Microsoft.

Microsort.

OpMIZING
(OMPILER

FOR THE MS-DOSe OPERATING SYSTEM

USER’S GUIDE

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose other than the purchaser’s personal use without the written permis-
sion of Microsoft Corporation.

© Copyright Microsoft Corporation, 1984-1987. All rights reserved. Simultaneously
published in the U.S. and Canada.

If you have comments about the software, complete the Product Assistance
Request form at the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen-
tation Feedback card at the back of this manual and return it to Microsoft Cor-
poration.

Microsofte ,‘MS®, MS-DOSe, CodeViewe, and XENIXe are registered trademarks
and QuickChw is a trademark of Microsoft Corporation.

AT&Te is a registered trademark of American Telephone & Telegraph Company.

DECe, PDPe, and VAXe are registered trademarks of the Digital Equipment Cor-
poration.

IBMe is a registered trademark of the International Business Machines Corpora-
tion.

Intel® is a registered trademark of Intel Corporation.
Olivettie is a registered trademark of Olivetti SpA.

Texas Instrumentse is a registered trademark of the Texas Instruments Corpora-
tion.

Turbo Pascalm is a trademark of Borland International, Inc.

UNIXe is a registered trademark of AT&T Bell Laboratories.

Wange is a registered trademark of Wang Laboratories Incorporated.
Z8000e is a registered trademark of Zilog, Inc.

Document No. 410840001-500-R04-0887A
Part No. 00177

OF (JONTENTS

IntrodUucCtion... e, 1

1.1 OVEIVIEW..eruierirrereeeeieeennrveteeeeessesunnasseseeeesessasassssssnns 3
1.2 About This Manual.......ccccevverrrovrrcerrnreererneererreeseeenn. 4
1.3 New Features....cccccieierrriinricireeeerecrereeeeeeereneeenssnsescenes 6
1.4 Notational Conventions.......cccceeervvrrrerrriererersaeeeeennns 8
1.5 Books about C............ vevreeeeseanns vereeeeeeeessassesssssnrnrranes 11
1.6 Requesting ASSISTANCE....uveeeeeeeiieerieieeieneeinieeeeerereeenens 11
2 Getting Started ..o 13
2.1 INtroduction.......eeceeeeeeerrreeeeereeecesnnneneneereeeesseanssssees 15
2.2 Backing Up Your DisKS..cccoveeeeieevrrrieireiceccieeeeeeeeen. 15
2.3 Disk Contents...ceeeeiieeiieeeeeeerenreineireeeteeeeeeeeesasneens 15
2.4 The SETUP Program......cccccceeeeeeernmmeeeeeneeeeeeeeeeessans 16
2.4.1 What SETUP Does ereernneearereessrenernnsasas 16
2.4.2 Running SETUPccevuueeiernneecrneereneceneseesenes 17

2.4.2.1 Choosing SETUP
Command-Line Options cc.ceevieveneineinnnenn. 18

2.4.2.2 Choosing Floating-Point

Math Packages...cccveveneeieiacienenenisacecenns 20

2.4.2.3 Adding Graphics
to Combined Libraries ccccveeeeveceecercacercnns 21
2.4.2.4 Building Libraries ceceeeeeeeeeeeseesnernnenncranns 22
2.4.2.5 Compiling Programs after Installation...... 23
2.4.3 Library-Naming ConventionS.....ccceveuveeceeereeeens 23
2.4.4 How SETUP Organizes Files..c.ccceeeeucrreerunceennns 24
2.4.5 Setting Up the Environmentccccevveeeeeruenareens 26

—io
e
(=Y

(CONTENTS

2.5

2.6
2.7
2.8

3.1

2.4.6 Using Uncombined Librariesccceveeeereneceenennes 26
2.4.7 Using the Microsoft C Graphics Library 28
Understanding the Compiler Software......ccccceuueeeen.. 28
2.5.1 Executable Files coeicvieereneerereeirnieieecceanceenneenens 28
2.5.2 Include Files...cccccrrrrereerieerenncereeernonceceeennenosaees 29
2.5.3 Library FileS..cccccccrerereeeereeeneeceeeeerncsscseennasonces 30
2.5.4 Other FileS..ccceerrrrrrereerererneecceceennennes eerrereeeens 30
2.5.5 The Compiler Environmentccceueeeeneeeeevnnecenns 32
2.5.6 Environment Variables..cccccceervrenieencinnerneeennnes 33
2.5.6.1 The PATH Variable ccccceiineirecercercnecenass 34
2.5.6.2 The LIB Variable cccevcesreriencecsercscnsaccnss 39
2.5.6.3 The INCLUDE Variable ...ccccvuuueiereeennnee. 35
2.5.6.4 The TMP Variable ccccveecerncincicnricncannnnans 35
2.5.6.5 The CL Variable...ccvcuuen. covssssscans covessnnes 39
2.5.6.6 Defining Environment Variables...c.cccecuee. 36

2.5.6.7 Environment Variables
and OL Options.ccceeceieicrcecincrcscecaasnenses 37
2.5.7 The CONFIG.SYS File.iuieiiieiainierecnieieneecanacnnns 37
Using 2 RAMDISK ...cooeeeeeeeinniieeeneennnnn. veeerereeerearennnns 38
Converting Existing C Programs........... veeerresesaaesesons 38
Sample Compiler Command Linesccoeevuveeeveenn. 39
2.8.1 Listing CL Options cccevereeeeerneseeereseerneceennns veeened9
2.8.2 Simple Compile and Link ...c..cceuuees cerrreeranens eeeeed0
2.8.3 Using Wild-Card Characters ..ceeceeeeeeerecennernecnes 40
2.8.4 Compiling without Linking...cceeeeererervneernerennnes 40
2.8.5 Using the Alternate Math Library ..c.cecceevvvveenee. 40
2.8.6 Preparing to Use the CodeView Debugger 41
2.8.7 Setting Titles and Subtitles ...ccceeevreeenne. cererserens 41
Practice Sessionueeeeeereeennns teresseernrraaeennnnnnnnnnrrsnens 41

Compiling with the
CL Command......coeeeeeeeernn oo 45

IO UCTION ceuevenienereeerererereneeennssscssscsnsssessososnssnnssnnns 47

3.2

3.3

The Basics:
Compiling and Linking C Programs..........cccceeeeeeeeee. 48
3.2.1 The CL Commandeeeeereeennneeeerenneereceeennnneees 48
3.2.1.1 Specifying Source and Object Filesueuens 48
3.2.1.2 Creating Executable Files c.cuceririeieriacnnnns o0
3.2.1.3 Stopping CL sivvireiiriercercrrcercoriassncensanses ol
3.2.2 Using the CL Environment Variable .c.cccocecuneaee ol
Using CL Options cecceevevreeeeeeeeeeerieninseeeeeeecesssssrnnens 53
3.3.1 Memory-Model (/A) and
Floating-Point (/FP) Options ...ccccceeeieeeeieniennne 04
3.3.2 Listing the Compiler Options (/HELP) o6
3.3.3 Specifying Source Files (/T¢) coveerrrernrecereennnne. 96
3.3.4 Compiling without Linking (/¢) eeoeeerivrrerienennn Y
3.3.5 Compiling with QuickC (/qc, /Zr, /ZQ).cereeee.... o7
3.3.6 Naming the Object File (/FO) cecovvrrrruevirrrnnnnne. o8
3.3.7 Naming the Executable File (/Fe) ..ccereeereinncne. 60
3.3.8 Creating Listing FileS..cccvererrrsrereereeeeererersecenns 61
3.3.8.1 Types of Listings
(/Fs, /F1, /Fa, /Fc, /FM) ceeeeereracrencrnnnens 61
3.3.8.2 Special File Names covceevrevcacercrensoscecesnns 64
3.3.8.3 Setting Line Width (/Sl)
and Page Length (/Sp).ceeeeerceniicnicnncinnees 65
3.3.8.4 Setting Titles (/St) and Subtitles (/Ss).....66
3.3.8.5 Formats for Listings ccesecercrercserccrsconscnane 67
3.3.9 Controlling the Preprocessor....ceceeeeeeeas sesosseses 75
3.3.9.1 Defining Constants and Macros (/D) 79
3.3.9.2 Predefined Identifiers.cccceeiicesncrcncecesecanes 77
3.3.9.3 Removing Definitions of
Predefined Identifiers (/U, /u)ceeiereieeneenes 78
3.3.9.4 Producing a Preprocessed
Listing (/P, /E, /EP) eeuevrreeirrrreniernnnnnnns 79
3.3.9.5 Preserving Comments (/C)eeuerrrreerresennnees 80
3.3.9.6 Searching for Include Files (/I, /X) ceeerunees 80
3.3.10 Using the 80186, 80188, or 80286 Processor
(/GO, /G, [G2) eeerrrrrvreeneerrrirenrnsievvuresessosenees 81
3.3.11 Checking for Program EITOTS ..cccevveereerveenaaeenne 82
3.3.11.1 Understanding Error Messages...cceeeereesens 82
3.3.11.2 Setting the Warning Level (/W, /w)......... 84
3.3.11.3 Checking Syntax (/Zs) cecerrerereereerecenennes 85

3.3.11.4 Generating Function Declarations (/Zg)....86

(CONTENTS

4.1
4.2
4.3

vi

3.3.12 Preparing for Debugging (/Zi, /Zd, /Od) 87
3.3.13 OptimizZing..eeeeeeeereneeeeereeereesessereencssesesesnesaseens 88
3.3.13.1 Controlling Optimization (/O Options)89
3.3.13.2 Removing Stack Probes (/Gs).ccuveercereeenes 97
3.3.14 Enabling and Disabling
Language Extensions (/Ze, /Za) cccvvvrrrreereerevenns 99
3.3.15 Packing Structure Members (/Zp) «oveveeeereerunne 100
3.3.16 Setting the Stack Size (/F) cecerrrrrrrrrrrrrrenroncnns 102
3.3.17 Restricting the Length
of External Names (/H) cccoovvrrnrerreeeeeeriirsinnnns 103
3.3.18 Labeling the Object File (/V)eeeevrrvrrreeereeereen. 103
3.3.19 Suppressing Default-Library Selection (/Zl)....104
3.3.20 Changing the Default char Type (/J).eeeeeeeeeee. 105
3.3.21 Controlling Stack and Heap Allocation 105
3.3.22 Controlling the
Calling Convention (/Ge) .eeeeeeeeeeereereeeeeerannene 106
3.3.23 Compiling for
Windows Applications (/AW, /GW)..ceveeeerenneee 109
3.3.24 XENIX-Compatible Options .uceceveeeereeeeeranenns 109
Controlling Binary and Text Modes.........ccceereranneee 111
Linking with
the CL Command............... 113
INtroduction ..ccc.uuveeeeeecrieeerrncrnereencrneeeeessscnerecensaes 115
The Default Linking Process....ccccccccveeeeeecrveeeenennne 115
Passing Linker Information:
The /link Option......ceeeeverceveiereineeseneriniseesenaeee 115
4.3.1 Specifying Libraries.ccecceeeceeneeeeneeceeccenecranasenns 116
4.3.1.1 Linking with Additional Libraries.......... 117
4.3.1.2 Looking in Different Locations
fOr LiDTarieS eeeerereerenereneacsncssvsosaronsans 117
4.3.1.3 Opverriding Libraries Named
in Object Files.ccoviiererrriereiesecececennens 117
4.3.2 Specifying Linker Options ..cccceeeeeeeeceeecserencnns 119
4.3.2.1 Defining Linker Options on
the CL Command Line coouceeneeiececarannnns 119
4.3.2.2 Defining Linker Options in
the Environment ..cceceeessuccsecnecnccecionenns 120

4.4
o

9.1
9.2

9.3
5.4

6.1
6.2
6.3

6.4

6.5

6.6

Linker Options.....ccceevvereeeeeeiersecsrserreceressecsesssnnnens 120

Running C Programs
on MS-DOS......encrerrnnsisnnienn, 125

INtroduction . ..ccceeeeeeerereeeriiiiricrcreenranaeesenens 127
Passing Command-Line
Data to a Programieieiiiiiiiiiiiiiiiiiniiiieiecnnns 127
5.2.1 Expanding Wild-Card Arguments.....c..eeevrnnn. 130
5.2.2 Suppressing Command-Line Processing.......... 131
Returning an EXit Code ..ccccouvreierevvneerieiirinneniaennnns 131
Suppressing Null-Pointer Checks......cccceeiiereeeannnee. 132
Working with Memory Models.......135
Introductionccceceeeeeeieeieeiriiinrrreeeeeececreeeeeeee e 137
Near, Far, and Huge Addressingcceeeeeeereeeeennnne. 137
Using the Standard Memory Modelscccceeeennenes 139
6.3.1 Creating Small-Model Programscceceeeveeenens 140
6.3.2 Creating Medium-Model Programscceeeevees 141
6.3.3 Creating Compact-Model Programsc....... 141
6.3.4 Creating Large-Model Programsccccceeeunennens 142
6.3.5 Creating Huge-Model Programs...c...cceeeevveennn. 143
Using the near, far, and huge Keywords.......cccevueees 144
6.4.1 Library Support for near, far, and huge 145
6.4.2 Declaring Data with near, far, and huge......... 146
6.4.3 Declaring Functions with the

near and far Keywordseeeveeereeeeeeneraneennennes 148
6.4.4 Pointer CONVETSIONS cuuuiecervecereeneserrssorerenssenes 150
Creating Customized Memory Models.......ccccouvuueee. 152
6.5.1 Code PoINtErS..cuueeeeeeeereeeeeeerrarsessccsssasaeernnnses 153
6.5.2 Data POINtETrS ceevureeerrrereneeeeeerrrerreseesnennseessnens 153
6.5.3 Setting Up Segments .ccceeeereeerurneceeeeerennaeesenens 154
6.5.4 Library Support for Customized

Memory Models .ocevueeeeeneeeeeenieeeerneeeeeeneeeenennns 155
Setting the Data Threshold.......ccccvereeivieierenannnnne 156

vii

(CONTENTS

7.1
7.2

7.3

74

7.5

7.6
7.7

8.1
8.2
8.3

viii

Naming Modules and Segments......ccccceeevvvererecnneee. 157
Specifying Text and

Data Segments.....cccevvvvveerereeeeeeneeeineeenns teeeeereeraenanes 159
Controlling Floating-Point

Math Operations ..., 161
Introductionceeeeeeeeeeieieceeeccceecceecceceee e, 163
Summary of Math Packages.....cccceeeeevvrnrrreneeeennnne. 163
7.2.1 The Emulator Package .ccoceeveereeeernreeervnneennne 163
7.2.2 The 8087/80287 Package ..ccccevrsssrerreeeeeceneannee 164
7.2.3 The Alternate Math Package ...cccceeeervereneennne. 164
Selecting Floating-Point (/FP) Options 165
7.3.1 The /FPi Option.ccccceiieieineiriieieecccreeceennennns 167
7.3.2 The /FPi87 Option cceoverveeerereeierisrrnnneeeeecnnns 168
7.3.3 The /FPc Option cceieveeciriiiiiiiiiiiiincnneennnnnennnns 168
7.3.4 The /FPc87 Option...uueeeeeeeereiriririrsnneneneenenes 169
7.3.5 The /FPa Option..cccovvrrvsrrrusurennssssiessrcnnnns 169
Library Considerations

for Floating-Point Options......ccccceeeeeeeeeeecrvnveennenene. 170
7.4.1 In-Line Instructions or Calls..c..ccccvereerrvvneennne. 170
7.4.2 Using One Standard Library for Linking 170
Compatibility between

Floating-Point Optionscccccceeevvveeecvvveceeccnnerennen. 173
Using the NO87 Environment Variable.................. 174
If Your Computer Is Not IBM Compatible............. 175
Improving Program Speed............ 177
Introductionceeieiiiiiiiiiiiieicceree e 179
Using Register Variablesccoovvveeeeicnvneeieecnnnnnenne. 179
Optimization Options

and Pragmascoooeeeeeeeeeeeeeeecc s 181
8.3.1 Default Optimizationceeeeereereerenneeereenennens 181
8.3.2 Generating Intrinsic Functions...ccceeeeeeeeenennn. 181

8.4

8.9

8.6

8.3.3 Relaxing Alias ChecKing .ccooeeveerereevererereeanens 182
8.3.4 Performing Loop Optimizations..cc.ceeeernreerennns 182
8.3.5 Removing Stack Probes..c.cccceeeereveecerrennaerenees 183
8.3.6 Maximum Optimization.....eceeveerereeerernneeeennes 183
Choosing the)
Function-Calling Conventioncccecceeeereevueeernnnnne 183
Efficiency in Large Data ModelS....cceeeeeereieninnnenenee. 184
8.5.1 Changing Addressing with near, far,

and huge KeyWords...ceeeeeveeereneeerverreereenceenns 184
8.5.2 Setting the Data Threshold....ccceeeuieruernnnnnnnee 185
8.5.3 Controlling Segments Used

for AlloCation ceeeeecerrerererenecerenserseeccorernnoceennns 185
Efficiency in Large Code Models.....cccceeerererunaneneeen. 185

Appendixes

A

Al
A2
A3

B

B.1
B.2

Using Exit Codes......cervceereeraee, 189
Introductioneeeeeieiieeiiiieieeeeeerirceereeeeeeeeeeneeraaee 191
Exit Codes with MS-DOS Batch Files 191
Compiler Exit Codes .uueeeeerrrrreereeerivrereeseerreeerenennne 192
Converting from Previous
Versions of the Compiler................ 193
INtroduction ..cciceiiiieiieiiiiiiiiiiieceeeceereeeeeeeeerereeceeeeeens 195
Differences between Versions 5.0 and 4.0................ 195
B.2.1 Enhancements and AdditionS...ccceeevervneeenrnnnes 195
B.2.2 Changes to the Language SyntaX...c.cccceveenenen. 196
B.2.3 New Features for the MS-DOS
Implementation of C ...ceveeereeeiererenierenneeenennn 198
B.2.4 Changed Library RoOutines ...cccceveerereeernuneenens 199
B.2.4.1 Graphics ROUtineS..ceevreeeravererarneeeranees 199
B.2.4.2 Heap-Checking Functions ..cccveeeeviavencnns 199
B.2.4.3 DOS and BIOS Interface Functions........ 200

ix

ANTENTS

B.3

C1
C2
C.3

C4

C.H
C.6
C7
C8

B.2.4.4 Other New Functions...cccceecesvrcncecraseces 200

B.2.4.5 New Include Files.ccccviiciirnniiieriiinncnass 201
Differences between Versions 4.0 and 3.0................ 203
B.3.1 Enhancements and Additions....ccccecevevvvvvnenne. 203
B.3.2 Changes in the Language SyntaX.......cceeeeennen. 204
B.3.3 New Features for the MS-DOS

Implementation of C ..cevveveiereienniirncerneeenennns 206
B.3.4 New Library Routines and Include Files......... 207
B.3.5 Changes in Library-Function Syntax 208
Writing Portable Programs.............. 209
Introduction......ccceeieeeeiiiiiinnnireiceieecereeecrerenneae 211
Program Portabilitycccccceeeeeeneiirviinnececieciciennnnns 212
Machine Hardwarecvvvveeevveeeiereeeeerneereeeeeeeneenenens 212
C.3.1 Byte Length weceverrueeenieennieenneeenneecnnenesneeennns 212
C.3.2 Word Length ceceueeereeeeiereenieeennneereeecccecennenennns 212
C.3.3 Storage Alignment ceeveeeeenreeererneeeereeecerrseneenans 213
C.3.4 Byte Order in 2 Word...ccceeeeeeeeerinncenncencennnns 214
C.3.5 Bit FieldS ceccecerecreirecaceriiicnceceerecncassosececacaes 215
C.3.6 POINLEIS cevveerrierrirererteerneerneeeersecessenceesecsncens 216
C.3.7 Address SPACE wueeerreererienecsernncrrranossonnseennons 217
C.3.8 Character Set ceccveceeeeerneererceenrerrnceeneceneesnons 217
Compiler Differencescooevvveeeeiervrveeereccreeeeeennnnne 218
C.4.1 Signed/Unsigned char and Sign Extension218
C.4.2 Shift Operations «.cceeceerecrenecreneeenrecssecesenneeneces 218
C.4.3 Identifier Length ..ccceeeeuneernnereneerniecenneeenanenens 219
C.4.4 Register Variables ccceeeeeeceeererenerenieceneeennennens 219
C.4.5 Type COnvVersioN..ceeceereceserenereereessecessesenncens 220
C.4.6 Functions with a Variable

Number of Arguments ...ceeeeeeeeerneeeecceveserannnns 221
C.4.7 Side Effects and Evaluation Order...cc.cceeeuees 221
Environment Differencescceeeeeeeeevvvinnneeeeeereennne. 222
Portability of Data......ccccvceeeeeiieiererrrnininneeeceeenennnnn. 223
Type-Size SUMMATYceeeeeeeeeeeeeeeerrrrrnneeceesesenasenanns 223
Byte-Ordering SUmmAaryeeeeeeeeeeerneneeeeeseseesecsnes 225

D

Writing Programs

for Read-Only Memory ... 227
D.1 Introduction ...c..cccececeeeeeeieeiecrennnnreeeecseeseersneeeeeeecens 229
D.2 MS-DOS-Dependent
Library ROUtinesccciiieieeiiiiieinnineieeinieeiieenieneeeeennn 229
D.3 Floating-Point Math Support.......cccceeveeeevvneeeeceennn. 230
D.4 Modifying Start-Up Code....cccveeeeeeerervveerirreerconnnen. 231
E Error Messages...... e, 235
E.1l Introduction....c..ccccecerreeeeeriereeennrnnenieeeeesceeninnneseeeens 237
E.2 Command-Line Error Messages.....ccccevieeeerernneveennnn 237
E.2.1 Command-Line
Fatal-Error MeSSages .oceererereereecerrsneseeenneesenens 238
E.2.2 Command-Line Error Messages...c.ceeeeeieernnnnnees 238
E.2.3 Command-Line Warning Messages....ccceeervenen. 241
E.3 Compiler Error Messages......coovvvveeereeeerersvrnenreneeenns 243
E.3.1 Fatal-Error Messages..cceeeerrereeeeeennereraecenecenns 244
E.3.2 Compilation-Error Messages....ccccrvuveeererernnenees 251
E.3.3 Warning MessageS..ceeeereeererrsseennneersraneessanens 269
E.3.4 Compiler Limits .cccreeeeerueeereenneeerreneerereneessnnnns 280
E.4 Run-Time Error Messagesccccvvuvvvrvreceiieeiereeeennnnne. 281
E.4.1 Run-Time-Library Error Messagescccceevenenne. 281
E.4.2 Floating-Point EXceptions ..ceeeeereeieeereneennenees 284
E.4.3 Run-Time Limits.ceeecerureererueieeenneeeeenrareennenens 286
GLOSSATY ..o 287
INAEX oo 301

x1

CONTENTS

Table 2.1
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7

Table 5.1
Table 6.1

Table 6.2

Table 6.3
Table 7.1
Table C.1
Table C.2
Table C.3
Table D.1
Table E.1
Table E.2

xii

Tables

Default Environment Settings.......ccccevvuveenene. 26
CL Options and Default Libraries.................. 59
Default File Names and Extensions................ 62
Arguments to Listing Options......ccceeeeeerennnn. 63
Using the loop—opt Pragma.........ccccevuuuveeen.. 95
Using the check_stack Pragma...................... 98
Using the pack Pragma.....cccccoveunvrrnveenencenne. 101
XENIX Options Accepted

by the CL Command.........ccceeeeeeeereenneeeennennen. 110
Argument Variables......ccccceveveeerivnnrennecennnn. 128
Addressing of Code and Data

Declared with near, far, and huge................. 144
Start-Up Routines for

Customized Memory Modelsccovuurreneenen. 156
Segment-Naming Conventions........ccceeeueeee. 158
Summary of Floating-Point Optlons 166
C TYPE SIZES ceuvrreeerrrrreeercrieeeeereesreeeeesssnnns 224
Byte Ordering for Short Types....cccoveeveeeeen. 225
Byte Ordering for Long Types....cccccveeeeeeren. 225
MS-DOS-Dependent Library Routines 229
Limits Imposed by the C Compiler............... 280
Program Limits at Run Time......ccccccvvveneanee. 286

INTRODUCTION

OV OTVIOW ettt eeeranesneseesonsenereneensennens.

[

About This Manual oo
New Features

0 0068580660000060600600000000006060600

p—

Notational Conventions...ooooooceven...

t

\or

RBooks aboul Clrrorciriiien.

—_—

e

ﬁ' hY Y 3 H 3 C
Requesting As

8060000000600 0600006008 s

0050000000000 000c000 00

cecc00000608600000000000

[

Introduction

1.1 Overview

The C language is a powerful general-purpose programming language that
can generate efficient, compact, and portable code. The Microsofte C
Optimizing Compiler for the MS-DOSe operating system is a full imple-
mentation of the C language as defined by its authors, Brian W. Ker-
nighan and Dennis M. Ritchie, in The C Programming Language. Micro-
soft Corporation is actively involved in the development of the ANSI
(American National Standards Institute) standard for the C language; this
version of Microsoft C anticipates and conforms to the forthcoming stan-
dard in many areas.

Microsoft C offers several important features to help you increase the
efficiency of your C programs. You can choose between five standard
memory models (small, medium, compact, large, and huge) to set up the
combination of data and code storage that best suits your program. For
flexibility and even greater efficiency, the Microsoft C Optimizing Com-
piler allows you to “mix” memory models by using special declarations in
your program.

The C language itself does not provide such standard features as input
and output capabilities and string-manipulation features. These capa-
bilities are provided as part of the run-time library of functions that
accompanies the Microsoft C Optimizing Compiler. Because the functions
that require interaction with the operating system (for example, input and
output) are logically separate from the language itself, the C language

is especially suited for producing portable code.

The portability of your Microsoft C programs is increased by the use of a
common run-time library for MS-DOS and XENIXe installations. Using
the routines in this library, you can transport programs easily from a
XENIX development environment to an MS-DOS machine, or vice versa.
See Appendix B of the Microsoft C Run-Time Library Reference (included
in this package) for more information on the common library for MS-DOS
and XENIX.

Compared with other programming languages, C is extremely flexible con-
cerning data conversions and nonstandard constructions. The Microsoft C
Optimizing Compiler offers several levels of warnings to help you control
this flexibility; programs in an early stage of development can be processed
using the full warning capabilities of the compiler to catch mistakes and
unintentional data conversions. The experienced C programmer can use a
lower warning level for programs that contain intentionally nonstandard
constructions. See Section 3.3.11.2 for more information about this
feature.

Microsoft C Optimizing Compiler User’s Guide

1.2 About This Manual

This manual explains how to use the Microsoft C Optimizing Compiler to
compile, link, and run C programs on your MS-DOS system. The manual
assumes that you are familiar with the C language and with MS-DOS, and
that you know how to create and edit a C-language source file on your
system. .

Note

Since MS-DOS and PC-DOS are essentially the same operating system,
Microsoft manuals use the term MS-DOS to refer to both systems,
except in those cases where the distinction is significant.

If you have questions about the C language, turn to the Microsoft C Quick
Reference Guide included in this package. The Microsoft C Run-Time
Library Reference documents the run-time library routines you can use in
your C programs. The Microsoft CodeView and Utilities manual explains
how to use the CodeVieww symbolic debugger and the other utilities pro-
vided in the Microsoft C Optimizing Compiler package. The Microsoft
Mized-Language Programming Guide explains how to mix modules written
in Microsoft C, Microsoft FORTRAN, Microsoft Pascal, and Microsoft
BASIC. For more information about programming in the C language, refer
to Section 1.5, “Books about C.”

The following list gives brief descriptions of the remaining chapters of the
Microsoft C Optimizing Compiler User’s Guide:

Chapter 2, “Getting Started,” covers installation and organization of the
compiler software. This chapter explains how to set up an operating
environment for the compiler by defining environment variables, and
includes a practice session to acquaint you with the Microsoft C Optimiz-
ing Compiler.

Chapter 3, “Compiling with the CL. Command,” discusses the process of
compiling a program using the CL compiler driver. This chapter describes
the options most commonly used to control preprocessing, compiling, and
output of files

Chapter 4, “Linking with the CL. Command,” describes how to link object
files using the CL command. This chapter explains how the linker searches
for libraries, shows how to specify libraries for linking, and describes the
linker options that can be used for C programs.

Introduction

Chapter 5, “Running C Programs on MS-DOS,” explains how to run your
executable program file, and discusses features specific to the MS-DOS
implementation of C. The chapter tells how to pass data from MS-DOS to

a program at execution time, and how to return an exit code from your
program to MS-DOS.

Chapter 6, “Working with Memory Models,” describes methods of manag-
ing memory models. These methods are useful for writing large programs
that use more than 64K (kilobytes) of code or data. This chapter also |
discusses “mixed-model” programming (combining features from the five
standard memory models).

Chapter 7, “Controlling Floating-Point Math Operations,” describes the
options of the CL command that control how Microsoft C programs han-
dle floating-point math and the libraries that support it.

Chapter 8, “Improving Program Speed,” gives suggestions and hints for
maximizing program speed.

Appendix A, “Using Exit Codes,” lists the exit codes produced by the
Microsoft C Optimizing Compiler. The chapter also briefly discusses how
exit codes are used in description files for the MAKE program mainte-
nance utility and in batch files.

Appendix B, “Converting from Previous Versions of the Compiler,” sum-
marizes the differences between Version 5.0 of the Microsoft C Optimizing
Compiler and previous versions. This appendix gives instructions for con-
verting programs written for versions prior to 5.0 to the format accepted
by Version 5.0.

Appendix C, “Writing Portable Programs,” lists some of the C language
features that are implementation dependent, and offers suggestions for
increasing program portability.

Appendix D, “Writing Programs for Read-Only Memory,” gives informa-
tion about modifying start-up code and initializing floating-point support
for programs that will be put in read-only memory.

Appendix E, “Error Messages,” lists and describes the error messages gen-
erated by the Microsoft C Optimizing Compiler and by the CL command.
It also lists and explains run-time error messages produced by executable
programs written in C.

Microsoft C Optimizing Compiler User’s Guide

1.3 New Features

Several useful new features have been added to Version 5.0 of the Micro-
soft C Optimizing Compiler. This section summarizes features added since
Version 4.0. For information about differences between Version 5.0 and
versions prior to 4.0, see Appendix B, “Converting from Previous Versions

of the Compiler.”

The ‘new features include the following:

Feature

Description

Microsoft QuickC
Compiler

SETUP program

Combined run-
time libraries

New CL options

The Microsoft QuickC Compiler is bundled with
Version 5.0 of the Microsoft C Optimizing Com-
piler. The Microsoft QuickC Compiler provides
an integrated programming environment includ-
ing program editor, compiler, debugger, and
integrated program- and library-maintenance
facilities.

Batch files to automate installation of the
Microsoft C Optimizing Compiler.

Combined run-time libraries built by the instal-
lation program that include both standard
library support and floating-point math support.

Option Action

/Oi Generates intrinsic forms for
certain library functions

/Ol Enables loop optimizations

/Op Forces consistent precision in

the results of floating-point
math operations

/ac Specifies compilation with the
Microsoft QuickC Compiler

/Sl Specifies line width for source
listings

/Sp Specifies lines per page for
source listings

/Ss Spectfies subtitles for source
listings

const keyword

New pragmas

New
INFORMATION
inker option

Language changes

Introduction

/St Specifies titles for source list-
ings
/Te Specifies C source files for files

without .C extensions
/Zp Specifies structure packing on
given byte boundaries

Declares that a value will not change during
program execution.

Pragma Action

alloc_text Names the code segment
used to allocate specified
functions

function Disables intrinsic-function
generation for particular
functions

intrinsic Specifies functions that will
have intrinsic forms gen-
erated

loop—opt Controls program loop

optimization on a local basis

pack Specifies byte boundaries for
structure packing

same_seg Provides information about
far data allocation that the
compiler uses to perform.
optimizations

Displays information about the linking process.
See Section 12.2.3 of the Microsoft CodeView
and Utilities manual for more information.

The C language syntax and semantics have been
modified in certain cases to correspond with
recent updates to the Draft Proposed American
National Standard—Programming Language C
(hereinafter referred to as “the ANSI C stan-
dard”). See Appendix B, “Converting from Pre-
vious Versions of the Compiler,” and Appendix
A of the Microsoft C Language Reference for
more information.

Microsoft C Optimizing Compiler User’s Guide

New library
functions

All library functions defined in the the ANSI C
standard are supported except the functions
added for international-language support. Some
existing functions have been modified and
enhanced. In addition, a set of graphics func-
tions has been added. See Appendix B, “Con-
verting from Previous Versions of the Com-
piler,” and the Microsoft C Run-Time Library
Reference for more information.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Example
of Convention

Description
of Convention

Examples

Language
elements

COMMANDS,
FILES,
REGISTERS,

ENVIRONMENT,

VARIABLES, and
MACROS

The typeface shown in the left column is used
to simulate the appearance of information
that would be printed on the screen or by the
printer. For example, the following command
line is printed in this special typeface:

CL /FoOUT.OBJ /DTRUE=1 FILE.C

When discussing this command line in text,
items appearing on the command line, such as
OUT.OBJ, also appear in the special typeface.

Bold type indicates elements of the C
language that must appear in source pro-
grams as shown. Text that is normally shown
in bold type includes operators, keywords,
library functions, commands, options, and
preprocessor directives. Examples are shown
below:

+= if defined() int
if Fa fopen
main sizeof

Bold capital letters are used for the names of
executable files and files provided with the
product, and for environment variables, sym-
bolic constants, and macros, Commands
typed at the MS-DOS level are also capital-
ized. These commands include built-in MS-
DOS commands such as SET, as well as

placeholders

Missing code

[optional items]

Introduction

program names such as CL, LINK, and LIB.
You are not required to use capital letters
when you actually enter these commands.

Words in italics are placeholders that you
must supply in command-line and option
specifications and in the text for types of
information. Consider the following option:

/H number

Note that number is italicized to indicate that
it represents a general form for the /H
option. In an actual command, you would
supply a particular number for the place-
holder number.

Occasionally, italics are also used to
emphasize particular words in the text.

Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following
excerpt, the ellipses between the statements
indicate that intervening program lines occur
but are not shown:

count = O;

*pct+;

Double square brackets enclose optional fields
in command-line and option specifications.
Consider the following option specification:

/D identifier]= [string]]

The placeholder identifier indicates that you
must supply an identifier when you use the
/D option. The outer square brackets indi-
cate that you are not required to supply an
equal sign ’&‘) and a string following the
identifier. The inner square brackets indicate
that you are not required to enter a string fol-
lowing the equal sign, but if you do supply a
string, you must also supply the equal sign.

Single square brackets are used in C-language
array declarations and subscript expressions.
For instance, a[10] is an example of brack-
ets in a C subscript expression.

Microsoft C Optimizing Compiler User’s Guide

10

Repeating
elements...

{ choicel|choice2}

“Defined terms”

KEY+KEY

Horizontal ellipses are used in syntax exam-
ples to indicate that more items having the
same form may be entered. For example,
several paths can be specified in the PATH
command, as shown in the following syntax:

PATH[= | path[;path]...

Braces and a vertical bar indicate that you
have a choice between two or more items.
Braces enclose the choices, and vertical bars
separate the choices. You must choose one of
the items unless all of the items are also
enclosed in double square brackets.

For example, the /W (warning-level) compiler
option has the following syntax:

/W{o|1]2]|3}

You can use /W1, /W2 or /W3 to display
different levels of warning messages or /WO
to suppress all warning messages.

Quotation marks set off terms defined in the
text. For example, the term “far” appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language
have the form " " rather than “”. For
example, a C string used in an example would
be shown in the following form:

" "

abc

Small capital letters are used for the names of
keys and key sequences, such as ENTER and
CTRL~+C. Small capital letters are used for the
names of keys (RETURN). Key sequences to be
pressed simultaneously are indicated by the
key names in small caps separated by a plus
sign (CTRL~C).

Introduction

1.5 Books about C

The manuals in this documentation package provide a complete
programmer’s reference for Microsoft C. They do not, however, teach you
how to program in C. If you are new to C or to programming, you may
want to familiarize yourself with the language by reading one or more of
the following books:

Hancock, Les, and Morris Krieger. The C Primer. New York: McGraw-
Hill Book Co., Inc., 1982.

Hansen Augie. Proﬁczent C. Bellevue, Washington: Microsoft Press,
1986

Harblson, Samuel P., and Greg L. Steele. C: A Reference Manual.
Englewood Cliffs, New Jersey: Prentice-Hall Software Series, 1987.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey: Plum
Hall, Inc., 1983.

Schildt, Herbert. C Made Fasy. Berkeley, California: Osborne McGraw
Hill, 1985.

Schustack, Steve. Variations in C. Bellevue, Washington: Microsoft
Press, 1985.

These books are listed for your convenience only. Except for its own publi-
cations, Microsoft Corporation does not endorse these books or recom-
mend them over others on the same subject.

1.6 Requesting Assistance

If you feel you have discovered a problem in the software, please report the
problem, using the Product Assistance Request at the back of this manual.
If you have comments or suggestions regarding any of the manuals accom-

panying this product, please use the Documentation Feedback Card at the
back of this manual.

*Microsoft Press books are available wherever books and software are sold. To order by
phone, call 1-800-638-3030; in Maryland, call collect 824-7300. For a complete catalog of
Microsoft Press books, write to: Microsoft Press, 16011 NE 36th Way, Box 97017, Redmond,
WA 98073-9717.

11

NG

A

STARTED

Introduction .oocvririiovenann..

Up Your Disks.......

IR oy

Uisk Lonlents.

oo

seceevcononno0nen o0

Prograni..........
hat SETUP Does ...

U
W

o

)f

Running SETUP ..
Az Choosing SITTUD
Command-iine €

A B4

2408

=

IS
C

10
)

e

utlding Librarie

3o, fpvey pryes o b
Programs af

icrosoft O
R apiler

cusoves

R

o
EAR SIS .
oA

Ay !

@

onventio:
tes

Organizes i

oo

0

Choosing Mloating-i’oint

Math Packages.ooooiconniene
Adding Graphies
to Combined Librar

coeon

sown

cooo

sono

U ssvose

D sosencscocas

EEREEN

B

B

TLor

oo

seoen

brary.

e

@&g&@.
gﬂh i
TR 31
@!@@’glgé
s

e

3
poa A
e B
) »’g@,
o adls
303
e deS
2

- ¢

~

-

5
i

-

Eenas
i
o

e
S
o

L
. mﬁ!ﬁ':

L

i

i B

2.6
2.7
2.8

2.9

14

2.5.6.3 The INCLUDE Variable «ecceeeerrerenennens 35

2.5.6.4 The TMP Variable..ccovirrrreriirrernininnnns 30
2.5.6.5 The CL Variable..c.coovvuueeeeerercrirunnnnen. 35
2.5.6.6 Defining Environment Variables........... 36

2.5.6.7 Environment Variables
and CL OptionS..icicescerseesescecescasescsnes 37
2.5.7 The CONFIG.SYS File ceevvreererneerrnneennecennnnns 37
Using a RAMDISK ccccoevvvieieiiriiiieeeeccccieneeeeee e, 38
Converting Existing C Programsc.cceeeeeeeeeeenne. 38
Sample Compiler Command Lines........cccceeeuveeeen. 39
2.8.1 Listing CL Options rererreeernrereerrnraernes 39
2.8.2 Simple Compile and Link «ceueevveerenneeenneennnnns 40
2.8.3 Using Wild-Card Characters...ccceeeeererneaenennns 40
2.8.4 Compiling without LinkKing....ccoeeeerueeerveneennns 40
2.8.5 Using the Alternate Math Library ...c..cceceeeee.. 40
2.8.6 Preparing to Use the CodeView Debugger.....41
2.8.7 Setting Titles and Subtitles..ccccoeeereerrrnennnnans 41
Practice SesSioneeeeeeireeineeeeesiiirnneeeeeeseesreneneees 41

Getting Started

2.1 Introduction

This chapter explains how to use the SETUP program to install the com-
piler software on a hard disk and set up an operating environment for the
compiler.

To get your C compiler up and running requires that you do the following:

1. Back up your disks (see Section 2.2).
2. Check the contents of the disks (see Section 2.3).

3. Read the README.DOC file on the Master distribution disk to
learn about changes and additions made to the software after this
manual was printed.

Run the SETUP program to install the software.

5. Read Section 2.8, “Sample Compiler Command Lines,” or Section
2.9, “Practice Session,” to learn how to compile and link.

Several MS-DOS procedures are mentioned in this chapter. In particular,
the MS-DOS SET and PATH commands are used to give values to
environment variables, which control the compiler environment. If you are
unfamiliar with the SET and PATH commands, or with other MS-DOS
procedures mentioned in this chapter, consult your DOS user’s guide for
instructions.

2.2 Backing Up Your Disks

After you have unwrapped your system disks, you should first make work-
ing copies, using the MS-DOS COPY command or the DISKCOPY util-

ity. Save the original disks for making future working copies.

2.3 Disk Contents

When you first open your compiler package, you may want to verify that
you have a complete set of software. One of the distribution disks in your
compiler package contains afile named PACKING.LST on the Master
distribution disk. This file lists and describes the files that make up the
compiler software. It also lists the manuals and other materials included in
the package that help you use the software.

15

Microsoft C Optimizing Compiler User’s Guide

You can use the PACKING.LST file to get a quick overview of the com-
piler software, as well as to verify that your software package is complete.

Note

Named disks included with the Microsoft C Optimizing Compiler are
referred to as distribution disks to distinguish them from disks you
create and label as you use the SETUP program.

2.4 The SETUP Program

The SETUP program is a set of MS-DOS batch files that automatically
install the compiler software. You will find the SETUP program on Disk
1, the Master distribution disk (the disk may contain other files as well).

The following sections explain what SETUP does and how to start
SETUP.

2.4.1 What SETUP Does
The SETUP program performs the following tasks:

o Copies all necessary files to the directories or disks you specify.

e Builds run-time libraries based on your specifications. Each library
includes support for the math, memory-model, and compatibility
options you choose when you run SETUP. Under most cir-
cumstances, only one library is needed when you link.

e Creates a batch file named NEW-VARS.BAT that you can use
to set the values of your environment variables so that the com-
piler and linker can find the files they need.

e Creates a file named NEW-CONF.SYS containing the appropri-
ate settings for the files and buffers parameters in your
CONFIG.SYS file. v

See the PACKING.LST file on the Master distribution disk for a com-
plete list of the files provided with the Microsoft C Optimizing Compiler.
See Section 2.5.5, “The Compiler Environment,” for more information
about environment variables and the CONFIG.SYS file.

16

Getting Started

2.4.2 Running SETUP
To use the SETUP program, follow these two steps:

1. Invoke the SETUP program and specify the following informa-
tion:

e The memory model(s) you will use for your programs

e Whether you will be linking with modules created by Versions
3.0 and 4.0 of Microsoft C

e The directories where you want to install the various compiler
files

2. At the SETUP prompt, type the names of the floating-point math
packages you will use for your programs.

Based on the options you choose on the command line and the answers you -
give to the prompts, SETUP installs the compiler software and builds the
appropriate libraries for the memory-model and floating-point options you
have chosen.

To familiarize yourself with the options you will choose when you run
SETUP, see Chapter 6, “Working with Memory Models,” for descriptions
of memory models and their uses and Chapter 7, “Controlling Floating-
Point Math Operations,” for descriptions of the available math packages
and their uses.

2.4.2.1 Choosing SETUP Command-Line Options

Before you run SETUP, insert the Master distribution disk in a floppy-
disk drive and make that the current drive.

To start SETUP, type a command line of this form and press ENTER:
SETUP base models [empat] [binder] [incldir] [libder] [sredir]

Warning

The arguments you give SETUP include the names of several direc-
tories. If the directory you specify does not exist, SETUP creates the
directory automatically.

Be careful not to give SETUP the name of an existing directory,
unless you know that no files in that directory have the same names as
the compiler files, since SETUP overwrites the existing files as it is
installing.

17

Microsoft C Optimizing Compiler User’s Guide

To tell SETUP to use the appropriate default for an optional argument,
simply omit the argument. Some optional arguments allow you to type a
question mark (?) to choose the default.

The following list explains each of the arguments you give on the SETUP
command line:

Argument Meaning

base The name of the “base” directory for the installa-
tion. This name must begin with a drive name (for
example, C:). All other directories that you give on
the command line are created as subdirectories of
the base directory.

models One or more letters, separated by spaces, telling
SETUP which memory models you will use for
your programs. Type S for small model, M for
medium model, C for compact model, or L: for
large or huge model. SETUP uses the letters you
type to determine which combined libraries to
build. Because the combined libraries are large,
you should specify only the memory models you
know you will need for your programs. (If you use
more than one memory model, you may want to
use the uncombined libraries instead of taking up
disk space for combined libraries; see Section 2.4.6
for more information.)

empat Type ¢40 for this argument if you have batch files
or MAKE description files that depend on model-
specific versions of the SETARGV.OBJ file. If
you ask for compatibility with Version 4.0,
SETUP installs copies of the SETARGV.OBJ
file under the names mSETARGV.OBJ, where m
is one of the letters you typed for the models argu-
ment (S for small, M for medium, C for compact,
and L for large and huge).

18

bindir

incldir

libdar

srcder

Getting Started

If you leave out this argument, SETUP installs
only one copy, using the usual name,
SETARGV.OBJ. See Section 2.5.4, “Other
Files,” for a description of SETARGV.OBJ.

The subdirectory of base where you want to install
the compiler executable files, including the com-
piler, linker, and utilities. This argument must
begin with a backslash (\).

If you leave out this argument or type a question
mark (?) for it, SETUP uses the \ BIN subdirec-
tory by default.

The subdirectory of base where you want to install

include files. This argument must begin with a
backslash (\).

If you leave out this argument or type a question
mark (?) for it, SETUP uses the \INCLUDE
subdirectory by default.

The subdirectory of base where you want to install

library files. This argument must begin with a
backslash (\).

If you leave out this argument or type a question
mark (?) for it, SETUP uses the \LIB subdirec-
tory by default.

The subdirectory of base where SETUP copies the
C start-up files &f desired) and where you will copy
C source files. If specified, this argument must
begin with a backslash (\).

If you type a question mark (?) for this argument,
SETUP uses the \SRC subdirectory by default.
If you do not give this argument, SETUP does not
create a subdirectory for source files.

19

Microsoft C Optimizing Compiler User’s Guide

In addition to the subdirectories you tell SETUP to create, it creates the
following subdirectories automatically:

e A subdirectory named \ TMP, which the compiler will use for tem-
porary files during compilation.

e A subdirectory named \ bindir\ SAMPLE, where SETUP installs
the demonstration programs provided with the Microsoft C Optim-
izing Compiler.

e One or more subdirectories named base\ srcdir\ model, where model
is one of the letters representing a memory model SS for small
model, M for medium model, C for compact model, or L for large
or huge model}. Each \ srcdir\ model subdirectory contains one file
named VERSION.INC. SETUP creates these subdirectories only
if you have created a subdirectory for your source files.

B Examples
SETUP S C:\ ? ? ?

The command line above tells SETUP to install the compiler software in
the default subdirectories of the root directory (\). The default subdirec-
tories are \BIN for compiler and utility executable files, \INCLUDE for
include files, and \ LIB for library files. No subdirectory is created for
source files. Only the small-model library files are built.

SETUP C:\C S M C L C40 \BINDIR \INC \LIBS \SOURCES

The command line above tells SETUP to install the compiler software in
the given subdirectories of the \C directory. Executable files are installed
in the \C\BINDIR subdirectory; include files are installed in the \C\INC
subdirectory; library files are installed in the \C\LIBS subdirectory;
source files are installed in \C\SOURCES subdirectory; and demonstration
files are installed in the \C\BINDIR\SAMPLE subdirectory. Library files
are built, and mSETARGV.OBJ files are installed, for all available
memory models.

2.4.2.2 Choosing Floating-Point
Math Packages

After you enter the SETUP command line, SETUP displays a message
telling you that it is ready to build combined run-time libraries. It then
prompts you as shown below:

Do you wish to use the Emulator floating point
math package? [y/n]

20

Getting Started

Do you wish to use the 8087/80287 floating point
math package? [y/n]

Do you wish to use the Alternate floating point
math package? [y/n]

After each prompt:

e Type Y or y and press ENTER if you will use the given floating-point
math package for your programs and you want to build combined
libraries to support that package. Because the combined libraries
are large, you should type .L. Y only for the floating-point pack-
ages you know you will need for your programs. (If you use more
than one floating-point math package, you may want to use the
uncombined libraries instead of taking up disk space for combined
libraries; see Section 2.4.6 for more information.s)

e Type N or n and press ENTER if you will not use the given floating-
point math package.

If you do not answer Y or y to at least one of the prompts, SETUP
displays the following message:

You did not specify a floating point math option and, thus,
setup will not build any combined libraries.
Is this what you want? [y/n]

To answer this prompt:

e Type N or n and press ENTER if you still want to build combined
run-time libraries. SETUP returns to the earlier prompts for
floating-point math packages.

e Type Y or y and press ENTER if you do not want SETUP to build
combined libraries. In this case, you must install the uncombined
libraries manually; see Section 2.4.6, “Using Uncombined
Libraries,” for more information.

2.4.2.3 Adding Graphics
to Combined Libraries

The last prompt that SETUP displays asks if you want to include Micro-
soft C graphics functions in the combined libraries:

Do you want the graphics package included in your combined
libraries [y/n]?

21

Microsoft C Optimizing Compiler User’s Guide

To answer this prompt:

e Type Y or y if you will be using Microsoft C graphics functions in
your programs and you want to include these functions in the com-
bined libraries that SETUP builds. Choosing this option adds
approximately 50K to each combined library. However, you do not
need to specify the graphics library GRAPHICS.LIB when you
link programs that use graphics.

e Type N or n if you do not want to include graphics in the combined
libraries. If you want to use graphics functions in your programs
but do not want to include the graphics package in your combined
libraries, see Section 2.4.7, “Using the Microsoft C Graphics
Library,”

2.4.2.4 Building Libraries

If you have answered Y or y to at least one of the math-package prompts,
SETUP displays the names of the combined libraries it is building in
response to your choices of memory models (on the command line) and
math packages (from your answers to prompts). SETUP builds combined
libraries in order to speed linking. When SETUP has finished building
libraries, it displays the following message:

Library build complete.

Setup no longer needs the library sub-components and you do not
normally need them to compile and link your C program. Do you
want to delete them? [y/n]

If you use combinations of memory models and floating-point math pack-
ages other than the models and math packages you specified to SETUP,
you may want to keep the uncombined libraries. However, if you will only
be using the models and math packages supported by your combined
libraries, you can delete the uncombined libraries. Enter Y or y to delete
the uncombined libraries, or enter N or n if you want to keep the uncom-
bined libraries.

After it finishes building libraries, SETUP finishes the rest of the installa-
tion process, including building the NEW-VARS.BAT and NEW-
CONF.SYS files. When the installation process is complete, SETUP
displays the following message:

Done!

22

Getting Started

2.4.2.5 Compiling Programs after Installation

After you have installed the compiler software, use the following procedure
to compile your programs:

1. Set up your environment as described in Section 2.4.5. You can
type
NEW-VARS

to change environment variables so that you can use the Microsoft
C Optimizing Compiler immediately. '

2. Use the MS-DOS CD command to move to the directory contain-
ing your program.

3. Type a CL command line to start compiling. (See Chapters 3, 6,
and 7 for descriptions of the options that you can specify on the
CL command line to control the compilation process.)

You can run the SETUP program without reading any further in this sec-
tion, since SETUP provides all the information you need. However, you
may find the information in the following sections helpful if you should
run into problems.

2.4.3 Library-Naming Conventions

SETUP gives the libraries it builds default names based on the memory
;nodfels and math packages you choose. Each default name has the follow-
ing form:

{S|M|C|L}LIBC{E| 7| A}.LIB

The first character of the library base name is determined by the memory
model you choose: 8 if you choose the small (default) memory model, M if
you choose the medium memory model, C if you choose the compact
memory model, or L if you choose the large or huge memory model.

The last character of the default library base name is determined by the
math package you choose: E if you choose the emulator package, 7 if you
choose the 8087 /80287 math package, or A if you choose the alternate
math package.

If you change the library name that SETUP assigns, you must explicitly
specify the new library name when you link your program. (If you do not
specify the new name, the linker expects that the library name is the
default for the floating-point and memory-model compiler options you
choose.)

23

Microsoft C Optimizing Compiler User’s Guide

Note

For ease of discussion, the remainder of this manual uses the default
names to identify libraries that support particular combinations of
memory models and math packages.

2.4.4 How SETUP Organizes Files

The following lists show each subdirectory of the base directory that
SETUP uses by default and the files that it copies to each default sub-
directory. Remember that you can tell SETUP to use subdirectory names
other than the defaults; the same files are copied to the directory you
specify in this case.

\BIN subdirectory:

C1.ERR CL.EXE EXEPACK.EXE
C1.EXE CL.HLP LIB.EXE
C2.EXE CV.EXE LINK.EXE
C23.ERR CV.HLP MAKE.EXE

C3.EXE ERROUT.EXE SETENV.EXE
CL.ERR EXEMOD.EXE

\INCLUDE subdirectory:

ASSERT.H FLOAT.H SEARCH.H STDLIB.H
CONIO.H 10.H SETJMP.H STRING.H
CTYPE.H LIMITS.H SHARE.H TIME.H
DIRECT.H MALLOC.H SIGNAL.H VARARGS.H
DOS.H MATH.H STDARG.H

ERRNO.H MEMORY.H STDDEF.H
FCNTL.H PROCESS.H STDIO.H

\INCLUDE\SYS subdirectory:
LOCKING.H

STAT.H

TIMEB.H

TYPES.H

UTIME.H

\LIB subdirectory:

mLIBC/fLIB

24

Getting Started

Note that the LIB environment variable is not used to find the
mVARSTCK.OBJ, SETARGV.OBJ, and BINMODE.OBJ files; if
these files are not in your current working directory, you must specify a
path name at link time.

