, acos, atan, and atan2 

• sinh, cosh, and tanh 

• sqrt 
• floor, ceil, fabs, and fmod 

Note 

Intrinsic versions of the memset, memcpy, and memcmp functions 
in compact- and large-model programs cannot handle huge arrays or 
huge pointers. To use huge arrays or huge pointers with these func­
tions, you must compile your program with the huge memory model 
(that is, using the / AH option on the command line). 

You can use the intrinsic pragma to generate intrinsic functions only for 
selected functions. This pragma has the following format: 

# pragma intrinsie (Junctionl [,junction2] ... ) 

The intrinsic pragma affects the specified functions from the point where 
the pragma appears until either the end of the source file or the next func­
tion pragma specifying any of the same functions. The function pragma 
has the following format: 

# pragma funetion (Junctionl [,junction2] ... ) 

Note that you can also use the function pragma selectively to generate 
function calls instead of intrinsic functions when you compile a program 
with the /Oi option. 

Loop Optimization (/01) 

The /01 option tells the compiler to perform loop optimizations. For best 
performance, the /01 option should be specified along with the a option 
letter (/Oal), since the compiler can detect more loop optimizations when 
it relaxes its assumptions about the use of aliases. 

You can use the loop_ opt pragma to turn loop optimization on or off for 
selected functions. When you want to turn off loop optimization, put the 

94 



Compiling with the CL Command 

following line before the code on which you don't want to perform loop 
optimization: 

# pragIlla loop_ opt (ofT) 

Note that the preceding line disables loop optimization for all code that 
follows it in the source file, not just the routines on the same line. To rein­
state loop optimization, insert the following line: 

# pragIlla loop_ opt (on) 

If no argument is given to the loop- opt pragma, loop optimization 
reverts to the behavior specified on the command line: enabled if the lOx 
or /01 option is in effect, and disabled otherwise. The interaction of the 
loop_opt pragma with the /01 and lOx options is explained in greater 
detail in Table 3.4. 

Table 3.4 

Using the loop_ opt Pragma 

COIllpiled with 
Syntax lOx or /Ol? Action 

# pragIlla loop_ opt() no Turns off optimization 
for loops that follow 

# pragIlla loop_ opt() yes Turns on optimization 
for loops that follow 

# pragIlla loop_opt (on) yes or no Turns on optimization 
for loops that follow 

# pragIlla loop_ opt (oft) yes or no Turns off optimization 
for loops that follow 

Achieving Consistent Floating-Point Results (/Op) 

The lOp option is useful when floating-point results must be consistent 
withIn a program. This option changes the way in which the program han­
dles floating-point values by default. 

Ordinarily the compiler stores each floating-point value in an 80-bit regis­
ter. In subsequent references to that value, the compiler reads the value 
from the register. When the final value is written to memory, it is trun­
cated, since floating-point types are allocated fewer than 80 bits of storage 
(32 bits for the float type and 64 bits for the double type). Thus, the 
value stored in the register may actually be more precise than the same 
value stored in a floating-point variable. Since the value is truncated each 

95 



Microsoft C Optimizing Compiler User's Guide 

time it is written to memory, over the course of the program the value 
stored in the machine register may become quite different from the value 
that is written to memory. 

If you use the lOp option, when floating-point values are referenced the 
compiler reloads them from floating-point variables rather than from 
registers. Using lOp gives less precise results than using registers, and it 
may increase the size of the ,generated code. However, it gives you more 
control over the truncation land hence the consistency) of floating-point 
values. 

Optimizing for Speed and Code Size (lOt, lOs) 

When you do not give an 10 option to the CL command, it automatically 
uses lOt, meaning that program execution speed is favored in the optimi­
zation. Wherever the compiler has a choice between producing smaller 
(but perhaps slower) and larger (but perhaps faster) code, the compiler 
generates faster code. For example, when the lOt option is in effect, the 
compiler generates intrinsic functions to perform shift operations on long 
operands. 

To cause the compiler to favor smaller code size instead, lise the lOs 
option. For example, when the lOs option is in effect, the compifer uses 
function calls to perform shift operations on long operands. 

Producing Maximum Optimization (lOx) 

The lOx option is a shorthand way to combine optimizing options to pro­
duce the fastest possible program. Its effect is the same as using the follow­
ing options on the same command line: 

/Oailt /Gs 

That is, the lOx option relaxes alias checking; generates all intrinsics for 
the functions listed under "Generating Intrinsic Functions" above; per­
forms loop optimizations; favors execution time over code size; and 
removes stack probes. Note that the interactions between the lOx option 
and the loop_ opt pragma are the same as those described in Table 3.4. 
See Section 3.3.13.2 for more information about stack probes and ways of 
controlling their use. 

• Examples 

CL /Oal FILE.C 

D6 



Compiling with the CL Command 

This command tells the compiler to perform loop optimizations and relax 
alias checking when it compiles FILE. C. The compiler favors program 
speed over program size, since the lOt option is also specified by default. 

CL Ie lOs FILE.C 

The command above favors code size over execution speed when FILE. C 
is compiled. 

CL 10d *.c 

The command above compiles and links all C source files with the default 
extension (.0) in the current directory and disables optimization. This 
command IS most useful during the early stages of program development, 
since it improves compilation speed. 

3.3.13.2 Removing Stack Probes (/Gs) 

• Options 

IGs 
# pragma checlLstack([{ onlotT}]) 

You can reduce the size of a program and speed up execution slightly by 
removing stack probes. You can do this either with the IGs option or with 
the check_ stack pragma. 

A "stack probe" is a short routine called on entry to a function to verify 
that there is enough room in the program stack to allocate local variables 
required by the function. The stack probe routine is called at every func­
tion entry point. Ordinarily, the stack probe routine generates a stack 
overflow message when it determines that the required stack space is not 
available. When stack checking is turned off, the stack probe routine is not 
called, and stack overflow can occur without being diagnosed (that is, no 
error message is printed). 

Use the I.Gs option when you want to turn off stack checking for an entire 
module If you know that the program does not exceed the available stack 
space. For example, stack probes may not be needed for programs that 
make very few function calls, or that have only modest local variable 
requirements. In the absence of the IGs option, stack checking is on. 

Use the check_ stack pragma when you want to turn stack checking on or 
off only for selected routines, leaving the default (as determined by the 
presence or absence of the IGs option) for the rest. When you want to 



Microsoft C Optimizing Compiler User's Guide 

turn off stack checking, put the following line before the definition of the 
function you don't want to check: 

# pragma checLstack (off) 

Note that the preceding line disables stack checking for all routines that 
follow it in the source file, not just the routines on the same line. To rein­
state stack checking, insert the following line: 

# pragma checLstack (on) 

Note 

For earlier versions of Microsoft C, the check- stack pragma had a 
different format: check- stack+ to enable stack checking and 
check_ stack- to disable stack checking. Although the Microsoft C 
Optimizing Compiler still accepts this format, its use is discouraged, 
since it may not be supported in future versions. 

If no argument is given for the check-stack pragma, stack checking 
reverts to the behavior specified on the command line: disabled if the / Gs 
option is given, or enabled if otherwise. The interaction of the 
check- stack pragma with the / Gs option is explained in greater detail 
in Table 3.5. 

Table 3.5 

Using the check_ stack Pragma 

Syntax 

# pragma cheek- stackO 

# pragma check- stackO 

# pragma check-stack(on) 

# pragma check- stack( oft') 

98 

Compiled with 
/ Gs Option? Action 

yes Turns off stack checking 
for routines that follow 

no Turns on stack checking 
for routines that follow 

yes or no Turns on stack checking 
for routines that follow 

yes or no Turns off stack checking 
for routines that follow 



Compiling with the CL Comma.nd 

Note 

The /Gs option should be used with great care. Although it can make 
programs smaller and faster, it may mean that the program will not be 
able to detect certain execution errors. 

• Example 

CL fOals /Gs FILE.C 

This example optimizes the file FILE. C by removing stack probes with 
the IGs option. The letters specified with the /0 option tell the compiler 
to relax alias checking (a), perform loop optimization (I), and favor code 
size over program speed (s). If you want stack checking for only a few 
functions in FILE. C, you can use the check_stack pragma around the 
definitions of functions you want to check. Similarly, if you want to per­
form loop optimization on only a few functions in FILE. C, you can use 
the loop_ opt pragma around the definitions of functions on which you 
want to perform loop optimization. 

3.3.14 Enabling and Disablin~ 
Language Extensions l/Ze, /Za) 

• Option 

/Ze Enables language extensions ( default) 
/Za Disables language extensions 

The Microsoft C Optimizing Compiler is moving to support the the ANSI 
C standard. In addition, it offers a number of features beyond the features 
sRecified in the the ANSI C standard. These features are enabled when the 
I Ze (default) option is in effect and disabled when the /Za option is in 
effect. They Include the following: 

• The cdecl, far, fortran, huge, near, and pascal keywords 

• Use of casts to produce lvalues, as in the following example: 

int *p: 
((long *)p)++; 

99 



Microsoft C Optimizing Compiler User's Guide 

The preceding example could be rewritten to conform with the 
ANSI C standard as shown below: 

p = (int *) «char *)p + sizeof(long»; 

• Redefinitions of extern items as static, as in the example below: 

extern int foo(); 
static int faa 0 
{} 

• Use of trailing commas (,) rather than an ellipsis (, ... ) in function 
declarations to indicate variable-length argument lists, as in the 
following example: 

int printf(char *,); 

• Benign typedef redefinitions within the same scope, as in the fol­
lowing example: 

typedef int INT; 
typedef Int INT; 

• Use of mixed character and string constants in an initializer, as in 
the following example: 

char arr [5] = {' a', 'b', "cde"}; 

• Use of bit fields with base types other than unsigned int or 
signed int 

Use the /Za option if you will be porting your program to other environ­
ments. The /Za option tells the compiler to treat extended keywords as 
simple identifiers and disable the other extensions listed above. When you 
specify /Za, the compiler automatically defines the identifier 
NO_ EXT_ KEYS. In the include files provided with the Microsoft C 
Optimizing Compiler run-time library, this identifier is used with #ifndef 
to control use of the cdecl keyword on library function prototypes. For an 
example of this conditional compilation, see the file stdio.h. 

3.3.15 Packing Structure Members (/Zp) 

• Option 

jZp[{ lI214}] 
# pragma pack([{ l1214} ]) 

When storage is allocated for structures, structure members are ordinarily 
stored as follows: 

100 



Compiling with the CL Command 

• Items of type char or unsigned char, or arrays containing items 
of these types, are byte aligned. 

• Structures are word aligned; structures of odd size are padded to 
an even number of bytes. 

• All other types of structure members are word aligned. 

To conserve space, or to conform to existing data structures, you may 
want to store structures more or less compactly. The /Zp option and the 
pack pragma control how structure data are "packed" into memory. 

Use the /Zp option when you want to specify the same packing for all 
structures in a module. When you give the jZp[n] option, where n is 1, 2, 
or 4, each structure member after the first IS stored on n-byte boundaries, 
depending on the option you choose. If you use the /Zp option without an 
argument, structure members are packed on I-byte boundaries. 

On some processors, the /Zp option may result in slower program execu­
tion because of the time required to unpack structure members when they 
are accessed. For example, on an 8086 processor, this option can reduce 
efficiency if members with int or long type are packed in such a way that 
they begin on odd-byte boundaries. 

Use the pack pragma when you want to specify packing other than the 
packing specified on the command line for particular structures. Give the 
pack( n) pragma, where n is 1, 2, or 4, before structures that you want to 
pack differently. To reinstate the packing given on the command line, give 
the packO pragma with no arguments. 

Table 3.6 shows the interaction of the /Zp option with the pack pragma. 

Table 3.6 

Using the pack Pragma 

Syntax 

# pragma packO 

# pragma packO 

# pragma pack( n) 

Compiled with 
/Zp Option! 

yes 

no 

yes or no 

Action 

Reverts to packing 
specified on the 
command line for 
structures that follow 
Reverts to default 
packing for structures 
that follow 
Packs the following 
structures to the given 
byte boundary until 
changed or disabled 

101 



Microsoft C Optimizing Compiler User's Guide 

• Example 

CL /Zp PROG.C 

This command causes all structures in the program PROG. C to be stored 
without extra space for alignment of members on int boundaries. 

3.3.16 Setting the Stack Size (IF) 

• Option 

IF hexn'Um 

The IF option sets the size of the program stack. A space must separate 
the IF and hexnum. 

The hexnum is a hexadecimal value representing the stack size in bytes. 
The value must be less than OxFFFF hexadecimal (65,535 decimal). 

If you do not specify this option, the start-up routine in the standard C 
library sets the default stack size to 2K. 

If you get a stack-overflow message, you may need to increase the size of 
the stack. In contrast, if your program uses the stack very little, you may 
save some space by decreasing the stack size. 

Note 

You can also use the EXEMOD utility, described in Chapter 15 of the 
Microsoft CodeView and Utilities manual, to change the default stack 
size for C program files by modifying the executable-file header. The 
format of the executable-file header is discussed in the Mz'crosoft MS­
DOS Programmer's Reference and in other reference books on MS­
DOS. 

The IF option is a linking option that affects executable files only; it does 
not have any effect on source or object files. 

Usin~ the IF option with the CL command has the same effect as using 
the /STACK option with the LINK program. See Section 4.4 for more 
information about the ISTACK option. 

102 



Compiling with the CL Command 

• Example 

CL IF COO *.OBJ 

This example sets the stack size to COO hexadecimal (3K decimal) for the 
program created by linking all of the object files in the current working 
directory. 

3.3.17 Restricting the Len17th 
of External Names l/H) 

• Option 

/H number 

The CL command allows you to restrict the length of external (public) 
names by using the /H option. The number is an integer specifying the 
maximum number of significant characters in external names. The space 
between /H and number is optional. 

When you use the /H option, the compiler considers only the first number 
characters of external names used in the program. The program may con­
tain external names longer than number characters; the extra characters 
are simply ignored. 

The /H option is typically used to conserve space or to aid in creating 
portable programs. The Microsoft C Optimizing Compiler imposes no res­
trictions on the length of external names (although it uses only the first 31 
characters), but other compilers or linkers may produce errors when they 
encounter names longer than a predetermined limit. 

3.3.18 Labeling the Object File (IV) 

• Option 

IV strz'ng 

Use the /V (for "version") option to embed a text strin~ in an object file. 
The strz'ng must be enclosed in double quotation marks C' ") if it contains 
white-space characters or embedded double quotation marks. A backslash 
(\) must precede any embedded double quotation marks. 

Object files are machine readable but are not easily read and understood 
by humans. A typical use of the IV option is to label an object file with a 
version number or copyright notIce. 

103 



Microsoft C Optimizing Compiler User's Guide 

• Example 

CL ;V"Microsoft C Optimizing Compiler Version 500" MAINoC 

The above command places the string 

Microsoft C Optimizing Compiler Version 500 

in the object file MAIN 0 OBJ. 

3.3.19 Suppressing Default-Library Selection (/Zl) 

• Option 

/Zl 

Ordinarily the compiler places the name of the default combined library 
for the memorr-model and floating-point options you have chosen 
(mLmCjoLm) in the object file for the linker to read. This allows the 
appropriate library to be linked with a program automatically. 

The /Zl option tells the compiler not to place the default library name in 
the object file. As a result, the object file is slightly smaller. 

The /Zl option is useful when you are building a library of routines. Every 
routine in the library need not contain the default-library information. 
Although the /Zl option saves only a small amount of space for a single 
object file, the total space saved is significant in a library containing many 
object modules. When you link a library of object modules created with the 
!Zl option and a C program file compiled without the /Zl option, the 
default-library information is supplied by the program file. 

• Example 

CL ONEoC /Zl TWOoC 

The example above creates the following two object files: 

104 

• An object file named ONE oOBJ that contains the name of the stan­
dard C combined library (SLIDCEoLID) 

• An object file named TWO 0 OBJ that contains no default-library 
information 



Compiling with the CL Command 

When ONE. OBJ and TWO. OBJ are linked, the default-library information 
in ONE. OBJ causes the given library to be searched for any unresolved 
references in either ONE. OBJ or TWO. OBJ. 

3.3.20 Changing the Default char Type (/ J) 

• Option 

/J 

In Microsoft C, the char type is signed by default, so if a char value is 
widened to int type, the result is sign extended. You can change this 
default to unsigned with the / J option, causing the char type to be zero 
extended when widened to int type. However, if a char value is explicitly 
declared signed, the / J option does not affect it, and the value is sign 
extended when widened to int type. 

When you specify / J, the compiler automatically defines the identifier 
_CIIAR- UNSIGNED, which is used with #ifndef in the limits.h 
include file to define the range of the default char type. 

3.3.21 Controlling Stack and Heap Allocation 

You can change the model used to allocate heap space by linking your pro­
gram with one of the mV ARSTCK.OBJ object files (where m is the first 
letter of the library you choose). These files are the small-, medium-, 
compact-, and large-model versions of a routine that allows the memory 
allocation functions (malloc, calloc, _expand, _fmalloc, _nmalloc, 
and realloc) to allocate items in unused stack space if they run out of 
other memory. The large-model version can also be used for huge-model 
programs. 

Programs compiled and linked under Microsoft C run with a fixed stack 
size (the default size is 2048 bytes). The stack resides above static data, 
and the heap uses whatever space is left above the stack. However, for 
some programs a fixed-stack model may not be ideal; a model where the 
stack and heap compete for space is more appropriate. Linking with the 
mV ARSTCK.OBJ object files gives you such a model: when the heap 
runs out of memory, it tries to use available stack space until it runs into 
the top of the stack. When the allocated space in the stack is freed, it is 
once again made available to the stack. Note that the stack cannot grow 
beyond the last allocated heap item in the stack or, if there are no heap 
items in the stack, beyond the size it was given at link time. Note also 
that while the heap can employ unused stack space, the reverse is not true: 
the stack cannot employ unused heap space. 

105 



Microsoft C Optimizing Compiler User's Guide 

When you link your program with one of the mV ARSTCK.OBJ files, 
you should be wary of suppressing stack checking with the pragma 
# check_ stack, or the / Gs or / Ox option. This is because stack 
overflow can occur more easily in programs that use this option, possibly 
causing errors that would be difficult to detect. (See Section 3.3.13.2, 
"Removing Stack Probes," and the section titled "Maximum Optimiza­
tion" in Section 3.3.13.1, for more information on suppression of stack 
checking.) 

• Example 

CL TEST.C SVARSTCK 

This command line compiles TEST. C and then links the resulting object 
module with SVARSTCK. OBJ, the variable-stack object file for small­
model programs. 

3.3.22 Controlling the 
Calling Convention (/Gc) 

• Options 

/Gc 
fortran 
pascal 
cdecl 

The fortran, pascal, and cdecl keywords,. and the / Gc option, allow you 
to control the function-calling and naming conventions so that your 0 pro­
grams can call and be called by functions that are written in FORTRAN 
and Pascal. 

Because 0, unlike other languages such as Microsoft Pascal and Microsoft 
FORTRAN, allows the user to write functions that take a variable number 
of arguments, it must handle function calls differently. Languages such as 
Pascal and FORTRAN normally push actual parameters to a function in 
left-to-right order, with the last argument in the list being the last one 
pushed on the stack. In contrast, 0 functions do not always know the 
number of actual parameters, so they must push their arguments from 
right to left, with the first argument in the list being the last one pushed. 

Additiona~l , the calling function must remove the arguments from the 
stack in 0 rather than having the called function do it, as in Pascal and 
FORTRA . If the code for removing arguments is in the called function 
(as in Pascal and FORTRAN), it appears only once; if it is in the calling 
function (as in 0), it appears every time there is a function call. Since 

106 



Compiling with the CL Command 

function calls are more numerous than individual functions, the 
Pascal/FORTRAN method is slightly smaller and more efficient. 

The Microsoft C Optimizing Compiler has the ability to generate the 
Pascal/FORTRAN calling convention in one of several ways. The first is 
through the use of the pascal and fortran keywords. When these key­
words are applied to functions, or to pointers to functions, they indicate a 
corresponding Pascal or FORTRAN function. Therefore, the correct cal­
ling convention must be used. In the following example, sort is declared 
as a function using the alternative calling convention: 

short pascal sort(char *, char *): 

The pascal and fortran keywords can be used interchangeably. Use them 
when you want to use the left-to-right calling sequence for selected func­
tions only. 

The second method for generating the Pascal/FORTRAN calling conven­
tion is to use the /Gc option. If you use the /Gc option, the entire 
module is compiled using the alternative calling convention. You might 
use this method to make it possible to call all the functions in a C module 
from another language, or to gain the performance and size improvement 
provided by this calling convention. When you use /Gc to compile a 
module, the compiler assumes that all functions called from that module 
use the Pascal/FORTRAN calling convention, even if the functions are 
defined outside that module. Thus, using IGc would normally mean that 
you cannot call or define functions that take variable numbers of parame­
ters, and that you cannot call functions such as the C library functions 
that use the C calling sequence. In addition, if you compile with the /Gc 
option, either you must declare the main function in the source program 
with the cdecl keyword, or you must change the start-up routine so that 
it uses the correct naming and calling conventions when calling main. 

To overcome these restrictions, the cdecl keyword has been added to 
Microsoft C. This keyword is the "inverse" of the fortran and pascal key­
words. When applied to a function or function pointer, it indicates that 
the associated function is to be called using the normal C calling conven­
tion. This allows you to write C programs which take advantage of the 
more efficient calling convention while still having access to the entire C 
library, other C objects, and even user-defined functions that can take 
variable-length argument lists. 

For convenience, the cdecl keyword has already been applied to run-time 
library function declarations in the include files distributed with this com­
piler. Thus, the library functions can be referenced freely, no matter which 
calling conventions are used, as long as the include files containing the 
appropriate function declarations are included for each function that is 
referenced. 

107 



Microsoft C Optimizing Compiler User's Guide 

Use of the pascal and fortran keywords, or the IGc option, also affects 
the naming convention for the associated item (or, in the case of IGc, all 
items): the name is converted to uppercase (capital letters), and the lead­
ing underscore that C normally prefixes is not added. The pascal and for­
tran keywords can be applied to data items and pointers, as well as func­
tions; when applied to data items or pointers, these keywords force the 
naming convention described above for that item or pointer. 

The pascal, fortran, and cdecl keywords, like the near, far, and huge 
keywords, are disabled by use of the !Za option. If this option is given, 
these names are treated as ordinary identifiers, rather than keywords. 

• Examples 

int cdecl var_print(char*, ... ); 

In the example above, var _print is allowed to have a variable number of 
arguments by declaring it as a function using the normal right-to-Ieft C 
function calling convention and naming conventions. The cdecl keyword 
overrides the left-to-right calling sequence set by use of the IGc option 
when compiling the source file in which this declaration appears; if this file 
is compiled without the IGc option, cdecl has no effect since it is the 
same as the default C convention. 

For more information on mixed-language programming, see the Microsoft 
Mixed-Language Programming Guide. 

float *pascal nroot(number, root) 

The example above declares nroot to be a function returning a pointer to 
a value of type float. The function nroot uses the default calling 
sequence (left-to-right) and naming conventions for Microsoft FORTRAN 
and Pascal programs. 

long pascal index 

The example above simply changes the naming convention for the data 
item index: it is included in the object file in all capital letters and 
without a leading underscore. 

108 



Compiling with the CL Command 

3.3.23 Compiling for 
Windows Applications (lAw, IGw) 

• Options 

lAw 
jGw 

The / Aw option controls the segment setup, and should be used for C 
programs that interface with the Microsoft Windows operating system. 
For more information, see Section 6.5.3, "Setting Up Segments." 

You should use the / Gw option for developing applications to run in the 
Windows environment. See your M£crosoft W£ndows Software Development 
K£t for details on how and when to use this option. 

3.3.24 XENIX-Compatible Options 

To provide as much compatibility as possible with XENIX C compilers, 
the CL command also accepts the options recognized by the cc command 
on XENIX systems. Many of these options are identical to the CL options 
given in this manual; others have identical functions but different names. 
The following options are identical in the MS-DOS and XENIX versions of 
C (except that a forward slash, /, is a valid option character in the MS­
DOS version): 

-c -I pathname -P 
-c -ND name -v str£ng 
-D name -NM name -w 
-E -NT name -Wnumber 
-EP -Oletters -X 
-F number 

Table 3.7 shows the XENIX options that do not map directly to the 
options accepted by the CL command. 

109 



Microsoft C Optimizing Compiler User's Guide 

Table 3.7 

XENIX Options Accepted by the CL Command 

XENIX Option 

-dos 

-K 

-L 

-Mstring 

-m name 

-nlnum 

-0 filename 

-S 

110 

Task 

Performs cross-compilation 
to create MS-DOS­
executable file 

Removes stack probes from 
a program 

Creates an object-listing 
file containing assembled 
object code and suppresses 
linking 

Sets the program 
configuration. The string 
may be any combination of 
s (small model), m 
{medium moden, e 
(compact mode!), I (large 
model), h (huge model), e 
( enables far, near, huge, 
:tortran,~aseal, and edeel 
keywords , 2 (enables 
80286 co e generation), b 
(reverses word order for 
items of type long), t[num] 
(sets data threshold for 
largest item in a segment), 
and d (compiles program so 
that stack segment not 
equal to data segment). 
The s, m, e, I, and h 
options are mutually 
exclusive. 

Creates a map file 
Sets the maximum length 
of external symbols 

Makes filename the name 
of the final executable 
program 

Creates an assembly source 
listing and suppresses 
linking 

CL Option 

Same (meaningful only 
onXENIx) 

IGs 

IFI Ic 

-Me is equivalent to 
IZe. 
-M2 is equivalent to 
IG2. 
-Mt[num] is equivalent 
to /~t[num]. 
-Mb has no equivalent. 
-Ms is equivalent to 
lAS. 
-Mm is equivalent to 
lAM. 
-Me is equivalent to 
lAC. 
-Md is equivalent to 
IAu. 
-MI is equivalent to 
IAL. 
-Mh is equivalent to 
lAB. 

-Fmname 
-Hnum 

IFeexefiles 

IFa/e 



Compiling with the CL Comma.nd 

3.4 Controlling Binary and Text Modes 

Most C programs use one or more data files for input and output. Under 
MS-DOS, data files are ordinarily processed in "text" mode. In text mode, 
carriage-return-line-feed (CR-LF) combinations are translated into a single 
line-feed (LF) character on input. Line-feed characters are translated to 
CR-LF combinations on output. 

In some cases you may want to process files without making these transla­
tions. In binary mode, CR-LF translations are suppressed. 

Standard library routines such as fopen or open give you the option of 
overriding the default mode when you open a particular file. You can also 
change the default mode for an entire program from text to binary mode. 
Do this by linking your program with the file BINMODE.OBJ, which is 
supplied as part of your C compiler software. Simply add the path name 
of BINMODE.OBJ to the list of object file names when you link your 
program. 

When you link with BINMODE.OBJ, all files opened in your program 
default to binary mode, with the exceptions of stdin, stdout, and stderr. 
However, linking with BINMODE.OBJ does not force you to process all 
data files in binary mode. You still have the option to override the default 
mode when you open the file. 

Use the setmode library function when you want to change the default 
mode of stdin, stdout, or stderr from text to binary, or the default mode 
of stdaux or stdprn from binary to text. The setmode function can 
change the current mode for any file and is primarily used for changing the 
modes of stdin, stdout, stderr, stdaux, and stdprn, which are not expli­
citly opened by users. 

111 





,1,! 1I1t.roclll('t.iC)I1,."""""".,o,.,o." •.• """.""",.,.",.", .. ".11G 

1 ;J :1l11t. 'nking ProcG",:-),., .. " .. oo,,,oo,,,,,voooooooo.l Fi 

,1 P~L':)~il1g Linker Inf'onnation; 
rrile /11 Il k ()ption .00 ....... " ... 00.'.00." 00""" 0,." 60'" 00 ... 1 
L:~Ll SpecifYIng L-librarics ''''''0000'00.",.'' •• 00.00.00'0 •• LJG 

'1.:3.1. J LinKing with Additiollal Lihr;Hics., ... oo 117 
1.;3.1.~ Looking ill Different Locatiolls ,.~ 

for Librarie:-; oooo,.oooo",,.,,.H ••• o.oooo,o.o., 1 L f 
1.;).1.;) Overriding LiIH;t!']('s f\J;lf1lccl . r-

ill Object Files ..... oo., .......... ,.,. ........ , 11, 
·L:3.2 ~peciryil1g Linker Options ''''000000''000000000 .... 1 U) 

t.:3.~.1 Defining Linker Options on 
the CL Cornrn;1I1cl Line .000.00000.,., •••• 00.1 J {) 

"1.;).~.:2 Defining Linker Options in 
t Il C l'~ II vir () 11 rn (' II too , , 0 0 0 • 0 0 0 0 , 0 0 0 0 0 0 , 0 0 0 , 0 •• 0 • 1 :2 0 

1.· i Lill kef ()I)L10I1:-)0 •• 0 o •• 0"'00"00. 000 0' "'00' "0'000000 0'" , •• ,.00001 

!MUM' 'g.geiriWffltWM. 





Linking with the CL Command 

4.1 Introduction 

Since the CL command controls linking as well as compiling, you can 
specify linker options and libraries other than the default combined library 
to be linked with your object files on the CL command line. 

4.2 The Default Linking Process 

When the CL command compiles a source file, it encodes the name of the 
appropriate library built by the SETUP program in the object file. The 
library name embedded in the library file is determined by the following: 

• The memory-model (I A) option you give on the CL command line 

• The floating-point (/FP) option you give on the CL command line 

Table 3.1 shows the default library for each combination of memory-model 
and floating-point options. If you simply use the default memory-model 
option ( / AS) or floating-point option (/FPi), CL encodes the name 
sLmc-:E.LIB, the name of the standard library that corresponds to the 
defaults. 

When an object file is linked, the linker looks for libraries matching the 
names encoded in the object file. The linker looks for these libraries first in 
the current working directory, then in any directory specified in the Lm 
environment variable. If it finds libraries matching these names, it 
automatically links those libraries with the object file. 

The result is that you ordinarily do not need to give library names on the 
CL command line. See Section 4.3.1 for descriptions of the situations that 
require you to specify libraries to the CL command. 

4.3 Passing Linker Information: 
The /link Option 

To pass linker options or non default library names to the linker, give the 
following options on the CL command line after any source- and object­
file names and CL options: 

/link [link-lib info] 

115 



Microsoft C Optimizing Compiler User's Guide 

Use the link-lib'';nfo field to specify linker options, libraries, and library 
search paths. Note that library names can also be specified with source­
and object-file names before the /link option on the command line, as 
long as the library names have the .Lffi extension. These library names 
are searched before library names specified after the /link option. For 
more information 

• See Section 4.4 for descriptions of the linker options that apply to 
Microsoft C. 

• See Chapter 12 of the Microsoft Code View and Utilities manual for 
complete descriptions of the available linker options. 

• See Section 4.3.1 for information about specifying libraries and 
library search paths. 

If you use the /link option with the CL command, it must be the last 
option on the command line. 

Note 

You cannot create an overlaid version of your program with the CL 
command; you must explicitly use the LINK command. See Section 
12.5, "Using Overlays," of the Microsoft Code View and Utilities 
manual for a description of overlays. 

4.3.1 Specifying Libraries 

To link object files with libraries other than the default library, give the 
names of the nondefault libraries on the CL command line. Library names 
appearing before /link must have the .Lffi extension; library names 
appearing after /link may have blank extensions or no extensions. A space 
or plus sign (+) must follow each library name except the last. 

Since the object file already contains the names of the correct combined 
library, you do not need to specify libraries unless you want to do any of 
the following: 

116 

• Link with additional libraries 

• Look for libraries in different locations 

• Override the use of the default library 

• Link with object files compiled with Version 4.0 of Microsoft C 

• Link with uncombined libraries provided with Version 5.0 of the 
Microsoft C Optimizing Compiler 



Linking with the CL Command 

4.3.1.1 Linking with Additional Libraries 

If you specify additional libraries to CL, the linker searches the libraries 
you specify before it searches the default library to resolve external refer­
ences in the object files. It searches the libraries you specify in their order 
of appearance on the command line. 

If a library name includes a path specification, the linker searches only 
that path for the library. 

If you specify only a library name (without a path specification), the linker 
searches in the following locations to find the given library file: 

1. The current working directory 

2. Any path specifications or drive names that you give in the lz"nk­
lZ"bz"nfo field, in their order of appearance on the command line 

3. The locations given by the Lm environment variable 

If a library name without an extension appears after the /link option, the 
linker automatically supplies the .Lm extension. If you want to link a 
library file with an extension other than .Lm, you must specify the com­
plete library name. 

4.3.1.2 Looking in Different Locations for Libraries 

You can tell the linker to look in different locations for libraries by giving 
a drive name or path specification in the lz"nk-l£bz"nfo field on the CL com­
mand line. 

The linker looks for the default libraries in the same order as it looks for 
libraries given on the command line. See Section 4.3.1.1, "Linking with 
Additional Libraries," for more information. 

4.3.1.3 Overriding Libraries Named in Object Files 

If you do not want to link with the library whose name is included in the 
object file, you can give the names of one or more different libraries 
~nstead. You might want to specify a different library name in the follow­
Ing cases: 

• If you have renamed a standard library. 

• If you want to link with a library for a different floating-point 
math package. Some restrictions apply; see Chapter 7, "Con trol­
ling Floating-Point Math Operations," for more information. 

117 



Microsoft C Optimizing Compiler User's Guide 

• If you link with object files compiled with Version 3.0 or Version 
4.0 of Microsoft C. In this case, the object files contain the names 
of the uncombined C libraries; you must override the default 
library names (see below) and explicitly specify the name of the 
combined VersIon 5.0 library or the uncombined libraries. 

• If you want to link with uncombined Version 5.0 libraries. For 
example, you may not have used SETUP to build the appropriate 
library for a particular memory model, but may still want to link 
with the libraries for that memory model. In this case, you must 
specify uncombined libraries in the order shown below: 

1. The model-independent floating-point library EM.Lm (if 'y'ou 
are using the emulator floating-point package) or 87.LIB lif 
you are using the 8087/80287 floating-point package). You can­
not link with EM.Lm or 87.Lm if you have given the / A 
option on the CL command line. 

2. The model-dependent floating-point library mLmFP .Lm or 
mLmF A.Lm (where m indicates the memory model you are 
using). 

3. The model-dependent standard library mLmC.Lm (where m 
indicates the memory model you are using). 

4. The model-independent code-helper library LmH.Lm. 
Note that you need to specify the uncombined libraries listed 
in steps 1 and 2 if you use floating-point math in your source 
program. 

If you specify a new library name, the linker searches the new library to 
resolve external references before it searches the library specified in the 
object file. 

If you want the linker to ignore the libraries named in the object file, you 
must use the /NOD linker option. This option tells the linker to ignore 
the default-library names encoded in the object files. Use this option with 
caution; see the discussion of the /NOD option in Section 4.4 for more 
information. 

• Example 

CL FUN TEXT TABLE CARE /link C:\TESTLIB\ NEWLIBV3 

This example links four object modules to create an executable file named 
FUN. EXE. The linker searches NEWLI BV3 • LI B before searching the 
default libraries to resolve references. To locate NEWLI BV3. LI B and the 
default libraries, the linker searches the current working directory, then 
the c: \TESTLIB\ directory, and finally, the locations given by the Lm 
environment variable. 

118 



Linking with the CL Command 

4.3.2 Specifying Linker Options 

Linker options can be given explicitly on the CL command line, or they 
can be defined in the CL environment variable. 

4.3.2.1 Defining Linker Options on the CL Command Line 

When you use the CL command to invoke the linker, any linker options 
you specify (other than those supported by CL options such as IF and 
/Fm) must appear after the llink option on the command line. All 
options begin with the linker s option character, the forward slash (I). 

The following sections outline the rules for specifying linker options on the 
CL command line. 

Abbreviations 

Since linker options are named according to their functions, some of these 
options are quite long. You can abbreviate the options to save space and 
effort. Be sure that your abbreviation is unique so that the linker can 
determine which option you want. (The minimum legal abbreviation for 
each option is indicated in the syntax of the option.) 

For example, several options begin with the letters "NO"; therefore, 
abbreviations for those options must be longer than "NO" to be unique. 
You cannot use "NO" as an abbreviation for the INOIGNORECASE 
option, since the linker cannot tell which of the options beginning with 
"NO" you intend. The shortest legal abbreviation for this option is INOI. 

Abbreviations must begin with the first letter of the option and must be 
continuous through the last letter typed. No gaps or transpositions are 
allowed. 

Numerical Arguments 

Some linker options take numerical arguments. A numerical argument can 
be any of the following: 

• A decimal number from 0 to 65,535. 

• An octal number from 0 to 0177777. A number is interpreted as 
octal if it starts with O. For example, the number 10 is a decimal 
number, but the number 010 is an octal number, equivalent to 8 in 
decimal. 

• A hexadecimal number from 0 to OxFFFF. A number is interpreted 
as hexadecimal if it starts with Ox or OX. For example, Ox10 is a 
hexadecimal number, equivalent to 16 in decimal. 

119 



Microsoft C Optimizing Compiler User's Guide 

Differences from CL Options 

If you are accustomed to using CL options, you should be aware that the 
linker options work in a slightly different manner. Keep the following 
differences in mind when you use linker options: 

• Linker options can be abbreviated; CL options cannot. For exam­
ple, the linker option /NOIGNORECASE can be abbreviated to 
,NO!. 

• Case is not significant in linker options, as it is in CL options. For 
example, /NOI and /noi are equivalent. 

• Linker options on the command line affect all files in the linking 
process, regardless of where the options appear in the link-libinfo 
field. 

4.3.2.2 Defining Linker Options in the Environment 

You can also define default linker options using the CL environment vari­
able. Set the CL variable as shown below: 

SET CL= ... jUnk option[ option] ... 

The options defined by CL are treated as if they appeared immediately 
after /link on the CL command line and before any linker options given 
on the command line. 

Options defined in the environment must follow the rules outlined in Sec­
tion 4.3.2.2. 