Note

Throughout the remainder of this manual, the convention
mLIBC/.LIB is used to refer to the standard libraries built by
SETUP. In this convention, the m refers to the standard memory
model that the library supports: S for small model (the default), M for
medium model, C for compact model, or L for large or huge model.
The frefers to the floating-point math package that the library sup-
ports: E for the emulator package, 7 for the 8087/80287 package, and
A for the alternate math package.

This convention is also used for other files, such as
mVARSTCK.OBJ, that are supplied in multiple copies to handle
each standard memory model.

\BIN\ SAMPLE subdirectory:

CIRCLE.C DEMO.C S1.
CIRCLE.EXE MATH.C S2.

CIRCLE.R MENU.BAT S3.
CIRCLEB.BAT NEW-CONF.SYS S4.

COUNT.C NEW-VARS.BAT S5.
COUNT.EXE PI.C S6.

COUNT.R PLEXE S7.
COUNT.TXT PIB.BAT S8.
COUNTB.BAT RESPOND.COM S9.

DEMO.BAT SAMPLE.BAT

\SRC subdirectory:

BRKCTL.INC EXECMSG.ASM STDALLOC.ASM
CHKSTK.ASM FMSGHDR.ASM STDARGV.ASM
CHKSUM.ASM HTOIL.C STDENVP.ASM
CMACROS.INC HTOLEXE WILD.C
CRTO0.ASM HTOI.OBJ

CRTODAT.ASM MSDOS.H

CRTOFP.ASM MSDOS.INC

CRTOMSG.ASM NMSGHDR.ASM

DOSSEG.C REGISTER.H

EMOEM.ASM SETARGV.ASM

25

Microsoft C Optimizing Compiler User’s Guide

2.4.5 Setting Up the Environment

SETUP automatically creates a batch file named NEW-VARS.BAT in
the \BIN\SAMPLE subdirectory of your base directory. You can use
NEW-VARS.BAT to change the values of your environment variables so
that the compiler and linker can find the files they need. If you choose to
install the compiler files in the default subdirectories, the NEW-
VARS.BAT program sets these variables as shown in Table 2.1.

Table 2.1

Default Environment Settings

Variable Path

PATH base\ BIN
INCLUDE base\ INCLUDE
LIB base\ LIB

T™MP base\ TMP

Ordinarily, no temporary files will remain in the \ TMP subdirectory,
since the CL.EXE program automatically removes them by the time pro-
cessing finishes. However, if you abort a compilation, you may find tem-
porary files remaining in the \ TMP subdirectory.

If you wish, you can add the SET commands in the NEW-VARS.BAT
file to your AUTOEXEC.BAT file so that the environment is set up
correctly each time you reboot.

In addition to NEW-VARS.BAT, SETUP creates a file named NEW-
CONF'.SYS in the \BIN\SAMPLE subdirectory. This file sets the files
and buffers parameters to appropriate values for the Microsoft C Optim-
izing Compiler. You can either replace your existing CONFIG.SYS file
with NEW-CONF.SYS or copy the buffers and files settings from
NEW-CONF.SYS to your existing CONFIG.SYS file.

2.4.6 Using Uncombined Libraries

The SETUP program builds combined libraries because linking with com-
bined libraries is faster than linking with uncombined libraries. However,
if you use many different combinations of memory models and floating-
point math packages, you may not want to use up the disk space required
for all of the combined libraries you need.

26

Getting Started

If you choose not to combine libraries, you can copy the appropriate
uncombined libraries to the subdirectory you chose for libraries (by
default, base\LIB). The following uncombined libraries are provided with
the Microsoft C Optimizing Compiler (with m indicating the appropriate

memory model):

Library

Purpose

mLIBC.LIB

mLIBFP.LIB

mLIBFA.LIB

EM.LIB

LIBH.LIB

87.L1IB

Standard run-time library; contains all of the rou-
tines included in the Microsoft C run-time library
except math routines that require floating-point
support.

Floating-point math library; required whenever
your program uses EM.LIB or 87.LIB.

Alternate floating-point library; can be used
instead of EM.LIB and mLIBFP.LIB when speed
is more important than precision in floating-point
calculations. See the discussion of floating-point
options in Chapter 7, “Controlling Floating-Point
Math Operations,” for more information.

Model-independent floating-point emulator; used
to perform floating-point operations.

Model-independent “compiler helper” functions;
used to handle complex operations such as 32-bit
multiplication and division.

Model-independent 8087 /80287 floating-point
library; provides minimal floating-point support
and can only be used when an 8087 or 80287
coprocessor is present.

The following list shows each combined library built by SETUP and the
corresponding uncombined libraries:

Combined Library Uncombined Libraries

mLIBCE.LIB mLIBC.LIB, mLIBFP.LIB, LIBH.LIB,
and EM.LIB

mLIBC7.LIB mLIBC.LIB, mLIBFP.LIB, LIBH.LIB,
and 87.LIB

mLIBCA.LIB mLIBC.LIB, mLIBFA.LIB, and
LIBH.LIB

27

Microsoft C Optimizing Compiler User’s Guide

When you compile and link a program, you must give the /NOD linker
option after the /link option on the CL command line and specify the
uncombined libraries for the memory-model option and floating-point
option you are using. See Section 4.3.1 for more information about specify-
ing uncombined libraries.

2.4.7 Using the Microsoft C Graphics Library

If you decided not to include graphics in the combined libraries built by
SETUP, but you still want to use Microsoft C graphics routines in your
programs, you must explicitly link with the GRAPHICS.LIB library in
addition to the appropriate combined library (or uncombined libraries).
First, copy GRAPHICS.LIB to the subdirectory where you installed the
other libraries. You then have the following alternatives:

e Give GRAPHICS.LIB explicitly on the CL command line. See
Sections 4.3.1 and 4.3.1.1 for more information about specifying
additional libraries on the CL command line.

e Specify GRAPHICS.LIB in the CL environment variable. This
tells the CL command to link with GRAPHICS.LIB automati-
cally. See Section 3.2.2 for information about the CL environment
variable.

2.5 Understanding the Compiler Software

Sections 2.5.1 through 2.5.7 provide background information about the
Microsoft C Optimizing Compiler software and the environment in which
it operates. This information is not required to use the compiler; however,
it may help you better understand the individual components of the com-
piler software and how they work together.

Section 2.5.1, “Executable Files,” Section 2.5.2, “Include Files,” and Sec-
tion 2.5.3, “Library Files,” describe the three main categories of files that
make up the Microsoft C Optimizing Compiler. Section 2.5.4 describes
several additional files that do not fall into the three main categories.

Sections 2.5.5 through 2.5.7 describe the compiler environment and the
ways in which you can control this environment.

2.5.1 Executable Files

Executable files have an .EXE extension. The following executable files
are provided with the Microsoft C Optimizing Compiler:

28

Getting Started

File Purpose

CL.EXE Control program for the compiler and linker.

C1.EXE, C2.EXE, The three compiler stages, or “passes,” which

C3.EXE are executed in order when you process a file
using CL.EXE.

LINK.EXE Linker utility, which produces an executable

program file from your compiled files.
LINK.EXE can either be automatically

invoked by CL.EXE or invoked separately.
CV.EXE The Microsoft CodeView symbolic debugger.

LIB.EXE Library-manager program that creates and
organizes libraries of object modules.

EXEPACK.EXE Utility used to pack executable files.

EXEMOD.EXE Utility that changes the headers of executable
files.

SETENV.EXE Utility that changes the size of the MS-DOS
environment table.

ERROUT.EXE Utility that redirects standard-error output.

See Chapter 3 of this manual for information about the CL command. See
the Microsoft CodeView and Utilities manual for information about the
LINK, CV, LIB, MAKE, EXEPACK, EXEMOD, SETENYV, and
ERROUT utilities.

2.5.2 Include Files

Include files have an extension of .H. Include files are C source files you
can incorporate into your program by using the C preprocessor directive
#include. These files contain definitions used by run-time library
routines.

By convention, some include files are stored in a subdirectory named
\SYS. This convention originated with the practice of storing files that
define “system-level” constants and types in a separate “system” subdirec-
tory on UNIXe and XENIX systems. However, not all the include files that
are traditionally stored in the \ SYS subdirectory contain system-level
definitions, and some of the include files not in the \ SYS subdirectory
contain system-level definitions. Since many programs, particularly those
created under the XENIX and UNIX operating systems, rely on the \SYS
subdirectory convention, Microsoft continues to recognize this convention
in order to to maintain compatibility with existing programs.

29

Microsoft C Optimizing Compiler User’s Guide

2.5.3 Library Files

Library files contain compiled run-time library routines to be linked with
your program. The SETUP program builds a library for each combina-
tion of memory models and math packages you specify. In most cases, this
library is the only library you need to use for linking programs. See Sec-
tion 2.4.3 for information about library-naming conventions.

Each library built by SETUP also contains an object module named
CRTO0.0OBJ, which is the program start-up routine. This routine per-
forms the following important tasks:

e Allocates the stack for your program and initializes the segment
registers

e Sets up the argy, arge, and envp variables to allow command-line
arguments and environment settings to be passed to the program

e Sets up and maintains the operating environment for the program
e Initializes the emulator, if the program uses the emulator

2.5.4 Other Files

Several of the files provided in the Microsoft C Optimizing Compiler pack-
age don’t fit into any of the categories discussed so far. The following list
describes these files:

File Purpose

«* HLP Help files for the CL compiler driver
(CL.HLP) and the Microsoft CodeView sym-
bolic debugger (CV.HLP).

*. ERR Error-message files for the CL compiler driver

(CL.ERR) and compiler passes (C1.ERR
and C23.ERR).

mVARSTCK.OBJ Object files that, when linked with a program,
allow the heap to compete with the stack for
memory space. In this way, the heap can allo-
cate memory from unused stack space. See
Section 3.3.21, “Controlling Stack and Heap
Allocation,” for more information about the

mVARSTCK.OBJ files.

30

BINMODE.OBJ

COUNT.

DEMO.C

EMOEM.ASM

SETARGV.OBJ

Getting Started

Object file used to change the default mode
for data files from text mode to binary mode.
This file can be used with all five memory
models. See Section 3.4 of this manual, “Con-

trolling Binary and Text Modes,” for informa-
tion about using BINMODE.OBJ.

Files used in the practice session for the
Microsoft CodeView symbolic debugger.

C program used in the sample compile-and-
link session described in Section 2.9, “Practice
Session.” Other demonstration programs may

be included on your distribution disks. If so,
tllley are described in the README.DOC
file.

Assembly-language program that allows you
to customize floating-point software. See Sec-
tion 7.7, “If Your Computer Is Not IBM Com-
patible,” for more information about
EMOEM.ASM.

Object file containing a routine that expands
the MS-DOS wild-card characters (? and *) in
file-name arguments passed to C programs
from the command line. Wild-card expansion
is performed only if you explicitly link with
SETARGV.OBJ. This file can be used with
all five memory models. For more information
about SETARGV.OBJ, see Section 5.2,
“Passing Command-Line Data to a Program.”

Note that if you have chosen compatibility
with Version 4.0 of Microsoft C, SETUP
installs versions of SETARGV.OBJ under
the name mSETARGV.OBJ, where m
specifies the memory model. If you link with
object files compiled with Version 4.0 of
Microsoft C, you must link with the version
that is appropriate for the memory model you
are using. (See Chapter 6, “Working with
Memory Models,” for more information about
memory models.)

31

Microsoft C Optimizing Compiler User’s Guide

Start-up source files Source files for the Microsoft C Optimizing
Compiler start-up module are provided for
users who wish to modify them for purposes
of developing read-only memory programs or
memory-resident programs. See the file named
README.DOC in your base\ SRC sub-
directory (or the directory you chose for
source files) for more information about these
files.

Note

Except for these source files, no support is
provided for modification of the start-up
code. The start-up source files are subject
to change in future versions of the Micro-
soft C Optimizing Compiler.

2.5.5 The Compiler Environment

The compiler environment consists of environment variables that tell the
compiler and linker where to find the files they need to process a program.
They are called “environment” variables because they define the environ-
ment in which the compiler and linker operate. Environment variables are
defined at the MS-DOS command level using the MS-DOS commands SET
and PATH.

The SETUP program creates a batch file named NEW-VARS.BAT
that automatically sets the values of environment variables. You can
either type

NEW-VARS

to set up the environment for the Microsoft C Optimizing Compiler or
copy the settings in NEW-VARS.BAT to your AUTOEXEC.BAT file
so that the environment is set up correctly each time you reboot.

NEW-VARS.BAT does not set the value of one environment variable
that is useful during compiling and linking: CL. This variable allows you
to specify default options and input files for the CL command.

In addition to changing the values of your environment variables, you may

have to change your CONFIG.SYS file so that it satisfies the compiler
requirements. The SETUP program also creates NEW-CONF.SYS, a

32

Getting Started

file that contains settings that you can copy to your CONFIG.SYS file so
that the compiler can work correctly.

The following sections describe the environment variables and
CONFIG.SYS settings used by the compiler and linker.

2.5.6 Environment Variables

The CL.EXE compiler driver looks for four environment variables:
PATH, INCLUDE, TMP, and CL. The linker, which is invoked by
CL.EXE, looks for two environment variables: LIB and LINK. (See the
Microsoft CodeView and Utilities manual for a description of the LINK
environment variable.)

The PATH, INCLUDE, TMP, and LIB variables are assigned one or
more path specifications (in the case of TMP, only one path specification)
that tell the compiler or linker where to find a particular type of file, as
shown in the following list:

Environment
Variable Type of File

PATH Executable files (any file ending with .EXE). These
include the compiler control program (CL.EXE),
the compiler passes, the linker, and all of the utili-
ties.

LIB Library files (any file ending with .LIB).

TMP Temporary files created by the compiler; only one
path specification may be used.

Note

If you have a memory-based disk emulator,
commonly referred to as a “RAM disk,” you
can compile programs faster by assigning the
d{)ilve name for the RAM disk to the TMP vari-
able.

INCLUDE Include files.

33

Microsoft C Optimizing Compiler User’s Guide

The compiler or linker always searches the current working directory first
before searching the locations given in an environment variable. Excep-
tions to this sequence are #include files, which are enclosed in angle
brackets (< >).

The CL variable does not tell the compiler and linker where to find files;
instead, it defines default options for the CL command. It can also specify
source files, object files, or libraries, although this use is less common.

Although environment variables are usually helpful, you are not required

to set them. If you do not set these variables, the current working direc-
tory is used to search for files and create temporary files.

2.5.6.1 The PATH Variable

lele CL command searches for the compiler and linker in the following
order:

1. In the directory where CL.EXE resides (which, under Version 2.z
of MS-DOS, always looks like the current working directory)

Note

This manual refers to all versions of a product in, for example,
the Version 2 range, as Version 2.7.

In the current working directory

3. In all directories specified in the PATH command, in order of their
appearance

This search order makes it easy to store and use multiple versions of the
compiler without worrying about using the wrong version.

MS-DOS also uses the PATH setting to locate executable files. For exam-
ple, when you invoke CL.EXE (by typing CL), the MS-DOS system finds
CL.EXE by looking in your default directory and in the directories
specified in the PATH setting. If you include the path name of the direc-
tory containing CL.EXE in your PATH setting, you can execute the con-
trol program from any directory.

34

Getting Started

2.5.6.2 The LIB Variable

The LIB environment variable defines where the linker searches for
libraries. (Section 4.3.1 gives the rules the linker follows when searching
for libraries.) This variable can contain one or more path specifications,
separated by semicolons.

When you compile a source file using the Microsoft C Optimizing Com-
piler, the compiler places a library name in the object file it creates. This
1s the name of the library that supports the memory-model and floating-
point options you have given on the CL command line.

The linker searches the standard places for this library. The linker also
uses the LIB setting to search for any other libraries that you specify on
the command line at link time. See Section 4.3.1.3 for more information
about changing libraries at link time.

2.5.6.3 The INCLUDE Variable

The INCLUDE environment variable defines the standard places where
the compiler searches for each include file (a file incorporated into another
source file with the #include preprocessor directive). The /T and /X
options, discussed in Section 3.3.9.6, let you temporarily change the search
path for include files without affecting the INCLUDE variable. Section
3.3.9.6 also lists the places that the compiler searches for include files and
the order in which these places are searched.

2.5.6.4 The TMP Variable

The compiler creates a number of temporary files as it processes a pro-
gram. The TMP environment variable tells the compiler and the operat-
ing system where to create these files. The temporary files are removed by
the time the compiler finishes processing.

The space required for the temporary files is typically double the size of
the source file. It is often helpful to create the temporary files on a
memory-based disk emulator, commonly referred to as a “RAM disk,” as
described in Section 2.6. You can speed processing by assigning the drive
name you use for a RAM disk to the TMP variable.

2.5.6.5 The CL Variable

The CL environment variable allows you to define default options for the
CL compiler driver. This variable is useful if you usually give a large
number of options or if you usually use the same set of options when you

35

Microsoft C Optimizing Compiler User’s Guide

compile and link. Since the options you define in the environment are not
counted in the 128-character limit for the command line, you can define
the options you use most often with the CL variable and then give only
the options you need for specific purposes on the command line.

The CL variable may also name source files, object files, and libraries. Any
specified source files are compiled; if you also link with the CL command,
the specified object files are linked and the specified libraries are searched.

The options and files in the CL variable are treated just as if you typed
them on the command line following CL and before the rest of the com-
mand line. Conflicts between options given in the environment and options
given on the command line are handled accordingly.

Note that, in most cases, if you define a CL or linker option in the
environment, you cannot turn the option off from the command line. In
cases where you do not want to use an option, you must reset the CL
environment variable and omit the option that you do not want to use.
(See Section 3.3, “Using CL Options,” for exceptions to this rule.)

2.5.6.6 Defining Environment Variables

Use the MS-DOS SET command to define the values of INCLUDE, LIB,
TMP, and CL. Use the MS-DOS PATH command to define the value of
PATH.

You must set the values of PATH, INCLUDE, and TMP before invok-
ing the compiler if you want the variables to be effective while the com-

piler is running. Similarly, you must set LIB before the linking stage.

The SET command has the following format for the INCLUDE, LIB,
and TMP variables:

SET variable= path[; path]...

The TMP variable can be assigned only one path name. The INCLUDE
and LIB variables can each contain more than one path name. See Section
3.2.2 for information about setting the CL variable.

The PATH command has the following format:

PATH[= | path[;path]...

For example, you might use the following command line:

PATH C:\BIN;C:\LINKER

36

Getting Started

This tells the compiler and the operating system to search for executable
files on Drive C in the directory named \BIN, then, if necessary, in the
\LINKER directory. Although you are allowed to define the PA'TH vari-
able with the SET command, using this method under versions of M5-
DOS earlier than 3.0 can cause the PATH variable to work incorrectly for
some directory specifications using lowercase letters.

Note

The environment table, which holds any environment variables you
have set and the values you have assigned, is 160 bytes by default. If
you want to set up a complex environment, this may not be enough
space. If you are running on IBM PC-DOS Version 3.1 or earlier, you
can use the SETENYV program to increase the size of the environment
table. See Section 15.3 of the Microsoft CodeView and Utilities manual
for more information.

Once you have set an environment variable, it remains in effect until you
reset 1t to a different value (or to an empty value) or until you turn off
your machine.

2.5.6.7 Environment Variables
and CL Options

Certain command-line options available with the compiler override the
effect of environment variables. For example, the /X option (described in
Section 3.3.9.6) tells the compiler not to automatically search the standard
places for include files. The result is that the compiler does not search for
include files in the directories specified by the INCLUDE variable.

2.5.7 The CONFIG.SYS File

Before you can run the compiler you must make sure that your
CONFIG.SYS file allows the compiler to open 20 files. The NEW-
CONF.SYS file created by SETUP contains the following line:

files=20

If the files=line in your CONFIG.SYS file specifies a number less than
20, replace the line in your CONFIG.SYS file with the line from the
NEW-CONF.SYS file. If you do not currently have a CONFIG.SYS
file, copy the NEW-CONEF'.SYS file to a CONFIG.SYS file in the root
directory, then reboot, before you compile programs.

37

Microsoft C Optimizing Compiler User’s Guide

Note

If you do not specify at least 15 files in the CONFIG.SYS file, you
may see one of the following fatal error messages during compilation:

fatal error Cl104l1l: Cannot open compiler intermediate file
— no more files

or

fatal error Cl015: Cannot find 'ncludefile'

It is recommended, though not required, that you also set the number of
buffers allowed in your CONFIG.SYS file. Check your CONFIG.SYS
for the following line:

buffers=number

If number is not already set, 10 is a reasonable number to choose.

2.6 Using a RAM Disk

If your computer has sufficient available memory, you can set it up to run
portions of the compiler from a memory-based disk emulator, also known
as a RAM disk. Using a RAM disk allows you to compile programs consid-
erably faster than you could otherwise.

If you are using a RAM disk, you can set the value of the TMP environ-
ment variable to the drive name you are using for the RAM disk. In this
way, you can use the RAM disk for temporary files during compilation.
Since temporary files are typically twice the size of the source file, you
need approximately twice as much available memory as the size of the
source file you are compiling.

2.7 Converting Existing C Programs

If you are using an earlier version of the Microsoft C Optimizing Compiler,
or if you have programs written for such a compiler, turn to Appendix B
for a discussion of differences between this compiler and earlier versions.

38

Getting Started

You may need to make minor changes to existing source programs to com-
pile them with Version 5.0; however, recompiling these programs will gen-
erally result in improved performance.

2.8 Sample Compiler Command Lines

This section helps you quickly begin compiling and linking programs by
giving examples of common CL command lines and options. For a step-
by-step approach to the compiling and linking process, see Section 2.9,
“Practice Session.”

The command lines given in the following sections illustrate some of the
most common command-line options. You can use these command lines
exactly as shown to get started with the compiler and linker, or you can
use them as models and supply your own combination of options.

See Chapter 3 for an in-depth discussion of how the CL command line
works. Chapter 4 explains how to control linking using the CL command
line. Chapter 12 of the Microsoft CodeView and Utilities manual fully
describes the linker and its options.

Each option illustrated in this section is fully described elsewhere in this
manual. Use the index at the back of this manual to find more information
about particular options.

The CL command invokes the compiler, the linker, or both, so you do not
need to give separate commands for compiling and linking (although you
may). Notice that no library names are given at link time in the commands
shown below, since you are not required to give a library name when you

link unless you have changed the names of the libraries created by
SETUP.

2.8.1 Listing CL Options

For a quick overview of commonly used compiler options, type the follow-
ing at the MS-DOS prompt:

CL /HELP
The /HELP option displays a categorized summary of CL options.
The Microsoft C Quick Reference Guide that accompanies this manual is

another good source for a quick overview. It lists the CL options in alpha-
betical order.

39

Microsoft C Optimizing Compiler User’s Guide

2.8.2 Simple Compile and Link
CL FILE1.C FILE2.C

The example above demonstrates compiling and linking two files named
FILEl1.Cand FILE2.C. Two object files, FILE1.0OBJ and FILE2.0BJ,
are created. Since no memory-model or floating-point options are given,
these object files are linked with the appropriate library for the default
memory model (small) and floating-point math package (emulator):
SLIBCE.LIB. The executable file is named FILE1.EXE.

2.8.3 Using Wild-Card Characters

CL /FePROGRAM /Fs *.C

The command above compiles and links all C source files in the current
working directory. The /Fe option gives the resulting executable file the
name PROGRAM.EXE. The /F's option creates a source-listing file for each
source file; each source-listing file has the same base name as the
corresponding source file, but has the extension .LST instead of .C. (The
base name of a file is the portion of the name preceding the period.)
2.8.4 Compiling without Linking

CL /c FILE.C

The command above compiles but does not link the given file. You can :
also use the CL command to link without compiling by just giving object
files on the command line. For example,

CL FILE.OBJ

invokes the linker to create an executable program named FILE .EXE.

2.8.5 Using the Alternate Math Library

CL /FPa EMULAT.C

By default, Microsoft C programs handle floating-point operations by gen-
erating in-line instructions for an 8087 or 80287 math coprocessor; if a

coprocessor is present, the program uses it, but if a coprocessor is not
present, the program uses an emulator library instead.

40

Getting Started

The command shown above creates a program that handles floating-point
math differently: the program generates calls to floating-point functions in
an alternate math library (SLIBFA.LIB). The alternate math library pro-
vides the smallest, fastest option if no coprocessor is installed, although
the program sacrifices some accuracy for speed. If a coprocessor is
installed, the program ignores it. See Section 7.2.3 for information about
this option.

2.8.6 Preparing to Use the CodeView Debugger
CL /Zi FILE.C

The example above uses the /Zi option to create object and executable
files that contain symbol-table information for debugging with the Micro-
soft CodeView window-oriented debugger. When the /Zi option is given
with no explicit optimization option, in order to make program debugging
easier some complex optimizations are not performed. If you do not want
the compiler to perform any optimization, specify the /Od option along
with the /Zi option. See Section 3.3.12, “Preparing for Debugging,” for
more information about the /Zi option and Section 3.3.13.1, “Controlling
Optimization,” for more information about the /Od option.

2.8.7 Setting Titles and Subtitles
CL /Fs /St "Main Title" /Ss "Subtitle" /Sp20 /S190 FILE.C

The example above compiles and links FILE.C, creating an executable file
named FILE.EXE. The /F's option creates a source-listing file named
FILE.LST. The listing has a main title and subtitle; it is 20 lines long
and 90 characters wide. See Sections 3.3.8.1, “Types of Listings,” and
3.3.8.4, “Setting Titles and Subtitles,” for more information.

2.9 Practice Session

This section shows you the steps involved in compiling and linking a pro-
gram using the Microsoft C Optimizing Compiler. By following these steps
you can produce and run an executable program file.

The source file used for this practice session is the sample source file
DEMO.C, which the SETUP program installs in your base\ SAMPLE
subdirectory. DEMO.C is a simple C program that contains only one
function, the main function. The main function in this program displays
any command-line arguments you pass to the program at execution time

41

Microsoft C Optimizing Compiler User’s Guide

and displays the current values of environment settings. See Chapter 5,
“Running C Programs on MS-DOS,” for a full discussion of passing
command-line data to programs, accessing the program environment from
within a program, and declaring the argc, argv, and envp parameters.

This practice sesston assumes that you have used the SETUP program to
install the software and build the libraries you need; that you have set up

the compiler environment using the NEW-VARS.BAT program created
by SETUP; and that you have copied DEMO.C to the directory or disk

where you want to do your compiling and linking.

You can verify that the compiler environment is set up correctly by typing
SET and pressing ENTER. This command lists all environment variables
and their current settings. Make sure the PATH, INCLUDE, TMP, and
LIB variables are in the list and that they are set appropriately for your
system. If you have installed the compiler using the SETUP program,
these variables should have the values shown in the following list:

Variable Path

PATH base\ BIN
INCLUDE base\INCLUDE
LIB base\LIB

TMP base\ TMP

If your settings do not match the above settings, turn back to Section
2.5.5 or 2.5.6 to review the disk setup and environment settings that are
appropriate to your system.

Once you have set up the environment, you are ready to begin processing
DEMO.C by using the following procedure:

1. Make sure that the directory containing DEMO.C is your current
working directory. (Use the MS-DOS CD command to change
directories, if necessary.)

2. Type
CL /Fs DEMO.C

First, the CL command invokes the compiler, which prints the fol-
lowing message on your screen and begins to compile the source
file:

Microsoft (R) C Optimizing Compiler Version 5.00
(C) Copyright Microsoft Corp 1984, 1985, 1986, 1987. All rights reserved.

The /Fs option creates a source listing named DEMO.LST in the
current working directory.

42

Getting Started

3. The next message you see is similar to the following:

Microsoft (R) Overlay Linker Version 3.60
Copyright (C) Microsoft Corp 1983-1987. All rights reserved.

This means that compilation is completed and the file is now being
linked to form an executable program.

4. When the linking process is finished, the MS-DOS prompt reap-
pears. Your current working directory now has an executable file
named DEMO.EXE. It also contains an object file named
DEMO.OBJ and a source-listing file named DEMO.LST.

You may want to examine the source-listing file to familiarize your-
self with its format. However, the file is not required for running
the program, and you can delete it.

You can also delete the object file (DEMO.OBJ); since you have
the executable program file, it is no longer needed.

5. You can run the sample program by simply typing DEMO. How-
ever, since the sample program is designed to take command-line
arguments and print them, give command-line arguments when
you run the program. For instance, you can run the program and
pass three arguments by typing:

DEMO ONE TWO THREE

The program name is displayed on your screen, followed by the
arguments ONE, TWO, and THREE and a listing of all current
environment settings. The environment settings include PATH,
LIB, INCLUDE, and TMP, as well as any other settings that are
currently in effect (whether or not they apply to the C program or
to the compilation and linking processes).

Note

Under versions of MS-DOS earlier than 3.0, the program name
is not available. The letter C is always given as the program
name.

43

COMPIHLUINGWITH THE

CL COMMAND

T O e IO et e eeeaesesnansnanennaansd T

The Basics:

Compiling and Linking C Programs......cccccceevee....48

3.2.1 The CL Command c.ccveiviereercecnievnneeconnonneene 48
3.2.1.1 Specifying Source and Object Files48
3.2.1.2 Creating Exccutable Files..coveerreeneen.20
3.2.1.3 Sopping Cliveeiceeerinenraeniernncosiesinaenead |

3.2.2 Using the CL Environment Variable.............0l

Using CL @{)MOD&BB
3.3.1 Memory-Model (/A) and

Floating-Point (/FP) Options ce.eeceerierveeseen. 04
Listing the Compiler Options (/HELP).........006
Specifying Source Files (/Te¢)ciiiiiniinernen.dB
Compiling without Linking (/¢) .ooeeecriineenn.d¥
Compiling with QuickC (/qe, /Zr, /7q) coeeeed?
Naming the Gbject File (/’{ 0) cerrivoecenerinieneee D
Naming the Executable File (/I7¢) oeicvnrennen.... 60
3.3.8 Creating Listing Files....cccoconnirviiiiercreen .61

3.3.8.1 lypob of Llstlngb
(/Fs, /F1, /Fa, /Fec, and /Fm) cevoeeeeeen. . G1

3.3.8.2 bpecm] File INAMES .evveeineennernneceneenenn. 04
3.3.8.3 Setting Line Width (/SI)

(SN

W w
Loty B0 & Lo
o s 0

B

~

2.9
<

3G
~3

and Page Length (/%r))w SRR 151
3.3.84 Setting FlL es (/St) and Sul)tltlcs (/ Ss)“()(}
2285 W Tistings i
(RN G INY) Olmwbu A\}A Lsy Duruiguo~ouonovovceunowaouuuuuoo.uu

3.3.9 Controlling the Preprocessor..ccceccermrinccneeca d 9
3.3.9.1 Defining Constants and Macros (/D).....75

it

3.3.9.2 Predefined Tdentifiers..oooveriecnniononncocnnsd §

3.3.9.3 Removing Definitions of

Predefined Identifiers (/U, /u) ceceenvenneen 78
3.3.9.4 Producing a Preprocessed
Listing (/P, /E, /EP)wuccrvuieriirrrcrnncenn 79
3.3.9.5 Preserving Comments (/C) cceeurerernnnnens 80
3.3.9.6 Searching for Include Files (/I, /X)....... 30
3.3.10 Using the 80186, 80188, or 80286 Processor
(JGO, [G1, [G2)vrrrreeeeririririrnnnrneeneneeeeees 31
3.3.11 Checking for Program Errors...cceceeeeeerecenences 82
3.3.11.1 Understanding Error Messages «c.c.eveees 82
3.3.11.2 Setting the Warning Level (/W, /w).....84
3.3.11.3 Checking SyntaxX (/Zs).cceeerereernrerenennes 35
3.3.11.4 Generating Function Declarations (/Zg) 86
3.3.12 Preparing for Debugging (/Zi, /Zd, /Od)......87
3.3.13 OptimiZiNg..esueeeerereererreeernaeerareseesseseennensanes 88
3.3.13.1 Controlling Optimization
(/O OptIons) ceerrrererrrrservnosenncerannnes 89
3.3.13.2 Removing Stack Probes (/Gs).eeeerreerenes 97
3.3.14 Enabling and Disabling
Language Extensions (/Ze, /Za)...cccceveerenrene. 99
3.3.15 Packing Structure Members (/Zp) .cccevvverene. 100
3.3.16 Setting the Stack Size (/F).ccvreeererrervrvunnene. 102
3.3.17 Restricting the Length
of External Names (/H)..cccoereererrrrrrnnnvnnnenee 103
3.3.18 Labeling the Object File (/V).ceeerierrriirnnane. 103
3.3.19 Suppressing Default-Library Selection (/Z1) 104
3.3.20 Changing the Default char Type (/J) 105
3.3.21 Controlling Stack and Heap Allocation....... 105
3.3.22 Controlling the
Calling Convention (/Ge).uueeeeeeereenrerennennne 106
3.3.23 Compiling for
Windows Applications (JAW, /GW)..cceeeererns 109
3.3.24 XENIX-Compatible Optionscceeeeervvneeran. 109
3.4 Controlling Binary and Text Modes......cccccereueee. 111

46

Compiling with the CL, Command

3.1 Introduction

This chapter explains how to compile and link using the CL command and
discusses commonly used CL options. The CL command is the only com-
mand you need to compile and link your C source files. CL executes the
three compiler passes, then automatically invokes LINK, the Microsoft
Overlay Linker, to link your files.

Using the CL options described in this chapter, you can control and
modify the tasks performed by the command. For example, you can direct
CL to create an object-listing file or a preprocessed listing. Options also
let you give information that applies to the compilation process; you can
specify the definitions for manifest (symbolic) constants and macros, and
the kinds of warning messages you want to see.

For a quick overview of the more commonly used options, type
CL /HELP

after the MS-DOS prompt. The /HELP option is described in greater
detail in Section 3.3.2, “Listing the Compiler Options.”

The CL command automatically optimizes your program. You never have
to give an optimizing instruction unless you either want to change the way
CL optimizes, request more sophisticated optimizations, or disable optimi-
Zﬁtipn altogether. See Section 3.3.13, “Optimizing,” for more on these
choices.

Section 3.2 explains the basic use of the CL command to produce an exe-
cutable program.

Sections 3.3.1-3.3.24 describe the commonly used CL options.
See Chapter 4 for information about linking object files and libraries using
the CL command. See Chapter 12 of the Microsoft CodeView and Utilities
manual for a detailed description of the linker and its options.

See Chapter 6 for a discussion of the CL options that control memory
models.

See Chapter 7 for a discussion of the CL options that control floating-
point math operations.

See the Microsoft C Quick Reference Guide, provided with this package, for
a summary of the CL command and its options.

47

Microsoft C Optimizing Compiler User’s Guide

3.2 'The Basics:
Compiling and Linking C Programs

This section explains how to use CL to compile and link C programs and

discusses the rules and conventions that apply to file names and options
used with CL.

3.2.1 The CL Command

The CL command has the following form:
CL [option]... file... [option... file...] [/link[link-lébinfo]]

Each option is one of the command-line options described in Sections
3.3.1-3.3.24, in Chapter 6, or in Chapter 7.

Each file names a source or object file to be processed or a library to be
searched at link time. See Section 3.2.1.1 for information about specifying
source and object files.

The CL command automatically specifies the appropriate library to be
used during linking; however, you can use the /link option with the
optional link-libinfo field to specify additional or different libraries, library
search paths, and options to be used during linking. See Section 4.3,
“Passing Linker Information: The /link Option,” for information about
specifying different libraries and linker options.

You can give any number of options, file names, and library names on the
command line, provided that the command line does not exceed 128 char-
acters.

3.2.1.1 Specifying Source and Object Files

The CL command can process source files, object files, library files, or any
combination of these. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs,
as shown in the following list:

o If the file has a .C extension, ClL. compiles the file.

o If the file has an .ASM extension, CL displays the following error
message to indicate that it cannot invoke the Microsoft Macro
Assembler:

command-line error D2015: assembly files are not handled

48

Compiling with the CL Command

o If the file has an .OBJ extension, CL processes the file by invoking
the linker.

o If the file has a .LIB extension, CL passes the file to the linker to
be searched, unless the /c option is given to suppress linking. See
Section 3.3.4 for a description of the /c option.

e [f the extension is omitted, CL assumes an extension of .OBJ. If
the extension is anything other than .C, .OBJ, or .LIB, CL
assumes the file is an object file unless the file name is specified in
association with the /Tc option. If the file name is specified with
the /Tec option, CL assumes the file is a C source file. See Section
3.3.3 for a description of the /Tc option.

® Examples
CL A.C B.C C.0OBJ D

The command line above compiles the files A.C and B.C, creating object
files named A.OBJ and B.OBJ. These object files are then linked with
C.OBJ and D.OBJ to form an executable file named A.EXE (since the base
name of the first file on the command line is A). Note that the extension
.OBJ is assumed for D since no extension is given on the command line.

CL A.C B.C C.OBJ /TcD.SRC

The command line above performs the same operations as the preceding
command line, except that the /Tc option indicates that D.SRC is a
source file, not an object file. Thus, the files A.C, B.C, and D.SRC are
compiled, creating object files named A.OBJ, and B.0OBJ, and D.OBJ.
These object files are then linked with C.0BJ to form an executable file
pan;ed A.EXE (since the base name of the first file on the command line
IsA).

Wild-Card Characters

You can use the MS-DOS wild-card characters (* and ?) to process all files
whose names match the wild-card specification, if the files have the
required extensions. See your DOS user’s guide for more information on
wild-card characters.

Some CL options (such as /T¢, /Fo, and /I) take one or more file names

as arguments. Do not use wild-card characters in file names used as argu-
ments to these options.

49

Microsoft C Optimizing Compiler User’s Guide

B Examples
CL %.C

The command line above compiles all source files with the default exten-
sion (.C) in the current working directory. The resulting object files are
linked to form an executable file whose base name is the same as the base
name of the first file compiled.

CL %.0BJ

The command above links all object files with the default extension
(.OBJ) in the current working directory.

Path Specifications

Any file on the CL command line can include a full or partial path
specification. A full path specification starts with the drive name; a partial
path specification gives one or more directory names before the name of
the file, but does not give a drive name.

Specifying paths with file names allows you to process files in different
directories or on different drives.

Uppercase and Lowercase Letters in File Names

You can use uppercase letters, lowercase letters, or a combination of both
for the file names on the CL command line. For example, the following
three file names are equivalent:

abcde.C
ABCDE.C
aBcDe.c

Note that, unlike file names, CL command options are case sensitive.

3.2.1.2 Creating Executable Files

When CL compiles source files it creates object files. By default, these
object files have the same base names as the corresponding source files, but
with the extension .OBJ instead of .C. (The base name of a file extension
is the portion of the name preceding the period, but excluding the path
specification and drive name, if any.) You can use the /Fo option to give
a different name to an object file.

50

Compiling with the CL. Command

Unless the /c option is given, CL links these object files, along with any
.OBJ files you give on the command line, to form an executable file. The
executable file has the base name of the first file (source or object) given on
the command line, plus an .EXE extension. If only .OBJ files are given on
the command line, CL skips the compilation stage and simply links the
files.

You can tell whether CL is compiling or linking by the messages that
appear on the screen. When CL invokes the compiler, a message similar to
the following message appears on your screen:

Microsoft (R) C Optimizing Compiler Version 5.00
Copyright (C) Microsoft Corp 1984, 1985, 1986, 1987. All rights reserved.

As each source file on the command line is compiled, its name appears on
the screen. When all source files have been compiled and the linker is
invoked, a message similar to the following message appears:

Microsoft (R) Overlay Linker Version 3.60
Copyright (C) Microsoft Corp 1983-1987. All rights reserved.

This message is followed by several lines showing Microsoft LINK
prompts and the responses provided by CL.

3.2.1.3 Stopping CL

If you want to stop the compiling and linking session for any reason, press
CTRL~+C or CTRL+BREAK. You will be returned to the MS-DOS command
level. If, after doing this, you discover new files beginning with 00 or 01 in
the directory specified by the TMP environment variable, you can safely
delete them; because the compiling session was interrupted, these tem-
porary compiler files were not deleted.

Certain nonstandard DOS environments (including some commonly used

networks) often intercept some or all of the MS-DOS system calls and han-

dle the calls themselves to provide additional or different capabilities.

When running the compiler under such environments, the different opera-

gio}il of the system calls may cause CL to differ from its documented
ehavior.

3.2.2 Using the CL Environment Variable

You can also use the CL environment variable to specify files and options
without giving them on the command line. This variable has the following
format:

SET CL= [[option]... [filespec]...][/link] link-libinfo]]

51

Microsoft C Optimizing Compiler User’s Guide

This variable is useful if you usually give a large number of files and
options when you compile. Since the files and options that you define with
this variable are not counted in the 128-character limit for the command
line, you can define the files and options you use most often with the CL
variable and then give only the files and options you need for specific pur-
poses on the command line.

The information you define in the CL variable is treated as though it
appeared before the corresponding information you give on the CL com-
mand line. For example, if you use a command sequence of the form

SET CL = optl filel /link link-libinfol

CL opt2 file2 /link link-libinfo2

the effect would be the same as entering the following CL command:
CL optl filel opt2 file2 /link link-libinfol link-libinfo2

Note that if you have given an option in the CL environment variable, you
generally cannot turn off or change the option from the command line.
You must reset the CL environment variable and omit the file or option
that you do not want to use.

Also note that you cannot use CL to set options that use an equal sign
(for example, the /D identifier = string option described in Section
3.3.9.12, and you cannot use wild-card characters in file names to specify
multiple files to CL.

B Examples

SET CL=/Zp /Ox /I\INCLUDE\MYINCLS \LIB\BINMODE.OBJ
CL INPUT.C

In the example above, the CL environment variable tells the CL command
to use the /Zp, /Ox , and /I options during compilation and then link
with the object file \LIB\BINMODE.OBJ. The CL command that fol-
lows would then have the same effect as the following command line:

CL /Zp /Ox /I\INCLUDE\MYINCLS \LIB\BINMODE.OBJ INPUT.C

That is, it would specify structure packing on two-byte boundaries (Sec-
tion 3.3.15); perform maximum optimizations {Section 3.3.13.1); search for
include files in the \INCLUDE\MYINCLS directory (Section 3.3.9.6); and
would suppress translation of carriage-return—line-feed character combina-
tions for the source file INPUT. C (Section 3.4).

52

Compiling with the CL. Command

3.3 Using CL Options

The CL command offers a large number of command options to control
and modify the compiler’s operation. Options begin with the forward slash
character (/) and contain one or more letters. You can use a dash (-)
instead of the forward slash if you prefer. For example, /Zg and -Zg are
both acceptable forms of the Zg option. In this manual, forward slashes
are used for options, although in error messages dashes are used.

Important

Although file names can be given in either uppercase or lowercase
letters, options must be given exactly as shown in this manual. For
example, /W and /w are two different options.

Options can be defined in the CL environment variable, or they can
appear anywhere on the CL command line. In general, an option applies
to all files that follow it on the command line, and it does not affect files
preceding it on the command line, However, not all options follow this
rule; see the discussion of a particular option for information on its
behavior. Keep in mind that most CL options apply only to the compila-
tion process. Unless specifically noted, options do not affect any object files
given on the command line.

Since options defined in the environment are treated as if they appeared
before options given on the command line, they affect any files given on
the command line. Although, in some cases, conflicting options can be
given on the command line to override options defined in the environment,
1t is usually safer to reset the CL variable because conflicts between the
environment and command line may cause compilation to fail.

B Examples

SET CL = /FPi87 /AL /Ox

CL /FPa /AM FILEl.c

In the example above, the conflicting floating-point and memory-model

options given in the CL variable and on the CL command line would
cause compilation to fail.

53

Microsoft C Optimizing Compiler User’s Guide

The following example illustrates how to turn off the effects of a CL
option defined in the environment:

SET CL = /Za

CL FILEl.C /Ze FILE2.C

In the example above, the CL environment variable is set to the /Za
option, described in Section 3.3.14, which tells the compiler to treat Micro-
soft extensions to the C language as ordinary identifiers rather than
reserved words. The CL command specifies the inverse option, /Ze, which
tells the compiler to treat language extensions as reserved words. Since the
effect is the same as compiling with the command line

CL /Za FILEl1.C /Ze FILE2.C

FILE1l.C is compiled with language extensions disabled and FILE2.C is
compiled with language extensions enabled.

3.3.1 Memory-Model (/A) and
Floating-Point (/FP) Options

Two important options that you specify with the CL: command are the
memory model used for your program, and how your program handles
floating-point math operations.

You use the CL command to specify the memory model your program will
use. The memory model defines the rules that the compiler will use to set
up the program’s code and data segments in memory. CL offers the follow-
ing memory-model options:

Option Effect

J/AS - Chooses the small memory model (default)
/AM Chooses the medium memory model

JAC Chooses the compact memory model

/AL Chooses the large memory model

JAH Chooses the huge memory model

See Chapter 6 for a description of these options and the memory models
they specify.

The CL command includes the following options that allow you to choose
how the program you are compiling will handle floating-point operations:

b4

Compiling with the CL. Command

Option Effect

/FPi87 Generates in-line instructions and selects the
8087 /80287 math package

J/FPi Generates in-line instructions and selects the emu-
lator math package

J/FPc87 Generates floating-point calls and selects the
8087 /80287 math package

/FPc Generates floating-point calls and selects the emu-

lator math package

/FPa Generates floating-point calls and selects the alter-
nate math package.

See Chapter 7, “Controlling Floating-Point Math Operations,” for a
description of these options and their effects.

The floating-point and memory-model options you choose determine the
name of the standard library that CL places in the object file it creates.
This library is then considered the default library, since the linker searches
for it by default. Table 3.1 shows each combination of memory-model and
floating-point options and the corresponding library name that CL
embeds in the object file.

Table 3.1

CL Options and Default Libraries

Floating-Point Memory-Model Default

Option Option Library

/FPi87 or /[FPc87 /AS SLIBC7.LIB
/AM MLIBC7.LIB
/AC CLIBC7.LIB
/AL or /AH LLIBC7.LIB

/FPior /FPc /AS SLIBCE.LIB
/AM MLIBCE.LIB
/AC CLIBCE.LIB
/AL or /AH LLIBCE.LIB

/FPa /AS SLIBCA.LIB
/AM ‘MLIBCA.LIB
JAC CLIBCA.LIB
/AL or /AH LLIBCA.LIB

55

Microsoft C Optimizing Compiler User’s Guide

Note

If you are linking with any objects compiled with Version 4.0 of Micro-
soft C, you must explicitly give the /NOD (“no default library
search”) linker option after the /link option on the CL command line,
then specify the name of the Version 5.0 combined library explicitly.

3.3.2 Listing the Compiler Options (/HELP)

B Option

/HELP
/help

This option displays a list of the most commonly used compiler options.
CL processes all information on the line containing the /help option, and
displays the command list.

This option is not case sensitive: any combination of uppercase and lower-
case letters is acceptable. For example, /hELp is a valid form of this
option.

If you specify the /qc option (described in Section 3.3.5) before the
HELP option on the command line, only the options that work under
/qc are displayed.

3.3.3 Specifying Source Files (/Tc)

B Option
/Te sourcefile

The éTc option tells the CL command that the given file is a C source
file. One or more spaces can appear between /Tc and the source-file name.

If this option does not appear, CL assumes that files with the extension .C
are C sourece files, files with the extension .LIB are libraries, and files with
any other extension or with no extension are object files. If you use the
/Tc option, CL treats the given file as a C source file, regardless of its
extension, if any. A separate /Te¢ option must appear for each source file
that has an extension other than .C.

If you have to specify more than one source file with an extension other
than .C, you must specify each source file in a separate /Te option.

56

Compiling with the CL: Command

H Example
CL MAIN.C /Tc TEST.PRG /Tc COLLATE.PRG PRINT.PRG

In the example above, the CL command compiles the three source files
MAIN.C, TEST.PRG, and COLLATE .PRG. Since the file PRINT.PRG is
given without a /Tc option, CL treats it as an object file. Thus, after
compiling the three source files, CL links the object files MAIN.OBJ,
TEST.OBJ, COLLATE .OBJ, and PRINT.PRG.

3.3.4 Compiling without Linking (/c)

® Option
/e

The /e (for “compile-only”) option suppresses linking. Source files given
on the command line are compiled, but the resulting object files are not
linked, no executable file is created, and any object files specified on the

command line are ignored. This option is useful when you are compiling
individual source files that do not make up a complete program.

The /c option applies to the entire CL command line, regardless of the
option’s position in the command line.

B Example
CL /c *.C

This command line compiles, but does not link, all files with the extension
.C in the current working directory.

3.3.5 Compiling with QuickC (/qc, /Zr, / Zq)

® Option

/qc

The /qc option tells the compiler to compile any source files specified on
the remainder of the command line using the Microsoft QuickC Compiler.
Because only limited optimizations are performed, programs produced
using this option are generally slower and larger than programs produced
without it. However, they can be compiled much faster using this option.

57

Microsoft C Optimizing Compiler User’s Guide

If you give the /qc option, only the following CL options have any effect
on the program:

/A JFm /help /U [Ze
b R B
F /Gs w
/Fe /Gt /Te /X

The following options affect compilation only if you also specify the /qe
option; otherwise, the CL command ignores them:

Option Effect

/Zr Checks for null pointers and out-of-range far
pointers at run time

/Zq Generates debugging interrupts for programs that
will be debugged within the QuickC environment

Also, the following features are illegal or have no effect in source programs
compiled with the /qc option:

e Use of the huge keyword, which is ignored if language extensions
are enabled (that is, if the program 1s compiled with the default
language-extensions option, /Ze)

o Redeclaration of extern items as static items, which causes a
redefinition error

. Use of the loop—opt, intrinsic, function, alloc_text, and
same_seg pragmas

Refer to the Microsoft QuickC Programmer’s Guide provided in this pack-
age for complete documentation of the Microsoft QuickC Compiler.

3.3.6 Naming the Object File (/Fo)

B Option
/Foobjfile

By default, CL gives each object file it creates the base name of the
corresponding source file plus the extension .OBJ. The /Fo option lets
you give different names to object files or create them in a different direc-
tory. If you are compiling more than one source file, you can give an /Fo
option for each source file to rename the corresponding object file.

58

Compiling with the CL. Command

Keep the following rules in mind when using this option:

e The objfile argument must appear immediately after the option,
with no intervening spaces.

e Each /Fo option applies to the next source file that appears on the
command line after the option.

You are free to supply any name and any extension you like for the objfile.
However, it is recommended that you use the conventional .OBJ extension
because the linker and the LIB library manager use .OBJ as the default
extension when processing object files.

If you do not give a complete object file name with the /Fo option (that
is, if you do not give an object file name with a base and an extension), CL
names the object files according to the following rules:

e If you give an object-file name without an extension (such as
TEST), CL automatically appends the .OBJ extension.

e If you give an object-file name with a blank extension (such as
TEST.), CL leaves the extension blank.

e If you give only a drive or directory specification following the /Fo
option, CL creates the object file on the given drive or directory

ag%lﬁes the default file name (the base name of the source file plus

You can use this option to create the object file in another directory or on
another disk. When you give only a directory specification, the directory
specification must end with a backslash (\) so that CL can distinguish
between a directory specification and a file name.

B Examples

CL /FoB:\OBJECT\ THIS.C

In the example above, the source file THIS.C is compiled; the resulting
object file is named THIS.OBJ (by default). The directory specification
B:\OBJECT\ tells CL to create THIS.OBJ in the directory named
\OBJECT on Drive B.

CL /Fo\OBJECT\ THIS.C THAT.C /Fo\SRC\NEWTHOSE.OBJ THOSE.C

In the example above, the first /Fo option tells the compiler to create, in

the \OBJECT directory, the object files THIS.OBJ (created as a result of
compiling THIS.C) and THAT.OBJ (created as a result of compiling

59

Microsoft C Optimizing Compiler User’s Guide

THAT.C). The second /Fo option tells the compiler to create the object
file named NEWTHOSE . OBJ, (created as a result of compiling THOSE . C) in
the \SRC directory.

3.3.7 Naming the Executable File (/Fe)

E Option
/Feezefile

By default, CL gives the base name of the first file (source or object) on
the command line, plus the extension .EXE, to the executable file it
creates. The /Fe option lets you give the executable file a different name
or create it in a different directory.

Since CL creates only one executable file, you can give the /Fe option
anywhere on the command line. If more than one /Fe option appears, CL
gives the executable file the name specified in the last /Fe option on the
command line.

The /Fe option applies only in the linking stage. If you specify the /¢
option to suppress linking, /Fe has no effect.

The exefile argument must appear immediately after the option, with no
intervening spaces. The ezefile argument can be a file specification, a drive
name, or a path specification. If exefile is a drive name or path
specification, the CL command creates the executable file in the given
location, using the default name (base name of the first file plus .EXE).
When you give a path specification as the exefile argument, the path
specification must end with a backslash (\) so that CL can distinguish it
from an ordinary file name.

You are free to supply any name and any extension you like for the ezefile.
If you give a file name without an extension, CL automatically appends
the .EXE extension.

B Examples

CL /FeC:\BIN\PROCESS #.C

The example above compiles and links all source files with the extension

.C in the current working directory. The resulting executable file is named
PROCESS.EXE and is created in the directory C:\BIN.

80

Compiling with the CL. Command

CL /FeC:\BIN\ *.C

The example above is similar to the first example except that the execut-
able file, instead of being named PROCESS.EXE, is given the same base
name as the first file compiled. The executable file is created in the direc-
tory C:\BIN.

3.3.8 Creating Listing Files

A number of listing options are available with the CL command. You can
create a source listing, a map listing, or one of several kinds of object list-
ings. You can also set title and subtitle of the source listing from the com-
mand line and control the length of source-listing lines and pages.

The options available for producing listings and controlling their appear-
ance are described in the following sections.

Note

Listings produced by the CL command may contain names that begin
with more than one underscore (for example, __chkstk) or that end
with the suffix Q. Names that use these conventions are reserved for
internal use by the compiler, and should not be used in your programs,
except for those documented in the Microsoft C Run-Time Library
Reference such as _ psp, — amblksiz, and — fpreset(). Moreover, you
should avoid creating global names that begin with an underscore.
Since the compiler automatically adds another leading underscore,
these names will have two leading underscores and might conflict with
the names reserved by the compiler.

3.3.8.1 Types of Listings
(/Fs, [F), [Fa, [Fc, /[Fm)

® Options

JFs[listfiles] Source listing

JF1[listfile] Object listing

/Fal[listfile] Assembly listing

/Fc[listfile] Combined source and object listing
/Fm[mapfile] Map file that lists segments, in order

This section describes how to use command-line options to create listings.
For an example of each type of listing and a description of the information
it contains, see Section 3.3.8.5, “Formats for Listings.”

61

Microsoft C Optimizing Compiler User’s Guide

When using the options described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces.
The listfile can be a file specification, a drive name, or a path specification.
It can also be omitted.

Important

When you give just a path specification as the listfile argument, the
path specification must end with a backslash (\) so that CL can dis-
tinguish it from an ordinary file name.

When you give a drive name or path specification as the argument to a
listing option, or if you omit the argument altogether, CL uses the default
file name for the listing type. Table 3.2 gives the default names used for
each type of listing. The table also shows the default extensions, which are
used when you give a file-name argument that lacks an extension.

Table 3.2

Default File Names and Extensions

Default Default

Option Listing Type File Name! Extension?

/Fs Source Base name of source LST
file plus .LST

/F1 Object Base name of source .COD
file plus .COD

/Fa Assembly Base name of source ASM
file plus .ASM

/Fe Combined Base name of source .COD

source-object file plus .COD
/Fm Map Base name of first MAP

source or object file
on the command

line plus MAP

1 The default file name is used when the option is given with no argument or
with a drive name or path specification as the argument.

2 The default extension is used when a file name lacking an extension is given.

Since you can process more than one file at a time with the CL command,
the order in which you give listing options and the kind of argument you

682

Compiling with the CL. Command

give for each option (file specification, path specification, or drive name)
affect the result. Table 3.3 summarizes the effects of each option with each
type of argument.

Table 3.3
Arguments to Listing Options
Drive-Name

File-Name or Path No

Option Argument Argument! Argument

/Fa, /Fe, Creates a listing ~ Creates listings in Creates listings in the

/Fl, /Fs for next source the given location current directory for
file on command for every source file every source file listed
line; uses de- listed after the after the option on the
fault exten- option on the command line; uses
sion if no command line; uses default names
extension is default names
supplied

/Fm Uses given file Creates map file in Uses default name

name for the
map file; uses
default exten-
sion if no
extension is
supplied

the given directory;
uses default name

1 When you give just a path specification as the argument, the path specification must end
with a backslash (\) so that CL can distinguish it from an ordinary file name.

Only one type of object or assembly listing can be produced for each
source file. The /F¢ option overrides the /Fa and /F1 options; whenever
you use /F¢, a combined listing is produced. If you apply both the /Fa
and the /F1 options to one source file, only the last listing specified on the
command line is produced. If you specify both the /Fa and the /Fs
options to one source file, a combined listing is produced.

Note

The CL command optimizes by default, so listing files reflect the
optimized code. Since optimization may involve rearrangement of
code, the correspondence between your source file and the machine
instructions may not be clear, especially when you use the /Fe option
to mingle the source and assembly codes. To produce a listing without
optimizing, use the /Od option (discussed in Section 3.3.12, “Prepar-
ing for Debugging”) with the listing option.

63

Microsoft C Optimizing Compiler User’s Guide

The map file is produced during the linking stage. If linking is suppressed
with the /e option, the /Fm option has no effect.

B Examples

CL /FsHELLO.SRC /FcHELLO.CMB HELLO.C

In the first example, CL creates a source listing called HELLO.SRC and a
combined source and assembly listing called HELLO.CMB. The object file
has the default name HELLO.OBJ.

CL /FSHELLO.SRC /FsHELLO.LST /FcHELLO.COD HELLO.C

The example above produces a source listing called HELLO.LST rather
than HELLO. SRC, since the last name provided has precedence. This

example also produces an object-listing file named HELL.O.COD. The
object file in this example has the default name HELLO.OBJ.

3.3.8.2 Special File Names

You can use the MS-DOS device names listed below as file-name argu-
ments to the listing options. These special names allow you to direct list-
ing files to your terminal or printer:

Name Device

AUX Refers to an auxiliary device.

CON Refers to the console (terminal).

PRN Refers to the printer device.

NUL Specifies a “null” (nonexistent) file. Giving NUL as a

file name means that no file is created.
Even if you add device designations or file-name extensions to these special

file names, they remain associated with the devices listed above. For exam-
ple, A:CON. XXX still refers to the console and is not a disk-file name.

64

Compiling with the CL. Command

Note

When using these device names, do not append a colon. The Microsoft
C Optimizing Compiler does not recognize the colon. For example, use
CON or PRN, not CON: or PRN:.

3.3.8.3 Setting Line Width (/SI)
and Page Length (/Sp)

®H Options

/Sl linewidth
/Sp pagelength

The /Sl and /Sp options let you change the line width and page length,
respectively, for source listings. These options are useful in preparing
source listings for a printer that uses nonstandard page lengths. The space
is optional between /Sl and linewidth or /Sp and pagelength.

The linewidth argument gives the width of the listing line in columns (on
line printers, columns usually correspond to characters). The number given
must be a positive integer between 79 and 132, inclusive. If you specify any
number outside this range, the compiler generates a diagnos-

tic message and uses the default line width (79 columns). Any line that
exceeds the listing width is truncated.

The pagelength argument gives the number of lines to appear on each page
of the listing. The number given must be a positive integer between 15 and
255, inclusive. If you specify any number outside this range, the compiler

generates a diagnostic message and uses the default page length (63 lines).

The /Slor /Sp option applies to the remainder of the command line or
until the next occurrence of /Sl or /Sp on the command line. These
options do not create source listings; they take effect only if you also
specify the /F's option to create a source listing.

B Example

CL /¢ /Fs /S1 90 /Sp 70 x.C

65

Microsoft C Optimizing Compiler User’s Guide

The example above compiles all C source files with the default extension
(-C) in the current working directory, creating a source-listing file for each
source file. Each page of the source-listing file is 90 columns wide and 70
lines long.

3.3.8.4 Setting Titles (/St) and Subtitles (/Ss)

B Options

/St “title"
/Ss “subtitle™

The /St and /Ss options set the title and subtitle, respectively, for source
listings. The quotation marks (" ") around the title or subtitle argument
can be omitted if the title or subtitle does not contain space or tab charac-
ters. The space between /St or /Ss and their arguments is optional.

The title appears in the upper left corner of each page of the source listing.
The subtitle appears below the title.

The /St or /Ss option applies to the remainder of the command line or
until the next occurrence of /St or /Ss on the command line. These
options do not cause source listings to be created. They take effect only
when the /F's option is also used to create a source listing.

B Examples

CL /St "INCOME TAX" /Ss 4-14 /Fs TAX#.C

The example above compiles and links all source files beginning with TAX
and ending with the default extension (.C) in the current working direc-
tory. Each page of the source listing contains the title INCOME TAX in the
upper left corner. The subtitle 4-14 appears below the title on each page.
CL /c /Fs /St"CALC PROG" /Ss"COUNT" CT.C /Ss"SORT" SRT.C

The example above compiles two source files and creates two source list-

ings. Each source listing has a unique subtitle, but both listings have the
title CAL.C PROG.

66

Compiling with the CL Command

3.3.8.5 Formats for Listings

This section describes and shows examples of the five types of listings
available with the CL command. See Section 3.3.8.1, “Types of Listings,”
for information on how to create these listings.

Source Listing

Source listings are helpful in debugging programs as they are being devel-
oped. These listings are also useful for documenting the structure of a
finished program.

The source listing contains the numbered source-code lines of each pro-
cedure in the source file, along with any diagnostic messages that were
generated. If the source file compiles with no errors more serious than
warning errors, the source listing also includes tables of local symbols, glo-
bal symbols, and parameter symbols for each function. If the compiler is
unable to finish compilation, 1t does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in your
program. This summary is useful for analyzing the memory requirements
of your program.

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

char hexvalue([10];
main ()

long htoi():;

printf"'Please enter the hex value you want to convert:\n");
scanf (hexvalue) ;

printf(The integer value of the hex value is %1d\n", hexvalue)):

VOJOUNPWNE

11 1long htoi (hexvalue)
12 char *hexvalue;

13 {

14 register char *ptr=hexvalue;

15 int i=0;

16 long n=0;

17 long expl6() ;

18 while (*ptr t= '"\0')

19 if (*ptr >= 'a' && *ptr <= 'f')

20 *ptr -= 87;

21 else if (*ptr >= A && *ptr <= 'F')
22 *ptr -= 55;

23 else

24 *ptr -= 48;

25 ptr+;

bomb.c(25) : error C2059: syntax error : ';'
26 }

87

Microsoft C Optimizing Compiler User’s Guide

The line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.

The following example shows the source listing for a simple C program:

Hex to ASCII PACE 1
2/25/87 02-25-87
10:44:23
Line# Source Line Microsoft C Compiler Version 5.00
1 char hexvalue[l0];
2
3 main()
4 {
5 long htoi():
6 printf S"Please enter the hex value you want to convert:O);
7 scanf ("%s", hexvalue);
8 printf ("The integer value of the hex value is %1dO, htoi (hexvalue));
9 }

11 long htoi (hexvalue)
12 char *hexvalue;

13 {

14 register char *ptr=hexvalue;

15 int i=0;

16 long n=0;

17 long expl6();

18 while (*ptr != "' ")

19 if (*ptr >= 'a' && *ptr <= 'f')
20 *ptr -= 87;

21 else if (*ptr >= 'A' && *ptr <= 'F')
22 *ptr -= 55;
23 else

24 *ptr -= 48;

25 ptr++;

26 }

27 ptr -= 1;

28 while (ptr>=hexvalue)

29

30 n'*i (*ptr*expl6(i));

31 i++;

32 ptr--;

33

34 return(n) ;

htoi Local Symbnls

Name Class Type Size Offset Register
i........ .. aute -0008

ptr auto Ak si
n.......=...auto -0004
hexvalue. param 0004

35 3}

36

37 long expl6 (exp)

38 int exp:

39 {

40 long result=1;

41 int j:

42 for (j=1; j<=exp; j++)

43 result *= 16;

44 return (result) ;

68

Hex to A
2/25/87

Compiling with the CL. Command

02-25-87
10:44:23

Microsoft C Compiler Version 5.00

explé Local Symbols

Name

reéuit:
exp .

Global Symbols
' Name

explé .
hexvalue. -
htoi.
main. . N
printf.
scanf .

Code size

Class Type Size Offset Register

. auto -0006

. auto -0004

. param 0004

Class Type Size Offset
. global near function * OOae
. common struct/array 10 bl

global near function bkl 0038
. global near function bl 0000
. extern near function bbb bl
. extern near function bl ol

00e8 (232)

Data size = OO5f (95)

Bss size

No errors detected

At the end of each

0000 (0)

function, a table of local symbols is given, as shown

below for the function htoi:

htoi Local Symbols
Name

..
ptr .
n.
hexvalue. .

Class Type Size Offset Register
. auto -0008
. auto LA si
. auto -0004
. param 0004

The following list shows the contents of each column:

Column Contents

Name The name of each local symbol in the function.

Class Either auto if the symbol is a nonstatic local variable,
or paran if the symbol is a formal parameter.

Offset The symbol’s offset address relative to the frame
pointer (that is, the BP register). The Of fset number
1s positive for param symbols and negative for auto
symbols with auto storage class.

Register Blank unless the variable is stored in a register; if the

variable is stored in a register, this column indicates the
register (SI or DI).

69

Microsoft C Optimizing Compiler User’s Guide

At the end of the source code, a table of global symbols is given, as shown

below:

Name

explé . . .

hexvalue. . .

htoi.

main.
printf.
scanf . . .

Class Type Size Offset
. global near function *kk COae
. common struct/array 10 * kK
. global near function *okk 0038
. global near function *kk 0000
. extern near function *hk kKK
. extern near function *rk *hk

The following list shows the contents of each column:

Column

Contents

Name

Class

Type

Size

Offset

70

Each global symbol, external symbol, and stati-
cally allocated variable declared in the source file.

Either global, common, extern, or static,
depending on how the symbol was defined in the
source file,

A simplified version of the symbol’s type as
declared in the source file.

For functions, this entry is either near func-
tion or far function, depending on which
memory model was used and how the function was
declared. For a pointer, this entry is near
pointer, far pointer, or huge pointer.
For enumeration variables, this entry is int. For
structures, unions, and arrays, this entry is
struct/array.

Used only for variables. Specifies the number of

bytes of storage allocated for the variable. Since
the amount of storage allocated for an external

array may not be known, its Size entry may be
undefined.

Used only for symbols with an entry of global or
static in the Class column.

For variables, this entry gives the relative offset of
the variable’s storage in the logical data segment
for the program file being compiled. Since the
linker usually combines several logical data seg-
ments into a physical segment, this number is use-
ful only for determining the relative position of
storage of variables. For functions, this entry gives
the relative offset of the start of the function in the
logical code segment. For small-model programs,
the linker combines logical code into a single

Compiling with the CL. Command

physical segment, so this entry is useful for deter-
mining the relative positions of different functions
defined in the same source file. However, for
medium-, large-, and huge-model programs, each
logical code segment becomes a unique physical
segment. In these cases, this entry gives the actual
offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as shown below:

Code size = 0103 (259)
Data size = OO5f (95)
Bss size = 0000 (O)

The number of bytes in each segment is given first in hexadecimal, and
then in decimal (in parentheses).

Object Listing

The /F1option produces an object listing. The object listing contains

the instruction encoding and assembly code for your program. The line
numbers are shown in the listing as comments. The instruction encoding is
on the left and assembly code on the right, as shown in the sample below:

; Line 4
PUBLIC _main
_main PROC NEAR
*x% 000000 55 push bp
*xx 000001 8b ec mov bp,sp
*x%x 000003 33 ¢cO XOor ax,ax
**x % O00005 e8 00 00 call __chkstk
; Line 6
*x%x 000008 b8 00 0O mov ax,OFFSET DGROUP:$S G12
% OO0000b 50 push ax
*xx 00000c e8 00 00 call _printf
*+% Q0000f 83 c4 02 add sp.2
Assembly Listing

The /Fa option produces an assembly listing. The assembly listing con-
tains the assembly code corresponding to your C source file, as shown
below:

71

Microsoft C Optimizing Compiler User’s Guide

; Line 4
PUBLIC _main
_main PROC NEAR

push bp
mov bp.sp
xor ax, ax
call __chkstk
; Line 6
mov ax, OFFSET DGROUP:$SG12
push ax
call _printf
add sp, 2

Note that the sample shows the same code as in the object listing sample,
except that the instruction encoding is omitted.

The listing generated by the /Fa option in Versions 5.0 and later of the
Microsoft C Optimizing Compiler can be used as input to the Microsoft
Macro Assembler (MASM).

Combined Source and Object Listing

The /Fc option produces a combined source and object listing. The com-
bined source and object listing shows each line of your source program fol-
lowed by the corresponding line (or lines) of machine instructions, as in
the following sample:

_TEXT SEGMENT
;| #** char hexvalue[10]:
MRS
1x%xx main ()
slxxx {
; Line 4
PUBLIC _main
.main PROC NEAR

**% 000000 55 push bp
*+xx 000001 8b ec mov bp,sp

+x% 000003 33 cO xor ax,ax

*+% 000005 e8 00 00) call __chkstk

T long htoi():
;1**x printf("Please enter the hex value you want to convert:0);
; Line 6

* %% 000008 b8 00 00 mov ax,OFFSET DGROUP:$SG12
*x+ O0O000b 50 push ax

*x%x 00000c e8 00 00 call _printf

+x%x O0000f 83 c4 02 add sp,2

;ix**x scanf ("¥s", hexvalue);

Note that this sample is like the object-listing sample, except that the
source-program line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of globally

visible functions and variables begin with an underscore, as shown below
(this part of the listing is the same for all three kinds of listings):

72

Compiling with the CL. Command

EXTRN _printf:NEAR
EXTRN _scanf:NEAR

EXTRN __chkstk:NEAR
EXTRN __aNlmul :NEAR
EXTRN __aNNalshl :NEAR

EXTRN _hexvalue:TBYTE

The Microsoft C Optimizing Compiler automatically prefixes an under-
score to all global names to preserve compatibility with XENIX C com-
pilers. If you write assembly-language routines to interface with your C
program, this naming convention is important; see Section 3.3.8 for more
information.

The listing may also contain names that begin with more than one under-
score (for example, __chkstk in the sample). Identifiers with more than
one leading underscore are reserved for internal use by the compiler, and
should not be used in your programs, except for those documented in the
Microsoft C Run-Time Library Reference such as — psp, — amblksiz, and
—fpreset(). Moreover, you should avoid creating global names that begin
with an underscore. Since the compiler automatically adds another leading
underscore, these names will have two leading underscores and might
conflict with the names reserved by the compiler.

Map File

The /F'm option produces a map file. The map file contains a list of seg-
ments in order of their appearance within the load module. An example is
shown below:

Start Stop Length Name Class
OOOCOOH O1lE9FH Ol1EACH _TEXT CODE

O1lEAOH Ol1EACH OOOOOH C_ETEXT ENDCODE

-

.

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load
module. The load module begins at location zero. The Length column
gives the length of the segment in bytes. The Name column gives the name
of the segment, and the Class column gives information about the seg-
ment type. See Chapter 12 of the Microsoft CodeView and Utilities
manual for information about groups, segments, and classes.

The starting address and name of each group appear after the list of seg-
ments. A sample group listing is shown below:

Origin Group
Ol1lEA:0 DGROUP

73

Microsoft C Optimizing Compiler User’s Guide

In the example above, DGROUP is the name of the data group.
DGROUP is the only group used for data segments by programs com-
piled with the Microsoft C Optimizing Compiler, Versions 4.0 and 5.0.

The map file shown below contains two lists of global symbols: the first list
is sorted in ASCII-character order by symbol name and the second is by
symbol address. A maximum of 2048 symbols are sorted in each list. (To
increase the number of sorted symbols, you must specify the /MAP linker
option with the number argument to create the map file; see Section 4.4 for
details.f The notation Abs appears next to the names of absolute symbols
(symbols containing 16-bit constant values that are not associated with
program addresses).

Many of the global symbols that appear in the map file are symbols used
internally by the Microsoft C Optimizing Compiler. These symbols usually
begin with one or more leading underscores or end with QQ.

Address Publics by Name
O1EA:0096 STKHQQ
0000:1D86 _brkectl
O1EA:04BO _edata
0O1lEA:0910 _end
OLEA: OOEC __abrkp
O1lEA:009C __abrktb
O1EA:0CEC __abrktbe
0000:9876 Abs __acrtmsg
0000:9876 Abs __acrtused
0O1EA:0240 ___argc
O1lEA:0242 argv
Address Publics by Value
0000:0010 _main
0000:0047 _htoi
0000 : 0O0DA _expl6
0000:0113 __chkstk
0000:0129 __astart
__cintDIV

0000:01C5

The addresses of the external symbols are in the “frame:offset” format,
showing the location of the symbol relative to zero (the beginning of the
load module).

74

Compiling with the CL. Command

Following the lists of symbols, the map file gives the program entry point,
as shown in the following example:

Program entry point at 0000:0129

3.3.9 Controlling the Preprocessor

The CL command provides several options that control the operation of
the C preprocessor. You can define macros and manifest (symbolic) con-
stants from the command line, change the search path for include files,
and stop compilation of a source file after the preprocessing stage to pro-
duce a preprocessed source-file listing. The options that perform these
tasks are described in Sections 3.3.9.1-3.3.9.4.

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as
directed. The preprocessor can be run on a file at any stage of develop-
ment, whether or not the file is a complete C source file. In fact, the
preprocessor is not restricted to processing C files; it can be run on any
kind of file. However, input files to the preprocessor must follow the
preprocessor rules; therefore, not all arbitrary text files may be suitable for
use with the preprocessor. See Chapter 8 of the Microsoft C Quick Refer-
ence Guide for a complete discussion of C preprocessor directives and the
format expected for preprocessor input.

3.3.9.1 Defining Constants and Macros (/D)

® Option
/D identifier[= [string]]

The /D option lets you define a constant or macro used in your source file.
The tdentifier is the name of the constant or macro and string is its value
or meaning. Note that spaces are permitted (but not required) between /D
and the identifier.

If you leave out both the equal sign and string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
/DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined; its definition is the empty string. This
definition effectively removes all occurrences of the identifier from the
source file. For example, to remove all occurrences of register, use the
following option:

/Dregister=

75

Microsoft C Optimizing Compiler User’s Guide

Note that the identifier register is still considered to be defined.

Note

The /D identifier form of this option can be defined using the CL
environment variable; however, the /D identifier = and /D identifier
= string forms cannot.

The effect of using the /D option is the same as using a preprocessor

define directive at the beginning of your source file: the identifier is
defined in the source file being compiled either until an # undef directive
removes the definition or until the end of the file is reached.

You can supply a command-line definition for an identifier that is also
defined within the source file. However, you must use # undef to remove
the source-file definition, unless the source-file definition is identical to the
command-line definition. The command-line definition remains in effect
until the identifier is removed with an # undef directive.

Normally, up to 17 definitions are allowed on the command line. Using
either the /Za option or the /J option on the command line reduces to 16
the number of definitions allowed; using both of these options reduces the
number to 15. If you need to define more than the maximum number of
1dentifiers, you can remove certain predefined definitions from the com-
mand line; see the discussion of the /U and /u options in Section 3.3.9.3,
“Removing Definitions of Predefined Identifiers,” for more information.

The /D option is especially useful with the #if and #ifdef directives

because you can control conditional-compilation directives in the source
file from the command line.

B Examples
CL /D NEED=2 MAIN.C

The example above defines the manifest constant NEED in the source file
MAIN.C. This definition is equivalent to placing the directive

#define NEED 2

at the top of the source file.

76

Compiling with the CL. Command

For the next example, suppose a source file named OTHER . C contains the
following fragment:

#if defined (NEED)

#endif

Suppose further that OTHER . C does not explicitly define NEED (that is, no
#define directive for NEED is present). Then all statements between the
#if and the #endif directives are compiled only if you supply a definition
of NEED by using /D. For instance, the command

CL /DNEED MAIN.C

is sufficient to compile all statements following the #if directive. Note
that NEED does not have to be set to a specific value to be considered
defined. The following command, in contrast, causes the statements in the
#if block to be ignored (not compiled):

CL MAIN.C

3.3.9.2 Predefined Identifiers

The compiler defines four identifiers that are useful in writing portable
programs. You can use these identifiers to conditionally compile code sec-
tions, depending on the processor and operating system being used. The
predefined identifiers and their functions are listed below:

Identifier Function

MSDOS Always defined. Identifies target operating
system as MS-DOS.

M_186 Always defined. Identifies target machine as
a member of the I86 family.

M_186 mM Always defined. Identifies memory model,

where m is either S (small model), C (com-
pact model), M (medium model), L (large
model), or H (huge model). If huge model is
used, both M_I86L.M and M_I86HM are
defined. Small model is the default.
Memory models are discussed in Chapter 6,
“Working with Memory Models.”

77

Microsoft C Optimizing Compiler User’s Guide

NO_EXT_KEYS Defined only when the /Za option is given,
thus disabling Microsoft-specific language
extensions and extended keywords. See Sec-
tion 3.3.14, “Enabling and Disabling
Language Extensions,” for more informa-
tion.

—CHAR_UNSIGNED Defined only when the /J option is given to
make the char type unsigned by default.
See Section 3.3.20, “Changing the Default
char Type,” for more information.

3.3.9.3 Removing Definitions of
Predefined Identifiers (/U, /u)

B Options

/U identifier
/u

The /U (for “undefine”) option turns off the definition of one of the
predefined identifiers discussed in the previous section; one or more spaces
may separate the /U and identifier. You can specify more than one /II)J
option on the same command line. The /u option turns off all four
definitions.

number of definitions (16 if the /Za or /J option is used, 15 if both
options are given, or 17 otherwise) on the command line, or if you have
other uses for the predefined identifiers. For each definition of a predefined
identifier you remove, you can substitute a definition of your own on the
command line. When the definitions of all four predefined identifiers are
removed, you can specify up to 20 command-line definitions. However,
note that MS-DOS limits the number of characters you can type on a com-
mand line, so the number of definitions you can specify in practice is prob-
ably fewer than 20.

These options are useful if you want to Zive more than the maximum

® Example

CL /UMSDOS /UM_I86 WORK.C:;

This example removes the definitions of two predefined identifiers. Note
that the /U option must be given twice to do this.

78

Compiling with the CL. Command

3.3.9.4 Producing a Preprocessed
Listing (/P, /E, /EP)

® Options

/P Writes preprocessed output to a file
/E Writes preprocessed output to standard output; includes # line directives
/EP Writes preprocessed output to a file and standard output

The /P, /E, and /EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per-
formed, and comments are removed. All three options suppress compila-
tion; no object file or listing is produced, even if you specify an /Fo option
or a listing-file option on the CL command line.

The /P option writes the preprocessed listing to a file with the same base
name as the source file, but with an .I extension.

The /E option copies the preprocessed listing to the standard output (usu-
ally your terminal). It places a #line directive in the output at the begin-
ning and end of each included file and around lines removed by preproces-
sor commands that specify conditional compilation. You can use MS-DOS
redirection to save this output in a disk file.

The /E option is useful when you want to resubmit the preprocessed list-
ing for compilation. The #line directives renumber the lines of the
preprocessed file so that errors generated in later stages of processing refer
to the original source file rather than to the preprocessed file.

Using the /EP option combines features of the /E and /P options; the file

is preprocessed and copied to the standard output, but no #line direc-
tives are added.

B Examples
CL /P MAIN.C

The example above creates the preprocessed file MAIN. I from the source
file MAIN.C.

CL /E ADD.C > PREADD.C

79

Microsoft C Optimizing Compiler User’s Guide

The command above creates a preprocessed file with inserted # line direc-
tives from the source file ADD. C. The output is redirected to the file
PREADD. C.

CL /EP ADD.C
The command above produces the same preprocessed output as the second

example, but without the #line directives. The output appears on the
screen.

3.3.9.5 Preserving Comments (/C)

H Option

/C

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling. The
/C (for “comment”) option preserves comments during preprocessing. The
/C option is valid only when the /E, /P, or /EP option is also used.

B Example
CL /P /C SAMPLE.C
The example produces a listing named SAMPLE . I. The listing file contains

the original source file, including comments, with all preprocessor direc-
tives expanded or replaced.

3.3.9.6 Searching for Include Files (/I, /X)

H Options

/1 directory

/X

The /I and /X options temporarily override or change the effects of the
environment variable INCLUDE. These options let you give a particular
file special handling without changing the compiler environment you nor-
mally use. (See Section 2.4.5, “Setting Up the Environment,” for a discus-
sion of environment variables.)

80

Compiling with the CL. Command

You can add to the list of directories searched for include files by using the
/I (for “include”) option. This option causes the compiler to search the
directory or directories you specify before searching the standard places
given by the INCLUDE environment variable. The space between /I and
directory is optional. You can add more than one include directory by giv-
ing the /I option more than once in the CL command. The directories are
searched in order of their appearance in the command line.

The directories are searched only until the specified include file is found. If
the file is not found in the given directories or the standard places, the
compiler prints an error message and stops processing. When this occurs,
you must restart compilation with a corrected directory specification.

You can prevent the C compiler from searching the standard places for
include files by using the /X (for “exclude”) option. When CL sees the /X
option, it considers the list of standard places to be empty. This option is
often used with the /I option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions. ’

® Examples

CL /I \INCLUDE /I\MY\INCLUDE MAIN.C

In the example above, CL looks for the include files requested by MAIN.C
in the following order: first in the directory \INCLUDE, then in the direc-

-tory \MY\ INCLUDE, and finally in the directory or directories assigned to
the INCLUDE environment variable.

CL /X /I \ALT\INCLUDE MAIN.C

In the example above, the compiler looks for include files only in the direc-
tory \ALT\INCLUDE. First the /X option tells CL to consider the list of

standard places empty; then the /I option specifies one directory to be
searched.

3.3.10 Using the 80186, 80188, or 80286 Processor
(/GO, /G1, /G2)
B Options

/GO Enables instruction set for 8086/8088 processor (default)
/G1 Enables instruction set for 80186/80188 processor
/G2 Enables instruction set for 80286 processor

81

Microsoft C Optimizing Compiler User’s Guide

If you have an 80186, 80188, or 80286 processor, you can use the /G1 or
/G2 option to enable the instruction set for your processor. Use /G1 for
the 80186 and 80188 processors; use /G2 for the 80286. Although it is
usually advantageous to enable the appropriate instruction set, you are
not required to do so. If you have an 80286 processor, for example, but you
want your code to be able to run on an 8086, you should not use the
80186,/80188 or 80286 instruction set.

The /GO option enables the instruction set for the 8086 /8088 processor.
You do not have to specify this option explicitly, since the 8086/8088
instruction set is used by default. Programs compiled this way will also
run on the machines with the 80186, 80188, or 80286 processor.

3.3.11 Checking for Program Errors

You may encounter several different kinds of error messages when you
compile, link, and run a Microsoft C program. Section 3.3.11.1 gives an
overview of Microsoft C error messages.

Several CL options are available to control the types of warnings gen-
erated at compile time, help with syntax checking, and verify compatibil-
ity between the actual arguments and formal parameters of a function
during the early stages of program development. Sections 3.3.11.2-3.3.11.4
describe these options.

3.3.11.1 Understanding Error Messages
Error messages can appear at different stages of program development:

e In the compiling stage, the compiler generates a broad range of
error and warning messages to help you locate errors and potential
problems in your source files.

e During the linking stage, the linker is responsible for generating
error messages.

e During program execution, any error messages you see are run-time
error messages. This category includes messages about floating-
point exceptions, which are errors generated by an 8087 or 80287
COProcessor.

Other utilities included in this package, such as the Microsoft Overlay
Linker (LINK), the MAKE program-maintenance utility, and the LIB
library manager, generate their own error messages. See the Microsoft
CodeView and Utilities manual for a complete list of utility error
messages.

82

Compiling with the CL, Command

When you are compiling and linking using the CL command, you may see
both compiler and linker messages. The LINK program banner appears on
the screen when the linking process begins. Compiler messages, if any,
appear before the LINK banner, and linker messages, if any, appear after
the banner. Compiler messages have numbers preceded by the letter C,

and linker messages have numbers preceded by the letter L.

You can also distinguish the type of a message by its format. See Appen-
dix E of this manual for a description of compiler error-message formats, a
list of actual compiler error messages, and explanations of the cir-
cumstances that cause them. See Section C.2 of the Microsoft CodeView
and Utilities manual for information about linker error messages.

Compiler error messages are sent to the standard output, which is usually
your terminal. You can redirect the messages to a file or printer by using
one of the MS-DOS redirection symbols: > or > >. Error redirection is
especially useful in batch-file processing.

B Example
Assume the following source file named RM. C:

#include <stdio.h>

main (argc, argv)
int argc:
char argv([]:

‘register int i;
char #name:;

for (1 = 1; 1 < arg; ++i)
if (unlink(name = argv[i])) {
printf("couldn't delete ¥%s : ", name);
perror (""):

}

The following command line redirects error messages to a file named
RM.ERR:

CL RM.C > RM.ERR

In the command above, only output that ordinarily goes to the console
screen is redirected. The error-message file RM.ERR contains the following .
information:

rm.c (11) : error C2065: 'arg' : undefined
rm.c(12) : warning C4047: '=' : different levels of indirection

83

Microsoft C Optimizing Compiler User’s Guide

Based on the errors generated, you can correct RM.C as shown below:

#include <stdio.h>

main (argc, argv)

int argc:
char #*argv([]: /* corrects warning C4047 */
{

register int i;
char *name:;

for (L = 1; i < argc; ++i) /x corrects error C2065 x/
if (unlink(name = argv[i])) {

printf("couldn't delete ¥%s : ", name);
perror (""):
}

3.3.11.2 Setting the Warning Level (/W, /w)

B Option

/W{0[1]2(3}

/w

You can suppress warning messages produced by the compiler by using the
éW (for “warning”) option. Compiler warning messages are any messages

eginning with C4; see Appendix E, “Error Messages,” for a full listing of
these messages. Warnings indicate potential problems (rather than actual
errors) with statements that may not be compiled as you intend. The /W
options affect only source files given on the command line; they do not
apply to object files.

The /WO option turns off warning messages. This option is useful when
you compile programs that deliberately include questionable statements.
The /WO option applies to the remainder of the command line or until
the next occurrence of a /W option on the command line. The /w option
has the same effect as the /WO option.

The /W1 option (the default) causes the compiler to display most warning
messages.

The /W2 option causes the compiler to display an intermediate level of

warning messages. Level-2 warnings may or may not indicate serious prob-
lems; they include warnings such as the following:

84

Compiling with the CL. Command

o Use of functions with no declared return type

e Failure to put return statements in functions with non-void
return types

e Data conversions that would cause loss of data or precision

The /W3 option displays the highest level of warning messages, including
warnings about the uses of non-ANSI features and extended keywords and
about function calls before the appearance of function prototypes in the
program.

Note that the warning messages in Appendix E, “Error Messages,” indi-
cate the warning level that must be set (that is, the number for the
appropriate /W option) for the message to appear.

® Example

CL /W3 CRUNCH.C PRINT.C

This example enables all possible warning messages when the CRUNCH.C
and PRINT. C source files are compiled.

3.3.11.3 Checking Syntax (/Zs)

® Option
/Zs

The /Zs option causes the compiler to perform only a syntax check on the
source files that follow the option on the command line. This option pro-
vides a quick way to find and correct syntax errors before you try to com-
pile and link a source file.

When you give the /Zs option, the compiler does not generate code or pro-
duce object files, object listings, or executable files. However, the compiler
does display error messages if the source file has syntax errors. You can
specify the /Fs option on the same command line to generate a source list-
ing that shows these error messages. See Section 3.3.8.1 for more informa-
tion about the /F's option.

85

Microsoft C Optimizing Compiler User’s Guide

® Example
CL /Zs TEST#.C

This command causes the compiler to perform a syntax check on all source
files in the current working directory that begin with TEST and end with
the default extension (.C). The compiler displays messages for any errors
found.

3.3.11.4 Generating Function Declarations (/Zg)

N Option

/Zg

The /Zg option generates a function declaration for each function defined
in the source file. The function declaration includes the function return
type and an argument-type list created from the types of the formal
parameters of the function. Any function declarations already present in
the source file are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using MS-DOS redirection.

When the /Zg option is used, the source file is not compiled. As a result,
no object file or listing is produced.

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type check-
ing. The presence of a declared argument-type list for a function “turns
on” the compiler’s type checking between actual arguments to a function
(given in the function call) and the formal parameters of a function.

This type checking can be a helpful feature in writing and debugging C
" programs, especially when working with older C programs. Argument type
checking is a recent addition to the C language, so many existing C pro-
grams will not have argument-type lists. See Chapters 4 and 7 of the
Microsoft C Language Reference for more information about function
declarations and argument-type lists.

You can use the /Zg option even if your source program already contains
some function declarations. The compiler accepts more than one
occurrence of a function declaration, as long as the declarations do not
conflict. No conflict occurs when one declaration has an argument-type list
and another declaration of the same function does not, as long as the
return types are identical. ‘

86

Compiling with the CL. Command

Note

If you use the /Zg option and your program contains formal parame-
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each structure, enumeration, or
union type must have a tag. For example, use the following form:

struct tagA {

} A

Your program can include calls to Microsoft C run-time library routines.
The include files provided with the Microsoft C run-time library contain
function declarations that enable type checking on library calls.

®E Example
CL /Zg FILE.C > FILEDECLS.H

The example above causes the compiler to generate argument-type lists for
functions defined in FILE.C. The list of declarations is redirected to
FILEDECLS.H.

3.3.12 Preparing for Debugging (/Zi, /Zd, /Od)

B Options

/Zi Creates object file for use with Microsoft CodeView debugger
/Zd Creates object file for use with Microsoft SYMDEB symbolic debug utility
/Od Disables code optimization to help with debugging

The /Zi option produces an object file containing full symbolic-debugging
information for use with the CodeView debugger. This object file includes
full symbol-table information and line numbers. If the /Zi option is given
with no explicit /O options, all optimizations involving code motion and
rearrangement are suppressed, although simple optimizations are still per-
formed. If any explicit /O options are given, all requested optimizations
are performed.

87

Microsoft C Optimizing Compiler User’s Guide

The /Zd option produces an object file containing line-number records
corresponding to the line numbers of the source file. The /Zd option is
useful when you want to pass an object file to the SYMDEDB debugger,
available with other Microsoft products. The debugger can use the line
numbers to refer to program locations; however, only global symbol-table
information is available with this product.

The /Od option tells the compiler not to perform most optimizations.
Some peephole optimizations and other simple optimizations are still per-
formed. (Without the /Od option, the default is to optimize.) You may
want to use this option when you plan to use a symbolic debugger with
your object file, since optimization can involve rearrangement of instruc-
tions that make it difficult for you to recognize and correct your code
when debugging. However, turning off optimizations may increase the size
of the code generated to the point where it might not be possible to link
your program.

Other optimization options are discussed in Section 3.3.13, “Optimizing.”

B Example
CL /Zi /0d TEST.C

This command produces an object file named TEST.OBJ that contains line
numbers corresponding to the line numbers of TEST.C. A source-listing
file, TEST.LST, is also created. Limited optimization is performed.

3.3.13 Optimizing

The optimizing capabilities available with the Microsoft C Optimizing
Compiler can reduce the storage space or execution time required for a
program. This is achieved by eliminating unnecessary instructions and
rearranging code. The compiler performs some optimizations by default.
You can use the /O options, the loop_opt pragma (described in Section
3.3.13.1 under “Loop Optimization”), and the intrinsic pragma (described
in Section 3.3.13.1 under “Generating Intrinsic Functions”) to exercise
greater control over the optimizations performed. In addition, you can use
the /Gs option or check_stack pragma to reduce program size and speed
up execution.

88

Compiling with the CL. Command

3.3.13.1 Controlling Optimization (/O Options)

® Option

/Ostring

pragma loop_ opt([{ on|off}])

pragma intrinsic(functionI],function?]...)
pragma function(function|,function?]...)

The /O options give you control over the optimization procedures that
the compiler performs. One or more of the letters in string following the
/O let you choose how the compiler performs optimization:

Letter Optimizing Procedure

Relaxes alias checking

Disables optimization

Enables intrinsic functions

Enables loop optimization

Improves consistency of floating-point results

Favors code size during optimization

¢+ mog = =P

Favors execution speed during optimization (the
default)

x Maximizes optimization

The letters can appear in any order; for example, /Oat and /Ota have
the same effect. More than one /O option can be given; the compiler uses
the last /O option given if any conflict arises. Each option applies to all
source files following that option on the command line.

The following sections discuss the various optimization options and their
effects.

Relaxing Alias Checking (/Oa)

The a option letter can be used with the 1, 8, or t option letter to relax the
assumptions the compiler makes about the use of “aliases” in the program.
Aliases are multiple names (that is, symbolic references) for the same
memory location in a program. Most commonly, aliases occur as a result of
code similar to that shown below:

89

Microsoft C Optimizing Compiler User’s Guide

func ()
{

int x, *p:

P = &x; /* now "x" and "+p" refer to the same */

/* memory location */

3

Use of the /Oa option can reduce the size of executable files and speed
program execution. Its use is especially recommended when you also
specify the /Ol option, since the compiler can detect a number of loop
optimizations when the /Oa option is in effect that it cannot detect when
/Oa is not in effect. However, before you specify /Oa, you must make
sure that your program does not use aliases either directly or indirectly.

The use of aliases is important only if both names are actually used to
reference the memory location. Otherwise the use is benign, and the /Oa
option may be specified. The following example illustrates a benign use of
aliases:

func ()
int x, *p:
P = &x:

/* ...expressions involving only *p */

3

Since all access to the memory location labeled x is through the pointer
p, X has no significance in the function. To illustrate, func could be
rewritten as the following pair of functions:

90

Compiling with the CL. Command

funecl ()
{ :
int x:

func2 (&x) :

}
func2 (p)
int xp;
{

.

/* ...expressions involving *p */

3

In this equivalent form, the alias created in funcl is insignificant, since
the memory location is not referenced at all and func2 does not use
aliases since x is not even in the scope of the function. The /Oa option
can be safely specified in compiling either of these equivalent forms.

In addition to the obvious cases discussed above, aliases can be created
through the use of pointers in other, more subtle ways. Two such cases
involving the use of pointers as function arguments are illustrated below:

int x:
func (p)
int *p:
{

.

/* ...expressions involving #p and x */

}

In the example above, x is a communal variable, so the function can be
called with func (&x). The /Oa option can be used safely only if it is
known that func is never invoked with the address of x as an argument.

91

Microsoft C Optimizing Compiler User’s Guide

func (pl, p2)

int #*pl, *p2;
{

/* ...expressions involving *pl and *p2 x/

b

In the example above, the function may be invoked with the same value
for both arguments (that is, func (p,p) or func (&x, &x)). Thus, the
/Oa option can be safely specified only if it is known that the function is
always called with distinct values for the two arguments.

One use of aliases occurs so frequently that a special provision has been
made for it. When the compiler encounters a call to a function with
address-type arguments, it always assumes that all variables whose
addresses are passed to the function are modified. If such function calls
appear in a program, the /Oa option can be specified safely even though
the function call results in an alias for each variable whose address is
passed. The example below illustrates how the compiler handles this case:

funecl ()

int x, y, a, b;

;c = a + b;
func2 (&a) :

y =a+ b;
by

In the example above, when the compiler encounters the function call
func2 (&a), it assumes that the function modifies a, even if the /Oa
option has been specified. The compiler generates code to evaluate each
instance of the expression a + b rather than eliminating a common
subexpression incorrectly.

Although you should convert programs that use aliases if you plan to com-
pile them with the /Oa option, it is helpful to know the units of a pro-
gram where the optimizations affected by the use of /Oa are applied. This
information indicates where the uses of aliases are most likely to cause
incorrect optimizations if /Oa is specified. The following list describes the
program units where such optimizations are performed:

92

Compiling with the CL. Command

e All of the C optimizations, except for loop optimizations, that may
be affected by the incorrect use of /Oa are applied at the level of
basic blocks. In the Microsoft C Optimizing Compiler, the /Oa
option can generally be used even if aliases are used, provided no
memory location is referenced by more than one name within any
basic block. (A “basic block” is a contiguous sequence of state-
ments, with a unique entry point and exit point and no branching
in between. In C programs, basic blocks most often appear as the
clauses of if statements, switch statements, loop bodies, or func-
tion bodies, although they may also occur as sequences of state-
ments delimited by user labels.)

e Loop optimizations are applied at the level of whole loop bodies.
Thus, if loop optimization is enabled, /Oa can generally be used
even if aliases are used, provided that no memory location is refer-
enced by more than one name within any basic block or loop body.

Disabling Optimization (/Od)

The /Od option turns off most optimizations. This option is useful in the
early stages of program development to avoid optimizing code that will
later be changed. Because optimization may involve rearrangement of
instructions, you may also want to specify the /Od option when you use a
debugger with your program or when you want to examine an object-file
listing. If you optimize before debugging, it can be difficult to recognize
and correct your code. However, note that turning off or restricting optim-
ization of a program usually increases the size of the generated code. If
your program contains a module that is close to the 64K limit on compiled
code, turning off optimization may cause the module to exceed the limit.

Generating Intrinsic Functions (/Oi)

The /O1i option tells the compiler to generate intrinsic functions instead of
function calls for certain functions. Intrinsic functions may be in-line func-
tions, may use special argument-passing conventions, or (in some cases)
may do nothing. Programs that use intrinsic functions are faster because
they do not include the overhead associated with function calls. However,
they may be larger because of the additional code that is generated.

The following functions have intrinsic forms:

e memset, memcpy, and memcmp
e strset, strcpy, stremp, and streat
e inp and outp

e _rotl _rotr, _Irotl, and _Irotr

e min, max, and abs

83

Microsoft C Optimizing Compiler User’s Guide

e pow, log, logl0, and exp

e sin, cos, and tan

e asin acos, atan, and atan2
e sinh, cosh, and tanh

e sqgrt

e floor, ceil, fabs, and fmod

Note

Intrinsic versions of the memset, memepy, and mememp functions
in compact- and large-model programs cannot handle huge arrays or
huge pointers. To use huge arrays or huge pointers with these func-
tions, you must compile your program with the huge memory model
(that is, using the /AH option on the command line).

You can use the intrinsic pragma to generate intrinsic functions only for
selected functions. This pragma has the following format:

pragma intrinsic (functionl [,function?]...)

The intrinsic pragma affects the specified functions from the point where
the pragma appears until either the end of the source file or the next func-
tion pragma specifying any of the same functions. The function pragma
has the following format:

pragma function (functionl [,function?]...)

Note that you can also use the function pragma selectively to generate
function calls instead of intrinsic functions when you compile a program
with the /Oi option.

Loop Optimization (/Ol)

The /Ol option tells the compiler to perform loop optimizations. For best
performance, the /Ol option should be specified along with the a option
letter (/Oal), since the compiler can detect more loop optimizations when

it relaxes its assumptions about the use of aliases.

You can use the loop—opt pragma to turn loop optimization on or off for
selected functions. When you want to turn off loop optimization, put the

94

Compiling with the CL. Command

following line before the code on which you don’t want to perform loop
optimization:

pragma loop_ opt (off)

Note that the preceding line disables loop optimization for all code that
follows it in the source file, not just the routines on the same line. To rein-
state loop optimization, insert the following line:

pragma loop_ opt (on)

If no argument is given to the loop— opt pragma, loop optimization
reverts to the behavior specified on the command line: enabled if the /Ox
or /Ol option is in effect, and disabled otherwise. The interaction of the
loop_ opt pragma with the /Ol and /Ox options is explained in greater
detail in Table 3.4.

Table 3.4
Using the loop—opt Pragma
, Compiled with

Syntax /Ox or /OI? Action

pragma loop_ opt() no Turns off optimization
for loops that follow

pragma loop_ opt() yes Turns on optimization
for loops that follow

pragma loop_ opt (on) yes or no Turns on optimization
for loops that follow

pragma loop_ opt (off) yes or no Turns off optimization

for loops that follow

Achieving Consistent Floating-Point Results (/Op)

The /Op option is useful when floating-point results must be consistent
within a program. This option changes the way in which the program han-
dles floating-point values by default.

Ordinarily the compiler stores each floating-point value in an 80-bit regis-
ter. In subsequent references to that value, the compiler reads the value
from the register. When the final value is written to memory, it is trun-
cated, since floating-point types are allocated fewer than 80 bits of storage
(32 bits for the float type and 64 bits for the double type). Thus, the
value stored in the register may actually be more precise than the same
value stored in a floating-point variable. Since the value is truncated each

95

Microsoft C Optimizing Compiler User’s Guide

time it is written to memory, over the course of the program the value
stored in the machine register may become quite different from the value
that is written to memory.

If you use the /Op option, when floating-point values are referenced the
compiler reloads them from floating-point variables rather than from
registers. Using /Op gives less precise results than using registers, and it
may increase the size of the generated code. However, it gives you more
corl1trol over the truncation (ga,nd hence the consistency) of floating-point
values.

Optimizing for Speed and Code Size (/Ot, /Os)

When you do not give an /O option to the CL command, it automatically
uses /Ot, meaning that program execution speed is favored in the optimi-
zation. Wherever the compiler has a choice between producing smaller
(but perhaps slower) and larger (but perhaps faster) code, the compiler
generates faster code. For example, when the /Ot option is in effect, the
compiler generates intrinsic functions to perform shift operations on long
operands.

To cause the compiler to favor smaller code size instead, use the /Os
option. For example, when the /Os option is in effect, the compiler uses
function calls to perform shift operations on long operands.

Producing Maximum Optimization (/Ox)

The /Ox option is a shorthand way to combine optimizing options to pro-
duce the fastest possible program. Its effect is the same as using the follow-
ing options on the same command line:

/0ailt /Gs

That is, the /Ox option relaxes alias checking; generates all intrinsics for
the functions listed under “Generating Intrinsic Functions” above; per-
forms loop optimizations; favors execution time over code size; and
removes stack probes. Note that the interactions between the /Ox option
and the loop— opt pragma are the same as those described in Table 3.4.
See Section 3.3.13.2 for more information about stack probes and ways of
controlling their use.

B Examples

CL /Oal FILE.C

96

Compiling with the CL Command

This command tells the compiler to perform loop optimizations and relax
alias checking when it compiles FILE .C. The compiler favors program
speed over program size, since the /Ot option is also specified by default.

CL /c /Os FILE.C

The command above favors code size over execution speed when FILE.C
is compiled.

CL /0d *.C

The command above compiles and links all C source files with the default
extension (.C) in the current directory and disables optimization. This
command 1s most useful during the early stages of program development,
since it improves compilation speed.

3.3.13.2 Removing Stack Probes (/Gs)

® Options

/Gs
pragma check_ stack([{ on|off}])

You can reduce the size of a program and speed up execution slightly by
removing stack probes. You can do this either with the /Gs option or with
the check_stack pragma.

A “stack probe” is a short routine called on entry to a function to verify
that there is enough room in the program stack to allocate local variables
required by the function. The stack probe routine is called at every func-
tion entry point. Ordinarily, the stack probe routine generates a stack
overflow message when it determines that the required stack space is not
available. When stack checking is turned off, the stack probe routine is not
called, and stack overflow can occur without being diagnosed (that is, no
error message is printed).

Use the /Gs option when you want to turn off stack checking for an entire
module 1if you know that the program does not exceed the available stack
space. For example, stack probes may not be needed for programs that
make very few function calls, or that have only modest local variable
requirements. In the absence of the /Gs option, stack checking is on.

Use the check_stack pragma when you want to turn stack checking on or

off only for selected routines, leaving the default (as determined by the
presence or absence of the /Gs option) for the rest. When you want to

97

Microsoft C Optimizing Compiler User’s Guide

turn off stack checking, put the following line before the definition of the
function you don’t want to check:

pragma check_ stack (off)

Note that the preceding line disables stack checking for all routines that
follow it in the source file, not just the routines on the same line. To rein-
state stack checking, insert the following line:

pragma check _stack (on)

Note

For earlier versions of Microsoft C, the check_stack pragma had a
different format: check_stack+ to enable stack checking and
check_stack— to disable stack checking. Although the Microsoft C
Optimizing Compiler still accepts this format, its use is discouraged,
since it may not be supported in future versions.

If no argument is given for the check_stack pragma, stack checking
reverts to the behavior specified on the command line: disabled if the /Gs
option is given, or enabled if otherwise. The interaction of the

Chfi‘(:lf)? stack pragma with the /Gs option is explained in greater detail
in Table 3.5.

Table 3.5
Using the check_stack Pragma

Compiled with
Syntax /Gs Option? Action
pragma check _stack() yes Turns off stack checking
for routines that follow
pragma check_stack() no Turns on stack checking
for routines that follow
pragma check_stack(on) yes or no Turns on stack checking
for routines that follow
pragma check_stack(off) yes or no Turns off stack checking

for routines that follow

98

Compiling with the CL: Command

Note

The /Gs option should be used with great care. Although it can make
programs smaller and faster, it may mean that the program will not be
able to detect certain execution errors.

¥ Example
CL /Oals /Gs FILE.C

This example optimizes the file FILE.C by removing stack probes with
the /Gs option. The letters specified with the /O option tell the compiler
to relax alias checking (a), perform loop optimization (1), and favor code
size over program speed (8). If you want stack checking for only a few
functions in FILE.C, you can use the check_stack pragma around the
definitions of functions you want to check. Similarly, if you want to per-
form loop optimization on only a few functions in FILE.C, you can use
the loop_opt pragma around the definitions of functions on which you
want to perform loop optimization.

3.3.14 Enabling and Disablin
Language Extensions 5 Ze, /7a)

® Option

/Ze Enables language extensions (default)
/Za Disables language extensions

The Microsoft C Optimizing Compiler is moving to support the the ANSI
C standard. In addition, it offers a number of features beyond the features
specified in the the ANSI C standard. These features are enabled when the

Ze (default) option is in effect and disabled when the /Za option is in
effect. They include the following:

e The cdecl, far, fortran, huge, near, and pascal keywords

e Use of casts to produce lvalues, as in the following example:

int *xp:;
((long *)p)++;

99

Microsoft C Optimizing Compiler User’s Guide

The preceding example could be rewritten to conform with the
ANSI C standard as shown below:

p = (int *) ((char *)p + sizeof(long)):

e Redefinitions of extern items as static, as in the example below:

extern int foo():
static int foo ()

{

e Use of trailing commas (,) rather than an ellipsis (,...) in function
declarations to indicate variable-length argument lists, as in the
following example:

int printf(char *,):

e Benign typedef redefinitions within the same scope, as in the fol-
lowing example:

typedef int INT;
typedef int INT;

o Use of mixed character and string constants in an initializer, as in
the following example:

char arr[5] = {'a', 'b', "cde"}:

o Use of bit fields with base types other than unsigned int or
signed int

Use the /Za option if you will be porting your program to other environ-
ments. The /Za option tells the compiler to treat extended keywords as
simple identifiers and disable the other extensions listed above. When you
specify /Za, the compiler automatically defines the identifier
NO_EXT_KEYS. In the include files provided with the Microsoft C
Optimizing Compiler run-time library, this identifier is used with #ifndef
to control use of the cdecl keyword on library function prototypes. For an
example of this conditional compilation, see the file stdio.h.