4.4 Linker Options 

This section summarizes the linker options that can be used with Micro­
soft C programs. Note that this section does not describe all available 
linker options; for a complete list, refer to Chapter 12 of the Microsoft 
CodeView and Utilities manual. 

The following summary describes the linker options most commonly used 
with Microsoft C programs: 

/HE[LP] 

120 

Causes the linker to display a list of the available options on the 
screen. 



Linking with the CL Command 

/P[AUSE] 
Tells the linker to pause in the link session and display a message 
before it writes the executable (.EXE) file to disk. 

/I[NFORMATION] 
Displays information about the linking process, including the phase of 
linking and the names of the object files being linked. 

This option is useful if you want to determine the locations of the 
object files being linked and the order in which they are linked. 

/B[ATCH] 
Tells the linker not to prompt you for a new path name whenever it 
cannot find a library or object file that it needs. When this option is 
used, the linker simply continues to execute without using the file in 
question. This option is intended primarily for users who employ batch 
or MAKE files to link many executable files with a single command 
and who do not want the linker to stop processing if it cannot find a 
required file. 

/Q[UICKLffi] 
Creates a Quick library for programs by the Microsoft QuickC Com­
piler. If you give this option, the linker creates a file with an extension 
of .QLB rather than an extension of .EXE. See Chapter 7 of the 
Mz'crosoft Quz'ckC Compz'ler Programmer's Guz'de for more information 
about creating Quick libraries. 

/E[XEPACK] 
Removes sequences of repeated -bytes (typically null characters) and 
optimizes the load-time relocation table before creating the executable 
file. (The load-time relocation table is a table of references, relative to 
the start of the program, each of which changes when the executable 
image is loaded into memory and an actual address for the entry point 
is assigned.) 

Executable files linked with this option may be smaller, and load fas­
ter, than files linked without this option. However, you cannot use the 
Symbolic Debug Utility (SYMDEB) or the Code View window-oriented 
debugger to debug with packed files. 

/NOD [EF AUL TLffiRARYSEARCH] 
Tells the linker not to search any library specified in the object file to 
resolve external references. 

In general, C programs do not work correctly without the standard C 
libraries. Thus, if you use the /NOD option, you should explicitly 
specify the names of all required standard libraries. 

121 



Microsoft C Optimizing Compiler User's Guide 

/NOF[ARCALLTRANSLATION] 
/F[ARCALLTRANSLATION] 

Tells the linker whether or not to optimize intrasegment far calls. Used 
with the /PACKCODE option, thejF option can result in smaller 
executable files, reduced program-loa time, and reduced execution 
time. The default is /NOF. 

/NOP [ACKCODE] 
/P[ACKCODE] [:number] 

Tells the linker whether or not to group contiguous logical code seg­
ments and assign each segment a base address that is the beginning of 
the group. /NOP is the default. The number, if given, specifies the 
limit at which to stop packing and start a new group. If the /P option 
is given with no number, 64K is the default. 

/SE[GMENTS]:number 

Controls the number of segments that the linker allows a program to 
have. The default is 128, but you can set number to any value 
(decimal, octal, or hexadecimal) in the range 1-1024 (decimal). 

For each segment, the linker must allocate some space to keep track of 
segment information. When you set the segment limit higher than 128, 
the linker allocates more space for segment information. For programs 
with fewer than 128 segments, you can keep the storage requirements 
of the linker at the lowest level possible by setting number to reflect 
the actual number of segments in the program. The linker displays an 
error message if the number of segments allocated is too high for the 
amount of memory the linker has available. 

/CP[ARMAXALLOC]:number 

Sets the maximum number of 16-byte paragraphs needed by the pro­
gram when it is loaded into memory, where number is an integer in the 
range 1-65,535. The operating system uses this value when allocating 
space for the program before loading it. The Microsoft C start-up 
module cuts memory back to the larger of 64K or the amount of 
memory specified in this option; for programs with limited static data 
and heap usage, this option is unnecessary. 

The following linker options can be used with Microsoft C programs, but 
they perform the same actions as CL options. Therefore, you do not need 
to use them unless you are compiling and linking in separate steps. 

122 



Linking with the CL Command 

/M[AP] [:number] 

Creates a map file. This option is equivalent to using the /Fm option 
with the CL command, except that you can give a number argument 
with the /M option. The number argument is any positive integer 
(decimal, octal, or hexadecimal) up to 65,535 (decimal) specifying how 
many symbols are sorted in the map listing. If no number argument is 
given, a maximum of 2048 symbols is sorted. (In practice, the number 
of sorted symbols is limited by the amount of free heap space.) If a 
number argument is given, the alphabetical list of symbols does not 
appear in the map file. 

/LI[NENUMBERS] 

Creates a map file and includes the line numbers and associated 
addresses of the source program. This option is equivalent to using the 
/Zd option with the CL command. See Section 3.3.12 for more infor­
mation about the /Zd option. 

/ST[ACK] :number 

Specifies the size of the stack for your program, where number is any 
positive value (decimal, octal, or hexadecimal) up to 65,535 (decimal) 
representing the size, in bytes, of the stack. This option is equivalent 
to using the /F option of the CL command. See Section 3.3.16 for 
more information about the /F option. 

/CO[DEVIEW] 

Prepares for debugging with the CodeView window-oriented debugger 
provided with Version 5.0 of the Microsoft C Optimizing Compiler. 
This option is equivalent to using the /Zi option of the CL command. 
See Section 3.3.12 for more information about the /Zi option. 

The following linker options can be used with Microsoft C programs, but 
they are never required, since they request actions that the CL command 
or the Microsoft C Optimizing Compiler performs automatically: 

/NOI[GNORECASE] 

Tells the linker to distinguish between uppercase and lowercase letters; 
for example, the linker would consider ABC, abc, and Abc to be three 
separate names. The CL command uses the INOI option automati­
cally; if you want to link without using/NOI, you must invoke the 
linker with the LINK command instea of using CL. 

/DO[SSEG] 

Forces segments to be ordered as follows: 

123 



Microsoft C Optimizing Compiler User's Guide 

124 

1. All segments with a class name ending in CODE 

2. All other segments outside DGROUP (that is, FAlLDATA 
and BSS) 

3. DGROUP segments, in the following order: 

a. Any segments of class BEGDATA (this class name is 
reserved for Microsoft use) 

b. Any segments not of class BEGDATA, BSS, or STACK 

c. Segments of class BSS 

d. Segments of class STACK 

C programs compiled with Version 5.0 of the Microsoft C Optimizing 
Compiler always use this segment order by default. See Section 6.7, 
"Naming Modules and Segments," for a discussion of the segment 
names used by the Microsoft C Optimizing Compiler. 



00"".""""" 00""0""" """""""" "0' 0 """"""0"""""0",,,,,,,"0"0""" R 

~ cu 
-) (> !) "c ~""~)'~ 0 .U ;I J !t 





Running C Programs on MS-DOS 

5.1 Introduction 

Mter compiling a program with the Microsoft C Optimizing Compiler and 
linking with the linker, you will have an executable file with the extension 
.EXE that can be run from the MS-DOS prompt. 

MS-DOS uses the PATH environment variable to find executable files. 
You can execute your program from any directory, as long as the execut­
able program file is either in your current working directory or in one of 
the directories on the path set in the PATH environment variable. 

Your program can also be executed by other programs, or you can write it 
so that it will be capable of executing other programs or MS-DOS internal 
commands. The spawn, exec, and system routines provided in the run­
time library allow your program to execute other programs and MS-DOS 
commands. See the Microsoft C Run- Time Library Reference for a descrip­
tion of these routines. 

MS-DOS has several other unique capabilities that your program can use if 
you write the program to take advantage of them. Among these capabili­
ties are the following: 

• Receiving arguments from MS-DOS 

• Reading information from the MS-DOS environment table 

• Sending a message to MS-DOS by returning an exit code 

This chapter explains how to write programs to take advantage of these 
features, and how to use them once your program is completed. 

5.2 Passing Command-Line 
Data to a Program 

Your C program can access data from a command line or from the 
environment table. You can use the MS-DOS SET or PATH command to 
place data in the environment table. See Section 2.4.5, "Setting Up the 
Environment," for a discussion of environment variables. Command-line 
data are arguments that appear on the same line as the program name 
when you execute the program. 

To pass data to your program on the command line, give one or more 
arguments after the program name when you execute the program. Each 
argument must be separated from the arguments around it by one or more 
spaces or tab characters, and may be enclosed in quotation marks (" "). If 
you want to give a single argument that includes spaces or tab characters, 

127 



Microsoft C Optimizing Compiler User's Guide 

enclose the argument in quotation marks. For example, if your C program 
is called TEST. EXE, you might give it the following command line: 

TEST 42 "de f" 16 

In this case, the program will be executed and three arguments will be 
passed: 42, de f, and 16. 

MS-DOS stores the command-line arguments in the MS-DOS program 
header. The C run-time library (which becomes part of your program dur­
ing linking) in turn stores each argument from the program header as a 
null-terminated string in an array of strings. MS-DOS limits the combined 
length of all arguments on the command line (including the program 
name) to 128 bytes. If you provide a longer command line, additional char-
acters are ignored. '. 

For a C program to read the data from the command line, the program 
should declare two variables as arguments to the main function. These 
variables and their contents are listed in Table 5.1. 

Table 5.1 

Argument Variables 

Variable 

argc 

argv 

Contents 

Number of arguments passed 

Array of strings containing arguments 

By declaring these variables as arguments to main, you make them avail­
able as local variables in the main function. The example below illustrates 
how to declare these arguments: 

main (argc, argv) 
int argc; 
char *argv[ ]; 

The number of arguments appearing on the command line is passed as the 
integer variable argc, and the command line is passed to the program as 
the array of strings pointed to by argv. 

The first argument of any command line is the name of the program to be 
executed. Therefore, the program name is the first string stored in argv, at 
argv [0]. Since a program name must be given to run the program, the 
integer value of argc is always at least 1. Therefore, if you pass two argu­
ments to your rrogram, argc will have a value of 3 (two arguments and the 
program name . 

128 



Running C Programs on MS-DOS 

The first argument following the program name is stored at argv [1], the 
second is stored at argv [2], and so on, to the last argument. 

Note 

Under versions of MS-DOS earlier than 3.0, the program name nor­
mally stored in argv [01 is not available. References to argv [0] yield 
the string "C." Under Ms-DOS versions 3.0 and later, references to 
argv [0] give the program name. 

There is a third argument passed to the main function: envp, a pointer to 
the environment table. This argument is an extension provided by the 
Microsoft C Optimizing Compiler to support code ported from XENIX and 
other UNIX-like systems. When specified, it follows argvand is declared as 
shown below: 

char *envp[ ]; 

Although you can use this pointer to access the value of environment set­
tings, this usage is nonstandard and is not recommended. The putenv and 
getenv routines from the C run-time library accomplish the same task, 
and are easier and safer to use. Using the putenv routine may change the 
location of the environment table in memory, depending on memory 
requirements. Therefore, the value given to envp at the beginning of the 
program execution may not be valid throughout the program's execution. 
In contrast, the putenv and getenv routines access the environment table 
properly, even when its location- changes. These routines use the global 
variable environ (described in the M£cro8oft C Run- T£me L£brary Refer­
ence), which always points to the correct table location. 

• Example 

MYPROG ABC "abc en 3 8 

This command line executes the program named MYPROG and passes the 
four command-line arguments to the main function. The arguments are 
stored as null-terminated strings, and the number of arguments is stored 
in argc. To access the last argument, for example, you would use an 
expression like the following: 

argv [argc - 1] 

Since the value of argc is 5 (counting the program name as an argument), 
this expression is equivalent to argv [4J , or the fifth string of the array. 

129 



Microsoft C Optimizing Compiler User's Guide 

5.2.1 Expanding 'Wild-Card Arguments 

You can use the MS-DOS wild-card characters, the question mark (1) and 
the asterisk (*), to specify file-name and path-name arguments on the 
command line. To prepare for using wild cards, you must link your object 
file with the SETARGV.OBJ object file. 

This object file is included with your compiler software. If you don't link 
with this object file, your program does not expand wild-card characters 
on the command line, interpreting them instead as literal question marks 
and asterisks. 

The SETARGV.OBJ file expands the wild-card characters in the same 
manner as MS-DOS. (See your DOS user's guide if you are unfamiliar with 
these characters.) Enclosing an argument in quotation marks (It It) 
suppresses the wIld-card expansion. Within quoted arguments, you can 
represent quotation marks literallx by preceding the double-quotation­
mark character with a backslash t \), as shown below: 

"*\"argument\"*" 

If no matches are found for the wild-card argument, the argument is 
passed literally. For example, if the argument B: \ * . C is given, but no 
files with the extension . C are found in the root directory of Drive B, the 
argumen t is passed as the string B: \ * . C. 

If your programs frequently expand wild-card characters, you may want to 
put the wild-card routines (SETARGV.OBJ) in the appropriate stan­
dard C combined library (mLIDCj.LID) so that they are linked with your 
Erogram automatically. To do this, use the Microsoft Library Manager 
tLID) to extract the module named _ setargv from the library (the 
module name is the same in all four libraries) and insert SETARGV. 
When you replace _ setargv, wild-card expansions are always performed 
on command-line arguments. LID is described in Chapter 13 of the Micro­
soft Code View and Utilities manual. 

• Example 

CL BETA \LIB\SETARGV 

BETA *. INC "WHY?" \"HELLO\" 

In this example, SETARGV. OBJ, which is in the directory \LIB, is linked 
with BETA. OBJ, producing the executable file BETA. EXE. When 
BETA. EXE is executed, the wild-card character * is expanded, causing all 
file names with the extension. INC in the current working directory to be 
passed as arguments to the BETA program. The second command-line 
argument, WHY?, is enclosed in quotation marks, so expansion of the wild­
card character? is suppressed and the argument WHY? is passed literally. 

130 



Running 0 Programs on MS-DOS 

In the third argument, the backslashes cause the quotation marks to be 
represented literally, so the argument "HELLO" (including the quotation 
marks) is passed. 

5.2.2 Suppressing Command-Line Processing 

If your program does not take command-line arguments, you can save a 
small amount of space by suppressing use of the library routine that per­
forms command-line processing. This routine is called Jetargv. To 
suppress its use, define a routine that does nothing in the same file that 
contains the main function, and name it Jetargv. The call to Jetargv 
will be satisfied by your definition of Jetargv, and the library version will 
not be loaded. 

Similarly, if you never access the environment table through the envp 
argument, you can provide your own empty routine to be used in place of 
Jetenvp, the environment-processing routine. 

If your program makes calls to the spawn or exec routines in the C run­
time library, you should not suppress the environment-processing routine, 
since this routine is used to pass an environment from the parent process 
to the child process. 

• Example 

_setargv () 
{ 
} 

_setenvp () 
{ 
} 

The example above shows how to define the Jetargv and Jetenvp func­
tions to suppress command-line and environment processing. It is recom­
mended that you place these definitions in the file containing the main 
function. 

5.3 Returning an Exit Code 

Your program can return an exit code (sometimes called a return code) as 
a means of leaving a message for MS-DOS. The exit code can then be used 
by MS-DOS batch files or other programs that test exit codes (for example, 
the MAKE program-maintenance utility). Exit codes and their uses are 
discussed in more detail in Appendix A, "Using Exit Codes." 

131 



Microsoft C Optimizing Compiler User's Guide 

Exit codes are returned through the main function. This function, like 
any other C function, can return a value. The value is of int type, and is 
passed to MS-DOS as the exit code of the executed program. This exit 
code can be checked with the IF ERRORLEVEL command in MS-DOS 
batch files. (See your DOS user's guide for more information about using 
batch files.) 

To cause the main function to return a specific value to MS-DOS, you 
should use a return statement or the exit function to specify the value to 
be returned. For example, if the main function in a program terminates 
with either the statement return (6); or exi t (6); the value 6 is 
returned to MS-DOS. If neither of these methods is used, the return code is 
undefined. 

• Example 

#define TRUE 1 
#define FALSE 0 

int error = FALSE; 

main () 
{ 

if (error) return (1); 
else return (0); 
} 

In the example above, the value 1 would be returned if the variable error 
were set to TRUE somewhere within the body of the program. Otherwise, 0 
would be returned to MS-DOS. The example program follows the conven­
tion of returning 0 if the program is successful, and some larger number if 
an error is encountered. 

5.4 Suppressing Null-Pointer Checks 

When you execute your C program, a special error-checking routine is 
automatically invoked after your program has terminated to determine 
whether the contents of the NULL segment have changed. If they have, 
the routine displays the following error message: 

run-time error R6001 
- null pointer assignment 

132 



Running C Progra.ms on MS-DOS 

The NULL segment is a special location in low memory that is normally 
not used. If the contents of the NULL segment change during a program's 
execution, it means that the program has written to this area, usually by 
an inadvertent assignment through a null pointer. Note that your program 
can contain null pointers without generating this message; the message 
appears only when you write to a memory location through the null 
pointer. 

This error does not cause your program to terminate; the error is detected 
and the error message is printed following the normal termination of the 
program. 

Note 

The null-pointer error message reflects a potentially serious error in 
your program. Although a program that produces this error may 
appear to operate correctly, it is likely to cause problems in the future 
and may fail to run in a different operating environment. 

The library routine that performs the null-pointer check is named 
_ nullcheck. You can suppress the null-pointer check for a particular pro­
gram by defining your own routine named _ nullcheck that does nothing. 
The call to _ nullcheck will be satisfied by your definition of _ nullcheck, 
and the library version will not be loaded. It is recommended that you 
place the _ nullcheck definition in the file containing the main function. 

133 





'we) RKIN' (;WI r 1-'H 
M~ MC)I)ELS, 

G.I IntrocllictloJ1 ""'0'0'000'0"00000,0000'000000000000'000'0'000'0 0 0.0' J 

G04 

GoG 

G.'? 

G.8 

ng 
(5,:3. 1 
(L3.2 
C5 ,:3 ,:3 
(5.:3,11 
6,:3,:-) 

ng 
(5 .,t.1 
C5A.2 
(L1.~) 

6.5.3 

II r .OOOOOHHOOOHOOOOOOOO.O i 

IVlcrnoryf\ fodcls 0' 0' H 00.000".00> J 
Crca,Llng Srnall-;'\llodc:ll)rogra.mso.oo".o.,o.oo,ool,tO 
Crc{1,Lillg l\'lcdiunl-~JodC'1 Progr,Hns 00.0000'000 •• 1,tl 
Creating Compact-l\'lodcl Progr,ltnSoooooooooooo 1,11 
Creating Largc-l\Jodcl PrograI11so.ooo.oo.oo.o.ooo 112 
ere at i 11 g r lu (' I I n 1 illS 0 00 "' , '" 0 >0 , o. ",,! 1 ~~ 

nc;u 1 f:u J and huge Keywords 00.0,000 0 00 001 !11 
Librar.Y Support for llcar j fa1' 1 and 11llgC 000000115 
Declaring Dat:l with Hearl far j ane! huge ,00,,1,16 
Declaring II'unctlolls with the 
Ileal' (J,llct far Keywords ooooo.o.oooooooooo ... ,eocoocoJ ·18 
POlilter CornT crsl0ns .co.oo",oo.oooo,ooo.".,ooooooooo.! 50 

no' 
b zed 1\ i\ 
Coclc PC)111 tel's. 0000 '0' ,,'0 00, .0. 0 oC"'O','o 0 0'" ,0 0 c. c •• 0 I 
D a L a I) 0 i Il L e rs . 0 ..• " 0 • 0 ...... 0 0 0 , 0 ••••• 0 co ............. . 

SeLting Up SegnlcIl ts ... o •••• 0 0 •• 0 ••••• 0 ••••• , •• 0 ••••• 1 
Li b retry S 11 P porL for Custom I zed 
IV1crnory lvloclcls ." ............ 0 .. "0 ......... ,.00.0000. 

ScLtillg tllci);tta 'J]lrcsl101(1 ................................. J:)G 

N-anling IVlodulcs and Segnlcnts 00 ......... " .... 00 .. ',. .. 137 

fYlng ]'ext and 
~nO·ll-1CI-l.j ~,J 
',--I "-_ 0 j l)~ e 0) ~ \) (> " ~ v 0 () " " (l> ~ " f) 0 C Q Q " 0 0 0:> <> " c " " /) " 0 e I) " '" ~ 0 ~ c " e 0 o!l 0 " '" " " " co 0\ j. 





Working with Memory Models 

6.1 Introduction 

You can gain greater control over how your program uses me:rp.ory by 
specifying the memory model for the program. If you do not specify a 
memory model, CL uses the small memory model by default. The small 
memory model is sufficient for most programs. 

You cannot use the small memory model if your program satisfies one or 
more of the following three conditions: 

1. Your program has more than 64K of code. 

2. Your program has more than 64K of data. 

3. Your program contains individual arrays that need to be larger 
than 64K. 

If you decide that the small memory model will not be adequate for your 
program, you have four options for larger memory models: 

1. You can specify one of th'e other standard memory models 
(medium, compact, large, or huge) using one of the /A options. 

2. You can create a mixed-model program using the near, far, and 
huge keywords. 

3. You can create your own customized memory model using the 
/ Astring option. 

4. Method 2 can be combined with either method 1 or method 3. 

6.2 Near, Far, and Huge Addressing 

Understanding the terms "near," "far," and "huge" is crucial to under­
standing the concept of memory models. These terms indicate how data 
can be accessed in the segmented architecture of the 80x86 family of 
microprocessors (8086, 80186, 80286). 

DOS loads the code and data allocated by your program into "segments" 
in physical memory. Each segment is up to 64K long. Since separate 

137 



Microsoft C Optimizing Compiler User's Guide 

segments are always allocated for the program code and data, the 
minimum number of segments allocated for a program is two; these two 
segments, required for every program, are called the default segments. The 
small memory model uses only the two default segments. The other 
memory models discussed in this chapter allow more than one code seg­
ment per program, more than one data segment per program, or both. 

In the 80x86 family of microprocessors, all memory addresses consist of 
two parts: 

1. A 16-bit number that represents the base address of a memory 
segment 

2. Another 16-bit number that gives an offset within that segment 

The architecture of the 80x86 microprocessor is such that code can be 
accessed within the default code or data segment using just the 16-bit 
offset value. This is possible because the segment addresses for the default 
segments are always known. This 16-bit offset value is called a "near" 
address, and can be accessed with a "near" pointer. Since only 16-bit 
arithmetic is required to access any near item, near references to code or 
data are smaller and more efficient. . 

When data or code lie outside the default segments, the address must use 
both the segment and offset values. Such addresses are called "far" 
addresses, and can be accessed by using "far" pointers in a C program. 
Accessing far data or code items is more expensive in terms of program 
speed and size, but using them allows your programs to address all 
memory, rather than just a 64K piece. 

There is a third type of address in Microsoft C: the "huge" address. A 
huge address is similar to a far address in that both consist of a segment 
value and an offset value; but the two differ in the way address arithmetic 
is performed on pointers. Because items (both code and data) referenced 
by far pointers are still assumed to lie completely within the segment in 
which they start, pointer arithmetic is done only on the offset portion of 
the address. This gain in pointer arithmetic efficiency is achieved, however, 
by limiting the size of any single item to 64K. With data items, huge 
pointers overcome this size limitation: pointer arithmetic is performed on 
all 32 bits of the data item's address, thus allowing data items referenced 

138 



Working with Memory Models 

by huge pointers to span more than one segment, provided they conform 
to the rules outlined in Section 6.3.5, "Creating Huge-Model Programs." 

The rest of this chapter deals with the various methods you can use to 
control whether your program makes far, near, or huge calls to access code 
or data. 

6.3 Using the Standard Memory Models 

The libraries created by the SETUP program support five standard 
memory models. Using the standard memory models is the simplest way to 
control how your program accesses code and data in memory. 

When you use the standard memory models, the compiler handles library 
support for you. The library corresponding to the memory model you 
specify is used automatically. Each memory model has its own library, 
except for the the huge memory model, which uses the large-model library. 

The advantage of using standard models for your programs is simplicity. 
In the standard models, memory management is specified by compiler 
options; since the standard models do not require the use of extended key­
words they are the best way to write code that can be ported to other sys­
tems (particularly systems that do not use segmented architectures). 

The disadvantage of using standard memory models exclusively is that 
they may not produce the most efficient code. For example, if you have an 
otherwise small-model program containing a large array that pushes the 
total data size for your program over the 64K limit for small model, it may 
be to your advantage to declare the one array with the far keyword, while 
keeping the rest of the program small model, as opposed to using the stan­
dard compact memory model for the entire program. For maximum flexi­
bility and control over how your program uses memory, you can combine 
the standard-memory-model method with the near, far, and huge key­
words described in Section 6.4. 

The I A option for CL is used to specify one of the five standard memory 
models (small, medium, compact, large, or huge) at compile time. These 
options are discussed in the next five sections. 

139 



Microsoft C Optimizing Compiler User's Guide 

Note 

In the following sections, which describe in detail the different 
memory-model addressing conventions, it is important to keep in mind 
two common features of all five models: 

1. No sz"ngle source module can generate 64K or more of code. 

2. No sz"ngle data item can exceed 64K, unless it appears in a 
huge-model program or it has been declared with the huge 
keyword. 

6.3.1 Creating Small-Model Programs 

• Option 

JAS 

The small-model option tells the compiler to create a program that occu­
pies the two default segments: one for code and one for data. 

Small-model programs are typically C programs that are short or have a 
limited purpose. Since code and data for these programs are each limited 
to 64K, the total size of a small-model program can never exceed 128K. 
Most programs fit easily in to this model. 

The default in small-model programs is that both code and data items are 
accessed with near addresses. You can override the default for data by 
using the far or huge keywords, and the default for code by using the far 
keyword (huge is relevant only to data items-specifically, arrays and 
pointers to arrays). 

The compiler creates small-model programs by default when you do not 
specify a memory model. The / AS option is provided for completeness; 
you need never give it explicitly. 

140 



Working with Memory Models 

6.3.2 Creating Medium-Model Programs 

• Option 

lAM 

The medium-model option provides a single segment for program data, 
and multiple segments for program code. Each source module is given its 
own code segment. 

Medium-model programs are typically C programs that have a large 
number of program statements (more than 64K of code), but a relatively 
small amount of data (less than 64K). Program code can occupy any 
amount of space and is given as many segments as needed; total program 
data cannot be greater than 64K. The medium model provides a useful 
trade-off between speed and space, since most programs refer more fre­
quently to data items than to code. 

6.3.3 Creating Compact-Model Programs 

• Option 

JAC 

The compact-model option directs the compiler to allow multiple 
segments for program data but only one segment for the program code. 

Compact-model programs are typically C programs that have a large 
amount of data, but a relatively small number of program statements. 
Program data can occupy any amount of space and are given as many seg­
ments as needed. 

The default in compact-model programs is that code items are accessed 
with near addresses and data items are accessed with far addresses. You 
can override the default by using the near and huge keywords for data, 
and the far keyword for code. 

141 



Microsoft C Optimizing Compiler User's Guide 

Note 

Note that in medium and compact models, NULL must be used care­
fully in certain situations. NULL actually represents a null data 
pointer. In memory models where code and data pointers are the same 
size, it can be used with either. However, in memory models where 
code and data pointers are different sizes, this is not the case. Consider 
the following example: 

void funcl(char *dp) 
{ 

. 
} 

void func2(char (*fp) (void» 
{ 

} 

main () 
{ 
funcl(NULL): 
func2(NULL): 
} 

This example passes a 16-bit pointer to both fune! and fune2 if 
compiled in medium model, and a 32-bit pointer to both fune! and 
fune2 if compiled in compact model, unless prototypes are added to 
the beginning of the program to indicate the types, or an explicit cast 
is used on the argument to fune! (compact model) or fune2 
(medium model). 

6.3.4 Creating Large-Model Programs 

• Option 

/AL 

The large-model option allows the compiler to create multiple segments as 
needed for both code and data. 

142 



Working with Memory Models 

Large-model programs are typically very large C programs that use a large 
amount of data storage during normal processing. 

The default in large-model programs is that both code and data items are 
accessed with far addresses. You can override the default by using the 
near and huge keywords for data, and the near keyword for code. 

6.3.5 Creating Huge-Model Programs 

• Option 

jAH 

The huge-model option is similar to the large-model option, except that 
the restriction on the size of individual data items is removed for arrays. 

Some size restrictions apply to elements of huge arrays where the array is 
larger than 64K, however. To provide efficient addressing, array elements 
are not permitted to cross segment boundaries. This has the following 
implications: 

1. No array element can be larger than 64K. 

2. For any array larger than 128K, all elements must have a size in 
bytes equal to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16 
bytes, and so on). However, if the array is 128K or smaller, its ele­
ments may be any size, up to and including 64K. 

In huge-model programs, care must be taken when using the sizeof opera­
tor or when subtracting pointers. The C language defines the value 
returned by the sizeof operator to be an unsigned int value, but the size 
in bytes of a huge array is an unsigned long value. To solve this 
discrepancy, the Microsoft C Optimizing Compiler produces the correct 
size of a huge array when a type cast like the following is used: 

(unsigned long)sizeof(huge_item) 

Similarly, the C language defines the result of subtracting two pointers as 
an int value. When subtracting two huge pointers, however, the result 
may be a long int value. The Microsoft C Optimizing Compiler gives the 
correct result when a type cast like the following is used: 

(long) (huge_ptrl - huge_ptr2) 

143 



Microsoft C Optimizing Compiler User's Guide 

6.4 Using the near, far, and huge Keywords 

One limitation of the predefined memory-model structure is that, when 
you change memory models, all data and code address sizes are subject to 
change. However, the Microsoft C Optimizing Compiler lets you override 
the default addressing convention for a given memory model and access 
items with either a near, far, or huge pointer. This is done with the near, 
far, and huge keywords. These special type modifiers can be used with a 
standard memory model to overcome addressing limitations for particular 
data or code items, or to optimize access to these items, without changing 
the addressing conventions for the program as a whole. Table 6.1 explains 
how the use of these keywords affects the addressing of code or data, or 
pointers to code or data. 

Table 6.1 

Addressing of Code and Data Declared with near, far, and huge 

Keyword 

near 

far 

huge 

144 

Data 

Reside in default data 
segment; referenced 
with 16-bit addresses 
(pointers to data are 
16 bits) 

May be anywhere in 
memory, not assumed 
to reside in current 
data segment; 
referenced with 32-bit 
addresses (pointers to 
data are 32 bits) 

May be anywhere in 
memory, not assumed 
to reside in current 
data segment; 
individual data items 
(arrays) can exceed 
64K in size; 
referenced with 32-bit 
addresses (pointers to 
data are 32 bits) 

Function 

Assumed to be in 
current code 
segment; 
referenced with 
16-bit addresses 
(pointers to 
functions are 16 
bits) 
Not assumed to be 
in current code 
segment; 
referenced with 
32-bit address 
(pointers to 
functions are 32 
bits) 

Not applicable to 
code 

Pointer 
Arithmetic 

Uses 16 bits 

Uses 16 bits 

Uses 32 bits for 
data 



Working with Memory Models 

Note 

The near, far, and huge keywords are not a standard part of the C 
language; they are meaningful only for systems that use a segmented 
architecture similar to that of the 80x86 microprocessors. Keep this in 
mind if you want your code to be ported to other systems. 

In the Microsoft C Optimizing Compiler, the near, far, and huge key­
words are enabled by default. To treat these keywords as ordinary 
identifiers, you must give the /Za option at compile time. This option is 
useful if you are concerned with porting C programs from environments in 
which these are not keywords; for instance, if you are porting a program in 
which one of these words is used as a label. See Section 3.3.14 for further 
information about the use and effects of the /Za option. 

6.4.1 Library Support for near, far, and huge 

When using the near, far, and huge keywords to modify addressing con­
ventions for particular items, you can usually use one of the standard 
libraries (small, compact, medium, or large) with your program. The 
large-model libraries are also appropriate for use with huge-model pro­
grams. However, you must use care when calling library routines. In gen­
eral, you cannot pass far pointers, or the addresses of far data items, to a 
small-model library routine. (Some exceptions to this statement are the 
library routines halloe and hfree and the printf family of functions.) Of 
course, you can always pass the value of a far item to a small-model library 
routine. For example: 

long far time_val; 

time(&time_val); 
printf("%ld\n", time_val); 

/* Illegal */ 
/* Legal */ 

If you use the near, far, or huge keyword, it is strongly recommended 
that you use function prototypes with argument-type lists to ensure that 
all pointer arguments are passed to functions correctly. See Section 6.4.4, 
"Pointer Conversions," for more information. 

For more information on library routines and memory models, see Section 
2.11, "Using Huge Arrays with Library Functions," in the Microsoft C 
Run- Time Library Reference. 

145 



Microsoft C Optimizing Compiler Userts Guide 

6.4.2 Declaring Data with near, far, and huge 

The near, far, and huge keywords modify either objects or pointers to 
objects. When using them to declare data or code (or pointers to data or 
code), keep the following rules in mind: 

• The keyword always modifies the object or pointer immediately to 
its right. In complex declarators, think of the far keyword and the 
item to its right as being a single unit. For example, in the case of 
the declarator 

char far* *p; 

p is a pointer (whose size depends on the specified memory model) 
to a far pointer to char. See the Microsoft G Language Reference 
for complete rules governing the use of special keywords in complex 
declarations. 

• If the item immediately to the right of the keyword is an identifier, 
the keyword determines whether the item will be allocated in the 
default data segment (near) or a separate data segment (far or 
huge). For example, 

char far a; 

allocates a as an item of type char with a far address. 

• If the item immediately to the right of the keyword is a pointer, 
the keyword determines whether the pointer will hold a near 
address (16 bits), a far address (32 bits), or a huge address (also 32 
bits). For example, 

char far *p; 

allocates p as a far pointer (32 bits) to an item of type char. 

• Examples 

The examples in this section show data declarations using the near, far, 
and huge keywords. 

char a[3000]; /* small-model program */ 
char far b[30000]; 

The first declaration in the example above allocates the array a in the 
default data segment. By contrast, the array b in the second declaration 
may be allocated in any far data segment. Since these declarations appear 
in a small-model program, array a probably represents frequently used 
data that were deliberately placed in the default segment for fast access. 
Array b probably represents seldom used data that might make the 

146 



Working with Memory Models 

default data segment exceed 64K and force the programmer to use a larger 
memory model if the array were not declared with the far keyword. The 
second declaration uses a large array, because it is more likely that a pro­
grammer would want to specify the address allocation size for items of 
substantial size. 

char a[3000]; /* large-model program */ 
char near b[3000]; 

In the example above, access speed would probably not be critical for 
array a. Even though it mayor may not be allocated within the default 
data segment, it is always referenced with a 32-bit address. Array b is 
explicitly allocated near to improve speed of access in this memory model 
(large). 

char huge a[70000]; 
char huge *pa; 

/* small-model program */ 

In the small-model program above, a must be declared as huge because it 
is larger than 64K. Using the huge keyword instead of the standard huge 
memory model means that the price for using huge data is only paid for 
this one large item. Other data can be accessed quickly within the default 
segment. The pointer pa could be used to point to a. Any pointer arith­
metic for pa (such as pa++) would be performed using 32-bit arithmetic. 

char *pa; 
char far *pb; 

/* small-model program */ 

The pointer pa is declared as a near pointer to char in the example above. 
The pointer is near by default since the example appears in a small-model 
program. By contrast, pb is allocated as a far pointer to char; pb could be 
used to point to, and step through, an array of characters stored in a seg­
ment other than the default data segment. For example, pa might be used 
to point to array a in the first example, while pb might be used to point to 
array b. 

char far * *pa; 
char far * *pa; 

/* small-model program */ 
/* large-model program */ 

The pointer declarations in the example above illustrate the interaction 
between the memory model chosen and the near and far keywords. 
Although the declarations for pa are identical, in a small-model program 
pa is declared as a near pointer to an array of far pointers to type char, 
while in a large-model program, pa is declared as a far pointer to an array 
of far pointers to type char. 

147 



Microsoft C Optimizing Compiler User's Guide 

char far * near *pb: 
char far * far *pb: 

/* any model */ 

In the first declaration in the example above, pb is declared as a near 
pointer to an array of far pointers to type char; in the second declaration, 
pb is declared as a far pointer to an array of far pointers to type char. 
Note that, in this example, the far and near keywords override the 
model-specific addressing conventions shown in the example preceding the 
example above; the declarations for pb would have the same effect, regard­
less of the memory model. 

6.4.3 Declaring Functions with the 
near and far Keywords 

The rules for using the near and far keywords for functions are similar to 
those for using them with data, as specified below: 

148 

• The keyword always modifies the function or pointer immediately 
to its right. See Section 4.3.3, "Declarators with Special Key­
words," of the Microsoft C Language Reference for more informa­
tion about rules for evaluating complex declarations. 

• If the item immediately to the right of the keyword is a function, 
then the keyword determines whether the function will be allocated 
as near or far. For example, 

char far fun ( ): 

defines fun as a function called with a 32-bit address and return­
ing type char. 

• If the item immediately to the right of the keyword is a pointer to 
a function, then the keyword determines whether the function will 
be called using a near (16-bit) or far (32-bit) address. For example, 

char (far * pfun) ( ): 

defines p fun as a far pointer (32 bits) to a function returning type 
char. 

• Function declarations must match function definitions. 

• The huge keyword cannot be applied to functions. 



• Examples 

char far fun(void); 
char far fun (void) 

{ 

} 

Working with Memory Models 

/* small model */ 

In the example above, fun is declared as a function returning type char. 
The far keyword in the declaration means that fun must be called with a 
32-bit call. 

static char far * near fun ( ); 
static char far * near fun ( ) 

{ 

} 

/* large model */ 

In the large-model example above, fun is declared as a near function that 
returns a far pointer to type char. Such a function might be seen in a 
large-model program as a helper routine that is used frequently, but only 
by the routines in its own module. Since all routines in a given module 
share the same code segment, the function could always be accessed with a 
near call. However, you could not pass a pointer to fun as an argument to 
another function outside the module in which fun was declared. 

void far *fun(void); /* small model */ 
void (far * pfun) () = fun; 

The small-model example above declares p fun as a far pointer to a func­
tion that has a void return type, and then assigns the address of fun to 
pfun. In fact, pfun could be used to point to any function accessed with a 
far call. Note that if the function pointed to by p fun has not been 
declared with the far keyword, or if it is not far by default, then calling 
that function through p fun would cause the program to fail. 

double far * (far fun) ( ); 
double far * (far *pfun) ( ) = 

/* compact model */ 
fun; 

The final example above declares p fun as a far pointer to a function that 
returns a far pointer to type double, and then assigns the address of fun 
to p fun. This might be used in a compact-model program for a function 
that is not used frequently and thus does not need to be in the default 

149 



Microsoft C Optimizing Compiler User's Guide 

code segment. Both the function and the pointer to the function must be 
declared with the far keyword. 

6.4.4 Pointer Conversions 

Passing pointers as arguments to functions may cause automatic conver­
sions in the size of the pointer argument, since passing a pointer to a func­
tion forces the pointer size to the larger of the following two sizes: 

• The default pointer size for that type, as defined by the memory 
model used during compilation. 

For example, in medium-model programs, data pointer arguments 
are near by default, and code pointer arguments are far by default. 

• The type of the argument. 

If a function prototype with argument types is given, the compiler per­
forms type checking and enforces the conversion of actual arguments to 
the declared type of the corresponding formal argument. However, if no 
declaration is present or the argument-type list is empty, the compiler will 
convert pointer arguments automatically to the larger of the default type 
or the type of the argument. To avoid mismatched arguments, you should 
always use a prototype with the argument types. 

• Examples 

/* This program produces unexpected results in compact-, 
** large-, or huge-model programs. 
*/ 

main ( ) 

{ 
int near *x; 
char far *y; 
int z = 1; 

test_fun (x, y, z); 

} 

int test_fun(ptr1, ptr2, a) 
int near *ptr1; 
char far *ptr2; 
int a; 

{ 

/* x will be coerced to far 
** pointer in compact, large, 
** or huge model 
*/ 

printf("Value of a = %d\n", a);} 

150 



Working with Memory Models 

If the preceding example is compiled as a small-model program (no 
memory-model options or the / AS option on CL command line) or 
medium-model program (/ AM option), the size of pointer argument x is 
16 bits, the size of pointer argument y is 32 bits, and the valullrinted for 
a is 1. However, if the preceding example is compiled with the AC, / AL, 
or / AlI option, both x and yare automatically converted to ar pointers 
when they are passed to test_fun. Since ptrl, the first parameter of 
test_fun, is defined as a near pointer argument, it takes only 16 bits of 
the 32 bits passed to it. The next parameter, ptr2, takes the remaining 16 
bits passed to ptrl, plus 16 bits of the 32 bits passed to it. Finally, the 
third parameter, a, takes the left-over 16 bits from ptr2, instead of the 
value of z in the main function. This shifting process does not generate an 
error message, since both the function call and the function definition are 
legal, but in this case the program does not work as intended, since the 
value assigned to a is not the value intended. 

To pass ptrl as a near pointer, you should include a forward declaration 
that specifically declares this argument for test_fun as a near pointer, 
as shown below: 

/* First, declare test_fun so the compiler knows in advance 
** about the near pointer argument: 
*/ 
int test_fun(int near*, char far *, int); 

main ( ) 

{ 
int near *x; 
char far *y; 
int z = 1; 

test_fun (x, y, z); 

} 

int test_fun (ptr1, ptr2, a) 
int near *ptr1; 
char far *ptr2; 
int a; 

{ 
printf ("Value of a 
} 

/* now, x will not be coerced 
** to a far pointer; it will be 
** passed as a near pointer, 
** no matter what memory 
** model is used 
*/ 

%d\n", a); 

151 



Microsoft C Optimizing Compiler User's Guide 

Note that it would not be sufficient to reverse the definition order for 
test_fun and main in the first example to avoid pointer coercions; the 
pointer arguments must be declared in a forward declaration, as in the 
second example. 

6.5 Creating Customized Memory Models 

A third method of managing memory models is to combine features of the 
standard memory models to create your own customized memory model. 
You should have a thorough understanding of C memory models and the 
architecture of 8086 and 80286 processors before creating your own non­
standard memory models, since there is no library support-other than the 
C start-up routines-for nonstandard memory models. 

The I Astring option lets you change the attributes of the standard 
memory models to create your own memory models. The three letters in 
string correspond to the code pointer size, the data pointer size, and the 
stack- and data-segment setup, respectively. Because the letter allowed in 
each field is unique to that field, you can give the letters in any order after 
I A. All three letters must be present. 

The standard-memory-model options (I AS, I AM, lAC, I AL, and I All) 
can be specified in the I Astring form. As an example of how to construct 
memory models, the standard-memory-model options are listed below with 
their I Astring equivalents: 

Standard 

lAS 
lAM 
lAC 

/AL 

IAR 

Custom Equivalent 

IAsnd 

IAInd 

IAsfd 

IAIfd 

IAIhd 

As an example of the use of customized models, you might want to create 
a huge-compact model. This model would allow huge data items, but only 
one code segment. The option for specifying this model would be I Ashd. 

An even more common use of customized models is to set up segments (see 
Section 6.5.3 for more information). 

If you use a customized memory model for a program that includes both 
far and near functions, be aware of the following issues: 

152 



Working with Memory Models 

• The chkstk library function should be called only in functions that 
are compiled in the same model as the library being used. (For 
compatibility with XENIX, the chkstk function name cannot be 
model encoded.) 

• The interfaces to floating-point function calls (generated when the 
/FPc, /FPc87, or /FPa option is used in compiling) are not 
model encoded, so the same restriction is placed on functions con­
taining floating-point calls: they must be compiled with the same 
model as the library being used. 

Note 

For the purposes of the descriptions that follow, the letters I (for 
"long") and s (for "short") are used for code pointers to distinguish 
them in the memory-model string from the letters for data pointers. 

6.5.1 Code Pointers 

• Options 

/Asxx 
/Alxx 

Near code pointers 
Far code pointers 

The letter s tells the compiler to generate near (16-bit) pointers and 
addresses for all code items. This is the default for small- and compact­
model programs. 

The letter I means that far (32-bit) pointers and addresses are used to . 
address all code items. Far pointers are the default for medium-, large-, 
and huge-model programs. 

6.5.2 Data Pointers 

• Options 

/Anxx 
/Mxx 
/Ahxx 

Near data pointers 
Far data pointers 
Huge data pointers 

Three sizes are available for data pointers: near, far, and huge. The letter 
n tells the compiler to use near (16-bit) pointers and addresses for all data. 
This is the default for small- and medium-model programs. 

153 



Microsoft C Optimizing Compiler User's Guide 

The letter fspecifies that all data pointers and addresses are far (32-bit). 
This is the default for compact- and large-model programs. 

The letter h specifies that all data pointers and addresses are far (32-bit). 
This is the default for huge-model programs. 

When far data pointers are used, no single data item may be larger than a 
segment (B4K) because address arithmetic is performed only on IB bits 
(the offset portion) of the address. When huge data pointers are used, indi­
vidual data items can be larger than a segment (64K) because address 
arithmetic is performed on the entire 32 bits of the address. 

6.5.3 Setting Up Segments 

• Options 

/Adxx 
/Au[xx] 
/Aw[xx] 

Sets SS = DS 
Sets SS != DS; DS reloaded on function entry 
Sets SS != DS; DS not reloaded on function entry 

The letter d tells the compiler that the segment addresses stored in the 
SS and DS registers are equal; that is, the stack segment and the default 
data segment are combined into a single segment. This is the default for 
all programs. In small- and medium-model programs, the stack plus all 
data must occupy less than 64K; thus, any data item is accessed with only 
a 16-bit offset from the segment address in the SS and DS registers. 

In compact-, large-, and huge-model programs, initialized global and static 
data are placed in the default data segment. The address of this segment 
is stored in the DS and SS registers. All pointers to data, including 
pointers to local data (the stack), are full 32-bit addresses. This is impor­
tant to remember when passing pointers as arguments in large-model pro­
grams. Although you may have more than 64K of total data in these 
models, there can be no more than 64K of data in the default segment. 
The /Gt and /ND options can be used to control allocation of items in 
the default data segment if a program exceeds this limit. (See Section 6.B, 
"Setting the Data Threshold," and Section 6.7, "Naming Modules and Seg­
ments," for more information about these options.) 

The letter u allocates different segments for the stack and the data seg­
ments. Each object file (module) is allocated its own segment for global 
and static data items. Note that the /ND option, described in Section 6.7, 
must be specified along with the letter u to allocate data segments other 
than the default. When the letter u is specified with /ND, the address in 
the DS register is saved upon entry to each function, and the new DS 
value for the module in which the function was defined is loaded into the 
register. The previous DS value is restored on exit from the function. 

154 



Working with Memory Models 

Therefore, only one data segment is accessible at any given time. The 
IND option can be used to combine these segments into a single segment. 

If a standard memory-model option precedes it on the command line, the 
I Au option can be specified without any letters indicating data- or code­
pointer sizes. In this case, the program uses the specified memory model, 
but different segments are set up for the stack and data segments. 

A single segment must be allocated for the stack, and its address stored in 
the SS register. The stack segment does not change throughout the entire 
program. 

The letter w, like the letter u, sets up a separate stack segment, but does 
not automatically load the DS register at each module entry point. This 
option is typically used when writing application programs that interface 
with an operating system or with a program running at the operating­
system level. The operating system or the program running under the 
operating system actually receives the data intended for the application 
program and places that data in a segment; then the operating system or 
program must load the DS register with the segment address for the appli­
cation program. 

As with the / Au option, the lAw option can be specified without data­
and code-pomter letters if a standard memory-model option precedes it on 
the command line. In this case, the program uses the specified memory 
model, but different segments are set up for the stack and data segments, 
and the DS register is not reloaded at each module entry point. 

Even though u and w set up a separate segment for the stack, the stack's 
size is still fixed at the default size unless this is overridden with the IF 
compiler option or the ISTACK linker option. 

6.5.4 Library Support for Customized Memory Models 

Most C programs make function calls to the routines in the C run-time 
library. Library support is provided for the five standard memory models 
(small, medium, compact, large, and huge) through four separate run-time 
libraries (huge and large models both use the large-model library ). When 
you write mixed-model programs, you are responsible for determIning 
which library (if any) is suitable for your program and for ensuring that 
the appropriate library is used. 

Library support is provided for customized memory models where the 
stack and default data segments are combined into a single segment 
(/Adxx), but not for customized memory models where these segments are 
different (/Auxx, lAw xx, IAu, and lAw). In the latter cases, you prob­
ably need to create a customized library to be used with your customized 
memory model. Use the INOD (for "no default library search") option 
when linking, and specify the library files .and object files you want to use. 

155 



Microsoft C Optimizing Compiler User's Guide 

Be sure to use the start-up routine from the appropriate library for your 
memory model. Table 6.2 shows the libraries from which to extract the 
start-up routine for each customized memory model. 

Table 6.2 

Start-Up Routines for 
Customized Memory Models 

Memory-Model 
Option 

I Asnx; I f'-S 
plus lAx 
/ Asff; I. Ash x; 
lAC plus lAx 

IAlnx;/~ 
plus lAx 
/Alfx; IAlhX; 
I AL pius / Ax: 
I AH plus lAx'! 

Use Start-Up 
From Library 

SLmCj.Lm2 

CLmCj.Lm2 

MLmCj.Lm2 

LLmCj.Lm2 

1 Where x is either u or w 

2 Where f is either E (emulator library), 7 (8087/80287 
library), or A (alternate math library) 

In general, library functions do not support customized memory models, 
since a particular run-time routine may in turn call another library routine 
that conflicts with your customized model. 

6.6 Setting the Data Threshold 

• Option 

IGt[number] 

By default, the compiler allocates all static and global data items within 
the default data segment in the small and medium memory models. In 
compact-, large-, and huge-model programs, only initialized static and glo­
bal data items are assigned to the default data segment. The fGt option 
causes all data items whose size is greater than or equal to number bytes to 
be allocated to a new data segment. When number is specified, it must fol­
low the IGt option immediately, with no intervening spaces. When 
number IS omitted, the default threshold value is 256. When the fGt 
option is omitted, the default threshold value is 32,767. 

156 



Working with Memory Models 

You can use the /Gt option only with compact-, large-, and huge-model 
programs, since small- and medium-model programs have only one data 
segment. The option is particularly useful with programs that have more 
than 64K of initialized static and global data in small data items. 

6.7 Naming Modules and Segments 

• Options 

/NM modulename 
/NT textsegment 
/ND datasegment 

"Module" is another name for an object file created by the C compiler. 
Every module has a name. The compiler uses this name in error messages 
if problems are encountered during processing. The module name is usu­
ally the same as the source-file name. You can change this name using the 
/NM (for "name module") option. The new modulename can be any com­
bination of letters and digIts. The space between /NM and modulename is 
optional. 

A "segment" is a contiguous block of binary information (code or data) 
produced by the C compiler. Every module has at least two segments: a 
text segment containing the program instructions, and a data segment 
containing the program data. Each segment in every module has a name. 
The linker uses this name to define the order in which the segments of the 
program appear in memory when loaded for execution. (Note that the seg­
ments in the group named DGROUP are an exception; see the Microsoft 
Mixed-Language Programming Guide for more information.) 

Text and data segment names normally are created by the C compiler. 
These default names depend on the memory model chosen for the pro­
gram. For example, in small-model programs the text segment is named 
_TEXT and the data segment is named J)ATA. These names are the 
same for all small-model modules, so all text segments from all modules 
are loaded as one contiguous block, and all data segments from all 
modules form another contiguous block. 

In medium-model programs, the text from each module is placed in a 
separate segment with a distinct name, formed by using the module base 
name along with the suffix _TEXT. The data segment is named J)ATA, 
as in the small model. 

In compact-model programs, the data from each module are placed in a 
separate segment with a distinct name, formed by using the module base 
name along with the suffix J)ATA. The exception to this is initialized 

157 



Microsoft C Optimizing Compiler User's Guide 

global and static data, which are put in the default data segment, 
-.DATA. The code segment is named _TEXT, as in the small model. 

In large- and huge-model programs, the text and data from each module 
are loaded into separate segments with distinct names. Each text segment 
is given the name of the module plus the suffix _TEXT. The data from 
each segment are placed in a private segment with a unique name (exce{>t 
for initialized global and static data placed in the default data segment). 
The naming conventions for text and data segments are summarized in 
Table 6.3. 

Table 6.3 

Segment-Naming Conventions 

Model Text Data Module 

Small _TEXT _DATA filename 

Medium module- TEXT _DATA filename 

Compact _TEXT _DATAl filename 

Large module- TEXT _DATAl filename 

Huge module- TEXT _DATAl filename 

1 Name of default data segment; other data segments have unique 
private names. 

You can override the default names used by the C compiler (thus over­
riding the default loading order) by using the /NT (for "name text") and 
/ND (for "name data") options. These options set to a given name the 
names of the text and data segments in each module being compiled. The 
textsegment argument used with the /NT option and the datasegment 
argument used with the /ND op.tion can be any combination of letters 
and digits. The space between tNT and textsegment, and the space 
between /ND and datasegment, are optional. 

If you use the /ND option to change the name of the default data seg­
ment, your program can no longer assume that the address contained in 
the stack segment register (88) is the same as the address in the data seg­
ment register (DS). You must therefore compile your program either with 
the / Astring form of the memory-model option and the u option for the 
segment-setup letter, or with the / A option for a standard memory model 
followed by the / Au option as in the following example: 

CL jAs /Au /ND DATAl PROG1.C 

Use of the / Au option forces the compiler to generate code to load D8 
with the correct data-segment value on entry to the code. See Section 6.5, 

158 



Working with Memory Models 

"Creating Customized Memory Models," for more information on the 
/ Astring options. All modules whose data segments have the same name 
have these segments combined into a single segment named DATAl at link 
time. 

6.8 Specifying Text and 
Data Segments 

• Pragmas 

# pragma alloc_ text (textsegment, functz"onl[, function2]' .. ) 
# pragma same_ seg (varz"able1[, varz"able2]. .. ) 

The alloc_ text pragma gives you source-level control over the segment in 
which particular functions are allocated. The same_ seg pragma provides 
information the compiler can use to generate better code. 

If you use overlays or swapping techniques to handle large programs, 
alloc_ text allows you to tune the contents of their text segments for 
maximum efficiency. The alloc_ text pragma must appear before the 
definitions of any of the specified functions and after the declarations of 
these functions. Functions referenced in an alloc_ text pragma should be 
defined in the same module as the pragma. If this is not done, and an 
undefined function is later compiled into a different text segment, the error 
mayor may not be caught. Although the program will usually run 
correctly, the function will not be allocated in the intended segments. 

Any functions specified in an alloc_ text pragma must either be explicitly 
declared with the far keyword or assumed to be far because of the memory 
model used (medium, large, or huge), unless these functions are called only 
by functions in the same text segment. No more than 10 alloc_ text prag­
mas may appear in the same compilation unit. 

The same_ seg pragma tells the compiler to assume that the specified 
external variables are allocated in the same data segment. You are respon­
sible for making sure that these variables are put in the same data seg­
ment; one way to do this is to specify the /ND option when you compile 
the program. The same_ seg pragma must appear before any of the 
specified variables is used in executable code and after the variables are 
declared. Variables specified in a same_ seg pragma must be explicitly 
declared with extern storage class, and they must either be explicitly 
declared with the far keyword or assumed to be far because of the memory 
model used (compact, large, or huge). 

159 





CI-IAPTER 
CON1-'ROLLINC; FLOATINC;­
POINT MATH OPERATIONS 

7.1 Introduction ........................................................ IG:) 

7.2 Sun1111ary of 1\1ath ]Jackagcs ..................... " ........ 163 
7.2.1 The Ernulator Package .............................. 153 
7.2.2 The 8087/80287 Package ........................... 1G4 
7.2.3 The Alternate Math Package ..................... 10,1 

7.3 Selecting Floating-Point (/FP) Options .............. lG5 
7.3.1 The /FPi Option ............... " ............... ., .... 167 
7.3.2 The /FPi87 Option ................................... lG8 
7.3.3 The /FPc Option ...................................... 168 
7.3.4 The /FPc87 Option ............................ '0' ... IGD 
7.3.5 The /FPa Option ...................................... 1G9 

7.1 Library Considerations 
for Floating-Point Options .................................. 170 
7 .4.1 In-Line Instruetions or Calls ............. 00 ••••••• 170 
7.4.2 -Using One Standard Library for Linking ..... 170 

7.5 Cornpatibility between 
Floating-Point Options ....................................... 173 

7.6 lJsing the N087 EnvironlTlcnt \lari~lble ............... 17 4 
7.7 If -Your Computer Is Not IDI\1 Conlpatible .. oo •••••• 175 





Controlling Floating-Point Math Operations 

7.1 Introduction 

This chapter discusses the various ways that you can control how your 
Microsoft C programs handle floating-point math operations. It describes 
the math packages that you can include in C libraries when you run the 
SETUP program, then discusses the CL command options for choosing 
the appropriate library for linking and controlling floating-point instruc­
tions. 

This chapter also explains how to override floating-point options by 
changing libraries at link time, and how to control use of an 8087 or 80287 
coprocessor through the N087 environment variable. 

7.2 Summary of Math Packages 

The Microsoft C Compiler offers a choice of the following three math pack­
ages for handling floating-point operations: 

1. Emulator (default) 

2. 8087/80287 

3. Alternate math 

When you run the SETUP program, you choose one of these three math 
packages. SETUP includes the math package you choose in the library it 
builds. Any programs that are linked with that library use the math pack­
age included in the library; you must use the appropriate CL option to 
make sure that the library you want is used at link time. 

The following descriptions of these math packages are designed to help 
you choose the appropriate math option for your needs when you build a 
library using SETUP. 

7.2.1 The Emulator Package 

The emulator package uses an 8087 or 80287 coprocessor if one is 
installed. If no coprocessor is installed, the emulator provides many 
8087/80287 functions in software. This is the default math package; 
SETUP uses it if you do not explicitly choose another package. 

The emulator package is the best choice if you want to maximize accuracy 
in program results and if the program will be run on systems with and 
without coprocessors. 

163 



Microsoft C Optimizing Compiler User's Guide 

The emulator packa~e can perform basic operations to the same degree of 
accuracy as an 8087/80287. However, the emulator routines used for tran­
scendental math functions differ slightly from the corresponding 
8087/80287 functions, and this difference can cause a slight difference 
(usually within two bits) in the results of these operations when performed 
with the emulator instead of with an 8087/80287. 

Important 

When you use an 8087 or 80287 coprocessor or the emulator, 
interrupt-enable, precision, underflow, and denormalized-operand 
exceptions are masked by default. The remaining exceptions are 
unmasked. See Section E.4.2, "Other Run-Time Error Messages," and 
the discussion of the _ control87 function in the Microsoft C Run­
T£me L£brary Reference for more information about 8087 floating-point 
exceptions. 

7.2.2 The 8087 /80287 Package 

The 8087 /80287 math package allows you to use an 8087 or 80287 copro­
cessor to perform floating-point operations. You must have an 8087 or 
80287 installed to use this package. This package gives you the fastest, 
smallest programs possible for handling floating-point math. 

7.2.3 The Alternate Math Package 

The alternate math package gives you the smallest and fastest programs 
you can get without a coprocessor. However, the program results are not 
as accurate as results given by the emulator package. 

The alternate math package uses a subset of the Institute of Electrical and 
Electronics Engineers, Inc. (IEEE) standard-format numbers; infinities, 
NANs, and denormal numbers are not used. 

164 



Controlling Floating-Point Math Operations 

7.3 Selecting Floating-Point (/FP) Options 

• Options 

/FPa 
/FPe 
/FPe87 
/FPi 
/FPi87 

Generates floating-point calls; selects mLmCA.Lm 
Generates floating-point calls; selects mLmCE.Lm 
Generates floating-point calls; selects mLmC7.Lm 
Generates in-line instructions; selects mLmCE.Lm (default) 
Generates in-line instructions; selects mLmC7.Lm 

The IFP options of the CL command control how a program will handle 
floatIng-point math. You can use only one of these options on the CL com­
mand line. The option applies to the entire command line, regardless of 
the option's position. 

Each IFP option includes two parts, which specify the following: 

1. How floating-point instructions are included in the program: by 
using in-line 8087/80287 instructions or calls to floating-point 
library functions. The letter i indicates in-line instructions; the 
letters c and a indicate floating-point calls. 

2. Which floating-point package is selected by default when you link. 

Based on the IFP option and the memory-model option you choose, the 
CL command embeds a library name in the object file that it creates. (See 
Table 3.1 in Section 3.3.1, "Memory-Model and Floating-Point Options," 
for a list of the library names used for each combination.) This library is 
then considered the default library; that is, the linker searches in the stan­
dard places for a library with that name. If it finds a library with that 
name, the linker uses the library to resolve external references in the 
object file being linked. Otherwise, it displays a message indicating that it 
could not find the library. 

This mechanism allows the linker to link object files with the appropriate 
library automatically. However, as explained later in this section and in 
Section 7.4, "Library Considerations for Floating-Point Options," you are 
allowed to link with a different library in some cases. 

Table 7.1 summarizes the IFP options and their effects. 

165 



Microsoft C Optimizing Compiler User's Guide 

Table 7.1 

Summary of Floating-Point Options 

Combined 
Use of Libraries 

Option Method Advantages Coprocessor Selected 

/FPi In-line Default; Uses mLmCE.Lm2 

larger than coprocersor if 
/FPi87, but present 
can work 
without 
coprocessor; 
most efficient 
way.to get 
mrunmum 
precision 
without a 
coprocessor 

/FPi87 In-line Smallest and Requires mLmC7.Lm3 

fastest option coprocessor 
available unless library 
with a changed at 
coprocessor link timel 

/FPc Calls Slower than Uses mLmCE.Lm
2

,4 
/FPi, but coprocersor if 
allows use of present 
alternate 
math library 
at link time 

/FPc87 Calls Slower than Requires mLmC7.Lm3,4 
!FPi87, but coprocessor 
allows use of unless library 
alternate changed at 
math library link timel 
at link time 

/FPa Calls Fastest and Ignores mLmCA.Lm2,3 
smallest coprocessor 
option 
available 
without 
coprocessor, 
but sacrifices 
some 
accuracy for 
speed 

1 Use of the coprocessor can be suppressed by setting N087. 
2 Can be linked explicitly with mLIBC7.Lm at link time 
3 Can be linked explicitly with mLmCE.Lm at link time 

4 Can be linked explicitly with mLmCA.Lm at link time 

168 



Controlling Floating-Point Math Operations 

The remainder of this section discusses the /FP options and the advan­
tages and disadvantages of each option. 

Note 

Some expressions may be evaluated at compile time. Such evaluations 
always use the highest precision possible and are unaffected by the 
floating-point option you choose. The / AS (small) memory-model 
option is the default. Therefore, if no memory-model option is given on 
the same CL command line, the default library for each floating-point 
option is SLmCj.Lm (where jis 7, E, or A, depending on the math 
package the library supports). 

7.3.1 The /FPi Option 

The /FPi option generates in-line instructions for an 8087 or 80287 copro­
cessor and places the name of the emulator library (mLmCE.Lm) in the 
object file. At link time, you can specify the 8087/80287 library 
(mLmC7.Lm) instead. If you do not choose a floating-point option, CL 
uses the /FPi option by default. 

The /FPi option is particularly useful if you do not know whether an 8087 
or 80287 coprocessor will be available at run time. Programs compiled 
with /FPi work as described below: 

• If a coprocessor is present at run time, the program uses the copro­
cessor. 

• If no coprocessor is present, the program uses the emulator. In this 
case, the /FPi option offers the most efficient way to get maximum 
precision in floating-point results. 

The Microsoft C Optimizing Compiler does not generate "true" in-line 
8087/80287 instructions: instead, it generates software interrupts to 
library code, which then fixes up the interrupts to use either the emulator 
or the coprocessor, depending on whether or not a coprocessor is present. 
The fix-ups can be removed by simply assembling the following program 
and linking it with the C program: 

167 



Microsoft C Optimizing Compiler User's Guide 

public FIARQQ, FICRQQ, FIDRQQ, FIERQQ, FISRQQ, FIWRQQ 
public FJARQQ, FJCRQQ, FJSRQQ 

FIARQQ 
FICRQQ 
FIDRQQ 
FIERQQ 
FISRQQ 
FIWRQQ 
FJARQQ 
FJCRQQ 
FJSRQQ 

END 

EQU 0 
EQU 0 
EQU 0 
EQU 0 
EQU 0 
EQU 0 
EQU 0 
EQU 0 
EQU 0 

Assembling and linking this program with C programs can save execution 
time (the time required to fix up all the interrupts the first time). How­
ever, a C program linked with this program will run only if a coprocessor 
is present. (This option is useful if you are developing programs to be run 
from read-only memory; see Appendix D, "Writing Programs for Read­
Only Memory,:' for more information.) 

7.3.2 The /FPi87 Option 

The /FPi87 ol?tion includes the name of an 8087/80287 library 
(mLmC7.LID) in the object file. At link time, you can specify an emula­
tor library (mLmCE.LID) instead. 

If you use the /FPi87 option and link with mLmC7.LID, an 8087 or 
80287 coprocessor must be present at run time; otherwise, the program 
fails and the following error message is displayed: 

run-time error R6002 
- floating point not loaded 

If you compile with /FPi87 and link with mLmCE.LID, you can set the 
N087 environment variable to suppress the use of the coprocessor. (See 
Section 7.6 for a description of N087.) 

Compiling with the /FPi87 option results in the smallest, fastest pro­
grams possible for handling floating-point results. 

7.3.3 The /FPc Option 

The /FPc option generates floating-point calls to the emulator library 
and places the names of an emulator librar~ (mLmCE.Lm) in the object 
file. At link time, you can specify an 8087/80287 library (mtmc7 .Lm) 
or alternate math library (mLmCA.Lm) instead. Thus, the /FPc 
option gives you more fleXIbility than the /FPi option in the libraries you 
can use for linking. 

168 



Controlling Floating-Point Math Operations 

The /FPc option is also recommended in the following cases: 

• If you compile modules that perform floating-point operations and 
plan to include these modules in a library 

• If you compile modules that you want to link with libraries other 
than the libraries provided with the Microsoft C Optimizing 
Compiler 

7.3.4 The /FPc87 Option 

The /FPc87 option generates function calls to routines in the 8087/80287 
library (mLmC7 .Lm) that perform the corresponding 8087/80287 
instructions. As with the /FPi87 option, you can change your mind at 
link time and link with an emulator library (mLIDCE.LID); however, you 
have more flexibility in choosing libraries, since you can change your 
mind and link with the appropriate alternate math library as well 
( mLmCA.LID). 

You must have an 8087 or 80287 coprocessor installed in order to run pro­
grams compiled with the /FPc87 option and linked with an 8087/80287 
library. Otherwise, the program fails and the following error message is 
displayed: 

run-time error R6002 
- floating point not loaded 

Note 

Certain optimizations are not performed when /FPc87 is used. This 
may reduce the efficiency of your code; and, since arithmetic of 
different precision may result, there may be slight differences in your 
results. 

7.3.5 The /FPa Option 

The /FPa option generates floating-point calls and selects the alternate 
math library for the appropriate memory model (mLIDCA.Lm). Calls to 
this library provide your fastest and smallest option if you do not have an 
8087 or 80287 coprocessor. With this option, you can change your mind at 
link time and use an emulator library (mLmCE.Lm) or 8087/80287 
library (mLIDC7.LID). 

169 



Microsoft C Optimizing Compiler User's Guide 

7.4 Library Considerations 
for Floating-Point Options 

You may want to use libraries in addition to the default library for the 
floating.;.point option you have chosen on the CL command line. For exam­
ple, you may want to create your own libraries (or other collections of sub­
programs in object-file form), then link these libraries at a later time with 
object files that you have compiled using different CL options. 

The following paragraphs discuss these cases and how to handle them. 
Although the discussion assumes that you are putting your precompiled 
object files into libraries, the same considerations apply if you are simply 
using individual object files. 

7.4.1 In-Line Instructions or Calls 

First, you should decide whether you want to use in-line instructions and 
compile with the /FPi87 or /FPi option, or floating-point function calls 
and compile with the /FPc87, /FPc, or /FPa option. 

If you choose in-line instructions for your precompiled object files, you 
cannot link with an alternate math library (mLmCA.Lm). However, in­
line instructions give the best performance trom your programs on 
machines that have an 8087 or 80287 coprocessor installed. 

If you choose calls, your programs are slower, but at link time you can use 
any standard C library-that is, any library created by the SETUP 
program-that supports the memory model you have chosen. 

7.4.2 Using One Standard Library for Linking 

You must also be sure that you use only one standard C library when you 
link. You can control which library is used in one of two ways: 

170 

1. At link time, as the first name in the list of object files to be linked, 
give an object file that has the name of the desired library. For 
example, if you want to use an alternate math library, give the 
name of an object file compiled using the /FPa option. All 
floating-point calls in this object file refer to the alternate math 
library. 

2. At link time, give the /NOD (no default library search) option and 
then specify the name of the combined library file you want to use 
in the link-libinfo field of the CL command line. This overrides the 
library names embedded in the object files, and all floating-point 
calls refer to the libraries you specify. 



Controlling Floating-Point Math Operations 

Deciding how to link with the correct libraries can become complicated 
since each library name mentioned in one of the object files being linked is 
added to the "linker search list" (the list of libraries that the linker 
searches). 

For example, suppose the following: 

• You have used the /FPa option to compile a set of object files. 

• Each of these object files includes a default library name (that is, 
you did not use the /Zl option to compile). 

• You have used the LID utility (described in Chapter 13 of the 
Microsoft Code View and Utilities manual) to combine these object 
files into a library. 

• You want to link the library you have created with an object file 
that was created using the /FPc87 option. 

At link time, the SLIDC7.LID and SLIDCA.LID libraries are both in the 
linker search list (assuming you compiled with the default memory-model 
option): SLIDC7.LID because this name is embedded in the object file 
you are linking, and SLIDCA.LID because this name is embedded in the 
object files that constitute the library. The linker first searches the 
libraries named in the object file you are linking, so it searches 
SLIDC7.LID before it searches SLIDCA.LID. Since SLIDC7.LID would 
resolve all external references correctly, this mechanism works correctly. 

To ensure that they are used, the names of libraries that you want to link 
with can be specified in the link-libinfo field of the CL command line (as 
noted in method 2 above). In this case, the linker always searches the 
library you give on the command line before it searches any libraries 
named in the object files. However, you must make sure that you specify 
this library after any of your own libraries on the command line. If you 
don't, and your library contains a different search directive, you may 
encounter problems. 

As an ~xample of the problems you may encounter, assume the following 
scenarIo: 

• The object modules in your library named B were compiled with 
the /FPc87 option, so that each module contains search directives 
for SLmC7.LID. 

• You are linking an object file named A that was compiled with the 
/FPa option, so that this object file contains a search directive for 
SLIDCA.LID. 

• You used the following command line to link your library B with 
the object file A: 

CL A/link SLIBC7.LIB B 

171 



Microsoft C Optimizing Compiler User's Guide 

In this example, the linker searches libraries in the following order: 

1. SLmC7.LID (since it is specified first on the command line) 

2. B (since it is specified second on the command line) 

3. SLmCA.LID (since A, the object module that you are linking, 
contains a search directive for this library) 

4. SLmC7.LID (since the modules in B, your library, contain search 
directives for this library) 

The linker would search for floating-point libraries as follows: 

1. The linker searches SLIDC7.LID and resolves references in the 
object file A to floating-point math routines and standard-library 
routines. 

2. The linker closes SLIDC7.LID and searches the next library in the 
list to satisfy references to routines in your library B. These rou­
tines normally contain references to standard run-time routines. 
Since SLIDCA.Lm is the next library to be searched, this library 
satisfies the references in B. However, this is not the library you 
intended to use, since you compiled B with the IFPc87 option, 
which uses SLmC7.LID to resolve references to standard run-time 
routines. 

As indicated in this example, you cannot mix libraries in this way, and you 
may get linker errors if you try. Note that if you had specified B 
SLI BC7 . LI B instead of SLI BC7 . LI B B on the CL command line, the 
linker would have searched SLmC7.LID instead of SLmCA.LID to 
resolve floating-point references in B, and the linking operation would 
have proceeded correctly. 

To avoid this kind of ambiguity and make absolutely sure that you are 
specifying the correct standard library for linking, use the INOD linker 
option. This option causes the linker to search only the libraries you 
specify on the command line. 

Perhaps the safest course of all, especially when you are distributing 
libraries to others, is to compile the object files that make up the library 
with the IZI option. This option tells the compiler not to include search 
directives in the object files. Later on, when you link the library with 
different object files, the standard library used for linking depends only on 
the floating-point and memory-model options used to compile the later 
object files. The IFPc compiler option is recommended for maximum 
flexibility in linkIng with such libraries. 

172 



Controlling Floating-Point Math Operations 

• Examples 

CL CALC. C ANOTHER SUM 

In the example above, the source file CALC. C is compiled with the default 
floating-point option, /FPi. The /FPi option generates in-line instruc­
tions and selects the small-model emulator combined library 
(SLmCE.Lm) since no floating-point option is given and the small-model 
library is the default. 

CL /EPa CALC.C ANOTHER SUM /link SLIBCE.LIB /NOD 

In the example above, CALC. C is compiled with the alternate math option 
(/FPa). The /link option specifies the /NOD option so that the 
SLmCA.LID library (whose name is embedded in the object file 
CALC.OBJ) is not searched. This option specifies the name 
SLmCE.LIB instead so that all floating-point calls refer to the standard 
small-model emulator library instead of the alternate math library. 

CL /EPe87 CALC.C ANOTHER.OBJ SUM.OBJ /link SLIBCA.LIB /NOD 

In the example above, CALC. C is compiled with the /FPc87 option, 
which selects the SLmC7.Lm library. The /link option overrides the 
default library specification, since the {NOD option and the name of the 
alternate math library (SLmCA.Lm are specified. 

7.5 Compatibility between 
Floating-Point Options 

Each time you compile a source file, you can specify a floating-point 
option. When you link two or more source files to produce an executable 
program file, you are responsible for ensuring that floating-point opera­
tions are handled in a consistent way and that the environment is set up 
properly to allow the linker to find the required library. See Section 2.4.5 
for information about setting up your environment, Section 3.3.1 for infor­
mation about choosing floating-point options for the libraries you build 
with the SETUP program, and Chapter 12 of the Microsoft Code View 
and Utilities manual for a detailed discussion of linking. 

173 



:Microsoft C Optimizing Compiler User's Guide 

Note 

If you are building libraries of C routines that contain floating-point 
operations, the /FPc floating-point option is recommended for all 
compilations. The /FPc option offers the greatest flexibility. 

• Examples 

CL lAM CALC.C ANOTHER SUM /link MLIBC7 /NOD 

The example above compiles the program CALC. C with the medium-model 
option (lAM). Because no floating-point option is specified, the default, 
/FPi, is used. The /FPi option generates 8087/80287 instructions and 
specifies the emulator library :MLmCE.Lm in the object file. The /link 
field specifies the /NOD option and the names of the medium-model 
8087/80287 library. Specifying the 8087/80287 library forces the program 
to use an 8087 coprocessor; the program fails if a coprocessor is not 
present. 

CL jFPa CALC.C ANOTHER SUM /link SLIBCE /NOD 

The example above compiles CALC. C using the small (default) memory 
model and the alternate math option (/FPa). The /link field specifies the 
/NOD option and the library name S'tmCE.Lm. Specifying the emula­
tor library causes all floating-point calls to refer to the emulator library 
instead of the alternate math library. 

CL /FPc87 CALC.C ANOTHER SUM /link SLIBCA.LIB/NOD 

The example above compiles CALC. C with the /FPc87 option, which 
places the library name SLmC7.Lm in the object file. The /link field 
overrides this default-library specification by giving the [NOD option and 
the names of the small-model alternate math library (SLmCA.Lm). 