3.3.15 Packing Structure Members (/Zp)

B Option

/Zp[{1]2/4}]
pragma pack([{1/2/4}])

When storage is allocated for structures, structure members are ordinarily
stored as follows:

100

Compiling with the CL. Command

e Items of type char or unsigned char, or arrays containing items
of these types, are byte aligned.

e Structures are word aligned; structures of odd size are padded to
an even number of bytes.

o All other types of structure members are word aligned.

To conserve space, or to conform to existing data structures, you may
want to store structures more or less compactly. The /Zp option and the
pack pragma control how structure data are “packed” into memory.

Use the /Zp option when you want to specify the same packing for all
structures 1n a module. When you give the /Zp[n] option, where nis 1, 2,
or 4, each structure member after the first i1s stored on n-byte boundaries,
depending on the option you choose. If you use the /Zp option without an
argument, structure members are packed on 1-byte boundaries.

On some processors, the /Zp option may result in slower program execu-
tion because of the time required to unpack structure members when they
are accessed. For example, on an 8086 processor, this option can reduce
efficiency if members with int or long type are packed in such a way that
they begin on odd-byte boundaries.

Use the pack pragma when you want to specify packing other than the
packing specified on the command line for particular structures. Give the
pack&n pragma, where nis 1, 2, or 4, before structures that you want to
pack differently. To reinstate the packing given on the command line, give
the pack() pragma with no arguments.

Table 3.6 shows the interaction of the /Zp option with the pack pragma.

Table 3.6
Using the pack Pragma

Compiled with
Syntax /Zp Option? Action
pragma pack() yes Reverts to packing

specified on the
command line for
structures that follow

pragma pack() no Reverts to default
packing for structures
that follow

pragma pack(n) yes or no Packs the following
structures to the given
byte boundary until
changed or disabled

101

Microsoft C Optimizing Compiler User’s Guide

H Example
CL /Zp PROG.C

This command causes all structures in the program PROG. C to be stored
without extra space for alignment of members on int boundaries.

3.3.16 Setting the Stack Size (/F)

m Option
/F heznum

The /F option sets the size of the program stack. A space must separate
the /F and heznum.

The hexnum is a hexadecimal value representing the stack size in bytes.
The value must be less than OxFFFF hexadecimal (65,535 decimal).

If you do not specify this option, the start-up routine in the standard C
library sets the default stack size to 2K.

If you get a stack-overflow message, you may need to increase the size of
the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

Note

You can also use the EXEMOD utility, described in Chapter 15 of the
Microsoft CodeView and Utilities manual, to change the default stack
size for C program files by modifying the executable-file header. The
format of the executable-file header is discussed in the Microsoft MS-

ggg Programmer’s Reference and in other reference books on MS-

The /F option is a linking option that affects executable files only; it does
not have any effect on source or object files.

Using the /F option with the CL command has the same effect as using

the /STACK option with the LINK program. See Section 4.4 for more
information about the /STACK option.

102

Compiling with the CL. Command

B Example
CL /F COO *.0BJ

This example sets the stack size to CO0 hexadecimal (3K decimal) for the
program created by linking all of the object files in the current working
directory.

3.3.17 Restricting the Length
of External Names %};H)

® Option
/H number

The CL command allows you to restrict the length of external (public)
names by using the /H option. The number is an integer specifying the
maximum number of significant characters in external names. The space
between /H and number is optional.

When you use the /H option, the compiler considers only the first number
characters of external names used in the program. The program may con-
tain external names longer than number characters; the extra characters
are simply ignored.

The /H option is typically used to conserve space or to aid in creating
portable programs. The Microsoft C Optimizing Compiler imposes no res-
trictions on the length of external names (although it uses only the first 31
characters), but other compilers or linkers may produce errors when they
encounter names longer than a predetermined limit.

3.3.18 Labeling the Object File (/V)

® Option
/V string

Use the /V (for “version”) option to embed a text string in an object file.
The string must be enclosed in double quotation marks %" ") if it contains
white-space characters or embedded double quotation marks. A backslash
(\) must precede any embedded double quotation marks.

Object files are machine readable but are not easily read and understood

by humans. A typical use of the /V option is to label an object file with a
version number or copyright notice.

103

Microsoft C Optimizing Compiler User’s Guide

E Example

CL /V"Microsoft C Optimizing Compiler Version 5.0" MAIN.C
The above command places the string

Microsoft C Optimizing Compiler Version 5.0

in the object file MAIN.OBRJ.
3.3.19 Suppressing Default-Library Selection (/Zl)

H Option
/2

Ordinarily the compiler places the name of the default combined library
for the memory-model and floating-point options you have chosen
(mLIBCfLIB) in the object file for the linker to read. This allows the
appropriate library to be linked with a program automatically.

The /Z1 option tells the compiler not to place the default library name in
the object file. As a result, the object file is slightly smaller.

The /Z] option is useful when you are building a library of routines. Every
routine in the library need not contain the default-library information.
Although the /Zl option saves only a small amount of space for a single
object file, the total space saved is significant in a library containing many
object modules. When you link a library of object modules created with the
/Z1 option and a C program file compiled without the /Zl option, the
default-library information is supplied by the program file.

m Example
CL ONE.C /Z1 TWO.C
The example above creates the following two object files:

e An object file named ONE.OBJ that contains the name of the stan-
dard C combined library (SLIBCE.LIB)

e An object file named TWO.OBJ that contains no default-library
information

104

Compiling with the CL. Command

When ONE .OBJ and TWO.OBJ are linked, the default-library information
in ONE . OBJ causes the given library to be searched for any unresolved
references in either ONE . OBJ or TWO.OBJ.

3.3.20 Changing the Default char Type (/J)

M Option

/3

In Microsoft C, the char type is signed by default, so if a char value is
widened to int type, the result is sign extended. You can change this
default to unsigned with the /J option, causing the char type to be zero
extended when widened to int type. However, if a char value is explicitly
declared signed, the /J option does not affect it, and the value is sign
extended when widened to int type.

When you specifyc’/J, the compiler automatically defines the identifier
— CHAR_UNSIGNED, which is used with #ifndef in the limits.h
include file to define the range of the default char type.

3.3.21 Controlling Stack and Heap Allocation

You can change the model used to allocate heap space by linking your pro-
gram with one of the mVARSTCK.OBJ object files (where m is the first
letter of the library you choose). These files are the small-, medium-,
compact-, and large-model versions of a routine that allows the memory
allocation functions (malloc, calloc, — expand, — fmalloc, —_nmalloc,
and realloc) to allocate items in unused stack space if they run out of
other memory. The large-model version can also be used for huge-model
programs.

Programs compiled and linked under Microsoft C run with a fixed stack
size (the default size is 2048 bytes). The stack resides above static data,
and the heap uses whatever space is left above the stack. However, for
some programs a fixed-stack model may not be ideal; a model where the
stack and heap compete for space is more appropriate. Linking with the
mVARSTCK.OBJ object files gives you such a model: when the heap
runs out of memory, it tries to use available stack space until it runs into
the top of the stack. When the allocated space in the stack is freed, it is
once again made available to the stack. Note that the stack cannot grow
beyond the last allocated heap item in the stack or, if there are no heap
items in the stack, beyond the size it was given at link time. Note also
that while the heap can employ unused stack space, the reverse is not true:
the stack cannot employ unused heap space.

105

Microsoft C Optimizing Compiler User’s Guide

When you link your program with one of the mVARSTCK.OBJ files,
you should be wary of suppressing stack checking with the pragma
#check_stack, or the /Gs or /Ox option. This is because stack
overflow can occur more easily in programs that use this option, possibly
causing errors that would be difficult to detect. (See Section 3.3.13.2,
“Removing Stack Probes,” and the section titled “Maximum Optimiza-
tion” in Section 3.3.13.1, for more information on suppression of stack
checking.)

® Example
CL TEST.C SVARSTCK

This command line compiles TEST.C and then links the resulting object
module with SVARSTCK . OBJ, the variable-stack object file for small-
model programs.

3.3.22 Controlling the
Calling Convention (/Gc)

B Options

/Ge
fortran
pascal
cdecl

The fortran, pascal, and cdecl keywords, and the /Ge option, allow you
to control the function-calling and naming conventions so that your C pro-
grams can call and be called by functions that are written in FORTRAN
and Pascal.

Because C, unlike other languages such as Microsoft Pascal and Microsoft
FORTRAN, allows the user to write functions that take a variable number
of arguments, it must handle function calls differently. Languages such as
Pascal and FORTRAN normally push actual parameters to a function in
left-to-right order, with the last argument in the list being the last one
pushed on the stack. In contrast, C functions do not always know the
number of actual parameters, so they must push their arguments from
right to left, with the first argument in the list being the last one pushed.

Additionally, the calling function must remove the arguments from the
stack in C (rather than having the called function do it, as in Pascal and
FORTRAN). If the code for removing arguments is in the called function
§a,s in Pascal and FORTRAN), it appears only once; if it is in the calling
unction (as in C), it appears every time there is a function call. Since

106

Compiling with the CL. Command

function calls are more numerous than individual functions, the
Pascal/FORTRAN method is slightly smaller and more efficient.

The Microsoft C Optimizing Compiler has the ability to generate the
Pascal/FORTRAN calling convention in one of several ways. The first is
through the use of the pascal and fortran keywords. When these key-
words are applied to functions, or to pointers to functions, they indicate a
corresponding Pascal or FORTRAN function. Therefore, the correct cal-
ling convention must be used. In the following example, sort is declared
as a function using the alternative calling convention:

short pascal sort(char *, char *):

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func-
tions only.

The second method for generating the Pascal/ FORTRAN calling conven-
tion is to use the /Ge option. If you use the /Ge option, the entire
module is compiled using the alternative calling convention. You might
use this method to make it possible to call all the functions in a C module
from another language, or to gain the performance and size improvement
provided by this calling convention. When you use /Ge to compile a
module, the compiler assumes that all functions called from that module
use the Pascal/[FORTRAN calling convention, even if the functions are
defined outside that module. Thus, using /Ge would normally mean that
you cannot call or define functions that take variable numbers of parame-
ters, and that you cannot call functions such as the C library functions
that use the C calling sequence. In addition, if you compile with the /Ge
option, either you must declare the main function in the source program
with the edecl keyword, or you must change the start-up routine so that
it uses the correct naming and calling conventions when calling main.

To overcome these restrictions, the cdecl keyword has been added to
Microsoft C. This keyword is the “inverse” of the fortran and pascal key-
words. When applied to a function or function pointer, it indicates that
the associated function is to be called using the normal C calling conven-
tion. This allows you to write C programs which take advantage of the
more efficient calling convention while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

For convenience, the cdecl keyword has already been applied to run-time
library function declarations in the include files distributed with this com-
piler. Thus, the library functions can be referenced freely, no matter which
calling conventions are used, as long as the include files containing the
appropriate function declarations are included for each function that is
referenced.

107

Microsoft C Optimizing Compiler User’s Guide

Use of the pascal and fortran keywords, or the /Ge option, also affects
the naming convention for the associated item (or, in the case of /Ge, all
items): the name is converted to uppercase (capital letters), and the lead-
ing underscore that C normally prefixes is not added. The pascal and for-
tran keywords can be applied to data items and pointers, as well as func-
tions; when applied to data items or pointers, these keywords force the
naming convention described above for that item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge
keywords, are disabled by use of the /Za option. If this option is given,
these names are treated as ordinary identifiers, rather than keywords.

B Examples
int cdecl var_print(char*,...):

In the example above, var_print is allowed to have a variable number of
arguments by declaring it as a function using the normal right-to-left C
function calling convention and naming conventions. The cdecl keyword
overrides the left-to-right calling sequence set by use of the /Ge option
when compiling the source file in which this declaration appears; if this file
is compiled without the /Ge option, cdecl has no effect since it is the
same as the default C convention.

For more information on mixed-language programming, see the Microsoft
Mized-Language Programming Guide.

float #*pascal nroot (number, root)

The example above declares nroot to be a function returning a pointer to
a value of type float. The function nroot uses the default calling
sequence (left-to-right) and naming conventions for Microsoft FORTRAN
and Pascal programs.

long pascal index

The example above simply changes the naming convention for the data

item index: it is included in the object file in all capital letters and
without a leading underscore.

108

Compiling with the CL. Command

3.3.23 Compiling for
Windows Applications (/Aw, /Gw)

B Options

JAw
/Gw

The /Aw option controls the segment setup, and should be used for C
programs that interface with the Microsoft Windows operating system.
For more information, see Section 6.5.3, “Setting Up Segments.”

You should use the /Gw option for developing applications to run in the
Windows environment. See your Microsoft Windows Software Development
Kit for details on how and when to use this option.

3.3.24 XENIX-Compatible Options

To provide as much compatibility as possible with XENIX C compilers,
the CL command also accepts the options recognized by the ec command
on XENIX systems. Many of these options are identical to the CL options
given in this manual; others have identical functions but different names.
The following options are identical in the MS-DOS and XENIX versions of
C (except that a forward slash, /, is a valid option character in the MS-
DOS version):

-c -I pathname -P

-C -ND name -V string
-D name -NM name -w

- -NT name ~Wnumber
-EP -Oletters -X

-F number

Table 3.7 shows the XENIX options that do not map directly to the
options accepted by the CL command.

109

Microsoft C Optimizing Compiler User’s Guide

Table 3.7

XENIX Options Accepted by the CLL Command

XENIX Option Task CL Option
-dos Performs cross-compilation Same (meaningful only
to create MS-DOS- on XENIX)
executable file
-K Removes stack probes from /Gs
a program
-L Creates an object-listing /Fl /e
file containing assembled
object code and suppresses
linking
-Mstring Sets the program -Me is equivalent to
configuration. The string Ze.
may be any combination of -M2 is equivalent to
s (small model), m G2.
medium model?, c -Mt[num] is equivalent
compact model), 1 (large to /Gt[num].
model), h (huge model), e -Mb has no equivalent.
&enables far, near, huge, -Ms is equivalent to
ortran, pascal, and edecl .
keywords), 2 (enables -Mm is equivalent to
80286 code generation), b .
(reverses word order for -Me is equivalent to
items of type long), t[num] C.
(sets data threshold for -Md is equivalent to
largest item in a segment), Au.
and d (compiles program'so -Ml is equivalent to
that stack segment not .
equal to data segment). -Mh is equivalent to
Thes, m,¢c,1,and h AH.
options are mutually
exclusive.
- name Creates a map file -Fmname
-nlnum Sets the maximum length -Hnum
of external symbols
-0 filename Makes filename the name /Feezefiles
of the final executable
program
-S Creates an assembly source ~ /Fa /¢

listing and suppresses
linking

110

Compiling with the CL. Command

3.4 Controlling Binary and Text Modes

Most C programs use one or more data files for input and output. Under
MS-DOS, data files are ordinarily processed in “text” mode. In text mode,
carriage-return-line-feed (CR-LF) combinations are translated into a single
line-feed (LF) character on input. Line-feed characters are translated to
CR-LF combinations on output.

In some cases you may want to process files without making these transla-
tions. In binary mode, CR-LF translations are suppressed.

Standard library routines such as fopen or open give you the option of
overriding the default mode when you open a particular file. You can also
change the default mode for an entire program from text to binary mode.
Do this by linking your program with the file BINMODE.OBJ, which is
supplied as part of your C compiler software. Simply add the path name
of BINMODE.OBJ to the list of object file names when you link your
program.

When you link with BINMODE.OBJ, all files opened in your program
default to binary mode, with the exceptions of stdin, stdout, and stderr.
However, linking with BINMODE.OBJ does not force you to process all
data files in binary mode. You still have the option to override the default
mode when you open the file.

Use the setmode library function when you want to change the default
mode of stdin, stdout, or stderr from text to binary, or the default mode
of stdaux or stdprn from binary to text. The setmode function can
change the current mode for any file and is primarily used for changing the
modes of stdin, stdout, stderr, stdaux, and stdprn, which are not expli-
citly opened by users.

111

o e

PANKING WITH "THIS
CL, COMMAND

L Introdietion e
120 The Delault Linking PProcess .
i

S Passing Linker Information:
The /link Option v
1.3.1 Specifying Libraries covoenvivnnneneninins
4.3.1.1 Linking with Additional Libraries..
1.3.1.2 Looking in Different Locations
for Libraries covvvevienninveniniiananns
1.3.1.3 Overriding Libraries Named
in Object Files.oooa..
1.3.2 specifving Linker Options .oeoecveeenenneeen
4.3.2.1 Defining Linker Options on
the CL Command Line.oovneroninnn..
4.3.2.2 Defining Linker Options in
the BEnvironmente.. . eeeeeneneeennnne. 120

L4 Linker Options. o ieicreeereeeeineneen 120

Linking with the CL. Command

4.1 Introduction

Since the CL command controls linking as well as compiling, you can
specify linker options and libraries other than the default combined library
to be linked with your object files on the CL command line.

4.2 The Default Linking Process

When the CL command compiles a source file, it encodes the name of the
appropriate library built by the SETUP program in the object file. The
library name embedded in the library file is determined by the following:

e The memory-model (/A) option you give on the CL command line
e The floating-point (/FP) option you give on the CL command line

Table 3.1 shows the default library for each combination of memory-model
and floating-point options. If you simply use the default memory-model
option (/AS) or floating-point option (/FPi), CL encodes the name
SLIBCE.LIB, the name of the standard library that corresponds to the
defaults.

When an object file is linked, the linker looks for libraries matching the
names encoded in the object file. The linker looks for these libraries first in
the current working directory, then in any directory specified in the LIB
environment variable. If it finds libraries matching these names, it
automatically links those libraries with the object file.

The result is that you ordinarily do not need to give library names on the

CL command line. See Section 4.3.1 for descriptions of the situations that
require you to specify libraries to the CL command.

4.3 Passing Linker Information:
The /link Option

To pass linker options or nondefault library names to the linker, give the
following options on the CL command line after any source- and object-
file names and CL options:

/link [link-libinfo]

115

Microsoft C Optimizing Compiler User’s Guide

Use the link-libinfo field to specify linker options, libraries, and library
search paths. Note that library names can also be specified with source-
and object-file names before the /link option on the command line, as
long as the library names have the .LIB extension. These library names
are searched before library names specified after the /link option. For
more information

e See Section 4.4 for descriptions of the linker options that apply to
Microsoft C.

e See Chapter 12 of the Microsoft CodeView and Utilities manual for
complete descriptions of the available linker options.

e See Section 4.3.1 for information about specifying libraries and
library search paths.

If you use the /link option with the CL command, it must be the last
option on the command line.

Note

You cannot create an overlaid version of your program with the CL
command; you must explicitly use the LINK command. See Section
12.5, “Using Overlays,” of the Microsoft CodeView and Utilities
manual for a description of overlays.

4.3.1 Specifying Libraries

To link object files with libraries other than the default library, give the
names of the nondefault libraries on the CL: command line. Library names
appearing before /link must have the .LIB extension; library names
appearing after /link may have blank extensions or no extensions. A space
or plus sign (4) must follow each library name except the last.

Since the object file already contains the names of the correct combined
library, you do not need to specify libraries unless you want to do any of
the following:

e Link with additional libraries

e Look for libraries in different locations

e Override the use of the default library

e Link with object files compiled with Version 4.0 of Microsoft C

e Link with uncombined libraries provided with Version 5.0 of the
Microsoft C Optimizing Compiler

116

Linking with the CL. Command

4.3.1.1 Linking with Additional Libraries

If you specify additional libraries to CL, the linker searches the libraries

you specify before it searches the default library to resolve external refer-

ences in the object files. It searches the libraries you specify in their order
of appearance on the command line.

If a library name includes a path specification, the linker searches only
that path for the library.

If you specify only a library name (without a path specification), the linker
searches in the following locations to find the given library file:

1. The current working directory

2. Any path specifications or drive names that you give in the link-
libinfo field, in their order of appearance on the command line

3. The locations given by the LIB environment variable

If a library name without an extension appears after the /link option, the
linker automatically supplies the .LIB extension. If you want to link a
library file with an extension other than .LLIB, you must specify the com-
plete library name.

4.3.1.2 Looking in Different Locations for Libraries

You can tell the linker to look in different locations for libraries by giving
a drive name or path specification in the link-libinfo field on the CL com-
mand line.

The linker looks for the default libraries in the same order as it looks for
libraries given on the command line. See Section 4.3.1.1, “Linking with
Additional Libraries,” for more information.

4.3.1.3 Overriding Libraries Named in Object Files
If you do not want to link with the library whose name is included in the
object file, you can give the names of one or more different libraries
instead. You might want to specify a different library name in the follow-
Ing cases:

e If you have renamed a standard library.

e If you want to link with a library for a different floating-point

math package. Some restrictions apply; see Chapter 7, “Control-
ling Floating-Point Math Operations,” for more information.

117

Microsoft C Optimizing Compiler User’s Guide

e If you link with object files compiled with Version 3.0 or Version
4.0 of Microsoft C. In this case, the object files contain the names
of the uncombined C libraries; you must override the default
library names (see below) and explicitly specify the name of the
combined Version 5.0 library or the uncombined libraries.

e If you want to link with uncombined Version 5.0 libraries. For
example, you may not have used SETUP to build the appropriate
library for a particular memory model, but may still want to link
with the libraries for that memory model. In this case, you must
specify uncombined libraries in the order shown below:

1. The model-independent floating-point library EM.LIB (if you
are using the emulator floating-point package) or 87 .LIB (if
you are using the 8087/80287 floating-point package). You can-
not link with EM.LIB or 87.LIB if you have given the /A
option on the CL command line.

2. The model-dependent floating-point library mLIBFP.LIB or
mLI%FA.LIB (where m indicates the memory model you are
using).

3. The model-dependent standard library mLIBC.LIB (where m
indicates the memory model you are using).

4. The model-independent code-helper library LIBH.LIB.

Note that you need to specify the uncombined libraries listed
in steps 1 and 2 if you use floating-point math in your source
program.

If you specify a new library name, the linker searches the new library to
resolve external references before it searches the library specified in the
object file.

If you want the linker to ignore the libraries named in the object file, you
must use the /NOD linker option. This option tells the linker to ignore
the default-library names encoded in the object files. Use this option with
caution; see the discussion of the /NOD option in Section 4.4 for more
information.

B Example
CL FUN TEXT TABLE CARE /link C:\TESTLIB\ NEWLIBV3

This example links four object modules to create an executable file named
FUN.EXE. The linker searches NEWLIBV3.LIB before searching the
default libraries to resolve references. To locate NEWLIBV3.LIB and the
default libraries, the linker searches the current working directory, then
the C:\TESTLIB\ directory, and finally, the locations given by the LIB
environment variable.

118

Linking with the CL. Command

4.3.2 Specifying Linker Options

Linker options can be given explicitly on the CL command line, or they
can be defined in the CL environment variable.

4.3.2.1 Defining Linker Options on the CL. Command Line

When you use the CL. command to invoke the linker, any linker options
you specify (other than those supported by CL options such as /F and
/ memust appear after the /link option on the command line. All
options begin with the linker’s option character, the forward slash (/).

The following sections outline the rules for specifying linker options on the
CL command line.

Abbreviations

Since linker options are named according to their functions, some of these
options are quite long. You can abbreviate the options to save space and
effort. Be sure that your abbreviation is unique so that the linker can
determine which option you want. (The minimum legal abbreviation for
each option is indicated in the syntax of the option.)

For example, several options begin with the letters “NO”; therefore,
abbreviations for those options must be longer than “NO” to be unique.
You cannot use “NO” as an abbreviation for the /NOIGNORECASE
option, since the linker cannot tell which of the options beginning with
“NO” you intend. The shortest legal abbreviation for this option is /NOIL

Abbreviations must begin with the first letter of the option and must be
ccl)lntlngous through the last letter typed. No gaps or transpositions are
allowed.

Numerical Arguments

Some linker options take numerical arguments. A numerical argument can
be any of the following:

e A decimal number from 0 to 65,535.

e An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with 0. For example, the number 10 is a decimal
number, but the number 010 is an octal number, equivalent to 8 in
decimal.

e A hexadecimal number from 0 to OXFFFF. A number is interpreted
as hexadecimal if it starts with Ox or 0X. For example, 0x10 is a
hexadecimal number, equivalent to 16 in decimal.

119

Microsoft C Optimizing Compiler User’s Guide

Differences from CL Options

If you are accustomed to using CL options, you should be aware that the
linker options work in a slightly different manner. Keep the following
differences in mind when you use linker options:

e Linker options can be abbreviated; CL options cannot. For exam-
1/)16, the linker option /NOIGNORECASE can be abbreviated to
NOL

e Case is not significant in linker options, as it is in CL options. For
example, /NOI and /noi are equivalent.

e Linker options on the command line affect all files in the linking

process, regardless of where the options appear in the link-libinfo
field.

4.3.2.2 Defining Linker Options in the Environment

You can also define default linker options using the CL environment vari-
able. Set the CL variable as shown below:

SET CL-= ... /link option[option]...

The options defined by CL are treated as if they appeared immediately
after /link on the CL command line and before any linker options given
on the command line.

Options defined in the environment must follow the rules outlined in Sec-
tion 4.3.2.2.

4.4 Linker Options

This section summarizes the linker options that can be used with Micro-
soft C programs. Note that this section does not describe all available
linker options; for a complete list, refer to Chapter 12 of the Microsoft
CodeView and Utilities manual.

The following summary describes the linker options most commonly used
with Microsoft C programs:

JHE[LP]

Causes the linker to display a list of the available options on the
screen.

120

Linking with the CL Command

/P[AUSE]

Tells the linker to pause in the link session and display a message
before it writes the executable (.EXE) file to disk.

/I[NFORMATION]

Displays information about the linking process, including the phase of
linking and the names of the object files being linked.

This option is useful if you want to determine the locations of the
object files being linked and the order in which they are linked.

/B[ATCH]

Tells the linker not to prompt you for a new path name whenever it
cannot find a library or object file that it needs. When this option is
used, the linker simply continues to execute without using the file in
question. This option is intended primarily for users who employ batch
or MAKE files to link many executable files with a single command
and who do not want the linker to stop processing if it cannot find a
required file.

/Q[UICKLIB]

Creates a Quick library for programs by the Microsoft QuickC Com-
piler. If you give this option, the linker creates a file with an extension
of .QLB rather than an extension of .EXE. See Chapter 7 of the
Microsoft QuickC Compiler Programmer’s Guide for more information
about creating Quick libraries.

JE[XEPACK]

Removes sequences of repeated bytes (typically null characters) and
optimizes the load-time relocation table before creating the executable
file. (The load-time relocation table is a table of references, relative to
the start of the program, each of which changes when the executable
image is loaded into memory and an actual address for the entry point
is assigned.)

Executable files linked with this option may be smaller, and load fas-
ter, than files linked without this option. However, you cannot use the
Symbolic Debug Utility (SYMDEB) or the CodeView window-oriented
debugger to debug with packed files.

/NOD[EFAULTLIBRARYSEARCH]

Tells the linker nof to search any library specified in the object file to
resolve external references.

In general, C programs do not work correctly without the standard C
libraries. Thus, if you use the /NOD option, you should explicitly
specify the names of all required standard libraries.

121

Microsoft C Optimizing Compiler User’s Guide

/NOF[ARCALLTRANSLATION]
/FI[ARCALLTRANSLATION]

Tells the linker whether or not to optimize intrasegment far calls. Used
with the /PACKCODE option, the /F option can result in smaller
executable files, reduced program-load time, and reduced execution
time. The default is /NOF.

/NOP[ACKCODE]
/P[ACKCODE][:number]

Tells the linker whether or not to group contiguous logical code seg-
ments and assign each segment a base address that is the beginning of
the group. /NOP is the default. The number, if given, specifies the
limit at which to stop packing and start a new group. If the /P option
is given with no number, 64K is the default.

/SE[GMENTS]:number

Controls the number of segments that the linker allows a program to
have. The default is 128, but you can set number to any value
(decimal, octal, or hexadecimal) in the range 1-1024 (decimal).

For each segment, the linker must allocate some space to keep track of
segment information. When you set the segment limit higher than 128,
the linker allocates more space for segment information. For programs
with fewer than 128 segments, you can keep the storage requirements
of the linker at the lowest level possible by setting number to reflect
the actual number of segments in the program. The linker displays an
error message if the number of segments allocated is too high for the
amount of memory the linker has available.

/CP[ARMAXALLOC]:number

Sets the maximum number of 16-byte paragraphs needed by the pro-
gram when it is loaded into memory, where number is an integer in the
range 1-65,535. The operating system uses this value when allocating
space for the program before loading it. The Microsoft C start-up
module cuts memory back to the larger of 64K or the amount of
memory specified in this option; for programs with limited static data,
and heap usage, this option is unnecessary.

The following linker options can be used with Microsoft C programs, but
they perform the same actions as CL options. Therefore, you do not need
to use them unless you are compiling and linking in separate steps.

122

Linking with the CL. Command

/M[AP] [:number]

Creates a map file. This option is equivalent to using the /Fm option
with the CL command, except that you can give a number argument
with the /M option. The number argument is any positive integer
(decimal, octal, or hexadecimal) up to 65,535 (decimal) specifying how
many symbols are sorted in the map listing. If no number argument is
given, a maximum of 2048 symbols is sorted. (In practice, the number
of sorted symbols is limited by the amount of free heap space.) If a
number argument is given, the alphabetical list of symbols does not
appear in the map file.

/LI[NENUMBERS]

Creates a map file and includes the line numbers and associated
addresses of the source program. This option is equivalent to using the
/Zd option with the CL command. See Section 3.3.12 for more infor-
mation about the /Zd option.

/ST[ACK]:number

Specifies the size of the stack for your program, where number is any
positive value (decimal, octal, or hexadecimal) up to 65,535 (decimal)
representing the size, in bytes, of the stack. This option is equivalent
to using the /F option of the CL command. See Section 3.3.16 for
more information about the /F option.

/CO[DEVIEW]

Prepares for debugging with the CodeView window-oriented debugger
provided with Version 5.0 of the Microsoft C Optimizing Compiler.
This option is equivalent to using the /Zi option of the CL command.
See Section 3.3.12 for more information about the /Zi option.

The following linker options can be used with Microsoft C programs, but
they are never required, since they request actions that the CL command
or the Microsoft C Optimizing Compiler performs automatically:

/NOI[GNORECASE]

Tells the linker to distinguish between uppercase and lowercase letters;
for example, the linker would consider ABC, abc, and Abc to be three
separate names. The CL command uses the /NOI option automati-
cally; if you want to link without using /NOI you must invoke the
linker with the LINK command instead of using CL.

/DO[SSEG]

Forces segments to be ordered as follows:

123

Microsoft C Optimizing Compiler User’s Guide

124

1. All segments with a class name ending in CODE

2. All other segments outside DGROUP (that is, FAR_DATA
and BSS)
3. DGROUP segments, in the following order:

a. Any segments of class BEGDATA (this class name is
reserved for Microsoft use)

b. Any segments not of class BEGDATA, BSS, or STACK
c. Segments of class BSS
d. Segments of class STACK
C programs compiled with Version 5.0 of the Microsoft C Optimizing
Compiler always use this segment order by default. See Section 6.7,

“Naming Modules and Segments,” for a discussion of the segment
names used by the Microsoft C Optimizing Compiler.

RUNNING O

N A T QD
Wi =1 5D

L PO U IO et oneierereeeseneusnnsissnnreonssssascosass

) T T £ e
(B IR R f il

i 4. N i - 3 By
12000 L0 2 17POCTAII tervrerersanireereriosiraososssaisnnss

5.2.1 Fxpanding Wild-Card Arguments

o

5.2.2 Suppressing Command-fine Processing.

Kooy PN S Aot
523 Returning an Tt Code oo
24 Buppressing Null-Poind

Running C Programs on MS-DOS

5.1 Introduction

After compiling a program with the Microsoft C Optimizing Compiler and
linking with the linker, you will have an executable file with the extension
EXE that can be run from the MS-DOS prompt.

MS-DOS uses the PATH environment variable to find executable files.
You can execute your program from any directory, as long as the execut-
able program file is either in your current working directory or in one of
the directories on the path set in the PATH environment variable.

Your program can also be executed by other programs, or you can write it
so that it will be capable of executing other programs or MS-DOS internal
commands. The spawn, exec, and system routines provided in the run-
time library allow your program to execute other programs and MS-DOS
commands. See the Microsoft C Run-Tivme Library Reference for a descrip-
tion of these routines.

MS-DOS has several other unique capabilities that your program can use if
you write the program to take advantage of them. Among these capabili-
ties are the following:

o Receiving arguments from MS-DOS
e Reading information from the MS-DOS environment table

e Sending a message to MS-DOS by returning an exit code

This chapter explains how to write programs to take advantage of these
features, and how to use them once your program is completed.

5.2 Passing Command-Line
Data to a Program

Your C program can access data from a command line or from the
environment table. You can use the MS-DOS SET or PATH command to
place data in the environment table. See Section 2.4.5, “Setting Up the
Environment,” for a discussion of environment variables. Command-line
data are arguments that appear on the same line as the program name
when you execute the program.

To pass data to your program on the command line, give one or more
arguments after the program name when you execute the program. Each
argument must be separated from the arguments around 1t by one or more
spaces or tab characters, and may be enclosed in quotation marks (" "). If
you want to give a single argument that includes spaces or tab characters,

127

Microsoft C Optimizing Compiler User’s Guide

enclose the argument in quotation marks. For example, if your C program
is called TEST.EXE, you might give it the following command line:

TEST 42 "de f" 16

In this case, the program will be executed and three arguments will be
passed: 42, de £, and 16.

MS-DOS stores the command-line arguments in the MS-DOS program
header. The C run-time library (which becomes part of your program dur-
ing linking) in turn stores each argument from the program header as a
null-terminated string in an array of strings. MS-DOS limits the combined
length of all arguments on the command line (including the program
name) to 128 bytes. If you provide a longer command line, additional char-
acters are ignored. o

For a C program to read the data from the command line, the program

should declare two variables as arguments to the main function. These
variables and their contents are listed in Table 5.1.

Table 5.1
Argument Variables

Variable Contents

arge Number of arguments passed
argv Array of strings containing arguments

By declaring these variables as arguments to main, you make them avail-
able as local variables in the main function. The example below illustrates
how to declare these arguments:

main (argc, argv)
int argc:
char *argv[]:

The number of arguments appearing on the command line is passed as the
integer variable argc, and the command line is passed to the program as
the array of strings pointed to by argv.

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in argv, at
argv [0]. Since a program name must be given to run the program, the
integer value of argcis always at least 1. Therefore, if you pass two argu-
ments to your program, argc will have a value of 3 (two arguments and the
program name).

128

Running C Programs on MS-DOS

The first argument following the program name is stored at argv [1], the
second is stored at argv [2], and so on, to the last argument.

Note

Under versions of MS-DOS earlier than 3.0, the program name nor-
mally stored in argv [0] is not available. References to argv [0] yield
the string “C.” Under MS-DOS versions 3.0 and later, references to
argv [0] give the program name.

There is a third argument passed to the main function: enuvp, a pointer to
the environment table. This argument is an extension provided by the
Microsoft C Optimizing Compiler to support code ported from XENIX and
other UNIX-like systems. When specified, it follows argv and is declared as
shown below:

char *envp[]:

Although you can use this pointer to access the value of environment set-
tings, this usage is nonstandard and is not recommended. The putenv and
getenv routines from the C run-time library accomplish the same task,
and are easier and safer to use. Using the putenv routine may change the
location of the environment table in memory, depending on memory
requirements. Therefore, the value given to envp at the beginning of the
program execution may not be valid throughout the program’s execution.
In contrast, the putenv and getenv routines access the environment table
properly, even when its location changes. These routines use the global
variable environ (described in the Microsoft C Run-Time Library Refer-
ence), which always points to the correct table location.

8 Example

MYPROG ABC "abc e" 3 8

This command line executes the program named MYPROG and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored

in argc. To access the last argument, for example, you would use an
expression like the following:

argv[argc - 1]

Since the value of argc is 5 (counting the program name as an argument),
this expression is equivalent to argv [4], or the fifth string of the array.

129

Microsoft C Optimizing Compiler User’s Guide

5.2.1 Expanding Wild-Card Arguments

You can use the MS-DOS wild-card characters, the question mark (?) and
the asterisk (*), to specify file-name and path-name arguments on the

command line. To prepare for using wild cards, you must link your object
file with the SETARGV.OBJ object file.

This object file is included with your compiler software. If you don’t link
with this object file, your program does not expand wild-card characters
“on the command line, interpreting them instead as literal question marks

and asterisks.

The SETARGV.OBJ file expands the wild-card characters in the same
manner as MS-DOS. (See your DOS user’s guide if you are unfamiliar with
these characters.) Enclosing an argument in quotation marks "™
suppresses the wild-card expansion. Within quoted arguments, you can
represent quotation marks literally by preceding the double-quotation-
mark character with a backslash &), as shown below:

" *\II argllment\" * ”

If no matches are found for the wild-card argument, the argument is
passed literally. For example, if the argument B:\ % .C is given, but no
files with the extension .C are found in the root directory of Drive B, the
argument is passed as the string B:\x.C.

If your programs frequently expand wild-card characters, you may want to
put the wild-card routines (SETARGYV.OBJ) in the appropriate stan-
dard C combined library ’I(mLIBCf.LIB) so that they are linked with your

rogram automatically. To do this, use the Microsoft Library Manager
LIB) to extract the module named _setargyv from the library (the
module name is the same in all four libraries) and insert SETARGYV.
When you replace —setargyv, wild-card expansions are always performed
on command-line arguments. LIB is described in Chapter 13 of the Micro-
soft CodeView and Utilities manual.

® Example

CL BETA \LIB\SETARGV
BETA *.INC "WHY?" \"HELLO\"

In this example, SETARGV.OBJ, which is in the directory \LIB, is linked
with BETA.OBJ, producing the executable file BETA.EXE. When
BETA.EXE is executed, the wild-card character * is expanded, causing all
file names with the extension . INC in the current working directory to be
passed as arguments to the BETA program. The second command-line
argument, WHY?, is enclosed in quotation marks, so expansion of the wild-
card character ? is suppressed and the argument WHY? is passed literally.

130

Running C Programs on MS-DOS

In the third argument, the backslashes cause the quotation marks to be
represented literally, so the argument "HELLO" (including the quotation
marks) is passed. ‘

5.2.2 Suppressing Command-Line Processing

If your program does not take command-line arguments, you can save a
small amount of space by suppressing use of the library routine that per-
forms command-line processing. This routine is called _setargv. To
suppress its use, define a routine that does nothing in the same file that
contains the main function, and name it _setargv. The call to _setargv
will be satisfied by your definition of _setargv, and the library version will
not be loaded.

Similarly, if you never access the environment table through the envp
argument, you can provide your own empty routine to be used in place of
_setenvp, the environment-processing routine.

If your program makes calls to the spawn or exee routines in the C run-

time library, you should not suppress the environment-processing routine,
since this routine is used to pass an environment from the parent process

to the child process.

B Example

—setargv ()
{
}

_setenvp ()
}

The example above shows how to define the _setargv and _setenvp func-
tions to suppress command-line and environment processing. It is recom-
mended that you place these definitions in the file containing the main
function.

5.3 Returning an Exit Code

Your program can return an exit code (sometimes called a return code) as
a means of leaving a message for MS-DOS. The exit code can then be used
by MS-DOS batch files or other programs that test exit codes (for example,
the MAKE program-maintenance utility). Exit codes and their uses are
discussed in more detail in Appendix A, “Using Exit Codes.”

131

Microsoft C Optimizing Compiler User’s Guide

Exit codes are returned through the main function. This function, like
any other C function, can return a value. The value is of int type, and is
passed to MS-DOS as the exit code of the executed program. This exit
code can be checked with the IF ERRORLEVEL command in MS-DOS
batch files. (See your DOS user’s guide for more information about using
batch files.)

To cause the main function to return a specific value to MS-DOS, you
should use a return statement or the exit function to specify the value to
be returned. For example, if the main function in a program terminates
with either the statement return (6); or exit (6) ; the value 6 is
returned to MS-DOS. If neither of these methods is used, the return code is
undefined.

® Example

#define TRUE 1
#define FALSE O

int error = FALSE:;

main ()

if (error) return (1):
else return (O):

Y

In the example above, the value 1 would be returned if the variable error
were set to TRUE somewhere within the body of the program. Otherwise, O
would be returned to MS-DOS. The example program follows the conven-
tion of returning O if the program is successful, and some larger number if
an error is encountered.

5.4 Suppressing Null-Pointer Checks

When you execute your C program, a special error-checking routine is
automatically invoked after your program has terminated to determine
whether the contents of the NULL segment have changed. If they have,
the routine displays the following error message:

run-time error R6001
- null pointer assignment

132

Running C Programs on MS-DOS

The NULL segment is a special location in low memory that is normally
not used. If the contents of the NULL segment change during a program’s
execution, it means that the program has written to this area, usually by
an inadvertent assignment through a null pointer. Note that your program
can contain null pointers without generating this message; the message
appears only when you write to a memory location through the null
pointer.

This error does not cause your program to terminate; the error is detected
and the error message is printed following the normal termination of the
program.

Note

The null-pointer error message reflects a potentially serious error in
your program. Although a program that produces this error may
appear to operate correctly, it is likely to cause problems in the future
and may fail to run in a different operating environment.

The library routine that performs the null-pointer check is named
—nullcheck. You can suppress the null-pointer check for a particular pro-
gram by defining your own routine named —nullcheck that does nothing.
The call to — nullcheck will be satisfied by your definition of —nullcheck,
and the library version will not be loaded. It is recommended that you
place the —nullcheck definition in the file containing the main function. -

133

WORKING WI'T
EMORY MOI

o e

<y O
o

IS

[an)
.

6.4

ey
&2
B

ot

6.6
6.7
6.8

INErOdUClION ottt canearanenanen |

Near, Ifar, and Tuge Addres

=1

S

R R R

Ry
Nosms?

Using the Standard Memory Models......
6.3.1 Creating Small-Model Programs...cocoeieeeeeen.
6.3.2 Creating Medium-Model Programs
6.3.3 Creating Compact-Model Programs.....ccc....
Creating Large-Model Programs...oo.cevenenene.
Creating Huge-Model Programs...oooiniein..

—
R

BN e

[N g Gy
[N

Using the near, far, and huge IKeyword :
A Library Support for near, far, and huge...... 1
2 Declaring Data with near, far, and huge 1~
.3 Declaring Ifunctions with the

near and far Keywords .o 18
Pointer Conversions «eveemreeeeeeeeeiniaeanes 19

T

=

t

I
-
<
>
[
[N8)

ating Customized NMemory NModels.. 1
Code POINters. i icinceecesieie e iaeiene L
Data POINLETS covverriecvrreneinennereersineeserenennnn bt
Selting Up SegmentS e eeeeneenenieraeneand
6.5.4 Library Support for Customized

Memory Models cuivvieeernriiiiiniiniiieeiirieiennnan b

1

3 e

o
(N

3.

[

(on]

1
o
V‘ V' oA

ot

[

(o2
(a
[N

.\
Jt

109
Setting the Data Threshold........oo 100
Naming Modules and Segments ..oeeeeeereririnnnn 107
Specifying Text and

Dala, SEQMENS tviverieveeieeieeeeeeeeeresevees e 15O

i R R
Dheimedniaan g

e

mEua
S .

i

Working with Memory Models

6.1 Introduction

You can gain greater control over how your program uses memory by
specifying the memory model for the program. If you do not specify a
memory model, CL uses the small memory model by default. The small
memory model is sufficient for most programs.

You cannot use the small memory model if your program satisfies one or
more of the following three conditions:

1. Your program has more than 64K of code.

2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger
than 64K.

If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models
(medium, compact, large, or huge) using one of the /A options.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
/Astring option.

4. Method 2 can be combined with either method 1 or method 3.

6.2 Near, Far, and Huge Addressing

Understanding the terms “near,” “far,” and “huge” is crucial to under-
standing the concept of memory models. These terms indicate how data
can be accessed in the segmented architecture of the 80286 family of
microprocessors (8086, 80186, 80286).

DOS loads the code and data allocated by your program into “segments”
in physical memory. Each segment is up to 64K long. Since separate

137

Microsoft C Optimizing Compiler User’s Guide

segments are always allocated for the program code and data, the
minimum number of segments allocated for a program is two; these two
segments, required for every program, are called the default segments. The
small memory model uses only the two default segments. The other
memory models discussed in this chapter allow more than one code seg-
ment per program, more than one data segment per program, or both.

In the 80286 family of microprocessors, all memory addresses consist of
two parts:

1. A 16-bit number that represents the base address of a memory
segment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 80286 microprocessor is such that code can be
accessed within the default code or data segment using just the 16-bit
offset value. This is possible because the segment addresses for the default
segments are always known. This 16-bit offset value is called a “near”
address, and can be accessed with a “near” pointer. Since only 16-bit
arithmetic is required to access any near item, near references to code or
data are smaller and more efficient.

When data or code lie outside the default segments, the address must use
both the segment and offset values. Such addresses are called “far”
addresses, and can be accessed by using “far” pointers in a C program.
Accessing far data or code items is more expensive in terms of program
speed and size, but using them allows your programs to address all
memory, rather than just a 64K piece.

There is a third type of address in Microsoft C: the “huge” address. A
huge address is similar to a far address in that both consist of a segment
value and an offset value; but the two differ in the way address arithmetic
is performed on pointers. Because items (both code and data) referenced
by far pointers are still assumed to lie completely within the segment in
which they start, pointer arithmetic is done only on the offset portion of
the address. This gain in pointer arithmetic efficiency is achieved, however,
by limiting the size of any single item to 64K. With data items, huge
pointers overcome this size limitation: pointer arithmetic is performed on
all 32 bits of the data item’s address, thus allowing data items referenced

138

‘Working with Memory Models

by huge pointers to span more than one segment, provided they conform
to the rules outlined in Section 6.3.5, “Creating Huge-Model Programs.”

The rest of this chapter deals with the various methods you can use to
control whether your program makes far, near, or huge calls to access code
or data.

6.3 Using the Standard Memory Models

The libraries created by the SETUP program support five standard
memory models. Using the standard memory models is the simplest way to
control how your program accesses code and data in memory.

When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you
specify is used automatically. Each memory model has its own library,
except for the the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity.
In the standard models, memory management is specified by compiler
options; since the standard models do not require the use of extended key-
words, they are the best way to write code that can be ported to other sys-
tems (particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that
they may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small model, it may
be to your advantage to declare the one array with the far keyword, while
keeping the rest of the program small model, as opposed to using the stan-
dard compact memory model for the entire program. For maximum flexi-
bility and control over how your program uses memory, you can combine
the standard-memory-model method with the near, far, and huge key-
words described in Section 6.4.

The /A option for CL is used to specify one of the five standard memory

models (small, medium, compact, large, or huge) at compile time. These
options are discussed in the next five sections.

139

Microsoft C Optimizing Compiler User’s Guide

Note

In the following sections, which describe in detail the different ‘
memory-model addressing conventions, it is important to keep in mind
two common features of all five models:

1. No single source module can generate 64K or more of code.

2. No single data item can exceed 64K, unless it appears in a
huge-model program or it has been declared with the huge
keyword.

6.3.1 Creating Small-Model Programs

B Option
/AS

The small-model option tells the compiler to create a program that occu-
pies the two default segments: one for code and one for data.

Small-model programs are typically C programs that are short or have a
limited purpose. Since code and data for these programs are each limited
to 64K, the total size of a small-model program can never exceed 128K.
Most programs fit easily into this model.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keywords, and the default for code by using the far
keyword (huge is relevant only to data items—specifically, arrays and
pointers to arrays).

The compiler creates small-model programs by default when you do not

specify a memory model. The (AS option is provided for completeness;
you need never give it explicitly.

140

Working with Memory Models

6.3.2 Creating Medium-Model Programs

® Option
/AM

The medium-model option provides a single segment for program data,
and multiple segments for program code. Each source module is given 1ts
own code segment.

Medium-model programs are typically C programs that have a large
number of program statements (more than 64K of code), but a relatively
small amount of data (less than 64K). Program code can occupy any
amount of space and is given as many segments as needed; total program
data cannot be greater than 64K. The medium model provides a useful
trade-off between speed and space, since most programs refer more fre-
quently to data items than to code.

6.3.3 Creating Compact-Model Programs

B Option
JAC

The compact-model option directs the compiler to allow multiple
segments for program data but only one segment for the program code.

Compact-model programs are typically C programs that have a large
amount of data, but a relatively small number of program statements.
Program data can occupy any amount of space and are given as many seg-
ments as needed.

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

141

Microsoft C Optimizing Compiler User’s Guide

Note

Note that in medium and compact models, NULL must be used care-
fully in certain situations. NULL actually represents a null data
pointer. In memory models where code and data pointers are the same
size, it can be used with either. However, in memory models where
code and data pointers are different sizes, this is not the case. Consider
the following example:

void funcl (char xdp)
{

void func2(char (*fp) (void))

[

main ()

funcl (NULL) :
func2 (NULL) :

}

This example passes a 16-bit pointer to both funcl and func2 if
compiled in medium model, and a 32-bit pointer to both funcil and
func?2 if compiled in compact model, unless prototypes are added to
the beginning of the program to indicate the types, or an explicit cast
is used on the argument to funcl (compact model) or func2
(medium model).

6.3.4 Creating Large-Model Programs

® Option
/AL

The large-model option allows the compiler to create multiple segments as
needed for both code and data.

142

‘Working with Memory Models

Large-model programs are typically very large C programs that use a large
amount of data storage during normal processing.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the
near and huge keywords for data, and the near keyword for code.

6.3.5 Creating Huge-Model Programs

B Option
/AH

The huge-model option is similar to the large-model option, except that
the restriction on the size of individual data items is removed for arrays.

Some size restrictions apply to elements of huge arrays where the array is
larger than 64K, however. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications: :

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16
bytes, and so on). However, if the array is 128K or smaller, its ele-
ments may be any size, up to and including 64K.

In huge-model programs, care must be taken when using the sizeof opera-
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an unsigned int value, but the size
in bytes of a huge array is an unsigned long value. To solve this
discrepancy, the Microsoft C Optimizing Compiler produces the correct
size of a huge array when a type cast like the following is used:

(unsigned long)sizeof (huge_item)

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result
may be a long int value. The Microsoft C Optimizing Compiler gives the
correct result when a type cast like the following is used:

(long) (huge_ptrl - huge_ptr2)

143

Microsoft C Optimizing Compiler User’s Guide

6.4 Using the near, far, and huge Keywords

One limitation of the predefined memory-model structure is that, when
you change memory models, all data and code address sizes are subject to
change. However, the Microsoft C Optimizing Compiler lets you override
the default addressing convention for a given memory model and access
items with either a near, far, or huge pointer. This is done with the near,
far, and huge keywords. These special type modifiers can be used with a
standard memory model to overcome addressing limitations for particular
data or code items, or to optimize access to these items, without changing
the addressing conventions for the program as a whole. Table 6.1 explains
how the use of these keywords affects the addressing of code or data, or
pointers to code or data.

Table 6.1
Addressing of Code and Data Declared with near, far, and huge
Pointer
Keyword Data Function Arithmetic
near Reside in default data ~ Assumed to be in Uses 16 bits
segment; referenced current code
with 16-bit addresses segment;
(pointers to data are referenced with
16 bits) 16-bit addresses
gpointers to
unctions are 16
bits)
far May be anywhere in Not assumed to be Uses 16 bits
memory, not assumed in current code
to reside in current segment;
data segment; referenced with
referenced with 32-bit 32-bit address
addresses (pointers to $pointers to
data are 32 bits) unctions are 32
bits)
huge May be anywhere in Not applicable to Uses 32 bits for

memory, not assumed
to reside in current
data segment;
individual data items
(arrays) can exceed
64K 1n size;
referenced with 32-bit
addresses (pointers to
data are 32 bits)

code

data

144

Working with Memory Models

Note

The near, far, and huge keywords are not a standard part of the C
language; they are meaningful only for systems that use a segmented
architecture similar to that of the 80286 microprocessors. Keep this in
mind if you want your code to be ported to other systems.

In the Microsoft C Optimizing Compiler, the near, far, and huge key-
words are enabled by default. To treat these keywords as ordinary
identifiers, you must give the /Za option at compile time. This option is
useful if you are concerned with porting C programs from environments in
which these are not keywords; for instance, if you are porting a program in
which one of these words is used as a label. See Section 3.3.14 for further
information about the use and effects of the /Za option.

6.4.1 Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing con-
ventions for particular items, you can usually use one of the standard
libraries Ssmall, compact, medium, or large) with your program. The
large-model libraries are also appropriate for use with huge-model pro-
grams. However, you must use care when calling library routines. In gen-
eral, you cannot pass far pointers, or the addresses of far data items, to a
small-model library routine. (Some exceptions to this statement are the
library routines halloc and hfree and the printf family of functions.) Of
course, you can always pass the value of a far item to a small-model library
routine. For example:

long far time_val:;

time (&time_val) /* Illegal *x/
printf ("%41d\n", time_val): /* Legal */

If you use the near, far, or huge keyword, it is strongly recommended
that you use function prototypes with argument-type lists to ensure that
all pointer arguments are passed to functions correctly. See Section 6.4.4,
“Pointer Conversions,” for more information.

For more information on library routines and memory models, see Section

2.11, “Using Huge Arrays with Library Functions,” in the Microsoft C
Run-Time Library Reference.