7.6 Using the N087 Environment Variable 

Programs compiled using the /FPc or /FPi option automatically use an 
8087 or 80287 coprocessor at run time if one is installed. You can override 
this and force the use of the emulator instead by setting an environment 
variable named N087. 

174 



Controlling Floating-Point Math Operations 

If N087 is set to any value when the program is executed, use of the 
coprocessor is suppressed. The value of the N087 setting is printed on the 
standard output as a message. The message is printed only if a coproces­
sor is present and suppressed; if no coprocessor is present, no message 
appears. If you don't want a message to be printed, set N087 equal to 
one or more spaces. 

Note that only the presence or absence of the N087 definition is impor­
tant in suppressing use of the coprocessor. The actual value of the N087 
setting is used only for printing the message. 

The N087 variable takes effect with any program linked with an emula­
tor library (mLmCE.Lm). It has no effect on programs linked with 
8087/80287 libraries (mLIBC7 .Lm) or programs linked with alternate 
math libraries (mLmCA.Lm). 

• Examples 

SET N087=Use of coprocessor suppressed 

The example above causes the message Use 0 f coprocessor 
suppressed to appear when a program is execu ted that uses an 8087 or 
80287 coprocessor while an 8087 or 80287 coprocessor is present. 

SET N087=space 

The example above sets the N087 variable to the space character. Use of 
the coprocessor is still suppressed, but no message is displayed. 

7.7 If Your Computer Is Not ffiM Compatible 

The exception handler in the libraries for 8087 or 80287 floating-point cal­
culations (mLmCE.Lm and mLmC7.Lm) is designed to work without 
modification on the IBM PC family of computers, and on closely compati­
ble computers, including the Wang@ PC, the AT&T@ 6300, and the 
Olivetti~ personal computers. Also, the libraries need not be modified for 
the Texas Instruments® Professional Computer, even though it is not com­
patible. Any machine that uses nonmaskable interrupts (NMI) for 
8087/80287 exceptions should work with the unmodified libraries. How­
ever, if your computer is not one of these, and if you are not sure whether 
it is completely compatible, you may need to modify the 8087/80287 
libraries. 

175 



Microsoft C Optimizing Compiler User's Guide 

All Microsoft languages that support the 8087 and 80287 coprocessors 
intercept 8087/80287 exceptions in order to produce accurate results and 
properly detect error conditions. 

To make the libraries work correctly on noncompatible machines, you can 
modify the libraries. To make this easier, an assembly-language source file, 
EMOEM.ASM, is included on the distribution disk. Any machine that 
sends the 8087/80287 exception to an 8259 Priority Interrupt Controller 
(master or master /slave) should be easily supported by a simple table 
change to the EMOEM.ASM module. The source file contains further 
instructions on how to modify EMOEM.ASM and patch libraries and 
execu table files. 

176 



IMPRC)VINC; PRC)GRAM SPEEl) 

8.1 I n trod u eli 0 no 0 00 000 •••••• 00 •••• 0'" 00 •• 0 00 0 00 0 0 0 00 0 00 0 0.0000", 0 o. 0" l7n 
8.2 lJsing H.cgistcr Variables ..... 00 ••• 000.0""'0 •• 0000'0000'000. 179 

8.~) Opt! nlizaUon ()ptions 
and Pnlgn12s .................. oo •• oo.o ............. o •••••• oo ••••••• ! 81 
8.3.] Def~ul t Opti ll1ization .......... 0 ••••••••••••• 0 ••••••• 181 
8.3.2 Cenerating Intrinsic Fl1nction~.cc.oo .. oooo.c .. c .. 181 
8.;).:3 Hclaxi ng Al ias Chec ki ng .c ••••••••••• oooo •• e •••••• 00182 
g.3A Performing T~o()p Optirniz:1.tioll~ 0.0 ••• 00 •• 00.0 ••• 182 
8.3.5 H.cmoving Sta.ck Probc~ .. oo ••• 0 •••• oo .. oo ...... 0 •• oo18:3 
8.3.6 J'v1axinl1lIIl Optilnization "' .. 00""0000""'0 •• 00 ... 183 

8.4 (~hoosing the 
Fl1nction-(;alling (~onven tJl0n .............................. 183 

8.5 EfTlcicncy in Large I)ata IVlodcls ....... oooooo ..... " ...... 18/1 
8.5.1 Changing Addressing with ncar, far j 

~ncl huge T(eywords ..... " ..... 0 .. 00 •• 000 ...... 000 ... 18·1 
8.5.2 Setting the Data Threshold ............. .,0 ••••••• 185 
8.5.3 Controlling Segments Used 

for Allocation ........................................... 1815 
8.G EfTlcicncy in Large Code Tvlodels .......... .0 ........... .,185 





Improving Program Speed 

8.1 Introduction 

This chapter describes a number of ways that you can improve the execu­
tion speed of programs compiled with the Microsoft C Optimizing Com­
piler. These techniques include the following: 

• Using register variables 

• Using optimization options and pragmas 

• Choosing function-calling conventions 

• Choosing and adjusting memory models 

Where applicable, this chapter discusses the interactions between these 
techniques and the trade-offs involved in using them. 

8.2 Using Register Variables 

One common way to write a program for maximum speed is to declare 
selected local ( auto) variables with register storage class. The declaration 
of a register variable requests the compiler to use machine registers when 
allocating space for the variable, if possible. The register storage class 
can be specified for any variable, but register specifications are ignored 
except for variables of type int or short or for pointer types that are the 
same size as type into 

Up to two register variables may be allocated per function. In lexical 
order, the compiler takes the first two variables with register storage 
class that meet the size criteria. Any later requests for register storage 
class are ignored, so be sure to declare the most important register vari­
ables first. You may also want to declare register variables in parallel 
scope to achieve the effect of having more than two register variables per 
function. 

The Microsoft C Optimizing Compiler automatically uses registers for 
variables within loops. Using register declarations for such variables may 
interfere with optimal loop code; you can experiment. with various combi­
nations of register and nonregister declarations to determine which combi­
nations give the best results. 

Register declarations can be used effectively for values, especially pointers, 
that appear outside of loops. Since a certain amount of code is required to 
save and restore registers, register declarations must be applied to values 
that are accessed at least three times within a function to cause any 
improvement in program speed. 

179 



Microsoft C Optimizing Compiler User's Guide 

• Example 

find_string (arr_of_chars, string) 
char *string; 
char *arr_of_chars[J; 
{ 

} 

int ix = 0; 
register char *q; 
while (*(q = string» { /* string is not null */ 
{ 

} 

register int i = ix; 

/* search for entry whose first character 
* matches first character of string, if any 
*/ 

while (i < MAX_ARR_SIZE && *arr_of_chars[iJ != *q) 
i++; 

if (i == MAX_ARR_SIZE) 
return(l); /* no matching entry */ 

ix = i; 
} 

/* we've found an entry in arr_of_chars which 
* might match string */ 

{ 
register char *p = arr_of_chars[ixJ; 
while (*p && *q && *p++ == *q++) 

, 
if ((*p - *q) == 0) 

return (0) /* they match, return 0 */ 
/* otherwise continue checking for possible 

* matches 
*/ 

} 

In the example above, the function named find_string actually has 
three register variables: q, i, and p. The function can use all three 
variables because i is through being used by the time p is needed. Simply 
introducing the ix variable to save the pointer from block to block speeds 
execution considerably because most work is being done in register 
variables. 

180 



S.3 Optimization Options 
and Pragmas 

Improving Program Speed 

The CL compiler/linker driver provides a number of optimization options 
(/0, followed by one or more letters) that can improve program speed. In 
addition, the Microsoft C Optimizing Compiler includes several pragmas 
that allow you to control some of these optimizations on a local basis 
within a source program. The following sections outline these CL options 
and pragmas and their effects. 

8.3.1 Default Optimization 

If no /0 option is given, the compiler uses the jOt option, which optim­
izes programs for execution speed. However, thIS option does not enable 
loop optimizations or intrinsics. Some optimizations, such as long shifts, 
may be performed in line rather than using helper functions. 

8.3.2 Generating Intrinsic Functions 

The /Oi option generates intrinsic forms of the following functions: 

• memset, memcpy, memcmp 

• strset, strcpy, strcmp, strcat 

• inp,outp 
• _ rotI, _ rotr, _IrotI, _Irotr, 

• min, max, abs 

Intrinsics may be generated as in-line code or with different calling se­
quences. In general, using intrinsics increases program size but improves 
program speed. Note that the intrinsic forms of some functions may 
have slightly different semantics: for example, the intrinsic form of the 
memcpy function in compact- and large-model programs cannot handle 
huge arrays, but the function form can. 

As with lOt, this option may increase program size due to the additional 
code generated in line for each function. However, program execution is 
faster because no instructions for calling and returning from functions 
need to be performed. 

The intrinsic pragma can be used to specify intrinsic functions on a local 
basis for any of the functions listed above. See Section 3.3.13.1 under the 
heading "Generating Intrinsic Functions" for information about the use of 
this pragma. 

181 



Microsoft C Optimizing Compiler User's Guide 

8.3.3 Relaxing Alias Checking 

The a option letter can be used with the I, s, or t option letter to relax the 
assumptions the compiler makes about the use of "aliases" in the program. 
Use of the lOa option can reduce the size of executable files and speed 
program execution. Its use is especially recommended when you also 
specify the 101 option, since the compiler can detect a number of loop 
optimizations when the lOa option is in effect that it cannot detect when 
lOa is not in effect. However, before you specify lOa, you must make 
sure that your program does not use multiple aliases to refer to the same 
memory location either directly or indirectly. For example, a program 
migh t do this indirectly in functions that operate on a communal variable 
and a pointer argument, or on multiple pointer arguments. 

The lOa option can be specified safely for programs that include calls to 
functions with address-type arguments. In this case, the compiler assumes 
that all variables whose addresses are passed to the function are modified, 
even if lOa is specified. 

In the cases noted above, the use of fOa is most likely to cause incorrect 
optimizations within basic blocks (where most optimizations are applied) 
and within whole loop bodies (where loop optimizations are applied). In 
these cases, lOa can still be specified safely even if aliases are used in the 
program, provided that no memory location is referenced by more than 
one name within any basic block or (if loop optimization is enabled) any 
loop body. 

For more information and specific examples, see Section 3.3.13.1 under the 
heading "Relaxing Alias Checking." 

8.3.4 Performing Loop Optimizations 

The 101 option tells the compiler to perform loop optimizations. For best 
performance, use 101 in conjunction with the a option letter (/Oal), 
which relaxes the assumptions the compiler makes about the use of aliases 
in the program. Using 10al instead of just 101 allows the compiler to 
detect many loop optimizations that it could not otherwise detect. (See 
Section 3.3.13.1 for information about possible restrictions on the uses of 
the lOa option.) 

You can control loop optimization on a local basis by specifying the 
loop_ opt pragma. Loop optimization is turned off for any functions fol­
lowing #pragma loop_opt(off) and turned on for any functions follow­
ing #pragma loop_opt(on) in a source program. This pragma overrides 
any loop optimization specified on the CL command line. 

182 



Improving Program Speed 

8.3.5 Removing Stack Probes 

The IGs option, described in Section 3.3.13.2, speeds program execution 
slightly by removing calls to stack-checking routines known as "stack 
probes." Stack probes verify that a program has enough stack space to 
allocate required local variables. The potential disadvantage in removing 
stack probes is that stack-overflow errors may occur without generating a 
diagnostic message. However, this technique can be useful for programs 
that are known not to exceed the available stack space. 

You can also control stack checking on a local basis by specifying the 
check_ stack pragma. Stack checking is turned off for any functions fol­
lowing a # pragma check_ stack( off) and turned on for any functions 
following a #pragma check_stack(on) pragma in the source program. 
This pragma overrides the stack checking lor removal of stack checking) 
specified on the CL command line. 

8.3.6 MaxiInum Optimization 

The lOx option combines all of the optimization options described in 
Sections 8.3.1 through 8.3.4. Provided that the restrictions outlined for 
each optimization option do not apply, you can use the lOx option to 
create the fastest possible program. 

8.4 Choosing the 
Function-Calling Convention 

Because C functions can accept a variable number of arguments, argu­
ments passed to these functions must be pushed on the stack from right to 
left, with the first argument in the list being the last one pushed. In addi­
tion, the calling function, rather than the called function, is responsible 
for removing arguments from the stack. 

This convention results in somewhat slower programs than the alternative 
convention used by Microsoft FORTRAN and Microsoft Pascal. In the 
FORTRAN/Pascal convention, arguments are pushed on the stack from 
left to right, in the order in which they are passed to the function, and the 
called function removes arguments from the stack. Since the code for 
removing arRuments appears only once (in the called function) for the 
FORTRAN/Pascal convention, rather than multiple times (every time a 
function is called) as in the C convention, and since most programs have 
fewer functions than function calls in a program, the FORTRAN/Pascal 
calling convention usually results in smaller, faster programs. 

183 



Microsoft C Optimizing Compiler User's Guide 

You can specify the FORTRAN/Pascal calling convention for all functions 
in a module by compiling with the /Gc option. The trade-off for improved 
program speed is that you cannot call functions that use the C calling con­
vention or take variable numbers of arguments unless you declare these 
functions, or pointers to these functions, with the cdecl keyword, which 
specifies the normal C calling conventions for these functions. 

If you do not want to specify the FORTRAN/Pascal convention for a 
whole module, you can declare individual functions or pointers to func­
tions with the pascal or fortran keyword. Either of these keywords 
tells the compiler that the function uses the FORTRAN/Pascal calling 
conventions. 

8.5 Efficiency in Large Data Models 

Programs are most efficient when their data reside in the default data seg­
ment: that is, when the data can be accessed with 16-bit (near) addresses. 
The Microsoft C Optimizing Compiler provides two standard memory 
models in which all data reside in the default data segment: the small 
( default) model and the medium model. The customized memory models 
that use near data pointers (/ An xx) also restrict program data to the 
default data segment. Programs compiled with these models are restricted 
to 64K of total data. 

For programs compiled with the compact, large, and huge memory models, 
the compiler creates a default data segment containing all initialized glo­
bal and static data and creates an additional data segment for each pro­
gram module. Since accessing data outside the default data segment is 
slower than accessing data within the default data segment, programs will 
run faster if as many of their variables as possible are declared in such a 
way that they are allocated in the default data segment. One way to 
accomplish this is to initialize variables at the time you declare them. Sec­
tions 8.5.1 through 8.5.3 discuss other ways of controlling the allocation of 
data for large data models. 

S.5.1 Changing Addressing with near, far, 
and huge Keywords 

The near, far, and huge keywords allow you to explicitly specify the 
addressing used for particular data items and functions. These keywords 
override the default addressing conventions specified by the program's 
memory model. Thus, you can use them to improve the speed of access to 
program data. For example, you can tell the compiler to allocate data 
items in the default data segment for a compact-, large-, or huge-model 
program by declaring the items (or pointers to the items) with the near 
keyword. Alternatively, if a program has a small amount of code and data 

184 



Improving Program Speed 

except for one particularly large array, you could compile the program 
with the small or medium memory model and declare the array with the 
far or huge keyword. 

The disadvantage of using these keywords is that they are specific to the 
MS-DOS implementation of Microsoft C and, thus, are not portable to 
other operating environments. 

See Sections 6.4.1 through 6.4.4 for more information about near, far, 
and huge and for examples of their use. 

8.5.2 Setting the Data Threshold 

Another way to control allocation in large data models is to set a data 
threshold by compiling with the IGt option. This option is especially use­
ful if your program uses more than 64K of initialized static and global 
data and does not fit in the default data segment. Any data items larger 
than the value you specify are allocated to their own data segments. 

8.5.3 Controlling Segments Used 
for Allocation 

If programs compiled with large data models use external, far data items, 
you can tell the compiler which items reside in the same far data segment 
by using the same_ seg pragma. The variables you specify in this pragma 
help the optimizer recognize common subexpressions involving data loads. 
Note that you must also compile your program with the IND option to 
ensure that the variables you specify are allocated in the same segment. 

See Section 6.7 for a description of the IND option and Section 6.8 for a 
description of the same_ seg pragma. 

8.6 Efficiency in Large Code Models 

Two linker options, IF and IP AC, can result in smaller and faster exe­
cutable files and improved program-load times for pr'ograms that explicitly 
or implicitly use far-function calls. 

The IF option tells the linker to optimize far calls to procedures that lie 
in the same segment as the caller. When you specify the IF option, the 
linker optimizes 32-bit calls to procedures in the same segment as the cal­
ling procedure. Since the segment addresses of the calling and called pro­
cedures are the same, only a 16-bit call is required. If the IF option is 
given, the linker removes the far call and replaces it with code that first 
places CS on the stack, then makes a near call. The called procedure still 

185 



Microsoft C Optimizing Compiler User's Guide 

returns with a far (32-bit) return instruction. However, because both the 
code segment (stored in CS) and the near address are on the stack, the far 
return is done correctly. The linker also adds a NOP instruction so that 
the five-byte far call is replaced by exactly five bytes of instructions. 

Note 

You may not want to use the IF option if your program includes 
system-level assembly-language routines or if you are linking object 
files that were compiled with a different C compiler. See the Microsoft 
Code View and Utilities manual for more information about restrictions 
on the use of the IF option. 

Used in conjunction with the IF option, the IPAC linker option can 
reduce the size and improve the efficiency of executable files. The IPAC 
option tells the linker to group neighboring code segments. Code segments 
in the same group share the same segment address; all offset addresses are 
then adjusted upward as needed. As a result, many instructions that 
would otherwise have different segment addresses share the same segment 
address. 

186 



ApPENDIXES 

A Using Exit Codes ......................................................... 189 

B Converting from Previous 
Versions of the Compiler ....................................... 193 

C Writing Portable Programs ................................. 209 

D Writin'g Programs 
for Read-Only Memory ........................................... 227 

E Error Messages .............................................................. 235 

187 





ApPENDIX A 
USING EXIT CODES 

A1 Introduction ................................................................ 191 
A2 Exit Codes with MS-DOS Batch Files ......................... 191 
A3 Compiler Exit Codes ................................................... 192 

189 





Using Exit Codes 

Al Introduction 

All the programs in the Microsoft C Optimizing Compiler package return 
an exit code (sometimes called an "errorlevel" code) that can be used by 
MS-DOS batch files or other programs such as MAkE. If the program 
finishes without errors, it returns a code of o. The code returned varies 
depending on the error encountered. 

This appendix discusses how to use exit codes with DOS batch files and 
lists the exit code numbers that can be returned by the Microsoft C 
Optimizing Compiler. See Appendix B of the Microsoft CodeView and 
Utilities manual for a description of the exit code numbers returned by the 
other programs in the Microsoft C Optimizing Compiler package. 

A2 Exit Codes with MS-DOS Batch Files 

If you use MS-DOS batch files, you can test the code returned with the IF 
ERRORLEVEL command. The sample batch file following, called 
COMPILE. BAT, illustrates how: 

CL %l.C 
IF NOT ERRORLEVEL 1 %1 

You can execute this sample batch file with the following command: 

COMPILE TEST 

DOS then executes the first line of the batch file, substituting TEST for the 
parameter %1, as in the following command line: 

CL TEST.C 

It returns a code of 0 if the compilation and linking are successful, or a 
higher code if an error occurs. In the second line, DOS tests to see if the 
code returned by the previous line is 1 or higher. If it is not (that is, if the 
code is 0), the TEST program is executed. 

191 



Microsoft C Optimizing Compiler User's Guide 

A.3 Compiler Exit Codes 

192 

Code 

o 
2 

4 

Meaning 

No fatal error 

Program error (such as compiler error) 

System level error (such as out of disk space or compiler 
internal error) 



APPENDIX B 
CONVERTING FROM 

PREVIOUS VERSIONS 
OF THE COMPILER 

B.1 Introduction ................................................................ 1 g5 
B.2 Differences between Versions 5.0 and 4.0 ..................... 1g5 

B.2.1 Enhancements and Additions ............................. 195 
B.2.2 Changes to the Language Syntax ........................ 1g6 
B.2.3 New Features for the MS-DOS 

Implementation of C ......................................... lg8 
B.2.4 Changed Library Routines ................................. 1gg 

B.2.4.1 Graphics Routines ..............•......•..••.•....... 199 
B.2.4.2 Heap-Checking Functions .•.•..•..•............•.• 1 gg 
B.2.4.3 DOS and BIOS Interface Functions .....•..•.••• 200 
B.2.4.4 Other New Functions ......••.•..•..•.•.......•....• 200 
B.2.4.5 New Include Files •..••••••.....•..•..•.......•••..... 201 

B.3 Differences between Versions 4.0 and 3.0 ..................... 203 
B.3.1 Enhancements and Additions ............................. 203 
B.3.2 Changes in the Language Syntax ........................ 204 
B.3.3 New Features for the MS-DOS 

Implementation of C ......................................... 206 
B.3.4 New Library Routines and Include Files .............. 207 
B.3.5 Changes in Library-Function Syntax .................. 208 

193 





Converting rrom Previous Versions or the Compiler 

B.l Introduction 

This appendix describes differences between Version 5.0 and Version 4.0, 
and between Version 4.0 and Version 3.0, of the Microsoft C Optimizing 
Compiler. If you have an earlier version of the compiler, or if you have 
written programs for an earlier version, this chapter can help you convert 
your previous source code. The actions necessary to convert source code 
depend on which of the earlier versions you have. 

Version 5.0 is an update of Version 4.0. Generally, the two versions are 
compatible: most C source code written for Version 4.0 should compile 
without change on the Version 5.0 compiler, although there are erroneous 
C constructs allowed in Version 4.0 that are not allowed in Version 5.0, 
and changes in the emerging ANSI C standard may force changes in source 
programs (for more information, see the Microsoft C Language Reference). 
In some cases you may be able to enhance your programs by revising them 
to take advantage of new library functions and other features available 
with Version 5.0. 

B.2 Differences between Versions 5.0 and 4.0 

Changes in Version 5.0 since Version 4.0 fall into the following categories: 

• Enhancements and additions to the compiler software to allow for 
more flexible programming, improved code generation, and 
increased support for the developing ANSI standard 

• Changes in the language syntax 

• New language features specific to the MS-DOS implementation 

• New library functions and include files 

• Changes in function operations, primarily to conform to the 
specifications for these functions in the the ANSI C standard 

These features and the changes required to take advantage of them are 
discussed in the following sections. 

B.2.1 Enhancements and Additions 

Enhancements for Version 5.0 include the following: 

• Improved code generation, including loop optimization; improved 
large-model code generation; and intrinsic functions 

195 



Microsoft C Optimizing Compiler User's Guide 

• Faster compilation speed 

• Batch files to assist in installation of the compiler software on 
hard-disk systems 

• Support for code that will be loaded into read-only memory (ROM) 

• New error-message numbering 

• Inclusion of the Microsoft QuickClM Compiler, which comprises 
integrated editor, compiler, and debugger; multiple-module, in­
memory compilation; and in-memory MAKE facility 

B.2.2 Changes to the Language Syntax 

Some Version 5.0 changes were made to the C language syntax to make it 
conform more closely to the new ANSI standard. Most of these changes do 
not affect source code written for the Version 4.0 compiler. The changes 
are summarized below: 

196 

• Full function prototyping is supported in Version 5.0. A function 
prototype is a forward declaration containing the types and, 
optionally, names of the parameters (if any) expected in the func­
tion call. It can also include identifiers for the arguments, though 
they go out of scope at the end of the prototype. Prototypes allow 
the compiler to perform type checking on the actual arguments 
passed when the function is called. If the compiler does not find a 
prototype, the first occurrence of the function (definition or call) is 
used as the basis of a prototype for that function. That prototype 
is used to perform type checking against subsequent calls, subse­
quent declarations, or the definition. See Chapters 4 and 7 of the 
Microsoft C Language Reference for more information about func­
tion prototyping. 

• The const and volatile type specifiers have been implemented for 
Version 5.0. The const type specifier declares an object .as an 
unmodifiable lvalue. It can be used for objects of any fundamental 
or aggregate type or for pointers to objects of any type. The vola­
tile type specifier is implemented syntactically, but not semanti­
cally. See Chapter 4 of the Microsoft C Language Reference for 
more information. 

Note 

Programs that currently use const or volatile as identifiers 
must be recoded to use other names. 



Converting rrom Previous Versions or the Compiler 

• In Version 5.0, variables of enum type are treated as if they were 
of int type in all cases. Therefore, enum variables can be used in 
indexing expressions and as operands of all relational and arith­
metic operators. 

• String concatenation is supported in Version 5.0. This feature 
causes adjacent string literals to be concatenated into a single 
string literal. This means, for example, that instead of using a 
backslash before a new-line character to indicate continuation of a 
long string literal, the literal can simply be broken into two or 
more quoted string literals on separate lines. See Chapter 2 of the 
Microsoft C Language Reference for more information. 

• New preprocessor features in Version 5.0 include the "stringizing" 
operator (.), which allows arguments in macro expansions to be 
expanded into a string literal containing the expanded argument; 
and the "token pasting" operator ( •• ), which concatenates the 
tokens on either side of the operator into a new token in macro 
expansions. See Chapter 8 of the Microsoft C Language Reference 
for more information. 

Note 

Previous versions of Microsoft C allowed expansion of macro 
formal arguments appearing in string literals and character 
constants. Programs that rely on this feature must be recoded 
to use the stringizing operator. See the discussion of string 
literals in Chapter 2 of the Microsoft C Language Reference for 
more information. 

• The long double data type is now supported; the long float data 
type is no longer supported. 

• The three-digit forms of hex escape sequences (\xddd) and octal 
escape sequences (\ ddd) are now supported. 

• The unary plus (+) operator is allowed, but ignored semantically. 

197 



Microsoft C Optimizing Compiler User's Guide 

B.2.3 New Features for the MS-DOS 
Implementation of C 

The following new CL command options have been added to the MS-DOS 
implementation of the Microsoft C Optimizing Compiler for Version 5.0: 

Option 

/Oi 

/01 

lOp 

/qc 

/SI 
/Sp 
ISs 

/St 

/Tc 

/Zp 

Effect 

Enables intrinsic code generation for all available 
functions 

Enables loop optimizations for an entire program 

Forces consistent precision in floating-point math 
operations 

Invokes the Microsoft QuickC Compiler for fast 
compilation 

Specifies the line width for source listings 

Specifies the number of lines per page for source listings 

Specifies subtitles for source listings 

Specifies titles for source listings 

Tells the compiler that the following file is a C source 
file 

Packs structures on one-, two-, or four-byte boundaries 

The following new pragmas have been added to the MS-DOS implementa­
tion of the Microsoft C Optimizing Compiler for Version 5.0 to control the 
specified features on a local basis: 

198 

Pragma 

loop_opt 

pack 

intrinsic 

function 

same_seg 

alloc_text 

Effect 

Turns loop optimizations on and off 

Specifies packing alignment for structures 

Specifies which functions are compiled as intrinsic 
functions 

Specifies which functions are compiled as standard 
function calls 

Tells the compiler to assume that specified vari­
ables are allocated in the same far data segment 

Specifies modules to be grouped into a specified far 
code segment 



Converting from Previous Versions of the Compiler 

Note that the existing check_ stack pragma uses the following new for­
mat for specifying arguments: 

# pragma cheek- stack([{ onlofT} ]) 

B.2.4 Changed Library Routines 

The run-time library routines provided with Version 5.0 of the Microsoft C 
Optimizing Compiler are moving to support the the ANSI C standard. In 
addition, many new functions and two new include files have been added 
to the library. 

Sections B.2.4.1-B.2.4.5 list the new functions by type. Section B.2.4.6 
describes the new include files. 

B.2.4.1 Graphics Routines 

The following graphics functions have been added. These functions are 
included in the the GRAPHICS.Lm library; they may also be included 
in the combined libraries built by the SETUP program. Required struc­
tures and constants for these routines are defined in the new graph.h 
include file. 

_arc 
_clearscreen 
_displaycursor 
_ellipse 
Jloodfill 
~etbkcolor 
~etcolor 
~etcurrentposition 
~etfillmask 
~etimage 
~etlinesty Ie 
~etlogcoord 
~etphyscoord 
-8etpixel 

-..gettextcolor 
~ettextposition 
~etvideoconfig 
Jmagesize 
Jineto 
JIloveto 
_outtext 
_pie 
_putimage 
Jectangle 
Jemapallpalette 
Jemappalette 
-.select palette 
-.setactivepage 

B.2.4.2 Heap-Checking Functions 

-.setbkcolor 
-.setcliprgn 
-.setcolor 
-.setfillmask 
-.setlinestyle 
-.setlogorg 
-.setpixel 
-.settextcolor 
-.settextposition 
-.settextwindow 
-.setvideomode 
-.setviewport 
-.setvisualpage 
_wrapon 

The following routines have been added to help debug heap-related prob­
lems in programs. These routines are defined in the malloc.h include file. 

199 



Microsoft C Optimizing Compiler User's Guide 

_fheapchk 
_fheapset 
_fheapwalk 
_heapchk 

_heapset 
_heapwalk 
_memmax 

B.2.4.3 DOS and BIOS Interface Functions 

_nheapchk 
_nheapset 
_nheapwalk 

The following new functions provide access to DOS system calls. Required 
definitions for these functions are given in the dos.h include file. 

_chain_intr 
_disable 
_ dos_ allocmem 
_dos_close 
_dos_creat 
_ dos_ creatnew 
_ dos_ findfirst 
_ dos_ findnext 
_ dos_ freemem 
_ dos_ getdate 
_ dos_ getdiskfree 

_ dos_ getdrive 
_ dos_ getfileattr 
_ dos_ getftime 
_ dos_ gettime 
_ dos_ getvect 
_dos_keep 
_dos_open 
_dos_read 
_ dos_ setblock 
_ dos_ setdate 
_ dos_ setdrive 

_ dos_ setfileattr 
_ dos_ setftime 
_ dos_ settime 
_ dos_ setvect 
_dos_ write 
_enable 
_farjmp 
_harderr 
_ hardresume 
_hardretn 

The following new functions provide access to ROM-BIOS interrupts. 
Required definitions for these functions are given in the new bios.h 
include file. 

_bios.-Serialcom 
_bios_disk 
_bios_equiplist 
_biosjeybrd 
_bios~emsize 
_bios_printer 
_bios_timeofday 

B.2.4.4 Other New Functions 

Other new library functions provided with Version 5.0 are listed below: 

clock inpw memmove .-Searchenv 
div ldiv mktime .-Splitpath 
fgetpos _lrotl outpw .-Strdate 
fsetpos Jrotr Jotl .-Strtime 
~etdate ~akepath Jotr strtoul 

200 



Converting from Previous Versions of the Compiler 

B.2.4.S New Include Files 

The new include files provided with Version 5.0 of the Microsoft C Optim­
izing Compiler are described below. 

File 

bios.h 

graph.h 

Purpose 

Defines the new BIOS-interface routines and the 
constants and structures used with these routines 

Defines the new graphics routines and the con­
stants and structures used with these routines 

For conformance with the the ANSI C standard, the following constants 
defined in the include file float.h refer to a base-2 exponent in Version 5.0: 

DBL_ MIN_ EXP 
DBL_ MAX- EXP 
FLT_MIN_EXP 
FLT_MAX-EXP 
LDBL_ MIN_ EXP 
LDBL_ MAX- EXP 

In Version 4.0, these constants refer to a base-l0 exponent. The base-l0 
versions of these constants are now named DBL_ MIN_ 10_ EXP, 
DBL_MAX-I0_EXP, and so on. 

The following table lists the existing library functions that have been 
changed for compatibility with the the ANSI C standard in Version 5.0 
and the changes that have been made to each function: 

Function 

abort 

assert 

calloc 

cputs 

ctime 

Changes 

Now calls raise(SIGABRT) instead of the 
exit function. 

Now calls the abort function instead of the 
exit function. The output from a failed asser­
tion now contains the text of the failed 
expression. 

Now returns NULL for calloc (0) instead 
of allocating a zero-length item on the heap. 

Now always returns 0; no error code is 
returned. 

Now returns NULL instead of January 1, 
1980, for time values prior to January 1, 
1980. 

201 



Microsoft C Optimizing Compiler User's Guide 

fclose and fcloseall 

gmtime 

localtime 

log and loglO 

malloc 

onexit 

memcpy 

printf family 

putch 

scanf family 

setvbuf 

strerror 

202 

Now delete the specified file or files if the files 
were created by the tmpfile function. 

Now returns NULL instead of January 1, 
1980, for values prior to January 1, 1980. 

Now returns NULL instead of January 1, 
1980, for values prior to January 1, 1980. 

Now set errno to ERANGE rather than to 
EDOM when an error occurs. Although this 
value is different from the value returned by 
the XENIX version of these ~functions, it is 
compatible with the the ANSI C standard. 

Now returns NULL for malloe (0) instead 
of allocating a zero-length item on the heap. 

Has been duplicated under the new ANSI­
compatible name atexit. 

If some regions of the source and destination 
overlap, memcpy no longer ensures that the 
original source bytes in the overlapping region 
are copied before being overwritten. Use 
memmove to handle overlapping regions. 

The cprintf, fprintf, and sprintf functions 
support the L format modifier and handle 
negative values for precision and field-width 
arguments. Also, when errors occur, these 
functions return -1 instead of the number of 
characters printed up to the point of the 
error. 

The putch function no longer returns an 
error code. 

The cscanf, fscanf, and sscanf functions 
support the L format modifier and the g, E, 
and G format specifiers. 

Now uses an allocated buffer if a NULL is 
passed as the buffer pointer and the buffer 
type is JOFBF (full buffering) or JOLBF 
(line buffering). The file is unbuffered only if 
JONBF is specified. 

Has been renamed JJtrerror. The ANSI 
strerror function, which maps a specified 
error number to the corresponding error mes­
sage, is also implemented in Version 5.0. 



Converting from Previous Versions of the Compiler 

system For a NULL pointer argument, now returns 0 
and sets ERRNO to ENOENT if no 
COMMAND.COM file is found, or returns 
1 if a COMMAND.COM file is found. 

tmpfile Now opens the tem{>orary file in binary mode 
for updating (wb+) rather than default mode 
for updating (w+). 

For more information about the new library functions, see the Microsoft C 
Run- Tz'me Lz'brary Reference. 

B.3 Differences between Versions 4.0 and 3.0 

Changes between Versions 4.0 and 3.0 fall into the same categories as 
those between Versions 5.0 and 4.0. 

• Enhancements and additions to the compiler software to allow for 
more flexible programming, improved code generation, and 
increased support for the developing ANSI standard 

• Changes in the language syntax 

• New language features specific to the :ME-DOS implementation 

• New library functions and include files 

These features and the changes required to take advantage of them are 
discussed in the following sections. 

B.3.1 Enhancements and Additions 

Enhancements for Version 4.0 include the following: 

• New options for CL and LINK 

• Improved code optimization 

• New memory models (compact and huge) 

• Source listings 

• Numbered error messages 

• Huge arrays, allowing a single array to be larger than 64K 

• Three new utilities: MAKE, SETENV, and the Microsoft Code­
View symbolic debugger 

203 



Microsoft C Optimizing Compiler User's Guide 

These changes should have no effect on Version 3.0 source code, but you 
may need to revise existing batch files or MAKE description files to allow 
them to work correctly with Version 4.0. 

See Chapter 3, "Compiling with the CL Command," for information on 
changes to the syntax of the CL command line. 

B.3.2 Changes in the Language Syntax 

Some Version 4.0 changes were made to the C language syn tax to make it 
conform more closely to the new ANSI standard. Most of these changes do 
not affect source code written for the Version 3.0 compiler. The changes 
are summarized below: 

204 

• The \a escape sequence represents the bell (or alert) character in 
Version 4.0. 

You can make your source code more portable by using \ a instead 
of \x7. See Section 2.2.4, "Escape Sequences," of the Microsoft C 
Language Reference. 

• The signed keyword was added. 

The signed keyword can be used to specify signed items. This key­
word is particularly useful for declaring signed char types in pro­
grams compiled with the / J option. (/ J changes the default mode 
for the char type to unsigned.) See Section 4.2, "Type Specifiers," 
of the Microsoft C Language Reference. 

• The syntax was changed for making function calls with a variable 
number of arguments. 

The following two declarations contrast the Version 3.0 form and 
the Version 4.0 form: 

int func (int,); 

int func (int, ... ); 

/* Forward declaration in 
** Version 3.0 syntax 
*/ 

/* Forward declaration in 
** Version 4.0 syntax 
*/ 

This change was made to conform to changes in the ANSI standard 
for the C language. Both forms are supported in Version 4.0 of the 
Microsoft C Compiler. Microsoft recommends the use of the Ver­
sion 4.0 form in all programs. 



Converting from Previous Versions of the Compiler 

• Prior to Version 4.0, the compiler allowed arbitrary strings of char­
acters after a syntactically correct preprocessor command. To con­
form to the new ANSI standard, this was disallowed in Version 4.0. 

Beginning with Version 4.0, the following usage, for example, 
causes the compiler to generate a warning message: 

#endif Block ends here 

In Versions 4.0 and later, such strings must be enclosed in com­
ment delimiters, as in the following example: 

#endif /* Block ends here */ 

• Names of types defined with typedef are not keywords in Version 
4.0, as they were in Version 3.0. In Version 4.0, these names are in 
the same naming class as names of functions and variables, and can 
be redefined in a nested block. 

See Section 3.6, "Naming Classes," in the Mz'crosoft C Language 
Reference. 

• Beginning with Version 4.0, the #pragma directive is supported. 

A "pragma" is an instruction to the compiler. Its syntax is similar 
to the syntax of preprocessor directives, but its purpose is different. 
The syntax is as follows: 

# pragma charstring 

The only pragma instruction supported in the Microsoft C Com­
piler, Version 4.0, is the check_stack pragma. This pragma is 
specific to MS-DOS, and is discussed in greater detail in Section 
3.3.13.2, "Removing Stack Probes." 

• Hexadecimal and octal integer constants are handled differently in 
Version 4.0 than they are in Version 3.0. 

See Section 2.3, "Constants," of the Microsoft C Language Refer­
ence for more information. 

• The extended keywords fortran, pascal, cdecJ, far, near, and 
huge are enabled by default in Version 4.0. They can be disabled 
by giving the /Za option on the command line. 

• Two new reserved words, const and volatile, were added but not 
implemented for Version 4.0. 

• In Version 3.0, when a near pointer is converted to type long int, 
it is first converted to type short int, then to long int; as a result, 

205 



Microsoft C Optimizing Compiler User's Guide 

in Version 3.0 the expression in the if statement evaluates as true 
in the following fragment: 

char *ptr = NULL; 
long i; 

i = (long) ptr; 
if (i == OL) { 

} 

In Version 4.0, the conversion order of near pointers to long 
integers was changed so that it conforms to the order in which the 
compiler does all other conversions that increase the length of a 
variable: first the size, then the mode. (For example, the compiler 
converts a variable with type char to type unsigned long by first 
converting it to signed long, then to unsigned long.) Because of 
this change, the preceding code now converts ptr to a far pointer 
by loading the appropriate segment register value, then changing 
that to a long integer. The expression following the if statement 
would most likely be false in Version 4.0, since the segment regis­
ters do not usually contain o. 

B.3.3 New Features for the MS-DOS 
Implementation of C 

The following features were added to the :MS-DOS implementation of the 
C compiler for Version 4.0: 

• Two new memory models: huge and compact 

• The huge, signed, and cdecl keywords 

• A pragma (cheek_stack) to control stack checking 

• The / J option to change the default mode for the char type to 
unsigned 

• The / Gc option to specify the alternative calling sequence and 
naming conventions used in Microsoft Pascal and Microsoft 
FORTRAN 

These features are discussed in Chapter 6, "Working with Memory 
Models." In most cases, they will not affect existing Version 3.0 source 
code. However, you may be able to improve your existing programs by 
modifying them to take advantage of the new memory models or the huge 
keyword. 

206 



Converting from Previous Versions of the Compiler 

B.3.4 New Library Routines and Include Files 

New library functions and include files were added to Version 4.0 of the 
Microsoft C Optimizing Compiler. In some cases you may wish to modify 
existing source code to take advantage of new library functions and 
include files. The new library functions are listed below: 

alloca 
_clear87 
_control87 
dieeetomsbin 
difItime 
dmsbintoieee 
execlpe 
execvpe 
_expand 
JIree 
fieeetoms bin 
Jmalloc 

fmsbintoieee 
Jmsize 
Jpreset 
Jreect 
halloc 
hfree 
lfind 
lsearch 
-IDemavl 
memicmp 
-IDsize 
-Dfree 

-Dmalloc 
-Dmsize 
onexit 
remove 
rmtmp 
setvbuf 
spawnlpe 
spawnvpe 
stackavail 
~tatus87 
strerror 
stricmp 

strnicmp 
strstr 
strtod 
strtol 
tempnam 
tmpfile 
tmpnam 
vfprintf 
vprintf 
vsprintf 

The new include files are listed below: 

File 

fioat.h 

limits.h 

stdarg.h 

stddef.h 

varargs.h 

Purpose 

Defines values used in floating-point operations 

Defines upper and lower l,imits for various types 

Defines a complete set of typedef definitions and 
macros that can be used to write portable pro­
grams that can handle functions with variable­
length argument lists; designed to be compatible 
with the proposed ANSI standard for C 

Defines standard values such as NULL and errno 

Defines a complete set of typedef definitions and 
macros that can be used to write portable pro­
grams that can handle functions with variable­
length argument lists; designed to be compatible 
with UNIX System V 

For more information about the new library functions and include files, see 
the Microsoft G Run- Time Library Reference. 

207 



Microsoft C Optimizing Compiler User's Guide 

B.3.5 Changes in Library-Function Syntax 

In order to conform to the developing ANSI standard, the order of the 
parameters in the rename function was changed for Version 4.0. The syn­
tax for Version 3.0 is as follows: 

rename(newname,oldname) 

The following syntax was implemented for Version 4.0: 

rename( oldname, newname) 

208 



ApPENDIXC 
WRITING PORTABLE PROGRAMS 

C.1 Introduction ................................................................ 211 
C.2 Program Portability .................................................... 212 
C.3 Ma,chine Ihrdware ...................................................... 212 

C.3.1 Byte Length ..................................................... 212 
C.3.2 Word Length .................................................... 212 
C.3.3 Storage Alignment ............................................ 213 
C.3A Byte Order in a Word ........................................ 214 
C.3.5 Bit Fields ......................................................... 215 
C.3.6 Pointers ........................................................... 216 
C.3.7 Address Space .................................................. 217 
C.3.8 Character Set ................................................... 217 

C.4 Compiler Differences ................................................... 218 
CA.1 Signed/Unsigned char and Sign Extension .......... 218 
C.4.2 Shift Operations ............................................... 218 
C.4.3 Identifier Length ............................................... 219 
C.4.4 Register Variables ............................................. 219 
C.4.5 Type Conversion ............................................... 220 
CA.6 Functions with a Variable 

Number of Arguments ....................................... 221 
CA.7 Side Effects and Evaluation Order ...................... 221 

C.5 Environment Differences ............................................. 222 
C.6 Portability of Data ...................................................... 223 
C.7 Type-Size Summary .................................................... 223 
C.8 Byte-Ordering Summary ............................................. 225 

209 





Writing Portable Programs 

0.1 Introduction 

The standard definition of the C programming language leaves many 
details to be decided in specific implementations of the language. These 
unspecified features of the language detract from its portability and must 
be studied when attempting to write portable C code. 

Most of the issues affecting C portability arise from differences either in 
target-machine hardware or in compilers. C was designed to compile 
efficient code for the target machine (initially a Digital Equipment Cor­
poration PDP-ll®), so many of the language features not precisely defined 
are those that reflect a particular machine's hardware characteristics. 

This appendix highlights the various aspects of C that may not be port­
able across different machines and compilers. It also briefly discusses the 
portability of a C program in terms of its environment. The environment 
is determined by the system calls and library routines a program uses dur­
ing execution, file path names it requires, and other items not guaranteed 
to be constant across different systems. 

The C language has been implemented on many different computers with 
widely different hardware characteristics, from small eight-bit micropro­
cessors to large mainframes. This appendix is concerned with the porta­
bility of C code in the MS-DOS and XENIX programming environments. 
This is a more restricted problem to consider, since all MS-DOS and 
XENIX operating systems to date run on hardware with the following 
basic characteristics: 

• ASCII character set 

• Eight-bit bytes 

• Two-byte or four-byte integers 

• Two's-complement arithmetic 

These features are not formally defined for the language and may not be 
found in all implementations of C. However, the remainder of this appen­
dix is devoted to those systems where these basic assumptions hold. 

The C language definition contains no specification of how input and out­
put are performed. These specifications are left to system calls and library 
routines on individual systems. Within XENIX systems there are system 
calls and library routines that can be considered portable. This version 
of the Microsoft C Optimizing Compiler includes system calls and library 
routines that can be considered portable across XENIX and MS-DOS 
systems. The run-time library for the Microsoft C Optimizing Compiler for 
MS-DOS is composed primarily of XENIX-compatible routines. By 
restricting the use of XENIX routines to those included in the MS-DOS 
library, the XENIX programmer can develop MS-DOS programs in the 

211 



Microsoft C Optimizing Compiler User's Guide 

XENIX environment; C programs written on :MS-DOS are easily portable 
toXENIX. 

0.2 Program Portability 

A program is "portable" if it can be compiled and run successfully on 
different machines without alteration. There are many ways to write port­
able programs. One way is to avoid using inherently non portable language 
features. Another is to isolate any non portable interactions with the 
environment, such as I/0 to nonstandard devices. For example, programs 
should avoid hard-coded path names unless a path name is common to all 
systems. 

Files required at compile time (such as include files) may also introduce 
non portability if the path names used are not the same on all machines. 
In some cases, include files containing machine-specific definitions can be 
used to make the source code itself portable. 

0.3 Machine Hardware 

Differences in the hardware of the various target machines and differences 
in the corresponding C compilers cause the greatest number of portability 
problems. This section lists problems commonly encountered. 

0.3.1 Byte Length 

By definition, the char data type in C must be large enough to hold as 
positive integers all members of a machine's character set. For the 
machines described in this appendix, the char size is an eight-bit byte. 

0.3.2 Word Length 

The size of the basic data types for a given implementation are not for­
mally defined in the C language. Therefore, they often follow the most 
natural size for the underlying machine. It is safe to assume that short is 
no longer than long. Beyond that, no assumptions are portable. For 
example, on some machines short is the same length as int, whereas on 
others long is the same length as into 

212 



Writing Porta.ble Progra.ms 

Two areas where different int sizes affect program portability are the fol­
lowing: 

1. Array indexing. For very large arrays, a variable of type int may 
not be long enough to store the indices of the highest-numbered 
array elements. 

2. Pointer subtraction. On some machines, an int variable may not be 
long enough to store the results of pointer subtraction. See Section 
0.3.6, "Pointers," for more information about this problem. 

Programs that need to assume the size of a particular data type should 
avoid hard-coded constants where possible. Such information can usually 
be written in a fairly portable way. For example, the maximum positive 
integer (on a two's-complement machine) can be obtained with the follow­
ing directive: 

#define MAXPOS ( (int) ( ( (unsigned) -1) » 1» 

This is preferable to the following code: 

#ifdef PDPll 
#define MAXPOS 32767 
#else 

#endif 

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or 
some other nonportable constant. 

C.3.3 Storage Alignment 

The 0 language defines no particular layout for storage of data items rela­
tive to each other. The layout for storage of structure elements, or unions 
within the structure or union, is also left undefined by the language. 

Some processors require that data types longer than one byte be aligned 
on even-byte address boundaries. Others, such as the 8086/8088, have no 
such hardware restriction. However, even with these machInes, most com­
pilers generate code that aligns words, structures, arrays, and long words 
on even addresses or on even long-word addresses. Therefore, the follow­
ing code sequence may give different results, depending on specific align­
men t requirements on different .machines: 

213 



Microsoft C Optimizing Compiler User's Guide 

struct stag { 
char c; 
int i; 
}; 

printf("%d\n",sizeof(struct stag»; 

This variation in data storage has two major implications: data accessed 
as non primitive data types are not portable; and code that makes assump­
tions about the layout on a particular machine is not portable. 

Therefore, unions containing structures are non portable if the union is 
used to access the same data in different ways. Unions are only likely to 
be portable if they are used exclusively to store different data in the same 
space at different times. For example, if the following union were used to 
obtain four bytes from a long word, the code would not be portable: 

union { 
char c[4]; 
long lw; 
} u; 

The sizeof operator should always be used when reading and writing 
structures, as follows: 

struct s_tag st; 

write (fd, &st, sizeof(st»; 

Using the sizeof operator ensures portability of the source code, but does 
not produce a portable data file. Portability of data is discussed in Sec­
tion 0.6. 

C.3.4 Byte Order in a Word 

The variation in byte order in a word affects the portability of data more 
than the portability of source code. However, any program that makes use 
of knowledge of the internal byte order in a word is not portable. For ex­
ample, on some XENIX systems there is an include file misc.h that con­
tains the following structure declaration: 

214 



Writing Porta.ble Progra.ms 

/* 
* structure to access an 
* integer in bytes 
*/ 
struct { 

char lobyte; 
char hibyte; 
}; 

With certain less-restrictive compilers, this declaration could be used to 
access the high- and low-order bytes of an integer separately and in a com­
pletely nonportable way. The correct way to do this is to use mask and 
shift operations to extract the required byte, as shown below: 

#define LOBYTE(i) (i & Oxff) 
#define HI BYTE (i) «i» 8) & Oxff) 

These definitions provide a portable way to extract the least-significant 
and the next-least-significant bytes of an integer. Since the int type can 
be either two or four bytes, depending on the machine, even these 
definitions do not provide a completely portable way to access the bytes of 
an into 

One result of the byte-ordering problem is that the following code 
sequence will not always perform as intended: 

int c = 0; 

read (fd, &c, 1); 

On machines where the low-order byte is stored first, the value of c is the 
byte value read. On other machines, the byte is read into some byte other 
than the low-order one, so the value of c is different. 

C.3.5 Bit Fields 

Bit fields are not implemented in all C compilers. The Microsoft C Optim­
izing Compiler implements bit fields and allows them to have any length 
up to the size of a long. However, in many implementations no bit field 
may be larger than an int, and no bit field can overlap an int boundary. If 
necessary, the compiler will leave gaps and move to the next int boundary. 
To ensure portability no individual field should exceed 16 bits. 

The C language makes no guarantees about whether bit fields are assigned 
left to right or right to left. Therefore, although bit fields may be useful 
for storing flags and other small data items, their use in unions to dissect 
bits from other data is definitely nonportable. 

215 



Microsoft C Optimizing Compiler User's Guide 

C.3.6 Pointers 

The C language is fairly generous in allowing manipulation of pointers, to 
the extent that most compilers do not generate warnings for non portable 
pointer operations. A common non port able use of pointers is the use of 
casts to assign one pointer to another pointer of a different data type. 
This practice usually makes some assumption about the internal byte ord­
ering and layout of the data type, and is therefore non portable. In the fol­
lowing code, the byte order in the array c is not portable: 

char c[4]; 
long *lp; 

lp = (long *)&c[o]; 
*lp = Ox12345678L; 

Code like this is usually unnecessary or invalid. It is acceptable, however, 
when the malIoe function is used to allocate space for variables that do 
not have char type. The routine is declared as type char *, and the 
return value is cast to the type to be stored in the allocated memory. If 
this type is not char *, then a compiler may issue a warning concerning 
illegal type conversion. In addition, the malIoe function is designed 
always to return a starting address suitable for storing all types of data. 
A compiler may not know this, so it may give an additional warning about 
possible data-alignment problems. In the following example, malIoe is 
used to obtain memory for an array of 50 integers: 

extern char *malloc( ); 
int *ip; 

ip = (int *)malloc(50); 

This example will elicit a warning message from some compilers. 

The Microsoft C Quick Reference Guide states that a pointer can be 
assigned (or cast) to an integer large enough to hold it. Note that the size 
of the int type depends on the given machine and implementation. This 
type is long on some machines and short on others. The size may also be 
modified by near and far declarations. In general, do not assume that the 
following statement is always true: 

sizeof(char *) == sizeof(int) 

For example, the following construction is nonportable, assuming that the 
function identifier fune is not previously declared: 

int p; 
p = (char *)func( ); 

This example assumes that a char pointer has the same length as an into 

216 



Writing Portable Programs 

Another consequence of different-sized int types on different machines is 
that pointer subtraction may not give the expected results. As an example 
of this case, subtracting pointers to the beginning and end of a very large 
array may give a result that is too large to store in an int variable, as 
shown in the following example: 

int arr[20000], *b = arr, *e = &arr[20000]; 
int diff; 
diff = e - b; /* result too large to store in 

int variable diff */ 

To correct this problem, coerce the result of the pointer subtraction long 
type, then assign the result to a variable of unsigned int type, as shown 
in the following example: 

unsigned int udiff; 
udiff = (long) «int huge *)e - (int huge *)b); 

In most implementations, the null pointer value NULL is defined to be 
the int value O. The length of the 0 value can lead to problems for func­
tions that expect pointer arguments longer than an int. For portable 
c?de, always use the following form to pass a NULL value of the correct 
SIze: 

func ( (char *) NULL ); 

C.3.7 Address Space 

The address space available to a program varies considerably from system 
to system. Some small processors allow only 64K for program text and 
data combined. Others allow up to 64K of data and 64K of program text. 
Larger machines may allow considerably more text and possibly more data 
as well. 

Large programs, or programs that require large data areas, may have port­
ability problems on small machines. 

C.3.S Character Set 

The C language does not require the use of the ASCII character set. In 
fact, the only character-set requirements are that all characters must fit in 
the char data type, and all characters must have positive values. 

In the ASCII character set, all characters have values between 0 and 127 
and therefore can be represented in seven bits. On an eight-bits-per-byte 
machine they are all positive, regardless of whether char is treated as 
signed or unsigned. 

217 



Microsoft C Optimizing Compiler User's Guide 

A set of character-classification macros is included as part of the run-time 
library for the Microsoft C Optimizing Compiler. These macros should be 
used for most tests on character quantities. The macros are defined in the 
include file ctype.h, and described in the Microsoft C Run- Time Library 
Reference. They appear on the pages headed isalnum-isascii and 
iscntrl-isxdigit. 

The character-classification macros provide insulation from the internal 
structure of the character set. In addition, the names of the macros are 
often more meaningful than the equivalent line of code. Compare the fol­
lowing two lines: 

if (isupper (e» 

if«c >= 'A') && (c <= 'Z'» 

With some of the other macros, such as isxdigit to test for a hexadecimal 
digit, the advantage is even greater. Also, the internal implementation of 
the macros makes them more efficient than an explicit test with an if 
statement. 

C.4 Compiler Differences 

There are a number of C compilers running under various operating sys­
tems. The main areas of differences between compilers are outlined in this 
section. 

C.4.1 Signed/Unsigned char and Sign Extension 

The current state of the signed versus unsigned char problem is best 
described as unsatisfactory. The sign-extension problem is a serious bar­
rier to writing portable C, and the best solution at present is to write 
defensive code that does not rely on particular implementation features. 

C.4.2 Shift Operations 

The left-shift operator ( < <) shifts its operand a number of bits left, 
filling vacated bits with zeros. This is called a logical shift. When the 
right-shift operator (> » is applied to an unsigned quantity, it performs 
a logical-shift operation; when it is applied to a signed quantity, the 
vacated bits may be filled with zeros (logical shift) or with sign bits (arith­
metic shift). The decision is implementation dependent, and code that 
assumes a particular implementation is nonportable. 

218 



Writing Portable Programs 

With compilers that use arithmetic right shift, it is necessary to shift and 
mask the appropriate number of high-order bits to avoid sign extension, as 
follows: 

char c; 

c = (c » 3) & Oxlf; 

You can also avoid sign extension by using the divide operator (/) as fol­
lows: 

char c; 

c = c / 8; 

C.4.3 Identifier Length 

The use of long symbols and identifier names will cause portability prob­
lems with some compilers. To avoid these problems, a program should 
keep the following symbols as short as possible: 

• C preprocessor symbols 

• C local symbols 

• C external symbols 

Some loaders also place restrictions on the number of unique characters in 
C external symbols. Symbols unique in the first six characters are unique 
to most C-language processors. 

In some C implementations, the case of letters in identifiers is not 
significant. 

C.4.4 Register Variables 

The number and type of register variables in a function depend on the 
machine hardware and the compiler. Excess and invalid register declara­
tions are treated as non register declarations and should not cause a porta­
bility problem. On an 8086 or 8088 processor, up to two register declara­
tions are significant, and they must be applied to types of size int or 
smaller. 

Since the compiler ignores excess variables of register type, the most 
important register-type variables should be declared first. In this way, 
register variables that the compiler ignores will be those that are the least 
important. 

219 



Microsoft C Optimizing Compiler User's Guide 

C.4.5 Type Conversion 

The C language has some rules for implicit type conversion; it also allows 
explicit type conversions by type casting. The most common portability 
problem in implicit type conversion is unexpected sign extension. This is 
a potential problem whenever something of type char is compared with 
an into 

The following example will never evaluate true on a machine that sign­
extends char types but treats hexadecimal numbers as unsigned: 

char c; 

if(c -- Ox80) { 

} 

The following construction is also nonportable: 

char c; 
unsigned int u; 

if (u -- (unsigned) c) { 

} 

Two problems can arise in the preceding example: 

1. The char type may be considered either signed or unsigned, 
depending on the implementation. 

2. For implementations that consider the char type to be signed, two 
different methods of carrying out the conversion are possible: the 
char value may be sign extended to int type first, then converted 
to unsigned type; or the char type may be converted to an 
unsigned type of the same size, then zero extended to int length. 

The only safe comparison between char type and int is the following: 

int c; 

if(c -- 'x') { 

} 

220 



Writing Portable Programs 

This comparison is reliable because C guarantees all character constants 
to be positive. 

Type conversion also occurs when arguments are passed to functions. 
Types char and short become into Extending the char type can produce 
unexpected results. For example, the following program yields a result of 
-128 on some machines: 

char c = 128; 
printf ("%d\n", c) ; 

The unexpected negative value is produced because c is converted to int 
when it is passed to the printf function. The function itself has no 
knowledge of the original type of the argument and is expecting an into 
The correct way to handle this situation is to code defensively and allow 
for the possibility of sign extension, as in the following example: 

char c = 128; 
printf ("%d\n", c &. Oxff); 

C.4.6 Functions with a Variable 
Number of Arguments 

Functions with a variable number of arguments present a particular porta­
bility problem if the type of the arguments is also variable. In such cases 
the code is dependent on the size of various data types. For portability, 
these cases should be avoided. 

C.4.7 Side Effects and Evaluation Order 

The C language makes few guarantees about the order of evaluation of 
operands in an expression or arguments to a function call. Therefore, the 
following statement is almost never portable: 

func(i++, i++); 

Even the following statement is unwise if func is ever likely to be replaced 
by a macro, since the macro may use i more than once: 

func(i++); 

Certain XENIX-compatible macros commonly appear in user programs; 
some of these use their argument only once, and therefore can safely be 

221 



Microsoft C Optimizing Compiler USer's Guide 

called with a side-effect argument. To determine whether a macro handles 
side effects correctly, examine the code for that macro to see whether or 
not the argument is evaluated more than once. 

Operands to the following operators are guaranteed to be evaluated left to 
right: 

&& I I 
I I ? 

Note that the comma operator here is a separator for two C statements. A 
list of items separated by commas in a declaration list is not guaranteed to 
be processed left to right. Therefore, the following declaration on an 8086 
or 8088 processor, where only two register variables may be declared, 
could give any two of the four variables register type, depending on the 
compiler: 

register int a, b, c, d; 

To give register storage to the most important variables, use separate 
declaration statements and declare the most important variables first. The 
order of processing of individual declaration statements is guaranteed to 
be sequential in the following statements: 

register int a; 
register int b; 
register int c; 
register int d; 

C.5 Environment Differences 

Most programs make system calls and use library routines for various ser­
vices. This section indicates some of those routines that are not always 
portable and those that particularly aid portability. 

System calls specific to an operating system are not portable if they 
are not present on all other operating-system implementations of C. Most 
of the system calls defined in the Microsoft DOS run-time library are 
compatible with XENIX system calls and are therefore portable to a 
XENIX environment. 

Any program is nonportable that contains hard-coded path names to files 
or directories, or that contains user identifier numbers, log-in names, ter­
minallines or other system-dependent parameters. These types of con­
stants should be in header files, passed as command-line arguments, or 
obtained from the environment. 

222 



Writing Porta.ble Progra.ms 

Note that the members of the printf and scanf families of functions, 
including fprintf, fscanf, printf, sprintf, scanf, vfprintf, vprintf, 
vsprintf, and sscanf, have evolved in several ways, and some features are 
not completely portable. Some of the format-conversion characters have 
changed their meanings, in particular those relating to uppercase and 
lowercase in the output of hexadecimal numbers and the specification of 
long integers on 16-bit word machines. The Microsoft C specifications for 
these routines are given in the Microsoft C Run- Time Library Reference. 

The names of code-helper functions (for example, __ alrnul) have been 
changed between the MS-DOS and XENIX versions of Microsoft C. As a 
result, users who port object files compiled under Version 4.0 or later of 
the MS-DOS C compiler must move copies of the relevant helper functions 
from the standard combined C library (or from LmH.Lm if they are 
using uncombined libraries) to XENIX, since Version 2.2 of the XENIX C 
compiler and cross-development libraries are from a different version. 

Users should beware of porting object files that reference the setjrnp or 
longjrnp functions from XENIX to MS-DOS, unless these object files were 
compiled with the -dos option. The MS-DOS versions of these functions 
use a larger buffer size and may cause memory to be overwritten. Such 
object files can be ported from MS-DOS to XENIX without problems, and 
the corresponding source files can be ported in either direction. 

C.6 Portability of Data 

Data files are almost always nonportable across different central­
processing-unit (CPU) architectures. As mentioned above, structures, 
unions, and arrays have varying internal layout and padding requirements 
on different machines. In addition, byte ordering within words and actual 
word length may differ. 

The only way to achieve data-file portability is to write and read data files 
as one-dimensional character arrays. This procedure prevents alignment 
and padding problems if the data are written and read as characters, and 
interpreted that way. Thus ASCII text files can usually be moved between 
different machine types without significant problems. 

C.7 Type-Size Summary 

Table C.1 summarizes the sizes of the various data types as defined in the 
Microsoft C Optimizing Compiler, Version 5.0. 

223 



Microsoft C Optimizing Compiler User's Guide 

Table C.l 

C Type Sizes 

Alternative 
Type Name Name Storage Range of Values 

char signed char 1 byte -128 to 127 

int signed Implemen tation ~-32,768 to 32,767 
signed int dependent or Microsoft C 

~bytes in Version 5.0) 
·crosoft 

C 5.0) 

short short int 2 bytes -32,768 to 32,767 
signed short 
signed short int 

long long int 4 bytes -2,147,483,648 to 
signed long 
signed long int 

2,147,483,647 

unsigned 1 char none 1 byte o to 255 
unsigned unsigned int Implementation ~ to 65,535 for 

dependent . crosoft C 5.0) 
~bytes in 

·crosoft 
C 5.0) 

unsigned short unsigned short int 2 bytes o to 65,535 
unsigned long unsigned long int 4 bytes o to 4,294,967,295 
enum none Implementation ~ to 65,535 for 

dependent . crosoft C 5.0) 
abytes in 

·crosoft 
C 5.0) 

float none 4 bytes Approximately 
3.4E-38 to 
3.4E+38 (7-digit 
precision) 

double none 8 bytes Approximately 
1.7E-308 to 
1.7E+308 (15-
digit precision) 

long double none Implemen tation Approximately 
dependent 1.7E-308 to 
~bytes in 1.7E+308 (15-

·crosoft digit precision) 
C 5.0) 

1 Any type size modified by the unsigned ke)CWord can be modified by the signed keyword 
instead. The signed keyword is useful if the I J option has been used to change the default 
sign of the char type. 

224 



Writing Porta.ble Progra.ms 

C.8 Byte-Ordering Summary 

Tables 0.2 and 0.3 summarize byte ordering for short and long types, 
respectively. The following conventions are used in these tables: 

1. The lowest physically addressed byte of the data item is aO; a1 has 
the byte address aO + 1, and so on. 

2. The least-significant byte of the data item is bO; b1 is the next 
least significant, and so on. 

Since byte ordering is machine specific, any program that actually makes 
use of the following information is guaranteed to be nonportable: 

Table C.2 

Byte Ordering for Short Types 

CPU Byte Order 

aO a1 
8086 bO b1 
80286 bO b1 
PDP-II@ bO b1 

VAX-II@ bO b1 
M68000 b1 bO 

Z8000@ b1 bO 

Table C.3 

Byte Ordering for Long Types 

CPU Byte Order 

aD a1 a2 a3 
8086 bO b1 b2 b3 

80286 bO b1 b2 b3 

PDP-II b2 b3 bO b1 

VAX-II bO b1 b2 b3 

M68000 b3 b2 b1 bO 
Z8000 b3 b2 b1 bO 

225 





ApPENDIXD 
WRITING PROGRAMS 

FOR READ-ONLY MEMORY 

D.l Introduction ................................................................ 229 
D.2 MS-DOS-Dependent 

Library Routines ......................................................... 229 
D.3 Floating-Point Math Support ...................................... 230 
D.4 Modifying Start-Up Code ............................................ 231 

227 





Writing Programs for Read-Only Memory 

D.l Introduction 

This appendix presents information for developers who will be download­
ing code written with the Microsoft C Optimizing Compiler into read-only 
memory (ROM). Code of this type is more commonly known as "ROM­
able" code. Information is given about the following topics: 

• Run-time library routines that directly interface with MS-DOS 
(Section D.2) 

• Floating-point math in ROMable code (Section D.3) 

• Changing start-up code for non-MS-DOS environments (Section 
D.4) 

D.2 MS-DOS-Dependent 
Library Routines 

Because ROMable programs are often run outside an MS-DOS environ­
ment, they cannot include calls to run-time library routines that perform 
their operations through calls to MS-DOS functions. Table D.l lists the 
library routines that call MS-DOS functions. 

Table D.I 

MS-DOS-Dependent Library Routines 

abort execvp fstat mkdir spawnvp 
access execvpe ftell mktemp spawnvpe 
chdir _exit ftime open sprintf 
chmod fclose fwrite perror sscanf 
chsize fcloseall getch printf stat 
close fgetc getche putch system 
cprintf fgetchar getcwd puts tell 
cputs fgets getpid putw tempnam 
creat filelength gets read time 
cscanf fllush getw remove tmpfile 
dos flushall halloc rename tmpnam 
dosexterr _fmalloc hfree rmdir unlink 
dup fopen int86 rmtmp utime 
dup2 fprintf int86x scanf vfprintf 
eof fputc intdos sopen vprintf 
execl fputchar intdosx spawnl vsprintf 
execle fputs kbhit spawnle write 
execlp fread labs spawnlp 
execlpe freopen localtime spawnlpe 
execv fscanf locking spawnv 
execve fseek lseek spawnve 

229 



Microsoft C Optimizing Compiler User's Guide 

A program containing calls to any these routines cannot run in a non-MS­
DOS environment unless you do one of the following: 

• Write replacements for these MS-DOS dependent routines as 
needed. 

• Edit the program to remove the calls to the listed routines. 

• Obtain the library source files from Microsoft and edit them so 
that they do not include MS-DOS function calls, and write func­
tional equivalents of the MS-DOS functions that can be called from 
your program. 

Note that certain functions that are not listed above may call MS-DOS 
functions indirectly: that is, they may be part of a series of nested calls 
that call routines in the list. 

You may want to try to delete certain MS-DOS-dependent object modules 
from the C run-time library by using the Microsoft Library Manager, Lill. 
Then, when you link your ROMabie program, any unresolved references 
could help determine which MS-DOS dependencies still need to be elim­
inated before the program code is burned into ROM. 

Even in an :MS-DOS environment, the exec family of functions (MS-DOS 
Versions 2.x and 3.x) and the spawn family of functions (MS-DOS Ver­
sions 2.x) may alter the code segment. As a result, these functions would 
not work if all of their code was in ROM. 

D.3 Floating-Point Math Support 

Programs that use the various floating-point math packages (described in 
Chapter 7, "Controlling Floating-Point Math Operations") can be used to 
produce ROMabie code. 

Each of the three floating-point math packages contains certain error­
message code that depends on MS-DOS through calls to the write and 
__ nmsg_ write functions. You can eliminate the MS-DOS dependencies 
by providing replacements for these routines. The __ nmsg_ write rou­
tine is provided in the file named NMSGHDR.ASM, which the SETUP 
program installs in your basedir\SRC subdirectory. The error-message 
code in the math packages also calls the exit function in the C start-up 
code, which is MS-DOS dependent. 

Programs that use the alternate math package (that is, programs compiled 
with the /FPa option or linked explicitly with an mLmCA.Lm library) 
should produce ROMabie code easily. 

230 



Writing Progra.ms for Rea.d-Only Memory 

In order to work in a non-MS-DOS environment, programs that use the 
emulator math package (that is, programs compiled with the /FPi or 
/FPc option or linked explicitly with mLmCE.Lm) must meet one of 
two conditions: 

1. An 8087 or 80287 coprocessor is not present. 

2. The environment variable N087 is set to a non-null value. 

However, you would have to replace some of the MS-DOS calls and other 
interrupts by providing your interrupt handlers for them (as described in 
Section E.4 below). 

Programs that use the 8087 /80287 math package (that is, programs com­
piled with the /FPi87 or /FPc87 option or linked explicitly with 
mLmC7.Lm) may have problems if they are placed in ROM, since code is 
provided in the run-time libraries to fix up floating-point instructions at 
run time (that is, to change the code when the instruction is first exe­
cuted). The advantage of these fixups is that they allow code linked with 
mLIBCE.Lm to be run whether or not a coprocessor is installed. Since 
code placed in ROM cannot modify itself, a way is needed to circumvent 
these fixups at run time. The FIXUPS.OBJ module in the run-time 
library must be replaced by a module that sets the following public con­
stants (absolutes) to zero: 

FIARQQ 
FICRQQ 
FIDRQQ 

FIERQQ 
FISRQQ 
FIWRQQ 

FJARQQ 
FJCRQQ 
FJSRQQ 

You must provide your own replacement module for FIXUPS.OBJ if you 
decide that you want to use the coprocessor math option. 

D.4 Modifying Start-Up Code 

In a non-MS-DOS environment, where programs typically have no need of 
disk-file support, you can safely delete the file initializers and terminators 
from the start-up file CRTO.ASM. In addition, some of the code that sets 
up and restores interrupt vectors in this file may not be appropriate to the 
needs of your program. In these cases, you may want to substitute your 
own interrupt handlers. 

The start-up code for the Microsoft C Optimizing Compiler also initializes 
floating-point math support for programs that use it. The exact start-up 
support that must be provided depends on which floating-point math 
option you will be using for your programs. (See Chapter 7, "Controlling 
Floating-Point Math Operations," for a description of the floating-point 

231 



Microsoft C Optimizing Compiler User's Guide 

options available with the Microsoft C Optimizing Compiler.) The follow­
ing paragraphs describe the math support that is currently provided in the 
start-up module. 

Calls to the __ fpmath routine in the CRTODAT.ASM module initial­
ize and terminate floating-point math support and set signal addresses for 
all five floating-point math options. Arguments to __ fpmath have the 
following effects: 

• A call with an argument of 0 initializes floating-point support. 

• A call with an argument of 3 sets a signal address used for 
floating-point errors, but does not set any interrupts. 

• If floating-point support needs to be terminated, __ fpmath is 
called with an argument of 2. 

If you choose the alternate math package (that is, if you compile your pro­
grams with the /FPa option and link with one of the mLmCA.Lm 
libraries), the floating-point initialization code ( __ fpmath (0) ) simply 
sets up the floating-point stack. 

If you choose the emulator math package (compile with /FPi or /FPc 
and link with mLmCE.Lm) or the 8087/80287 math package (compile 
with /FPi87 or /FPc87 and link with mLmC7.Lm), the initialization 
code ( __ fpmath(O)) sets up several interrupt vectors, including Ox34 
through Ox3D for mternal use by software in the run-time library. If the 
coprocessor is present and to be used, then the nonmaskable interrupt vec­
tor (NMI-Ox02) is set to __ fpinterrupt87, and the CTRL+C signal is 
dealt with (as shown in the EMOEM.ASM file in the \ based£r\SRC sub­
directory). All these interrupts are restored with the __ fpmath(2) call on 
program termination. 

Interrupt vectors are processed through calls to MS-DOS functions, using 
interrupt Ox21. The MS-DOS function numbers (that is, the settings in the 
AH register) are Ox25 for setting interrupts and Ox35 for getting a vector 
that is already set. For both the set-vector and get-vector functions, the 
value contained in the AL register indicates the interrupt-vector number. 

To be able to use this code in a non-MS-DOS environment, you must 
replace the interrupt handler provided by MS-DOS interrupt Ox21. 
Another MS-DOS call that is used in the floating-point initialization 
( __ fpmath(O)) call is the DOS_getversion call (where the AH register 
contains Ox30); see the __ FPINSTALL87 routine in the 
EMOEM.ASM file. Another possibility is to replace the __ fpmath rou­
tine and set up the interrupts in a way that avoids MS-DOS calls. 

232 



Writing Progra.ms for Rea.d-Only Memory 

An additional piece of initialization code in the __ fpmath(O) routine 
checks the environment block to see whether the N087 environment vari­
able is set. In a non-MS-DOS environment, in which you have removed the 
__ setargv and __ setenvp routines from the program start-up code, this 
check tells the code to assume that N087 is not set. Since this code is 
executed only if you are using the emulator math package when the copro­
cessor is present, it in most cases should not cause problems. 

The initialization and termination calls also perform IN and OUT 
instructions to ports related to the 8259 interrupt controllers. See the 
EMOEM.ASM file to see whether these instructions apply to, or need to 
be modified for, your particular hardware configuration. 

233 





ApPENDIXE 
ERROR MESSAGES 

E.1 Introduction ................................................................ 237 
E.2 Co mrnand-Line Error Messages ................................... 237 

E.2.1 Command-Line 
Fatal-Error Messages ......................................... 238 

E.2.2 Command-Line Error Messages .......................... 238 
E.2.3 Command-Line Warning Messages ...................... 241 

E.3 Compiler Error Messages ............................................. 243 
E.3.1 Fatal-Error Messages ......................................... 244 
E.3.2 Compilation-Error Messages ............................... 251 
E.3.3 Warning Messages ............................................. 269 
E.3.4 Compiler Limits ................................................ 280 

E.4 Run-Time Error Messages ........................................... 281 
EA.1 Run-Time-Library Error Messages ...................... 281 
EA.2 Floating-Point Exceptions ................................. 284 
E.4.3 Run-Time Limits .............................................. 286 

235 





Error Messages 

E.l Introduction 

This appendix lists error messages you may encounter as you develop a 
program, and gives a brief description of actions you can take to correct 
the errors. The following list tells where to find error messages for the 
various components of Microsoft c: 

Component 

The command line used to 
invoke the Microsoft C 
Optimizing Compiler 

Microsoft C Optimizing 
Compiler 

The Microsoft C run-time 
libraries and run-time 
situations 

Section 

Section E.2, "Command-Line Error 
Messages" 

Section E.3, "Compiler-Error 
Messages" 

Section E.4, "Run-Time Error 
Messages" 

See Section E.3.4 for information about compiler limits. See the Microsoft 
Code View and Utilities manual for a list of the error messages generated 
by the following programs: 

• The Microsoft CodeView Window-Oriented Debugger (CV.EXE) 

• The Microsoft Overlay Linker (LINK) 
• The Microsoft Library Manager (LID) 

• The Microsoft Program Maintenance Utility (MAKE) 

• The Microsoft EXE File Compression Utility (EXEP ACK) 

• The Microsoft EXE File Header Utility (EXEMOD) 

• The Microsoft Environment Expansion Utility (SETENV) 

• The Microsoft Standard Error Redirection Utility (ERROUT) 

E.2 Command-Line Error Messages 

Messages that indicate errors on the command line used to invoke the 
compiler have one of the following formats: 

command line fatal error Dlxxx: message text 
command line error D2xxx: messagetext 
command line warning D4xxx: messagetext 

( fatal error) 
( error) 
( warning error) 

237 



Microsoft C Optimizing Compiler User's Guide 

If possible, the compiler continues operation, printing a warning message. 
In som~ cases, command-line errors are fatal and the compiler terminates 
processIng. 