145

Microsoft C Optimizing Compiler User’s Guide

6.4.2 Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

e The keyword always modifies the object or pointer immediately to
its right. In complex declarators, think of the far keyword and the
item to its right as being a single unit. For example, in the case of
the declarator

char far#* *p;

p is a pointer (whose size depends on the specified memory model)
to a far pointer to char. See the Microsoft C Language Reference

. for complete rules governing the use of special keywords in complex
declarations.

e If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the
default data segment (near) or a separate data segment (far or
huge). For example,

char far a:
allocates a as an item of type char with a far address.

e If the item immediately to the right of the keyword is a pointer,
the keyword determines whether the pointer will hold a near
address (16 bits), a far address (32 bits), or a huge address (also 32
bits). For example,

char far #*p:

allocates p as a far pointer (32 bits) to an item of type char.

B Examples

The examples in this section show data declarations using the near, far,
and huge keywords. :

char a[3000]: /* small-model program */
char far b[30000]:

The first declaration in the example above allocates the array a in the
default data segment. By contrast, the array b in the second declaration
may be allocated in any far data segment. Since these declarations appear
in a small-model program, array a probably represents frequently used
data that were deliberately placed in the default segment for fast access.
Array b probably represents seldom used data that might make the

146

Working with Memory Models

default data segment exceed 64K and force the programmer to use a larger
memory model if the array were not declared with the far keyword. The
second declaration uses a large array, because it is more likely that a pro-
grammer would want to specify the address allocation size for items of
substantial size.

char a[3000]:; /* large-model program */
char near b[3000];

In the example above, access speed would probably not be critical for
array a. Even though it may or may not be allocated within the default
data segment, it is always referenced with a 32-bit address. Array b is
?xplicitly allocated near to improve speed of access in this memory model
large).

char huge a[70000]: /* small-model program */
char huge #*pa:

In the small-model program above, a must be declared as huge because it
is larger than 64K. Using the huge keyword instead of the standard huge
memory model means that the price for using huge data is only paid for
this one large item. Other data can be accessed quickly within the default
segment. The pointer pa could be used to point to a. Any pointer arith-
metic for pa (such as pa++) would be performed using 32-bit arithmetic.

char #*pa; /* small-model program */
char far #*pb:

The pointer pa is declared as a near pointer to char in the example above.
The pointer is near by default since the example appears in a small-model
program. By contrast, pb is allocated as a far pointer to char; pb could be
used to point to, and step through, an array of characters stored in a seg-
ment other than the default data segment. For example, pa might be used
to point to array a in the first example, while pb might be used to point to
array b.

char far * xpa; /* small-model program x/
char far * xpa; /* large-model program */

The pointer declarations in the example above illustrate the interaction
between the memory model chosen and the near and far keywords.
Although the declarations for pa are identical, in a small-model program
pa is declared as a near pointer to an array of far pointers to type char,
while in a large-model program, pa is declared as a far pointer to an array
of far pointers to type char.

147

Microsoft C Optimizing Compiler User’s Guide

char far * near #*pb: /* any model #*/
char far * far #pb:

In the first declaration in the example above, pb is declared as a near
pointer to an array of far pointers to type char; in the second declaration,
pb is declared as a far pointer to an array of far pointers to type char.
Note that, in this example, the far and near keywords override the
model-specific addressing conventions shown in the example preceding the
example above; the declarations for pb would have the same effect, regard-
less of the memory model.

6.4.3 Declaring Functions with the
near and far Keywords

The rules for using the near and far keywords for functions are similar to
those for using them with data, as specified below:

e The keyword always modifies the function or pointer immediately
to its right. See Section 4.3.3, “Declarators with Special Key-
words,” of the Microsoft C Language Reference for more informa-
tion about rules for evaluating complex declarations.

e If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allocated
as near or far. For example,

char far fun():

defines fun as a function called with a 32-bit address and return-
ing type char.

o If the item immediately to the right of the keyword is a pointer to

a function, then the keyword determines whether the function will
be called using a near (16-bit) or far (32-bit) address. For example,

char (far * pfun) ():

defines pfun as a far pointer (32 bits) to a function returning type
char.

o Function declarations must match function definitions.

e The huge keyword cannot be applied to functions.

148

‘Working with Memory Models

B Examples

char far fun (void): /* small model %/
char far fun (void)

}
In the example above, fun is declared as a function returning type char.

The far keyword in the declaration means that fun must be called with a
32-bit call.

static char far * near fun(): /* large model #*/
static char far * near fun()

{

+
In the large-model example above, fun is declared as a near function that
returns a far pointer to type char. Such a function might be seen in a
large-model program as a helper routine that is used frequently, but only
by the routines in its own module. Since all routines in a given module
share the same code segment, the function could always be accessed with a

near call. However, you could not pass a pointer to fun as an argument to
another function outside the module in which fun was declared.

void far xfun (void): /* small model */
void (far % pfun) () = fun;

The small-model example above declares pfun as a far pointer to a func-
tion that has a void return type, and then assigns the address of fun to
pfun. In fact, pfun could be used to point to any function accessed with a
far call. Note that if the function pointed to by pfun has not been
declared with the far keyword, or if it is not far by default, then calling
that function through pfun would cause the program to fail.

double far * (far fun) (): /* compact model x/
double far * (far *pfun) () = fun;

The final example above declares pfun as a far pointer to a function that
returns a far pointer to type double, and then assigns the address of fun
to pfun. This might be used in a compact-model program for a function
that is not used frequently and thus does not need to be in the default

149

Microsoft C Optimizing Compiler User’s Guide

code segment. Both the function and the pointer to the function must be
declared with the far keyword.

6.4.4 Pointer Conversions

Passing pointers as arguments to functions may cause automatic conver-
sions in the size of the pointer argument, since passing a pointer to a func-
tion forces the pointer size to the larger of the following two sizes:

e The default pointer size for that type, as defined by the memory
model used during compilation.

For example, in medium-model programs, data pointer arguments
are near by default, and code pointer arguments are far by default.

e The type of the argument.

If a function prototype with argument types is given, the compiler per-
forms type checking and enforces the conversion of actual arguments to
the declared type of the corresponding formal argument. However, if no
declaration is present or the argument-type list is empty, the compiler will
convert pointer arguments automatically to the larger of the default type
or the type of the argument. To avoid mismatched arguments, you should
always use a prototype with the argument types.

B Examples

/* This program produces unexpected results in compact-,

% large-, or huge-model programs.
*/

main()

{

int near *x:
char far »*y;
int z = 1;

test_fun(x, y. z): /* x will be coerced to far
** pointer in compact, large,
+% or huge model
*/

}

int test_fun(ptrl, ptr2, a)
int near #ptrl;
char far #*ptr2;
int a;

{
printf ("Value of a = %d\n", a):}

150

‘Working with Memory Models

If the preceding example is compiled as a small-model program (no
memory-model options or the /AS option on CL command line) or
medium-model program (/ option), the size of pointer argument x is
16 bits, the size of pointer argument y is 32 bits, and the value printed for
a is 1. However, if the preceding example is compiled with the /AC, /AL,
or /AH option, both x and y are automatically converted to far pointers
when they are passed to test_fun. Since ptrl, the first parameter of
test_fun, is defined as a near pointer argument, it takes only 16 bits of
the 32 bits passed to it. The next parameter, ptr2, takes the remaining 16
bits passed to ptril, plus 16 bits of the 32 bits passed to it. Finally, the
third parameter, a, takes the left-over 16 bits from ptr2, instead of the
value of z in the main function. This shifting process does not generate an
error message, since both the function call and the function definition are
legal, but in this case the program does not work as intended, since the
value assigned to a is not the value intended.

To pass ptrl as a near pointer, you should include a forward declaration
that specifically declares this argument for test_fun as a near pointer,
as shown below:

/* First, declare test_fun so the compiler knows in advance
+% about the near pointer argument:
*

int test_fun(int nearx, char far *, int):

main()
{

int near =*xx;
char far =x*y:
int z = 1;

test_fun(x, y. z): /* now, x will not be coerced
*#%x to a far pointer; it will be
** passed as a near pointer,
+%+ no matter what memory
*x model is used

}

int test_fun (ptrl, ptr2, a)
int near #*ptrl;
char far *ptr2:
int a:;

{
printf ("Value of a = %d\n", a):

151

Microsoft C Optimizing Compiler User’s Guide

Note that it would not be sufficient to reverse the definition order for
test_fun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

6.5 Creating Customized Memory Models

A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
architecture of 8086 and 80286 processors before creating your own non-
standard memory models, since there is no library support—other than the
C start-up routines—for nonstandard memory models.

The /Astring option lets you change the attributes of the standard
memory models to create your own memory models. The three letters in
string correspond to the code pointer size, the data pointer size, and the
stack- and data-segment setup, respectively. Because the letter allowed in
each field is unique to that field, you can give the letters in any order after
JA. All three letters must be present.

The standard-memory-model options (KSAS, /AM, /AC, /AL, and /AH)
can be specified in the /Astring form. As an example of how to construct
memory models, the standard-memory-model options are listed below with
their /Astring equivalents:

Standard Custom Equivalent
J/AS /Asnd

/AM /Alnd

JAC /Asfd

/AL JAIlfd

/AH /Alhd

As an example of the use of customized models, you might want to create
a huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be /Ashd.

An even more common use of customized models is to set up segments (see
Section 6.5.3 for more information).

If you use a customized memory model for a program that includes both
far and near functions, be aware of the following issues:

152

‘Working with Memory Models

e The chkstk library function should be called only in functions that
are compiled in the same model as the library being used. (For
compatibility with XENIX, the chkstk function name cannot be
model encoded.)

e The interfaces to floating-point function calls (generated when the
/FPc, /[FPc87, or /FPa option is used in compiling) are not
model encoded, so the same restriction is placed on functions con-
taining floating-point calls: they must be compiled with the same
model as the library being used.

Note

For the purposes of the descriptions that follow, the letters 1 (for
“long”) and s (for “short”) are used for code pointers to distinguish
them in the memory-model string from the letters for data pointers.

6.5.1 Code Pointers

B Options
/Aszz Near code pointers
JAlzz Far code pointers

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact-
model programs.

The letter 1 means that far (32-bit) pointers and addresses are used to -

address all code items. Far pointers are the default for medium-, large-,
and huge-model programs.

6.5.2 Data Pointers

B Options

/Anzz Near data pointers
J/Afzz Far data pointers
/Ahzz Huge data pointers

Three sizes are available for data pointers: near, far, and huge. The letter
n tells the compiler to use near glﬁ-bit) pointers and addresses for all data.
This is the default for small- and medium-model programs.

153

Microsoft C Optimizing Compiler User’s Guide

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are far (32-bit).
This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits
(the offset portion) of the address. When huge data pointers are used, indi-
vidual data items can be larger than a segment (64K) because address
arithmetic is performed on the entire 32 bits of the address.

6.5.3 Setting Up Segments

® Options

JAdzz Sets SS = DS

/Au(zz] Sets SS != DS; DS reloaded on function entry
JAw[zz] Sets SS != DS; DS not reloaded on function entry

The letter d tells the compiler that the segment addresses stored in the
SS and DS registers are equal; that is, the stack segment and the default
data segment are combined into a single segment. This is the default for
all programs. In small- and medium-model programs, the stack plus all
data must occupy less than 64K; thus, any data item is accessed with only
a 16-bit offset from the segment address in the SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and static
data are placed in the default data segment. The address of this segment
is stored 1n the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is impor-
tant to remember when passing pointers as arguments in large-model pro-
grams. Although you may have more than 64K of total data in these
models, there can be no more than 64K of data in the default segment.
The /Gt and /IND options can be used to control allocation of items in
the default data segment if a program exceeds this limit. ﬁee Section 6.6,
“Setting the Data Threshold,” and Section 6.7, “Naming Modules and Seg-
ments,” for more information about these options.)

The letter u allocates different segments for the stack and the data seg-
ments. Each object file (module) is allocated its own segment for global
and static data items. Note that the /ND option, described in Section 6.7,
must be specified along with the letter u to allocate data segments other
than the default. When the letter u is specified with /ND, the address in
the DS register is saved upon entry to each function, and the new DS
value for the module in which the function was defined is loaded into the
register. The previous DS value is restored on exit from the function.

154

Working with Memory Models

Therefore, only one data segment is accessible at any given time. The
/IND option can be used to combine these segments into a single segment.

If a standard memory-model option precedes it on the command line, the
/Au option can be specified without any letters indicating data- or code-
pointer sizes. In this case, the program uses the specified memory model,
but different segments are set up for the stack and data segments.

A single segment must be allocated for the stack, and its address stored in
the SS register. The stack segment does not change throughout the entire
program.

The letter w, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating-
system level. The operating system or the program running under the
operating system actually receives the data intended for the application
program and places that data in a segment; then the operating system or
program must load the DS register with the segment address for the appli-
cation program.

As with the /Au option, the /Aw option can be specified without data-
and code-pointer letters if a standard memory-model option precedes it on
the command line. In this case, the program uses the specified memory
model, but different segments are set up for the stack and data segments,
and the DS register is not reloaded at each module entry point.

Even though u and w set up a separate segment for the stack, the stack’s
size is still fixed at the default size unless this is overridden with the /F
compiler option or the /STACK linker option.

6.5.4 Library Support for Customized Memory Models

Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries (huge and large models both use the large-model libra,ry). When
you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that
the appropriate library is used.

Library support is provided for customized memory models where the
stack and default data segments are combined into a single segment
E{Adxx), but not for customized memory models where these segments are
ifferent (/Auzz, /Awzz, /Au, and /Aw). In the latter cases, you prob-
ably need to create a customized library to be used with your customized
memory model. Use the /NOD (for “no default library search”) option
when linking, and specify the library files and object files you want to use.

15656

Microsoft C Optimizing Compiler User’s Guide

Be sure to use the start-up routine from the appropriate library for your
memory model. Table 6.2 shows the libraries from which to extract the
start-up routine for each customized memory model.

Table 6.2

Start-Up Routines for
Customized Memory Models

Memory-Model Use Start-Up

Option From Library
/Asnz; QAS SLIBC/.LIB?
plus /A
/Asfy; /Ashz; CLIBCY.LIB?
/AC" plus /Az

Alng; MLIBC/.LIB?
1/)lus /A{c{u\/I
/Alfz; /Alhg; LLIBCY/.LIB?
/AL plus / Az
/JAH plus /Ax

1 Where z is either u or w

2 Where fis either E (emulator library), 7 (8087/80287
library), or A (alternate math library)

In general, library functions do not support customized memory models,
since a particular run-time routine may in turn call another library routine
that conflicts with your customized model.

6.6 Setting the Data Threshold

m Option
/Gt[number]

By default, the compiler allocates all static and global data items within
the default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only ¢nitialized static and glo-
bal data items are assigned to the default data segment. The /Gt option
causes all data items whose size is greater than or equal to number bytes to
be allocated to a new data segment. When number is specified, it must fol-
low the /Gt option immediately, with no intervening spaces. When
number 1s omitted, the default threshold value is 256. When the /Gt
option is omitted, the default threshold value is 32,767.

156

Working with Memory Models

You can use the /Gt option only with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data

segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

6.7 Naming Modules and Segments

B Options

/NM modulename
/NT textsegment
/ND datasegment

“Module” is another name for an object file created by the C compiler.
Every module has a name. The compiler uses this name in error messages
if problems are encountered during processing. The module name is usu-
ally the same as the source-file name. You can change this name using the
NM (for “name module”) option. The new modulename can be any com-
inatiori of letters and digits. The space between /NM and modulename is
optional.

A “segment” is a contiguous block of binary information (code or data)
produced by the C compiler. Every module has at least two segments: a
text segment containing the program instructions, and a data segment
containing the program data. Each segment in every module has a name.
The linker uses this name to define the order in which the segments of the
program appear in memory when loaded for execution. (Note that the seg-
ments in the group named DGROUP are an exception; see the Microsoft
Mized-Language Programming Guide for more information.)

Text and data segment names normally are created by the C compiler.
These default names depend on the memory model chosen for the pro-
gram. For example, in small-model programs the text segment is named
_TEXT and the data segment is named _DATA. These names are the
same for all small-model modules, so all text segments from all modules
are loaded as one contiguous block, and all data segments from all
modules form another contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix "TEXT. The data segment is named _DATA,
as in the small model.

In compact-model programs, the data from each module are placed in a

separate segment with a distinct name, formed by using the module base
name along with the suffix _DATA. The exception to this is initialized

157

Microsoft C Optimizing Compiler User’s Guide

global and static data, which are put in the default data segment,
_DATA. The code segment is named _TEXT, as in the small model.

In large- and huge-model programs, the text and data from each module
are loaded into separate segments with distinct names. Each text segment
is given the name of the module plus the suffix _TEXT. The data from
each segment are placed in a private segment with a unique name (except
for initialized global and static data placed in the default data segment).
The naming conventions for text and data segments are summarized in
Table 6.3.

Table 6.3

Segment-Naming Conventions

Model Text Data Module
Small - TEXT -DATA filename
Medium module. TEXT _DATA filename
Compact _ TEXT _DATA! filename
Large module TEXT _DATA! filename
Huge module_ TEXT _DATA! filename

1 Name of default data segment; other data segments have unique
private names.

You can override the default names used by the C compiler (thus over-
riding the default loading order) by using the /NT (for “name text”) and
/IND (for “name data”) options. These options set to a given name the
names of the text and data segments in each module being compiled. The
textsegment argument used with the /NT option and the datasegment
argument used with the /IND option can be any combination of letters
and digits. The space between /NT and textsegment, and the space
between /ND and datasegment, are optional.

If you use the /IND option to change the name of the default data seg-
ment, your program can no longer assume that the address contained in
the stack segment register (SS) is the same as the address in the data seg-
ment register (DS). You must therefore compile your program either with
the /Astring form of the memory-model option and the u option for the
segment-setup letter, or with the /A option for a standard memory model
followed by the /Au option as in the following example:

CL /As /Au /ND DATAl PROG1.C

Use of the /Au option forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See Section 6.5,

158

‘Working with Memory Models

“Creating Customized Memory Models,” for more information on the
éAstring options. All modules whose data segments have the same name

ave these segments combined into a single segment named DATA1 at link
time.

6.8 Specifying Text and
Data Segments

B Pragmas

pragma alloc_ text (textsegment, functionl], functionf]...)
pragma same_ seg (variablel[, variableZ]...)

The alloc_-text pragma gives you source-level control over the segment in
which particular functions are allocated. The same_seg pragma provides
information the compiler can use to generate better code.

If you use overlays or swapping techniques to handle large programs,
alloc_text allows you to tune the contents of their text segments for
maximum efficiency. The alloc_text pragma must appear before the
definitions of any of the specified functions and after the declarations of
these functions. Functions referenced in an alloc—text pragma should be
defined in the same module as the pragma. If this is not done, and an
undefined function is later compiled into a different text segment, the error
may or may not be caught. Although the program will usually run
correctly, the function will not be allocated in the intended segments.

Any functions specified in an alloc—text pragma must either be explicitly

declared with the far keyword or assumed to be far because of the memory
model used (medium, large, or huge), unless these functions are called only
by functions in the same text segment. No more than 10 alloc_text prag-

mas may appear in the same compilation unit.

The same_seg pragma, tells the compiler to assume that the specified
external variables are allocated in the same data segment. You are respon-
sible for making sure that these variables are put in the same data seg-
ment; one way to do this is to specify the /ND option when you compile
the program. The same_seg pragma must appear before any of the
specified variables is used in executable code and after the variables are
declared. Variables specified in a same_seg pragma must be explicitly
declared with extern storage class, and they must either be explicitly
declared with the far keyword or assumed to be far because of the memory
model used (compact, large, or huge).

159

(HAPTER

ONTROLILING FLOATING-

OINT MATH OPERATIONS

7.1
7.2

7.3

7.4

INtrOdUCTION ceee e aeeee e ernanas

Summary of Math Packages..........

7.2.1
7.2.2
7.2.3

The Emulator Package..c.ccocerenvnncneenens
The 8087 /80287 Package...cccveeernnnnnn.
The Alternate Math Package

EERRRRY

Selecting Floating-Point (/FP) Options.......

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

Library Considerations

for Floating-Point Options
7.4.1
7.4.2

Compatibility between

The

The

Floating-Point Options....cccceeeeeiiiiiiiiiveriiiniiinnn...l
Using the NOS7 Iinvironment{ Variable...............1
1

JEPT Option cooveevevnneeeen,
The /FPI87 Option.ccoevveriiiieieeinnnnnenne
JEPe Oplion.innniiiiiiinnnen.
The /FPc87 Option ...eeeue....
The /FPa Option...cceeeeriienierennneennnn.

20800000000

°

.

sscon

evo0ecce000 0000000000000

In-Line Instructions or Callsc.cceueene.
Using One Standard Library for Linking..... 170

°

o

.

e

e 170
verene 170

.
|

;?

.

.
-

Controlling Floating-Point Math Operations

7.1 Introduction

This chapter discusses the various ways that you can control how your
Microsoft C programs handle floating-point math operations. It describes
the math packages that you can include in C libraries when you run the
SETUP program, then discusses the CL: command options for choosing
the appropriate library for linking and controlling floating-point instruc-
tions.

This chapter also explains how to override floating-point options by
changing libraries at link time, and how to control use of an 8087 or 80287
coprocessor through the NO87 environment variable.

7.2 Summary of Math Packages

The Microsoft C Compiler offers a choice of the following three math pack-
ages for handling floating-point operations:

1. Emulator (default)
2. 8087/80287
3. Alternate math

When you run the SETUP program, you choose one of these three math
packages. SETUP includes the math package you choose in the library it
builds. Any programs that are linked with that library use the math pack-
age included in the library; you must use the appropriate CL option to
make sure that the library you want is used at link time.

The following descriptions of these math packages are designed to help
you choose the appropriate math option for your needs when you build a
library using SETUP.

7.2.1 The Emulator Package

The emulator package uses an 8087 or 80287 coprocessor if one is
installed. If no coprocessor is installed, the emulator provides many
8087 /80287 functions in software. This is the default math package;
SETUP uses it if you do not explicitly choose another package.

The emulator package is the best choice if you want to maximize accuracy

in program results and if the program will be run on systems with and
without coprocessors.

163

Microsoft C Optimizing Compiler User’s Guide

The emulator package can perform basic operations to the same degree of
accuracy as an 8087/80287. However, the emulator routines used for tran-
scendental math functions differ slightly from the corresponding

8087 /80287 functions, and this difference can cause a slight difference
(usually within two bits) in the results of these operations when performed
with the emulator instead of with an 8087/80287.

Important

When you use an 8087 or 80287 coprocessor or the emulator,
interrupt-enable, precision, underflow, and denormalized-operand
exceptions are masked by default. The remaining exceptions are
unmasked. See Section E.4.2, “Other Run-Time Error Messages,” and
the discussion of the — control87 function in the Microsoft C Run-
Time Library Reference for more information about 8087 floating-point
exceptions.

7.2.2 The 8087/80287 Package

The 8087/80287 math package allows you to use an 8087 or 80287 copro-
cessor to perform floating-point operations. You must have an 8087 or
80287 installed to use this package. This package gives you the fastest,
smallest programs possible for handling floating-point math.

7.2.3 The Alternate Math Package

The alternate math package gives you the smallest and fastest programs
you can get without a coprocessor. However, the program results are not
as accurate as results given by the emulator package.

The alternate math package uses a subset of the Institute of Electrical and

Electronics Engineers, Inc. (IEEE) standard-format numbers; infinities,
NANSs, and denormal numbers are not used.

164

Controlling Floating-Point Math Operations

7.3 Selecting Floating-Point (/FP) Options

B Options

/FPa Generates floating-point calls; selects mLIBCA.LIB

/FPc Generates floating-point calls; selects mLIBCE.LIB

/FPc87 Generates floating-point calls; selects mLIBC7.LIB

/FPi Generates in-line instructions; selects mLIBCE.LIB (default)

/FPi87 Generates in-line instructions; selects mLIBC7.LIB

The / FP options of the CL command control how a program will handle
floating-point math. You can use only one of these options on the CL com-
mand line. The option applies to the entire command line, regardless of
the option’s position.

Each /FP option includes two parts, which specify the following:

1. How floating-point instructions are included in the program: by
using in-line 8087 /80287 instructions or calls to floating-point
library functions. The letter i indicates in-line instructions; the
letters ¢ and a indicate floating-point calls.

2. Which floating-point package is selected by default when you link.

Based on the /FP option and the memory-model option you choose, the
CL command embeds a library name in the object file that it creates. (See
Table 3.1 in Section 3.3.1, “Memory-Model and Floating-Point Options,”
for a list of the library names used for each combination.) This library is
then considered the default library; that is, the linker searches in the stan-
dard places for a library with that name. If it finds a library with that
name, the linker uses the library to resolve external references in the
object file being linked. Otherwise, it displays a message indicating that it
could not find the library.

This mechanism allows the linker to link object files with the appropriate
library automatically. However, as explained later in this section and in
Section 7.4, “Library Considerations for Floating-Point Options,” you are
allowed to link with a different library in some cases.

Table 7.1 summarizes the /FP options and their effects.

165

Microsoft C Optimizing Compiler User’s Guide

Table 7.1

Summary of Floating-Point Options

Combined
Use of Libraries
Option Method Advantages Coprocessor Selected
/FPi In-line Default; Uses mLIBCE.LIB?
larger than coprocessor if
/FPi87, but present
can work
without
COPTOCessor;
most efficient
way to get
maximum
precision
without a
COprocessor
/FPi87 In-line Smallest and ~ Requires mLIBC7.LIB?
fastest option coprocessor
available unless library
with a changed at
coprocessor link time! 04
/FPc Calls Slower than Uses mLIBCE.LIB’
/FPi, but coprocegsor if
allows use of present
alternate
math library
at link time
/FPc87 Calls Slower than Requires mLIBC7.LIB34
/FPi87, but coprocessor
allows use of unless library
alternate changed at
math library link time!
at link time
/FPa Calls Fastest and Ignores mLIBCA.LIB23
smallest COProcessor
option
available
without
coprocessor,

but sacrifices
some
accuracy for
speed

1 Use of the coprocessor can be suppressed by setting NO87.
2 Can be linked explicitly with mLIBC7.LIB at link time
3 Can be linked explicitly with mLIBCE.LIB at link time
4 Can be linked explicitly with mLIBCAL.LIB at link time

166

Controlling Floating-Point Math Operations

The remainder of this section discusses the /FP options and the advan-
tages and disadvantages of each option.

Note

Some expressions may be evaluated at compile time. Such evaluations
always use the highest precision possible and are unaffected by the
floating-point option you choose. The /AS (small) memory-model
option is the default. Therefore, if no memory-model option is given on
the same CL command line, the default library for each floating-point
option is SLIBC/{.LIB (where fis 7, E, or A, depending on the math
package the library supports).

7.3.1 The /FPi Option

The /FPi option generates in-line instructions for an 8087 or 80287 copro-
cessor and places the name of the emulator library (mLIBCE.LIB) in the
object file. At link time, you can specify the 8087 /80287 library
(mLIBC7.LIB) instead. If you do not choose a floating-point option, CL
uses the /FPi option by default.

The /FPi option is particularly useful if you do not know whether an 8087
or 80287 coprocessor will be available at run time. Programs compiled
with /FPi work as described below:

e If a coprocessor is present at run time, the program uses the copro-
Cessor.

e If no coprocessor is present, the program uses the emulator. In this
case, the /FPi option offers the most efficient way to get maximum
precision in floating-point results.

The Microsoft C Optimizing Compiler does not generate “true” in-line
8087 /80287 instructions: instead, it generates software interrupts to
library code, which then fixes up the interrupts to use either the emulator
or the coprocessor, depending on whether or not a coprocessor is present.
The fix-ups can be removed by simply assembling the following program
and linking it with the C program:

167

Microsoft C Optimizing Compiler User’s Guide

public FIARQQ, FICRQQ, FIDRQQ, FIERQQ, FISRQQ, FIWRQQ
public FJARQQ, FJCRQQ, FJSRQQ

FIARQQ EQU
FICRQQ EQU
FIDRQQ EQU
FIERQQ EQU
FISRQQ EQU
FIWRQQ EQU
FJARQQ EQU
FJCRQQ EQU
FJSRQQ EQU

[eXoNoNoRoReo oo Ko

END

Assembling and linking this program with C programs can save execution
time (the time required to fix up all the interrupts the first time). How-
ever, a C program linked with this program will run only if a coprocessor
is present. (This option is useful if you are developing programs to be run
from read-only memory; see Appendix D, “Writing Programs for Read-
Only Memory,” for more information.)

7.3.2 The /FPi87 Option

The /FPi87 option includes the name of an 8087/80287 library
(mLIBC?7.LIB) in the object file. At link time, you can specify an emula-
tor library (mLIBCE.LIB) instead.

If you use the /FPi87 option and link with mLIBC7.LIB, an 8087 or
80287 coprocessor must be present at run time; otherwise, the program
fails and the following error message is displayed:

run-time error R6002
- floating point not loaded

If you compile with /FPi87 and link with mLIBCE.LIB, you can set the
NOS87 environment variable to suppress the use of the coprocessor. (See
Section 7.6 for a description of NOS87.)

Compiling with the /FPi87 option results in the smallest, fastest pro-
grams possible for handling floating-point results.

7.3.3 The /FPc Option

The /FPc option generates floating-point calls to the emulator library
and places the names of an emulator library (mLIBCE.LIB) in the object
file. At link time, you can specify an 8087 /80287 library (mLIBC7.LIB)
or alternate math library (mLIBCA.LIB) instead. Thus, the /FPc
option gives you more flexibility than the /FPi option in the libraries you
can use for linking.

168

Controlling Floating-Point Math Operations

The /FPc option is also recommended in the following cases:

e If you compile modules that perform floating-point operations and
plan to include these modules in a library

e If you compile modules that you want to link with libraries other
than the libraries provided with the Microsoft C Optimizing
Compiler

7.3.4 The /FPc87 Option

The /FPc87 option generates function calls to routines in the 8087 /80287
library (mLIBC?7.LIB) that perform the corresponding 8087 /80287
instructions. As with the /FPi87 option, you can change your mind at
link time and link with an emulator library (mLIBCE.LIB); however, you
have more flexibility in choosing libraries, since you can change your

mind and link with the appropriate alternate math library as well
(mLIBCA.LIB).

You must have an 8087 or 80287 coprocessor installed in order to run pro-
grams compiled with the /FPc¢87 option and linked with an 8087 /80287
library. Otherwise, the program fails and the following error message is
displayed:

run-time error R6002
- floating point not loaded

Note

Certain optimizations are not performed when /FPc87 is used. This
may reduce the efficiency of your code; and, since arithmetic of
different precision may result, there may be slight differences in your
results.

7.3.5 The /FPa Option

The /FPa option generates floating-point calls and selects the alternate
math library for the appropriate memory model (mLIBCA.LIB). Calls to
this library provide your fastest and smallest option if you do not have an
8087 or 80287 coprocessor. With this option, you can change your mind at
link time and use an emulator library (mLIBCE.LIB) or 8087 /80287
library (mLIBC7.LIB).

189

Microsoft C Optimizing Compiler User’s Guide

7.4 Library Considerations
for Floating-Point Options

You may want to use libraries in addition to the default library for the
floating-point option you have chosen on the CL command line. For exam-
ple, you may want to create your own libraries (or other collections of sub-
programs in object-file form), then link these libraries at a later time with
object files that you have compiled using different CL options.

The following paragraphs discuss these cases and how to handle them.
Although the discussion assumes that you are putting your precompiled
object files into libraries, the same considerations apply if you are simply
using individual object files.

7.4.1 In-Line Instructions or Calls

First, you should decide whether you want to use in-line instructions and
compile with the /FPi87 or /FPi option, or floating-point function calls
and compile with the /FPc87, /FPc, or /FPa option.

If you choose in-line instructions for your precompiled object files, you
cannot link with an alternate math library gmLIBCA.LIB). However, in-
line instructions give the best performance from your programs on
machines that have an 8087 or 80287 coprocessor installed.

If you choose calls, your programs are slower, but at link time you can use
any standard C library—that is, any library created by the SETUP
program—ithat supports the memory model you have chosen.

7.4.2 Using One Standard Library for Linking

You must also be sure that you use only one standard C library when you
link. You can control which library is used in one of two ways:

1. At link time, as the first name in the list of object files to be linked,
give an object file that has the name of the desired library. For
example, if you want to use an alternate math library, give the
name of an object file compiled using the /FPa option. All
floating-point calls in this object file refer to the alternate math
library.

2. At link time, give the /NOD (no default library search) option and
then specify the name of the combined library file you want to use
in the link-libinfo field of the CL command line. This overrides the
library names embedded in the object files, and all floating-point
calls refer to the libraries you specify.

170

Controlling Floating-Point Math Operations

Deciding how to link with the correct libraries can become complicated
since each library name mentioned in one of the object files being linked is
added to the “linker search list” (the list of libraries that the linker
searches).

For example, suppose the following:

e You have used the /FPa option to compile a set of object files.

e Each of these object files includes a default library name (that is,
you did not use the /Zl option to compile).

e You have used the LIB utility (described in Chapter 13 of the
Microsoft CodeView and Utilities manual) to combine these object
files into a library.

e You want to link the library you have created with an object file
that was created using the /FPc87 option.

At link time, the SLIBC7.LIB and SLIBCA.LIB libraries are both in the
linker search list (assuming you compiled with the default memory-model
option): SLIBC7.LIB because this name is embedded in the object file
you are linking, and SLIBCA.LIB because this name is embedded in the
object files that constitute the library. The linker first searches the
libraries named in the object file you are linking, so it searches
SLIBC7.LIB before it searches SLIBCA.LIB. Since SLIBC7.LIB would
resolve all external references correctly, this mechanism works correctly.

To ensure that they are used, the names of libraries that you want to link
with can be specified in the link-libinfo field of the CL command line (as
noted in method 2 above). In this case, the linker always searches the
library you give on the command line before it searches any libraries
named in the object files. However, you must make sure that you specify
this library after any of your own libraries on the command line. If you
don’t, and your library contains a different search directive, you may
encounter problems.

As an example of the problems you may encounter, assume the following
scenario:

e The object modules in your library named B were compiled with
the /F'Pc87 option, so that each module contains search directives

for SLIBC7.LIB.

® You are linking an object file named A that was compiled with the
/FPa option, so that this object file contains a search directive for
SLIBCA.LIB.

e You used the following command line to link your library B with
the object file A:

CL A /link SLIBC7.LIB B

171

Microsoft C Optimizing Compiler User’s Guide

In this example, the linker searches libraries in the following order:

1. SLIBC?7.LIB (since it is specified first on the command line)
2. B (since it is specified second on the command line)

3. SLIBCA.LIB (since A, the object module that you are linking,
contains a search directive for this library)

4. SLIBC7.LIB (since the modules in B, your library, contain search
directives for this library)

The linker would search for floating-point libraries as follows:

1. The linker searches SLIBC7.LIB and resolves references in the
object file A to floating-point math routines and standard-library
routines.

2. The linker closes SLIBC7.LIB and searches the next library in the
list to satisfy references to routines in your library B. These rou-
tines normally contain references to standard run-time routines.
Since SLIBCA.LIB is the next library to be searched, this library
satisfies the references in B. However, this is not the library you
intended to use, since you compiled B with the /FP¢87 option,
which uses SLIBC7.LIB to resolve references to standard run-time
routines.

As indicated in this example, you cannot mix libraries in this way, and you
may get linker errors if you try. Note that if you had specified B
SLIBC7.LIB instead of SLIBC7.LIB B on the CL command line, the
linker would have searched SLIBC7.LIB instead of SLIBCA.LIB to
resolve floating-point references in B, and the linking operation would
have proceeded correctly.

To avoid this kind of ambiguity and make absolutely sure that you are
specifying the correct standard library for linking, use the /NOD linker
option. This option causes the linker to search only the libraries you
specify on the command line.

Perhaps the safest course of all, especially when you are distributing
libraries to others, is to compile the object files that make up the library
with the /Z1 option. This option tells the compiler not to include search
directives in the object files. Later on, when you link the library with
different object files, the standard library used for linking depends only on
the floating-point and memory-model options used to compile the later
object files. The /FPe compiler option is recommended for maximum
flexibility in linking with such libraries.

172

Controlling Floating-Point Math Operations

B Examples
CL CALC.C ANOTHER SUM

In the example above, the source file CALC. C is compiled with the default
floating-point option, /FPi. The /FPi option generates in-line instruc-
tions and selects the small-model emulator combined library
(SLIBCE.LIB) since no floating-point option is given and the small-model
library is the default.

CL /FPa CALC.C ANOTHER SUM /link SLIBCE.LIB /NOD

In the example above, CALC.C is compiled with the alternate math option

g/ FPa). The /link option specifies the /NOD option so that the
LIBCA.LIB library (whose name is embedded in the object file

CALC.OBJ) is not searched. This option specifies the name

SLIBCE.LIB instead so that all floating-point calls refer to the standard

small-model emulator library instead of the alternate math library.

CL /FPc87 CALC.C ANOTHER.OBJ SUM.OBJ /link SLIBCA.LIB /NOD

In the example above, CALC.C is compiled with the /FP¢c87 option,
which selects the SLIBC7.LIB library. The /link option overrides the
default library specification, since the /INOD option and the name of the
alternate math library (SLIBCA.LIB) are specified.

7.5 Compatibility between
Floating-Point Options

Each time you compile a source file, you can specify a floating-point
option. When you link two or more source files to produce an executable
program file, you are responsible for ensuring that floating-point opera-
tions are handled in a consistent way and that the environment is set up
properly to allow the linker to find the required library. See Section 2.4.5
for information about setting up your environment, Section 3.3.1 for infor-
mation about choosing floating-point options for the libraries you build
with the SETUP program, and Chapter 12 of the Microsoft CodeView
and Utilities manual for a detailed discussion of linking.

173

Microsoft C Optimizing Compiler User’s Guide

Note

If you are building libraries of C routines that contain floating-point
operations, the ﬁFPc floating-point option is recommended for all
compilations. The /FPc option offers the greatest flexibility.

N Examples
CL /AM CALC.C ANOTHER SUM /link MLIBC7 /NCD

The example above compiles the program CALC.C with the medium-model
option (/AM). Because no floating-point option is specified, the default,
/FP4i, is used. The /FPi option generates 8087 /80287 instructions and
specifies the emulator library MLIBCE.LIB in the object file. The /link
field specifies the /NOD option and the names of the medium-model

8087 /80287 library. Specifying the 8087 /80287 library forces the program
to use an 8087 coprocessor; the program fails if a coprocessor is not
present.

CL /FPa CALC.C ANOTHER SUM /link SLIBCE /NOD

The example above compiles CALC.C using the small (default) memory
model and the alternate math option (/FPa). The /link field specifies the
/INOD option and the library name SLIBCE.LIB. Specifying the emula-
tor library causes all floating-point calls to refer to the emulator library
instead of the alternate math library.

CL /FPc87 CALC.C ANOTHER SUM /link SLIBCA.LIB/NOD

The example above compiles CALC.C with the /FPc87 option, which
places the library name SLIBC?7.LIB in the object file. The /link field
overrides this default-library specification by giving the /INOD option and
the names of the small-model alternate math library (SLIBCA.LIB).

7.6 Using the NOS87 Environment Variable

Programs compiled using the /FPc or /FPi option automatically use an
8087 or 80287 coprocessor at run time if one is installed. You can override
this and force the use of the emulator instead by setting an environment
variable named NOS87.

174

Controlling Floating-Point Math Operations

If NOB8Y7 is set to any value when the program is executed, use of the
coprocessor is suppressed. The value of the NO87 setting is printed on the
standard output as a message. The message is printed only if a coproces-
sor is present and suppressed; if no coprocessor is present, no message
appears. If you don’t want a message to be printed, set NO87 equal to
One Or More Spaces.

Note that only the presence or absence of the NO87 definition is impor-
tant in suppressing use of the coprocessor. The actual value of the NO87
setting is used only for printing the message.

The NOS87 variable takes effect with any program linked with an emula-
tor library (mLIBCE.LIB). It has no effect on programs linked with
8087 /80287 libraries (mLIBC7.LIB) or programs linked with alternate
math libraries (mLIBCA.LIB).

B Examples
SET NO87=Use of coprocessor suppressed

The example above causes the message Use of coprocessor
suppressed to appear when a program is executed that uses an 8087 or
80287 coprocessor while an 8087 or 80287 coprocessor is present.

SET NO87=space

The example above sets the NOS87 variable to the space character. Use of
the coprocessor is still suppressed, but no message is displayed.

7.7 If Your Computer Is Not IBM Compatible

The exception handler in the libraries for 8087 or 80287 floating-point cal-
culations (mLIBCE.LIB and mLIBC7.LIB) is designed to work without
modification on the IBM PC family of computers, and on closely compati-
ble computers, including the Wange PC, the AT&Ts 6300, and the
Olivettis personal computers. Also, the libraries need not be modified for
the Texas Instrumentse Professional Computer, even though it is not com-
patible. Any machine that uses nonmaskable interrupts (NMI) for

8087 /80287 exceptions should work with the unmodified libraries. How-
ever, if your computer is not one of these, and if you are not sure whether
it is completely compatible, you may need to modify the 8087 /80287
libraries.

175

Microsoft C Optimizing Compiler User’s Guide

All Microsoft languages that support the 8087 and 80287 coprocessors
intercept 8087 /80287 exceptions in order to produce accurate results and
properly detect error conditions.

To make the libraries work correctly on noncompatible machines, you can
modify the libraries. To make this easier, an assembly-language source file,
EMOEM.ASM,, is included on the distribution disk. Any machine that
sends the 8087 /80287 exception to an 8259 Priority Interrupt Controller
(master or master/slave) should be easily supported by a simple table
change to the EMOEM.ASM module. The source file contains further
instructions on how to modify EMOEM.ASM and patch libraries and
executable files.

176

IMPROVING PROGRAM SPEED

8.1
8.2
8.3

8.6

INtroduction . oo eeeereercrirernanennen 1T G

Using Register Variables oovovveeiiiiiniiiiicn 179

Optimization Options

and Pragmas...cc.oivveviiiiiiirnnireiiiiiinneriiiiieeenen 181
8.3.1 Default Optimization cocvveceeceeivineiieennene.. 181

8.3.2 Generating Intrinsic Functions....ooveeeeennn 181
8.3.3 Relaxing Alias Checeking. oo rerennerneennveeen. 182
8.3.4 Performing Loop Optimizations .o..oceerenenn.. 182

8.3.5 Removing Stack Probes..covvciiereniiineneen.. 183
8.3.6 Maximum Optimization .ovceeeevererierineneen. 183

Choosing the

Function-Calling Convention..ccceveeeerernireenninnnn 183

Efliciency in Large Data Models

8.5.1 Changing Addressing with near, far,
and huge Keywords ovvviniiniinieniiininneinenn... 184

% o
[Salva
W o

Setting the Data Threshold .icovvvivevenrnnen 18D
Controlling Segments Used

fOr AlOCALION iniiiiiieeeereeneeenenenenennanene L&D

Eflicieney in Large Code Mode

Improving Program Speed

8.1 Introduction

This chapter describes a number of ways that you can improve the execu-
tion speed of programs compiled with the Microsoft C Optimizing Com-
piler. These techniques include the following:

o Using register variables
e Using optimization options and pragmas
e Choosing function-calling conventions

e Choosing and adjusting memory models

Where applicable, this chapter discusses the interactions between these
techniques and the trade-offs involved in using them.

8.2 Using Register Variables

One common way to write a program for maximum speed is to declare
selected local (auto) variables with register storage class. The declaration
of a register variable requests the compiler to use machine registers when
allocating space for the variable, if possible. The register storage class
can be specified for any variable, but register specifications are ignored
except for variables of type int or short or for pointer types that are the
same size as type int.

Up to two register variables may be allocated per function. In lexical
order, the compiler takes the first two variables with register storage
class that meet the size criteria. Any later requests for register storage
class are ignored, so be sure to declare the most important register vari-
ables first. You may also want to declare register variables in parallel
?cope to achieve the effect of having more than two register variables per
unction.

The Microsoft C Optimizing Compiler automatically uses registers for
variables within loops. Using register declarations for such variables may
interfere with optimal loop code; you can experiment with various combi-
nations of register and nonregister declarations to determine which combi-
nations give the best results.

Register declarations can be used effectively for values, especially pointers,
that appear outside of loops. Since a certain amount of code is required to
save and restore registers, register declarations must be applied to values
that are accessed at least three times within a function to cause any
improvement in program speed.

179

Microsoft C Optimizing Compiler User’s Guide

® Example

find_string(arr_of_chars, string)
char #*string:
char #*arr_of_chars[]:

{
int ix = O;
register char *q:
while (*(q = string)) { /* string is not null =x/
{
register int i = ix;
/* search for entry whose first character
+ matches first character of string, if any
*/
while (i < MAX_ARR_SIZE && *arr_of_chars[i] != xq)
it++;
if (i == MAX_ARR_SIZE)
return (1) ; /* no matching entry */
ix = i;
}
/* we've found an entry in arr_of_chars which
* might match string */
{
register char #*p = arr_of_chars[ix]:;
while (*p && *q && *p++ == *q++t)
if ((xp - *q) == 0)
return(0) /* they match, return O */
/* otherwise continue checking for possible
* matches
*/
}
}
}

In the example above, the function named find_string actually has
three register variables: q, i, and p. The function can use all three
variables because i is through being used by the time p is needed. Simply
introducing the ix variable to save the pointer from block to block speeds
execution considerably because most work is being done in register
variables.

180

Improving Program Speed

8.3 Optimization Options
and Pragmas

The CL compiler/linker driver provides a number of optimization options
(/O, followed by one or more letters) that can improve program speed. In
addition, the Microsoft C Optimizing Compiler includes several pragmas
that allow you to control some of these optimizations on a local basis
within a source program. The following sections outline these CL options
and pragmas and their effects.

8.3.1 Default Optimization

If no /O option is given, the compiler uses the /Ot option, which optim-
izes programs for execution speed. However, this option does not enable
loop optimizations or intrinsics. Some optimizations, such as long shifts,
may be performed in line rather than using helper functions.

8.3.2 Generating Intrinsic Functions
The /Oi option generates intrinsic forms of the following functions:

e memset, memcpy, memcmp
e strset, strcpy, strcmp, strcat
e inp, outp

e _rotl _rotr, _lIrotl, _lrotr,

¢ min, max, abs

Intrinsics may be generated as in-line code or with different calling se-
quences. In general, using intrinsics increases program size but improves
program speed. Note that the intrinsic forms of some functions may
have slightly different semantics: for example, the intrinsic form of the
memecpy function in compact- and large-model programs cannot handle
huge arrays, but the function form can.

As with /Ot, this option may increase program size due to the additional
code generated in line for each function. However, program execution is
faster because no instructions for calling and returning from functions
need to be performed.

The intrinsic pragma can be used to specify intrinsic functions on a local
basis for any of the functions listed above. See Section 3.3.13.1 under the
heading “Generating Intrinsic Functions” for information about the use of
this pragma.

181

Microsoft C Optimizing Compiler User’s Guide

8.3.3 Relaxing Alias Checking

The a option letter can be used with the 1, s, or t option letter to relax the
assumptions the compiler makes about the use of “aliases” in the program.
Use of the /Oa option can reduce the size of executable files and speed
program execution. Its use is especially recommended when you also
specify the /Ol option, since the compiler can detect a number of loop
optimizations when the /Oa option is in effect that it cannot detect when
/Oa is not in effect. However, before you specify /Oa, you must make
sure that your program does not use multiple aliases to refer to the same
memory location either directly or indirectly. For example, a program
might do this indirectly in functions that operate on a communal variable
and a pointer argument, or on multiple pointer arguments.

The /Oa option can be specified safely for programs that include calls to

functions with address-type arguments. In this case, the compiler assumes
that all variables whose addresses are passed to the function are modified,
even if /Oa is specified.

In the cases noted above, the use of /Oa is most likely to cause incorrect
optimizations within basic blocks (where most optimizations are applied)
and within whole loop bodies (where loop optimizations are appliedf. In
these cases, /Oa can still be specified safely even if aliases are used in the
program, provided that no memory location is referenced by more than
one name within any basic block or (if loop optimization is enabled) any
loop body.

For more information and specific examples, see Section 3.3.13.1 under the
heading “Relaxing Alias Checking.”

8.3.4 Performing Loop Optimizations

The /Ol option tells the compiler to perform loop optimizations. For best
performance, use /Ol in conjunction with the a option letter (/Oal),
which relaxes the assumptions the compiler makes about the use of aliases
in the program. Using /Oal instead of just /Ol allows the compiler to
detect many loop optimizations that it could not otherwise detect. (See
Section 3.3.13.1 for information about possible restrictions on the uses of
the /Oa option.)

You can control loop optimization on a local basis by specifying the
loop_opt pragma. Loop optimization is turned off for any functions fol-
lowing # pragma loop_ opt(off) and turned on for any functions follow-
ing # pragma loop_opt(on) in a source program. This pragma overrides
any loop optimization specified on the CL command line.

182

Improving Program Speed

8.3.5 Removing Stack Probes

The /Gs option, described in Section 3.3.13.2, speeds program execution
slightly by removing calls to stack-checking routines known as “stack
probes.” Stack probes verify that a program has enough stack space to
allocate required local variables. The potential disadvantage in removing
stack probes is that stack-overflow errors may occur without generating a
diagnostic message. However, this technique can be useful for programs
that are known not to exceed the available stack space.

You can also control stack checking on a local basis by specifying the
check_stack pragma. Stack checking is turned off for any functions fol-
lowing a # pragma check_stack(off) and turned on for any functions
following a # pragma check_stack(on) pragma in the source program.
This pragma overrides the stack checking &r removal of stack checking)
specified on the CL: command line.

8.3.6 Maximum Optimization

The /Ox option combines all of the optimization options described in
Sections 8.3.1 through 8.3.4. Provided that the restrictions outlined for
each optimization option do not apply, you can use the /Ox option to
create the fastest possible program.

8.4 Choosing the
Function-Calling Convention

Because C functions can accept a variable number of arguments, argu-
ments passed to these functions must be pushed on the stack from right to
left, with the first argument in the list being the last one pushed. In addi-
tion, the calling function, rather than the called function, is responsible
for removing arguments from the stack.

This convention results in somewhat slower programs than the alternative
convention used by Microsoft FORTRAN and Microsoft Pascal. In the
FORTRAN/Pascal convention, arguments are pushed on the stack from
left to right, in the order in which they are passed to the function, and the
called function removes arguments from the stack. Since the code for
removing arguments appears only once (in the called function) for the
FORTRAN/Pascal convention, rather than multiple times (every time a
function is called) as in the C convention, and since most programs have
fewer functions than function calls in a program, the FORTRAN/Pascal
calling convention usually results in smaller, faster programs.

183

Microsoft C Optimizing Compiler User’s Guide

You can specify the FORTRAN/Pascal calling convention for all functions
in a module by compiling with the /Gc option. The trade-off for improved
program speed is that you cannot call functions that use the C calling con-
vention or take variable numbers of arguments unless you declare these
functions, or pointers to these functions, with the cdecl keyword, which
specifies the normal C calling conventions for these functions.

If you do not want to specify the FORTRAN/Pascal convention for a
whole module, you can declare individual functions or pointers to func-
tions with the pascal or fortran keyword. Either of these keywords
tells the compiler that the function uses the FORTRAN/Pascal calling
conventions.

8.5 Efficiency in Large Data Models

Programs are most efficient when their data reside in the default data seg-
ment: that is, when the data can be accessed with 16-bit (near) addresses.
The Microsoft C Optimizing Compiler provides two standard memory
models in which all data reside in the default data segment: the small
(default) model and the medium model. The customized memory models
that use near data pointers (/Anazz) also restrict program data to the
default data segment. Programs compiled with these models are restricted
to 64K of total data.

For programs compiled with the compact, large, and huge memory models,
the compiler creates a default data segment containing all initialized glo-
bal and static data and creates an additional data segment for each pro-
gram module. Since accessing data outside the default data segment is
slower than accessing data within the default data segment, programs will
run faster if as many of their variables as possible are declared in such a
way that they are allocated in the default data segment. One way to
accomplish this is to initialize variables at the time you declare them. Sec-
tions 8.5.1 through 8.5.3 discuss other ways of controlling the allocation of
data for large data models.

8.5.1 Changing Addressing with near, far,
and huge Keywords

The near, far, and huge keywords allow you to explicitly specify the
addressing used for particular data items and functions. These keywords
override the default addressing conventions specified by the program’s
memory model. Thus, you can use them to improve the speed of access to
program data. For example, you can tell the compiler to allocate data
items in the default data segment for a compact-, large-, or huge-model
program by declaring the items (or pointers to the items) with the near
keyword. Alternatively, if a program has a small amount of code and data

184

Improving Program Speed

except for one particularly large array, you could compile the program
with the small or medium memory model and declare the array with the
far or huge keyword.

The disadvantage of using these keywords is that they are specific to the
MS-DOS implementation of Microsoft C and, thus, are not portable to
other operating environments.

See Sections 6.4.1 through 6.4.4 for more information about near, far,
and huge and for examples of their use.

8.5.2 Setting the Data Threshold

Another way to control allocation in large data models is to set a data
threshold by compiling with the /Gt option. This option is especially use-
ful if your program uses more than 64K of initialized static and global
data and does not fit in the default data segment. Any data items larger
than the value you specify are allocated to their own data segments.

8.5.3 Controlling Segments Used
for Allocation

If programs compiled with large data models use external, far data items,
you can tell the compiler which items reside in the same far data segment
by using the same_seg pragma. The variables you specify in this pragma,
help the optimizer recognize common subexpressions involving data loads.
Note that you must also compile your program with the /ND option to
ensure that the variables you specify are allocated in the same segment.

See Section 6.7 for a description of the /IND option and Section 6.8 for a
description of the same_seg pragma.

8.6 Efficiency in Large Code Models

Two linker options, /F and /PAC, can result in smaller and faster exe-
cutable files and improved program-load times for programs that explicitly
or implicitly use far-function calls.

The /F option tells the linker to optimize far calls to procedures that lie
in the same segment as the caller. When you specify the /F option, the
linker optimizes 32-bit calls to procedures in the same segment as the cal-
ling procedure. Since the segment addresses of the calling and called pro-
cedures are the same, only a 16-bit call is required. If the /F option is
given, the linker removes the far call and replaces it with code that first
places CS on the stack, then makes a near call. The called procedure still

185

Microsoft C Optimizing Compiler User’s Guide

- returns with a far (32—bitg return instruction. However, because both the

code segment (stored in CS8) and the near address are on the stack, the far
return is done correctly. The linker also adds a NOP instruction so that
the five-byte far call is replaced by exactly five bytes of instructions.

Note

You may not want to use the /F option if your program includes
system-level assembly-language routines or if you are linking object
files that were compiled with a different C compiler. See the Microsoft
CodeView and Utilities manual for more information about restrictions
on the use of the /F option.

Used in conjunction with the /F option, the /PAC linker option can
reduce the size and improve the efficiency of executable files. The /PAC
option tells the linker to group neighboring code segments. Code segments
in the same group share the same segment address; all offset addresses are
then adjusted upward as needed. As a result, many instructions that
W((i)(lll]d otherwise have different segment addresses share the same segment
address.

186

= g0 @

APPENDIXES

Using Exit Codes....crcenoenreeseie, 189
Converting from Previous

Versions of the Compiler ..., 193
Writing Portable Programs.....cccooevvomnrivenn... 209
Writing Programs

for Read-Only Memory ... cerrronennnnn. 227
Error MeSSages ..., 235

187

APPENDIX A
USING EXIT CODES

ALl INtrOdUCHION ceveeeeeeeeeeeeeeeeeeee et ee e e eeeeeeaaneeeaanas 191
A2 Exit Codes with MS-DOS Batch Files ..cuuveeevivenennnennnee. 191
A.3 Compiler Exit Codes....ciiiiirirrennrnnieeeeeiircrinreeenrereeeee 192

189

Using Exit Codes

A.1 Introduction

All the programs in the Microsoft C Optimizing Compiler package return
an exit code (sometimes called an “errorlevel” code) that can be used by
MS-DOS batch files or other programs such as E. If the program
finishes without errors, it returns a code of 0. The code returned varies
depending on the error encountered.

This appendix discusses how to use exit codes with DOS batch files and
lists the exit code numbers that can be returned by the Microsoft C
Optimizing Compiler. See Appendix B of the Microsoft CodeView and
Utilities manual for a description of the exit code numbers returned by the
other programs in the Microsoft C Optimizing Compiler package.

A.2 Exit Codes with MS-DOS Batch Files

If you use MS-DOS batch files, you can test the code returned with the IF
ERRORLEVEL command. The sample batch file following, called
COMPILE.BAT, illustrates how:

CL %1.C
IF NOT ERRORLEVEL 1 %1

You can execute this sample batch file with the following command:
COMPILE TEST

DOS then executes the first line of the batch file, substituting TEST for the
parameter %1, as in the following command line:

CL TEST.C
It returns a code of O if the compilation and linking are successful, or a
higher code if an error occurs. In the second line, DOS tests to see if the

code returned by the previous line is 1 or higher. If it is not (that is, if the
code is 0), the TEST program is executed.

191

Microsoft C Optimizing Compiler User’s Guide

A.3 Compiler Exit Codes

Code Meaning

0 No fatal error
2 Program error (such as compiler error)
4 System level error (such as out of disk space or compiler

internal error)

192

APPENDIX B
(CIONVERTING FROM

PREVIOUS VERSIONS
OF THE C'OMPILER

B.1 Introduction........ccceeeeeeiieeeeeeiiieiiiiieiiicceeeeeeeenireeeeees 195
B.2 Differences between Versions 5.0 and 4.0..................... 195
B.2.1 Enhancements and AdditionS..ccceeeeeeeenierneeenneennns 195
B.2.2 Changes to the Language SyntaX...cceeceeeevneennnnnnn. 196

B.2.3 New Features for the MS-DOS
Implementation of C....cceeeervererereneeennnereneennnenns 198
B.2.4 Changed Library Routines..ccceeveeeeeeeenneeerencernnenes 199
B.2.4.1 Graphics ROUtINES.icvirieciiarcncersieorcecancncons 199
B.2.4.2 Heap-Checking Functions .c.ccveeeeircecacacanns 199
B.2.4.3 DOS and BIOS Interface Functions 200
B.2.4.4 Other New Functions...ccceeeeceeeeeiicescanncnanns 200
B.2.4.5 New Include FileS.uicicrcerricarsrcesersoscercacesone 201
B.3 Differences between Versions 4.0 and 3.0.........ccceve...... 203
B.3.1 Enhancements and Additions..ccceeeervereernneerrenennns 203
B.3.2 Changes in the Language SyntaX...cceeeeeerererrennenns 204

B.3.3 New Features for the MS-DOS
Implementation of C ...cceeeeeneiereniieneeeneereceenneennnns 206
B.3.4 New Library Routines and Include Files.............. 207
B.3.5 Changes in Library-Function Syntax ..ccceeeevvveeenn. 208

193

Converting from Previous Versions of the Compiler

B.1 Introduction

This appendix describes differences between Version 5.0 and Version 4.0,
and between Version 4.0 and Version 3.0, of the Microsoft C Optimizing
Compiler. If you have an earlier version of the compiler, or if you have
written programs for an earlier version, this chapter can help you convert
your previous source code. The actions necessary to convert source code
depend on which of the earlier versions you have.

Version 5.0 is an update of Version 4.0. Generally, the two versions are
compatible: most C source code written for Version 4.0 should compile
without change on the Version 5.0 compiler, although there are erroneous
C constructs allowed in Version 4.0 that are not allowed in Version 5.0,
and changes in the emerging ANSI C standard may force changes in source
programs (for more information, see the Microsoft C Language Reference).
In some cases you may be able to enhance your programs by revising them
to take advantage of new library functions and other features available
with Version 5.0.

B.2 Differences between Versions 5.0 and 4.0

Changes in Version 5.0 since Version 4.0 fall into the following categories:

e Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and
increased support for the developing ANSI standard

e Changes in the language syntax
o New language features specific to the MS-DOS implementation
e New library functions and include files

e Changes in function operations, primarily to conform to the
specifications for these functions in the the ANSI C standard

These features and the changes required to take advantage of them are
discussed in the following sections.

B.2.1 Enhancements and Additions
Enhancements for Version 5.0 include the following:

e Improved code generation, including loop optimization; improved
large-model code generation; and intrinsic functions

195

Microsoft C Optimizing Compiler User’s Guide

Faster compilation speed

Batch files to assist in installation of the compiler software on
hard-disk systems

Support for code that will be loaded into read-only memory (ROM)
New error-message numbering

Inclusion of the Microsoft QuickCw Compiler, which comprises
integrated editor, compiler, and debugger; multiple-module, in-
memory compilation; and in-memory MAKE facility

B.2.2 Changes to the Language Syntax

Some Version 5.0 changes were made to the C language syntax to make it
conform more closely to the new ANSI standard. Most of these changes do
not affect source code written for the Version 4.0 compiler. The changes
are summarized below:

196

Full function prototyping is supported in Version 5.0. A function
prototype is a forward declaration containing the types and,
optionally, names of the parameters (if any) expected in the func-
tion call. It can also include identifiers for the arguments, though
they go out of scope at the end of the prototype. Prototypes allow
the compiler to perform type checking on the actual arguments
passed when the function is called. If the compiler does not find a
prototype, the first occurrence of the function (definition or call) is
used as the basis of a prototype for that function. That prototype
is used to perform type checking against subsequent calls, subse-
quent declarations, or the definition. See Chapters 4 and 7 of the
Microsoft C Language Reference for more information about func-
tion prototyping.

The const and volatile type specifiers have been implemented for
Version 5.0. The const type specifier declares an object as an
unmodifiable lvalue. It can be used for objects of any fundamental
or aggregate type or for pointers to objects of any type. The vola~
tile type specifier is implemented syntactically, but not semanti-
cally. See Chapter 4 of the Microsoft C Language Reference for
more information.

Note

Programs that currently use const or volatile as identifiers
must be recoded to use other names.

Converting from Previous Versions of the Compiler

In Version 5.0, variables of enum type are treated as if they were
of int type in all cases. Therefore, enum variables can be used in
indexing expressions and as operands of all relational and arith-
metic operators.

String concatenation is supported in Version 5.0. This feature
causes adjacent string literals to be concatenated into a single
string literal. This means, for example, that instead of using a
backslash before a new-line character to indicate continuation of a
long string literal, the literal can simply be broken into two or
more quoted string literals on separate lines. See Chapter 2 of the
Microsoft C Language Reference for more information.

New preprocessor features in Version 5.0 include the “stringizing”
operator (#), which allows arguments in macro expansions to be
expanded into a string literal containing the expanded argument;
and the “token pasting” operator (##), which concatenates the
tokens on either side of the operator into a new token in macro
expansions. See Chapter 8 of the Microsoft C Language Reference
for more information.

Note

Previous versions of Microsoft C allowed expansion of macro
formal arguments appearing in string literals and character
constants. Programs that rely on this feature must be recoded
to use the stringizing operator. See the discussion of string
literals in Chapter 2 of the Microsoft C Language Reference for
more information.

The long double data type is now supported; the long float data
type is no longer supported.

The three-digit forms of hex escape sequences (\xddd) and octal
escape sequences (\ ddd) are now supported.

The unary plus (+) operator is allowed, but ignored semantically.

197

Microsoft C Optimizing Compiler User’s Guide

B.2.3 New Features for the MS-DOS
Implementation of C

The following new CL command options have been added to the MS-DOS
implementation of the Microsoft C Optimizing Compiler for Version 5.0:

Option Effect

/Oi Enables intrinsic code generation for all available
functions

/Ol Enables loop optimizations for an entire program

/Op Forces consistent precision in floating-point math
operations

/ac Invokes the Microsoft QuickC Compiler for fast
compilation

/Sl Specifies the line width for source listings

/Sp Specifies the number of lines per page for source listings

/Ss Specifies subtitles for source listings

/St Specifies titles for source listings

/Tec Tells the compiler that the following file is a C source
file

/Zp Packs structures on one-, two-, or four-byte boundaries

The following new pragmas have been added to the MS-DOS implementa-
tion of the Microsoft C Optimizing Compiler for Version 5.0 to control the
specified features on a local basis:

Pragma Effect

loop_opt Turns loop optimizations on and off

pack Specifies packing alignment for structures

intrinsic Specifies which functions are compiled as intrinsic
functions

function Specifies which functions are compiled as standard
function calls

same_seg Tells the compiler to assume that specified vari-

alloc_ text

198

ables are allocated in the same far data segment

Specifies modules to be grouped into a specified far
code segment

Converting from Previous Versions of the Compiler

Note that the existing check_stack pragma uses the following new for-
mat for specifying arguments:

pragma check_stack([[{ on|off}])

B.2.4 Changed Library Routines

The run-time library routines provided with Version 5.0 of the Microsoft C
Optimizing Compiler are moving to support the the ANSI C standard. In
addition, many new functions and two new include files have been added
to the library.

Sections B.2.4.1-B.2.4.5 list the new functions by type. Section B.2.4.6
describes the new include files.

B.2.4.1 Graphics Routines

The following graphics functions have been added. These functions are
included in the the GRAPHICS.LIB library; they may also be included
in the combined libraries built by the SETUP program. Required struc-
tures and constants for these routines are defined in the new graph.h
include file.

_arc —gettextcolor _setbkcolor
_clearscreen _gettextposition _setcliprgn
_displaycursor _getvideoconfig _setcolor
—ellipse _imagesize _setfillmask
_floodfill _lineto _setlinestyle
_getbkcolor _moveto _setlogorg
_getcolor _outtext _setpixel
_getcurrentposition _pie _settextcolor
_getfillmask _putimage _settextposition
_getimage _rectangle _settextwindow
_getlinestyle _remapallpalette _setvideomode
_getlogcoord _remappalette _setviewport
_getphyscoord _selectpalette _setvisualpage
—getpixel _setactivepage _wrapon

B.2.4.2 Heap-Checking Functions

The following routines have been added to help debug heap-related prob-
lems in programs. These routines are defined in the malloc.h include file.

199

Microsoft C Optimizihg Compiler User’s Guide

—fheapchk —heapset —nheapchk
—fheapset —heapwalk —nheapset
—ftheapwalk — mmemimax —nheapwalk
—heapchk

B.2.4.3 DOS and BIOS Interface Functions

The following new functions provide access to DOS system calls. Required
definitions for these functions are given in the dos.h include file.

—chain_intr —dos_getdrive —dos_setfileattr
—disable —dos_getfileattr —dos_setftime
—dos_allocmem —dos_getftime —dos._ settime
—dos_close —dos_gettime —dos_setvect
—dos_creat —~dos_getvect —dos_ write
—dos_creatnew —dos_keep —enable
—dos_findfirst —dos_open —farjmp
—dos_findnext —dos_read —harderr
—~dos_freemem —dos_setblock —hardresume
—dos_getdate —dos_setdate —hardretn
—dos_getdiskfree —dos_setdrive

The following new functions provide access to ROM-BIOS interrupts.
Required definitions for these functions are given in the new bios.h
include file.

_bios_serialcom
_bios_disk
_bios_equiplist
_bios_keybrd
_bios_memsize
_bios_printer
_bios_timeofday

B.2.4.4 Other New Functions

Other new library functions provided with Version 5.0 are listed below:

clock inpw memmove _searchenv
div Idiv mktime _splitpath
fgetpos _lrotl outpw _strdate
fsetpos _Irotr _rotl _strtime
—getdate _makepath _rotr strtoul

200

Converting from Previous Versions of the Compiler

B.2.4.5 New Include Files

The new include files provided with Version 5.0 of the Microsoft C Optim-
izing Compiler are described below.

File Purpose

bios.h Defines the new BIOS-interface routines and the
constants and structures used with these routines

graph.h Defines the new graphics routines and the con-
stants and structures used with these routines

For conformance with the the ANSI C standard, the following constants
defined in the include file float.h refer to a base-2 exponent in Version 5.0:

DBL_MIN_EXP
DBL_MAX_EXP
FLT_MIN_EXP
FLT_MAX_EXP
LDBL_MIN_EXP
LDBL_MAX EXP

In Version 4.0, these constants refer to a base-10 exponent. The base-10
versions of these constants are now named DBL_MIN_ 10_ EXP,
DBL_MAX_10_EXP, and so on.

The following table lists the existing library functions that have been
changed for compatibility with the the ANSI C standard in Version 5.0
and the changes that have been made to each function:

Function Changes
abort Now calls raise(SIGABRT) instead of the

exit function.

assert Now calls the abort function instead of the
exit function. The output from a failed asser-
tion now contains the text of the failed
expression.

calloc Now returns NULL for calloc (O) instead
of allocating a zero-length item on the heap.

cputs Now always returns 0; no error code is
returned.

ctime Now returns NULL instead of January 1,
1980, for time values prior to January 1,
1980.

201

Microsoft C Optimizing Compiler User’s Guide

fclose and fcloseall
gmtime
localtime

log and log10

malloc
onexit

memepy

printf family

putch

scanf family

setvbuf

strerror

202

Now delete the specified file or files if the files
were created by the tmpfile function.

Now returns NULL instead of January 1,
1980, for values prior to January 1, 1980.

Now returns NULL instead of January 1,
1980, for values prior to January 1, 1980.

Now set errno to ERANGE rather than to
EDOM when an error occurs. Although this
value is different from the value returned by
the XENIX version of these functions, it is
compatible with the the ANSI C standard.

Now returns NULL for malloc (0) instead
of allocating a zero-length item on the heap.

Has been duplicated under the new ANSI-
compatible name atexit.

If some regions of the source and destination
overlap, memepy no longer ensures that the
original source bytes in the overlapping region
are copied before being overwritten. Use
memmove to handle overlapping regions.

The cprintf, fprintf, and sprintf functions
support the L format modifier and handle
negative values for precision and field-width
arguments. Also, when errors occur, these
functions return -1 instead of the number of
characters printed up to the point of the
error.

The putch function no longer returns an
error code.

The cscanf, fscanf, and sscanf functions
support the L format modifier and the g, E,
and G format specifiers.

Now uses an allocated buffer if a NULL is
passed as the buffer pointer and the buffer
type is _IOFBF (full buffering) or _IOLBF
(line buffering). The file is unbuffered only if
_IONBEF is specified.

Has been renamed _strerror. The ANSI
strerror function, which maps a specified
error number to the corresponding error mes-
sage, is also implemented in Version 5.0.

Converting from Previous Versions of the Compiler

system For a NULL pointer argument, now returns 0

and sets ERRNO to ENOENT if no
COMMAND.COM file is found, or returns
1 if a COMMAND.COM file is found.

tmpfile Now opens the temporary file in binary mode

for updating (wb+) rather than default mode
for updating (w+).

For more information about the new library functions, see the Microsoft C
Run-Tvme Library Reference.

B.3 Differences between Versions 4.0 and 3.0

Changes between Versions 4.0 and 3.0 fall into the same categories as
those between Versions 5.0 and 4.0.

Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and
increased support for the developing ANSI standard

Changes in the language syntax
New language features specific to the MS-DOS implementation
New library functions and include files

These features and the changes required to take advantage of them are
discussed in the following sections.

B.3.1 Enhancements and Additions

Enhancements for Version 4.0 include the following:

New options for CL and LINK

Improved code optimization

New memory models (compact and huge)
Source listings

Numbered error messages

Huge arrays, allowing a single array to be larger than 64K

Three new utilities: MAKE, SETENYV, and the Microsoft Code-
View symbolic debugger

203

Microsoft C Optimizing Compiler User’s Guide

These changes should have no effect on Version 3.0 source code, but you
may need to revise existing batch files or MAKE description files to allow
them to work correctly with Version 4.0.

See Chapter 3, “Compiling with the CL. Command,” for information on
changes to the syntax of the CL command line.

B.3.2 Changes in the Language Syntax

Some Version 4.0 changes were made to the C language syntax to make it
conform more closely to the new ANSI standard. Most of these changes do
not affect source code written for the Version 3.0 compiler. The changes
are summarized below:

e The \a escape sequence represents the bell (or alert) character in
Version 4.0.

You can make your source code more portable by using \ a instead
of \x7. See Section 2.2.4, “Escape Sequences,” of the Microsoft C
Language Reference.

e The signed keyword was added.

The signed keyword can be used to specify signed items. This key-
word is particularly useful for declaring signed char types in pro-
grams compiled with the /J option. (/J changes the default mode
for the char type to unsigned.) See Section 4.2, “Type Specifiers,”
of the Microsoft C Language Reference.

e The syntax was changed for making function calls with a variable
number of arguments.

The following two declarations contrast the Version 3.0 form and
the Version 4.0 form:

int func (int,): /* Forward declaration in
** Version 3.0 syntax

*/

int func (int,...): /* Forward declaration in

*% Version 4.0 syntax

*/
This change was made to conform to changes in the ANSI standard
for the C language. Both forms are supported in Version 4.0 of the
Microsoft C Compiler. Microsoft recommends the use of the Ver-
sion 4.0 form in all programs.

204

Converting from Previous Versions of the Compiler

Prior to Version 4.0, the compiler allowed arbitrary strings of char-
acters after a syntactically correct preprocessor command. To con-
form to the new ANSI standard, this was disallowed in Version 4.0.

Beginning with Version 4.0, the following usage, for example,
causes the compiler to generate a warning message:

#endif Block ends here

In Versions 4.0 and later, such strings must be enclosed in com-
ment delimiters, as in the following example:

#endif /* Block ends here x/

Names of types defined with typedef are not keywords in Version
4.0, as they were in Version 3.0. In Version 4.0, these names are in
the same naming class as names of functions and variables, and can
be redefined in a nested block.

See Section 3.6, “Naming Classes,” in the Microsoft C Language
Reference.

Beginning with Version 4.0, the # pragma directive is supported.

A “pragma” is an instruction to the compiler. Its syntax is similar
to the syntax of preprocessor directives, but its purpose is different.
The syntax is as follows:

pragma charstring

The only pragma instruction supported in the Microsoft C Com-
piler, Version 4.0, is the check_stack pragma. This pragma is
specific to MS-DOS, and is discussed in greater detail in Section
3.3.13.2, “Removing Stack Probes.”

Hexadecimal and octal integer constants are handled differently in
Version 4.0 than they are in Version 3.0.

See Section 2.3, "Constants," of the Microsoft C' Language Refer-
ence for more information.

The extended keywords fortran, pascal, cdec], far, near, and
huge are enabled by default in Version 4.0. They can be disabled
by giving the /Za option on the command line.

Two new reserved words, const and volatile, were added but not
implemented for Version 4.0.

In Version 3.0, when a near pointer is converted to type long int,
it is first converted to type short int, then to long int; as a result,

205

Microsoft C Optimizing Compiler User’s Guide

in Version 3.0 the expression in the if statement evaluates as true
in the following fragment:

char #*ptr = NULL;
long i;

i = (long) ptr:
if (i == 0L) {

}
In Version 4.0, the conversion order of near pointers to long
integers was changed so that it conforms to the order in which the
compiler does all other conversions that increase the length of a
variable: first the size, then the mode. (For example, the compiler
converts a variable with type char to type unsigned long by first
converting it to signed long, then to unsigned long.) Because of
this change, the preceding code now converts ptr to a far pointer
by loading the appropriate segment register value, then changing
that to a long integer. The expression following the i £ statement
would most likely be false in Version 4.0, since the segment regis-
ters do not usually contain O.

B.3.3 New Features for the MS-DOS

Implementation of C

The following features were added to the MS-DOS implementation of the
C compiler for Version 4.0:

Two new memory models: huge and compact
The huge, signed, and cdecl keywords
A pragma (check_stack) to control stack checking

The /J option to change the default mode for the char type to
unsigned

The /Gce option to specify the alternative calling sequence and
naming conventions used in Microsoft Pascal and Microsoft
FORTRAN

These features are discussed in Chapter 6, “Working with Memory
Models.” In most cases, they will not affect existing Version 3.0 source
code. However, you may be able to improve your existing programs by
modifying them to take advantage of the new memory models or the huge
keyword.

206

Converting from Previous Versions of the Compiler

B.3.4 New Library Routines and Include Files

New library functions and include files were added to Version 4.0 of the
Microsoft. C Optimizing Compiler. In some cases you may wish to modify
existing source code to take advantage of new library functions and
include files. The new library functions are listed below:

alloca
_clear87
_control87
dieeetomsbin
difftime
dmsbintoieee
execlpe
execvpe
_expand
_ffree
fieeetomsbin
_fmalloc

fmsbintoieee _nmalloc strnicmp
_fmsize _nmsize strstr
_fpreset onexit strtod
_freect remove strtol
halloc rmtmp tempnam
hfree setvbuf tmpfile
lfind spawnlpe tmpnam
Isearch spawnvpe viprintf
_memavl stackavail vprintf
memicmp _status87 vsprintf
_msize strerror

_nfree stricmp

The new include files are listed below:

File Purpose

float.h Defines values used in floating-point operations

limits.h Defines upper and lower limits for various types

stdarg.h Defines a complete set of typedef definitions and
macros that can be used to write portable pro-
grams that can handle functions with variable-
length argument lists; designed to be compatible
with the proposed ANSI standard for C

stddef.h Defines standard values such as NULL and errno

varargs.h Defines a complete set of typedef definitions and

macros that can be used to write portable pro-
grams that can handle functions with variable-

length argument lists; designed to be compatible
with UNIX System V

For more information about the new library functions and include files, see
the Microsoft C Run-Time Library Reference.

207

Microsoft C Optimizing Compiler User’s Guide

B.3.5 Changes in Library-Function Syntax

In order to conform to the developing ANSI standard, the order of the
parameters in the rename function was changed for Version 4.0. The syn-
tax for Version 3.0 is as follows:

rename(newname, oldname)

The following syntax was implemented for Version 4.0:

rename(oldname, newname)

208

APPENDIX (
WRITING PORTABLE PROGRAMS

C.1 INtroduction...eeee e eeeeiiiiiiieeeeeeeeeericcreceeeeeeearaneeeeeenans
C.2 Program Portability ...ccccccevrrrerirriiirecienirerennerccceereennen.
C.3 Machine HArdWAare ...cooeveeueeeeneeeneerenrnrreeeeeeenereeeseeennns
C.3.1 Byte Length cccvviuiiuiinniiniiiiininniinnnncenciciscacanees
C.3.2 Word Length.ciiieeeciniincnniececcaiensensececresassocassosees
C.3.3 Storage AlIgNMEeNt .ccuveeeereneeneecenreercecensoneececensens
C.3.4 Byte Order in 2 Word....cccceeerinriareceniecasecscresassees
C.3.5 Bit Fields ceccererenreceriierececeercereeeencececacacssssnsens
C.3.6 POINbEIS eiiiieieiiieieieieieeeieieeerecsiececcnsescscacncncesenes
C.3.7 Address SPACE ceeeeerereererrecsessrontocasassosessvoseossones
C.3.8 Character Set cveviereiecieiececenierorecarasensesesasececacssns
C.4 Compiler Differencescceeevvveeeeirerrveeeeeeenivrneeeeeesecsnnnee
C.4.1 Signed/Unsigned char and Sign Extension
C.4.2 Shift Operations ..cveeeeeeceerencenceiererrerencenresraccaesans
C.4.3 Identifier Length..cccceererieriusrunireieriecenciecsecsecsonees
C.4.4 Register Variables..cceciriereieceiiarenincecinsececsasinness
C.4.5 Type CONVersiON..cceeeerececsssssesesacecsossssesocesassossss

C.4.6 Functions with a Variable
Number of Arguments..cceeieeeerearreerecesscsscsssnsaces
C.4.7 Side Effects and Evaluation Order...cccccceececaeceenn.
C.5 Environment Differencescccoeeeeeveveneerecereereeesreenennns
C.6 Portability of Data.....cccccveeeeeeieecceiieninreeeeeeeeeeeeeeeeenn.
C.7 Type-Size SUMIMATYcceeeerrvverrerersreressoroseeressossossnneees
C.8 Byte-Ordering SUmMmaryccccceeeevuvereeeereesiereeeseesssunes

209

Writing Portable Programs

C.1 Introduction

The standard definition of the C programming language leaves many
details to be decided in specific implementations of the language. These
unspecified features of the language detract from its portability and must
be studied when attempting to write portable C code.

Most of the issues affecting C portability arise from differences either in
target-machine hardware or in compilers. C was designed to compile
efficient code for the target machine (initially a Digital Equipment Cor-
poration PDP-11e), so many of the language features not precisely defined
are those that reflect a particular machine’s hardware characteristics.

This appendix highlights the various aspects of C that may not be port-
able across different machines and compilers. It also briefly discusses the
portability of a C program in terms of its environment. The environment
1s determined by the system calls and library routines a program uses dur-
ing execution, file path names it requires, and other items not guaranteed
to be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small eight-bit micropro-
cessors to large mainframes. This appendix is concerned with the porta-
bility of C code in the MS-DOS and XENIX programming environments.
This is a more restricted problem to consider, since all MS-DOS and
XENIX operating systems to date run on hardware with the following
basic characteristics:

e ASCII character set
Eight-bit bytes
o Two-byte or four-byte integers

e Two’s-complement arithmetic

These features are not formally defined for the language and may not be
found in all implementations of C. However, the remainder of this appen-
dix is devoted to those systems where these basic assumptions hold.

The C language definition contains no specification of how input and out-
put are performed. These specifications are left to system calls and library
routines on individual systems. Within XENIX systems there are system
calls and library routines that can be considered portable. This version

of the Microsoft C Optimizing Compiler includes system calls and library
routines that can be considered portable across XENIX and MS-DOS
systems. The run-time library for the Microsoft C Optimizing Compiler for
MS-DOS is composed primarily of XENIX-compatible routines. By
restricting the use of XENIX routines to those included in the MS-DOS
library, the XENIX programmer can develop MS-DOS programs in the

211

Microsoft C Optimizing Compiler User’s Guide

XENIX environment; C programs written on MS-DOS are easily portable
to XENIX.

C.2 Program Portability

A program is “portable” if it can be compiled and run successfully on
different machines without alteration. There are many ways to write port-
able programs. One way is to avoid using inherently nonportable language
features. Another is to isolate any nonportable interactions with the
environment, such as I/O to nonstandard devices. For example, programs
should avoid hard-coded path names unless a path name is common to all
systems.

Files required at compile time (such as include files) may also introduce
nonportability if the path names used are not the same on all machines.
In some cases, include files containing machine-specific definitions can be
used to make the source code itself portable.

C.3 Machine Hardware

Differences in the hardware of the various target machines and differences
in the corresponding C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered.

C.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as
positive integers all members of a machine’s character set. For the
machines described in this appendix, the char size is an eight-bit byte.

C.3.2 Word Length

The size of the basic data types for a given implementation are not for-
mally defined in the C language. Therefore, they often follow the most
natural size for the underlying machine. It is safe to assume that short is
no longer than long. Beyond that, no assumptions are portable. For
example, on some machines short is the same length as int, whereas on
others long is the same length as int.

212

Writing Portable Programs

Two areas where different int sizes affect program portability are the fol-
lowing:

1. Array indexing. For very large arrays, a variable of type int may
not be long enough to store the indices of the highest-numbered
array elements.

2. Pointer subtraction. On some machines, an int variable may not be
long enough to store the results of pointer subtraction. See Section
C.3.6, “Pointers,” for more information about this problem.

Programs that need to assume the size of a particular data type should
avoid hard-coded constants where possible. Such information can usually
be written in a fairly portable way. For example, the maximum positive
integer (on a two’s-complement machine) can be obtained with the follow-
ing directive:

#define MAXPOS ((int) (((unsigned)—1) >> 1))

This is preferable to the following code:

#ifdef PDP1l1l
#define MAXPOS 32767
#else

I#endif

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or
some other nonportable constant.

C.3.3 Storage Alignment

The C language defines no particular layout for storage of data items rela-
tive to each other. The layout for storage of structure elements, or unions
within the structure or union, is also left undefined by the language.

Some processors require that data types longer than one byte be aligned
on even-byte address boundaries. Others, such as the 8086/8088, have no
such hardware restriction. However, even with these machines, most com-
pilers generate code that aligns words, structures, arrays, and long words
on even addresses or on even long-word addresses. Therefore, the follow-
ing code sequence may give different results, depending on specific align-
ment requirements on different machines:

213

Microsoft C Optimizing Compiler User’s Guide

struct stag {
char c:
int 1i;

}:
printf ("%d\n",6 sizeof (struct staq)):

This variation in data storage has two major implications: data accessed
as nonprimitive data types are not portable; and code that makes assump-
tions about the layout on a particular machine is not portable.

Therefore, unions containing structures are nonportable if the union is
used to access the same data in different ways. Unions are only likely to
be portable if they are used exclusively to store different data in the same
space at different times. For example, if the following union were used to
obtain four bytes from a long word, the code would not be portable:

union {

. char c[4]:
long lw;
} u:

The sizeof operator should always be used when reading and writing
structures, as follows:

struct s_tag st;

write(fd, &st, sizeof(st)):

Using the sizeof operator ensures portability of the source code, but does
not produce a portable data file. Portability of data is discussed in Sec-
tion C.6.

C.3.4 Byte Order in a Word

The variation in byte order in a word affects the portability of data more
than the portability of source code. However, any program that makes use
of knowledge of the internal byte order in a word is not portable. For ex-
ample, on some XENIX systems there is an include file misc.h that con-
tains the following structure declaration:

214

‘Writing Portable Programs

/*
* structure to access an
* integer in bytes
*/
struct {
char lobyte:;
char hibyte:

}:

With certain less-restrictive compilers, this declaration could be used to
access the high- and low-order bytes of an integer separately and in a com-
pletely nonportable way. The correct way to do this is to use mask and
shift operations to extract the required byte, as shown below:

#define LOBYTE (i) (i & Oxff)
#define HIBYTE (i) ((i >> 8) & Oxff)

These definitions provide a portable way to extract the least-significant
and the next-least-significant bytes of an integer. Since the int type can
be either two or four bytes, depending on the machine, even these
definitions do not provide a completely portable way to access the bytes of
an int.

One result of the byte-ordering problem is that the following code
sequence will not always perform as intended:

int ¢ = 0O;
read (fd, &c, 1):

On machines where the low-order byte is stored first, the value of c is the
byte value read. On other machines, the byte is read into some byte other
than the low-order one, so the value of c is different.

C.3.5 Bit Fields

Bit fields are not implemented in all C compilers. The Microsoft C Optim-
izing Compiler implements bit fields and allows them to have any length
up to the size of a long. However, in many implementations no bit field
may be larger than an int, and no bit field can overlap an int boundary. If
necessary, the compiler will leave gaps and move to the next int boundary.
To ensure portability no individual field should exceed 16 bits.

The C language makes no guarantees about whether bit fields are assigned
left to right or right to left. Therefore, although bit fields may be useful
for storing flags and other small data i1tems, their use in unions to dissect
bits from other data is definitely nonportable.

215

Microsoft C Optimizing Compiler User’s Guide

C.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to
the extent that most compilers do not generate warnings for nonportable
pointer operations. A common nonportable use of pointers is the use of
casts to assign one pointer to another pointer of a different data type.
This practice usually makes some assumption about the internal byte ord-
ering and layout of the data type, and is therefore nonportable. In the fol-
lowing code, the byte order in the array c is not portable:

char c[4]:
long *1p:

lp = (long #*)&c[0]:
*1p = Ox12345678L;

Code like this is usually unnecessary or invalid. It is acceptable, however,
when the malloce function is used to allocate space for variables that do
not have char type. The routine is declared as type char %, and the
return value is cast to the type to be stored in the allocated memory. If
this type is not char *, then a compiler may issue a warning concerning
illegal type conversion. In addition, the malloc function is designed
always to return a starting address suitable for storing all types of data.
A compiler may not know this, so it may give an additional warning about
possible data-alignment problems. In the following example, malloc is
used to obtain memory for an array of 50 integers:

extern char *malloc():
int *ip:

ip = (int #*)malloc (50):
This example will elicit a warning message from some compilers.

The Microsoft C Quick Reference Guide states that a pointer can be
assigned (or cast) to an integer large enough to hold it. Note that the size
of the int type depends on the given machine and implementation. This
type is long on some machines and short on others. The size may also be
modified by near and far declarations. In general, do not assume that the
following statement is always true:

sizeof (char *) == sizeof (int)

For example, the following construction is nonportable, assuming that the
function identifier func is not previously declared:

int p:
p = (char *)func():

This example assumes that a char pointer has the same length as an int.

216

‘Writing Portable Programs

Another consequence of different-sized int types on different machines is
that pointer subtraction may not give the expected results. As an example
of this case, subtracting pointers to the beginning and end of a very large
array may give a result that is too large to store in an int variable, as
shown in the following example:

int arr[20000], *b = arr, *e = &arr [20000]:

int diff:;

diff = e - b: /* result too large to store in
int variable diff x/

To correct this problem, coerce the result of the pointer subtraction long
type, then assign the result to a variable of unsigned int type, as shown
in the following example:

unsigned int udiff;
udiff = (long) ((int huge *)e - (int huge *)b):

In most implementations, the null pointer value NULL is defined to be
the int value 0. The length of the O value can lead to problems for func-
tions that expect pointer arguments longer than an int. For portable
code, always use the following form to pass a NULL value of the correct
size:

func((char *)NULL)

C.3.7 Address Space

The address space available to a program varies considerably from system
to system. Some small processors allow only 64K for program text and
data combined. Others allow up to 64K of data and 64K of program text.
Largelli machines may allow considerably more text and possibly more data
as well.

Large programs, or programs that require large data areas, may have port-
ability problems on small machines.

C.3.8 Character Set

The C language does not require the use of the ASCII character set. In
fact, the only character-set requirements are that all characters must fit in
the char data type, and all characters must have positive values.

In the ASCII character set, all characters have values between 0 and 127
and therefore can be represented in seven bits. On an eight-bits-per-byte
machine they are all positive, regardless of whether char is treated as
signed or unsigned.

217

Microsoft C Optimizing Compiler User’s Guide

A set of character-classification macros is included as part of the run-time
library for the Microsoft C Optimizing Compiler. These macros should be
used for most tests on character quantities. The macros are defined in the
include file etype.h, and described in the Microsoft C Run- Time Library
Reference. They appear on the pages headed isalnum-isascii and
isentrl-isxdigit.

The character-classification macros provide insulation from the internal
structure of the character set. In addition, the names of the macros are
often more meaningful than the equivalent line of code. Compare the fol-
lowing two lines:

if (isupper (c))
if((c >= 'A') && (c <= 'Z"))

With some of the other macros, such as isxdigit to test for a hexadecimal
digit, the advantage is even greater. Also, the internal implementation of
the macros makes them more efficient than an explicit test with an if
statement.

C.4 Compiler Differences

There are a number of C compilers running under various operating sys-
tems. The main areas of differences between compilers are outlined in this
section.

C.4.1 Signed/Unsigned char and Sign Extension

The current state of the signed versus unsigned char problem is best
described as unsatisfactory. The sign-extension problem is a serious bar-
rier to writing portable C, and the best solution at present is to write
defensive code that does not rely on particular implementation features.

C.4.2 Shift Operations

The left-shift operator (< <) shifts its operand a number of bits left,
filling vacated bits with zeros. This is called a logical shift. When the
right-shift operator (> >>) is applied to an unsigned quantity, it performs
a logical-shift operation; when 1t is applied to a signed quantity, the
vacated bits may be filled with zeros (logical shift) or with sign bits (arith-
metic shift). The decision is implementation dependent, and code that
assumes a particular implementation is nonportable.

218

Writing Portable Programs

With compilers that use arithmetic right shift, it is necessary to shift and
mask the appropriate number of high-order bits to avoid sign extension, as
follows:

char c;

c = (e > 3) & Ox1f;

You can also avoid sign extension by using the divide operator (/) as fol-
lows:

char c;

c=c/ 8;

C.4.3 Identifier Length

The use of long symbols and identifier names will cause portability prob-
lems with some compilers. To avoid these problems, a program should
keep the following symbols as short as possible:

e C preprocessor symbols
e Clocal symbols
e (external symbols

Some loaders also place restrictions on the number of unique characters in
C external symbols. Symbols unique in the first six characters are unique
to most C-language processors.

In some C implementations, the case of letters in identifiers is not
significant.

C.4.4 Register Variables

The number and type of register variables in a function depend on the
machine hardware and the compiler. Excess and invalid register declara-
tions are treated as nonregister declarations and should not cause a porta-
bility problem. On an 8086 or 8088 processor, up to two register declara-
t;ionlsl are significant, and they must be applied to types of size int or
smaller.

Since the compiler ignores excess variables of register type, the most
important register-type variables should be declared first. In this way,
register variables that the compiler ignores will be those that are the least
important.

219

Microsoft C Optimizing Compiler User’s Guide

C.4.5 Type Conversion

The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem 1n implicit type conversion is unexpected sign extension. This is
a potential problem whenever something of type char is compared with
an int.

The following example will never evaluate true on a machine that sign-
extends char types but treats hexadecimal numbers as unsigned:

char c:
if(c == 0x80) {

.

}

The following construction is also nonportable:

char c:
unsigned int u:

if (u == (unsigned)c) {

}
Two problems can arise in the preceding example:

1. The char type may be considered either signed or unsigned,
depending on the implementation.

2. For implementations that consider the char type to be signed, two
different methods of carrying out the conversion are possible: the
char value may be sign extended to int type first, then converted
to unsigned type; or the char type may be converted to an
unsigned type of the same size, then zero extended to int length.

The only safe comparison between char type and int is the following;:
int c;

if(c = 'x') {

220

Writing Portable Programs

This comparison is reliable because C guarantees all character constants
to be positive.

Type conversion also occurs when arguments are passed to functions.
Types char and short become int. Extending the char type can produce
unexpected results. For example, the following program yields a result of
—128 on some machines:

char ¢ = 128;
printf ("%d\n",c):

The unexpected negative value is produced because c is converted to int
when it is passed to the printf function. The function itself has no
knowledge of the original type of the argument and is expecting an int.
The correct way to handle this situation is to code defensively and allow
for the possibility of sign extension, as in the following example:

char ¢ = 128;
printf ("%d\n", c & Oxff):

C.4.6 Functions with a Variable

Number of Arguments
Functions with a variable number of arguments present a particular porta-
bility problem if the type of the arguments is also variable. In such cases

the code is dependent on the size of various data types. For portability,
these cases should be avoided.

C.4.7 Side Effects and Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression or arguments to a function call. Therefore, the
following statement is almost never portable:

func (i++, i++):;

Even the following statement is unwise if func is ever likely to be replaced
by a macro, since the macro may use i more than once:

func (i++) ;

Certain XENIX-compatible macros commonly appear in user programs;
some of these use their argument only once, and therefore can safely be

221

Microsoft C Optimizing Compiler User’s Guide

called with a side-effect argument. To determine whether a macro handles
side effects correctly, examine the code for that macro to see whether or
not the argument is evaluated more than once.

Operands to the following operators are guaranteed to be evaluated left to
right:

, && I ? :

Note that the comma operator here is a separator for two C statements. A
list of items separated by commas in a declaration list is not guaranteed to
be processed left to right. Therefore, the following declaration on an 8086
or 8088 processor, where only two register variables may be declared,
could give any two of the four variables register type, depending on the
compiler:

register int a, b, c, d:

To give register storage to the most important variables, use separate
declaration statements and declare the most important variables first. The
order of processing of individual declaration statements is guaranteed to
be sequential in the following statements:

register int a;
register int b:
register int c;
register int d;

C.5 Environment Differences

Most programs make system calls and use library routines for various ser-
vices. This section indicates some of those routines that are not always
portable and those that particularly aid portability.

System calls specific to an operating system are not portable if they

are not present on all other operating-system implementations of C. Most
of the system calls defined in the Microsoft DOS run-time library are
compatible with XENIX system calls and are therefore portable to a
XENIX environment.

Any program is nonportable that contains hard-coded path names to files
or directories, or that contains user identifier numbers, log-in names, ter-
minal lines or other system-dependent parameters. These types of con-
stants should be in header files, passed as command-line arguments, or
obtained from the environment.

222

Writing Portable Programs

Note that the members of the printf and scanf families of functions,
including fprintf, fscanf, printf, sprintf, scanf, vfprintf, vprintf,
vsprintf, and sscanf, have evolved in several ways, and some features are
not completely portable. Some of the format-conversion characters have
changed their meanings, in particular those relating to uppercase and
lowercase in the output of hexadecimal numbers and the specification of
long integers on 16-bit word machines. The Microsoft C specifications for
these routines are given in the Microsoft C Run-Time Library Reference.

The names of code-helper functions (for example, —_almul) have been
changed between the MS-DOS and XENIX versions of Microsoft C. As a
result, users who port object files compiled under Version 4.0 or later of
the MS-DOS C compiler must move copies of the relevant helper functions
from the standard combined C library (or from LIBH.LIB if they are
using uncombined libraries) to XENIX, since Version 2.2 of the XENIX C
compiler and cross-development libraries are from a different version.

Users should beware of porting object files that reference the setjmp or
longjmp functions from XENIX to MS-DOS, unless these object files were
compiled with the -dos option. The MS-DOS versions of these functions
use a larger buffer size and may cause memory to be overwritten. Such
object files can be ported from MS-DOS to XENIX without problems, and
the corresponding source files can be ported in either direction.

C.6 Portability of Data

Data files are almost always nonportable across different central-
processing-unit (CPU) architectures. As mentioned above, structures,
unions, and arrays have varying internal layout and padding requirements
on different machines. In addition, byte ordering within words and actual
word length may differ.

The only way to achieve data-file portability is to write and read data files
as one-dimensional character arrays. This procedure prevents alignment
and padding problems if the data are written and read as characters, and
interpreted that way. Thus ASCII text files can usually be moved between
different machine types without significant problems.

C.7 Type-Size Summary

Table C.1 summarizes the sizes of the various data types as defined in the
Microsoft C Optimizing Compiler, Version 5.0.

223

Microsoft C Optimizing Compiler User’s Guide

Table C.1
C Type Sizes
Alternative
Type Name Name Storage Range of Values
char signed char 1 byte -128 to 127
int signed Implementation $—32,768 to 32,767
signed int dependent or Microsoft C
2 bytes in Version 5.0)
icrosoft
C5.0)
short short int 2 bytes -32,768 to 32,767
signed short
signed short int
long long int 4 bytes 2,147 483,648 to
signed long 2,147,483,647
signed long int
unsigned! char none 1 byte 0 to 255
unsigned unsigned int Implementation (0O to 65,535 for
dependent icrosoft C 5.0)
2 bytes in
icrosoft
C5.0)
unsigned short unsigned short int 2 bytes 0 to 65,535
unsigned long unsigned long int 4 bytes 0 to 4,294,967 295
enum none Implementation (0 to 65,535 for
dependent icrosoft C 5.0)
2 bytes in
icrosoft
C 5.0)
float none 4 bytes Approximately
3.4FE-38 to
3.4E+38 (7-digit
precision)
double none 8 bytes Approximately
1.7E-308 to
1.7E+308 (15-
digit precision)
long double none Implementation Approximately
dependent 1.7E-308 to
8 bytes in 1.7E+308 (15-
icrosoft digit precision)
C5.0)

1" Any type size modified by the unsigned keyword can be modified by the signed keyword

instead. The signed keyword is useful if the

sign of the char type.

224

/i

option has been used to change the default

‘Writing Portable Programs

C.8 Byte-Ordering Summary

Tables C.2 and C.3 summarize byte ordering for short and long types,
respectively. The following conventions are used in these tables:

1. The lowest physically addressed byte of the data item is a0; al has
the byte address a0 + 1, and so on.

2. The least-significant byte of the data item is b0; b1 is the next
least significant, and so on.

Since byte ordering is machine specific, any program that actually makes
use of the following information is guaranteed to be nonportable:

Table C.2
Byte Ordering for Short Types
CPU Byte Order
a0 al
8086 b0 b1l
80286 b0 b1l
PDP-11e b0 bl
VAX-11e b0 bl
M68000 bl bO
780006 bl bO
Table C.3
Byte Ordering for Long Types
CPU Byte Order
a0 al a2 a3
8086 b0 bl b2 b3
80286 b0 bl b2 b3
PDP-11 b2 b3 b0 bl
VAX-11 b0 bl b2 b3
M68000 b3 b2 bl b0
78000 b3 b2 bl b0

225

APPENDIX D
WRITING PROGRAMS
FOR READ-ONLY MEMORY

D.1
D.2

D.3
D.4

INtroduction......cccueveerieieeiiiiiiieiiiiinriirrrcereecenrneenenes 229
MS-DOS-Dependent

Library Routines.....ccceiiiieiiiiiiiiiiriiiiciireccneeneeeeeeseeenennns 229
Floating-Point Math Support......ccceeevveeeeiinnvcvvmeneeneeees 230
Modifying Start-Up Code.....ccceovumrrieirieiiierieierereeenennnne 231

227

Writing Programs for Read-Only Memory

D.1 Introduction

This appendix presents information for developers who will be download-
ing code written with the Microsoft C Optimizing Compiler into read-only
memory (ROM). Code of this type is more commonly known as “ROM-
able” code. Information is given about the following topics:

e Run-time library routines that directly interface with MS-DOS
(Section D.2)

e Floating-point math in ROMable code (Section D.3)

e Changing start-up code for non-MS-DOS environments (Section

'D.2 MS-DOS-Dependent
Library Routines

Because ROMable programs are often run outside an MS-DOS environ-
ment, they cannot include calls to run-time library routines that perform
their operations through calls to MS-DOS functions. Table D.1 lists the
library routines that call MS-DOS functions.

Table D.1

MS-DOS-Dependent Library Routines

abort execvp fstat mkdir spawnvp
access execvpe ftell mktemp spawnvpe
chdir —exit ftime open sprintf
chmod fclose fwrite perror sscanf
chsize fcloseall getch printf stat
close fgetc getche putch system
cprintf fgetchar getewd puts tell
cputs fgets getpid putw tempnam
creat filelength gets read time
cscanf fllush getw remove tmpfile
dos flushall halloc rename tmpnam
dosexterr _fmalloc hfree rmdir unlink
dup fopen int86 rmtmp utime
dup2 fprintf int86x scanf viprintf
eof fpute intdos sopen vprintf
execl fputchar intdosx spawnl vsprintf
execle fputs kbhit spawnle write
execlp fread labs spawnlp

execlpe freopen localtime spawnlpe

execy fscanf locking spawnv

execve fseek Iseek spawnve

229

Microsoft C Optimizing Compiler User’s Guide

A program containing calls to any these routines cannot run in a non-MS-
DOS environment unless you do one of the following:

e Write replacements for these MS-DOS dependent routines as
needed.

e Edit the program to remove the calls to the listed routines.

e Obtain the library source files from Microsoft and edit them so
that they do not include MS-DOS function calls, and write func-
tional equivalents of the MS-DOS functions that can be called from
your program.

Note that certain functions that are not listed above may call MS-DOS
functions indirectly: that is, they may be part of a series of nested calls
that call routines in the list.

You may want to try to delete certain MS-DOS-dependent object modules
from the C run-time library by using the Microsoft Library Manager, LIB.
Then, when you link your ROMable program, any unresolved references
could help determine which MS-DOS dependencies still need to be elim-
inated before the program code is burned into ROM.

Even in an MS-DOS environment, the exec family of functions (MS-DOS
Versions 2.z and 3.z) and the spawn family of functions (MS-DOS Ver-
sions 2.2) may alter the code segment. As a result, these functions would
not work if all of their code was in ROM.

D.3 Floating-Point Math Support

Programs that use the various floating-point math packages (described in
Chapter 7, “Controlling Floating-Point Math Operations”) can be used to
produce ROMable code.

Each of the three floating-point math packages contains certain error-
message code that depends on MS-DOS through calls to the write and
——nmsg_ write functions. You can eliminate the MS-DOS dependencies
by providing replacements for these routines. The — _ nmsg_ write rou-
tine is provided in the file named NMSGHDR.ASM, which the SETUP
program installs in your basedir\ SRC subdirectory. The error-message
code in the math packages also calls the exit function in the C start-up
code, which is MS-DOS dependent.

Programs that use the alternate math package (that is, programs compiled
with the /FPa option or linked explicitly with an mLIBCA.LIB library)
should produce ROMable code easily.

230

‘Writing Programs for Read-Only Memory

In order to work in a non-MS-DOS environment, programs that use the
emulator math package (that is, programs compiled with the /FPi or

/FPc option or linked explicitly with mLIBCE.LIB) must meet one of
two conditions:

1. An 8087 or 80287 coprocessor is not present.
2. The environment variable NOS87 is set to a non-null value.

However, you would have to replace some of the MS-DOS calls and other
interrupts by providing your interrupt handlers for them (as described in
Section E.4 below).

Programs that use the 8087 /80287 math package (that is, programs com-
piled with the /FPi87 or /FPc87 option or linked explicitly with
mLIBC7.LIB) may have problems if they are placed in ROM, since code is
provided in the run-time libraries to fix up floating-point instructions at
run time (that is, to change the code when the instruction is first exe-
cuted). The advantage of these fixups is that they allow code linked with
mLIBCE.LIB to be run whether or not a coprocessor is installed. Since
code placed in ROM cannot modify itself, a way is needed to circumvent
these fixups at run time. The FIXUPS.OBJ module in the run-time
library must be replaced by a module that sets the following public con-
stants (absolutes) to zero:

FIARQQ FIERQQ FJARQQ
FICRQQ FISRQQ FJCRQQ
FIDRQQ FIWRQQ FJSRQQ

You must provide your own replacement module for FIXUPS.OBJ if you
decide that you want to use the coprocessor math option.

D.4 Modifying Start-Up Code

In a non-MS-DOS environment, where programs typically have no need of
disk-file support, you can safely delete the file initializers and terminators
from the start-up file CRT0.ASM. In addition, some of the code that sets
up and restores interrupt vectors in this file may not be appropriate to the
needs of your program. In these cases, you may want to substitute your
own interrupt handlers.

The start-up code for the Microsoft C Optimizing Compiler also initializes
floating-point math support for programs that use it. The exact start-up
support that must be provided depends on which floating-point math
option you will be using for your programs. (See Chapter 7, “Controlling
Floating-Point Math Operations,” for a description of the floating-point

231

Microsoft C Optimizing Compiler User’s Guide

options available with the Microsoft C Optimizing Compiler.) The follow-
ing paragraphs describe the math support that is currently provided in the
start-up module.

Calls to the — _fpmath routine in the CRTODAT.ASM module initial-
ize and terminate floating-point math support and set signal addresses for
all five floating-point math options. Arguments to — — fpmath have the
following effects:

e A call with an argument of 0 initializes floating-point support.

e A call with an argument of 3 sets a signal address used for
floating-point errors, but does not set any interrupts.

e If floating-point support needs to be terminated, - — fpmath is
called with an argument of 2.

If you choose the alternate math package (that is, if you compile your pro-
grams with the /FPa option and link with one of the mLIBCA.LIB
libraries), the floating-point initialization code (__fpmath (0)) simply
sets up the floating-point stack.

If you choose the emulator math package (compile with /FPior /FPc
and link with mLIBCE.LIB) or the 8087 /80287 math package (compile
with /FPi87 or /FP¢87 and link with mLIBC7.LIB), the initialization
code (—— fpmath(0)) sets up several interrupt vectors, including 0x34
through 0x3D for internal use by software in the run-time library. If the
coprocessor is present and to be used, then the nonmaskable interrupt vec-
tor (NMI—0x02) is set to — — fpinterrupt87, and the CTRL+C signal is
dealt with (as shown in the EMOEM.ASM file in the \ basedir\ SRC sub-
directory). All these interrupts are restored with the — _fpmath(2) call on
program termination.

Interrupt vectors are processed through calls to MS-DOS functions, using
interrupt 0x21. The MS-DOS function numbers (that is, the settings in the
AH register) are 0x25 for setting interrupts and 0x35 for getting a vector
that is already set. For both the set-vector and get-vector functions, the
value contained in the AL register indicates the interrupt-vector number.