E.2.1 Command-Line 
Fatal-Error Messages 

The following messages identify fatal errors. The compiler driver cannot 
recover from a fatal error; it terminates after printing the error message. 

Number 

DIOOO 

DIOOI 

DI002 

Command-Line Fatal-Error Message 

UNKNOWN COMMAND LINE FATAL ERROR 
Contact Microsoft Technical Support 

The compiler detected an unknown fatal-error condition. 
Please report this condition to Microsoft Corporation using 
the Product Assistance Request at the back of this manual. 

could not execute 'filename' 

The compiler could not find the given file in the current 
working directory or any of the other directories named in 
the PATH variable. 

too many open files, cannot redirect 
, filename' 

No more file handles were available to redirect the output 
of the /P option to a file. 

Try editing your CONFIG.SYS file and increasing the 
value num on the line fi les=num (if num is less than 20). 

E.2.2 Command-Line Error Messages 

When the compiler driver encounters any of the errors listed in this sec­
tion, it continues compiling the program (if possible) and outputs addi­
tional error messages. However, no object file is produced. 

Number 

D2000 

238 

Command-Line Error Message 

UNKNOWN COMMAND LINE ERROR 
Contact Microsoft Technical Support 

The compiler detected an unknown error condition. Please 
report this condition to Microsoft Corporation using the 
Product Assistance Request at the back of this manual. 



Number 

D2001 

D2002 

D2003 

D2007 

D2008 

D2009 

D2010 

D2011 

D2012 

Error Messages 

Command-Line Error Message 

too many symbols predefined with -D 

Too many symbolic constants were defined using the /D 
option on the command line. 

The limit on command-line definitions is normally 16; you 
can use the /U or /u option to increase the limit to 20. 

a previously defined model specification 
has been overridden 

Two different memory models were specified; the model 
specified later on the command line was used. 

missing source file name 

You did not give the name of the source file to be compiled. 

bad option flag, would overwrite 'stringl' with 
, string2' 

The specified option was given more than once, with 
conflicting arguments stringl and str£ng2. 

too many option fl ags , , string' 

Too many letters were given with the specified option (for 
example, with the /0 option). 

unknown option character in 'optionstring' 

One of the letters in the given option was not recognized. 

unknown floating point option 

The specified floating-point option (an /FP option) was not 
one of the valid options. 

only one floating point model allowed 

You specified more than one floating-point (/FP) option on 
the command line. 

too many linker flags on command line 

You tried to pass more than 128 separate options and 
object files to the linker. 

239 



Microsoft C Optimizing Compiler User's Guide 

Number 

D2013 

D2014 

D2015 

D2016 

D2017 

D2018 

D2019 

240 

Command-Line Error Message 

incomplete model specification 

Not enough characters were given for the I Astring option. 

The I Astring option requires all three letters (to specify the 
data-pointer size, code-pointer size, and segment setup, 
respectively). 

-ND not allowed with -Ad 

You cannot rename the default data segment unless you 
give the I Au xx option (SS != DS, load DS) on the com­
mand line. 

assembly files are not handled 

You gave a file name with an extension of .ASM on the 
command line. 

Because the compiler cannot invoke the Microsoft Macro 
Assembler (MASM) automatically, it cannot assemble such 
files. 

-Gw and -ND name are incompatible 

You tried to rename the default data segment to the given 
name when you specified the I Gw option. 

Renaming the default data segment is illegal in this case 
because the IGw option requires the lAw xx option. 

-Gw and -Au flags are incompatible 

You tried to specify the I Au xx option (SS != DS, load DS) 
with the IGw option. 

Specifying IAuxxwith IGw is illegal because the IGw 
option requires the I Awxx option. 

cannot open linker cmd file 

The response file used to pass object-file names and options 
to the linker could not be opened. 

This error may have occurred because another read-only file 
had the same name as the response file. 

cannot overwrite the source file, 'name' 

You specified the source file as an output-file name. 

The compiler does not allow the source file to be overwrit­
ten by one of the compiler output files. 



Number 

D2020 

Error Messages 

Command-Line Error Message 

-Gc option requires extended keywords to be 
enabled (-Ze) 

The /Gc option and the /Za option were specified on the 
same command line. 

The / Gc option requires the extended keyword cdecl to be 
enabled if library functions are to be accessible. 

D2021 invalid numerical argument 'strz"ng' 

A non-numerical string was specified following an option 
that required a numerical argument. 

D2022 cannot open help file, cl.hlp 

The /HELP option was given, but the file containing the 
help messages l CL.HLP) was not in the current directory 
or in any of the directories specified by the PATH environ­
ment variable. 

D2023 invalid model specification - small model 
only 

E.2.3 Command-Line Warning Messages 

The messages listed in this section indicate potential problems but do not 
hinder compilation and linking. 

Number 

D4000 

D4001 

D4002 

Command-Line Warning Message 

UNKNOWN COMMAND LINE WARNING 
Contact Microsoft Technical Support 

An unknown fatal condition has been detected by the com­
piler. Please report this condition to Microsoft Corporation 
using the Product Assistance Request at the back of this 
manual. 

listing has precedence over assembly output 

Two different listing options were chosen; the assembly list­
ing is not created. 

ignoring unknown flag 'strz"ng' 

One of the options given on the command line was not 
recognized and is ignored. 

241 



Microsoft C Optimizing Compiler User's Guide 

Number 

D4003 

D4004 

D400S 

D4006 

D4007 

D4008 

D4009 

D4010 

D4011 

242 

Command-Line Warning Message 

80186/286 selected over 8086 for code 
generation 

Both the IGO option and either the IG! or IG2 option 
were given; IG! or IG2 takes precedence. 

optimizing for time over space 

This message confirms that the JOt option is used for 
optimizing. 

Please enter new file name (full path) or 
Ctrl+C to quit 

The CL command could not find the specified executable 
file in the search path. 

only one of -P/-E/-EP allowed, -P selected 

Only one preprocessor output option can be specified at 
one time. 

-C ignored (must also specify -P or -E or 
-EP) 

The IC option must be used in conjunction with one of the 
preprocessor output flags, IE, IEP, or IP. 

non-standard model -- defaulting to small 
model libraries 

A nonstandard memory model was specified with the 
I Astring option. The library search records in the object 
model were set to use the small-model libraries. 

threshold only for far/huge data, ignored 

The IGt option cannot be used in memory models that 
have near data pointers. It can be used only in compact, 
large, and huge models. 

-Gp not implemented, ignored 

The MS-DOS version of Microsoft C does not support 
profiling. 

preprocessing overrides source listing 

Only a preprocessor listing was generated, since the com­
piler cannot generate both a source listing and a preproces­
sor listing at the same time. 



Number 

D4012 

D4013 

D4014 

Error Messages 

Command-Line Warning Message 

function declarations override source 
listing 

The compiler cannot generate both a source-listing file and 
the function prototype declarations at the same time. 

combined listing has precedence over object 
listing 

When /Fc is specified along with either /FI or /Fa, the 
combined listing (/Fc) is created. 

invalid value number for 'string'. Default 
number is used 

An invalid value was given in a context where a particular 
numerical value was expected. 

D4017 conflicting stack checking options - stack 
checking disabled 

Both the /Ge and the /Gs flags are given in one compile 
command (/Ge enables stack checking, /Gs disables it). 

E.3 Compiler Error Messages 

The error messages produced by the C compiler fall into three categories: 

1. Fatal-error messages 

2. Compilation-error messages 

3. Warning messages 

The messages for each category are listed below in numerical order, with a 
brief explanation of each error. To look up an error message, first deter­
mine the message category, then find the error number. All messages give 
the file name and line number where the error occurs. 

Fatal-Error Messages 

Fatal-error messages indicate a severe problem, one that prevents the com­
piler from processing your program any further. These messages have the 
following format: 

filename (line) : fatal error Clxxx: messagetext 

243 



Microsoft C Optimizing Compiler User's Guide 

After the compiler displays a fatal-error message, it terminates without 
producing an object file or checking for further errors. 

Compilation-Error Messages 

Compilation-error messages identify actual program errors. These mes­
sages appear in the following format: 

filename (line) : error C2xxx: messagetext 

The compiler does not produce an object file for a source file that has com­
pilation errors in the program. When the compiler encounters such errors, 
it attempts to recover from the error. If possible, it continues to process 
the source file and produce error messages. If errors are too numerous or 
too severe, the compiler stops processing. 

Warning Messages 

Warning messages are informational only; they do not prevent compilation 
and linking. These messages appear in the following format: 

filename (line) : warning C4xxx: messagetext 

You can use the /Woption to control the level of warnings that the com­
piler generates. this option is described in Section 3.3.11.2. 

E.3.1 Fatal-Error Messages 

The following messages identify fatal errors. The compiler cannot recover 
from a fatal error; it terminates after printing the error message. 

Number 

CIOOO 

CIOOI 

244 

Fatal-Error Message 

UNKNOWN FATAL ERROR 
Contact Microsoft Technical Support 

An unknown error condition has been detected by the 
compiler. 

Please report this condition to Microsoft Corporation, 
using the Product Assistance Request at the back of this 
manual. 

Internal Compiler Error 
Contact Microsoft Technical Support 

The compiler detected an internal inconsistency. 

Please report this condition to Microsoft Corporation using 
the Product Assistance Request at the back of this manual. 



Number 

CI002 

CI003 

CI004 

CI005 

CI006 

CI007 

Error Messages 

Fatal-Error Message 

Please include the file name and line number where the 
error occurred in this report; note that the file name refers 
to an internal compiler file, not your source file. 

out of heap space 

The compiler has run out of dynamic memory space. This 
usually means that your program has many symbols and/or 
complex expressions. 

To correct the problem, divide the file into several smaller 
source files, or break expressions into subexpressions. 

error count exceedsn; stopping compilation 

Errors in the program were too numerous or too severe to 
allow recovery, and the compiler must terminate. 

unexpected EOF 

This message appears when you have insufficient space on 
the default disk drive for the compiler to create the tem­
porary files it needs. The space required is approximately 
two times the size of the source file. This message can also 
occur when a comment does not have a closing delimiter 
(* I), or when an # if directive occurs without a correspond­
ing closing # endif directive. 

string too big for buffer 

A string in a compiler intermediate file overflowed a buffer. 

write error on compiler intermediate file 

The compiler was unable to create the intermediate files 
used in the compilation process. 

The following conditions commonly cause this error: 

1. Too few files in the 

files=number 

line of the CONFIG.SYS file (the compiler 
requires number to be at least 15) 

2. Not enough space on a device containing a compiler 
intermediate file 

unrecognized flag 'strz"ng' in 'optz"on' 

The strz"ng in the command-line optz"on was not a valid 
option. 

245 



Microsoft C Optimizing Compiler User's Guide 

Number 

CI009 

CIOIO 

CI012 

CI013 

CI014 

CI016 

CI017 

CI018 

CI019 

CI020 

246 

Fatal-Error Message 

compiler limit 
possibly a recursively defined macro 

The expansion of a macro exceeds the available space. 

Check to see if the macro is recursively defined, or if the 
expanded text is too large. 

compiler limit : macro expansion too big 

The expansion of a macro exceeds the available space. 

bad parenthesis nesting - missing 'character' 

The parentheses in a preprocessor directive were not 
matched; character is either a left or right parenthesis. 

cannot open source file 'filename' 

The given file either did not exist, could not be opened, or 
was not found. Make sure your environment settings are 
valid and that you have given the correct path name for 
the file. 

too many include files 

Nesting of # include directives exceeds 10 levels. 

#if[n]def expected an identifier 

You must specify an identifier with the #ifdef and 
# ifndef directives. 

invalid integer constant expression 

The expression in an # if directive must evaluate to a 
constant. 

unexpected '#elif' 

The #elif directive is legal only when it appears within an 
# if, # ifdef, or # ifndef directive. 

unexpected '#else' 

The #else directive is legal only when it appears within an 
# if, # ifdef, or # ifndef directive. 

unexpected '#endif' 

An # endif directive appears without a matching # if, 
# ifdef, or # ifndef directive. 



Number 

C1021 

C1022 

C1026 

C1027 

C1032 

C1033 

C1034 

Error Messages 

Fatal-Error Message 

bad preprocessor command 'string' 

The characters following the number sign (#) do not form 
a valid preprocessor directive. 

expected '#endif' 

An # if, # ifdef, or # ifndef directive was not terminated 
with an # endif directive. 

parser stack overflow, please simplify your 
program 

Your program cannot be processed because the space 
required to parse the program causes a stack overflow in 
the compiler. 

To solve this problem, try to simplify your program. 

DGROUP data allocation exceeds 64K 

More than 64K of variables was allocated to the default 
data segment. 

For compact-, medium-, large-, or huge-model programs, 
use the IGt option to move items into separate segments. 

cannot open object listing file 'filename' 

One of the following statements about the file name or path 
name given (filename) is true: 

1. The given name is not valid. 

2. The file with the given name cannot be opened for 
lack of space. 

3. A read-only file with the given name already exists. 

cannot open assembly-language output file 
, filename' 

One of the conditions listed under error message CI032 
prevents the given file from being opened. 

cannot open source fi Ie 'filename' 

One of the conditions listed under error message CI032 
prevents the given file from being opened. 

247 



Microsoft C Optimizing Compiler User's Guide 

Number 

CI035 

CI036 

CI037 

CI039 

CI040 

CI041 

CI042 

248 

Fatal-Error Message 

expression too complex, please simplify 

The cOl!lpiler cannot generate the code for a complex 
expreSSIOn. 

Break the expression into simpler sub expressions and 
recompile. 

cannot open source listing file 'fikname' 

One of the conditions listed under error message 01032 
prevents the given file from being opened. 

cannot open object file 'filename' 

One of the conditions listed under error message 01032 
prevents the given file from being opened. 

unrecoverable heap overflow in Pass 3 

The post-optimizer compiler pass overflowed the heap and 
could not continue. 

Try recompiling with the IOd option (see Section 3.3.13, 
"Optimizing"), or try breaking up the function containing 
the line that caused the error. 

unexpected EOF in source file 'filename' 

The compiler detected an unexpected end-of-file condition 
while creating a source listing or mingled source/object 
listing. 

This error probably occurred because the source file was 
edited during compilation. 

cannot open compiler intermediate file -
no more files 

The compiler could not create intermediate files used in the 
compilation process because no more file handles were 
available. 

This error can usually be corrected by changing the 
files=number line in CONFIG.SYS to allow a larger 
number of open files (20 is the recommended setting). 

cannot open compiler intermediate file -
no such file or directory 

The compiler could not create intermediate files used in the 
compilation process because the T1\1P environment vari­
able was set to an invalid directory or path. 



Number 

C1043 

C1044 

C1045 

C1047 

C1048 

C1049 

C1050 

Error Messa.ges 

Fatal-Error Message 

cannot open compiler intermediate file 

The compiler could not create intermediate files used in the 
compilation process. The exact reason is unknown. 

out of disk space for compiler intermediate 
file 

The compiler could not create intermediate files used in the 
compilation process because no more space was available. 

To correct the problem, make more space available on the 
disk and recompile. 

floating point overflow 

The compiler generated a floating-point exception while 
doing constant arithmetic on floating-point items at com­
pile time, as in the following example: 

float fp_val = 1.0e100; 

In this example, the double-precision constant 1. Oe100 
exceeds the maximum allowable value for a floating-point 
data item. 

too many option fl ags I ' string' 

The option appeared too many times. The string contains 
the occurrence of the option that caused the error. 

Unknown option 'character' in 'optionstring' 

The character was not a valid letter for optionstring. 

invalid numerical argument 'string' 

A numerical argument was expected instead of string. 

code segment 'segmentname' too 1 arge 

A code segment grew to within 36 bytes of 64K during 
compilation. 

A 36-byte pad is used because of a bug in some 80286 chips 
that can cause programs to exhibit strange behavior when, 
among other conditions, the size of a code segment is 
within 36 bytes of 641(. 

249 



Microsoft C Optimizing Compiler User's Guide 

Number 

CI052 

CI053 

CI054 

CI056 

CI057 

CI059 

CI060 

250 

Fatal-Error Message 

too many #if/#ifdef's 

You have exceeded the maximum nesting level for 
#if/#ifdef directives. 

compiler limit : struct/union nesting 

Structure and union definitions were nested to more than 
10 levels. 

compiler limit : initializers too deeply 
nested 

The compiler limit on nesting of initializers was exceeded. 
The limit ranges from 10 to 15 levels, depending on the 
combination of types being initialized. 

To correct this problem, simplify the data type being ini­
tialized to reduce the levels of nesting, or assign initial 
values in separate statements after the declaration. 

compiler limit : out of macro expansion 
space 

The compiler has overflowed an internal buffer during the 
expansion of a macro; reduce the complexity of the macro. 

unexpected EOF in macro expansion; (missing 
') '7) 

The compiler has encountered the end of the source file 
while gathering the arguments of a macro invocation. Usu­
ally this is the result of a missing closing parenthesis 0) on 
the macro invocation. 

out of near heap space 

The compiler has run out of storage for items that it stores 
in the "near" (default data segment) heap. This usually 
means that your program has too many symbols or complex 
expressions. To correct the problem, divide the file into 
several smaller source files, or break expressions in to 
smaller su bexpressions. 

out of far heap space 

The compiler has run out of storage for items that it stores 
in the "far" heap. Usually this is the result of too many 
symbols in the symbol table. 



Error Messa.ges 

E.3.2 Compilation-Error Messages 

The messages listed below indicate that your program has errors. When 
the compiler encounters any of the errors listed in this section, it continues 
parsing the program (if possible) and outputs additional error messages. 
However, no object file is produced. 

Number 

C2000 

C2001 

C2002 

C2003 

C2004 

C200S 

C2006 

C2007 

C2008 

Compilation-Error Message 

UNKNOWN ERROR 
Contact Microsoft Technical Support 

The compiler detected an unknown error condition. Please 
report this condition to Microsoft Corporation using the 
Product Assistance Request at the back of this manual. 

newline in constant 

A new-line character in a character or string constant was 
not in the correct escape-sequence format (,\n). 

out of macro actual parameter space 

Arguments to preprocessor macros exceeded 256 bytes. 

expected 'defined id' 

The identifier to be checked in an # if directive was not 
enclosed in parentheses. 

expected 'defined (id) , 

An #if directive caused a syntax error. 

#line expected a line number 

A # line directive lacked the required line-number 
specification. 

#include expected a file name 

An # include directive lacked the required file-name 
specification. 

#define syntax 

A # define directive caused a syntax error. 

'character' : unexpected in macro definition 

The given character was used incorrectly in a macro 
definition. 

251 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2009 

C2010 

C2011 

C2012 

C2013 

C2014 

C2015 

C2016 

C2017 

C2018 

252 

Compilation-Error Message 

reuse 0 f macro formal 'identifier' 

The given identifier was used twice in the formal-parameter 
list of a macro definition. 

, character' : unexpected in formal list 

The given character was used incorrectly in the formal­
parameter list of a macro definition. 

'identifier' : definition too big 

The given macro definitions exceeded 256 bytes. 

missing name following '<' 

An # include directive lacked the required file-name 
specification. 

missing '>' 

The closing angle bracket (> ) was missing from an 
# include directive. 

preprocessor command must start as first 
non-whitespace 

Non-white-space characters appear before the number sign 
(# ) of a preprocessor directive on the same line. 

too many chars in constant 

A character constant containing more than one character 
or escape sequence was used. 

no closing single quote 

A character constant was not enclosed in single quotation 
marks. 

illegal escape sequence 

The character or characters after the escape character (\) 
did not form a valid escape sequence. 

unknown character 'Oxcharacter' 

The given hexadecimal number does not correspond to a 
character. 



Number 

C2019 

C2020 

C2021 

C2022 

C2023 

C2024 

C2025 

C2026 

C2028 

Error Messages 

Compilation-Error Message 

expected preprocessor command, found 
, character' 

The given character followed a number sign (#), but it was 
not the first letter of a preprocessor directive. 

bad octal number 'character' 

The given character was not a valid octal digit. 

expected exponent va 1 ue, not 'character' 

The given character was used as the exponent of a 
floating-point constant but was not a valid number. 

'number' : too big for char 

The number was too large to be represented as a character. 

divide by 0 

The second operand in a division operation (/) evaluated to 
zero, giving undefined results. 

mod by 0 

The second operand in a remainder operation (%) 
evaluated to zero, giving undefined results. 

, z'dentz'jier' : enum/struct/union type 
redefinition 

The given identifier had already been used for an enumera­
tion, structure, or union tag. 

'z'dentz'jier' : member of enum redefinition 

The given identifier had already been used for an enumera­
tion constant, either within the same enumeration type or 
within another enumeration type with the same visibility. 

struct/union member needs to be inside a 
struct/union 

Structure and union members must be declared within the 
structure or union. 

This error may be caused by an enumeration declaration 
that contains a declaration of a structure member, as in the 
following example: 

253 



Microsort C Optimizing Compiler User's Guide 

Number 

C2029 

C2030 

C2031 

C2032 

C2033 

C2034 

C2035 

C2036 

254 

Compilation-Error Message 

enum a { 
january, 
february, 
int march; /* structure declaration: 

}; 

'identifier' 
structs 

** illegal 
*/ 

bit-fields allowed only in 

Only structure types may contain bit fields. 

'identifier' : struct/union member redefinition 

The identzJier was used for more than one member of the 
same structure or union. 

'~entifi~' : function cannot be struct/union 
member 

The given function was declared to be a member of a 
structure. 

To correct this error, use a pointer to the function instead. 

, identifier' : base type with near/far/huge not 
allowed 

The given structure or union member was declared with the 
near, far, or huge keyword. 

'identifier' : bi t- field cannot have 
indirection 

The given bit field was declared as a pointer (*), which is 
not allowed. 

, identifier' : bit-field type too small for 
number 0 f bits 

The number of bits specified in the bit-field declaration 
exceeded the number of bits in the given base type. 

enum/struct/union 'identifier' : unknown size 

The given structure or union had an undefined size. 

left of 'member' must have struct/union type 

The expression before the member-selection operator (-» 
was not a pointer to a structure or union type, or the 



Number 

C2037 

C2038 

C2039 

C2040 

C2041 

C2042 

C2043 

C2044 

Error Messages 

Compilation-Error Message 

expression before the member-selection operator (.) did not 
evaluate to a structure or union. In this message, member is 
a member designator in one of the following forms: 

- > identifier 
• identifier 

left of '->' or '.' specifies undefined 
struct/union 

The expression before the member-selection operator (-> 
or .) identified a structure or union type that was not 
defined. 

'identifier' : not struct/union member 

The given identifier was used in a con text that required a 
structure or union member. 

'->' requires struct/union pointer 

The expression before the member-selection operator (-> ) 
was a structure or union name, not a pointer to a structure 
or union as expected. 

'.' requires struct/union name 

The expression before the member-selection operator (.) 
was a pointer to a structure or union, not a structure or 
union name as expected. 

keyword 'enum' illegal 

The enum keyword appeared in a structure or union 
declaration, or an enum type definition was not formed 
correctly. 

signed/unsigned keywords mutually exclusive 

The signed and unsigned keywords may not appear in the 
same declaration. 

illegal break 

A break statement is legal only when it appears within a 
do, for, while, or switch statement. 

illegal continue 

A continue statement is legal only when it appears within 
a do, for, or while statement. 

255 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2045 

C2046 

C2047 

C2048 

C2050 

C2051 

C2052 

C2053 

C2054 

C2055 

256 

Compilation-Error Message 

'z'dentz'jier' : label redefined 

The given label appeared before more than one statement 
in the same function. 

illegal case 

The case keyword may appear only within a switch 
statement. 

illegal default 

The default keyword may appear only within a switch 
statement. 

more than one default 

A switch statement contained more than one default 
label. 

non-integral switch expression 

A switch expression was not integral. 

case expression not constant 

Case expressions must be integral constants. 

case expression not integral 

Case expressions must be integral constants. 

case value number already used 

The given case value was already used in this switch 
statement. 

expected '(' to follow 'z'dentz'jier' 

The context requires parentheses after the function 
z'dentzjier. 

expected formal parameter list, not a type 
list 

An argument-type list appeared in a function definition 
instead of a formal parameter list. 



Number 

C2056 

C2057 

C2058 

C2059 

C2060 

C2061 

C2062 

C2063 

C2064 

C2065 

C2066 

C2067 

Error Messages 

Compilation-Error Message 

illegal expression 

An expression was illegal because of a previous error. (The 
previous error may not have produced an error message.) 

expected constant expression 

The context requires a constant expression. 

constant expression is not integral 

The context requires an integral constant expression. 

syntax error : 'token' 

The given token caused a syntax error. 

syntax error : EOF 

The end of the file was encountered unexpectedly, causing a 
syn tax error. This error can be caused by a missing closing 
curly brace (} ) at the end of your program. 

syntax error : identi fier 'identzjier' 

The given identifier caused a syntax error. 

type 'type' unexpected 

The given type was misused. 

'identifier' : not a function 

The given identifier was not declared as a function, but an 
attempt was made to use it as a function. 

term does not evaluate to a function 

An attempt was made to call a function through an expres­
sion that did not evaluate to a function pointer. 

'identifier' : undefined 

The given identifier was not defined. 

cast to function returning . 

An object was cast to a function type. 

cast to array type is illegal 

An object was cast to an array type. 

. is illegal 

257 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2068 

C2069 

C2070 

C2071 

C2072 

C2073 

C2074 

C2075 

C2076 

C2077 

C2078 

258 

Compilation-Error Message 

illegal cast 

A type used in a cast operation was not a legal type. 

cast of 'void' term to non-void 

The void type was cast to a different type. 

illegal sizeof operand 

The operand of a sizeof expression was not an identifier or 
a type name. 

'class' : bad storage class 

The given storage class cannot be used in this context. 

, £dent£jier' : initial ization 0 f a function 

An attempt was made to initialize a function. 

'£dent£jier' : cannot initialize array in 
function 

An attempt was made to initialize the given array within a 
function. Arrays can be initialized only at the external 
level. 

cannot initialize struct/union in function 

An attempt was made to initialize the given structure or 
union within a function. Structures and unions can be ini­
tialized only at the external level. 

'identijier' : array initialization needs curly 
braces 

T~e .braces ( { } ) around the given array initializer were 
mIssIng. 

'£dentifier' : struct/union initialization 
needs curly braces 

The braces ({ } ) around the given structure or union initial­
izer were missing. 

non- integral field ini tializer '£dent£jier' 

An attempt was made to initialize a bit-field member of a 
structure with a nonintegral value. 

too many initializers 

The number of initializers exceeded the number of objects 
to be initialized. 



Number 

C2079 

C2082 

C2083 

C2084 

C2085 

C2086 

C2087 

Error Messages 

Compilation-Error Message 

, expression' uses unde fined struct/union 

The given identifier was declared as a structure or union 
type that had not been defined. 

redefinition of formal parameter 'identifier' 

A formal parameter to a function was redeclared within the 
function body. 

array 'identifier' already has a size 

The dimensions of the given array had already been 
declared. 

function 'identifier' already has a body 

The given function had already been defined. 

'identifier' : not in formal parameter list 

The given parameter was declared in a function definition 
for a nonexistent formal parameter. 

"£dentifier' : redefinition 

The given identifier was defined more than once. 

, identifier' : missing subscr ipt 

The definition of an array with multiple subscripts was 
missing a su bscript value for a dimension other than the 
first dimension, as in the following example: 

int func (a) 
char a [10] [] ; 
{ 

} 

int func (a) 
char a [] [5] ; 
{ 

} 

/* Illegal */ 

/* Legal */ 

259 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2088 

C2089 

C2090 

C2091 

C2092 

C2093 

C2094 

C2095 

C2096 

260 

Compilation-Error Message 

use of undefined enum/struct/union '£dent£fier' 

The given identifier referred to a structure or union type 
that was not defined. 

typedef specifies a near/far function 

The use of the near or far keyword in a typedef declara­
tion conflicted with the use of near or far for the declared 
item, as in the following example: 

typedef int far FARFUNC( ); 
FARFUNC near *fp; 

function returns array 

A function cannot return an array. (It can return a pointer 
to an array.) 

function returns function 

A function cannot return a function. (It can return a 
pointer to a function.) 

array element type cannot be function 

Arrays of functions are not allowed; however, arrays of 
po£nters to functions are allowed. 

cannot initialize a static or struct with 
address of automatic vars 

You cannot use the address of an auto variable in the ini­
tializer of a static item. 

label '£dent£fier' was undefined 

The function did not contain a statement labeled with the 
given identifier. 

!unct£on: actual has type void: parameter 
number 

An attempt was made to pass a void argument to a func­
tion. Formal parameters and arguments to functions can­
not have type void; they can, however, have type void * 
(pointer to void). 

struct/union comparison illegal 

You cannot compare two structures or unions. (You can, 
however, compare individual members within structures 
and unions.) 



Number 

C2097 

C2098 

C2099 

C2100 

C2101 

C2102 

C2103 

C2104 

C2105 

C2106 

C2107 

Error Messages 

Compilation-Error Message 

illegal initialization 

An attempt was made to initialize a variable using a non­
constant value. 

non-address expression 

An attempt was made to initialize an item that was not an 
lvalue. 

non-constant offset 

An initializer used a nonconstant offset. 

illegal indirection 

The indirection operator (*) was applied to a non pointer 
value. 

'&' on constant 

The address-of operator (&) did not have an lvalue as its 
operand. 

'&' requires Ivalue 

The adc;lress-of operator must be applied to an lvalue 
expreSSIOn. 

'&' on register variable 

An attempt was made to take the address of a register 
variable. 

'&' on bit-field 

An attempt was made to take the address of a bit field. 

, operator' needs 1 val ue 

The given operator did not have an lvalue operand. 

'operator' : left operand must be 1 value 

The left operand of the given operator was not an Ivalue. 

illegal index, indirection not allowed 

A subscript was applied to an expression that did not 
evaluate to a pointer. 

261 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2108 

C2109 

C2110 

C2111 

C2112 

C2113 

C2114 

C2115 

C2116 

C2117 

C2118 

262 

Compilation-Error Message 

non-integral index 

A nonintegral expression was used in an array subscript. 

subscript on non-array 

A subscript was used on a variable that was not an array. 

'+' : 2 pointers 

An attempt was made to add one pointer to another. 

pointer + non-integral value 

An attempt was made to add a nonintegral value to a 
pointer. 

illegal pointer subtraction 

An attempt was made to subtract pointers that did not 
poin t to the same type. 

'-' : right operand pointer 

The right operand in a subtraction operation (- ) was a 
pointer, but the left operand was not. 

'operator' : pointer on left; needs integral 
right 

The left operand of the given operator Was a pointer; the 
right operand must be an integral value. 

'identifier' : incompatible types 

An expression contained incompatible types. 

operator : bad left (or right) operand 

The specified operand of the given operator was illegal for 
that operator. 

'operator' : illegal for struct/union 

Structure and union type values are not allowed with the 
given operator. 

negative subscript 

A value defining an array size was negative. 



Number 

C2119 

C2120 

C2121 

C2122 

C2123 

C2125 

C2126 

C2127 

Error Messages 

Compilation-Error Message 

'typedefs' both define indirection 

Two typedef types were used to declare an item and both 
typedef types had indirection. For example, the declara­
tion of p in the following example is illegal: 

typedef int *P_INT; 
typedef short *P_SHORT; 
/* this declaration is illegal */ 
P_SHORT P_INT p; 

'void' illegal with all types 

The void type was used in a declaration with another type. 

typedef specifies different enum 

An attempt was made to use a type declared in a typedef 
statement to specify both an enumeration type and another 
type. 

typedef specifies different struct 

An attempt was made to use a type declared in a typedef 
statement to specify both a structure type and another 
type. 

typedef specifies different union 

An attempt was made to use a type declared in a typedef 
statement to specify both a union type and another type. 

identifier : allocation exceeds 64K 

The given item exceeds the size limit of 64K. 

The only items that are allowed to exceed 64K are huge 
arrays. 

~ent~~ : automatic allocation exceeds 32K 

The space allocated for the local variables of a function 
exceeded the limit of 32K. 

parameter allocation exceeds 32K 

The storage space required for the parameters to a function 
exceeded the limit of 32K. 

263 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2128 

C2129 

C2130 

C2131 

C2132 

C2133 

C2134 

264 

Compilation-Error Message 

identifier : huge array cannot be aligned to 
segment boundary 

The given array violated one of the restrictions imposed on 
huge arrays; see Section 6.3.5, "Creating Huge-Model Pro­
grams," for more information on these restrictions. 

static function 'identifier' not found 

A forward reference was made to a static function that was 
never defined. 

#line expected a string containing the file 
name 

A file name was missing from a # line directive. 

attributes specify more than one 
near/far/huge 

More than one near, far, or huge attribute was applied to 
an item, as in the following example: 

typedef int near NINT; 
NINT far a; /* Illegal */ 

syntax error unexpected identifier 

An identifier appeared in a syntactically illegal context. 

array 'identifier' : unknown size 

An attempt was made to declare an unsized array as local 
variable, as in the following example: 

int mat_add(arrayl) 
int arrayl[]; 
{ 
int array2[]; 

} 

/* Legal */ 

/* Illegal */ 

identifier : struct/union too large 

The size of a structure or union exceeded the compiler limit 
(232 bytes). 



Number 

C2135 

C2137 

C2138 

C2139 

C2140 

C2141 

C2142 

C2143 

Error Messages 

Compilation-Error Message 

missing ')' in macro expansion 

A macro reference with arguments was missing a closing 
parenthesis 0). 

empty character constant 

The illegal character constant" was used. 

unmatched close comment '/*' 
The compiler detected an open-comment delimiter (/ *) 
without a matching close-comment delimiter (* I). 
This error usually indicates an attempt to use illegal nested 
comments. 

type following 'type' is illegal 

An illegal type combination such as the following was used: 

long char a; 

argument type cannot be function returning 

A function was declared as a formal parameter of another 
function, as in the following example: 

int funcl (a) 
int a ( ); /* Illegal */ 

value out of range for enum constant 

An enumeration constant had a value outside the range of 
values allowed for type into 

ellipsis requires three periods 

The compiler detected the token " .. " and assumed that 
" ... " was intended. 

syntax error : missing 'tokenl' be fore 
'token2' 

The compiler expected tokenl to appear before token2. This 
message may appear if a required closing curly brace (}), 
right parenthesis 0), or semicolon (;) is missing. 

265 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2144 

C2145 

C2146 

C2147 

C2148 

C2149 

C2150 

C2151 

266 

Compilation-Error Message 

syntax error : missing 'token' be fore type 
, type' 

The compiler expected the given token to appear before the 
given type name. This message may appear if a required 
closing curly brace (} ), right parenthesis 0), or semicolon 
(;) is missing. 

syntax error : missing 'token' be fore 
identifier 

The compiler expected the given token to appear before an 
identifier. This message may appear if a semicolon (;) does 
not appear after the last declaration of a block. 

syntax error : missing 'token' before 
identi fier 'identifier' 

The compiler expected the given token to appear before the 
given identifier. 

array : unknown size 

An attempt was made to increment an index or pointer to 
an array whose base type has not yet been declared. 

array too large 

An array exceeded the maximum legal size (232 bytes). 

identifier : named bi t- field cannot have 0 
width 

The given named bit field had a zero width. Only unnamed 
bit fields are allowed to have zero width. 

identifier : bi t- field must have type int, 
signed int, or unsigned int 

The ANSI C standard requires bit fields to have types of 
int, signed int, or unsigned into This message appears 
only if you compiled your program with the /Za option. 

more than one cdecl/fortran/pascal 
attribute specified 

More than one keyword specifying a function-calling con­
vention was given. 



Number 

C2152 

C2153 

C2154 

C2155 

C2156 

C2157 

C2158 

C2159 

Error Messages 

Compilation-Error Message 

Z"dentzjier : pointers to functions with 
different attributes 

An attempt was made to assign a pointer to a function 
declared with one calling convention (cdecl, fortran, or 
pascal) to a pointer to a function declared with a different 
calling convention. 

hex constants must have at least 1 hex 
digit 

At least one hexadecimal digit must follow the "x". The 
hexadecimal constants Ox and OX are illegal. 

'name' : does not refer to a segment 

The name was the first identifier given in an alloc_ text 
pragma argument list and it is already defined as something 
other than a segment name. 

'name' : already in a segment 

The function name appears in more than one alloc_ text 
pragma. 

pragma must be at outer level 

Certain pragmas must be specified at a global level, outside 
a function body, and there is an occurrence of one of these 
pragmas within a function. 

'name' : must be declared before use in 
pragma list 

The function name in the list of functions for an 
alloc_ text pragrria has not been declared prior to being 
referenced in the list. 

'name' : is a function 

Name was specified in the list of variables in a 
same_ segment pragma, but was previously declared as a 
function. 

more than one storage class specified 

Illegal declaration-only one storage class is allowed. 

267 



Microsoft C Optimizing Compiler User's Guide 

Number 

C2160 

C2161 

C2162 

C2163 

C2165 

C2167 

C2168 

C2169 

C2170 

268 

Compilation-Error Message 

## cannot occur at the beginning of a macro 
definition 

A macro definition cannot begin with a token-pasting 
( # # ) operator. 

## cannot occur at the end of a macro 
definition 

A macro definition cannot end with a token-pasting (# # ) 
operator. 

expected macro formal parameter 

The token following a stringizing operator (# ) must be a 
formal parameter name. 

'strz'ng' : not available as an intrinsic 

A function specified in the list of functions for an intrinsic 
or function pragma is not one of the functions available in 
in trinsic form. 

'keyword' : cannot modify pointers to data 

Bad use of fortran, pascal or cdecl keyword to modify 
pain ter to data. 

'junctz'on' : too many actual parameters for 
intrinsic 

A reference to the intrinsic function name contains too 
many actual parameters. 

'name' : too few actual parameters for 
intrinsic 

A reference to the intrinsic function name contains too few 
actual parameters. 

'junction' : is an intr insic, it cannot be 
defined 

An attempt was made to provide a function definition for a 
function already declared as an intrinsic. 

~ent~er : intrinsic not declared as a 
function 

You tried to use the intrinsic pragma for an item other 
than a function or for a function that does not have an 
intrinsic form. (The section titled "Generating Intrinsic 



Number 

Errol' Messages 

Compilation-Error Message 

Functions" in Section 3.3.15 lists the functions that have 
intrinsic forms.) 

C2171 'operator' : bad operand 

Illegal operand type for the specified unary operator. 

C2177 constant too big 

Information was lost because a constant value was too large 
to be represented in the type to which it was assigned. (1) 

E.3.3 Warning Messages 

The messages listed in this section indicate potential problems but do not 
hinder compilation and linking. The number in parentheses at the end of 
each warning-message description gives the minimum warning level that 
must be set for the message to appear. 

Number 

C4000 

C4001 

C4002 

C4003 

Warning Message 

UNKNOWN WARNING 
Contact Microsoft Technical Support. 

The compiler detected an unknown error condition. 

Please report this condition to Microsoft Corporation, 
using the Product Assistance Request form at the back of 
this manual. 

macro 'z'dentz'fier' requires parameters 

The given identifier was defined as a macro taking one or 
more arguments, but it was used in the program without 
arguments. (1) 

too many actual parameters for macro 
, z'dentifier' 

The number of actual arguments specified with the given 
identifier was greater than the number of formal parame­
ters given in the macro definition of the identifier. (1) 

not enough actual parameters for macro 
, z'dentz'fier' 

The number of actual arguments specified with the given 
identifier was less than the number of formal parameters 
given in the macro definition of the identifier. (1) 

269 



Microsoft C Optimizing Compiler User's Guide 

Number 

C4004 

C4005 

C4006 

C4009 

C4011 

C4014 

C4015 

C4016 

270 

Warning Message 

missing close parenthesis after 'defined' 

The closing parenthesis was missing from an #if defined 
phrase. (1) 

, £dent£jier' : rede fini tion 

The given identifier was redefined. (1) 

#undef expected an identifier 

The name of the identifier whose definition was to be 
removed was not given with the # undef directive. (1) 

string too big, trailing chars truncated 

A string exceeded the compiler limit on string size. 

To correct this problem, break the string into two or more 
strings. (1) 

identi fier truncated to '£dent£jier' 

Only the identifier's first 31 characters are significant. (1) 

'£dent£jier' : bi t- field type must be unsigned 

The given bit field was not declared as an unsigned type. 

Bit fields must be declared as unsigned integral types. A 
conversion has been supplied. (1) 

'£dentzjier' : bi t- field type must be integral 

The given bit field was not declared as an integral type. 

Bit fields must be declared as unsigned integral types. A 
conversion has been supplied. (1) 

'£dentzjier' : no function return type, using 
lint' as default 

The given function had not yet been declared or defined, so 
the return type was unknown. 

The default return type (int) is assumed. (2) 



Number 

C4017 

C4020 

C4021 

C4022 " 

C4024 

C4025 

C4026 

Error Messages 

Warning Message 

cast of int expression to far pointer 

A far pointer represents a full segmented address. On 
an 8086/8088 processor, casting an int value to a far poin­
ter may {>roduce an address with a meaningless segment 
value. (1) 

too many actual parameters 

The number of arguments specified in a function call was 
greater than the number of parameters specified in the 
argument-type list or function definition. (1) 

too few actual parameters 

The number of arguments specified in a function call was 
less than the number of parameters specified in the 
argument-type list or function definition. (1) 

pointer mismatch : parameter n 

The pointer type of the given parameter was different from 
the pointer type specified in the argument-type list or func­
tion definition. (1) 

different types : parameter n 

The type of the given parameter in a function call did not 
agree with the tXl?e given in the argument-type list or func­
tion definition. ll) 

function declaration specified variable 
argument list 

The argument-type list in a function declaration ended 
with a comma or a comma followed by ellipsis dots (, •.. ), 
indicating that the function could take a variable number 
of arguments, but no formal parameters were declared for 
the function. (1) 

function was declared with formal argument 
list 

The function was declared to take arguments, but the func­
tion definition did not declare formal parameters. (1) 

271 



Microsoft C Optimizing Compiler User's Guide 

Number 

C4027 

C4028 

C4029 

C4030 

C4031 

C4032 

C4033 

C4034 

272 

Warning Message 

function was declared without formal 
argument list 

The function was declared to take no arguments (the 
argument-type list consisted of the word void), but formal 
parameters were declared in the function definition or argu­
ments were given in a call to the function. (1) 

parameter n declaration di fferent 

The type of the given parameter did not agree with the 
corresponding type in the argument-type list or with the 
corresponding formal parameter. (1) 

declared parameter list different from 
definition 

The argument-type list given in a function declaration did 
not agree with the types of the formal parameters given in 
the function definition. (1) 

first parameter list is longer than the 
second 

A function was declared more than once with different 
argument-type lists in the declarations. (1) 

second parameter list is longer than the 
first 

A function was declared more than once with different 
argument-type lists. (1) 

unnamed struct/union as parameter 

The structure or union type being passed as an argument 
was not named, so the declaration of the formal parameter 
cannot use the name and must declare the type. (1) 

function must return a value 

A function is expected to return a value unless it is declared 
as void. (2) 

sizeof returns 0 

The sizeof operator was applied to an operand that yielded 
a size of zero. (1) 



Number 

C4035 

C4036 

C4037 

C4038 

C4039 

C4040 

C4041 

C4042 

Error Messages 

Warning Message 

identifier : no return va 1 ue 

A function declared to return a value did not do so. (2) 

unexpected formal parameter list 

A formal parameter list was given in a function declaration. 
The formal parameter list is ignored. (1) 

'identifier' : formal parameters ignored 

No storage class or type name appeared before the declara­
tors of formal parameters in a function declaration, as in 
the following example: 

int *f(a,b,c); 

The formal parameters are ignored. (1) 

, identifier' : formal parameter has bad storage 
class 

The given formal parameter was declared with a storage 
class other than auto or register. (1) 

, identifier' : function used as an argument 

A formal parameter to a function was declared to be a func­
tion, which is illegal. The formal parameter is converted to 
a function pointer. (1) 

near/far/huge on 'identifier' ignored 

The near or far keyword has no effect in the declaration of 
the given identifier and is ignored. (1) 

formal parameter 'identifier' is redefined 

The given formal parameter was redefined in the function 
body, making the corresponding actual argument unavail­
able in the function. (1) 

'identifier' : has bad storage class 

The specified storage class cannot be used in this con text 
(for example, function parameters cannot be given extern 
class). The default storage class for that context was used 
in place of the illegal class. (1) 

273 



Microsoft C Optimizing Compiler User's Guide 

Number 

C4044 

C4045 

C4046 

C4047 

C4048 

C4049 

274 

Warning Message 

huge on 'identzjier' ignored , must be an array 

The hu~e keyword was used to declare the given nonarray 
item. (1) 

'identifier' : array bounds overflow 

Too many initializers were present for the given array. The 
excess initializers are ignored. (1) 

'&' on function/array, ignored 

An attempt was made to apply the address-of operator (&) 
to a function or array identifier. (1) 

'operator' : different levels of indirection 

An expression involving the specified operator had incon­
sisten t levels of indirection. (1) 
The following example illustrates this condition: 

char **p; 
char *q; 

p = q; 

array's declared subscripts different 

An array was declared twice with different sizes. The larger 
size is used. (1) 

'operator' : indirection to different types 

The indirection operator (* ) was used in an expression to 
access values of different types. (1) 



Number 

C4051 

C4052 

C4053 

C4056 

C4057 

C4058 

C4059 

C4060 

C4061 

Error Messages 

Warning Message 

data conversion 

Two data items in an expression had different types, caus­
ing the type of one item to be converted. (2) 

different enum types 

Two different enum types were used in an expression. (1) 

at least one void operand 

An expression with type void was used as an operand. (1) 

overflow in constant arithmetic 

The result of an operation exceeded Ox7FFFFFFF. (1) 

overflow in constant multiplication 

The result of an operation exceeded Ox7FFFFFFF. (1) 

address of frame variable taken, DS != SS 

The program was compiled with the default data segment 
(D8) not equal to the stack segment (88), and the pro~ram 
tried to point to a frame variable wi th a near poin ter. t 1) 

segment lost in conversion 

The conversion of a far pointer (a full segmented address) 
to a near pointer (a segment offset) resulted in the loss of 
the segment address. (1) 

conversion of long address to short address 

The conversion of a long address (a 32-bit pointer) to a 
short address (a 16-bit pointer) resulted in the loss of the 
segment address. (1) 

long/short mismatch in argument: conversion 
supplied 

The base types of the actual and formal arguments of a 
function were different. The actual argument is converted 
to the type of the formal parameter. (1) 

275 



Microsoft C Optimizing Compiler User's Guide 

Number 

C4062 

C4063 

C4064 

C4065 

C4066 

276 

Warning Message 

near/far mismatch in argument: conversion 
supplied 

The pointer sizes of the actual and formal arguments of a 
function were different. The actual argument is converted 
to the type of the formal parameter. (1) 

''';dent'';fier' : function too large for post­
optimizer 

The given function was not optimized because not enough 
space was available. To correct this problem, reduce the 
size of the function by dividing it into two or more smaller 
functions. (0) 

procedure too I arge I skipping descr";pt";on 
optimization and continuing 

Some optimizations for a function were skipped because not 
enough space was available for optimization. (0) 

To correct this problem, reduce the size of the function by 
dividing it into two or more smaller functions. 

The descr";ptz"on in this message may appear as any of the 
following: 

loop inversion 
branch sequence 
cross jump 

recoverable heap overflow in post-optimizer 
- some optimizations may be missed 

Some optimizations were skipped because not enough space 
was available for optimization. To correct this problem, 
reduce the size of the function by dividing it into two or 
more smaller functions. (0) 

local symbol table overflow - some local 
symbols may be missing in listings 

The listing generator ran out of heap space for local vari­
ables, so the source listing may not contain symbol-table 
information for all local variables. 



Number 

C4067 

C4068 

C4069 

C4071 

C4072 

C4073 

C4074 

Error Messages 

Warning Message 

unexpected characters following 'directive' 
directive - newline expected 

Extra characters followed a preprocessor directive, as in the 
following example (1): 

#endif 

This is accepted in Version 3.0, but not in Versions 4.0 and 
5.0. Versions 4.0 and 5.0 require comment delimiters, such 
as the following: 

#endif 

unknown pragma 

The compiler did not recognize a pragma and ignored it. (1) 

conversion of near pointer to long integer 

A near pointer was converted to a long integer, which 
involves first extending the high-order word with the 
current data-segment value, not 0 as in Version 3.0. (1) 

'identzjier' : no function prototype given 

The given function was called before the compiler found the 
corresponding function prototype. (3) 

Insufficient memory to process debugging 
information 

You compiled the program with the /Zi option, but not 
enough memory was available to create the required debug­
ging information. (1) 

scoping too deep, deepest scoping merged 
when debugging 

Declarations appeared at a static nesting level greater than 
13. As a result, all declarations will seem to appear at the 
same level. (1) 

non standard extension used - 'extension' 

The ~iven nonstandard language extension was used when 
the / Ze option was in effect. These extensions are given in 
Section 3.3.14, "Enabling and Disabling Language Exten­
sions." (If the /Za option is in effect, this condition gen­
erates an error.) (3) 

277 



Microsoft C Optimizing Compiler User's Guide 

Number 

C4075 

C4076 

C4077 

C4079 

C4080 

C4081 

C4082 

C4083 

C4084 

C4085 

278 

Warning Message 

size of switch expression or case constant 
too large - converted to int 

A value appearing in a switch or case statement was 
larger than an into The compiler converts the illegal value 
to an into (1) 

'type' : may be used on integral types only 

The type modifiers signed and unsigned can be combined 
only ,with other integral types. 

unknown check_stack option 

Unknown option given when using the old form of the 
check_stack pragma. The option must be empty, +, or-. 

unexpected token 'token' 

An unexpected token was found in the argument list of a 
pragma. 

missing segment name 

The first argument in the argument list for the alloc_ text 
pragma is missing a segment name. This happens if the first 
token in the argument list is not an identifier. 

expected a comma 

There is a missing comma (,) between two arguments of a 
pragma. 

expected an identifier 

There is a missing identifier in list of arguments to a 
pragma. 

missing '( I 

There is a missing opening parenthesis (( ) in the argument 
list for a pragma. 

expected a pragma keyword 

The token following the pragma keyword is not an 
iden tifier. 

expected [onloffJ 

Bad argument given for new form of check_ stack pragma. 



Number 

C4086 

C4087 

C4090 

C4091 

C4092 

C4093 

C4094 

C4095 

Error Messages 

Warning Message 

expected [1\2\4J 

Bad argument given for pack pragma. 

'name' : declared with void parameter list 

The function name was declared as taking no parameters, 
but a call to the function specifies actual parameters. 

different 'const' attributes 

The program passed a pointer to a canst item to a function 
where the corresponding formal parameter is a pointer to a 
non- const item, which means the item could be modified by 
the function undetected. 

no symbols were declared 

An empty declaration was detected. (2) 

untagged enum/struct/union declared no 
symbols 

An empty declaration was detected that used an untagged 
enum/struct/union. (2) 

unescaped newline in character constant in 
non-active code 

The constant expression of an # if, #elif, #ifdef, or 
# ifndef preprocessor directive evaluated to 0, making the 
following code inactive, and a new-line character appeared 
between a single or double quotation mark and the match­
ing single or double quotation mark in that inactive code. 

unexpected newline 

A new-line character appeared in a pragma where a comma, 
right parenthesis, or identifier was expected, as in the fol­
lowing examples: 

#pragma intrinsic (memset 
#pragma intrinsic (memset, 

too many arguments for pragma 

More than one argument was given for a pragma that can 
take only one argument. 



Microsoft C Optimizing Compiler User's Guide 

E.3.4 Compiler Limits 

To operate the Microsoft C Optimizing Compiler, you must have sufficient 
disk space available for the compiler to create temporary files used in pro­
cessing. The space required is approximately two times the size of the 
source file. 

Table E.1 summarizes the limits imposed by the C compiler. If your pro­
gram exceeds one of these limits, an error message will inform you of the 
problem. 

Table E.l 

Limits Imposed by the C Compiler 

Program Item 

String literals 

Constants 

Identifiers 

Declarations 

Preprocessor 
directives 

Description 

Maximum length of a string, 
including the terminating null 
character (\ 0) 
Maximum size of a constant is 
determined by its type; see 
the Microsoft 0 Language 
Reference for a discussion of 
constants. 

Maximum length of an 
identifier 

Maximum level of nesting for 
structure/union definitions 
Maximum size of a macro 
definition 
Maximum number of actual 
argumen ts to a macro 
definition 

Maximum length of an actual 
preprocessor argument 

Maximum level of nesting for 
# if, # ifdef, and # ifndef 
directives 

Maximum level of nesting for 
include files 

Limit 

512 bytes 

31 bytes (additional 
characters are 
discarded) 

10 levels 

512 bytes 

8 arguments 

256 bytes 

32 levels 

9 levels 

The compiler does not set explicit limits on the number and complexity of 
declarations, definitions, and statements in an individual function or in a 
program. If the compiler encounters a function or program that is too 
large or too complex to be processed, it produces an error message to that 
effect. 

280 



Error Messages 

E.4 Run-Time Error Messages 

Run-time error messages fall into the following four categories: 

1. Error messages generated by the run-time library to notify you of 
serious errors. These messages are listed and described in .section 
E.4.1. 

2. Floating-point exceptions generated by the 8087/80287 hardware 
or the emulator. These exceptions are listed and described in Sec­
tion E.4.2. 

3. Error messages generated by program calls to error-handling rou­
tines in the C run-time library (the abort, assert, and perror rou­
tines). These routines print an error message to standard error 
whenever the program calls the given routine. For descriptions of 
these routines and the corresponding error messages, see the Micro­
soft C Run- Time Library Reference. 

4. Error messages generated by calls to math routines in the C run­
time library. On error, the math routines return an error value and 
some print a message to the standard error. See the Microsoft C 
Run- Time Library Reference for descriptions of the math routines 
and corresponding error messages. 

E.4.1 Run-Time-Library Error Messages 

The following messages may be generated at run time when your program 
has serious errors. Run-time error-message numbers range from R6000 to 
R6999. 

A run-time error message takes the following general form: 

run-time error R6nnn 
- messagetext 

Number 

R6000 

Run-Time-Library Error Message 

stack overflow 

Your program has run out of stack space. This can occur 
when a program uses a large amount of local data or is 
heavily recursive. The program was terminated with an exit 
code of 255. 

281 



Microsoft C Optimizing Compiler User's Guide 

Number 

R6001 

R6002 

282 

Run-Time-Library Error Message 

To correct the prohlem j recompile using thetlF option of 
the CL command or relink using the linker STACK 
option to allocate a large stack, or modify t e stack infor­
mation in the executable-file header by using the EXE­
MOD program. (See Chapter 15 of the Microsoft Code View 
and Utilities manual for information about the EXEMOD 
program.) 

null pointer assignment 

The contents of the NULL segment have changed in the 
course of program execution. The NULL segment is a spe­
ciallocation in low memory that is not normally used. If 
the contents of the NULL segment change during a 
program's execution, it means that the program has written 
to this area, usually by an inadvertent assignment through 
a null pointer. Note that your program can contain null 
pointers without generating this message; the message 
appears only when you access a memory location through 
the null pointer. 

This error does not cause your program to terminate; the 
error message is printed following the normal termination 
of the program. This error yields a nonzero exit code. 

This message reflects a potentially serious error in your pro­
gram. Although a program that produces this error may 
appear to operate correctly, it is likely to cause problems in 
the future and may fail to run in a different operating 
environment. 

floating point not loaded 

Your program needs the floating-point library, but the 
library was not loaded. The error causes the program to be 
terminated with an exit status of 255. This occurs in two 
situations: 

1. The program was compiled or linked with an option 
(such as /FPi87) that required an 8087 or 80287 
coprocessor, but the program was run on a machine 
that did not have a coprocessor installed. 

To fix this problem, either recompile the program 
with the /FPi option, relink with an emulator 



Number 

R6003 

R6005 

R6006 

R6007 

R6008 

Error Messages 

Run-Time-Library Error Message 

library (mLmCE.Lm), or install a coprocessor. 
(See Section 3.3.1 of this manual for more informa­
tion about these options and libraries.) 

2. A format string for one of the routines in the printf 
or scanf families contains a floating-point format 
specification and there are no floating-point values 
or variables in the program. The C compiler 
attempts to minimize the size of a program by load­
ing floating-point support only when necessary. 
Floating-point format specifications within format 
strings are not detected, so the necessary floating­
point routines are not loaded. 

To correct this error, use a floating-point argument 
to correspond to the floating-point format 
specification. This causes floating-point support to 
be loaded. 

integer divide by 0 

An attempt was made to divide an integer by 0, giving an 
undefined result. This error terminates the program with an 
exit code of 255. 

not enough memory on exec 

Errors R6005 through R6007 occur when a child process 
spawned by one of the exec library routines fails and 115-
DOS could not return control to the parent process. This 
error indicates that not enough memory remained to load 
the program being spawned. 

bad format on exec 

The file to be executed by one of the exec functions was 
not in the correct format for an executable file. 

bad environment on exec 

During a call to one of the exec functions, MS-DOS deter­
mined that the child process was being given a bad environ­
ment block. 

not enough space for arguments 

See explanation under error R6009. 

283 



Microsoft C Optimizing Compiler User's Guide 

Number Run-Time-Library Error Message 

R6009 not enough space for environment 

Errors R6008 and R6009 both occur at start-up if there is 
enough memory to load the program, but not enough room 
for the argv vector, the envp vector, or both. To avoid 
this problem, rewrite the _setargv or _setenvp routines 
(see Section 5.2.2, "Suppressing Command-Line Process­
ing," for more information). 

E.4.2 Floating-Point Exceptions 

The error messages listed below correspond to exceptions generated 
by the 8087/80287 hardware. Refer to the Intel documentation for your 
processor for a detailed discussion ofhardware exceptions. These errors 
may also be detected by the floating-point emulator or alternate math 
library. 

If you use the C-Ianguage default 8087/80287 control-word settings, the 
following exceptions are masked and do not occur: 

Exception 

Denormal 

Underflow 

Inexact 

Default Masked Action 

Exception masked. 

Result goes to 0.0. 

Exception masked. 

For information on how to change the floating-point control word, see the 
reference pages for _contro187 in the Mz'crosoft C Run- Tz'me Lz'brary 
Reference. 

The following errors do not occur with code generated by the Microsoft C 
Optimizing Compiler or provided in the Microsoft C Run-Time Library: 

Square root 
Stack underflow 
Unemulated 

The floating-point exceptions have the following format: 

run-time error M61nn: MATH 
- floating-point error: messagetext 

284 



Error Messages 

The floating-point exceptions are listed and described below. 

Number 

M6101 

M6102 

M6103 

M6104 

M6105 

M6106 

M6107 

M6108 

Floating-Point Exception 

invalid 

An invalid operation occurred. This usually involves 
operating on a NAN or an infinity. This error terminates 
the program with exit code 129. 

denormal 

A very small floating-point number was generated, which 
may no longer be valid due to loss of significance. Denor­
mals are normally masked, causing them to be trapped and 
operated on. This error terminates the program with exit 
code 130. 

divide by 0 

An attempt was made to divide by zero. This error ter­
minates the program with exit code 131. 

overflow 

An overflow occurred in a floating-point operation. This 
error terminates the program with exit code 132. 

underflow 

An underflow occurred in a floating-point operation. (An 
underflow is normally masked so that the underflowing 
value is replaced with 0.0.) This error terminates the pro­
gram with exit code 133. 

inexact 

Loss of precision occurred in a floating-point operation. 
This exception is normally masked, since almost any 
floating-point operation can cause loss of precision. This 
error terminates the program with exit code 134. 

unemulated 

An attempt was made to execute an 8087/80287 instruction 
that is invalid or is not supported by the emulator. This 
error terminates the program with exit code 135. 

square root 

The operand in a square-root operation was negative. This 
error terminates the program with exit code 136. (Note: 
the sqrt function in the C run-time library checks the argu­
ment before performing the operation and returns an error 

285 



Microsoft C Optimizing Compiler User's Guide 

Number Floating-Point Exception 

value if the operand is ne~ative: see the Mz'crosoft C Run-
Tz'me Lz'brary-Rejerence for details on sqrt.) ~ 

M6110 stack overflow 

A floating-point expression caused a stack overflow on the 
8087 or 80287 coprocessor or the emulator. (Stack-overflow 
exceptions are trapped up to a limit of seven levels in addi­
tion to the eight levels normally supported by the 8087 or 
80287 coprocessor.) This error terminates the program with 
exit code 138. 

M6111 stack underflow 

A floating-point operation resulted in a stack underflow on 
the 8087 or 80287 coprocessor or the emulator. This error 
terminates the program with exit code 139. 

M6112 explicitly generated 

A signal indicating a floating-point error was sent using a 
raise (SIGFPE) call. This error terminates the program 
with exit code 140. 

E.4.3 Run-Time Limits 

Table E.2 summarizes the limits that apply to programs at run time. If 
your program exceeds one of these limits, an error message will inform you 
of the problem. 

286 

Table E.2 

Program Limits at Run Time 

Item 

Files 

Command line 

Environment 
table 

Description 

Maximum file size 

Maximum number 
of open files (streams) 
Maximum number of 
characters (including 
program name) 
Maximum size 

Limit 

232_1 bytes 
(4 gigabytes) 
20a 

128 

32K 

a Five streams are opened automatically (stdin, stdout, stderr, stdaux, and 
stdprn), leaving 15 files available for the program to open. 



GLOSSARY 

The definitions in this glossary are intended primarily for use with this 
manual, the Microsoft C Language Reference, and the Microsoft C Run­
Time Library Reference. Neither individual definitions nor the list of 
terms is comprehensive. 

8087 or 80287 coprocessor 

Intel® ~ardware products that provide very fast and precise number 
processIng. 

abstract declarator 

A declarator without an identifier, consisting of a type and, optionally, 
one or more pointer, array, or function modifiers. 

aggregate types 

Arrays, structures, and unions. 

alias 

One of several alternative names for the same memory location. 

alternate math library 

A model-dependent floating-point library that uses a subset of the 
Institute of Electrical and Electronics Engineers, Inc. (IEEE) number 
format. Linking with this library results in the smallest, fastest pro­
grams available without a coprocessor, but sacrifices some accuracy in 
results for speed. 

ANSI (American National Standards Institute) 

The national institute responsible for defining programming-language 
standards to promote portability of these languages between different 
computer systems. 

argument 

A value passed to a function. 

argument-type list 

In a function prototype, a list of abstract declarators, separated by 
commas, indicating the types of actual arguments in the function call. 
Used to make sure the actual arguments in the function call 
correspond to the formal parameters in the function definition. 

287 



Microsoft C Optimizing Compiler User's Guide 

argc 

The traditional name for the first argument to the main function in a 
C source program: an integer specifying how many arguments are 
passed to the program from the command line. 

argv 

The traditional name for the second argument to the main function in 
a C source program: a pointer to an array of strings. Traditionally, the 
first string is the program name and each following string is an argu­
ment passed to the program from the command line. 

arithmetic conversion 

Conversion operations performed on items of integral and floating­
poin t types used in expressions. 

arithmetic types 

Integral, enumeration, and floating-point data types. 

array 

A set of elements with the same type. 

ASCII (American Standard Code for Information Interchange) 

A set of 256 codes that many computers use to represent letters, digits, 
special characters, and other symbols. Only the first 128 of these codes 
are standardized; the remaining 128 are special characters that are 
defined by the computer manufacturer. 

associativity 

Referring to operators, the precedence rules that apply when more 
than one operator is assigned to an operand. (For example, in the 
expression *p+ +, the indirection operator * is applied before the unary 
increment operator ++.) 

base name 

The portion of the file name that precedes the file-name extension. For 
example, samp is the base name of the file samp. c. 

batch file 

A text file containing MS-DOS commands that can be invoked from 
the MS-DOS command line. 

binary expression 

An expression consisting of two operands joined by a binary operator. 

288 



Glossary 

binary operator 

Operators used in binary expessions. Binary operators in the C 
language are the multiplicative operators (* I), additive operators 
(+ -), shift operators « < > », relational operators 
« > <= >= = = !=), bitwise operators (& : "), logical 
operators (&& ::), and sequential-evaluation operator (,). 

block 

A sequence of declarations, definitions, and statements enclosed within 
curly braces ({} ). 

child process 

CL 

A new process started by a curren tly running process. 

The command used by the Microsoft C Optimizing Compiler to com­
pile and link programs. 

compact memory model 

A memory model that allows for more than one data segment and only 
one code segment. 

complex declarator 

A declaration containing more than one array, pointer, or function 
modifier. 

constant expression 

Any expression that evaluates to a constant and may involve integer 
constants, character constants, floating-point constants, enumeration 
constants, type casts to integral and floating-point types, and other 
constant expressions. 

declaration 

A construct that associates the name and the attribu tes of a variable, 
function, or type. 

declarator 

An identifier that can be modified with brackets ([]), asterisks (*), or 
parentheses ( )) to declare an array, pointer, or function type, respec­
tively. 

definition 

A construct that initializes and allocates storage for a variable, or that 
specifies the name, formal parameters, body, and the return type of a 
function. 

289 



Microsoft C Optimizing Compiler User's Guide 

directive 

An instruction to the C preprocessor to perform a specific action on 
source-program text before compilation. 

emulator 

A floating-point math package that provides software emulation of the 
operations of a math coprocessor. 

enumeration set 

The set of legal values defined for an enumeration type. 

enumeration type 

A user-defined data type that specifies a particular set of legal values. 

environment table 

The part of MS-DOS that stores environment variables and their 
values. 

environment variable 

A variable stored in the environment table that provides MS-DOS with 
information (where to find executable files and library files, where to 
create temporary files, etc.). 

error level code 

See exit code. 

escape sequence 

A specific combination of a backslash (\) followed by a letter or combi­
nation of digits, which represents white-space and nongraphic charac­
ters within strings and character constants. 

exit code 

A code returned by a program to MS-DOS indicating whether or not 
the program ran successfully. 

expression 

A combination of operands and operators that yields a single value. 

external level 

The part of a C program outside of all function declarations. 

290 



Glossary 

file handle 

A value returned by library functions that open or create files, used to 
refer to that file in later operations. 

file pointer 

A pointer that indicates the current position in an input or output 
stream. It is updated to reflect the new position each time a read or 
write operation takes place. 

formal parameters 

Variables that receive values passed to a function when the function is 
called. 

forward declaration 

A function declaration that establishes the attributes of a function so 
that it can be called before it is defined or called from a different 
source file. 

function 

A collection of declarations and statements returning a value that can 
be called by name. 

function body 

A compound statement containing the local variable declarations and 
statements of a function. 

function call 

An expression that passes control and actual arguments (if any) to a 
function. 

function declaration 

A declaration that establishes the name, return type, and storage class 
of a function that is defined explicitly elsewhere in the program. 

function definition 

A definition that specifies a function's name, its formal parameters, the 
declarations and statements that define what it does, and (optionally) 
its return type and storage class. 

function prototype 

A function declaration that includes a list of the names and types of 
formal parameters in the parentheses following the function name. 

291 



Microsoft C Optimizing Compiler User's Guide 

fundamental data types 

A set of basic C data types, which includes all integer, character, 
floating-point, and enumeration types. 

global 

See lifetime; visibility. 

heap 

An area of memory set aside for dynamic allocation by a program. 

huge memory model 

A memory model that allows for more than one code segment and 
more than one data segment and that allows individual data items to 
span more than one segment. 

incl ude file 

A text file that is merged into another text file using the # include 
preprocessor directive. 

internal level 

The parts of a C program within function declarations. 

keyword 

A word with a special, predefined meaning for the C compiler. 

level 

See internal level and external level. 

large memory model 

A memory model that allows for more than one segment of code and 
more than one segment of data, but with no individual data items 
spanning a single segment. 

library 

A file that stores related modules of compiled code. The linker extracts 
modules from the library and combines them with other program 
object modules to create executable program files. 

lifetime 

292 

The period, during program execution, within which a variable or 
function exists. An item with a "local" lifetime (a "local item") has 
storage and a defined value only within the block where the item is 
defined or declared. 



Glossary 

linked list 

A data structure consisting of a list of entries, each of which includes a 
pointer to the next entry. 

local 

See lifetime; visibility. 

loop optimization 

Optimizations that reduce the amount of code executed for each loop 
iteration in a program. 

low-level input and output routines 

Run-time library routines that perform unbuffered, unformatted I/O 
operations. 

lvalue 

An expression (such as a variable name) that refers to a memory loca­
tion and is required as the left-hand operand of an assignment opera­
tion or the single operand of a unary operator. 

macro 

An identifier defined in a # define preprocessor directive to represent 
another series of tokens. 

manifest constant 

An identifier defined in a # define preprocessor directive to represent a 
constant value. 

medium memory model 

A memory model that allows for more than one code segment and only 
one data segment. 

member 

One of the elements of a structure or union. 

memory model 

One of the models that specifies how memory is set up for program 
code and data. (See small memory model, medium memory 
model, compact memory model, large memory model, and huge 
memory model for descriptions of standard memory models.) 

MS-DOS interface functions 

Run-time library routines that provide access to MS-DOS interrupts 
and system calls. 

293 



Microsoft C Optimizing Compiler User's Guide 

multidimension'al array 

An array of arrays. 

NAN 

An abbreviation that stands for "not a number." The 8087 or 80287 
coprocessor generates NANs when the result of an operation cannot be 
represented in the IEEE format. For example, if you try to add two 
positive numbers whose sum is larger than the maximum value permit­
ted by the processor, the coprocessor returns a NAN instead of the 
sum. 

naming classes 

Categories that the language sets up to distinguish between the 
identifiers used for different kinds of items. 

new-line character 

The character used to mark the end of a line of a text file, or the 
escape sequence (\n) used to represent this character. In MS-DOS 
"text mode," carriage-return-line-feed (CR-LF) combinations are 
translated to into a single line-feed (LF) character on input, and line­
feed characters are translated to carriage-return-line-feed combina­
tions on output. 

null character 

The ASCII character encoded as the value 0, represented as the escape 
sequence (\0) in a source file. 

null pointer 

A pointer to nothing, expressed as the integer value O. 

object 

A region of memory that can be examined. A modifiable object can 
also have a value stored into it (that is, it can be altered as well as 
examined). 

object file 

A file containing relocatable machine code, created as the result of 
compiling a source file. 

operand 

A constant or variable value that is manipulated in an expression. 

294 



Glossa.ry 

operator 

One or more symbols that specify how the operand or operands of an 
expression are manipulated. 

overlay 

Part of a program that is read into memory from disk only if and when 
it is needed. 

parent process 

A process that generates a child process using one of the spawn, exec, 
or system families of run-time library functions. 

pass 

One of the three stages of compilation (preprocessing/parsing, code 
generation, and optimization), or the executable file that performs one 
of these stages. 

peephole optimization 

Optimizations performed on a small part of the generated code. 

pointers 

A variable containing the address of another variable. 

pragma 

An instruction to the compiler to perform a particular action at com­
pile time. 

precedence 

The relative position of an operator in the hierarchy that determines 
the order in which expressions are evaluated. 

preprocessor 

A text processor that manipulates the contents of a C source file dur­
ing the first phase of compilation. 

preprocessor directive 

See directive. 

process 

A program being executed by MS-DOS. 

2QS 



Microsoft C Optimizing Compiler User's Guide 

prototype 

See function prototype. 

RAM disk 

An area of memory that is used to load and save files in the same way 
as a disk drive but allows more rapid access to files than a disk drive. 
Unlike a disk drive, a RAM disk is not suitable for long-term storage 
becuase its contents are volatile: that is, they disappear if the machine 
is powered off. 

relocatable 

Not containing absolute addresses. 

run time 

The time during which a previously compiled and linked program is 
executing. 

run-time library 

A file containing the routines needed to implement certain functions of 
the Microsoft C language. 

scalar types 

In C, integral, enumerated, floating-point, and pointer types. 

scope 

The parts of a program in which an item can be referenced by name. 
The scope of an item may be limited to the file, function, block, or 
function prototype in which it appears. 

segment 

An area of memory, less than or equal to 64K, containing code or data. 

sequence point 

A point in a C program where all expressions lexically preceding the 
point are guaranteed to have been evaluated. 

side effects 

Changes in the state of objects that occur as a result of expression 
evaluation. 

sizeof operator 

296 

A C operator that can be used to determine the amount of storage, in 
bytes, associated with an identifier or a type. 



Glossa.ry 

small memory model 

A memory model that allows for only one code segment and only one 
data segment. 

source file 

A text file containing C-Ianguage code. 

stack 

A dynamically shrinking and expanding area of memory in which data 
items are stored in consecutive order and removed on a last-in, first­
out basis. 

stack probe 

A short routine called on entry to a function to verify that there is 
enough room in the program stack to allocate local variables required 
by the function and, if so, to allocate those variables. 

static 

A storage class that allows variables keep their values even after the 
program exits the block in which the variable is declared. 

stream functions 

Run-time library functions that treat data files and data items as 
"streams" of individual characters. 

string 

An array of characters, terminated by a null character (\ 0). 

string literal 

A string of characters and escape sequences delimited by double quotes 
(" "). Every string literal has a type of "array of char." An array of 
elements with char type. 

structure 

A set of elements, which may be of different types, grouped under a 
single name. 

structure member 

One of the elements of a structure. 

subscript expression 

An expression, usually used to reference array elements, representing 
an address that is offset from a specified base address by a given 
number of positions. 



Microsoft C Optimizing Compiler User's Guide 

symbolic constant 

See manifest constant. 

tag 

The name assigned to a structure, union, or enumeration type. 

ternary expression 

An expression consisting of three operands joined by the ternary (1' :) 
operator, used to evaluate either of two expressions depending on the 
value of a third expression. 

text mode 

The file-processing mode in which carriage-return-line-feed combina­
tions are converted to a single line-feed character on input and recon­
verted to carriage-return-line-feed combinations on output. 

token 

The most fundamental unit of a C source program that is meaningful 
to the compiler. 

two's complement 

A type of base-2 notation used to represent positive and negative 
numbers in which negative values are formed by complementing all 
bits and adding 1 to the results. 

type 

A description of a set of values; for example, a variable of type int can 
have any of a set of integer values within the range specified for the 
type on a particular machine. 

type cast 

An operation in which an operand of one type is converted to an 
operand of a different type. 

type checking 

An operation in which the compiler verifies that the operands of an 
operator are valid or that the actual arguments in a function call are 
of the same types as the corresponding formal parameters in the func­
tion definition and function prototype. 



Glossa.ry 

type declaration 

A declaration that defines the name and members of a structure or 
union type, or the name and enumeration set of an enumeration type. 

typedef declaration 

A declaration that defines a shorter or more meaningful name for an 
existing C data type or for a user-defined data type. Names defined in 
a typedef declaration are often referred to as "typedefs." 

type name 

A specification of a particular data type that appears in variable 
declarations, in the formal-parameter lists of function prototypes, in 
type casts, and in sizeof operations. 

unary expression 

An expression consisting of a single operand preceded or followed by a 
unary operator. 

unary operator 

An operator that takes a single operand. Unary operators in the C 
language are the complement operators (- - I), indirection operator 
(111){ increment (++) and decrement (--) operators, address-of operator 
(& J, and sizeot operator. The unary plus operator (+) is also imple­
mented syntactically, but has no semantics associated with it. 

union 

A set of values of different types that occupy the same storage space. 

unresolved reference 

A reference to a global or external variable or function that cannot be 
found, either in the modules being linked or in the libraries that are 
linked with those modules. 

usual arithmetic conversions 

Type conversions performed by the Microsoft C Optimizing Compiler 
on operands of integral or floating-point types in an expression to 
bring the operands to a common type. 

299 



Microsoft C Optimizing Compiler User's Guide 

visibility 

The characteristic of a variable or function that describes the parts of 
the program in which it can be referenced by name. An item has global 
visibility if it is visible in all source files constituting the program and 
local visibility in a single source file otherwise. 

white-space character 

Characters that delimit items in a C source program, including space, 
tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line 
characters. 

wild card 

300 

One of the MS-DOS characters (! and *) that can be expanded into one 
or more characters in file-name references. 



USER'S GUIDE INDEX 

* (asterisk), wild-card character, 130 
I (bar), 10 
{ } (braces) 10 
l ] (brackets \, 9 
1 (forward siash) option character 

eL,53 
linker, 119 

- (hyphen) option character, CL, 53 
? (question mark), wild-card character, 

130 
_ (underscore), in names, 61, 73 

80186/80188 processor, 81 
80286 processor, 81 
8087/80287 

coprocessor 
exceptions, 175 
math package, 164 
suppressing use of, 174 

library, 27 
87.Lffi,27 

/ A option, 152, 153, 154 
Abstract declarator, defined, 287 
lAC option, 54,141 
Address space, 217 
Addresses 

components, 138 
far, 138 
huge, 138 
near, 138 

Aggregate types, defined, 287 
jAH option, 54,143 
/AL option, 54, 142 
Alias checking, 89 
Alignment. See Storage alignment 
alloc_ text pragma, 159 
Alternate math library, 169 
/AM option, 54,141 
argc variable, 30, 42, 128 
Arguments 

argument-type list, defined, 287 
command line, 131 
linker options, 119 
listing options, 62 
macros, 280 
main function. See main function 
variable number of, 106, 183, 221 

Arguments (continued) 
wild card, on command line, 130 

Argument-type list, 86 
argv variable, 30, 42, 128 
lAS option, 54, 140 
Assembly-listing files 

creating, 61 
extensions, 62 
format, 71 

Asterisk (*), wild-card character, 31, 
130 

AUTOEXEC.BAT file, 26 
AUX (device name), 64 
/ Aw option, 109 

Back-up procedures, 15 
Bar (I), 10 
Base name, defined, 288 
/BATCH (lB) linker option, 121 
Batch files, Hh 
BEGDATA class name, 124 
Bibliography, 11 
\ BIN subdirectory, 24 
\BIN\SAMPLE subdirectory, 25, 26 
Binary mode, 31, 111 . 
BINMODE.OBJ, 25, 31, 111 
Bit fields, 215 
Bold font, 8 
Braces ({ d)' 10 
Brackets ]), 9 
BSS class name, 124 
Buffers parameter (CONFIG.SYS), 16, 

26, 37 
Byte length, 212 
Byte order, 214, 225 

j c option, 40, 57 
{C option, 80 
Cl.EXE file, 29 
C2.EXE file, 29 
C3.EXE file, 29 
Calling conventions 

C, 106, 183 
controlling 

cdecl keyword, 107 
fortran and pascal keywords, 107 
IGc option, 107 

F6RTRAN/Pascal, 106, 183 

301 



User's Guide Index 

Capital letters 
small, 10 
use of, 8 

Carriage-return-line-feed (CR-LF) 
translation, 111 

Case significance 
linker, 120, 123 

cdecl keyword 
defined, 107 
/Gcoption, used with, 184 
mclude files, used in, 100 
jZa option, used with, 99 

char type, changing default, 105 
Character 

classification, macros, 218 
set, 217 
types 

signed, 218 
unsigned, 218 

check_ stack pragma, 97, 106, 183 
CL command 

defined, 289 
exit codes, 192 
file processing, 48 
format, 48 
path specifications, 50 
stopping, 51 

CL environment variable, 51 
CL options 

80186/80188 or 80286 processors, 
using, 81 

lA, 152, 153, 154 
/AC, 54,141 
/AH,54, 143 
/AL, 54, 142 
/AM,54, 141 
lAS, 54,140 
assembly listing, 61 
lAw, 109 
/c,40, 57 
IC,80 
case sensitivity of, 50, 53 
command line, order, 54 
comments, preserving, 80 
constants and macros, defining, 75 
jD,75 
data segments, naming, 157, 159, 185 
data threshold, setting, 156 
debugging with Code View debugger, 

41,87 
debugging with SYMDEB debugger, 

87 
default char type, changing, 105 
default libraries, 55 
differences from linker options, 120 
jE,79 

302 

CL options (contz"nued) 
/EP, 79 
external names, restricting length of, 

103 
IF, 123 
/Fa, 61, 71 
/Fc,61 
/Fe,60 
iFI, 61 
floating point 

coprocessor, maximum efficiency 
with, 168 

coprocessor, maximum efficiency 
without, 169 

coprocessor, maximum precision 
with, 168 

coprocessor, maximum precision 
without, 167 

default, 167 
default libraries, 54, 165 
effects, 165 
flexibility, maximum, 172, 174 
function calls, 168, 169 
in-line instructions, 167, 168, 169, 

170 
library use, controlling, 170 

IFm, 61 
jFo, 58 
format, 53 
FORTRAN/Pascal, calling 

convention, 107 
IFPa, 55, 165, 169 
/FPc, 55, 165, 168 
/FPc87 , 55, 165, 169 
/FPi, 55, 165, 167 
/FPi87, 55, 165, 168 
jFs, 41,61 
function declarations, generating, 86 
IGO, 81 
/G1, 81 
/G2, 81 
/Gc, 107 
/Gs, 97, 106, 183 
/Gt, 156 
/Gw, 109 
/!!,103 
/HELP, 39, 56 
/1,80 
mclude files, searching for, 80 
IJ,105 
language extensions, disabling, 99 
line numbers, 87 
line width, 65 
Ilink, 48, 115 
linker information, passing, 115 
listing, 39, 56 



CL options (continued) 
maximum optimizatIOn, 89 
memory models 

code-pointer size, 153 
compact, 141 
data-pointer size, 153 
default libraries, 54 
huge, 143 
large, 142 
medium, 141 
rrrixed, 152, 153, 154 
segments, setting up, 109, 154 
small, 140 

naming 
executable files, 60 
modules, 157 
object files, 58 

jND, 157, 159, 185 
jNM, 157 
jNT, 157 
lOa, 89, 182 
ob j ect files 

labeling, 103 
naming, 58 
specifying, 48 

object listing, 61 
jOd, 41, 87, 93 
jOi, 89, 93, 181 
jOl, 89, 94, 182 
/Op, 95 
optimization 

alias checking, relaxing, 89, 182 
code size, 89, 96 
disabling, 41, 87, 93 
execution time, 89, 96, 181 
floating-point results, consistent, 

95 
intrinsic functions, 89, 93, 181 
loops, 89, 94, 182 
maximum, 96 
/Oi, 181 
program speed, 181 

option character 
forward slash (I), 53 
hyphen (-), 53 

jOs, 96 
lOt, 96,181 
jOx, 89, 96, 106 
/P,79 
page length, 65 
predefined identifiers, removing 

definitions of, 78 
preprocessed listing, 79 
preprocessor 

Ie, 80 
/D,75 

User's Guide Index 

CL options (continued) 
preprocessor {continued} 

/V and /u, 78 
[qc, 57 
QuickC 

debugging interrupts, 58 
null pointer, checking, 58 
Iqc, 57 
jZq,58 
'/Zr, 58 

/81,65 
source files, specifying, 48, 49, 56 
source listing, 41, 61 
source/object listing, 61 
/Sp, 65 
s£ecial keywords, disabling, 145 
/.~s,41, 66 
/St, 41, 66 
stack probes, removing, 97, 183 
standard places, ignoring, 81 
structure members, packing, 100 
subtitle, 41, 66 
suppressing 

library selection, 104, 172 
linking, 40, 57 

sIntax checking, 85 
lTc, 49, 56 
text segments, naming, 157 
titles, 41, 66 
jV and IU, 78 
'N,103 
Version 4.0, new for, 206 
Version 5.0, new for, 198 
/VVO,/VVl, !VV2, and /VV3, 84 
warning level, 84 
/X,80,81 
XENlX compatible, 109 
jZa, 99, 145 
jZd, 87, 123 
jZg, 86 
jZi, 41, 87, 123 
jZI, 104, 172 
jZp,loo 
/Zs,85 

Class names 
BEGDATA, 124 
BSS,124 
CODE, 124 
STACK, 124 

CL.ERR file, 30 
CL.EXE file, 29, 33 
CL.HLP file, 30 
CODE class name, 124 
Code pointers, mixed memory models, 

153 
Code size, optimization, 89, 96 

303 



User's Guide Index 

Code-helper library, 27 
;:CODEVIEW (fCO) linker option, 123 
Code View debugger 

CL option for, 41, 87 
executable file for, 28 
help file for, 30 
linker option for, 123 

Command line 
arguments 

executable file, 127 
maximum length, 128 
stored program header, 128 
suppressing processing of, 131 
wild cards in, 130 

CL,48 
error messages, 237 
length, maximum, 48, 286 

Commands 
CL, defined. See CL command 
MS-DOS 

PATH, 32, 36 
SET, 32, 36 

notational conventions, 8 
Comments, preserving, 80 
Compact memory models. See Memory 

models 
Compatibility 

floating-point options, 173 
mLIBC7.LIB, 175 
mLIBCE.LIB, 175 
XENIX options, 109 

Compilation 
conditional, 100 
error messages, 244 

Compiler 
differences, other compilers 

portability problems, 218 
differences, Version 4.0 

CL options, 206 
enhancements and additions, 203 
language changes, 204 
new library functions, 207 

differences, Version 5.0 
enhancements and additions, 195 
language changes, 196 
new CL options, 198 
new library functions, 199 
pragmas, new, 198 

documentation, 4 
error messages. See Error messages, 

compiler 
files, default directory, 24 
limits, 280 
naming conventions, 72 
passes, 29 
stopping, 48, 51 

304 

Compiler, converting from previous 
versions. See Compiler differences 

Compiler guide, organization, 4 
Compiler options. See CL options 
CON (device name), 64 
Conditional compilation, 76, 100 
CONFIG.SYS file, 26, 37 
Constants 

defining, 75 
manifest. See Constants, symbolic 
size, maximum, 280 
symbolic, 75 

Con trolling 
binary and text modes, 111 
linker, 119 
preprocessor, 78 
segments, 122 
stack size, 123 

Conventions, notational, 8 
Conversion 

near pointers to long integers, 205 
pointer arguments, 150 

Coprocessor, 8087/80287 
exceptions, 175 
math package for, 164 
suppressing use of, 175 

Correctable error messages, 244 
ICP ARMAXALLOC (fCP) linker 

option, 122 
CR-LF (carriage-return-line-feed) 

translation, 111 
CRTO.OBJ. See Start-up routine 
ctype.h macros, 218 
Customized memory models. See :Mixed 

memory models 
CV.ERR file, 30 
CV.EXE file, 29 
CV.HLP file, 30 

/D option, 75 
bata 

files 
binary, 31 
text, 31 

passing to programs, 127 
portability, 223 
segment 

data threshold, setting, 156 
default, contents, 156 
default name, 157 
mixed memory models, 154 
naming, 157 

types, size of, 212 
Data pointers, mixed memory models, 

153 



_ DATA segment, 157 
Data threshold, setting, 156 
Debugging, preparing for 

/CODEVIEW linker option, 123 
!Zi, IZd, and IOd options, 87 

Declarations, maximum level of 
nesting, 280 

Default libraries 
See also Libraries, default 
object files, used in, 117 
suppressing selection, 104, 172 

DEMO.C program, 31, 41 
Denormal numbers, 164, 284 
Device names, 64 
DGROUP group, 124, 157 
Differences from previous versions. See 

Compiler differences 
Directory names, notational 

conventions, 8 
Disks 

backing up, 15 
contents, 15 

Distribution disk, Master, 16, 17 
Documentation, compiler, 4 
/DOSSEG (lDO) linker option, 123 
bs register, 154 

/E option, 79 
Ellipses, use of, 9 
EM.Lill,27 
EMOEM.ASM 

file, 176 
program, 31 

Emulator 
described, 163 
function calls, 168 
in-line instructions, 167 
library, 27, 167, 168 

environ variable, 129 
Environment 

changing, 37 
portability problems, 222 
table 

pointer to, 129 
size, increasing, 37 
size, maximum, 286 
suppressing processing of, 131 

variable names, notational 
conventions, 8 

variables 
CL, 35, 51 
default settings, 26 
defined, 32 
defining, 36 
INCLUDE, 33, 35, 80 

User's Guide Index 

Environment (continued) 
variables (continued) 

Lill,33,35, 117 
NEW-VARS.BAT, 26 
overriding, 37 
PATH, 33, 34, 127 
SET, 127 
SETUP, 32 
TMP,33,35 
using, 33 

envp variable, 30, 42, 129 
/EP option, 79 
Error messages 

compiler 
command line, 237 
compilation, 244 
correctable, 244 
fatal, 243, 244 
identifying, 82 
redirecting, 83 
warning, 244, 269 

floating-point exceptions, 284 
format. See Error messages, compiler 
run time, 281 
run-time library, 281 
source listings, 67 
warning messages, setting level of, 84 

Errorlevel codes. See Exit codes 
ERROUT.EXE file, 29 
Evaluation order, 221 
Exception, 284 
exec function, 127, 131 
Executable files 

CL command and, 50 
command-line arguments, 127 
compiler and utilities, 28 
extensions, 28, 60 
invoking, 28 
naming, default, 60 
naming with CL, 60 
packing, 121 
passing data to, 127 
running, 127 
search path, 33 

Execution-time optimization, 89, 96, 
181 

EXEMOD.EXE file, 29 
/EXEPACK (/E) linker option, 121 
ExEPACK.E)ffi file, 29 
Exit code, 131, 191 
Extensions 

executable files, 60 
listing files, defaults for, 62 
map files, 62 
object files, 59 
object-listing files, 62 

305 



User's Guide Index 

Extensions (continued) 
source-listing files, 62 
source/object-listing files, 62 

External names, 103 

IF option, 123 
jFa option, 61, 71 
far keyword 

default addressing conventions, 144 
effects 

data declarations, 146, 184 
function declarations, 148 

library routines, used with, 145 
small-model programs, used in, 140 
/Za option, used with, 99 

Far pointers, 144 
/FARCALLTRANSLATION (/F) 

linker option, 122, 185 
Fatal-error messages, 243, 244 
IFc option, 61 
/Fe option, 60 
File names 

notational conventions, 8 
uppercase and lowercase letters, 

using, 50 
Files 

assembly listing, 61, 71 
AUTOEXEC.BAT, 26 
C1.EXE, 28 
C2.EXE,28 
C3.EXE,28 
CL.EXE,33 
compiler, 24 
CONFIG.SYS, 26, 37 
data. See Data files 
executable. See Executable files 
include. See Include files 
library, 30 
listing, preprocessed, 79 
locating, 32 
map 

creating, 61, 64, 122, 123 
default names, 62 
listing formats, 73 
/l'4AP linker option, 123 

number open, maximum, 286 
object 

See also Object files 
CL command, used with, 48, 50 
defined, 294 
listing, 61, 62, 71 

parameter (CONFIG.SYS), 16,26,37 
size, maximum, 286 
source, 48, 297 
source listing. See Source-listing files 

306 

Files (continued) 
source/object listing. See 

Source/object-listing files 
temporary 

space requirements, 280 
TMP,35 

IFI option, 61 
Floating point 

notloaded,282 
operations 

error messages, 284 
floating-point exceptions, 284 
optimizing for consistency in, 95 

options 
compatibility, 173 
coprocessor, maximum efficiency 

with, 168 
coprocessor, maximum efficiency 

without, 169 
coprocessor, maximum precision 

with, 168 
coprocessor, maximum precision 

without, 167 
default, 167 
default libraries, 55, 165 
effects, 165 
flexibility, maximum, 172, 174 
function calls, 168, 169 
in-line instructions, 167, 168, 169, 

170 
library, controlling use, 170 
listed, 165 
selecting, 54 

IFm option, 61 
jFo option, 58 
fortran keyword

7 
99, 107, 184 

Forward slash ( ) 
CL option character, 53 
linker option character, 119 

IFPa option, 55, 165, 169 
/FPc option, 55, 165, 168 
/FPc87 option, 55, 165, 169 
/FPi option, 55, 165, 167 
/FPi87 option, 55, 165, 168 
jFs option, 41, 61 
function pragma, 93 
Functions 

arguments, variable number of, 106, 
183, 221 

calling conventions 
C, 106, 183 
FORTRAN/Pascal, 106, 183 

declarations 
generating, 86 
near and far keywords, 148 



IGO option, 81 
/G1 option, 81 
/G2 option, 81 
jGc option, 107 
getenv function, 129 
Global symbols. See Public symbols 
IGs option, 97, 106, 183 
/Gt option, 156 
jGwoption, 109 

IH option, 103 
Heap, 30, 105 
/HELP option 

CL, 39, 56 
linker, 120 

Ihelp option. See /HELP option, CL 
Huge arrays, 143 
huge keyword 

data declarations, effects in, 146, 184 
default addressing conventions, 144 
library routines, used with, 145 
small-model programs, used in, 140, 

99 
Huge memory model. See Memory 

models 
Huge pointers, 144 
Hyphen (-), CL option character, 53 

II option, 80 
Identifier length. See Names, length 
Identifiers 

length, maximum, 280 
predefined 

listed, 77 
M..I86, 77 
M..I86xM,77 
MS-DOS, 77 
NO_EXT_KEYS, 78, 100 
removing definitions of, 78 

IF ERRORLEVEL (MS-DOS 
command), 132 

# include directive, 29 
Include files 

compiler, provided with, 29 
directory specification, 80 
nesting, maximum level of, 280 
portability problems, 212 
search path, 33, 80, 81 
standard places, 35 

\ INCLUDE subdirectory, 24 
\ INCLUDE\ SYS subdirectory, 24, 29 
INCLUDE variable 

defined,35 
overriding, 80, 81 

User's Guide Index 

Inexact, 284 
Infinities, 164 
/INFORMATION (II) linker option, 

121 
In-line instructions, 167, 168 
Instruction sets 

80186/80188 processor, 81 
80286 processor, 81 
8086/8088 processor, 81 

intrinSIC pragma, 93 
Italics, 9 

I J option, 105 
Kernighan, Brian W., 11 
Key sequences, notational conventions, 

10 
Keywords 

cdecl, 99, 107, 184 
defined, 292 
far. See far keyword 
fortran, 99, 184 
huge. See huge keyword 
near. See near keyword 
pascal, 99, 184 
special, 99 
Version 4.0, new for, 206 

Language extensions 
disabling, 99 
listed, 99 

Large memory model. See Memory 
models, large 

Lm library manager, 130 
Lm variable, 33, 117 
Lm.EXE file, 29 
mLmC7.LIB, 168, 169 
mLmCA.LIB, 168, 169 
mLmCE.LIB, 167, 168, 175 
mLmFA.LIB,27 
mLmFP .LIB, 27 
LmH.Lm,27 
Libraries 

8087/80287 package, 168, 169 
alternate math, 168, 169 
controlling use, 170, 171 
creating 

IFPc, compiling modules with, 169 
jZI, compiling modules with, 104, 

172 
default 

See a/so Default libraries 
directory, 24 
/FP and fA options, 55, 115 
Ignoring, 118, 121 

307 



User's Guide Index 

Libraries (continued) 
default (continued) 

overriding, 117 
suppressing selection, 104 

defined, 292 
emulator, 167, 168, 175 
mLIB07.LIB, 168, 169 
mLIBOA.LIB, 40, 168, 169 
mLIBOE.LIB, 167, 168, 175 
mixed-model programs, 155 
names in object files, 115, 165 
notational conventions, 25 
RAM disk, used with, 38 
run time, defined, 296 
search 

order, 171 
path, 33, 117 

SETUP 
math packages, choosing, 20 
memory models, choosing, 18 
naming conventions, 23 

specifying, 116 
standard, 56 
standard places, 35, 117 
uncombined 

8087/80287 floating point, 27 
87.LID,27 
alternate math, 27, 40 
code helper, 27 
corresponding combined libraries, 

27 
EM.LIB,27 
emulator, 27 
floating point, 27 
mLIBF A.LIB, 27 
mLIBFP.LIB, 27 
LIBH.LIB,27 
standard, 27 
using, reasons for, 26 

Library 
manager, 29 
routines 

exec, 127, 131, 230 
getenv, 129 
intrinsic forms, 93 
MS-DOS dependent, 229 
putenv, 129 
setmode, 111 
spawn, 127, 131, 230 
syntax, changes, 208 
system, 127 
Version 4.0, new for, 207 
Version 5.0, changed for, 201 
Version 5.0, new for, 199 

\ LIB subdirectory, 24 

308 

Limits 
compiler, 280 
run time, 286 

Line width, source listings, 65 
/LlNENUMBERS (ILl) linker option, 

123 
/link option, 48, 115 
tinker 

error messages, 82 
executable file for, 29 

Linker options 
abbreviations, 119, 120 
jB (lBATOH), 121 
case sensitivity, 120, 123 
OL options, differences from, 120 
/OODEVIEW (100), 123 
command line, order on, 120 
lOP ARMAXALLOO (LOP), 122 
debugging with OodeView debugger, 

123 
default libraries, ignoring, 118, 121 
displaying, 120 
/DOSSEG ( IDO), 123 
executable liles, packing, 121 
IEXEPAOK (IE1, 121 
IFAROALLT:RANSLATION (IF), 

122, 185 
IHELP (lHE), 120 
/INFORMATION (II), 121 
line numbers, displa~mg, 123 
/LlNENUMBERS (jLI), 123 
map file, 123 
~(IM), 123 
/NODEFAULTLIBRARYSEAROH 

(f.Nd·OD) b' . . l'b avOl mg am IgUlty m 1 rary 
customized memory models, 155 
defined, 121 
overriding default libraries, 1 

/NOF AROALLTRANSLATION 
(INOF),122 

IN01GNOREOASE (lNOI), 123 
INOPAOKOODE (lNOP), 122 
numerical arguments, 119 
optimizing intrasegment far calls, 

122 
/PAOKOODE (lPAO), 122, 186 
packing code segments, 122 
packing contiguous segments, 186 
paragraph space, allocating, 122 
jPAUSE (lP), 121 
pausing, 121 
process information, displaying, 121 
Quick library( creating, 121 
/QUIOKLIB /QU), 121 
rules, 119 



Linker options (continued) 
segments 

number of, 122 
ordering, 123 

/SEGMENTS USE), 122 
stack size, settmg, 102, 123 
/STACK (1ST), 102, 123 
suppressing prompting, 121 
translating far calls, 185 

LINK.EXE file, 29 
Listing CL options, 39, 56 
Listing files 

assembly, 61, 71 
map, 61 
object, 61, 71 
preprocessed, 79 
source, 61, 67 
source/object, 61, 72 

Long pomters. See Far pointers 
Loop optimization, 94, 182 
loop_ opt pragma, 89, 94, 182 

Macro definitions, 280 
Macros 

arguments, maximum number, 280 
character classification, 218 
defined, 75 
notational conventions, 8 

main function 
arguments to, 127 
exit codes, 131 

Map files 
creating, 61, 64, 123 
extensions, 62, 123 
jFm option, 64 
format, 73 
/MAP linker option, 123 
program entry point, 74 
segment lists, 73 
symbol tables, 74 

/MAP linker option, 123 
Math packages 

8087/80287 package, 164 
alternate math, 164 
emulator, 163 

Medium memory model. See Memory 
models 

Memory addresses. See Addresses 
Memory allocation, stack, 30 
Memory models 

CL options, 54 
compact, 54, 141, 289 
default, 137, 140, 167 
huge, 54, 143,292 
large, 54, 142, 292 

User's Guide Index 

Memory models (continued) 
medium, 54, 141, 293 
mixed. See Mixed memory models 
notational conventions for files, 25 
options 

code-pointer size, 153 
compact model, 141 
data-pointer size, 153 
default libraries, 55 
huge model, 143 
large model, 142 
medium model, 141 
segment setup, 154 
small model, 140 

small, 54, 137, 140 
standard 

advantages, 139 
common features, 140 
disadvantages, 139 

Version 4.0, new for, 206 
Memory models, customized. See Mixed 

memory models 
Memory-based disk emulator. See 

RAM disk 
M-186 identifier, 77 
M-186xM identifier, 77 
Mixed memory models 

code pointers, 153 
creating, 152 
data pointers, 153 
library support, 155 
near, far, huge keywords, 144 
segment setup options, 154 

Modules, naming, 1.57 
MS-DOS commands 

IF ERRORLEVEL, 132 
PATH, 32 
SET, 32 

MS-DOS, identifier, 77 

Names 
conventions, 108 
devices, 64 
executable files, 60 
external, 103 
global, 73 
length, 219 
modules, changing, 157 
object files, 58 
segments, changing, 157 
underscores (_), using in, 61, 73 

Naming conventions 
compiler, 72 
segments, 158 

309 



User's Guide Index 

NAN (not a number) 
alternate math package, used with, 

164 
defined, 294 

/ND option, 157, 159, 185 
near keyword 

data declarations, effects in, 146, 184 
default addressing conventions, 144 
function declarations, effects in, 148 
library routines, used with, 145 

Near pointer, 144 
Nesting 

declarations, 280 
include files, 280 
preprocessor directives, 280 

NEW-CONF.SYS file, 16, 26 
NEW-VARS.BAT file, 16,26 
/NM option, 157 
N087 variable, 174 
/NODEFAULTLIBRARYSEARCH 

(jNOD) linker option 
customized memory models, 155 
default libraries, overriding, 1 
defined, 121 

NO_EXT_KEYS, 77, 100 
/NOF ARCALLTRANSLATION 

( /NOF) linker option, 122 
/NO'.tGNORECASE (lNOI) linker 

option, 123 
/NOPACKCODE (jNOP) linker 

option, 122 
Not a number (NAN) 

alternate math package, used with, 
164 

defined, 294 
Notational conventions, 8 
/NT option, 157 
NuL (device name), 64 
Null pointer 

assignment, 132 
checks, suppressing, 132 

NULL segment, 132,282 
_ nullcheck library routine, 133 
Null-pointer assi~nment, 282 
10 (optimization) options, 89 
lOa option, CL, 89, 181 

Object files 
See also Files, object 
CL command, 48, 50 
default extension, 49, 56 
defined, 294 
extensions, 59 
labeling, 103 
library names in, 115, 165 

310 

Object files (continued) 
naming,58 
specifying to CL, 48 

Object listing. See Object-listing files 
Object-listing files 

creating, 61 
extensions, 62 
format, 71 

10d option, 41, 87 
/Oi option, 89, 181 
/01 option, 89, 94, 182 
'lOp option, 95 
Optimization 

alias checking, relaxing, 89, 182 
code size, 89, 96 
consistent floating-point results, 89, 

95 
default, 47, 96 
disabling, 87, 89, 93 
execution time, 89, 181 
IFPc87 option, effects of, 169 
mtrinsic functions, 93 
intrinsic pragmas, 181 
listing files, 63 
loops, 94, 182 
maximum, 89, 96 
options, 88 
stack probes, removing, 97, 183 

Optimizing. See Optimization 
Optional fields, notational conventions, 

9 
Options, CL. See CL options 
Options, linker. See Linker options 
lOs option, 96 
'lOt option, 96, 181 
Overlays, 116, 295 
Overview, 3 
lOx option, 89, 96, 106 

/P option, 79 
pack pragma, 100 
7PACKCODE (jPAC) linker option, 

122, 186 
Packing 

executable files, 121 
structure members, 100 

PACKING.LST file, 16 
Page length, source listings, 65 
Paragraph space, 122 
pascal keyword, 99, 107, 184 
PATH command, 32, 36 
Path names 

CL command line, 50 
notational conventions, 8 
portability problems, 212 



PATH variable, 33, 36, 127 
IP AUSE UP) linker option, 121 
Placeholders, 9 
Pointers 

arguments, size conversion, 150 
code, 153 
far, 144, 153 
huge, 144 
manipulation, 216 
near 

conversion to long integers, 205 
customized memory models, 153 
near keywords, used with, 144 

subtracting in huge-model programs, 
143 

Portability 
address space, 217 
bit fields, 215 
byte length, 212 
byte order, 214, 225 
case distinctions, 219 
character set, 217 
data, 223 
data types, size of, 212 
environment differences, 222 
evaluation order, 221 
functions with variable number of 

arguments, 221 
guidelines, 212 
hardware, 212 
identifier length, 219 
include files, 212 
path names, 212 
pointer manipulation, 216 
register variables, 219 
shift operations, 218 
side effects, 221 
sign extension, 218 
signed and unsigned char types, 218 
storage alignment, 213 
type conversion, 220 
word length, 212 

Practice session, 41 
Pragmas 

alloc_ text, 159 
check- stack, 97, 106, 183 
function, 93 
intrinsic, 93 
loop_ opt, 89, 94, 182 
pack, 100 
same_ seg, 159, 185 
Version 4.0, new for, 206 
Version 5.0, new for, 198 

Preprocessor 
macro arguments, maximum number 

of, 280 

User's Guide Index 

Preprocessor (continued) 
macro definitions, maximum size of, 

280 
nesting, maximum level of, 280 
options 

comments, preserving, 80 
/D,75 
predefined identifiers, removing 

definitions of, 78 
use, 75 

PRN (device name), 64 
Processors 

80186/80188, using, 81 
80286, using, 81 
8086/8088, using, 81 

Program header, 128 
Prompts, 10 
Public names. See External names; 

Public symbols 
Public symbols, listing, 64, 123 
putenv function, 129 

/qc o:{>tion, 57 
ZQU l/QUICKLIB) linker option, 121 
Question mark (1), wild-card character, 

31, 130 
QuickC. See CL options, QuickC 
Quotation marks, use of, 10 

RAM disk 
advantages, 38 
libraries, used for, 38 
temporary files, used for, 33, 35, 38 

Register variables, 179, 219 
Relocatable, defined, 296 
Return codes. See Exit Codes 
Ritchie, Dennis M., 11 
Run file. See Executable file 
Run time 

error messages, 281 
limits, 286 

same_ seg pragma, 159, 185 
Search paths 

changing 
CL options, using, 37 
include files, 81 
libraries, 117 

executable files, 33 
include files, 33, 35, 80 
libraries, 33, 117 
standard, 32 
temporary files, 35 

311 



User's Guide Index 

Segment lists 
map files, 73 
source listings, 71 

Segments 
data 

default name, 157 
mixed memory models, 154 
names, 157 
naming, 157 
threshold, effect of, 156 

default, 137 
defined, 137 
names, changing, 157 
naming conventions, 158 
NULL, 132, 282 
number allowed, 122 
order, 123 
setting up, 109, 154 
source listing, 71 
stack, 154 
text 

default name, 157 
naming, 157 

LSEGMENTS USE) linker option, 122 
SET command, 32, 36 
SET variable, 127 
_ setargv library routine, 131 
SETARGV.OBJ file, 25, 130 
SETENV utility, 37 
_ setenvp routine, 131 
setmode function, 111 
SETUP 

arguments, 18 
default file organization, 24 
disk, 16 
installation directories, choosing, 18 
libraries, naming, 23 
math packages, choosing, 20 
memory models, choosing, 18 
operations, 16 
PACKlNG.LST file, 16 
running, 17 

Shift operations, 218 
Short pointers. See Near pointers 
Side effects, 221 
Sign extension, 218 
Signed char type, 218 
sizeof operator, 143 
LSI option, 65 
Small capitals, use of, 10 
Small memory model. See Memory 

models 
Source files 

default extension, 49, 56 
defined, 297 
specifying to CL, 48 

312 

Source listing. See Source-listing files 
Source-listing files 

creating, 61 
described, 61 
error messages, 67 
extensions, 62 
format, 67, 68 
line width, 65 
page length, 65 
segment lists, 71 
subtitles, 66 
symbol tables, 69 
titles, 66 

Source I ob j ect-listing files 
creating, 61 
extensions, 62 
format, 72 

/Sp option, 65 
spawn function, 127, 131 
Special keywords, disabling, 145 
\ SRC subdirectory, 25 
iSs option, 41, 66 
SS register, 154 
LSt option, 41, 66 
Stack 

defined, 297 
fixed, 105 
memory allocation from, 30 
overflow, 281 
probes, 97, 183, 297 
s~gments, mixed memory models, 154 
SIze 

default for C programs, 102 
setting, 102, 123 

STACK class name, 124 
LSTACK (1ST) linker option, 102, 123 
Standard places 

changing, 81 
defined, 32 
ignoring, 81 
include .. files, 35 
libraries, 35, 117 
temporary files, 35 

Start-up 
routine, 30, 231 
source files, 32 

stdargv module, 130 
Storage alignment, 213 
Strings 

length, maximum, 280 
notational conventions, 10 

Structures, packing, 100 
Subdirectories 

\ BIN, 24 
\BIN\SAMPLE, 25, 26 
\ INCLUDE, 24 



Subdirectories (continued) 
\ INCLUDE\ SYS, 24, 29 
\Lill, 24 
\SRC, 25 

Subtitles, source listings, 66 
Switches. See Options 
Symbol tables 

map files, used in, 74 
object files, used in (jZi option), 87 
source listings, used m, 69 

SYMDEB debugger, CL option for, 87 
Syntax conventions. See Notational 

conventions 
system function, 127 
System-level definitions, 29 

fTc option, 48, 49, 56 
Temporary files 

compiler, after stopping, 51 
default directory, 24 
RAM disk, used for, 38 
removing, 26 
standard places, 35 

Text mode, 30, 111 
_ TEXT segment, 157 
Text segments 

default name, 157 
naming, 157 

Titles, source listings, 66 
TMP variable, 33, 35 
Two's complement, defined, 298 
Types 

checking, 86 
conversion, 220 

fU and /u options, 78 
Underflow, 284 
Underscore (_) in names, 61, 73 
Unsigned char type, 218 
Uppercase letters, use of, 8, 50 
Utilities 

default directory, 24 
ERROUT. See ERROUT.EXE 
EXEMOD. See EXEMOD.EXE 
EXEPACK. See EXEPACK.EXE 
LIB. See Lill.EXE 
LINK. See LINK.EXE 

N option, 103 
\T ariables, environment, 32 

See also Environment variables 
Variables, register. See Register 

variables 

User's Guide Index 

mV ARSTCK.OBJ file, 30, 105 
Vertical bar (I), 10 

fWO, jW1, /W2, and /W3 options, 84 
Warnmg error messages, 84, 244, 269 
Wild card 

arguments, 31, 130 
characters, 56 

Windows applications 
jAw option, 109 
/Gw option, 109 

IX option, 80, 81 
XENIX-compatible options, 109 

!Za option, 99, 145 
!Zd option, 87, 123 
!Zg option, 86 
!Zi option, 41, 87, 123 
!Zloption, 104, 172 
!Zp option, 100 
!Zq option, 58 
!Zr option, 58 
/Zs option, 85 

313 





MICROSOFT PRODUCT ASSISTANCE REQUEST 
Microsoft Product Support Services - Phone (206) 454-2030 

Instructions 

When you need assistance with a Microsoft pro­
duct, call our Product Support Services group at 
(206) 454-2030. So that we can answer your 
question as quickly as possible, please gather all 
infonnation that applies to your problem. Note or 
print out anyon-screen messages you get when the 
problem occurs. Have your manual and product 
disks close at hand and have all the infonnation 
requested on this form available when you calL 

Diagnosing a Problem 
So that we can assist you more effectively, please 
be prepared to answer the following questions 
regarding your problem, your software, and your 
hardware. 

1. Can you reproduce the problem? 
o yes 0 no 

2. Does the problem occur with another copy of 
the original disk of your Microsoft Software? 

o yes 0 no 

3. Does the problem occur with another system 
(if available)? 

o yes 0 no 

4. If you were running other windowing or 
memory-resident software at the same time, 
does the problem also occur when you don't use 
the other software? 

o yes 0 no 

Product 

Product name 

Version Number Registration Number 

Software 
Operating System 

NameNersion number 

Windowing Environment 
If you were running Microsoft Windows or another 
windowing environment, give name and number of 
windowing software: 

CD ROM Software 

N ameN ersion number 

Other Software 
NameNersion number of any other software you 
were running when problem occurred, including 
memory-resident software (such as keyboard 
enhancers or print spoolers): 



Hardware 
So that we can assist you more effectively, please 
be prepared to answer the following questions 
regarding your problem, your software, and your 
hardware. 

Computer 

Manufacturer/model 

Floppy-disk drives 
Number: 01 02 0 Other 
Size: 0 3 1/2" 0 5 1/4" 
Number of Sides: 01 02 

Total memory 

Density: 0 Single 0 Double 0 Quad 
Capacity: 
5 1/4": o 160K 0360K 0 1.2 megabytes 

3 1/2": 0 360K 0400K 0 720K 0 800K 
o 1.4 megabytes 

System Memory 

Manufacturer/model Total memory 

(If using DOS, you can run CHKDSK to determine 
the amount of memory available. If using Apple 
Macintosh Finder, select "About The Finder ... " 
from the Apple menu to determine the amount of 
memory available.) 

Peripherals 
Hard Disk 

Manufacturer/model 
Capacity(megabyte) 

Printer/Plotter 

Manufacturer/model 

o Serial o Parallel 

Printer peripherals, such as font cartridges, 
downloadable fonts, sheet feeders: 

Mouse 
Microsoft Mouse: 0 Bus 0 Serial OInPortrM 

o Other 

Manufacturer/model 

Boards 
o Add-on RAM board 

Manufacturer/model 

o Graphics-adapter board 

Manufacturer/model 

o Other boards installed 

Manufacturer/model 

Modem 

Manufacturer/model 

CD ROM Player 

Manufacturer/model 

Version of Microsoft MS-DOS® CD ROM 
Extensions: 

Network 
Is your system part of a network? 0 Yes 0 No 

Manufacturer/model 

What hardware and software does your network 
use? 