To be able to use this code in a non-MS-DOS environment, you must
replace the interrupt handler provided by MS-DOS interrupt 0x21.
Another MS-DOS call that is used in the floating-point initialization
(~—fpmath(0)) call is the DOS_getversion call (where the AH register
contains 0x30); see the - - FPINSTALLSY7 routine in the
EMOEM.ASM file. Another possibility is to replace the — _ fpmath rou-
tine and set up the interrupts in a way that avoids MS-DOS calls.

232

Writing Programs for Read-Only Memory

An additional piece of initialization code in the — _ fpmath(0) routine
checks the environment block to see whether the NO87 environment vari-
able is set. In a non-MS-DOS environment, in which you have removed the
—-—setargv and —_setenvp routines from the program start-up code, this
check tells the code to assume that NOS87 is not set. Since this code is
executed only if you are using the emulator math package when the copro-
cessor is present, it in most cases should not cause problems.

The initialization and termination calls also perform IN and OUT
instructions to ports related to the 8259 interrupt controllers. See the
EMOEM.ASM file to see whether these instructions apply to, or need to
be modified for, your particular hardware configuration.

233

APPENDIX F,

FERROR MESSAGES

E.1l Introduction....ciceeeeeiiieiiiiiiiiiinieniiiiiiinicicieeeeieeeeeeeeeenns 237

E.2 Command-Line Error Messages......cccevvuvurreeeeeeeerereeennn. 237
E.2.1 Command-Line

Fatal-Frror MesSageS...ueeereeeeeeereiersneeeersosersscernnes 238

E.2.2 Command-Line Error Messagesccveeerveeereennnennns 238

E.2.3 Command-Line Warning MessagesS...ccceeeervereeenenes 241

E.3 Compiler Error Messages.......ceeevveeerereeeerveeessrneeesennnnns 243

E.3.1 Fatal-Error Messages .cceeeeeereeeerveeeerenncersnecensanns 244

E.3.2 Compilation-Error Messages..ccccereernereenseerernnenns 251

E.3.3 Warning MessagesS..cceeeerereeereeeeereareeerveneesssesennens 269

E.3.4 Compiler LimitS.cccereeerruneeeruureeernerereeueseenseeennnnnes 280

E.4 Run-Time Error Messages....ccccceeerieeeenvunnreeeeeeeeeeeceennes 281

E.4.1 Run-Time-Library Error Messages ..ccceceevnernnnnnnnn. 281

E.4.2 Floating-Point EXCeptions c.cciceeerneeeeerneerncenernnnns 284

E.4.3 Run-Time Limits cceeeerrreecennireenereeernceerenseersseees 286

235

Error Messages

E.1 Introduction

This appendix lists error messages you may encounter as you develop a
program, and gives a brief description of actions you can take to correct
the errors. The following list tells where to find error messages for the
various components of Microsoft C:

Component Section

The command line used to Section E.2, “Command-Line Error
invoke the Microsoft C Messages”

Optimizing Compiler

Microsoft C Optimizing Section E.3, “Compiler-Error
Compiler Messages”

The Microsoft C run-time Section E.4, “Run-Time Error
libraries and run-time Messages”

situations

See Section E.3.4 for information about compiler limits. See the Microsoft
CodeView and Utilities manual for a list of the error messages generated
by the following programs:

e The Microsoft CodeView Window-Oriented Debugger (CV.EXE)
e The Microsoft Overlay Linker (LINK)

e The Microsoft Library Manager (LIB)

e The Microsoft Program Maintenance Utility (MAKE)

e The Microsoft EXE File Compression Utility (EXEPACK)

e The Microsoft EXE File Header Utility (EXEMOD)

e The Microsoft Environment Expansion Utility (SETENYV)

e The Microsoft Standard Error Redirection Utility (ERROUT)

E.2 Command-Line Error Messages
Messages that indicate errors on the command line used to invoke the
compiler have one of the following formats:

command line fatal error Dlazzz: messagetext (fatal error)
command line error D2zzzr: messagetext (error)
command line warning D4zzr: messagelext (warning error)

237

Microsoft C Optimizing Compiler User’s Guide

If possible, the compiler continues operation, printing a warning message.
In some cases, command-line errors are fatal and the compiler terminates
processing.

E.2.1 Command-Line
Fatal-Error Messages

The following messages identify fatal errors. The compiler driver cannot
recover from a fatal error; it terminates after printing the error message.

Number Command-Line Fatal-Error Message
D1000O UNKNOWN COMMAND LINE FATAL ERROR

Contact Microsoft Technical Support

The compiler detected an unknown fatal-error condition.
Please report this condition to Microsoft Corporation using
the Product Assistance Request at the back of this manual.

D1001 could not execute 'filename'

The compiler could not find the given file in the current

working directory or any of the other directories named in
the PATH variable.

D1002 too many open files, cannot redirect
' filename'

No more file handles were available to redirect the output
of the /P option to a file.

Try editing your CONFIG.SYS file and increasing the
value num on the line files=num (if num is less than 20).

E.2.2 Command-Line Error Messages

When the compiler driver encounters any of the errors listed in this sec-
tion, it continues compiling the program (if possible(g and outputs addi-

tional error messages. However, no object file is produced.
Number Command-Line Error Message
D2000 UNKNOWN COMMAND LINE ERROR

Contact Microsoft Technical Support

The compiler detected an unknown error condition. Please
report this condition to Microsoft Corporation using the
Product Assistance Request at the back of this manual.

238

Number

D2001

D2002

D2003

D2007

D2008

D2009

D2010

D2011

D2012

Error Messages

Command-Line Error Message

too many symbols predefined with -D

Too many symbolic constants were defined using the /D
option on the command line.

The limit on command-line definitions is normally 16; you
can use the /U or /u option to increase the limit to 20.

a previously defined model specification
has been overridden

Two different memory models were specified; the model
specified later on the command line was used.

missing source file name

You did not give the name of the source file to be compiled.
bad option flag, would overwrite 'stringl' with
' string?’

The specified option was given more than once, with
conflicting arguments stringl and string2.

too many option flags, 'string'

Too many letters were given with the specified option (for
example, with the /O option).

unknown option character in 'optionstring'

One of the letters in the given option was not recognized.

unknown floating point option

The specified floating-point option (an /FP option) was not
one of the valid options.

only one floating point model allowed

You specified more than one floating-point (/FP) option on
the command line.

too many linker flags on command line

You tried to pass more than 128 separate options and
object files to the linker.

239

Microsoft C Optimizing Compiler User’s Guide

Number

D2013

D2014

D2015

D2016

D2017

D2018

D2019

240

Command-Line Error Message

incomplete model specification
Not enough characters were given for the /Astring option.

The /Astring option requires all three letters (to specify the
data-pointer size, code-pointer size, and segment setup,
respectively).

-ND not allowed with -Ad

You cannot rename the default data segment unless you
give the /Auzz option (SS != DS, load DS) on the com-
mand line.

assembly files are not handled

You gave a file name with an extension of .ASM on the
command line.

Because the compiler cannot invoke the Microsoft Macro
Assembler (MASM) automatically, it cannot assemble such
files.

-Gw and -ND name are incompatible

You tried to rename the default data segment to the given
name when you specified the /Gw option.

Renaming the default data segment is illegal in this case
because the /Gw option requires the /Awzz option.
-Gw and -Au flags are incompatible

You tried to specify the /Auzz option (SS != DS, load DS)
with the /Gw option.

Specifying /Auzz with /Gw is illegal because the /Gw
option requires the /Awazz option.
cannot open linker cmd file

The response file used to pass object-file names and options
to the linker could not be opened.

This error may have occurred because another read-only file
had the same name as the response file.

cannot overwrite the source file, 'name'

You specified the source file as an output-file name.

The compiler does not allow the source file to be overwrit-
ten by one of the compiler output files.

Number

D2020

D2021

D2022

D2023

E.2.3

Error Messages

Command-Line Error Message

-Gc option requires extended keywords to be
enabled (-Ze)

The /Gc option and the /Za option were specified on the
same command line.

The /Ge option requires the extended keyword cdecl to be
enabled if library functions are to be accessible.

invalid numerical argument 'siring

A non-numerical string was specified following an option
that required a numerical argument.

cannot open help file, cl.hlp

The /HELP option was given, but the file containing the
help messages (CL.HLP) was not in the current directory
or in any of the directories specified by the PATH environ-
ment variable.

invalid model specification - small model
only

Command-Line Warning Messages

The messages listed in this section indicate potential problems but do not
hinder compilation and linking.

Number

D4000

D4001

D40902

Command-Line Warning Message
UNKNOWN CCMMAND LINE WARNING
Contact Microsoft Technical Support

An unknown fatal condition has been detected by the com-
piler. Please report this condition to Microsoft Corporation
using the Product Assistance Request at the back of this
manual.

listing has precedence over assembly output
Two different listing options were chosen; the assembly list-
ing is not created.

ignoring unknown flag 'string'

One of the options given on the command line was not
recognized and is ignored.

241

Microsoft C Optimizing Compiler User’s Guide

Number

D4003

D4004

D4005

D4006

D4007

D4008

D4009

D4010

D4011

242

Command-Line Warning Message

80186/286 selected over 8086 for code
generation

Both the /GO option and either the /G1 or /G2 option
were given; /G1 or /G2 takes precedence.

optimizing for time over space

This message confirms that the /Ot option is used for
optimizing.

Please enter new file name (full path) or
Ctrl+C to quit

The CL command could not find the specified executable
file in the search path.

only one of -P/-E/-EP allowed, -P selected
Only one preprocessor output option can be specified at
one time.

-C ignored (must also specify -P or -E or
-EP)

The /C option must be used in conjunction with one of the
preprocessor output flags, /E, /EP, or /P.
non-standard model -- defaulting to small
model libraries

A nonstandard memory model was specified with the
/Astring option. The library search records in the object
model were set to use the small-model libraries.

threshold only for far/huge data, ignored

The /Gt option cannot be used in memory models that
have near data pointers. It can be used only in compact,
large, and huge models.

-Gp not implemented, ignored

The MS-DOS version of Microsoft C does not support
profiling.

preprocessing overrides source listing

Only a preprocessor listing was generated, since the com-
piler cannot generate both a source listing and a preproces-
sor listing at the same time.

Error Messages

Number Command-Line Warning Message
D4012 function declarations override source
listing

The compiler cannot generate both a source-listing file and
the function prototype declarations at the same time.

D4013 combined listing has precedence over object
listing
When /Fe is specified along with either /Flor /Fa, the
combined listing (/Fc) is created.

D4014 invalid value number for 'string'. Default
number is used

An invalid value was given in a context where a particular
numerical value was expected.

D4017 conflicting stack checking options - stack
checking disabled

Both the /Ge and the /Gs flags are given in one compile
command (/Ge enables stack checking, /Gs disables it).

E.3 Compiler Error Messages

The error messages produced by the C compiler fall into three categories:

1. Fatal-error messages

2. Compilation-error messages

3. Warning messages
The messages for each category are listed below in numerical order, with a
brief explanation of each error. To look up an error message, first deter-

mine the message category, then find the error number. All messages give
the file name and line number where the error occurs.

Fatal-Error Messages
Fatal-error messages indicate a severe problem, one that prevents the com-
piler from processing your program any further. These messages have the

following format:

filename (line) : fatal error Clzrz: messagetext

243

Microsoft C Optimizing Compiler User’s Guide

After the compiler displays a fatal-error message, it terminates without
producing an object file or checking for further errors.

Compilation-Error Messages

Compilation-error messages identify actual program errors. These mes-
sages appear in the following format:

filename (line) : error C2zzx: messagetext

The compiler does not produce an object file for a source file that has com-
pilation errors in the program. When the compiler encounters such errors,
1t attempts to recover from the error. If possible, it continues to process
the source file and produce error messages. If errors are too numerous or
too severe, the compiler stops processing.

Warning Messages

Warning messages are informational only; they do not prevent compilation
and linking. These messages appear in the following format:

filename (line) : warning C4zzz: messagetext

You can use the /W option to control the level of warnings that the com-
piler generates. This option is described in Section 3.3.11.2.

E.3.1 Fatal-Error Messages

The following messages identify fatal errors. The compiler cannot recover
from a fatal error; it terminates after printing the error message.

Number Fatal-Error Message
C1000 UNKNOWN FATAL ERROR

Contact Microsoft Technical Support

An unknown error condition has been detected by the
compiler.

Please report this condition to Microsoft Corporation,
using the Product Assistance Request at the back of this
manual.

C1001 Internal Compiler Error
Contact Microsoft Technical Support
The compiler detected an internal inconsistency.

Please report this condition to Microsoft Corporation using
the Product Assistance Request at the back of this manual.

244

Number

C1002

C1003

C1004

C1005

C1006

C1007

Error Messages

Fatal-Error Message

Please include the file name and line number where the
error occurred in this report; note that the file name refers
to an internal compiler file, not your source file.

out of heap space

The compiler has run out of dynamic memory space. This
usually means that your program has many symbols and /or
complex expressions.

To correct the problem, divide the file into several smaller
source files, or break expressions into subexpressions.
error count exceeds n; stopping compilation
Errors in the program were too numerous or too severe to
allow recovery, and the compiler must terminate.
unexpected EOF

This message appears when you have insufficient space on
the default disk drive for the compiler to create the tem-
porary files it needs. The space required is approximately
two times the size of the source file. This message can also
occur when a comment does not have a closing delimiter
(*/), or when an #if directive occurs without a correspond-
ing closing # endif directive.

string too big for buffer

A string in a compiler intermediate file overflowed a buffer.

write error on compiler intermediate file

The compiler was unable to create the intermediate files
used in the compilation process.

The following conditions commonly cause this error:

1. Too few files in the

files=number

line of the CONFIG.SYS file (the compiler
requires number to be at least 15)

2. Not enough space on a device containing a compiler
intermediate file

unrecognized flag 'string' in 'option'

The string in the command-line option was not a valid
option.

2456

Microsoft C Optimizing Compiler User’s Guide

Number

C1009

C1010

C1012

C1013

Cl014

Cl016

cio1i7

Cl018

C1019

C1020

246

Fatal-Error Message

compiler limit

possibly a recursively defined macro

The expansion of a macro exceeds the available space.
Check to see if the macro is recursively defined, or if the
expanded text is too large.

compiler limit : macro expansion too big

The expansion of a macro exceeds the available space.

bad parenthesis nesting - missing 'character’

The parentheses in a preprocessor directive were not
matched; character is either a left or right parenthesis.

cannot open source file ‘'filename'

The given file either did not exist, could not be opened, or
was not found. Make sure your environment settings are
valid and that you have given the correct path name for

the file.
too many include files

Nesting of #include directives exceeds 10 levels.

#if[n]def expected an identifier

You must specify an identifier with the #ifdef and
#ifndef directives.

invalid integer constant expression

The expression in an # if directive must evaluate to a
constant.

unexpected '#elif'

The #elif directive is legal only when it appears within an
#if, #ifdef, or #ifndef directive.

unexpected '#else'

The #else directive is legal only when it appears within an
#1if, #ifdef, or #ifndef directive.

unexpected '#endif'

An #endif directive appears without a matching #if,
#ifdef, or #ifndef directive.

Number

C1021

C1022

C1026

Ci027

Cl1032

C1033

C1034

Error Messages

Fatal-Error Message

bad preprocessor command 'string'

The characters following the number sign (#) do not form
a valid preprocessor directive.

expected '#endif'

An #if, #ifdef, or #ifndef directive was not terminated
with an # endif directive.

parser stack overflow, please simplify your
program

Your program cannot be processed because the space
required to parse the program causes a stack overflow in
the compiler.

To solve this problem, try to simplify your program.

DGROUP data allocation exceeds 64K

More than 64K of variables was allocated to the default
data segment.

For compact-, medium-, large-, or huge-model programs,
use the /Gt optlon to move items into separate segments.
cannot open object listing file 'filename'
One of the following statements about the file name or path
name given (filename) is true:

1. The given name is not valid.

2. The file with the given name cannot be opened for
lack of space.

3. A read-only file with the given name already exists.

cannot open assembly-language output file
' filename'

One of the conditions listed under error message C1032
prevents the given file from being opened.

cannot open source file 'filename'

One of the conditions listed under error message C1032
prevents the given file from being opened.

247

Microsoft C Optimizing Compiler User’s Guide

Number

C1035

C1036

C1037

C1039

C1040

C1041

C1042

248

Fatal-Error Message

expression too complex, please simplify

The compiler cannot generate the code for a complex
expression.

Break the expression into simpler subexpressions and
recompile.

cannot open source listing file 'filename'

One of the conditions listed under error message C1032
prevents the given file from being opened.

cannot open object file 'filename'

One of the conditions listed under error message C1032
prevents the given file from being opened.

unrecoverable heap overflow in Pass 3

The post-optimizer compiler pass overflowed the heap and
could not continue.

Try recompiling with the /Od option (see Section 3.3.13,
“Optimizing”), or try breaking up the function containing
the line that caused the error.

unexpected EOF in source file 'filename'

The compiler detected an unexpected end-of-file condition
while creating a source listing or mingled source/object
listing.

This error probably occurred because the source file was
edited during compilation.

cannot open compiler intermediate file —
no more files

The compiler could not create intermediate files used in the
compilation process because no more file handles were
available.

This error can usually be corrected by changing the
files=number line in CONFIG.SYS to allow a larger
number of open files (20 is the recommended setting).

cannot open compiler intermediate file —
no such file or directory

The compiler could not create intermediate files used in the
compilation process because the TMP environment vari-
able was set to an invalid directory or path.

Number

C1043

Cl1044

C1045

ci047

C1048

C1049

C1050

Error Messages

Fatal-Error Message

cannot open compiler intermediate file

The compiler could not create intermediate files used in the
compilation process. The exact reason is unknown.

out of disk space for compiler intermediate
file

The compiler could not create intermediate files used in the
compilation process because no more space was available.

To correct the problem, make more space available on the
disk and recompile.

floating point overflow

The compiler generated a floating-point exception while
doing constant arithmetic on floating-point items at com-
pile time, as in the following example:

float fp_val = 1.0el0O0;

In this example, the double-precision constant 1.0e100
exceeds the maximum allowable value for a floating-point
data item.

too many option flags, 'string'

The option appeared too many times. The string contains
the occurrence of the option that caused the error.

Unknown option 'character' in 'optionstring’

The character was not a valid letter for optionstring.

invalid numerical argument 'siring'

A numerical argument was expected instead of string.

code segment 'segmentname' too large

A code segment grew to within 36 bytes of 64K during
compilation.

A 36-byte pad is used because of a bug in some 80286 chips
that can cause programs to exhibit strange behavior when,
among other conditions, the size of a code segment is
within 36 bytes of 64K.

249

Microsoft C Optimizing Compiler User’s Guide

Number

C1052

C1053

Cl1054

C1056

Cl1057

C1059

C1060

250

Fatal-Error Message

too many #if/#ifdef's

You have exceeded the maximum nesting level for
#if /#ifdef directives.

compiler limit : struct/union nesting

Structure and union definitions were nested to more than
10 levels.

compiler limit : initializers too deeply
nested

The compiler limit on nesting of initializers was exceeded.
The limit ranges from 10 to 15 levels, depending on the
combination of types being initialized.

To correct this problem, simplify the data type being ini-
tialized to reduce the levels of nesting, or assign initial
values in separate statements after the declaration.

compiler 1limit : out of macro expansion
space

The compiler has overflowed an internal buffer during the
expansion of a macro; reduce the complexity of the macro.

unexpected EOF in macro expansion; (missing
') l?)

The compiler has encountered the end of the source file
while gathering the arguments of a macro invocation. Usu-
ally this is the result of a missing closing parenthesis ()) on
the macro invocation.

out of near heap space

The compiler has run out of storage for items that it stores
in the “near” (default data segment) heap. This usually
means that your program has too many symbols or complex
expressions. To correct the problem, divide the file into
several smaller source files, or break expressions into
smaller subexpressions.

out of far heap space

The compiler has run out of storage for items that it stores
in the “far” heap. Usually this is the result of too many
symbols in the symbol table.

Error Messages

E.3.2 Compilation-Error Messages

The messages listed below indicate that your program has errors. When
the compiler encounters any of the errors listed in this section, it continues
parsing the program (if possible) and outputs additional error messages.
However, no object file is produced.

Number

C2000

C2001

C2002

C2003

C2004

C2005

C2006

C2007

C2008

Compilation-Error Message
UNKNOWN ERROR
Contact Microsoft Technical Support

The compiler detected an unknown error condition. Please
report this condition to Microsoft Corporation using the
Product Assistance Request at the back of this manual.
newline in constant

A new-line character in a character or string constant was
not in the correct escape-sequence format (\n).

out of macro actual parameter space

Arguments to preprocessor macros exceeded 256 bytes.

expected 'defined id'

The identifier to be checked in an #if directive was not
enclosed in parentheses.

expected 'defined(id)'
An #if directive caused a syntax error.

#line expected a line number

A #line directive lacked the required line-number
specification.

#include expected a file name

An #include directive lacked the required file-name
specification.

#define syntax

A #define directive caused a syntax error.

' character' : unexpected in macro definition

The given character was used incorrectly in a macro
definition.

251

Microsoft C Optimizing Compiler User’s Guide

Number

C2009

C2010

C2011

C2012

C2013

C2014

C2015

C2016

C2017

Cc2018

252

Compilation-Error Message

reuse of macro formal 'identifier'

The given identifier was used twice in the formal-parameter
list of a macro definition.

'character' : unexpected in formal list

The given character was used incorrectly in the formal-
parameter list of a macro definition.

"identifier' : definition too big

The given macro definitions exceeded 256 bytes.

missing name following '<'

An #include directive lacked the required file-name
specification.

missing '>'

The closing angle bracket (>) was missing from an
#include directive.

preprocessor command must start as first
non-whitespace

Non-white-space characters appear before the number sign
(#) of a preprocessor directive on the same line.

too many chars in constant

A character constant containing more than one character
or escape sequence was used.

no closing single quote

A character constant was not enclosed in single quotation
marks.

illegal escape sequence

The character or characters after the escape character (\)
did not form a valid escape sequence.

unknown character 'Oxcharacter'

The given hexadecimal number does not correspond to a
character.

Number

C2019

C2020

C2021

C2022

C2023

C2024

C2025

C2026

c2028

Error Messages

Compilation-Error Message

expected preprocessor command, found

' character'

The given character followed a number sign (#), but it was
not the first letter of a preprocessor directive.

bad octal number 'character'

The given character was not a valid octal digit.

expected exponent value, not 'character'

The given character was used as the exponent of a
floating-point constant but was not a valid number.
'number' : too big for char

The number was too large to be represented as a character.

divide by O

The second operand in a division operation (/) evaluated to
zero, giving undefined results.

mod by O

The second operand in a remainder operation (%)
evaluated to zero, giving undefined results.

"identifier' : enum/struct/union type
redefinition

The given identifier had already been used for an enumera-
tion, structure, or union tag.

'identifier' : member of enum redefinition

The given identifier had already been used for an enumera-
tion constant, either within the same enumeration type or
within another enumeration type with the same visibility.

struct/union member needs to be inside a
struct/union

Structure and union members must be declared within the
structure or union.

This error may be caused by an enumeration declaration
that contains a declaration of a structure member, as in the
following example:

253

Microsoft C Optimizing Compiler User’s Guide

Number

Cc2029

C2030

C2031

C2032

C2033

C2034

C2035

C2036

254

Compilation-Error Message

enum a {
january,
february,
int march; /* structure declaration:
**x illegal
*/
}:

'identifier' : bit-fields allowed only in
structs

Only structure types may contain bit fields.

'identifier' : struct/union member redefinition
The identifier was used for more than one member of the
same structure or union.

'identifier' : function cannot be struct/union
member

The given function was declared to be a member of a
structure.

To correct this error, use a pointer to the function instead.
'identifier' : base type with near/far/huge not
allowed

The given structure or union member was declared with the
near, far, or huge keyword.

"identifier' : bit-field cannot have
indirection

The given bit field was declared as a pointer (%), which is
not allowed.

'identifier' : bit-field type too small for
number of bits

The number of bits specified in the bit-field declaration
exceeded the number of bits in the given base type.
enum/struct/union 'identifier' : unknown size

The given structure or union had an undefined size.

left of 'member' must have struct/union type

The expression before the member-selection operator (—>)
was not a pointer to a structure or union type, or the

Number

C2037

C2038

C2039

C2040

C2041

C2042

C2043

C2044

Error Messages

Compilation-Error Message

expression before the member-selection operator (.) did not
evaluate to a structure or union. In this message, member is
a member designator in one of the following forms:

— >identifier
. tdentifier

left of '—>' or '.' specifies undefined
struct/union

The expression before the member-selection operator (—>
or .) identified a structure or union type that was not
defined.

'identifier' : not struct/union member

The given identifier was used in a context that required a
structure or union member.

'—>' requires struct/union pointer

The expression before the member-selection operator (—>)
was a structure or union name, not a pointer to a structure
or union as expected.

'.' requires struct/union name

The expression before the member-selection operator (.)
was a polnter to a structure or union, not a structure or
union name as expected.

keyword 'enum' illegal

The enum keyword appeared in a structure or union
declaration, or an enum type definition was not formed
correctly.

signed/unsigned keywords mutually exclusive
The signed and unsigned keywords may not appear in the
same declaration.

illegal break

A break statement is legal only when it appears within a
do, for, while, or switch statement.

illegal continue

A continue statement is legal only when it appears within
a do, for, or while statement.

255

Microsoft C Optimizing Compiler User’s Guide

Number Compilation-Error Message

C2045 Yidentifier' : label redefined

The given label appeared before more than one statement
in the same function.

C2046 illegal case

The case keyword may appear only within a switch
statement.

c2047 illegal default

The default keyword may appear only within a switch
statement.

C2048 more than one default

A switch statement contained more than one default
label.

C2050 non-integral switch expression

A switch expression was not integral.

C2051 case expression not constant

Case expressions must be integral constants.

C2052 case expression not integral

Case expressions must be integral constants.

C2053 case value number already used

The given case value was already used in this switch
statement.

C2054 expected ' (' to follow 'identifier’

The context requires parentheses after the function
identifier.

C2055 expected formal parameter list, not a type
list

An argument-type list appeared in a function definition
instead of a formal parameter list.

256

Number

C2056

C2057

C2058

C2059

C2060

C2061

C2062

C2063

C2064

C2065

C2066

C2067

Error Messages

Compilation-Error Message

illegal expression

An expression was illegal because of a previous error. (The
previous error may not have produced an error message.)
expected constant expression

The context requires a constant expression.

constant expression is not integral

The context requires an integral constant expression.

syntax error : 'token'

The given token caused a syntax error.

syntax error : EOF

The end of the file was encountered unexpectedly, causing a
syntax error. This error can be caused by a missing closing
curly brace (}) at the end of your program.

syntax error : identifier ‘'identifier'

The given identifier caused a syntax error.
type 'type' unexpected
The given type was misused.

'identifier' : not a function

The given identifier was not declared as a function, but an
attempt was made to use it as a function.

term does not evaluate to a function

An attempt was made to call a function through an expres-
sion that did not evaluate to a function pointer.

'identifier' : undefined

The given identifier was not defined.

cast to function returning . . . is illegal

An object was cast to a function type.

cast to array type is illegal

An object was cast to an array type.

257

Microsoft C Optimizing Compiler User’s Guide

Number

C2068

C2069

C2070

C2071

C2072

C2073

C2074

C2075

C2076

C2077

C2078

2568

Compilation-Error Message

illegal cast

A type used in a cast operation was not a legal type.

cast of 'void' term to non-void

The void type was cast to a different type.

illegal sizeof operand

The operand of a sizeof expression was not an identifier or
a type name.

'class' : bad storage class

The given storage class cannot be used in this context.

‘identifier' : initialization of a function
An attempt was made to initialize a function.
'identifier' : cannot initialize array in
function

An attempt was made to initialize the given array within a
function. Arrays can be initialized only at the external
level.

cannot initialize struct/union in function

An attempt was made to initialize the given structure or
union within a function. Structures and unions can be ini-
tialized only at the external level.

'identifier' : array initialization needs curly
braces

The braces ({ }) around the given array initializer were
missing.

"identifier' : struct/union initialization
needs curly braces

The braces ({ }) around the given structure or union initial-
izer were missing.

non-integral field initializer 'identifier’

An attempt was made to initialize a bit-field member of a
structure with a nonintegral value.

too many initializers

The number of initializers exceeded the number of objects
to be initialized.

Number

C2079

C2082

C2083

C2084

c2085

C2086

c2o87

Error Messages

Compilation-Error Message

'expression’ uses undefined struct/union

The given identifier was declared as a structure or union
type that had not been defined.

redefinition of formal parameter 'identifier'
A formal parameter to a function was redeclared within the
function body.

array 'udentifier' already has a size

The dimensions of the given array had already been
declared.

function 'ddentifier' already has a body

The given function had already been defined.

‘identifier' : not in formal parameter list
The given parameter was declared in a function definition
for a nonexistent formal parameter.

'identifier' : redefinition

The given identifier was defined more than once.

'identifier' : missing subscript

The definition of an array with multiple subscripts was
missing a subscript value for a dimension other than the
first dimension, as in the following example:

int func(a)

char a[10][]: /* Illegal */
{
}
int func(a)
char a[][5]: /* Legal */
{
¥

259

Microsoft C Optimizing Compiler User’s Guide

Number

c2088

c2089

C2090

C2091

C2092

C2093

C2094

C2095

C2096

260

Compilation-Error Message

use of undefined enum/struct/union 'identifier'
The given identifier referred to a structure or union type
that was not defined.

typedef specifies a near/far function

The use of the near or far keyword in a typedef declara-
tion conflicted with the use of near or far for the declared
item, as in the following example:

typedef int far FARFUNC():
FARFUNC near =*fp:

function returns array

A function cannot return an array. (It can return a pointer
to an array.)

function returns function

A function cannot return a function. (It can return a
pointer to a function.)

array element type cannot be function
Arrays of functions are not allowed; however, arrays of
pointers to functions are allowed.

cannot initialize a static or struct with
address of automatic vars

You cannot use the address of an auto variable in the ini-
tializer of a static item.

label 'identifier' was undefined

The function did not contain a statement labeled with the
given identifier.

function: actual has type void: parameter
number

An attempt was made to pass a void argument to a func-
tion. Formal parameters and arguments to functions can-
not have type void; they can, however, have type void *
(pointer to void).

struct/union comparison illegal

You cannot compare two structures or unions. {You can,
however, compare individual members within structures
and unions.)

Number

C2097

C2098

C2099

C2100

cz2101

C2102

C2103

C2104

C2105

C2106

C2107

Error Messages

Compilation-Error Message

illegal initialization

An attempt was made to initialize a variable using a non-
constant value.

non-address expression

An attempt was made to initialize an item that was not an
lvalue.

non-constant offset

An initializer used a nonconstant offset.

illegal indirection

The indirection operator (%) was applied to a nonpointer
value.

'&' on constant

The address-of operator (&) did not have an lvalue as its
operand.

'&' requires lvalue

The address-of operator must be applied to an lvalue
expression.

'&' on register variable

An attempt was made to take the address of a register
variable.

'&' on bit-field
An attempt was made to take the address of a bit field.

'operator' needs lvalue

The given operator did not have an lvalue operand.

'operator' : left operand must be lvalue

The left operand of the given operator was not an lvalue.

illegal index, indirection not allowed

A subscript was applied to an expression that did not
evaluate to a pointer.

261

Microsoft C Optimizing Compiler User’s Guide

Number

cz2108

C2109

C2110

cz2111

C2112

C2113

C2114

C2115

C2116

C2117

Cc2118

262

Compilation-Error Message

non-integral index

A nonintegral expression was used in an array subscript.

subscript on non-array

A subscript was used on a variable that was not an array.

'+' : 2 pointers

An attempt was made to add one pointer to another.

pointer + non-integral value

An attempt was made to add a nonintegral value to a
pointer.

jllegal pointer subtraction

An attempt was made to subtract pointers that did not
point to the same type.

'-' : right operand pointer

The right operand in a subtraction operation (—) was a
pointer, but the left operand was not.

'operator' : pointer on left; needs integral
right

The left operand of the given operator was a pointer; the
right operand must be an integral value.

"identifier' : incompatible types
An expression contained incompatible types.

operator : bad left (or right) operand

The specified operand of the given operator was illegal for
that operator.

'operator' : illegal for struct/union
Structure and union type values are not allowed with the
given operator.

negative subscript

A value defining an array size was negative.

Number

C2119

C2120

c2121

C2122

c2123

C2125

C2126

cz2127

Error Messages

Compilation-Error Message

'typedefs' both define indirection

Two typedef types were used to declare an item and both
typedef types had indirection. For example, the declara-
tion of p in the following example is illegal:

typedef int *P_INT;

typedef short *P_SHORT;

/* this declaration is illegal x/
P_SHORT P_INT p:

'void' illegal with all types

The void type was used in a declaration with another type.

typedef specifies different enum

An attempt was made to use a type declared in a typedef
statement to specify both an enumeration type and another

type.
typedef specifies different struct

An attempt was made to use a type declared in a typedef
statement to specify both a structure type and another

type.
typedef specifies different union

An attempt was made to use a type declared in a typedef
statement to specify both a union type and another type.

identifier : allocation exceeds 64K

The given item exceeds the size limit of 64K.

The only items that are allowed to exceed 64K are huge
arrays.

tdentifier : automatic allocation exceeds 32K
The space allocated for the local variables of a function
exceeded the limit of 32K.

parameter allocation exceeds 32K

The storage space required for the parameters to a function
exceeded the limit of 32K.

283

Microsoft C Optimizing Compiler User’s Guide

Number

c2128

Cc2129

C2130

C2131

C2132

C2133

C2134

264

Compilation-Error Message
tdentifier : huge array cannot be aligned to
segment boundary

The given array violated one of the restrictions imposed on
huge arrays; see Section 6.3.5, “Creating Huge-Model Pro-
grams,” for more information on these restrictions.
static function 'identifier' not found

A forward reference was made to a static function that was
never defined.

#line expected a string containing the file
name

A file name was missing from a #line directive.
attributes specify more than one
near/far/huge

More than one near, far, or huge attribute was applied to
an item, as in the following example:

typedef int near NINT;
NINT far a: /* Illegal */

syntax error : unexpected identifier

An identifier appeared in a syntactically illegal context.

array 'identifier' : unknown size

An attempt was made to declare an unsized array as local
variable, as in the following example:

int mat_add (arrayl)

int arrayl[]: /* Legal */

{

int array2[]; /* Illegal */
}

identifier : struct/union too large

The size of a structure or union exceeded the compiler limit
(232 bytes).

Number

C2135

C2137

Cc2138

C2139

C2140

C2141

C2142

C2143

Error Messages

Compilation-Error Message

missing ')' in macro expansion

A macro reference with arguments was missing a closing
parenthesis ()).

empty character constant

The illegal character constant ’’ was used.

unmatched close comment '/«'

The compiler detected an open-comment delimiter (/*)
without a matching close-comment delimiter (* /).

This error usually indicates an attempt to use illegal nested
comments.
type following 'ilype' is illegal

An illegal type combination such as the following was used:
long char a:

argument type cannot be function returning

A function was declared as a formal parameter of another
function, as in the following example:

int funcl (a)
int a(): /* Illegal »/
value out of range for enum constant
An enumeration constant had a value outside the range of
values allowed for type int.
ellipsis requires three periods

The compiler detected the token “..” and assumed that

..” was intended.

syntax error : missing 'tokenl' before
'token2'

The compiler expected token! to appear before token2. This
message may appear if a required closing curly brace (}),
right parenthesis ()), or semicolon () is missing.

265

Microsoft C Optimizing Compiler User’s Guide

Number

C2144

C2145

C2146

c2147

c2148

c2149

C2150

C2151

266

Compilation-Error Message

syntax error : missing 'token' before type

1] type|

The compiler expected the given token to appear before the
given type name. This message may appear if a required
closing curly brace (}), right parenthesis ()), or semicolon
(;) is missing.

syntax error : missing 'token' before
identifier

The compiler expected the given token to appear before an
identifier. This message may appear if a semicolon (;) does
not appear after the last declaration of a block.

syntax error : missing 'loken' before
identifier 'identifier'

The compiler expected the given token to appear before the
given identifier.

array : unknown size

An attempt was made to increment an index or pointer to
an array whose base type has not yet been declared.
array too large

An array exceeded the maximum legal size (2°2 bytes).
identifier : named bit-field cannot have O
width

The given named bit field had a zero width. Only unnamed
bit fields are allowed to have zero width.

identifier : bit-field must have type int,
signed int, or unsigned int

The ANSI C standard requires bit fields to have types of
int, signed int, or unsigned int. This message appears
only if you compiled your program with the /Za option.

more than one cdecl/fortran/pascal
attribute specified

More than one keyword specifying a function-calling con-
vention was given.

Number

C2152

C2153

C2154

C2155

C2156

C2157

C2158

C2159

Error Messages

Compilation-Error Message
tdentifier : pointers to functions with
different attributes

An attempt was made to assign a pointer to a function
declared with one calling convention (cdecl, fortran, or
pascal) to a pointer to a function declared with a different
calling convention.

hex constants must have at least 1 hex
digit

At least one hexadecimal digit must follow the “x”. The
hexadecimal constants Ox and 0X are illegal.

'name' : does not refer to a segment

The name was the first identifier given in an alloc_ text
pragma argument list and it is already defined as something
other than a segment name.

'name' : already in a segment

The function name appears in more than one alloc_ text
pragma.

pragma must be at outer level

Certain pragmas must be specified at a global level, outside
a function body, and there is an occurrence of one of these
pragmas within a function.

'name' : must be declared before use in
pragma list

The function name in the list of functions for an

alloc_ text pragma has not been declared prior to being
referenced in the list.

'name' : is a function

Name was specified in the list of variables in a
same_segment pragma, but was previously declared as a
function.

more than one storage class specified

Illegal declaration—only one storage class is allowed.

267

Microsoft C Optimizing Compiler User’s Guide

Number

C2160

C21e1l

C2162

Cc21e63

C2165

C21e67

c2168

C2169

C2170

268

Compilation-Error Message

cannot occur at the beginning of a macro
definition

A macro definition cannot begin with a token-pasting

(# #) operator.

cannot occur at the end of a macro
definition

A macro definition cannot end with a token-pasting (##)
operator.

expected macro formal parameter

The token following a stringizing operator (#) must be a
formal parameter name.

'string' : not available as an intrinsic

A function specified in the list of functions for an intrinsic
or function pragma is not one of the functions available in
intrinsic form.

'keyword' : cannot modify pointers to data
Bad use of fortran, pascal or edecl keyword to modify
pointer to data.

' function' : too many actual parameters for
intrinsic

A reference to the intrinsic function name contains too
many actual parameters.

'name' : too few actual parameters for
intrinsic

A reference to the intrinsic function name contains too few
actual parameters.

'function' : is an intrinsic, it cannot be
defined

An attempt was made to provide a function definition for a
function already declared as an intrinsic.

identifier : intrinsic not declared as a
function

You tried to use the intrinsic pragma for an item other
than a function, or for a function that does not have an
intrinsic form. (The section titled “Generating Intrinsic

Number

C2171

c2177

Error Messages

Compilation-Error Message

Functions” in Section 3.3.15 lists the functions that have
intrinsic forms.)

'operator' : bad operand

Illegal operand type for the specified unary operator.

constant too big

Information was lost because a constant value was too large
to be represented in the type to which it was assigned. (1)

E.3.3 Warning Messages

The messages listed in this section indicate potential problems but do not
hinder compilation and linking. The number in parentheses at the end of
each warning-message description gives the minimum warning level that
must be set for the message to appear.

Number

C4000

C4001

C4002

C4003

Warning Message

UNKNOWN WARNING
Contact Microsoft Technical Support.

The compiler detected an unknown error condition.

Please report this condition to Microsoft Corporation,
using the Product Assistance Request form at the back of
this manual.

macro 'identifier' requires parameters

The given identifier was defined as a macro taking one or
more arguments, but it was used in the program without
arguments. (1)

too many actual parameters for macro
"identifier'

The number of actual arguments specified with the given
identifier was greater than the number of formal parame-
ters given in the macro definition of the identifier. (1)

not enough actual parameters for macro
"identifier'

The number of actual arguments specified with the given
identifier was less than the number of formal parameters
given in the macro definition of the identifier. (1)

269

Microsoft C Optimizing Compiler User’s Guide

Number

C4004

C4005

C4006

C4009

C4011

C4014

C4015

C4016

270

Warning Message

missing close parenthesis after 'defined'
The closing parenthesis was missing from an #if defined
phrase. (1)

‘identifier' : redefinition

The given identifier was redefined. (1)

#undef expected an identifier

The name of the identifier whose definition was to be
removed was not given with the #undef directive. (1)
string too big, trailing chars truncated

A string exceeded the compiler limit on string size.

To correct this problem, break the string into two or more
strings. (1)

identifier truncated to 'identifier’

Only the identifier’s first 31 characters are significant. (1)

"identifier' : bit-field type must be unsigned
The given bit field was not declared as an unsigned type.
Bit fields must be declared as unsigned integral types. A
conversion has been supplied. (1)

"identifier' : bit-field type must be integral
The given bit field was not declared as an integral type.
Bit fields must be declared as unsigned integral types. A
conversion has been supplied. (1)

‘identifier' : no function return type, using
'int' as default

The given function had not yet been declared or defined, so
the return type was unknown.

The default return type (int) is assumed. (2)

Number

C4017

C4020

C4021

c4022

c4024

C4025

C4026

Error Messages

Warning Message

cast of int expression to far pointer

A far pointer represents a full segmented address. On

an 8086/8088 processor, casting an int value to a far poin-
ter may produce an address with a meaningless segment
value. (1

too many actual parameters

The number of arguments specified in a function call was
greater than the number of parameters specified in the
argument-type list or function definition. (1)

too few actual parameters

The number of arguments specified in a function call was
less than the number of parameters specified in the
argument-type list or function definition. (1)

pointer mismatch : parameter n

The pointer type of the given parameter was different from
the pointer type specified in the argument-type list or func-
tion definition. (1)

different types : parameter n

The type of the given parameter in a function call did not
agree with the type given in the argument-type list or func-
tion definition. (yls

function declaration specified variable
argument list

The argument-type list in a function declaration ended
with a comma or a comma followed by ellipsis dots (,...),
indicating that the function could take a variable number
of arguments, but no formal parameters were declared for
the function. (1)

function was declared with formal argument
list

The function was declared to take arguments, but the func-
tion definition did not declare formal parameters. (1)

271

Microsoft C Optimizing Compiler User’s Guide

Number

Cc4027

c4028

c4029

C4030

C4031

C4032

C4033

C4034

272

Warning Message

function was declared without formal
argument list

The function was declared to take no arguments (the
argument-type list consisted of the word void), but formal
parameters were declared in the function definition or argu-
ments were given in a call to the function. (1)

parameter n declaration different

The type of the given parameter did not agree with the
corresponding type in the argument-type list or with the
corresponding formal parameter. (1)

declared parameter list different from
definition

The argument-type list given in a function declaration did
not agree with the types of the formal parameters given in
the function definition. (1)

first parameter list is longer than the
second

A function was declared more than once with different
argument-type lists in the declarations. (1)

second parameter list is longer than the
first

A function was declared more than once with different
argument-type lists. (1) ‘
unnamed struct/union as parameter

The structure or union type being passed as an argument
was not named, so the declaration of the formal parameter
cannot use the name and must declare the type. Fl)
function must return a value

A function is expected to return a value unless it is declared
as void. (2)

sizeof returns O

The sizeof operator was applied to an operand that yielded
a size of zero. (1)

Number

C4035

C4036

C4037

C4038

C4039

C4040

C4041

Cc4042

Error Messages

Warning Message

identifier : no return value

A function declared to return a value did not do so. (2)

unexpected formal parameter list

A formal parameter list was given in a function declaration.
The formal parameter list is ignored. (1)

‘identifier' : formal parameters ignored

No storage class or type name appeared before the declara-
tors of formal parameters in a function declaration, as in
the following example:

int *f(a.b.c):
The formal parameters are ignored. (1)

'identifier' : formal parameter has bad storage
class

The given formal parameter was declared with a storage
class other than auto or register. (1)
'identifier' : function used as an argument

A formal parameter to a function was declared to be a func-
tion, which is illegal. The formal parameter is converted to
a function pointer. (1)

near/far/huge on 'tidentifier' ignored

The near or far keyword has no effect in the declaration of
the given identifier and is ignored. (1)

formal parameter 'identifier' is redefined

The given formal parameter was redefined in the function
body, making the corresponding actual argument unavail-
able 1n the function. (1)

'identifier' : has bad storage class

The specified storage class cannot be used in this context
(for example, function parameters cannot be given extern
class). The default storage class for that context was used
in place of the illegal class. (1)

273

Microsoft C Optimizing Compiler User’s Guide

Number

C4044

C4045

C4046

c4047

c4048

C4049

274

‘Warning Message

huge on 'identifier' ignored, must be an array
The huge keyword was used to declare the given nonarray
item. (1

'identifier' : array bounds overflow

Too many initializers were present for the given array. The
excess initializers are ignored. (1)

'&' on function/array, ignored

An attempt was made to apply the address-of operator (&)
to a function or array identifier. (1)

‘operator’ : different levels of indirection

An expression involving the specified operator had incon-
sistent levels of indirection. (1)

The following example illustrates this condition:

char *#*p;
char xq:

P =q

array's declared subscripts different

An array was declared twice with different sizes. The larger
size is used. (1)

‘operator' : indirection to different types

The indirection operator (*) was used in an expression to
access values of different types. (1)

Number

C4051

C4052

C4053

C4056

c4057

Cc4058

C4059

C4060

C4061

Error Messages

Warning Message

data conversion

Two data items in an expression had different types, caus-
ing the type of one item to be converted. (2)

different enum types

Two different enum types were used in an expression. (1)

at least one void operand

An expression with type void was used as an operand. (1)

overflow in constant arithmetic
The result of an operation exceeded Ox7FFFFFFF. (1)

overflow in constant multiplication
The result of an operation exceeded Ox7FFFFFFF. (1)

address of frame variable taken, DS != SS

The program was compiled with the default data segment
(DS) not equal to the stack segment (SS), and the program
tried to point to a frame variable with a near pointer. %1)

segment lost in conversion

The conversion of a far pointer (a full segmented address‘)
to a near pointer (a segment offset) resulted in the loss o
the segment address. (1)

conversion of long address to short address

The conversion of a long address (a 32-bit pointer) to a
short address (a 16-bit pointer) resulted in the loss of the
segment address. (1)

long/short mismatch in argument: conversion
supplied

The base types of the actual and formal arguments of a
function were different. The actual argument is converted
to the type of the formal parameter. (1)

275

Microsoft C Optimizing Compiler User’s Guide

Number

C4062

C4063

C4064

C4065

C4066

276

Warning Message

near/far mismatch in argument: conversion
supplied

The pointer sizes of the actual and formal arguments of a
function were different. The actual argument is converted
to the type of the formal parameter. (1)

"identifier' : function too large for post-
optimizer

The given function was not optimized because not enough
space was available. To correct this problem, reduce the
size of the function by dividing it into two or more smaller
functions. (0)

procedure too large, skipping description
optimization and continuing

Some optimizations for a function were skipped because not
enough space was available for optimization. (0)

To correct this problem, reduce the size of the function by
dividing it into two or more smaller functions.

The description in this message may appear as any of the
following:

loop inversion
branch sequence
cross jump

recoverable heap overflow in post-optimizer
- some optimizations may be missed

Some optimizations were skipped because not enough space
was available for optimization. To correct this problem,
reduce the size of the function by dividing it into two or
more smaller functions. (0)

local symbol table overflow - some local
symbols may be missing in listings

The listing generator ran out of heap space for local vari-
ables, so the source listing may not contain symbol-table
information for all local variables.

Number

C4067

Cc4068

C4069

C4071

C4072

C4073

C4074

Error Messages

Warning Message

unexpected characters following 'directive'
directive - newline expected

Extra characters followed a preprocessor directive, as in the
following example (1):

#endif NO_EXT_KEYS

This is accepted in Version 3.0, but not in Versions 4.0 and
5.0. Versions 4.0 and 5.0 require comment delimiters, such
as the following:

#endif /* NO_EXT_KEYS +/

unknown pragma

The compiler did not recognize a pragma and ignored it. (1)

conversion of near pointer to long integer

A near pointer was converted to a long integer, which
involves first extending the high-order word with the
current data-segment value, not O as in Version 3.0. (1)

'identifier' : no function prototype given

The given function was called before the compiler found the
corresponding function prototype. (3)

Insufficient memory to process debugging
information

You compiled the program with the /Zi option, but not
enough memory was available to create the required debug-
ging information. (1)

scoping too deep, deepest scoping merged
when debugging

Declarations appeared at a static nesting level greater than
13. As a result, all declarations will seem to appear at the
same level. (1)

non standard extension used - 'exiension'

The given nonstandard language extension was used when
the /Ze option was in effect. These extensions are given in
Section 3.3.14, “Enabling and Disabling Language Exten-
sions.” (If the /Za option is in effect, this condition gen-
erates an error.) (3) '

277

Microsoft C Optimizing Compiler User’s Guide

Number

C4075

C4076

C4077

C4079

C4080

c4081

C4082

C4083

Cc4084

C4085

278

‘Warning Message
size of switch expression or case constant
too large - converted to int

A value appearing in a switch or case statement was
larger than an int. The compiler converts the illegal value
to an int. (1)

"type' : may be used on integral types only
The type modifiers signed and unsigned can be combined
only with other integral types.

unknown check_stack option

Unknown option given when using the old form of the
check_stack pragma. The option must be empty, 4, or —.

unexpected token 'token'

An unexpected token was found in the argument list of a
pragma.

missing segment name

The first argument in the argument list for the alloc_text
pragma is missing a segment name. This happens if the first
token in the argument list is not an identifier.

expected a comma

There is a missing comma (,) between two arguments of a
pragma.

expected an identifier

There is a missing identifier in list of arguments to a
pragma.

missing ' ('

There is a missing opening parenthesis (() in the argument
list for a pragma.

expected a pragma keyword

The token following the pragma keyword is not an
identifier.

expected [onlo ff]

Bad argument given for new form of check—stack pragma.

Number

Cc4086

c4087

Cc4090

C4091

C4092

C4093

C4094

C4095

Error Messages

Warning Message

expected [1]2]4]
Bad argument given for pack pragma.

'name' : declared with void parameter list
The function name was declared as taking no parameters,
but a call to the function specifies actual parameters.
different 'const' attributes

The program passed a pointer to a const item to a function
where the corresponding formal parameter is a pointer to a
non-const item, which means the item could be modified by
the function undetected.

no symbols were declared

An empty declaration was detected. (2)

untagged enum/struct/union declared no
symbols

An empty declaration was detected that used an untagged
enum/struct/union. (2)

unescaped newline in character constant in
non-active code

The constant expression of an #if, # elif, #ifdef, or
#ifndef preprocessor directive evaluated to O, making the
following code inactive, and a new-line character appeared
between a single or double quotation mark and the match-
ing single or double quotation mark in that inactive code.

unexpected newline

A new-line character appeared in a pragma where a comma,
right parenthesis, or identifier was expected, as in the fol-
lowing examples:

#fpragma intrinsic (memset
#pragma intrinsic (memset,

too many arguments for pragma

More than one argument was given for a pragma that can
take only one argument.

279

Microsoft C Optimizing Compiler User’s Guide

E.3.4 Compiler Limits

To operate the Microsoft C Optimizing Compiler, you must have sufficient
disk space available for the compiler to create temporary files used in pro-
cessing. The space required is approximately two times the size of the

source file.

Table E.1 summarizes the limits imposed by the C compiler. If your pro-
gram exceeds one of these limits, an error message will inform you of the

problem.

Table E.1

Limits Imposed by the C Compiler

Program Item

Description

Limit

String literals

Constants

Identifiers

Declarations

Preprocessor
directives

Maximum length of a string,
including the terminating null
character (\ 0)

Maximum size of a constant is
determined by its type; see
the Microsoft C Language
Reference for a discussion of
constants.

Maximum length of an
identifier

Maximum level of nesting for
structure/union definitions

Maximum size of a macro
definition

Maximum number of actual
arguments to a macro
definition

Maximum length of an actual
preprocessor argument
Maximum level of nesting for

if, # ifdef, and # ifndef
directives

Maximum level of nesting for
include files

512 bytes

31 bytes (additional
characters are
discarded)

10 levels

512 bytes

8 arguments

256 bytes

32 levels

9 levels

The compiler does not set explicit limits on the number and complexity of
declarations, definitions, and statements in an individual function or in a
program. If the compiler encounters a function or program that is too
large or too complex to be processed, it produces an error message to that
effect.

280

E.4

Error Messages

Run-Time Error Messages

Run-time error messages fall into the following four categories:

1.

Error messages generated by the run-time library to notify you of

serious errors. These messages are listed and described in Section
E4.1.

Floating-point exceptions generated by the 8087/80287 hardware
or the emulator. These exceptions are listed and described in Sec-
tion E.4.2.

Error messages generated by program calls to error-handling rou-
tines in the C run-time library (the abort, assert, and perror rou-
tines). These routines print an error message to standard error
whenever the program calls the given routine. For descriptions of
these routines and the corresponding error messages, see the Micro-
soft C Run-Time Library Reference.

Error messages generated by calls to math routines in the C run-
time library. On error, the math routines return an error value and
some print a message to the standard error. See the Microsoft C
Run-Tvme Library Reference for descriptions of the math routines
and corresponding error messages.

E.4.1 Run-Time-Library Error Messages

The following messages may be generated at run time when your program
has serious errors. Run-time error-message numbers range from R6000 to

R6999.

A run-time error message takes the following general form:

run-time error R6nnn

- messagetext ;
Number Run-Time-Library Error Message
R6000 stack overflow

Your program has run out of stack space. This can occur
when a program uses a large amount of local data or is
heavily recursive. The program was terminated with an exit
code of 255.

281

Microsoft C Optimizing Compiler User’s Guide

Number

R6001

R6002

282

Run-Time-Library Error Message

To correct the problem, recompile using the /F option of
the CL command or relink using the linker /STACK
option to allocate a large stack, or modify the stack infor-
mation in the executable-file header by using the EXE-
MOD program. (See Chapter 15 of the Microsoft CodeView
and Utilities manual for information about the EXEMOD
program.)

null pointer assignment

The contents of the NULL segment have changed in the
course of program execution. The NULL segment is a spe-
cial location in low memory that is not normally used. If
the contents of the NULL segment change during a
program’s execution, it means that the program has written
to this area, usually by an inadvertent assignment through
a null pointer. Note that your program can contain null
pointers without generating this message; the message
appears only when you access a memory location through
the null pointer.

This error does not cause your program to terminate; the
error message is printed following the normal termination
of the program. This error yields a nonzero exit code.

This message reflects a potentially serious error in your pro-
gram. Although a program that produces this error may
appear to operate correctly, it is likely to cause problems in
the future and may fail to run in a different operating
environment.

floating point not loaded

Your program needs the floating-point library, but the
library was not loaded. The error causes the program to be
terminated with an exit status of 255. This occurs in two
situations:

1. The program was compiled or linked with an option
(such as /FPi87) that required an 8087 or 80287
coprocessor, but the program was run on a machine
that did not have a coprocessor installed.

To fix this problem, either recompile the program
with the /FPi option, relink with an emulator

Number

R6003

R6005

R6006

R6007

R6008

Error Messages

Run-Time-Library Error Message

library (mLIBCE.LIB), or install a coprocessor.
(See Section 3.3.1 of this manual for more informa-
tion about these options and libraries.)

2. A format string for one of the routines in the printf
or scanf families contains a floating-point format
specification and there are no floating-point values
or variables in the program. The C compiler
attempts to minimize the size of a program by load-
ing floating-point support only when necessary.
Floating-point format specifications within format
strings are not detected, so the necessary floating-
point routines are not loaded.

To correct this error, use a floating-point argument
to correspond to the floating-point format
specification. This causes floating-point support to

be loaded.
integer divide by O

An attempt was made to divide an integer by 0, giving an
undefined result. This error terminates the program with an
exit code of 255.

not enough memory on exec

Errors R6005 through R6007 occur when a child process
spawned by one of the exec library routines fails and MS-
DOS could not return control to the parent process. This
error indicates that not enough memory remained to load
the program being spawned.

bad format on exec

The file to be executed by one of the exec functions was
not in the correct format for an executable file.

bad environment on exec

During a call to one of the exec functions, MS-DOS deter-
mined that the child process was being given a bad environ-
ment block.

not enough space for arguments

See explanation under error R6009.

283

Microsoft C Optimizing Compiler User’s Guide

Number Run-Time-Library Error Message

R6009 not enough space for environment

Errors R6008 and R6009 both occur at start-up if there is
enough memory to load the program, but not enough room
for the argv vector, the envp vector, or both. To avoid
this problem, rewrite the —setargv or _setenvp routines
(see Section 5.2.2, “Suppressing Command-Line Process-
ing,” for more information).

E.4.2 Floating-Point Exceptions

The error messages listed below correspond to exceptions generated

by the 8087 /80287 hardware. Refer to the Intel documentation for your
processor for a detailed discussion of hardware exceptions. These errors
inay also be detected by the floating-point emulator or alternate math
ibrary.

If you use the C-language default 8087 /80287 control-word settings, the
following exceptions are masked and do not occur:

Exception Default Masked Action
Denormal Exception masked.
Underflow Result goes to 0.0.
Inexact Exception masked.

For information on how to change the floating-point control word, see the
reference pages for _control87 in the Microsoft C Run- Time Library
Reference.

The following errors do not occur with code generated by the Microsoft C
Optimizing Compiler or provided in the Microsoft C Run-Time Library:

Square root
Stack underflow
Unemulated

The floating-point exceptions have the following format:

run-time error M6lnn: MATH
- floating-point error: messagetext

284

Error Messages

The floating-point exceptions are listed and described below.
Number Floating-Point Exception

M6101 invalid

An invalid operation occurred. This usually involves
operating on a NAN or an infinity. This error terminates
the program with exit code 129.

M6102 denormal

A very small floating-point number was generated, which
may no longer be valid due to loss of significance. Denor-
mals are normally masked, causing them to be trapped and
operated on. This error terminates the program with exit
code 130.

M6103 divide by O

An attempt was made to divide by zero. This error ter-
minates the program with exit code 131.

M6104 over flow

An overflow occurred in a floating-point operation. This
error terminates the program with exit code 132.

M6105 under flow

An underflow occurred in a floating-point operation. (An
underflow is normally masked so that the underflowing
value is replaced with 0.0.) This error terminates the pro-
gram with exit code 133.

M6106 inexact

Loss of precision occurred in a floating-point operation.
This exception is normally masked, since almost any
floating-point operation can cause loss of precision. This
error terminates the program with exit code 134.

M6107 unemulated

An attempt was made to execute an 8087/80287 instruction
that is invalid or is not supported by the emulator. This
error terminates the program with exit code 135.

M6108 square root

The operand in a square-root operation was negative. This
error terminates the program with exit code 136. (Note:

the sqrt function in the C run-time library checks the argu-
ment before performing the operation and returns an error

285

Microsoft C Optimizing Compiler User’s Guide

Number

M6110

M6111

M6112

Floating-Point Exception

value if the operand is negative; see the Microsoft C' Run-
Time Library Reference for details on sqrt.)

stack overflow

A floating-point expression caused a stack overflow on the
8087 or 80287 coprocessor or the emulator. (Stack-overflow
exceptions are trapped up to a limit of seven levels in addi-
tion to the eight levels normally supported by the 8087 or
80287 coprocessor.) This error terminates the program with
exit code 138.

stack underflow

A floating-point operation resulted in a stack underflow on
the 8087 or 80287 coprocessor or the emulator. This error
terminates the program with exit code 139.

explicitly generated

A signal indicating a floating-point error was sent using a
raise (SIGFPE) call. This error terminates the program
with exit code 140.

E.4.3 Run-Time Limits

Table E.2 summarizes the limits that apply to programs at run time. If
your program exceeds one of these limits, an error message will inform you
of the problem.

286

Table E.2

Program Limits at Run Time

Item Description Limit

Files Maximum file size 2821 bytes

(4 gigabytes)

Maximum number 20*
of open files (streams)

Command line Maximum number of 128
characters (including
program name)

Environment Maximum size 32K

table

2 Five streams are opened automatically (stdin, stdout, stderr, stdaux, and
stdprn), leaving 15 files available for the program to open.

(GLOSSARY

The definitions in this glossary are intended primarily for use with this
manual, the Microsoft C Language Reference, and the Microsoft C Run-
Time Library Reference. Neither individual definitions nor the list of
terms is comprehensive.
8087 or 80287 coprocessor
Intele hardware products that provide very fast and precise number
processing.
- abstract declarator
A declarator without an identifier, consisting of a type and, optionally,
one or more pointer, array, or function modifiers.
aggregate types
Arrays, structures, and unions.

alias

One of several alternative names for the same memory location.

alternate math library

A model-dependent floating-point library that uses a subset of the
Institute of Electrical and Electronics Engineers, Inc. (IEEE) number
format. Linking with this library results in the smallest, fastest pro-
grams available without a coprocessor, but sacrifices some accuracy in
results for speed.

ANSI (American National Standards Institute)

The national institute responsible for defining programming-language
standards to promote portability of these languages between different
computer systems.

argument

A value passed to a function.

argument-type list

In a function prototype, a list of abstract declarators, separated by
commas, indicating the types of actual arguments in the function call.
Used to make sure the actual arguments in the function call
correspond to the formal parameters in the function definition.

287

Microsoft C Optimizing Compiler User’s Guide

argce

The traditional name for the first argument to the main function in a
C source program: an integer specifying how many arguments are
passed to the program from the command line.

argv

The traditional name for the second argument to the main function in
a C source program: a pointer to an array of strings. Traditionally, the
first string is the program name and each following string is an argu-
ment passed to the program from the command line.

arithmetic conversion

Conversion operations performed on items of integral and floating-
point types used in expressions.

arithmetic types

Integral, enumeration, and floating-point data types.

array

A set of elements with the same type.

ASCII (American Standard Code for Information Interchange)

A set of 256 codes that many computers use to represent letters, digits,
special characters, and other symbols. Only the first 128 of these codes
are standardized; the remaining 128 are special characters that are
defined by the computer manufacturer.

associativity

Referring to operators, the precedence rules that apply when more
than one operator is assigned to an operand. (For example, in the
expression *p++, the indirection operator * is applied before the unary
increment operator ++.)

base name

The portion of the file name that precedes the file-name extension. For
example, samp is the base name of the file samp.c.

batch file

A text file containing MS-DOS commands that can be invoked from
the MS-DOS command line.

binary expression

An expression consisting of two operands joined by a binary operator.

288

Glossary

binary operator

Operators used in binary expessions. Binary operators in the C
language are the multiplicative operators (* /), additive operators
+ —), shift operators (< << >>>), relational operators

< > <= >= == I!=), bitwise operators (& |), logical
operators (&& | |), and sequential-evaluation operator (,).
block

A sequence of declarations, definitions, and statements enclosed within
curly braces ({}).

child process

A new process started by a currently running process.

CL

The command used by the Microsoft C Optimizing Compiler to com-
pile and link programs.

compact memory model

A memory model that allows for more than one data segment and only
one code segment,.

complex declarator

A declaration containing more than one array, pointer, or function
modifier.
constant expression

Any expression that evaluates to a constant and may involve integer
constants, character constants, floating-point constants, enumeration
constants, type casts to integral and floating-point types, and other
constant expressions.

declaration

A construct that associates the name and the attributes of a variable,
function, or type.
declarator

An identifier that can be modified with brackets ([]), asterisks (%), or
parentheses (()) to declare an array, pointer, or function type, respec-
tively.

definition

A construct that initializes and allocates storage for a variable, or that
specifies the name, formal parameters, body, and the return type of a
function.

289

Microsoft C Optimizing Compiler User’s Guide

directive

An instruction to the C preprocessor to perform a specific action on
source-program text before compilation.

emulator

A floating-point math package that provides software emulation of the
operations of a math coprocessor.

enumeration set

The set of legal values defined for an enumeration type.

enumeration type
A user-defined data type that specifies a particular set of legal values.

environment table

The part of MS-DOS that stores environment variables and their
values.

environment variable

A variable stored in the environment table that provides MS-DOS with
information (where to find executable files and library files, where to
create temporary files, etc.).

errorlevel code

See exit code.

escape sequence

A specific combination of a backslash (\) followed by a letter or combi-
nation of digits, which represents white-space and nongraphic charac-
ters within strings and character constants.

exit code

A code returned by a program to MS-DOS indicating whether or not
the program ran successfully.

expression

A combination of operands and operators that yields a single value.

external level

The part of a C program outside of all function declarations.

290

Glossary

file handle
A value returned by library functions that open or create files, used to
refer to that file in later operations.

file pointer
A pointer that indicates the current position in an input or output
stream. It is updated to reflect the new position each time a read or
write operation takes place.

formal parameters
Variables that receive values passed to a function when the function is
called.

forward declaration

A function declaration that establishes the attributes of a function so
that it can be called before it is defined or called from a different
source file.

function

A collection of declarations and statements returning a value that can
be called by name.

function body

A compound statement containing the local variable declarations and
statements of a function.

function call

An expression that passes control and actual arguments (if any) to a
function.

function declaration
A declaration that establishes the name, return type, and storage class
of a function that is defined explicitly elsewhere in the program.
function definition

A definition that specifies a function’s name, its formal parameters, the
declarations and statements that define what it does, and (optionally)
its return type and storage class.

function prototype

A function declaration that includes a list of the names and types of
formal parameters in the parentheses following the function name.

291

Microsoft C Optimizing Compiler User’s Guide

fundamental data types

A set of basic C data types, which includes all integer, character,
floating-point, and enumeration types.

global
See lifetime; visibility.
heap

An area of memory set aside for dynamic allocation by a program.

huge memory model

A memory model that allows for more than one code segment and
more than one data segment and that allows individual data items to
span more than one segment.

include file

A text file that is merged into another text file using the #include
preprocessor directive.

internal level

The parts of a C program within function declarations.

keyword

A word with a special, predefined meaning for the C compiler.

level

See internal level and external level.

large memory model

A memory model that allows for more than one segment of code and
more than one segment of data, but with no individual data items
spanning a single segment.

library

A file that stores related modules of compiled code. The linker extracts
modules from the library and combines them with other program
object modules to create executable program files.

lifetime

The period, during program execution, within which a variable or
function exists. An item with a “local” lifetime (a “local item”) has
storage and a defined value only within the block where the item is
defined or declared.

292

Glossary

linked list

A data structure consisting of a list of entries, each of which includes a
pointer to the next entry.

local

See lifetime; visibility.

loop optimization

Optimizations that reduce the amount of code executed for each loop
iteration in a program.

low-level input and output routines

Run-time library routines that perform unbuffered, unformatted I/O
operations.

lvalue

An expression (such as a variable name) that refers to a memory loca-
tion and is required as the left-hand operand of an assignment opera-
tion or the single operand of a unary operator.

macro

An identifier defined in a # define preprocessor directive to represent
another series of tokens.

manifest constant

An identifier defined in a # define preprocessor directive to represent a
constant value.

medium memory model

A memory model that allows for more than one code segment and only
one data segment.

member

One of the elements of a structure or union.

memory model

One of the models that specifies how memory is set up for program
code and data. (See small memory model, medium memory
model, compact memory model, large memory model, and huge
memory model for descriptions of standard memory models.)

MS-DOS interface functions

Run-time library routines that provide access to MS-DOS interrupts
and system calls.

293

Microsoft C Optimizing Compiler User’s Guide

multidimensional array

An array of arrays.

NAN

An abbreviation that stands for “not a number.” The 8087 or 80287
coprocessor generates NANs when the result of an operation cannot be
represented in the IEEE format. For example, if you try to add two
positive numbers whose sum is larger than the maximum value permit-
ted by the processor, the coprocessor returns a NAN instead of the
sum.

naming classes
Categories that the language sets up to distinguish between the
identifiers used for different kinds of items.

new-line character

The character used to mark the end of a line of a text file, or the
escape sequence (\n) used to represent this character. In MS-DOS
“text mode,” carriage-return-line-feed (CR-LF) combinations are
translated to into a single line-feed (LF) character on input, and line-
feed characters are translated to carriage-return-line-feed combina-
tions on output.

null character

The ASCII character encoded as the value O, represented as the escape
sequence (\0) in a source file.

null pointer

A pointer to nothing, expressed as the integer value 0.

object

A region of memory that can be examined. A modifiable object can
also have a value stored into it (that is, it can be altered as well as
examined).

object file

A file containing relocatable machine code, created as the result of
compiling a source file.

operand

A constant or variable value that is manipulated in an expression.

294

Glossary

operator

One or more symbols that specify how the operand or operands of an
expression are manipulated.

overlay

Part of a program that is read into memory from disk only if and when
it is needed.

parent process

A process that generates a child process using one of the spawn, exec,
or system families of run-time library functions.

pass

One of the three stages of compilation (preprocessing/parsing, code
generation, and optimization), or the executable file that performs one
of these stages.

peephole optimization

Optimizations performed on a small part of the generated code.

pointers

A variable containing the address of another variable.

pragma

An instruction to the compiler to perform a particular action at com-
pile time.

precedence

The relative position of an operator in the hierarchy that determines
the order in which expressions are evaluated.

preprocessor

A text processor that manipulates the contents of a C source file dur-
ing the first phase of compilation.

preprocessor directive

See directive.

process
A program being executed by MS-DOS.

296

Microsoft C Optimizing Compiler User’s Guide

prototype
See function prototype.
RAM disk

An area of memory that is used to load and save files in the same way
as a disk drive but allows more rapid access to files than a disk drive.
Unlike a disk drive, a RAM disk is not suitable for long-term storage
becuase its contents are volatile: that is, they disappear if the machine
is powered off.

relocatable

Not containing absolute addresses.

run time

The time during which a previously compiled and linked program is
executing.

run-time library

A file containing the routines needed to implement certain functions of
the Microsoft C language.

scalar types

In C, integral, enumerated, floating-point, and pointer types.

scope

The parts of a program in which an item can be referenced by name.
The scope of an item may be limited to the file, function, block, or
function prototype in which it appears.

segment

An area of memory, less than or equal to 64K, containing code or data.

sequence point

A point in a C program where all expressions lexically preceding the
point are guaranteed to have been evaluated.

side effects

Changes in the state of objects that occur as a result of expression
evaluation.

sizeof operator

A C operator that can be used to determine the amount of storage, in
bytes, associated with an identifier or a type.

296

Glossary

small memory model

A memory model that allows for only one code segment and only one
data segment.

source file

A text file containing C-language code.
stack

A dynamically shrinking and expanding area of memory in which data
items are stored in consecutive order and removed on a last-in, first-
out basis.

stack probe

A short routine called on entry to a function to verify that there is
enough room in the program stack to allocate local variables required
by the function and, if so, to allocate those variables.

static

A storage class that allows variables keep their values even after the
program exits the block in which the variable is declared.

stream functions

Run-time library functions that treat data files and data items as
“streams” of individual characters.

string
An array of characters, terminated by a null character (\0).

string literal

A string of characters and escape sequences delimited by double quotes
(" "). Every string literal has a type of “array of char.” An array of
elements with char type.

structure

A set of elements, which may be of different types, grouped under a
single name.

structure member

One of the elements of a structure.

subscript expression

An expression, usually used to reference array elements, representing
an address that is offset from a specified base address by a given
number of positions.

297

Microsoft C Optimizing Compiler User’s Guide

symbolic constant

See manifest constant.

tag

The name assigned to a structure, union, or enumeration type.

ternary expression

An expression consisting of three operands joined by the ternary (?:)
operator, used to evaluate either of two expressions depending on the
value of a third expression.

text mode

The file-processing mode in which carriage-return-line-feed combina-
tions are converted to a single line-feed character on input and recon-
verted to carriage-return-line-feed combinations on output.

token

The most fundamental unit of a C source program that is meaningful
to the compiler.

two’s complement

A type of base-2 notation used to represent positive and negative
numbers in which negative values are formed by complementing all
bits and adding 1 to the results.

type

A description of a set of values; for example, a variable of type int can
have any of a set of integer values within the range specified for the
type on a particular machine.

type cast

An operation in which an operand of one type is converted to an
operand of a different type.

type checking

An operation in which the compiler verifies that the operands of an
operator are valid or that the actual arguments in a function call are
of the same types as the corresponding formal parameters in the func-
tion definition and function prototype.

298

Glossary

type declaration

A declaration that defines the name and members of a structure or
union type, or the name and enumeration set of an enumeration type.

typedef declaration

A declaration that defines a shorter or more meaningful name for an
existing C data type or for a user-defined data type. Names defined in
a typedef declaration are often referred to as “typedefs.”

type name

A specification of a particular data type that appears in variable
declarations, in the formal-parameter lists of function prototypes, in
type casts, and in sizeof operations.

unary expression

An expression consisting of a single operand preceded or followed by a
unary operator.

unary operator

An operator that takes a single operand. Unary operators in the C
language are the complement operators (— ~ !3’, indirection operator
*), increment £++) and decrement (--) operators, address-of operator
&5, and sizeof operator. The unary plus operator (+) is also imple-
mented syntactically, but has no semantics associated with it.

union

A set of values of different types that occupy the same storage space.

unresolved reference

A reference to a global or external variable or function that cannot be
found, either in the modules being linked or in the libraries that are
linked with those modules.

usual arithmetic conversions

Type conversions performed by the Microsoft C Optimizing Compiler
on operands of integral or floating-point types in an expression to
bring the operands to a common type.

299

Microsoft C Optimizing Compiler User’s Guide

visibility
The characteristic of a variable or function that describes the parts of
the program in which it can be referenced by name. An item has global

visibility if it is visible in all source files constituting the program and
local visibility in a single source file otherwise.

white-space character

Characters that delimit items in a C source program, including space,
tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line
characters.,

wild card

One of the MS-DOS characters (? and *) that can be expanded into one
or more characters in file-name references.

300

[JSER’S (GUIDE [NDEX

* Last,erisk), wild-card character, 130
| (bar), 10
} (braces), 10
] gbra,ckets}, 9
(forward slash) option character
CL, 53
linker, 119
- (hyphen) option character, CL, 53
? {question mark), wild-card character,
130
— (underscore), in names, 61, 73

80186/80188 processor, 81
80286 processor, 81
8087 /80287
coprocessor
exceptions, 175
math package, 164
suppressing use of, 174
library, 27
87.LIB, 27

/A option, 152, 153, 154
Abstract declarator, defined, 287
/AC option, 54, 141
Address space, 217
Addresses
components, 138
far, 138
huge, 138
near, 138
Aggregate types, defined, 287
/AH option, 54, 143
/AL option, 54, 142
Alias checking, 89
Alignment. See Storage alignment
alloc_. text pragma, 159
Alternate math library, 169
/AM option, 54, 141
argc variable, 30, 42, 128
Arguments
argument-type list, defined, 287
command line, 131
linker options, 119
listing options, 62
macros, 280
main function. See main function
variable number of, 106, 183, 221

Arguments (continued)
wild card, on command line, 130
Argument-type list, 86
argv variable, 30, 42, 128
/AS option, 54, 140
Assembly-listing files
creating, 61
extensions, 62
format, 71
Asterisk (*), wild-card character, 31,
130
AUTOEXEC.BAT file, 26
AUX (device name), 64
/Aw option, 109

Back-up procedures, 15
Bar (|), 10
Base name, defined, 288
éB;ATCH (/Bg linker option, 121
tch files, 191
BEGDATA class name, 124
Bibliography, 11
\ BIN subdirectory, 24
EBIN\ SAMPLE subdirectory, 25, 26
inary mode, 31, 111 '
BINMODE.OBJ, 25, 31, 111
Bit fields, 215
Bold font, 8
Braces ({ }), 10
Brackets 3, 9
BSS class name, 124
Buffers parameter (CONFIG.SYS), 16,
26, 37
Byte length, 212
Byte order, 214, 225

/¢ option, 40, 57
/C option, 80
C1.EXE file, 29
C2.EXE file, 29
C3.EXE file, 29
Calling conventions
C, 106, 183
controlling
cdecl keyword, 107
fortran and pascal keywords, 107
Gc option, 107
FORTRAN/Pascal, 106, 183

301

User’s Guide Index

Capital letters
small, 10
use of, 8
Carriage-return-line-feed (CR-LF)
translation, 111
Case significance
linker, 120, 123
cdecl keyword
defined, 107
Gc option, used with, 184
include files, used in, 100
/Za option, used with, 99
char type, changing default, 105
Character
classification, macros, 218
set, 217
types
signed, 218
unsigned, 218
check_stack pragma, 97, 106, 183
CL command
defined, 289
exit codes, 192
file processing, 48
format, 48
path specifications, 50
stopping, 51
CL environment variable, 51
CL options
80186,/80188 or 80286 processors,
using, 81
/A, 152, 153, 154
JAC, 54, 141
/AH, 54, 143
/AL, 54, 142
/AM, 54, 141
/AS, 54, 140
assembly listing, 61
JAw, 109
/¢, 40, 57
/C, 80
case sensitivity of, 50, 53
command line, order, 54
comments, preserving, 80
constants and macros, defining, 75
/D, 75
data segments, naming, 157, 159, 185
data threshold, setting, 156
debugging with CodeView debugger,
41, 87
debu%ging with SYMDEB debugger,
8

default char type, changing, 105
default libraries, 55

differences from linker options, 120
JE, 79 '

302

CL options (continued)
EP, 79
external names, restricting length of,
103
/F, 123
/Fa, 61, 71
/Fe, 61
/Fe, 60
/Fl, 61
floating point
coprocessor, maximum efficiency
with, 168
coprocessor, maximum efficiency
without, 169
COprocessor, maximum precision
with, 168
coprocessor, maximum precision
without, 167
default, 167
default libraries, 54, 165
effects, 165
flexibility, maximum, 172, 174
function calls, 168, 169
in-line instructions, 167, 168, 169,
170
library use, controlling, 170
/Fm, 61
/Fo, 58
format, 53
FORTRAN/Pascal, calling
convention, 107
/FPa, 55, 165, 169
/FPc, 55, 165, 168
/FPc87, 55, 165, 169
/FPi, 55, 165, 167
/FPi87, 55, 165, 168
/Fs, 41,61
function declarations, generating, 86
/GO, 81
/G, 81
/G2, 81
/Ge, 107
/Gs, 97, 106, 183
/Gt, 156
/Gw, 109
, 103
/HELP, 39, 56
/L, 80
include files, searching for, 80
J, 105
anguage extensions, disabling, 99
line numbers, 87
line width, 65
link, 48, 115
inker information, passing, 115
listing, 39, 56

CL options (continued)
maximum optimization, 89
memory models
code-pointer size, 153
compact, 141
data-pointer size, 153
default libraries, 54
huge, 143
large, 142
medium, 141
mixed, 152, 153, 154
segments, setting up, 109, 154
small, 140

naming
executable files, 60
modules, 157
object files, 58

/ND, 157, 159, 185

/NM, 157

/NT, 157

/Oa, 89, 182

object files
labeling, 103
naming, 58
specifying, 48

object listing, 61

/Od, 41, 87, 93

/Oi, 89, 93, 181

/Ol, 89, 94, 182

/Op, 95

optimization
alias checking, relaxing, 89, 182
code size, 89, 96
disabling, 41, 87, 93
execution time, 89, 96, 181
floating-point results, consistent,

95

intrinsic functions, 89, 93, 181
loops, 89, 94, 182
maximum, 96
/04, 181
program speed, 181
option character
forward slash (/), 53
hyphen (-), 53
/Os, 96
/Ot, 96, 181
/Ox, 89, 96, 106
P, 79

page length, 65
predefined identifiers, removing
definitions of, 78
preprocessed listing, 79
preprocessor
/¢, 80
/D, 75

User’s Guide Index

CL options (continued)
preprocessor (continued)

debugging interrupts, 58
null pointer, checking, 58
/ac, 57
/Zq, 58
Zr, 58
/S, 65
source files, specifying, 48, 49, 56
source listing, 41, 61
source/object listing, 61
/Sp, 65
special keywords, disabling, 145
Ss, 41, 66
/St, 41, 66
stack probes, removing, 97, 183
standard places, ignoring, 81
structure members, packing, 100
subtitle, 41, 66
suppressing
library selection, 104, 172
linking, 40, 57
syntax checking, 85
Te, 49, 56
text segments, naming, 157
titles, 41, 66
/U and / u, 78
, 103
ersion 4.0, new for, 206
Version 5.0, new for, 198
/WO, /W1, /W2, and /W3, 84
warning level, 84
, 80, 81
NIX compatible, 109
/Za, 99, 145
/2d, 87, 123
/Zg, 86
/71, 41, 87, 123
/Z1, 104, 172
/Zp, 100
/Zs, 85
Class names
BEGDATA, 124
BSS, 124
CODE, 124
STACK, 124
CL.ERR file, 30
CL.EXE file, 29, 33
CL.HLP file, 30
CODE class name, 124
Code pointers, mixed memory models,
153
Code size, optimization, 89, 96

303

User’s Guide Index

Code-helper library, 27
/CODEVIEW (/CO) linker option, 123
CodeView debugger
CL option for, 41, 87
executable file for, 28
help file for, 30
linker option for, 123
Command line
arguments
executable file, 127
maximum length, 128
stored program header, 128
suppressing processing of, 131
wild cards 1n, 130
CL, 48
error messages, 237
length, maximum, 48, 286
Commands
CL, defined. See CL command
MS-DOS
PATH, 32, 36
SET, 32, 36
notational conventions, 8
Comments, preserving, 80
Compact memory models. See Memory
models
Compatibility
floating-point options, 173
mLIBC7.LIB, 175
mLIBCE LIB, 175
XENIX options, 109
Compilation
conditional, 100
error messages, 244
Compiler
differences, other compilers
ortabilit{/problems, 218
differences, Version 4.0
CL options, 206
enhancements and additions, 203
language changes, 204
new library functions, 207
differences, Version 5.0
enhancements and additions, 195
language changes, 196
new CL options, 198
new library functions, 199
pragmas, new, 198
documentation, 4
error messages. See Error messages,
compiler
files, default directory, 24
limits, 280
naming conventions, 72
passes, 29
stopping, 48, 51

304

Compiler, converting from previous
versions. See Compiler differences
Compiler guide, organization, 4
Compiler options. See CL options
CON (device name), 64
Conditional compilation, 76, 100
CONFIG.SYS file, 26, 37
Constants
defining, 75
manifest. See Constants, symbolic
size, maximum, 280
symbolic, 75
Controlling
binary and text modes, 111
linker, 119
preprocessor, 78
segments, 122
stack size, 123
Conventions, notational, 8
Conversion
near pointers to long integers, 205
pointer arguments, 150
Coprocessor, 8087 /80287
exceptions, 175
math package for, 164
suppressing use of, 175
Correctable error messages, 244
/CPARMAXALLOC (/CP) linker
option, 122
CR-LF (carriage-return-line-feed)
translation, 111
CRTO0.0BJ. See Start-up routine
ctype.h macros, 218
Customized memory models. See Mixed
memory models
CV_.ERR file, 30
CV.EXE file, 29
CV HLP file, 30

D option, 75
ata
files
binary, 31
text, 31
passing to programs, 127
portability, 223
segment
data threshold, setting, 156
default, contents, 156
default name, 157
mixed memory models, 154
naming, 157
types, size of, 212
Data pointers, mixed memory models,
153

—DATA segment, 157
Data threshold, setting, 156
Debugging, preparing for
/CODEVIEW linker option, 123
/Zi, /Zd, and /Od options, 87
Declarations, maximum level of
nesting, 280
Default libraries
See also Libraries, default
object files, used in, 117
suppressing selection, 104, 172
DEMO.C program, 31, 41
Denormal numbers, 164, 284
Device names, 64
DGROUP group, 124, 157
Differences from previous versions. See
Compiler differences
Directory names, notational
conventions, 8
Disks
backing up, 15
contents, 15
Distribution disk, Master, 16, 17
Documentation, compiler, 4
éDOSSEG (/DO) linker option, 123
S register, 154

éE option, 79
llipses, use of, 9
EM.LIB, 27
EMOEM.ASM
file, 176
program, 31
Emulator
described, 163
function calls, 168
in-line instructions, 167
library, 27, 167, 168
environ variable, 129
Environment
changing, 37
portability problems, 222
table
pointer to, 129
size, increasing, 37
size, maximum, 286
suppressing processing of, 131
variable names, notational
conventions, 8
variables
CL, 35, 51
default settings, 26
defined, 32
defining, 36
INCLUDE, 33, 35, 80

User’s Guide Index

Environment (continued)
variables (continued)
LIB, 33, 35, 117
NEW-VARS BAT, 26
overriding, 37
PATH, 33, 34, 127
SET, 127
SETUP, 32
TMP, 33, 35
using, 33
envp variable, 30, 42, 129
EP option, 79
ITOr messages
compiler
command line, 237
compilation, 244
correctable, 244
fatal, 243, 244
identifying, 82
redirecting, 83
warning, 244, 269
floating-point exceptions, 284
format. See Error messages, compiler
run time, 281
run-time library, 281
source listings, 67
warning messages, setting level of, 84
Errorlevel codes. See Exit codes
ERROUT EXE file, 29
Evaluation order, 221
Exception, 284
exec function, 127, 131
Executable files
CL command and, 50
command-line arguments, 127
compiler and utilities, 28
extensions, 28, 60
invoking, 28
naming, default, 60
naming with CL, 60
packing, 121
passing data to, 127
running, 127
search path, 33
Execution-time optimization, 89, 96,
181
EXEMOD EXE file, 29
EEXEPACK E) linker option, 121
'ACK. file, 29
Exit code, 131, 191
Extensions
executable files, 60
listing files, defaults for, 62
map files, 62
object files, 59
object-listing files, 62

305

User’s Guide Index

Extensions (continued
source-listing files, 62
source/object-listing files, 62

External names, 103

/F option, 123
/Fa option, 61, 71
far keyword
default addressing conventions, 144
effects
data declarations, 146, 184
function declarations, 148
library routines, used with, 145
small-model programs, used in, 140
/Za option, used with, 99
Far pointers, 144
JFARCALLTRANSLATION (/F)
linker option, 122, 185
Fatal-error messages, 243, 244
/Fc option, 61
Fe option, 60
ile names
notational conventions, 8
uppercase and lowercase letters,
using, 50
Files
assembly listing, 61, 71
AUTOEXEC BAT, 26
C1.EXE, 28
C2.EXE, 28
C3.EXE, 28
CL.EXE, 33
compiler, 24
CONFIG.SYS, 26, 37
data. See Data files
executable. See Executable files
include. See Include files
library, 30
listing, preprocessed, 79
locating, 32
map
creating, 61, 64, 122, 123
default names, 62
listing formats, 73
linker option, 123
number open, maximum, 286
object
See also Object files
CL command, used with, 48, 50
defined, 294
listing, 61, 62, 71

parameter (CONFIG.SYS), 16, 26, 37

size, maximum, 286
source, 48, 297
source listing. See Source-listing files

306

Files (continued)
source/object listing. See
Source/object-listing files
temporary
space requirements, 280
TMP, 35
Fl option, 61
loating point
not loaded, 282
operations
error messages, 284
floating-point exceptions, 284
optimizing for consistency in, 95
options
compatibility, 173
coprocessor, maximum efficiency
with, 168
coprocessor, maximum efficiency
without, 169
coprocessor, maximum precision
with, 168
coprocessor, maximum precision
without, 167
default, 167
default libraries, 55, 165
effects, 165
flexibility, maximum, 172, 174
function calls, 168, 169
in-lin; instructions, 167, 168, 169,
170
library, controlling use, 170
listed, 165
selecting, 54
/Fm option, 61
/Fo option, 58
fortran keyword, 99, 107, 184
Forward slash (
CL option character, 53
linker option character, 119
/FPa option, 55, 165, 169
/FPc option, 55, 165, 168
/FPc87 option, 55, 165, 169
/FPi option, 55, 165, 167
/FPi87 option, 55, 165, 168
/F's option, 41, 61
function pragma, 93
Functions
arguments, variable number of, 106,
183, 221
calling conventions
C, 106, 183
FORTRAN/Pascal, 106, 183
declarations
generating, 86
near and far keywords, 148

/GO option, 81

/G1 option, 81

/G2 option, 81

/Ge option, 107

getenv function, 129

Global symbols. See Public symbols
/Gs option, 97, 106, 183

/Gt option, 156

/Gw option, 109

H option, 103
eap, 30, 105
/HELP option
CL, 39, 56
linker, 120
éhelp option. See /HELP option, CL
uge arrays, 143
huge keyword
ata declarations, effects in, 146, 184
default addressing conventions, 144
library routines, used with, 145
small-model programs, used in, 140,
9

Huge memory model. See Memory
models

Huge pointers, 144

Hyphen (-), CL option character, 53

I option, 80
dentifier length. See Names, length
Identifiers
length, maximum, 280
predefined
listed, 77
M_I86, 77
ML_I86xM, 77
MS-DOS, 77
NO-_EXT_KEYS, 78, 100
removing definitions of, 78
IF ERRORLEVEL (MS-DOS
command), 132
include directive, 29
Include files
compiler, provided with, 29
directory specification, 80
nesting, maximum level of, 280
portability problems, 212
search path, 33, 80, 81
standard places, 35
\ INCLUDE subdirectory, 24
\JINCLUDE\ SYS subdirectory, 24, 29
INCLUDE variable
defined, 35
overriding, 80, 81

User’s Guide Index

Inexact, 284

Infinities, 164

/INFORMATION (/I) linker option,
121

In-line instructions, 167, 168

Instruction sets
80186,/80188 processor, 81
80286 processor, 81
8086/8088 processor, 81

intrinsic pragma, 93

Italics, 9

J option, 105
ernighan, Brian W., 11
Key sequences, notational conventions,

Keywords
cdecl, 99, 107, 184
defined, 292
far. See far keyword
fortran, 99, 184
huge. See huge keyword
near. See near keyword
pascal, 99, 184
special, 99
Version 4.0, new for, 206

Language extensions
disabling, 99
listed, 99
Large memory model. See Memory
models, large
LIB library manager, 130
LIB variable, 33, 117
LIB.EXE file, 29
mLIBC7.LIB, 168, 169
mLIBCA LIB, 168, 169
mLIBCE.LIB, 167, 168, 175
mLIBFA.LIB, 27
mLIBFP.LIB, 27
LIBH.LIB, 27
Libraries
8087 /80287 package, 168, 169
alternate math, 168, 169
controlling use, 170, 171
creating
/FPc, compiling modules with, 169
/2, c?mpiling modules with, 104,
172

default
See also Default libraries
directory, 24
/FP and /A options, 55, 115
ignoring, 118, 121

307

User’s Guide Index

Libraries (continue j
default (continued)
overriding, 117
suppressing selection, 104
defined, 292
emulator, 167, 168, 175
mLIBC7.LIB, 168, 169
mLIBCA.LIB, 40, 168, 169
mLIBCE.LIB, 167, 168, 175
mxxed-model programs, 155
names in object files, 115, 165
notational conventions, 25
RAM disk, used with, 38
run time, defined, 296
search
order, 171
path, 33, 117
SETUP
math packages, choosing, 20
memory models, choosing, 18
naming conventions, 23
specifying, 116
standard, 56
standard places, 35, 117
uncombine
8087 /80287 floating point, 27
87.LIB,
alternate math, 27, 40
code helper, 27

corresponding combined libraries,

27

EM.LIB, 27
emulator, 27
floating point, 27
mLIBFA.LIB, 27
mLIBFP.LIB, 27
LIBH.LIB, 27
standard, 27
using, reasons for, 26

Library

manager, 29
routines

exec, 127, 131, 230
getenv, 129
intrinsic forms, 93
MS-DOS dependent, 229
putenv, 129
setmode, 111
spawn, 127, 131, 230
syntax, changes, 208
system, 127
Version 4.0, new for, 207
Version 5.0, changed for, 201
Version 5.0, new for, 199

\ LIB subdirectory, 24

308

Limits
compiler, 280
run time, 286
Line width, source listings, 65
/LINENUMBERS (/L) linker option,
123
link option, 48, 115
inker
error messages, 82
executable file for, 29
Linker options
abbreviations, 119, 120
/B (/BATCH) 121
case sensitivity, 120, 123
CL options, differences from, 120
/CODEVIEW (/CO), 123
command line, order on, 120
/CPARMAXALLOC (/ CP) 122
debugz%ing with CodeView debugger,
1

default libraries, ignoring, 118, 121
displaying, 120

/DOSSEG (/DO), 123

executable les, ackmg, 121

JEXEPAGK (/), 121
/FARCALL NSLATION (/F),
122, 185

INFORQA%I(I)%) (/1), 121

ine numbers, displaying, 123
/LINENUMBERS (/LI), 123
map file, 123
/MAP (/M), 123
/NOD! TLIBRARYSEARCH
(/NOD)
avoiding ambiguity in library
customized memory models, 155
defined, 121
overrldmg default libraries, 1
/NOFARCALLTRANSLATION
NOF), 122
/NOIGNORECASE (/NOI), 123
/NOPACKCODE (/NOP), 122
numerical arguments, 119
optlrln2xglng intrasegment far calls,
/PACKCODE (/PAC), 122, 186
packing code segments, 122
packing contiguous segments, 186
paragraph space, allocating, 122
/PAUSE (/P), 121
pausing, 121
process information, displaying, 121
Quick library creatlng, 121
/QUICKLIB (/QU), 121
rules, 119

Linker options (continued)
segments
number of, 122
ordering 123
/SEGMENTS (/SE), 122
stack size, setting, 102, 123
/STACK (/ST), 102, 123
suppressing promptmg, 121
translating far calls, 185
LINK.EXE file, 29
Listing CL options, 39, 56
Listing files
assembly, 61, 71
map, 61
object, 61, 71
preprocessed, 79
source, 61, 67
source/object, 61, 72
Long pointers. See Far pointers
Loop optimization, 94, 182
loop— opt pragma, 89, 94, 182

Macro definitions, 280
Macros

arguments, maximum number, 280

character classification, 218
defined, 75
notational conventions, 8
main function
arguments to, 127
exit codes, 131
Map files
creating, 61, 64, 123
extensions, 62, 123
/Fm option, 64
format, 73
/MARP linker option, 123
program entry point, 74
segment lists, 73
symbol tables, 74
linker option, 123
th packages
8087 /80287 package, 164
alternate math, 164
emulator, 163

Medium memory model. See Memory

models
Memory addresses. See Addresses
Memory allocation, stack, 30
Memory models
- CL options, 54
compact, 54, 141, 289
default, 137, 140, 167
huge, 54, 143, 292
large, 54, 142, 292

User’s Guide Index

Memory models (continued)
medium, 54, 141, 293

mixed. See Mixed memory models
notational conventions for files, 25

options
code-pointer size, 153
compact model, 141
data-pointer size, 153
default libraries, 55
huge model, 143
large model, 142
medium model, 141
segment, setup, 154
small model, 140
small, 54, 137, 140
standard
advantages, 139
common features, 140
disadvantages, 139
Version 4.0, new for, 206

Memory models, customized. See Mixed

memory models
Memory-based disk emulator. See
RAM disk
M_186 identifier, 77
M_186xM identifier, 77
Mixed memory models
code pointers, 153
creating, 152
data pointers, 153
library support, 155
near, far, huge keywords, 144
segment setup options, 154
Modules, naming, 157
MS-DOS commands
IF ERRORLEVEL, 132
PATH, 32
SET, 32
MS-DOS, identifier, 77

Names
conventions, 108
devices, 64
executable files, 60
external, 103
global, 73
length, 219
modules, changing, 157
object files, 58
segments, changing, 157
underscores (-), using in, 61, 73
Naming conventions
compiler, 72
segments, 158

309

User’s Guide Index

NAN (not a number)
alternate math package, used with,
164
defined, 294
/ND option, 157, 159, 185
near keyword
data declarations, effects in, 146, 184
default addressing conventions, 144
function declarations, effects in, 148
library routines, used with, 145
Near pointer, 144
Nesting
declarations, 280
include files, 280
preprocessor directives, 280
NEW-CONF .SYS file, 16, 26
NEW-VARS.BAT file, 16, 26
QNM option, 157
O87 variable, 174
/NODEFAULTLIBRARYSEARCH
(/NOD) linker option
customized memory models, 155
default libraries, overriding, 1
defined, 121
NO_EXT_KEYS, 77, 100
/NOFARCALLTRANSLATION
YNOF linker option, 122
/NOIGNORECASE (/NOI) linker
%)tion, 123
/NOPACKCODE (/NOP) linker
option, 122
Not a number (NAN)
alternate math package, used with,
164
defined, 294
Notational conventions, 8
[<NT option, 157
(device name), 64
Null pointer
assignment, 132
checks, suppressing, 132
NULL segment, 132, 282
—nullcheck library routine, 133
Null-pointer assignment, 282
/O (optimization% options, 89
/Oa option, CL, 89, 181

Object files
See also Files, object
CL command, 48, 50
default extension, 49, 56
defined, 294
extensions, 59
labeling, 103
library names in, 115, 165

310

Object files (continued)
naming, 5
specifying to CL, 48
Object listing. See Object-listing files
Object-listing files
creating, 61
extensions, 62
format, 71
/Od option, 41, 87
/Oi option, 89, 181
/Ol option, 89, 94, 182
/Op option, 95
Optimization
alias checking, relaxing, 89, 182
code size, 89, 96
consistent floating-point results, 89,
95
default, 47, 96
disabling, 87, 89, 93
execution time, 89, 181
/FPc87 option, effects of, 169
mtrinsic functions, 93
intrinsic pragmas, 181
listing files, 63
loops, 94, 182
maximum, 89, 96
options, 88
stack probes, removing, 97, 183
Optimizing. See Optimization
Optional fields, notational conventions,
9
Options, CL. See CL options
Options, linker. See Linker options
/Os option, 96
/Ot option, 96, 181
Overlays, 116, 295
Overview, 3
/Ox option, 89, 96, 106

/P option, 79
pack pragma, 100
/PACKCODE (/PAC) linker option,
122, 186
Packing
executable files, 121
structure members, 100
PACKING.LST file, 16
Page length, source listings, 65
Paragraph space, 122
pascal keyword, 99, 107, 184
PATH command, 32, 36
Path names
CL command line, 50
notational conventions, 8
portability problems, 212

PATH variable, 33, 36, 127
PAUSE (/P) linker option, 121
laceholders, 9
Pointers
arguments, size conversion, 150
code, 153
far, 144, 153
huge, 144
manipulation, 216
near
conversion to long integers, 205
customized memory models, 153
near keywords, used with, 144
subtracting in huge-model programs,
143
Portability
address space, 217
bit fields, 215
byte length, 212
byte order, 214, 225
case distinctions, 219
character set, 217
data, 223
data types, size of, 212
environment differences, 222
evaluation order, 221
functions with variable number of
arguments, 221
guidelines, 212
hardware, 212
identifier length, 219
include files, 212
path names, 212
pointer mani%ula.t,ion, 216
register variables, 219
shift operations, 218
side effects, 221
sign extension, 218
signed and unsigned char types, 218
storage alignment, 213
type conversion, 220
word length, 212
Practice session, 41
Pragmas
alloc_ text, 159
check_stack, 97, 106, 183
function, 93
intrinsic, 93
loop— opt, 89, 94, 182
pack, 100
same_seg, 159, 185
Version 4.0, new for, 206
Version 5.0, new for, 198
Preprocessor
macro arguments, maximum number
of, 280

User’s Guide Index

Preprocessor (continued)
macro definitions, maximum size of,
280
nesting, maximum level of, 280
options
comments, preserving, 80
/D, 75
predefined identifiers, removing
definitions of, 78
use, 75
PRN (device name), 64
Processors
80186/80188, using, 81
80286, using, 81
8086 /8088, using, 81
Program header, 128
Prompts, 10
Public names. See External names;
Public symbols
Public symbols, listing, 64, 123
putenv function, 129

/qe option, 57

/QU (/QUICKLIB) linker option, 121

Question mark (?), wild-card character,
31, 130

QuickC. See CL options, QuickC

Quotation marks, use of, 10

RAM disk

advantages, 38

libraries, used for, 38

temporary files, used for, 33, 35, 38
Register variables, 179, 219
Relocatable, defined, 296
Return codes. See Exit Codes
Ritchie, Dennis M., 11
Run file. See Executable file
Run time

error messages, 281

limits, 286

same_ seg pragma, 159, 185
Search paths
changing
CL options, using, 37
include files, 81
libraries, 117
executable files, 33
include files, 33, 35, 80
libraries, 33, 117
standard, 32
temporary files, 35

311

User’s Guide Index

Segment lists
map files, 73
source listings, 71
Segments
data
default name, 157
mixed memory models, 154
names, 157
naming, 157
threshold, effect of, 156
default, 137
defined, 137
names, changmg, 157
nammg conventions, 158
NULL, 132, 282
number allowed, 122
order, 123
setting up, 109, 154
source listing, 71
stack, 154
text
default name, 157
naming, 157
/ SEGMENTS (/SE) linker option, 122
SET command, 32, 36
SET variable, 127
—setargv library routine, 131
SETARGV.OBJ file, 25, 130
SETENV utility, 37
_setenvp routine, 131
setmode function, 111
SETUP
arguments, 18
default file organization, 24
disk, 16
installation directories, choosing, 18
libraries, naming, 23
math packages, choosing, 20
memory models, choosing, 18
operations, 16
PACKING LST file, 16
running, 17
Shift operations, 218
Short pointers. See Near pointers
Side effects, 221
Sign extension, 218
Signed char type, 218
sizeof operator, 143
/Sl option, 65
Small capltals use of, 10
Small memory model. See Memory
models
Source files
default extension, 49, 56
defined, 297
specifying to CL, 48

312

Source listing. See Source-listing files
Source-listing files
creating, 61
described, 61
error messages, 67
extensions, 62
format, 67, 68
line width, 65
page length, 65
segment lists, 71
subtitles, 66
symbol tables, 69
titles, 66
Source/object-listing files
creating, 61
extensions, 62
format, 72
/Sp optlon 65
spawn function, 127, 131
Special keywords dlsablmg, 145
SRC subdirectory, 25
Ss option, 41, 66
SS register, 154
St option, 41, 66
tack
defined, 297
fixed, 105
memory allocation from, 30
overflow, 281
probes, 97, 183, 297
segments, mixed memory models, 154
size
default for C programs, 102
setting, 102, 123
STACK class name, 124
/STACK (/ST) linker option, 102, 123
Standard places
changing, 81
defined, 32
ignoring, 81
include files, 35
libraries, 35, 117
temporary files, 35
Start-up
routine, 30, 231
source files, 32
stdargv module, 130
Storage alignment, 213

_Strings

length, maximum, 280

notational conventions, 10
Structures, packing, 100
Subdirectories

\BIN, 24

\ BIN\ SAMPLE, 25, 26

\ INCLUDE, 24

Subdirectories (continued)
\ INCLUDE\ SYS, 24, 29
\LIB, 24
SRC, 25
Subtitles, source listings, 66
Switches. See Options
Symbol tables
map files, used in, 74
object files, used in (/Zi option), 87
source listings, used 1n, 69
SYMDEB debugger, CL option for, 87
Syntax conventions. See Notational
conventions
system function, 127
System-level definitions, 29

Tc option, 48, 49, 56
emporary files
compiler, after stopping, 51
default directory, 24
RAM disk, used for, 38
removing, 26
standard places, 35
Text mode, 30, 111
_ TEXT segment, 157
Text segments
default name, 157
naming, 157
Titles, source listings, 66
TMP variable, 33, 35
Two’s complement, defined, 298
Types
checking, 86
conversion, 220

{IU and /u options, 78
nderflow, 284
Underscore (—) in names, 61, 73
Unsigned char type, 218
Uppercase letters, use of, 8, 50
Utilities
default directory, 24
ERROUT. See OUT.EXE
EXEMOD. See EXEMOD .EXE
EXEPACK. See EXEPACK.EXE
LIB. See LIB.EXE
LINK. See LINK.EXE

option, 103
ariables, environment, 32
See also Environment variables
Variables, register. See Register
variables

User’s Guide Index

mVARSTCK.OBY file, 30, 105
Vertical bar (|), 10

W0, /W1, /W2, and /W3 options, 84

arning error messages, 84, 244, 269
Wild card

arguments, 31, 130

characters, 56
Windows applications

/Aw option, 109

/Gw option, 109

option, 80, 81
NIX-compatible options, 109

/Za option, 99, 145
/Zd option, 87, 123
/Zg option, 86

/Z1 option, 41, 87, 123
/Z! option, 104, 172
/Zp option, 100

/Zq option, 58

/Zr option, 58

/Zs option, 85

313

MICROSOFT PRODUCT ASSISTANCE REQUEST
Microsoft Product Support Services - Phone (206) 454-2030

Instructions

When you need assistance with a Microsoft pro-
duct, call our Product Support Services group at
(206) 454-2030. So that we can answer your
question as quickly as possible, please gather all
information that applies to your problem. Note or
print out any on-screen messages you get when the
problem occurs. Have your manual and product
disks close at hand and have all the information
requested on this form available when you call.

Diagnosing a Problem

So that we can assist you more effectively, please
be prepared to answer the following questions
regarding your problem, your software, and your
hardware.

1. Can you reproduce the problem?
Oyes Ono

2. Does the problem occur with another copy of
the original disk of your Microsoft Software?
Oyes Ono

3. Does the problem occur with another system
(if available)?
Oyes Ono

4. If you were running other windowing or
memory-resident software at the same time,
does the problem also occur when you don't use
the other software?

Oyes Ono

Product

Product name

Version Number Registration Number

Software
Operating System

Name/Version number

Windowing Environment

If you were running Microsoft Windows or another
windowing environment, give name and number of
windowing software:

CD ROM Software

Name/Version number

Other Software

Name/Version number of any other software you
were running when problem occurred, including
memory-resident software (such as keyboard
enhancers or print spoolers):

Mouse
Hardware Microsoft Mouse: (3 Bus (3 Serial 3 InPortm

. i 3 Other

So that we can assist you more effectively, please

be prepared to answer the following questions

regarding your problem, your software, and your Manufacturer/model

hardware.
Boards

C omputer 3 Add-on RAM board
Manufacturer/model

Manufacturer/model Total memory

O Graphics-adapter board
Floppy-disk drives

Number: (31 32 O Other

Size: (03 1/2" 005 1/4" Manufacturer/model
Number of Sides: 1 02 .

O Other boards installed
Density: (J Single O Double [Quad er boards mstate
Capacity:
51/4": 160K 360K 07 1.2 megabytes Manufacturer/model
312" O360K O400K (720K O 800K

O 1.4 megabytes Modem

System Memory Manufacturer/model
Manufacturer/model Total memory CD ROM Playel'
(If using DOS, you can run CHKDSK to determine :
the amount of memory available. If using Apple Manufacturermodel

Macintosh Finder, select "About The Finder..."
from the Apple menu to determine the amount of

- Version of Microsoft MS-DOSe® CD ROM
memory available.)

Extensions:
Peripherals
Hard Disk
Network
Manufacturer/model Is your system part of a network? (1 Yes O No
Capacity(megabyte)
Manufacturer/model
Printer/Plotter
‘What hardware and software does your network
Manufacturer/model use?

O Serial 3 Parallel

Printer peripherals, such as font cartridges,

downloadable fonts, sheet feeders:

