

Writing MS-DOS® Device Drivers
Second Edition

Writing MS-DOS® Device Drivers
Second Edition

Robert S. Lai / The Waite Group®

...
TT

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters or all
capital letters.

The authors and publishers have taken care in preparation ofthis book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out ofthe use of the
information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Lai, Robert.
Writing MS-DOS® device drivers / Robert S. Lai

- 2nd ed.
p. em.

Rev. ed. of: Writing MS-DOS device drivers, 1987.
Includes bibliographical references and index.
ISBN 0-201-60837-5
1. DOS device drivers (Computer programs) 2. MS-DOS (Computer

file) I. Lai, Robert. Writing MS-DOS device drivers. II. Waite
Group. III. Title. IV. Title: Writing MS-DOS device drivers.
QA76.76.D49L35 1992
005 . .4' 3--dc20 92-7898

CIP

Copyright© 1992 by The Waite Group®
The Waite Group® is a registered trademark of The Waite Group, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission ofthe publisher. Printed in the United States of
America. Published simultaneously in Canada.

From The Waite Group:
Development Editors: Mitchell Waite and James Stockford
Editorial Director: Scott Calamar
Managing Editor: Joel Fugazzotto
Technical Editors: Harry Henderson and Kevin Jaeger
Illustrations: Carol Benioff and Pat Rogondino

Cover design by Ned Williams
Set in 10.5 point New Century Schoolbook by Context Publishing Services

Sponsoring Editor: Julie Stillman
Project Editor: Elizabeth G. Rogalin

ISBN 0-201-60837-5

1 2 3 4 5 6 7 8 9-MW-9695949392
First printing, April 1992

To Ada Lee Lai

Acknowledgments

The author is very grateful for the suggestions, comments, help, and encour
agement from Mitchell Waite, Jim Stockford, and Kevin Jaeger; and to my wife,
Ada, for her support.

Robert S. Lai

The Waite Group would like to thank Kevin Jaeger for his early develop
mental and technical reviews and Carol Benioff for her excellent illustrations.
We would also like to thank Harry Henderson for his technical review and
suggestions for the second edition.

The Waite Group

Contents

Chapter 1 Introduction 1

About This Book 4

This Book's Intended Readers 5

What You Will Need to Use This Book 6

Why This Book Was Written 7

Conventions Used in This Book 8

How to Use This Book 8

Overview of the Chapters 8

Summary 9

Questions 10

Chapter 2 Basic Concepts 11

Controlling Devices through Software 13

Refresher Course on DOS 27

DOS Services 31

DOS Device Management 33

The DOS Device Driver 36

Block and Character Devices 48

Device Driver Commands 50

Tracing a Request from Program to Device 56

The Mechanics of Building Device Drivers 58

Summary 61

Questions 62

Chapter 3 A Simple Device Driver 63

What Does a Device Driver Look Like? 65

An Overview of the Simple Device Driver Sections 65

vii

Writing MS-DOS Device Drivers, Second Edition

Chapter 4

viii

Instructing the Assembler

Main Procedure Code

The Device Header Required by DOS

Work Space for the Device Driver

The STRATEGY Procedure

The INTERRUPT Procedure

Your Local Procedures

DOS Command Processing

The ERROR EXIT Procedure

The COMMON EXIT Procedure

The End of Program Section

The Entire Simple Device Driver

Building the Simple Device Driver

Using the Simple Device Driver

IfIt Does Not Work

Summary

Questions

A Console Device Driver

The Console Device Driver

Designing Our Console Device Driver

An Overview of Writing a Console Device Driver

A Complete Look at the Console Device Driver

A Note about DOS Versions

Building the Replacement Console Device Driver

Summary

Questions

69

71

72

75

77

77

80

81

83

84

85

86

86

90

90

91

91

93

95

96

102

120

120

129

129

130

Contents

Chapter 5 A Printer Device Driver 131
Printer Types 133

I/O Control and IOCTL Calls 134

The IOCTL Program 136

Building and Using the IOCTL Program 141

BIOS Services for Serial and Parallel Adapters 141

Inside the Printer Device Driver 142

Building the Printer Device Driver 162

Using the Printer Device Driver 175

Summary 175

Questions 175

Chapter 6 A Clock Device Driver 177
The Clock/Calendar Chip 179

The Clock Device Driver Functions 179

Overview of PC Clocks and Timing Signals 180

Programming the MM58167 A Clock Chip 182

Where Is the Clock? 184

Resident Programs 185

Using the Timer Interrrupt. for Time Displays 185

Understanding the Clock Device Driver Program 187

Building the Clock Device Driver 214

The Clock Device Driver in Action 231

Summary 231

Questions 232

lX

Writing MS-DOS Device Drivers, Second Edition

Chapter 7 Introducing Disk Internals 233
The Physical Side of Disks 235

Organizing Data on Disk Drives 236

Technical Details of DOS Disk Support 240

The BootlReserved Area, FAT, and Clusters 241

The File Directory 249

Disk Sizing 253

Critical Disk Parameters 255

DOS Disk Device Drivers 260

Disk Device Driver Commands 265

Summary 271

Questions 271

Chapter 8 A RAM Disk Device Driver 273
Using the RAM Disk Device Driver 275

RAM Disks and How They Work 276

The RAM Disk Device Driver 277

What Commands the RAM Disk Device Driver Will Use 281

The RAM Disk Device Driver Program Listing 282

The Whole RAM Di!3k Device Driver 302

Building the RAM Disk Device Driver 303

Modifying the RAM Disk Device Driver 303

Summary 316

Questions 317

Chapter 9 Building a Complete Full-function
Device Driver 319

Required Tools 321

The Perfect Editor 322

x

Contents

An Overview of the Device Driver 328

Summary 378

Questions 378

Chapter 10 Tips and Techniques 379

A Checklist for Writing Device Drivers 381

The Art of Debugging Device Drivers 384

Prototyping Device Drivers 385

Where Is My Device Driver? 385

Adding Debugging Routines 399

ANew Stack 401

The Special Bit 406

Machine Incompatibilities 408

DOS Differences 409

DOS Version Differences 409

DOS 5 DEVICEHIGH 413

Summary 414

Questions 414

Chapter 11 Advanced Topics 415

CD-ROM Devices 417

Writing Device Drivers in C 423

The C Device Driver Toolbox 426

The Printer Device Driver in C 442

Compiler Complications 447

Linker Madness 456

A Short Note on Testing the C Device Driver 456

Summary 458

Questions 458

Xl

Writing MS-DOS Device Drivers, Second Edition

Appendix A An Overview of Intel Architecture 459
AppendixB BIOS Interrupts 481
AppendixC DOS Initialization 511
AppendixD Special Features of the Hard Disk 515
AppendixE CD·ROM Devices 523
AppendixF Answers to Questions 529

Index 541

xu

Preface

In the five years since the first edition of this book was written, many things in
the world of the PC have changed. PCs have 80486 processors with up to 64Mb
of memory and disks in the gigabyte range. DOS is at version 5 and is doing very
well! There are now graphical user interfaces such as GEM, Windows, and
Geo Works. There are also more people programming on PCs than ever before. In
addition to the traditional C, Pascal, and BASIC languages, there are word
processors, spreadsheets, and CAD programs offering a wide range of program
ming capabilities.

However, as the saying goes, the more things change, the more they stay
the same. This is especially true for device drivers. The device drivers that worked
in version 2 will still work in version 5. Because each day brings new devices for
the PC, device drivers have become less of a black art. In fact, it's hard to find
PCs that don't have one or two device drivers.

Of the many questions and comments I have received, there were two
topics that turned up quite frequently, how CD-ROMs interface to DOS, and
how to write device drivers in C. These two topics form the basis for a new
chapter in the updated version ofthis book for DOS 5.

Surprisingly, there are only minor changes to the basic structure of device
drivers for DOS 5. Most of the changes were for disk devices to allow them to
access more than 32Mb. These changes were carefully made in order to minimize
disruptions when moving to the latest versions of DOS. However, all in all, the
device driver structure has withstood the test of time and come through with
flying colors for this latest version of DOS.

The appendices have been extensively revised for the second edition. Appen
dix A extends the overview of the Intel architecture to include the 80286, 80386,
and 80486 processors. Also included is a summary of the various methods of
accessing extended memory. Appendix B now includes BIOS extensions for VGA
adapters and AT-class machines. Appendix D includes the logical partition
extensions introduced with DOS versions 4 and 5. Lastly, a new appendix E
describes the CD-ROM disk structures.

I hope you enjoy this updated version of the book. The fun part of writing
this second edition was testing the original device drivers using DOS 5.

I would welcome suggestions, criticisms, and comments regarding the ma
terial presented in this book. If you want to avoid the effort oftyping in all of the
examples, you may order a disk of all the programs in this book by sending in the
coupon at the back of the book.

Robert S. Lai
Moss Beach, CA

xiii

Chapter 1

Intr.oauction.

AbOlJt;Thi~~;?ok , :
WhatYoirWillNeed:totIse

ConveritionsIJsed' iiiTnis']3Orik'
. ..

How to Use Tlp.s Book" .
Overview of the Chapters

Introduction

w'come to the universe of device drivers. Device drivers are the core
of how MS-DOS controls the devices on your PC. If device drivers did not exist,
every program you execute would require you to customize your program to the
PC you are currently using. Device driver programs provide a standard interface
between MS-DOS and the PC by following a uniform set of programming rules.
These rules are common to both MS-DOS and PC-DOS for the IBM PC and
IBM-PC-compatibles. In this book, DOS refers to both MS-DOS and PC-DOS,
and PC refers to both the IBM PC and compatibles.

Most people understand that DOS is used to run application programs such
as utilities, databases, word processors, and spreadsheets. DOS provides built-in
"services" to store data, plot graphs, access the disk, and control external hard
ware. Fewer people understand that DOS has its own built-in device drivers to
control hardware.

Standard DOS is set up to manage and control a set of standard PC devices,
including the keyboard, screen, disks, and serial and parallel adapters. Standard
device drivers are normally part of the operating system's device management
and are not visible to the user. Prior to version 2.0, DOS did not provide a uniform
manner for accessing external hardware. Instead, each device that was added to
the PC required custom changes to DOS as well as changes to programs using
the new device. As a result, providing support for new devices was difficult; it
was not clear what DOS had to do compared to what the program had to do.

Beginning with version 2.0, DOS began allowing user-installable device
drivers. These user device drivers complement those provided in DOS and allow
a wider range of device support.

Device drivers must be written to the rules and regulations that Microsoft
has specified in order for them to be installed in DOS. These rules provide a
uniform interface to DOS, which allows DOS to treat a new device in the same
way as existing ones. These rules specify a special format for the device driver

3

Writing MS-DOS Device Drivers, Second Edition

program. Such a program must begin with a table that defines to DOS the
attributes and type of device controlled. There is a provision within this table
that tells DOS how to control (or call) the device driver. Lastly, the device driver
program must contain code to process the standard commands that DOS expects
of a device driver. These rules are not clearly defined in the DOS Technical
Reference manual.

Installable device drivers give you the ability to add a new hardware device
to the PC and use standard DOS services to access the device. Without installable
device drivers, you would have to change your programs for each new device you
wish to use. Newer versions of DOS would require you to modify your custom
programs to suit the changes in the new DOS. The lack of driver standards would
require each program to be different from others; no two programs would access
new devices in the same way.

Although many users take for granted the ease of using the PC to read and
write data, the steps taken to get a piece of data from the keyboard and then write
that data to a disk file represent a long and complex process involving the
software driver. It is hard to understand, because most users know so little about
it. However, it is not so complex that it cannot be broken down into pieces to make
it easier to understand the steps involved. That task is precisely what the early
parts of this book are intended to accomplish.

About This Book

4

This book will teach you how to write your own device driver to interface to any
hardware device in your system. We will explore the various parts of DOS device
drivers by developing and coding several examples. In addition, we will examine
what device drivers do, how they interface to DOS, and how they interact with
various devices. Writing device drivers for new devices will be discussed, as well
as writing replacements for the standard DOS device drivers.

Writing device drivers is one ofthe most challenging aspects ofprogramming
for the PC. Mastering this seemingly complex topic can be a rewarding experi
ence. As a by-product oflearning the secrets of device drivers, you will get a fairly
thorough course in DOS system calls and internals, and a refresher course in
assembly language. This is because understanding drivers requires using most
of the services built into the BIOS.

With the knowledge of how device drivers work, you can begin to modify the
device drivers in this book. You can change RAM disk device drivers to suit your
needs and write new device drivers to control hardware in your PC. The possibil
ities are unlimited.

Introduction

This Book's Intended Readers
This book has been written for many audiences. It will enable anyone who has a
basic understanding of DOS and the PC to learn more about how DOS is able to
manage the myriad of devices available for use on PCs. For those people who use
PCs in their jobs, this book provides a valuable tool, enabling them to expand the
capabilities of their PCs by adding more powerful devices. With this book, they
can create the software to control these devices without requiring the use of
outside professional help.

Educators will also find this book useful Teachers of computer courses will
find many books on DOS and the PC but few that deal with the topic of device
drivers in more than a cursory manner. This book is intended to fill that gap.

All of these people have something in common: they have some understand
ing of assembly language programming for the PC. In addition, a basic knowledge
of DOS and BIOS services is required.

Readers should be able to follow a simple 8086/8088 assembly language
program. If necessary, readers should purchase one of the numerous books
available that introduce the basic concepts of 8086/8088 assembly language
programming. One such book is Assembly Language Primer for the IBM PC and
XTby Robert Lafore (New York: PlumelW aite, New American Library, 1984). For
readers who have some experience in PC assembly language programming,
appendix A provides a refresher course on the 8086/8088 CPU, memory structure
and segmentation techniques, the 110 structure, and the register structure.
Readers who are not already acquainted with these aspects of the 8086/8088
architecture should take time now to read appendix A.

In addition, readers will find it useful to have some knowledge of the
interrupts and function calls provided by DOS. The Microsoft MS-DOS
Programmer's Reference (Washington: Microsoft Press, 1991) is a good source of
information on DOS interrupts and function calls. Another book is DOS
Programmer's Reference, 3rd Edition, by Terry Dettmann (Indiana: Que, 1992).

Readers should also have some familiarity with the BIOS code that resides
in ROM. All that readers need is a basic knowledge of the BIOS functions and
how they are used. For IBM systems, the hardware Technical Reference Manual
for each system documents the BIOS calls. Although it is difficult to find due to
its age, the Technical Reference Manual is worth having for its source listing of
the ROM BIOS. Suppliers of non-IBM systems usually publish similar reference
manuals.

Finally, because this book focuses on device drivers, readers should be
familiar with each device attached to their PC. This should include a general
understanding of the type of device (keyboard, printer, disk drive, etc.) and its
function (input, output, both).

5

Writing MS-DOS Device Drivers, Second Edition

What You Will Need to Use This Book

6

The first thing you will need to use this book is a lot of curiosity about device
drivers and DOS: what they are, what they do, what their various parts are, and
how to write one. We will attempt to encourage and satisfy this curiosity as we
present the various topics in this book.

To best utilize this book, you should be sure that certain hardware and
software requirements are fulfilled. The hardware and software requirements of
this book are listed below:

• IBM PC, XT, AT or compatible (clone) personal computer

• MS-DOS or PC-DOS operating system, version 2.0 or higher

• Microsoft or IBM's MASM (8086/8088/80286 Macro Assembler) or
Borland's Turbo Assembler

• LINK (this is the MASM Linker that resolves the address information
that is contained in the object output from MASM)

• EXE2BIN (this converts the Linker output into a form required by DOS
for device drivers)

• Text editor or word processor (this is used to input the source text ofthe
device driver)

The key requirement is that your computer system be based on the Intel
8086/8088180286/80386 CPU chips and that the operating system be a variation
of MS-DOS, version 2.00 or higher.

Although systems based on the Intel 80286/80386 CPU chips, such as the
IBM PC AT, may also be used, we will base our code on the 808618088 member
ofthis family without considering the enhanced capabilities of the 80286/80386
systems. All references to your PC system will assume that it uses 808618088
chips, but the techniques will apply to all 80286/80386 systems as well. To use
the examples, your operating system must be an equivalent of MS-DOS or
PC-DOS, version 2.0 or higher (because MS-DOS and PC-DOS are functionally
equivalent, subsequent references to these operating systems will appear simply
as references to DOS). We will occasionally make reference to DOS versions 3, 4,
or 5. In particular, we will devote material to the special device driver require
ments for DOS versions 3.20 and 5.0. These versions of DOS expand the role of
device drivers by providing more capability for the device driver in the areas of
physical control, networking, and device sharing.

Throughout this book, we will present examples of actual code for you to
copy, study, and use. Because the code provided is written in 808618088 assembly

Introduction

language, you will require three major DOS utilities: MASM, LINK, and
EXE2BIN.

LINK and EXE2BIN are standard utilities that are generally provided with
DOS. You should be able to find them on the disks that comprise the copy of DOS
provided by the supplier of your PC system. Current versions of most assemblers
will include a Linker program. These utilities assist you in building device
drivers.

MASM is the Microsoft Macro Assembler for MS-DOSIPC-DOS systems.
This product is offered from two sources, IBM and Microsoft. For the purposes of
this book, the IBM and Microsoft Macro Assemblers are identical, and we will
not distinguish one from the other. If you use a different assembler such as
Borland's Turbo Assembler, be sure that the features used in the examples are
available or at least convertible to equivalent features on the assembler you use.

In addition to the three DOS utilities discussed above, you will need some
kind oftext editor or word processor so that you can create ASCII text files ofthe
examples. The EDLIN program that is supplied with DOS is adequate for
entering some of the short examples. Because of the limited capabilities of
EDLIN, however, we recommend that you use one of the many flexible and
powerful word processors available on the market today.

Why This Book Was Written
In the years since 1981, when the IBM PC was introduced, an incredible number
of programs have been written for the PC. This has been matched by the amount
of information available in magazines, periodicals, and books. However, the
information on how DOS works with programs and devices has been either too
complex or incomplete. Finding the necessary information on device drivers
involved an unsatisfying process of combing through articles and books, looking
for clues on how they work.

This book was written to satisfy the need for one source ofinformation about
writing and understanding device drivers. The information contained in this book
will appeal to the casual PC user who has questions about the inner workings of
DOS. The professional PC user will find information about why device drivers
are needed and why they are built the way they are. For the serious PC
programmer, the book provides information about how DOS services interact
with the device driver and the device. The book's primary goal is to provide the
framework for writing device drivers; the theory behind such programs is also
discussed. On the practical side, this book contains several working device drivers
that can be used by most PCs.

7

I

I •

Writing MS-DOS Device Drivers, Second Edition

Conventions Used in This Book
This book follows theeonventions that are assumed by the many users of PCs.
Numbers used in this book are in hexadecimal form if they have a suffix of h,
otherwise they are in decimal form. DOS refers to both PC-DOS and MS-DOS
unless otherwise indicated. Disk refers to both hard and floppy disks. Diskettes
refers to the type of disks that are removable. A routine is a set of lines of code
that performs a function and have no particular format. Aprocedure is the set of
code lines that have a defined format and are invoked by a call.

How to Use This Book
This book presents material on device drivers in a progressive fashion; the book
is intended to be read from beginning to end. The beginning of this book is
introductory in nature; basic concepts are presented to assure that the reader
will not be lost in later chapters. Subsequent chapters present working device
drivers. With each chapter, more information is presented about various types of
device drivers. In the last chapters, we present an overall guide to building device
drivers from scratch, as well as tips and techniques in debugging such programs.

This book is also intended to be a reference document. Many of the figures,
listings, and tables contain information that is important to programmers who
wish to write their own device drivers. In this respect, chapter 9 ("Building a
Complete Full-function Device Driver") and chapter 10 ("Tips and Techniques")
are particularly useful.

Overview of the Chapters

8

Chapter 2 is a quick overview of the material needed to understand the role of
device drivers within the framework of the PC environment. We will see how
devices are programmed, what the various parts of DOS are, and how device
drivers fit into the whole picture. The rules and regulations for device drivers are
presented at the end of this chapter.

Chapter 3 introduces the first device driver. Although this short, rudimen
tary driver does not do much, it introduces the basic concepts of writing device
drivers. Because the device driver is short in terms of code and small in terms of
function, you will "see" more of what device drivers do.

Introduction

Chapter 4 introduces the first of several real device drivers: the console
device driver. The console device driver is a working example that controls the
screen output device and the keyboard input device. We will add a feature to this
device driver to distinguish it from others: the ability to sound a tone for each
keystroke entered on the keyboard.

Chapter 5 presents a printer device driver that, unlike the standard printer
device driver, has the ability to control up to five printers. The DOS I/O control
service is used to select which of the five printers should be used.

Chapter 6 describes the clock device driver. This driver requires a hardware
clock/calendar that is not standard equipment with the average PC but that is
available as an option to most multifunction cards for the PC. This clock device
driver retains the DOS time and date information intact between the time the
machine is turned off until the next time it is turned on. This eliminates the effort,
however slight, of re-entering the time and date each time DOS is booted.

Chapter 7 covers the preliminary material needed for you to understand
what disks and disk drives are all about.

Chapter 8 is devoted to a RAM disk device driver. Based on the information
presented in chapter 7, we will build a disk device driver that uses memory, rather
than an actual physical disk device, to store data. We will see how the device
driver stores file information as well as file data in memory.

Chapter 9 presents a general discussion on how to write device drivers. Each
part of such a program is covered in detail, including the information that DOS
expects to be present in a device driver.

Chapter 10 presents practical tips and techniques on how to debug device
drivers. There is also material on making device drivers work under the various
versions of DOS.

Chapter 11 concludes this book with advanced topics such as CD-ROM
extensions to device drivers and writing device drivers in a higher-level language.
The C programming language will be used to implement device driver routines
within an assembly language-based framework.

Summary
We begin our exploration of the world of device drivers by describing what you
will need to use this book. You will need an IBM PC or compatible, severalofthe
utilities that come with DOS, and a macro assembler. You will need to know about
the architecture of the IBM PC and about assembly language programming.
Appendix A reviews the major aspects ofthe Intel architecture.

9

Writing MS-DOS Device Drivers, Second Edition

Questions

10

1. Does it matter whether I use MS-DOS or PC-DOS?

2. I have several versions of DOS-which one should I use?

3. Ihave a PC at home and an AT at work. Will I have problems if I use
both machines for the examples in this book?

Answers may be found in appendix F.

..... ·chapter2

Basic Concepts
DOSS~rvices ..
;D()S·J)~vice Management

. The DOS DeVlceDriver

Device Driver Commands . . .

T~~cing 'aRequest from Program to
D·,··.····· .,. eY1ce

.TlleMechamc~,ofBuildingDevice
,Driv:ers.· .' .

Basic Concepts

In this chapter, we will cover the basic software and hardware concepts
of DOS that you will need before you tackle your first device driver in chapter 3.
These basic concepts include programming PC hardware devices, internal oper
ations of DOS, and how DOS interacts with devices.

The first part of this chapter describes the various devices found on most
PCs and how to access those devices through ROM BIOS. The second part
presents the ways in which programs interface to DOS for services and discusses
how devices are accessed through DOS. The third part begins an overview of
device drivers. In this section we cover some of the basic concepts behind device
drivers: what they are, what each part is, and how they interact with DOS. The
fourth part describes the steps needed to build a device driver.

Controlling Devices through Software

Overview of Device Fundamentals
We begin this section with an overview ofthe standard hardware of the PC. We
will start with what devices are, how they connect to the PC, and what the
standard devices of the PC are. This summary will help you get a better
understanding of how devices interface to the PC.

Devices for Your PC You are used to the keyboard, screen, printers, and disks
that are part of the PC you use on a daily basis. These devices are but a small
fraction of what can be added to the PC. Table 2-1 lists some ofthe more important
devices that can be added to the PC. These devices fall into several categories:
input, input and output, and output. You will learn to write device drivers for
these devices.

13

Writing MS-DOS Device Drivers, Second Edition

14

Type Device What They Do

Input Image digitizer Captures video images through a camera
and converts the image for computer use

CD-ROM Compact disk systems designed to store vast
libraries of data and video images

Bar code reader Reads computerized supermarket labels
using a light-based scanner device

Graphics digitizer Captures complex graphics images by
tracing the printed image

Mouse/track ball Mechanical pointing device designed to
provide user-friendly computer interfaces

NO Converts analog signals to digital for use in
measurement

Input! Local area network Connects several PCs together to allow data
output and device sharing

Tape drives Backs up data onto tape cartridges for
archival storage

Video cassette Displays video films using tape-also stores
recorder data
Bisync interface Allows communication with large computers

using a special communications protocol
Multifunction Adds serial and parallel device ports for
board printers and modems
Disk drive Floppy and hard disks for data storage

Output Plotter High-resolution graphics plotting systems
using vertically positioned pens

PROM burner Programs read-only-memory (ROM) chips
Laser printer Fast and high-resolution printing using

laser technology
Synthesizer Artificial voice and sound generators that

produce computer-generated music
D/A Converts digital signals to analog signals for

control purposes

Table 2-1: Examples of add-on devices for the PC.

In addition to floppy disk drives and faster hard disk drives, other examples
of popular add-on devices are image digitizers, CD-ROMs, local area network
controllers and interface devices, tape drives, video disk players, plotters, PROM
burners, laser printers, bar code readers, music synthesizers, graphics digitizers,
"mouse" devices, joysticks, track balls, bisynchronous communication interfaces,
analog-to-digital (ND) converters, and digital-to-analog (D/A) converters.

Basic Concepts

As you will see later in this book, it is the use of device drivers through DOS
that makes devices such as these accessible to you.

Controllers, Adapters, Interfaces Devices need to be added to a PC in such
a way that the PC will recognize them. Devices often will work with printed circuit
boards that insert into a hardware slot inside your PC. These cards are given
various names, such as controllers, adapters, or interfaces. The generic function
ofthese cards is to provide an interface between the hardware device and the PC.
This allows the J:>C to control the device through signals passed between the PC
and the device on the bus. These signals are commonly called I/O bus signals,
and they have a variety of functions. 1/0 ports or addresses are used to identify
devices attached to the PC. Data is transferred on the portion of the bus called
the data bus. Other control signals on the bus are used to coordinate all the
devices with the PC.

Typically, controller cards are plugged directly into the PC's 1/0 bus on the
motherboard and become an integral part of the PC. The design feature ofthe PC
that allows controllers and devices to be added so easily is often referred to as an
open architecture. It is this open architecture that enables the PC to make such
widespread use ofthe variety of devices discussed earlier.

Although there are 64K 110 addresses or ports to choose from, each device
has a unique set of 1/0 addresses. This set of 1/0 addresses is used by the PC to
select a device for data transfer. For a given device, each 1/0 address performs a
unique function. For example, the printer device has an 110 address for the data
being transferred, an 1/0 address for the status of the data transfer, and an 110
address for printer control.

When the PC transfers data to the device, the out instruction is used to select
an 110 address and a character to send. For example, to send an ASCII "A" out
to the printer, the following instructions are used:

mov dX,0378h
mov al,41h
out dX,al

;I/O address for printer
;ASCII A
;send character to the printer

When the PC executes the out instruction, the 1/0 address is asserted on the
bus (the value 378h is placed on the address bus); the value in the AL register is
also placed on the bus (the value 41 is placed on the data bus). The controller for
the device is constantly monitoring the (address) bus for the values associated
with the device. Once it sees the value 378h on the bus, the controller will "grab"
the value on the data bus and pass it to the device.

Controllers perform the basic functions of controlling devices and transfer
ring data between the PC and those devices by recognizing signals sent by the
8086/8088 on the address and data busses.

15

Writing MS-DOS Device Drivers, Second Edition

16

Standard Devices for the PC General-purpose controllers or multifunction
boards are designed to handle a group of devices, such as output ports, a clock, a
calendar, extra memory, and game I/O. The typical PC system today often
includes as standard equipment two such general-purpose controllers: the serial
device controller and the parallel device controller. Earlier PCs included a game
port to allow you to attach a joystick.

To allow external devices to be attached to such a controller, a connector is
provided on the outside edge of the controller card. Often referred to as ports,
these connectors merely serve as hardware-connection mechanisms. Both serial
and parallel device controllers use these connectors, which are called, respec
tively, the serial port and the parallel port.

Note that the ports described above are not the same as the I/O ports
described in the overview of the Intel architecture discussed in appendix A. The
I/O ports ofthe 8086/8088 are internal ports used to access the device controllers
through the data bus using special CPU instructions (in and out). The ports
described in this section are external device ports (outside the bus, on the
interface board), used for connecting the devices to their respective controllers.

The easiest way to attach a new device to your PC often is to connect it to
your PC's serial port, parallel port, or game port. These three ports differ
primarily in the type of electrical signals passed through them and in the manner
in which data transfers between the devices and the controllers.

Serial Devices The serial port is the most versatile ofthe three ports described
above. This port is used to connect modems, mouse devices, and bar-code readers
to the PC. Data can be transferred in either direction (to or from the 8086/8088),
and speeds can range as high as 9600 baud. Printers, which are output devices,
also may be connected to the serial port, but it is more common to use the parallel
port for this purpose. The connector used to plug devices into the serial port is
defined as an RS-232-C connector because the protocol used to communicate to
the device attached to the port closely follows the EIA RS-232-C standard.
Therefore, the serial port is also referred to as the RS-232 port.

Parallel Devices The parallel port was originally designed for efficient han
dling of output-only devices. Its primary design objective is to se"rve as a printer
interface. The electrical signals in this interface tend to be meaningful only to
printers and special output devices. The speed of data transfer can exceed 10K
per second. Because the parallel port is used for output-only devices, it is a bit
more limiting than the serial port. Therefore, there is a tendency to connect only
printers, print-buffer devices, and special-purpose output devices to the parallel
port. Originally developed by the Centronics Corporation, the parallel port is also
referred to as the Centronics port.

Basic Concepts

The Game Port Of the three standard ports provided on a PC, the game port
is the most limited. It is designed to handle very simple input signals with
minimal data transfer. The game port is generally used for connecting to the PC
simple input devices, such as joysticks and track balls.

High-speed and DMA Controllers Some devices, such as disk drives, trans
fer data faster than the serial, parallel, or game device controllers can handle.
Such devices cannot use general-purpose controllers.

To illustrate this, the serial controller can handle up to 9,600 bits per second
(approximately 1,200 characterslbytes per second). However, the hard disk
transfers data at well over 100,000 bytes per second. In addition to the require
ment for high data-transfer speed, the hard disk drive also requires many control
signals that the serial controller cannot provide.

For these reasons, the hard disk drive needs a controller that can access the
PC's data bus directly, and data needs to be able to be transferred directly
between the device and memory for maximum efficiency. This is called Direct
Memory Access (DMA). Many other devices also require high-speed DMA: exam
ples are the video monitor, tape drives, and clock/calendars. As will be seen later
in this book, these devices, like the hard disk, require special-purpose controllers
and, therefore, have unique interfaces, different from those used by the usual
printers and other devices.

Character and Block Devices In the general PC environment, devices are
divided into two types: character devices or block devices. This distinction is based
on how these devices transfer data to and from the PC.

Character devices transfer data one character at a time. Examples of such
devices include printers, modems, keyboards, and mouse devices.

Block devices, on the other hand, manage their data in groups of characters
and transfer several bytes at one time in a block, such as 512 or 1,024 bytes.
Examples of block devices are disks and tapes; with these devices, the basic
method of storage is a group of characters. Block devices are usually chosen when
high data-transfer speeds are needed. If disks were somehow made into character
devices, the speed of the data transfer would be severely limited. Because the
disk rotates at a high speed, by the time one character is transferred, the disk
would no longer be in position to read a second character. Obviously, it would
take many revolutions ofthe disk to transfer a group of characters. On the other
hand, the block-device approach allows the disk to capture a block's worth of data
under the read/write heads.

All sorts of controllers are available for the PC. These range from those found
on multifunction boards to special-purpose controllers. Writing drivers for the
controllers in this second category requires that the programmer have special
knowledge ofthe way these devices work.

17

Writing MS-DOS Device Drivers, Second Edition

18

The Console Device When we sit down to use a PC we naturally use the
keyboard to enter our commands, and we see the results displayed on the screen.
We don't think anything of it; we assume that they are a part of the PC. But the
keyboard and the screen are also devices. The combination of the keyboard and
the screen is called the console.

The console device as the primary interface to the PC is an old concept. This
concept dates back to the earliest days of computers, when the console, a teletype
containing a keyboard and printer instead of a screen, was often the only means
of communicating with the computer. As the primary input device for a PC, the
keyboard allows commands to be input to the computer. The display, or screen,
allows you to view what is typed and the results ofthe commands.

Although we have briefly described some of the standard devices for the PC
in this section, chapter 7 covers disk devices in more detail because they are more
popular devices.

Program Control of Devices
If you want to use a particular device in your programs, complex software-control
routines will need to be included. Fortunately, you have a choice oftwo methods:
you can use the routines built into the PC's Read-Only Memory or you can use
the services provided by DOS.

The Differences between ROM-BIOS and DOS Services Through the
ROM-based routines, collectively called the Basic Input-Output System (BIOS),
you can control the serial ports, the parallel ports, the keyboard, the screen, and
the disks. However, these routines provide only basic access mechanisms, such
as read or write; they do not organize data in a form that is easily managed. For
example, through the ROM routines, data can be written to disk sectors but the
concept of organizing data into files does not exist.

DOS, on the other hand, provides higher-level processing capabilities. In
stead of writing separate routines to use the BIOS services for each device, you
can refer to devices by name in programs using DOS services. For disk data,
programs can let DOS organize the data in files instead of managing the disk
sectors in which the data resides. For transferring data to serial or parallel ports,
the program using BIOS services needs to check constantly for errors in trans
mission. On the other hand, programs that use the DOS services for data
transmission need not check as often; DOS retries each operation ifthere are any
errors.

DOS itself uses the BIOS routines for device access and control. In doing so,
DOS adds an additional layer between the program and the BIOS routines. This
additional layer protects the program from the BIOS in many instances. We

Basic Concepts

mentioned earlier some of the features that DOS provides in addition to those
provided by BIOS services. One important reason for using DOS services is that
not all PCs have compatible BlOSs. Thus, programs built to one machine's BIOS
may not work on another machine. Programs using only DOS services will work
on any machine that uses DOS.

To be fair to programs using BIOS routines, the additional layer between
programs and the BIOS when DOS services are used causes most programs to
run slower. For this reason, many programs bypass some ofthe DOS services and
go directly to the BIOS routines.

This is particularly true for programs that need to display screen data
quickly. In other cases, the DOS services cannot execute at a fast enough rate.
For example, although the serial port is designed to operate at 9600 baud, this
speed cannot be attained using DOS services for the serial port; the program must
access the serial port directly.

For the most part, DOS uses the BIOS routines in device drivers. It is within
the programs defined to DOS as device drivers that the calls to the BIOS code for
the respective devices are executed.

Programs that use DOS services for device access sacrifice speed, but, in
return, gain flexibility and portability.

BIOS Programming Many powerful low-level routines are built into the PC's
ROM-based BIOS to allow programs to control most of the PC's devices. Through
the use of the BIOS, you can control the serial, parallel, keyboard, screen, and
disk devices ofthe PC without having to write the code from scratch. The software
routines that are built into the ROM BIOS are accessed through the 8086/8088
interrupt mechanism. For a review of how interrupts work, refer to appendix A.

Each device has an associated BIOS interrupt and a unique routine in ROM.
The use of unique interrupts allows you to refer to these routines without having
to remember the exact address of the routine.

Using the BIOS interrupts is merely one method of accessing the PC's
devices. Later in this chapter, we shall also see how DOS is used to access data
from devices. We describe the BIOS interrupts first because DOS also uses the
BIOS interrupts for device access.

Example of Using Interrupts with the Serial Adapter Let's look at how
the serial port is controlled using BIOS. The BIOS interrupt for the serial adapter
is numbered 14h. This BIOS service contains routines that allows you to control
up to two serial adapters or devices (although the PC can support more than two
serial adapters, the BIOS routines are usually limited to two; to access more than
two, you would have to write your own code). The convention for identifying device
number is simple: devices are numbered starting at o. For example, the device

19

"I

I
Writing MS-DOS Device Drivers, Second Edition

20

attached to the first serial port is numbered 0, and the device attached to the
second serial port is numbered 1.

A description of the features of the serial adapter BIOS interrupt (14h) is
provided in table 2-2. The registers and values required are also shown. The
sequence for using this interrupt is to set up the required registers for the feature
desired, issue an int instruction specifying 14h, and check the appropriate
registers upon return for any errors that occurred during the call.

This interrupt provides four subfunctions. The first subfunction (when ah =
0) is used to initialize the individual devices. This function is used to set the
required characteristics for the serial adapter. Refer to appendix B for a full
description ofthe parameter settings used for initialization. The second subfunc
tion (ah = 1) is used to send a single character through the serial adapter to the
device. The third subfunction (ah = 2) is used to receive one character through
the serial adapter. The last subfunction (ah = 3) returns the status of the serial
adapter so that the program can determine whether it can send another character
or whether the serial adapter is ready to read another character.

Listing 2-1 shows an exam pIe of using the first serial adapter. The first lines
of code check the status of the serial adapter using subfunction 3. The first test
instruction checks the status returned in ak. If the serial adapter's transfer
register is empty and the Data Set Ready signal is high, a character can be sent
to the serial adapter. This occurs at label send through the use of subfunction 1.

The serial adapter BIOS routines provide the means to transmit and receive
a single character from a serial device. In addition, this interrupt is used to
initialize and perform a status check on the serial adapter.

Examples of Using Interrupts to Control the Parallel Adapter The BIOS
interrupt for controlling the parallel adapter is numbered 17h. Like the serial
adapter, parallel devices are numbered starting at o. The register conventions
are slightly different, however, and the parallel adapter BIOS service has only
three functions. The first function (ah = 0) is used to transmit one character
through the parallel adapter. The second function (ah = 1) is used to initialize the
parallel port. The last function (ah = 2) is used to retrieve the printer status. As
you can see, the structure of a BIOS interrupt is fairly similar: initialize, output,
input, and status checking are the typical functions. Note that the parallel
adapter sends and cannot receive. This is shown in table 2-3.

The parallel adapter is programmed in the same way as the serial adapter.
Before each transmission of a character to the parallel adapter, you select the
parallel adapter (DX = 0) and check it for readiness (ah = 2). Then you send a
character out (ah = 0). Finally, you check the status register to ensure that the
character made it out correctly. This process is shown in listing 2-2.

Basic Concepts

Register

ah

al

dx

Value

o
1
2
3

Description

Initialize serial port
Transmit 1 character
Receive 1 character
Get serial port status

Character received (ah = 2) or
Character to transmit (ah = 1)

Serial port to use (0 or 1)

Status is returned in ax as follows:

ahBit

7
6
5
4
3
2
1
o

alBit

7
6
5
4
3
2
1
o

If Set, Means

Timeout has occurred
Transmission shift register is empty
Transmission buffer is empty
A break has been detected
A framing error has occurred
A parity error has occurred
An overrun has occurred
Data is ready

If Set, Means

Receive line signal has been detected
Ring indicator has been detected
Data set ready asserted
Clear to send asserted
A change has occurred in receive line signal
A change has occurred in ring indicator
A change has occurred in data set ready
A change has occurred for clear to send

Table 2-2: The register set-up requirements for the serial adapter
BIOS interrupt 14 hex. This interrupt provides both transmit and
receive functions through the serial adapter.

21

Writing MS-DOS Device Drivers, Second Edition

Listing 2-1: An example of programming the serial adapter.

next:

send:

assume that the bl register contains a character to
be sent out to the first serial port

check the
ready to
mov
mov
int

test
jnz
jmp

test
jnz
jmp

first
accept

dx,O
ah,3
14h

ah,20h
next
error

al,20h
send
error

serial adapter to see whether it is
a character

;select the first serial adapter
;status check subfunction for int 14h
;BIOS serial adapter interrupt
;returns a status value in ah
;is the transfer hold register empty?
;yes (not busy) - go to next check
;previous character still waiting

;is data set ready (=1) ?
;yes - ready. to send
;device is not ready - process error

transmit the character to the first serial adapter

mov
mov
int
test
jnz

al,bl
ah,l
14h
ah,80h
error

;move character to al for sending
;transmit function
;BIOS serial adapter interrupt
;any transmit errors?
;yes - process error
;continue processing

error:

22

You will see more ofthis interrupt when you build the printer device driver
in chapter 5.

The Keyboard Each time you type a character on the keyboard a ROM BIOS
routine retrieves these keystrokes. Each keystroke can be defined by an ASCII
code, a scan code, or both. A scan code is a unique code assigned to each key ofthe
keyboard (this is still true for keys that are duplicated, such as the Shift key). For
keystrokes that have no meaning, such as function key 1, Fl, the ASCII code is
zero and the scan code is an extended scan code. This allows the keyboard interrupt
routine to distinguish between normal keystrokes, those that produce printable
characters, and those that do not normally produce printable characters.

Basic Concepts

Register

ah

al

dx

Value

o
1
2

Description

Transmit 1 character
Initialize parallel port
Get parallel port status

Character to transmit (ah = 0)

Parallel port to use (0, 1, or 2)

Status is returned in ah as follows:

ahBit

7
6
5
4
3
2-1
o

If Set, Means

Printer is not busy
Parallel port acknowledge
Printer is out of paper
Parallel port selected
An I/O error has occurred
Not used
A timeout has occurred

Table 2-3: The register set-up requirements for the parallel adapter
BIOS interrupt 17 hex. This interrupt provides only transmit
functions through the parallel adapter.

The ROM BIOS routine that captures keystrokes is known as the BIOS
keyboard interrupt and is numbered 9h (see figure 2-1). Interrupt 9h is a
hardware interrupt and is not issued by a program. Its purpose is to capture up
to sixteen keystrokes and store them in a 32-byte buffer. A keystroke is made up
of two bytes: an ASCII code and a possible scan code, so the buffer must be 32
bytes long (16 * 2 = 32). The buffer allows keystrokes to be captured even when
the program is busy processing non-keyboard-related information.

To get a keystroke character into your program, you must use another
software interrupt call to the BIOS keyboard services routine. This BIOS key
board services routine is numbered 16h and is responsible for retrieving charac
ters from the buffer in which interrupt 9h has stashed these characters. This
process is shown in figure 2-1.

23

Writing MS-DOS Device Drivers, Second Edition

Listing 2-2: An example of programming the parallel adapter.

send:

assume that the bl register contains a character to
be sent out to the first' parallel port

check the first parallel adapter to see whether it is
ready to accept a character

mov
mov
int

test
jne
jmp

dx,O
ah,2
l7h

ah,BOh
next
error

;select the first parallel adapter
;status check function
;B10S parallel adapter interrupt
;returns a status value in ah
;is the printer not busy?
;yes (not busy) - go to send
;no - busy

transmit the character to the first parallel adapter

mov
mov
int
test
jne

aLbl
ah,O
17h
ah,09h
error

;move character to al for sending
;transmit function
;B10S parallel adapter interrupt
;1/0 Error or Timeout?
;yes - process error
;continue processing

error:

24

Interrupts 9h and 16h work hand in hand. The interrupt 9h routine is always
available in case you type a character on the keyboard. A program does not need
to issue a request for characters from the keyboard before interrupt 9h will go
into action. This allows you to type ahead, which means that you can type in
characters before they are requested from a program. The interrupt 16h routine
is responsible for returning the specified number of characters to the requesting
program from the buffer in which interrupt 9h has stored them.

Using the Keyboard Services Interrupt (INT I6h) Table 2-4 summarizes
the services available from this BIOS interrupt.

Interrupt 16h's service is used to read a character from the keyboard buffer.
Service 1 is used to determine whether there is a character in the keyboard buffer
for us to retrieve. The reason for this is simply to prevent a program from waiting
for a character to be struck if the buffer is empty. This saves time, but more

Basic Concepts

32 Byte buffer

INT9h
stores
keystrokes
into a buffer

INT16h

If \

INT16h
gets
keystroke
from
buffer

Figure 2-1: The role of the keyboard Interrupt 9h. When a key is
struck on the keyboard, Interrupt 9h stores the keystroke in the
keyboard buffer.

Contents of
ah

o
1
2

Service

Read next keyboard character
Check for available character
Get shift status

Table 2-4: The three ,services for the keyboard interrupt.

importantly, the program is not holding up other things that DOS may need to
do. Service 2 returns the status of the shift keys. Holding the Shift key down will
not cause a character to be sent from the keyboard to the buffer. However, the
program needs to acknowledge the use of the Shift key in conjunction with other
keys. For example, lower-case characters need to be distinguished from upper
case characters. Function keys benefit from the use of the Shift function, because
a second set off unctions is produced by using the Shift key with the function keys.

25

Writing MS-DOS Device Drivers, Second Edition

26

As you can see, the BIOS calls for the keyboard, like those for serial devices,
are straightforward. You will find examples of keyboard usage in the Console
Device Driver of chapter 4.

The Video Screen Displaying information on the screen is accomplished
through the use of BIOS interrupt lOh. This BIOS service also performs a
number off unctions that are not apparent to the PC user. For example, regardless
of whether the PC has a color monitor, a monochrome monitor, or both, the BIOS
routines will send the information out to the appropriate screen adapter.

Programming Using the Video Services Interrupt INT IOh The range of
services provided by interrupt lOh covers reading and writing data to and from
the screen. Table 2-5 summarizes the services available for all screen adapters.
Extended services for individual screen adapters are listed in appendix B.

Many of the services listed in table 2-5 are used for special purposes. For
example, services OBh, OCh, and ODh are used for graphics displays on color

ahReg. Service Function for lOh

Oh Set video mode
Ih Set cursor size
2h Set cursor position
3h Read cursor position
4h Read light-pen position
5h Set active display page
6h Scroll window up
7h Scroll window down
8h Read character and attribute
9h Write character and attribute
ah Write character
bh Set color palette
ch Write pixel dot
dh Read pixel dot
eh Write character as TTY
fh Get current video mode
I3h Write character string

Table 2-5: Summary of the functions that the video display service
interrupt provides. Note that there is a break in the numbers between
the Get Current Video Mode (th) and the Write Character as String
(l3h) services.

Basic Concepts

monitors. Service 4h is seldom used, because it requires a light-pen. Services Oh
and OFh are important when changing monitor display modes, switching from
text to high-resolution modes, and vice-versa.

The video display service that is important to this book is Eh, "Write
Character as TTY." This service allows you to write a character out to the screen
without knowing the cursor position. The character appears at the next location
after the last output. All characters that are written this way are treated as
simple TTY.

You will see an application for the video services interrupt in chapter 4's
Console Device Driver.

Refresher Course on DOS
Since its introduction with the IBM PC, DOS has become the most popular
operating system in the world. From its humble beginnings, DOS has evolved
into a powerful tool, with features such as hierarchical disk structures, the ability
to control just about any device, and networking capabilities.

The conceptual model for DOS as the master supervisor of resources of a
computer system is shown in figure 2-2.

At the core of DOS is the kernel. The kernel provides control functions for
administrating and managing the resources of the PC. Memory management
routines provide space in which programs can execute. I/O requests from appli
cation programs are managed and processed by the kernel. File-management
routines within the kernel organize the data for easy access by applications
programs. In addition, the kernel is responsible for initializing itself when DOS
is booted.

The DOS services interface provides a path for application programs to
request services from DOS. It is a defined interface mechanism that processes
requests by interacting with the kernel. DOS services include file 110 to devices
and disk files, time and date functions, and program control.

Strictly speaking, device drivers are part of the DOS kernel. They provide
a standard interface to the devices from within the DOS kernel. As a group, the
device drivers provide device management for DOS. Each device driver controls
a device and uses the PC's BIOS routines. For example, the serial port device
driver uses the serial port BIOS interrupt.

Programs generally use DOS services to access and control devices. How
ever, DOS does not prevent a program from directly accessing the BIOS routines.
The "back-door" approach is used by many programs to attain higher performance
or to perform a task that DOS does not provide. For example, many word
processors use the keyboard BIOS interrupts to speed up the keyboard input

27

I

I

Writing MS-DOS Device Drivers, Second Edition

28

Printers

Keyboards

Figure 2-2: The functional parts of DOS.

rates. Another example is programs that use the PC's built-in speaker; DOS does
not provide a service for speaker control.

DOS itself is composed of several programs that assist in bringing DOS into
memory when DOS is booted. There are additional external utility programs that
help you when you use DOS. Among these are FORMAT, PRINT, BASIC, and
CHKDSK. Although application programs are distinguished from utility pro
grams, they both request the same services from DOS and follow the same rules
that DOS expects from programs.

The most important utility program, and the one that users are most
familiar with, is COMMAND.COM. This program runs automatically when DOS
is booted. COMMAND.COM provides the interface for users to communicate with
DOS. The commands that are entered on the keyboard are translated to services
requested of DOS. For example, COMMAND.COM is used to set the time and
date, to run programs, and to control the devices attached to the PC.

Basic Concepts

Lastly, application programs request the PC's resources through the DOS
services interface. Without DOS, these programs would have to incorporate all
of the services provided by DOS and would, in all likelihood, be incompatible with
other application programs. DOS provides a common set offeatures and services
that allows all applications programs to share the PC and its data storage. These
applications programs use the services provided by the DOS kernel by requesting
services through programming calls to DOS. We will discuss this topic in more
detail later in this chapter.

Devices for DOS
As we have seen, DOS allows programs to control a set of standard PC devices:
keyboard, screen, disks, and serial and parallel adapters. Each DOS device has
a unique name assigned to it, and it is through these names that programs are
able to access the devices. Table 2-6 lists the names of the standard DOS devices
as they are currently defined for version 2.00 and higher.

In order to use a device in a program or DOS command, you need to specify
the assigned device name in the command line or program statement that
references the device. These reserved device names have a special meaning for
DOS, and any reference to these reserved names will cause DOS to access the
device. Therefore, you cannot use reserved names to access another type of device.

DOS Device Name

con:
com1:
aux:

com2:
Ipt1:
Ipt2:
Ipt3:
prn:

nul:
clock$
A:
B:
c:

Standard Device

Keyboard/screen
Serial port #1
Auxiliary port
(identical to com1:)
Serial port #2
Printer port #1
Printer port #2
Printer port #3
Logical printer port
(identical to Ipt1:)
Null device
Software clock
First diskette unit
Second diskette unit
Hard disk (normally)

Table 2-6: The standard device names assigned by DOS.

29

Writing MS-DOS Device Drivers, Second Edition

30

The con: device name refers to the console device, which, as you've seen, is
composed of the keyboard and screen that is the primary interface to the PC.
When you refer to con: in a program that does output you are referring to a video
device attached to the video controller.

The aux: is the auxiliary logical device and is assigned to the coml: port,
which is the first of several serial adapters that may be attached to a PC. Most
MS-DOS systems provide support for up to two serial ports; these are typically
named coml: and com2:. Additional serial ports are numbered com3:, com4:, etc.

In addition to the two serial adapters noted above, most MS-DOS systems
also provide support for up to three parallel adapters or ports. These are intended
primarily for use with parallel printers and are assigned the names Ipt1:, Ipt2:,
and Ipt3:. The logical printer device, pm:, is assigned to the first printer port
Ipt1:, so both prn: and Ipt1: may be used to refer to the same device unless prn:
is changed.

The nul: device is a special device for DOS. This null device acts as a
"bit-bucket" for output operations. If you write to this device, nothing will happen;
the data is effectively thrown away (the bucket has a hole in it). This is desirable
when a program generates output that should not be captured or saved in any
form. By temporarily directing the output to the nul: device, the program can
function in its normal fashion without worrying if it outputs garbage.

The clock$ device is another special device defined for most MS-DOS
systems. It really is not a device in the physical sense; no hardware keeps track
of the date or time (there is a timer that is used to keep the clock up to date). By
providing this software "device," DOS makes it possible for you to access the
system time and date easily through standard VO mechanisms.

The standard disks found on PC systems today are generally diskettes
(floppy disks) and hard disks. Disks are not given reserved device names but are
assigned alphabetic letters. These drive letters begin with A: and can run up to
Z:. Most DOS systems come equipped with two floppy disk drives and these are
assigned the drive letters A: and B:. In some cases when only a single diskette
drive is supplied with a PC system, the drive letters A: and B: are used to refer
to the single drive. Hard disks are usually assigned device names starting with
the letter C:; that is, the first hard disk is C:, the second hard disk is D:, and so
on. Although these drive letters are assigned by DOS, several PC manufacturers
change DOS to reflect different drive letter assignments. Some manufacturers
refer to the hard disk as E: ifthere are four floppy disk drives, the hard disk could
be referred to as B: ifthere is only one floppy disk in the PC. Often a single hard
disk drive may be partitioned, with each partition being assigned its own unique
drive letter, as ifthe partition was itself an independent hard disk drive.

Basic Concepts

DOS Services

The DOS Interrupts
DOS provides access to devices, files, and various services through the use of the
SOS6/S0SS software interrupt mechanism and the int instruction. Programs call
DOS through documented interrupt numbers which are in the range of 20h to
3Fh. These interrupt numbers are reserved for use by DOS; they should not be
used by your programs. These 32 interrupts are shown in table 2-7.

Eight DOS interrupts have been documented for use by programs. The
remaining interrupts (2Sh through 3Fh) are reserved for use by DOS.

The Terminate Program interrupt (20h) terminates the current executing
program as well as closing all files and flushing all data buffers to disk. It is
commonly used in .COM programs.

The DOS Services interrupt (21h) is the primary interface between an
application program and DOS. All requests for system services are made through
this call. We will discuss these services in more detail in the next section ofthis
chapter.

The interrupt at 22h, Terminate Address, is not an interrupt call but rather
is used to store an interrupt vector (22h is the address to transfer to when a
program terminates).

The interrupt defined for 23h is not an interrupt call but defines an interrupt
vector at 23h to contain the address to transfer to when a user types CONTROL-C
at the keyboard. Usually programs use this interrupt to define a memory address
to which control should be passed when a CONTROL-C is issued. The default is

20h DOS terminate program
21h DOS function call
22h DOS terminate address
23h DOS CTRLlbreak exit address
24h DOS vector for fatal error
25h DOS absolute disk read
26h DOS absolute disk write
27h DOS terminate but stay resident
28h-3fh DOS reserved

Table 2-7: The list of DOS interrupts (not BIOS). Note that the last 24
interrupts (28h through 3Fh) are reserved for use by DOS.

31

Writing MS-DOS Device Drivers, Second Edition

32

to cause a break if CONTROL-C is issued at the A> prompt. The use of this
interrupt allows the program to continue processing rather than being summarily
aborted.

For example, figure 2-3 shows a situation in which a program intercepts a
CONTROL-C interrupt and sets a flag. At a later (and safer) time, the program
checks to see if the flag is set; if so, the program aborts. This allows the program
to terminate in an orderly way instead of just aborting.

The Fatal Error interrupt (24h) is not an interrupt call but rather defines
the address to which control should be transferred when an error occurs during
disk I/O. This allows the program to continue processing instead of being aborted.

The Absolute Disk Read interrupt (25h) is used by programs to read absolute
sectors on the disk. The absolute sectors are numbered from 0 to the highest
available sector. Interrupt 25h allows a program to read the special sections on

CONTROL-C Processing in a Program

A
interrupts
YOUR PROGRAM

2.

processing
finishes,
control is
returned to
the Main
Processing
Loop

Is flag = 1?
If set
then
STOP

3.
Later
YOUR
PROGRAM
checks
this
flag

Figure 2-3: A typical example where the program sets up a
CONTROL-C address. At this address a flag is set if the CONTROL-C
key is struck. A flag is set and processing resumes. At some later point
the flag is checked, and if set, the program is then terminated.

Basic Concepts

a disk that are not normally readable from DOS: the boot record where informa
tion on the format of the disk is kept; the file allocation table, which indicates
where files are located on the disk; and the file directory, which contains
information about the files on the disk. Normal DOS services can read only the
user data area of the disk, not the special sections. The Absolute Disk Write
interrupt (26h), the counterpart to interrupt 25h, gives programs the ability to
write absolute sectors on the disk, including those in the special sections of a disk.

Interrupt 27h is the Terminate but Stay Resident interrupt. This interrupt
call allows the program to remain in memory but to pass control back to the calling
program. It is useful in writing programs that perform a background task. The
PRINT spooling program uses this interrupt to stay in memory and provide
printing services.

DOS Services
By DOS services, we refer to the various functions for input/output, file access,
device access, and program control that are accessed through DOS interrupt 2lh.
Each DOS service is requested by specifying the requested service in the ah
register. Table 2-8 lists the DOS services available through interrupt 2lh.

Using DOS Services
Programs issue requests for DOS functions through interrupt 2lh. This is one of
the more commonly used interrupts, because it controls so many facilities.
Interrupt 2lh is used to open files before reading or writing to them. Interrupt
2lh lets you close files to ensure that the data is safely stored on your devices
and to prevent further access of the device. In short, DOS services offer you the
ability to control what you want your programs to do.

DOS Device Management
To access a device using DOS, your programs need to indicate what file or device
to use; this is called opening the file or device. DOS requires that the name of the
file or device be specified through the DOS Open service (3Dh). Mter this
interrupt is received, DOS sets up a file handle, which is used as a standard
mechanism to access the device. This file handle is also used to keep information
regarding use of the file or device. A device such as the serial port must be opened
using coml: as the device name. Then you can read or write to this device using
DOS service calls.

33

Writing MS-DOS Device Drivers, Second Edition

34

Hex Function Number

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15
16
17
19
lA
21
22
23
24
25
27
28

Table 2-8: DOS services.

Description

Terminate program
Read keyboard and echo
Display character
Auxiliary input
Auxiliary output
Print character
Direct console I/O
Direct console input
Read keyboard
Display string
Buffered keyboard input
Check keyboard status
Flush buffer, read keyboard
Disk reset
Select disk
Open file
Close file
Search for first entry
Search for next entry
Delete file
Sequential read
Sequential write
Create file
Rename file
Current disk
Set disk transfer address
Random read
Random write
File size
Set relative record
Set vector
Random block read
Random block write

When DOS services a request that requires device access, DOS will translate
this request according to a standard set of rules imbedded in code. These rules
are uniform across all devices, from simple output-only parallel devices to
complex input and output devices, such as disks.

Hex Function Number

29
2A
2B
2C
2D
2E
2F
30
31
33
35
36
38
39
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
54
56
57

Description

Parse file name
Get date
Set date
Get time
Set time
Set/reset verify flag
Get disk transfer address
Get DOS version number
Keep process
CONTROL-C check
Get interrupt vector
Get disk free space
Get country-dependent information
Create sub-directory
Write to file/device
Delete a directory entry
Move a file pointer
Change attributes
I/O Control for devices
Duplicate a file handle
Force a duplicate of a handle
Return text of current directory
Allocate memory
Free allocated memory
Modify allocated memory blocks
Load and execute a program
Terminate a process
Get the return code of a child
Find match file
Step thru directory matching files
Return current setting of Verify
Move a directory entry
Get/set date/time of file

Table 2-8: DOS services (Continued).

Basic Concepts

These requested services, once converted to a specific command, are then
passed to a certain set of routines that process the command. These routines are
not common to all devices; rather, each device has a unique set of routines. These
routines are the actual DOS device drivers.

35

Writing MS-DOS Device Drivers, Second Edition

DOS has device drivers for each of the devices attached to the PC. Each
service request, however complex, is eventually converted by DOS into a series
of simple driver commands and passed to the appropriate device driver.

Translating Service Calls to Device Driver Commands
Device drivers are designed to handle simple commands from DOS. The two most
common DOS services used to access devices are interrupt 21's read (ah = 3F)
and write (ah = 40). These DOS services are relatively complex and may not be
translatable to single device driver commands. DOS will issue as many com
mands to the appropriate device driver as necessary to satisfy the DOS service
request.

For example, a program that writes to the disk may issue a write command
interrupt 21h (ah = 40)-that happens to append data at the end of the file. DOS
may have to process this single service request by issuing several commands to
the disk device driver. The first ofthese driver commands will need to find more
space on the disk for the new data. A driver command will be issued to read the
File Allocation Table in which the information on disk space is kept. Then, if
there is room on the disk, DOS will write the new data to the disk file by issuing
a write command to the disk device driver. Lastly, DOS will update the disk to
indicate the time oflast access by issuing another driver command to write to the
disk. Although this scenario has been simplified, the idea here is that DOS
converts a single service request into one or more device driver commands. This
is shown in figure 2-4.

Now that you have seen how DOS processes requests for device access by
passing the request in the form of smaller, simpler commands to the device
driver, you are ready to explore device drivers themselves.

The DOS Device Driver

36

Device Drivers for New Devices
DOS device drivers are device-controlling software routines that actually become
part of DOS. Because these programs are written to Microsoft-designed specifi
cations, DOS can recognize these new devices and can integrate them with the
rest of its standard devices. Once DOS knows about these devices through their
specific device driver routines, the devices can be accessed as easily as the
standard disk and screen devices.

The rules and regulations that Microsoft specifies for device drivers also
allows their installation. You will see more about these rules shortly. It is these
rules that make device drivers present a uniform interface to the DOS kernel. As

YOUR
PROGRAM

Write
a record
at end
of file

DOS DISK
DEVICE
DRIVER

1.Read disk space table
2.write to disk file
3.Update disk directory
4. Update disk space tabl

Basic Concepts

FLOPPY
DISK

I~I
Figure 2-4: A simple service request to write data to the file converted
to several possible disk device driver commands. DOS manages each
request, making one or more simple driver commands until the
request is complete.

you will see, DOS needs to know only that the device driver is controlling a
particular device, identified by a device name, and that it is capable of processing
standard device driver commands.

Without install able device drivers that have a uniform interface to DOS,
adding a new device to DOS would be difficult. The manufacturer of the device
would have to supply a custom-modified version of DOS in order for you to use
the new device. This would create a number of problems. First, you could not use
a newer release of DOS unless the newer version was also modified to control the
new device. Second, because each device manufacturer uses different methods of
modifying DOS, incompatibility problems would arise.

The DOS device driver is the most universal and meaningful method of
software control for devices. New devices become standard devices in DOS,
available for accessing at any time, from within programs and outside of pro
grams, such as from the command level.

37

Writing MS-DOS Device Drivers, Second Edition

38

ReplacementDrivers (ANSI.SYS)
Occasionally you may find that the standard device drivers built into DOS (disk,
screen, etc.) do not accomplish what you need to do. For example, you may need
a console driver that provides control for a color card that displays more colors
and resolution than the CGAlEGANGA driver. To handle this situation, you can
replace an existing device driver with a customized one.

This is the technique employed by the popular ANSI.SYS device driver
provided with DOS. The ANSI.SYS driver is a replacement device driver for the
standard console device driver. Over the past few years, the American National
Standards Institute (ANSI) has designed a set of standard escape sequences that
can be used to perform specific functions for any video monitor and keyboard (an
escape sequence is a group of characters preceded by an escape character, ASCII
1Bh). These functions include such things as setting foreground and background
colors, turning on and off reverse video display, and assigning special codes to
designated keys on the keyboard. These standard escape sequences provide
greater "portability" for software programs, because they allow developers to
create programs that require complex control of the monitor and keyboard
without any regard for the specific hardware involved.

Thus, you may add device drivers to DOS for two reasons: first, to add
support to DOS for devices that are not part of the standard set of DOS devices,
and second, to replace the original device driver with a new one that may have
more capability or portability than the old one.

Looking at Old and New Device Drivers
As we discussed earlier in this chapter, DOS manages requests for device access
from programs by issuing commands to the appropriate device driver. Each device
driver contains the name ofthe specific device it is controlling, and DOS locates
the appropriate device driver by searching through the list of installed device
drivers. ,

DOS maintains a linked list of the device drivers starting with the nul: device.
The device driver for NUL: is the first in the list and contains a pointer to the next
device driver. In turn, each device driver points to the next. The pointer for the
last device driver will contain the value -1, thus signaling the end ofthe list.

DOS manages the standard, replacement, and new device drivers using a
relatively simple mechanism. As shown in figure 2-5, the list of DOS standard
device drivers begins with NUL: and continues with CON:, AUX:, and so forth.
These device driver programs reside in the area of the PC memory that DOS uses.

Basic Concepts

New
device
driver
added
here NUL:

CON:

LPT:

Before
installing
device
driver

HEAD OF
EVICE CHAIN

NUL:

NEW:

CON:

LPT:

After
installing
driver
NEW:

Figure 2-5: What the list of DOS device drivers looks like before and
after we add a new device driver. Note that each driver contains the
device name and a field that points to the next device driver.

Whenever a new device driver is installed, DOS inserts it in the list just after the
NUL: device. This allows you to replace a standard device driver, because any
device request will cause DOS to search this list starting from the first, which is
nul:. If you replace a standard device with one of your own, DOS will find the new
device first and will never reach the original device of that name, which is now
second in the list. Similarly, new devices with new device names will be added to
this list. Thus, DOS will be able to access new, replacement, and standard device
drivers simply by searching this list.

This list of DOS device drivers is called the device chain and is a linked list
ofthe actual device driver programs. To access drivers all DOS needs is a pointer
to the first item, the device nul:. DOS can then find the rest of the device drivers.

39

Writing MS-DOS Device Drivers, Second Edition

40

Customized Drivers for Standard Devices
Besides writing drivers for new devices, you can always improve upon the DOS
standard device drivers. Let's explore this for a moment.

With the exception of the NUL: device, which must be the first in the device
chain, all of the DOS standard drivers can be replaced by alternate drivers.
Improved drivers for the standard PRN:, COM1:, and CLOCK$ devices can be
installed into DOS. The PRN: driver is especially likely to be replaced, because
many printers have features that are not accessible using the standard PRN:
driver. For example, you might need to get a status from the printer that the
normal PRN: driver does not handle; such a status might be used to determine
whether the printer is in text or graphics mode or whether the printer is out of
paper. You might also want to send special vector commands for plotting, using
routines built into an intelligent printer.

Another candidate for replacement is the COM1: driver. You could add your
own customized version in order to change the speed of data transfer through the
serial port by having your device driver detect a certain character sequence. This
would greatly ease the procedures for controlling the serial port device, because
it would eliminate the need to issue a special DOS command to perform this
function. Your own language could be formed.

The standard PC clock driver is used to retrieve or set the time and date.
You can write a driver for the CLOCK$ device to support a special hardware
device that stores the date and time (this may be integrated along with other
hardware on a multifunction board). A new CLOCK$ device driver will have to
understand how the hardware clock/calendar works, be able to control the setting
of the time and date, and be able to perform other tasks, such as allowing user
programs to access the clock as a timer for pulses. The concepts of replacing
standard DOS drivers with customized versions will be developed further in later
chapters. In fact, we will develop examples of CON:, PRN:, and CLOCK$ device
drivers that replace the standard device drivers that DOS supplies.

The possibilities for using customized device drivers are endless. For exam
ple, one interesting use of a con: replacement would be to simulate a DVORAK
keyboard, on which the keys are in different positions than on the standard
QWERTY keyboard. The purpose of the DVORAK keyboard is to place the
most-used keys together, supposedly to facilitate faster typing. Another CON:
replacement could be a terminal emulator, a software program that allows the
PC's normal screen and keyboard to simulate a keyboard of a specific terminaL
This is useful when the PC is used to communicate to a mainframe computer.
Such an emulator would solve the problem that arises when the PC's function
key codes are not recognized by the mainframe computer. You could create a new
keyboard/screen driver to translate the PC's function key codes to those that the
mainframe computer can recognize.

Basic Concepts

Deviceless Drivers
We have discussed drivers for new peripheral hardware devices and drivers that
replace standard DOS ones. Another type of drivers also exists: those that do not
control real hardware devices. Commonly known as virtual devices, these device
drivers simulate a hardware device. There are numerous examples. The RAM
disk is a virtual disk that can improve the speed of "disk-bound" applications
(those with lots of disk activity). The RAM disk driver reserves memory to
simulate bytes on the disk and manages this memory as if it were the real disk.
Reads and writes to this RAM disk do not go out to a real disk but rather are sent
to the memory reserved by the RAM disk. Thus, instead of spending time waiting
for a disk to access the data at disk speeds, the RAM disk can access the data at
memory speeds. Later on in this book, we will devote two chapters to designing
and implementing a RAM disk device driver.

Overview of a Driver's Program Structure
A device driver program consists of five parts: the Device Header, data storage
and local procedures, the STRATEGY procedure, the INTERRUPT procedure,
and the command-processing routines (see figure 2-6). We will discuss each of
these parts in this chapter as well as in later chapters as we develop actual device
drivers.

Let's look at these five sections briefly. The beginning of a device driver
program does not contain code the way normal programs do. Rather, the Device
Header contains information about the device driver itself. This information is
used by DOS and includes the device name for the driver and the pointer to the
next driver.

The second part of the driver is used to store local data variables and local
routines and procedures.

The third and fourth parts of the device driver contain what Microsoft calls
the STRATEGY and INTERRUPT procedures. These two procedures are integral
to processing each command that is passed from DOS to the device driver. They
allow DOS to pass control to the driver. We will discuss these in detail later in
this section.

The last part of the driver contains the actual code routines that process
each of the commands that DOS passes to the device driver .

. How DOS Communicates with the Driver
Let's see how DOS and the driver work together. Figure 2-7 shows that when
DOS calls the driver it passes a packet of data to the device driver. This call might
be to write to a RAM disk or send some special character to a graphics board.
This packet of data is called a Request Header and contains information for the

41

Writing MS-DOS Device Drivers, Second Edition

42

Device ~
Header If

~
Data Storage
and
Local Procedures Ik

It
STRATEGY ~
Procedure .l

L,.;· r)
N

INTERRUPT

I~ Procedure

r'
1'\

Command
Processing

i'

'-. .' ·~;:i ' .. ' .. 1'\

Figure 2·6: The five basic parts of the device driver.

device driver such as the data to be written to the device. DOS sets up the registers
ES and BX to contain the address of the Request Header when DOS calls the
device driver.

The Request Header The Request Header is a packet of data that is passed
from DOS to the driver; this data tells the driver what to do and the location of
the data involved in the work to be performed. For example, if DOS wants to write
a character to the serial port, it needs to specify the write command and the
character (data) to write. Therefore, DOS needs to pass to the driver both a
command and some data. Both of these are contained in the Request Header.
(Note: Do not confuse the Request Header with the Device Header. The Device
Header tells DOS about the driver program, and the Request Header contains

DOS

ES: ex

Length of packet

Device unit code

Command number

Status

Reserved

Address of data

Basic Concepts

-
DRIVER

-...

Figure 2-7: DOS calling the device driver with a pointer to the request
header. Contained within the request header is the command code for
the device driver. This instructs the device driver what functions to
perform on the device for DOS.

the data on which the device driver works.) The Request Header is described in
table 2-9.

As shown in table 2-9, the Request Header is a variable-length packet of
data. Within this packet, the length of the Request Header is contained in the
first entry. The second entry contains the unit code of the device. This is normally
used when more than one device is attached to the controller. An example of this
is the floppy disk controller, which often controls two drives. The A: drive would
be unit 0, the B: drive would be unit 1, and so forth. The third entry is the
command code, which tells the device driver what action to take. The fourth entry
is used as a status indicator. The fifth entry is reserved for use byDOS (its use

43

Writing MS-DOS Device Drivers, Second Edition

44

Entry Length
(bytes) Description

1 1 Length in bytes of this Request Header (varies with the
amount of data in the request)

2 1 Unit code of the device
3 1 Command code
4 2 I6-bit word for the status upon completion
5 8 Reserved for DOS
6 Varies Data specific for a command

Table 2-9: Definition of the Request Header that is passed to the
device driver. The Request Header contains information regarding its
length, the unit code of the device, the command to be performed, and
data for the command.

is undocumented). Finally, the last entry is the data field. This field varies in
length depending on the command in the third field. You will see more of this
data field in later chapters.

DOS automatically sets up a Request Header whenever a program makes a
request to DOS that involves a device driver. This data packet resides in DOS's
reserved memory space and is built with infonp.ation provided from the calling
program. The address of the Request Header is passed to the device driver when
DOS passes control to the driver. This address is stored in the driver's local
storage area. You need to specify both the segment address and the offset address
ofthis Request Header, because the Request Header can be anywhere in the PC's
640K memory. SpecifYing only an offset address assumes that the packet will
be in the current segment of memory in which the program is executing. DOS
passes this segment and offset address in the ES and BX registers of the 8088,
respectively.

You will see more of Request Headers in later chapters when you process
driver commands in the various device drivers.

Driver Calls from DOS You might assume that each command DOS passes
to the driver involves a single call to the driver. Alas, this is not the case. Recall
that DOS expects the device driver to have two procedures defined-the STRAT
EGY and the INTERRUPT procedures. Let's explore the two-step call that DOS
makes to the device driver for each command request.

Basic Concepts

The Two-step Call to the Device Driver Each time DOS asks the device
driver to process a command, for example a read or write command, DOS will call
the device driver twice. The first time, DOS will pass control to the STRATEGY
procedure defined for the device driver. The second time, the device driver will
be called at the address specified for the INTERRUPT procedure.

Think of the STRATEGY procedure as instructions that perform the set-up
and initialization for the driver. The INTERRUPT procedure then uses the
information from the STRATEGY procedure to process the command request
from DOS. This process is shown in figure 2-8.

Although it is not apparent from the DOS manuals, this two-step approach
allows DOS to distinguish between the request for the driver (the set-up) and the
actual work to be done by the driver. You can think of this two-step process as
analogous to writing a check and cashing it at a bank. You may write the check
on Monday (the set-up) and not cash it (the work) until Friday. In the same way,
DOS notifies the driver that there is work to be done with a call to STRATEGY
and then calls the driver again through INTERRUPT to allow it to work.

Let's develop a scenario to see why STRATEGY and INTERRUPT are
necessary. Assume that your PC, through DOS, can multitask, which means that

DOS

1. DOS
calls
STRATEGY
first

2. DOS
calls
INTERRUPT
second

,,--
-"""

DEVICE
DRIVER

STRATEGY:

INTERRUPT:

-..... ~ -

Sets
up
driver

Performs
actual
work

Figure 2-8: When DOS issues a request to the device driver, the device
driver is actually called twice.

45

Writing MS-DOS Device Drivers, Second Edition

46

it can perform several tasks at one time. This permits you to do more work in a
given period of time. Although DOS does not provide this capability currently, it
is an important feature that future versions of DOS will have.

It is likely that the various multiple tasks will differ in importance. If you
prioritize these tasks in order of importance, the calls they make to device drivers
also need to be prioritized. For example, a task that is downloading a file using
a modem might be higher priority than a task that is updating a collection of
addresses. The two-entry point approach allows DOS to do this. DOS can process
the device driver calls in the priority order of the calling task. This is accom
plished by linking into a chain all driver request calls (all the calls to STRATEGY)
and putting all the actual work calls (calls to INTERRUPT) into another chain
in priority order. After DOS calls all the device drivers through the STRATEGY
routine, it then inspects the INTERRUPT chain to see which one has the highest
priority. The closer a device driver is to the beginning ofthe chain, the higher its
priority.

Without this two-step mechanism to set up and perform the actual work,
DOS would call the device drivers on a first-come, first-served basis.

To make this scenario a little easier to understand, let's use an example.
Assume that there are three outstanding driver requests:

• Request A has a low priority

• Request B has a medium priority

• Request C has a high priority

The STRATEGY and INTERRUPT chains are illustrated in figure 2-9.
As this figure shows, each program request for device driver service causes

DOS to place the first (set-up) call in the STRATEGY chain and the second (work)
call in the INTERRUPT chain. When three programs make device driver re
quests, the set-up calls are linked into the STRATEGY chain in order of arrival,
and the work calls are placed in the INTERRUPT chain in priority order. Think
of this as writing checks in order during the week and then sending out the most
important checks first on Saturday. In effect, you are handling all the incoming
items as they arrive but sorting the most important items into a work list for
processing.

What the STRATEGY Procedure Does When the driver is first called, the
STRATEGY routine saves the address of the Request Header, which is contained
in the ES and BX registers. This is done to prepare the driver for the second call
to its INTERRUPT procedure.

STRATEGY
chain is
linkedin
arrival ~
order

INTERRUPT
chain is
linked in-...
priority
order

~
L!. B

A

~
~ B

C

c

A

Basic Concepts

Set up
is performed
in this
order

Work is
performed
in this
order

Figure 2-9: The effect of three driver requests. DOS links the three
requests in the STRATEGY chain in the order of arrival. The
INTERRUPT chain sorts the same three requests in order of priority.

The sequence of events is shown in figure 2-10, in which DOS prepares to
call the device driver by building a Request Header, and in figure 2-11, in which
DOS calls the device driver at the STRATEGY procedure.

47

--------- ----------~---

Writing MS-DOS Device Drivers, Second Edition

DOS

Length

Unit Code

REQUEST
HEADER

Command 1------....
Number

Status

Figure 2-10: DOS preparing to call the device driver for the first time.
A Request Header which contains information for the device driver to
process is built. The address of this Request Header is stored in the
ES and BX registers.

What the INTERRUPT Procedure Does When DOS calls the device driver
the second time, it does so through the INTERRUPT procedure. Here the real
work ofthe device driver begins. The Request Header that contains information
for the driver to process is handled by the code located in the INTERRUPT
procedure. Control is then passed to the command-processing routines. This is
shown in figure 2-12.

Block and Character Devices

48

DOS drivers need to distinguish between character and block devices. Recall that
a block device transfers data in groups of characters, and character devices
transfer data one character at a time. Of the control commands that the device

Basic Concepts

DOS

REQUEST
HEADER

DOS
calls
STRATEGY

DEVICE
DRIVER
DEVICE
HEADER

LOCAL
DATA
STORAGE

ES:BX

STRATEGY

STRATEGY
saves the
address of the
REQUEST HEADER
in LOCAL DATA
STORAGE

Figure 2-11: The STRATEGY procedure storing the address of the
Request Header in local data storage.

driver issues to the device, some are appropriate to character devices and some
to block devices. The Media Check command is one example of a block device
command. Because diskettes can be formatted for single-sided or double-sided
use, the DOS disk device driver needs to know which format has been used. To
find out, DOS issues a Media Check command to the disk device driver, which in
turn reads a block of data from the disk. From the information returned in this
block of data, DOS can determine if the diskette is single- or double-sided. The
Media Check command is unique to disk block devices and is not applicable to
character devices.

49

Writing MS-DOS Device Drivers, Second Edition

1. DOS calls
INTERRUPT
to perform
work

DEVICE
DRIVER

DEVICE
HEADER

LOCAL
DATA

ES:BX

STRATEGY

2. INTERRUPT
retrieves
the address
of the REQUEST
HEADER and
passes it to
command
processing

Figure 2-12: How the Request Header is retrieved by the INTERRUPT
routine. Control is then passed to the command processing routines.

DOS also needs to know which type of device its driver is controlling in order
to determine the appropriate commands the device driver can perform. This topic
will be covered in detail in later chapters as we develop various device drivers.

Device Driver Commands

50

So far, we have provided a lot of material on the various parts of a device driver.
The information presented so far has been on the flow of control around and in
device drivers. Now we have come to the core of device drivers: command
processing.

Recall that programs make service requests of DOS. Each of these service
requests translates to a specific set of commands that the driver understands.
These commands are common to .all device drivers.

Number Command Description

0 Initialization
1-2 Not applicable

3 IOCTL Input
4 Input
5 Nondestructive Input
6 Input Status
7 Input Flush
8 Output
9 Output With Verify

10 Output Status
11 Output Flush
12 IOCTL Output
13* Device Open
14* Device Close
15* Not applicable
16* Output Til Busy

17-18** Undefined
19* Not applicable

20-22** Undefined
23** Get Logical Device
24** Set Logical Device
25*** IOCTL Query

* = DOS version 3+ only
** = DOS version 3.2 only

*** = DOS version 5.0 only

Basic Concepts

Table 2-10: The list of commands for character-oriented devices.
There are 25 commands, numbered from 0 through 24. Commands 13
through 16 are valid for DOS versions 3.00 or 3.10. Commands 17
through 24 are valid for DOS versions 3.20 or greater. Command 25 is
valid for DOS version 5.0.

Commands defined by Microsoft for device drivers are listed by device type
in table 2-10 for character devices and in table 2-11 for block devices. Note that
not all ofthe commands are available for all versions of DOS.

In the following pages, we will review these driver commands. You can find
out more about them in chapter 9.

51

Writing MS-DOS Device Drivers, Second Edition

52

Number Command Description

0 Initialization
1 Media Check
2 Get BIOS Parameter Block
3 IOCTL Input
4 Input
5 Not applicable
6 Not applicable
7 Not applicable
8 Output
9 Output With Verify

10 Not applicable
11 Not applicable
12 IOCTL Output
13* Device Open
14* Device Close
15* Removable Media
16* Not applicable

17-18** Undefined
19** Generic IOCTL

20-22** Undefined
23** Get Logical Device
24** Set Logical Device
25*** IOCTL Query

* = DOS version 3+ only
** = DOS version 3.2 only

*** = DOS version 5.0 only

Table 2-11: The list of commands for block-oriented devices. There are
25 commands numbered from 0 through 24. Commands 13 through 16
are valid for DOS versions 3.00 or 3.10. Commands 17 through 24 are
valid for DOS versions 3.20 or greater. Command 25 is valid for DOS
version 5.0.

Initialization Command
Command 0 is the Initialization command. DOS always calls the device driver
with this command immediately after the driver is loaded into memory. This
allows the device driver to perform its device's unique initialization functions,
such as writing a message to the console, clearing registers, or other set-up

Basic Concepts

functions. DOS service calls can be issued from within the driver program only
when the driver is processing the Initialization command. For all other com
mands, the driver cannot issue DOS service calls; ifit attempts to do so, DOS will
crash, because the driver is part of DOS and DOS cannot call itself (when the
driver is processing the Initialization command it is not considered to be part of
DOS). When the driver returns control to DOS, DOS will assume that the driver
is ready to perform other commands.

Media Check and Get BIOS Parameter Block Commands
Commands 1 and 2 are applicable to block devices only; these will be discussed
in chapters 7 and 8. You need not concern yourself about these commands at this
time.

IOCTL Input Command
Command 3 is 10CTL Input. You will see 10CTL often-it stands for I/O Control.
This command is used by the device driver to return control information to the
program regarding the device. For example, if the device is a printer, you can
have the device driver return status information, such as the baud rate at which
the printer device is set to receive data. When the driver returns 1/0 control
information to the program, it is called input. Although this is quite useful, it is
not a normal feature of device drivers. There are many reasons for this. The first .
is that there is only one DOS call that allows I/O control-DOS service 44h. Most
programs do not use this DOS service, because they do not expect a device driver
to return this type of information. The second reason is that adding I/O control
to a device driver is not easy; the device driver does not know what type of
information to return. For I/O control to work properly, both the program issuing
an 10CTL call and the device driver accepting 10CTL calls must agree on the
information to be passed back and forth.

Input Command
Command 4 is the driver's Input command. This command instructs the driver
to read data from a device. This data is then returned to DOS, which then returns
it to the calling program.

Nondestructive Input Command
Command 5 is the Nondestructive Input command. This command is used to
determine whether there is any data from the device without actually passing
the data back to the calling program through DOS. This is often a means of testing
to see whether you are ready to read from the device. If there are characters
waiting to be read, you simply issue an Input command. Ifthere are no characters,

53

Writing MS-DOS Device Drivers, Second Edition

54

you tell DOS that there are no characters to be read. In effect, you are looking
ahead to see whether there is any input.

Input Status Command
Command 6 is Input Status. This call allows DOS to check the status of a device.
If the device is not ready, no Read or Input call would be issued. On the other
hand, if the status ofthe device indicates a ready condition, a Read command for
the device could be issued immediately. Note that this command is not the same
as the Nondestructive Input command. The Input Status command checks the
status of a device; the Nondestructive Input command checks for a character in
the device's buffer.

Input Flush Command
Command 7 is the Input Flush command. This command allows you to discard
any input for the device by clearing out the buffer associated with the device. This
can be important in just about any program. Suppose a program asks the user if
he or she wants to erase all the files on a disk. If you did not use a call to flush or
get rid of all characters that had been typed ahead, you could accidentally erase
all files if the type-ahead buffer happens to contain the character that the user
would press to erase all the files. You should use this call to get rid of any possible
extraneous characters just before you read some critical data from a device.

Output Command
Command 8 is the Output command. This command tells the driver to write a
specified amount of data to the device.

Output With Verify Command
Command 9 is the Output With VerifY command. This command is similar to the
Output command but has one additional function: when the VERIFY switch is
set ON at the DOS command level, the driver will read the data after each Write.
This is a useful feature when you need to know that critical data has actually
been written properly. Of course, this presumes that the device you are writing
to can read the same data. This feature is not meaningful for printers and screens,
because such devices cannot read what was written.

Output Status Command
Command 10 is the Output Status command. This command instructs the driver
to check the status of the device you are using for output. This has no meaning
for devices that can only read data.

Basic Concepts

Output Flush Command
Command 11 is the Output Flush command. This command tells the driver to
send a signal to the device, informing it that any data currently still in the output
device should be discarded.

IOCTL Output Command
Command 12 is the IOCTL Output command. This command is sent to the driver
when DOS needs to pass data to the driver for use by the driver itself. This is not
the command that DOS uses to send data to the device. If this command is
implemented in the device driver, you use the data to control the device rather
than to send data to the device. As mentioned previously with reference to the
IOCTL Input command, programs that issue the IOCTL call must agree with the
device driver on what information is to be passed.

Device Open Command
Command 13 is the Device Open command, which can be used by the driver to
keep track of all the times the device is opened. This command is available in
DOS versions 3.0 or later if the Device Open/Device CloselRemovable Media bit
in the Attribute word of the Device Header is set. You will see how this is set in
a later chapter. The driver can perform a number of functions when it receives
this call. For example, it can reinitialize a device or prevent access to the device
if another program has opened it.

Device Close Command
Command 14 is the Device Close command. You can use this command if the DOS
version is 3.0 or later, the Device Open/Device CloselRemovable Media bit is set,
and a program closes the device. This command is used with the Device Open
command to implement a count of the number of opens for the device. In turn,
the driver can perform a function for the device, such as flushing any information
that may be within the driver out to the device.

Removable Media Command
Command 15, the Removable Media command, is valid for block devices. This
command asks the driver whether the device contains removable media.

Output Til Busy Command
Command 16 is the Output Til Busy command. This command is valid for
character-oriented devices if bit 13 is set in the Attribute word of the Device
Header. This command is most useful for printers that have a buffer to receive

55

Writing MS-DOS Device Drivers, Second Edition

data. Instead of outputting a small number of characters, the driver would send
enough data to fill the printer device's buffer. This minimizes the number of times
that DOS needs to call the driver with data for the printer. The PRINT spooler
program uses this feature.

Other Commands
Commands 17 through 25 are advanced commands that are available under DOS
versions 3.20 or later. These commands will be treated in detail in chapter 9.

Tracing a Request from Program to Device

56

To finish this section, we will look at an example of what happens along the way
as a program calls a device driver. Let's assume that a program has asked you to
type some data from the keyboard into a file called MYFILE. Let's say the
program will then write the data into a record in a disk file. Figure 2-13 shows
the various steps performed by your program, DOS, the disk device driver, the
BIOS, and the device itself.

When you have typed in all the data, your application program will issue a
Write to a previously opened disk file named "myfile." The data to be written is
contained in a record or variable block of data named "newdata." The Write is a
call to a library function in the programming language used in your program.
This function will take your Write command and convert it to a DOS function
call. There are many DOS calls that write data to a file; for this example, we will
assume that it is simply a Write Sequential File Record call. The library function
is generally written in assembly language. It will set up the data for a Write
Sequential File Record as DOS needs it and will then call DOS by issuing
interrupt 21h.

The first part of DOS that is used is the call handler, which is where control
goes when the interrupt 21h is executed. It is here that DOS inspects the type of
function that the caller has set up (as found in the AH register). In this case the
function is hex 15, which means Write Sequential File Record to DOS.

DOS then internally locates the relative position of the disk file to which your
record is to be written. Next, DOS finds the starting address, relative to the
beginning of the disk, of the file "myfile." This is done by searching through the
disk directory for information on where "myfile" resides. The relative position of
the record to be written to is added to the position of the start ofthe file; this yields
the absolute position on the disk at which the "newdata" record should be stored.
This part of the DOS call handler is responsible for determining all the information
for a given disk and all the information for the files on this particular disk. .

YOUR
PROGRAM

Write
("MYALE",
newdata)

INT21h

2. DOS services
translates
write request
to physical
address for
a drive

DISK

1.Program ._ __
issues a
DOS DOS

INTERRUPT
ROUTINES

Basic Concepts

DISK
DEVICE
DRIVER

Absolute Diskl~ ~r Writes 'II

3. DOS determines Command

BIOS
ROUTINES

10h Video

13h Disk

appropriate Processing
disk driver
and calls
the driver

issues a
BIOS call
to the disk
routines with
a request
to write

I~I ... --+
5. The BIOS

disk routine
writes to ~ ,
the disk •

Figure 2-13: Block diagram of the paths taken to write a block of data
to the disk.

57

Writing MS-DOS Device Drivers, Second Edition

The next step performed is that this data is sent to the general disk handler,
which is also the DOS Absolute Disk Write routine (also known as interrupt 26h).
This is called from the DOS kernel.

Interrupt 26h or the DOS Absohlte Disk Write routine requires two basic
pieces of information. The first piece of information identifies the drive to which
DOS needs to write the data. The second piece defines the location of the write
relative to the beginning of the disk (that is, the starting sector). The reason for
this routine is that DOS treats all disks alike: all of the sectors of each disk are
numbered from 0, starting at the beginning of the disk. Thus, the file handler
finds the relative position of the record within the file, and the general disk
handler calculates the relative position within the disk. What the DOS Absolute
Disk Write routine does is to determine the actual physical address to which the
data should be written, using the relative information calculated by the original
int 2Ih service Write Sequential. The physical address referred to here is the
relative physical sector on the disk to which data should be written. Finally, this
information is passed to the disk device driver.

In turn, the disk device driver is responsible for converting the physical
address to a track, a sector, and a surface; it also performs the actual write.

A point should be made here about the BIOS routines. The disk device driver
uses the disk BIOS routines to perform the actual reads and writes to the disk.
This is accomplished by execu~ing an interrupt I3h after specifying the appropri
ate subfunctions for read or write.

Once the disk device driver has finished the write operation, it will return
a status to the Absolute Disk Write routine, which, through the DOS call handler,
will return the status to the original calling program. Just as the original write
request passed through the DOS call handler, the Absolute Disk Write routine,
the disk device driver, and the disk BIOS routine, the status "percolates" through
the layers back to the original program. .

So the device driver plays a vital role in ensuring that your data is written
to the disk. This illustration of the complicated process of writing a record to the
disk has involved many steps. You have seen the relative roles of the device driver,
DOS, and the BIOS. The interactions for all device drivers are similar to those
in the example.

The Mechanics of Building Device Drivers

58

In this last section ofthe chapter we will cover the mechanical aspects of building
device drivers. We will survey the steps in building device drivers and the utility
programs needed for each step.

Basic Concepts

Writing a Device Driver Program
A device driver is a program that is built using a set of rules. DOS has defined
these rules in order for the device driver to work properly. We will define the
various sections of code that make up a device driver. Each of these sections
contains assembly language instructions or data. Instructions in 8088 assembly
language are written and grouped into procedures. Variables are defined in
memory and are used to store data that DOS passes to the device driver. Other
variables are also needed to store text messages that will be displayed on the
video screen.

A word processor is used to input the source text ofa device driver. Then the
text is assembled using the Macro Assembler. The object code output from the
assembler is linked to create an executable file. Then this executable file is
converted to a memory image file for proper execution by DOS.

Once the device driver is built, it is loaded into memory. This is done by
specifying the device driver file in the CONFIG.SYS file and rebooting DOS.
During its initialization phase, DOS will read the CONFIG.SYS file and copy the
contents ofthe device driver file into DOS's memory. Then DOS will call the driver
to initialize it. DOS initializes all device drivers to ensure that they are ready for
use. For more information on DOS initialization, refer to appendix C.

Assembling the Device Driver
After you key in the source code ofthe device driver using a word processor, the
device driver is ready to be assembled. Use the Macro Assembler as follows:

Microsoft (R) Macro Assembler Version 5.10A
Copyright (C) Microsoft Corp 1981, 1989. All rights reserved.

46008 Bytes symbol space free

o Warning Errors
o Severe Errors

The first command parameter to the Macro Assembler is the name of the
text source file. The second command parameter specifies the name of the file
that will contain the generated object; the file name extension will be .OBJ. The
third command parameter specifies the name of the file that will contain the
output listing from the Macro Assembler; it will have a file name extension of
.LST. The fourth and last command parameter specifies the name of the cross
reference file.

59

Writing MS-DOS Device Drivers, Second Edition

60

Linking the Device Driver
This step will convert the object file into an executable file that is commonly called
an .EXE file. These files are normally program files that are executed by DOS
and are prepared by the linker when it reads the object code. However, when
device drivers are .EXE files, they cannot be executed by all versions of DOS,
because in earlier versions the device drivers must be in .COM format.

As was mentioned earlier in this section, device drivers are usually memory
image files. This means the driver must be in .COM format. First, create the .EXE
file by using the linker program, LINK:

C>link driver,driver,driver,null

Microsoft (R) Segmented-Executable Linker Version 5.10
Copyright (C) Microsoft Corp 1984-1990. All rights reserved.

Libraries [.LIB]:
Definitions File [NUL.DEF]:
LINK: warning L4021: no stack segment

This step will create two separate files: the.EXE file and DRIVER.MAP,
which is the listing of the .EXE file iIi terms of variable names and addresses
used. Note that there was one warning detected. Do not be alarmed by this. A
STACK segment can be defined within a program and is used as a storage area
for variables. The LINK program has been designed to assume that all programs
will define a STACK. Most device drivers do not define a STACK segment,
because a device driver is part of DOS and not an ordinary program. DOS has
defined a stack, so device drivers use it instead of defining one.

Convert .EXE to .COM Format
You are encouraged to convert the device driver to a .COM format program,
which is a memory image of what the driver should look like when it is loaded
into memory. Although this is not a requirement of DOS, it is highly recom
mended, and is accomplished by using the EXE2BIN. COM utility that is supplied
with DOS:

C>exe2bin driver.exe driver.sys

Note here that we have named the .COM output file DRIVER.SYS. Device
driver files should be named .SYS for several reasons. The first is that if they are
left named .COM after the EXE2BIN conversion, there is the possibility of
someone accidentally executing the driver program, causing the inevitable ma
chine crash.

Basic Concepts

Caution: You cannot run a device driver directly the way you
would a normal program!

The second reason that device drivers should be named .SYS is that .SYS
has become the standard naming convention for such programs. This dis
tinguishes the device driver files from all other files.

Installing Device Drivers into DOS
Before rebooting the machine to tryout any device drivers, you will need to tell
DOS to load these drivers into memory. This is done by creating a file named
CONFIG.SYS that resides in the root directory of the disk from which you are
booting. Assuming that you use the C: drive as your hard disk, build the
CONFIG.SYS file as follows:

C>copy con: config.sys
break = on
device = driver.sys
"z
1 File(s) copied

When DOS initializes, it will read the CONFIG.SYS file and look for any
device driver files. It detects these by searching for the keyword device. DOS then
reads this file into memory. For more information, refer to appendix C.

If you already have a CONFIG.SYS file, you can include a device driver in
that file by adding the following line to your CONFIG.SYS file:

device = driver.sys

After you create a CONFIG.SYS file, you can simply warm-start your
machine by depressing the CONTROL, ALT, and DEL keys. The new device
driver will be loaded into memory.

Summary
In this chapter, we have covered the hardware aspects of devices and controllers,
the programming of devices using BIOS interrupts, and the need for software to
control devices; we have also discussed the reasons why device drivers offer the
best solution to the problem of device access by DOS. In addition, we have covered
how the device driver is used by DOS and how the device driver controls devices.

61

Writing MS-DOS Device Drivers, Second Edition

In short, you now have enough information about the external features of device
drivers to look into writing a device driver.

In the next chapter, we will present a simple device driver. You will learn
about the structure of a device driver program, the Device Header that describes
to DOS the type of device we are controlling, the INTERRUPT and STRATEGY
routines, and the driver command processing.

Questions

62

1. Could I use the same device driver under PC-DOS as well as MS-DOS?

2. Are BIOS calls required in device drivers?

3. Why is DOS version 2.00 or greater required for adding device driver
programs?

4. How many printer devices does DOS normally support?

5. How many serial devices does DOS support?

6. If a new device driver is added to DOS, which standard device does it
follow?

7. If! add two new devices to DOS, for example, new1:, then new2:, what
order would they be in after nul:?

Answers may be found in appendix F.

Chapter 3

A Simple Device
Driver

The Device Header Required by DOS '

The STRATEGY Procedure

The INTERRUPT Procedure

Your Local Procedures

DOS Command Processing

The ERROR EXIT Procedure

The COMMON EXIT Procedure

A Simple Device Driver

ThiS chapter will show you a real but very plain device driver program,
one that makes a simple "beep" and prints a message on the screen. Although
this example will not win awards for functionality and processing power, it does
allow us to present clearly the various parts of a device driver and to develop the
8088 assembly code for each section. These code sections will contain the func
tions that DOS requires in a device driver-some that we have already covered
and some new ones as well.

Because this is the first device driver in the book, we will cover each section
in detail. What you will learn in this chapter will prepare you for the device
drivers in the following chapters.

What Does a Device Driver Look Like?
Listing 3-1 is an empty MASM 8086/8088 assembly language listing of a program
we will call the Simple Device Driver. This driver will refer to a nonexistent device
named SIMPLE$. The source code is composed only of comment statements; such
a source code is known in programming circles as a skeleton. The comment
statements are grouped together in sections delineated by a banner consisting of
asterisks. Each of these sections is required for a device driver. Some of the
sections are definitions that are necessary to the Macro Assembler; others are
necessary for the procedures you need for the device driver itself. We will describe
each section in detail in this chapter. At the end ofthis chapter, we will present
the finished result.

An Overview of the Simple Device Driver Sections
Listing 3-1 will be expanded as we go on and will form the basis for the simple
device driver as well as for all the other device drivers that you will encounter in

65

Writing MS-DOS Device Drivers, Second Edition

Listing 3·1: A skeleton listing from which we will develop the Simple Device
Driver.

;**

1 ;* COMMENT SECTION HEADER *
;**

;**

2 ;* INSTRUCTING THE ASSEMBLER *
:**

;**
3 ;* MAIN PROCEDURE CODE *

:**

i*** ***********
4 ;* DEVICE HEADER REQUIRED BY DOS *

i*** ***********

i*** ***********
5 ;* WORK SPACE FOR THE DEVICE DRIVER *

i*** ***********

i*** ***********
6 ;* THE STRATEGY PROCEDURE *

i*** ***********

i*** ***********
7 ;* THE INTERRUPT PROCEDURE *

i*** ***********

i*** ***********
8 ;* YOUR LOCAL PROCEDURES *

i*** ***********

i*** ***********
9 ;* DOS COMMAND PROCESSING *

i*** ***********

i*** ***********
10 ;* ERROR EXIT *

i*** ***********

i*** ***********
11 ;* COMMON EXIT *

i*** ***********

i*** ***********
12 ;* END OF PROGRAM *

i*** ***********

66

A Simple Device Driver

this book. Each of the various sections of this driver plays a vital role in
contributing to all device drivers. These sections are described below.

Comment Section Header
All well-written programs have brief descriptions at the beginning of the program
that identify what the program does, when it was created, the author's name and
address, and other information. What appears obvious to the author of the
program may not be clear to another person, and even the original author forgets.
Other kinds of information that can be placed in this section are a history of
program modifications, including the dates of the changes made to the program,
as well as a description of each change.

Instructions to the Assembler
When you are writing in assembly language, you will need to include numerous
commands to the Macro Assembler that are not actual instructions to the
processor. Rather, these commands instruct the Macro Assembler itself to per
form some functions on behalf of your program. Examples of commands include
how the program will use memory, some control over the listing that the Macro
Assembler produces, and definitions that the program will use.

Main Procedure Code
This is the next section within the simple device driver. This section is responsible
for defining to the Macro Assembler the overall organization ofthe program. For
the simple device driver, as well as for all other device drivers in this book, there
is only one main procedure. The simple device driver sounds a beep and then
prints a string. Device driver programs are built with a single main procedure
for a number of reasons. The first reason is that DOS assumes that the device
driver is a single procedure. Recall from the Macro Assembler Reference Manual
that when procedures are called, control passes to the first instruction at the
beginning ofthe procedure; the procedure then exits through a RETURN instruc
tion. Because the device driver begins with a Device Header table, DOS cannot
call the main procedure of the device driver. Instead, DOS uses information in
the Device Header table to pass control to the device driver. The second reason
that there is just one procedure is that there is no reason for device drivers ever
to contain more than a single procedure. Code that is modularized into procedures
may always be contained within the main procedure. So, for all the device drivers
in this book, you will see many procedures nested within the main procedure.

67

Writing MS-DOS Device Drivers, Second Edition

68

Device Header Required by DOS
This is a table of fixed values that DOS requires of all device drivers and that is
located in the beginning of the program. The Device Header defines five key
values to DOS. The first value tells whether there is another device driver
following the simple device driver. The second value tells DOS what type of device
this device driver is controlling (block or character). The third and fourth entries
in the Device Header are addresses of the STRATEGY and INTERRUPT proce
dures in the device driver. Although these two procedures are not procedures in
the strictest programming sense, they behave like procedures in that they both
execute RETURN instructions to exit. DOS expects each to perform according to
the rules that you saw in chapter 2. Then, upon completion, they exit back to DOS
through a RETURN instruction. Recall from chapter 2 that DOS uses a two-step
call to request work from a device driver. The STRATEGY routine is the first
routine called, and the INTERRUPT routine is the second. The last entry in the
Device Header table is the name ofthe device for the device driver.

Work Space for the Device Driver
This is the section in the program in which data storage is defined for any
variables the simple device driver will need. Variables are defined here that store
information for controlling the device in the simple device driver. The space these
variables consume is defined here as well.

The STRATEGY Procedure
This section contains code for performing the first task of the simple device driver
in processing DOS requests, which is usually the task of handling set-up require
ments. As the name implies, the STRATEGY routine performs set-up work; it is
the first oftwo calls from DOS.

The INTERRUPT Procedure
This section contains the code for the second part of command processing. DOS
passes control to this procedure during the second call to the simple device driver.
The INTERRUPT procedure has a command for the device as well as the data for
the device.

Your Local Procedures
This section contains any necessary procedures the simple device driver will
require. These local procedures support and assist the simple device driver
program.

A Simple Device Driver

DOS Command Processing
This is the heart of all the device drivers. Whenever a program uses the simple
device driver, a command, such as one telling the device to read or write, is passed
through DOS to the simple device driver. This command is then actually per
formed by the code in this section. We presented a summary of the standard
commands that drivers process in the previous chapter in table 2-9; in this
chapter we will begin to implement these commands.

Error Exit
This is the section of code in which the simple device driver processes any errors
that occur.

Common Exit
This is the section of code that the simple device driver will execute when it is
finished processing the driver request that DOS has made, such as a command
to read or to write. This section of code returns status information to DOS,
indicating a successful operation.

End of Program
This is the section of code that signals to the Macro Assembler the end of the
simple device driver.

We have seen, briefly, the twelve sections that make up an assembly
language program for a device driver. Now let's take a closer look at the actual
code in each ofthese sections.

Instructing the Assembler
Every device driver program has a certain number of assembler directives.
Assembler directives are special instructions to the Macro Assembler that do not
cause the Macro Assembler to generate instruction code. Such instructions
merely tell the Macro Assembler to treat your code in a particular way, depending
on which directive you use.

The Microsoft MASM Macro Assembler used in this book allows directives
and instructions to be entered in any column. For ease of reading, we will use
four basic columns (see listing 3-2). The first column is for labels and variable
names. This allows you to glance at the listing to see where you have defined
these labels and variables. The second column is for instruction code and direc
tives to the Macro Assembler (think of this second column as the commands you

69

Writing MS-DOS Device Drivers, Second Edition

Listing 3-2: Assembler directives for the Simple Device Driver set the
program into the segment called cseg Here.

;**
. * , INSTRUCTING THE ASSEMBLER *
;**

!column 1 !column 2!column 3!column 4

cseg
simple

labels

70

segment para public 'code'
proc far
assume cs:cseg,es:cseg,ds:cseg

code options comments
macros

need in the program). The third column contains required information or options
for instruction code and directives; the number of options will depend on the
command in the second column. The fourth and last column is an optional
comment field in which you explain what a particular command is doing. Now
let's examine the code.

The first thing you will see in column one oflisting 3-2 is the name cseg. This
is the name you choose for the label you are assigning to a segment. In appendix
A, segment is the term that defines a block of memory of up to 64K. The term
segment is also an assembler directive that tells the assembler that you are
defining a block of memory. The assembler will calculate how large this segment
is (up to 64K) after it assembles the program. The directive segment defines the
start of the 64K-maximum segment, and the ends directive defines the end of the
segment. The required ends directive is found in the End of Program section.

Additional information for the segment directives follows the directive
segment. The word para is a directive that tells the assembler to align this
segment in memory on a paragraph boundary. In appendix A, a paragraph is
defined as 16 bytes, which, in hex, is a 0 in the least-significant position. This fits
in nicely, because the address of a segment assumes that the low-order address
position is Oh. The next piece of information on the first line is the public directive,
which tells the assembler that the segment containing your code can be refer
enced externally from another p:rogram. The last piece of information after public
is code, which tells the assembler this segment will contain instruction code. You
may notice that there is only one segment directive in this program; this indicates
to the Macro Assembler that only a single block of memory is being used in your
device driver program.

A Simple Device Driver

The second line in listing 3-2 defines to the assembler a procedure named
simple. The directive proc defines the start of your main procedure (at the End
of Program section, endp will signal the end of the simple procedure). The
keyword far on this line is required and tells the assembler that this is a far
procedure, which can be anywhere in memory. When DOS calls the simple device
driver, it will use the long form of the call instruction which is known as a far
call. These far calls are calls to routines that cannot be assumed to be within the
same 64K segment as the calling routine. Such calls take slightly longer to
execute than near calls. The simple procedure will contain all of your code for the
device driver. Thus, your short device driver program will have one procedure
within one segment.

The assume directive on the third line tells the Macro Assembler that the
CS, ES, and DS registers of the 8088 CPU will reference items that are defined
within this one segment (see appendix A for a detailed explanation of segment
usage). Your Simple Device Driver program will need to use these three registers.
Thus, cs:cseg means that cs will refer to items in the current segment cseg.
Programs can thus use the CS register to reference the code segment, the DS
register to reference the data segment, and the ES register to reference the extra
segment. The CS, ES, and DS registers contain the starting address of the code
segment, the extra segment, and the data segment for the current segment.
Because all three segments share the same segment, the addresses that are
generated for these segment registers will be relative to the beginning of the cseg
segment in your program. Normally, each of these three registers has a separate
segment or block of memory assigned. In this simple device driver program, each
of these three segment registers will share the same block of memory in the
segment named cseg. In other device driver programs this may not be the case.

You will find these assembler directives in every device driver program.
They may differ depending on whether or not they share segments.

Main Procedure Code
The main procedure is where the simple device driver program starts. Contained
within this main procedure is the code that performs all the work. You must tell
the Macro Assembler that the instruction code and data addresses start at this
location.

The begin label is a label given to the start of the program:

;**
. * , MAIN PROCEDURE CODE *
;**

begin:

71

Writing MS-DOS Device Drivers, Second Edition

Normally, you should use this begin label to instruct the assembler (by specifying
this label to anend directive at the end of the program) that you want the program
to start execution at begin. However, begin is used here more as a place-marker.
Device driver programs, like many other normal programs, need not start
execution at the beginning of the program. Rather, begin is placed at address 0
to mark the beginning ofthe program. Right after the begin label comes the data
and instructions for the simple device driver.

The Device Header Required by DOS
We now have our comments, main procedure, and assembler directives set up.
The Device Header is a table of required data for DOS. Device drivers, as you
have seen, come in different types. When DOS loads a device driver, it needs to
identify the type of device driver it is, so you should specify this in the Device
Header.

A device driver can replace a standard DOS device driver, such as the con:
driver, or it can be a totally new driver for which DOS knows nothing. In either
case, DOSneeds to know if it is a character-oriented driver or a block-oriented
driver. Recall from chapter 2 that character devices transfer data one character
at a time, and block devices transfer data in groups of characters. This identifi
cation information for DOS is contained in the Device Header, as shown in listing
3-3. Each of the entries in the table comprising the Device Header will contain
varying information of varying lengths. The assembler knows the length of your
entries from your use of define directives: define 8-bit bytes using db, I6-bit words
using dw, and double I6-bit words using dd.

The five entries that constitute the Device Header will be examined in the
next sections.

Listing 3-3: The Device Header, which specifies the device characteristics
and driver information to DOS.

;**

; * DEVICE HEADER REQUIRED BY DOS *
.** ,

next - dev dd -1 ;no other device drivers
attribute dw 8000h ;character device
strategy dw dev_strategy ; address of 1st dos call
interrupt dw dev_int ; address of 2nd dos call
dev_name db 'SIMPLE$, ;name of the Driver

72

A Simple Device Driver

The Next Device
The variable next_dev is a double word (dd in MASM) that is used to indicate to
DOS whether another device driver "follows" this one. If there is, the segment
and offset addresses ofthe next device driver are placed in nexCdev. As you saw
in chapter 2, this is how DOS keeps track of drivers and puts them in a chain. If
no driver follows this one, a -1 for both the segment and offset address indicates
to DOS that there is only one device driver. The address order for nexCdev is
offset first and segment second.

The technique of using nexCdev allows DOS to place more than one device
driver program into one file; DOS saves time by having to open and read only one
file instead of several. DOS uses the nexCdev field to link the device drivers into
the device chain. As was discussed in chapter 2, device drivers are linked in a
chain, and new device drivers are added to the beginning of the chain after the
nul: device driver. DOS uses this device chain to search for the appropriate device
driver whenever a device access is requested.

If there is another device driver following the simple device driver, you
should place the segment and offset address in this field. Thus, this field tells
DOS where the next device driver is. The last device driver will have the -1 in
both words.

Attribute
The label attribute contains a 16-bit word that describes to DOS what type of
driver this is. Table 3-1 summarizes the more popular bit settings. In chapter 9,
we will define other bits.

As you can see from table 3-1, the attribute word can describe many types
of devices. The entries in this table are discussed briefly in the next sections; they
will be covered in greater depth in later chapters. In the simple device driver
example, the attribute word is set to 8000h. If you convert this to binary format
you will find that bit 15 is on, which signifies that this is a character device. Note
that all other bits are set to 0 to prevent DOS from assuming that other attribute
bits are desired.

The STRATEGY and INTERRUPT Routines
As you learned in chapter 2, a STRATEGY procedure is a set of instructions that
performs the set-up for the device driver, and the INTERRUPT procedure uses
the information from the STRATEGY procedure to perform the required work.
Recall from chapter 2 that DOS uses a two-step mechanism to pass commands
to the device driver. The STRATEGY procedure is called first, followed by a call
to the INTERRUPT procedure.

73

Writing MS-DOS Device Drivers, Second Edition

74

Bits Description for Bit Set to 1

o Standard input device
1 Standard output device
2 Null device
3 Clock device
4 Special
5 Reserved (must be set to zero)
6 Generic IOCTL **
7 IOCTL Queries***
8-10 Reserved (must be set to zero)
11 Device supports OPEN/CLOSEIREMOVABLE MEDIA*
12 Reserved (must be set to zero)
13 Non-IBM Format
14 IOCTL
15 Character device (set to 0 for block device)

* DOS 3.0 and later
** DOS 3.3 and later

*** DOS 5.0

Table 3-1: The attribute bits for the Device Header.

In listing 3-3, strategy and interrupt are the names for the addresses of the
two routines that DOS uses in the device driver. These I6-bit words contain
addresses that DOS uses to get to the two routines, dev _strategy and dev _into The
first time, DOS passes control to the device driver program at the address you
specify at strategy. The second time, DOS will enter the device driver at the
address you specify at interrupt.

Device Name
Device name is the name assigned to the character device in the device driver.
You may recall from chapter 2 that character devices are named in the device
driver and disk devices have drive letters assigned. Use this name in a program
to make DOS call the device driver. In listing 3-3, the devJwme label contains
the name SIMPLE$, which defines to DOS the name of the device driver, in the
Special Device Header. You may name the device anything as long as it meets
two DOS requirements. First, the name cannot be NUL, because DOS does not
allow the replacement of this particular reserved name. Second, the name must
be less than or equal to eight characters in length and must be padded with

A Simple Device Driver

blanks. We have named this device SIMPLE$. Because the dev_name field is
eight characters in length and SIMPLE$ is seven characters in length, we have
added a blank to the end of'SIMPLE$' so that the name is 'SIMPLE$ '.

Work Space for the Device Driver
As shown in listing 3-4, Work Space for the device driver is the section of the
simple device driver that contains the local variables for procedures. The INTER
RUPT procedure requires two variables, and the initial procedure for the simple
device driver, which we will present later, requires a single variable for a print
message. These three variables will be referenced from within the respective
procedures, but we defined them here because defining the variables in one
section makes it easier to find them later.

The three variables occupy memory right after the Device Header table. The
variables rh_ofs and rh_seg will be used to store information that DOS passes to
the device driver. You will see the significance of these two variables soon. The
variable msg 1 will be printed when the device driver program executes. The
string of bytes you define for msg 1 is composed of hex codes and oftext contained
within quotation marks. Hex codes allow you to control the cursor on the screen
or use special functions of the PC. In this case, the 07h is the code for a "beep"
(CONTROL-G). This makes the speaker beep before the program prints the text
ofthe message. The Odh and Oah signify that the message is followed by a carriage
return and line feed to prevent other messages from writing to the same screen
display line. Finally, the PC beeps again. At the end of the string of bytes you
must signal to the assembler that your variable is complete by using the special
symbol "$" enclosed in quotation marks.

As was mentioned in chapter 2, the Request Header is the name given to
the packet of data that is passed from DOS to the device driver. You may also
recall that DOS will call the device driver twice for any command requested of a

Listing 3-4: Some local variables needed for the simple device driver.

i*** ***********
. * , WORK SPACE FOR THE DEVICE DRIVER *
;**

rh - ofs dw ? ;request header offset
rh _seg dw ? ;request header segment
msgl db 07h

db 'The Waite Group Simple Device Driver! ,

db Odh, Oah, 07h, '$'

75

Writing MS-DOS Device Drivers, Second Edition

76

Top of Memory

The application
program issues Application
a DOS call for program
device access ThelNTERRUPT routine uses

INTERRUPT
rh_seg and rh_ofs to
locate the REQUEST HEADER

routine The STRATEGY

C
STRATEGY routine saves
routine the REQUEST

rh_seg
HEADER address
(ES :BX) in

rh_ofs rh_seg and rh_ofs

REQUEST HEADER DOS builds a
Length: REQUEST HEADE R
Unit Code: in memory and

Command Number
passes control
to the device driver.

Status
Address of Data II ES:BX

DOS automatically
The address of finds the

appropriate REQUEST HEADER
device driver DOS

is placed in ES: BX

KERNEL

Bottom of Memory

Figure 3-1: DOS builds a Request Header in memory and passes the
address in ES:BX to the device driver. The strategy routine saves this
address in variables rh_seg and rh_ofs.

device driver by an applications program. The variables rh_seg and rh_ofs are
used to save the segment and offset addresses of the Request Header, which
contains the information that the device driver needs in order to process a
command.

Figure 3-1 traces the path of the Request Header from DOS through the
device driver. The program requesting a service from the simple device driver
first passes control to DOS. DOS then takes the request and builds a Request
Header that contains the request. Control is then passed to the STRATEGY
routine, which saves the ES and BX registers in the variables rh_seg and rh_ofs.
Lastly, the INTERRUPT routine uses these two variables to retrieve the Request
Header in order to process the requested command.

A Simple Device Driver

Listing 3-5: The STRATEGY procedure.

i*** ***********
; * THE STRATEGY PROCEDURE *
i*** ***********

dev_strategy:
mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;First call from DOS
;save request header ptr segment
;save request header ptr offset

The STRATEGY Procedure
The STRATEGY procedure (see listing 3-5) contains the first piece of actual
program instruction code in this program. It is the code executed when DOS calls
this device driver for the first time. This is called the STRATEGY procedure
because this is the mechanism that DOS will use to plan or structure all the device
driver requests (an initialization function).

The only task ofthe STRATEGY code is to save the address of the Request
Header into variables we call rh_seg and rh_ofs so that the driver can determine
what command and data it is to process. Once the address is saved in rh_seg and
rh_ofs, control returns to DOS to allow DOS to continue processing by calling the
device driver again. The device driver can now use rh_segs and rh_ofs to access
the code for processing in the driver. This will be done with the interrupts call,
as you will see in the following section.

A mov instruction is used to save the ES and BX registers. Note that the cs
segment override tells MASM to generate addresses relative to the cs (code)
segment and not the default ds (data) segment. The reason for the cs segment
override is that the ds register is not valid when control passes to the device
driver. If the cs segment override were omitted, the addresses for the two
variables would be relative to some unknown value of ds. When the STRATEGY
routine completes, control returns to DOS.

The INTERRUPT Procedure
The INTERRUPT procedure (see listing 3-6) is the section of code that determines
what command the device driver will execute and that uses the code for that
command within the driver. When DOS calls the INTERRUPT procedure, control
is passed to the code, which we have labeled dev _into

77

Writing MS-DOS Device Drivers, Second Edition

Listing 3-6: The INTERRUPT procedure.

;**
. * , THE INTERRUPT PROCEDURE *
;**

dev_int: ;Second call from DOS
cld
push
push
push
push
push
push
push
push

ds
es
ax
bx
cx
dx
di
si

;save machine state on entry

;perform branch based on the command passed in the req header

mov
cmp
jnz
rol
lea
mov
add
jmp

al, es: [bx] +2
al,O
exit3
al, 1
di,cmdtab
ah,O
di,ax
word ptr [di]

;get command code
;check for 0
;no - exit go to error exit
;get offset into table
;get address of command table
;clear hi order
;add offset
; jump indirect

;command table
the command code field of the static request
field contains the function to be performed

cmdtab label byte

78

dw init initialization

The first part of the INTERRUPT code shown in listing 3-6 saves the state
of the microprocessor registers. This is done by storing all the registers onto the
stack using push instructions. Any or all of the registers may be used.

At the end of the device driver, upon exit, you must be sure to restore the
original values to the registers. Note that the DOS stack is not large; it will allow
only about 20 pushes. Be careful about how many bytes you push onto the stack.
For the most part there is more than enough room for saving the registers.

The second part of the INTERRUPT code is used to find out what command
DOS wants the device driver to perform. Recall that the driver is being called
from DOS in response to a program requesting that DOS perform a specific
function. A "command" code for this function is passed to the device driver in the

A Simple Device Driver

second entry ofthe Request Header. Examples of commands or requests are Read,
Write, and Initialize. The simple device driver allows only one command to be
accepted; this is the Initialize command, which is specified by the value O.

Each command requires a procedure in the driver to carry out the operation
defined for it. Because each command has a unique value associated with it, you
can set up a table for all commands, and each entry in the table can contain an
address of a procedure in the driver to execute the function. The first entry will
contain the address of the procedure to process command code 0, the second entry
will contain the address ofthe procedure to process command code 1, and so on.
For example, for ten possible values a table of ten entries is constructed. Each
entry then contains the address ofthe procedure to be executed for the particular
ordinal value.

For each command to be processed by your driver, you must use the value
of the command code in the Request Header to position into the table (this is
commonly called indexing). Control is then passed to this address and the code
in the procedure is executed. This table is also called ajump table, because the
jump instruction is used to pass control to an address contained in the table.

Let's take a look at the rest of the code in listing 3-6. The first instruction
references the Request Header by using the ES and BX registers. The +2
references the third byte, which is the command code for the device driver.
Because the command code is a byte value, mov puts it into the low-order portion
of the AX register, which is AL.

The next two instructions are unique to the simple device driver and will
not appear in subsequent device drivers. The reason is that this simple device
driver will accept only one command, the Initialize command. The command code
(which is now in AL) is compared with 0 (which is the value for Initialize). Ifit is
not 0 it will jump to exit3.

The instruction that contains rol starts the code to find the procedure for
INITIALIZE. The table containing addresses of procedures is composed of16-bit
entries, and the command code is a byte quantity. This presents a problem. If you
use the byte value of the command code to index into the table, you will be
indexing by bytes. This will give half of the 16-bit address rather than the
two-byte address needed. Therefore, in order to index into the table properly you
must convert the byte value into a word value. This means that command value
o gets the first 16-bit address, command value 1 gets the second 16-bit address,
and so on. Do this by multiplying the command value by two using rol, which is
a left-shift instruction.

The next instruction oflisting 3-6 retrieves the address of the command table
(cmdtab). The lea (load effective address) instruction picks up the jump table for
determining the proper command procedure to which the driver should jump.

Then the add instruction adds the converted command code to the address
of the command table. In effect, we are indexing into the table. The index register

79

Writing MS-DOS Device Drivers, Second Edition

di now contains the address ofthe procedure for command value O. The instruc
tion to mov a 0 to the AH register is a safety precaution, because the command
values will not use AH.

Lastly, an indirect jump through the di register passes control to the
INITIALIZE procedure and performs this driver's task.

When the INTERRUPT code is called, the device driver jumps to the
appropriate routine as specified in this table. In this case, it jumps to the routine
that starts at init, which we will cover soon. Note that the table cmdtab has only
one entry, whereas a more complex driver would have several (one for each
command).

Your Local Procedures
Local procedures are routines you write to assist in performing device driver
functions. In this code you will need to use only one procedure. It is named init
(to initialize the driver). (See listing 3-7.) Its function here is to make a "beep,"
display a message to the screen, and "beep" again. These procedures allow you to
modularize the driver and, thus, change code without affecting the entire driver.

The initial proc is the procedure that displays a message on the monitor
when the device driver is initially loaded by DOS. The text for the message is
contained in the variable msg 1, which was defined in the section Work Space for
the device driver. DOS function 9 is used to display a message to the screen.

The initial proc is called when the driver is loaded by DOS. DOS calls the
device driver with the command number 0, which is initialization. This is always
done for every device driver. For this program, you will see the following message
on the screen:

The Waite Group Simple Device Driver!

Listing 3-7: The procedure Initial .

. ** ,
; * YOUR LOCAL PROCEDURES *
;**

initial proc
lea
mov
int
ret

initial endp

80

near
dx,msgl
ah,9
21h

;initialization
; message
;doscall
; return

A Simple Device Driver

Caution: DOS function calls are allowed only in processing the
Initialization command. The function calls allowed are OIh
through OCh and 30h. Because DOS has not finished initializing
itself, using other function calls will cause it to crash. If DOS
was reentrant, this would not be true.

DOS Command Processing
The DOS Command Processing section of a device driver contains the procedures
for processing the command codes; in our driver we process only command O. In
listing 3-8, the init routine begins with a call to the procedure named initial that
was discussed above. Then the Break Address is set. This tells DOS where the
end of the simple device driver is. We will cover this in more detail in the next
chapter. The last instruction is a jump out to the exit procedure.

Few device drivers will be this simple. Most will do much more processing
than this, but all will have this structure. In later chapters we will add more
commands to this device driver. Each command will require code to perform the
requested function. As an example, to pass data to the device, DOS calls the driver
with a Write command (command = 8).

The Request Header Status Word
For each command requested ofthe device driver, DOS expects a success/failure
status indicator when the driver is finished processing. The Request Header that
DOS passes to the device driver is returned to DOS with the status word set to

Listing 3-8: The in it procedure.

i*** ***********
. * , DOS COMMAND PROCESSING *
.** ,

;command = 0
init: call

lea
mov
push
pop
mov

initialization
initial
aX,exit
es: [bx] +Oeh, ax
cs
ax
es: [bx] +IOh, ax

jmp exit2

;display a message
;get end address (offset)
;store offset address
;get end
; address (segment)
;store in Break Address

81

Writing MS-DOS Device Drivers, Second Edition

82

Name

ERROR
DONE
BUSY

Bits

15
8
9

0-7
10-14

Description

Set by driver to indicate error-see table 3-3
Must be set by device driver upon exit
Set by device driver, if needed, to prevent
further operations
Standard DOS error code; see table 3-3
Reserved

Table 3-2: Description of the status word. The ERROR, DONE, and
BUSY bits may be set.

indicate the outcome. The status word has bits that can be set on to indicate
several conditions. Table 3-2 shows the various conditions and bit settings. If
there is an error, a 1 in bits 0 through 7 forms the error code. Table 3-3 shows the
list of standard DOS error codes.

Note that a combination of the status word bits can be used in any given
status. For example, if the driver has processed a request and no error has
occurred, the driver must set the DONE bit, but if an operation completes and
an error has occurred, both the DONE and the ERROR bits must be set.
Additionally, an error code should be returned that tells DOS (and eventually the
user) what caused the error. Note that it is up to your driver program to figure
out the error and set the right bits.

In the simple device driver, there are only two possible conditions and,
therefore, two possible status codes. The first condition is when DOS calls the
device driver with command = 0 (Initialization) when the device driver is loaded.
The second condition is when DOS has called the device driver with a command
other than O. This can happen in several ways.

For example, assume that you make an attempt to copy the contents of a file
to SIMPLE$ (which DOS assumes to be a device) using the following DOS
command-level statement.

A> Copy simple.asm simpleS

This statement will cause DOS to call the device driver with command number
8, which is Output or Write (one of sixteen possible device driver commands).
Because the simple device driver does not process any commands other than 0
(Initialization), this causes an error.

The following two sections describe the processing for error conditions and
normal conditions.

A Simple Device Driver

Hex Code

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Description of Error Code

Write protect violation
Unknown unit
Drive not ready
Unknown command
CRC error
Bad drive request structure length
Seek error
Unknown media
Sector not found
Printer out of paper
Write fault
Read fault
General failure
Reserved (DOS 3+)
Reserved (DOS 3+)
Invalid disk change (DOS 3+)

Table 3-3: The error codes listed here form the standard error codes
for DOS device drivers.

The ERROR EXIT Procedure
In the event of an error, you must provide a means for the device driver to exit
the program and tell DOS that something has gone wrong. DOS can then return
this error message to the program that requested the device driver. The program
might then retry the operation after displaying a message indicating the error.
A typical error for a disk might be attempting to write to a diskette that has a
write-protect tab. The error that you will see from DOS is:

Write protect error writing drive A
Abort, Retry, Ignore?

When the simple device driver encounters an error, control is passed to exit3.
The error caused by a write to SIMPLE$ via the copy described above is one such
path to exit3. As listing 3-6 shows, the command code of 8 will fail the compare
with the legal command code 0 in the code of the INTERRUPT procedure. This
will cause ajump to exit3.

The code for processing errors in the simple device driver is shown in
listing 3-9.

83

Writing MS-DOS Device Drivers, Second Edition

Listing 3-9: The fourth field of the Request Header, a 16-bit status word that
contains the value 8103h.

;**

; * ERROR EXIT *
;**

;Set the Done flag, error flag, and unknown command error code

exit3: mov
jmp

es:word ptr 3[bx],8l03h
exitl ;restore environment

As shown in listing 3-9, ES and BX refer to the Request Header, and the
fourth byte (relative byte 3) begins the word used to store a status. This 16-bit
word returns a code to DOS indicating the outcome of the work performed by the
driver. If your program has code that causes a branch to exit3, this will set bits
in this status field to indicate certain information, such as the fact that an error
has occurred, and the type of error encountered. The value 8103h shown in listing
3-9 is broken down as follows: the DONE bit (bit 8) is set on, the ERROR bit (bit
15) is set indicating an error has occurred, and the ERROR_CODE bit is set to 3
(bits 0 and 1 set on). An ERROR_CODE of3 is used to tell DOS that an unknown
command has been encountered in the simple device driver.

By returning this status to DOS through the Request Header, you ensure
that DOS has information concerning the command processed by the driver. In
turn, DOS returns this information to the calling program, which can use it to
decide how to display an error. We shall examine driver completion without errors
in the following section.

The COMMON EXIT Procedure

84

Upon exit from the device driver, you will need to restore the state of the
microprocessor registers as they were before your device driver took control (see
listing 3-10).

The first step in restoring the environment is to set the status value for DOS,
because DOS expects to know the status of the operation in the device driver. If
the program branched to the exit3 routine because of an error condition, as
described in the preceding section, then it does not need to set the status.

The first instruction at label exit2 of listing 3-10 sets the Request Header
Status word to indicate DONE-0100h.

The second step in restoring the environment is to restore the ES and BX
register. As you may recall from the section on the STRATEGY procedure, the

A Simple Device Driver

Listing 3-10: Common exit_

i*** ***********
. * , COMMON EXIT *
.** ,

;common exits fall thru code

exit2:

exi t I:

exitO:

exit:

2 sets status to done and no error
I restore callers es:bx
o restore machine state and exit

; Set done flag and no error
mov es:word ptr 3 [bxl ,OlOOh
mov bx,cs:rh_ofs ;restore req hdr to bx and es
mov es,cs:rh_seg ;as saved by dev _strategy
pop Sl ;restore all registers
pop di
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret

ES and EX registers were saved in variables rh_seg and rh_ofs. These variables
held the address of the Request Header; the driver needed to use those registers
to process the command and data in your device driver program. Now you must
reverse the process and set ES and BX so that DOS gets a status indicator
regarding what occurred in the program.

The third step in restoring the environment is to restore all the registers
saved on the stack using the pop instruction. Keep in mind that the order in which
you saved the registers must be reversed when you restore them. Lastly, the ret
instruction returns control to DOS.

The End of Program Section
This final section (see listing 3-11) is where you ensure that the driver ends
properly using MASM directives. You should declare the end of the simple
procedure, as well as the end of the cseg segment, with endp and ends. On the
end assembler directive, specify the label begin. This tells the Macro Assembler

85

Writing MS-DOS Device Drivers, Second Edition

Listing 3-11: The end of program processing consists of the assembler
directives that tell the assembler that you are defining the end of the simple
procedure, as well as the end of the cseg segment.

i*** ***********
; * END OF PROGRAM *
;**

simple endp
cseg ends

end begin

; that's all folks

that your device driver begins execution at the begin label. The Macro Assembler
does this by generating a program start address at begin.

The Entire Simple Device Driver
Listing 3-12 is a complete listing of all the code we have developed for the simple
device driver.

Building the Simple Device Driver

86

Listing 3-12 shows the source assembly code for the entire driver. To build the
simple device driver, you first need to enter the source code into a file using a
word processor. Then you must assemble, link, and convert the code to .COM
format. The normal output from the LINK utility is in .EXE format, which
contains relocation information and is not always usable. Early versions of DOS
do not have the ability to load relocatable code at initialization time. To tell DOS
to use the simple device driver, you must add a DEVICE= command in your
CONFIG.SYS file. Note that the CONFIG.SYS file must be in the root directory
of your boot disk.

If you already have a CONFIG.SYS file, for the time being, rename your
CONFIG.SYS file to another name. You could also include this driver in your
CONFIG.SYS file by adding the following line to your CONFIG.SYS file:

device = simple.sys

A Simple Device Driver

Listing 3-12: A Simple Device Driver.

i*** ***********
. * , This is a Simple Device Driver *
.*** **~******** ,

i*** ***********

; * INSTRUCTING THE ASSEMBLER *
.** ,

cseg
simple

segment para public 'code'
proc far
assume cs:cseg,es:cseg,ds:cseg

.** ,
; * MAIN PROCEDURE CODE *
i*** ***********

begin:

i*** ***********

; * DEVICE HEADER REQUIRED BY DOS *
i*** ***********

next - dev dd -1 ;no other device drivers
attribute dw 8000h ;character device
strategy dw dev_strategy ; address of 1st dos call
interrupt dw dev_int ; address of 2nd dos call
dev_name db 'SIMPLE$; name of the Driver

i*** ***********

; * WORK SPACE FOR THE DEVICE DRIVER *
i*** ***********

rh - ofs dw ? ; request header offset
rh _seg dw ? ; request header segment
msg1 db 07h

db 'The Waite Group Simple Device Driver!
db Odh, Oah, 07h, '$'

i*** ***********
. * , THE STRATEGY PROCEDURE *
i*** ***********

dev_strategy:
mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;First call from DOS
;save request header ptr segment
;save request header ptr offset

i*** ***********

; * THE INTERRUPT PROCEDURE *
i*** ***********

87

Writing MS-DOS Device Drivers, Second Edition

Listing 3-12: (cont.)

dev_ int: ;Second call from DOS
cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

;perform branch based on the command passed in the req header

mov
cmp
jnz
rol
lea
mov
add
jmp

;command table

al, es: [bx] +2
al, 0
exit3
al,l
di,cmdtab
ah,O
di,ax
word ptr [di]

;get command code
;check for 0
;no - exit go to error exit
;get offset into table
;get address of command table
;clear hi order
;add offset
; jump indirect

the command code field of the static request
field contains the function to be performed

cmdtab label
dw

byte
init initialization

.** ,

. * , YOUR LOCAL PROCEDURES *

.*********************************-******************************* ,

initial proc near
lea dX,msgl ;initialization
mov ah,9 ; message
int 2lh ;doscall
ret ;return

initial endp

.** ,

. * , DOS COMMAND PROCESSING *

.** ,

; command 0

init:

88

call
lea
mov

initialization

initial
aX,exit
es: [bxl +Oeh, ax

;display a message
;get end address (offset)
;store offset address

A Simple Device Driver

Listing 3·12: (cont.)

push
pop
mov
jmp

cs
ax
es: [bx] +lOh, ax
exit2

;get end
; address (segment)
;store in Break Address

j*** ***********

; * ERROR EXIT *
i*** ***********

;Set the Done flag, error flag, and unknown command error code

exit3: mov
jmp

es:word ptr 3[bx],8l03h
exitl ;restore environment

i*** ***********

; * COMMON EXIT *
i*** ***********

;common exits fall thru code
2 sets status to done and no error
1 restore callers es:bx
o restore machine state and exit

exit2: ; Set done flag and no error
mov es:word ptr 3 [bx] ,OlOOh

exitl: mov bx,cs:rh_ofs ;restore req hdr to bx and es
mov es,cs:rh_seg ;as saved by dev_strategy

exitO: pop si ;restore all registers
pop di
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret

exit:

i*** ***********

; * END OF PROGRAM *
i*** ***********

simple endp
cseg ends

end begin

that's all folks

89

Writing MS-DOS Device Drivers, Second Edition

Using the Simple Device Driver
Mter you create a CONFIG.SYS file, you can simply warm-start your machine
by depressing the CONTROL, ALT, and DEL keys. DOS will begin loading and
you will hear a tone and see the following message:

The Waite Group Simple Device Driver!

Congratulations! You have just loaded the simple device driver!

What You Can Try
You can customize the simple device driver by changing the contents of msg 1 to
any string you desire. As a suggestion, try using your name in the message that
is displayed.

If It Does Not Work

90

Because this driver is very simple, you should not encounter any problems
installing it. However, there is always the possibility of making mistakes along
the way. Here are a few things to look for if problems develop.

First, look for any typing mistakes. Most of the time, the Macro Assembler
will catch mistyped variable names, but any values that were keyed in incorrectly
will not be caught by MASM. Print out a copy of the MASM listing output and
compare it with the source in listing 3-12. Reassemble the driver if you make any
changes to the source.

Second, if there are no apparent source errors, look for errors in the LINK
stage. Note that there will be one warning message ("Warning: No Stack Seg
ment") from a normal LINK of a device driver. Any other error will require going
back to the source to see how the error was generated. Normally, errors from the
LINK step occur when the segment definitions are out of order or incorrect. Check
to see that the order and the sequence of the assembler directives segment,
assume,proc, endp, ends, and end match those in listing 3-12.

Next, check to see that EXE2BIN has been used to convert the driver into
.COM format. This is important, because DOS does not expect any code or data
relocation information in the device driver file.

Lastly, ensure that the name of the file has been correctly specified in the
DEVICE= command for the CONFIG.SYS file.

A Simple Device Driver

Summary
The simple device driver presented in this chapter is the simplest device driver
imaginable. It does nothing but beep at you when it initializes. The material you
have seen in this chapter is very important, however. You can build on it because
it has all of the sections necessary for a complex device driver.

We have looked at a sample device driver and have broken it down into pieces
that are more manageable and understandable. You should now understand the
reasons for each ofthe various sections and why DOS expects each one in a certain
format.

Questions
1. Are DOS calls allowed in a device driver?

2. What instruction would DOS use to call your device driver?

3. What is the purpose ofthe STRATEGY procedure?

4. Within the Device Header, there is an entry that tells DOS if it is the
only device driver. Which entry is this? What is the reason for this?

5. When is the device driver initialized?

6. How many characters in length could the name of a device be in a device
driver?

Answers may be found in appendix F.

91

Chapter 4

A Console Device
Driver

Designing Our Console Device Driver

An Overview of Writing a Console
Device Driver

A Complete Look at the Console
Device Driver

A Note about DOS Versions

Building the Replacement Console
Device Driver

A Console Device Driver

In the last chapter, we developed a simple device driver in a step-by-step
fashion. The new simple driver became part of DOS. In this chapter, we will
develop a console device driver that will control the keyboard and screen. This
driver, called can:, will replace the standard DOS device driver for the console,
which is also called can:. When the device name of a user-supplied driver matches
the name of an existing device, as it does in this case, the new driver effectively
replaces the old one. This is what we will be doing in this chapter: replacing the
standard console driver can: with a new enhanced driver, also called can:.

The Console Device Driver
The standard driver that controls the keyboard and screen for the PC is known
as the can: device. This device is an integral part of DOS and is the primary
interface between the user and the PC. Almost all programs use the can: device
in this manner. As we develop our Console Device Driver, you will see what
happens when a program requests keyboard input, how a character is displayed
on the screen, and some of the control functions that are largely invisible to you
but that you may have wondered about.

For example, you may have noticed that you can type ahead in DOS (this is
the ability to type characters faster than the program can accept them). The
type-ahead function is handled by the BIOS interrupt routine for the keyboard
(9h). Occasionally, you may have noticed that certain programs cannot use your
type-ahead characters. Within DOS, there is a command to "flush" out the
contents of the keyboard buffer (the storage area in which your type-ahead
characters were stored). The console driver is responsible for flushing characters
from the keyboard buffer when the DOS service Ch is used from within a program.

In developing our Console Device Driver, we will expand many of the
sections that were used in writing the simple device driver in chapter 3. Like all

95

Writing MS-DOS Device Drivers, Second Edition

device drivers, this one will contain some sections that are common to all device
drivers and other sections that are tailored to this driver. Many of the sections
that were summarized in a rather quick manner in chapter 2 will be treated in
more detail in this and following chapters. Our goal is to bring you closer to how
drivers work in an input/output mode.

Designing Our Console Device Driver

96

Before you can write a program, you need to determine how it should be
implemented. This is true of writing a console device driver. The two questions
that arise in determining how to implement this driver are: How should you write
the code to control the console, and what features do you want the console device
driver to have.

Design Issue #1: ROM BIOS vs. Input/Output Instructions
The first design issue for a console driver concerns the types of instructions to
use for input and output. You have a choice of using ROM BIOS calls or direct
access via IN/OUT instructions. Note that the console driver cannot use DOS
calls, because it is considered part of DOS.

Should you use ROM BIOS calls or direct I/O calls? If a driver makes use of
ROM BIOS calls, other machines that use that driver will also have to contain
identical, or functionally identical, ROM BIOS routines. This may rule out some
PC clones. If a device driver uses direct I/O calls, other machines must have
similar devices and must address them in the same manner.

It is important to understand that the ROM BIOS routines also use IN/OUT
instructions to control a particular device. Device drivers that use direct I/O calls
rather than BIOS do so for speed or because there are no ROM BIOS routines
that access the device.

For the console device driver in this chapter, we decided to use the ROM
BIOS method for device control. This decision allows the console device driver to
be used on a wide variety ofPCs, regardless ofthe particular keyboard or screen
attached. By using the ROM BIOS for I/O, we are, in effect, masking or hiding a
great deal ofthe machine-dependent programming from the user.

In this and future chapters we will be noting differences between using BIOS
for I/O and using direct I/O calls.

Design Issue #2: Features of the Console Device Driver
The second issue in designing a console device driver is deciding what features
should be included. Because DOS supplies a console device driver as part of its

A Console Device Driver

standard complement of drivers, we chose to make our replacement console device
driver somewhat unusual (or else why replace it?). Because one of the features
of the PC is the ability to produce sounds, we can use this built-in ability to
produce sounds whenever a keystroke is entered using the keyboard. In effect,
we are going to design a device driver for a musical keyboard.

Characters that users type in will cause the PC's speaker to sound with short
tones. Numbers will have high pitches, letters will have very high pitches, and
the function keys will have low pitches.

ROM BIOS Calls for the Console Device Driver
You may recall from chapter 2 that the console device is actually composed of two
parts that must be controlled: the keyboard and the screen. The keyboard ROM
BIOS routines are referenced through interrupt 16h and are described in table
4-1. The video-services ROM BIOS routines are referenced through interrupt 10h
and are described in table 4-2. For more details on what each of the interrupt
services are, refer to chapter 2 or to appendix B.

In summary, the standard console device driver is composed of a keyboard
device handler as well as a screen device handler. We use standard ROM BIOS
interrupts to control these two devices.

Assembly Language Conventions
In the previous chapter, we used assembly language instructions to get informa
tion from and return it to the Request Header. Let's examine the code we used
in the simple device driver and see how we can make it easier to understand.

Examine the following mov instruction:

moves: word pointer[bx]3,8100h

ah Service

Oh Read next keyboard character
Ih Check for available character
2h Get shift status

Table 4-1: The three services for the keyboard interrupt. In this
chapter, we will be using only the first two services of this BIOS
interrupt.

97

Writing MS-DOS Device Drivers, Second Edition

98

ah Service

Oh Set video mode
Ih Set cursor size
2h Set cursor position
3h Read cursor position
4h Read light-pen position
5h Set active display page
6h Scroll window up
7h Scroll window down
8h Read character and attribute
9h Write character and attribute
ah Write character
bh Set color palette
ch Write pixel dot
dh Read pixel dot
eh Write character as TTY
th Get current video mode
I3h Write character string

Table 4-2: The services provided by the video display service
interrupt IOh.

Its purpose is to store 8100 hex into what DOS has defined as the status
word of the Request Header. The location in memory at which this value must be
stored has an offset address of the contents of the BX register incremented by
three. The segment in which the Request Header is located is contained in the
ES register. The assembler phrase word pointer is used tt> indicate to the
assembler that the memory location being referenced is a word and not a byte.

There are two problems with the use of this assembler construction. The
first problem is that the word pointer phrase is annoying, for it breaks up the
flow of the instruction. The second problem is that if DOS changes the location
ofthe status word in the Request Header, we will have to go through the program
line by line, changing all references from 3 to the new location of the status word.
For the current versions of DOS, the status word is located at offset 3, but this
could be changed in future versions, although it is not likely.

We can eliminate this problem by using equates in our program, as follows:

status_field equ 3

mov ES:word pointer status_field[BX],8100h

A Console Device Driver

However, note that this type of construction still includes the word pointer
phrase. The next section describes a method that can be used to eliminate this
problem.

Structures
The Macro Assembler (MASM) has a definition type called struc, which is short
for structure. Structures are used to define a group of data fields in a certain
sequence. The size of each of the fields in this data group is also specified. Thus,
struc is used to tell the assembler the location and size of each field. After struc
is defined, when you reference these fields in an instruction you need not instruct
the assembler for each instruction. Listing 4-1 shows an example of the Request
Header and the fields contained in it defined as a structure.

Structures allow you to build templates for your data. As is true for equates,
the assembler does not allocate storage when you define strucs. You use these
field names to define the relative offset of each field you reference. In addition,
these templates save you the effort of specifying to the assembler whether you
are using bytes, words, or double words in your instruction references. The
assembler has a definition of the variable from the use of the struc name.

The mov instruction in the section above can now be made easier to read:

mov es:bx.rh_status,8100h

The word pointer phrase in the instruction has been eliminated, which saves
space on the line that can be used more profitably for comments. This instruction

Listing 4-1: A structure defined for the Request Header. The struc name is rh,
and there are four fields of data defined within it. Each of the fields has a
define data statement that tells the assembler the size of that field. The struc
ends with an ends phrase.

rh struc

rh len db ? -

rh unit db ? -

rh cmd db ? -

rh status dw ? -

rh ends

99

'1

~---.---.~--------

Writing MS-DOS Device Drivers, Second Edition

100

also eliminates the need to change instruction coding when a variable changes
in size. Simply change the size within the definition in the struc.

DOS Requests and Console Device Driver Commands
The simple device driver in the previous chapter was capable of processing only
one command, the Initialization command. When DOS loads the device driver
into memory, it immediately calls the device driver with the initialization
command. This allows the device driver to set itself up to handle further calls
from DOS. The process of initialization tells DOS that the device driver is ready
to process requests.

With the exception of the Initialization command, other commands that
device drivers process are on behalf of programs that request device access. Recall
from chapter 2 that programs that use a device will issue an appropriate DOS
service call through INT 21h. Typically, these are calls to read from or write to a
device. DOS translates these requests into one or more commands to the device
driver. These commands are contained in the Request Header that is passed to
the device driver. The command information is in the form of a number that
identifies to the device driver the type of command that DOS expects the device
driver to perform.

The commands that DOS expects device drivers to handle are defined by
Microsoft and include commands for both character-oriented and block-oriented
devices. For the purposes of our Console Device Driver, we will concentrate on
the commands that are valid for character devices. These are shown in table 4-3.
For a description of each command, refer to chapter 2.

For the console device driver, we will implement only six out of the 25
commands. These six are required for a full-function device driver.

The first command that will be used is the Initialization command (0), which
allows the console device driver to perform initialization tasks, such as writing a
message to the console and setting up hardware registers.

The second command is the Input command (4), which instructs the console
device driver to read data from the keyboard. This data is then returned to DOS,
which returns it to the calling program.

The third command is the Nondestructive Input command (5), which is used
by the console device driver to test whether the keyboard has any data to be read.
In effect, this command is used to look ahead to see whether there is any input.

The fourth command is the Input Flush command (6), which allows the
console device driver to discard any data in the keyboard buffer. This is important
to console device drivers in situations in which a program does not want old
keyboard data. In short, this command flushes all characters that had been typed
ahead by the user to prevent unwanted characters from being returned to a
program.

A Console Device Driver

Number Command Description

0 Initialization
1-2 Not applicable

3 IOCTLInput
4 Input
5 Nondestructive Input
6 Input Status
7 Input Flush
8 Output
9 Output With Verify

10 Output Status
11 Output Flush
12 IOCTL Output
13* Device Open
14* Device Close
15* Not Applicable
16* Output Til Busy

17-18** Undefined
19** Not Applicable

20-22** Undefined
23** Get Logical Device
24** Set Logical Device
25*** IOCTLQuery

* = DOS version 3+ only
** = DOS version 3.2+ only

*** = DOS version 5.0 only

Table 4-3: The list of commands that are applicable for character
oriented devices. Bold-faced commands are those that the console
device driver will use.

The fifth command is the Output command (8), which causes the console
device driver to write a specified amount of data to the screen.

Finally, the sixth and last command is the Output With Verify command
(9). This is similar to the Output command but has one additional function. When
the VERIFY switch is set ON at the DOS command level, the driver will read the
data after each write. This is useful to ensure that critical data has actually been
written. However, the console device driver cannot read back in what was written;
this command would make more sense for a disk device driver.

101

Writing MS-DOS Device Drivers, Second Edition

An Overview of Writing a Console Device Driver

102

Listing 4-2 is the skeleton that we used in chapter 3 to develop the simple device
driver. We use it again here to review the various parts of code that need to be
written.

This Is a Console Device Driver
This section describes the device driver, the author, the date written, and the
purpose of the driver. The console device driver replaces the standard DOS
console driver.

Assembler Directives
In this section we will be expanding the assembler directives that you saw in
chapter 2. We will add structures called strucs for the various requests that DOS
will pass to the console device driver (see listing 4-3). Structures relieve us of the
burden of remembering numerical offsets which can cause typing errors. They
also streamline the amount of code needed by eliminating extraneous words.

Listing 4-3 shows only one segment in our program, the segment named
cseg. It is to begin on a paragraph (para) boundary, it is available to other
programs (public) and it contains code ('code').

We define only one procedure in our program, and it is named console. It is
a far procedure, which means that any routine calling our Console Device Driver
must use a long call, one that assumes it is not necessarily in the same segment
as the caller. Because this program can sit anywhere in memory, we must use a
segment address as well as the offset address.

We define strucs for only the commands that are applicable to our Console
Device Driver. These are listed below:

• Initialization

• Input

• Nondestructive Input

• Input Flush

• Output

• Output With Verify

These strucs define the fields required for each of the various headers. The
assembler pseudo-ops used are define byte (db), define word (dw), and define
double (dd). Each of the Request Headers is named rhx, where x is the command

A Console Device Driver

Listing 4·2: The skeleton from which we will develop the console device
driver.

i*** ***********

; * This is a Console Device Driver *
· * Author: Robert S. Lai * ,
· * Date: 2 November 1991 * ,
· * Purpose: To replace the standard console driver * ,
.** ,

.** ,
; * ASSEMBLER DIRECTIVES *
.** ,

.** ,
; * MAIN PROCEDURE CODE *
.** ,

.** ,
· * , DEVICE HEADER REQUIRED BY DOS *
.** ,

.** ,
; * WORK SPACE FOR OUR DEVICE DRIVER *
.** ,

.** ,
· * , THE STRATEGY PROCEDURE *
.** ,

.** ,
· * THE INTERRUPT PROCEDURE *
.** ,

.** ,
· * , YOUR LOCAL PROCEDURES *
i*** ***********

.** ,
· * , DOS COMMAND PROCESSING *
.** ,

i*** ***********

· * , ERROR EXIT *
;**

.** ,

.* , COMMON EXIT *

.** ,

.** ,
· * , END OF PROGRAM *
.** ,

103

Writing MS-DOS Device Drivers, Second Edition

Listing 4-3: The assembler directives that we will be using for the console
device driver. We name our main procedure console. All segment registers
used (CS, ES, DS) are to have addresses relative to the beginning of cseg,
which is our only defined segment.

~*** *********** ,
. * , ASSEMBLER DIRECTIVES *
.** ,

cseg
console

; structures

rh
rh len
rh_unit
rh_cmd
rh_status
rh_resl
rh_res2
rh

rhO
rhO rh -
rhO nunits -
rhO - brk_ofs
rhO _brk _seg
rhO _bpb_tbo
rhO_bpb_tbs
rhO - drv_ ltr
rhO

rh4
rh4 rh
rh4_media
rh4 buf ofs - -
rh4 - buf _seg
rh4 count -

rh4 start
rh4

rh5
rh5 rh -
rh5 return -
rh5

rh7
rh7 len

104

segment
proc
assume

struc
db
db
db
dw
dd
dd
ends

struc
db
db
dw
dw
dw
dw
db
ends

struc
db
db
dw
dw
dw

dw
ends

struc
db
db
ends

struc
db

para public
far

'code'

cs:cseg, es:cseg, ds:cseg

;fixed request header structure
? ;len of packet
? ;unit code (block devices only)
? ;device driver command
? ;returned by the device driver
? ; reserved
? ; reserved

;request header for Initialization (command 0)
size rh dup (?) ;fixed request header portion
? ;number of units (block devices only)
? ;offset address for break
? ;segment address for break
? ;offset address of pointer to BPB array
? ;segment address of pointer to BPB array
? ;first available drive (DOS 3+) (block only)

;request header for INPUT (command 4)
size rh dup(?) ;fixed request header portion
? ;media descriptor from DPB
? ;offset address of data transfer area
? ;segment address of data transfer area
? ;transfer count (sectors for block)

; (bytes for character)
? ;start sector number (block only)

;request header for ND_INPUT (command 5)
size rh dup (?) ;fixed request header portion
? ;character returned

;request header Input_Flush (command 7)
? ;len of packet

A Console Device Driver

Listing 4·3: (cont.)

rh7_unit db ? ;unit code (block devices only)
rh7 cmd
rh7 status -
rh7 resl
rh7 res2
rh7

rh8
rh8 rh

db
dw
dd
dd
ends

struc
db

? ;device driver command
? ;returned by the device driver
? ; reserved
? ; reserved

;request header for OUTPUT (command 8)
size rh dup(?) ;fixed request header portion

rh8_media db ? ;media descriptor from DPB
rh8_buf_ofs dw ? ;offset address of data transfer area
rh8_buf _seg dw ? ;segment address of data transfer area
rh8 count dw ? ;transfer count (sectors for block)

; (bytes for character)
rh8 start
rh8

rh9
rh9 rh -

dw
ends

struc
db

? ;start sector number (block only)

;request header for OUTPUT_VERIFY (command 9)
size rh dup(?) ; fixed request header portion

rh9_media db ? ;media descriptor from DPB
rh9_buf ofs dw ? ;offset address of data transfer area
rh9_buf _seg dw ? ;segment address of data transfer area
rh9

rh9
rh9

count dw

start dw
ends

? ;transfer count (sectors for block)
; (bytes for character)

? ;start sector number (block only)

number associated with the Request Header. Each field within a Request Header
is assigned the name rhx-S, where y is the name of the field within the header.

You will notice that some of the Request Headers have a field name media
with a comment describing it as the media descriptor from DPB. The media
descriptor is valid for block devices, such as disks, and is passed to device drivers
from a table that DOS maintains regarding the disk. DOS names this internal
table the Disk Parameter Block (DPB), and it is used to keep track of the various
disks DOS uses.

Main Procedure Code
The main procedure code is simply a label named begin:

i*** ***********

. * , MAIN PROCEDURE CODE *

.** ,

begin:

105

Writing MS-DOS Device Drivers, Second Edition

106

The Device Header
The first code that must be written is the device header for the console device
driver. It is not code in the form of instructions, with which you are familiar, but
a table of values. This table informs DOS of the particular characteristics that
your Console Device Driver will have. Table 4-4 contains the definition of the
Device Header; the five required data fields are discussed below.

Next_dev Because our program will contain only one device driver, we will set
the nexCdev field to a value that tells DOS there are no other device drivers
following this one. We do this by setting both the offset and the segment addresses
to -1.

If there were device drivers following the console device driver, we would set
the segment address to the current segment, which is cseg, and the offset address
would be the label that begins the next device driver.

Attribute The attribute field is a single-word field that has bits set to indicate
to DOS the characteristics of the console device driver. Basically, it is the driver's
fingerprint. Most ofthe important attribute bit settings are defined in table 4-5.
The other attribute bits will be discussed in later chapters as we build other device
drivers.

For our Console Device Driver, we will set bits 15, 1, and 0 to 1. This tells
DOS that our device driver is a character device, it is the replacement for the
standard DOS output device, and it is also the replacement for the standard DOS
input device.

Name Start Length Description

next - dev 0 4 The offset and segment address of the
next device driver (if any) following our
Console Device Driver

attribute 8 2 Bit field that defines our Console Device
Driver

strategy 10 2 Address of the strategy routine in our
Device Driver

interrupt 12 2 Address of the interrupt routine in our
Device Driver

dev_name 14 8 The name of our Console Device Driver

Table 4-4: The Device Header fields. The Device Header table must be
defined at the very beginning of the device driver program.

Bit Value

15 0
1

14 1
13 1

12 0
11 1

10-9 0
4 1

3 1

2 1
1 1

0 1

Description

Block device driver
Character device driver
Supports IOCTL DOS call (44h)

A Console Device Driver

Allows output until busy driver commands for character
devices (DOS 3+ only)
Not used; must be set to 0
Device Open/Close and Removable Media calls to the
device driver allowed (DOS 3+ only)
Not used; must be set to 0
Special; allows special writes to the screen through
interrupt 29h
If set, this device driver is the current clock device and
replaces the standard DOS clock device driver
If set, this is the current NUL: device
If set, this device driver is the standard output device and
replaces the standard DOS output device
If set, this device driver is the standard input device and
replaces the standard DOS input device

Table 4-5: The attribute field and the various bits defined. Each bit, if
set, will inform DOS of a special characteristic of our device driver.
Unused bits must be set to O.

Strategy and Interrupt The two words that contain the addresses of the
STRATEGY and INTERRUPT routines will be represented by the variables
dev_strategy and dev_interrupt, respectively.

Dev _name The device name we will be using is CON, which is the same as the
DOS console driver that we are replacing. We fill the field with CON and pad out
the rest of the field with blanks. Note that we do not add a colon to the name;
DOS requires the colon to distinguish CON as a device name at the operator and
program level, not in the device name field.

Here is the Device Header for our Console Device Driver:

;**
DEVICE HEADER REQUIRED BY DOS

;**
next_dev
attribute
strategy
interrupt
dev_name

dd
dw
dw
dw
db

-1
8003h
dev_strategy
dev_interrupt
'CON

;no other drivers following
; character, output, input
;Strategy routine address
;Interrupt routine address
;name of our Console driver

*

107

'·1

I

Writing MS-DOS Device Drivers, Second Edition

108

Work Space for Our Console Device Driver
Work space is where we put the variables for our driver. The console device driver
will require very little work space, because it needs only three variables. The first
two variables, rh_ofs and rh_seg, are used to store the ES and BX registers that
are passed to our device driver. The third variable is used to save the character
that we will be getting from the keyboard. Here is the filled-in work space code:

;**
; * WORK SPACE FOR OUR DEVICE DRIVER *
;**

char

dw
dw

db

?
?

o

;offset address of the request header
;segment address of the request header

;character saved from the keyboard

The STRATEGY Procedure
The code for the STRATEGY procedure is quite simple. DOS expects the console
device driver to save the segment and offset address of the Request Header for
future references. DOS passes this in the ES and BX registers, respectively. We
store these two registers in rh_seg and rh_ofs. The use of the segment override,
cs:, insures that when we execute these instructions we refer to the variables
through the CS register rather than through the DS register. We do this for
several reasons. First, we cannot assume that the DS register is properly pointing
to our data when control passes to our Console Device Driver. Second, and more
important, we originally set up this program to use only one segment. We
reference both code and data through the CS register; data storage shares the
same segment as the instruction code.

Because the STRATEGY procedure is called from DOS with a CALL instruc
tion, we use a return (ret) instruction to exit to DOS:

.** ,

. * , THE STRATEGY PROCEDURE *
;**

dev_strategy: mov cs:rh_seg,es
mov cs:rh_ofs,bx
ret

The INTERRUPT Procedure

;save the segment address
;save the offset address
;return to DOS

The INTERRUPT procedure is called by DOS immediately after the STRATEGY
procedure. It is this procedure that performs all the work that DOS requests of
our Console Device Driver.

A Console Device Driver

DOS passes commands and data relating to the command in the Request
Header. The driver must use the Request Header to find out what command it is
to perform.

To find the command that DOS expects our Console Device Driver to
perform, we retrieve the segment and offset address of the Request Header that
we stored during the STRATEGY call. Next, we jump to the routine that is
appropriate for the command. Listing 4-4 shows the code that accomplishes this.

In the section called "Instructing the Assembler," we mentioned that we will
not be processing all of the possible device driver commands. For the sake of
completeness, however, we specify all routines in the command table, CMDTAB,
although we do not write code for all of the routines listed.

Listing 4-4: The INTERRUPT routine and the command table that follows .

. ** ,

. * , THE INTERRUPT PROCEDURE *

.** ,

;device interrupt handler - 2nd call from DOS

dey_interrupt:
cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov
mov
mov

ax, cs: rh_seg
eS,ax
bx,cs:rh_ofs

;restore ES as saved by STRATEGY call

;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

al,es: [bxl .rh_cmd
al,l
di,cmdtab
ah,O
di,ax
word ptr [di 1

;get request header command
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

109

~---~~

Writing MS-DOS Device Drivers, Second Edition

Listing 4-4: (cont.)

CMDTAB

110

label byte
dw INITIALIZATION
dw MEDIA_CHECK
dw GET_BPB
dw IOCTL_INPUT
dw INPUT
dw ND_INPUT
dw INPUT_STATUS
dw INPUT_FLUSH
dw OUTPUT
dw OUTPUT_VERIFY
dw OUTPUT_STATUS
dw OUTPUT_FLUSH
dw IOCTL_OUT
dw OPEN
dw CLOSE
dw REMOVABLE
dw OUTPUT_BUSY

;* = char devices only
initialization
media check (block only)
build bpb
ioctl in

; input (read)
;*nondestructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
; device open
; device close
; removable media
;*output til busy

Your Local Procedures
For this section, we have only one main routine because we are only implementing
one command. Each character that we read from the keyboard will be used to
make a different frequency sound on the speaker. This routine is named TONE
and is shown in listing 4-5.

The TONE routine uses the PC's programmable timer chip, the 8253-5 (the
AT uses a different chip for this purpose). Each key retrieved from the keyboard
buffer will be sent to this routine. We set up the timer-chip control word by
sending the value Ob6h to the port numbered 43h. This sets up the 8253-5 chip
to produce sounds at a later point. We generate a sound with an audible frequency
ofless than 14,000 cycles per second. Because most keys will be represented by
values that range from 0 to 127 or so, we divide 14,000 by each key's value. This
key-dependent frequency is loaded into port 42h. Then we turn on the speaker
and timer by setting bits 0 and 1 in port 61h.This allows us to hear the sound
from the speaker. At label dl we loop for approximately 50 milliseconds, which
allows us to hear the sound without slowing down the keystroke input rate
excessively. Finally, we turn off the speaker and timer by setting bits 0 and 1 to
o in port 61hjust before we exit from the TONE routine.

A Console Device Driver

Listing 4-5: The code for the only local procedure, TONE.

i*** ***********

; * YOUR LOCAL PROCEDURES *
i*** ***********

TONE

dl:

Tone

proc
mov
push
mov
out
mov
mov
pop
inc
div
out
xchg
out
in
or
out
mov
loop
in
and
out
ret
endp

near
ah,O
ax
al,Ob6h
43h,al
dx,O
aX,14000
cx
cx
cx
42h,al
ah,al
42h,al
al,61h
al,3
61h,al
cx,15000
dl
al,61h
al,Ofch
61h,al

;tone
;clear ah
;save ax
;timer chip control word
;send to timer
;clear dividend (hi)
; frequency
;restore key value as divisor
;add 1 to prevent div by 0
;quotient is ax
;output 10 order byte
; reverse
;output hi order byte
;get speaker/timer value
;turn on timer & speaker
;set timer chip
;value for 50 milliseconds
;loop
;get timer chip value
;turn off speaker & timer
;set timer chip
;return to caller
;end of tone

DOS Command Processing
DOS Command Processing is the heart of the console device driver. Table 4-3
shows that there are 17 commands for device drivers, numbered from 0 to 16.
Each command provides a unique but standard action with the driver. Some
commands are required to return a busy and a done indication or just a done
indication in the status word, even though the command is not applicable.

Command O-Initialization DOS will always call our Console Device Driver
with the Initialization command immediately after the driver is loaded into
memory. This allows the device driver to set up its program code and data. DOS
assumes that the device driver is ready for further commands once it returns
control to DOS.

111

Writing MS-DOS Device Drivers, Second Edition

112

Initialization is called only once. We can use only certain DOS services inside
the Initialization procedure. These permitted services are numbered 1 through c
hex, and 30 hex. The reason for this limitation is that DOS is still in the process
of initializing itself, and not all ofthe services are available for use.

Keep in mind that once we exit from the device driver, we can no longer use
DOS services. Mter DOS calls our device driver with the Initialization command,
the driver is part of DOS and cannot issue DOS calls.

One question that is often asked involves the fact that some of the DOS
services a driver can issue involve the use of the keyboard and screen. How can
that be if the new driver is the replacement for the console device? The answer
is simple-DOS loads the standard console device driver before the driver
replacement is installed. The DOS service calls issued by the driver use the
standard console device driver, but once the driver is finished with the Initializa
tion phase and control returns to DOS, requests for the console are handled by
the new console device driver.

Here is the code for the initialization procedure:

.** ,

. * , DOS COMMAND PROCESSING *
;**

;command ° Initialization
Initialization:

call
lea
mov
mov
jmp

initial
ax,initial
es: [bx) . rhO_brk_ofs , ax
es: [bx) .rhO_brk_seg,cs
done

;display message
;set Break Addr. at initial
;store offset address
;store segment address
;set done status and exit

The Break Address referred to in this procedure tells DOS the next available
memory location after our code; this address must be provided to DOS. DOS uses
this address to determine where to load other device drivers or operating-system
code after the new driver has been installed.

The driver can also specify a Break Address that is within the console device
driver. This tells DOS to overwrite some of our code. We may do this to take
advantage of the fact that the Initialization is called only once. If, during the
Initialization command, we call a routine that is used only once, and we place the
code at the end of our Console Device Driver, we can set the Break Address to the
starting address ofthis routine. In effect, we save space by allowing DOS to reuse
some of our memory locations. For this example, we will place a procedure called
initial at the end of our program. This procedure will display a message and
return to the Initialization code.

A Console Device Driver

If there is some condition that prevents the console device driver from
working properly, the driver signals DOS to abort the device driver. This is done
by specifying a Break offset address of 0 and a Break segment address of our
current code segment register, CS. This tells DOS that the next available location
in memory is the beginning of our device driver, in effect, ignoring our device
driver.

In the Initialization code, the driver will display a message on the console,
set the Break Address in the Request Header, and exit.

Commands 1 through 3 The commands Media_Check, GeCBPB, and
IOCTLjnput are not implemented in our Console Device Driver. The DONE bit
is set in the status word of the Request Header for Media_Check and GeCBPB.
For the IOCTLjnput command, the driver jumps to unknown to set the ERROR
bit. The code is as follows:

;comrnand 1
Media_Check:

jrnp

;comrnand 2
Get_BPB:

jrnp

;comrnand 3
IOCTL_Input:

jrnp

done ;set done bit and exit

done ;set done bit and exit

unknown ;set error bit/code and exit

Command 4-Input Our Console Device Driver uses the Input command to
input characters from the keyboard buffer via int 16h. See listing 4-6.

DOS passes through the Request Header to the driver the count of the
number of characters to be input, as well as the address at which the characters
are to be stored.

The keyboard BIOS interrupt 16h returns an ASCII value ofthe character
in al and the corresponding scan code in ah. Recall that the scan code is a number,
one of which is assigned to each key on the keyboard. For example, the Shift key
on the left side of the keyboard generates a scan code of 42, whereas the Shift key
on the right side ofthe keyboard generates a scan code of 54. This allows programs
to distinguish which Shift key was used if necessary.

Most of the PC's keys will generate both an ASCII value and a scan code.
However, some keys will not generate an ASCII value. For these keys, which are

113

Writing MS-DOS Device Drivers, Second Edition

Listing 4-6: The code for the Input command. Interrupt 16h is used to
retrieve characters from the keyboard buffer and pass them back to DOS in
the buffer specified by the Request Header. Each character that is retrieved
will cause a distinct sound on the speaker.

;command 4
Input:

Input

mov
mov
mov
mov

cX,es: [bx] .rh4_count
di,es: [bx] .rh4_buf_ofs
aX,es: [bx] .rh4_buf_seg
eS,ax

;load input count
;load offset address
;load segment address
; move to es

readl: mov ax,O ;clear ax
xchg
cmp
jne

aI, say
aLO
read3

;pick up saved character
;is it O?

read2: mov ah,O
;no - we return it
;service = read
;Keyboard BIOS call
;is key = O?

int
cmp
je
cmp
jne
mov

16h
ax,O
read2
aLO
read3
sav,ah

;yes - go get another
;is it an extended key?
;no - we return it
;save scan code

read3: mov es: [di] ,al
di

;store key value in buffer
;point to next buffer loc
;save cx

114

inc
push
call
pop
loop
mov
mov
mov
jmp

cx
tone
cx
readl
aX,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;sound a tone
;restore for loop control
;continue til count = 0
;restore es
; from rh_seg
;restore bx
;set done bit and exit

called the extended keys, int 16h returns an ASCII value of 0 in al and the scan
code in ah. For example, the function keys (Fl-F10) and their variations (using
Shift and Alt) will not generate ASCII values; scan codes are required to figure
out what key is pressed.

This presents an interesting situation. When a key that has an ASCII value
is struck, only the ASCII value is returned to DOS from the keyboard buffer.
When an extended key is struck, however, DOS expects two values: first, the
ASCII code of 0, and second, the key value of the scan code.

Therefore, in our Console Device Driver we must return to DOS, in the
Request Header, the ASCII value of a key for every key and its scan code if it is

A Console Device Driver

an extended key. In listing 4-6 this is accomplished with the variable sav. The
program checks the value of sa v and passes it back to DOS ifit is not O. If it is 0,
ah is saved into sav. In short, we save the scan code of an extended key in sav
and pass it back to DOS at the next request for a character from the device driver.

In listing 4-6, the basic code to retrieve characters from the keyboard buffer
is placed in a loop for a count of the number of characters or keys that DOS
requires to be passed back from the device driver. DOS does not request more
than one character at a time.

Once a character has been retrieved by issuing an int 16k, the character is
stored in the DOS data buffer and the TONE procedure is called. TONE will
convert the value of the key into a sound with a frequency below 14,000 cycles
per second. This sound will last for approximately 50 milliseconds.

The driver ends after the tone has been generated. The driver will restore
ES and BX, because these registers are needed to point back to the data buffer
in which DOS expects to find the retrieved characters. The driver then jumps to
done to set the DONE bit in the status word and exits back to DOS.

Command 5-Nondestructive Input This command allows DOS to look
ahead one character without actually retrieving a character from the keyboard
buffer. It is included because a program can issue the DOS service for Input
Device Check (OBh). The driver uses the ah=l service of int 16k to perform a
status check ofthe keyboard buffer. It tells DOS that the keyboard buffer is empty
or it passes back the next character in the buffer without actually removing it
from the buffer.

We have one situation where we need to read a character from the keyboard.
This is when the status check returns a 0 for both the ASCII value and the scan
code, which occurs when the keyboard buffer is exhausted.

The instructions that check the scan code for a possible value are shown in
listing 4-7. If there is a nonzero value, it is passed back to DOS. Otherwise, the
driver issues a status check call to int 16k (ak=l). The only tricky part of this call
is that the Zero Flag (ZF) is set to 1 ifthere are no characters in the buffer. If this
is so, we set the busy bit in the status word and return to DOS.

Command 6-Input Status Command 6 is the Input Status command and is
not applicable to the console device driver. It is typically used for character
oriented input devices that maintain a status that a program can request through
this command. For the console device driver, we simply set the done bit and exit:

;comrnand 6
Input_Status:

jrnp done ;set done bit and exit

115

Writing MS-DOS Device Drivers, Second Edition

Listing 4-7: The code for the Nondestructive Input command, which allows
DOS to look at the next character in the keyboard buffer without actually
removing the character from the buffer.

;command 5
ND_Input:

ndl:

116

mov
cmp
jne
mov
int
jz
cmp
jne
mov
int
jmp
mov
jmp

al,sav
al, 0
ndl
ah,l
16h
busy
ax,O
ndl
ah,O
16h
ND_Input
es: [bx] . rh5_return, al
done

;pickup saved character
;is it O?
;no - return it to DOS
;service = status check
;Keyboard BIOS call
;ZFl means no key in buffer
;is key = O?
;no - return it to DOS
;service = read
;Keyboard BIOS call
;check again
;return key to DOS
;set done bit and exit

Command 7-Input Flush The Input Flush command allows DOS to flush
the contents of the keyboard buffer. This typically is used to prevent characters
that are typed ahead from being used by a program. In some cases, such
accidentally entered characters may affect critical input responses. For example,
the FORMAT program flushes all keyboard input when asking whether to format
the disk. This prevents the existence of a character in the buffer from starting an
unwanted format.

The code for this command is shown in listing 4-8 and is relatively simple.
Calls are issued by the driver to BIOS interrupt 16h to check the status of the
keyboard buffer. If there is a character in the buffer, it is retrieved but not passed
back to DOS. This process is repeated until the buffer is empty of any characters.

Command 8-0utput The Output command is used to write characters to the
screen and must be implemented by our CON: replacement driver. The video
BIOS interrupt lOh is used to do this. The code shown in listing 4-9 shows the
use of the output character count in a loop which calls Video BIOS routine lOh
with ah=OEh. The Oeh is the service called Write Character as TTY. When the
driver is done, it restores the ES and BX registers, which were used to retrieve
the characters in the DOS data buffer.

A Console Device Driver

Listing 4-8: The code for flushing the keyboard input buffer.

;command 7
Input_Flush:

IFl:
mov
mov
int
jz
mov
int
jmp

sav,O
ah,l
l6h
done
ah,O
l6h
IFI

;clear saved key
;service = check status
;Keyboard BIOS call
;ZFl means buffer empty
;service = read
;Keyboard BIOS call
;loop until buffer empty

Command 9-0utput With Verify This command is identical to the Output
command except that it is sent to our Console Device Driver when the VERIFY
switch is set ON at the DOS command level.

Normally, the Output With Verify command is used for devices that can read
the data that was just written. It is typically used to ensure that the data has
been correctly written to the device. Here is the code for processing the Output
With Verify command:

;command 9 Output_Verify
Output_Verify:

jmp output ;same as output

Listing 4-9: The processing of an Output command.

;command 8
Output:

mov
mov
mov
mov
mov

outl: mov
inc
mov
int
loop
mov
mov
mov
jmp

Output

cX,es: [bx] .rh8_count
di,es: [bx] .rh8_buf_ofs
aX,es: [bx] .rh8_buf_seg
eS,ax
bx,O
al, es: [di]
di
ah,Oeh
lOh
outl
ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;load output count
;load offset address
;load segment address
; into es
;clear bx
;pick up character to output
;point to next location
;service = write char as tty
;Video BIOS call
;loop til count = 0
;restore request header
; segment adress as es
;restore bx
;set done bit and exit

117

Writing MS-DOS Device Drivers, Second Edition

Listing 4-10: The processing of commands 10 through 16.

; command 10 Output_ Status
Output_Status:

jmp done ;set done bit and exit

; command 11 Output_ Flush
Output_ Flush:

jmp done ;set done bit and exit

; command 12 IOCTL - Out
IOCTL_Out:

jmp unknown ;set error bit/code and exit

; command 13 Open
Open:

jmp done ;set done bit and exit
; command 14 Close
Close:

jmp done ;set done bit and exit

; command 15 Removable
Removable:

jmp unknown ;set error bit/code and exit

; command 16 Output Til Busy
Output_Busy:

jmp unknown ;set error bit/code and exit

Commands 10 through 16 Commands 10 through 16 are not required by the
CON: replacement driver, but the code must be included in case they are
accidentally sent to the driver. Note that each command will jump to either done
or unknown. See listing 4-10.

118

Error and Common Exits
In this section of code, the driver will set the status word in the Request Header
to inform DOS ofthe outcome ofthe driver's work. DOS always expects the DONE
bit to be set. In addition, other bits can be set to indicate other conditions, such
as BUSY and ERROR. Refer to table 3-2 for a detailed layout ofthe status word.

A Console Device Driver

Listing 4-11: The code for processing errors and exiting from the console
device driver. The DONE bit is set in the status word, the registers are
popped from the stack, and control returns to DOS .

. ** ,

. * , ERROR EXIT *
;**

unknown:
or es: [bxJ .rh_status,8003h ;set error bit and error code
jmp done ;set done and exit

.** ,

. * , COMMON EXIT *
;**
busy:

done:

or es: [bxJ .rh_status,0200h ;set busy bit

or es: [bxJ .rh_status,OlOOh ;set done

pop si ;restore all registers
pop di
pop dx
pop ex
pop bx
pop ax
pop es
pop ds
ret ;return to DOS

Listing 4-11 shows the code for setting the status word to UNKNOWN,
BUSY, or DONE. For UNKNOWN, bit 15 is set to indicate an error, and the error
code in bits 0 through 7 is set to a 3, which is the Unknown command. For BUSY,
bit 9 is set. For DONE, bit 8 is set.

To exit from the console device driver, the registers are popped from the
stack and the code executes a return (ret) instruction.

End of Program
In the End of Program section is the procedure initial, which displays a message
on the screen when the console device driver is first loaded into memory by DOS.
Earlier, the driver informed DOS that the Break Address or the address of the
next available location is at the same location as initial. Because the driver calls
the initial procedure only once and never needs it again, DOS overwrites this
area after the driver exits from the Initialization command processing.

Listing 4-12 shows the code for the End of Program section.

119

Writing MS-DOS Device Drivers, Second Edition

Listing 4-12: The code for the End of Program section. The procedure initial
is placed here. The message it displays on the screen occurs at Initialization
time, just after DOS loads our Console Device Driver.

i*** ***********
; * END OF PROGRAM *
i*** ***********

;this procedure is called from the Initialization command and
;is executed only once. We can tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
lea dX,msgl ;message to be displayed
mov ah,9 ;display
int 21h ;DOS call
ret ; return to caller

initial endp

msgl db 'The Waite Group Console Driver',Odh,Oah, '$'

console endp ;end of console procedure
cseg ends ; end of cseg segment

end begin ;end of program

A Complete Look at the Console Device Driver
In the previous sections, we have discussed the various parts of a device driver
and what we need in order to build our Console Device Driver. We are now
finished with our tour of inspection, and the complete console device driver is
shown in listing 4-13.

A Note about DOS Versions

120

Although the console device driver was built to handle the 17 basic commands
for DOS version 3.0 or later, the five command-processing sections are also valid
for version 2.0. The Attribute bits defined for DOS version 3.0 were not set, and
as a result, the additional command functions of version 3.0 will not be sent to
the console device driver.

A Console Device Driver

Listing 4-13: The complete listing for the console device driver.

j*** ***********

; * This is a Console Device Driver *
; * Author: Robert S. Lai *
. * Date: 2 November 1991 * ,
; * Purpose: To replace the standard console driver *
:**

i*** ***********

; * ASSEMBLER DIRECTIVES *
;**

cseg
console

; structures

rh
rh_ len
rh_unit
rh_cmd
rh_ status
rh_res1
rh_res2
rh

rhO
rhO rh -
rhO nunits -
rhO - brk_ofs
rhO _brk_seg
rhO _bpb_tbo
rhO _bpb_tbs
rhO - drv_ltr
rhO

rh4
rh4 rh -
rh4_media
rh4 _buf - ofs
rh4 _buf _seg
rh4 count -

rh4 start
rh4

rh5
rh5 rh -
rh5 return -
rh5

segment
proc
assume

struc
db
db
db
dw
dd
dd
ends

struc
db
db
dw
dw
dw
dw
db
ends

struc
db
db
dw
dw
dw

dw
ends

struc
db
db
ends

para public
far

'code'

cs:cseg, es:cseg, ds:cseg

; fixed request header structure
7 ;len of packet
7 ;unit code (block devices only)
7 ;device driver command
7 ;returned by the device driver
7 ;reserved
7 ; reserved

;request header for Initialization (command 0)
size rh dup (7) ;fixed request header portion
7 ;number of units (block devices only)
7 ;offset address for break
7 ;segment address for break
7 ;offset address of pointer to BPB array
7 ;segment address of pointer to BPB array
7 ;first available drive (DOS 3+) (block only)

;request header for INPUT (command 4)
size rh dup(7) ;fixed request header portion
7 ;media descriptor from DPB
? ;offset address of data transfer area
7 ;segment address of data transfer area
7 ;transfer count (sectors for block)

; (bytes for character)
7 ;start sector number (block only)

;request header for ND_INPUT (command 5)
size rh dup (7) ;fixed request header portion
7 ;character returned

121

Writing MS-DOS Device Drivers, Second Edition

Listing 4·13: (cont.)

rh7
rh7_len
rh7_unit
rh7_cmd
rh7_status
rh7_resl
rh7_res2
rh7

rhS
rhS_rh
rhS_media
rhS_buf_ofs
rhS_buf_seg
rhS_count

rhS start
rhS

rh9
rh9_rh
rh9_media
rh9_buf_ofs
rh9_buf_seg
rh9_count

struc
db
db
db
dw
dd
dd
ends

struc
db
db
dw
dw
dw

dw
ends

struc
db
db
dw
dw
dw

dw
ends

;request header Input_Flush (command 7)
? ;len of packet
? ;unit code (block devices only)
? ;device driver command
? ;returned by the device driver
? ; reserved
? ; reserved

;request header for OUTPUT (command S)
size rh dup(?) ;fixed request header portion
? ;media descriptor from DPB
? ;offset address of data transfer area
? ;segment address of data transfer area
? ;transfer count (sectors for block)

; (bytes for character)
? ;start sector number (block only)

;request header for OUTPUT_VERIFY (command 9)
size rh dup(?) ;fixed request header portion
? ;media descriptor from DPB
? ;offset address of data transfer area
? ;segment address of data transfer area
? ;transfer count (sectors for block)

; (bytes for character)
? ;start sector number (block only)

i*** ***********

; * MAIN PROCEDURE CODE *
i*** ***********

begin:
i*** ***********
; * DEVICE HEADER REQUIRED BY DOS *
;**

next_dev dd -1 ;no other drivers following
attribute dw SOO3h ; character, output, input
strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ; Interrupt routine address
dev_name db 'CON ;name of our Console driver

i*** ***********
. * , WORK SPACE FOR THE DEVICE DRIVER *
.** ,

122

A Console Device Driver

Listing 4·13: (cont.)

rh_ofs dw
rh_seg dw

say db

?
?

o

;offset address of the request header
;segment address of the request header

;character saved from the keyboard

.** ,
; * THE STRATEGY PROCEDURE *
i*** ***********

deY_strategy: mov cs:rh_seg,es
mov cs:rh_ofs,bx
ret

;save the segment address
;save the offset address
;return to DOS

.** ,

. * , THE INTERRUPT PROCEDURE *

.** ,

;device interrupt handler - 2nd call from DOS

dey_interrupt:

cld
push
push
push
push
push
push
push
push

mov
mov
mov

ds
es
ax
bx
cx
dx
di
si

aX,cs:rh_seg
eS,ax
bx,cs:rh_ofs

;save machine state on entry

;restore ES as saved by STRATEGY call

;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

aI, es: [bx] . rh_cmd
al, 1
di,cmdtab
ah,O
di,ax
word ptr [di]

;get request header header command
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

123

Writing MS-DOS Device Drivers, Second Edition

Listing 4-13: (cont.)

CMDTAB label byte
dw INITIALIZATION
dw MEDIA_CHECK
dw GET_BPB
dw IOCTL INPUT
dw INPUT
dw ND_INPUT
dw INPUT_STATUS
dw INPUT_FLUSH
dw OUTPUT
dw OUTPUT_VERIFY
dw OUTPUT_STATUS
dw OUTPUT_FLUSH
dw IOCTL_OUT
dw OPEN
dw CLOSE
dw REMOVABLE
dw OUTPUT_BUSY

;* = char devices only
initialization
media check (block only)
build bpb
ioctl in
input (read)

;*non destructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
device open
device close
removable media

;*output til busy

i*** ***********

. * , YOUR LOCAL PROCEDURES *
i*** ***********

TONE

dl:

Tone

124

proc
mov
push
mov
out
mov
mov
pop
inc
div
out
xchg
out
in
or
out
mov
loop
in
and
out
ret
endp

near
ah,O
ax
al,Ob6h
43h,al
dx,O
aX,14000
cx
cx
cx
42h,al
ah,al
42h,al
al,6lh
al,3
6lh,al
cx,15000
dl
al,6lh
al,Ofch
6lh,al

;tone
;clear ah
;save ax
;timer chip control word
;send to timer
;clear dividend (hi)
; frequency
;restore key value as divisor
;add 1 to prevent div by 0
;quotient is ax
;output 10 order byte
;reverse
;output hi order byte
;get speaker/timer value
;turn on timer & speaker
;set timer chip
;value for 50 milliseconds
; loop
;get timer chip value
;turn off speaker & timer
;set timer chip
;return to caller
;end of tone

A Console Device Driver

Listing 4·13: (cont.)

.** ,

. * , DOS COMMAND PROCESSING *

.** ,

;command 0 Initialization
Initialization:

call initial
lea ax,initial
moves: [bxl .rhO_brk_ofs, ax
moves: [bxl .rhO_brk_seg,cs
jmp done

;command I
Media Check:

;display message
;set Break Addr. at initial
;store offset address
;store segment address
;set done status and exit

jmp done ;set done bit and exit

;command 2
Get_BPB:

jmp

;command 3
IOCTL_Input:

jmp

;command 4
Input:

mov
mov
mov
mov

readl: mov
xchg
cmp
jne

read2: mov
int
cmp
je
cmp
jne
mov

read3: mov
inc
push
call
pop
loop

Get BPB

done ;set done bit and exit

unknown

Input

cX,es:bx. [rh4l_count
di,es:bx. [rh4l_buf_ofs
aX,es:bx. [rh4l_buf_seg
eS,ax
ax,O
al,sav
al, 0
read3
ah,O
16h
ax,O
read2
al, 0
read3
sav,ah
es: [dil ,al
di
cx
tone
cx
readl

;set error bit/code and exit

;load input count
;load offset address
;load segment address
; move to es
;clear ax
;pick up saved character
;is it O?
;no - we return it
;service =0 read
;Keyboard BIOS call
;is key =0 O?
;yes - go get another
;is it an extended key?
;no - we return it
;save scan code
;store key value in buffer
;point ta next buffer lac
;save cx
;sound a tone
;restare for loop control
;continue til count 0

125

Writing MS-DOS Device Drivers, Second Edition

Listing 4·13: (cont.)

mov
mov
mov
jmp

;command 5
ND_Input:

mov
cmp
jne
mov
int
jz
cmp
jne
mov
int
jmp

ndl: mov
jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

IF1:
mov
mov
int
jz
mov
int
jmp

; command 8
Output:

mov
mov
mov
mov
mov

outl: mov
inc

126

ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

al,sav
al, 0
ndl
ah,l
16h
busy
ax,O
ndl
ah,O
16h
ND_Input
es: [bx] . rh5_return, al
done

done

sav, 0
ah,l
16h
done
ah,O
16h
IFl

Output

cX,es: [bx] .rh8_count
di,es: [bx] .rh8_buf_ofs
aX,es: [bx] .rh8_buf_seg
eS,ax
bx,O
al,es: [di]
di

;restore es
; from rh_seg
;restore bx
;set done bit and exit

;pickup saved character
;is it 07
;no - return it to DOS
;service = status check
;Keyboard BIOS call
;ZF=l means no key in buffer
;is key = 07
;no - return it to DOS
;service = read
;Keyboard BIOS call
;check again
;return key to DOS
;set done bit and exit

;set done bit and exit

;clear saved key
;service = check status
;Keyboard BIOS call
;ZF=l means buffer empty
;service = read
;Keyboard BIOS call
;loop until buffer empty

;load output count
;load offset address
;load segment address
; into es
;clear bx
;pick up character to output
;point to next location

Listing 4-13: (cont.)

mov
int
loop
mov
mov
mov
jmp

ah,Oeh
10h
outl
ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;command 9 Output_Verify
Output_Verify:

jmp output

;command 10 Output_Status
Output_Status:

jmp

;command 11
Output_Flush:

jmp

;command 12
IOCTL Out:

jmp

;command 13
Open:

jmp

;command 14
Close:

jmp

;command 15
Removable:

jmp

;command 16
Output_Busy:

jmp

done

done

unknown

Open

done

Close

done

Removable

unknown

Output Til Busy

unknown

A Console Device Driver

;service write char as tty
; Video BIOS call
;loop til count = 0
;restore request header
; segment adress as es
;restore bx
;set done bit and exit

;same as output

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;set error bit/code and exit

127

Writing MS-DOS Device Drivers, Second Edition

Listing 4·13: (cont.)

;**

; * ERROR EXIT *
.** ,

unknown:
or
jmp

es: [bx] .rh_status,8003h ;set error bit and error code
done ;set done and exit

.** ,

. * , COMMON EXIT *

.** ,

busy: or es: [bx] .rh_status,0200h ;set busy bit
done: or es: [bx] .rh_status,OlOOh ;set done

pop si ;restore all registers
pop di
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret ;return to DOS

.** ,

. * , END OF PROGRAM *
;*****************************.***********************************

;this procedure is called from the Initialization command and
;is executed only once. We can tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
lea dx,msgl ;message to be displayed
mov ah,9 ;display
int 2lh ;DOS call
ret ;return to caller

initial endp

msgl db 'The Waite Group Console Driver' ,Odh, Oah, '$,

console endp ;end of console procedure
cseg ends ; end of cseg segment

end begin ;end of program

128

A Console Device Driver

Building the Replacement Console Device Driver
Before you can use this console device driver, you will need to enter the source
code of listing 4-13, assemble that code, and link it. Use your favorite word
processor to enter the source code and name the file console.asm. Then use the
Macro Assembler to assemble the source file. The next step is to LINK the object
files to produce an executable file. Then convert the .EXE file into a .COM file
using the EXE2BIN utility. Lastly, rename the .COM file into a .SYS file.

For DOS to be able to use the console device driver, you will need to specify
to DOS that you have a device driver to be loaded at boot time. This is done by
specifying the device driver .SYS file in a CONFIG.SYS file using the device=
command:

device = console.sys

Mter you boot DOS with a CONFIG.SYS file that specifies the console device
driver, you will see on the screen:

The Waite Group Console Driver

This message lets you know that the driver was successfully installed. The
next characters you type in will cause the speaker to sound with short musical
tones.

Summary
In this chapter, we have built a device driver that replaces the standard DOS
console device driver. Our replacement driver will do everything the standard
driver does, and, in addition, each key struck will generate a tone from the
speaker. The console device driver will work on versions 2.0 through 5.0 of DOS.
We have seen the various commands that DOS might send to the device driver
and what actions we should take for each of these commands. We have seen the
requirements of the Device Header, the STRATEGY procedure, the INTERRUPT
procedure, the device driver command processing, and lastly, the setting of the
various bits of the status word.

129

Writing MS-DOS Device Drivers, Second Edition

Questions

130

1. Are all DOS service calls allowed in the Initialization command?

2. Are there other examples of a console device driver?

3. Can I customize the console device driver to display color characters?

4. Why does the console device driver use the ROM BIOS routines?

5. Why does the console device driver use only the Write Character as TTY
service (OEh) of the video ROM BIOS interrupt?

6. Why is the colon in CON: not included in the device name field of the
Device Header?

7. I find that the console device driver is too long to type in. Can I condense
some of the code, particularly in the areas of unimplemented commands?

Answers may be found in appendix F.

Chapter 5

A Printer Device
Driver

Printer Types

1/0 Control and 10CTL Calls

The IOCTL Program

Building and Using the IOCTL
Program

BIOS Services for Serial and Parallel
Adapters

Inside the Printer Device Driver

A Printer Device Driver

In th;s chapter, we will develop a printer device driver. Instead of
building a driver that just replaces the DOS version, as we did in our console
device driver example, we will develop one that has many more bells and whistles
than a standard printer device driver.

In the previous two chapters, we have learned how to build device drivers
that essentially perform simple functions. The printer device driver presented in
this chapter will be more powerful and will use more of the features of DOS.

Specifically, in this chapter we will build a device driver for pm: that will
support both the parallel and serial printers. DOS supplies several printer
drivers; each will support either the serial or the parallel port. The dual-role
driver developed here allows one DOS device name to be used to access different
printers at different times. You save time by not having to change printer device
names in your programs when you direct the output to different printers.

To allow the device driver to switch between printers, we will implement
the VO Control command within the printer device driver. VO Control is a driver
feature that, though rarely used, allows programs to communicate directly with
device drivers. Normally, data is passed to drivers only for outputting to a device.
With VO Control, special commands can also be sent; these can be used by the
device driver to perform special functions.

Printer Types

Printers are commonly connected to a PC using a serial or a parallel interface.
DOS supports up to three printers, attached to parallel adapters called LPT1:,
LPT2:, and LPT3:. PRN: is used to refer to the printer attached as LPT1:. In
addition, two additional printers may be attached to the PC through serial
adapters; these adapters are called COM1: and COM2:. This allows us a maxi
mum of five printers we could use. The MODE command can be used to redirect

133

Writing MS-DOS Device Drivers, Second Edition

the parallel printer output to another device. For example, MODE is used to
specify printer output to either COM1: or COM2:.

Selecting one ofthese five possible printers from DOS or from a program is
tedious at best. Programs need to be changed each time a different printer is
desired. MODE commands may be placed in batch files to select printers before
a program executes. The print-spooling TSR program, PRINT, does allow the
selection ofthe output device (once PRINT starts executing, however, selecting
another printer for output is not possible until PRINT is terminated and restarted
with another type of printer specified). The most convenient place to select
printers is within the printer device driver itself.

Printers and DOS
DOS supplies four standard printer device drivers. These are PRN:, LPT1:,
LPT2:, and LPT3:. These control the three parallel ports. PRN: references the
same parallel port as LPT1:. Therefore, there are three parallel printers and four
possible names.

The printer device driver we will build in this chapter will not be restricted
to one of these three choices. Rather, our Printer Device Driver will have the
ability to control up to five printers: three using the parallel ports and two using
the serial ports. Of course, if we do not have five printers attached to the PC, we
can control only those that are attached.

Controlling printers is simple. First, we create a device driver with the
device name ofPRN: and we write the code to send data to both the parallel and
serial adapters. Then we need a method of selecting the appropriate output port.

We will use the 110 Control Write commands to select the printer and the
I/O Control Read commands to determine which printer was selected. This special
code needs to be built into the printer device driver along with a special program
to send and receive 110 Control strings to and from the printer device driver. The
process of controlling printers this way is shown in figure 5-1.

1/0 Control and 10CTL Calls

134

I/O Control, abbreviated IOCTL, is a feature of DOS device drivers that allows
control information to be sent to the device driver without being passed through
to the device. This control information, also called 110 Control strings, can be read
from or written to the device driver. This allows us to communicate with the
device driver to pass information back and forth between a program and the
device driver. Think of this as a special communication link between DOS and a
driver, handling information that does not get sent to the device. Without this
feature, we would not be able to direct or control the device driver.

PRINTER
DEVICE
DRIVER

A Printer Device Driver

Figure 5-1: Printer device driver controlling up to five printers. The
IOCTL program is used to send 110 Control strings to select a printer
and to receive 110 Control strings to determine which printer was
selected. 110 Control strings are written to and read from the device
driver and are not treated as data.

We need to look at both sides of the 10CTL feature: programs that read and
write control strings and the actions the device driver must take when it
encounters these control strings.

The 110 Control for Devices Call
DOS provides a service through interrupt 21h that allows a program to perform
110 Control with its driver. With this service (44h), we can request a number of
functions that pass data to and from the device driver. Table 5-1 shows the various
operations of the 1/0 Control for Devices service routine, called 10CTL from here
on. Some of the operations require the registers to be set up differently than
described in table 5-1. Refer to the Microsoft MS-DOS Programmer's Reference
for more details.

Our program will use only two of the basic twelve operations of 10CTL.
Operation 2, 10CTL Read, is used to read an 10CTL string from the driver, and

135

Writing MS-DOS Device Drivers, Second Edition

Register Value

ah 44h

al
0
1
2
3
4
5
6
7
8
9
a
b

bx

cx
dx

Description

Service = I/O Control

I/O operation requested
Get device information
Set device information
Read
Write
Read from disk drive
Write to disk drive
Get input status
Get output status
Is device media removable?
Is drive local or remote?
Is file handle local or remote?
Changing the retry of a shareable entry

File handle returned from open a file handle call

Count of the number of bytes to be transferred
With DS this is the address ofthe data transfer buffer

Table 5-1: The DOS I/O Control service call. Each of the operations
requested will require different uses of the various registers.

operation 3, IOCTL Write, is used to write an IOCTL string to the driver. IOCTL
Read allows us to determine which printer was last selected. IOCTL Write
(operation 3) allows us to select a printer.

When we select a printer, we indicate that any output written to PRN: will
be directed to that printer. All subsequent writes to PRN: will continue to use
this printer until we select another printer. Conversely, an IOCTL Read operation
allows our program to determine which printer is in use.

The IOCTL program is used to select one offive printers for program access
using the name PRN:. This removes the requirement that programs change their
printer output names to reflect the different printer desired.

The IOCTL Program

136

The IOCTL program will be used to control which printer the printer device driver
will write to when programs use the device name PRN:.

A Printer Device Driver

When IOCTL operations are used to read and write, the format of the IOCTL
string must be determined. We cannot just write a string of data and expect the
device driver to understand what it means: a convention of what the data should
look like-a common language-must be established.

Fortunately, this can be done easily. We can set up an arbitrary convention,
or protocol, that requires only two bytes. The first byte indicates which type of
printer adapter should be used. A P indicates the parallel printer adapter; an S
indicates the serial printer adapter. With this first byte, the IOCTL program will
tell the driver which printer adapter to select. The driver will use this byte to
return the printer adapter selected.

The second byte contains the adapter number-that is, the device number
for that particular type of adapter. For parallel printers, we can use 0, 1, or 2 to
indicate LPT1:, LPT2:, or LPT3:. For serial printers, we can specify ° or 1 to
represent COM1: or COM2:. The second byte is used by the IOCTL program to
tell the driver which device number to select and by the driver to return the device
number selected.

The IOCTL program is simple in concept. Basically, we select which type of
printer adapter to use by indicating a P or an S. Then we select the device
number for that particular adapter by specifying a 0, 1, or 2. Next, we open PRN:,
using the DOS service for opening a file. Then we select the appropriate IOCTL
operation, either Write or Read. Finally, we display the IOCTL string before we
exit from the program. The listing ofthe IOCTLprogram is shown in listing 5-1.

Listing 5-1: The code for the IOCTL program. We use standard DOS services
to write to the console, read from the keyboard, open files, and perform 110
Control for Devices.

title IOCTL Program

;This program is designed to use the I/O Control (IOCTL)
;commands of the The Waite Group Printer Device Driver
; (PRN:). The DOS service 44h provides a read and write function
;for I/O Control strings to device drivers that allow IOCTL.

code segment
assume cs:code, ds:code
org lOOh

main proc
start:

;display a message to the console
lea dX,msgl ; banner

;define segment as code
;COM file DS=CS
;COM file start
;main procedure
; start

call display ; console display

;Determine if it is a Serial or a Parallel printer

137

II

Writing MS-DOS Device Drivers, Second Edition

Listing 5-1: (cont.)

ptype: lea dx,msg2 ; prompt for printer type
call display ;console display
call input ;get input character
cmp aI,' P' ;is it a [P]arallel printer?
je ptype1 ;yes - store it
cmp aI, 'S' ;is it a [S] erial printer?
je ptype1 ;yes - store it
lea dx,msg2e ;error message
call display ;console display
jmp ptype ;it's neither - go back

ptype1: mov buf, al ;store the 'P' or 'S'

;get the device number: 1, 2, or 3
; convert this to 0, 1, or 2 for use by the BIOS.
pdev: lea dx,msg3 ; prompt for device number

call display ; console display
call input ;get input character
cmp aI, '3' ;is it greater than 3?
ja perr1 ;yes - too large
cmp aI, '1' ;is it below 1?
jb perr1 ;yes - too small
sub al, 30h ; convert ASCII to binary
dec al ; subtract one for driver use
mov buf+l, al ;store device number
jmp fopen ;go open PRN: file

perr1: lea dx,msg2e ; incorrect selection message
call display ;console display
jmp pdev ;go back & try again

;open PRN using file handle call
fopen: mov al,2 ;read/write access

mov ah,3dh ;open file handle
lea dx,file ;address of filename
int 21h ;DOS call
jc openerr ;error (carry set)?
push ax ;save file handle
lea dx,filemsg ;no error - tell user
call display ;console display
jmp ioctl ;get .IOCTL function

openerr:lea dx,msg5 ;error message
jmp exit ;exit - problem in program

;get function
ioctl: lea

call
call
cmp
je

138

type: Write
dX,msg4
display
input
aI, 'R'
ioread

IOCTL or Read IOCTL
;Read or Write IOCTL
;console display
;get input character
; is it [R] ead?
;yes - process it

Listing 5-1: (cont.)

cmp
je
lea
call
jmp

ioread: mov
jmp

iowrite:mov

doioctl:pop
mov
mov
lea
int
jc
or
mov
mov
or
mov
lea
call
jmp

aI, 'W'
iowrite
dx,msg2e
display
ioctl

al,2
doioctl
al,3

bx
ah,44h
cx,2
dx,buf
2lh
chkerr
al,30h
msg6a,al
al,buf+l
al,30h
buf+l,al
dX,msg6
display
exit

;check error from IOCTL call
chkerr: cmp aX,l

errl:

err2:

err3:

err4:

err5:

jne errl
lea dx,emsgl
jmp err
cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne

aX,4
err2
dx,emsg2
err
aX,5
err3
dX,emsg3
err
aX,6
err4
dx,emsg4
err
aX,Odh
err5
dX,emsg5
err
aX,Ofh
err6

A Printer Device Driver

;is it [W]rite?
;yes - process it
;no - error message
;console display
;try again

;read IOCTL string from driver
;process it
;write IOCTL string to driver

;restore file handle to bx
;service '" IOCTL
;count '" 2 bytes
;address of buffer
;DOS call
;error (carry set)?
;make count ASCII
;store count
;get device unit number
; make it ASC II
;store it back
;display results
;console display
;we are done!

;invalid function number?
;no
;yes
;display & exit
;no handle?
;no
;yes

;access denied?
;no
;yes
;display & exit
; invalid handle or not open?
;no
;yes
;display & exit
;invalid data?
;no
;yes
;display & exit
;invalid drive?
;no

139

Writing MS-DOS Device Drivers, Second Edition

Listing 5-1: (cont.)

err6:
err:

exit:

lea
jmp
lea
call

lea
call
int

display proc
mov
int
ret

display endp

input

input

msg1
msg2

msg2e
msg3
msg4
msg5
msg6
pmsg6a
buf
msg7
filemsg
file

emsg1
emsg2
emsg3
emsg4
emsg5
emsg6
emsg7
main
code

proc
mov
int
ret
endp

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
endp
ends

dx,emsg6
err
dx,emsg7
display

dx,msg7
display
20h

near
ah,9
21h

near
ah,1
21h

;yes
;display & exit
;unknown error
; display

;goodbye message
;console display
;exit back to DOS

;display message on screen
;service = display
;DOS call
;return to caller

;get 1 character from the keyboard
;service = keyboard input
;DOS call
;return to caller

'IOCTL PROGRAM',Odh,Oah, '$'
Odh,Oah, 'Select Printer type' ,Odh,Oah,
, "SO for serial or "PO for parallel :', '$'
Odh,Oah, 'bad selection - try again!' ,Odh,Oah,'$'
Odh,Oah, 'Enter printer number [1,2,3] :$'
Odh,Oah, 'IOCTL type [W]rite or [R]ead :$'
Odh,Oah, 'cannot open PRN!' ,Odh,Oah,'$'
Odh,Oah, 'IOCTL call OK' ,Odh,Oah,' count transferred
'O',Odh,Oah,' IOCTL string = "
'S',Oh,Odh,Oah, '$'
'Goodbye for now' ,Odh,Oah, '$'
Odh,Oah,
'PRN',Oh,
, has been opened! ',Od,Oah,'$'
Odh,Oah, 'invalid function number',Odh,Oah, '$'
Odh,Oah, 'no file handle' ,Odh,Oah, '$'
Odh,Oah, 'access denied' ,Odh,Oah, '$'
Odh,Oah, 'invalid handle or not open' ,Odh,Oah, '$'
Odh,Oah, 'invalid data' ,Odh,Oah, '$'
Odh,Oah, 'invalid drive number' ,Odh,Oah, '$'
Odh,Oah, 'unknown error number' ,Odh,Oah,'$'

;end of main procedure
;end of code segment

end start

140

A Printer Device Driver

Building and Using the IOCTL Program
Use your favorite word processor to enter the text as shown in listing 5-1. Name
the source file IOCTL.

Running the IOCTL program requires that an S be entered to specify a serial
interface or a P to specify a parallel interface. In addition, the number 1, 2, or 3
must be entered to indicate which printer should be enabled. Any previously
enabled printer will be disabled. The number 1, 2, or 3 is called the adapter
number, and the S or P is called the adapter type. The IOCTL program will
translate the printer numbers (1, 2, 3) to the required internal designations (0,
1, 2). Here is a sample execution:

C>ioctl
IOCTL PROGRAM

Select Printer type
US" for serial or UP" for parallel :S

Enter printer number [1,2,3] :1
PRN has been opened!

IOCTL type [W]rite or [R]ead :W
IOCTL call OK
count transferred = 2
IOCTL string so

Goodbye for now

Note that the program does not automatically convert lower-case input to
upper-case input. All keyboard input must be upper-case.

BIOS Services for Serial and Parallel Adapters
As was discussed in chapters 1 and 2, the BIOS routines for the serial and parallel
adapters are found in the ROMs ofIBM and IBM-compatible PCs. Programs can
use either DOS services or BIOS services to access devices on the serial or the
parallel adapters. Using the ROM BIOS routines means bypassing DOS and
losing some of the extensive services available. However, using the ROM BIOS
routines provides greater control over the device and faster response times. In
addition, once a driver is installed, it becomes part of DOS; because DOS is not
reentrant, the driver cannot call DOS and therefore cannot use those DOS
services in any case.

The ROM BIOS routines allow us to send data to the device, to check the
status of the adapter, and, in the case of the serial adapter, to receive data (the

141

Writing MS-DOS Device Drivers, Second Edition

serial adapter may have a modem). The printer device driver uses the ROM BIOS
routines for the serial and parallel adapters to access the serial and parallel
printers.

The specific BIOS interrupts we will be using are 14h, which controls the
serial adapters, and 17h, which controls the parallel adapters. These two BIOS
interrupts perform similar functions, but they have different register conven
tions. For both interrupts, all devices are numbered starting at O. At the DOS
level, these device numbers start at 1; therefore, the IOCTL program subtracts
1 from the device number to get the BIOS device number.

The functions provided by the serial adapter BIOS interrupt (14h) are shown
in table 5-2. The printer device driver will use only two of the four functions
provided by this BIOS service: the Transmit function (ah = 1) and the Get Status
function (ah = 3). For more complete descriptions, refer to the DOS Programmer's
Reference.

The parallel port BIOS interrupt (17h) is shown in table 5-3. The printer
device driver will use the Transmit function (ah = 0) and the Get Status function
(ah = 2) of this interrupt. For further information, refer to chapter 2 and
appendixB.

In summary, the printer device driver will use only two services provided by
the two BIOS interrupts; the Transmit Function and the Get Status function.

Inside the Printer Device Driver

142

The printer device driver takes the same format as the console device driver in
chapter 4. The overall framework for device drivers will not change, except for
items that are specific to each device driver. In many cases, when you are creating
a new driver, you can use the code from another driver with little modification.

The first three sections are shown in listing 5-2. There are only two differ
ences between these sections and those in the console device driver. The first
change is the name of the main procedure, which is now PRINTER. The second
is within the assembler directives. We no longer need the strucs for commands 4
(Input), 5 (Nondestructive Input), and 7 (Input Flush); these have been deleted.
For the Printer Device Driver, we add the strucs for commands 3 (lOCTL Input),
10 (Output Status), 12 (lOCTL Output), and 16 (Output Til Busy). We will use
these strucs in the DOS command processing section.

The Device Header
The next section is the Device Header. Normally, this section sets the appropriate
bits in the Attribute word to describe the type of driver this is and changes the
name of the device driver to the new name. In this case, however, we have a

Register

ah

al

dx

Value

o
1
2
3

Description

Initialize serial port
Transmit 1 character
Receive 1 character
Get serial port status

A Printer Device Driver

Character received (ah = 2) or
Character to transmit (ah = 1)

Serial port to use (0 or 1)

Status is returned in ax as follows:

ahBit

7
6
5
4
3
2
1
o

alBit

7
6
5
4
3
2
1
o

If Set, Means

Timeout has occurred
Transmission shift register is empty
Transmission buffer is empty
A break has been detected
A framing error has occurred
A parity error has occurred
An overrun has occurred
Data is ready

If Set, Means

Receive line signal has been detected
Ring indicator has been detected
Data set ready asserted
Clear to send asserted
A change has occurred in receive line signal
A change has occurred in ring indicator
A change has occurred in data set ready
A change has occurred for clear to send

Table 5-2: The register set-up requirements for the serial adapter
BIOS interrupt 14h. This interrupt provides both transmit and receive
functions through the serial adapter.

143

I

I

Writing MS-DOS Device Drivers, Second Edition

144

Register

ah

al

dx

Value

o
1
2

Description

transmit 1 character
initialize parallel port
get parallel port status

character to transmit (ah = 0)

parallel port to use (0, 1, or 2)

Status is returned in ah as follows:

ahBit

7
6
5
4
3
2-1
o

If Set, Means

printer is not busy
parallel port acknowledge
printer is out of paper
parallel port selected
an 110 error has occurred
not used
a timeout has occurred

Table 5-3: The register set-up requirements for the parallel adapter
BIOS interrupt 17h. This interrupt provides only transmit functions
through the parallel adapter.

decision to make with respect to the command functions that the printer device
driver will support.

The decision to be made involves the DOS version with which we wish the
printer device driver to work. With DOS versions 3.0 or higher, four additional
device driver commands are available: 13 (Device Open), 14 (Device Close), 15
(Removable Media), and 16 (Output Til Busy). For this driver, we would like the
ability to use the Output Til Busy command. This requires the Attribute word to
have the appropriate bit (13) set. Unfortunately, this is not acceptable for DOS
versions 2.x.

To allow you to experiment with the new DOS 3.0 driver calls, we present
two versions of this driver, one with and one without code for the Output Til Busy
command. Two different versions of the Device Header are provided; the first
version will work for both versions of DOS and the second version will work only
with DOS 3.0. Therefore, there will be two printer device drivers, differing only
in the Device Header used. If you use the second Device Header, you will need to

A Printer Device Driver

Listing 5·2: The code for the first part of the printer device driver. Note that
the main procedure is now called printer. Also note that the strucs have been
changed to reflect the requirements of the printer device driver.

;**
. * This is a Printer Device Driver * ,
; * Author: Robert s. Lai *
; * Date: 15 November 1991 *
; * Purpose: to replace the standard printer driver *
i*** ***********

i*** ***********

; * ASSEMBLER DIRECTIVES *
i*** ***********

cseg
printer

segment
proc
assume

para public
far

'code'

cs:cseg, es:cseg, ds:cseg

;Request Header structures

rh
rh_len
rh_unit

rh_cmd
rh_status
rh_resl
rh_res2
rh

rhO
rhO rh
rhO_nunits

rhO_brk_ofs
rhO_brk_seg
rhO_bpb_tbo

rhO

struc
db
db

db
dw
dd
dd
ends

struc
db
db

dw
dw
dw

dw

db

ends

a*** The following is ,

rh3 struc
rh3 rh db -
rh3 _media db

;request header
7 ;len of packet
7 ;unit code

; (block devices only)
7 ;device driver command
7 ;returned by device driver
7 ; reserved
7 ; reserved

;Initialization (command 0)
size rh dup (7) ;fixed portion
7 ;number of units

; (block devices only)
7 ;offset address for break
7 ;segment address for break
7 ;offset address of pointer

7

7

a new

size
7

;to BPB array
;segment address of pointer
;to BPB array
;first available drive
; (DOS 3+) (block only)

struc ***

; IOCTL_INPUT (command 3)
rh dup(7) ; fixed portion

;media descriptor from DPB

145

Writing MS-DOS Device Drivers, Second Edition

Listing 5-2: (cont.)

rh3 - buf - ofs dw ? ;offset address of
;data transfer area

rh3 - buf _seg dw ? ; segment address of
;data transfer area

rh3 count dw ? ;transfer count
; (sectors for block)
; (bytes for character)

rh3 start dw ? ;start sector number
; (block only)

rh3 ends

rh8 struc ; OUTPUT (command 8)
rh8 rh db size rh dup(?) ;fixed portion
rh8 - media db ? ;media descriptor from DPB
rh8 - buf ofs dw ? ;offset address of

;data transfer area
rh8 - buf _seg dw ? ; segment address of

;data transfer area
rh8 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh8 start dw ? ;start sector number
; (block only)

rh8 ends

rh9 struc ; OUTPUT_VERIFY (command 9)
rh9 rh db size rh dup(?) ;fixed portion
rh9 _media db ? ;media descriptor from DPB
rh9 - buf ofs dw ? ;offset address of

;data transfer area
rh9 - buf _seg dw ? ; segment address of

;data transfer area
rh9 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh9 start dw ? ;start sector number (block
rh9 ends

.*** , The following is a new struc ***

rhlO
rh10 len
rh10_unit

rh10 cmd
rh10_status
rh10_res1
rh10 res2
rh10

146

struc
db
db

db
dw
dd
dd
ends

?
?

?
?
?
?

;Output_Status (command 10)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
; reserved

only)

---------~------------

A Printer Device Driver

Listing 5-2: (cont.)

;*** The following is a new struc ***

rh12 struc ; IOCTL_OUTPUT (command 12)
rh12 - rh db size rh dup(?) ; fixed portion
rh12 _media db ? ;media descriptor from DPB
rh12 _buf - ofs dw ? ;offset address of

;data transfer area
rh12 _buf _seg dw ? ; segment address of

;data transfer area
rh12 - count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh12 start dw ? ;start sector number
; (block only)

rh12 ends

;*** The following is a new struc ***

rh16 struc ; OUTPUT_BUSY (command 16)
rh16 - rh db size rh dup (?) ; fixed portion
rh16_media db ? ;media descriptor
rh16 _buf ofs dw ? ;offset address of

;data transfer area
rh16 _buf _seg dw ? ; segment address of

;data transfer area
rh16 - count dw ? ;byte count returned

; from device driver
rh16 ends

;commands that do not
INPUT_STATUS
INPUT_FLUSH
OUTPUT_STATUS
OUTPUT_FLUSH
OPEN

have unique portions
(command 6)
(command 7)
(command 10)
(command 11)
(command 13)
(command 14)
(command 15)

to the request header:

CLOSE
REMOVABLE

.****************************~************************ *********** ,
; * MAIN PROCEDURE CODE *
;**

begin:

147

;. ~'.: ...

t

!

I

~I
I

Writing MS-DOS Device Drivers, Second Edition

148

DOS
Device Driver Version Attribute Description

DOSPRN: 2.0 8000h Character device
DOSPRN: 3.0 8800h Character device

.(open/close/removable)
DOSPRN: 3.1 aOOOh Character device

(Output Til Busy)
The Waite Group 2.0,3.0 cOOOh Character device

(supports IOCTL)
The Waite Group 3.0 eOOOh Character device

(supports IOCTL
Output Til Busy)

Table 5-4: The various Attribute words for the printer device drivers.
Note that the printer device driver in this chapter will have two
versions, one that works under DOS 2.0 and 3.0, and one that works
only under DOS 3.0 or greater.

have DOS 3.0 or greater. In chapter 10, you will see how to make a single version
of the printer device driver that will adapt itself to either version of DOS without
sacrificing features.

Changes are made to the Attribute word in the Device Header to distinguish
the two versions. Interestingly enough, DOS has redefined the Attribute word
over the years. Both versions ofthe Waite Group printer device driver Attribute
words are shown in table 5-4. The two Device Headers are shown in listing 5-3.

Work Space for Our Device Driver
The printer device driver retains the familiar variables rh_seg and rh_ofs, which
hold the ES and BX registers that point to the Request Header that DOS passes
to the device. In addition to these two variables, we declare two more variables.
The first variable is device, which contains a value that indicates which type of
adapter will be used; device will contain a 0 to use the parallel adapters and a
1 to use the serial adapters. The second variable added is dev_num, which
contains the number ofthe adapter to use. The range of values for this variable
will be 0 to 2 for parallel adapters and 0 to 1 for serial adapters. This is shown
in listing 5-4.

A Printer Device Driver

Listing 5-3: The two versions of the Device Header. The first version is for
use in DOS versions 2.0 and 3.0. The second version is used with DOS version
3.0 or greater. You will use only one of these Device Headers.

i*** ***********
. * , DEVICE HEADER REQUIRED BY DOS 2 *
.** ,

next - dev dd -1 ;no other drivers following
attribute dw OcOOOh ; char, IOCTL
strategy dw dev_strategy ; Strategy routine address
interrupt dw dev_interrupt ; Interrupt routine address
dev_name db 'PRN ; name of our Console driver

.** ,
;* DEVICE HEADER REQUIRED BY DOS 3 OR GREATER *
;**

next_dev
attribute
strategy
interrupt
dev_name

dd
dw
dw
dw
db

-1
OeOOOh
dev_strategy
dev_interrupt
'PRN

;no other drivers following
;char,IOCTL,output til busy
;Strategy routine address
;Interrupt routine address
;name of our Console driver

The STRATEGY, INTERRUPT, and Local Procedures
The STRATEGY and INTERRUPT procedures used in the console device driver
do not change for the printer device driver. The TONE procedure has been
removed from the console device driver, because there is no need for it. This is
shown in listing 5-5.

Listing 5-4: The declarations for the variables we will be using in the printer
device driver.

i*** ***********
; * WORK SPACE FOR THE DEVICE DRIVER *
i*** ***********

rh_ofs dw ? ;offset address of the request header
rh _seg dw ? ; segment address of the request header

device db 0 ;O=parallel, 1= serial
dev_num db 0 ; 0,1, 2 depending on configuration

149

I

~I
~:

'·······1 Writing MS-DOS Device Drivers, Second Edition

Listing 5·5: The code for the STRATEGY, INTERRUPT, and local procedures
used by the printer device driver.

i*** ***********

; * THE STRATEGY PROCEDURE *
i*** ***********

mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;save the segment address
;save the offset address
;return to DOS

i*** ***********

; * THE INTERRUPT PROCEDURE *
;**

;device interrupt handler - 2nd call from DOS

dey_interrupt:

cld
push
push
push
push
push
push
push
push

mov
mov
mov

ds
es
ax
bx
cx
dx
di
si

ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs

;save machine state on entry

;restore ES as saved by STRATEGY call

;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

al,es: [bxl .rh_cmd
al, 1
di,cmdtab
ah,O
di,ax
word ptr [dil

;get request header command
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw
dw

150

byte
INITIALIZATION
MEDIA_CHECK

;* = char devices only
initialization

; media check (block only)

A Printer Device Driver

Listing 5-5: (cont.)

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

INPUT
ND_INPUT
INPUT_STATUS
INPUT_FLUSH
OUTPUT
OUTPUT_VERIFY
OUTPUT_STATUS
OUTPUT_FLUSH

OPEN
CLOSE
REMOVABLE
OUTPUT_BUSY

build bpb
ioctl in
input (read)

;*nondestructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
device open
device close
removable media

;*output til busy

i*** ***********
. * , YOUR LOCAL PROCEDURES *
.** ,

DOS Command Processing
Ofthe 21 commands for DOS version 5.0 device drivers, only a few will actually
be implemented for a particular device driver. The printer device driver will
implement commands 0 (Initialization), 3 (IOCTL Input), 8 (Output), 9 (Output
With Verify), 10 (Output Status), 12 (IOCTL Output), and 16 (Output Til Busy).

The rest of the commands require the printer device driver to return in the
Status word either the BUSY or the ERROR bit set in addition to the DONE bit.
Table 5-5 shows the Status word bits set for commands that are not applicable
in our Printer Device Driver.

The code for the commands listed in table 5-5 that are not used by our Printer
Device Driver (those marked "**,, in table 5-5) is shown in listing 5-6.

The code needed to implement the new device driver commands, such as
IOCTL Input, IOCTL Output, Output, Output With Verify, Output Til Busy, and
Initialization, is presented in the next sections.

Command O-Initialization The Initialization command does not change
much. The driver calls the initial procedure to display a banner and information
about the serial and parallel adapters. You will see more of this procedure in a
later section ofthis chapter. Again, the driver destroys the space occupied by the
Initialization procedure, and the driver specifies this. The memory used is
returned to DOS. The Break Address, which signals the last memory location

151

Writing MS-DOS Device Drivers, Second Edition

152

Number

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

**

Command Description Status Bits Set

Initialization **
Media Check DONE
BuildBPB DONE
IOCTLInput **
Input **
Nondestructive Input BUSY
Input Status DONE
Input Flush DONE
Output **
Output With VerifY **
Output Status **
Output Flush DONE
IOCTL Output **
Device Open DONE
Device Close DONE
Removable Media ERROR
Output Til Busy **

The printer driver performs some processing for these
commands. The Status word setting will depend on the
outcome of the processing. The balance of unused commands
will jump to DONE or UNKNOWN.

Table 5-5: The Status word bit setting for those commands that have
no meaning in our Printer Device Driver.

that the printer device driver uses, is returned to DOS. Recall that the Break
Address is used to tell DOS where the next available location is following the
printer device driver. This is shown in listing 5-7.

Command 3-IOCTL Input The IOCTL Input command instructs the
printer device driver to return to the calling program an 110 Control string. As
was discussed earlier, the IOCTL data is two bytes in length, with the first byte
indicating the printer adapter type and the second byte indicating the adapter
number.

Listing 5-8 shows that the address of the data transfer area is contained in
rh3_buf_seg and rh3_buf_ofs and is used to store two protocol bytes received by

A Printer Device Driver

Listing 5-6: The code for commands that have no meaning in the printer
device driver.

;**

. * , DOS COMMAND PROCESSING FOR UNUSED COMMAND *
;**

;command 1
Media_Check:

jmp

;command 2
Get_BPB:

jmp

;command 4
Input:

jmp

;command 5
ND_Input:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

;command 11
Output_Flush:

jmp

;command 13
Open:

jmp

;command 14
Close:

done ;set done bit and exit

done ;set done bit and exit

Input

done ;set done bit and exit

busy ;set busy bit and exit

done ;set done bit and exit

done ;set done bit and exit

done ;set done bit and exit

Open

done ;set done bit and exit

Close

153

Writing MS-DOS Device Drivers, Second Edition

Listing 5-6: (cont.)

jmp done ;set done bit and exit

;command 15
Removable:

Removable

jmp unknown ;set error bit/code and exit

the driver. The variable device is checked with a compare (cmp) instruction to
determine whether the lower byte specifies a parallel adapter (value is 0) or a
serial one (value is 1); the driver stores a 'P' or an'S' in the data transfer area.
This value is subsequently returned to the IOCTL program. Similarly, the driver
returns the variable dev_num, which contains the adapter number.

Before the driver exits and sets the DONE bit of the Status word, the ES
and BX registers, which were used to store our IOCTL information, are restored.

Command 8-0utput This command is the heart of the printer device driver.
Data sent to PRN: to be printed by a program calling our driver is processed in
this section. Each character is output to the selected printer one byte at a time.
See listing 5-9. Note that this is riot related to IOCTL Output, but deals with data
to be printed.

The initial part of the Output procedure sets up the various registers used
to retrieve data from the DOS buffer pointed to by the address contained in
rh8_buf_seg and rh9_buf_ofs. This particular buffer was defined in the struc
section and will be the output buffer.

Listing 5-7: The Initialization command processing. We call the initial
procedure to display information about the printer device driver. Then we
return the Break Address to DOS.

;command ° Initialization
Initialization:

154

call
lea
mov
mov
jmp

initial
ax,initial
es: [bx] .rhO_brk_ofs, ax
es: [bx] .rhO_brk_seg,cs
done

;display message
;set Break Addr. at initial
;store offset address
;store segment address
;set done status and exit

A Printer Device Driver

Listing 5-8: The code for the IOCTL Input command. This command instructs
the printer device driver to return an IOCTL string.

;command 3
IOCTL_Input:

mov
mov
mov
cmp
jne
mov
jmp

iniol: mov
inioctl:mov

inc
mov
mov
mov
mov
mov
jmp

di,es: [bxl .rh3buf_ofs
aX,es: [bxl .rh3_buf_seg
eS,ax
cs:device,O
iniol
al, 'P'
inioctl
al, 'S'
es: [dil ,al
di
al,cs:dev_num
es: [dil ,al
cX,cs:rh_seg
es,cx
bx,cs:rh_ofs
done

;get buffer offset
;get buffer
; segment to es
;is it currently parallel?
;no - check for serial
;yes - ASCII P
;store it
;assume [Slerial
;Store printer type
;next location
;get device number
;store it
;restore request header
; segment to es
;same for offset
;set done bit and exit

The program then determines the printer adapter number and the printer
adapter type. Based on the value for the printer adapter, contained in the variable
device, the program branches to either the parallel or the serial output routines.

The section of the driver labeled pout outputs data using the parallel
adapter BIOS interrupt 17h. The basic loop checks the status of the parallel
adapter (ah = 2) before transmitting 1 character (ah = 0). Normally, we do not
need to check the status before sending a character. DOS issues an Output Status
(command 10) and checks to see if the printer device driver is ready to output
more characters. If so, DOS will call the printer device driver with an Output
command.

A status check is performed by the printer device driver for two reasons.
First, some programs bypass the DOS printer device driver by issuing interrupt
17h calls directly. This can cause the printer to become busy when our Printer
Device Driver attempts to write to it. The printer device driver then waits,
unnecessarily, until the device is no longer busy. The status check code detects
the possibility of this condition. Instead of having the printer device driver wait
until the printer is ready, we will detect the fact that the device is busy, and
return a busy indication to DOS. This allows DOS to check the status (through
an Output Status command) and when the device is not busy, resend the

155

Writing MS-DOS Device Drivers, Second Edition

Listing 5-9: The code for the printer driver output command. The code
determines the adapter type and number and branches to the appropriate
serial or parallel output routines.

; command 8 Output
Output:

mov cX,es: [bxj .rh8_count
mov di,es: [bxj .rh8_buf_ofs
mov aX,es: [bxj .rh8_buf_seg
mov eS,ax

mov dl,cs:dev_num
mov dh,O
mov bx,O

;check for device type
cmp
je
jmp

;process output
pout: cmp

je
mov
inc
mov
int
test
jne
jmp

poutl: mov
int
test
jne
inc
jmp

;process printer

pout2: mov
jmp

pout3: mov
jmp

perrI: test
jz
mov
jmp

perr2: test
jz

156

cs:device,0
pout
sout

to parallel
bx,cx
pout2
al,es: [dij
di
ah,2
17h
ah,80h
poutl
pout3
ah,O
17h
ah,9h
perrI
bx
pout

errors

ax,O
load_status
aX,8002h
load_status

ah,l
perr2
aX,8002h
load_status
ah,8
perr3

printer

;load output count
;load offset address
;load segment address
; into es

;load printer #
;clear hi-order DX
;set current count to 0

;to parallel device?
;yes
;no - assume serial

;is current = output?
;yes - we are done
;get output character
;point to next byte
;service = status check
;Printer BIOS call
;not busy (=1)?
;yes - continue
;no - exit with error
;service = print
;Printer BIOS call
;1/0 error or Timeout?
;yes
;increment current count
;go back for more

;no error
;load status & exit
;set error bit & 'not ready'
;load status & exit

;Timeout?
;no - go to next test
;set error bit & not ready
;go to cleanup
;1/0 Error?
;no - go to next test

A Printer Device Driver

Listin 5-9: (cont.)

mov aX,800ah ;set error bit & Write Fault
jmp load - status ;go to cleanup

perr3: test ah,20h ;No Paper (printer off) ?
jz perr4 ;no - go to last step
mov aX,8009h ;set error bit & No Paper
jmp load_ status ;go to cleanup

perr4: mov aX,800ch ;set error bit & General Failure
jmp load - status ;go to cleanup

;process output to serial printer

sout: cmp
je
mov
int
test
jnz
jmp

stl: test
jnz
jmp

soutl: mov
inc
mov
int
test
jnz
inc
jmp

sout2: mov
jmp

sout3: mov
jmp

bx, cx
sout2
ah,3
14h
ah,20h
stl
sout3
al, 20h
soutl
sout3
al,es: [di]
di
ah,l
14h
ah,80h
sout3
bx
sout

ax,O
load_status
aX,800ah
load_status

;is current = request count?
;yes - set status & exit
;service = status check
;RS232 BIOS call
;xfer hold register empty?
;yes (implies not busy)
;no - set error & exit
;is data set ready =l?
;yes (implies not busy)
;no - set error & exit
;get output character
;increment for next char
;service = transmit 1 char
;RS232 BIOS call
;transmit error?
;yes - set error & exit
;no - increment output count
;go back for more

;no errors - we are done
;load status word & exit
;set error bit & 'write fault'
;set status word & exit

character to the printer device driver for printing. Thus, we prevent a "hung"
situation, which occurs when the printer is too busy to accept more characters.

The second, perhaps more convoluted, reason for a status check is that the
same output code can then be used for the Output Til Busy command. If the driver
uses the same code for processing the Output Til Busy command but does not
have the status check code, the driver can wait endlessly for the printer to free
up when passing a stream of characters. In short, the status check is doubly
justified when the Output Til Busy command shares the same code as the Output
command; the chance of the printer being busy is greatly increased if the driver

157

Writing MS-DOS Device Drivers, Second Edition

158

sends a block of characters to be printed. In either case, the status check code is
important in minimizing the time spent by the driver waiting for the printer to
be free.

The driver section labeled pout2 checks for errors that occur in the status
check and the output sections for the parallel adapter. If an error arises, the
program sets the ERROR bit and stores an appropriate error number in the status
word before exiting.

The section labeled sout transmits print data through the serial adapter
interface using interrupt 14h. The code first checks the status to ensure that the
serial adapter and the printer are ready to receive a character from the printer
device driver. Ifthere are any errors, the driver will exit with a write fault error.
DOS does not distinguish among the different error conditions returned from the
serial adapter; the write fault error is intended to represent all such errors.

A status check is performed before a character is transmitted to the serial
adapter for the same reasons as described for the parallel adapter output. Any
busy conditions are returned to DOS, and DOS keeps checking, waiting until the
printer is ready before res ending the character to the printer device driver. This
code is also used to process the Output Til Busy command.

The Output command code is shown in listing 5-9.

Command 9-0utput With Verify The Output With Verify command is
called from DOS when print output is desired and the command-level switch
VERIFY is set ON. This command is the same as an Output command and is
processed by jumping to the Output routine. The code for this command is shown
below:

;command 9 Output_Verify
Output_Verify:

jmp output ;same as output

Command to-Output Status The Output Status command is sent to the
printer device driver whenever DOS is about to send an Output command to print
data. DOS needs to know the status of the output device before it sends an Output
command to the device driver. (From an efficiency viewpoint, it is better to let
DOS check and wait for a ready indication than it is for the device driver to keep
checking.) This is particularly true if DOS has other work to perform; it could not
do so if the device driver was in a loop waiting for a device to become ready to
accept data. DOS can also retry an operation several times before displaying an
error message on the console.

The Output Status routine determines the adapter type and number before
issuing an appropriate BIOS status check interrupt. The DOS BUSY bit is set in
the Status word if the device is not ready. Note that the parallel adapter status

A Printer Device Driver

bit returned by the BIOS call is reversed in meaning from the BUSY bit in the
device driver's Status word. When interrupt 17h returns bit 7 in the ah register,
the device is not busy. Therefore, if this bit is set we do not set the BUSY bit of
the Status word. The code for this command is illustrated in listing 5-10.

Listing 5-10: The code for processing the Output Status command. The driver
sets the BUSY bit of the Status word if the device is not ready for more
output.

;command 10 Output_Status
Output_Status:

;The DOS BUSY bit of the status word is set to indicate to DOS
;that DOS should wait. If BUSY is not set (eg DONE bit only),
;this means that device is ready for more output.

;determine device type and unit number
mov dl,cs:dev_num
mov dh,O

;check for device type
cmp cs:device,O
je pstatus
jmp sstatus

;get status from parallel device

;load printer #
;clear hi-order DX

;to parallel device?
;yes
;no - assume serial

; if bit 7 in ah is set this means device is not busy
; so we do not set BUSY in status word.
pstatus:

mov
int
test
jne
jmp

pstatl: test
jz
mov

pstat2: jmp

ah,2
17h
ah,80h
pstatl
busy
ah,9h
pstat2
es: [bx] .rh_status,8009h
done

;get serial printer status
sstatus:

mov ah,3
int l4h
test ah,20h
jz sstat
test al,20h
jz sstat
jmp done

sstat: jmp busy

;service = status check
;Printer BIOS call
;not busy or other?
;yes
;no (not busy) - set BUSY!
;1/0 Error or Timeout?
;no - exit with BUSY not set!
;set error bit & 'No Paper'
;set done bit and exit

; service = status check
;RS232 BIOS call
;xfer hold register empty?
;no - set BUSY!
;data set ready?
;no - set BUSY!
;device is ready!
;device is not ready!

159

~I
I

Writing MS-DOS Device Drivers, Second Edition

160

Command 12-IOCTL Output The IOCTL Output command is sent to the
printer device driver whenever a program issues a 44h service call to DOS via
interrupt 21h with a Write Request operation (al = 3). This command is processed
by inspecting the data buffer specified by DOS in the address rh12_buf_seg and
rh 12_b uf_ofs.

As defined earlier in this chapter, the IOCTL data used by both the device
driver and the program issuing an IOCTL service follows a set format. It has two
bytes, the first of which is a P or an S which indicates the parallel or the serial
adapter, and the second of which is the adapter number (0-2).

The IOCTL Output section of code converts the adapter ASCII letter P to a
o for a parallel adapter and the S to a 1 for the serial adapter. This value is stored
in the variable device. Similarly, the second byte in the data buffer is saved in
the variable dev _num.

If the first byte in the data buffer is not a P or an S, the driver returns to
DOS with an error. Otherwise, the driver sets the DONE bit ofthe Status word
and exits. The code for this command is shown in listing 5-11.

Command 16-0utput Til Busy The Output Til Busy command, which is
valid only when DOS 3.0 or greater is used, is sent to the printer device driver
when it is desirable to send an entire buffer of characters to the printer rather
than one character at a time. The command sends data until the printer device
is busy and cannot accept any more. It finds out when the printer is busy by
checking the printer's status before sending out each character. This speeds
processing, because DOS normally calls the printer device driver each time there
is a character to be printed.

Most printers today have an internal RAM buffer that holds many charac
ters and that acts as a temporary storage area to moderate between the relatively
fast speeds of transferring data to the printer and the slower speeds of printing
characters. The Output Til Busy command uses this feature of printers to fill up
the buffer in one shot before returning to DOS with a busy indication.

The Output Til Busy command is processed by the Output command code.
The Output command section sends characters to the printer until either the
count of output characters is exhausted or the status check code indicates the
printer is busy. If the printer returns a busy status, the driver returns to DOS
with the Status word set and the number of characters transferred. The code for
processing the Output Til Busy command is simply ajump to the Output routine.

Error Exit This section sets the Error bit of the Status word, sets the error
number, and then exits. This code has not changed from the previous chapter's
driver and is shown in the listing ofthe complete printer device driver at the end
ofthis chapter.

A Printer Device Driver

Listing 5-11: The processing for the IOCTL Output command. The driver
converts and stores the adapter type and number.

;command 12
IOCTL_Out:

mov
mov
mov
mov

mov
cmp
jne
mov
jmp

IOCTL1: cmp
jne
mov

IOCTL2: inc
mov
mov
mov
jmp

IOCTL3: mov

IOCTL4: mov
mov
mov
mov
jmp

cX,es: [bx] .rh12_count ;load output count
di,es: [bx] .rh12_buf_ofs ;load offset address
aX,es: [bx] .rh12_buf_seg ;load segment address
eS,ax ; into es

al,es: [di]
aI, 'P'
IOCTL1
cs:device,O
IOCTL2
aI, 'S'
IOCTL3
cs:device,1
di
al,es:di
cs:dev_num,al
ax,O
IOCTL4

aX,8003h

cx,cs:rh_seg
es,cx
bx,cs:rh_ofs
es: [bx] . rh_status, ax
done

;pickup Device
;is it parallel?
;no - test for serial
;yes - move 0
;now get device number
;is it serial?
;no - wrong IOCTL data
;yes - move 1
;next character
;pickup device number
;store it
;no error
;load status & exit

;not P or S - error

;restore request header
; segment to es
;restore offset also
;return status
;set done bit and exit

Common Exit This section completes the Output command processing by
restoring the ES and BX registers and returning the error code and the number
of bytes transferred to the printer adapter.

The BUSY bit is set if needed. For the printer device driver, this bit needs
to be set if the Output Status command processing code finds the printer busy.
Lastly, the DONE bit of the Status word is set before returning to DOS. Listing
5-12 illustrates the code required by the Common Exit routines.

End of Program We finally have reached the end of the printer device driver!
The driver simply displays a banner indicating the number of serial and parallel
adapters that the printer device driver will support. The Equipment Check
interrupt (l1h) is used to return the number of serial and parallel adapters

161

Writing MS-DOS Device Drivers, Second Edition

Listing 5-12: The Common Exit processing. The Output command results are
processed at the label load_status.

;***'*******************
. * , COMMON EXIT *
.** ,
load_status:

busy:

done:

mov
mov
mov
xchg
mov
mov
jmp

or

or

pop
pop
pop
pop
pop
pop
pop
pop
ret

cX,cs:rh_seg
es,cx
cx,cs:rh_ofs
bx;cx
es: [bx] .rh_status, ax
es: [bx] .rh8_count,cx
done

;restore request header
; segment to es
;restore offset also
;switch them
;return status
;return output count
;set done bit and exit

es: [bx] .rh_status,0200h ;set busy bit

es: [bx] .rh_status,OlOOh ;set done

si
di
dx
cx
bx
ax
es
ds

;restore all registers

;return to DOS

supported by the PC. Because the driver cannot tell if printers are attached to
these adapters, it only indicates what adapters are present.

The initial procedure is executed only once by the Initialization command,
so the routine is placed at the end of the device driver instead of in the section
called "Local Procedures." This is done so that DOS can reuse these memory
locations once the Initialization phase is complete. Listing 5-13 shows the code
for the End of Program processing.

Building the Printer Device Driver

162

To build the printer device driver discussed in this chapter, use a word processor
to enter the text shown in listing 5-14, which is the complete listing of the printer
device driver. Name the text file printer.asm.

A Printer Device Driver

Listing 5·13: The code required for the End of Program processing. The
initial procedure is placed at the end .of the Printer Device Driver so that we
can tell DOS to overwrite it. We do this by specifying the Break Address at
the initial procedure .

. ** ,

. * , END OF PROGRAM *
i*** ***********

;this procedure is called from the Initialization command and
;is executed only once. We tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc
int
push
mov
shr
and
add
mov
pop
mov
shr
and
add
mov
lea
mov
int
ret

initial
msgl

msglb
msglc

endp
db
db
db
db

printer endp
cseg ends

end

near
llh
ax
cl, 9

;display message on console
;equipment check
;save for parallel calculation
;shift count

aX,cl ;get serial ports
al,7 ;keep 3 right bits
al,30h ;make it an ASCII number
msglc,al;store it
ax ;restore for parallel calculation
cl,14 ;shift count
aX,cl ;get parallel ports
al,3 ;keep 2 right bits
al,30h ;make it an ASCII number
msglb,al;store it
dx,msgl ;message to be displayed
ah,9 ;display
2lh ;DOS call

;return to caller

'The Waite Group Printer Driver' ,0dh,Oah,
, supporting' ,0dh,Oah,' "
'0 parallel printers' ,Odh,Oah,' ,
'0 serial printers',Odh,Oah, '$'

begin

;end of printer procedure
;end of cseg segment
;end of program

Remember to use the Device Header that matches the version of DOS being
used. Then assemble, link, and convert the driver to a .COM format. To install
the driver, build a CONFIG.SYS file, specifying the printer device driver file in
a device= command.

163

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: The complete listing for the printer device driver.

page
title

60,132
A Printer Device Driver

;**

· * This is a Printer Device Driver * ,
· * Author: Robert S. Lai * ,
; * Date: 15 November 1991 *
; * Purpose: to replace the standard printer driver *
.** ,

;**

· * , ASSEMBLER DIRECTIVES *
;**

cseg
printer

segment
proc
assume

para public
far

'code'

cs:cseg, es:cseg, ds:cseg

;Request Header structures

rh struc ;request header
rh - len db ? ;len of packet
rh_unit db ? ;unit code

; (block devices only)
rh - cmd db ? ;device driver command
rh - status dw ? ;returned by device driver
rh - resl dd ? ; reserved
rh res2 dd ? ;reserved
rh ends

rhO struc ;Initialization (command 0)
rhO rh db size rh dup (?) ;fixed portion
rhO - nunits db ? ; number of units

; (block devices only)
rhO - brk_ ofs dw ? ;offset address for break
rhO - brk_seg dw ? ; segment address for break
rhO _bpb_tbo dw ? ;offset address of pointer

ito BPB array
rhO _bpb_ tbs dw ? ; segment address of pointer

ito BPB array
rhO drv_ ltr db ? ;first available drive

(DOS 3+) (block only)
rhO ends

.*** , The following is a new struc ***

rh3
rh3_rh
rh3_media

164

struc
db
db

;IOCTL_INPUT (command 3)
size rh dup(?) ;fixed portion
? ;media descriptor from DPB

A Printer Device Driver

Listing 5-14: (cont.)

rh3 - buf ofs dw ? ;offset address of
;data transfer area

rh3 - buf _seg dw ? ; segment address of
;data transfer area

rh3 count dw ? ;transfer count
; (sectors for block)
; (bytes for character)

rh3 start dw ? ;start sector number
; (block only)

rh3 ends

rh8 struc ; OUTPUT (command 8)
rh8 rh db size rh dup(?) ; fixed portion
rh8 _media db ? ;media descriptor from DPB
rh8 - buf ofs dw ? ;offset address of

;data transfer area
rh8 - buf _seg dw ? ; segment address of

;data transfer area
rh8 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh8 start dw ? ;start sector number
; (block only)

rh8 ends

rh9 struc ;OUTPUT VERIFY (command 9)
rh9 rh db Slze rh dup(?) ;fixed portion
rh9 _media db ? ;media descriptor from DPB
rh9 - buf ofs dw ? ;offset address of

;data transfer area
rh9 - buf _seg dw ? ; segment address of

;data transfer area
rh9 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh9 start dw ? ;start sector number (block only)
rh9 ends

. * * * The following is a new struc *** ,

rh10 struc ; Output_Status (command 10)
rh10 len db ? ;len of packet
rh10 _unit db ? ;unit code

; (block devices only)
rh10 - cmd db ? ;device driver command
rh10 - status dw ? ; returned by device driver
rh10 res1 dd ? ;reserved
rh10 res2 dd ? ;reserved
rh10 ends

165

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

.*** The following is a new struc ***

rh12 struc ;IOCTL OUTPUT (command 12)
rh12 - rh db size rh dup(7) ;fixed portion
rh12 _media db 7 ;media descriptor from DPB
rh12 _buf ofs dw 7 ;offset address of

;data transfer area
rh12 _buf _seg dw 7 ; segment address of

;data transfer area
rh12 count dw 7 ;transfer count

; (sectors for block)
; (bytes for character)

rh12 start dw 7 ;start sector number
; (block only)

rh12 ends

.*** The following is a new struc ***

rh16
rh16 rh -

struc
db

;OUTPUT_BUSY (command 16)
size rh dup (7) ; fixed portion

rh16 _media
rh16 _buf ofs

rh16 _buf _seg

rh16 count

rh16

db
dw

dw

dw

ends

7 ;media descriptor
7 ;offset address of

;data transfer area
7 ;segment address of

;data transfer area
7 ;byte count returned

;from device driver

;commands that do not have unique portions to the request header:
INPUT_STATUS (command 6)
INPUT_FLUSH (command 7)
OUTPUT_STATUS (command 10)
OUTPUT_FLUSH (command 11)
OPEN (command 13)
CLOSE (command 14)
REMOVABLE (command 15)

.** ,

. * , MAIN PROCEDURE CODE *

.** ,

begin:

166

A Printer Device Driver

Listing 5-14: (cont.)

;**

; * DEVICE HEADER REQUIRED BY DOS 3 OR GREATER *
i*** ***********

next - dey dd -1 ino other drivers following
attribute dw OeOOOh ;char,IOCTL,output til busy
strategy dw deY_strategy ; Strategy routine address
interrupt dw dey_interrupt ; Interrupt routine address
dey_name db 'PRN ; name of our Console driver

;**

; * WORK SPACE FOR THE DEVICE DRIVER *
;**

rh - ofs dw ? ;offset address of the request header
rh _seg dw ? ; segment address of the request header

device db 0 ;O=parallel, 1= serial
dev_num db 0 ; 0,1, 2 depending on configuration

i*** ***********
. * , THE STRATEGY PROCEDURE *
i*** ***********

deY_strategy: mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;save the segment address
;save the offset address
;return to DOS

;**
. * , THE INTERRUPT PROCEDURE *
;**

;device interrupt handler - 2nd call from DOS

dey_interrupt:

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

167

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

aI, es: [bx] . rh_cmd
aLl

;get request header command

di,cmdtab
ah,O
di,ax
word ptr [di]

;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
;jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

byte
INITIALIZATION
MEDIA_CHECK
GET_BPB
IOCTL_INPUT
INPUT
ND_INPUT
INPUT_STATUS
INPUT_FLUSH
OUTPUT
OUTPUT_VERIFY
OUTPUT_STATUS
OUTPUT_FLUSH
IOCTL_OUT
OPEN
CLOSE
REMOVABLE
OUTPUT_BUSY

;* = char devices only
initialization
media check (block only)
build bpb
ioctl in
input (read)

;*nondestructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
device open
device close
removable media

;*output til busy

i*** ***********

; * YOUR LOCAL PROCEDURES *
;**

;**

. * , DOS COMMAND PROCESSING *
i*** ***********

;command ° Initialization
Initialization:

168

call
lea
mov
mov
jmp

initial
ax,initial
es: [bx] .rhO_brk_ofs, ax
es: [bx] .rhO_brk_seg,cs
done

;display message
;set Break Addr. at initial
;store offset address
;store segment address
;set done status and exit

A Printer Device Driver

Listing 5-14: (cont.)

;command 1
Media_Check:

jmp

;command 2
Get_BPB:

jmp

;command 3
IOCTL_Input:

mov
mov
mov
cmp
jne
mov
jmp

iniol: mov
inioctl:mov

inc
mov
mov
mov
mov
mov
jmp

;command 4
Input:

jmp

;command 5
ND_Input:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

done ;set done bit and exit

done ;set done bit and exit

di,es: [bx] .rh3_buf_ofs
aX,es: [bx] .rh3_buf_seg
eS,ax
cs:device,Q
iniol
aI,' P'
inioctl
aI,' S'
es: [di] ,al
di
al,cs:dev_num
es: [di] ,al
cx,cs:rh_seg
es,cx
bx,cs:rh_ofs
done

Input

done

busy

done

done

;get buffer offset
;get buffer
; segment to es
;is it currently parallel?
;no - check for serial
;yes - ASCII P
;store it
;assume [S]erial
;Store printer type
;next location
;get device number
;store it
;restore request header
; segment to es
;same for offset
;set done bit and exit

;set done bit and exit

;set busy bit and exit

;set done bit and exit

;set done bit and exit

169

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

;comrnand 8
Output:

mov
mov
mov
mov

mov
mov
mov

Output

cX,es: [bx] .rh8_count
di,es: [bx] .rh8_buf_ofs
aX,es: [bx] .rh8_buf_seg
eS,ax

d1,cs:dev_num
dh,O
bx,O

; check for device type
cmp cs:device,0
je pout
jmp sout

;process output to parallel printer
pout: cmp bx,cx

je pout2
mov a1,es: [di]
inc di
mov ah,2
int I7h
test ah,80h
jne poutl
jmp pout3

pout1 : mov ah,O
int I7h
test ah,9h
jne perr1
inc bx
jmp pout

;process printer errors

pout2: mov ax,O
jmp load_status

pout3: mov aX,8002h
jmp load_status

perr1: test ah,l
jz perr2
mov aX,8002h
jmp load_status

perr2: test ah,8
jz perr3
mov aX,800ah
jmp load_status

170

;load output count
;load offset address
;load segment address
; into es

;load printer #
;c1ear hi-order DX
;set current count to 0

;to parallel device?
;yes
;no - assume serial

;is current = output?
;yes - we are done
;get output character
;point to next byte
;service = status check
;Printer BIOS call
;not busy (1)?
;yes - continue
;no - exit with error
;service = print
;Printer BIOS call
;1/0 error or Timeout?
;yes
;increment current count
;go back for more

;no error
;load status & exit
;set error bit & 'not ready'
;load status & exit

; Timeout ?
;no - go to next test
;set error bit & not ready
;go to cleanup
;1/0 Error?
;no - go to next test
;set error bit & Write Fault
;go to cleanup

A Printer Device Driver

Listing 5-14: (cont.)

perr3: test ah,20h
jz perr4
mov aX,8009h
jmp load_status

perr4: mov aX,800ch
jmp load_status

;process output to serial printer

sout: cmp
je
mov
int
test
jnz
jmp

stl: test
jnz
jmp

soutl: mov
inc
mov
int
test
jnz
inc
jmp

sout2: mov
jmp

sout3: mov
jmp

bx,cx
sout2
ah,3
14h
ah,20h
stl
sout3
al,20h
soutl
sout3
al,es: [dij
di
ah,l
14h
ah,80h
sout3
bx
sout

ax,O
load_status
aX,800ah
load_status

;command 9 Output_Verify
Output_Verify:

jmp output

;command 10 Output_Status
Output_Status:

;No Paper (printer off)?
;no - go to last step
;set error bit & No Paper
;go to cleanup
;set error bit & General Failure
;go to cleanup

;is current = request count?
;yes - set status & exit
;service = status check
;RS232 BIOS call
;xfer hold register empty?
;yes (implies not busy)
;no - set error & exit
;is data set ready =l?
;yes (implies not busy)
;no - set error & exit
;get output character
;increment for next char
;service = transmit 1 char
;RS232 BIOS call
;transmit error?
;yes - set error & exit
;no - increment output count
;go back for more

;no errors - we are done
;load status word & exit
;set error bit & 'write fault'
;set status word & exit

;same as output

;The DOS BUSY bit of the status word is set to indicate to DOS
;that DOS should wait. If BUSY is not set (eg DONE bit only),
;this means that device is ready for more output.

;determine device type and unit number
mov dl,cs:dev_num
mov dh,O

;load printer #
;clear hi-order DX

171

Writing MS-DOS Device Drivers, Second Edition

Listing 5·14: (cont.)

;check for device type
cmp cs:device,O ;to parallel device?
je pstatus ;yes
jmp sstatus ;no - assume serial

;get status from parallel {ievice
; if bit 7 in ah is set this means device is not busy
; so we do not set BUSY in status word.
pstatus:

mov
int
test
jne
jmp

pstat1: test
jz
mov

pstat2: jmp

ah,2 ; service status check
17h ;Printer BIOS call
ah,80h ;not busy or other?
pstat1 ;yes
busy ;no (not busy) - set BUSY!
ah,9h ;1/0 Error or Timeout?
pstat2 ;no - exit with BUSY not set!
es: [bx] .rh_status,8009h ;set error bit & 'No Paper'
done;set done bit and eX,it

;get serial printer status
sstatus:

mov
int
test
jz
test
jz
jmp

sstat: jmp

;command 11
Output_Flush:

jmp

;command 12
IOCTL_Out:

mov
mov
mov
mov

mov
cmp
jne
mov
jmp

IOCTL1: cmp

172

jne
mov

ah,3
14h
ah,20h
sstat
al,20h
sstat
done
busy

done

cX,es: [bx] .rh12_count
di,es: [bx] .rh12_buf_ofs
aX,es: [bx] .rh12_buf_seg
eS,ax

al,es: [di]
aI, 'P'
IOCTL1
cs:device,0
IOCTL2
aI,' S'
IOCTL3
cs:device,1

;service = status check
;RS232 BIOS call
;xfer hold register empty?
;no - set BUSY!
;data set ready?
;no - set BUSY!
;device is ready!
;device is not ready!

;set done bit and exit

;load output count
;load offset address
;load segment address
; into es

;pickup Device
; is it parallel?
;no - test for serial
;yes - move 0
;now get device number
;is it serial?
;no - wrong IOCTL data
;yes - move 1

A Printer Device Driver

Listing 5-14: (cont.)

IOCTL2: inc di
mov al,es: [dij
mov cs:dev _num,al
mov ax,O
jmp IOCTL4

IOCTL3: mov aX,8003h

IOCTL4: mov cx,cs:rh_seg
mov es,cx
mov bx, cs:rh_ ofs
mov es: [bx] .rh_status, ax
jmp done

; command 13 Open
Open:

jmp done

; command 14 Close
Close:

jmp done

; command 15 Removable
Removable:

jmp unknown

; command 16 Output Til Busy
Output_Busy:

jmp output

;next character
;pickup device number
;store it
;no error
;load status & exit

;not P or S - error

;restore request header
segment to es

;restore offset also
;return status
;set done bit and exit

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;use Output code to process

;**

. * , ERROR EXIT *
;**

unknown:
or
jmp

es: [bx] .rh_status,8003h ;set error bit and error code
done ;set done and exit

i*** ***********

. * , COMMON EXIT *
;**
load_status:

mov
mov
mov

cx,cs:rh_seg
es,cx
cx,cs:rh_ofs

;restore request header
segment to es

;restore offset also

173

----~~~---~-~- .. --------------~--

Writing MS-DOS Device Drivers, Second Edition

Listing 5·14: (cont.)

xchg bx,cx ;switch them
mov es: [bx] .rh~status,ax ;return status
mov es: [bx] .rh8~count,cx ;return output count
jmp done ;set done bit and exit

busy: or es: [bx] .rh~status,0200h ;set busy bit

done: or es: [bx] .rh~status,OlOOh ;set done

pop si ;restore all registers
pop di
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret ; return to DOS

.** ,

. * , END OF PROGRAM *

.** ,

;this procedure is called from the Initialization command and
;is executed only once. We tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
int llh ; equipment check
push ax ;save for parallel calculation
mov cL9 ; shift count
shr aX,cl ;get serial ports
and al,7 ;keep 3 right bits
add al,30h ;make it an ASCII number
mov msglc,al;store it
pop ax ;restore for parallel calculation
mov cL14 ;shift count
shr aX,cl ;get parallel ports
and aL3 ; keep 2 right bits
add aL30h ;make it an ASCII number
mov msglb,al;store it
lea dx,msgl ;message to be displayed
mov ah,9 ;display
int 21h ;DOS call
ret ;return to caller

initial endp

174

A Printer Device Driver

Listing 5-14: (cont.)

msgl db 'The Waite Group Printer Driver' ,0dh,Oah,
db , supporting' ,0dh,Oah,' , ,

msglb db '0 parallel printers' ,0dh,Oah,' , ,
msglc db ' ° serial printers' ,0dh,Oah, '$'

printer endp ;end of printer procedure
cseg ends ; end of cseg segment

end begin ;end of program

Using the Printer Device Driver
The printer device driver normally will access the printer attached to the first
parallel adapter interface when it is first booted. When you wish to use another
printer, use the 10CTL program again to change the printer selection.

Summary
In this chapter, we have built a printer device driver that takes advantage ofthe
PC's ability to support up to five printers. Additional device driver commands,
such as 10CTL Input and 10CTL Output, have been explored. In addition, we
have also provided a quick overview of the powerful I/O Control commands from
both the program's viewpoint and the printer device driver's viewpoint. Some of
the differences between DOS versions 2.0 and 3.0 and higher that affect device
drivers have also been discussed. The printer device driver in this chapter has
more features than are available with the standard DOS device drivers. In the
next chapter, we will continue this idea and build an even more powerful clock
device driver.

Questions
1. Are there practical reasons for using printers on parallel ports rather

than on serial ports?

2. Why does the printer device driver support only two serial printers?

3. Can you put printer initialization code into the printer device driver?

175

Writing MS-DOS Device Drivers, Second Edition

176

4. In the section "Command 8-0utput," the discussion on status checking
indicated that one program using BIOS interrupts to the printer can
interfere with another program using the printer device driver. How is
this possible? I thought DOS could only execute one program at a time.

5. What other functions can be added to 110 Control processing?

6. Why does the 10CTL program ask for adapter type first, rather than for
10CTL Read or Write?

Answers may be found in appendix F.

Chapter 6

A Clock Device
Driver

The ClockiCalenda.rOhip

The Clock Device Driver Functions

Overview of PCOlocks
and Tirning Signals

ProgrammingtheMM58167A
Clock Chip

Where Is the Glock?

Resident Programs

Using the Timer Interrupt
..... forTimeDi$plays

I
II

.-... - .. -.----------~----

A Clock Device Driver

I n this chapter, we will build a clock device driver. This driver will be used
to set the system time and date automatically. The driver will also display the time
continually on the PC's screen. The standard clock driver that is built into DOS can
program a standard clock; our driver will replace it.

Unlike the device drivers of chapters 3 and 4, which used standard PC
hardware, the clock device driver will require nonstandard add-on hardware--a
clock/calendar chip. You may already have this chip on a multifunction card that
also provides additional memory, a parallel and/or a serial port, and perhaps a
modem.

The clock driver will contain code to determine where the address of the clock
chip is on the PC bus. The driver will also illustrate how the time and date is retrieved
from the clock chip to set the DOS time and date. Finally, to keep the time on screen
continuously, we will add Terminate but Stay Resident code to the driver.

The Clock/Calendar Chip
The clock device driver is based on the National Semiconductor clock/calendar chip
MM58167A. This chip is present on many multifunction cards made by third-party
manufacturers, such as AST Research.

When the PC is turned off, the MM58167A chip maintains the time and date
by drawing power from a battery. The clock device driver will read the chip for the
time and date, display it on the screen, and write a new time and date to the chip
when requested. Although the clock device driver in this chapter will be written to
program the MM58167 A, it can be changed easily to suit other types of clock chips.

The Clock Device Driver Functions
The clock device driver will replace the standard DOS clock device driver. Whenever
you boot the PC, DOS will request the time and date via the standard clock device

179

Writing MS-DOS Device Drivers, Second Edition

driver, which is normally set to midnight of January 1,1980. Thus, when using
the standard clock driver, you will need to set the time and date through the
TIME and DATE commands.

The clock device driver in this chapter will read the MM58167 A chip upon
a Read command from DOS. The Read command is requested only once of the
driver, during the boot phase. Whenever you use the TIME and DATE commands
to set the time and date, DOS will send a Write command to the clock device
driver. This Write command signals the driver to set the MM58167A chip with
the time and date passed by DOS.

When DOS sends a Read command, the clock device driver will read the time
and date stored in the MM58167A clock chip and return it to DOS, which stores
it in a special location. Whenever the time and date is set by the user, DOS sends
a write command to the clock device driver, which causes the new time to be
written into the MM58167A clock chip.

In addition to normal clock and calendar functions, we will build into the
clock device driver the ability to display the time on the screen. This is accom
plished through a feature of DOS that allows programs to "terminate but stay
resident." These programs are loaded into memory like ordinary programs, but
when they have finished, they do not exit and are not removed from memory.
Instead, they reside in memory and can perform a function on demand regardless
of what other programs may be running. For example, a key press, a timer
interrupt, or a call to a special interrupt may activate the resident program. This
ability to perform a function on demand is used in the clock device driver to
display the time on the screen.

Another feature we will build into the clock device driver is the ability to
find the hardware address of the clock calendar chip. Normally when clock
calendars are available as options on a PC bus card, they can be set to several
addresses using tiny DIP switches. This prevents conflicts if another device
already uses a certain address. Because most clock calendars have this select
able-address feature, we will build the clock device driver so that it can address
the correct clock chip ports. To do so, the driver searches through typical clock
chip ports, storing the address of a valid port determined through testing, and
writing the code to reference this port. In effect, the software is matched to the
hardware settings. Without this feature, the clock device driver software would
have to be modified each time the hardware address changes.

Overview of PC Clocks and Timing Signals

180

There are literally dozens of clocks within the software and hardware of the PC.
You will need to understand the function of these clocks in order to write arid use
the clock device driver.

A Clock Device Driver

The most basic of all clocks is the system clock, which is a simple circuit that
generates a 14.31818-MHz frequency. This frequency is used to control the color
video adapter. It is divided by 3 to generate a 4.772727 -MHz frequency that drives
the Intel 8088 microprocessor, and the frequency that drives the 8088 is divided
by 4 (producing 1.1931817 MHz) and fed to the 8253-5 timer chip. The PC uses
the timer chip to perform a variety of functions, such as memory refresh and
generating a timer interrupt. Every 64K cycles, the 8253-5 timer chip, running
at 1.19 MHz, will generate a hardware interrupt to interrupt 8h at a rate of 18.2
times per second. Thus, the basic clock for DOS is through interrupt 8h and occurs
18.2 times per second. As you will see shortly, this is important to software clock
functions. Figure 6-1 ties all of these clocks together.

o
14.318 MHz
Crystal

2.38 MHz
divided
by 2

1.19 MHz

14.318 MHz
~------------~~

8253-5
Timer

8284A

4.77 MHz 8088

SYSTEM
BUS

generates an
INTERRUPT (Bh)
1B.2times
per second

Figure 6·1: The major hardware clocks within the PC. We will need
the timer interrupt that is generated from the 8253·5 timer chip 18.2
times per second.

181

Writing MS-DOS Device Drivers, Second Edition

The Timer Interrupt
The timer interrupt, 8h, is important to the clock functions within the PC. It is
generated 18.2 times per second by the 8253-5 timer chip and is used by DOS to
update a time-of-day counter in low memory (locations 46Ch through 46Fh). This
counter contains the number of timer ticks since midnight of the starting day.
The value ofthis counter will range from 0 (start of day) to 1,573,040 (1800BOh),
which represents midnight of the starting day. DOS uses this time-of-day counter
to calculate the hours, minutes, and seconds that you use through programs.

The time-of-day counter can be read or set from a program by using the lAh
interrupt. However, it is not recommended that you use this interrupt, because
once you use interrupt lA, you must process the rollover from one day to another.
Doing so is unnecessary and a lot of work.

In addition to setting the time-of-day counter, interrupt 8h will generate'
an interrupt (IC) 18.2 times per second. Many programs take advantage of
this interrupt to perform some time-dependent function. We will use this partic
ular interrupt to refresh the time on our screens.

Figure 6-2 shows the relationships among the 8h, lAh, and lCh interrupts.

Programming the MM58167A Clock Chip

182

The MM58167 A clock/calendar chip contains counters for the various parts ofthe
time and date. Each counter is referenced by an offset relative to the port address
that has been selected by DIP switches for the clock chip. In table 6-1, you can
see that the counter for 1/10,000ths of a second is assigned to the first port address
(0) ofthe clock chip. The second port address (1) is used for tenths and hundredths
of a second, the third port is used for seconds, and so on.

RAM locations on the chip are used to store certain information for which
the chip does not provide a counter (see ports 8-F). For example, port 9 can be
used to store the previous month, and port ah can be used to store the year. This
feature of the MM58167A chip will be used by our driver to retain information.
The battery that is part of the clock chip circuit will maintain the contents ofthe
RAM after the PC is turned off. This allows the clock device driver to determine
whether the month or year has changed since you last used the PC.

We program the MM58167A chip using IN and OUT instructions like this:

mov dX,340h
add dX,2
in al,dx

;base address of our clock board is 340h
;+2 to access the seconds counter
;get the seconds count from the chip

1/18.2 seconds-I t
JlSULfL

18.2
times
per second

•

INTERRUPT 1 Ch

A Clock Device Driver

INTERRUPT 8h

Low

46E High

....-________ Time of Day Counter

18.2 times
per second

INTERRUPT 1Ah Read

Set

Figure 6-2: The 8h, lCh, and lAh interrupts. The lCh interrupt is used
in the clock device driver to display the time on the screen. 8h updates
the time of day counter and lA can be used by a user program to read
or set the time of day counter.

Binary Coded Decimal Values
Unfortunately, you cannot just read or set the MM58167 A chip using binary data.
The chip has been designed for use with Binary Coded Decimal (BCD) values.

BCD numbers are simply binary numbers that occupy four bits and contain
a value from 0 to 9. An 8-bit byte contains two such BCD numbers: the left four-bit
BCD number represents the ten's value and the right four bits represent the
one's value.

The MM58167A chip used BCD values in the counters that keep track of
time. You decide whether the RAM locations will use BCD or plain binary values.

183

Writing MS-DOS Device Drivers, Second Edition

Base Port
Address Description

+0 1/10,000ths counter
+1 1/100 + 1/10 counter
+2 Seconds counter
+3 Minutes counter
+4 Hours counter
+5 Day-of-week counter
+6 Day-of-month counter
+7 Month counter
+8 1/1O,000ths RAM
+9 1/100 + 1/10ths RAM
+a Seconds RAM
+b Minutes RAM
+c Hours RAM
+d Day-of-week RAM
+e Day-of-month RAM
+f Months RAM
+10 Interrupt status register
+11 Interrupt control register
+12 Counter reset
+13 RAM reset
+14 Status bit
+15 GO command
+16 Standby interrupt
+1f Test mode

Table 6-1: The port addresses for the counters and RAM locations
within the MM58167A clock/calendar chip.

For the clock device driver, some procedures must be developed in order to
convert BCD values to hex and vice versa. The point here is that when you read
or write the chip counters you have to be careful of the data that you use.

Where Is the Clock?

184

As mentioned earlier, the clock device driver will contain a procedure that will
determine the port location ofthe clock chip automatically. It is important to be
careful in doing this, because arbitrary poking around in port addresses may
disturb other devices.

A Clock Device Driver

The wrong way to check for a clock chip would be to write values to all the
ports, and to wait for one of the ports to be updated because it is a clock port.
Doing so would destroy valuable control-status information for most of the devices
that are part of the PC.

The best method for finding the clock is to read some commonly assigned
port addresses at which the clock chip usually resides, checking for a valid
number in one of them. This method takes advantage of the fact that when an
IN instruction is used, ports that do not have associated hardware will return
FEh or FCh. For example, if the counter for seconds is checked, the values
returned cannot be higher than 59. If they are, then there are two assurances
that the procedure for determining the clock chip address is correct.

Resident Programs
In order for the clock device driver to display the time on the screen, the
Terminate but Stay Resident programming feature is used. Programs that use
this feature do so by issuing a DOS interrupt (21h) for the 3lh service. This allows
the program to continue residing in memory after it has passed control back to
DOS. Because it is in memory it can be activated at any time, without the delay
normally associated with reading a program from a disk.

Once they have given control back to DOS, resident programs never get
control again unless the program itself takes over an interrupt. Taking over an
interrupt involves changing the address of a procedure to which an interrupt
points. Instead of pointing to some original procedure, the interrupt would point
to the resident program. Thus, whenever a particular interrupt occurs, the
interrupt would point to the new procedure within the resident program, thus
causing the resident program to become active. Figure 6-3 shows the use of an
interrupt to pass control to a resident program.

The timer interrupt (1Ch) is one of the most popular interrupts to steal for
a resident program. This is because this interrupt always occurs at a rate of 18.2
times per second. Therefore, your resident program has a chance to be activated
often. For example, the DOS PRINT utility is actually a resident program, and
it uses the timer interrupt to print characters in the print buffer by passing them
to the BIOS routines.

Using the Timer Interrupt for Time Displays
As we have said, a feature of the clock device driver is the ability to display the
time on the screen. You can, of course, write a resident program just to do this
function, but you will have the unnecessary nuisance of two programs to write
and maintain.

185

~I'
F
tl

I
Writing MS-DOS Device Drivers, Second Edition

186

70h Offset

72h Segment

70h Offset

72h Segment

BEFORE taking over
INTERRUPT 1 Ch

INTERRUPT 1 C
points to
original
procedure

AFTER taking over
INTERRUPT 1 Ch

INTERRUPT 1 C points to
resident program after
taking over the 1 C
INTERRUPT

Figure 6·3: The Ie interrupt containing the segment and offset
address that points to the resident program.

The basic task in displaying the time on the screen is simply writing to the
screen whenever an interrupt 1Ch passes control to our clock device driver, which
occurs 18.2 times a second. Our driver reads the MM58167 A chip for the time
stored, converts the BCD values it reads to ASCII values, and then writes those
values to the screen.

As you have seen, writing to the screen is normally performed through BIOS
or DOS function calls. The clock device driver will not use this technique, because
DOS function calls are not permitted in device drivers except when processing
the Initialization command.

Most video controllers are designed using the technique of memory-mapping
in which the video controller and the PC share a part of memory. Memory
mapping is the term that defines a memory address that, when referenced,
actually "maps" or accesses a controller's memory. In this case, a chunk of the
PC's main memory is used to store the data that is displayed on the screen. Any

A Clock Device Driver

access of this memory by a program is also an access of the screen's contents.
Writes to this area are immediately shown on the screen.

To display the time and date on the screen, two basic functions are performed
by the clock device driver. First, it changes the data read from the clock to a format
needed to write to the display. This is done during the initialization phase ofthe
clock device driver and before any writing to the screen. Second, whenever the
1Ch interrupt passes control to the clock device driver (18.2 times per second),
the time is read from the chip and displayed on the screen.

Understanding the Clock Device Driver Program
The clock device driver will be presented in the same style used in chapters 3, 4,
and 5. Because it has only the Read and Write commands to process, the clock
device driver is simple compared to the previous console and printer drivers.
However, more code is used for these two commands than was present in previous
device drivers, because more processing ofthe clock chip is required. The resident
portion of the driver also makes it more complex.

One reason this driver is more complex than others is that the clock device
driver is processing several pieces of information (hours, minutes, seconds,
month, day, and year). Drivers that process only one byte at a time, such as a
console driver, are far less complicated.

The Beginnings
In listing 6-1, you can see that the first three sections have as their basis the code
that you have seen in previous chapters. However, there are some differences.
First, the main procedure is called clock. Second, and more important, the
Assembler Directives section has several additional declarations. The first is
another segment declaration named timer. The clock device driver needs to refer
to this segment when processing the 1Ch interrupt, because control is passed to
the original timer interrupt routine.

Notice that there is an org statement that declares 1ch*4. This is how timer
is translated to the 1Ch interrupt vector. The statement 1ch*4 uses the correct
form for referencing the segment and offset address associated with a particular
interrupt. Because each interrupt location is composed of a 2-byte segment
address and a 2-byte offset address, the addresses of a particular interrupt are
calculated by simply multiplying the interrupt value by 4. The 1ch interrupt
defined as timer will point to a procedure (clkint) within the clock device driver;
control will pass to it 18.2 times per second to allow the time to be displayed on
the screen.

187

Writing MS-DOS Device Drivers, Second Edition

Listing 6·1: The beginning of the Clock Device Driver. Note that there is an
additional segment definition for timer, which is used to take over interrupt
lC so that the timer interrupt passes control to the clock device driver.

page
title

60,132
A Clock Device Driver

;**

· * This is a Clock Device Driver * ,
· * Author: Robert S. Lai * ,
· * Date: 27 November 1991 * ,
.* Purpose: A Clock Driver based on the MM58167A clock chip * ,
;**

.** ,
; * ASSEMBLER DIRECTIVES *
.** ,

timer segment at Oh ;int lc segment
org lch*4

timer ofs label word -
timer _seg label word
timer ends

cseg segment para public 'code'
clock proc far

assume cs:cseg, es:cseg, ds:cseg

;structures for the Device Driver

dosdate struc
dos _day dw
dos_min db
dos hr db -
dos hun db -
dos sec db -
dosdate ends

; structures

rh
rh_len
rh_unit

rh_cmd
rh_status
rh_resl
rh_res2
rh
rhO
rhO rh

188

?
?
?
?
?

struc
db
db

db
dw
dd
dd
ends
struc
db

;DOS DATE structure
;days since 1/1/80
;minutes
;hours
;hundredths of a second
; seconds
;end of struc

; request header
? ;len of packet
? ;unit code

; (block devices
? ;device driver

only)
command

? ;returned by device driver
? ;reserved
? ; reserved

;Initialization (command 0)
size rh dup (?) ;fixed portion

A Clock Device Driver

Listing 6-1: (cont.)

rhO nunits db ? ; number of units
; (block devices only)

rhO - brk - ofs dw ? ;offset address for break
rhO - brk_seg dw ? ; segment address for break
rhO _bpb_tbo dw ? ;offset address of pointer

;to BPB array
rhO_bpb_tbs dw ? ; segment address of pointer

;to BPB array
rhO drv_ ltr db ? ;first available drive

; (DOS 3+) (block only)
rhO ends

rh4 struc ; INPUT (command 4)
rh4 rh db size rh dup(?) ;fixed portion
rh4 _media db ? ;media descriptor from DPB
rh4 - buf ofs dw ? ;offset address of

;data transfer area
rh4 - buf _seg dw ? ; segment address of

;data transfer area
rh4 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh4 start dw ? ;start sector number
; (block only)

rh4 ends

rh8 struc ; OUTPUT (command 8)
rh8 - rh db size rh dup(?) ;fixed portion
rh8 _media db ? ;media descriptor from DPB
rh8 - buf ofs dw ? ;offset address of

;data transfer area
rh8 - buf _seg dw ? ; segment address of

;data transfer area
rh8 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh8 start dw ? ;start sector number
; (block only)

rh8 ends

rh9 struc ; OUTPUT_VERIFY (command 9)
rh9 rh db size rh dup(?) ; fixed portion
rh9 _media db ? ;media descriptor from DPB
rh9 - buf - ofs dw ? ;offset address of

;data transfer area
rh9 - buf _seg dw ? ; segment address of

;data transfer area
rh9 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

189

I

Writing MS-DOS Device Drivers, Second Edition

Listin 6-1: (cont.)

rh9 start
rh9

dw
ends

? ;start sector number (block only)

;commands that do not have unique portions to the request header:
INPUT_STATUS (command 6)
INPUT_FLUSH (command 7)
OUTPUT STATUS (command 10)
OUTPUT_FLUSH (command 11)
OPEN (command 13)
CLOSE (command 14)
REMOVABLE (command 15)

.** ,

. * , MAIN PROCEDURE CODE *

.** ,

begin:

190

A new struc, dosdate, has been added right after the cseg and clock declara
tions. This struc is used to access the time and date from within the clock device
driver. The Read command will use this structure to set the clock chip time and
date. A Write command sent to the clock device driver will read the clock chip
and use the struc to pass the time and date back to DOS.

Notice, however, that the struc does not define the date in the normal form
of month, day, and year. Instead, the date is defined as the number of days since
January 1, 1980. This is the format that DOS uses to pass the date to and from
clock drivers. Most of the code in the clock device driver is devoted to conversions
from one format to the other.

Some strucs have been removed. The only ones we use are for commands 0
(Initialization), 4 (Input), 8 (Output), and 9 (Output With Verify). Recall that the
Input command is used to pass data from the device back to DOS, and the Output
command is used to pass data from DOS to the device.

The Device Header
The Device Header is shown in listing 6-2. For the clock device driver, the bits in
the Attribute word are set to indicate a character device (bit 15). Bit (3) is set to
indicate to DOS that the device is a clock. The device name is set to CLOCK$.

A Clock Device Driver

Listing 6-2: The Device Header section. Note that the Attribute and the
device name are the only entries that change in the various device drivers in
this book.

i*** ***********
. * , DEVICE HEADER REQUIRED BY DOS *
;**

next - dev dd -1 ino other drivers following
attribute dw 8008h ;char,clock device
strategy dw dev_strategy ; Strategy routine address
interrupt dw dev_interrupt ; Interrupt routine address
dev_name db 'CLOCKS ; name of our Clock driver

Work Space for the Clock Device Driver
A number of variables are defined in the Work Space to support the clock device
driver. Listing 6-3 shows the variables declared.

The familiar variables rh_ofs and rh_seg are first. Recall that you will use
these variables to store the ES and BX registers that point to the address at which
the Request Header is stored in DOS's memory space.

The next variable is a table suitably named table, which is used to store the
number of days for each month of the year, one day (28, 30, or 31) per byte. The
driver will use this table to calculate two items: the number of days since the
beginning of the year, given the month and day, and the month and day, given
the number of days since the beginning ofthe year.

The word variable clock-port is used to store the 16-bit port address of the
clock chip in the procedure that finds the clock chip hardware address.

The label oldlc and the two word variables oldlc_ofs and oldlc_seg are used
to reference the offset and segment address ofthe original timer interrupt (ICh)
procedure. This address is used to store the address of the original procedure, so
that the driver can call that procedure before passing control to the code that
displays the time on the screen. This allows the lCh interrupt to be used by
others.

The balance ofthe Work Space variables are used when the time is displayed
on the screen. The mode variable is used to store a flag that indicates whether
the screen is controlled by a monochrome or a color adapter. This flag displays
the type of monitor adapter used in the initialization code.

191

Writing MS-DOS Device Drivers, Second Edition

Listing 6-3: The Work Space variables allocated for the clock device driver.
Note that the order of the variables is not important.

;**

; * WORK SPACE FOR CLOCK DEVICE DRIVER *
;**

rh_ofs dw
rh_seg dw

table label
jan db
feb db
mar db
apr db
may db
jun db
jul db
aug db
sep db
oct db
nov db
decm db

dosdays
clock_port
old1c
old1c_ofs
old1c _seg
refresh
mode
scn_pos
scn_port

scn_seg

time

?
?

byte
31
28
31
30
31
30
31
31
30
31
30
31

dw
dw
label
dw
dw
dw
db
dw
dw

dw

dw

;offset address of the request header
;segment address of the request header

o
o
dword
?
?
o
o
144
03dah

;DOS date (days since 1/1/80)
;clock chip base address
;old timer interrupt 1C
; offset
; segment
;screen update indicator
;color = 0, mono = 1
;column 72 (includes attribute)
;video status port for color
;03bah for mono

Ob800h ;video memory address for color
;ObOOOh for mono

8 dup (003ah) ;time display

The variable scnyos is the number of the column in which the time is
displayed. The actual number (144) reflects the fact that each column is composed
of two bytes, the first containing the data to be displayed and the second
containing the screen attribute for the data byte. Screen attributes are used to
color or highlight the data byte. The time display starts at column 72 of the
top line.

192

A Clock Device Driver

The variable scnyort is used to store the video adapter status port for the
particular type of monitor adapter. This status port is used to determine when
to write a byte to the screen.

The variable scn_seg is used to store the segment address of the screen
memory for the particular type of monitor adapter being used. The default is the
color adapter (the color and monochrome adapters have different segment ad
dresses).

As we said earlier, rather than use BIOS calls to display the time, we chose
to use a write to the screen memory segment. Because the screen memory is
mapped to the screen display, when you write to the screen memory segment the
data will appear on the screen.

Lastly, the variable time is used to store the time you wish to display on the
screen in a suitable format. Eight words are declared. Each word will contain a
data byte and a byte for the screen attribute. Eight data bytes will be displayed:
two bytes for the hours, two for the minutes, two for the seconds, and two for the
colons in between.

The STRATEGY and INTERRUPT Procedures
The STRATEGY and INTERRUPT procedures for the clock device driver have
not changed from those for the printer driver; they will remain unchanged for the
rest ofthe device drivers in this book. The code for these procedures is contained
in listing 6-4.

Local Procedures for the Clock Device Driver
As shown in listing 6-5, there are five local procedures for the clock device driver:
hex2bcd, bcd2hex, cvt2asc, display, and clkint. All ofthese are near procedures,
because they are defined and referenced from within the same segment.

The first two procedures, hex2bcd and bcd2hex, are used to convert a
hexadecimal number to Binary Coded Decimal (BCD) format and vice versa. (The
MM58167A chip uses BCD values, and the clock device driver needs to convert
them to hex for calculations and then back to BCD for setting the clock chip')

The third procedure, cvt2asc, is used by the fourth procedure display.
Procedure cvt2asc ("convert to ASCII") is used to input a value from a particular
clock chip port and to convert the two BCD digits into two ASCII display bytes
for the screen.

The display procedure is used to build a string that contains the time the
clock device driver displays on the screen. The variable time is used to store the
hours, minutes, and seconds, which are separated by colons. Each piece of data

193

Writing MS-DOS Device Drivers, Second Edition

Listing 6-4: The code for the STRATEGY and INTERRUPT procedures.

i*** ***********

. * , THE STRATEGY PROCEDURE *

.** ,

deY_strategy: mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;save the segment address
;save the offset address
;return to DOS

.** ,

. * , THE INTERRUPT PROCEDURE *

.** ,

;device interrupt handler - 2nd call from DOS

dey_interrupt:

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

al,es: [bx] .rh_cmd
al, 1
di, cmdtab
ah,O
di,ax
word ptr [di]

;get request header command
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw
dw

194

byte
INITIALIZATION
MEDIA_CHECK

;* = char devices only
ini tiali zation

; media check (block only)

A Clock Device Driver

Listing 6-4: (cont.)

dw GET_BPB
dw IOCTL_INPUT
dw INPUT
dw ND_INPUT
dw INPUT_STATUS
dw INPUT FLUSH
dw OUTPUT
dw OUTPUT_VERIFY
dw OUTPUT_STATUS
dw OUTPUT FLUSH
dw IOCTL_OUT
dw OPEN
dw CLOSE
dw REMOVABLE
dw OUTPUT BUSY

build bpb
ioctl in
input (read)

;*nondestructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
device open
device close
removable media
output til busy

Listing 6-5: The five local procedures for the clock device driver.

;**

. * , YOUR LOCAL PROCEDURES *
j*** ***********

hex2bcd proc near ; convert AL from Hex to BCD
;uses ax,cx

push cx
mov cl, 10 ;divide by 10
mov ah,O ;setup for divide
div cl ;get 10's digits
mov cl, 4 ; shift count
shl al,cl ;place 10's in left half
or al,ah ;add back l's
pop cx
ret ;return to caller

hex2bcd endp

bcd2hex proc near ; convert AL from BCD to hex
;uses ax,cx

push cx
mov ah,O ; setup for divide
push ax ;save for l's processing
mov cl, 16 ;divide for left half of byte
div cl ; to get 10's digits
mov ah,O ;have 10's digits
mov cl, 10 ; convert to base 10
mul cl ; by multiplying by 10

195

Writing MS-DOS Device Drivers, Second Edition

Listing 6·5: (cont.)

pop
and
add
pop
ret

bcd2hex endp

cvt2asc proc
in
mov
mov
div
or
ret

cvt2asc endp

display proc
push
push
push
push
mov
add
call
lea
mov
mov
dec
call
mov
mov
dec
call
mov
mov
pop
pop
pop
pop
ret

display endp

cx
cL Ofh
al,cl
cx

;process l's digits
;keep l's only
;add l's to 10's

;return to caller

near ;gets chip data & converts to ASCII
;get (BCD) chip data al,dx

ah,O
cl,10h
cl
aX,3030h

near
ax
bx
cx
dx

;clear high
;separate 10's digits
;al=10's, ah=l's
;convert to ascii
;return to caller

;calculates time for display
;save registers used

dx,cs:clock_port;get chip's base address
dX,4 ;base+4 = hours
cvt2asc ;get hours and convert
bX,cs:time ;move to Time string
cs: [bx],al ;tens of hrs
cs: [bx+2],ah ;hrs
dx ;base+3 = minutes
cvt2asc ;get minutes and convert
cs: [bx+6],al ;tens of minutes
cs: [bx+8],ah ;ones
dx ;base+2 = seconds
cvt2asc ;get seconds and convert
cs: [bx+12] ,al ;tens of seconds
cs: [bx+14] ,ah ;ones
dx ;restore saved registers
cx
bx
ax

;return to caller

;Clock Driver's replacement code for interrupt 1Ch

clkint proc
push
push
push
push

196

near
ax
cx
di
si

;new timer interrupt code
;save registers used

Listing 6-5: (cont.)

push
pushf
call
mov
inc
cmp
jb
call
mov

notime: mov
mov
mov
lea
mov
mov
mov
cli

hlow:

hhigh:

in
test
jnz
mov

in
test
jz
mov
inc
inc
loop
sti
pop

es

cs:oldlc
cX,cs:refresh
cx
cX,lS
notime
display
cX,O
cs:refresh,cx
dx, c s : scn_port
di,cs:scn_pos
si,cs:time
CX,cs:scn_seg
es,cx
cX,lO

al,dx
al,l
hlow
ah, cs: lsi]

al,dx
al,l
hhigh
es: [di] ,ah
di
si
hlow

es
pop si
pop di
pop cx
pop
iret

clkint endp

ax

;must push flags
;call old timer int
;get refresh counter
; increment
;lSth time?
;no need to recalc time
;yes we do
;reset counter
;store it
;screen status port
;screen display position
;time string source
;screen segment
; in es
;move 10 bytes
;clear interrupts
;wait for horizontal scan
;get video port status
;wait for low = 1
;back
;get byte to be displayed

A Clock Device Driver

;status must go hi after 10
; before a screen write
;wait til high = 0
;1 byte at anyone time
;increment screen position
;increment source position
;loop thru all bytes
;restore interrupts
;restore all saved registers

;interrupt return

is read from the clock chip by calling the cvt2asc procedure, which also converts
the data to ASCII.

The procedure clkint is not . called as part of the processing that the clock
device driver performs. It is the procedure that is called when the timer interrupt
e1Ch) is invoked. Every 55 milliseconds, or 18.2 times per second, control is passed
to the timer interrupt. It contains the address of clkint, which displays the time

197

,.1

Writing MS-DOS Device Drivers, Second Edition

198

string on the screen. See figure 6-4 for a summary of how the 1Ch interrupt
passes control to the clock device driver to display the time.

In clkint, the first check is to see whether this is the 18th time the timer
interrupt has passed control to the driver. The number 18 is used as an approx
imate countdown for determining when to reread the time from the clock chip. If
it is the 18th time, the display procedure is called. Then the fun begins: displaying
the time on the screen.

Because ofthe design ofthe color monitor adapter, you cannot simply write
the time to the screen. This would cause the screen to flicker, or snow. Snow is
caused by interference with the hardware display functions. When the color
monitor adapter performs line scans in displaying information on the screen, the
screen memory it is reading from needs to be dedicated to the operation. When
your program writes directly to this same screen memory, you are disturbing this
parallel hardware operation. To avoid this problem, you should write to screen
memory only when the color adapter status port indicates that a horizontal
retrace is being performed. This is the time when the screen's electron beam has
reached the right edge and is turned off, returning to the left side and the next
line down on the screen. You can write to the screen memory during this
horizontal retrace without causing snow by interference.

18.2 times per second

Offset

Segment

1Ch
TIMER
INTERRUPT

CLOCK
DRIVER

CLKINT: t:r
CLKINT
reads time
from clock chip
and displays
on the screen

Figure 6-4 The lCh interrupt passes control to the clock driver.

A Clock Device Driver

In listing 6-5 above, you will notice the code at labels hlow and hhigh. This
code handles the actual screen writes. Writes are allowed when the video port
status bit 0 is high. Even when it is high, however, there may not be enough time
to perform a write, because we are selecting a random point during the retrace.
To handle this situation, two loops are provided: the first loop, the label hlow,
catches the first high status (a retrace), and the second loop, at hhigh, waits out
the low status. When this second loop finishes, the start of a new high status
occurs. If the write begins at the start of this high status, there will be enough
time to write out a single character without interference.

Remember that this snow-protection code is necessary only for writing text
characters using the color monitor adapter. If you are in color graphics mode or
if you are using the monochrome monitor adapter, such code is unnecessary;
instead, you can use the horizontal-retrace time to update screen memory without
harm. Because the clock device driver is written for both color and monochrome
adapters, the special code for snow-free display will remain.

Our driver writes to the screen memory by specifying the screen memory
segment address (scn_seg) and the offset address (scnyos) at which you want the
time displayed. Because the screen is memory-mapped, these addresses specify
a screen celL Interrupts are turned off during the two wait loops and turned back
on after a byte is moved to the screen memory. This on/offpattern is used because
there is enough time to display only one byte (one character or attribute) during
the horizontal retrace period. Thus, during this time we do not want any
interference from interrupts. Simply put, while we are trying not to interfere with
the color adapter, we do not want to be interfered with!

So far you have seen how the clkint procedure takes control when a timer
interrupt occurs. The last section in this chapter discusses how to actually divert
the timer interrupt to run our procedure.

DOS Command Processing
Of the 17 allowable commands that DOS passes to the device drivers, only four
commands are processed by the clock device driver. The Initialization command
is always one ofthem. In addition, the clock device driver will process the Input,
Output, and Output With Verify commands. Let's see how these routines work.

Command O-Initialization The Initialization command will, once again,
call the procedure initial. However, the driver will need to check the results from
the call to initial, because the code that determines the address ofthe clock chip
may not find such an address. If no address is found, you cannot allow DOS to
load this device driver. If the variable clockyort contains a 0, the driver tells
DOS not to use this device driver by simply placing the address of the clock device
driver as the next available address. Thus, by setting the Break Address to the

199

Writing MS-DOS Device Drivers, Second Edition

200

beginning ofthis driver, DOS overwrites the clock device driver's memory space
upon return to DOS. In effect, the clock device driver has not been loaded at all.
However, if the clockyort contains a value other than 0, indicating that a clock
chip address has been found, the Break Address is set to the memory address of
initial and the driver returns to DOS. The code for the Initialization command is
shown in listing 6-6.

Commands Not Applicable to the Clock Device Driver The Media Check,
Get BIOS Parameter Block, and IOCTL Input commands are not applicable to
the Clock Device Driver, because the device is not a disk device. Here is the code
for these sections:

;command 1
Media Check:

jmp

;command 2
Get_BPB:

jmp

;command 3
IOCTL_Input:

jmp

done ;set done bit and exit

done ;set done bit and exit

unknown ;set error bit/code and exit

Command 4-Input The Input command is sent to the clock device driver by
DOS whenever DOS needs to read the time and date. This usually occurs from
the command level when the TIME and DATE commands are issued by a user or
from within programs that request DOS services.

The basic function of the Input command is to read the clock chip and pass
the time and date back to DOS, which then stores it. As you saw earlier, the clock
chip's data, which is in BCD format, needs to be converted to hex.

At label Input in listing 6-7, there is code that points to the data in which
DOS expects the time and date to be returned. The registers ES and BX are used
to point to the beginning of the data-transfer area. The struc dosdate is used to
index into the table when the time is returned. The time is retrieved from the
clock chip by reading into al the respective time counters. The hundredths of a
second, the seconds, the minutes, and the hours are read from the clock chip and
converted from BCD to hex values.

At the label incheck there is a check to see whether the month has changed
since the clock chip was last read during a similar Read command. This check is

A Clock Device Driver

Listing 6-6: The code for the Initialization command. If the procedure initial
does not find a valid clock chip port address, DOS is allowed to overwrite the
clock device driver. This is accomplished by setting the Break Address to the
beginning of the device driver .

. ** ,

. * , DOS COMMAND PROCESSING *
i*** ***********
;command ° Initialization
Initialization:

call initial ;display message
;determine whether we found a clock chip

cmp cs:clock-port,° ;is chip base = o?
jne initl ;no - there is a chip

;no chip found - we must abort loading this driver
mov ax,O ;set address to beginning
jmp init2 ;store break offset

initl: lea aX,initial ;set Break Addr. at initial
init2: moves: [bx] .rhO_brk_ofs, ax ;store offset address

moves: [bx] .rhO_brk_seg,cs ;store segment address
jmp done ;set done status and exit

performed because you may have used the PC past midnight of the last day of a
month or you may not have used the PC since the end of the last month. The RAM
memory location on the clock chip is used to store the month in which you last
accessed the clock chip. This allows the driver to check the clock chip months
counter against the last time the driver read the clock chip. If the driver finds
that the clock chip months-counter has been incremented, further calculations
may determine that it is a new year. Ifthe clock chip had an automatic counter
for years, all this work would not be required.

Next, the driver reads the months-counter and checks the number returned
against the number that was last stored in the months RAM location. If the
months-counter has been incremented by 1, the driver stores the new count in
the months RAM location. However, if the months-counter is less than the last
value stored in the months RAM location, the driver assumes that the month has
changed from December 12 to January 1; the years count is then incremented
and stored in the years RAM location, and the new month is stored in the months'
RAM location.

Once the driver has the correct count of the months and years, it can
calculate the number of days since January 1, 1980, up to the beginning of the

201

,I

'I

Writing MS-DOS Device Drivers, Second Edition

Listing 6-7: The code for the Input command. The clock chip time and date is
read and these values are returned to DOS. The date needs to be converted
from month, day, and year into days since 111180.

;command 4 Input Read clock chip and return to DOS
Input:
;Read and convert clock chip date and time to DOS date format

mov dX,es: [bx] .rh4_buf_ofs ;get dos date data area
mov aX,es: [bx] .rh4_buf_seg
mov eS,ax
mov bX,dx

;ES:BX points to the DOS date buffer
push es
push bx

;first read the clock chip for time
mov
inc
in
call
mov
inc
in
call
mov
inc
in
call
mov
inc
in
call
mov

;now convert

dX,cs:clock_port
dx
al,dx
bcd2hex
es: [bx] .dos_hun,al
dx
al,dx
bcd2hex
es: [bx] .dos_sec,al
dx
al,dx
bcd2hex
es: [bx] .dos_min,al
dx
al,dx
bcd2hex
es: [bx] . dos_hr, al

chip date (BCD format) to

;set up es
;set up bx

;save segment for later
;save offset for later

;get the clock base address
;base+1
;get hundredths
;convert data
;store hundredths
;base+2
;get seconds
;convert data
;store seconds
;base+3
;get minutes
;convert data
;store minutes
;base+4
;get hours
;convert data
;store hours

DOS date format (hex)

;first check to see if month (and therefore year) has changed
;by comparing the months COUNTER against the month RAM location
incheck:

mov
add
in
call
mov
add

dx,cs:clock_port
dX,7
al,dx
bcd2hex
b1,a1
dX,2

in al,dx
call bcd2hex
cmp al,bl
jg newyear
jl updatemonth
jmp prev_days

;December rolled over to January
newyear:

202

;get base clock address
;base+7
;get chip's month counter
;convert to hex
;save in bl
;base+9
;get RAM version of month
;convert to hex
;is RAM & counter same?
;last month> current (12>1)
;last month < current
;same month

- update the Year count in RAM

A Clock Device Driver

Listing 6·7: (cont.)

inc dx
in al,dx
inc al
out dx,al
dec dx

;now update month in RAM
updatemonth:

mov
call
out

al,bl
hex2bcd
dX,al

;determine days in previous years
prev_days:

inc
in
mov
push
mov
mul
xchg
mov
pop
div

dx
al,dx
ah,O
ax
bX,365
bx
bX,ax
cl,4
ax
cl

mov cl,ah
;BX has total days and cl has leap year

mov ah,O
add bX,ax

;base+10
;get year (stored in RAM)
;add 1 year
;store in RAM year
;make it base9

;set current month
;convert for clock chip
;update month RAM

;base+10 (RAM)
;get years since 1980
;set up for multiply
;save for leap year processing
;days per year
;times years - AX has days
;save days in BX
;leap divisor
;get year count again
;divide for leap years elapsed
;save leap year indicator
indicator
;set up for add
;add leap days to total

;we have days since
; the extra days in
curr_days:

1/1/80 for all previous years including
leap years past

push bx
mov dx,cs:clock-port
add dX,7
in al,dx
call bcd2hex
mov ah,O
push cs
pop es
lea di,cs:table
mov cx,O
xchg ax,cx
push cx
mov bh,O

cvt2days:
mov bl,es: [di]
inc di
add aX,bx
loop cvt2days

;save total days past
;get base clock chip address
;base+7
;get month counter
;convert to hex
;set up for index
;days per month table
; addressed by ES
; and DI
;clear current year day count
;month loop count in cx
;save for leap year check
;clear hi-order

;days in this month
;increment for next month
;add to total days
;until month count exhausted

203

Writing MS-DOS Device Drivers, Second Edition

Listing 6-7: (cont.)

pop cx ;restore months
pop bx ;total days past
add aX,bx ;add to days in current year
cmp cl,3 ;past March?
jl leapyr ;no
inc ax ;yes - add 1 for 2/29

leapyr: pop bx ;restore DOS date offset

204

pop es ;restore DOS date segment
mov es: [bx] . dos_day, ax ;return days since 1/1/80
mov ax,O ;status ok
mov bX,6 ; count of 6
jmp load_status ;restore es:bx exit

current year. This calculation, which is performed at the label prev _days, involves
multiplying the number of years by 365 and adding one day for each of the
previous years that were leap years.

Finally, at the label curr _days, the days in the current year are added to the
total. If the date is past March 1 and the current year is a leap year, one day is

. added to the total days since January 1, 1980. This number is returned to DOS
through the struc that points to the data transfer area. The clock device driver
then returns control to DOS. The code for the Input command is shown in
listing 6-7.

Other Input Commands The clock device driver does not need to process the
other Input commands, Nondestructive Input, Input Status, and Input Flush.
These commands are not applicable, so the driver jumps to the BUSY and DONE
routines to exit. The code for these commands are shown as follows:

;command 5
ND Input:

jmp

;command 6
Input Status:

jmp

;command 7
Input Flush:

jmp

ND Input

busy ;set busy bit and exit

Input Status

done ;set done bit and exit

Input Flush

done ;set done bit and exit

A Clock Device Driver

Command 8-0utput The Output command is used to set the clock chip time
and date. DOS passes to the clock device driver the time and days since January
1, 1980. The driver converts these values to time, month, day, and year. In listing
6-8, you will see each of the calculations needed to perform this conversion.

Listing 6-8: The code for the Output command, which sets the time and date
on the MM58167A clock chip.

;command 8
Output:

Output Set the Clock Chip Time and Date

;Convert the date in DOS date format to clock chip format
;for writing to the clock chip

;let ES:BX point to beginning of the DOS date
mov si,es: [bx] .rh8_buf_ofs ;get data offset
mov aX,es: [bx] .rh8_buf_seg ;get data segment
mov ds,ax ito DS for (DS:SI use)
push si ; save offset
push ds ; save segment
push cs
pop es ;ES points to here
lea di,cs:dosdays ;destination address
mov cx,2 ;move count = 2
cld ;direction is forward
rep movsb ; from DOS to us
push cs ;restore DS
pop ds ; by using CS

;update clock chip with time from DOS date data
outchip:

pop
pop
mov
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out

es
bx
dx,cs:clock-port
dx
al,es: [bx] .dos_hun
hex2bcd
dx,al
dx
al,es: [bx] . dos_sec
hex2bcd
dX,al
dx
al,es: [bx] . dos_min
hex2bcd
dX,al
dx
al,es: [bx] .dos_hr
hex2bcd
dx,al

;restore DOS date segment
;restore DOS date offset
;get clock port
;base+l
;get hundredths
;convert for clock use
;send to clock chip
;base+2
;get seconds
;convert for clock use
;send to clock chip
;base+3
;get minutes
;convert for clock use
;send to clock chip
;base+4
;get hours
;convert for clock use
;send to clock chip

205

Writing MS-DOS Device Drivers, Second Edition

Listing 6-8: (cont.)

;chip loaded with time - now calc chip date from DOS date
out-years:

out1:

mov
cmp
je
mov
cmp
jle
sub
inc

ax,cs:dosdays
ax,O
out8
bx,O
aX,365
out2
aX,365
bx

jmp outl

;get days since 1/1/80
;date not set?
;skip everything
;BX = year count
;day count within a year?
;yes
;no - subtract 365
;increment year count
;continue until w/i 1 yr

;BX has years since 1980 - now adjust for leap years
out2: push ax ;save leftover days

out3:

out4:

mov aX,bx
mov cl,4
div c1
mov cl,ah
mov ah,O
inc ax
mov dX,ax
pop ax
sub aX,dx
cmp
jg
add
dec
push

ax,O
out3
aX,365
bx
bx

cmp cl,O
jne out5
cmp ax, 59
je out4
jg out5
inc ax
jmp out5
mov
mov

cx,2
aX,29

;AX now has years
;divisor for leap years
;alleaps, ah=remainder
;remainder=O is leap itself
;set up for subtract
;add 1 to leap year count
;DX has 1 day/leap yr passed
;restore days remaining
;subtract 1 day for each leap yr
;are we negative?
;no - we are ok
;add back 365 days
;subtract 1 year
;save year count
;leap year if 0
;not a leap year
;Feb 29?
;yes - set and exit
;past Feb 29
;before - reverse subtraction

;Feb
; 29

jmp out7 ;exit
;AX has days left in current year - now find month and day
out5: mov cX,l ;month count

lea di,cs:table ;days per month
mov bh,O ;clear hi-order

out6: mov bl, es: [di 1 ; get days in each month
inc di ;increment to next month
cmp aX,bx ;less than last day?
jle out7 ;yes (in current month)
sub aX,bx ;no subtract days in month
inc ex ;increment month count
jmp out6 ;continue until month found

206

A Clock Device Driver

Listing 6-8: (cont.)

;AX has days, ex has month - now get years since 1980
out7: pop bx ;restore year count

jmp out9 ;go load chip
;no date set (special case)
out8: mov bx,O ;1980

mov cX,l
mov aX,l

;BX years since 1980, ex = month, AX
out9: mov dx,cs:clock_port

add dx,6
push cx
call hex2bcd
out dx,al
inc dx
pop ax
call hex2bcd
out dx,al
add dx,2
out dx,al
inc dx
xchg al,b1
out dX,al
mov ax,O
mov bX,6
jmp load - status

;Jan
; 1st
days - now load clock chip
;get chip base address
;base+6
;Hex2bcd destroys cx
;convert for chip use
;set days counter
;base+7
;restore month count
;convert for chip use
;set months counter
;base+9
;set months RAM
;base+10
;move years to al
;set years since 1980 RAM
;status ok
;count of 6
;set status word & exit

At the label Output, the registers ES and BX are set up to point to the
data-transfer area in which DOS has passed the time and date. The struc dosdate
is used to reference each piece of data. First, the value for the number of days
since January 1, 1980, is moved to the local variable dosdays. This variable is
needed later on, when the driver converts its value to month, day, and year.

At the label outchip, the time is retrieved. These values are stored in the
clock chip after a hexadecimal-to-BCD conversion is performed for each of the
values.

At the label out-years, the number of years since 1980 is calculated, given
the days since 111180. The loop at outl simply subtracts 365 from the total days
and increments the BX register for the count of years elapsed. Upon completion,
the driver has the number of years elapsed since 1980 and the count of the days
in the current year.

At the label out2, the driver calculates the number of extra days resulting
from the number of leap years passed. The number of these extra days is

207

Writing MS-DOS Device Drivers, Second Edition

208

subtracted from the days left in the current year. If the number of extra days is
greater than the number of days in the current year, the driver needs to adjust
the days-left count and the number of years since 1980.

At the label out3, the driver tests for the number of days left in the current
year against the leap year indicator. If the current year is a leap year, the driver
needs to determine whether the current date is before, at, or after February 29.
If the current date is before February 29, the driver needs to add back the one
day that was subtracted earlier when it was determined that the current year is
a leap year. If the current date is February 29, the month and day is set
accordingly.

At the label out5, the driver uses the days left in the current year and
calculates the month and day by using the days-per-month table named table.
The code loops, subtracting each time, the number of days per month for each
month in table from the days left in current year, until the remainder is less than
the number of days in the next month in the table. Finally we have the month,
day, and years since 1980.

At the labelout9, the date is converted from hex to BCD and the clock chip
is loaded with these values.

The Rest of the Commands Listing 6-9 contains the code for the rest of the
driver commands. Output With Verify (command 9) is processed by the same code
as Output, so the driver jumps to the Output procedure. The commands Output
Status (10), Output Flush (11), VO Control Output (12), Device Open (13), Device
Close (14), Removable Media (15), and Output Til Busy (16) are not applicable,
so the clock device driver jumps to the appropriate routine, sets DONE or ERROR,
and exits.

The Error Exit Section
The Error Exit section for the clock device driver is the same as that for the device
drivers ofthe previous chapters. Control is passed to the Error Exit routine from
the commands Removable Media and Output Til Busy if the clock device driver
receives these commands. The ERROR bit of the Request Header status word is
set. The error code is set to 3, which indicates an Unknown command. Here is the
code for the Error Exit section:

;**

; * ERROR EXIT *
;**
unknown:

or es: [bx) .rh_status,8003h ;set error bit and error code
jmp done ;set done and exit

A Clock Device Driver

Listing 6-9: The code for the commands following the Output command (8).

;command 9 Output_Verify
Output_Verify:

jmp output

;command 10 Output_Status
Output_Status:

jmp

;command 11
Output_Flush:

jmp

;command 12
IOCTL_Out:

jmp

done

done

unknown

;command 13 Open
Open:

jmp

;command 14
Close:

jmp

;command 15
Removable:

jmp

;command 16
Output_Busy:

jmp

done

Close

done

Removable

unknown

Output Til Busy

unknown

The Common Exit Section

;same as output

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;set error bit/code and exit

The clock device driver passes control from the Input and Output commands to
the Common Exit routine at the label load_status. The status in the AX register
and the count in the BX register are set before the program jumps to this section.

209

,-• . -

Writing MS-DOS Device Drivers, Second Edition

Listing 6·10: The code for the Common Exit processing. The ES and BX
registers are restored, the status and count are saved,and the driver exits.

i*** ***********
; * COMMON EXIT *
i*** ***********
load_status:

busy:

done:

210

mov
mov
mov
xchg
mov
mov
jmp

or

or

pop
pop
pop
pop
pop
pop
pop
pop
ret

cx,cs:rh_seg
es,cx
cx,cs:rh_ofs
bx,cx
es: [bx] .rh_status, ax
es: [bx] .rhS_count,cx
done

;restore request header
; segment to es
;restore offset also
;switch them
;return status
;return output count
;set done bit and exit

es: [bxl .rh_status,0200h ;set busy bit

es: [bxl .rh_status,OlOOh ;set done

si
di
dx
cx
bx
ax
es
ds

;restore all registers

;return to DOS

The status word is set to 0 to indicate that there are no errors, and the count is
always set to 6.

Next, the driver restores the ES and BX registers, which point to the Request
Header; the status and count are stored before the clock device driver exits. In
addition, commands that jump to BUSY are processed here. The Common Exit
code is shown in listing 6-10.

The End of Program
The code contained in the initial procedure, which is called from the Initialization
command, is placed at the end of the device driver because it is used only once.
AE you have seen in previous examples, the driver allows DOS to overwrite the
memory used by this procedure by setting the Break Address to point to this
memory space. The amount -of memory for other DOS code is thus increased.

In listing 6-11, you will see that the first function that the initial procedure
performs is to find the MM58167A clock chip hardware port address. The driver

A Clock Device Driver

Listing 6·11: The End of Program section. This section is used only once; DOS
is permitted to overwrite this code after it has been executed. The code finds
the base port address of the clock chip, determines the type of video adapter
being used, sets up the timer interrupt, and displays a console message in
two parts.

;**
. * , END OF PROGRAM *
.** ,
;this procedure is called from the Initialization command and
;is executed only once. We tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near
lea dX,cs:msg1
mov ah,9
int 21h

;First find clock chip base address
lea si,cs:clock_table
mov

find1: mov
add
in
test
jz
add
loop

;no port found
lea
mov
int
ret

cX,3
dx, cs: lsi]
dx,2
al,dx
al,SOh
find2
si,2
find1

- don't continue with
dX,cs:msg4
ah,9
21h

;Clock Chip port found
find2: mov dX,3

sub dx,cx
shl dX,l
lea di,cs:clock_table
add di,dx
mov dx, cs: [di]
mov
lea
call

cs:clock-port,dx
di,cs:msg2a
hex2asc

;display message on console
;part 1 of message
;display on console
;DOS call

;get address of table
;three addressess
;get 1st address
;base+2 = seconds
;get seconds
;high order bit set?
;no - not empty port
;next address
;search thru clock table

setup
;no port found
;display on console
;DOS call
;exit

;convert back to port
;port position
;double it
;address of chip table
;word index
;get port
;save it
;convert to ASCII
;for later display

;Determine type
mov

of Video Display
ah,Ofh

adapter in system

int
cmp
jne
mov
mov
mov

10h
al,7
calc
cs:mode,l
cs:scn-port,3bah
cs:scn_seg,ObOOOh

;get video mode
;Video BIOS call
;mono?
;no - assume color
; mono 1
;rnono video port
;rnono screen address

211

Writing MS-DOS Device Drivers, Second Edition

Listing 6·11: (cont.)

;Calculate time string
calc: call display ;setup initial time

;clear interrupts
;new directive

exit2:
exit3:

eli
assume
mov
mov
mov
mov
mov
mov
lea
mov
mov
assume
sti
lea
mov
int
cmp
jne
lea
jmp
lea
mov
int
mov
mov
mov
ret

initial endp

msgl
msg2
msg2a
msg3a
msg3b
msg4

db
db
db
db
db
db

hex2asc proc

;requires:

;uses:

212

es:timer
ax,timer
eS,ax
ax,es:timer_ofs
cs:oldlc_ofs,ax
aX,es:timer_seg
cs:oldlc_seg,ax
ax,clkint

.es:timer_ofs,ax
es:timer_seg,cs
es:cseg

dx,cs:msg2
ah,9
21h
cs:mode,l
exit2
dx,cs:msg3a
exit3
dx,cs:msg3b
ah,9
21h
bx,cs:rh_ofs
ax,cs:rh_seg
eS,ax

;get segment addr
;set ES
;get old timer offset
;save it
;get old timer segment
;save it
;get new offset
;set new offset
;also segment
;restore directive
;restore interrupts
;part 2 of message
;display on console
;DOS call
;mono?
;no
;yes
;go print mono message
;color
;display on console
;DOS call
;restore BX
;restore segment
; to ES
;return to caller

'The Waite Group Clock Device Driver',Odh,Oah, '$'
, using device address '
'OOOOH',Odh,Oah, '$'
, with monochrome adapter' ,Odh,Oah,'$'
, with color adapter',Odh,Oah, '$'
, No Clock Found - Driver Aborted' ,Odh,Oah,'$'

label
dw

byte
0240h

dw 02cOh
dw 0340h

;table of possible chip addresses

dx binary number
di address of ASCII string

ax - for character conversion

A Clock Device Driver

Listing 6-11: (cont.)

cx - loop control
;returns:

hI:

h2:
h3:

push
push
mov
push
mov
rol
mov
and
cmp
jge
add
jmp
add
mov
inc
pop
loop
pop
pop

nothing
cx ;save cx
ax ;save ax
cx,4 ;number of hex digits
cx ;save cx inside this loop
cl,4 ;shift count (bits/hex digit)
dX,cl ;rotate left I hex digit
al,dl ;move hex digit to al
al,Ofh ;mask off desired hex digit
al,Oah ;is it above 9h?
h2 ;yes
al,30h ;numeric hex digit
h3 ; skip
al,37h ;alpha hex digit
cs: [dij,al ;store hex digit in string
di ;next string address
cx ;get saved loop count
hI ;loop start
ax ;restore ax
cx

ret
hex2asc endp

;restore cx
;return to caller

clock
cseg

endp
ends
end begin

;end of clock procedure
;end of cseg segment
;end of program

uses a table named clock_table that contains the typical values of the base port
addresses used for the MM58167A chip.

The clock device driver uses a simple algorithm to find the clock chip port
address. Because the counter for seconds is at location 2 relative to the base port
address, this counter is read using the base chip ports from the clock_table. The
driver also assumes that the MM58167A chip will return a BCD value in the
range from 0 to 59. Therefore, if a clock chip exists at the base port address, any
seconds values that are read in will not have the high-order bit (8) set, and the
values will be less than 80h. If the driver finds that the seconds value does not
have this high-order bit set, it assumes that a clock chip has been found at the
base port address.

The base port address is saved in the variable clock-port, which will be used
by the rest of the clock device driver to determine how to read from and write to
the MM58167A clock chip. If a base port address is not found, then the driver

213

Writing MS-DOS Device Drivers, Second Edition

returns to the Initialization command, whose code will check for a valid clock-port
and will abort the loading ofthe clock device driver.

Once the clock chip base port address is found, the driver continues by
determining the type of video display adapter that is present in the PC. A BIOS
interrupt (10h) is issued and the value returned in al is checked. Based on the
type of display adapter, the driver will set the screen memory segment address
(BOOOh for monochrome or B800h for color), the screen status port address (3BAh
for monochrome or 3DAh for color), and the variable mode to indicate if the driver
found a monochrome adapter (1) or a color adapter (0).

At the label calc, the driver calls the procedure display to initialize the time
display that will appear on the screen. The timer interrupt (1Ch) is changed to
point to our clkint procedure. This is done by saving the segment (timer _seg) and
offset (timer _ofs) address of the original timer interrupt in the variables oldic_seg
and oldic_ofs. Then the driver sets the timer interrupt segment and offset
addresses to the segment and offset address of the clkint procedure.

Note: A good programming practice is to turn interrupts offwhen swapping
interrupt addresses. An interrupt cannot be allowed to disturb you while you are
changing interrupt addresses. More importantly, you do not want a timer inter
rupt to occur when you are changing the timer interrupt itself. Unfortunately,
because DOS restricts the use of DOS services to those numbered 1 through OCh
and 30h (in device drivers only during Initialization command processing), the
proper DOS services cannot be used. Get Interrupt Vector (35h) and Set Interrupt
Vector (25h) are the correct ways to determine and set interrupt vectors. Although
it is a good practice to turn interrupts off when you are changing interrupt
addresses, it is not the approved method. However, it is the only way you can do
so from within a device driver.

As a last note, the display ofthe console message during the driver initial
ization process is split into two parts. The first part is displayed when the initial
procedure is first executed. The second part of the message is displayed at the
label exit2 upon exit from the procedure. Splitting the display code in this way is
a good practice when there is a lot of code in the initialization procedure. If there
are any problems with this code, the second part of the console display will not
be displayed. This will alert you that there is a problem with the code.

The procedure hex2asc is used to convert the base port address of the
MM58167 A chip to ASCII for display on the console.

Building the Clock Device Driver

214

To build the clock device driver in this chapter, enter the source code ofthe driver
into a file using a word processor. Name the file clock.asm. The listing of the
entire clock device driver is shown in listing 6-12.

A Clock Device Driver

Listing 6-12: The entire listing of A Clock Device Driver.

page
title

60,132
A Clock Device Driver

i*** ***********
; * This is a Clock Device Driver *
; * Author: Robert S. Lai *
; * Date: 27 November 1991 *
; * Purpose: A Clock Driver based on the MM58167A clock chip *
i*** ***********

;**

; * ASSEMBLER DIRECTIVES *
;**

timer

timer_ofs
timer_seg
timer

cseg
clock

;structures for
dosdate struc
dos_day dw
dos_min db
dos_hr db
dos_hun db
dos_sec db
dosdate ends

; structures

rh
rh_Ien
rh_unit

rh_cmd
rh_status
rh_res1
rh_res2
rh

rhO
rhO_rh
rhO_nunits

segment at Oh ;int 1c segment
org
label
label
ends

segment
proc
assume

1ch*4
word
word

para public
far

'code'

cs:cseg, es:cseg, ds:cseg

the Device Driver
;DOS DATE structure

7 ;days since 1/1/80
7 ;minutes
7
7
7

struc
db
db

db
dw
dd
dd
ends

struc
db
db

dw

;hours
;hundredths of a second
; seconds
;end of struc

7
7

;request header
;len of packet
;unit code
; (block devices only)

7 ;device driver command
7 ;returned by device driver
7 ; reserved
7 ;reserved

;Initialization (command 0)
size rh dup (7) ; fixed portion
7 ;number of units

; (block devices only)
7 ;offset address for break

215

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

rhO_brk_seg dw ? ; segment address for break
rhO _bpb_tbo dw ? ;offset address of pointer

;to BPB array
rhO_bpb_tbs dw ? ; segment address of pointer

;to BPB array
rhO - drv_ ltr db ? ;first available drive

; (DOS 3+) (block only)
rhO ends

rh4 struc ; INPUT (command 4)
rh4 - rh db size rh dup(?) ;fixed portion
rh4 _media db ? ;media descriptor from DPB
rh4 _buf - ofs dw ? ;offset address of

;data transfer area
rh4 - buf _seg dw ? ; segment address of

;data transfer area
rh4 - count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh4 start dw ? ;start sector number
; (block only)

rh4 ends

rhB struc ; OUTPUT (command 8)
rhB - rh db size rh dup(?) ;fixed portion
rhB_media db ? ;media descriptor from DPB
rhB - buf - ofs dw ? ;offset address of

;data transfer area
rhB - buf _seg dw ? ; segment address of

;data transfer area
rhB - count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rhB - start dw ? ;start sector number
; (block only)

rhB ends

rh9 struc ; OUTPUT_VERIFY (command 9)
rh9 - rh db size rh dup(?) ;fixed portion
rh9 _media db ? ;media descriptor from DPB
rh9_buf _ofs dw ? ;offset address of

;data transfer area
rh9_buf_seg dw ? ; segment address of

;data transfer area
rh9 - count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh9_start dw ? ;start sector number (block only)
rh9 ends

216

A Clock Device Driver

Listing 6-12: (cont.)

;commands that do not have unique portions to the request header:
INPUT_STATUS (command 6)
INPUT_FLUSH (command 7)
OUTPUT_STATUS (command 10)
OUTPUT_FLUSH (command 11)
OPEN (command 13)
CLOSE (command 14)
REMOVABLE (command 15)

.** ,

. * , MAIN PROCEDURE CODE *

.** ,

begin:

i*** ***********

. * , DEVICE HEADER REQUIRED BY DOS *

.** ,

next - dev dd -1 ina other drivers following
attribute dw 8008h ;char,clock device
strategy dw dev_strategy ; Strategy routine address
interrupt dw dev_interrupt ; Interrupt routine address
dev_name db 'CLOCKS ; name of our Clock driver

i*** ***********

.* WORK SPACE FOR CLOCK DEVICE DRIVER *
;**

rh_ofs dw
rh_seg dw

table label
jan db
feb db
mar db
apr db
may db
jun db
jul db
aug db
sep db
oct db
nov db
decm db

dosdays
clock_port

?
?

byte
31
28
31
30
31
30
31
31
30
31
30
31

dw
dw

;offset address of the request header
;segment address of the request header

o
o

;D08 date (days since 1/1/80)
;clock chip base address

217

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

old1c
old1c_ofs
old1c_seg
refresh
mode
scn_pos
scn_port

time

label
dw
dw
dw
db
dw
dw

dw

dw

dword
?
?
o
o
144
03dah

;old timer interrupt 1C
; offset
; segment
;screen update indicator
;color = 0, mono = 1
;column 72 (includes attribute)
;video status port for color
;03bah for mono

Ob800h ;video memory address for color
;ObOOOh for mono

8 dup (003ah) ;time display

;**

; * THE STRATEGY PROCEDURE *
.** ,

mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;save the segment address
;save the offset address
;return to DOS

;**

; * THE INTERRUPT PROCEDURE *
i*** ***********

;device interrupt handler - 2nd call from DOS
dey_interrupt:

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY

;jump to appropriate routine to process command
mov al,es: [bx] .rh_cmd ;get request header command

call

call

rol al,l ;times 2 for index into word table
lea di,cmdtab ;function (command) table address
mov ah,O ;clear hi order
add di,ax ;add the index to start of table
jmp word ptr[di] ;jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the

218

A Clock Device Driver

Listing 6-12: (cont.)

;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

byte
INITIALIZATION
MEDIA_CHECK
GET_BPB
IOCTL_INPUT
INPUT
ND_INPUT
INPUT_STATUS
INPUT_FLUSH
OUTPUT
OUTPUT_VERIFY
OUTPUT_STATUS
OUTPUT_FLUSH
IOCTL_OUT
OPEN
CLOSE
REMOVABLE
OUTPUT_BUSY

;* = char devices only
initialization
media check (block only)
build bpb
ioctl in
input (read)

;*nondestructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
device open
device close
removable media
output til busy

.** ,
; * YOUR LOCAL PROCEDURES *
.** ,

hex2bcd proc
;uses ax,cx

push
mov
mov
div
mov
shl
or
pop
ret

hex2bcd endp

bcd2hex proc
;uses ax,cx

push
mov
push
mov
div
mov
mov
mul

near

cx
cl,10
ah,O
cl
cl, 4
al,cl
al,ah
cx

near

cx
ah,O
ax
cl,16
cl
ah,O
cl,10
cl

;convert AL from Hex to BCD

;divide by 10
;setup for divide
;get 10's digits
;shift count
;place 10's in left half
;add back l's

;return to caller

;convert AL from BCD to hex

;setup for divide
;save for l's processing
;divide for left half of byte
; to get 10's digits
;have 10's digits
;convert to base 10
; by multiplying by 10

219

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

pop
and
add
pop
ret

bcd2hex endp

cvt2asc proc
in
mov
mov
div
or
ret

cvt2asc endp

display proc
push
push
push
push
mov
add
call
lea
mov
mov
dec
call
mov
mov
dec
call
mov
mov
pop
pop
pop
pop
ret

display endp

cx
cl, 0 fh
al,cl
cx

;process l's digits
;keep l's only
;add l's to 10's

;return to caller

near ;gets chip data & converts to ASCII
al,dx ;get (BCD) chip data
ah,O ;clear high
cl,10h ;separate 10's digits
cl ;al=10's, ah=l's
aX,3030h ; convert to ascii

;return to caller

near ;calculates time for display
ax ;save registers used
bx
cx
dx
dX,cs:clock_port;get chip's base address
dx,4 ;base+4 = hours
cvt2asc ;get hours and convert
bx, cs: time ;move to Time string
cs: [bx] ,al ;tens of hrs
cs: [bx+2] , ah ;hrs
dx ;base+3 = minutes
cvt2asc ;get minutes and convert
cs: [bx+6] ,al ;tens of minutes
cs: [bx+8] ,ah ;ones
dx ;base+2 = seconds
cvt2asc ;get seconds and convert
cs: [bx+12] ,al ;tens of seconds
cs: [bx+14] ,ah ;ones
dx ;restore saved registers
cx
bx
ax

;return to caller

;Clock Driver's replacement code for interrupt 1Ch

clkint proc
push
push
push
push
push

220

near
ax
cx
di
si
es

;new timer interrupt code
;save registers used

A Clock Device Driver

Listing 6-12: (cont.)

pushf
call cs:oldlc
mov cX,cs:refresh
inc cx
cmp cx,18
jb notime
call display
mov cX,O

notime: mov cs:refresh,cx
mov dx,cs:scn-port
mov di,cs:scn-pos
lea si,cs:time
mov CX,cs:scn_seg
mov es,cx
mov cx,10
eli

hlow:
in al,dx
test al,l
jnz hlow
mov ah,cs: [sil

hhigh:
in al,dx
test al,l
jz hhigh
mov es: [dil ,ah
inc di
inc si
loop hlow
sti
pop es
pop si
pop di
pop cx
pop ax
iret

elkint endp

;must push flags
;call old timer int
;get refresh counter
; increment
;18th time?
;no need to recalc time
;yes we do
;reset counter
;store it
;screen status port
;screen display position
;time string source
;screen segment
; in es
;move 10 bytes
;clear interrupts
;wait for horizontal scan
;get video port status
;wait for low = 1
;back
;get byte to be displayed

;status must go hi after 10
; before a screen write
;wait til high = 0
;1 byte at anyone time
;increment screen position
;increment source position
;loop thru all bytes
;restore interrupts
;restore all saved registers

;interrupt return

i*** ***********

; * DOS COMMAND PROCESSING *
i*** ***********
;command 0 Initialization
Initialization:

call initial ;display message
;determine whether we found a clock chip

cmp cs:clock-port,0 ;is chip base = O?
jne initl ;no - there is a chip

;no chip found - we must abort loading this driver
mov ax,O ;set address to beginning

221

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

initl:
init2:

jmp
lea
mov
mov
jmp

;command 1
Media_Check:

jmp

;command 2
Get_BPB:

jmp

;command 3
IOCTL_Input:

init2
ax, initial
es: [bxl .rhO_brk_ofs, ax
es: [bxl .rhO_brk_seg,cs
done

done

done

;store break offset
;set Break Addr. at initial
;store offset address
;store segment address
;set done status and exit

;set done bit and exit

;set done bit and exit

jmp unknown ;set error bit/code and exit

;command 4
Input:

Input Read clock chip and return to DOS

;Read and convert clock chip date and time to DOS date format

;ES:BX

;first

222

mov dx,es: [bxl .rh4_buf_ofs ;get dos date data area
mov aX,es: [bxl .rh4_buf_seg
mov eS,ax

bx,dx
to the DOS date buffer

mov
points

push
push

read the
mov
inc
in
call
mov
inc
in
call
mov
inc
in
call
mov
inc
in
call
mov

es
bx
clock chip for time
dx,cs:clock-port
dx
al,dx
bcd2hex
es: [bxl .dos_hun,al
dx
al,dx
bcd2hex
es: [bxl .dos_sec,al
dx
al,dx
bcd2hex
es: [bxl .dos_min,al
dx
al,dx
bcd2hex
es: [bxl .dos_hr,al

;set up es
;set up bx

;save segment for later
;save offset for later

;get the clock base address
;base+l
;get hundredths
;convert data
;store hundredths
;base+2
;get seconds
;convert data
;store seconds
;base+3
;get minutes
;convert data
;store minutes
;base+4
;get hours
;convert data
;store hours

A Clock Device Driver

Listing 6-12: (cont.)

;now convert chip date (BCD format) to DOS date format (hex)

;first check to see if month (and therefore year) has changed
;by comparing the months COUNTER against the month RAM location
incheck:

mov dx,cs:clock_port
add dX,7
in aLdx
call bcd2hex
mov bl,al
add dX,2
in al, dx
call bcd2hex
cmp al,bl
jg newyear
jl updatemonth
jmp prev_days

;get base clock address
;base+7
;get chip's month counter
;convert to hex
;save in bl
;base+9
;get RAM version of month
;convert to hex
;is RAM & counter same?
;last month> current (12>1)
;last month < current
;same month

;December rolled over to January - update the Year count in RAM
newyear:

inc dx
in al,dx
inc al
out dX,al
dec dx

;now update month in RAM
updatemonth:

mov
call
out

; determine days
prev_days:

inc
in
mov
push
mov
mul
xchg
mov
pop
div
mov

al,bl
hex2bcd
dX,al

in previous

dx
al,dx
ah,O
ax
bX,365
bx
bX,ax
cl,4
ax
cl
cl,ah

years

;BX has total
mov
add

days and cl has leap year
ah,O
bX,ax

;base+l0
;get year (stored in RAM)
;add 1 year
;store in RAM year
;make it base+9

;set current month
;convert for clock chip
;update month RAM

;base+l0 (RAM)
;get years since 1980
;set up for multiply
;save for leap year processing
;days per year
;times years - AX has days
; save days in BX
;leap divisor
;get year count again
;divide for leap years elapsed
;save leap year indicator
indicator
;set up for add
;add leap days to total

;we have days since 1/1/80 for all previous years including
; the extra days in leap years past
curr_days:

223

Writing MS-DOS Device Drivers, Second Edition

Listing 6·12: (cont.)

push
mov
add
in
ca11
mov
push
pop
lea
mov
xchg
push
mov

cvt2days:
mov
inc
add
loop
pop
pop
add
cmp
jl
inc

leapyr: pop
pop
mov
mov
mov
jmp

;command 5
NO_Input:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

;command 8
Output:

224

bx
dx,cs:Glock-port
dx,7
al,dx
bcd2hex
ah,O
cs
es
di,cs:table
cx,O
ax,cx
cx
bh,O

bl,es: [diJ
di
ax,bx
cvt2days
cx
bx
ax,bx
cl,3
leapyr
ax
bx
es
es: [bxJ.dos_day,ax
ax,O
bx,6
load_status

busy

done

;save total days past
;get base clock chip address
;base+7
;get month counter
;convert to hex
;set up for index
;days per month table
; addressed by ES
; and DI
;clear current year day count
;month loop count in cx
;save for leap year check
;clear hi-order

;days in this month
;increment for next month
;add to total days
;until month count exhausted
;restore months
;total days past
;add to days in current year
;past March?
;no
;yes - add 1 for 2/29
;restore DOS date offset
;restore DOS date segment
;return days since 1/1/80
;status ok
;count of 6
;restore es:bx exit

;set busy bit and exit

;set done bit and exit

done ;set done bit and exit

Output Set the Clock Chip Time and Date

A Clock Device Driver

Listing 6-12: (cont.)

;Convert the date in DOS date format to clock chip format
; for writing to the clock chip

;let ES:BX point to beginning of the DOS date
mov si,es: [bx] .rh8_buf_ofs ;get data offset
mov aX,es: [bx] .rh8_buf_seg ;get data segment
mov ds,ax ;to DS for (DS:SI use)
push si ;save offset
push ds ;save segment
push cs
pop es ;ES points to here
lea di,cs:dosdays ;destination address
mov cx,2 ;move count = 2
cld ;direction is forward
rep movsb ; from DOS to us
push cs ;restore DS
pop ds ; by using CS

;update clock chip with time from DOS date data
outchip:

pop
pop
mov
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out

es
bx
dx,cs:clock-port
dx

;restore DOS date segment
;restore DOS date offset
;get clock port

al,es: [bx] .dos_hun
hex2bcd
dX,al
dx
al,es: [bx] .dos_sec
hex2bcd
dX,al
dx
al,es: [bx] .dos_min
hex2bcd
dX,al
dx
al,es: [bx] .dos_hr
hex2bcd
dX,al

;base+l
;get hundredths
;convert for clock use
;send to clock chip
;base+2
;get seconds
;convert for clock use
;send to clock chip
;base+3
;get minutes
;convert for clock use
;send to clock chip
;base+4
;get hours
;convert for clock use
;send to clock chip

;chip loaded with time - now calc chip date from DOS date
out""years:

mov ax, cs: dosdays ;get days since 1/1/80
cmp ax,O ;date not set?
je out8 ;skip everything
mov bx,O ;BX = year count

outl: cmp aX,365 ; day count within a year?
jle out2 ;yes
sub aX,365 ;no - subtract 365
inc bx ;increment year count
jmp outl ;continue until w/i 1 yr

225

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

jBX has years since 1980 - now adjust for leap years
out2: push ax jsave leftover days

out3:

mov aX,bx
mov cl,4
div cl
mov cl,ah
mov ah,O
inc ax
mov dx,ax
pop ax
sub ax,dx
cmp
jg
add
dec
push

ax,O
out3
aX,365
bx
bx

cmp cl,O
jne out5
cmp aX,59
je out4
jg out5
inc ax
jmp out5

jAX now has years
jdivisor for leap years
jal=leaps, ah=remainder
jremainder=O is leap itself
jset up for subtract
jadd 1 to leap year count
jDX has 1 day/leap yr passed
jrestore days remaining
jsubtract 1 day for each leap yr
jare we negative?
jno - we are ok
jadd back 365 days
jsubtract 1 year
jsave year count
jleap year if 0
jnot a leap year
jFeb 29?
jyes - set and exit
jpast Feb 29
jbefore - reverse subtraction

out4: mov cx,2 jFeb
mov aX,29 j 29
jmp out? jexit

jAX has days left in current year - now find month and day
out5: mov cX,l jmonth count

lea di,cs:table jdays per month
mov bh,O jclear hi-order

out6: mov bl,es: [diJ jget days in each month
inc di jincrement to next month
cmp aX,bx jless than last day?
jle out? jyes (in current month)
sub aX,bx jno subtract days in month
inc cx jincrement month count
jmp out6 jcontinue until month found

jAX has days, ex has month - now get years since 1980
out?: pop bx jrestore year count

jmp out9 jgo load chip
jno date set (special case)
out8: mov bx,O j1980

mov cX,l
mov aX,l

jBX = years since 1980, ex = month, AX
out9: mov dx,cs:clock-port

226

add dX,6
push
call

cx
hex2bcd

jJan
jist

= days - now load clock chip
jget chip base address
jbase+6
jHex2bcd destroys cx
jconvert for chip use

Listing 6-12: (cont.)

out dX,al
inc dx
pop ax
call hex2bcd
out dX,al
add dX,2
out dX,al
inc dx
xchg al,bl
out dx,al
mov aX,Q
mov cx,6
jmp load - status

; command 9 Output_Verify
Output_Verify:

jmp output

; command 10 Output_Status
Output_ Status:

jmp done

; command 11 Output_ Flush
Output_ Flush:

jmp done

; command 12 IOCTL - Out
IOCTL_Out:

jmp unknown

; command 13 Open
Open:

jmp done

; command 14 Close
Close:

jmp done

; command 15 Removable
Removable:

jmp unknown

A Clock Device Driver

;set days counter
;base+7
;restore month count
;convert for chip use
;set months counter
;base+9
;set months RAM
;base+10
;move years to al
;set years since 1980 RAM
;status ok
;count of 6
;set status word & exit

;same as output

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

227

,!

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

;command 16
Output_Busy:

Output Til Busy

jmp unknown ;set error bit/code and exit

;**

; * ERROR EXIT *
.** ,
unknown:

or
jmp

es: [bxl .rh_status,S003h ;set error bit and error code
done ;set done and exit

;**

; * COMMON EXIT *
.** ,
load_status:

mov
mov
mov
xchg
mov
mov
jmp

busy: or

done: or

pop
pop
pop
pop
pop
pop
pop
pop
ret

cx,cs:rh_seg
es,cx
cx,cs:rh_ofs
bx,cx
es: [bxl . rh_status, ax
es: [bxl .rhS_count,cx
done

;restore request header
segment to es

;restore offset also
;switch them
;return status
;return output count
;set done bit and exit

es: [bxl .rh_status,0200h ;set busy bit

es: [bxl .rh_status,OlOOh ;set done

si
di
dx
cx
bx
ax
es
ds

;restore all registers

;return to DOS

:**

; * END OF PROGRAM *
;**

;this procedure is called from the Initialization command and
;is executed only once. We tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc
lea
mov
int

228

near
dX,cs:msgl
ah,9
21h

;display message on console
;part 1 of message
;display on console
;DOS call

Listing 6-12: (cont.)

;First

find1:

find
lea
mov
mov
add
in
test
jz
add

clock chip base address
si,cs:clock_table
cX,3
dx, cs: lsi]
dx,2
al,dx
al,BOh
find2
si, 2

loop find1
;no port found - don't continue with

lea dx,cs:msg4
mov ah,9
int 21h
ret

;Clock Chip port found
find2: mov dx,3

sub dx,cx
shl dX,l
lea di,cs:clock_table
add di,dx
mov dx,cs: [di]
mov
lea
call

cs:clock-port,dx
di,cs:msg2a
hex2asc

A Clock Device Driver

;get address of table
;three addressess
;get 1st address
;base+2 = seconds
;get seconds
;high order bit set?
;no - not empty port
;next address
;search thru clock table

setup
;no port found
;display on console
;DOS call
;exit

;convert back to port #
;port position
;double it
;address of chip table
;word index
;get port
;save it
;convert to ASCII
;for later display

;Determine type
mov

of Video Display
ah,Ofh

adapter in system

int
cmp
jne
mov
mov
mov

;Calculate time
calc: call

cli

10h
al,7
calc
cs:mode,l
cs:scn-port,3bah
cs:scn_seg,ObOOOh
string
display

assume es:timer
mov ax,timer
mov eS,ax
mov ax,es:timer_ofs
mov cs:old1c_ofs,ax
mov aX,es:timer_seg
mov cs:old1c_seg,ax
lea aX,clkint
mov
mov
assume
sti
lea
mov

es:timer_ofs,ax
es:timer_seg,cs
es:cseg

dX,cs:msg2
ah,9

;get video mode
;Video BIOS call
;mono?
;no - assume color
;mono = 1
;mono video port
;mono screen address

;setup initial time
;clear interrupts
;new directive
;get segment addr
;set ES
;get old timer offset
;save it
;get old timer segment
;save it
;get new offset
;set new offset
;also segment
;restore directive
;restore interrupts
;part 2 of message
;display on console

229

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

int
cmp
jne
lea
jmp

exit2: lea
exit3: mov

int
mov
mov
mov
ret

initial endp
msgl db
msg2 db
msg2a db
msg3a db
msg3b db
msg4 db

clock_table

hex2asc proc

;requires:

;uses:

;returns:

hI:

h2:
h3:

230

push
push
mov
push
mov
rol
mov
and
cmp
jge
add
jmp
add
mov

21h
cs:mode,l
exit2
dx, cs :msg3a
exit 3
dx,cs:msg3b
ah,9
21h
bx, cs: rh_ofs
ax,cs:rh_seg
eS,ax

;DOS call
;mono?
;no
;yes
;go print mono message
;color
;display on console
;DOS call
;restore BX
;restore segment
; to ES
;return to caller

'The Waite Group Clock Device Driver',Odh,Oah, '$'
, using device address '
'OOOOH' ,Odh, Oah, '$'
, with monochrome adapter' ,Odh,Oah,'$'
, with color adapter',Odh,Oah, '$'
, No Clock Found - Driver Aborted' ,Odh,Oah, '$'

label
dw

byte
0240h

dw 02cOh
dw 0340h

;table of possible chip addresses

dx binary number
di address of ASCII string

ax - for character conversion
cx - loop control

nothing
cx ;save cx
ax ;save ax
cx,4 ;number of hex digits
cx ;saye cx inside this loop
cl,4 ;shift count (bits/hex digit)
dx,cl ;rotate left 1 hex digit
al,dl ;move hex digit to al
al,Ofh ;mask off desired hex digit
al,Oah ;is it above 9h?
h2 ;yes
al,30h ;numeric hex digit
h3 ;skip
al,37h ;alpha hex digit
cs: [di),al ;store hex digit in string

A Clock Device Driver

Listing 6-12: (cont.)

inc di ;next string address
pop cx ;get saved loop count
loop hI ;loop start
pop ax ;restore ax
pop cx ;restore cx
ret ;return to caller

hex2asc endp

clock
cseg

endp ;end of clock procedure
ends ;end of cseg segment
end begin ;end of program

After you have entered the clock device driver into a file, you will need to
assemble, link, and convert it to .COM format. In addition, you will need a
CONFIG.SYS file that specifies the clock device driver as a user-installable
device driver.

The Clock Device Driver in Action
When you first boot DOS with the clock device driver, you will get a strange date.
This is because the driver has not set the time and date on the MM58167 A clock
chip. Once you have used the TIME and DATE commands to set the proper time
and date, you will see the correct time and date on the next boot of DOS. Notice
that the time is shown in the upper right-hand corner. This is the resident
program displaying the time on the screen.

Summary
In this chapter, we have examined a clock device driver. The standard DOS clock
driver has been replaced with one that has many features. It will find the port
address of the MM58167A clock chip, determine the video monitor adapter type,
and periodically display the time on the screen. You have seen how to abort the
loading of a device driver if the driver cannot find the base port address of the
clock chip. Finally, you have seen how to take over an interrupt for your own use.

Device drivers are not just programs that control devices. You can use
drivers for creative programming efforts, adding almost any feature you desire.

In the next two chapters we will look at a different type of device driver-the
block-oriented device driver. In chapter 7 you will learn about disks-how they

231

Writing MS-DOS Device Drivers, Second Edition

work, what is contained on disks, and what disks do in terms of device drivers.
In chapter 8, you will build a RAM disk device driver with a special feature that
will allow you to hear the device driver working.

Questions
1. What happens if I ran the clock device driver and the clock chip was

missing from the PC?

2. Of what use are the RAM locations in the clock chip?

3. I notice a lot of code for determining leap years. Why is that?

4. I do not want to display the time on the screen. What do I do?

Answers may be found in appendix F.

232

I"~ ':,,<. " ' , <'

Introdu~ing,Disk
Internals, .

,'" ,

Introducing Disk Internals

In order to learn how to write a disk device driver, which we present in
the next chapter, you should review the topic of disk internals. DOS supports a
variety of disks, with storage capacities ranging from a hundred thousand bytes
to hundreds of megabytes. In this chapter, we will describe how DOS manages
different types of disk storage. You will need this information when you begin
writing the powerful block device driver in chapter 8 that simulates a disk but
that has much faster read and write times.

Starting with basic definitions, we will show how data is written to a disk
(disk here means both hard [fixed] disk and floppies), how DOS organizes the
data on the disks, and how DOS determines the disk type. We will distinguish
between floppy and hard disk drives and look at some of the special features of
hard disk drives. Lastly, we will describe the internal information that is
contained on each disk drive and how disk device drivers interact with DOS to
access disks.

The Physical Side of Disks
Disks are storage devices that are based on a rotating disk with magnetically
alterable surfaces. The surfaces store digital information. ReadlWrite heads are
built into the disk drive to retrieve and store data to the disk drive. Disk drives
are also known as random access devices, because you can independently position
the read/write head to any spot on the disk.

Disk drives come in two different forms. Floppy disks are those types of disks
that can be removed from the drive unit. Hard disk drives are fixed and cannot
be removed.

235

Writing MS-DOS Device Drivers, Second Edition

Disk Types
Floppy disks are built using flexible materials and are usually made in three
sizes: 3V2 inches, 51/4 inches, and 8 inches in diameter. Information is recorded
on one or both surfaces; most floppy disks use both surfaces.

Hard disks are built with one or more platters mounted on a spindle driven
by a small motor. Each of the platters is magnetically coated on both sides for
storing information. A read/write head is assigned to each surface of a platter.
These disk heads are mounted on arms that move together and are controlled by
another motor.

Connected to every disk drive through a cable is a disk controller; a PC
add-on circuit board that provides electrical signals to control the disk and
read/write head. The disk-controller board is inserted in a slot on the PC's
motherboard, which connects it to the main bus and allows the board to receive
instructions from the CPU. The controller is responsible for transferring data to
and from the PC and for positioning the read/write head to a desired position on
the disk.

Organizing Data on Disk Drives

236

In this section, we will examine organizing data on disks, storage capacities,
sector sizing and numbering, and formatting.

Tracks on a Disk
Each surface of a disk is divided into tracks on which information is recorded.
The read/write head assigned to a disk surface is positioned to one ofthese tracks
before a read or write is performed.

Most 5V4-inch floppy disks have either 40 or 80 tracks. There is also another
standard format based on 3V2-inch disks. Disks that contain 40 tracks are
commonly called double density disks. Historically, the original disks for the PC
could record at half this density and were called single density disks. With
improving technology, the density has increased to 80 tracks; such disks are
known as high density disks.

Because the surfaces are rigid and easier to control to tighter tolerances,
hard disks can have many times the number of tracks on a floppy disk. A 10-Mb
fixed disk for the IBM PC typically has 305 tracks. When there are two or more
platters in a disk drive (the spinning surface is called aplatter), the term cylinder
is used to refer to all tracks that are identically numbered.

Tracks are numbered from 0 to the highest track number for the disk. Each
recording surface of the disk is also numbered in this manner.

Size
Type

Introducing Disk Internals

Raw Storage Calculations
Often you need to calculate just how much capacity there is on a disk. Several
specifications can be used to determine the amount of storage. First, you will need
the amount of data that can be recorded in one track, which is usually specified
in bytes per track. Next, you will need the number of tracks per disk surface,
which is determined by the track density (usually specified as tracks per inch, or
tpi) multiplied by the circumference of the recording surface that contains
tracks. Finally, you will need the number of recording surfaces. This is usually 1
for a single-sided disk and 2 for a double-sided one. For hard disks, this number
is usually twice the number of platters.

The total amount of "raw" storage on a disk is calculated with the following
formula:

Total storage = storage/track * tracks/surface * surfaces

Not all of this storage area is available for your use, because the overhead
needed to manage the data stored on the disk is not taken into consideration in
this calculation. Overhead is a term used to describe the additional information
recorded onto the individual tracks that is required for the disk controller to find
each track.

Disk tracks are further subdivided into sectors for ease of management; we
will describe why this is done shortly. Table 7-1 summarizes the various types of
disks and the amount of data that can be stored.

31;2 31;2 5% 5V4 5V4 5V4
floppy floppy floppy floppy floppy hard

Density Type double double quad
Density 135 135 48 48 96 720

(Tracksllnch)
Tracks/Surface 80 80 40 40 80 305
Surfaces 2 2 1 2 2 4
ByteslTrack 5,120 10,240 5,120 5,120 5,120 10,416
Total Storage Size 800K 1.6Mb 200K 400K 800K 12Mb

Table 7-1: The amount of raw storage available for different types of
disks.

237

Writing MS-DOS Device Drivers, Second Edition

238

Organizing Data into Sectors
Sectors are subdivisions of a circular track; they form the basic unit of storage for
disk drives. Using sectors allows you to use a common method for storing data
for disk drives of varying sizes.

Whenever a disk is called upon to pass data back to the CPU, the read/write
head ofthe disk is first positioned to a particular track. Then, as the track rotates
under the head, the disk controller will scan the sectors that pass by, searching
for the desired sector. Once the desired sector is found, the disk controller reads
the contents of the sector and returns the data.

The number of sectors in a track sometimes varies. This number depends
on the amount of data that can be stored on a track. Version 1.0 of PC-DOS
supported only floppy disks, and these were formatted for 8 sectors per track.
PC-DOS version 3.0 allows 8, 9, and 15 sectors per track for floppy disks. Some
machines, such as the Victor 9000, have formats that put more sectors per outer
track than per inner tracks. This is because the larger outer tracks can contain
more data than the smaller inner tracks.

For hard disks, the standard number of sectors per track is 17. However, as
you will see in the section on the BIOS Parameter Block, DOS can handle just
about any number of sectors per track.

Sector Numbering and Sizing
In general, for both PC-DOS and MS-DOS, the physical-sector numbering starts
at 1. Therefore, for a disk with 9 sectors per track, the sectors are numbered from
1 through 9; for a hard disk with 17 sectors per track, the sectors are numbered
from 1 to 17.

Caution: Physical sectors are numbered starting at 1. This
scheme is used when the disk BIOS routines are used to format,
read, or write sectors. DOS uses a different scheme that num
bers sectors beginning with o. You will see this later, in the
section on the BIOS Parameter Block.

As you saw above, the amount of data stored in each sector depends on the
amount of storage per track and the number of sectors per track (assuming a fixed
density for all the tracks). Because the amount of storage per track is fixed, the
sector size can be varied by varying the number of sectors per track. Usually, the
sector size is fixed at so many bytes per sector,and the number of sectors per

Size
Type

Introducing Disk Internals

track is calculated by dividing the amount of storage per track by the desired
sector size (plus some overhead). When a track is divided into sectors, some
storage is lost in defining management and location overhead for each of the
sectors. Defining sectors on a track is performed by the formatting process. The
formatting information, or overhead, reduces the amount of storage available for
your use.

The DOS Standard for Sector Sizing
The DOS standard sector size is 512 bytes; however, DOS disk support allows
sector sizes of 128,256,512, and 1,024 bytes per sector. Sector sizes other than
512 bytes are rare. Because many parts of DOS have been written to assume a
sector size of 512 bytes, other sector sizes may not be used under all conditions
without modifying DOS. Table 7-2 shows the number of sectors for the typical
disk types that are supported by DOS.

Formatting Disks
A special program is used to create tracks and sectors within tracks on a disk.
This program is known as FORMAT.COM, and it performs a number of additional
tasks. The first task is to create a number of sectors on a track. This is repeated
for all the tracks of a disk. The second task is to test each sector to ensure that
data can be written to and read from the sector. The FORMAT.COM program
will create a table for DOS that identifies which sectors are good or bad, so that
bad sectors can be ignored. You will see more of this later in the section on File
Allocation Tables.

3lA! 3lA! 51i4 51i4 51i4 51i4
floppy floppy floppy floppy floppy hard

Density Type double double quad
Raw Storage 800K 1.6Mb 200K 400K 800K
Bytes/Sector 512 512 512 512 512 512
SectorslTrack 9 9 9 9 8 17
Tracks/Surface 80 80 40 40 80 820
Surfaces 2 2 1 2 2 6
Total Sectors 1,440 2,880 360 720 1,440 83,640
Formatted Storage 720K 1.44Mb 180K 360K 720K 40.84Mb

Table 7-2: Some of the disk formats supported by DOS.

239

Writing MS-DOS Device Drivers, Second Edition

When the data is organized by sectors, the overhead of identifying each
sector results in a small loss of total storage. Typically, this is about 10 percent.

Technical Details of DOS Disk Support

240

In this section, we will discuss how DOS accesses the various parts of a disk, the
File Allocation Tables and File Directory, and the parameters in the Boot Record
that describe the disk to DOS.

Disks Supported by DOS
The earliest versions of DOS (1.0) supported only single-sided disks. The next
version (1.1) supported double-sided floppy disks. Hard-disk support began with
MS-DOS version 1.25 and PC-DOS version 2.00. Prior to these versions, hard
disk support was largely a matter of the disk manufacturer providing custom
software routines to access the hard disk. Today, hard disks of all sizes may be
added to IBM and IBM-compatible PCs without requiring special software. The
use of drivers facilitates the task of adding support for a large number of disks.
Table 7-3 summarizes the types of disks supported by PC-DOS for the IBM PC.

Special mention should be made of disk types supported by other vendors
for non-IBM PCs. MS-DOS can be tailored to just about any machine that uses
an 8086/8088 microprocessor, so the number of disk types for non-IBM compatible

Single Double Hard Hard
DOS Side Side 1.2Mb Disk Disk
Version 51;4 5lf4 31J2 Floppy 10Mb Size

1.0 x
1.1 x x
2.0 x x x
2.1 x x x
3.0 x x x x 10Mb+
3.1 x x x x 10Mb+
3.2 x x x x x 10Mb+
3.3-5.0 x x x x x 10Mb+

Table 7-3: The types of disks supported by the various versions of
PC-DOS. With each new version of DOS, support of new disk types
was added.

Introducing Disk Internals

PC Disk Type

HP 150 3V2 floppy
Tandy 2000 5li4 floppy
DEC Rainbow 5V4 floppy
Victor 9000 5V4 floppy

Size

270K
720K
720K
1.2Mb

Description

Single-sided disks
Double-sided 96 tpi disks
2 single-sided 96 tpi disks
Double-sided 96 tpi disks

Table 7-4: Disk sizes for other types of pes using MS-DOS.

machines is large. Table 7-4 shows other types of PCs and the disk types
supported by MS-DOS.

How Disks Are Organized
DOS is capable of supporting more than one type of disk. This is made possible
by requiring that information regarding a disk's specific storage and access
capabilities be stored right on the disk itself in a specific area defined by DOS.

Each disk must also have additional information stored on it indicating the
amount of storage currently used, names of existing files, and other information
required for managing the files and disk space. This information is invisible to
the user but is a necessary component of all disks.

DOS expects the information on the disk to be defined in a certain sequence;
therefore, all DOS disks are organized in a uniform fashion. This allows DOS to
obtain information about the use ofthe disk, how space is to be allocated on the
disk, and the files in use on the disk.

There are four components to a disk layout. The first is the reserved area
commonly referred to as the boot record. The second component is the File
Allocation Table (FAT), which is used to indicate the usage of space on the disk.
The third component is the File Directory, which is used to store the size, location,
date, and time information about files on the disk. Finally, the last component is
the user data area, in which the user files are actually stored. The relationships
among these four components are shown in figure 7-1.

The BootlReserved Area, FAT, and Clusters
The boot or reserved area is the first section on the disk. Because disks vary in
their number of sides, tracks, and sectors, DOS needs to determine these disk
characteristics the first time it accesses a disk.

241

Writing MS-DOS Device Drivers, Second Edition

242

First Sector
of Disk

Jump
Code

Vendor
Identification

3 8
bytes bytes

User data area
. contains the data grouped in files

File directory
contains entries
describing
files,
volume

c-~

BIOS
Parameter
Block

19
bytes

Code Boml
Second File Allocation Table
copy of the first FAT

482 First File Allocation Table
bytes contains information on space used in

the user data area

Figure 7-1: The relative positions of the four components ofa typical
formatted disk, with an exploded view of a typical boot area.

DOS assumes that this information describing the disk is always in a certain
physical location, usually track 0, surface 0, and sector I-the first sector of the
disk. Although the boot area is usually only one sector in length, it can be larger.
For this reason, this area is now more generally referred to as the reserved
sectors area.

Figure 7-1 shows the boot area's four parts: a jump code instruction, the
vendor identification code, the BIOS Parameter Block, and the boot code area.

The first part ofthe boot area contains a jump (jmp) instruction. Ifthe disk
is a DOS system disk, booting it causes the PC to load the data in the boot area
into memory and to execute this jump instruction, which skips over the vendor
identification and BIOS Parameter Block areas directly to the boot code.

The second part of the boot area is an 8-byte field that contains the vendor
identification. This field is not used or required by DOS. Normally, a PC manu-

Introducing Disk Internals

facturer will fill this field with the name of the vendor plus the DOS version on
the disk. Examples of vendor identification fields are:

IBM 3.1
PSA 1. 04
PCBB 2.0
CCC 2.1
MSDOS5.0

PC-DOS supplied by IBM
MS-DOS supplied by ATT (6300)
MS-DOS supplied by popular clone manufacturer
MS-DOS supplied by Compaq
MS-DOS supplied by Microsoft

The third part of the boot area is the BIOS Parameter Block. This is a table
of special disk parameters that DOS requires to determine the size of the disk
and the relative locations of the FAT and the File Directory. The BIOS Parameter
Block is often called the BPB and is always present on every disk. We will describe
the contents ofthe BPB later in this chapter.

The fourth and last part ofthe reserved boot area is called the boot code area
because it contains the actual code for the bootstrap program that starts the PC.
This bootstrap program has the job of "pulling itself up by the bootstraps"; in the
case of DOS, this means getting DOS to bring itself into memory. Although this
bootstrap code is always present in the reserved boot area, regardless of whether
the disk contains the DOS system files, it is meaningful only when the disk has
been set up as a system disk.

Typically, a system disk is created by the FORMAT program supplied with
MS-DOS. If the FORMAT command is executed with a special command switch
(usually IS), two additional files will be copied to the disk. These files (typically
IO.SYS and MSDOS.SYS) contain the code for the MS-DOS operating system
and are hidden from you; they do not appear in a directory listing of the disk.
However, the bootstrap program knows they are there and will load them into
memory when the disk is accessed at system start-up time. When a disk has been
set up to make it possible to boot from that disk, the disk is referred to as a
system disk.

Whenever any disk is formatted for use by the DOS FORMAT program, the
four sections comprising the boot area are written to the reserved area ofthe disk,
which always begins at the first sector of the disk.

Clusters as the Unit of Storage for a File
Before we describe the File Allocation Table, you need to know how sectors are
used to hold data. When your program writes new data to a disk file, DOS needs
to find an unused sector on the disk in which to store the new data. Conversely,
when your program reads from a disk file, DOS needs to locate the sector on the
disk in which the data is stored. DOS requires each disk to have a File Allocation
Table in order to keep track of where sectors for a file are located.

243

--- ------------

Writing MS-DOS Device Drivers, Second Edition

244

Disk Type

31;2 double-sided floppy
5lf4 single-sided floppy
5lf4 double-sided floppy
10Mb hard disk
20Mb hard disk (AT)

Sectors per Cluster

2
1
2
8
4

Table 7-5: The typical cluster sizes for different types of disks.

Keeping track offiles on a sector-by-sector basis can be inefficient, however.
For example, a 10Mb hard disk has more than 20,000 sectors, and keeping the
location of each would make the File Allocation Table very large. Searching this
table would take a relatively long time. If the File Allocation Table were smaller,
the searches would be faster, and, as a result, the file accesses would be faster.
A better solution would be to group sectors together in a pool so that when a new
space on the disk is required, a group of sectors is allocated for the file. This
concept of grouping is called clustering sectors; it allows DOS to be more efficient
in terms of the memory required to manage the File Allocation Table. A cluster
is simply a fixed number of sectors; clusters add a second layer of organization
and make access easier.

Whenever a file requires disk space, DOS allocates a single cluster and
marks the File Allocation Table to indicate this. Clusters (also called allocation
units) are the basic units of storage for disk files. The number of sectors per cluster
is determined by the disk type and is established by the FORMAT program when
the disk is formatted. Table 7-5 shows the cluster sizes for different disk types.

The File Allocation Table
Let's learn how the File Allocation Table works.

The File Allocation Table (FAT) is the section of the disk that stores
information on disk-file space usage. This table contains information on all the
clusters that are unassigned (free for allocating to files), assigned (those that are
in use by a particular disk file), or marked as bad (not usable because of media
defects).

Note that although the FAT records information on disk space used by your
files, the boot area, the two FATs, and the File Directory areas are not themselves
represented by clusters in the FAT.

Within the FAT there is an entry for each available cluster on the disk. A
floppy might have over 700 clusters. These entries indicate whether the cluster
is in use, free, or bad. Bad clusters are found through the FORMAT program

Introducing Disk Internals

during the formatting process; sectors that cannot be used because of problems
in reading or writing cause the entire cluster to be marked bad. This means that
some good sectors are lost.

As we said earlier, there are two identical copies of the FAT. The second copy
provides some insurance against the possibility of the first copy being damaged.
This is an old trick that has been borrowed from other operating systems.
However, DOS does not use the second copy to fix the first if it is damaged.

Recording Clusters in the File Allocation Table
As you saw earlier in this chapter, when a disk file grows, DOS allocates space
on the disk in clusters rather than one sector at a time. This causes the FAT to
be updated to indicate that a previously free cluster is now in use. Conversely,
when a file is deleted, the clusters once occupied by data are marked in the FAT
as being free again.

As a file grows, DOS allocates clusters of disk space, and the use of these
clusters is marked in the FAT. The list of clusters that form the disk space used
by the file is called a chain, because of the way that DOS stores the cluster
information in the FAT. You will see more ofthis shortly.

FAT entries contain a value to indicate the status of each cluster. The cluster
may be reserved for use by DOS, free for allocation, bad, or in use. A cluster is
in use when it is part of a chain. The values for the FAT entries are listed in
table 7-6.

For disk sizes of 10Mb or smaller, the size of the FAT entry is 12 bits in
length, or 3 hex digits. For disks larger than 10Mb, the FAT entry is 16 bits long,
or 4 hex digits.

The first available space in the user-data area of the disk is the first cluster,
which is assigned a cluster number of 2. The reason it is not called 0 or 1 is that
the first two entries in the FAT, normally cluster 0 and 1, are reserved for a media

I2-bit Entry I6-bit Entry Cluster Description

OOOh OOOOh Free
OOlh-fefh OOOlh-ffefh In-use
ffOh-ff6h ffIOh-fff6h Reserved

fl7h ffi'7h Bad
ffBh-ffih flf8h-fffih End of cluster chain

Table 7-6: The various FAT entries and what they mean.

245

Writing MS-DOS Device Drivers, Second Edition

246

c-~

:, FAT entry 0 23456789

Figure 7-2: The relationship between FAT entry and cluster. Each
cluster is assigned a position in the FAT and will indicate whether the
cluster is part of a chain (in use), free, bad, or reserved. Note that the
clusters are numbered starting at 2.

descriptor. A media descriptor is a value that uniquely identifies a particular type
of disk and allows DOS to distinguish a single-sided 5V4-inch disk from a
double-sided one. You will see more ofthis media descriptor in the section on the
BIOS Parameter Block. Figure 7-2 shows the entries in the FAT that point to or
represent the clusters in the user-data area.

Clusters, Chains, and the FAT
Suppose a file were large enough to require two clusters of disk space. DOS could
simply mark each oftwo entries in the FAT with a value to indicate which clusters
were in use, but this would not allow DOS to determine which cluster was first
and which was second in the table. It would also be difficult to distinguish this
particular file's use of the disk from that of another file. It follows that just

Introducing Disk Internals

marking used clusters via the FAT is insufficient for keeping track of what files
exist where on the disk; we need a better method.

Consider the following: when the first cluster is allocated to the file, we could
store the cluster number outside the FAT, in the File Directory. (We will explain
later in this chapter what the exact format of the File Directory entry is for each
file, but let it suffice now to say that the disk directory will maintain, for each file
on the disk, information about the file, including its name and starting cluster
number.) Then, as the file grows and the second cluster is allocated, we could use
the FAT entry for the first cluster to note which cluster was assigned as the second
cluster. For example, if the file used clusters 5 and 10, we would note (outside
the FAT) that the file's first cluster was cluster 5; then, in the fifth entry of the
FAT, we would store the number 10 to indicate that the next cluster in the file
was cluster 10. It follows that if the file grew larger, thus requiring another
cluster, we would find a free (unallocated) cluster in the FAT and store its number
in the 10th entry of the FAT. This could continue indefinitely, or at least until
there were no more available clusters to be found. In all cases, the last cluster
allocated to the file would always have a special value in it to indicate that there
were no more clusters following it. This value would represent the end ofthe file.

The concept of having each cluster essentially point to the next cluster in
use by a file is called a cluster chain. The idea is that the contents of each FAT
entry in use contains a value (also called apointer) that points to the next cluster,
unless the FAT entry represents the last cluster for a file, in which case it would
contain an end-of-file indicator. The only thing we would then have to know for
a file to find all its sectors is the number of the first cluster assigned to it.

As mentioned earlier, the first cluster assigned to a file is stored in the most
sensible place: the File Directory.

Figure 7-3 shows how each FAT entry points to the next, thus forming a
chain. The start of the chain, or the first cluster, is kept in the File Directory with
the entry for the file myfile. It contains the value of 4, which means that the first
cluster of the file in the FAT is cluster number 4. The entry in the fourth FAT
position contains the value 5, which indicates that the next cluster is cluster
number 5. At the entry for cluster number 5 we find the value 6, which points to
cluster number 6 as the next cluster. Finally, at entry number 6, we find it
contains an fffh. This marks the end of the clusters allocated for myfile. Thus,
myfile is composed of clusters 4, 5, and 6 and is three clusters in length.

The Number of FATs Is (Almost) Always Two
The number of FATs is normally two, as shown in figure 7-3. When DOS updates
the FAT, the first copy is updated, and then the second copy. As we said earlier,
using a second identical copy ofthe FAT provides insurance against the first copy
being damaged. The theory is that if the first copy is bad, then the operating

247

Writing MS-DOS Device Drivers, Second Edition

248

File
Directory
Entry

FAT

Cluster #5

o 23456789

U
Figure 7-3: The clusters used by myfile.

system will use the second copy. Without this mechanism, a damaged FAT would
render the disk inaccessible. In practice, however, with a PC, if the first copy of
the FAT is damaged, DOS does not use the second copy of the FAT to access file
information, and the entire disk is not usable. The authors of DOS simply forgot
to implement a means to fix the FATs.

Because DOS really uses only one FAT, disks can be built with only one of
them. To build disks with only one FAT, you cannot use the standard DOS
FORMAT program, which builds two FATs on each disk to be formatted. You will
need to write a special FORMAT program to build only one FAT on each disk.

The specification of the number of FATs is defined in the BIOS Parameter
Block. The overhead of a second copy and the necessity of always updating this
second copy can be eliminated if you specify only one copy ofthe FAT.

The FATs are built for each disk during the formatting process using the
FORMAT program. Each entry in the FAT is set to 0 if the corresponding cluster
is available for data storage. A FAT entry is marked bad if the corresponding

Introducing Disk Internals

cluster has one or more sectors that are not usable. This occurs when read or
write errors are found during the formatting of the disk.

The File Directory
As shown in figure 7-3, the File Directory follows the boot area and the FATs and
contains the names for all disk files, names for subdirectories, and the volume
label.

The File Directory itself is a variable number of sectors that will depend on
the number of entries specified for the disk. Every File Directory entry requires
32 bytes; thus, a 512-byte sector will have 16 such directory entries. The exact
number of directory sectors is the number of files or entries divided by 16 and
rounded up by 1 if the number of sectors is O. Thus, the number of files a File
Directory can have is dependent on the type of disk used. Table 7-7 lists the disk
types and the number of file entries possible. Popular double-sided disks allow
112 entries in the directory, and the hard disk allows 512.

The fields for each File Directory Entry are described in table 7-8.

Filename The filename field contains a file name that is up to 8 bytes (or
characters) in length and is left-justified in the field. DOS expects file names that
are less than 8 bytes to be filled out with blanks. If a file has been deleted, the
first byte of its filename field is changed to a hex E5. This signifies to DOS that
the entry is available for reuse. When a directory entry has never been used, the
first byte of the file name field will contain a hex 00.

The distinction between a deleted file name entry and an unused entry is
that during directory searches DOS will stop when it encounters the first hex 00
in the first byte of any filename field but continues when it encounters a hex E5,
which is merely a deleted entry. If a deleted entry contained a hex 00 in the first

Directory Directory
Entries Sectors Description

64 4 Single-sided disks
112 7 Double-sided disks
224 14 AT high-density disks
512 32 Hard disks

Table 7-7: The number of File Directory entries and the number of
directory sectors for each type of disk.

249

Writing MS-DOS Device Drivers, Second Edition

250

Start Length Description

0 8 File name
8 3 File name extension

11 1 File attribute
12 10 DOS reserved
22 2 Time of last update or creation
24 2 Date of last update or creation
26 2 Initial allocation unit/cluster
28 4 File size

Table 7-8: The File Directory entry consists of eight fields.

position, DOS would have to search all the directory sectors, because it could not
distinguish between a deleted file and an entry that had never been used.

Filename Extension The filename extension is an optional field; files mayor
may not have extensions. Filename extensions are up to 3 bytes in length and,
like the filename field, must be left-justified in the field and right-filled with
spaces.

File Attributes File attributes tell what kind of file this is: read/write, read
only, hidden, etc. Table 7-9 describes each of the attributes that are possible for
a File Directory entry.

Value

OOh
01h
02h
04h
08h
10h
20h

Description

Normal read/write file
Read-only file
Hidden
System file
Volume label
Subdirectory
Archive bit

Table 7-9: The various attribute bits that can exist for File Directory
entries.

Field

Hours
Minutes

Seconds

Byte
Bits

Hex
Offset

17h
17h
16h
16h

<--23--> <--22-->
1 11
5 10 54

Decimal
Offset

23
23
22
22

o
Value hhhhhmmmmmmsssss

Introducing Disk Internals

Bits within Offset

7 through 3
2 through 0
7 through 5
4 through 0

Table 7·10: How to decode the 2·byte time field.

Setting the attribute for read -only prevents a modification of the file through
DOS standard file write calls. The hidden attribute will prevent a display of the
entry when the DIR command is issued. The attribute for system file is set for
the special DOS files that reside on a system disk (IO.SYS and MSDOS.SYS).
These two files are brought into memory during a boot of the PC. The attribute
for volume label indicates to DOS that the File Directory entry is not a file name
but a volume name. The attribute for subdirectory indicates that the file name
and extension entry is the name of a subdirectory. The archive bit indicates to
DOS that when the BACKUP.COM utility is used to off-load files from the disk,
the contents of this particular entry are to be written out. Once the file is backed
up, the archive bit is turned off.

Time of Last Update or Creation Whenever a file is created, the time of
creation of the file is entered into the File Directory entry. This includes all
directory entries, such as file names, subdirectories, and the volume label. If a
file has been updated, this file directory will be updated to reflect the time of the
last update. This is not true for subdirectory entries; additions within the
subdirectory do not cause an update of the time for the entry. The 2-byte time
field is described in table 7-10.

Date of Last Update or Creation The date of last update or creation is set
with the file-creation date or the date of the last modification. This 2-byte field
is similar to the time field except for the date. Table 7-11 describes the 2-byte
date field.

251

Writing MS-DOS Device Drivers, Second Edition

252

Hex Decimal
Field Offset Offset Bits within Offset

Year 19H 25 7 through 1
Month 19H 25 0

18H 24 7 through 5
Day 18H 24 4 through 0

Byte <--25--> <--24-->
Bits 1

5 98 65 0
Value yyyyyyymmmmddddd

*Year is years since 1980

Table 7-11: How to decode the 2-byte date field.

Initial Allocation Unit/Cluster The initial allocation unit or cluster field
contains the cluster number of the first cluster allocated to the file. For sub
directories, this is the cluster that will contain the File Directory for the entries
in the subdirectory. Table 7-12 indicates the format for the start cluster number.

File Size The file-size field contains the size of the file in bytes. It is a
double-word entry with the words reversed and the bytes within each word
reversed. This double word allows file sizes of up to 32 bits, which is much larger
than the DOS limit of 32Mb. You will see why DOS has this limit in a later
section of this chapter. Table 7-13 describes the file-size field.

Hex
Offset

lAH
lBH
Byte
Hex value

Decimal
Offset Description

26 Least significant
27 Most significant
<--27 --> <--26-->

OX XX

Table 7-12: How to interpret the start cluster number for the File
Directory entry.

Hex
Offset

1CH

DH

EH

1FH

Byte
Hex value

Decimal
Offset

28

29

30

31

<-31->
XX

Description

Low-order word
Least-significant byte
Low-order word
Most-significant byte
High-order word
Least-significant byte
High-order word
Most-significant byte

<-30-> <-29-> <-28->
XX XX XX

Introducing Disk Internals

Table 7-13: The 4-byte file-size field. Note that the bytes are reversed
in each field and the words are reversed.

Disk Sizing
In previous sections of this chapter, you have seen the different sections that
comprise a DOS disk. We will now cover the various aspects of DOS disk sizing,
including 12- or 16-bit FAT entries. Then we will describe how to calculate the
number of the clusters for a disk. Lastly, you will see how DOS limits the size of
disks.

FAT Entries: 12 or 16 bits?
As we saw earlier, FAT entries are either 12 or 16 bits in length. That length will
depend on two factors: the capacity ofthe disk and the cluster size. You will need
the size of the disk in sectors and the cluster size in number of sectors per
allocation unit.

Disks will use 12-bit FAT entries until it is no longer possible to store cluster
numbers in a 12-bit quantity. FAT entries of 12 bits can contain a number up to
4,096 (0 to fffh). Subtracting the 16 values that constitute reserved, bad, and
end-of-file indicators (see table 7-6) yields a maximum of 4,080 clusters. Because
clusters are numbered from 2, this results in a range of 2 to 4,080 or 4,079
clusters. If the number of clusters exceeds 4079, 16-bit FAT entries are used to
mark each cluster.

253

Writing MS-DOS Device Drivers, Second Edition

254

Disk size 5lf4 5lf4 5lf4 5lf4
Disk type Floppy Floppy Hard Hard
Surfaces 1 2 Varies Varies
Disk capacity 180K 360K 10Mb 20Mb
Total # sectors 360 720 20K 40K

Sectors/cluster 1 2 8 4
Maximum clusters 360 360 2560 10K
12/16-bit FATs 12 12 12 16

Boot area sectors 1 1 1 1

FAT sectors 2 2 8 40
FATs 2 2 2 2
Total FAT sectors 4 4 16 80

Directory entries 64 112 512 512
Directory sectors 4 7 32 32

Overhead sectors 9 12 49 113

Table 7-14: The various calculations for determining the size of the
FAT entries and the amount of overhead the disks can have.

For example, if a disk used 8 sectors of 512 bytes each per cluster, and the
maximum number of clusters is 4,079, the largest disk using 12-bit FATs would
be 16Mb (512 bytes * 8 sectors/cluster * 4079 clusters). Therefore, to make life
easier, disks larger than 10Mb use 16-bit FATs.

Note that, whether 12- or 16-bitFATs are used, the FAT, File Directory, and
the Boot Record are not counted in the total number of clusters available. See
table 7-14 for a summary of the typical cluster and overhead values for various
types of disks.

DOS Disk Size Limits
PCs have grown in every way, and disk storage is no exception. The original hard
disks of 10Mb have given way to 20- and 30Mb drives as standard equipment.
DOS is extremely versatile in its handling of disks, but there are some limits built
into the software.

The critical number that limits the amount of disk storage per disk drive is
the total number of sectors per drive. This number is contained in a single word

Introducing Disk Internals

that allows for a maximum of 64K sectors. With a sector size of 512 bytes, this
yields a maximum disk size of 32Mb.

DOS can provide support for disks that are larger than 32Mb in two ways.
The first way is to use a larger sector size. For example, using a sector size of
1,024 bytes moves the disk size limit up to 64Mb. However, this requires special
software that changes the DOS system files to override the default 512 bytes per
sector. The second method is much easier. DOS offers the capability to divide the
hard disk into one or more partitions. Each partition of the disk is treated as if
it were a separate and distinct physical drive. Thus, you can have multiple 32Mb
partitions on one disk.

Beginning with DOS 4, the maximum size of a disk partition is no longer
limited to 32Mb. The location within the BIOS Parameter Block specifying the
number of sectors per disk was expanded from a single word to a double word,
thus allowing disk partitions in excess of 500Mb. You will see more of disk
partitions in the next sections.

Critical Disk Parameters
With a large variety of disks to support, DOS needs a mechanism to determine
the logical and physical characteristic of each disk in the PC. These disk param
eters must be recorded on the disk and read by DOS before the first access. The
best location is within the Boot Record, because it is common to all disks and is
always at the beginning of the disk.

We will examine the disk parameters stored on each disk by taking a closer
look at the Boot Record.

The Boot Area Revisited
As you may recall, the boot area is the first part of a disk or, in the case of a
partitioned hard disk, the first area in the partition. As we discussed earlier, the
boot area contains a 3-byte jump instruction, the vendor identification, the BIOS
Parameter Block, and the boot code (see figure 7-1).

The BIOS Parameter Block
The 19 bytes that make up the BIOS Parameter Block (BPB) contain more
information that allows DOS to understand how the disk has been built. The BPB
contains physical information about the disk media, as well as the location and
sizes of the FATs, the File Directory, and the user data area.

Table 7-15 shows the format of the BPB. Names or labels are assigned to
each field to make it easier to refer to these fields when we develop the RAM disk
device driver in the following chapter.

255

Writing MS-DOS Device Drivers, Second Edition

256

Name Start Length Description

SS 0 2 Sector Size in bytes
AU 2 1 Allocation Unit size (sectors per cluster)
RS 3 2 Number of Reserved Sectors
NF 5 1 Number of FATs on this disk
DS 6 2 Directory Size (number of files)
TS 8 2 Number of Total Sectors
MD 10 1 Media Descriptor
FS 11 2 FAT Sectors (each FAT)
ST 13 2 Number of Sectors per Track
NH 15 2 Number of Heads
HS 17 2/4* Number of Hidden Sectors
LS 21 4* Large Sector Count

* = DOS 4.0-5.0

Table 7-15: The fields that comprise the BIOS Parameter Block (BPB).

The BPB is read off each disk by DOS before the very first access. As yoU
will see, the values of the BPB allow DOS to translate physical to logical sectors
and vice versa. Additionally, the FATs, File Directory, and the user data area can
be found using the BPB.

Let's examine each of these fields one at a time.

Sector Size (SS) The sector size field contains the number of bytes per sector
for this media. Although possible sector sizes are 128, 256, 512, and 1024 bytes
per sector, DOS does not make full use of this parameter. There are numerous
places in the BIOS and within DOS itself that assume sector sizes are 512 bytes
per sector.

Allocation Unit Size (AU) As we mentioned above, a cluster, or allocation
unit, is the basic unit of DOS disk storage and represents a certain number of
sectors.

Reserved Sectors (RS) This field contains the number of reserved sectors for
the disk. Recall that each floppy disk or hard-disk partition has a reserved or boot
area. This parameter specifies to DOS how many sectors are reserved as the boot
area. This field generally contains a value of 1 and is always at the beginning of
the disk or the partition.

Introducing Disk Internals

An important point to note here is that in DOS, sectors are numbered
starting at O. You may recall that the BIOS routines use a sector-numbering
scheme that starts at 1. You will see how DOS uses sector numbering in the
section called "Hidden Sectors."

Number of FATs (NF) The number of FATs for a disk, usually two, is con
tained in this field.

Directory Size (DS) This field contains the maximum number of files in the
File Directory. The size of the File Directory in sectors will be dependent on the
number of files and the size of each sector. Because each file requires a 32-byte
entry in the File Directory, and because the number of bytes per sector is
contained in the sector size (SS) field, dividing the sector size by 32 gives the
number of directory entries per sector. Then dividing the directory size by the
number of directory entries per sector will give the number of directory sectors.
This number is rounded up if necessary.

Normally, 512-byte sectors are used, so 16 directory entries are available
per directory sector.

Total Sectors (TS) The number of total sectors is the total size of the disk in
sectors. This number must include the sectors in the boot or reserved area, the
two FATs, the File Directory, and the user data area. Because this word can
contain a number equal to 64K, the largest disk that DOS can support is 32Mb
using 512-byte sectors. For hard disks, this number is the same as the number
that appears in the partition table as the last entry.

For disks larger than 32Mb, using DOS version 4.0 or greater, this field is
set to 0 and the actual sector count is specified in the large sector (LS) field.

Media Descriptor (MD) The media descriptor field is a single byte that de
scribes the disk for DOS. Table 7-16 explains the various media descriptor bytes.

FAT Sectors (FS) The FAT sectors field contains the number of sectors in each
FAT. DOS will use this number to calculate the total number of sectors occupied
by the reserved sectors (boot area) and the FATs to determine the start of the
File Directory.

Sectors per Track (ST) This field contains the number of sectors per track for
a disk. For floppy disks, this number is 8, 9, 15, or 16. For hard disks, this number
is usually 17.

Number of Heads (NH) This field contains the number of heads or usable
recording surfaces for the disk. This value is 1 for single-sided disks and 2 for

257

Writing MS-DOS Device Drivers, Second Edition

258

Hex Value

fSh
f9h

fah
fch

fdh
feh

fib

Description

Hard disk
Double-sided 5V4-inch disk (15 sector HD)
Double-sided 3lf2-inch disk
RAM disk (used by Columbia Data Products)
Single-sided 5V4-inch disk (9 sector)
Double-sided 8-inch disk (single density)
Double-sided 5V4-inch disk (9 sector)
Single-sided 5V4-inch disk (8 sector)
Single-sided 8-inch disk (single density)
Single-sided 8-inch disk (double density)
Double-sided 5lf4-inch disk (8 sector)

Table 7-16: The various values for the media descriptor field.

double-sided disks. The value for hard disks will vary depending on the hard-disk
drive. Typical values range from 2 to 6.

Hidden Sectors (HS) The field that contains the number of hidden sectors for
the disk typically is used for partitioning hard disks. Hard disks have the ability
to be partitioned into several independent logical drives (for more information,
refer to appendix D). In order for DOS to locate the start of a partition, it needs
to know the number of sectors from the beginning of the disk to the start of the
partition that is being used. The sectors preceding the active partition are known
as the hidden sectors, because they are invisible to the active partition. The
number of hidden sectors is an offset that is added to the number that is calculated
for file operations that are within the active partition to derive the precise
physical location on the disk. This is shown in figure 7-4.

Each of the partitions is treated by DOS as a contiguous block of sectors
starting with sector 0, even though it is not the absolute Oth sector. Do not confuse
this with the physical sector scheme, in which sectors are numbered starting at
1. The difference is that each track has physical sectors numbered starting at 1,
repeating the sector numbering for each track. DOS partitions start at sector 0
and do not repeat any of the sector numbers.

The number of hidden sectors is always 0 for floppy disks, because there is
no partition. For hard disks, the number of hidden sectors for each partition will
depend on the size of the preceding partitions (each partition has its own BPB).
The first partition will generally have 17 hidden sectors, because the first track
is occupied by the partition sector and the first partition must start on a track

Introducing Disk Internals

-

Hidden Sectors for the Partitions on a Hard Disk

Partition Partition Partition Partition Partition
Sector 1 2 3 4

hidden sectors for partition 4--\
hidden sectors I

- for partition 3 I
hidden sectors I
for partition 2 -

I-hidden sectors for partition 1

Figure 7-4: The number of hidden sectors for the four partitions of a
hard disk.

boundary; therefore, the existence of the partition sector forces the first partition
to be on the second track, or 17 sectors from the beginning of the disk.

This field is 2 bytes long for DOS versions up to 4.0. To accommodate larger
disks, DOS 4.0 and 5.0 extend this field to 4 bytes.

Large Sectors (LS) This field is used by DOS version 4.0 or greater to specify
the total number of disk sectors if the disk is larger than 32Mb. In addition, if
this field is used, then the total sector (TS) field must be set to o. This field is set
to 0 when the disk size is less than 32Mb.

U sing the BPB to Find Information
The BPB that must exist on each disk allows DOS to find the important and
necessary parameters about the physical characteristics of the disk. For example,
DOS can divide the total sector count (TS) by the number of sectors per track (ST)
to determine the total number of tracks for the disk or partition.

In addition, the BPB contains enough information for DOS to determine
where the FATs, the File Directory, and the user data area are located. Because
the sizes of each of these sections of the disk can be found in the BPB or
calculated, it is a simple matter for DOS to add up the space occupied by
previous sections to arrive at the location ofthe FATs, the File Directory, or the
user data area. This is shown in figure 7-5.

Table 7-17 shows typical values that are found in the vendor identification
and the BPB for a 51!4-inch single-sided disk.

259

Writing MS-DOS Device Drivers, Second Edition

Boot Area FAT #1 FAT #2 File Directory User Data Are

1- RS -I--FS --]--FS-I

-NF-
Start of: Formula for sector number

Boot Area:
FAT #1:
FAT #2:
File
Directory:
User Data
Area:

Where:

Sector 0
Sector RS
Sector (RS + FS)

Sector (RS + (NF*FS)

Sector (RS + (NF*FS) + (DS/(SS/32)))

RS is the number of hidden sectors
FS is the Fat Size in sectors
NF is the number of FATs
DS is the number of files in the File directory
SS is the number of bytes per sector
32 is the size of each File Directory entry

Figure 7-5: How DOS calculates the start sectors for the FATs, the File
Directory, and the User Data Area. Note that the size of the File
Directory is not stored in the BPB but is calculated using the number
of files in the File Directory (DS), the sector size (SS), and the size of
each File Directory entry (32).

DOS Disk Device Drivers

260

You are probably wondering why we have gone to such detail in describing the
FATs, BPBs, and so on. This detail is required to help you understand how DOS
interacts with a disk media, so that our RAM disk driver in the next chapter will
make sense. It is also necessary to look at the other side of the disk interface,
from DOS and the device driver. This is done in the next sections.

DOS and the Disk Device Driver
Whenever DOS needs to read or write to the disk, the standard disk device driver
(the one that is loaded into memory with DOS) is called. In addition to read or
write calls, DOS makes some calls to the disk device driver to get answers to
questions about the disk.

Field

Vendor Identification

BIOS Parameter Block (BPB)

Sector Size in bytes (SS)
Allocation Unit size (AU)
Number of Reserved Sectors (RS)
Number of FATs (NF)
Directory Size in files (DS)
Total Sectors for disk (TS)
Media Descriptor (MU)
FAT Size in sectors (FS)
Sectors per Track (ST)
Number of Heads (NH)
Number of Hidden Sectors (HS)
Large Sectors (LS)

Introducing Disk Internals

Typical Value

MSDOS5.0

512
4
1
2
512
o
F8
81
17
5
17
82943

Table 7-17: The typical values found in the vendor identification field
and the BIOS Parameter Block for a 40Mb hard disk

Which Disk Is It?
DOS recognizes that disks fall into two categories: those that are removable and
those that are not. Removable disks are the familiar floppy disks that can be
removed and replaced easily. Nonremovable disks are, for the most part, hard or
fixed disks. Another type of nonremovable disk is a RAM disk, one of which we
will be writing in the next chapter. A RAM disk uses memory to store data.

During disk operations, DOS always checks to see whether the disk has been
changed. For nonremovable disks, there are fewer checks than for disk units that
contain removable disks. DOS performs this check through a call to the DOS
Media Check function. Recall from the previous sections of this chapter that all
disks have a media descriptor. DOS uses this to identify the disk and to check
whether the disk has changed. For example, if you have been using a single-sided
disk, the media descriptor would be FCh. Then, if you swapped a double-sided
disk for a single-sided disk, DOS would update the media descriptor and it would
contain FDh. However, this is not a foolproof method of determining if the disk
has changed-you could fool DOS by changing to another single-sided disk!
Therefore, you cannot rely on the media descriptor as the only method of
determining whether a disk has changed.

261

Writing MS-DOS Device Drivers, Second Edition

262

The only place to determine whether a disk has changed is within the disk
device driver. DOS will pass the media descriptor of the disk it has worked on to
the disk device driver. The disk device driver, in turn, will determine whether
the disk has changed by comparing the particular disk parameters; it then will
return this information to DOS.

If the disk has been changed, DOS cannot assume that the FATs, the File
Directory, and the user data area are still in the same relative locations. Recall
that single- and double-sided disks have different numbers of sectors for the FATs
and the File Directory. Thus, another function of the disk device driver is to
return to DOS the BPB for any newly inserted disk. This allows DOS to calculate
the positions ofthe FATs and the File Directory for the new disk.

In short, each disk access by an application can cause DOS to perform a
media check on the disk. If the disk has changed, DOS will request the BPB for
the new disk from the disk device driver so that it can know where everything is
stored.

At this point, a real-life example might help illustrate what happens be
tween DOS and the disk device driver. Let's assume that you have inserted into
the B: drive a disk that has just been formatted. Then you issue the following
DOS command:

DIR

Here is the output that appears on the screen:

A>DIR b:

Volume in drive B has no label
Directory of B:\

File not found

A>

Even for this tiny amount of information, DOS has to perform many steps.
After the DIR command is issued, DOS has to check whether the disk in drive B:
has been changed since the last time B: was accessed. Then DOS has to read the
directory sectors for the volume label and the file information. Note that the File
Directory sectors may be read twice; pass 1 searches for the volume label, which
does not have to be in the first directory sector; pass 2 retrieves the file names.
Lastly, DOS reads the FAT for the amount of space used on the disk. This process
is shown in figure 7-6.

Steps DOS takes to complete the DIR command

DOS
DIR-

NO

Read the Directory sectors
and display filenames

Read the FAT and calculate
the disk space used

Display the number of files
and free space

Introducing Disk Internals

Figure 7-6: The steps DOS takes to display the contents of the disk
on a DIR command. Note that the File Directory sectors may be read
twice; the first pass searches for the volume label which does not
have to be in the first Directory sector; the second pass retrieves the
filenames.

263

-------------.... --------------

Writing MS-DOS Device Drivers, Second Edition

264

DOS

Media Check
-------------->

Yes
< -------------
GetBPB
-------------->
Read
-------------->
Media Check
GetBPB
-------------->
Read
-------------->
Media Check
GetBPB
-------------->
Read
-------------->
Media Check
Get BPB
-------------->
Read
-------------->

Disk Device Driver

Has the disk changed?

Newly formatted disk in B: therefore the disk has changed.

DOS needs the new BIOS Parameter Block for the new disk to
determine where the Directory starts.
DOS requests the first Directory sector in order to find the
volume label.
DOS may make these requests several times depending on the
amount of memory DOS has available to store information on
the disk.
Read the Directory sector for file Name and size information.

Retrieve the current BPB if needed for calculating where the
File Directory is.

Read the Directory sector for calculating number of files on the
disk.
Retrieve the current BPB if needed for determining where the
FAT resides.

Read the FAT sector to calculate the amount of space available
on the disk.

Table 7-18: The typical calls DOS makes to the disk device driver in
order to process the DIR command on a newly formatted disk. The
calls depicted are typical because the type and amount of calls will
depend on the DOS configuration used and whether it is the first time
the DIR is issued.

So far, the simple DIR command has DOS reading many sectors ofthe disk.
What other calls can the disk device driver expect? Recall that DOS always checks
to determine whether the disk has changed. This is reflected in the fact that each
disk read requested of the disk device driver is preceded by a Media Check call.

Let's take the example above-the DIR of a freshly formatted disk-and
expand the steps DOS has to take to arrive at the message "file not found." The
typical calls that DOS makes to the disk device driver to perform this task and
the responses it receives are shown in table 7-18.

Note that, in table 7-18, there are a lot of Media Check and Get BPB calls
to ensure that the disk has not been changed. There are generally fewer of these

----- _.- _._--- _._ .. __ .- _._ .. ~-.. - ... ~. ~ .. ~-

Introducing Disk Internals

calls for hard disks. This is because the disk device driver knows that the hard
disk is nonremovable and can tell DOS the media has not changed. Therefore,
DOS will not request the BPB except when the hard disk is initially accessed.

Now that we have covered the amount of work that a disk device driver has
to do on request from DOS, we can review the commands that a device driver has
to perform. This will help us understand what is expected of our RAM Disk Device
Driver.

Disk Device Driver Commands
As you have learned, when DOS requires a service from a device driver, the packet
of data that is passed to the device driver with the call is referred to as the Request
Header. Contained within this packet of data is a command number that corre
sponds to the service required by DOS. This command number instructs the
device driver to perform a certain action. You have seen several different com
mands (Input, Output, and Initialization) in previous chapters.

There are 21 commands for device drivers in DOS version 5.0. We will now
describe each of these commands and what is required to write code especially
for disk device drivers. The list of applicable commands is shown in table 7-19.

The Initialization Command
The Initialization command is the first command issued to the disk device driver
after it has been loaded into memory. This call is issued because DOS needs
several pieces of information from the device driver. The first is how many disk
drive units this particular disk device driver will be supporting. For disks, this
number is usually read through switches set on the PC motherboard.

The next piece of information that the device driver must return to DOS is
the Break Address, which is the next available memory location after the driver.
Because the driver knows its location, it can easily return this information. DOS
then knows where to load the next device driver, if there is one; if not, DOS
continues loading other routines.

The next item returned to DOS is the address of a table of BPBs. For
5V4-inch floppy disk units there are five types of disks: single-sided disks of 8 or
9 sectors per track, double-sided disks of 8 or 9 sectors per track, and special
double-sided (high capacity) disks of 15 sectors per track. These five types of
disks will have five different types ofBPBs, varying in media descriptors, number
of heads, FAT sectors, and File Directory entries. DOS needs to access this table
ofBPBs to determine the various sector sizes of each type of disk supported. The
steps involved in finding the address of the BPB table are shown in figure 7-7.

265

Writing MS-DOS Device Drivers, Second Edition

266

Number

o
1
2
3
4

5-7
8
9

10-11
12
13
14
15
16

17-18
19

20-22
23
24
25

Command Description

Initialization
Media Check
GetBPB
IOCTLInput
Input
Not Applicable
Output
Output With Verify
Not Applicable
IOCTL Output
Device Open
Device Close
Removable Media
Not Applicable
Undefined
Generic VO Control
Undefined
Get Logical Device
Set Logical Device
IOCTLQuery

Table 7-19: All of the applicable commands for block device drivers.

The Media Check Command
The Media Check command in table 7-19 is always called before disk reads and
writes for other than file 110 operations. When directory or FAT information is
accessed, Media Check is called to determine whether the disk has changed. If
so, DOS must read in new information on the disk.

DOS passes the media descriptor for the current disk in a particular disk
drive, and the device driver can use this to determine if the disk has changed.
Normally, as you saw earlier, this is not sufficient information because two
similar types of disks (both single-sided, for example) will have the same media
descriptor.

The device driver can return an indication of one of three possible condi
tions. The first condition is the media has not changed. This will be the case for

REQUEST
HEADER

Table of
BPB
pointers

Introducing Disk Internals

The BIOS Parameter Block Table

disk type 1
address of .. BIOS Parameter BIOS
Block Table

~ Parameter
Block

disk type 2

BIOS
r+" Parameter

Block

address of BPB 1 - disk type 3
\",-

address of BPB 2 -
address of BPB3

BIOS
Parameter

address of BPB 4 - Block

address of BPB 5 -
disk type 4

BIOS
~ Parameter

Block

disk type 5

BIOS
~ Parameter

Block

Figure 7-7: The Initialization command requirement to return the
address of the BIOS Parameter Block Table. This table consists of the
addresses for each of the BPBs for the five types of disks the disk
device driver supports.

267

Writing MS-DOS Device Drivers, Second Edition

268

nonremovable hard disks and RAM disks. The second condition is that the device
driver has determined that the media has changed. The driver could determine
this by checking to see if a disk door open signal has been received from the disk
controller or by simply calculating the time since the last access of the drive. If
the Media Check command is sent to the driver within a very short time interval
since the last access, it is not likely that a disk has been changed.

The last Media Check condition occurs when the device driver does not know
if the media has changed. For example, if the time since the last access of the
drive has exceeded a short predetermined time interval, the device driver as
sumes that a disk change could have occurred and returns a "don't know"
condition. .

The Get BPB Command
The Get BPB command is requested of the device driver whenever a media-is
changed condition is returned to DOS from a Media Check call. Get BPB is called
for hard disks only once.

When the Media Check command returns a "don't know" condition, the Get
BPB command is called only if DOS has no dirty buffers. Dirty buffers are those
buffers that contain modified data for the disk that needs to be written. DOS
assumes that if there are dirty buffers (modified data waiting to be written to
disk), the disk has not changed.

If the device driver receives a Get BPB command, it will have to read the
reserved or boot sector from the disk to access the BPB at offset 11 (decimal) of
the boot sector. The BPB will end up in DOS's work area, and the device driver
will return a pointer to this BPB to DOS. DOS can then use the BPB to calculate
where the FATs and File Directory are on the disk.

The IOCTL Input Command
The IOCTL Input command in table 7-19 tells the device driver to return to DOS
an I/O control string. As you have seen, this is usually not data from the device
in the normal sense but some information regarding the status of the device. It
may be the baud rate for a serial device or the printer control word for a laser
printer. For block devices, this does not have much meaning.

The Input Command
The Input command is sent to the device driver whenever DOS needs to read data
from the disk. DOS will pass to the driver the number of sectors to read, the
starting sector number, and the address of the data-transfer area in which the

Introducing Disk Internals

data is to be placed. DOS will have previously read in the FAT and File Directory
and used these to calculate the needed sectors.

The starting sector number is numbered from 0 to the highest sector number
for the disk and is relative to the start of the partition if it is a hard disk. For
floppy disks, the start sector is always the reserved or the boot sector.

It is up to the device driver to translate this starting sector number into the
appropriate track, head, and sector for the actual physical disk unit.

The Output Command
The Output command tells the device driver to write one or more sectors onto the
disk. As it does for the Input command, DOS passes the starting sector number,
the number of sectors to write, and the data-transfer address from which to write.
The driver is responsible for translating this logical sector address to a physical
disk address.

The Output With Verify Command
The Output With Verify command is the same as the Output command except
that after the data is written out, the device driver is responsible for reading the
data back in. This insures that the data has been properly written to the disk.

The VERIFY command in COMMAND.COM is used to set VERIFY ON or
OFF. If it is set ON, all writes to the disk are passed as Output With Verify
commands to the device driver.

The device driver can set a variable to indicate that VERIFY is ON. After
writing to the disk, the driver can jump to the Input routine to read back in the
previously written data and ensure that it is valid.

The IOCTL Output Command
The IOCTL Output command is similar to the IOCTL Input command, but the
direction of data transferred is reversed. This command allows the program to
pass an 110 control string to the device driver.

Again, the disk device driver can use this feature to implement just about
anything. The 110 control string is not treated as normal data to be written out
to the disk but is information that device drivers do not normally get. Without
110 control strings, it would be impossible to communicate with the device driver.
The device driver would only get data to be written to the disk or read from
the disk.

For instance, we could use 110 control strings to suspend disk operations
temporarily and perform some maintenance diagnostics. However, this would
involve a large amount of programming.

269

Writing MS-DOS Device Drivers, Second Edition

270

The Device Open Command
This disk driver command is new for DOS version 3.0 and is designed to signal
the device driver that a file open for the disk has occurred. The device driver could
keep a count of file opens to ensure that any reads and writes to the disk were
preceded by file open commands. If not, we could be writing to the disk when
there is no file opened. This would be the situation if a disk were removed before
the file that was opened was properly closed.

In order to be able to receive Device Open and Device Close commands, the
device driver must set the OpeniCloselRemovable bit in the Attribute word of the
Device Header. Recall that the Device Header is the table that occupies the first
memory locations in the device driver.

The Device Close Command
The Device Close command is sent to the device driver whenever a program has
closed the device. For disks, this happens when a file is closed on the disk.

The disk device driver, in conjunction with Device Open commands, could
keep a counter of open files. When a Device Open command is sent, the driver
would increment a counter. When a Device Close is sent, the device driver would
decrement this same counter. Then, whenever a read (Input command) or a write
(Output command) is sent to the driver, we could check to see whether a file has
been opened for the device. If not, we could disallow any I/O to the disk until files
are properly opened or closed.

Unfortunately, this approach to enforcing proper disk usage is not very
practicaL Let's assume that a user has removed a disk before properly closing the
file. The counter is set at 1, because the file was not closed. However, the device
driver still thinks that the file is opened, so it will not disallow reads and writes
to the disk. In other words, the problem has already occurred and there is no
practical way of catching or remedying the situation.

The Removable Media Command
Removable Media is another command that is available for DOS version 3.0 or
greater. This command is sent to the device driver only if the OpeniCloselRemov
able bit is set in the Attribute word in the Device Header.

With this command, a program could ask the device driver whether
the media is removable. This could save time within a program, because if the
media is not removable, the program could assume that there would not be any
disk changes. When the device driver is sent a Removable Media command, it
will return an indication that the media is either removable or nonremovable.

Introducing Disk Internals

Summary
In this chapter, we have covered just about every aspect of disks within DOS,
from what disks are, what information is contained on a disk, and how DOS uses
a disk, through the inner workings of DOS and disk device drivers. All disks are
treated in a similar manner, and DOS interacts with a disk device driver through
a standard set of driver commands. These driver commands allow the device
driver to read from, write to, and otherwise control the disk. The device driver
can also account for the different types of disks: removable and nonremovable.

You are now ready to tackle the task of writing a disk device driver. In the
next chapter, we will use all the information presented in this chapter to build a
RAM disk. The RAM disk will be written to handle most of the commands we
have just discussed and will work on DOS versions 2.0 through 5.0.

Questions
1. What is the proper order on the disk of the following:

User data area
File Allocation Table (FAT)
File Directory
Boot Record

2. How does the Boot Record get placed on a disk?

3. What is the maximum length of a cluster chain?

4. What is the maximum size of a disk?

5. What is the minimum size of a disk?

6. What is the purpose of the Get BPB driver command?

7. What constitutes an "illegal" file name?

Answers may be found in appendix F.

271

Qhapter 8

A RAM Disk Device
Driver

RAM Disks and How They Work

What Commands the· RAM Disk
Device Driver Will Use

Building the RAM Disk Device Driver

Modifying the RAM Disk Device
Driver

A RAM Disk Device Driver

In this chapter, we present a block-oriented device driver, the RAM disk
device driver. Rather than controlling actual hardware, the RAM disk device
driver will simulate a floppy disk, so it will use features that we have not
presented in the previous device drivers-commands that are applicable to block
devices and, more specifically, disk-type block devices. Much ofthe material about
disks from chapter 7 is used here.

The RAM disk device driver simulates a disk by using random access
memory (RAM) to store data normally destined for a hardware disk. Because
RAM is a much faster storage medium than magnetic media, a RAM disk has
almost instant response to a read or write. The size of the RAM disk will be lOOK.
This lOOK of storage will all be actual usable space; no overhead is included in
this figure. We will also add the ability to change the disk to any desired capacity,
limited by the amount of memory in the PC.

Just as hard-disk or floppy disk units give an audible or visual indication
when in use, the RAM disk device driver will have a similar ability. The RAM
disk device driver will turn on the PC's internal speaker each time we read or
write to the RAM disk. This allows us to hear the RAM disk as we use it.

Using the RAM Disk Device Driver
When you boot DOS with the RAM disk device driver in this chapter, you will see
the following message on the screen.

The Waite Group lOOk RAM Disk

First, you must determine the drive letter that should be associated with
the RAM disk. The RAM disk will appear as the first drive letter after the last

275

Writing MS-DOS Device Drivers, Second Edition

drive in the PC. For single and dual floppy disk systems, the RAM disk will be
drive C:. If the PC has a single hard disk, the RAM disk will be drive D:.

If you copy a file to the RAM disk, you will notice an audible tone during the
transfer. This means the RAM disk is working. If you use a DIR or CHKDSK
command, you will hear short clicks from the speaker. Again, you are hearing the
RAM disk at work, as DOS reads the RAM disk for information on the files stored
on the disk.

RAM Disks and How They Work

276

Normally, disks are hardware devices that store digital data on sectors, tracks,
and cylinders. The disk controller managing a disk unit is responsible for finding,
storing, and retrieving the data from the disk itself.

RAM disks simulate the behavior of disk hardware in RAM memory. On a
magnetic disk, data is stored in sectors. With a RAM disk, sectors are represented
by areas of read/write memory, and the RAM disk data is organized in these
"sectors" by defining the areas of memory one after the next. Like a hardware
disk, the RAM disk defines the storage areas starting with sector 0, followed by
sector 1, and so on, creating a one-to-one correspondence between the RAM disk's
storage area in memory and the hardware disk storage area. Figure 8-1 shows
the similarity of the RAM disk to a floppy disk.

Theoretically, RAM disks can be any size. However, the size is actually
limited by the amount of available memory on your PC. On 8086/8088 PC systems
without EMS (Expanded Memory System), a maximum of 640K of memory is
allowed. To use a RAM disk there must be sufficient memory on your PC to run
DOS and your largest application program.

Determining the proper amount of memory space is not easy, because you
will have to experiment with the particular version of DOS and the size of the
application programs you use. The RAM disk driver developed in this chapter is
sized at lOOK, which should not present any problems on most DOS systems.

It should be noted that this capacity problem can be alleviated on
80286/80386 systems. On these systems, it is possible to have "extended" memory
beyond 640K and to define the RAM disk storage area in the extended memory
area, leaving the 640K of "normal" memory for DOS and application programs.
An example of a RAM disk device driver that allows this is IBM's standard
VDISK.COM driver, which is provided with PC-DOS versions 3.1 and higher.
This chapter will not address this concept of extended memory RAM disks.

A RAM Disk Device Driver

The RAM Disk Device Driver
The RAM disk device driver will consist of two parts: a device driver written to
DOS requirements and the space reserved for the RAM disk data storage.

Within the second part, space is set aside for the Boot Record, the FAT, and
the File Directory, just like on magnetic disks. (See figure 8-1.)

640K

OK

RAM
Disk

RAM Disk
DEVICE
DRIVER

DOS

Top of
memory Sector n

100K

Beginning Sector 0
of memory 1-----------'

File
Directory

FAT

Boot Record

Figure 8·1: How RAM disks use memory to simulate the storage of a
floppy disk. Like the floppy disk, RAM disks store data in memory in
sectors. Exploded view shows the IBM PC's memory space for the
RAM disk user area allocated just after the code for the RAM disk
device driver.

277

Writing MS-DOS Device Drivers, Second Edition

278

The overhead for the RAM disk includes the Boot Record, the FAT, and the
File Directory. Recall from chapter 7 that each has a specific purpose. We will
review each of these sections of the RAM disk.

The Boot Record consists of four parts: the jump instruction, the vendor
identification, the BIOS Parameter Block (BPB), and the optional boot instruc
tion code. For the RAM disk, we will implement only the vendor identification
and the BPB. We have. no need for the boot-related information, because we
cannot boot DOS from the RAM disk.

The BPB defines the disk to DOS. We specify the size of the RAM disk
(lOOK), the size of the File Allocation Table (FAT), and the size of the File
Directory to DOS through the BPB.

The File Allocation Table (FAT) is used to keep track of where each file
stores its data in the RAM disk. Recall that each unit of storage is called a cluster,
or allocation unit. We can define a cluster either as one sector or as a power of
two sectors (that is, 2, 4, 8, etc.); the cluster is identified in the FAT through a
11/2-byte cluster number. The FAT must be large enough to contain one cluster
number for each cluster in the storage space for the RAM disk.

The File Directory is a table of entries that records our use of the RAM disk,
including all file names as well as the names of any subdirectories we create in
the RAM disk. Because each entry requires 32 bytes, we can store 16 such entries
in a 512-byte sector. How large the File Directory will be depends on how many
entries we wish the RAM disk to store.

Lastly, we have the actual data-storage area for the RAM disk. If lOOK is to
be allocated for data storage, the actual amount of memory required by the RAM
disk will be the amount of overhead for the Boot Record, the FAT, and the File
Directory, plus lOOK. .

Specifying the Internal Format of the RAM Disk
To determine what the RAM disk format will be like, we must specify many of
the parameters in the BPB, the size of the File Allocation Table, and the number
of entries in the File Directory.

In figure 8-2, each field of the BPB is specified for the RAM disk device
driver as follows. The Sector Size (SS) is 512 bytes per sector. The Allocation Unit
(AU) size is 1 sector per cluster, because it is a small disk. The number of Reserved
Sectors (RS) is 1 (one and only one is necessary for the boot record). The number
of FATs (NF) is 1. The Directory Size (DS) is set at 48 entries. The number of
Total Sectors (TS) is 205. The Media Descriptor (MD) is feh. The FAT Sectors
(FS) is 1. The last three entries in the BPB, the Sectors per Track (ST), the
Number of Heads (NH), and the number of Hidden Sectors (HS) are set to 0; they
are not meaningful for a RAM disk, because there is no hardware associated with
the RAM disk.

A RAM Disk Device Driver

Starting
Name Location Length Description

SS 0 2 Sector Size in bytes
AU 2 1 Allocation Unit size (sectors per cluster)
RS 3 2 Number of Reserved Sectors
NF 5 1 Number of FATs on this disk
DS 6 2 Directory Size (number of files)
TS 8 2 Number of Total Sectors
MD 10 1 Media Descriptor
FS 11 2 FAT Sectors (each FAT)
ST 13 2 Number of Sectors per Track
NH 15 2 Number of Heads
HS 17 2 Number of Hidden Sectors

Table 8-1: The fields that comprise the BIOS Parameter Block (BPB).
The start location for each of the fields is relative to the beginning of
the BPB.

Our RAM disk will have only one File Allocation Table. It is unnecessary to
have a second FAT because we do not expect media problems with the RAM disk.
Also, DOS does not make use of the second copy of the FAT in the event of
problems with the first copy, so why bother?

The number of sectors the FAT will require is based on the number of
clusters we need for the RAM disk. We have set the number of sectors per cluster
(AU) at 1. Thus, for a lOOK RAM disk at 512 bytes per sector, we have 200
sectors and 200 clusters. Because each cluster will occupy 11/2 bytes in the FAT,
we need 300 bytes for storing all possible cluster numbers in the FAT. Based on
512-byte sectors, this is well under one sector's worth. Therefore, we set the FAT
Sectors (FS) at 1.

The File Directory for the RAM disk will contain up to 48 entries. Because
each entry occupies 32 bytes, we need 1,536 bytes, or three sectors. The Total
Sectors (TS) is the sum of the overhead sectors plus the space available for
data storage. This is calculated as follows:

1
+ 1
+ 3
+200

205

for the boot record (Reserved Sectors)
for the first (and only) FAT
for the file directory
for the lOOK user data area
total sectors in the RAM disk

279

r

-

Writing MS-DOS Device Drivers, Second Edition

280

Boot FAT File userDalal Record Directory Area

_1-14-1_1 .. 3-!-200-l
Sectors I

----_._------------------...
JLmP Vendor BIOS -I Parameter Code Identification Block

Code

0 3 11 30 512
BYTE
Where the BIOS Parameter Block (BPB) contains:

Name Start Value Description

SS 11 512 Sector size in bytes
AU 13 1 Allocation unit size

RS 14 1
(sector per cluster)

Number of reserved sectors
NF 16 1 Number of FATs on this disk
OS 17 48 Directory size (number of files)
TS 19 205 Number of total sectors
MD 21 FEh Media descriptor
FS 22 1 FAT Sectors (each FAT)
ST 24 0 Number of sectors per track
NH 26 0 Number of heads
HS 28 0 Number of hidden sectors

Figure 8-2: Each of the four parts of the RAM disk, with an exploded
view of the specific sections and the values for them within the RAM
disk's Boot Record.

The format of the RAM disk, the Boot Record, and the values for the BPB,
are shown in figure 8-2.

Some RAM Disk Driver Design Choices
In the preceding chapters, you have seen that the rules for specific device drivers
specify the exact requirements for the Device Header, the command processing,
and the setting of the Status word of the Request Header. For a particular device
you wish to control, you need to provide functional interfaces to DOS and your
specific device for certain standard operations, such as Read, Write, and Initial
ize. Beyond this, you decide which of the other commands to implement. These

A RAM Disk Device Driver

include the I/O Control functions, Status, and Flush. Not all of these commands
are applicable to all device drivers, but you certainly have the choice of whether
to implement a particular feature.

The specific design choices made for the RAM disk device driver are to
provide only one FAT and to provide an audible indication whenever the RAM
disk is being accessed. The RAM disk device driver has been written so that you
can alter the size of the RAM disk easily by reassembling the source code. You
will see this at the end of the chapter.

What Commands the RAM Disk
Device Driver Will Use

Our RAM disk device driver will implement seven standard commands: Initialize
(0), Media Check (1), Get BPB (2), Input (3), Output (8), Output With Verify (9),
and Removable Media (15). These are the same basic commands required for a
disk device driver under DOS.

The RAM disk device driver processes these commands in the same fashion
as other disk device drivers do, thus allowing DOS to treat the RAM disk device
driver just like a normal disk. In upcoming sections, we will examine each
command in depth. However, let's take a quick look at the basic function of each
command as it applies to the RAM disk device driver.

The driver's Initialization command will set up memory space to look like
a disk, with each sector of the RAM disk represented by a portion of memory.
The Media Check command allows DOS to find out whether the RAM disk has
been removed. Because the RAM disk uses memory and is not a removable disk,
DOS must know that it is not removable. The Get BPB command allows DOS
to determine the disk parameters ofthe RAM disk. DOS will use this information
to locate the File Allocation Table and the File Directory, as well as the user
data area. The Input command is sent to the RAM disk device driver when DOS
requires a sector of data from the RAM disk. The Output command tells the
device driver to write data to the RAM disk. The Output With Verify command
is similar to the Output command, with the additional task of reading the data
back in. This command was built into the device driver strategy because of the
possibility of marginal disk media reliability. We verify the write by reading
back the data to ensure that the write was successful. Lastly, the Removable
Media command allows programs to determine whether to issue messages to
change diskettes. Figure 8-3 shows the commands that DOS can send to the
RAM disk device driver. Each command causes the RAM disk device driver to
perform a function.

281

Writing MS-DOS Device Drivers, Second Edition

DOS
Commands

RAM
Device Driver Functions

Initialize DISK
Set up memory to DEVICE look like a disk

DRIVER
Has the disk changed?

GetBPB Get disk parameters

Input Read from the RAM disk

Output Write to the RAM disk

Write to the RAM disk
and read back the data

Figure 8-3: The seven commands that the RAM disk device driver will
process. Each of the commands requires the RAM disk device driver
to perform an action.

The RAM Disk Device Driver Program Listing

282

We begin our look at the RAM disk device driver with listing 8-1. The format is
unchanged from previous device drivers. The first section of code includes a
summary of what the RAM disk device driver does. The commands you may
implement may not be applicable to all versions of DOS. Note these differences.
For example, the Removable Media command is valid only for DOS 3.0 or greater.

We have named the main procedure ramdisk to distinguish it from others
in earlier chapters. In the section called the "Instructions to the Assembler," you
will define the strucs for each of the commands the driver will process. This
allows you to refer to the variables that DOS passes to your device driver, as well
as making it easier for it to pass back information to DOS.

Within the main procedure code, you add an assembler pseudo-operation to
define the label starCaddress, which will contain the address of the current
instruction address. You will use this at the end of the RAM disk device driver
to determine where the memory for the RAM disk will begin.

A RAM Disk Device Driver

Listing 8·1: The beginning of the RAM disk device driver.

page
title

60,132
A RAM Disk Device Driver

i*** ***********

; * This is a RAM Disk Device Driver *
; * Author: Robert S. Lai *
; * Date: 29 November 1991 *
. * Purpose: A RAM Disk with audible tones * ,
; * This is a RAM Disk Device Driver *
i*** ***********

; summary:
This RAM disk device driver is built to DOS 3 requirements
but is compatible with DOS 2.

The command processing allows for 17 commands, numbered from ° thru 16. The specific commands that are allowed in DOS 3
are not used to allow the RAM Disk to run under DOS 2.

i*** ***********

; * ASSEMBLER DIRECTIVES *
i*** ***********

cseg
ramdisk

; structures

rh
rh_len
rh_unit

rh_cmd
rh_status
rh_res1
rh_res2
rh

rhO
rhO_rh
rhO_nunits

rhO_brk_ofs
rhO_brk_seg
rhO_bpb_tbo

segment para public 'code' ;only one segment
proc far
assume cs:cseg,es:cseg,ds:cseg

struc
db
db

db
dw
dd
dd
ends

struc
db
db

dw
dw
dw

dw

;request header
7 ;len of packet
7 ;unit code

; (block devices only)
7 ;device driver command
7 ;returned by device driver
7 ; reserved
7 ; reserved

;Initialization (command 0)
size rh dup (7) ; fixed portion
7 ;number of units

; (block devices only)
7 ;offset address for break
7 ;segment address for break
7 ;offset address of pointer

ito BPB array
7 ;segment address of pointer

ito BPB array

283

Writing MS-DOS Device Drivers, Second Edition

Listing 8-1: (cont.)

rhO

rh1
rh1 rh
rh1_media
rh1_md_stat

rh1

rh2
rh2_rh
rh2_media
rh2_buf_ofs

rh2J)bpbo

rh2J)bpbs

rh2

rh4
rh4_rh
rh4_media
rh4_buf_ofs

rh4

rhB
rhB_rh
rhB_media
rhB_buf_ofs

rhB start

284

db

ends

struc
db
db
db

ends

struc
db
db
dw

dw

dw

dw

ends

struc
db
db
dw

dw

dw

dw

ends

struc
db
db
dw

dw

dw

dw

7 ;first available drive
; (DOS 3+) (block only)

;Media_Check (command 1)
size rh dup (7) ; fixed portion
7 ;media descriptor from DPB
7 ;media status returned by

;device driver

;Get_BPB (command 2)
size rh dup(7) ;fixed portion
7 ;media descriptor from DPB
7 ;offset address of

;data transfer area
7

7

7

;segment address of
;data transfer area
;offset address of
;pointer to BPB
;segment address of
;pointer to BPB

;INPUT (command 4)
size rh dup(7) ;fixed portion
7 ;media descriptor from DPB
7 ;offset address of

;data transfer area
7 ;segment address of

;data transfer area
7

7

;transfer count
; (sectors for block)
; (bytes for character)
;start sector number
; (block only)

;OUTPUT (command B)
size rh dup(7) ;fixed portion
7 ;media descriptor from DPB
7 ;offset address of

;data transfer area
7

7

7

;segment address of
;data transfer area
;transfer count
; (sectors for block)
; (bytes for character)
;start sector number

A RAM Disk Device Driver

Listing 8·1: (cont.)

rh8

rh9
rh9 rh
rh9_media
rh9_buf_ofs

rh9 count

rh9 start
rh9

rh15
rh15 len
rh15_unit

rh15_cmd
rh15 status
rh15 resl
rh15 res2
rh15

ends

struc
db
db
dw

dw

dw

dw
ends

struc
db
db

db
dw
dd
dd
ends

;commands that do not
INPUT_STATUS
INPUT_FLUSH
OUTPUT_STATUS
OUTPUT_FLUSH
OPEN
CLOSE
REMOVABLE

size
?
?

?

?

?

?
?

?
?
?
?

rh

; (block only)

;OUTPUT_VERIFY (command 9)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count
; (sectors for block)
; (bytes for character)
;start sector number (block only)

;Removable (command 15)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
;reserved

have unique portions to the request header:
(command 6)
(command 7)
(command 10)
(command ll)
(command 13)
(command 14)
(command 15)

i*** ***********

; * MAIN PROCEDURE CODE *
i*** ***********

begin:

start address equ $;starting address

i*** ***********

; * DEVICE HEADER REQUIRED BY DOS *
.** ,

dd -1 ;no device driver after this

285

Writing MS-DOS Device Drivers, Second Edition

Listing 8·1: (cont.)

attribute
strategy
interrupt
de v_name

dw
dw
dw
db
db

2000h
deY_strategy
dey_interrupt
1

;blk dey, non IBM format
;address of strategy routine
;address if interrupt routine
;number of block devices

286

7 dup (?) ;7 byte filler

In the Device Header section, the RAM disk device is defined in the Attribute
word by clearing bit 15 to 0 to indicate that this is a block device. Bit 13 is set to
specify that the RAM disk is not IBM format-compatible (which means that DOS
will not use the Media Descriptor byte to determine the size of this disk). This
Device Header will allow the RAM disk device driver to work under both DOS
2.0 and 3.0 or greater. If you are using version 3.0 or greater of DOS, set bit 11
to tell DOS that the device driver also supports the Open, Close, and Removable
Media commands.

Finally, you do not specify a name for the RAM disk device driver, because
DOS does not permit block device drivers to have a name. Instead, the value. of
the first byte equals the number of RAM disk units that the device driver will
control. Set this value to 1 to indicate to DOS that there is only one RAM disk.

Work Space for Our Device Driver
In this familiar section, you must define all the variables you will be using in the
RAM disk device driver. In listing 8-2, the variables rh_seg and rh_ofs store the
address of the Request Header that DOS passes to the RAM Disk Device Driver
during the STRATEGY call.

Next, the Boot Record is defined. Starting with the variable booCrec, we lay
out the exact contents of the RAM disk as it will appear in memory using Define
Byte (db) and Define Word (dw) directives. You will use this data to build the
RAM disk as well as to store the data when DOS requests a copy of the BPB
during a Get BPB command (you will see more of this in a later section). Three
bytes of zeroes are defined in the jump instruction portion of the Boot Record,
because the RAM disk is not bootable. Next comes the vendor identification,
which identifies the disk as version 1.0 from The Waite Group.

At the label bpb, the BPB is defined. Refer to figure 8-2 to see the definitions
of the necessary parameters that will describe the RAM disk to DOS.

The next set of variables includes those that transfer data from the RAM
disk to DOS and vice versa when the Read and Write commands are sent to the
driver by DOS. The amount of data to be transferred, or the number of sectors,
is retrieved from the Request Header and stored in the variable total. The verify

A RAM Disk Device Driver

Listing 8-2: The variables used by the RAM disk device driver. The Boot
Record contents are declared in this section, as well as the variables that
control the transfer of data between DOS and the RAM disk.

;**

; * WORK SPACE FOR THE DEVICE DRIVER *
;**

bpb equ
bpb_ss dw
bpb_au db
bpb_rs dw
bpb_nf db
bpb_ds dw
bpb_ts dw
bpb_md db
bpb_fs dw

bpb----1)tr dw

; current RAM

total
verify
start
disk
buf ofs -
buf _seg

res cnt -
ram_par
bell

dw
dw

equ
db
db

$
512
1
1
1
48
205
Ofeh
1

bpb

?
?

;offset address of request header
;segment address of request header

$
3 dup (0)
'TWG 1. 0'

;dummy DOS boot record
;not a jump instruction
;vendor id

;This is the BIOS Parameter Block
;512 byte sector size
;cluster size is 1 sector
;1 (boot) reserved sector
;1 FAT only
;#files in the File Directory
;sects=100KB + 5 overhead
;media descriptor
;FAT sectors in each FAT

;bios parameter block pointer array (1 entry)

disc information

dw ? ;transfer sector count
db 0 ;verify l=yes , O=no
dw 0 ;start sector number
dw 0 ;RAM disk start address
dw ? ;data transfer offset address
dw ? ;data transfer segment address

dw 5 ; # reserved sectors
dw 6560 ; paragraphs of memory
db 1 ;1= bell on for RAM disk i/o

variable is used to determine whether to read the data after processing a Write
command. The variable start is used to point to the start sector of data to be
transferred. The variable disk is used to contain the starting memory address of
the RAM disk. The variables buf_ofs and buf_seg are used to store the address of
the data area within DOS. This buffer area is used to store data on disk read
operations and to write data from write operations.

287

Writing MS-DOS Device Drivers, Second Edition

The last variables defined are used by the driver to control the RAM disk.
We use res_cnt to indicate the number of sectors reserved for use by the RAM
disk (here this number is 5), including the Boot Record, the File Allocation Table,
and the File Directory. You can adjust this number for larger or smaller FATs
and File Directories. The variable ramyar is used to indicate the number of
16-byte memory paragraphs the RAM disk will occupy. Here we use 6560
paragraphs (205K times 32 paragraphs per K). Lastly, the variable bell indicates
whether or not to produce a variable-length tone each time the RAM disk device
driver processes a command. If you set this variable to 1, you will hear the RAM
disk in action.

The RAM Disk STRATEGY and INTERRUPT Sections
The STRATEGY and INTERRUPT routines are the actual entry points from DOS
into the RAM disk device driver. The STRATEGY routine saves the Request
Header address into the variables rh_seg and rh_ofs. The INTERRUPT routine
processes the command (number) that is stored in the Request Header. These
routines are identical to those in earlier chapters (see listing 8-3).

Listing 8-3: The code for the STRATEGY and INTERRUPT routines .

. ** ,

. * , THE STRATEGY PROCEDURE *
;**

dev_strategy: mov cs:rh_seg,es
mov cs:rh_ofs,bx
ret

;save the segment address
;save the offset address
;return to DOS

.** ,

. * , THE INTERRUPT PROCEDURE *
i*** ***********

;device interrupt handler - 2nd call from DOS
dev_interrupt:

288

cld
push
push
push
push
push
push
push
push

ds
es
ax
bx
cx
dx
di
si

;save machine state on entry

A RAM Disk Device Driver

Listing 8·3: (cont.)

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

;get request header command mov
rol
lea
mov
add
jmp

al,es: [bx] .rh_cmd
al, 1
di,cmdtab
ah,O

;times 2 for index into word table
;function (command) table address
;clear hi order

di,ax
word ptr [di]

;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label byte ; * = char devices only
dw INITIALIZATION initialization
dw MEDIA_CHECK media check (block only)
dw GET_BPB build bpb
dw IOCTL_ INPUT ioctl in
dw INPUT input (read)
dw ND_INPUT ;*nondestructive input no wait
dw INPUT_STATUS ; * input status
dw INPUT_FLUSH ; * input flush
dw OUTPUT ; output (write)
dw OUTPUT_VERIFY ; output (write) with verify
dw OUTPUT_STATUS ;*output status
dw OUTPUT_FLUSH ;*output flush
dw IOCTL_OUT ioctl output
dw OPEN device open
dw CLOSE device close
dw REMOVABLE removable media
dw OUTPUT_BUSY output til busy

Your Local Procedures
In this section, you must define four procedures for use by the RAM disk device
driver. These procedures are save, cvt2seg, bell1, and bell2 (see listing 8-4).

The save procedure retrieves information from the Request Header concern
ingthe data transfer between DOS and the RAM disk device driver. Use the Input
command struc rh4 to store the address of the data-transfer buffer into variables

289

Writing MS-DOS Device Drivers, Second Edition

Listing 8·4: The code for four procedures. The save procedure stores data
from the Request Header. The cvt2seg procedure converts a sector
information into a RAM disk address. The bellI and bell2 procedures turn
the speaker on and off if needed.

i*** ***********

; * YOUR LOCAL PROCEDURES *
i*** *****~*****

save

save

cvt2seg

290

proc near ;saves data from Request Header

called from INPUT, OUTPUT

mov
mov
mov
mov
mov
mov
mov
mov
mov
ret
endp

proc

aX,es: [bx] .rh4_buf_seg
cs:buf_seg,ax
aX,es: [bx] .rh4_buf_ofs
cs:buf_ofs,ax
aX,es: [bx] .rh4_start
cs:start,ax
aX,es: [bx] .rh4_count
ah,O
cs:total,ax

;save data transfer
; segment
;save data transfer
; offset
;get start sector number
; save it
;# sectors to transfer
;clear hi order
; save in our area
;return to caller

near ;calculates memory address

requires cs:start
cs:total
cs:disk

starting sector
total sector count
RAM disk start address

returns ds
cx
si

uses ax

mov
mov
shl
mov
add
mov
mov
mov
mov
mul

cx
si
ds

aX,cs:start
cl,5
aX,cl
cX,cs:disk
cX,ax
ds,cx
si,O
aX,cs:total
cx,512
cx

segment address
count of total bytes
= 0 for paragraph boundary

;get starting sector number
;multiply by 32 paragraphs/sector
; by shifting left 5 places
;get start segment of RAM disk
;add to initial segment
; DS has start segment
;make it on a paragraph boundary
;total number of sectors
;byte per sector
;multiply to get xfer length

A RAM Disk Device Driver

Listing 8-4: (cont.)

or aX,ax ;too large (carry set)?
jnz calcl ;no (less than 64k)
mov aX,Offffh ;yes - make it 64k

calcl: mov cX,ax ; move length to cx
ret ;return to caller

cvt2seg endp

belll proc near ;bell on if needed
cmp cs:byte ptr bell, ° ;bell required?
jz nobelll ;no
mov al,Ob6h ;magic #
out 43h,al ;timer2
mov aX,400h ;cycles
out 42h,al ;lsb
mov al,ah ;msb
out 42h,al
in al,61h ;spkr port
or al,3 ;spkr/timer on
out 61h,al

nobelll: ret ; return
belll endp

bell2 proc near ;bell off if needed
cmp cs:byte ptr bell, ° ;bell off needed?
jz nobell2 ;no
in al,61h ;get port
and al,Ofch ;spkr/timer2 off
out 61h,al

nobel12: ret ; return
bell2 endp

bur_seg and bur_ors. The starting sector and number of sectors to transfer is
stored in variables start and total, respectively. The driver calls this save proce
dure immediately when it needs to jump to the Input or Output command-pro
cessing routines.

The procedure cvt2seg is used to calculate the address of a sector in the
RAM disk (a starting paragraph). Recall that the sectors of a disk are actually
memory locations in the RAM disk, so we need to convert a sector number into
an equivalent memory address. Because each sector is 512 bytes in length and
there are 16 bytes per paragraph of memory, the sector number should be
multiplied by 32 to derive the starting paragraph in the RAM disk's memory.
Next, we calculate the number of bytes to transfer by multiplying the number of
sectors to transfer by 512 bytes per sector.

291

Writing MS-DOS Device Drivers, Second Edition

292

Note that a transfer from DOS to the RAM disk cannot exceed 64K. This
limitation is imposed by the 8086/8088 architecture; each segment is limited to
a size of 64K. Because a data segment cannot exceed 64K, the largest data
transfer is likewise limited.

The last two procedures, belli and bell2, control the PC's speaker. Belli
turns on the speaker and bell2 turns it off. Both procedures will test the flag
variable bell before turning on or off the speaker. A value of 1 placed in bell
allows you to control whether you want to hear an audible tone during reads and
writes. The duration ofthe tone will depend on the length of time between a call
to belli and the next call to bell2. This way you can hear how long a transfer
takes. Short data transfers will make clicks on the speaker, and long transfers
will make beeps because the tone is on longer. These two routines are useful for
debugging any code. If you place calls to turn on and off the speaker around
suspect code, you can determine whether the code is working or looping.

DOS Command Processing
In this section, we will examine the seven DOS commands processed by the RAM
disk device driver. These commands are Initialization, Media Check, Get BPB,
Input, Output, Output With Verify, and Removable Media. With the exception of
the Removable Media command, these commands are the minimum number of
commands that a disk device driver must have.

Command O-Initialization The Initialization command is an important one
for the RAM disk device driver. You build the RAM disk by initializing memory
to contain a Boot Record, a File Allocation Table, and a File Directory. This
satisfies the requirement that the RAM disk be available for use when it exits
from the Initialization command processing. The steps that the RAM disk device
driver performs for the Initialization command are shown below:

1. Initialize memory for the RAM disk

2. Build the Boot Record

3. Build the File Allocation Table

4. Build the File Directory

5. Set the Break Address

6. Set the number of RAM Disk units

7. Set the pointer to the BPB array

Listing 8-5 shows that a call to belli will turn on the speaker for an audible
tone if the variable bell is set to 1. The initial procedure is called to display a

A RAM Disk Device Driver

Listing 8-5: The Initialization command code. The RAM disk is initialized at
this point and contains a Boot Record, a File Allocation Table, and a File
Directory .

. **

. * , DOS COMMAND PROCESSING *

.** ,
;command ° Initialization
Initialization:

call bellI
call initial
push cs
pop dx

;calculate end segment of RAM disk
lea ax,cs:start_disk
mov cl,l
ror aX,cl
add dX,ax
mov cs:disk,dx
mov aX,ram-par
add dX,ax

;return the break address to DOS
moves: [bx] .rhO_brk_ofs, °
moves: [bx] . rhO_brk_seg, dx

;optional bell tone
;display console message
;move cs
; to dx

;start address of RAM disk
;hex digit shift count
;divide by 16 = paragraphs
;add to current cs value
;RAM disk start address
;add # RAM disk paragraphs
;to start segment of RAM disk

;offset is °
; segment

;return number of units for a block device
moves: [bx] .rhO_nunits, 1 ;only one RAM disk

;return address of array of BIOS Parameter Blocks (1 only)
lea dX,bpb-ptr ;address of bpb pointer array
moves: [bx] .rhO_bpb_tbo,dx ;return offset
moves: [bx] .rhO_bpb_tbs,cs ;return segment

;initialize boot, FAT, Directory to zeroes
push ds ;cvt2seg destroys ds
mov cs:start,O ;start sector= °
mov
mov
call
mov
push
pop
mov
rep

aX,cs:res_cnt
cs:total,ax
cvt2seg
al,O
ds
es
di,si
stosb

;move boot record to sector 0
pop ds
mov es,cs:disk
mov di, 0

;#reserved sectors
;#sectors
;address and count
;fill value
; save
;move to es
;all offsets = 0
;clear reserved sectors

;restore ds -> RAM disk
;RAM disk start address
;zero out di (boot record)

293

Writing MS-DOS Device Drivers, Second Edition

Listing 8-5: (cont.)

; build

lea
mov
rep

one and
mov
mov
call
mov
mov
mov
call

si,cs:boot_rec
cx,24
movsb

only one FAT
cs:start,l
cs:total,l
cvt2seg
ds:byte ptr [si],Ofeh
ds:byte ptr 1 [si], Offh
ds:byte ptr 2[si],Offh
bell2

;address of boot record

;copy 24 bytes of boot record

;logical sector 1
;doesn't matter
;get ds:si set quickly
;set the first 2 FAT
; entries to describe
; disc
;optional bell off

;end of initialization - restore es:bx exit

294

mov
mov
mov
jmp

ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;move request header
; segment to es
; offset to bx
;set DONE bit & exit

message indicating the loading of the RAM disk device driver. This initial
procedure is defined at the end of the RAM disk device driver, in the beginning
of what will be the data storage area for the RAM disk. Normally, additional
initialization-only code could be placed here. However, because it is the start of
the RAM disk storage area, clearing the memory assigned to the disk storage area
would erase these instructions before they have a chance to execute. Here the
initial procedure only displays a message, and the normal initialization code you
have seen in the previous chapters is not included in initial. The Break Address
is now set to point to the end of the RAM disk storage area, not to the initial
procedure.

To calculate the Break Address, we determine the end address of the RAM
disk device driver, add the length of the RAM disk (ram-par) to the starting
segment of the RAM disk (disk), and then store this segment and offset address
in the struc variables rhO_brk_seg and rhO_brk_ofs, respectively.

Next, the number of units that the RAM disk device driver will control is
set. This number is part of the Request Header and is set to 1 for this RAM disk
device driver.

DOS needs to know what types of disks the device driver can support. The
code returns a pointer to an array ofBPBs. This lets DOS scan through the table
to match a disk type (see chapter 7 for a detailed discussion).

The next couple of steps involve initializing memory to look like a disk. First,
we must clear the memory space that will contain the Boot Record, the File

-------------_._ .. _. __ ._.- ----

A RAM Disk Device Driver

Allocation Table, and the File Directory; otherwise, DOS may find random values
in the FAT and file-directory areas and think that they are legitimate entries.

The second step is to build the Boot Record. We copy booCrec to the
beginning of the RAM disk using the Repeat Move Bytes instruction (rep movsb).
This move will copy the jump instruction, the vendor identification, and the BPB.

The third step is to build the File Allocation Table. The first two FAT entries,
feffffh, are placed in the beginning of the FAT. This identifies the RAM disk to
DOS whenever DOS inspects the File Allocation Table.

Do not place any information in the File Directory. Instead, leave it initial
ized to zeroes to indicate to DOS that the File Directory has no entries.

Lastly, we restore the ES and BX registers, turn the speaker off, and exit
from the RAM Disk Device Driver.

Command I-Media Check DOS uses the Media Check command to deter
mine whether the disk has been removed. DOS makes this check before it reads
or writes to the disk to ensure that the disk has not been changed since the last
access. The relationship between DOS and the RAM disk device driver for the
Media Check command is shown below:

DOS: Has the disk changed?

RAM disk device driver: Return Media Check Status:

-1 Media has been changed
o Don't know

+ 1 Media has not changed

The Media Check Status is set to 1, which indicates to DOS that the media
has not changed. This is always true for both RAM disks and fixed disks. Here is
the code:

;command 1
Media_Check:

mov
jmp

es: [bxl .rhl_media, 1
done

;block device only
;media is unchanged
;set DONE bit & exit

Command 2-Get BPB DOS uses this command to retrieve the BPB. This
command will be issued if the Media Check command returns a status that
indicates the disk has changed. If the Media Check command returns a status
of "don't know" and DOS has no dirty buffers (data that needs to be written out
to the disk), DOS will also issue a Get BPB command. This command allows DOS
to determine the locations of the FAT and the File Directory, as well as other

295

Writing MS-DOS Device Drivers, Second Edition

Listing 8-6: The code for the Get BPB command.

;command 2
Get_BPB:

push
push
mov
mov
call
push
pop
lea
add
mov
rep
pop
pop
mov
mov
mov
lea
mov
mov
jmp

es
bx
cs:start,Q
cs:total,l
cvt2seg
cs
es
di,cs:bpb
si,11
cx,13
movsb
bx
es
dx,cs:bpb-ptr
es: [bx] .rh2-pbpbo,dx
es: [bx] .rh2-pbpbs,cs
dx,cs:bpb
es: [bx] .rh2_buf_ofs,dx
es: [bx] .rh2_buf_seg,cs
done

;read Boot record
;save request header segment
;save request header offset
;boot record = sector Q
;1 sector
;convert to RAM disk address
;set es to
; cs
;address of bios param blk
;add 11 to si
;length of bpb
; move
;restore request header offset
;restore request header segment
;pointer to BPB array
; to Request Header
;same for segment
;address of BPB =
; sector buffer offset
;same for segment
;set DONE bit & exit

key parameters. The Get BPB command requires the RAM disk device driver to
return the BPB and the address of the array of BPB to DOS. These steps are
shown below:

296

1. DOS passes a Media Descriptor.

2. The RAM disk device driver returns the BPB and the address of the
array of BPBs.

As shown in listing 8-6, the code for the Get BPB command reads the BPB
from the RAM disk into the data buffer specified by DOS. The address of the
BPB array is also passed back to DOS in the Request Header.

Command 3-IOCTL Input The RAM disk device driver does not implement
IOCTL (110 Control String) Input, so it is necessary to set the error bit of the
Status word and indicate error 3 to indicate unknown command. This is shown
as follows:

;command 3
IOCTL_Input:

jmp unknown ;set error bit/code & exit

A RAM Disk Device Driver

Listing 8-7: The code for the Input command. The RAM disk device driver
will read from the RAM disk into the buffer specified by DOS.

;comrnand 4
Input:

call
call
call
mov
mov
mov
add
jnc
mov
sub
mov

inputl: rep
call
mov
mov
mov
jmp

Input Read RAM disk and return data to DOS

belll
save
cvt2seg
es,cs:buf_seg
dLcs:buf_ofs
ax,di
ax,cx
inputl
aX,Offffh
ax,di
cX,ax
movsb
bell2
ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;turn on bell if required
;save Request Header data
;calc RAM disk start address
;set destination seg & ofs
; to es:di
;get offset
;add transfer length
; overflow?
;yes - use max transfer
;subtract offset from max
;new transfer count
;Read RAM disk to data area
;turn off bell if required
;move request header
; segment to es
; offset to bx
;set DONE bit & exit

Command 4-Input DOS uses the Input command to read data from the RAM
disk. This command passes to the RAM disk device driver the starting sector
number to read and the number of sectors to transfer. The RAM disk device driver
translates this to a RAM disk address and moves the data from the RAM disk to
the data buffer specified by DOS. The steps in this process are listed below:

1. DOS passes the starting sector number and the sector count.

2. The RAM disk device driver reads from the RAM Disk.

3. The RAM disk device driver passes data back to DOS.

As listing 8-7 shows, we first turn the speaker on. Then the cvt2seg procedure
is called to convert the sector starting position and length to a RAM disk memory
segment address and a count of the number of bytes to transfer. Next, a mov
instruction is used to transfer the data. Note that you may overflow the segment
if the calculation exceeds 64K. If this is the case, you can adjust the maximum
transfer to 64K. To exit from the Input command processing, restore the Request
Header segment and offset address and then turn the speaker off.

Commands 5, 6, and 7 The RAM disk device driver does not implement the
Nondestructive Input (5), Input Status (6), or Input Flush (7) commands. These

297

Writing MS-DOS Device Drivers, Second Edition

298

commands are not applicable to block device drivers. Here is the code for these
commands:

;command 5
ND_Input:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

busy ;set BUSY bit & exit

done ;set DONE bit & exit

Input_Flush

done ;set DONE bit & exit

Command 8-0utput The Output command is used to write data to the RAM
disk. DOS passes the address of the data to be written, the sector number in the
RAM disk to write to, and the number of sectors of data to be written. The steps
involved in processing the Output command are listed below:

1. DOS passes the address of the data, the starting sector, and the sec
tor count.

2. The RAM disk device driver converts the sector number and count to
an address.

3. The RAM disk device driver writes the data to the RAM disk.

The Output command processing begins with a call to the belli procedure.
This will turn the speaker on if needed. Then the transfer values are saved in
the call to the save procedure. The procedure cvt2seg translates the sector
numbers into an address within the RAM disk. Next, the data is moved from the
RAM disk to the DOS data buffer. Finally, the verify flag is tested; if it contains
a 1, control jumps to the Input routine. Listing 8-8 shows the code for the Output
command.

Command 9-0utput With Verify This command is similar to the Output
command, but it also performs the task of reading the data back in for verifica
tion. A read-after-write operation provides an additional assurance that the
write was successful. This compensates for :media that may be marginal in
retaining the data. If the read was not successful, the Write command is

A RAM Disk Device Driver

Listing 8-8: The code for the Output command. This command reads from the
RAM disk into the DOS data buffer. If the verify flag is set to 1, jump to the
Input command routine to read the data back in to verify that the write was
successful.

;command 8
Output:

Output Write data to RAM disk

outl:

call
call
call
push
pop
mov
mov
mov
rep
mov
mov
cmp
jz
mov
jmp
call
mov
mov
mov
jmp

bellI
save
cvt2seg
ds
es
di,si
ds,cs:buf_seg
si,cs:buf_ofs
movsb
bx,cs:rh_ofs
es,cs:rh_seg
cs:verify,O
outl
cs:verify,O
input
bell2
aX,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;turn bell on if needed
;save Request Header data
;get start address in RAM
;move to
; es
;same for di
;ds:si points to source
; data in DOS
;move ds:si to es:di
;restore es:bx
;for possible jmp to input
;do we verify write?
;no
;reset verify indicator
;read those sectors back in
;turn bell off if required
;move request header
; segment to es
; offset to bx
;set DONE bit & exit

reissued. The steps that the Output With Verify command processing performs
are listed below:

1. DOS passes the address of the data, the starting sector, and the sec
tor count.

2. The RAM disk device driver converts the sector number and count to
an address.

3. The RAM disk device driver writes the data to the RAM disk.

4. The RAM disk device driver reads the data from the RAM disk.

The RAM disk device driver processes the Output With Verify command by
setting the verify flag to 1; it then passes control to the Output command routine.
The Output routine will write the data to the RAM disk and then jump to the

299

Writing MS-DOS Device Drivers, Second Edition

300

Input routine to read the data back in. Here is the code for the Output With Verify
command:

;command 9 Output_Verify
Output_Verify:

mov cs:verify,l
jmp output

;output (write) with verify
;set the verify flag
;go to output routine

Commands 10, 11, 12, 13, and 14 These commands have not been im
plemented in the RAM disk device driver. The Output Status (10) and Output
Flush (11) commands are for character-oriented devices and are not valid for block
devices. The IOCTL Out (12), Device Open (13), and Device Close (14) commands
are applicable to block devices, but we have not implemented them in our RAM
disk device driver. The code for these commands is shown below:

; command 10 Output_Status
Output_Status:

jmp done ;set DONE bit & exit

; command 11 Output_ Flush
Output_ Flush:

jmp done ;set DONE bit & exit

; command 12 IOCTL_Output
IOCTL_Out:

jmp unknown ;set error bit/code & exit

; command 13 Open
Open:

jmp done ;set DONE bit & exit

; command 14 Close
Close:

jmp done ;set DONE bit & exit

Command 15-Removable Media This command is available only for DOS
versions 3.0 or greater and only for block devices. The Removable Media command
returns an indication of whether the disk media is removable. The BUSY bit of
the Status word in the Request Header is set if the media is not removable. If

A RAM Disk Device Driver

Listing 8-9: The code for the error and common exits.

i*** ***********

. * , ERROR EXIT *

.** ,

unknown:
or es: [bx] .rh_status,8003h ;set error bit and error code
jrnp done ;set done and exit

.** ,

. * , COMMON EXIT *

.** ,

busy:

done:

or es: [bx] .rh_status,0200h ;set busy bit

or es: [bx] .rh_status,OlOOh ;set done

pop si ;restore all registers
pop di
pop dx
pop ex
pop bx
pop ax
pop es
pop ds
ret ;return to DOS

the BUSY bit is not set, the media is removable. The steps involved in processing
the Removable Media command are listed below:

1. DOS passes the unit number.

2. The RAM disk device driver returns the BUSY bit set ifthe media is
nonremovable; it returns the BUSY bit not set if the media is remov
able.

DOS will send this command only if a program issues a DOS service request
for IOCTL (44h). One of the subfunctions (08h) tests whether the block device is
changeable. What is unusual is that this IOCTL function does not appear as an
IOCTL Input command but as a Removable Media command. This DOS service

301

Writing MS-DOS Device Drivers, Second Edition

is used to determine whether the disk is fixed; if it is not fixed, the program can
issue a message to the user requesting a disk change.

We set the BUSY bit on since the RAM disk is not removable:

;command 15
Removable:

mov
jmp

Removable

es: [bx] .rh_status,0200h ;set busy
done ;set DONE bit & exit

Command I6-0utput Til Busy This command is available to character
oriented devices using versions 3.0 (or higher) of DOS. For the RAM disk device
driver, set the ERROR bit and ERROR CODE to 3 (unknown command). Here is
the code for the Output Til Busy command:

;command 16
OUTPUT_BUSY:

jmp

Output Til Busy

unknown

The Error and Common Exits

;set error bit/code & exit

In these two sections we process any error exits and common exits by setting the
BUSY and DONE bits of the Request Header status word. Listing 8-9 shows the
entire two sections.

The End of Program
In the End of Program section of the RAM disk device driver, you will find a
rather complex org assembler directive. This statement sets the location counter
to a multiple of 16 bytes, which forces the RAM disk to start on a paragraph
boundary. In doing so, segment addresses are used that assume the offset is O.
This makes it easier for the RAM disk device driver to calculate addresses that
correspond to the sector numbers that DOS passes back.

The constant starCdisk is used by the Initialization command code to store
the start address of the RAM disk.

Place the procedure initial at the beginning of the RAM disk, because it
runs only once during the Initialization command processing and you never need
it again. This initial procedure displays the RAM disk device driver banner on
the screen. Listing 8-10 completes the code for the RAM disk device driver.

The Whole RAM Disk Device Driver
Listing 8-11 lists the entire RAM disk device driver.

302

A RAM Disk Device Driver

Listing 8-10: The last section of the RAM disk device driver shows the code
for the End of Program section .

. ** ,

. * , END OF PROGRAM *

.** ,

;org to paragraph boundary for start of RAM disk

if
org
endif

start disk

($-start_address) mod 16
($-start_address)+16-(($-start_address) mod 16)

equ $

initial proc near

lea
mov
int
ret

initial endp

dX,msgl
ah,9
21h

;initialization
; message
;doscall
;return

msgl db 'The Waite Group lOOk RAM Disk' ,Odh,Oah, '$'

ramdisk endp
cseg ends

end begin

;that's all folks

Building the RAM Disk Device Driver
To build the RAM disk device driver, enter the source code from listing 8-11 into
a file called ramdisk.asm, using a word processor. Next, assemble, link, and
convert the code to .COM format. Be sure to add the RAM disk device driver to
the CONFIG.SYS file; this specifies to DOS that the driver is a user-installable
device driver.

Modifying the RAM Disk Device Driver
The RAM disk device driver, as shown in listing 8-11, is built as a 100K RAM
disk. You can modify the RAM disk to be any size you want. For example, you

303

Writing MS-DOS Device Drivers, Second Edition

304

can make the size of the user data area larger or smaller, and the File Directory
can be made larger to hold more file entries.

The steps in changing the RAM disk are shown below:

1. Decide the size (in K) of the user data area for your RAM disk. Multi
ply this number by 2 to determine the number of sectors in the user
data area. (Example: lOOK = 200 sectors.)

2. Decide the number of sectors per allocation unit. Store this number in
the variable bpb_au.

3. Determine the number of clusters by dividing the size of the user data
area (in sectors) by the sectors per allocation unit.

4. Determine the size of the File Allocation Table by multiplying the
number of clusters by 1.5 bytes. Round this number up to the nearest
512 bytes.

5. Divide the FAT size by 512 to determine the number of sectors re
quired for the FAT. Store this number in the variable bpbJs.

6. Decide the number of files the File Directory will contain. Use a multi
ple of 16. Store this number in the variable bpb_ds.

7. Divide the number of File Directory entries by 16 to determine the
number of sectors the File Directory will require.

8. Add up the number of reserved sectors in the Boot Record (usually 1),
the File Allocation Table, and the File Directory. Store this number in
the variable res_cnt.

9. Add the reserved-sector count (from step 8) to the size ofthe user data
area from step 1. Store this number in the variable bpb_ts.

10. Multiply the number in bpb_ts by 32 to determine the number ofmem
ory paragraphs the RAM disk will occupy. Store this number in the
variable ram-par.

11. Lastly, change the text in the variable msg 1 to reflect the new size of
the RAM disk.

A RAM Disk Device Driver

Listing 8-11: The complete RAM disk device driver.

page
title

60,132
A RAM Disk Device Driver

;**

· * This is a RAM Disk Device Driver * ,
· * Author: Robert s. Lai * ,
· * Date: 29 November 1991 * ,
· * Purpose: A RAM Disk with audible tones * ,
· * This is a RAM Disk Device Driver * ,
;**

; summary:
This RAM disk device driver is built to DOS 3+ requirements
but is compatible with DOS 2.

The command processing allows for 17 commands, numbered from ° thru 16. The specific commands that are allowed in DOS 3
are not used to allow the RAM Disk to run under DOS 2.

i*** ***********

; * ASSEMBLER DIRECTIVES *
.** ,

cseg
ramdisk

; structures

rh
rh_len
rh_unit

rh_cmd
rh_status
rh_res1
rh_res2
rh

rhO
rhO rh
rhO_nunits

rhO_brk_ofs
rhO_brk_seg
rhO_bpb_tbo

segment para public 'code' ;only one segment
proc far
assume cs:cseg,es:cseg,ds:cseg

struc ; request header
db ? ;len of packet
db ? ;unit code

; (block devices only)
db ? ;device driver command
dw ? ; returned by device driver
dd ? ; reserved
dd ? ;reserved
ends

struc ;Initialization (command 0)

db size rh dup (?) ;fixed portion
db ? ; number of units

; (block devices only)
dw ? ;offset address for break
dw ? ; segment address for break
dw ? ;offset address of pointer

ito BPB array
dw ? ; segment address of pointer

ito BPB array

305

Writing MS-DOS Device Drivers, Second Edition

Listing 8-11: (cont.)

rhO - drv_ ltr db ? ;first available drive
; (DOS 3+) (block only)

rhO ends

rh1 struc ; Media_Check (command 1)
rh1 - rh db size rh dup (?) ;fixed portion
rh1 _media db ? ;media descriptor from DPB
rh1 _md_ stat db ? ;media status returned by

;device driver
rh1 ends

rh2 struc ;Get_ BPB (command 2)
rh2 - rh db size rh dup(?) ; fixed portion
rh2 _media db ? ;media descriptor from DPB
rh2 _buf - ofs dw ? ;offset address of

;data transfer area
rh2 _buf _seg dw ? ; segment address of

;data transfer area
rh2 _pbpbo dw ? ;offset address of

;pointer to BPB
rh2-pbpbs dw ? ; segment address of

;pointer to BPB
rh2 ends

rh4 struc ; INPUT (command 4)
rh4 - rh db size rh dup(?) ; fixed portion
rh4 _media db ? ;media descriptor from DPB
rh4 _buf - ofs dw ? ;offset address of

;data transfer area
rh4 - buf _seg dw ? ; segment address of

;data transfer area
rh4 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh4 start dw ? ;start sector number
; (block only)

rh4 ends

rhB struc ; OUTPUT (command B)
rhB rh db size rh dup(?) ;fixed portion
rhB _media db ? ;media descriptor from DPB
rhB _buf - ofs dw ? ;offset address of

;data transfer area
rhB _buf _8eg dw ? ; segment address of

;data transfer area
rhB count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rhB start dw ? ;start sector number

306

A RAM Disk Device Driver

Listing 8·11: (cont.)

rh8

rh9
rh9 rh
rh9_media
rh9_buf_ofs

rh9 count

rh9 start
rh9

rh15
rh15_len
rh15_unit

rh15_cmd
rh15 status
rh15_resl
rh15 res2
rh15

ends

struc
db
db
dw

dw

dw

dw
ends

struc
db
db

db
dw
dd
dd
ends

; commands that do not
INPUT_STATUS
INPUT_FLUSH
OUTPUT_STATUS
OUTPUT_FLUSH
OPEN
CLOSE
REMOVABLE

size
?
?

?

?

?

?
?

?
?
?
?

rh

(block only)

;OUTPUT_VERIFY (command 9)
dup (?) ; fixed portion
;media descriptor from DPB
;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count
; (sectors for block)
; (bytes for character)
;start sector number (block only)

;Removable (command 15)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
; reserved

have unique portions to the request header:
(command 6)

(command 7)
(command 10)
(command 11)
(command 13)
(command 14)
(command 15)

;**

; * MAIN PROCEDURE CODE *
;**

begin:

start_address equ $;starting address

.** ,

. * , DEVICE HEADER REQUIRED BY DOS *
;**

dd -1 ;no device driver after this

307

Writing MS-DOS DeviceDrivers, Second Edition

Listing 8-11: (cont.)

attribute dw 2000h ;blk dev, non IBM format
strategy dw dev_strategy ;address of strategy routine
interrupt dw dev_interrupt ;address if interrupt routine
dev_name db 1 ; number of block devices

db 7 dup(7) ;7 byte filler

;**

; * WORK SPACE FOR THE DEVICE DRIVER *
;**

bpb equ
bpb_ss dw
bpb_au db
bpb_rs dw
bpb_nf db
bpb_ds dw
bpb_ts dw
bpb_md db
bpb_fs dw

bpb_ptr dw

; current RAM

total
verify
start
disk
buf ofs
buf _seg

res cnt
ram_par
bell

dw
dw

equ
db
db

$
512
1
1
1
48
205
Ofeh
1

bpb

7
7

;offset address of request header
;segment address of request header

$
3 dup (0)
'TWG 1. 0'

;dummy DOS boot record
;not a jump instruction
;vendor id

;This is the BIOS Parameter Block
;512 byte sector size
;cluster size is 1 sector
;1 (boot) reserved sector
;1 FAT only
;#files in the File Directory
;sects=100KB + 5 overhead
;media descriptor
;FAT sectors in each FAT

;bios parameter block pointer array (1 entry)

disc information

dw 7 ;transfer sector count
db 0 ;verify l=yes , O=no
dw 0 ;start sector number
dw 0 ;RAM disk start address
dw 7 ;data transfer offset address
dw 7 ;data transfer segment address

dw 5 ; # reserved sectors
dw 6560 ;paragraphs of memory
db 1 ;1= bell on for RAM disk i/o

;**

; * THE STRATEGY PROCEDURE *
;**

dev_strategy:

308

mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;save the segment address
;save the offset address
;return to DOS

A RAM Disk Device Driver

Listing 8·11: (cont.)

.** ,
; * THE INTERRUPT PROCEDURE *
.** ,

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

al,es: [bx] .rh_cmd
al, 1
di,cmdtab
ah,O
di,ax
word ptr [di]

;get request header command
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

byte
INITIALIZATION
MEDIA_CHECK
GET_BPB
IOCTL_INPUT
INPUT
ND_INPUT
INPUT_STATUS
INPUT_FLUSH
OUTPUT
OUTPUT_VERIFY
OUTPUT_STATUS
OUTPUT_FLUSH

;* = char devices only
initialization
media check (block only)
build bpb
ioctl in
input (read)

;*nondestructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

309

Writing MS-DOS Device Drivers, Second Edition

Listing 8-11: (cont.)

dw IOCTL_OUT ioctl output
dw OPEN device open
dw CLOSE device close
dw REMOVABLE removable media
dw OUTPUT_BUSY output til busy

.** ,

. * , YOUR LOCAL PROCEDURES *
;**

save

save

cvt2seg

310

proc near ;saves data from Request Header

called from INPUT, OUTPUT

mov
mov
mov
mov
mov
mov
mov
mov
mov
ret
endp

proc

aX,es: [bx] .rh4_buf_seg
cs:buf_seg,ax
aX,es: [bx] .rh4_buf_ofs
cs:buf_ofs,ax
aX,es: [bx] .rh4_start
cs:start,ax
aX,es: [bx] .rh4_count
ah,O
cs:total,ax

;save data transfer
; segment
;save data transfer
; offset
;get start sector number
; save it
;# sectors to transfer
;clear hi order
; save in our area
;return to caller

near ;calculates memory address

requires cs:start
cs:total
cs:disk

starting sector
total sector count
RAM disk start address

returns ds
cx
si

uses ax

mov
mov
shl
mov
add
mov
mov
mov
mov

cx
si
ds

aX,cs:start
cL5
aX,cl
cX,cs:disk
cX,ax
ds,cx
si,O
aX,cs:total
cX,5l2

segment address
count of total bytes
= 0 for paragraph boundary

;get starting sector number
;multiply by 32 paragraphs/sector
; by shifting left 5 places
;get start segment of RAM disk
;add to initial segment
; DS has start segment
;make it on a paragraph boundary
;total number of sectors
;byte per sector

A RAM Disk Device Driver

Listing 8-11: (cont.)

caIcl:

cvt2seg

bellI

mul
or
jnz
mov
mov
ret
endp

proc

ex
aX,ax
calcl
aX,Offffh
cX,ax

near

;multiply to get xfer length
;too large (carry set)?
;no (less than 64k)
;yes - make it 64k
;move length to cx
;return to caller

;bell on if needed
cmp cs:byte ptr bell, 0 ;bell required?
jz
mov
out
mov
out
mov
out
in
or
out

nobelll:
bell1 endp

bell2 proc
cmp
jz
in
and
out

nobel12:
bel12 endp

nobelll
al,Ob6h
43h,al
aX,400h
42h,al
al,ah
42h,al
al, 61h
al, 3
61h,al
ret

near
es:byte
nobell2
al, 61h
al, 0 feh
61h,al
ret

;no
;magic #
;timer2
;cycles
;lsb
;msb

;spkr port
;spkr/timer on

;return

;bell off if needed
ptr bell, 0 ;bell off needed?

;no
;get port
;spkr/timer2 off

;return

i*** ***********

; * DOS COMMAND PROCESSING *
.** ,

;command 0 Initialization
Initialization:

call bellI
call ini tial
push cs
pop dx

;calculate end segment of RAM disk
lea ax,cs:start_disk
mov cl,l
ror aX,cl
add dX,ax
mov cs:disk,dx
mov aX,ram-par

;optional bell tone
;display console message
;move cs
; to dx

;start address of RAM disk
;hex digit shift count
;divide by 16 = paragraphs
;add to current cs value
;RAM disk start address
;add # RAM disk paragraphs

311

Writing MS-DOS Device Drivers, Second Edition

Listing 8-11: (cont.)

add dx,ax ito start segment of RAM disk

;return the break address to DOS
moves: [bx] .rhO_brk_ofs,O ;offset is °
moves: [bx] .rhO_brk_seg,dx ; segment

; return number of units for a block device
moves: [bx] . rhO_nunits , 1 ;only one RAM disk

;return address of array of BIOS Parameter Blocks (1 only)
lea dx,bpb-ptr ;address of bpb pointer array
moves: [bx] .rhO_bpb_tbo,dx ;return offset
moves: [bx] .rhO_bpb_tbs,cs ;return segment

; initialize boot, FAT, Directory to zeroes
push ds ;cvt2seg destroys ds
mov cs:start,O
mov aX,cs:res_ cnt
mov cs:total,ax
call cvt2seg
mov aLa
push ds
pop es
mov di,si
rep stosb

;move boot record to sector °
pop ds
mov es,cs:disk
mov di,O
lea si,cs:boot_rec
mov cx,24
rep movsb

;build one and only one FAT
mov cs:start,l
mov cs:total,l
call cvt2seg
mov ds:byte ptr lsi] ,Ofeh
mov ds:byte ptr 1 [si] ,Offh
mov ds:byte ptr 2 [si], Offh

;start sector = °
;#reserved sectors
;#sectors
;address and count
;fill value
;save
;move to es
;all offsets = °
;clear reserved sectors

;restore ds ~> RAM disk
;RAM disk start address
;zero out di (boot record)
;address of boot record

;copy 24 bytes of boot record

;logical sector 1
;doesn't matter
;get ds:si set quickly
;set the first 2 FAT
; entries to describe
; disc

call bell2 ;optional bell off
;end of initialization ~ restore es:bx exit

mov
mov
mov
jmp

;command 1
Media_Check:

312

aX,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;move request header
; segment to es
; offset to bx
;set DONE bit & exit

;block device only

A RAM Disk Device Driver

Listing 8-11: (cont.)

mov
jmp

;command 2
Get BPB:

push
push
mov
mov
call
push
pop
lea
add
mov
rep
pop
pop
mov
mov
mov
lea
mov
mov
jmp

;command 3
IOCTL_Input:

jmp

;command 4
Input:

call
call
call
mov
mov
mov
add
jnc
mov
sub
mov

inputl: rep
call
mov
mov
mov
jmp

es: [bx] .rhl_media, 1
done

;media is unchanged
;set DONE bit & exit

es
bx
cs:start,O
cs:total,l
cvt2seg
cs
es
di, cs :bpb
si, 11
cx,13
movsb
bx
es
dX,cs:bpbJ)tr

;read Boot record
;save request header segment
;save request header offset
;boot record = sector 0
;1 sector
;convert to RAM disk address
;set es to
; cs
;address of bios param blk
;add 11 to si
;length of bpb
;move
;restore request header offset
;restore request header segment
;pointer to BPB array

es: [bx] . rh2_pbpbo, dx
es: [bx] .rh2_pbpbs,cs
dx, cs :bpb

; to Request Header
;same for segment
;address of BPB

es: [bx] .rh2_buf_ofs,dx
es: [bx] .rh2_buf_seg,cs
done

; sector buffer offset
;same for segment
;set DONE bit & exit

unknown ;set error bit/code & exit

Input Read RAM disk and return data to DOS

bellI
save
cvt2seg
es,cs:buf_seg
di,cs:buf_ofs
aX,di
ax,cx
inputl
aX,Offffh
aX,di
cX,ax
movsb
bell2
ax,cs:rh_seg
eS,ax
bx,cs:rh_ofs
done

;turn on bell if required
;save Request Header data
;calc RAM disk start address
;set destination seg & ofs
; to es:di
;get offset
;add transfer length
;overflow?
;yes - use max transfer
;subtract offset from max
;new transfer count
;Read RAM disk to data area
;turn off bell if required
;move request header
; segment to es
; offset to bx
;set DONE bit & exit

313

Writing MS-DOS Device Drivers, Second Edition

Listing 8-11: (cont.)

;command 5
ND_Input:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

;command 8
Output:

out1:

call
call
call
push
pop
mov
mov
mov
rep
mov
mov
cmp
jz
mov
jmp
call
mov

busy

done

done

Output

bellI
save
cvt2seg
ds
es
di,si
ds,cs:buf_seg
si,cs:buf_ofs
movsb
bx,cs:rh_ofs
es,cs:rh_seg
cs :verify, °
out1
cs:verify,O
input
bell2
aX,cs:rh_seg

mov eS,ax
mov bx,cs:rh_ofs
jmp done

;command 9 Output_Verify
Output_Verify:

mov cs:verify,l
jmp output

;command 10 Output_Status
Output_Status:

jmp done

314

;set BUSY bit & exit

;set DONE bit & exit

;set DONE bit & exit

Write data to RAM disk

;turn bell on if needed
;save Request Header data
;get start address in RAM
;move to
; es
;same for di
;ds:si points to source
; data in DOS
;move ds:si to es:di
;restore es:bx
;for possible jmp to input
;do we verify write?
;no
;reset verify indicator
;read those sectors back in
;turn bell off if required
;move request header
; segment to es
; offset to bx
;set DONE bit & exit

;output (write) with verify
;set the verify flag
;go to output routine

;set DONE bit & exit

A RAM Disk Device Driver

Listing 8-11: (cont.)

;command 11
Output_Flush:

jmp

;command 12
IOCTL_Out:

jmp

;command 13
Open:

jmp

;command 14
Close:

jmp

;command 15
Removable:

mov
jmp

;command 16
OUTPUT_BUSY:

jmp

done ;set DONE bit & exit

unknown ;set error bit/code & exit

Open

done ;set DONE bit & exit

Close

done ;set DONE bit & exit

Removable

es: [bx] .rh_status,0200h ;set busy
done ;set DONE bit. & exit

Output Til Busy

unknown ;set error bit/code & exit

;**

; * ERROR EXIT *
;**

unknown:
or es: [bx] .rh_status,8003h ;set error bit and error code
jmp done ;set done and exit

.** ,

. * , COMMON EXIT *
;**

busy: or es: [bx] .rh_status,0200h ;set busy bit

done: or es: [bx] .rh_status,OI00h ;set done
pop si ;restore all registers
pop di
pop dx
pop cx

315

Writing MS-DOS Device Drivers, Second Edition

Listing 8·11: (cont.)

pop bx
pop ax
pop es
pop ds
ret ;return to DOS

i*** ***********

; * END OF PROGRAM *
i*** ***********
end_of-program:

;org to paragraph boundary for start of RAM disk

if
org
endif

($-start_address) mod 16
($-start_address)+16-(($-start_address) mod 16)

equ $

initial proc near

lea
mov
int
ret

dx,msg1
ah,9
21h

; initialization
; message
;doscall
; return

initial endp

msg1 db 'The Waite Group lOOk RAM Disk' ,Odh,Oah, '$'

ramdisk endp
cseg ends

end begin

;that's all folks

Summary

316

In this chapter, we have built a block device driver. The RAM disk device driver
builds a simulation of a disk in memory; DOS treats this disk no differently than
other disks. You will find that the RAM disk offers much faster access to your
files because you do not have to wait for slow mechanical devices to move the data
around. Block device drivers are similar to character-oriented devices; the differ
ences are in the commands that each driver supports. Writing drivers for block
devices is no different than writing drivers for character-oriented devices.

A RAM Disk Device Driver

We have now built device drivers for the console, printer, clock, and disk
devices. The format for the device drivers has been standardized to the point that
we merely add code for the appropriate commands for each device driver. We have
seen that all device drivers share common code for performing common functions
and that DOS does not distinguish between the drivers insofar as the command
structure is concerned.

You have built enough device drivers that you should now understand what
device drivers do and be ready to start writing device drivers on your own. The
next chapter deals with that topic.

Questions
1. How does a RAM disk device driver differ from a device driver for a

diskette or fixed disk?

2. The BIOS Parameter Block contains which fields:

a. Sector size

b. Number of hidden sectors

c. Number of reserved sectors

d. Number of heads

e. Number of files

f. FAT size

g. Media descriptor

h. Number of total sectors

1. Number of sectors per track

j. Number of FATs

k. Size of user data area

1. Allocation unit size

3. How many FATs does the RAM disk device driver have?

4. What are the basic commands implemented by the RAM disk device
driver?

5. What variables are changed if the size of the RAM disk is changed to
200K? (Hint: This is tough.)

Answers may be found in appendix F.

317

Chapter 9

Building a Complete
Full·function Device
Driver

Required Tools

The Operating Environment

The Device Header and Attribute
Field

Strategy and Interrupt Procedures

DOS Command Processing

Exiting from the Device Driver

The Status Word fortTnimplemented
·ColIlmands

Building a Complete Full-function Device Driver

In this chapter, we will take an in-depth look at writing DOS device
drivers. Previous chapters have presented device drivers for standard types of
devices. The RAM disk device driver of chapter 8 was a simulation of a real device
using memory instead of actual hardware-a virtual device. Each of the device
drivers in this book so far contained code for a set of commands unique to that
particular driver, and the Device Header defined to DOS specific parameters of
each device. This example approach did not cover all the universal aspects of
device drivers, however.

This chapter will describe in detail all tasks required to write a device driver,
starting with the basics of selecting the tools and establishing the working
environment. We will show you how to build a device driver from scratch, starting
with the Device Header and going through each of the commands that may be
incorporated in your driver.

Required Tools
The tools that you will need to write device drivers are shown in table 9-1. The
first is an editor that allows you to enter your assembly language source code
(instructions) into a file. The next is an assembler, which translates your source
statements into object code. The assembler will also help find certain types of
errors in your programs. The linker is a program that converts assembler-gener
ated object code into executable code. Finally, you must use the utility program
EXE2BIN to convert the executable file into a special.COM file. Device drivers
require .COM-format files in order to load the code into memory as it appears in
the file.

321

Writing MS-DOS Device Drivers, Second Edition

Tool

Editor

Assembler

LINK

EXE2BIN

Description

A word processor or text editor program which allows entering
source text into a file. It is also used to modify the text file.

A utility program that converts the source assembly language
program into relocatable object modules.

A linker program which combines one or more relocatable object
modules into an executable file.

A utility program that converts normal executable files into
memory image files. Memory image files are known as .COM files
and are required for device drivers.

Table 9-1: The programming tools required to write DOS device
drivers.

The Perfect Editor

322

We all probably have our favorite word processor or text editor. If we were to
write device drivers for a living, however, we would undoubtedly try to find an
editor that was designed specially for programmers.

Even the most primitive editors have most of the features you need to write
device drivers. These features are the ability to enter and modify text and the
ability to Tab to certain columns to line up instructions, operands to the instruc
tions, and comments.

Additional features that make life easier are the ability to have a second
window that contains the text from another file. This allows you to look at another
file while you edit the first file. This second file could be another example of a
device driver, a file header your program requires, or a file containing the strucs
to copy into your device driver file. Having a second file in a window lets you
inspect any other file without exiting the current file.

Another useful feature of an editor for programming is the ability to custom
ize function keys to perform a particular function. Although most word processors
use the function keys to perform a print command function, such as bold printing
of text, such formatting commands are not useful for writing programs. Instead,
you will want the ability to replace a function-key command with one more useful
to writing programs-for example, a search-and-replace function or a function that
repeats a long instruction sequence that is frequently needed.

Building a Complete Full-function Device Driver

Assemblers
Many assembler programs are available for the IBM PC. Although each ofthese
has its special features, the device driver programs in this book require only one
unusual assembler feature: struc pseudo-operation. This assembler feature lets
you set up a template to access the data without a lot of unnecessary calculations
for relative positions; it also eliminates the need to specify whether the data type
is a byte or a word. It is easy to make changes in the structure to reflect a change
in the data fields and in the lengths of the entries.

In general, you can use the simplest or the most feature-laden assembler to
write a device driver. We used IBM's MASM, because it was available. Other
assemblers you can use are Microsoft's MASM or Borland's Turbo Assembler.

The Operating Environment
When you write programs, you will want to edit, assemble, and link without
having to remember where the program files are on the disk. One useful technique
is to use the PATH command to specify a path to the directory in which all your
program files reside. Then you can let DOS search your directories for files that
do not exist in the current working directory. The PATH command is inserted in
the AUTOEXEC.BAT file and could look like this:

PATH c: \util

Another aid is a text file, called the index file, placed in each directory. This
file contains information you create of what each file contains. Start with a
directory listing using the DIR command and edit this file to keep notes about
each file.

Assembly Language at Its Best and Worst
Source code for programs written in assembly language is either hard or easy to
read. Historically, the debate has been between easy-to-read code that is slow
and hard-to-read code that is fast. The argument is no different today for
assembly language programming on the PC. What is often ignored is that once
the code is written, human memory tends to forget the details and nuances behind
the procedures.

The examples in the previous chapters have been written with clarity in
mind. The code does not have tricky instructions that take advantage of some
hidden feature of the 8088/8086 architecture. This approach is always the best
for learning what device drivers do.

However, because device drivers control the flow of data between the PC
and its devices, you may wish to optimize the code to minimize the time the device

323

•
Writing MS-DOS Device Drivers, Second Edition

324

drivers execute. This need not make the code obscure or hard to understand; you
perform this bit of magic by documenting the code and by understanding what
certain instructions do.

Faster Instructions The first step in speeding up code and keeping it clear is
to make sure that all code includes comments. Each instruction deserves a
comment explaining its purpose. This is particularly true of instructions whose
function is not clear. The second step is to use instructions that are faster in terms
of the number of CPU cycles required for execution. Table 9-2 shows some
examples of both steps.

The first example in table 9-2 subtracts a register from itself to produce a
result of zero. This method of clearing a register is faster than a move of 0 to the
AX register. Be sure to comment the instruction to indicate that you need the AX

Speed Code Description

Normal mov ax,O ;make AX = 0

Fast sub ax, ax ;make AX = 0 by
;subtracting AX from itself

Normal mov aX,offset xx ;get the address of xx

Fast lea ax,xx ;get the address of xx

Normal mov es,cs:rh_seg ;get segment address
mov bx,cs:rh_ofs ;get offset address

Fast les bx,cs:rh_ofs ;get segment/offset address

Normal mov bx,32 ;multiply AX
mul bx ;by32

Fast mov cl,5 ;multiply AX by 32
shl ax,cl ;using a left shift

;of5 places

Table 9-2: Some coding examples of where using a different
instruction results in faster execution times.

Building a Complete Full-function Device Driver

register to be o. Using the mov instruction takes four clock cycles, whereas using
the sub instruction takes three.

The next example is the instruction that loads the AX register with the
offset address of xx. The assembler keyword offset is used to generate an offset
address. Make this instruction faster by using the Load Effective Address (lea)
instruction. Using the lea instruction typically saves six clock cycles.

The third example is the familiar two-line sequence that restores the ES
and BX registers from the INTERRUPT routine of a device driver. Use two
instructions for clarity, but a faster method is to use the 8088/8086 instruction
les, which loads both registers. This saves at least eight clock cycles.

The final example is a specialized one. When you need to multiply a number
by some power of 2 (2,4,8,16,32, ...), make this code sequence faster by shifting
left some number of places. Each left shift of 1 position results in a multiplication
of 2. As the example shows, instead of multiplying by 32 you left shift 5 positions,
yielding the same results in a much quicker period of time. This can save from
61 to 106 cycles.

Know Your Device
Writing device drivers requires several pieces of information. The first and most
important piece of information is the device itself. You will need to know a lot
about the device: how it is programmed, what it does, and how to use it.

A checklist of necessary information regarding the device for which you are
writing a device driver is provided below:

• Description of the device

• I/O port addresses used (also memory addresses used, if any)

• Description of each 110 port address

• Intended use under DOS

• Test programs and diagnostics

First, find out about the device itself. If it is a real device, such as a tape
unit, you will need to know how to operate it: the type of media if it is a storage
device, how to turn it on and off, etc. This type of information will allow you to
integrate this new device into the DOS environment.

The next piece of information involves programming the device. Some
devices work with a controller or an adapter card that is plugged into the PC bus.
You will need to know how to program the device to transfer data. With many
devices, the manufacturer supplies code in a ROM that is part of the controller.

325

Writing MS-DOS Device Drivers, Second Edition

326

Simply use these routines in your device driver in much the same way as you use
the BIOS interrupts discussed in previous chapters. If the device adapter does
not have ROM -based code, then you will need to know the 110 port addresses that
reference registers on the adapter and what functions they perform when you
read or write to the port. This establishes how to program the device from within
a device driver. Another piece of information you may need is the timing of your
device, which may affect how fast you can issue instructions. Lastly, if the
device does not come with an adapter, it will generally use the serial or parallel
ports that are part of the PC.

In either case, you will need the programming instructions and the sequence
of operations for the device. Use these instructions in your device driver to
control the device through an appropriate command that DOS requests of your
device driver. For example, if the device requires initialization, you will need
to add code in the driver's initialization command-processing section.

Appendix A lists the ROM-based BIOS interrupts that you can use in your
device drivers.

Another item in the driver checklist is the intended use of the device under
DOS. Although many of the devices available for the PC have been derived
from older minicomputer technology that is being adapted for PCs, these devices
often have hardware features that are not usable by the PC and DOS environ
ment. For example, minicomputer tape drives often have controllers that return
diagnostic information on the tape drive. DOS does not know how to make use of
such information, so this feature of certain tape drives may not be applicable to
your device driver. "Intended use" should make you list what information your
intended device will provide.

You will need to match each of the device's operations to a driver command
processing function. At a bare minimum, there is device read or input, device
write or output, open and close if it is required by the device, and 110 control for
the device.

Finally, you must have test programs and diagnostics for the device. Before
you write a device driver you need to see the device in operation and have a
method of determining whether the device is functioning properly. These test
programs can give you a feel for the device as it should operate under DOS. The
practical aspects of the device are also revealed through these test programs. A
test program would be a stand-alone, .EXE-type program that could exercise the
device in at least some minimum way. Diagnostic programs are also useful in
gauging the device reliability and whether you should incorporate more error
handling within your device drivers.

Building a Complete Full-function Device Driver

Listing 9-1: A skeleton listing from which to develop any device driver.

page
title

60,132
A Device Driver Skeleton

;**

· * , This is a Device Driver *
;**

;**

; * ASSEMBLER DIRECTIVES *
i*** ***********

i*** ***********

· * , MAIN PROCEDURE CODE *
;**

;**

; * DEVICE HEADER REQUIRED BY DOS *
;**

i*** ***********

· * , WORK SPACE FOR THE DEVICE DRIVER *
i*** ***********

i*** ***********

· * , THE STRATEGY PROCEDURE *
i*** ***********

i*** ***********

· * , THE INTERRUPT PROCEDURE *
i*** ***********

i*** ***********

· * , YOUR LOCAL PROCEDURES *
i*** ***********

i*** ***********

; * DOS COMMAND PROCESSING *
i*** ***********

i*** ***********

· * , ERROR EXIT *
;**

i*** ***********

; * COMMON EXIT *
i*** ***********

;**

; * END OF PROGRAM *
i*** ***********

327

Writing MS-DOS Device Drivers, Second Edition

An Overview of the Device Driver

328

In listing 9-1, we present the device driver skeleton that was first introduced in
chapter 3. We will describe, in detail, what you will need to know in order to write
code for these sections: "Assembler Directives," "Device Header Required by
DOS," "The STRATEGY Procedure," "The INTERRUPT Procedure," "DOS Com
mand Processing," "Error Exit," and "Common Exit." The rest of the sections will
depend on the particular requirements of the device driver being written. In many
cases, you can simply lift code from the device drivers already covered in previous
chapters.

Assembler Directives
This is the section containing the driver's assembler directives that specify the
exact requirements for the driver's data structures. Here you set up the segment,
the main procedure, and the address generation for the CS, ES, and DS registers.
For most device drivers, these directives do not change; you can reference your
code and data in all device drivers in the same way.

The most important aspect of this section is the ability to use data struc
tures. Data structures allow you to access the data that DOS passes to the device
driver in a consistent fashion. The use of structures minimizes the errors that
come with using equates (EQU). Errors are common when using one equate to
define another and so on. An error in calculation in the middle of an equate results
in errors propagated down the line. The use of structures follows closely the way
the data is originally defined; it also allows the assembler to calculate the offset
addresses. This important feature of the macro assembler cannot be overrated
for its usefulness and utility!

Structures are defined with the keyword struc and are given a label. Each
entry within a struc is given a name, a data-length definition, and a value for
initialization. At the end of each struc is an ends keyword. Structures are not the
actual declaration of data space but a definition of how you wish to view the data.

Listing 9-2 shows the strucs for the Request Headers for device driver
commands 0 through 25 (we will cover each of these strucs and commands in
detail in later sections of this chapter).

The Device Header
The Device Header is the first piece of data that DOS sees; it defines to DOS how
to deal with the device. Figure 9-1 shows the five basic parts ofthe Device Header.

Three of the five basic components of the Device Header deal with address
pointers. The first is a double-word pointer (offset and segment address) to the
next device driver in the file. When DOS loads the device driver into memory from
a file, other device drivers can be added to the same file.In fact, the PC-DOS

Building a Complete Full-function Device Driver

Listing 9-2: The assembler directives for defining the device driver
structures. These data structures define the data that DOS passes to the
device driver for each command.

;Request Header structures

rh
rh_len
rh_unit

rh_cmd
rh_status
rh_res1
rh_res2
rh

rhO
rhO_rh
rhO_nunits

rhO_brk_ofs
rhO_brk_seg
rhO_bpb_tbo

rhO

rh1
rh1_rh
rh1_media
rh1_md_stat

rh1

rh2
rh2_rh
rh2_media
rh2_buf_ofs

struc
db
db

db
dw
dd
dd
ends

struc
db
db

dw
dw
dw

dw

db

ends

struc
db
db
db

dw

dw

ends

struc
db
db
dw

dw

;request header
7 ;len of packet
7 ;unit code

; (block devices only)
7 ;device driver command
7 ;returned by device driver
7 ; reserved
7 ; reserved

;Initialization (command 0)
size rh dup (7) ;fixed portion
7 ;number of units

; (block devices only)
7 ;offset address for break
7 ;segment address for break
7 ;offset address of pointer

7

7

;to BPB array
;segment address of pointer
;to BPB array
;first available drive
; (DOS 3+) (block only)

;Media_Check (command 1)
size rh dup (7) ;fixed portion
7 ;media descriptor from DPB
7 ;media status returned by

;device driver
7 ;offset address of

;volume identification
;DOS 3+ only

7 ;segment address of
;volume identification
;DOS 3+ only

;Get_BPB (command 2)
size rh dup(7) ; fixed portion
7 ;media descriptor from DPB
7 ;offset address of

;data transfer area
7 ;segment address of

;data transfer area

329

Writing MS-DOS Device Drivers, Second Edition

Listing 9·2: (cont.)

rh2Jlbpbo

rh2Jlbpbs

rh2

rh3
rh3_rh
rh3_media
rh3_buf_ofs

rh3 start

rh3

rh4
rh4_rh
rh4_media
rh4_buf_ofs

rh4

rh5
rh5_rh
rh5_return
rh5

rh6
rh6_len
rh6_unit

330

dw

dw

ends

struc
db
db
dw

dw

dw

dw

ends

struc
db
db
dw

dw

dw

dw

dw

dw

ends

struc
db
db
ends

struc
db
db

db

7

7

;offset address of
;pointer to BPB
;segment address of
;pointer to BPB

;IOCTL_INPUT (command 3)
size rh dup(7) ;fixed portion
7 ;media descriptor from DPB
7 ;offset address of

;data transfer area
7 ;segment address of

;data transfer area
? ;transfer count

; (sectors for block)
; (bytes for character)

? ;start sector number
; (block devices only)

;INPUT (command 4)
size rh dup(?) ;fixed portion
? ;media descriptor from DPB
7 ;offset address of

;data transfer area
7

7

7

?

?

;segment address of
;data transfer area
;transfer count
; (sectors for block)
; (bytes for character)
;start sector number
; (block devices only)
;offset address of
;volume identification
;DOS 3+ only
;segment address of
;volume identification
;DOS 3+ only

;ND_INPUT (command 5)
size rh dup (7) ; fixed portion
? ;character returned

7
?

7

;Input_Status (command 6)
;len of packet
;unit code
; (block devices only)
;device driver command

Building a Complete Full-function Device Driver

Listing 9·2: (cont.)

rh6 - status dw ? ; returned by device driver
rh6 resl dd ? ;reserved
rh6 - res2 dd ? ;reserved
rh6 ends

rh7 struc ; Input_ Flush (command 7)
rh7 len db ? ;len of packet
rh7 - unit db ? ;unit code

; (block devices only)
rh7 cmd db ? ;device driver command
rh7 status dw ? ;returned by device driver
rh7 - resl dd ? ;reserved
rh7 res2 dd ? ; reserved
rh7 ends

rh8 struc ; OUTPUT (command 8)
rh8 rh db size rh dup(?) ;fixed portion
rh8 _media db ? ;media descriptor from DPB
rh8 - buf - ofs dw ? ;offset address of

;data transfer area
rh8 - buf _seg dw ? ; segment address of

;data transfer area
rh8 - count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh8 start dw ? ;start sector number
; (block devices only)

rh8 - volid_ofs dw ? ;offset address of
;volume identification
;DOS 3+ only

rh8_volid_seg dw ? ; segment address of
; volume identification
;DOS 3+ only

rh8 ends

rh9 struc ; OUTPUT_VERIFY (command 9)
rh9 - rh db size rh dup(?) ; fixed portion
rh9 _media db ? ;media descriptor from DPB
rh9 - buf - ofs dw ? ;offset address of

;data transfer area
rh9 - buf _seg dw ? ; segment address of

;data transfer area
rh9 count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

rh9 start dw ? ;start sector number
; (block devices only)

rh9 _volid_ofs dw ? ;offset address of
;volume identification
;DOS 3+ only

331

Writing MS-DOS Device Drivers, Second Edition

Listing 9-2: (cont.)

rh9

rh10
rh10 len
rh10_unit

rh10_cmd
rh10 status
rh10 res1
rh10_res2
rh10

rhll
rh11 len
rh11_unit

rh11_cmd
rh11 status
rh11_res1
rh11 res2
rhll

rh12
rh12_rh
rh12_media
rh12_buf_ofs

rh12 start

rh12

rh13
rh13_len
rh13_unit

rh13_cmd
rh13 status
rh13_res1
rh13_res2
rh13

rh14

332

dw

ends

struc
db
db

db
dw
dd
dd
ends

struc
db
db

db
dw
dd
dd
ends

struc
db
db
dw

dw

dw

dw

ends

struc
db
db

db
dw
dd
dd
ends

struc

?

?
?

?
?
?
?

?
?

?
?
?
?

;segment address of
;volume identification
;DOS 3+ only

;Output_Status (command 10)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
;reserved

;Output_Flush (command 0)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
; reserved

;IOCTL_OUTPUT (command 12)
size rh dup(?) ;fixed portion
? ;media descriptor from DPB
? ;offset address of

;data transfer area
?

?

?

?
?

?
?
?
?

;segment address of
;data transfer area
;transfer count
; (sectors for block)
; (bytes for character)
;start sector number
; (block devices only)

;Open (command 13)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
; reserved

;Close command 14)

Listing 9-2: (cont.)

rh14_1en
rh14_unit

rh14_cmd
rh14_status
rh14 resl
rh14_res2
rh14

rh15
rh15_len
rh15_unit

rh15_cmd
rh15 status
rh15_resl
rh15_res2
rh15

rh16
rh16_rh
rh16_media
rh16_buf_ofs

rh16

rh17
rh17 len
rh17_unit

rh17_cmd
rh17 status
rh17_resl
rh17_res2
rh17

rh18
rh18 len
rh18_unit

rh18_cmd
rh18_status
rh18_resl
rh18_res2
rh18

db
db

db
dw
dd
dd
ends

struc
db
db

db
dw
dd
dd
ends

struc
db
db
dw

dw

dw

ends

struc
db
db

db
dw
dd
dd
ends

struc
db
db

db
dw
dd
dd
ends

Building a Complete Full-function Device Driver

7 ; len of packet
7 ;unit code

; (block devices only)
7 ;device driver command
7 ;returned by device driver
7 ; reserved
7 ; reserved

;Removable (command 15)
7 ; len of packet
7 ;unit code

; (block devices only)
7 ;device driver command
7 ;returned by device driver
7 ; reserved
7 ; reserved

;OUTPUT_BUSY (command 16)
size rh dup (7) ;fixed portion
7 ;media descriptor
7 ;offset address of

;data transfer area
7 ;segment address of

;data transfer area
7 ;byte count returned

;from device driver

7
7

7
7
7
7

7
7

7
7
?
7

; (command 17)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
; reserved

; (command 18)
;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
; reserved
; reserved

333

Writing MS-DOS Device Drivers, Second Edition

Listing 9·2: (cont.)

rh19 struc ;Generic_ IOCTL (command 19)
rh19 - rh db size rh dup (?) ; fixed portion
rh19_major db ? ;major function
rh19_minor db ? ;minor function
rh19 - 81 dw ? ; contents of 81 register
rh19 _DI dw ? ; contents of DI register
rh19"""pkt_ofs dw ? ;offset address of

; generic IOCTL request
rh19"""pkt_seg dw ? ; segment address of

; generic IOCTL request
rh19 ends

rh20 struc ; (command 20)
rh20 - len db ? ;len of packet
rh20_unit db ? ;unit code

; (block devices only)
rh20 - cmd db ? ;device driver command
rh20 - status dw ? ; returned by device driver
rh20 - res1 dd ? ; reserved
rh20 - res2 dd ? ; reserved
rh20 ends

rh21 struc ; (command 21)
rh21 - len db ? ;len of packet
rh21_unit db ? ;unit code

; (block devices only)
rh21 _cmd db ? ;device driver command
rh21 - status dw ? ;returned by device driver
rh21 - res1 dd ? ; reserved
rh21 - res2 dd ? ; reserved
rh21 ends

rh22 struc ; (command 22)
rh22 - len db ? ;len of packet
rh22 _unit db ? ;unit code

; (block devices only)
rh22 - cmd db ? ;device driver command
rh22 _status dw ? ; returned by device driver
rh22 - res1 dd ? ; reserved
rh22 - res2 dd ? ; reserved
rh22 ends

rh23 struc ; Get_Device (command 23)
rh23 rh db size rh dup (?) ; fixed portion
rh23 - 10 db ? ; Input (unit code)

; Output (last device)
rh23 dev_cmd db ? ;command code
rh23 - dev_stat dw ? ;status
rh23 - reserved dd ? ; reserved
rh23 ends

334

Building a Complete Full-function Device Driver

Listing 9-2: (cont.)

rh24 struc ; Set_Device (command 24)
rh24 - rh db size rh dup (?) ; fixed portion
rh24 IO db ? ; Input (unit code)

;Output (last device)
rh24 - dev - cmd db ? ;command code
rh24 _dev - stat dw ? ;status
rh24 - reserved dd ? ;reserved
rh24 ends

rh25 struc ;IOCTL Query (command 25)
rh25 rh db size rh dup (?) ;fixed portion
rh25 _major db ? ;major function
rh25 _minor db ? ;minor function
rh25 - SI dw ? ;contents of SI register
rh25 - DI dw ? ;contents of DI register
rh25-pkt_ofs dw ? ;offset address of

; IoC'rL Query request
rh25-pkt_seg dw ? ; segment address of

; IOCTL Query request
rh25 ends

;commands that do not have unique portions to the request header:
INPUT_STATUS (command 6)
INPUT_FLUSH (command 7)
OUTPUT_STATUS (command 10)
OUTPUT FLUSH (command 11)
OPEN (command 13)
CLOSE (command 14)
REMOVABLE (command 15)

standard device drivers for the console, floppy disk, printer, communications port,
and clock are contained in a single file named IBMBIO.COM. DOS uses the
pointer to index past the current device driver for the next device driver, ifthere
is one. To signal to DOS that there is not another device driver, place a -1 in both
words of this first field.

The second and third pointers of the Device Header are used by DOS to
locate the driver's STRATEGY and INTERRUPT procedures. These fields con
tain the offset addresses ofthese procedures; they are simply the labels that locate
the procedures.

The Device Attribute Field The second field ofthe Device Header is import
ant for DOS. This field describes to DOS the type of device your device driver is

335

Writing MS-DOS Device Drivers, Second Edition

336

Pointer Next
Device Driver

Device Attributes

Pointer Strategy
Procedure

Pointer Interrupt
Procedure

Device Name

Figure 9-1: The five components of the Device Header.

controlling, and, more importantly, it defines the types of commands that must
be implemented in the device driver. In earlier versions of DOS, this field used
bits to define the type of device. In later versions, some of the bits were used to
indicate for what types of commands the device driver provided processing. Table
9-3 completely describes the Attribute word ofthe Device Header.

Let's look at the purpose of each bit in detail.

Bits 15 and 14 Bit 15 defines to DOS whether the device driver controls a
block-oriented device (0) or a character-oriented device (1). This bit is crucial
because several of the following bits (13 and 0) have different meanings depend
ing on whether the device is a block or a character device. Also, the name field of

Building a Complete Full-function Device Driver

DOS
Bit Value Description Version

15 0 Device is block-oriented 2+
1 Device is character-oriented

14 0 I/O control is not supported 2+
1 1/0 control is supported

13 0 IBM format block device 2+
1 Non-IBM format block device
1 Output Til Busy command 3+

Available for character devices

12 0 Undefined (value should be 0)

11 0 OpeniCloselRemovable Media not supported 3+
1 OpeniCloselRemovable Media supported

10 0 Undefined (value should be 0)

9 0 Undefined (value should be 0)

8 0 Undefined (value should be 0)

7 1 IOCTL Query 5.0

6 1 Get/Set Logical Device (block device) 3.2+
1 Generic IOCTL 3.3-5.0

5 0 Undefined (value should be 0)

4 1 Special bit for fast console 1/0 2

3 1 Current clock device 2+

2 1 Current NUL device 2+

1 1 Current standard output device 2+
1 32-bit sector addresses (block device) 4.0-5.0

0 1 Current standard input device (character 2+
device)

1 Supports generic 1/0 Control (block device) 3.2-4.xx

Table 9-3: The bit settings of the Attribute word.

337

Writing MS-DOS Device Drivers, Second Edition

338

the Device Header (described later) will have different meanings depending on
the type of device.

Bit 14 is used to tell DOS whether the device driver supports the I/O control
commands (IOCTL Input and IOCTL Output). Recall that I/O control is used to
pass control information to and from the driver. If this bit is set, you need to
implement the two IOCTL commands.

The Evolving Bit 13 Bit 13 has several meanings, depending on the device
type. Ifthe device is block-oriented, setting this bit will indicate to DOS that the
device is a disk that contains a non-IBM-compatible format; leaving this bit off
will tell DOS that the device contains an IBM-compatible format. If the device is
character-oriented and the DOS version is 3.0 or greater, setting this bit indicates
that the device driver can handle Output Til Busy commands.

The issue of whether a disk uses an IBM-compatible format has evolved from
a simple concept to a complex one. Recall from chapter 7 that the File Allocation
Table follows the Boot Record (also known as the reserved area). On all IBM
PC-DOS formatted diskettes, the FAT is always the second sector of the diskette.
This was the initial definition for bit 13 set to O. This also meant that DOS used
the Media Descriptor to identify diskettes. Instead of using the Media Descriptor
byte from the BIOS Parameter Block, however, DOS used the Media Descriptor
byte from the first FAT entry. Thus, to identifY the type of diskette in use, DOS
would have to read the FAT into memory and pick off the first FAT entry. DOS
could not do this unless it could presume that the FAT was always in the same
place on all diskettes. The inner workings of DOS to accomplish this task are
even more complicated. As we shall show you later, in the section on the Get BPB
command, the contents of the data-transfer area will depend on whether or not
bit 13 is set.

To make matters worse, the definition of bit 13 in later versions of DOS has
changed subtly. You may recall that if bit 13 is set to 1, the format of the disk
need not be IBM-compatible. This means that the FAT need not start at the
second sector. What DOS will do at this point is to use the BPB to locate the FAT,
the File Directory, and the user data area. This is the current definition of bit 13
as found in the manuals. If bit 13 is not set, the device driver uses the Media
Descriptor from the FAT to determine the media type. Ifbit 13 is set, the device
driver uses the BPB to determine the media type.

To try to make some sense of all this, keep in mind that, as we showed in
the chapter on disk fundamentals, the media descriptor is not a good mechanism
to determine the media type. Disks come in all different sizes and have different
physical characteristics, such as the number of tracks , cylinders, and heads. With
different sizes for the FAT, the number of FATs, and File Directory, it is

Building a Complete Full-function Device Driver

impossible to fit all these different combinations into a single media descriptor,
particularly one that is limited to eight combinations (F8h to FFh). This is made
worse by the fact that disks can have almost any media descriptor; there is
nothing sacred about a given media descriptor value.

In order to allow for all ofthese possibilities, you can set bit 13 on, allowing
DOS to use the BPB to determine where things are.

Bits 12 to 0 Bit 12 is undefined and should contain a value of O.
Bit 11 is used to indicate whether the device driver supports the Device

Open, the Device Close, and the Removable Media commands. Note that all three
commands are applicable to block-oriented devices, such as disk drives, and only
the first two are applicable to character-oriented devices such as screens.

Bits 10 through 8 are undefined and should be set to O.
Bit 7 is used by DOS 5.0 device drivers to allow user programs to query

whether certain IOCTL functions are available for use.
Bit 6 is used only with device drivers written for DOS version 3.2 or greater

and indicates whether the device driver supports the Get Logical Device com
mand (23) and the Set Logical Device Command (24). For DOS versions 3.3 or
greater this bit, if set, indicates that the device driver supports Generic IOCTL
commands for both character and block devices.

Bit 5 is undefined and should be set to O.
Bit 4 is the Special bit that is set if the device driver supports fast console

110 by implementing interrupt 29h code. The use of this feature is discussed in
chapter 10, "Tips and Techniques."

Bit 3 is set if the device driver implements a clock device. If this bit is set,
DOS replaces the standard clock device driver with the current clock device
driver.

Bit 2 is set if the device driver is the NUL: device. You cannot replace the
NUL: device driver, so this bit is not available for use. This bit is set for the
standard NUL: device driver and allows DOS to identify when it is being used.

Bit 1 is set if the current device driver is to be the standard output device
(also known as the screen or video output device). Set this bit to indicate that you
are replacing the standard console output device. If this is the case, then bit 0
should also be set. For DOS version 4.0 or greater, setting this bit means that
block device drivers have the capability of using 32-bit sector addresses, thus
supporting disks larger than 32Mb.

Bit 0 has several meanings. For character-oriented devices, setting this bit
indicates that the DOS standard console input device is being replaced by the
current device driver. For DOS version 3.2 through 4.01, if the device is a

339

Writing MS-DOS Device Drivers, Second Edition

340

Bits Set Commands
Triggered 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Initialize
Media Check
GetBPB
IOCTLInput
Input
ND Input
Input Status
Input Flush
Output
Output Verify
Output Status
Output Flush
IOCTL Output
Device Open
Device Close
Removable
Output til Busy
Undefined
Undefined
Generic IOCTL
Undefined
Undefined
Undefined
Get Logical Device
Set Logical Device
IOCTLQuery

R

R

C

R
R
B

R = Required for both character and block devices
C = Character devices only
B = Block devices only

R

R

B
B

Table 9-4: Which Attribute bits, when set, will trigger device driver
commands. Note that many of the commands will be sent by DOS to
the devic~ driver as part of normal processing.

B

block-oriented device, setting this bit indicates to DOS that the device driver
supports Generic I/O Control through command 19.

Building a Complete Full-function Device Driver

Bottom-line Necessary Settings As we mentioned earlier, setting some of
the Attribute bits will trigger the possibility of DOS sending certain types of
commands to the device driver for processing. This is because some of the bits
are used not just for device definition but for command definition. Table 9-4
shows a cross index of Attribute bits and commands that the device driver may
encounter. Not shown in this table are the commands that the device driver
normally processes that are not triggered by an Attribute bit being set.

In summary, the Attribute word is a powerful feature that allows each driver
to identify itself to DOS. You can control the commands that DOS is allowed to
send to the device driver as well as replace the DOS standard devices. Table 9-5
summarizes the Attribute words for various versions of DOS for the DOS
standard devices.

The Device Header Name Field The Device Name field is 8 bytes in length
and has two meanings. For character-oriented devices, this field contains the
actual text name of the device. If you replace any of the DOS standard devices,
you must supply the name of the device you replace: CON:, PRN:, etc. If you are
not replacing a standard device, supply the name you wish to use to identify the
device. Be sure to choose a name that does not normally interfere with file names
that are in use. For example, if you use the name BASIC for your driver, you can
no longer refer to files named BASIC. Indeed, the name that you supply for a
driver's name becomes a reserved name and is no longer available for use as a
file name. The device name must be in upper-case characters. If the device name
is less than 8 bytes in length, you have to fill the rest ofthe field with blanks.

For block-oriented devices, this field does not specify the device name;
instead, the first byte of the field is used to specify the number of devices the
device driver controls. Because block devices are assumed to be disks, the
number of disks already installed by DOS will determine the drive letters with
which a particular device driver will start. If another disk-type device driver
follows the current one, the sum of the disks already installed by DOS and the
current number of units will determine the drive letter for the following disk
device driver.

Now that we have covered the Device Header in great detail, you should be
ready for the guts of the device driver. We will cover the STRATEGY and
INTERRUPT procedures briefly before going onto the DOS command processing.

The STRATEGY and INTERRUPT Procedures
For the purposes of completeness we show the STRATEGY and INTERRUPT
procedure code in listing 9-3. Details on how these routines work are found in
chapter 2. The INTERRUPT procedure will allow you to write device drivers for

341

Writing MS-DOS Device Drivers, Second Edition

Device DOS Attribute Bits Set and
Name Version Vendor Word Description

NUL: All All 8004h 15 character device
2 NUL: device

CON: All Most 8013h 15 character device
4 Fast I/O
1 Standard Output
o Standard Output

2.11 Victor C013h 15 character device
14 IOCTL support
4 Fast I/O
1 Standard Output
o Standard Output

AUX: All Most 8000h 15 character device

2.11 Victor COOOh 15 character device
14 IOCTL support

PRN: 2 IBM 8000h 15 character device

LPTx: 2.11 Others 8000h 15 character device

2.11 Victor COOOh 15 character device
14 IOCTL support

3.0 IBM 8800h 15 character device
11 Open/Close

3.1 IBM AOOOh 15 character device
13 Output Til Busy

3.2-4.01 IBM A040h 15 character device
13 Output Til Busy

6 Get/Set Logical Device

5.0 Most AOCOh 15 character device
13 Output Til Busy

7 IOCTL Query
6 Generic IOCTL

COMx: All Most 8000h 15 character device

2.11 Victor COOOh 15 character device
14 IOCTL support

CLOCK$ All Most 8008h 15 character device
3 Clock device

2.11 Victor C008h 15 character device
14 IOCTL support
. 3 Clock device

342

Building a Complete Full-function Device Driver

Device DOS Attribute Bits Set and
Name Version Vendor Word Description

Disk 2 IBM OOOOh - block device

All Victor 6000h - block device
14 IOCTL support
13 Non-IBM format

3.0,3.1 IBM 0800h - block device
110peniCloseIRemovable

3.2,3.3 IBM 0840h - block device
11 OpeniCloselRemovable
6 Get/Set Logical Device

4.XX Most 0842h - block device
11 OpeniCloselRemovable

6 Get/Set Logical Device
1 32-bit sector addresses

5.0 Most 08C2h - block device
110peniCloseIRemovable

7 IOCTL Query
6 Get/Set Logical Device
1 32-bit sector addresses

Table 9-5: The various Attribute words found in various versions of
DOS. Note that various vendors will implement each device driver
with different Attribute bits set.

DOS versions 2.0 through 5.0; the table of command-processing procedure ad
dresses covers the commands 0 through 25.

DOS Command Processing
When DOS makes a request ofthe device driver, a command is sent to the device
driver in the form of a Request Header. DOS expects the device driver to perform
a function based on the command. There are 26 different commands available to
device drivers for processing.

No single device driver will have to process all 26 of these commands. Some
of the commands are not defined and are reserved for use by future versions of
DOS; some commands are only applicable for certain types of devices. The version
of DOS for which you write a device driver will determine the number of

343

Writing MS-DOS Device Drivers, Second Edition

Listing 9-3: The code for the STRATEGY and INTERRUPT procedures. These
procedures are intended to be used for device drivers written for any DOS
version from 2.0 through 5.0 .

. ** ,
; * THE STRATEGY PROCEDURE *
;**

mov
mov
ret

cs:rh_seg,es
cs:rh_ofs,bx

;save the segment address
;save the offset address
;return to DOS

;**

; * THE INTERRUPT PROCEDURE *
;**

;device interrupt handler - 2nd call from DOS

dey_interrupt:

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

aL es: [bxl . rh_cmd
aLl
di,cmdtab
ah,O
di,ax
word ptr [di 1

;get request header command
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw

344

byte ;* = char devices only
INITIALIZATION ; initialization

Listing 9-3: (cont.)

dw MEDIA_CHECK
dw GET_BPB
dw IOCTL_INPUT
dw INPUT
dw ND_INPUT
dw INPUT_STATUS
dw INPUT_FLUSH
dw OUTPUT
dw OUTPUT_VERIFY
dw OUTPUT_STATUS
dw OUTPUT_FLUSH
dw IOCTL_OUT
dw OPEN
dw CLOSE
dw REMOVABLE
dw OUTPUT_BUSY
dw COMMAND17
dw COMMAND18
dw GENERIC_IOCTL
dw COMMAND20
dw COMMAND21
dw COMMAND22
dw GET_DEVICE
dw SET_DEVICE
dw IOCTL_QUERY

Building a Complete Full-function Device Driver

media check (block only)
build bpb
ioctl in
input (read)

;*non destructive input no wait
;*input status
;*input flush
; output (write)
; output (write) with verify
;*output status
;*output flush

ioctl output
device open
device close
removable media
output til busy
undefined
undefined
generic ioctl
undefined
undefined
undefined
get logical device
set logical device
IOCTL Query

commands that are applicable. Finally, you can simply choose not to implement
some commands.

Table 9-6 shows the list of DOS device driver commands with device-type
and DOS-version applicability.

The number of commands that a device driver needs to process will depend
on four factors: the operations permitted by a device, the type of device being
controlled, the Attribute bits set, and the DOS version for which it is intended.
Drivers for output-only devices, such as printers, need only implement the Output
commands (Output, Output Verify, Output Status, Output Flush, Output Til
Busy). Character-oriented devices will have a maximum of 14 applicable com
mands. In addition, by not setting certain bits in the Attribute word, you can
avoid having to implement associated commands. For example, if bits 14 (110
Control) and 11 (Device OpenJDevice CloselRemovable Media) are not set, up to
five of the commands need not be implemented. Lastly, if you write device drivers
for DOS version 2.0, you will be dealing with only 13 commands.

345

Writing MS-DOS Device Drivers, Second Edition

346

Command DOS Device
Number Version Type· Description

0 2+ Both Initialization
1 2+ Block Media Check
2 2+ Block Get BIOS Parameter Block
3 2+ Both 1/0 Control Input
4 2+ Both Input (from device)
5 2+ Character Non-Destructive Input
6 2+ Character Input Status
7 2+ Character Input Flush
8 2+ Both Output (to device)
9 2+ Both Output With Verify

10 2+ Character Output Status
11 2+ Character Output Flush
12 2+ Both I/O Control Output
13 3+ Both Device Open
14 3+ Both Device Close
15 3+ Block Removable Media
16 3+ Character Output Til Busy

17-18 3.2+ Undefined
19 3.2+/3.3+ BlockIBoth Generic I/O Control

20-22 3.2+ Undefined
23 3.2+ Block Get Logical Device
24 3.2+ Block Set Logical Device
25 5.0 Both IOCTLQuery

Table 9·6: The DOS device driver commands, the DOS versions and
the device types with which they work. Note that several of the
commands are undefined; they are reserved for future use.

In the following sections we will describe each of the commands and what
they do. We will use the corresponding Request Header structures as an aid to
developing the required responses for each command.

A Quick Note on Request Headers Throughout this book we have made
every effort to make device drivers less of a mystery and more of a programming
challenge. Part of the mystique of device drivers has been in the obscure defini
tions that device drivers use. In the case of Request Headers, there are differences
between the descriptions in this book and those found in other documents, such
as the MS-DOS Programmer's Reference.

Building a Complete Full-function Device Driver

Listing 9-4: The Request Header for the Initialization command.

rhO struc ;Initialization (command 0)

rhO - rh db size rh dup (?) ;fixed portion
rhO - nunits db ? ; number of units

; (block devices only)
rhO - brk - ofs dw ? ;offset address for break
rhO - brk_seg dw ? ; segment address for break
rhO_bpb_tbo dw ? ;offset address of pointer

rhO

rhO

rhO

ito BPB array
_bpb_tbs dw ? ; segment address of pointer

-

ito BPB array
drv_ ltr db ? ;first available drive

; (DOS 3+) (block only)
ends

Each request that DOS makes of the device driver is contained in a packet
of data that is passed between DOS and the device driver. We have called this
packet the Request Header. The actual size of the packet varies in size depend
ing on the command. All of these packets share a common portion, often called
the static portion because it does not change in size or number of fields. Other
packets have data beyond the fixed or static part of the Request Header. In order
to determine the size of the packet, you must use a field that is part of the Request
Header that contains the length of the Request Header. As you read through
each of the commands, you will see both the static and the dynamic portions of
the Request Headers in each structure. Within the static and dynamic portions
ofthe Request Header, we will use strucs to define each ofthe various fields.

We will now examine each ofthe 26 driver commands in detail.

Command O-Initialization This is the first command that the device driver
will process. DOS passes an Initialization command to the device driver im
mediately after loading the device driver into memory. Once the command is
processed, the device driver never sees another Initialization command again.

The purpose of this command is to allow the device driver to prepare the
device for use by setting up values in various registers, data buffers, pointers,
and counters. Once the device driver has been initialized, DOS assumes that it
is ready to process other commands.

Listing 9-4 above shows the struc for the Initialization command. The steps
required to process the Initialization command are listed below:

1. Initialize the device, data buffers, and counters.

2. Display optional Initialization message.

347

Writing MS-DOS Device Drivers, Second Edition

348

3. Set the number of units for block devices.

4. Set the Break Address.

5. Set the pointer to the table ofBPB addresses for block devices.

6. Set the Status word.

It is critical to understand that although DOS service calls are allowed in
processing the Initialization command, they are not allowed in any other com
mand in a driver. Even this feature, being allowed in driver initialization, is
limited to DOS services Olh through OCh and 30h. Other services are not
permitted, for DOS is still in the process of initializing itself. You can use these
services to determine the DOS version and to display messages on the screen only
during initialization. Table 9-7 lists the allowable DOS services.

Let's look at the structure used to define the dynamic part of the Request
Header (refer to listing 9-4). The byte variable, rhO_nunits, set by block device
drivers, indicates the number of units controlled. The device driver must return
the number of units. This number overrides the first byte of the Device Name
field of the Device Header.

Service

Ih
2h
3h
4h
5h
6h
7h
8h
9h
Ah
Bh
Ch
25h*
-30h
35h*

* = DOS 5.0

Description

Keyboard Input
Display Output
Auxiliary Input
Auxiliary Output
Printer Output
Direct Console I/O
Direct Console Input Without Echo
Console Input Without Echo
Print String
Buffered Keyboard Input
Check Standard Input Status
Clear Keyboard buffer
Set Interrupt Vector
Get DOS Version Number
Get Interrupt Vector

Table 9-7: The DOS services that device drivers may use when
processing the Initialization command.

Building a Complete Full-function Device Driver

The variables rhO_brk_ofs and rhO_brk_seg contain the Break Address,
which signals the end location in memory of the device driver. This address tells
DOS where the next available memory location is for loading other drivers. You
can use this feature to your advantage. Because the initialization code is used
only once, you can place this code at the end of your device driver and specify the
beginning of this code as the Break Address. This address is required for all
device drivers.

If you detect a problem during initialization of the device driver, you can
abort the loading ofthe device driver by simply specifying the Break Address as
the beginning of the device driver. For block devices, you must set the variable
rhO_nunits to O.

The variables rhO_bpb_tbo and rhO_bpb_tbs are the addresses (offset and
segment, respectively) of the BPB table that must be returned to DOS by block
device drivers that control a disk. DOS needs to know the types of disks the device
driver can handle. You can satisfy this requirement by building a BPB for each
type of disk the device driver can handle. A table is created that contains the
addresses of each of these BPBs, and it is the address of this table that is returned
to DOS. With this information, DOS and the device driver can determine if disks
have been removed or changed and where the information is on each disk.

The address used by the BPB table pointer is also used by DOS to pass to
the device driver a pointer to the command line in the CONFIG.SYS file. Recall
that a DEVICE= command specifies to DOS that a device driver is to be loaded.
You can use this pointer in both character and block device drivers to access the
entire string beyond the "=" character. Note that you cannot change the command
line but you can use this feature to specify run-time parameters that the device
driver can use for special configuration. For example, you can specify arguments
to a serial printer device driver to set the baud rate using DEVICE=. This is a
once-only alternative to the use of the 110 Control strings shown in chapter 5's
printer device driver.

Note that the DEVICE= command string is terminated by an Ah when there
are no arguments. When there are arguments, the string is terminated with the
following sequence: Oh, Dh, Ah.

The variable rhO_drv_ltr contains the next available driver letter. This
variable is available for device drivers running under DOS versions 3.0 and
greater. Block device drivers can use this information to display the drive letters
that are controlled by the device driver. The drive letter is actually a number that
corresponds to the drive letter (0 means A:, 1 means B:, etc.).

Lastly, the Status word, rh_status, must be set before exiting from the
device driver.

349

Writing MS-DOS Device Drivers, Second Edition

Listing 9·5: The Request Header for the Media Check command.

rh1 struc ; Media_Check (command 1)
rh1 - rh db size rh dup (?) ; fixed portion
rh1_media db ? ;media descriptor from DPB
rh1 _md - stat db ? ;media status returned by

;device driver
rh1 _volid_ofs' dw ? ;offset address of

; volume id
;DOS 3+ only

rh1_volid_seg dw ? ; segment address of

rh1

350

; volume id
;DOS 3+ only

ends

Command I-Media Check The Media Check command is valid only for
block devices. This command is sent by DOS to determine whether the disk has
changed. Among the three types of disks (floppy disk, hard disk, and RAM disk)
discussed so far, only the floppy disk is capable of being changed. However, DOS
plays it safe by always issuing a Media Check command before performing any
reads or writes to any disk.

The struc for the Media Check command is shown in listing 9-5. The
sequence of events for determining whether the media has changed is shown
below:

1. Retrieve the Media Descriptor byte.

2. Determine whether the disk has changed by checking the amount of
time elapsed since the last access, using hardware detection methods,
or comparing disk information.

3. Set Media Status.

4. Set the Status word ofthe Request Header.

Hard disks and RAM disks do not change, so you can simply indicate this.
However, for floppy disks, determining whether the media has changed is a
difficult task. As shown above, three basic methods can be used to determine
whether the media has changed: a check for elapsed time, a check for hardware
detected disk change, and a check of disk information.

The first method involves keeping track of the time of the last disk access
compared with the current time. From a practical point of view, changing floppy
disks takes a certain amount of time, at least two seconds. If you calculate that
less than two seconds have elapsed since the last access, you can assume that the

Building a Complete Full-function Device Driver

media has not changed. If the last access was more than two seconds ago,
however, you cannot be sure whether the disk has changed.

The second method is the best ofthe three. High-capacity (1.2Mb) diskette
drives send a signal when the drive door is opened; we can detect this and set the
media status accordingly. This signal is often called the changeline signal and is
active if the door has been opened. Unfortunately, this signal is not available
from most other disk drives.

The last method is the most complex, requiring the disk device driver to save
information on the disk with each access. The information saved includes the
media descriptor byte, the volume ID, and the BPB. If any of these parameters
changes between the last disk access and the current one, we can assume that
the disk has changed. However, this method is not always reliable. For example,
comparing the media descriptor byte from the Request Header with the media
descriptor of the current disk does not reliably indicate a disk change. If they
are different, the disk has changed. If we changed disks using two similarly
formatted diskettes whose media descriptor bytes would be identical, this method
could erroneously assume that the disk has not changed. This would also be the
case if we compared the BPBs or the volume IDs.

However, there is a way around the problem of determining disk changes.
As shown in table 9-8, the media change status allows for three conditions: "media
has changed," "media has not changed," and "don't know whether media has
changed." Ifwe cannot determine whether the disk has changed, then we set the
media status word, rh1_md_stat, to 0, which indicates "do not know if the media
has changed."

The media status word should be set to -1 (media has changed) for all disk
types on the first Media Check command. This is true for the very first access of
RAM disks and hard disks as well as floppy disks, because DOS does not have
accurate information on the disk. Subsequent Media Check commands for hard
disks and RAM disks should have the media status word set to 1 (media has not
been changed).

Value

-1

o
+1

Description

Media has changed

Don't know if media has changed

Media has not changed

Table 9-8: The three values for the media change status word.

351

Writing MS-DOS Device Drivers, Second Edition

352

If the disk device driver has set bit 11 (OpeniCloselRemovable Media) of the
Attribute word in the Device Header, there is an additional programming con
sideration. If the disk device driver sets the variable rhl_md_stat to -1 (media
has changed), then the variables rhl_volid_ofs and rhl_volid_sig must be set to
the offset and segment address of the previous volume ID. This presumes that
the device driver has saved the volume ID of the previous disk. If the device
driver has not been programmed to save the volume ID, these variables should
point to a field containing a volume ID of NO NAME, followed by four spaces and
a Oh. This is the signal that tells DOS that there should be no checking of the
volume ID.

DOS uses the volume ID information on a disk change to determine if the
previous disk needs to be reinserted. This allows DOS to update the disk that
was prematurely removed.

Lastly, the Status word of the Request Header must be set before exiting
the device driver. If there is an error in reading the disk for media information,
the Error bit and Error code should be set with the number of the error that was
encountered.

Command 2-Get BPB The Get BIOS Parameter Block (BPB) command is
valid for block device drivers only. DOS sends this command to the device driver
when it needs to know more about the current disk. This occurs under two
conditions: if the Media Check command returns a status of -1 (media has
changed) or if the Media Check command returns a status of 0 (don't know) and
there are no dirty buffers for the disk.

Recall from the previous section that DOS needs to check that the disk has
not changed before any reads or writes. DOS assumes that the disk will not
change as long as there is data to be written to the disk. These are buffers within
DOS that contain modified data for a particular disk. If DOS determines that
there are no dirty buffers, and if the Media Check returns a status of 0 (don't
know), DOS will assume that the disk has changed. This neatly solves the
dilemma of determining disk changes that was discussed in the previous section.
The reason this works is simple: If there are any buffers to be written out, DOS
will do so at the earliest possible time. This ensures that disks can be changed at
any time without having to perform an action to write out data. Thus, if a time
period has been exceeded or if the device driver cannot determine a disk change,
DOS assumes that the disk has been changed. This causes DOS to assume that
the disk is new and that new disk information will be received.

The Get BPB command accesses the disk and returns to DOS the BPB. This
information allows DOS to locate the File Allocation Table, the File Directory,
and the user data area for the new disk. The steps needed to process the Get BPB
command are shown next.

Building a Complete Full-function Device Driver

1. Determine where the Boot Record is on the new disk.

2. Read the Boot Record into memory.

3. Retrieve the BPB from the Boot Record.

4. Return a pointer to the new BPB.

5. If Attribute word bit 11 is set, determine where the File Directory be
gins, search the File Directory for the volume ID, save the old volume
ID, and save the new volume ID.

6. Set the Status word of the Request Header.

The device driver is responsible for reading the BPB from the disk. A pointer
to the new BPB is then returned to DOS through the Request Header variables
rh2ybpbo and rh2ybpbs. The Get BPB struc is shown in Listing 9-6.

The BPB is located in the Boot Record (also known as the reserved area).
For floppy disks, this is the first sector of the disk; for hard disks, this is the first
sector of the logical disk drive. Recall that a hard disk may be partitioned into
several logical drives. It is up to the device driver to determine the start of the
logical drive (partition) relative to the first physical sector of the hard disk.
Obviously, many calculations are necessary to find the hard disk BPB. Table 9-9
describes the BPB.

The buffer address specified by the variables rh2_buf_ofs and rh2_buf_seg
has different meanings depending on the DOS version and the setting of bit 13
ofthe Attribute word ofthe Device Header. Bit 13 is set to indicate that the disk
format is not IBM-compatible. This specifies to the device driver that the buffer
can be used for anything. Otherwise, the buffer contains the initial FAT sector
(with the first entry being the media descriptor byte) and must not be altered for

Listing 9-6: The Request Header for the Get BPB command.

rh2 struc ; Get_BPB (command 2)
rh2 - rh db size rh dup(?) ; fixed portion
rh2 _media db ? ;media descriptor from DPB
rh2 - buf - ofs dw ? ;offset address of

;data transfer area
rh2 - buf _seg dw ? ; segment address of

;data transfer area
rh2_pbpbo dw ? ;offset address of

;pointer to BPB
rh2 _pbpbs dw ? ; segment address of

;pointer to BPB
rh2 ends

353

Writing MS-DOS Device Drivers, Second Edition

354

Starting
Name Location Length Description

SS 0 2 Sector Size in bytes
AU 2 1 Allocation Unit size (sectors per cluster)
RS 3 2 Number of Reserved Sectors
NF 5 1 Number of FATs on this disk
DS 6 2 Directory Size (number of files)
TS 8 2 Number of Total Sectors
MD 10 1 Media Descriptor
FS 11 2 FAT Sectors (each FAT)
ST 13 2 Number of Sectors per Track
NH 15 2 Number of Heads
HS 17 2/4* Number of Hidden Sectors
LS 21 4* Number of Large Sectors

* =DOS4.0+

Table 9-9: The fields that comprise the BPB. The BPB is located at
byte 11 from the beginning of the boot area.

all versions of DOS. For DOS version 3.2, you can use this buffer even ifbit 13 is
not set. You need not concern yourself with this, for the BPB contains all the
information that DOS needs about the new disk.

Lastly, because DOS assumes that there is a new disk, the device driver can
read the new volume ID off the new disk and save the old volume ID. This
involves determining where the File Directory is on the new disk and searching
through it for the volume ID entry. Once the volume ID is found and stored in a
variable, the other command processing sections can return the old volume ID in
the event of an illegal disk change. For example, the Media Check command
returns this old volume ID if the disk has changed. You will see more of this
volume ID in other command processing.

Command 3-1/0 Control Input Command 3, 110 Control Input, is valid for
block and character device drivers if the 1/0 Control Support bit (14) of the
Attribute word is set. Recall that the Attribute word of the Device Header allows
DOS to pass 110 control strings to and from the device driver. 110 control strings
are data passed between a program and the device driver. The data is not

Building a Complete Full-function Device Driver

Listing 9-7: The Request Header for the IOCTL Input command.

rh3
rh3
rh3
rh3

rh3

rh3

rh3

rh3

struc ; IOCTL_INPUT (command 3)

- rh db size rh dup(?) ; fixed portion
_media db ? ;media descriptor from DPB
_buf - ofs dw ? ;offset address of

;data transfer area
_buf _seg dw ? ; segment address of

-

-

;data transfer area
count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

start dw ? ;start sector number
; (block devices only)

ends

intended to be sent to the device; these strings are merely a means of communi
cating with the device driver.

As you saw in chapter 5's printer device driver, you can use I/O control
strings in two ways. The DOS service IOCTL Output is used to send control
information to the device driver. When control information from the device driver
is required, the IOCTL Input DOS service is used. The DOS 44h services call
provides IOCTL functions.

Listing 9-7 shows the IOCTL Input struc. The steps required to process the
IOCTL Input command are listed below:

1. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Store the I/O control string in the data-transfer area.

4. Return the transfer count.

5. Set the Status word of the Request Header.

The I/O control string data that is passed to the device driver in the data
transfer area need not be moved into a buffer inside the device driver. The device
driver can simply use a pointer to access the data.

The format for the I/O control string information must be agreed upon
between the program and the device driver. Otherwise, the program sends data
that the device driver does not understand. This data can be binary, ASCII, or
a combination of both. Set up a command code, one for each function desired.

355

Writing MS-DOS Device Drivers, Second Edition

356

Then, within the application program using the IOCTL functions, decide how to
interact with the user to determine which of the command codes to send to the
device driver. This may be a series of prompts, such as those you saw in chapter
5's IOCTL program. Within the device driver, you must add code to recognize
these command codes and process them accordingly.

The transfer-count variable rh3 _count is an important part of the common
110 control string format. This transfer count determines if the data transferred
is correct. Because both sides must agree on the format, the number of bytes to
be transferred can also be confirmed.

Using the variables rh3_buf_ofs and rh3_buf_seg as a pointer, the device
driver can read or write an 110 control string in the data-transfer area. For the
IOCTL Input command, the device driver is instructed to return an 110 control
string to DOS. DOS, in turn, returns it to the program requesting 110 control
information.

Once an 110 control string is stored in the d~ta-transfer area, the device
driver sets the variable rh3_count to indicate the number of bytes in the data
transfer area. Next, the Status word of the Request Header is set to indicate the
appropriate status; the device driver then exits back to DOS.

Command 4-Input The listing for the struc is shown in listing 9-8. The Input
command is used by all device drivers to send data from the device back to DOS.
The steps for processing this command are shown below:

1. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Read the requested amount of information from the device.

4. Return the transfer count.

5. Set Status word of the Request Header.

The Input command reads data from the device into the data-transfer
address specified by the variables rh4_buf_ofs and rh4_buf_seg. The count is
contained in the variable rh4_count. For character devices the count is the
number of bytes to be transferred. For block devices the count is the number of
sectors to be transferred. In addition, the variable rh4_start indicates the start
sector number for the block device ifit is less than 65,535. For disks larger than
32Mb the sector number may be larger. If so, rh4_start will have OFFFFh and
the 32-bit starting sector number will be found in variable rh4_LS.

Once the transfer is complete, the device driver specifies the number of
bytes or sectors transferred in the same variable, rh4_count. This variable does

Building a Complete Full-function Device Driver

Listing 9-8: The Request Header for the Input command.

rh4
rh4
rh4
rh4

rh4

rh4

rh4

rh4

rh4

rh4

rh4

struc ; INPUT (command 4)

- rh db size rh dup(?) ; fixed portion
media db ? ;media descriptor from DPB -

_buf ofs dw ? ;offset address of
;data transfer area

buf _seg dw ? ; segment address of -

-

-

-

-

;data transfer area
count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

start dw ? ;start sector number
; (block devices only)

volid_ofs dw ? ;offset address of
;volume identification
;DOS 3+ only

volid_seg dw ? ; segment address of

LS

;volume identification
;DOS 3+ only

dd ? ;32-bit start sector
;DOS 4.0+

ends

not have to be updated ifthe transfer was successful, because the original number
is still correct. If the transfer was not successful, this variable must be changed
to indicate the number of bytes or sectors transferred. This tells DOS that the
data was only partially transferred.

For block device drivers that implement the OpeniCloselRemovable Media
bit (11) of the Device Header Attribute word, there is an additional programming
consideration. You may recall from the Get_BPB command section that disks can
be changed even though DOS still has data for the disk. If the device driver
receives an Input command and determines that the wrong disk is in the unit,
the device driver aborts the Input command and returns an error to DOS. This
type of error is detected by timing the last disk accessor or by monitoring a
disk-changed signal from the hardware. If it is determined that the Input
command is for the wrong disk, the device driver returns an error (OFh-illegal
disk change) and the old volume ID. This allows DOS to ask the user to reinsert
the disk that has the old volume ID. Note that this feature is for DOS versions
3.0 or greater.

The Status word in the Request Header is set to indicate DONE and any
errors before the device driver exits back to DOS. This is particularly important
if we have encountered an error.

357

Writing MS-DOS Device Drivers, Second Edition

Command 5-Nondestructive Input The Nondestructive Input command is
valid for charact~r devices only. The applications program using the DOS service
Get Input Status (OBh) causes DOS to send this command to the device driver,
asking it to look ahead one character. DOS assumes that character devices have
an input buffer in which characters are stored. The device driver requests the
next character in this buffer. Some devices have the ability to retrieve a character
from the buffer without removing the character. Other devices require the
character to be removed from the buffer. The term nondestructive means that the
character will still be available for the next Input command.

Not all devices have a data buffer. For devices that do not, the device driver
must actually do a read of one character. This character is saved for the next Input
command as well as being passed back to DOS to satisfy the Nondestructive Input
command. Device drivers also store characters for keyboard devices. Recall from
chapter 4 that keyboard input using the ROM BIOS interrupt I6h returns two
bytes. The device driver returns one byte and saves the other. The Nondestructive
Input command would simply retrieve the stored character. If the device driver
did not have a character saved, the device driver would request the next character.

The steps required to process the Nondestructive Input command are listed
below:

1. Retrieve a byte from the device.

2. Set the Status word of the Request Header.

The device driver retrieves a byte from the device and stores it in the variable
rh5]eturn. If there is no character in the device buffer, the device driver sets the
BUSY bit of the Status word to indicate that the device buffer is empty. The
Status word of the Request Header is set before exiting from the device driver.
The listing for the Nondestructive Input struc is shown in listing 9-9.

Command 6-Input Status The Input Status command is valid for character
devices only. This command returns the status of the character-device input
buffer, telling DOS whether there are any characters in the device buffer ready

Listing 9-9: The Request Header for the Nondestructive Input command.

rh5

358

struc
db
db
ends

;ND_INPUT (command 5)
size rh dup (7) ; fixed portion
7 ;character returned

Building a Complete Full-function Device Driver

Listing 9-10: The Request Header for the Input Status command.

rh6
rh6
rh6

rh6
rh6
rh6
rh6
rh6

struc ; Input_Status (command 6)

- len db ? ;len of packet
_unit db ? ;unit code

; (block devices only)
_cmd db ? ;device driver command

-
-
-

status dw ? ;returned by device driver
resl dd ? ; reserved
res2 dd ? ; reserved

ends

to be input. Listing 9-10 shows the struc for the Input Status command. The steps
involved in processing the Input Status command are shown below:

1. Retrieve the status from the device.

2. Set the BUSY bit of the Status word:

o If there are characters in the device buffer or if the device does not
have a buffer

1 If there are no characters in the buffer

3. Set Status word of the Request Header.

The device driver processes this command by retrieving the status from the
device. If the device has characters in the buffer, the BUSY bit is not set. If the
device does not have characters in the buffer, the BUSY bit is set.

For devices that do not have a data buffer, the BUSY bit is not set. This is
contrary to what you might expect based on the preceding descriptions. The logic
behind this is that DOS will wait for the device buffer to fill if the BUSY bit is
set. On the other hand, if the BUSY bit is not set, DOS will issue an Input
command immediately. This will result in an actual read, and DOS will not have
to wait for a nonexistent buffer to fill.

Command 7-Input Flush The Input Flush command is valid for character
devices only. This command empties the character device buffer. Listing 9-11
shows the listing for the Input Flush struc. The steps required to process the
Input Flush command are listed below:

1. Flush the character device buffer.

2. Set Status word of the Request Header.

359

Writing MS-DOS Device Drivers, Second Edition

Listing 9-11: The Request Header for the Input Flush command.

rh7
rh7 -
rh7 -

rh7 -
rh7 -
rh7 -
rh7 -
rh7

360

struc ; Input_Flush (command 7)
len db ? ;len of packet
unit db ? ;unit code

; (block devices only)
cmd db ? ;device driver command
status dw ? ;returned by device driver
resl dd ? ; reserved
res2 dd ? ; reserved

ends

To process this command, execute instructions that cause the device buffer
to empty. Most devices do not accept control information that causes the buffer
to drain. Instead, the device driver simply reads characters from the device until
the device status indicates that there are no more characters in the buffer. The
device driver sets the Status word in the Request Header before exiting.

Command-8 Output Command 8, Output, is used by all device drivers to
send data to the device. Listing 9-12 shows the struc to use to process the Output
command. The steps taken to process the Output command are listed below:

1. Retrieve the address ofthe data transfer area.

2. Retrieve the transfer count from the Request Header.

3. Write the requested amount of information in the data transfer area
to the device.

4. Return the transfer count.

5. Set Status word of the Request Header.

The device driver processes this command by first retrieving the pointer to
the data-transfer area. The variables rhB_buf_ofs and rhB_buf_seg contain the
offset and segment address in which the data resides. Next, the device driver
retrieves the transfer count in the variable rhB_count. For character devices, this
is the number of bytes to write; for block devices, this is the number of sectors to
write. The variable rhB_start is for block devices and indicates the starting sector
number for the write operation. For disks larger than 32Mb the sector number
may be larger than 65,535. If so, rh4_start will have OFFFFh and the 32-bit
starting sector number will be found in variable rhB_LS.

Building a Complete Full-function Device Driver

Listing 9-12: The Request Header for the Output command.

rhS struc ;OUTPUT (command S)
size rh dup(?) ; fixed portion rhS_rh db

rhS_media db ? ;media descriptor from DPB
rhS_buf_ofs dw ? ;offset address of

;data transfer area

rhS ends

? ;segment address of
;data transfer area

? ;transfer count
; (sectors for block)
; (bytes for character)

? ;start sector number
; (block devices only)

? ;offset address of
;volume identification
;DOS 3+ only

? ;segment address of
;volume identification
;DOS 3+ only

? ;32-bit start sector
;DOS 4.0+

For block devices, the device driver must translate the relative sector
number into a set of physical parameters (track, head, sector). The sector
numbers that are passed in the Request Header are those numbers relative to
the start of the logical drive. Hard disks are often partitioned into one or
more logical drives. For both floppy and hard disks, the device driver must
convert this relative sector number into a track number, a head number, and a
sector number.

If the write operation is successful, the device driver sets the Status word
and exits. If the write operation fails, the device driver must set the ERROR bit
and indicate the error number; both the ERROR bit and number are defined in
the Status word of the Request Header. In addition, the device driver must
return, in the variable rh8_count, the transfer count up to the point of failure.
This indicates to DOS how much data there is in the data-transfer area.

In addition, if the Device Header Attribute bit 11 (OpeniClose/Removable
Media) is set, block device drivers need to process another type of error. If the
block device driver has determined that there has been an illegal disk change, it
must abort the write operation. The driver then sets the ERROR bit and indicates
an error code of OFh (illegal disk change). Then the pointer variables
rh8_volid_ofs and rh8_volid_seg are set to point to the old volume ID. When DOS

361

Writing MS-DOS Device Drivers, Second Edition

Listing 9·13: The Request Header for the Output With Verify command.

rh9 struc ; OUTPUT_VERIFY (command 9)
rh9 - rh db size rh dup(?) ; fixed portion
rh9_media db ? ;media descriptor from DPB
rh9_buf_ ofs dw ? ;offset address of

;data transfer area
rh9 _buf _seg dw ? ; segment address of

;data transfer area
rh9 - count dw ? ';transfer count

; (sectors for block)
; (bytes for character)

rh9 - start dw ? ;start sector number
; (block devices only)

rh9 _volid_ofs dw ? ;offset address of
;volume identification
;DOS 3+ only

rh9_volid_seg dw ? ; segment address of

rh9 LS -

rh9

362

;volume identification
;DOS 3+ only

dd ? ;32-bit start sector
;DOS 4.0+

ends

receives the OFh error, DOS will prompt the user with the old volume ID,
requesting a reinsertion of the old disk.

Command 9-0utput With Verify The Output With Verify command is
valid for both character and block devices. This command is used much as the
Output command is, except that, if possible, you should build your driver to read
back the data after it is written to the device. Use this command to ensure that
the data has been written to the device correctly. The struc for the Output With
Verify command is shown in listing 9-13. The steps required to process this
command are shown below:

1. For devices that cannot read data just written,jump to the Output
routine.

2. For devices that can read data just written, set a flag to indicate a
read. Next, jump to the Output routine and modify it to read the data
back in if the flag is set.

The VERIFY command is used to set the verify flag within DOS. If this flag
is set, all writes to the device will appear in the device driver as Output With
Verify commands instead of Output commands.

Building a Complete Full-function Device Driver

Listing 9-14: The Request Header for the Output Status command.

rh10
rh10
rh10

rh10
rh10
rh10
rh10
rh10

struc ; Output_ Status (command 10)

- len db ? ;len of packet
unit db ? ;unit code -

-
-
-

-

; (block devices only)
cmd db ? ;device driver command
status dw ? ;returned by device driver
res1 dd ? ; reserved
res2 dd ? ; reserved

ends

For devices that cannot read data just written, process this command by
including ajump instruction to the Output routine. If the device can read data
just written (as disks can), set a flag to indicate that you want to validate the
data by reading it back in. Then jump to a modified Output routine. The Output
routine will write the data to the device and, ifthe flag is set, will read the data
back in. This method uses both the Output and the Input routines to process the
Output With Verify command.

Command 10-0utput Status The Output Status command is valid for char
acter devices only. Use this command to return the status of the device output
to DOS. Devices that are output only, such as printers, have buffers that contain
characters waiting to be output. Check the status of this buffer with this
command. The struc for the Output Status command is shown in listing 9-14. The
steps for processing this command are shown below:

1. Retrieve the status from the device.

2. Set the BUSY bit of the Status word:

o If the device is idle or the buffer is not full

1 If the device is busy or the buffer is full

3. Set the Status word of the Request Header.

When DOS needs to write to a device, an Output Status command is first
issued to the device driver. This tells DOS whether to send the Output command
immediately or to wait and issue another Output Status command.

To process this command, set the BUSY bit of the Request Header Status
word. If the device is ready for output, the device driver does not set the BUSY
bit. If the device is not ready, the driver sets the BUSY bit.

363

Writing MS-DOS Device Drivers, Second Edition

Listing 9-15: The Request Header for the Output Flush command.

rh11
rh11
rh11

rh11
rh11
rh11
rh11
rh11

364

struc ; Output_ Flush (command 11)

- len db ? ;len of packet
_unit db ? ;unit code

-
-
-

-

; (block devices only)
cmd db ? ;device driver command
status dw ? ;returned by device driver
resl dd ? ; reserved
res2 dd ? ; reserved

ends

Command II-Output Flush The Output Flush command is valid for char
acter devices only. Use this command to empty the output device's buffer. The
struc for the Output Flush command is shown in listing 9-15. The steps for
processing this command are listed below:

1. For devices that have an output buffer, execute instructions to empty
the buffer.

2. Set the Status word of the Request Header.

To process the Output Flush command, the device driver executes instruc
tions that empty the output device's data buffer. If the output device does not
have a buffer, the device driver simply does nothing. Before the device driver
exits, set the Status word in the Request Header.

Command 12-1/0 Control Output The 110 Control Output command is
valid for character and block devices if the Device Header Attribute bit 14 is set,
indicating that 110 Control is supported. Use this command to send control
information from a program directly to the device driver. Data that is passed to
the device driver is not meant for the device but for controlling the device. The
device driver may use this information in any fashion. The format of the control
information must be agreed upon by both the program issuing 10CTL service
calls and the device driver. The struc for the 10CTL command is shown in listing
9-16. The steps required to process the 10CTL Output command are listed below:

1. Retrieve the address ofthe data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Decode the 1/0 control string contained in the data-transfer area.

4. Set the Status word ofthe Request Header.

Building a Complete Full-function Device Driver

Listing 9-16: The Request Header for the IOCTL Output command.

rh12
rh12
rh12
rh12

rh12

rh12

rh12

rh12

struc ; IOCTL_OUTPUT (command 12)

- rh db size rh dup(?) ;fixed portion
_media db ? ;media descriptor from DPB
_buf - ofs dw ? ;offset address of

;data transfer area
_buf _seg dw ? ; segment address of

-

-

;data transfer area
count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

start dw ? ;start sector number
; (block devices only)

ends

The device driver processes this command by retrieving the address of the
data-transfer area in the variables rh12_buf_ofs and rh12_buf_seg. The length of
the 110 control string to process is contained in the variable rh12_count. This
count allows the device driver to determine if the 110 control string has been
properly constructed. As we discussed in the 10CTL Input section, the length of
the transfer is important in ensuring that the format of the 110 control string is
correct.

The device driver then processes the I/O control string by performing the
functions requested. These functions will vary depending on the type of device
being controlled and the actions desired. In chapter 5, you saw that the printer
device driver used 110 control strings to switch printers. You could have easily
used I/O control strings to change the baud rate of your devices or to issue a forms
control for a printer.

If there are any errors, the device driver sets the Request Header Status
word accordingly.

Command 13-Device Open The Device Open command is available to both
character and block devices under DOS version 3.0 or greater if the Device Header
Attribute bit 11 (OpeniCloselRemovable Media) is set. This command is sent by
DOS each time the device is opened by a program. Use this command to track
the number of times a device has been opened. Used in conjunction with the
Device Close command, this command can enable you to determine if devices are
being accessed properly. For example, if you want the device to be accessed by
only one user at a time, you can reject new opens of your device if you have not
received a close command for the previous open. The struc for the Device Open

365

Writing MS-DOS Device Drivers, Second Edition

Listing 9·17: The Request Header for the Device Open command.

rh13
rh13
rh13

rh13
rh13
rh13
rh13
rh13

366

struc ;Open (command 13)

- len db ? ;len of packet
_unit db ? ;unit code

-
-
-

-

; (block devices only)
cmd db ? ;device driver command
status dw ? ; returned by device driver
resl dd ? ;reserved
res2 dd ? ; reserved

ends

command is shown in listing 9-17. The steps required to process this command
are listed below:

1. Increment a (device open) counter.

2. For character devices, send out an initialization string.

3. Set the Status word of the Request Header.

To process this command, increment a counter within your device driver.
The count is incremented when the device driver receives Device Open commands
and is decremented when the driver receives Device Close commands. This allows
the device driver to determine when the device is free.

For character devices, use the Device Open command to initialize the device.
For example, you can initialize printers by sending a command that sets the top
ofform or loads a standard font.

For block devices, you can use the device open counter in a different manner.
Recall that setting the Attribute bit 11 requires the block device driver to
determine whether there is an illegal disk change. You can use the device open
counter for this purpose. Disks can be changed when the device open counter is ° (which means that there are no open files for the disk). As long as the counter
is not 0, disks cannot be changed, for there are files opened for the disk.

Command 14-Device Close The Device Close command is available to char
acter and block devices running under DOS version 3.0 or greater if the Device
Header Attribute bit 11 (OpeniCloselRemovable Media) is set. This command is
sent by DOS each time the device is closed by a program. Use this command to
track the number oftimes a device has been opened. Used with the Device Open
command just described, this command can enable you to determine if devices

Building a Complete Full-function Device Driver

Listing 9-18: The Request Header for the Device Close command.

rh14
rh14
rh14

rh14
rh14
rh14
rh14
rh14

struc ;Close conunand 14)

- len db ? ; len of packet
_unit db ? ;unit code

-

-

-
-

; (block devices only)
cmd db ? ;device driver command
status dw ? ;returned by device driver
res1 dd ? ;reserved
res2 dd ? ;reserved

ends

are being accessed properly. The struc for the Device Close command is shown in
listing 9-1S. The steps required to process this command are listed below:

1. Decrement a (Device Open) counter.

2. Set the Status word of the Request Header.

To process this command, decrement the counter within your device driver
that was incremented by a Device Open command. When the count is 0, you will
know that there are no outstanding opens for this device: the device is free.

For character devices, use the Device Close command to send an optional
string to the device. For example, you can send a form feed command to finish a
print job. Note that the CON:, AUX:, and PRN: devices are never closed.

As you have just seen for the Device Open command, you can use this device
open counter differently for block devices. If the device open counter is 0, the disk
may be changed. Therefore, if a GET BPB command is received by the device
driver, the disk change is legal. However, if the device open counter is not ° and
the device driver receives a GET BPB command, the disk change is in error.

Command 15-Removable Media The Removable Media command is valid
for block devices running under DOS version 3.0 or greater that have the Device
Header Attribute bit 11 (OpeniCloselRemovable Media) set. This command is
sent by DOS when a program issues an IOCTL service call (44h) asking whether
the media is removable (OSh). Programs use this command to determine whether
the disk is changeable. The struc for the Removable Media command is shown in
listing 9-19. The steps required to process this command are shown below:

1. Set the BUSY bit of the Status word:

° Media is removable
1 Media is not removable

2. Set the Status word ofthe Request Header.

367

Writing MS-DOS Device Drivers, Second Edition

Listing 9·19: The Request Header for the Removable Media command

rhlS
rhlS
rhlS

rhlS
rhlS
rhlS
rhlS
rhlS

struc ; Removable (command lS)

- len db ? ;len of packet
unit db ? ;unit code -

-
-
-

-

; (block devices only)
cmd db ? ;device driver command
status dw ? ; returned by device driver
resl dd ? ;reserved
res2 dd ? ;reserved

ends

To process this command, return the BUSY bit in the Request Header Status
word, indicating the media status. Set the BUSY bit if the media is not remov
able; do not set it if the media is removable.

Programs that request this information through the IOCTL service call can
decide whether to prompt the user to change disks. For example, the FORMAT
program uses this information to prompt the user for floppy disks but not for hard
disks.

Command I6-0utput Til Busy The Output Til Busy command is valid for
character devices running under DOS version 3.0 or greater that have the Device
Header Attribute bit 13 set (Output Til Busy supported). This command is used
by print spoolers to output data to a character device until the device signals busy.

Listing 9·20: The Request Header for the Output Til Busy command.

rh16 struc ; OUTPUT_BUSY (command 16)
rh16 - rh db size rh dup (?) ;fixed portion
rh16 _media db ? ;media descriptor
rh16 _buf - ofs dw ? ;offset address of

;data transfer area
rh16 _buf _seg dw ? ; segment address of

;data transfer area
rh16 - count dw ? ;byte count returned

;from device driver
rh16 ends

368

Building a Complete Full-function Device Driver

Listing 9-21: The Request Header for commands 17 and 18.

rh17
rh17
rh17

rh17
rh17
rh17
rh17
rh17

rh18
rh18
rh18

rh18
rh18
rh18
rh18
rh18

struc ; (command 17)

- len db ? ;len of packet
unit db ? ;unit code -

; (block devices only)

- cmd db ? ;device driver command
status dw ? ;returned by device driver

- resl dd ? ; reserved

- res2 dd ? ;reserved
ends

struc ; (command 18)

- len db ? ; len of packet
_unit db ? ;unit code

-

-
-

; (block devices only)
cmd db ? ;device driver command
status dw ? ;returned by device driver
res1 dd ? ;reserved
res2 dd ? ;reserved

ends

The struc for the Output Til Busy command is shown in listing 9-20. The steps
required to process this command are listed below:

1. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Write the requested amount of information in the data-transfer area
to the device until the device signals busy.

4. Return the transfer count.

5. Set the Status word ofthe Request Header.

To process this command, first retrieve the pointer to the data-transfer area.
The variables rh16_buf_ofs and rh16_buf_seg contain the offset and segment
address at which the data resides. Then retrieve the transfer count in the variable
rh16_count, which is the number of bytes to write.

The device driver writes characters from the data-transfer area to the device
until all the characters are written or until the device signals busy. If all the
characters were not written, the number actually written is returned in the vari
able rh16_count. The device driver sets the Request Header Status word upon exit.

369

Writing MS-DOS Device Drivers, Second Edition

Listing 9·22: The Request Header for the Generic IOCTL command.

rh19 struc ;Generic_1OCTL (command 19)
rh19 - rh db size rh dup (?) ;fixed portion
rh19 _major db ? ;major function
rh19 _minor db ? ;minor function
rh19 - 81 dw ? ;contents of S1 register
rh19 - D1 dw ? ;contents of D1 register
rh19Jlkt_ofs dw ? ;offset address of

;generic 10CTL request
rh19Jlkt_seg dw ? ; segment address of

rh19

370

;generic 10CTL request
ends

Commands 17 and 18 Commands 17 and 18 are undefined; they are reserved
for use by future versions of DOS. For the sake of completeness, the Request
Header strucs for both commands are shown in listing 9-21.

Command 19-Generic 110 Control The Generic 110 Control command is
valid for block devices running under DOS version 3.2 or greater that have the
Device Header Attribute bit 0 set (Generic I/O Control supported). DOS 3.3 or
greater allows Generic 110 Control commands for character devices. This com
mand is used by programs that issue an 10CTL service call (44h) specifying
Generic I/O Control functions (ODh). The struc for the Generic 1/0 Control
command is shown in listing 9-22. The steps required to process this command
are listed below:

1. Retrieve the Major and Minor function codes.

2. Process the Minor function request.

3. Return the transfer count.

4. Set the Status word ofthe Request Header.

The purpose ofthis command is to provide a standard I/O control service for
block-oriented devices. Beginning with version 3.2, DOS defines a more standard
approach to controlling block devices. The Minor function codes define operations
that were not truly a part of DOS. For example, formatting a disk was an
operation performed by utility programs.

To process this command, first retrieve the Major and Minor function codes
that are contained in the variables rh19 _major and rh19 _minor. Next, verify that
the Major function code is correct. The Major codes are shown in table 9-10. The
Minor codes and their meanings are shown in tables 9-11 and 9-12.

Building a Complete Full-function Device Driver

Value

Olh
03h
05h
08h

Description

Serial device
Console
Parallel printer
Disk

Table 9·10: The Major function codes for Generic 110 Control.

Value

45h
4Ah
4Ch
4Dh
65h
6Ah
6Bh

Description

Set Iteration Count
Select Code Page
Start Code-Page Prepare
End Code-Page Prepare
Get Iteration Count
Query Selected Code Page
Query Code-Page Prepare List

Table 9·11: The Minor function codes for character devices. These
codes are defined for the DOS IOCTL service (44h) request for
character device Generic 110 Control (OCh).

Value

40h
60h
4lh
6lh
42h
62h
46h
66h
68h

Description

Set Device Parameters
Get Device Parameters
Write logical drive track
Read logical drive track
Format and verify logical drive track
Verify logical drive track
Set Media ID
Get Media ID
Sense Media type

Table 9·12: The Minor function codes for the block devices. These
codes are defined for the DOS IOCTL service (44h) request for block
device Generic 110 Control (ODh).

371

Writing MS-DOS Device Drivers, Second Edition

Listing 9-23: The Request Header for the commands 20, 21, 22.

rh20 struc ; (command 20)
rh20 - len db ? ;len of packet
rh20_unit db ? ;unit code

; (block devices only)
rh20_cmd db ? ;device driver command
rh20 - status dw ? ;returned by device driver
rh20 - res1 dd ? ; reserved
rh20 - res2 dd ? ; reserved
rh20 ends

rh21 struc ; (command 21)
rh21 len db ? ;len of packet
rh21_unit db ? ;unit code

; (block devices only)
rh21 - cmd db ? ;device driver command
rh21 status dw ? ;returned by device driver
rh21 - res1 dd ? ; reserved
rh21 res2 dd ? ; reserved
rh21 ends

rh22 struc ; (command 22)
rh22 len db ? ;len of packet
rh22_unit db ? ;unit code

rh22 -
rh22
rh22 -
rh22
rh22

372

; (block devices only)
cmd db ? ;device driver command
status dw ? ;returned by device driver
res1 dd ? ; reserved
res2 dd ? ; reserved

ends

The Request Header contains additional information that assists the device
driver in processing the Generic I/O Control command. Refer to the DOS Techni
cal Reference manual for details in implementing this command.

Commands 20, 21, and 22 Commands 20, 21, and 22 are undefined; they are
reserved for future DOS versions. The Request Header strucs for these commands
are shown in listing 9-23.

Command 23-Get Logical Device The Get Logical Device command is
available for block devices running under DOS version 3.2 or greater that have
the Device Header Attribute bit 6 set (Get/Set Logical Device supported). DOS
3.2 or greater allows the user to specify multiple drive letters for a device unit.

Building a Complete Full-function Device Driver

Listing 9·24: The Request Header for the Get Logical Device command.

rh23
rh23
rh23

rh23
rh23
rh23
rh23

struc ; Get_Device (command 23)
rh db size rh dup (?) ;fixed portion -

- IO db ? ; Input (unit code)
; Output (last device)

_dev_cmd db ? ;command code
_dev - stat dw ? ;status

- reserved dd ? ; reserved
ends

For example, the second disk unit, normally accessed as logical drive letter B:,
can also be accessed with the logical drive letter E:. Listing 9-24 shows the struc
for the Get Logical Device command. The steps required to process this command
are listed below:

1. Retrieve the input unit code.

2. Return the last device referenced.

3. Set the Status word of the Request Header.

This command is processed by retrieving the logical unit specified in the
variable rh23_io. The device driver will determine if there is another logical
drive assigned to the same logical unit. Ifthere is no other logical drive assigned,
the device driver returns a 0 in rh23_io. Otherwise, the device driver returns the
logical drive that was last referenced. The values contained in rh23_io are 1 for
drive A:, 2 for drive B:, etc. Confusing as this sounds, this command is asking the
device driver what other drive letter was used to access the same physical
device unit.

Command 24-Set Logical Device The Set Logical Device command is
available for block devices running under DOS version 3.2 or greater that have
the Device Header Attribute bit 6 set (Get/Set Logical Device supported). This
command allows DOS 3.2 (or greater) users to specify multiple drive letters for
a logical drive. Listing 9-25 shows the struc for the Set Logical Device command.
The steps required to process this command are listed below:

1. Retrieve the input unit code.

2. Save this unit code.

3. Set the Status word of the Request Header.

373

-------- ------------------------

Writing MS-DOS Device Drivers, Second Edition

Listing 9-25: The Request Header for the Set Logical Device command.

rh24
rh24
rh24

rh24
rh24
rh24
rh24

374

struc ; Set_Device (command 24)

- rh db size rh dup (?) ; fixed portion

- 10 db ? ; Input (unit code)
; Output (last device)

- dev_cmd db ? ;command code
_dey - stat dw ? ;status

- reserved dd ? ; reserved
ends

This command is processed by retrieving and saving the logical unit specified
in the variable rh23_io. Ifthe device driver does not recognize this drive letter as
an alternate drive letter for the units controlled, a 0 is returned in rh24_io. The
drive letters are numbered starting with 1, where 1 represents A:, 2 represents
B:, etc.

Assigning alternate drive letters is accomplished through the use of the
DRIVER.SYS device driver supplied with DOS versions 3.2 through 5.0. Argu
ments on the DEVICE command for this device driver specify additional drive
letters for the unit specified. Refer to the DOS Technical Reference manual for
more information.

Programs make use of this feature by using the DOS IOCTL service call
(44h) to get and set logical drives.

Command 25-IOCTL Query The IOCTL Query command is valid for both
character and block devices running under DOS version 5.0 that have the Device
Header Attribute bit 7 set (IOCTL Query supported). This command is used by
programs to query device drivers to determine whether the device driver supports
a specific generic IOCTL function. These are the Minor codes as shown in table
9-11 for character devices and table 9-12 for block devices. The struc for the
IOCTL Query command is shown in listing 9-26. The steps required to process
this command are listed below:

1. Retrieve the Minor function code.

2. Set the DONE bit of the Status word if the Minor function code is sup
ported by the device driver.

3. Set the Status word ofthe Request Header.

Building a Complete Full-function Device Driver

Listing 9-26: The Request Header for the IOCTL Query command.

rh25 struc ; 10CTL Query (command 25)
rh25 - rh db size rh dup (?) ;fixed portion
rh25 _major db ? ;major function
rh25 _minor db ? ;minor function
rh25 - S1 dw ? ; contents of S1 register
rh25 - D1 dw ? ; contents of DI register
rh25Jlkt_ofs dw ? ;offset address of

; 10CTL Query request
rh25Jlkt_seg dw ? ; segment address of

rh25
;10CTL Query request

ends

This command is processed by retrieving the minor code passed to the device
driver in variable rh25 _minor. If the device driver supports the Minor code, then
set the DONE bit of the Status word. Otherwise, set the ERROR bit ofthe Status
word and set the ERROR_CODE field to 3 for Unknown command.

Programs can make IOTCL Queries of device drivers through the use of the
DOS Query IOCTL Handle (441Oh) or Query IOCTLDevice (4411h) service calls.

This concludes the description of the DOS command-processing sections.

Exiting from the Device Driver
When device drivers exit to DOS, the Status word in the Request Header must
be set. There are four items about which you need to be concerned. The DONE
bit is always set upon exit from the device driver. This indicates to DOS that the
command was properly processed. Next, certain commands (Input Status, Output
Status, Removable Media, and Output Til Busy) will set the BUSY bit. The
ERROR bit is set if the device driver determines that an error has occurred; in
addition, the ERROR_CODE field must contain a code indicating the error. Table
9-13 lists the appropriate error codes for use by the device driver.

The code that executes when exiting from a device driver sets the Request
Header Status word and restores the registers that were saved on entry. Listing
9-27 illustrates the code necessary to exit the device driver properly.

375

Writing MS-DOS Device Drivers, Second Edition

Hex Description of
Code ERROR_CODE

o Write protect violation
1 Unknown unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media

Hex Description of
Code ERROR_CODE

8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure
D Reserved (DOS 3+)
E Reserved (DOS 3+)
F Invalid disk change (DOS 3+)

Table 9-13: The standard error codes for DOS device drivers. Note
that error codes ODh through OFh are valid only for DOS versions 3.0
or greater.

Listing 9-27: The code for exiting the device driver.

;**
; * ERROR EXIT *
i*** ***********

unknown:
or es: [bx) .rh_status,8003h ;set error bit and error code
jmp done ;set done and exit

i*** ***********

; * COMMON EXIT *
i*** ***********

busy: or es: [bx) .rh_status,0200h ;set busy bit

done: or es: [bx) .rh_status,OlOOh ;set done

pop si ;restore all registers
pop di
pop dx
pop ex
pop bx
pop ax
pop es
pop ds
ret ;return to DOS

376

Command

Initialization
Media Check
GetBPB
IOCTLInput
Input
Non-destructive Input
Input Status
Input Flush
Output
Output With Verify
Output Status
Output Flush
IOCTL Output
Device Open
Device Close
Removable Media
Output Til Busy
Generic IOCTL
Get Logical Device
Set Logical Device
IOCTL Query

Building a Complete Full-function Device Driver

Status Word

DONE
DONE
DONE
DONE, ERROR, ERROR_CODE = 3
DONE
DONE,BUSY
DONE
DONE
DONE
DONE
DONE
DONE
DONE, ERROR, ERROR_CODE = 3
DONE
DONE
DONE, ERROR, ERROR_CODE = 3
DONE, ERROR, ERROR_CODE = 3
DONE, ERROR, ERROR_CODE = 3
DONE, ERROR, ERROR_CODE = 3
DONE, ERROR, ERROR_CODE = 3
DONE, ERROR, ERROR_CODE = 3

Table 9-14: The Request Header Status word for commands that are
not implemented in device drivers.

The Status Word for Unimplemented Commands
When you write device drivers for new devices, you may often be puzzled by what
bits in the Request Header Status word to set. We have found that there is no
easy formula. Based on the experience of writing many device drivers, we have
put together a table that shows bits that should be set for each command upon
exit (see Table 9-14).

377

Writing MS-DOS Device Drivers, Second Edition

Summary
We have discussed at length what writing a device driver entails. The Device
Header, the commands, and the Request Headers have all been discussed in great
detail. With this information and the five working device drivers presented in
previous chapters, you should be ready to write your own device driver.

Questions

378

1. What is the Generic I/O Control command used for?

2. If an argument is passed in the DEVICE= command, is it necessary to
process it in the driver?

3. In table 9-4, the Get/Set Logical Device Attribute bit (6) is set for
pm:/lptx:. In table 9-5, the Get/Set Logical Device commands are appli
cable to block device drivers only. Isn't this a contradiction?

4. What is the purpose of the Output Til Busy command?

Answers may be found in appendix F.

~bhaPterl()

Tips and Techniques

In this chapter, we will focus on the tips and techniques that make it
easier to write device drivers. The ideas presented here are based on practical
experience with device driver programs. We will look at coding notes, checklists,
and procedures to use when implementing and debugging device drivers.

A Checklist for Writing Device Drivers
In the past chapters, we concentrated on what device drivers require in terms of
code, but we neglected some of the practical aspects of writing programs
aspects that are equally applicable to device drivers. Now we will cover this
background information in detail.

Table 10-1 is a checklist for writing device drivers. These are notes that you
should keep foremost in your mind as you write the code for a device driver.

Item 1 on this checklist is often overlooked. For ease oftesting, build a test
disk to use when you are booting DOS with your device drivers. This isolates
testing and does not affect the normal working environment. We have used
several test disks, one for each version of DOS. This has proven beneficial,
because it provides a verification that DOS does indeed behave identically across
versions. Another benefit of using test disks is that you can take the test disk to
another machine to tryout the device driver.

Item 2 in Table 10-1 has to do with the differences between normal assem
bly language programs and device driver programs. Normal programs that work
under DOS require the start ofthe program to be at location 100h; to accomplish
this, you use anorg statement specifying 100h as the start address. Device drivers
cannot start at location 100h, so you must leave out this statement.

Item 3 is a reminder that device driver programs should be in .COM format.
There are two formats for executable programs in DOS: .EXE and .COM files.
The LINK program automatically produces files that are in .EXE format. You
can convert the .EXE file to a .COM file using the EXE2BIN utility. While DOS

381

Writing MS-DOS Device Drivers, Second Edition

382

1. Always use a test disk for testing device drivers.
2. Does the device driver start at location O?
3. Is the device driver in .COM format?
4. Are the Request Header data structures correct?
5. Is the Device Header Link field set to -I?
6. Are the Device Header Attribute bits set correctly?
7. Is the main procedure a FAR procedure?
8. Are the ASSUME statements correct?
9. Do the variables have a CS segment override?

10. Are the ES and BX registers correct when you set the Status word?
11. Are local procedures saving the registers used?
12. Did you assume that a local register has been preserved after returning

from a procedure or an interrupt routine?
13. Have you Popped all your Pushes?

Table 10·1: A checklist for writing device drivers.

version 3 or greater allows device drivers to be in .EXE format, it is safer to build
device drivers as .COM files; they are less likely to be executed.

Item 4 in this table is a check to ensure that the device driver processes the
data that DOS sends properly. You can eliminate many of the possible errors in
retrieving data if you use strucs. Chapter 9 defines the strucs for each command
you need to process.

Item 5 makes sure that DOS can link to the next device driver after yours.
You need to specify a -1 in both words of the Next Device field in the Device
Header. DOS overrides these fields after loading the next device driver. If you do
not set these fields to -1, DOS will assume that there is another device driver
following. Ifthere is no other device driver, a crash will occur.

Item 6 is often overlooked, particularly in modifying an existing device
driver. A number of the bits are important in specifying the type of device you
are installing into DOS. If you write a replacement for the con: device, you must
set bits 0 and 1 of the Device Header Attribute word. Also, if you forget to set
some bits, you may find that certain functions do not work. For example, ifbit 14
(IOCTL supported) is not set, programs using the DOS 1/0 Control services (44h)
will not work.

Item 7 is a reminder that the main procedure of the device driver must have
the FAR operator specified. The 8088/8086 instruction set provides for a short
return and a far return. The call to your device driver is aFAR call, and the device
driver must exit with aFAR return. If you do not specify the FAR option, you will
find all sorts of problems with your device driver, especially with the stack and
the instruction pointer.

Tips and Techniques

Items 8 and 9 can be really nasty if you forget what device drivers can
assume. Normal programs reference data variables through the DS register, so
you must set up an assembler segment directive to indicate this. Device drivers
use only one segment, which is one of the requirements for .COM format files.
The segment registers CS, DS, and ES all reference this one segment through
the ASSUME directive, which you have seen in all of this book's device drivers.
This directive instructs the assembler to generate address offsets relative to the
one defined segment. Other segments are not allowed in device drivers.

There is another consideration when DOS passes control to device drivers.
The device driver cannot assume that the DS and ES registers are properly set
up to point to your data variables. The only register you can assume is correct is
the CS register. Therefore, when the device driver references data variables in
your device drivers, you must specify a CS segment override. The instruction
would look like this:

moves, CS:rh_seg

Because we are all human and tend to forget even the most important items,
there is a way around all of the segment overriding code, which incidentally, does
require more memory. You can add code to the INTERRUPT routine to set up
the DS segment register correctly. The code would look like this:

push
pop

cs
ds

;save value of CS
;make DS the same as CS

Item 10 deals with the only registers that you need at the end ofthe device
driver command processing. Because the Request Header data is pointed to by
the ES and BX registers, the device drivers have used these two registers to set
the Status word. You need not use the ES and BX registers to do so. However,
you do need to have the Request Header's segment and offset addresses available
to set the Status word properly. The 8088/8086 instruction set requires the use
of the ES register in string moves, such as the REP MOVSB instruction. If you
use the ES register in this manner, you must restore it for setting the Status word
when the device driver exits.

Note that once the INTERRUPT routine saves all the registers on the stack,
you can use all the registers in your device driver . You do need to save them when
you call procedures or when you use the ROM BIOS interrupts.

Item 11 is a reminder that local procedures you build for device drivers will
use registers that should be preserved. The best way to catch these types of
mistakes is to document the local procedure in terms of registers required, used,
and returned. The local procedures should initially PUSH all registers that are
used and should POP them when returning to the caller.

383

Writing MS-DOS Device Drivers, Second Edition

Item 12 is a corollary to item 11. Within your command-processing routines,
you may often call local procedures or use ROM BIOS interrupts. In doing so, you
may sometimes forget to save registers on the stack if the called procedure will
destroy them. This is particularly true for BIOS interrupts. For example, the
Video BIOS interrupt (lOh) destroys the BP, SI, and DI registers. Therefore, if
the device driver uses these registers, save them before you call the Video BIOS
interrupt, and you will save a lot of grief.

Item 13 has trapped us many times. Watch out when you write local
procedures. Start by defining the procedure using the PROC and ENDP assem
bler directives. Then write the code. When you use a register to perform a
calculation, save it on the stack with a PUSH. Do not forget the POP at the end
of the procedure, and do not forget to reverse the order if more than one item is
pushed on the stack. Don't let this one get you!

The Art of Debugging Device Drivers

384

The best way to build a device driver is to implement the code for all the
commands in a normal assembly language program. This is called prototyping,
and details on this approach will be covered in the next section. This method
allows you to test each command function before you incorporate it into a device
driver.

There are many good reasons for prototyping the device driver in a normal
program. The first is that you cannot use the DOS DEBUG to load the device
driver into memory and trace through the code execution. As you may recall,
device drivers are part of DOS and are loaded into memory before you can execute
the DEBUG utility. Because you cannot load the DEBUG program into memory
before the device driver, you cannot use DEBUG. Even after DOS loads the device
driver into memory, DEBUG cannot be used, because it interferes with the device
driver. DEBUG uses the same DOS resources that the device driver uses, thus
destroying and invalidating those resources. Another point to mention here is
that the DEBUG utility was not designed to debug device drivers. Debuggers for
device drivers provide their own routines to access the keyboard and the screen
to allow the device driver to use BIOS routines without interference.

There are third-party debuggers designed for use on device drivers. Such
debuggers do not use DOS resources for console 1/0; they provide their own
resources. These programs are useful for tracing through command functions.
For example, The Periscope Company's Periscope product was used for debugging
the clock device driver in this book.

Another reason for prototyping is that you can implement each of the
commands into a device driver once they have been debugged in a normal
program. You can use the DEBUG utility in a normal program to ensure that the

Tips and Techniques

code for the command works as designed. This method allows you to build a device
driver step by step, knowing that the device driver will work with the code
previously added.

The major barrier is the Initialization command code. You do not have
control over when this code executes. DOS will call the device driver with this
command immediately after loading the device driver into memory. All of the
other commands are triggered by program access of the device through DOS
Read, Write, or I/O Control services, which you can control.

The Initialization command is used to set up the device driver for access by
programs. You can display console messages, initialize the device, set up inter
rupt vectors, and add resident code from this command. If the Initialization
command contains too much complicated code, it is better to perform the same
function through an I/O Control sequence. For example, the screen time display
from chapter 6's clock device driver was a result of pointing the timer interrupt
to a routine of our own. You can easily place this code in a I/O Control function
instead of in the Initialization command.

Prototyping Device Drivers
Prototyping the device driver in a normal assembly language program provides
many benefits. You can use the DOS DEBUG utility to debug the program as well
as to build the device driver command by command.

All ofthe data structures from device drivers can be placed into this program.
You can also include the data variables that store the Request Header and local
variable storage.

Listing 10-1 shows the prototype that was used to build the clock device
driver for chapter 6.

Where Is My Device Driver?
Another method of debugging device drivers is to store values as they change
within the device driver. This method is very tedious, for the device driver must
be modified to contain a lot of data variables. Any change to critical values is
stored into these variables. You can use the DEBUG utility to get into the device
driver to inspect these variables. Although you cannot change the execution
sequence or set a breakpoint at certain instructions, you can see whether the
variables have correct values.

To find where in memory your device driver is loaded, you will have to
display the address of the device driver during the Initialization command. You
can do so with the code shown in listing 10-2. This code displays the segment

385

Writing MS-DOS Device Drivers, Second Edition

Listing 10·1: The prototyping program for the clock device driver.

title
page
;program
;date

code

main
start:
loop:

The CLock Device Driver Prototype
60,132

proto.asm
15 November 1991

segment ;define segment
assume cs:code, ds: code ;COM file DSCS
org 100h ;COM file start

proc ;main procedure
; start

call select ; prompt for selection

cmp aI, 'F' ;find clock address?
jne lread ina

as code

call find ;find clock chip base address
jmp loop

lread: cmp aI, 'R' ;read?
jne ltime ;no
call isetup ; setup for INPUT
call read ; INPUT - read chip
jmp loop

ltime: cmp aI, 'T' ;display time?
jne lwrite jno
call time
jmp loop

lwrite: cmp aI, 'W' ;write?
jne exit inG

call osetup ;setup for OUTPUT
call write ; OUTPUT - DOS date
jmp loop

exit: cmp aI, 'E' ;exit?
jne loop ino
int 20h ;exit back to DOS

;structures for the Device Driver

dosdate struc
dos_day dw
dos_min db
dos_hr db
dos_hun db
dos_sec db
dosdate ends

386

?
?
?
?
?

;DOS DATE structure
;days since 1/1/80
;minutes
;hours
;hundredths of a second
; seconds
;end of struc

to chip

Listing 10-1: (cont.)

; structures

rh
rh_len
rh_unit

rh_cmd
rh_status
rh_resl
rh_res2
rh

rhO
rhO_rh
rhO_nunits

rhO_brk_ofs
rhO_brk_seg
rhO_bpb_tbo

rhO

rh4
rh4_rh
rh4_media
rh4_buf_ofs

rh4

rhB
rhB_rh
rhB_media
rhB_buf_ofs

struc
db
db

db
dw
dd
dd
ends

struc
db
db

dw
dw
dw

dw

db

ends

struc
db
db
dw

dw

dw

dw

ends

struc
db
db
dw

dw

dw

;request header
? ;len of packet
? ;unit code

; (block devices only)
? ;device driver command
? ;returned by device driver
? ;reserved
? ; reserved

;Initialization (command 0)
size rh dup (?) ; fixed portion
? ;number of units

; (block devices only)
? ;offset address for break
? ;segment address for break
? ;offset address of pointer

;to BPB array
? ;segment address of pointer

;to BPB array
? ;first available drive

; (DOS 3+) (block only)

;INPUT (command 4)
size rh dup(?) ;fixed portion
? ;media descriptor from DPB
? ;offset address of

;data transfer area
? ;segment address of

;data transfer area
?

?

;transfer count
; (sectors for block)
; (bytes for character)
;start sector number
; (block only)

;OUTPUT (command B)
size rh dup(?) ;fixed portion
? ;media descriptor from DPB
? ;offset address of

;data transfer area
?

?

;segment address of
;data transfer area
;transfer count
; (sectors for block)
; (bytes for character)

Tips and Techniques

387

Writing MS-DOS Device Drivers, Second Edition

Listing 10-1: (cont.)

rh8 start dw

rh8 ends

rh9 struc
rh9 rh db -
rh9_media db
rh9_buf_ofs dw

rh9_buf_seg dw

rh9 count dw -

rh9 start dw
rh9 ends

;local storage

dosdays dw
clock-port dw

table label byte
jan db 31
feb db 28
mar db 31
apr db 30
may db 31
jun db 30
jul db 31
aug db 31
sep db 30
oct db 31
nov db 30
deem db 31

;local procedures

hex2bcd proc near
;uses ax,cx

push cx
mov cl, 10
mov ah,O
div cl
mov cl,4
shl al,cl
or al,ah
pop cx
ret

hex2bcd endp

388

? ;start sector number
; (block only)

;OUTPUT_VERIFY (command 9)
size rh dup(?) ; fixed portion
? ;media descriptor from DPB
? ;offset address of

;data transfer area
? ;segment address of

;data transfer area
? ;transfer count

; (sectors for block)
; (bytes for character)

? ;start sector number (block only)

o
340h

;DOS date (days since 1/1/80)
;clock chip base address

;convert AL from Hex to BCD

;divide by 10
;setup for divide
;get 10's digits
;shift count
;place 10's in left half
;add back l's

;return to caller

Tips and Techniques

Listing 10-1: (cont.)

bcd2hex proc near ; convert AL from BCD to hex
;uses ax,cx

push cx
mov ah,O ;setup for divide
push ax ;save for l's processing
mov cl, 16 ;divide for left half of byte
div cl ; to get 10's digits
mov ah,O ; have 10's digits
mov cl, 10 ; convert to base 10
mul cl ; by mUltiplying by 10
pop cx ;process l's digits
and cl, 0 fh ;keep l's only
add al,cl ;add l's to 10's
pop cx
ret ; return to caller

bcd2hex endp

;chip parameters
base address for the clock chip is hardware selected
each port referenced to this base address contains
either a chip-maintained counter or a RAM location
for use by a program.

;base port address base port address

;+0 1/10,000ths counter +c not used - RAM
;+1 1/100 +1/10 counter +d not used - RAM
;+2 seconds counter +e not used - RAM
;+3 minutes counter +f not used - RAM
;+4 hours counter +10 interrupt status register
;+5 day of week counter +11 interrupt control register
;+6 day of monthcounter +12 counter reset
;+7 month counter +13 RAM reset
;+8 not used RAM +14 status bit
;+9 not used RAM +15 GO command
;+a not used RAM +16 standby interrupt
;+b not used RAM +If test mode

;data declarations for the prototype program

input_ data label byte
db 16h ; length of request header
db 0 ;units
db 4 ; command = input
dw ? ;status
dd ? ; reserved
dd ? ;reserved
db ? ;media descriptor
dw clkdata ;offset address of data transfer area

389

Writing MS-DOS Device Drivers, Second Edition

Listing 10-1: (cont.)

inseg dw
dw
dw

output_data
db
db
db
dw
dd
dd
db
dw

outseg dw
dw
dw

clkdata db

rh_ofs dw
rh_seg dw

pmsgl db
db

pmsgla db
pmsg2 db
pmsg3 db
pmsg3a db
pmsg4 db
pmsg4m db
pmsg4d db
pmsg4y db
pmsg4h db
pmsg4mn db
pmsg4s db

select proc
lea
call
mov
int
push
lea
call
pop
ret

select endp

isetup proc
mov

390

?
6
?

label
l6h
o
8

;segment address of same
;6 bytes in DOS date format
;start sector

byte
;length of request header
;units
;command = input

? ;status
? ; reserved
? ; reserved
? ;media descriptor
clkdata ;offset address of data transfer area
? ;segment address of same
6 ;6 bytes in DOS date format
? ;start sector

6 dup(?)

?
?

;request header offset address
;request header segment address

'[Flincl.Address, [Rlead, [Tlime Display,',
, [Wl rite, [El xit : "
Odh,Oah, '$'
'no chip found!' ,0dh,Oah, '$'
'Clock chip found at address '
'OOOOh!' ,0dh,Oah, '$'
'Chip Time is '
'00/' ,
'00/' ,
'0000 "
'00: ' ,
'00: ' ,
'00' ,0dh,Oah, '$'

near ; prompt
dx,pmsgl
Dos9
ah,l
2lh
ax
dx,pmsgla
dos9
ax

near
ax,cs

and select function
;address of display string
;display
;keyboard input
;DOS call
;save for return
;CR/LF
;display
;restore input character
;return to caller

;set up ESBX for prototype use
;get code segment address

Tips and Techniques

Listing 10-1: (cont.)

mov
mov
mov
lea
mov
ret

isetup endp

osetup proc
mov
mov
mov
mov
lea
mov
ret

osetup endp

clock_table
dw
dw
dw

find

findl:

proc
lea
mov
mov
add
in
test
jz
add
loop

;no port found
lea
call
jmp

;cx 3
;port 1st
find2: mov

sub
shl
lea
add
mov
lea
call
lea
call

cs:rh_seg,ax
cs:inseg,ax
eS,ax
bx,cs:input_data
cs:rh_ofs,bx

;save it
;set segment address
;setup ES
;get offset address
;save it
;return to caller

near ;set up ESBX for prototype use
ax,cs
cs:rh_seg,ax
cs:outseg,ax
eS,ax
bX,cs:output_data
cs:rh_ofs,bx

;get code segment address
;save it
;set segment address
;setup ES
;get offset address
;save it
;return to caller

label
0240h
02cOh
0340h

byte ;table of possible clock addresses
;first address
;second address
;third address

near ;find clock
si,cs:clock_table
cX,3
dx, cs: lsi]
dX,2
al,dx
al,SOh
find2
si, 2
find1

dX,pmsg2
dos9
find3
2 1
2nd 3rd
dx,3
dx,cx
dX,l
di,cs:clock_table
di,dx
dx, cs: [di]
di,cs:pmsg3a
hex2asc
dx,pmsg3
dos9

chip base address
;get address of table
;three addressess
;get 1st address
;base+2 = seconds
;get seconds
;high order bit set?
;no - not empty port
;next address
;search thru clock table

;no port found
;DOS call
;exit

;convert back to port #
;port position
;double it
;address of chip table
;word index
;get port
;string address
;convert to ASCII
;string to display
;console display

391

Writing MS-DO$ Device Drivers, Second Edition

Listing 10-1: (cont.)

find3: ret ;return to caller
find endp

hex2dec proc near ;convert hex to decimal ASCII
AX - input

dlO:

DI - destination string
CX - number of places

push ax
push cx
push dx
cmp
je
mov
mov
div
add
mov
inc
mov
mov
mov
div
add
mov
inc
mov
mov
mov
div
add
mov
inc
mov
add
mov
inc
pop

cX,2
dlO
cX,lOOO
dx,O
cx
al,30h
cs: [di) ,al
di
aX,dx
cX,lOO
dx,O
cx
al,30h
cs:[di),al
di
aX,dx
cX,lO
dx,O
cx
al,30h
cs: [di) ,al
di
aX,dx
al,30h
cs: [di) ,al
di
dx

pop cx
pop ax
ret

; save ax
; save cx
; save dx
;2 or 4 place conversion
;2 !
;four places
;clear hi order
;q=ax, rem=dx
;make it ASCII
;store it
;next
;remainder back in ax
;three places
;clear hi order
;q=ax, rem=dx
;make it ASCII
;store it
;next
;remainder back in ax
;two places
;clear hi order
;q=ax, rem=dx
;make it ASCII
;store it
;next
;remainder back in ax
;make it ASCII
;store it
;next

,;

hex2dec endp

time

392

proc

mov
add
in
call
mov
mov

near

dx,cs:clock-port
dX,2
al,dx
bcd2hex
ah,O
cx,2

;display clock chip contents

;get chip base address
;base+2 (seconds)
;get it
;convert to hex
;clear hi order
;2 places

Tips and Techniques

Listing 10-1: (cont.)

time

lea
call
inc
in
call
mov
lea
call
inc
in
call
mov
lea
call
add
in
call
mov
lea
call
inc
in
call
mov
lea
call
add
in
mov
lea
add
mov
call
lea
call
ret
endp

di,cs:pmsg4s
hex2dec
dx
al,dx
bcd2hex
ah,O
di,cs:pmsg4mn
hex2dec
dx
al,dx
bcd2hex
ah,O
di,cs:pmsg4h
hex2dec
dx,2
al,dx
bcd2hex
ah,O
di,cs:pmsg4d
hex2dec
dx
al,dx
bcd2hex
ah,O
di,cs:pmsg4m
hex2dec
dX,3
al,dx
ah,O
di,cs:pmsg4y
aX,19S0
cx,4
hex2dec
dx,pmsg4
dos9

write proc near

;convert to decimal ASCII
;base+3 (minutes)
;get it

;clear hi-order

;base+4 (hours)
;get it

;clear hi-order

;base+6 (day)
;get it

;base+7 (month)

;base+IO
;get year in hex

;make it readable

;convert year

;return to caller

;This procedure takes the date in DOS date format and
;converts to clock chip format for writing to the clock chip

;es:bx points to the request header
; point to DOS date and let ES:BX point

mov si,es: [bx] .rhS_buf_ofs
mov aX,es: [bx] .rhS_buf_seg
mov ds,ax
push si
push ds
push cs

to beginning
;get data offset
;get data segment
;to DS for (DS:SI use)
;save offset
;save segment

393

Writing MS-DOS Device Drivers, Second Edition

Listing 10·1: (cont.)

pop es ;ES points to here
lea di,cs:dosdays ;destination address
mov cx,2 ;move count = 2
cld ;direction is forward
rep movsb ; from DOS to us
push cs ;restore DS
pop ds ; by using CS

;update clock chip with time from DOS date data
outchip:

pop
pop
mov
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out

es
bx
dX,cs:clock_port
dx
al,es: [bx] . dos_hun
hex2bcd
dX,al
dx
al,es: [bx] .dos_sec
hex2bcd
dx,al
dx
al,es: [bx] . dos_min
hex2bcd
dX,al
dx
al,es: [bx] .dos_hr
hex2bcd
dX,al

;restore DOS date segment
;restore DOS date offset
;get clock port
;base+1
;get hundredths
;convert for clock use
;send to clock chip
;base+2
;get seconds
;convert for clock use
;send to clock chip
;base+3
;get minutes
;convert for clock use
;send to clock chip
;base+4
;get hours
;convert for clock use
;send to clock chip

;chip loaded with time - now calc chip date from DOS date
out.-'lears:

outl:

mov
cmp
je
mov
cmp
jle
sub
inc

ax, cs: dosdays
ax,O
out8
bx,O
aX,365
out2
aX,365
bx

jmp out1
;BX has years since 1980 - now adjust
out2: push ax

mov aX,bx
mov cl, 4
div cl
mov cl,ah
mov ah,O
inc ax
mov dx,ax
pop ax

394

;get days since 1/1/80
;date not set?
;skip everything
;BX = year count
;day count within a year?
;yes
;no - subtract 365
;increment year count
;continue until w/i 1 yr

for leap years
;save leftover days
;AX now has years
;divisor for leap years
;al=leaps, ah=remainder
;remainder=O is leap itself
;set up for subtract
;add 1 to leap year count
;DX has 1 day/leap yr passed
;restore days remaining

Tips and Techniques

Listing 10-1: (cont.)

out3:

sub
cmp
jg
add
dec
push
cmp
jne
cmp
je
jg
inc
jmp

aX,dx
ax,O
out3
aX,365
bx
bx
cl,O
out5
aX,59
out4
out5
ax
out5

;subtract 1 day for each leap yr
;are we negative?
;no - we are ok
;add back 365 days
;subtract 1 year
;save year count
;leap year if 0
;not a leap year
;Feb 29?
;yes - set and exit
;past Feb 29
;before - reverse subtraction

out4: mov cx,2 ;Feb
mov ax, 29 ; 29
j mp ou t 7 ; exi t

;AX has days left in current year now find month and day
out5: mov cX,l ;month count

lea di,cs:table ;days per month
mov bh,O ;clear hi-order

out6: mov bl,es: [di] ;get days in each month
inc di ;increment to next month
cmp aX,bx ;less than last day?
jle out7 ;yes (in current month)
sub aX,bx ;no subtract days in month
inc cx ;increment month count
jmp out6 ;continue until month found

;AX has days, ex has month - now get years since 1980
out7: pop bx ;restore year count

jmp out9 ;go load chip
;no date set
out8: mov

mov
mov

;BX = years
out9: mov

add
push
call
out
inc
pop
call
out
add
out
inc
xchg
out
ret

(special case)
bx,O
cX,l
aX,l

since 1980, ex = month,
dX,cs:clock_port
dX,6
cx
hex2bcd
dX,al
dx
ax
hex2bcd
dX,al
dX,2
dx,al
dx
al,bl
dx,al

AX

;1980
;Jan
; 1st

= days - now load clock chip
;get chip base address
;base+6
;Hex2bcd destroys cx
;convert for chip use
;set days counter
;base+7
;restore month count
;convert for chip use
;set months counter
;base+9
;set months RAM
;base+10
;move years to al
;set years since 1980 RAM
;back to caller

395

Writing MS-DOS Device Drivers, Second Edition

Listing 10-1: (cont.)

write endp

read proc near ;convert clock chip data to DOS format
;This procedure takes the clock chip date and time
;and converts to DOS date format

mov dX,es: [bx] .rh4_buf_ofs ;get dos date data area
mov aX,es: [bx] .rh4_buf_seg
mov eS,ax ;set up es
mov bX,dx ;set up bx

;es:bx now points to the data area where DOS
;expects the DOS date format returned

push es
push bx

;first read the clock chip for time
mov
inc
in
call
mov
inc
in
call
mov
inc
in
call
mov
inc
in
call
mov

;now convert

dx,cs:clock_port
dx
al,dx
bcd2hex
es: [bx] .dos_hun,al
dx
al,dx
bcd2hex
es: [bx] .dos_sec,al
dx
al,dx
bcd2hex
es: [bx] .dos_min,al
dx
al,dx
bcd2hex
es: [bx] . dos_hr, al

chip date (BCD format) to

;save segment for later
;save offset for later

;get the clock base address
;base+1
;get hundredths
;convert data
;store hundredths
;base+2
;get seconds
;convert data
;store seconds
;base+3
;get minutes
;convert data
;store minutes
;base+4
;get hours
;convert data
;store hours

DOS date format (hex)

;first check to see if month (and therefore year) has changed
;by comparing the months COUNTER against the month RAM location
incheck:

mov
add
in
call
mov
add
in
call
cmp
jg
jl
jmp

396

dx,cs:clock_port
dX,7
al,dx
bcd2hex
bl,al
dX,2
al,dx
bcd2hex
al,bl
newyear
updatemonth
prev_days

;get base clock address
;base+7
;get chip's month counter
;convert to hex
;save in bl
;base+9
;get RAM version of month
;convert to hex
;is RAM & counter same?
;last month> current (12>1)
;last month < current
;same month

Tips and Techniques

Listing 10-1: (cont.)

;December rolled over to January - update the Year count in RAM
newyear:

inc dx
in al,dx
inc al
out dX,al
dec dx

;now update month in RAM
updatemonth:

mov
call
out

al,bl
hex2bcd
dx,al

;determine days in previous years
prev_days:

inc dx

;base+10
;get year (stored in RAM)
;add 1 year
;store in RAM year
;make it base9

;set current month
;convert for clock chip
;update month RAM

;base+10 (RAM)
in al,dx ;get years since 1980
mov ah,O ;set up for mUltiply
push ax ;save for leap year processing
mov bX,365 ;days per year
mul bx ;times years - AX has days
xchg bX,ax ;save days in BX
mov cl,4 ;leap divisor
pop ax ;get year count again
div cl ;divide for leap years elapsed
mov cl,ah ;save leap year indicator

;BX has total days and cl has leap year indicator
mov ah,O ; set up for add
add bX,ax ;add leap days to total

;we have days since 1/1/80 for all previous years including
; the extra days in leap years past
;now figure out the days in the current year
;note: 1-31, 1-28

curr_days:
push
mov
add
in
call
mov
push
pop
lea
mov
xchg
push
mov

1 31 32 59 60

bx
dx,cs:clock-port
dx,7
al,dx
bcd2hex
ah,O
cs
es
di,cs:table
cx,O
ax,cx
cx
bh,O

;save total days past
;get base clock chip address
;base+7
;get month counter
;convert to hex
;set up for index
;days per month table
; addressed by ES
; and DI
;clear current year day count
;month loop count in ex
;save for leap year check
;clear hi-order

397

Writing MS-DOS Device Drivers, Second Edition

Listing 10-1: (cont.)

cvt2days:
mov
inc
add
loop
pop
pop
add
cmp
jl
inc

leapyr: pop
pop
mov
ret

read endp

dos9 proc
mov
int
ret

dos9 endp

hex2asc proc

;requires:

;uses:

;returns:

hI:

h2:
h3:

398

push
push
mov
push
mov
rol
mov
and
cmp
jge
add
jmp
add
mov
inc
pop
loop

bL es: [dij
di
aX,bx
cvt2days
cx
bx
aX,bx
cL3
leapyr
ax
bx
es
es: [bx] . dos_day, ax

near
ah,9
21h

;display service
;DOS Call

;days in this month
;increment for next month
;add to total days
;until month count exhausted
;restore months
;total days past
;add to days in current year
;past March?
;no
;yes - add I for 2/29
;restore DOS date offset
;restore DOS date segment
;return days since 1/1/80
;return to caller

;return to caller

dx binary number
di address of ASCII string

ax - for character conversion
cx - loop control

nothing
cx ;save cx
ax ;save ax
cx,4 ;number of hex digits
cx ;save cx inside this loop
cl,4 ;shift count (bits/hex digit)
dX,cl ;rotate left 1 hex digit
al,dl ;move hex digit to al
al,Ofh ;mask off desired hex digit
al,Oah ;is it above 9h?
h2 ;yes
al,30h ;numeric hex digit
h3 ; skip
al,37h ;alpha hex digit
cs: [dij,al ;store hex digit in string
di ;next string address
cx ;get saved loop count
hl ;loop start

Tips and Techniques

Listing 10-1: (cont.)

pop
pop
ret

ax
cx

;restore ax
;restore cx
;return to caller

hex2asc endp

main
code

endp
ends
end start

;end of main procedure
;end of code segment

address ofthe device driver using a DOS service call to display a message on the
console. In addition, use the procedure HEX2ASC to convert a hex segment
address to an ASCII string. This procedure is shown in listing 10-3.

Adding Debugging Routines
You may be curious about the interactions between DOS and the device driver:
what commands are being passed, what the Request Headers contain, etc. Would
you like the ability to have the device driver display this and other information?
You want a routine to perform some of the display functions of a debugger.

Listing 10-2: The code placed in the Initialization command to display the
address at which the device driver is loaded. Use the address displayed with
the DEBUG program to inspect the variables you have set up in a device
driver.

;display the segment address of the device driver

push cs ; save the segment address
pop dx ; in dx
lea di,pmsgla ; address of ASCII string
call hex2asc ; convert DX to ASCII string
mov ah,9 ; service = console display
lea dx,pmsgl ;string to be displayed
int 21h ;DOS service call

pmsgl db 'Device driver loaded at ,

pmsgla db 'OOOO:OOOOh' ,ODh,OAh, '$'

399

Writing MS-DOS Device Drivers, Second Edition

Listing 10-3: The HEX2ASC procedure, which converts a hex number into
ASCII.

hex2asc proc

;requires:

;uses:

dx binary number
di address of ASCII string

ax - for character conversion
cx - loop control

;returns:
nothing

push cx ; save cx
push ax ;save ax
mov cx,4 ; number of hex digits

hI: push cx ; save cx inside this loop
mov cl, 4 ; shift count (bits/hex digit)
rol dX,cl ;rotate left 1 hex digit
mov al,dl ;move hex digit to al
and al,Ofh ;mask off desired hex digit
cmp al,Oah ;is it above 9h?
jge h2 ;yes
add al,30h ;numeric hex digit
jmp h3 ;skip

h2: add al, 37h ;alpha hex digit
h3: mov cs: [dij ,al ;store hex digit in string

inc di ;next string address
pop cx ;get saved loop count
loop hI ;loop start
pop ax ;restore ax
pop cx ;restore cx
ret ;return to caller

hex2asc endp

400

The problem with this type of facility is that you must devise a means of
displaying the information. You cannot use DOS calls in a device driver, nor can
you call upon the services of a device driver. If you are writing a device driver for
an output device, you could use the device driver itself, but this gets complicated
quickly: it is difficult to use a device to output information as it is outputting data
using the same device!

The solution to this problem comes with the realization that the PC's ROM
BIOS contains routines to output to several devices. Recall that the ROM BIOS
contains interrupt procedures for the console display (con:), the printer (prn: and
lptx:), and the communications ports (comx:). These interrupts are always avail
able for your use, so why not take advantage ofthem in displaying device driver

Tips and Techniques

information? This also solves the problem of building a display routine that will
work with most device drivers you may be writing.

We have built a dump routine that displays the Request Header information
to the printer. The display device used is the printer connected to the first parallel
port. We chose to use the printer because using the console display would have
meant that there would not be a hard copy, and rewriting the information was
not a good use oftime. Using the communications ports would have meant that
the printer connected to the serial port would have to be initialized to the correct
baud rates, parity, and stop bits before use. In the final analysis, the parallel
printer seemed the best choice.

The procedures shown in listing 10-4 dump the Request Header information
for each command. A call to the dump procedure may be placed anywhere in the
device driver. If placed in the INTERRUPT procedure, it should be after the
registers are saved on the stack. This allows all the commands that enter the
device driver to be displayed on the printer. If the call to dump is placed in the
command-processing sections, only the Request Header for that command will
be displayed on the printer. Note that there are three requirements for using this
dump procedure. First, a parallel printer is required. Second, the dump procedure
does not save any registers on the stack. Any registers that need to be preserved
after a call to dump must be added to the device driver. Lastly, the dump
procedure does not check for any errors resulting from the use of the BIOS
printer interrupt (17h). This means that the printer should have paper in the
unit and should be on-line.

As a final note, the dump procedure may be modified to display any
information you want.

ANew Stack
The stack that is normally used within device drivers is limited to about 20
PUSHES. This may not be enough if the device drivers you write contain a lot of
nested procedure calls. The use of the stack is important for two reasons: first, to
preserve the registers upon entry to the device driver, and second, to allow you
to call other procedures from within the device driver. Both ofthese reasons may
cause your device drivers to run out of stack space, in which case you will need a
larger stack.

Defining a new stack is easy. First, save the Stack Segment register SS and
the Stack Pointer SP in variables defined in the device driver. Then set the Stack
Segment and Pointer to a stack within the device driver. You can define an array
of bytes to accomplish this.

Define this new stack on entry to your device driver by placing a call to
switch2new just after saving the registers on the old stack in the INTERRUPT

401

Writing MS-DOS Device Drivers, Second Edition

Listing 10-4: The dump procedure used to display device driver command
information to the parallel printer. The dump procedure uses the HEX2ASC
routine to convert hex numbers to ASCII. The prtmsg procedure is used to
print messages to the printer using the BIOS printer interrupt (17h).

dump proc ;dumps device driver information
ito Ipt1 via int 17h BIOS routine

;requires:
nothing (user must preserve required registers)

;uses:
nothing

;returns:
nothing

;get command descriptor
mov aX,cs:rh_seg
mov
mov
mov
mov
rol
lea
add
mov
call

;display the
mov
mov
lea
call
mov
mov
lea
call
mov
mov
lea
call
mov
lea
call

eS,ax
bx,cs:rh_ofs
aI, es: [BX] +2
ah,O
al,l
di, cmtab
di,ax
ax, [di]
prtmsg

request header
dl, es: [bx]
dh,O
di,cs:crh1
hex2asc
dl, es: [bx] +1
dh,O
di,cs:crh2
hex2asc
dl, es: [bx] +2
dh,O
di,cs:crh3
hex2asc
dX,es:word ptr
di,cs:crh4
hex2asc

lea aX,cs:crh
call prtmsg

;display request header unique
mov al,es: [BX]+2

dO: cmp al,O

d1:

402

jne d1

cmp
jne
mov
mov

al,l
d2
dl, es: [bx] +14
dh,O

;get the ES register

;get the BX register
;get command code
;clear high-order of AX
;left shift 1 to multiply by 2
;get address of command msg table
;index to address of command msg
;get address
;print command message

;LEN of request header
;clear high-order DX
;address of display message
;convert to ASCII
;UNIT of request header
;clear high-order DX
;address of display message
;convert to ASCII
;CMD of request header
;clear high-order DX
;address of display message
;convert to ASCII

[bx]+3 ;STATUS of request header
;address of display message
;convert to ASCII
;print the request header

to each command
;get command code
;initialization?
;no

;media_check?
;no
;media status
;clear hi-order DX

Tips and Techniques

Listing 10·4: (cont.)

lea di,cs:cpla
call hex2asc
lea aX,cs:cpl
call prtmsg
jmp dexit

d2 : cmp aL2 ;get_bpb?
jne d3 inO

d3: cmp aL3 ;ioctl_input?
jne d4 inO

d4: cmp aL4 ;input?
jne dS ino
mov dX,es:word ptr [bxJ+18 ;count
lea di,cs:cp4a
call hex2asc
mov dX,es:word ptr [bxJ+20 ;start sector
lea di,cs:cp4b
call hex2asc
lea ax,cs:cp4
call prtmsg
jmp dexit ;

dS: cmp aLS ;nd_input?
jne d6 inO

d6: cmp aL6 ; input_ status?
jne d7 ino

d7: cmp aL7 ; input_ flush?
jne d8 inO

d8: cmp aL8 ;output?
jne d9 ino
mov dX,es:word ptr [bxJ+18 ; count
lea di,cs:cp4a
call hex2asc
mov dX,es:word ptr [bxJ+20 ;start sector
lea di,cs:cp4b
call hex2asc
lea aX,cs:cp4
call prtmsg
jmp dexit ;

d9: cmp aL9 ; output_verify?
jne da ino
mov dX,es:word ptr [bxJ+18 ; count
lea di,cs:cp4a
call hex2asc
mov dx, es :word ptr [bxJ+20 ;start sector
lea di,cs:cp4b
call hex2asc
lea aX,cs:cp4
call prtmsg
jmp dexit

403

I
!·.'i

Writing MS-DOS Device Drivers, Second Edition

Listing 10·4: (cont.)

da: emp al,Oah ; output_ status?
jne dbb ;no

dbb: emp al,Obh ; output_ flush?
jne de ;no

de: emp al,Oeh ;ioetl_out?
jne ddd ;no

ddd: emp al,Odh ;open?
jne de ;no

de: emp al,Oeh ;elose?
jne df ;no

df: emp al,Ofh ; removable?
jne dlO ;no

dlO: emp al,IOh ; output_busy?
jne dexit ;no

dexit: ret
dump endp

erh db , len ,

erhl db '0000' ,Odh, Oah
db , unit ,

erh2 db '0000' ,Odh,Oah
db , emd ,

erh3 db '0000' ,0dh,Oah
db , status ,

erh4 db '0000' ,0dh,Oah, '$'

epl db , media status , ;eommand I
epla db '0000' ,Odh,Oah, '$'
ep4 db , eount , ;eommands 4, S, 9
ep4a db ' ° 0 ° 0' , ° dh, 0 ah

db , start ,

ep4b db '0000' ,0dh,Oah, '$'
emO db 'initialization' ,0dh,Oah, '$'
eml db 'media - eheek ',Odh,Oah, '$'
em2 db 'get_bpb ' , 0 dh, 0 ah, ' $,
em3 db 'ioetl in ' , Odh, Oah, ' $'
em4 db 'input ' , 0 dh , 0 ah, ' $,
emS db 'nd_input ',Odh,Oah, '$'
em6 db 'input_status ',Odh,Oah, '$'
em7 db ' input_flush ',Odh,Oah, '$'
emS db 'output ',Odh,Oah, '$'
em9 db 'output_verify , , 0 dh, 0 ah, '$'
ema db 'output_status ',Odh,Oah, '$'
emb db 'output_ flush ' , 0 dh, ° ah, ' $,
eme db 'ioetl - out ' , 0 dh, 0 ah, ' $,
emd db 'open ' , 0 dh, 0 ah, ' $,

404

Listing 10-4: (cont.)

cme db
cmf db
cmlO db

cmtab label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

hex2asc proc

; requires:

;uses:

; returns:

hl:

h2:
h3:

push
push
mov
push
mov
rol
mov
and
cmp
jge
add
jmp
add
mov
inc
pop
loop
pop
pop
ret

'close ' ,Odh,Oah,'$'
'removable ',Odh,Oah, '$'
'output_busy ',Odh,Oah, '$'

word
cmO
cml
cm2
cm3
cm4
cm5
cm6
cm7
cm8
cm9
cma
cmb
cmc
cmd
cme
cmf
cmlO

dx binary number
di address of ASCII string

ax - for character conversion
cx - loop control

nothing

cx ;save cx
ax ;save ax
cx,4 ;number of hex digits
cx ;save cx inside this loop
cl,4 ;shift count (bits/hex digit)
dx,cl ;rotate left 1 hex digit
al,dl ;move hex digit to al
al,Ofh ;mask off desired hex digit
al,Oah ;is it above 9h?
h2 ;yes
al,30h ;numeric hex digit
h3 ;skip
al,37h ;alpha hex digit
cs: [dil,al ;store hex digit in string
di ;next string address
cx ;get saved loop count
hl ;loop start
ax ;restore ax
cx ;restore cx

;return to caller

Tips and Techniques

405

Writing MS-DOS Device Drivers, Second Edition

Listing 10-4: (cont.)

hex2asc endp

prtmsg proc

;requires:

;uses:
ax address of string to be printed

dx - printer number (0 = lptl:)
si - source string address

;returns:

prtl:

prt2:

prtmsg

nothing
push dx ; save dx
push si isave si
mov dx,O ;printer 0
mov si,ax ;use si as pointer
mov ah,O ;print a character
mov aI, lsi 1 ;get a character
cmp aI, '$' ;end of string?
je prt2 ;yes - exit
int 17h ;print BIOS call
inc si ;next
jmp prtl ;loop back
pop si ;restore si
pop dx ;restore dx
ret ;return to caller
endp

routine. Then, when the device driver is about to exit, restore the old stack. A call
to switch20ld is placed after setting the DONE bit ofthe Request Header Status
word in the Common Exit section and before restoring the registers from the old
stack. Listing 10-5 shows the two procedures switch2new and switch2old.

In listing 10-5 you will see that interrupts are disabled when you switch
stacks. This prevents an interrupt from interfering with your stack-changing
operation. The new stack is 256 bytes in length, but this can be smaller depending
on the device driver requirements.

The Special Bit

406

The Special bit (4) ofthe Device Header Attribute word is indeed special. This bit
signifies that the console device driver provides a fast way to output characters.
There is little information on the use of this bit-in fact, it has been noted that
the use of this feature may not be supported in future versions of DOS.

This bit is significant only for console device drivers. If it is set, the device
driver must set up interrupt 29h to point to a routine to output characters quickly.

Tips and Techniques

Listing 10-5: The two procedures that allow a device driver to switch from
the DOS stack to one of its own. The switch2new procedure switches from
the DOS stack to a new one, and the switch201d procedure switches the stack
back to the DOS stack.

;Define save area for old stack and new stack

stack_ptr dw ? ;old stack pointer
stack_seg dw ? ;old stack segment

news tack db IOOh dup (?) ;256 bytes for new stack
news tack top equ $-2 ;top of new stack

;switch to new stack

switch2new proc near ;switch to new stack
eli ;turn interrupts off
mov cs:stack-ptr,sp ; save old SP
mov cs:stack _seg,ss ; save old SS
mov ax,cs ;get current segment
mov sS,ax ;set stack segment
mov sp,newstacktop ;set stack pointer
sti ;re-enable interrupts
ret ; return to caller

switch2new endp

;switch back to old stack

switch20ld

switch20ld

proc
eli
mov
mov
sti
ret
endp

near ;switch back to old stack
;turn interrupts off

ss,cs:stack_seg ;restore old SS
sp,cs:stack-ptr ;restore old SP

;re-enable interrupts
;return to caller

Normally, DOS inspects each character input from the keyboard for a CONTROL·
C (this is often called cooked mode; when fast console output is desired, the
character stream is not checked, which is known as raw mode). Programs use
this raw-mode output by calling the DOS 110 Control service (44h) with bit 5 of
the DX register set.

Because the device driver is responsible for setting up interrupt 29h, it is
clear that there should only be one such Special bit set in any device driver.

407

~--- ------------------------------

Writing MS-DOS Device Drivers, Second Edition

Listing 10·6: The code for interrupt 29h. The code initializing the interrupt
29h is added to the Initialization command.

;code to perform fast console I/O
,
int29h: sti

push
push
mov
mov
int
pop
pop
iret

ax
bx
bl, 07h
ah,OEh
lOh
bx
ax

ire-enable interrupts
;save ax
;save bx
;white on black attribute
;Write character as TTY
;Video BIOS interrupt
;restore bx
;restore ax
;interrupt return

;initialize the interrupt vector for 29h
;points to the routine labelled int29h

set29h: mov
lea
mov
mov

bX,OMh
ax,int29h
[bx] ,ax
[bx+2] ,cs

;address of int 29h
;offset address (int29h)
;set int 29h offset
;set int 29h segment

Listing 10-6 shows the code for implementing interrupt 29h. This is neces
sary only if the Special bit (4) is set in the Device Header Attribute word. The
code to initialize the 29h interrupt is added to the Initialization command.

Machine Incompatibilities

408

Most PCs available today are IBM PCs or compatibles. What this means is that
the ROM BIOS routines work in a standard way. The device drivers presented
in this book will work on this class of machines.

However, you may have an older machine that is not compatible with the
IBM PC. These machines have ROM-based BIOS routines that are different from
those found in IBM-PC compatibles. In general, these machines have the same
ROM-based routines, but the interrupts are numbered differently.

For the device drivers presented in this book to work properly on these
machines, the BIOS interrupts have to be changed. This is a matter of getting a
copy of the technical reference manual for your particular machine and finding
the BIOS interrupts that are equivalent to those that were used in this book.

Tips and Techniques

DOS Differences
There is little difference between PC-DOS and MS-DOS. Provided that there are
no BIOS differences, the device drivers written for one will work on the other.
Device drivers written for one version of MS-DOS or PC-DOS will work on a
higher-numbered version. This confirms the universality of DOS for device
drivers.

DOS Version Differences
Writing device drivers that work across a range of DOS versions is an interesting
topic to which we could devote another dozen chapters. In chapter 9, you saw that
there are different numbers of commands for each version of DOS. If you write a
device driver for one version, you can be reasonably sure that it will work in the
next version of DOS.

But what about writing device drivers that work across all the versions? A
trade-off is involved in doing so. We write device drivers to provide a standard
interface between DOS and the device we are controlling. This allows our device
to be used by any program, provided the device has been opened. Therein lies the
problem: certain features from one version of DOS that are built into the device
driver as part of our design may not work in another version. We should also
consider building the device so that it works on all versions of DOS.

Making the device driver work under all versions of DOS is well worth the
effort. To accomplish this, there are two considerations.

First, each version of DOS supports a different number of commands. Each
DOS version since 2.0 has added device driver commands. You need to check that
the device driver receives only the commands allowed under a particular version
of DOS. This is shown in table 10-2. Listing 10-7 shows the procedure to be called
from the Initialization command to check for the highest-numbered command

DOS Version

2
3.0
3.20
5.0

Highest Command Number

12
16
24
25

Table 10-2: The highest command number for each version of DOS.

409

Writing MS-DOS Device Drivers, Second Edition

Listing 10·7: This procedure, which is called from the Initialization
command, checks for the highest·numbered command for the DOS version
being used.

dosver proc near ;set command limit

;This procedure is called from the Initialization
;command processing code. The DOS version is retrieved
;and the maximum command number is set in variable
;cs:max_cmd. The INTERRUPT code uses the number contained
;in cs:max_cmd to determine if an invalid command number
;has been passed to the device driver.

push ax ; save ax
push cx ; save cx
mav ah,30h ;Get DOS version
int 21h ;DOS service call

;DOS returns major version (2,3) in al and

ver3:

ver320:

ver4:

ver5:

dosver

410

minor version (10,11,20) in ah
cmp al,2 ;Version 2?
jne ver3 ;no - assume three
mav cl,12 ;13 commands for DOS 2
jmp ver5 ; store it
cmp al,3 ;Versian 3?
jne ver4 ;no - check for 4/5
cmp ah,20 ;Version 3.20?
je ver320 ;yes
mav cl,16 ;17 commands for DOS 3, 3.1
jmp ver5 ;store it
mov cl,24 ;25 commands for DOS 3.20
jmp ver5 ;store it
cmp al,5 ;Version 5.0?
jne ver320 ;25 commands for DOS 4.XX
mov cl,25 ;26 commands for DOS 5.0
mov cs:max_cmd,cl ; save command limit
pop cx ;restore cx
pop ax ;restore ax
ret ;return to caller
endp ;end of dosver

allowed. Listing 10-8 shows the code for the INTERRUPT routine to check each
command to ensure that it does not exceed the highest-numbered command
allowed for the DOS version running.

We come now to the second consideration in making device drivers work on
all versions of DOS. How do we notify DOS that our device driver is capable of
handling the extra commands that are available with later versions of DOS?

Tips and Techniques

Listing 10-8: The two lines that are added to the INTERRUPT procedure
when command-checking is required are shown in bold face. The variable
cs:max_cmd is set by the procedure dosver, which is called from the
Initialization command.

;**
; * THE INTERRUPT PROCEDURE *
;**

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov eS,ax
mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
cmp
ja
rol
lea
mov
add
jmp

al, es: [bx] . rh_cmd
al,cs:max_cmd
unknown
al, 1
di,cmdtab
ah,O
di,ax
word ptr [di]

;get request header command
;is command number too large?
;yes - set error and exit
;times 2 for index into word table
;function (command) table address
;clear hi order
;add the index to start of table
; jump indirect

We take an unorthodox approach. Recall that chapter 5's printer device
driver had two Device Headers: one for version 2.0 and one for version 3.0 or
greater. The only difference was that the Attribute bit (13) for Output Til Busy
was set for version 3.0. You can build a device driver with code for all the
commands but leave the Device Header Attribute word set for version 2.0. Then,
when your driver is running under version 3.0 or greater, set the appropriate
Device Header Attribute bits in the Initialization command to allow DOS to
access the extra commands.

411

Writing MS-DOS Device Drivers, Second Edition

Listing 10-9: The procedure setatt, which sets the Device Header Attribute
bits. This procedure will set certain Attribute bits if they are available for
the particular version of DOS. This procedure is called from the
Initialization command.

setatt proc near ;set Attribute word

;This procedure is called from the Initialization
;command processing code. The Device Header Attribute
;bits are set depending on the DOS version. Bits which
;are version dependent:

;type

;char
;both
;block
;block

bit

13
11

6

°
push
push
mov
int

;DOS returns

crnp
je
mov
crnp
jb
test
jnz
or
or

att3: or
test
jz
or

att4: mov
att8: pop

pop
ret

setatt endp

Descript ion DOS

Output Til Busy 3+
Open/Close/Removable Media 3+
Get/Set Logical Device 3.20
Generic I/O Control 3.20

ax
cx
ah,30h
21h

;save ax
;save cx
;Get DOS version
;DOS service call

major version
minor version
al,2

(2,3) in al and
(10,11,20) in ah

att8
cx,cs:attribute
ah,20
att3
cX,8000h
att3
cX,0040h
cX,OOOlh
cX,0800h
cX,8000h
att4
cX,2000h
cs:attribute,cx
cx
ax

;Version 27
;yes - exit with no bits set
;get Attribute word
;version 3.207
;less than 3.20
;test for char device (bit 15)
;yes - don't set 6 or 0
;set bit 6 (Get/Set Logical Device)
;set bit ° (Generic I/O Control)
;set bit 11 (Open/Close/Removable)
;test for char device (bit 15)
;no - don't set bit 13
;set bit 13 (Output Til Busy)
;save new Attribute word
;restore cx
;restore ax
;return to caller
;end of setatt

You can accomplish this with the procedure setatt shown in listing 10-9. This
procedure will set the Device Header Attribute bits for the appropriate version
of DOS. Note that those commands that are not applicable to a given device driver
need not have the corresponding Attribute bits set; simply remove the OR
instruction that sets the bit in the Device Header Attribute word.

412

Tips and Techniques

DOS 5 DEVICEHIGH
DOS 5 added many new features. The most significant one from the standpoint
of device drivers is the ability to load device drivers into the area between 640K
arid 1Mb. This area, named Upper Memory Blocks (UMBs), is normally reserved
for use by I/O cards that need to map their ROM code into this area. Two examples
of such I/O cards are VGA graphics adapters and Local Area Network adapters
that load ROM code into this UMB area.

Within this UMB area, any memory locations not used by ROM code are
normally left empty and thus wasted. In order to use these holes in the UMB
area, you will need a PC with an 80386 (or higher) processor and the DOS-sup
plied program, EMM386.SYS. This program uses special instructions and fea
tures ofthe 80386 to fill the empty ROM holes with RAM memory for the purpose
ofloading programs.

Device drivers may be loaded into this UMB area by using the special
CONFIG.SYS command, DEVICEHIGH, in place of the usual DEVICE com
mand. This tells DOS to load the device driver into the UMB area rather than
into low DOS memory (memory below the 640K boundary). Do note that the
LOADHIGH command instructs DOS to load Terminate-and-Stay-Resident
(TSR) programs into this same UMB area.

There are some considerations when using the new DEVICEHIGH com
mand. If there are two 64K holes in the UMB area and your device driver is 70K
in size, DOS cannot load your device driver because the memory locations are not
contiguous and DOS cannot make them contiguous. Instead, DOS loads your
device driver into low memory when there is insufficient contiguous space in the
UMB area.

Another consideration to be aware of is that DOS makes certain assump
tions about your device driver. DOS assumes that the size of your device driver
file is the amount of memory that it will occupy in memory. If your driver uses
more memory after loading (an example of this is the RAM disk device driver)
and fails because there isn't enough space in the current UMB hole, then DOS
will not automatically load it into low DOS memory.

The only programming consideration that needs to be taken into account in
your device driver is that the Break Address is now dual purpose. Earlier versions
of DOS required that you set the Break Address to point to the end location of
your device driver. For DOS 5, the Break Address will contain, upon entry to your
device driver during the Initialization command, the highest address your device
driver can use. You must still return the end address of your device driver in the
Break Address. However, you can use more memory than the size of your device
driver file (remember that it's a memory image!), but you cannot use more than
the Break Address originally contained. In short, you are limited to the size of
the current UMB where your device driver is being loaded. Should you need more

413

Writing MS-DOS Device Drivers, Second Edition

space than is available in the current UMB and wish to abort the loading of your
device driver, set the Break Address to the address of the Device Header. This
tells DOS that you are not using the UMB. DOS, however, will not make an
attempt to load your device driver in low memory should it fail to load in the UMB
area. You have two choices at this point. The first is to rearrange the
DEVICEHIGH commands so that this particular device driver will load at the
beginning of another UMB area that has enough memory. The second choice is
to have this particular device driver load into low DOS memory by replacing the
DEVICEHIGH command with the more normal DEVICE command. (You may
need to provide appropriate instructions for the driver's user).

Your device driver, ifit's to work in either low DOS or UMB memory, should
not assume it will be loaded in the first 64K segment along with DOS. Also, the
test to ensure that your driver fits within the UMB area passed in the Break
Address should be made only after you have checked that the DOS version is 5
or higher. For earlier DOS versions, the value in the Break Address passed to
your driver is meaningless and should not be used.

Summary
In this chapter, we have covered almost every practical aspect of writing and
debugging device drivers, from prototyping programs to imbedded dump routines
to trace our arrivals and exits from the device driver. All of these routines help
us solve the problems that are unique to device drivers.

The next chapter will focus on two advanced topics, CD-ROM extensions to
the standard device driver and writing device drivers in C.

Questions

414

1. In listing 10-2, why is there only one call to hex2asc to convert the segment
address? Shouldn't there be another call to convert the offset address?

2. If a device driver is not loaded by DOS, what should be done?

3. Is it necessary to implement the Special bit of the Device Header
Attribute word in a console device driver?

4. If a device driver is loaded into memory but does not seem to work, what
should be done?

Answers may be found in appendix F.

Chapter 11

Advanced Topics
CD-ROM Devices

Writing DeviceOrivets in C

The C Device . Driver Toolbox

The Printer Device Driver in C

Advanced Topics

In this chapter we will look at two advanced topics, device-driver exten
sions for CD-ROM devices and writing device drivers in C.

CD-ROMs are becoming more popular in the PC world and represent new
technology even for PCs. The capabilities of CD-ROM devices extend beyond those
of existing peripherals and require modifications to standard device drivers. We
will take an in-depth look at the extensions required to support CD-ROM devices.

The concept of writing device drivers using a higher-level language such as
C is not only intriguing but is also a natural and logical extension for this book.
However, it is not without problems. We will look at the obstacles in writing
device drivers using C and present a toolbox of code for you to use. The toolbox
includes an assembly language front-end program that contains the Device
Header, the Strategy, and Interrupt routines. Completing the toolbox is a file of
C routines, one for each device-driver command. This framework gives you the
ability to write all of your device-driver code in C.

CD-ROM Devices
CD-ROMs are marvelous devices. They offer up to 660Mb of video, audio, and
text data. Refer to appendix E for a detailed look at CD-ROM devices. Using the
existing manufacturing technology of their audio compact disk sister, CD-ROMs
have a low cost for such massive amounts of data storage. CD-ROMs extend the
capabilities of the PC in many ways. At present, encyclopedias are routinely
stored on a single CD-ROM. Today's applications use CD-ROM to store pictures,
text, and sound.

Future applications will use CD-RaM's video and audio capabilities to
provide environments totally unlike those available today. Games will seem
much more lifelike using real images and recorded stereo sounds. Tomorrow's
multimedia applications will certainly take advantage ofthe CD-RaM's tremen
dous audio and video capabilities.

417

Writing MS-DOS Device Drivers, Second Edition

418

CD-ROMs are different from other PC peripheral devices in important ways.
We will look at these differences in the context of device-driver requirements.

CD-ROM Device Requirements
You might expect that standard block device drivers would be able to handle
CD-ROMs because they are disks. Like disks, CD-ROM data is organized in
sectors (of 2048 bytes) and data is transferred in blocks of one or more sectors.
The media is removable, and several CD-ROM units can be attached to a single
controller and used with the same PC. Data is stored in files and tracked by a
directory structure.

However, 660Mb of data is a lot more storage than DOS is used to handling
(512Mb per disk). Many of the block device parameters, such as the number of
FAT sectors, cannot handle numbers beyond 16 bits (i.e., 65,535). Also, unlike
normal magnetically recorded disks, CD-ROMs cannot be written to. (It should
be noted that there are CD-RaM-like devices available that offer a Write-Once
Read-Many (WORM) capability as well as devices with unlimited read/write
capability, but CD-ROMs are Read-only.) Thus, there's no need to provide a File
Allocation Table (FAT) to record cluster usage.

Because CD-ROMs are slower than normal magnetic disks, directories are
not placed at the beginning ofthe disk. Instead, they are located close to files that
are frequently accessed to minimize the time spent moving the read head
mechanism. In addition, the directory structure of CD-ROMs is different from
that of ordinary disks. CD-ROM directories contain more information regarding
the data stored on the disk.

Like character devices, CD-ROMs can be assigned a name for use by DOS
and DOS programs. This is different from the usual DOS practice of assigning a
drive letter (for example, C:) to each disk unit.

Thus, although CD-ROM devices have similar characteristics to block (and
character) devices, they are sufficiently different from normal block devices that
a standard block device driver cannot be used to control a CD-ROM device.

The CD-ROM Device Driver
The CD-ROM device driver is a hybrid, that is, it combines both a character device
driver and a block device driver. Essentially, it is a character device driver with
extensions to handle the specific CD-ROM features.

The Device Header for a CD-ROM device driver is shown in listing 11-l.
The first four fields are the same found in all device drivers. The device

attribute denotes a character device driver with va Control (IOCTL) supported
as well as OpenJCloselRemovable Media. The device name is initialized with a
name that you choose. Or you may allow a user to specify a name in the device
command of the CONFIG.SYS file. The field after the device name is reserved.

Advanced Topics

Listing 11-1: The code for a typical CD-ROM Device Header .

. *** ,

. * , CD-ROM DEVICE HEADER *
;***

next - dev dd -1 ;no other drivers
attribute dw OC800h ;bit 15 - char device

;bit 14 - I/O Control
;bit 11 - Open/Close/

Removable Media
strategy dw dev _strategy ; strategy address
interrupt dw dev _interrupt ; interrupt address
dev_name db 'CDROM ; name for CD ROM device
reserved dw 0 ; reserved
drive
units

db 0 ;drive letter
db 1 ; number of CD ROM units

The second new field is the drive letter field and is set to o. The last field is the
units field, which specifies the number of CD-ROM drives attached. This number
is 1 or greater. During actual operations, the CD-ROM device name plus the drive
letter supplied in the second new field fully describes which of the subunits, if
there are several CD-ROM drives, is in use.

The CD-ROM device driver commands are listed in table 11-1. Because the
CD-ROM device driver is classified as a character driver, the customary com
mands for disks (Media Check, Get BPB, and Removable Media) are not im
plemented. The Output and Output With Verify commands are also not
implemented due to the Read-only nature of CD-ROMs.

You will also notice that the Input command is not used. This is not a
mistake! Instead of using the Input command to retrieve data from the CD-ROM,
1/0 Control and extended commands are used for this purpose. This was a design
decision made by Microsoft in their CD-ROM extensions for MS-DOS.

In addition to the commands you are familiar with, CD-ROM device drivers
have six additional commands, numbered from 128 through 133. These com
mands have been created to address the enhanced capabilities of CD-ROM
devices.

Command 128 (Read Long) is used in place of the normal Read command to
input data from the CD-ROM device. The Request Header for this command is
shown in listing 11-2. The Read Long command is a result of the Input
command's inability to specify a large enough sector number for the CD-ROM's
660Mb capacity. CD-ROMs were available before DOS versions 4 and 5 solved
this particular problem, which meant that a special Read command had to be

419

Writing MS-DOS Device Drivers, Second Edition

number

o
3
7

12
13
14

128
129
130
131
132
133

Command Description

Initialization
IOCTLInput
Input Flush
IOCTL Output
Device Open
Device Close

Read Long
Reserved
Read Long Prefetch
Seek
Play
Stop Play

Table 11-1: CD-ROM Device Interrupt commands. This table show the
list of commands that are applicable to CD-ROM device drivers. Note
that commands 128 through 133 are unique to CD-ROMs.

implemented. Thus, the starting sector number, rh128_start, is a double word
that will easily handle the more than 300,000 sectors of a CD-ROM disk. Most
CD-ROMs today are based on the technology developed by Sony and Philips,
which was formalized in a set of standards called the High Sierra Group format.

Listing 11-2: The Request Header for the Read Long command.

rh128 struc ;Read Long (command 128)
rh128 rh db size rh dup(?) ; fixed portion
rh128 adr_mode db ? ; 0 for HSG CD ROM type
rh128 - buf - ofs dw ? ;offset address of

;data transfer area
rh128 - buf _seg dw ? ; segment address of

;data transfer area
rh128 - count dw ? ;sector count
rh128 start dd ? ; starting sector
rh128 rmode db ? ;read mode O=cooked

; l=raw
rh128 - isize db ? ; interleave size
rh128_iskip db ? ; interleave skip factor
rh128 ends

420

Advanced Topics

Listing 11-3: The Request Header for the Seek command.

rhl31
rhl31
rhl31
rh131

rh131

rhl31
rh131
rhl31

struc ;Seek (command l31)

- rh db size rh dup (?) ; fixed portion

- adr_mode db ? ; 0 for HSG CD ROM type
_buf - ofs dw ? ;offset address of

-

-
-

;data transfer area
buf _seg dw ? ; segment address of

;data transfer area
count dw ? ;sector count
start dd ? ;starting sector

ends

CD-ROMs that are in this format are indicated by a 0 in the address mode field,
rh128 _adr _mode. The read mode is specified by the variable rh128 Jmode, which
is either cooked (to retrieve the actual2K of user data in the sector) or raw (to
retrieve the entire sector of actual data plus the 304 bytes of overhead). The
interleave fields, rh128_isize and rh128_iskip, are not currently in use.

Command 129 is reserved for future use.

Command 130 (Read Long Prefetch) is a command sent to the device driver
to position the CD-ROM heads to the next anticipated position. This attempts to
minimize the time required to retrieve sectors for the next read request. This
command shares the same Request Header as Read Long.

Command 131 is the Seek command and is used to position the CD-RaM's
read head to a designated location on the disk. The Request Header for this
command is shown in listing 11-3.

Commands 132 (Play) and 133 (Stop Play) are used in CD-ROM drives
that have audio capability to start and stop the playing of the audio portion of
the CD-ROM. These commands do not pass data to or from the CD-ROM and do
not have Request Headers. The device driver simply signals the CD-ROM drive
to play audio when command 132 is received and to stop when command 133 is
received.

Writing CD-ROM Device Drivers
CD-ROM device drivers implement the commands as listed in table 11-1. The
only additional information required deals with the IOCTL subcommands. Table
11-2 describes the IOCTL Input commands. Table 11-3 describes the IOCTL

421

i
'I

Writing MS-DOS Device Drivers, Second Edition

422

Value Description

0 Return the Device Header address
1 Return the location ofthe read head
2 Reserved
3 Return error statistics on the drive
4 Return audio channel information
5 Read drive directly
6 Return device status
7 Return the sector size in bytes
8 Return the volume size
9 Media changed
10 Get audio disk information
11 Get audio track information
12 Get audio Q-channel information
13 Get audio sub-channel information
14 Get UPC code
15 Get audio status
16-255 Reserved

Table 11-2: This table describes the subcommands for IOCTL Input
(command 3).

Output commands. For both IOCTL Input and IOCTL Output commands, the
subcommand value is contained in the first byte of the data transfer area.

Expanding your knowledge of device drivers to handle new devices such as
CD-ROMs seems to be straightforward. Nevertheless, as devices become more

Value

o
1
2
3
4
5
6-255

Description

Eject the disk
Lock/unlock the drive door
Reset the drive
Set audio channel control
Write control string to drive
Close the drive tray
Reserved

Table 11-3: This table describes the subcommands for IOCTL Output
(command 12).

Advanced Topics

complicated, writing and maintaining device drivers in assembly language be
comes more problematic. One solution to the problem of growing complexity is to
move to a higher-level language, that is, a language that takes care of more of
the details of operations, thus freeing you to concentrate on the overall steps of
processing.

Writing Device Drivers in C
Once you have written a device driver in assembly language and spent many
hours inspecting each and every instruction to insure that the code is doing
everything you want it to do, the idea of using a higher-level language to write
device drivers is not only logical but very appealing.

Advantages of Higher-level Languages
Writing device drivers in a language such as C solves a number of problems that
every programmer faces with assembly language. With assembly language, we
must spend considerable time making sure that the registers contain the correct
information. We also expend a lot of effort reinventing the wheel every time we
need a routine to convert numbers from one base to another, or to add numbers
larger than can be contained in a single register. We constantly need to worry
about the order of registers pushed and popped on the stack. It is certainly a lot
of effort to write in assembly language.

Writing programs in a higher-level language frees us from the tedium of
managing many small, but critical, details. We can concentrate on the algorithms
needed for the task at hand. As an example, the clock device driver of chapter 6
contained over 180 assembly language instructions for the Input and Output
driver commands. Using C or any other higher-level language, it should not be
more than 20 lines or so. Besides being easier to write, the compactness of the
code makes it considerably easier to comprehend than several pages of assembly
language.

However, writing device drivers in a higher-level language is not without
its drawbacks. In general, all things being equal, assembly language programs
tend to be faster and smaller. Also, the main disadvantage to writing device
drivers in a higher-level language is that device drivers are very hardware
oriented and will require skills not normally associated with writing in the
higher-level language.

We will take a look at device driver requirements that a higher-level
language needs to be able to address and specific skills needed to write device
drivers in the C language.

423

-------------- "---.~-- ~----

Writing MS-DOS Device Drivers, Second Edition

424

Higher-level Languages and Device Driver
Requirements
The foremost requirement of a device driver is that the Device Header must be
at the very beginning of the file and be first to be loaded into memory. This is
unlike the case with most programs, where the program code is usually found at
the beginning of the executable file. In addition, because device drivers are not
normal DOS programs, they do not need to allocate space for the Program
Segment Prefix (PSP) that precedes the program code. This forces the program
code to load at an offset of 100 hex relative to the start of the executable file.

There are two problems here. First, programs written in a higher-evel
language such as C or Pascal do not have any control over where the code is
loaded. During the linking phase, the linker decides where and how to load the
program code and data as well as the stack and heap. Therefore, we must find a
way to load the Device Header at the beginning of our device driver file.

The second problem is that most C compilers by default will generate several
segments worth of program code and data. There will be different segments for
code, data, and the stack. We will need to order these into the same single
segment. By combining all segments into a single segment, we can minimize the
amount of memory used and eliminate the need to use far references, which are
slower in execution.

Next, we will look at using C to write device drivers. First we will consider
the C areas of expertise required and then look at the programming barriers that
need to be overcome before we can write device drivers in C.

C Expertise Required
By their very nature, device drivers require more programming expertise than
other, more "normal" types of programs. Pointers are used to access data that
resides outside the device driver program - typically to pass data back and forth
to DOS. Structs are used to define the Request Headers specific to each device
driver command. Of course, pointers are used to reference structs and struct
members.

The segmented Intel processor architecture forces the use of memory models
in C compilers for the PC. These memory models define the range and size of
programs. Both Microsoft and Borland's C compilers support six memory models:
tiny (one 64K segment for both code and data), small (one 64K code segment and
one 64K data segment), compact (one 64K code segment and one or more 64K
data segments), medium (one 64K data segment and one or more 64K code
segments), large (one or more 64K segments for either code or data), and huge
(same as large bu.t a data item in the data segment may be as large as a 64K

Advanced Topics

segment). Device drivers are usually built as tiny or small model programs. These
use near references for both code and data since they reside in the same segment.

However, not only is there is a need to understand memory models in terms
of the code generated, but you also need to master the techniques used in referring
to data objects outside of the immediate memory segment: the far keyword is
often required to complete the memory reference. Thus, each time you read or
write data may require inspecting the data item to see if it's a near or a far
reference.

Lastly, understanding the assembly language interface is important in
several areas. This first becomes apparent when mixing assembly-language
modules with C modules. In this case, the C compiler being used will define the
interface between the modules in terms of the parameters passed on the stack.
Second, accessing the PC's interrupts means using the C compiler's interrupt
function (geninterrupt for Borland Turbo C, int86 for Microsoft C) and under
standing the use of registers to pass data back and forth. When you use in-line
assembly language within a C program you will need to understand how to access
C variables using assembly language.

To summarize, writing device drivers in C means understanding the assem
bly language requirements of device drivers as well as understanding numerous
advanced features of the C language.

C Programming Barriers
The first barrier to writing device drivers in C is that you must be extremely
careful when using C library calls in your program. Many library calls translate
to DOS calls which, when executed from a driver, would crash DOS because DOS
is not re-entrant. One useful trick is to avoid the runtime functions that require
the use of either stdio.h or dos.h header files. Do check your compiler documen
tation to be absolutely sure.

The second barrier that C needs to overcome is the problem of the stack.
There's not a lot of space on the default stack that is active when control is passed
to a device driver; there is only enough room for about 20 pushes. This may not
be enough stack space for passing large amounts of data from one routine to
another, or when there is frequent nesting of routine calls. Another use of the
already small stack by C programs is for local variables used by each routine.

There are two solutions for the small DOS stack problem: The first solution
is to live with the existing stack by minimizing the use of the stack. Variables are
made global, which eliminates the need to pass data between routines. This also
means that no local variables are used unless absolutely necessary. However, large
numbers of global variables is generally regarded as poor programming practice.

425

Writing MS-DOS Device Drivers, Second Edition

The second (and better) solution is to switch to a larger stack upon entry to
the device driver and before calling any C routines. This solution gives you the
ability to control stack usage; you can declare a large enough stack for the
worst-case usage of local variables as well as nested routine calls.

The C Device Driver Toolbox

426

The C Device Driver toolbox we present here is based on an assembly language
front-end that calls C routines for each device driver command. This design is a
result of three major requirements. The first requirement is to separate the
assembly-oriented device driver details into its own module. The second require
ment is to allow the C modules the ability to concentrate only on providing driver
command control. The third requirement is to provide a nonrestrictive environ
ment for the C driver modules. This last requirement means that a sufficiently
large stack would be provided so that normal C programming practices need not
worry about insufficient stack space.

As shown in figure 11-1, the C Device Driver consists of three files:
DRIVERASM is the assembly language front-end that meets the device driver
requirements by providing the Device Header, the Strategy routine, the Interrupt
routine, and the setup for command processing. The second file is the C header
file, DRIVERH, which contains the defines and structs for the C portion of the
device driver. The third file is CDRIVERC, which is the C program that contains
a C routine for each device driver command.

We will now take an in-depth look at each ofthese files.

DRIVER.ASM
DRIVERASM is shown in listing 11-4. We start with the group directive that
groups the segments _DATA, CONST, _BSS, and _TEXT under the name
DGROUP. This directive is quite important for a number of reasons. Normally,
C programs contain code and data segments in the following order: _TEXT
(contains code), _DATA (contains uninitialized global data, initialized global
data, initialized static data), CONST (contains read-only constants), and _BSS
(contains uninitialized static data). However, with a device driver we need to
place the _DATA segment first in order to have the Device Header at the
beginning ofthe file. Therefore, we use the group command to order the segments
with the _DATA segment first. We also need to have the initialization code placed
at the end ofthe file. This allows the device driver initialization code to specify a
Break Address at the code that we use only once. Thus, the code in the _TEXT
segment is specified last to place the code at the end of the file with the

Advanced Topics

DRIVER.ASM CDRIVER.C DRIVER.H

Device Header #define -
~ mediacheck

getbpb

STRATEGY
typedef

getdevice
setdevice

INTERRUPT ioctlquery
: .. -

init
~~

-,": :'·;_.""·'·'.'·1&:1

Assembler Code C routines C defines
structs

typedefs

Figure 11-1: The three files of the C Device Driver toolbox.

Listing 11-4: The assembly language front-end for the C Device Driver.

page
title

60,132
Assembler Device Driver

;***

; *
; *

This is an assembler device driver front-end for C *
*

;* Each command will be processed by a C routine *
;***

.*** ,

. * INSTRUCTING THE ASSEMBLER * ,
; * *
. * We need the DATA first in order to have * , -
; * the Device Header at the beginning of the file. *
; * Therefore, we use the group command to order the *
; * segments with _DATA first. *
i * *
i*** **********

DGROUP group _DATA, CONST, _BSS, _TEXT

segment word public 'DATA'
assume ds:DGROUP

;linker order

427

Writing MS-DOS Device Drivers, Second Edition

Listing 11-4: (cont.)

i*** **********

; * DEVICE HEADER REQUIRED BY DOS *
.*** ,

deviceheader
next_dev
attribute
strategy
interrupt
dev_name

public
org

label
dd
dw
dw
dw
db

_deviceheader
o

;C accessible
;relative location 0

word ;device header label
-1 ;no next device driver
OeOOOh ;char, ioctl, alp busy
DGROUP:_strategy ;strategy address
DGROUP:_interrupt ;interrupt address
'SAMPLE ;name of device

;***

; * REQUEST HEADER *
;***

public _rhptr ;make Request Header
;pointer C accessible

_rhptr equ $; Request Header
rh_ofs dw ? offset address
rh _seg dw ? segment address

.*** ,

. * , NEW STACK DEFINITIONS *

.*** ,

stack-ptr
stack_seg

news tack
newstacktop

DATA ends -

CONST segment
assume

CONST ends

- BSS segment
assume

BSS ends -

- TEXT segment
assume

dw ?
dw ?

db 100h dup (?)
label word

word public 'CONST'
ds:DGROUP

word public 'BSS'
ds:DGROUP

word public 'CODE'
cs:DGROUP,ds:DGROUP

;old stack pointer
;old stack segment

;new stack defined here
;top of new stack

;***

; * THE STRATEGY PROCEDURE *
.*** ,

public _strategy ;externally accessible

428

Advanced Topics

Listing 11-4: (cont.)

_strategy

_strategy

proc
mov
mov
ret
endp

far
cs:rh_seg,es
cs:rh_ofs,bx

;also C referenceable
;save segment address
;save offset address
;return to DOS

;***
. * , THE INTERRUPT PROCEDURE *
.*** ,

_interrupt

;save machine

; switch to new

public _interrupt

proc far

state on entry
cld
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

and larger stack for C use

cli
mov cs:stack-ptr,sp
mov cs:stack _seg,ss
mov ax,cs
mov sS,ax
mov sp,newstacktop
sti

mov ax,cs:rh_seg
mov eS,ax
mov bx,cs:rh_ofs

;externally accessible

;also C referenceable

;turn interrupts off
;save old stack ptr
;save old stack seg reg
;get current segment
;set stack segment
;set stack pointer
;re-enable interrupts

;restore ES saved by
; STRATEGY call
;same for EX

;jump to appropriate routine to process command

mov
rol
lea
mov
add
call

al,es:[bx]+2
al, 1
di,cmdtab
ah,O
di,ax
word ptr [di]

;get req hdr command
;x2 for word table index
;command table address
;clear hi order
;add index to table start
;call C routine

429

Writing MS-DOS Device Drivers, Second Edition

Listing 11-4: (cont.) .

;note that the return from the C routine does not require
iUS to extract any returned arguments nor function value

;switch back to old stack
eli
mov
mov
sti

ss,cs:stack_seg
sp,cs:stack-ptr

;restore registers and exit back to DOS

pop si
pop di
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret

;turn interrupts off
;restore old SS
;restore old SP
ire-enable interrupts

;return to DOS

;the following are the C routines to process each
;device driver command. Note that the leading underscore
;is required for C access.

EXTRN init:near
EXTRN _mediacheck:near
EXTRN _getbpb:near
EXTRN _ioctlinput:near
EXTRN _input:near
EXTRN _ndinput:near
EXTRN _inputstatus:near
EXTRN _inputflush:near
EXTRN _output:near
EXTRN _outputverify:near
EXTRN _outputstatus:near
EXTRN _outputflush:near
EXTRN _ioctloutput:near
EXTRN _deviceopen:near
EXTRN - deviceclose:near
EXTRN removeable:near
EXTRN _outputbusy:near
EXTRN _badcommand:near
EXTRN _genericioctl:near
EXTRN _getdevice:near
EXTRN setdevice:near
EXTRN _ioctlquery:near

430

Advanced Topics

Listing 11-4: (cont.)

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label word ; * = char devices only
dw DGROUP: init initialization
dw DGROUP: _mediacheck media check (block)
dw DGROUP:_getbpb build bpb
dw DGROUP:_ioctlinput ioctl in
dw DGROUP: _input input (read)
dw DGROUP:_ndinput ;*nd input no wait
dw DGROUP: _inputstatus ; * input status
dw DGROUP:_inputflush ; * input flush
dw DGROUP: _output ; output (write)
dw DGROUP:_outputverify ; output (write) verify
dw DGROUP: _outputstatus ;*output status
dw DGROUP:_outputflush ;*output flush
dw DGROUP:_ioctloutput ioctl output
dw DGROUP:_deviceopen device open
dw DGROUP: deviceclose device close -
dw DGROUP: remove able removeable media -
dw DGROUP:_outputbusy output til busy
dw DGROUP: badcommand undefined -
dw DGROUP: badcommand undefined -
dw DGROUp:_genericioctl generic ioctl
dw DGROUP: badcommand undefined -
dw DGROUP: badcommand undefined -
dw DGROUP: badcommand undefined -
dw DGROUP:_getdevice get logical device
dw DGROUP: - setdevice set logical device
dw DGROUP:_ioctlquery ioctl query

_interrupt endp ;end of _interrupt

i*** **********
;* END OF PROGRAM *
e*** ,

that's all folks

ends

end

431

Writing MS-DOS Device Drivers, Second Edition

432

-DATA

CONST

-BSS

-TEXT

Device Header

STRATEGY
Code

INTERRUPT
Code

mediacheck
get bpb

ioctlquery
init

DRIVER.ASM

Device Header

STRATEGY
Code

INTERRUPT
Code

CDRIVER.C

mediacheck
get bpb

ioctlquery
init

Figure 11·2: Reordering segments for a device driver.

-DATA

-TEXT

-TEXT

-DATA

CONST

-BSS

discardable init code at the very end of the _TEXT segment. The net effect ofthis
directive is to specify the order of the segments for the linker. This is shown in
figure 11-2.

We start the _DATA segment with the Device Header declaration at location
o. The public directive allows an external reference from an external program
module. Note that an underscore is prefixed to the name. This allows access by
C programs.

The attribute and name fields of the Device Header will require change
when you use the C device driver. The current attribute setting is a character
device with both I/O Control and Output Til Busy supported. The name of the
device is 'SAMPLE '.

The Request Header is identical to versions used in earlier chapters. A far
pointer,]hptr, points to the offset and segment address of the Request Header.
It has been declared public and is the only data item the C driver module requires
access to in this file.

Advanced Topics

At the end ofthe _DATA segment we have the data items that store the old
stack and the data area for the new stack. The new stack is 256 bytes in length,
but if that's not enough, you can increase the amount of space available.

The next two segments are CONST and _BSS, which are declared here to
specify that the DS segment register values are relative to the DGROUP group.

The _TEXT segment is where we place the Strategy and Interrupt routines.
Public directives to both routines allow external reference to them. This, as well
as the public directive for the Device Header, is not required for normal device
driver operations. It does allow C to access these items without a lot of extra work.

The Interrupt routine has been modified to switch stacks as soon as the
machine state has been saved and upon return from the C code that processes
each device driver command. The new stack provides 256 bytes of stack space for
the C code. This should allow more than enough stack space for variables and
nesting routine calls.

Just after the Interrupt exit code we have the EXTRN directives for each C
device driver routine. There is one C routine for each of the 21 device driver
commands. The five driver commands that are reserved but not used call one
common C routine Cbadcommand) to return an error.

The command table, CMDTAB, has been modified slightly for the C Device
Driver. Instead of containing the addresses of the assembler routines that
process the device driver commands, each entry of CMDTAB now contains
the address of the external C routine that performs the same function.

When you use this program to build a device driver, you need to change the
Device Header attribute and dev _name field. In addition, the commands that your
new device driver does not process need to have the correspondingCMDTAB table
entry point to _badcommand. This _badcommand routine will not do anything
other than set the ERROR bit of the Request Header Status Word and load
UNKNOWN COMMAND into the error number field. The alternative is to leave
the command table as is and add this code to each unused C device driver routine.
The first method is more work, but can save memory if you delete the unused C
driver routines from the CDRIVER.C file. The second method is less error prone.

DRIVER.H
DRIVER.H is the header file for the C Device Driver and is shown in listing 11-5.
It is a typical C header file in the sense that defines, structs, and typedefs are
declared here.

The defines set up the bit settings for the Request Header Status word and
the various error codes.

The first typedef is for the Device Header. It defines the structure of the
Device Header if you wish to access it through the global name _deviceheader.

433

Writing MS-DOS Device Drivers, Second Edition

Listing 11·5: The C header file, Driver.h.

/*
/*
/*
/*

driver.h
October 15, 1991
R. Lai
Defines for Request Header Status word

*/
*/
*/
*/

#define ERROR
#define BUSY
#define DONE

Ox8000
Ox0200
OxOl00

/* Defines for Error Codes */

#define WRITEPROTECT 0
#define UNKNOWNUNIT 1
#define DRIVENOTREADY 2
#define UNKNOWN 3
#define CRCERROR 4
#define BADRHLENGTH 5
#define SEEKERROR 6
#define UNKNOWNMEDIA 7
#define SECTORNOTFOUND 8
#define OUTOFPAPER 9
#define WRITEFAULT 10
#define READFAULT 11
#define GENERALFAILURE 12
#define INVALIDDISKCHANGE 15

/* Device Header Structure */

typedef struct device header_struct
struct device_header_struct far *nextdev;

/* ptr to next dev hdr */
unsigned int attribute; /* device attribute */
void (*dev_strategy) (void); /* strategy address */
void (*dev_interrupt) (void); /* interrupt address */
unsigned char dev_name[8]; /* device name */
} deviceheader_t;

/* BIOS Parameter Block Structure */

typedef struct bpb_struct_struct
unsigned int S8; /* sector size in bytes
unsigned char au; /* allocation unit size
unsigned int rs; /* reserved (boot) sectors
unsigned char nf; /* number of FATs
unsigned int ds; /* directory size in files
unsigned int ts; /* total sectors
unsigned char md; /* media descriptor
unsigned int fs; /* FAT sectors
unsigned int st; /* sectors per track
unsigned int nh; /* number of heads

434

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Listing 11-5: (cont.)

/*

unsigned long
unsigned long
} bpb_t;

hs;
Is;

Request Header Structures

typedef struct rhfixed_struct
unsigned char
unsigned char
unsigned char
unsigned int
unsigned char
} rh_t;

len;
unit;
cmd;
status;
res [8] ;

typedef struct rh_init_struct {
rh_t rh;
unsigned char
char far
bpb_t far
char
} rhO_t;

rh_t
unsigned char
unsigned char
char far
} rh1_t;

nunits;
*brkadr;

**bpbtab;
drive;

rh;
media;
md_stat;

*volid;

typedef struct rh_get_bpb_struct
rh_t rh;
unsigned char
char far
bpb_t far
} rh2_t;

media;
*buf;
*bpb;

typedef struct rh_ioctl struct
rh_t rh;
unsigned char media;
char far *buf;
unsigned int
unsigned int
} rh3_t, rh12_t;

count;
start;

typedef struct rh_io_struct
rh_t rh;
unsigned char media;
char far *buf;
unsigned int
unsigned int

count;
start;

Advanced Topics

/* hidden sectors
/* large sector count

*/

*/
*/

/* Request Header length */
/* unit code */
/* device driver command */
/* driver returned status */
/ * reserved * /

fixed portion
number of units

*/
*/

/*
/*
/*
/*
/*

break address */
pointer to array of BPBs */
1st available drive number */

/* fixed portion */
/* media descriptor */
/* media status */
/* address of volume 10 */

/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

fixed portion */
media descriptor */
address of data transfer */
address ptr to BPB table */

fixed portion */
media descriptor */
address of data transfer */
count (bytes or sectors) */
start sector number */

fixed portion */
media descriptor */
address of data transfer */
count (bytes or sectors) */
start sector number */

435

Writing MS-DOS Device Drivers, Second Edition

Listing 11·5: (cont.)

char far *volid;
} rh4_t, rhS_t, rh9_t;

/* address of volume ID */

typedef struct rh_ndinput_struct
rh_t rh;
unsigned char ch;
} rhS_t;

/* fixed portion */
/* character returned */

typedef struct rh_output_busy_struct
rh_t rh;
unsigned char media;
char far *buf;
unsigned int
} rh16_t;

count;

/* fixed portion */
/* media descriptor */
/* address of data transfer */
/* count (bytes or sectors) */

typedef struct rh_generic_ioctl_struct
rh_t rh;
unsigned char major;
unsigned char minor;
unsigned int si;
unsigned int di;
char far *pkt;
} rh19_t, rh2S_t;

/*
/*
/*
/*
/*
/*

fixed portion */
major function */
minor function */
8I register */
DI register */
address of ioctl packet */

typedef struct rh_device_struct

436

rh_t rh; /* fixed portion */
unsigned char io; /* input/output */
unsigned char devcmd; /* command code */
unsigned int devstat; /* status */
unsigned char res[4]; /* reserved */
} rh23_t, rh24_t;

The next typedef is for the BIOS Parameter Block structure. This will be
required for block device drivers during the Initialization and Get BIOS Param
eter Block commands. The Initialization function requires that the device driver
return a pointer to an array of pointers that point to BIOS Parameter Blocks. It
would be a simple matter to build a BIOS Parameter Block for each disk and to
place a pointer to each in a table. The address of this table would then be passed
back to DOS. The GET BIOS Parameter Block command requires that the device
driver pass back a pointer to the BIOS Parameter Block table.

The rest of the DEVICE.H file contains the various typedefs for each ofthe
Request Headers. It is the C version of the Request Header structs that we have
used in assembly language device drivers. The fixed portion of the Request

Advanced Topics

Header is defined as its own struct and is part of those Request Header structs
that have a unique portion extending beyond the fixed portion.

C wizards will note that data transfer areas have char data types rather
than the usual void data type. This is because we intend to use these data transfer
fields as buffers (to transfer bytes of data in and out of) and char fields describe
these fields more accurately. Another distinction we have made is for addresses
with segment and offset values. We have used char far pointers to these data
items rather than ints. Again, it's because we reference bytes in memory on the
Intel processor.

CDRIVER.C
Device driver command processing is provided by C routines in CDRIVER.C,
which is shown in listing 11-6. CDRIVER.C is a skeleton C program with one C
routine for each device driver command. Request Header structs are defined for
each device driver command in the respective C routines.

Listing 11·6: The source for the C driver routines.

/* Device Driver Routines */

/* includes */

#include "driver.h"

/* externally defined variables */

extern rh_t far *rhptr; /* far pointer to request header */

/* prototypes */
void mediacheck(void);
void getbpb(void);
void ioctlinput(void);
void input(void);
void ndinput(void);
void inputstatus(void);
void inputflush(void) ;
void output(void);
void outputverify(void);
void outputstatus(void);
void outputflush(void);
void ioctloutput(void);
void deviceopen(void);
void deviceclose(void);
void removeable(void);
void outputbusy(void);
void badcommand(void);

437

Writing MS-DOS Device Drivers, Second Edition

Listing 11-6: (cont.)

void genericioctl(void);
void getdevice(void);
void setdevice(void);
void ioctlquery(void);
void init (void) ;

void mediacheck (void)
{
rhl_t far *rhl; /* struct pointer */

rhl = (rhl_t far *)rhptr;
/* your code follows this comment */

rhl->rh.status = DONE;
}

void getbpb (void)
{
rh2_t far *rh2; /* struct pointer */

rh2 = (rh2_t far *)rhptr;
/* your code follows this comment */

rh2->rh.status = DONE;
}

void ioctlinput (void)
{

rh3_t far *rh3; /* struct pointer */
rh3 = (rh3_t far *)rhptr;
/* your code follows this comment */

rh3->rh.status = DONE;
}

void input (void)
{
rh4_t far *rh4; /* struct pointer */

rh4 = (rh4_t far *)rhptr;
/* your code follows this comment */

rh4->rh.status = DONE;
}

void ndinput (void)
{
rhS_t far *rhS; /* struct pointer */

rhs = (rhS_t far *)rhptr;

438

Listing 11-6: (cont.)

/* your code follows this comment */

rh5->rh.status = DONE;
}

void inputstatus (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void input flush (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void output (void)
{

void

void

rhB_t far *rhB; /* struct pointer */

rhB = (rhB_t far *}rhptr;
/* your code follows this comment */

rhB->rh.status = DONE;
}

outputverify (void)
{
output(};
}

outputstatus (void)
{
/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void output flush (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;

Advanced Topics

439

Writing MS-DOS Device Drivers, Second Edition

Listing 11-6: (cont.)

void ioctloutput (void)
{

rh12_t far *rh12; /* struct pointer */

rh12 = (rh12_t far *)rhptr;
/* your code follows this comment */

rh12->rh.status = DONE;
}

void deviceopen (void)
{
/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void deviceclose (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void removeable (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void outputbusy (void)
{
rh16_t far *rh16; /* struct pointer */

rh16 = (rh16_t far *)rhptr;
/* your code follows this comment */

rh16->rh.status = DONE;
}

void badcommand (void)
{

/* this command does not have a unique request header */

440

Listing 11-6: (cont.)

/* your code follows this comment */

rhptr->status = DONE I ERROR I UNKNOWN;
}

void genericioctl (void)
{

rh19 t far *rh19; /* struct pointer */

rh19 = (rh19_t far *)rhptr;
/* your code follows this comment */

rh19->rh.status = DONE;
}

void getdevice (void)
{

rh23_t far *rh23; /* struct pointer */

rh23 = (rh23_t far *)rhptr;
/* your code follows this comment */

rh23->rh.status = DONE;
}

void setdevice (void)
{

rh24_t far *rh24; /* struct pointer */

rh24 = (rh24_t far *)rhptr;
/* your code follows this comment */

rh24->rh.status = DONE;
}

void ioctlquery (void)
{
rh25_t far *rh25; /* struct pointer */

rh25 = (rh25_t far *)rhptr;
/* your code follows this comment */

rh25->rh.status = DONE;
}

void init (void)

rhO_t far *rhO; /* struct pointer */

Advanced Topics

441

Writing MS-DOS Device Drivers, Second Edition

Listing 11-6: (cont.)

rhO = (rhO_t far *)rhptr;
/* set Break Address at last driver command */
rhO->brkadr = (char far *)init;

/* your code follows this comment */

rhO->rh.status = DONE;
}

The only variable required by these C routines is the Request Header
pointer,]hptr, which has been declared in DRIVERASM. It is referenced
through the C keyword extern. Global variables required for the C device driver
can be declared here.

Each device driver command has a corresponding C routine beginning with
init and finishing with ioctlquery. You will note that init has been placed at the
end of the file. Once driver initialization finishes the address of init is returned
as the Break Address to allow DOS to reuse the space init occupied.

The first instruction in each routine casts the Request Header pointer to a
local variable that uses the appropriate Request Header struct.

Your specific code for each driver command follows this first statement. At
the end of the routine, load the Status word with DONE.

Each of the driver routines follows this format with two exceptions. The first
is that the outputverify routine calls the output routine. Second is that
badcommand, used for undefined or unimplemented driver commands, sets the
ERROR bit and loads the code for UNKNOWN ERROR in the Status word of the
Request Header.

The Printer Device Driver in C

442

Using the C Device Driver toolbox we have rewritten chapter 5's printer device
driver in C. The new DRIVERASM is shown in listing 11-7 and has only two
changes. The first change is to the title directive to indicate that this is the new
PRN driver. The second change is to variable dev _name, which now has 'PRN' as
the new device name.

The new CDRIVERC, shown in listing 11-8, has code for the same seven
commands processed by the original printer device driver: 0 (Initialization), 3
(IOCTL Input), 8 (Output), 9 (Output With Verify), 10 (Output Status), 12
(lOCTL Output), and 16 (Output Til Busy). Two of the commands, Output With
Verify and Output Til Busy, calls the Output command processing routine.

Advanced Topics

Listing 11-7: The DRIVER.ASM code for the printer device driver.

page
title

60,132
Assembler Device Driver for PRN

;**********~** **********

· * ,
· * ,
· * ,

This is an assembler device driver front-end for C

Each command will be processed by a C routine

*
*
*

;***

.*** ,
; *
· * ,
; *
; *
; *
; *
; *

INSTRUCTING THE ASSEMBLER

We need the _DATA first in order to have
the Device Header at the beginning of the file.
Therefore, we use the group command to order the
segments with _DATA first.

*
*
*
*
*
*
*

i*** **********

DGROUP group _DATA, CONST, _BSS, _TEXT

segment word public 'DATA'
assume ds : DGROUP

;linker order

.*** ,
· * , DEVICE HEADER REQUIRED BY DOS *
.*** ,

_deviceheader
next_dev
attribute
strategy
interrupt
dev_name

public
org

label
dd
dw
dw
dw
db

_deviceheader
o

;C accessible
;relative location 0

word ;device header label
-1 ;no next device driver
OeOOOh ;char, ioctl, olp busy
DGROUP:_strategy ;strategy address
DGROUP:_interrupt ;interrupt address
'PRN ;name of device

.*** ,
; * REQUEST HEADER *
;***

public _rhptr ;make Request Header
;pointer C accessible

_rhptr equ $; Request Header
rh ofs dw ? offset address -
rh_seg dw ? segment address

443

Writing MS-DOS Device Drivers, Second Edition

Listing 11-7: (cont.)

;***

· * , NEW STACK DEFINITIONS *
.*** ,

stackJ)tr dw ? ;old stack pointer
stack _seg dw ? ;old stack segment

news tack db 100h dup (?) ;new stack defined here
newstacktop label word ;top of new stack

DATA ends -

CONST segment word public 'CONST'
assume ds:DGROUP

CONST ends

- BSS segment word public 'BSS'
assume ds:DGROUP

BSS ends -

- TEXT segment word public 'CODE'
assume cs:DGROUP,ds:DGROUP

.*** ,
· * , THE STRATEGY PROCEDURE *
.*** ,

_strategy

_strategy

public

proc
mov
mov
ret
endp

_strategy

far
cs:rh_seg,es
cs:rh_ofs,bx

;externally accessible

;also C referenceable
;save segment address
;save offset address
;return to DOS

.*** ,
· * , THE INTERRUPT PROCEDURE *
;***

public _interrupt ;externally accessible

_interrupt proc far ;also C referenceable

;save machine state on entry

cld
push ds
push es
push ax
push bx

444

Advanced Topics

Listing 11-7: (cont.)

push cx
push dx
push di
push si

;switch to new and larger stack for C use

cli
mov cs:stack-ptr,sp
mov cs:stack _seg,ss
mov ax,cs
mov sS,ax
mov sp,newstacktop
sti

mov ax,cs:rh_seg
mov eS,ax
mov bx,cs:rh_ofs

;turn interrupts off
;save old stack ptr
;save old stack seg reg
;get current segment
;set stack segment
;set stack pointer
;re-enable interrupts

;restore ES saved by
; STRATEGY call
;same for BX

;jump to appropriate routine to process command

mov
rol
lea
mov
add
call

al, es: [bx] +2
aL 1
di, cmdtab
ah,O
di,ax
word ptr [di]

;get req hdr command
;x2 for word table index
;command table address
;clear hi order
;add index to table start
;call C routine

;note that the return from the C routine does not require
;us to extract any returned arguments nor function value

;switch back to old stack

;restore

eli
mov
mov
sti

registers and

pop
pop
pop
pop
pop
pop
pop
pop
ret

ss,cs:stack_seg
sp,cs:stack_ptr

exit back to DOS

si
di
dx
cx
bx
ax
es
ds

;turn interrupts off
;restore old SS
;restore old SP
;re-enable interrupts

;return to DOS

445

Writing MS-DOS Device Drivers, Second Edition

Listing 11·7: (cont.)

;the following are the C routines to process each
;device driver command. Note that the leading underscore
;is required for C access.

EXTRN init:near
EXTRN _mediacheck:near
EXTRN _getbpb:near
EXTRN _ioctlinput:near
EXTRN _input:near
EXTRN _ndinput:near
EXTRN _inputstatus:near
EXTRN _inputflush:near
EXTRN _output:near
EXTRN _outputverify:near
EXTRN _outputstatus:near
EXTRN _outputflush:near
EXTRN _ioctloutput:near
EXTRN _deviceopen:near
EXTRN deviceclose:near -
EXTRN removeable:near -
EXTRN _outputbusy:near
EXTRN _badcommand:near
EXTRN _genericioctl:near
EXTRN _getdevice:near
EXTRN setdevice:near
EXTRN _ioctlquery:near

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label word . * = char devices only ,
dw DGROUP: init initialization
dw DGROUP: _mediacheck media check (block)
dw DGROUP:_getbpb build bpb
dw DGROUP:_ioctlinput ioctl in
dw DGROUP: _input input (read)
dw DGROUP:_ndinput ;*nd input no wait
dw DGROUP: _inputstatus ; * input status
dw DGROUP:_inputflush ;*input flush
dw DGROUP: _output ; output (write)
dw DGROUP:_outputverify ; output (write) verify
dw DGROUP: _outputstatus ; *output status
dw DGROUP:_outputflush ;*output flush
dw DGROUP:_ioctloutput ioctl output
dw DGROUP:_deviceopen device open
dw DGROUP: deviceclose device close -
dw DGROUP: removeable removeable media -

446

Advanced Topics

Listing 11·7: (cont.)

dw DGROUP:_outputbusy output til busy
dw DGROUP: _badcommand undefined
dw DGROUP: badcommand undefined -
dw DGROUp:_genericioctl generic ioctl
dw DGROUP: badcommand undefined -
dw DGROUP: badcommand undefined -
dw DGROUP: badcommand undefined -
dw DGROUP:_getdevice get logical device
dw DGROUP: setdevice set logical device
dw DGROUP:_ioctlquery ioctl query

_interrupt endp ;end of _interrupt

i*** **********

; * END OF PROGRAM *
.*** ,

;that's all folks

_TEXT ends

end

There are only three global variables: device which contains a value to
indicate whether a serial or a parallel printer is being used, dev_num which is
the printer device number, and regs which is required by Microsoft C's int86
library call (Borland's Turbo C uses geninterrupt, which is equivalent).

The code for each converted C routine was closely translated from its
assembler source. This allows you to follow the original chapter's comments on
the code of each driver command. Do note that the last statement in each
command implemented now has an OR assign rather than a direct assign to add
the DONE bit to the Status word.

Compiler Complications

There are a number of compiler-dependent complications that arise when devel
oping device drivers in C. First, some C compilers add padding in structs when
the compiler determines that some data item might fall on an odd-byte boundary.
This can happen, for example, if a struct has a char defined with an int field
immediately following. Some compilers may add a char field just before the int
field to force the int field to an even-byte boundary. This, of course, will result in
data being stored in the wrong locations. Check your compiler documentation for

447

Writing MS-DOS Device Drivers, Second Edition

Listing 11-8: The CDRIVER.C code for the printer device driver.

/* Device Driver Routines

/* includes

#include "driver.h"
#include <dos.h>

/* externally defined variables

*/

*/

*/

extern rh_t far *rhptr; /* far pointer to request header */

/* prototypes */

void mediacheck(void);
void getbpb (void) ;
void ioctlinput(void);
void input (void) ;
void ndinput (void) ;
void inputstatus(void);
void inputflush(void);
void output (void) ;
void outputverify(void);
void outputstatus(void);
void outputflush(void);
void ioctloutput(void);
void deviceopen(void);
void deviceclose(void);
void removeable(void);
void outputbusy(void) ;
void badcommand(void);
void genericioctl(void) ;
void getdevice (void) ;
void setdevice(void);
void ioctlquery(void) ;
void init(void) ;

/* globals */

char device;
char dev_num;
union REGS regs;

/* 'S' for seriaL 'P' for parallel * /
/* 0,1,2 device number */

void mediacheck (void)
{
rh1_t far *rh1; /* struct pointer */

rh1 = (rh1_t far *)rhptr;
/* your code follows this comment */

rh1->rh.status = DONE;

448

Listing 11-8: (cont.)

void getbpb (void)
{

rh2 t far *rh2; /* struct pointer */

rh2 = (rh2_t far *)rhptr;
/* your code follows this comment */

rh2->rh.status = DONE;

void ioctlinput (void)
{

rh3_t far *rh3; /* struct pointer */

rh3 = (rh3_t far *)rhptr;
/* your code follows this comment */

/* return printer type and device number */
* (rh3->buf) = device? 'S' 'P';
* (rh3->buf+l) = dev_num;

rh3->rh.status = DONE;
}

void input (void)
{

rh4 t far *rh4; /* struct pointer */

rh4 = (rh4_t far *)rhptr;
/* your code follows this comment */

rh4->rh.status = DONE;
}

void ndinput (void)
{
rhS_t far * rhS; /* struct pointer */

rhS = (rhS_t far *)rhptr;
/* your code follows this comment */

rhS->rh.status = DONE;
}

void inputstatus (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

Advanced Topics

449

Writing MS-DOS Device Drivers, Second Edition

Listing 11·8: (cont.)

rhptr->status
}

DONE;

void input flush (void)
{
/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void output (void)
{

450

rhB_t far *rhB;
int i;

/* struct pointer */

rhB = (rhS_t far *)rhptr;
/* your code follows this comment */

switch (dev_num)
{

case 0: /* parallel port */
for (i=O ; i<rhB->count i++)

{

/* get status */ regs.h.ah = 2;
intB6(Ox17,®s,®s);
if (regs.h.ah != OxSO) /* not (not busy) */

{

rhB->rh.status = ERRORIDRIVENOTREADY;
break;

}

regs.h.ah 0;
regs.h.al * (rhB->buf+i);
regs.h.dl dev_nuffi;
regs.h.dh 0;
intB6(Ox17,®s,®s);
if

{
(regs.h.ah)

switch (regs.h.ah)
{

/* print */
/* char */
/* device */
/* for safety

/* check for
/* also exit

*/

errors
loop */

case 1:
rhB->rh.status
break;

ERRORIDRIVENOTREADY;

case B:
rhS->rh.status
break;

case Ox20:
rhB->rh.status
break;

ERROR I WRITEFAULT;

ERRORIOUTOFPAPER;

*/

Advanced Topics

Listing 11-8: (cont.)

default:
rhS->rh.status ERRORIGENERALFAILURE;

break;
}

break;
case 1: /* serial port */

for (i=O ; i<rhS->count i++)
{

regs.h.ah = 3; /* get status */
intS6(Ox14,®s,®s);
if ((regs.h.ah != OxSO) II (regs.h.al != OxSO))

{

rhS->rh.status = ERRORIWRITEFAULT;
break;

}

regs. h . ah 1 ;
regs.h.al *(rhS->buf+i);
regs.h.dl dev_num;

/* print */
/* char */
/* device */
/* for safety */ regs. h . dh 0 ;

intS6(Ox14,®s,®s) ;
if (regs.h.ah) /* check for errors */

/* also exit loop */
ERRORIWRITEFAULT;

{

rhS->rh.status
break;

}

break;

rhS->count = i;
rhS->rh.status 1= DONE;
}

void outputverify (void)
{

output () ;
}

void outputstatus (void)
{

/* return byte o/p */
/* set DONE */

/* this command does not have a unique request header */
/* your code follows this comment */

regs.h.dl dev_num;
regs.h.dh 0;
switch (device)

{

case 0:
regs.h.ah 2;

/* load device */
/* just in case */
/* either port */

/* parallel port */
/* get status */

451

Writing MS-DOS Device Drivers, Second Edition

Listing 11-8: (cont.)

int86(Ox17,®s,®s);
if (regs.h.ah 1 9)

{
rhptr->status
break;

}

ERRORIWRITEFAULT;

if (regs.h.ah != Ox80)
{

}

rhptr->status = BUSY;
break;

break;
case 1:

/* either bit set */

/* not (not busy) */

/* serial port */
/* get status */ regs.h.ah = 3;

int86(Ox14,®s,®s);
if ((regs.h.ah != Ox20) II (regs.h.al != Ox20))

rhptr->status = BUSY;
break;

rhptr->status 1= DONE;
}

void output flush (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void ioctloutput (void)
{

452

rh12_t far *rh12; /* struct pointer */

rh12 = (rh12_t far *)rhptr;
/* your code follows this comment */

switch (*(rh12->buf))
{

case 'P':
device 0;
break;

case'S' :
device 1;
break;

default:
rh12->rh.status ERROR 1 UNKNOWN;

Listing 11-8: (cont.)

dev_num = * (rh12->buf+l) ;

rh12->rh.status 1= DONE;
}

void deviceopen (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void deviceclose (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void removeable (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE;
}

void outputbusy (void)
{

output () ;
}

void badcommand (void)
{

/* this command does not have a unique request header */
/* your code follows this comment */

rhptr->status = DONE 1 ERROR 1 UNKNOWN;
}

void genericioctl (void)
{

rh19 t far *rh19; /* struct pointer */

rh19 = (rh19_t far *)rhptr;
/* your code follows this comment */

Advanced Topics

453

I

I

Writing MS-DOS Device Drivers, Second Edition

Listing 11-8: (cont.)

rh19->rh.status
}

DONE;

void getdevice (void)
{

rh23 t far *rh23; /* struct pointer */

rh23 = (rh23_t far *)rhptr;
/* your code follows this comment */

rh23->rh.status = DONE;
}

void setdevice (void)

rh24 t far *rh24; /* struct pointer */

rh24 = (rh24_t far *)rhptr;
/* your code follows this comment */

rh24->rh.status = DONE;
}

void ioctlquery (void)
{

rh25_t far *rh25; /* struct pointer */

rh25 = (rh25_t far *)rhptr;
/* your code follows this comment */

rh25->rh.status = DONE;
}

void init (void)

454

rhO t far *rhO; /* struct pointer */

rhO = (rhO_t far *)rhptr;

/* set Break Address at last driver command */
rhO->brkadr = (char far *)init;

/* your code follows this comment */

rhO->rh.status = DONE;
}

Advanced Topics

the compiler switch that packs struct data items. Alternatively, some compilers
provide a pack pragma that performs the same function. Using pragmas is
clearer for the reader of the C code and eliminates the possibility offorgetting to
set the compiler switch.

Your compiler should be able to compile the C Device Driver using the tiny
memory model, which forces the code and data into a single 64K segment. Most
C compilers today provide this capability.

Another complication is that some C compilers add code at the beginning of
each routine that checks for potential stack overflow. This added code is a call to
a routine that calculates whether there is enough space to allocate the routine's
local variables on the stack. Unfortunately, the side effects of all this is that a
stack segment is also declared. With a stack segment, which is not needed for the
C Device Driver, EXE2BIN will not convert the .EXE file format to a .COM file
format. Again, your compiler documentation should describe the switch and/or
pragma that removes stack checking. There's an added benefit of removing stack
checking: programs are tighter and have faster running code.

The last complication you may find is that most C programs expect a main
function to which control is passed when the program is executed. The code for
using main may be generated or included directly by the C compiler or indirectly
by the use of certain runtime library functions. This will result in errors during
the link phase because the reference will remain unresolved. Device drivers do
not have normal entry points because access to the device driver is through the
Strategy and Interrupt address definitions of the Device Header. To solve this
problem, simply add a definition for the unresolved item in DRIVER.ASM and
declare it public. Listing 11-9 shows the code for resolving the undefined main
reference.

Listing 11-9: The code for resolving an undefined reference (shown in bold).

;***

; * NEW STACK DEFINITIONS *
i*** **********

stack-ptr dw ? ;old stack pointer
stack_seg dw ? ;old stack segment

newstack db lOOh dup (?) ; new stack defined here
newstacktop label word ;top of new stack

public _main ;externally accessible
_main dw ? ; declare a word

455

Writing MS-DOS Device Drivers, Second Edition

Linker Madness
The Link phase is not without its share of problems. You may encounter one or
more of the problems we describe in this section.

First, most assemblers generate external references in uppercase. This
conflicts with C's case-sensitive nature when the linker tries to match the
uppercase Externs generated for DRIVER.ASM with the lowercase C routine
names. Both Microsoft's MASM and Borland's Turbo Assembler provide a switch
to keep public and external symbols case sensitive. An alternative is to use a
linker switch to ignore case sensitivity if your linker does not already do so.

Your Linker may be able to produce a COM file directly, thus eliminating
the need to use the EXE2BIN utility. This requires specifying the tiny memory
model to the Linker through a switch plus compiling the C modules using the tiny
memory model. In addition, there cannot be a stack segment defined.

Lastly, you may see several warnings from the Linker. The first warning
will indicate no stack segment which is not needed for the C Device Driver.
Second, you may see a warning that indicates your program has no start address.
Again, it is not needed for device drivers.

A Short Note on Testing the C Device Driver
CDRIVER.C can be used with a main function to provide a DOS program-level
testing tool. Simply add a main function, declare and initialize the Request
Header pointer, and test each driver command with a call to the appropriate C
routine. While this is oversimplification, it is a valid test method similar to the
one presented in chapter 10. Listing 11-10 shows an example ofa main function
that calls the C Device Driver routines.

Listing 11-10. The code for a sample main function to test the C driver
routines.

/* Device Driver Test Program */

/* includes */

#include "driver.h"

/* globally defined variables */

rh_t far *rhptr;/* far pointer to request header */

/* prototypes */

456

Listing 11·10. (cont.)

void mediacheck(void) ;
void getbpb (void) ;
void ioctlinput(void);
void input (void) ;
void ndinput (void) ;
void inputstatus(void);
void inputflush(void) ;
void output (void) ;
void outputverify(void) ;
void outputstatus(void) ;
void output flush (void) ;
void ioctloutput(void) ;
void deviceopen(void) ;
void deviceclose(void) ;
void removeable(void) ;
void outputbusy(void) ;
void badcommand(void) ;
void genericioctl(void) ;
void getdevice(void);
void setdevice (void) ;
void ioctlquery(void) ;
void init (void) ;

int main (int *argc, char **argv)
{

rhO_t rh_init;

/* add code here to test each device driver command */
/* sample Init command */

rh_init.rh.cmd = 0;

Advanced Topics

rhptr = (rh_t far *)&rh_init; /* initialize rhptr */

switch (rhptr->cmd)
{

case 0: init () ; break;
case 1: mediacheck(); break;
case 2 : getbpb() ; break;
case 3 : ioctlinput () ; break;
case 4 : input () ; break;
case 5 : ndinput(); break;
case 6 : inputstatus(); break;
case 7 : inputflush() ; break;
case 8 : output() ; break;
case 9: outputverify(); break;
case 10: outputstatus() ; break;
case 11: outputflush() ; break;
case 12 : ioctloutput(); break;
case 13: deviceopen () ; break;
case 14 : deviceclose(); break;

457

Writing MS-DOS Device Drivers, Second Edition

Listing 11·10. (cont.)

case 15: removeable(); break;
case 16: outputbusy () ; break;
case 17 : badcommand() ; break;
case 18: badcommand(); break;
case 19: genericioctl() ; break;
case 20: badcommand() ; break;
case 21: badcommand(); break;
case 22: badcommand() ; break;
case 23 : getdevice(); break;
case 24: setdevice(); break;
case 25: ioctlquery() ; break;
default:

printf("\nIllegal Command Number %d\n" ,rhptr->cmd) i

/* add code here to display the Request Header contents */

Summary
In this book we have presented much information on device drivers. We have
shown you what it takes to build a console, a printer, a clock, and a RAM disk
device driver. We have covered, in detail, all the parts of a device driver. In this
last chapter, we have discussed a method of writing device drivers in C and have
explored the requirements of writing drivers for the new CD-ROM technology.
You have seen how to build working device drivers, from simple ones to complex
ones. Now you can go on to building custom device drivers of your own!

Questions
1. Is there a difference in compiling CDRIVER.C in the small or the tiny

model?

2. What is the purpose of the char far cast of init in the Init routine?

3. What do I need to be aware ofifI use a lot ofC library code?

4. How can I minimize the size of my C device drivers?

Answers may be found in appendix F.

458

Appendi1\..

An Overview of the
Intel Architecture

An Overview of the Intel Architecture

T his appendix provides a "refresher ronrse" on the architecture oflotel
8086/8088 systems. The following sections review the memory structure and
segmentation techniques, the 1/0 structure, and the register structure of the
8086/8088 system. Reviewing the contents of this appendix will enable you to
acquire a basic level of knowledge to aid you in better understanding the
information presented in the main body of this book.

As an introduction, let's start by reviewing the basic characteristics of the
8086 and 8088 CPU chips.

The Intel 8086/8088 Microprocessor Chips
The Intel 8086 is a I6-bit microprocessor chip available in speeds of 8MHz,
lOMHz, and I2MHz. The 8086 was the first successful microprocessor chip to
include memory segmentation, a feature that provided freedom from the design
limitations of earlier chips. Before the introduction of the 8086, 8-bit chips could
address only 64K via 8-bit addresses. The 8086 can address 1 Mb of data with
only I6-bit addresses. This is accomplished by segmenting memory into separate
64K groups of data. Each 64K group is controlled by hardware and instructions
integral to the 8086.

There are few differences between the 8086 and 8088 CPU chips. The
primary distinction is in the external data bus, which is the mechanism used to
transfer data between external devices and the CPU. The popular 8088 chip is
an 8-bit bus version of the 8086. Its instruction set and basic architecture are
identical to those of the 8086. Instead of the I6-bit external data bus found on
the 8086, however, the 8088 has an 8-bit external data bus. This difference is not
significant for consideration in this book. However, it should be noted that the
8088's 8-bit data bus makes it easier to interface the many 8-bit devices used on
older 8-bit microprocessor systems.

461

--

Writing MS-DOS Device Drivers, Second Edition

CPU speed is another aspect in which the SOS6 and SOSS differ. Typically,
SOSS-based systems run with a 4.77 -MHz clock speed, much slower than the
S-MHz speed of the SOS6. However, there are now versions of the SOSS that run
at faster speeds, thereby reducing the distinction between the two chips.

The 8086/8088 Memory Structure

462

The SOS6/S0SS system manages memory in S-bit quantities called bytes. Up to
approximately 1 million bytes (1Mb) can comprise memory, with each byte having
its own unique address. The possible range of addresses for 1Mb of data is
expressed in hexadecimal form as the numbers 00000 to FFFFF. In binary form,
these addresses are represented as 0000 0000 0000 0000 0000 to 111111111111
11111111.

Two consecutive bytes form one word. Each byte within a word has its own
byte address: the smaller ofthe two byte addresses within a word is used as the
word address. Figure A-I illustrates how memory is viewed as a series of bytes,
with pairs of bytes being viewed as words. Note that when the lower byte
address is an even number, the word is said to start at an even address. If the
lower address is an odd number, the word is said to start at an odd address. The
important concept to understand here is that the SOS6/S0SS memory is always
viewed as a series of S-bit bytes. Even when it is necessary to access (and
manipulate) the contents of memory in the 16-bit quantities called words, the
CPU treats each word as two bytes.

Data Storage in 8086/8088 Memory
One important aspect of the memory structure of an SOS6/S0SS is the method of
data storage in memory. We have defined a word as 16 bits. These bits are
numbered from 0 (least-significant, or low-order, bit) to 15 (most-significant, or
high-order, bit). Bits 0 through 7 are referred to as the low-order (least-signifi
cant) byte. Bits S through 15 are referred to as the high-order (most-significant)
byte. Example 2 from figure A-I illustrates how a 16-bit word in memory might
be viewed.

As noted earlier, the address of the word is the lower of the two addresses
of the bytes comprising the word. Therefore, the low-order byte has the lower
memory address, and the high-order byte has the higher memory address.

This is an important concept to understand. The technique by which 16-bit
quantities are stored in the byte-oriented SOS6/S0SS memory structure makes it
appear that data is stored backwards in memory. To illustrate this point, let's
take a look at some examples.

An Overview of the Intel Architecture

1.

2.
15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0

_High-order __ Low-order_
byte byte

3.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
0008
oooe
0000
OOOE
OOOF

~~~!~n!~@~~g~~C 
J~y-~nj~I~9E~~Z--
-------------7--:~~~-----------10 -------
~~~~~~~~~~Ol~~~~~~~~~~ 

=~9i~=~}~tl)ng:~~C
-9-c)~-'!q9-~~.?!:?7-
-------------7--:~~:----------01'=- --------

~~~~~~~~~fE~~~~~~~~~~= 

Figure A-I: The IntelSOS6/S0SS memory structure: 1. the sixteen-bit 
general purpose registers; 2. a single sixteen-bit memory register 
comprised of two eight-bit bytes; 3. Intel memory showing a word 
071Dh at address location 00006. 

Looking first at numeric data, the numeric value 1,821 (decimal) is repre
sented as the hexadecimal value 071Dh (the h indicates hexadecimal). If the 
value 071Dh is stored in the word beginning at address 00006, byte 00006 would 
contain the value IDh, and byte 00007 would contain the value 07h. Figure A-I 
illustrates how the value 071Dh would be stored (example 3). 

Paragraphs 
Another important aspect of the 8086/8088 memory structure is that of para
graphs. A paragraph is defined to have 16 bytes. The paragraph address is the 
address of the lowest byte contained in the paragraph. It follows that one million 
bytes (1Mb) of memory can also be viewed as illustrated by table A-I. 

Notice that there are FFFFh (or 65,536) paragraphs for a total ofFFFFFh 
(1 million) bytes. All paragraph address are fixed (that is, automatically defined) 
by the memory structure. The effect of this fixed definition is that all paragraph 

463 



--------------------------------

Writing MS-DOS Device Drivers, Second Edition 

464 

Paragraph address 
(in hex) 

00000 
00010 
00020 

FFFFO 

Bytes in paragraph 
(in hex) 

OOOOO-OOOOF 
OOOlO-OOOlF 
00020-0002F 

FFFFO-FFFFF 

Table A-I: 1Mb of Memory as Viewed in Paragraphs. 

addresses (when expressed in hexadecimal) end with O. Each paragraph consists 
of 16 bytes, numbered from 0 to 15 (decimal) or from 0 to F (hexadecimal). The 
byte addresses of the bytes within a paragraph are then determined by taking 
the paragraph address and adding Oh to Fh (0 to 15 decimal) (see table A-I). The 
significance of this method of viewing memory as paragraphs will be seen in the 
upcoming discussion. Let's continue by looking at how the 8086/8088 segments 
its memory. 

Memory Segmentation 
The 8086/8088 supports a maximum of 1Mb of memory, with the highest byte 
address being FFFFFh. Representing the location of each byte in its absolute 
form (called the absolute address) requires 20 bits. However, the 8086/8088 
system is a 16-bit system. How do we represent a 20-bit address in 16 bits? Intel's 
answer was to organize memory into segments. 

One segment is defined as any number of bytes up to a maximum of64K. A 
segment may start any place in memory, as long it is on a paragraph boundary. 
This means that the absolute address of the start ofa segment would always 
end in 0 (for example, 034FOh). Thus, we can "throwaway" the last 4 bits of 
the segment's starting absolute address, leaving a 16-bit segment address. 
Therefore, the segment starting at absolute location 034FOh can be represented 
by the 16-bit segment address of 034Fh. Remember this concept of a 16-bit 
segment address; it will quickly become more significant. 

Now, if each segment contains a maximum of 64K, the bytes are numbered 
within the segment as 0 to 65,535 (decimal) or 0000 to FFFF (hexadecimal). To 
reference a byte within a segment in this manner is to use the byte offset within 
the segment. Notice that the byte offset can be represented with a 16-bit value. 

To illustrate this, we can look at the earlier example of the segment that 
started at location 034FOh. We saw that this segment is more conveniently 
referenced as segment 034Fh. Now, let's consider location 034F6h as being within 



An Overview of the Intel Architecture 

the segment. This byte location is located 6 bytes from the start (034FOh) ofthe 
segment. We therefore say that byte 034F6h is at offset 6 within the segment 
034Fh. Now, let's review everything and tie it together. 

We said before that the 8086/8088 system is a 16-bit system. This implies 
that the largest address that can be formed must be represented as a 16-bit value. 
We also saw, however, that if we want to address up to 1Mb of memory, we need 
to have 20-bit addresses. By splitting memory into paragraphs of 16 bytes each, 
any paragraph in memory can be referenced by a 16-bit address. 

Earlier, we saw that a segment is defined to start on a paragraph boundary. 
It follows that a segment can start at any paragraph in memory and be referenced 
by the 16-bit address of that paragraph. Finally, if each segment contains up to 
64K within it, each byte can be referenced by a 16-bit address. It becomes quickly 
obvious that, to the user, it is often convenient to refer to a specific location in 
memory as: 

segment:offset 

where the offset is the byte offset within the segment. The next section will show 
how this fits into the architecture ofthe 8086/8088 system as designed by Intel. 

Memory Segmentation and Segment Registers 
Any given program can address all of the 1Mb of memory. However, at anyone 
time, only 256K is available for access by the program. Why? 

Any program running under MS-DOS on the 8086/8088 is allowed to specify 
up to four distinct segments for simultaneous use within the program. Because 
each segment is a maximum of 64K, the program is limited to referencing only 
256K at anyone time. 

We will explain the reasons for this restriction later in this section. However, 
it should be noted here that the restriction is only for simultaneous access to 
multiple segments at anyone time. Essentially, all of memory is available to the 
program, if necessary. 

Each of the four segments that may be declared by a program has a specific 
use within the program. The intended purpose of each segment is identified by 
its name. The four segment names are: Code Segment, Data Segment, Extra 
Segment, and Stack Segment. 

The Code Segment is the segment that contains the program instructions, 
and the Data Segment contains the program's data. The Extra Segment may be 
used for storing additional data and is usually used to hold and manipulate string 
data. The Stack Segment may be specified for the dedicated purpose of containing 
the program's run-time stack (used for calling subroutines and passing data 
arguments between routines). 

465 



Writing MS-DOS Device Drivers, Second Edition 

To allow the program to reference these four segments, the 8086/8088 
defines four 16-bit hardware segment registers to hold the starting addresses of 
the segments. These registers are named CS (Code Segment register), DS (Data 
Segment register), ES (Extra Segment register), and SS (Stack Segment regis
ter). As noted in the introduction to memory segments, a segment may start 
anywhere in memory, as long as it is on a paragraph boundary. The segment 
registers are used to hold the 16-bit starting paragraph addresses of their 
respective segments. 

A program will always use at least one register, the CS register, to hold its 
code and sometimes its data. The .COM files that are so familiar to you in 
MS-DOS are examples of programs that use a single 64K segment to hold 
program code, data, and the stack. These programs are characterized by their 
compact size and the high speed at which they can be loaded into memory 
(from disk). 

More commonly a program will declare at least the Data Segment (DS) in 
addition to its code segment. The use of a data segment allows the program code 
to grow to a larger size, while also providing the capability of handling more data 
in memory. In the case of very large programs, the additional ES and SS registers 
may also be declared. 

Earlier it was noted that all 1Mb of memory is available to the program if 
required. How is this done? The easiest way to understand this is to consider a 
program that requires 256K of data space (code not included). 

Storing 256K of data requires the use of four segments at 64K each. 
However, the program may declare only one data segment. This data segment is 
pointed to by the DS register. If the program loads all 256K of data into four 
different segments of memory, it can change the contents of the DS register to 
point to each data segment as it is needed. Doing so allows it to handle its required 
256K of data properly. 

Although this is a nifty technique for managing large amounts of data, it is 
not often done in assembly language programs. However, it is frequently set up 
and performed automatically within programs written in higher-level languages, 
such as Pascal and C. In such programs, this type of segment-register manipu
lation might be done for the Code and Extra segments, as well as for the Data 
Segment. 

Hardware Registers in the 8086/8088 Architecture 

466 

In the previous discussion of memory segments, it was noted that the 8086/8088 
has four hardware registers dedicated to controlling the four segments that may 
be declared by a program. There are nine additional hardware registers in the 
8086/8088 architecture, for a total ofthirteen 16-bit hardware registers. 



Register Group 

General registers 
Pointer and Index registers 
Segment registers 
Instruction Pointer register 

An Overview of the Intel Architecture 

Registers Contained in Group 

AX, BX, ex, and DX 
SP, BP, SI, and DI 
es, DS, ES, and SS 
IP 

Table A·2: 8086/8088 I6·bit Hardware Registers. 

The thirteen 16-bit hardware registers of the 8086/8088 architecture are 
divided into four groups. These four groups and their respective registers are 
listed in table A-2. 

General Registers 
AX, BX, CX, DX are the general purpose 16-bit registers. Each of these 16-bit 
registers can also be considered as two 8-bit registers, distinguished as the high
and low-order bytes of the respective 16-bit register and referenced, respectively, 
as AH, AL, BH, BL, CH, CL, DH, and DL. A reference to an 8-bit register is the 
same as a reference to the high- or low-order byte ofthe respective 16-bit register. 
These 8-bit register designations have been carried over from the 8080/8085 8-bit 
microprocessors for compatibility. 

Each of the 16-bit registers (and some of the 8-bit half-registers) have 
specialized uses in certain 8086/8088 instructions. Figure A-I illustrates how the 
16-bit registers (and their 8-bit half-registers) are viewed (example 1). 

Pointer and Index Registers 
The four Pointer and Index registers are SP (Stack Pointer), BP (Base Pointer), 
SI (Source Index), and DI (Destination Index). 

The SP (Stack Pointer) register points to the current "top of stack" within 
the Stack Segment. When the stack is used, it "grows" from the top of memory 
(high-address locations) in the Stack Segment down to the bottom of memory 
(lower-address locations) in the Stack Segment. This current "bottom-of-stack" 
memory is called the top of the stack. The SP register points to this location. In 
other words, the SP register is always pointing to the location at which the stack 
will be expanded downward. The SP is also described as the pointer to the next 
available location on the stack. 

The BP (Base Pointer) is used with the Stack Pointer. It is an offset from 
the Stack Pointer, and is used to retrieve data from the Stack. 

467 



Writing MS-DOS Device Drivers, Second Edition 

The SI and DI registers primarily function as the Source Index and Desti
nation Index for string instructions. Both may also function as general-purpose 
index registers, if the need arises. The string instructions are a special-purpose 
subset of the 8086/8088 instruction set. They provide extensive string-manipu
lation capabilities that were relatively unknown in previous assembly language 
instruction sets. 

Segment Registers 
As discussed earlier, four segment registers are available to a program: CS, DS, 
ES, and SS. The CS (Code Segment) register points to the current code segment. 
The DS (Data Segment) register points to the current data segment. 

The ES (Extra Segment) register points to the current extra segment. The 
use of this extra segment is optional. Its primary use is by string instructions for 
the manipulation of string (character) data. 

The SS (Stack Segment) register points to the current stack segment. 
Although its use is optional, most programs will have one allocated. 

Instruction Pointer Register 
The last of the thirteen 16-bit registers in the 8086/8088 architecture is the 
Instruction Pointer (IP) register, which contains the address of the next instruc
tion to be executed. The IP register is used with the CS register to fetch the next 
instruction from memory. 

Flags 
The final aspect of our discussion of the 8086/8088 registers concerns the group 
of nine 1-bit flags that record information concerning processor activity. Instruc
tions within a program set or reset these flags to indicate the state of the CPU 
after the execution of one or more instructions. The 8086/8088 instruction set 
includes special assembler instructions that will test these flags for their current 
setting. These test instructions are often used after other instructions that may 
affect the status of one or more flags. Table A-3 lists the nine flags and describes 
their functions. 

The 8086/8088 Input/Output (110) Structure 

468 

All input or output (1/0) is accomplished through one of two mechanisms, I/O 
ports and interrupts. The 110 ports are essentially the points of interface between 
the 8086/8088 processor and the device controllers. There are 65,536 (64K) 110 
ports defined for an 8086/8088 system. Each 1/0 port is attached to the address 



Flag 
Mnemonic 

OF 
DF 

IF 

TF 

SF 

ZF 

AF 

PF 
CF 

Flag Name 

Overflow Flag 
Direction Flag 

Interrupt Enable Flag 

Trap Flag 

Sign Flag 

Zero Flag 

Auxiliary Flag 

Parity Flag 
Carry Flag 

An Overview of the Intel Architecture 

Function 

Set if a result has overflowed a range. 
Determines the direction of string 
instructions. 
Allows/disallows interrupts to be 
processed. * 
If set, tells the 8086/8088 to single
step instruction execution for program 
debugging. 
Set when an arithmetic instruction 
generates a negative result. 
Set when an arithmetic instruction 
produces a zero result. 
Indicates carry generated from the 
least-significant four bits of the last 
instruction's result. 
Set when a result has even parity. 
Set if the result of an operation has 
generated a carry. 

*When IF is clear, all interrupts are disabled, with the exception of the Non
Maskable Interrupt (NMI). 

Table A-3: SOS6/S0SSI-bit flags. 

and data busses in the same manner as memory. When the CPU wishes to 
transfer data to/from a device via its assigned port, it sends out the "address" of 
the port to the address bus. The CPU then transfers data to/from the port via 
special-purpose 110 assembler instructions. Each port is used to transfer 8 bits 
of data. When necessary, two consecutive ports are joined to form a I6-bit port. 
110 ports can be used for input, output, or both. A program may transfer data to 
or from a device by directly referencing these ports in the manner described 
above. However, this is awkward and tedious, so most programs use the second 
method of performing 110 (see the next paragraph). 

The second method of performing 110 is through interrupts which are 
external signals to the microprocessor issued from the device. 

A typical example of an interrupt is the pressing of a key on the keyboard. 
When this action occurs, a signal is sent to the processor, telling it that a key 
press has occurred. The operating system must then service that interrupt by 
recognizing which key has been pressed and sending that information to what-

469 



-------- - ------------

Writing MS-DOS Device Drivers, Second Edition 

ever program is running at the time. To be more specific, whene,yer any interrupt 
occurs, the interrupt signal will cause the 8086/8088 CPU to stop processing, save 
its current state of operation, and then service this request. When this servicing 
is completed, the CPU will return to what it was doing, after restoring its previous 
state of operation. 

In addition to interrupts initiated from external devices, such as a keyboard, 
interrupts may also occur as a result of processor faults (divide by zero, memory 
parity, etc.). It should also be noted that interrupts may be internally generated. 
This usually occurs when a program wishes to perform a certain function, such 
as terminating itself or initiating output to a printer. 

In general, most I/O will involve both methods: using instructions to access 
the I/O ports and using the interrupt mechanism. 

Software Interrupts 
The same hardware interrupt mechanism may be used in software by programs. 
Control is passed to software routines by issuing an interrupt (int) instruction. 
Before this instruction can be issued, the address of the routine must be stored 
in the interrupt vector address. 

Each interrupt has an associated vector in the low-order memory of the 
8086/8088. This vector is four bytes and contains the offset and segment address 
of the routine to vector to when the int instruction is issued. 

Each group of four bytes contains the offset and segment addresses of the 
routine associated with the specific interrupt number. 

The 80286 

470 

Intel announced the 80286 in 1981 and gave new life to the PC. The 80286 
extended the 8088/86 architecture by increasing the addressing capability to 1 
gigabyte of virtual memory with a maximum of 16Mb of real memory. The same 
8088/86 instructions (plus several new instructions) were still available but 
optimized to yield a two- to three-times performance improvement over the 
8088/86 at the same clock rate. 

The major new feature of the 80286 was the ability to operate in both real 
and Protected Virtual Address mode (commonly referred to as protected mode). 
In real mode (a term used to describe the regular 8088/86 programming mode), 
program addresses are real physical addresses and memory references are direct. 
Running several programs means that programs are loaded into memory, one 
after the other, with each program having different addresses but sharing the 
same pool of memory. Anyone program can easily write into another program's 



An Overview of the Intel Architecture 

memory space and destroy valuable data. In Protected mode, each program is 
given a unique set of memory pages and each address is treated as a logical 
address. This means that memory references are no longer direct, but require a 
translation to determine the actual physical memory location. Thus, each pro
gram could refer to address 100, which after translation can be anywhere in 
physical memory. The greatest benefit of this scheme is that programs are 
always protected from one another. The term Virtual refers to the ability for a 
single program to address more memory than physically exists on the machine. 
See figure A-2 for an example illustrating the differences between real and 
protected mode environments. 

Most existing programs that run fine under DOS are unlikely to run in 
protected mode since they are written for regular 8088/86 programming mode 
(i.e., real mode). Commonplace programming practices (such as writing directly 
to video memory) make these programs ill-behaved with respect to protected 
mode rules. Also, there is a choice as to who provides the protected mode 
environment, the operating system or each individual program. The best solution 
is to have the operating system provide a protected mode environment. However, 
the Protected mode features of the 80286 require that the host operating system 
be modified to support these features. DOS, as of version 5, does not have that 
capability. However, there are versions of UNIX that were designed to use the 
Protected mode operation of the 80286, as was OS/2. Hopefully a future version 
of DOS will provide support for multiple program execution with full memory 
protection. 

For further information, an excellent guide to the 80286 is Inside the 80286 
by Ed Strauss (New York: Prentice Hall Press, 1986). 

The 80386 
Announced in 1985, Intel's 80386 was a major advancement in processor tech
nology. In addition to being upwardly compatible with the 8088/86 and the 80286, 
the 80386 added many new hardware features. The 80386 is a 32-bit processor 
with 32-bit registers, its data paths address up to 4 gigabytes of physical memory 
up to 64 terabytes (each terabyte equal to 1024 gigabytes) of virtual memory. 

The basic 8088/86 instruction set has been further optimized and, with the 
higher speeds of the 80386, can provide performance that is several orders of 
magnitude faster than the basic 8088. 

The most significant feature of the 80386 is its Protected Virtual Address 
Mode. Like the 80286, this mode of operation provides virtual memory and 
memory protection between programs. However, once in protected mode, the 
80386 can establish Virtual 8086 Mode tasks. Each task creates an environment 
that appears to be an entire 8088/86 machine and can host an operating system 

471 



Writing MS-DOS Device Drivers, Second Edition 

472 

1 MB 

500 KB 

Program 2 

\\ 
300 KB 

Program 1 / 
100 KB 

DOS 

o 

Real mode 

16 MB 

No 
protection 
against 
writes 

o 

Protected mode 

200 KB 

0 

~ 

~ 

Program 2 

~ 
~===m!lil Completely 

protected 
from 
each 

Program 1 

Figure A-2: Differences between real and protected mode 
environments. 



4GB 

l 

80386 
Protected 

mode 
programs 

1MB 

~o 

Protected 
mode 
programs 

y 

An Overview of the Intel Architecture 

Program 

DOS 

• 
Virtual 
8086 
tasks 

80386 Environment 

Figure A-3: The 80386 protected mode environment. 

and its programs. This solves the problem with the 80286's inability to run real 
mode programs in protected mode. 

Figure A-3 illustrates how powerful this feature can be; a single 80386 can 
create several virtual 8086 mode tasks, each running a different copy of DOS. 
Alongside these DOS sessions, there are 80286-based protected mode programs 
as well as 80386-based protected mode programs. 

Another important feature of the 80386 is its ability to provide an alterna
tive to the complicated segment:offset mechanisms of earlier processors. A linear 
addressing capability (also known as a flat model) results from the use of 32-bit 
offsets, yielding 4 gigabytes of direct non-segmented addressing. However, this 
capability is not without its drawbacks; using the 32-bit features of the 80386 
requires modifications to assemblers, compilers, programs, and operating 
systems. 

473 



Writing MS-DOS Device Drivers, Second Edition 

In 1988, Intel announced the 80386SX, which is an 80386 with a 16-bit data 
bus. To programmers, the 80386SX was still a 32-bit processor internally, but 
externally, the 16-bit data bus made it easier to design systems around the 
80386SX. Intel priced the 80386SX very reasonably so as to give the low end of 
the PC market 32-bit power, while allowing Intel to defend itself against 80286 
processors made by other manufacturers. 

The 80486 
Announced in 1989, Intel's 80486 processor was a big disappointment to many. 
Instead of breaking new ground, the 80486 was no more than a 80386 with a 
built-in numeric coprocessor and an 8K cache. The cache is a high-speed memory 
area that stores frequently-used instructions and data, allowing the fast 80486 
processor to execute instructions out of the cache at a faster rate than out of 
normal main memory. To be fair to Intel, the 80486 presented a continuation of 
Intel's work on optimization of the 8088/86 instruction set; the 80486 runs twice 
as fast as its 80386 counterpart at the same clock rate. 

For further information, a complete guide to the entire Intel family of 
processors from the 8088 to the 80486 is PC Magazine Programmer's Technical 
Reference: The Processor and Coprocessor by Robert L. Hummel (California: Ziff 
Davis Press, 1992). 

Future Developments 

474 

In 1991, Advanced Micro Devices (AMD) introduced their 80386-compatible line 
of processors. With their plug-compatible chips, AMD became the first clone 
manufacturer of the heart of the PC. Other companies have announced their 
intentions to offer similar products. Such competition means higher performance 
machines at ever-lowering prices. 

Intel has also been very busy planning their future product strategies. A 
special lower-cost version of their 80486, the 80486SX, is available. The 80486SX 
runs at slower speeds and its numeric coprocessor is disabled. Upcoming versions 
of the 80486 chips will have faster internal clocks, allowing users to plug in a 
faster chip for more power without making other changes to their hardware. 
Other planned chips include higher levels of integration, combining peripheral 
and graphics controllers on a single chip. 

As far as the next generation processor, Intel has leaked a few details 
regarding the 80586, which features another doubling of performance over the 
80486. Other rumored features include fault-tolerance (the ability to detect and 
correct any malfunctions during operation) and multiprocessing (the ability to 
use several processors in parallel). 



An Overview of the Intel Architecture 

Extended Memory 
The design of the original IBM PC provided for up to 640K in a 1Mb machine. 
This amount of memory was an order of magnitude more than previously 
available on CP/M machines, however, this still was not enough. Newer proces
sors such as the 80286 provided the ability to address memory in excess of 1Mb 
(commonly referred to as extended memory), but programming support for this 
capability was slow to follow. The reason for this lack of programming support 
was simple: such support required the processor and programs to be operating 
in protected mode. Over the years there were numerous attempts at providing 
access to extended memory from within DOS programs; let's take a short look at 
the major efforts of addressing and using extended memory. 

VDISK 
The IBM PC AT was shipped with DOS version 3.0 and part ofthe DOS package 
included a RAM disk, VDISK.SYS, that used extended memory. IBM had come 
up with a scheme to use extended memory to simulate a virtual disk. 

The VDISK method, as it became known, consisted of a header placed at the 
beginning of extended memory followed by the extended memory being used. Each 
subsequent user would place a similar header in front of its use of extended 
memory. A pointer from the first header would point to the second header, and so 
forth. Figure A-4 shows two VDISKs sharing extended memory. The VDISK method 
also used Interrupt 19h to maintain control information for this virtual disk. 

The VDISK method is largely limited to using extended memory as RAM 
disks. Current versions of VDISK no longer use the original method to access 
extended memory. 

Interrupt I5h 
Hidden within the PC AT's ROM BIOS is an Interrupt function, 15H, that 
provides very basic extended memory services. There are two functions: get 
amount of available extended memory and move data to / from conventional to 
extended memory. Unlike the VDISK method of bottom-up memory allocation, 
the Interrupt 15h method allocated memory from the top down. See Figure A-5. 

The use of Interrupt 15h is very simple. Each user of extended memory 
issues a 15h interrupt to determine the amount of memory available. Then, the 
user takes over the 15h interrupt so that subsequent requests for memory (by a 
new user) will allow it to return an amount that is the original number reduced 
by the current amount in use. Thus, each successive user sees a smaller amount 
of memory available. 

Many older DOS programs that use extended memory rely on the Interrupt 
15h method. 

475 



Writing MS-DOS Device Drivers, Second Edition 

476 

Free 

VDISK#2 

Header #2 

VDISK#1 

Header #1 
1 MB 1------_ 

Figure A-4: The VDISK method of extended memory allocation. 

User #1 

User #2 Extended 
memory 
allocated 
top to bottom 

Figure A-5: Interrupt 15hmethod of extended memory allocation. 



An Overview of the Intel Architecture 

A Note About Expanded Memory 
These two methods for extended memory management required the services of a 
protected mode processor. About the same time that IBM introduced their PC 
AT, there was also an attempt to provide support for additional memory (beyond 
1Mb) without the use of an 80286 processor. This method relied on the use of 
external hardware in the form of an I/O card with memory installed on it. Instead 
of extending the addressing limits of the 8088/86, Expanded Memory Specifica
tion (EMS) used a bank-switching memory scheme. 

EMS defines a 64K page frame in the area between 640K and 1Mb contain
ing four 16K pages that are windows into the EMS memory. Programs issue 
requests to the EMS manager (via interrupt 67h) to switch the page to any part 
of EMS memory. See Figure A-6. 

1 MB 

~KB { EMS 

page 

frame 

I 
I 640 KB 

~ Program accesse 

expanded memo 

using up to 4 pag 

in upper memory 

es 

0 

Page 4 V 
Page 3 

Page 2 

Page 1 

Program 

DOS 

0 

Figure A-6: An example of EMS memory. 

':;':,' 

Expanded 
memory 

",,:;l:; 

16 KB 

16 KB 

16 KB 

16 KB 

477 



-----------------

Writing MS-DOS Device Drivers, Second Edition 

478 

EMS is very popular because of its universal availability on all PCs. In 
addition, the EMS rules allow for multiple users and for the ability to execute 
code from EMS memory. 

Writing Protected Mode programs 
Writing a protected mode program is a very difficult task, requiring a deep 
understanding of how protected mode works. For example, protected mode 
programs need to start in real mode, then set up the protected mode environment 
(and switch to protected mode), load the program code and execute it, and then, 
finally, undo everything at the end to return back to real mode and DOS. In 
addition, the protected mode program needs to provide a mechanism of accessing 
real mode DOS, BIOS, and hardware services from within protected mode. 

Fortunately, this impossible task has been made easy by the use of DOS
extender toolkits, available from several companies. In essence, you build your 
application following the rules and guidelines indicated and then link in the DOS 
extender libraries. Your programs will then be able to take full advantage of 
protected mode operations. 

XMS 
The eXtended Memory Specification (XMS) was developed by Microsoft, Intel, 
AST Research, and Lotus in 1988. It was the first attempt to provide a industry
wide solution to accessing extended memory. 

Sharing the DOS multiplex interrupt (2Fh), XMS services include the ability 
for several users to request and release extended memory. In addition, the XMS 
standard defined how programs can use the High Memory Area (HMA), the space 
between 1024K and 1088K. 

XMS has been very popular because it solves the problems of the VDISKlln
terrupt 15h methods that do not allow releasing memory nor moving data 
between extended and conventional memory. 

vePI 
A parallel development to XMS, the Virtual Control Program Interface (Vep!) 
was announced by Phar Lap and Quarterdeck Office Systems in 1987. It was 
developed to allow DOS extenders to work with EMS emulators on 80386/80486 
processors. DOS extenders, such as the one from Phar Lap, routinely use ex
tended memory to load large programs, not just for extra data space. 

vePI provides for mode switching between real and protected mode, and an 
extensive set of extended memory management services. It is built on top ofthe 
EMS standard and vePI requests are serviced through the same Int 67h method. 
vePI services are normally provided by DOS extender libraries. 



An Overview of the Intel Architecture 

DPMI 
DOS Protected Mode Interface (DPMI) was Microsoft's answer to vePI and was 
initially an integral part of Windows 3.0. Although it is not compatible with 
VePI, DPMI extended many ofthe features of VepI. As a result, DPMI provides 
better solutions for multitasking of protected mode programs, and for all of 
the protected mode-capable processors (80286 as well). 

Initial uses of DPMI are rather indirect; because Windows 3.0 is the only 
provider of DPMI services, Windows applications are DPMI applications. As 
DOS extenders are revised to provide DPMI services, DOS applications may 
coexist with Windows applications. Basic DPMI services are provided through 
Int 31h. 

Microsoft released control of DPMI to an industry group of developers in 
early 1990, thus insuring its vendor-independent role as an extended memory 
standard. 

The Future of Extended Memory 
At some point in the future, there will be an operating system that not only 
supports all oftoday's programs, but protected mode programs as well. It will be 
up to Microsoft to provide protected mode operations within DOS, but until then, 
programs using DOS extenders are the only path to large applications. 

In summary, like the pe, the Intel architecture has become a defacto 
standard, with ever-increasing performance improvements and significant ad
vances in hardware technology. 

479 





AppendixB 

BIOS Interrupts 





---.. --~-"--"- . 

BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

5h 
8h 
9h 
10h 

ah 
al 

ah 
ch 

cl 

Print screen 
Time of day 
Keyboard service 
Video services 
Oh Set Video Mode 
Oh BIW Text Mode (40*25) CGA 
Ih Color Text Mode (40*25) CGA 
2h BIW Text Mode (80*25) CGA 
3h Color Text Mode (80*25) CGA 
4h Color Graphics Mode (320*200) CGA 
5h BIW Graphics Mode (320*200) CGA 
6h BIW Graphics Mode (640*200) CGA 
7h BIW Text Mode (80*25) MDA 
8h Color Graphics Mode (160*200) PC Jr 
9h Color Graphics Mode (320*200) PC Jr 
Ah Color Graphics Mode (640*200) PC Jr 
Dh Color Graphics Mode (320*200) EGA 
Eh Color Graphics Mode (640*200) EGA 
Fh Color Graphics Mode (640*350) 2-color EGA 
10h Color Graphics Mode (640*350) 4-color EGA 
llh Color Graphics Mode (640*480) 2-color VGA 
12h Color Graphics Mode (640*480) 16-color VGA 
13h Color Graphics Mode (320*200) 256-color VGA 
Ih Set Cursor Size 

Start row for cursor size 
(0-7 for CGA) 
(0-13 for MDA) 
End row for cursor size 
(0-7 for CGA) 
(0-13 for MDA) 

483 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

ah 2h Set Cursor Position 
dh Row (0-24) 
dl Column (0-40 or 0-80) 
bh Video page 

(0-7 for 40-column modes) 
(0-3 for 80-column modes) 
(0 for graphics modes) 

10h ah 3h Read Cursor Position 
bh Video page 

(0-7 for 40-column modes) 
(0-3 for 80-column modes) 
(0 for graphics modes) 

dh Current row (0-24) 
dl Current column (0-40 or 0-80) 
ch Current start row for cursor size 

(0-7 for CGA) 
(0-13 for MDA) 

cl Current end row for cursor size 
(0-7 for CGA) 
(0-13 for MDA) 

ah 4h Read Light Pen Position 
ah Light Pen State 

(0 not triggered) (1 triggered) 
dh Triggered row number in text mode 

(0-24) 
dl Triggered column number in text mode 

(0-39 or 0-79) 
ch Triggered raster line in graphics mode 

(0-199) 
bx Triggered pixel column in graphics mode 

(0-159 or 0-319 or 0-639) 
ah 5h Set Display Page 
al Display page desired 

(0-7 for 40-column modes) 
(0-3 for 80-column modes) 

ah 6h Scroll Page Up 
al Number oflines to scroll 

(0 to blank the screen) 
ch Row number of upper-left window 
cl Column number of upper-left window 

(0-39 for 40-column modes) 
(0-79 for 80-column modes) 

dh Row number oflower-right window 

484 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

dl Column number oflower-right window 
(0-39 for 40-column modes) 
(0-79 for SO-column modes) 

10h bh Display attributes for window 
ah 7h Scroll Page Down 
al Number oflines to scroll 

(0 to blank the screen) 
ch Row number of upper-left window 
cl Column number of upper-left window 

(0-39 for 40-column modes) 
(0-79 for SO-column modes) 

dh Row number oflower-right window 
dl Column number oflower-right window 

(0-39 for 40-column modes) 
(0-79 for SO-column modes) 

bh Display attributes for window 
ah Sh Read Character and Attribute 
bh Display page desired 

(0-7 for 40-column modes) 
(0-3 for SO-column modes) 

al ASCII code for character read 
ah Attribute for character read 

ah 9h Write Character and Attribute 
bh Display page desired 

(0-7 for 40-column modes) 
(0-3 for SO-column modes) 

al ASCII code of character 
bl Attribute 
cx Number of times to write 

Character and Attribute 
ah ah Write Character 
bh Display page desired 

(0-7 for 40-column modes) 
(0-3 for SO-column modes) 

al ASCII code of character 
bl Foreground color 
cx Number oftimes to write Character 
ah bh Set Color Palette 
bh (0 background color for graphics mode) 

(0 border color for text mode) 
(1 palette selection) 

bl Color or palette (0-1) 
ah ch Write Pixel 

485 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

al Palette color 
dx Raster line desired 

(0-199) 
cx Pixel column desired 

(0-159 or 0-319 or 0-639) 
lOh ah dh Read Pixel 

dx Raster line desired 
(0-199) 

cx Pixel column desired 
(0-159 or 0-319 or 0-639) 

al Palette color 
ah eh Write Character As TTY 
al ASCII code of character 
bl Foreground color in graphics mode 
ah fh Get Video Mode 

ah Characters per line 
(20 or 40 or 80) 

al Current video mode 
(See Set Video Mode) 

bh Current display page 
(0-7 for 40-column modes) 
(0-3 for 80-column modes) 

10h ah lOh Set Palette Registers (general) 
al OOh Set Palette Register 
bh Color value 

01h blue 
02hgreen 
03h cyan 
04h red 
05hmagenta 
06h brown 
07h white 
08h gray 
09h light blue 
Oah light green 
Obh light cyan 
Och light red 
Odh light magenta 
Oeh yellow 
Ofh intense white 

bl Palette register to set 
(OOh-Ofh) 

486 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

al 01h Set Border Color 
bh Color Value (see Set Palette Register) 
al 02h Set All Registers and Border 
es:dx Segment:offset to 17 -byte color list 
al 03h Toggle BlinklIntensity Bit 
bl OOh enable intensity 

01h enable blinking 
al 07h Get Palette Register 
bl Palette Register (OOh-Ofh) 

bh Color value 
al 08h Get Border Color 

bh Color value 
al 09h Get Palette and Border 
es:dx Segment:offset of 17 -byte buffer 
al 10h Set Color Register 
bx Color register to set 
ch Green value 
cl Blue value 
dh Red value 
al 12h Set Block of Color Registers 
bx First color register 
cx Number of color registers 
es:dx Segment:offset of color table 
al 13h Select Color Page (VGA only) 
bh Paging mode 

OOh 4 register pages of 64 
01h 16 register pages of 16 

bl OOh 
bh Page number 

64 Register blocks (OO-03h) 
16 Register blocks (OO-Ofh) 

bl Select page (Olh) 
al 15h Read Color Register (VGA only) 
bx Color register 

ch Green value 
cl Blue value 
dh Red value 

al 17h Read Block of Color Registers 
bx First color register to read 
cx Number of color registers to read 
es:dx Segment:offset of values 
al lah Read Color Page State 

487 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

bh Color page 
bl Current Paging mode 

OOh for 4 register pages of 64 
01h for 16 page registers of 16 

al 1bh Set Gray-scale Values 
bx First color register to set 
cx Number of color registers 
ah llh Character Generator 
al OOh User Font Load 
bh Number of bytes per character 
bl Block 
cx Number in table 
dx Position of first table character 
es:bp Segment:offset of font table 
al 01h Download 8 x 14 ROM 
bl Block 
al 02h Download 8 x 8 ROM 
bl Block 
al 03h Set Block Specifier 
bl Block selection 
al 04h Download 8 x 16 ROM 
bl Block 
al 20h Set Character Pointer (lnt 1fh) 
es:bp Segment:offset to font table 
al 21h Set Character Pointer (lnt 43h) 
bl Number of rows 
cx Bytes per character 
es:bp Segment:offset of font table 
al 22h Set (lnt 43h) for 8 x 14 ROM 
bl Number of rows 
dl Number of rows per screen 
al 23h Set (lnt 43h) for 8 x 8 ROM 
bl Number of rows 
dl Number of rows per screen 
al 24h Set (lnt 43h) for 8 x 16 ROM 
bl Number of rows 
dl Number of rows per screen 
al 30h Get Font Information 
bh Font pointer code 

cx Bytes per character 
dl Number of rows per screen 

488 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

es:bp Segment:offset offont table 
ah l2h Alternate Select 
bl 10h Get EGA Information 

bh Display type 
OOh Color 
o lh Monochrome 

bl Amount of memory 
OOh 64K 
Olh l28K 
02h 192K 
03h 256K 

ch Feature Bits 
cl Switch Setting 

bi 20h Select Alternate Print-screen Routine 
bl 30h Set Scan Lines 

al Number of scan lines 
OOh 200 
Olh 350 
02h 400 

al VGA display mode 
OOh inactive 
l2h active 

bl 3lh Palette Loading 
al Default control 

OOh Enable 
OlhDisable 

al Function support 
l2hyes 

bl 32h Video On/Off 
al Default control 

OOh Enable 
Olh Disable 

al Function support 
l2hyes 

bl 33h Gray-scale Summing 
al Default control 

OOh Enable 
OlhDisabie 

al Function support 
l2hyes 

bl 34h Cursor Emulation 

489 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

al Default control 
OOh Enable 
01h Disable 

al Function support 
12h yes 

bl 35h Switch Active Display 
al Control 

OOh Disable initial video adapter 
01h Enable system board video adapter 
02h Disable active video adapter 
03h Enable inactive video adapter 

es:dx Segment:offset for adapter data if Control is 
OOh, 02h, or 003h 

al Function support 
12hyes 

bl 36h Screen Refresh 
al Control 

OOh enable 
01h disable 

al Function support 
12h yes 

ah 13h Write String 
al Attribute/Color/Cursor Position 

(0 Attribute/Color in bl 
cursor position in dh and dl) 

(1 Attribute/Color in bl 
cursor position at end of string) 

(2 Attribute/Color in string 
cursor position in dh and dl) 

(3 Attribute/Color in string 
cursor position at end of string) 

es Segment address of character string 
bp Offset address of character string 
cx Number of characters in string 
bh Display page desired 

(0-7 for 40-column modes) 
(0-3 for 80-column modes) 

bl Attribute/color 
dh Start row 

(0-24) 
dl Start column (0-39 or 0-79) 
ah lah Get/Set Display Combination Code 

490 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

al Subfunction 
OOh Get Display Code 

bh Alternative Display code 
bl Active Display code 

Display codes as follows 
OOh No display 
01h MDA with 5151 monitor 
02h CGA with 5153/4 monitor 
03h reserved 
04h EGA with 5153/4 monitor 
05h EGA with 5151 monitor 
06h PGA with 5175 monitor 
07h VGA with monochrome monitor 
08h VGA with color monitor 
09h reserved 
Oah MCGA with digital color monitor 
Obh MCGA with analog monochrome 

monitor 
Och MCGA with analog color monitor 
Odh-feh reserved 
ffh unknown 

01h Set Display Code 
bh Alternative Display code 
bl Active Display code (see above) 

al Status 
1ah updated 

ah 1bh Get Display State 
es:di Segment:offset buffer 

al Status 
1bh if buffer is valid 

ah 1ch Display State 
al OOh Get Buffer Size Required 

bl Number of 64 byte buffers 
al 01h Save Video State 
cx Bit Map of States 
es:bx Segment:offset of buffer 

al Status 
1ch if video state saved 

al 02h Restore Video State 
cx Bit Map of States 
es:bx Segment:offset of buffer 

491 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

al Status 
1ch if video state restored 

11h Equipment Check 
ax Value as follows: 

Number of printers in bits 15-14 
Game adapter present in bit 12 
Number of serial ports in bits 11-9 
Number of diskette drives in bits 7-6 
(0 = 1 drive) 
(1 = 2 drives) 
(2 = 3 drives) 
(3 = 4 drives) 
Video mode in bits 5-4 
(140-column CGA text mode) 
(2 80-column CGA text mode) 
(3 80-column MDA text mode) 
System board memory (original PCs) 
(0 = 16 K) 
(1 = 32 K) 
(2 = 48 K) 
(3 = 64 K) 
80287 installed (AT only) in bit 1 
Diskette drives installed in bit 0 

12h Memory Available 
ax Available memory in K units 

13h Disk Services (diskette/fixed disk) 
ah Oh Reset Disk 
dl Drive number 

(Add 80h for fixed disk) 
ah Error number if CF set 

(Oh no error) 
(1h invalid function) 
(2h bad address mark) 
(3h write protect violation) 
(4h sector not found) 
(5h reset failed) 
(6h media removed) 
(7h initialization error) 
(8h DMA failure) 
(9h DMA address error) 
(ah bad sector encountered) 
(10h parity error) 
(l1h corrected parity error) 
(20h controller failure) 
(40h seek failure) 

492 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

(SOh timeout) 
(aah drive not ready) 
(bbh unknown error) 
(cch write fault) 
(ffh sense failure) 

ah lh Get Disk Status 
dl Drive number 

(Add SOh for fixed disk) 
al Status returned 

(See ah of Reset Disk) 
ah 2h Read Disk Sectors 
al Number of sectors to read 
dl Drive number 

(Add SOh for fixed disk) 
dh Head number 
ch Lower S bits of 10-bit cylinder number 
cl Upper 2 bits of 10-bit cylinder number 

In bits 6 and 7 
Start sector number in bits 0-5 

es Segment address of data-transfer area 
bx Offset address of data-transfer area 

ah Status returned 
(See Reset Disk) 

ah 3h Write Disk Sectors 
al Number of sectors to write 
dl Drive number 

(Add SOh for fixed disk) 
dh Head number 
ch Lower S bits of 10-bit cylinder number 
cl Upper 2 bits of 10-bit cylinder number 

In bits 6 and 7 
Start sector number in bits 0-5 

es Segment address of data-transfer area 
bx Offset address of data-transfer area 

ah Status returned 
(See Reset Disk) 

13h ah 4h Verify Disk Sectors 
al Number of sectors to verify 
dl Drive number 

(Add SOh for fixed disk) 
dh Head number 
ch Lower S bits of 10-bit cylinder number 

493 



-- ----------

Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

cl Upper 2 bits of lO-bit cylinder number 
In bits 6 and 7 
Start sector number in bits 0-5 

ah Status returned 
(See Reset Disk) 

ah 5h Format tracks 
13h dl Drive number 

(Add 80h for fixed disk) 
dh Head number 
ch Lower 8 bits of lO-bit cylinder number 
cl Upper 2 bits of lO-bit cylinder number 

In bits 6 and 7 
es Segment address of format table 
bx Offset address of format table 

Format table has four fields for each 
sector on the track: 
Byte 1 contains the cylinder number 
Byte 2 contains the head number 
Byte 3 contains the sector number 
Byte 4 contains the bytes per sector 
(0 = 128 bytes) 
(1 = 256 bytes) 
(2 = 512 bytes) 
(3 = 1024 bytes) 

ah Status returned 
(See Reset Disk) 

ah 06h Format Bad Track 
al Interleave factor 
ch Cylinder number 
dh Head number 
dl Drive number 

80h drive 0 
81h drive 1 

ah Status returned 
(see Reset Disk) 

ah 07h Format Drive 
al Interleave factor 
ch Cylinder number 
dl Drive number 

80h drive 0 
81h drive 1 

ah Status returned 
(see Reset Disk) 

ah 8h Get Drive Parameters 

494 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

dl Drive number 
(Add SOh for fixed disk) 

dl Highest drive number 
dh Highest head number 
ch Lower 8 bits of IO-bit cylinder number 
cl Upper 2 bits of lO-bit cylinder number 

In bits 6 and 7 
Highest sector number in bits 0-5 

ah 9h Initialize Drive Characteristics 
ah ah Read (Long) Sectors 
al Number of sectors to read 
dl Drive number 

(Add SOh for fixed disk) 
dh Head number 
ch Lower 8 bits of 10-bit cylinder number 
cl Upper 2 bits of lO-bit cylinder number 

In bits 6 and 7 
Start sector number in bits 0-5 

es Segment address of data-transfer area 
bx Offset address of data-transfer area 

ah Status returned 
(See Reset Disk) 

ah bh Write (Long) Sectors 
al Number of sectors to write 
dl Drive number 

(Add SOh for fixed disk) 
dh Head number 
ch Lower 8 bits of lO-bit cylinder number 
cl Upper 2 bits of lO-bit cylinder number 

In bits 6 and 7 
Start sector number in bits 0-5 

es Segment address of data-transfer area 
bx Offset address of data-transfer area 

ah Status returned 
(See Reset Disk) 

ah ch Seek 
dl Drive number 

(Add SOh for fixed disk) 
dh Head number 
ch Lower S bits of 10-bit cylinder number 
cl Upper 2 bits of lO-bit cylinder number 

In bits 6 and 7 

495 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

ah Status returned 
(See Reset Disk) 

ah dh Reset Disk (Alternate) 
dl Drive number 

(Add 80h for fixed disk) 
ah Status returned 

(See Reset Disk) 
ah eh Diagnostics: Read Test Buffer 
dl Drive number 

80h drive 0 
8Ih drive 1 

es Segment address of diagnostic buffer 
bx Offset address of diagnostic buffer 

ah Status returned 
(See Reset Disk) 

ah fh Diagnostics: Write Test Buffer 
dl Drive number 

80h drive 0 
8Ih drive 1 

es Segment address of diagnostic buffer 
bx Offset address of diagnostic buffer 

ah Status returned 
(See Reset Disk) 

ah 10h Drive Ready Test 
dl Drive number 

(Add 80h for fixed disk) 
Status returned 

ah (0 = drive ready) 
(Otherwise, see Reset Disk) 

I3h ah llh Recalibrate Disk 
dl Drive number 

(Add 80h for fixed disk) 
ah Status returned 

(See Reset Disk) 
ah I2h Diagnostics: Controller RAM 
dl Drive number 

80h drive 0 
8Ih drive 1 

al OOh 
ah Status returned 

(See Reset Disk) 
ah I3h Diagnostics: Controller Drive 

496 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

dl Drive number 
80h drive 0 
81h drive 1 

al OOh 
ah Status returned 

(See Reset Disk) 
ah 14h Diagnostics 

ah Status returned 
(See Reset Disk) 

ah 15h Get Disk Type 
dl Drive number 

(Add 80h for fixed disk) 
ah Status returned 

(0 = drive does not exist) 
(1 = diskette changeline not available) 
(2 = diskette change line available) 
(3 = fixed disk see cx:dx) 
(Otherwise, see Reset Disk) 

cx Total sectors in fixed disk 
dx Total sectors in fixed disk 

ah 16h Disk Status 
dl Drive number 

ah Status returned 
(0 = diskette has not been changed) 
(6 = diskette has been changed) 
(Otherwise, see Reset Disk) 

ah 17h Set Disk Type 
dl Drive number 
al Diskette type 

(1 = 320/360K disk) 
(2 = 320/360K disk in 1.2Mb drive) 
(3 = 1.2Mb diskette in 1.2Mb drive) 

ah Status Returned 
(See Reset Disk) 

ah 18h Set Media Type 
ch Lower 8 bits of 10-bit cylinder number 
cl Upper 2 bits of 10-bit cylinder number in bits 

6 and 7 
Number of sectors per track in bits 0-5 

dl Drive number 
(Add 80h for fixed disk) 

es Segment address of parameter table 
di Offset address of parameter table 

497 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register 

ah 

ah 
dl 

ah 

ah 
al 

es 
bx 
cl 
dl 

14h 
ah 
al 

dx 

498 

Description 

Status returned 
(See Reset Disk) 

19h Park Disk Heads 
Drive number 
(Add 80h for fixed disk) 
Status returned 
(See Reset Disk) 

lah Format ESDI Disk 
Defect Table usage 
OOh No defect table 
>OOh Use defect table 

Oh 

Segment address of defect table 
Offset address of defect table 
Modifier bits 
Drive number 
(Add 80h for fixed disk) 
Serial Port Services 
Initialize Serial Port parameters as follows: 
Baud rate in bits 5-7 
(0 = 110 baud) 
(1 = 150 baud) 
(2 = 300 baud) 
(3 = 600 baud) 
(4 = 1200 baud) 
(5 = 2400 baud) 
(6 = 4800 baud) 
(7 = 9600 baud) 
Parity in bits 3-4 
(0 = no parity) 
(1 = odd parity) 
(2 = no parity) 
(3 = even parity) 
Number of stop bits in bit 2 
(0 = 1 stop bit) 
(1 = 2 stop bits) 
Bits per character in bits 0-1 
(2 = 7 -bit ASCII characters) 
(3 = 8-bit characters) 
Serial port desired 
(0 = first) 
(1 = second) 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

ah Line status returned 
(80 = timeout) 
(40 = shift register is empty) 
(20 = hold register is empty) 
(10 = break occurred) 
(08 = framing error) 
(04 = parity error) 
(02 = overrun) 
(01 = data is ready) 

al Modem status returned 
(80 = Carrier detect) 
(40 = Ring indicator) 
(20 = DSR) 
(10 = CTS) 
(08 = Carrier detect change) 
(04 = Trailing edge ring detect) 
(02 = DSR change) 
(01 = CTS change) 

14h ah 1h Send One Character 
al Character to send 
dx Serial port desired 

(0 = first) 
(1 = second) 

ah Status returned 
(0 = no error) 
(Bit 7 set = error 
See Initialize Serial Port) 

ah 2h Receive One Character 
dx Serial port desired 

(0 = first) 
(1 = second) 

al Character received 
ah Status returned 

(0 = no error) 
(Bit 7 set = error 
See Initialize Serial Port) 

ah 3h Get Serial Port Status 
dx Serial port desired 

(0 = first) 
(1 = second) 
Status returned 

al Status returned 
ah (See Initialize Serial Port) 

499 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

ah 4h Extended Initialization 
al Break setting 

OOhNo break 
01h Break 

bh Parity 
OOh No parity 
01h Odd parity 
02h Even parity 
03h Stick parity odd 
04h Stick parity even 

bl Stop bits 
OOh One stop bit 
01h Two stop bits 
(11/2 if ch = OOh) 

ch Data length 
OOh 5-bits 
01h 6-bits 
02h 7-bits 
03h 8-bits 

cl Transmission rate 
OOh 110 baud 
01h 150 baud 
02h 300 baud 
03h 600 baud 
04h 1200 baud 
05h 2400 baud 
06h 4800 baud 
07h 9600 baud 
08h 19200 baud 

dx COMport 
00hCOM1: 
01hCOM2: 
02h COM3: 
03hCOM4: 

ah Line status returned 
(See Initialize Serial Port) 

al Modem status returned 
(See Initialize Serial Port) 

ah 5h Extended Communications Port Control 
al OOh Get Modem Control Register 
dx COMport 

00hCOM1: 
01hCOM2: 
02hCOM3: 
03hCOM4: 

500 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

ah Line status returned 
(See Initialize Serial Port) 

al Modem status returned 
(See Initialize Serial Port) 

bl Modem Control Register 
Olh Data Terminal Ready (DTR) 
02h Request to Send (RTS) 
04h Out! 
08h Out2 
lOh Loopback test 
eOh reserved 

al Olh Set Modem Control Register 
bl Modem Control Register 

(See Get Modem Control Register) 
dx COMport 

OOhCOMl: 
OlhCOM2: 
02hCOM3: 
03hCOM4: 

ah Line status returned 
(See Initialize Serial Port) 

al Modem status returned 
(See Initialize Serial Port) 

15h System Services 
ah OOh Turn Cassette Motor On 

ah Error number if CF set 
OOh Invalid command 
Olh CRC error 
02h Data transitions lost 
03h No data found on tape 
04h Data not found 
86h No cassette port found 

ah Olh Turn Motor Cassette Off 
ah Status returned 

(See Turn Cassette Motor On) 
ah 02h Read Cassette Data 
es Segment address of buffer 
bx Offset address of buffer 
cx Number of bytes to read 

ah Status returned 
(See Turn Cassette Motor On) 

dx Number of bytes read 
es:bx Pointer to next available byte 

ah 03h Write Cassette Data 

501 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

es Segment address of buffer 
bx Offset address of buffer 
cx Number of bytes to write 

ah Status returned 
(See Turn Cassette Motor On) 

es:bx Pointer to next available byte 
ah Ofh Format ESDI Unit Periodic Interrupt 
al Phase code 

OOh reserved 
Olh Surface analysis 
02h Formatting 

CF Carry Flag status 
set - end of operation 
clear - continue 

ah 21h Power On Self Test (POST) 
al OOh Read POST log 
bh Device code 
bl Device error 

ah Status returned 
OOh successful 
86h error 

bx Number of POST errors 
es Segment address of POST error log 
di Offset address of POST error log 

al Olh Write to POST log 
bx POST error code 

ah Status returned 
OOh successful 
o Ih POST log full 
86h error 

ah 4fh Keyboard Intercept 
al Keyboard scan code 

al Keyboard scan code 
CF set - new keyboard scan code 
CF clear - old scan code 

ah 80h Device Open 
bx Device id 
cx Process id 

CF Carry Flag status 
clear - successful 
set - error 

502 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

ah 81h Device Close 
bx Device id 
cx Processid 

CF Carry Flag status 
clear - successful 
set - error 

ah 82h Process Termination 
bx Process id 

CF Carry Flag status 
clear - successful 
set - error 

ah 83h Event Wait 
al OOh Set Interval 
cx:dx Microseconds 
es:bx Segment:offset of flag 

CF Carry Flag status 
clear - successful 
set - error 

al Olh Cancel Interval 
ah 84h Read Joystick 
dx OOh Read switch settings 

al Switch settings (bits 4-7) 
dx Olh Read Joystick position 

ax A(x) value 
bx A(y) value 
cx B(x) value 
dx B(y) value 

ah 85h System Request Key 
al Status returned 

OOh key pressed 
Olh key released 

ah 86h Delay 
cx:dx Time in microseconds 

(accuracy = 976 microseconds) 
CF Carry Flag status 

clear - successful 
set - error 

ah 87h Move Extended Memory 
cx Number of words 
es:si Pointer to global descriptor table 

503 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

ah Status returned 
OOh successful 
Olh RAM parity error 
02h Other exception 
03h Gate A20 failure 
86h Invalid request 

ah 88h Get Extended Memory Size 
CF Carry Flag status 

set - error 
ax Number of lK blocks 

ah 89h Switch to Protected Mode 
bh IRQ8 offset 
bl IRQO offset 
es:di Pointer to global descriptor table 
cx CS offset in Protected Mode 

CF Carry Flag status 
clear - successful 
set - error 

ah 90h Device Wait 
al Device type 

OOh Disk timeout 
Olh Diskette timeout 
02h Keyboard (no timeout) 
03h Pointing device 
80h Network (no timeout) 
fch Fixed disk reset 
fdh Diskette motor start 
fehPrinter 

es:bx Segment:offset of request block 
CF Carry Flag status 

clear - no wait 
set - wait performed 

ah 91h I/O Complete 
al Device type 

(See Device Wait) 
CF Carry Flag status 

clear - successful 
set - error 

ah cOh Get System Configuration 
es:bx Segment:offset of descriptor table 
CF Carry Flag status 

clear - successful 
set - error 

ah clh Get Extended BIOS Data Area 

504 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

es Segment of extended BIOS data area 
CF Carry Flag status 

clear - successful 
set - error 

ah c2h Pointing Device Interface 
al OOh Pointing Device Control 
bh Control 

OOh Enable 
01h Disable 

ah Status returned 
OOhNo error 
01h Invalid function call 
02h Invalid input 
03h Interface error 
04hResend 
05h No far call installed 
86h Not applicable 

al 01h Reset Pointing Device 
bh Device id 
ah Status returned 

(See Pointing Device Control) 
al 02h Set Sampling Rate 
bh Sample rate 

OOh 10 reports/second 
01h 20 reports/second 
02h 40 reports/second 
03h 60 reports/second 
04h 80 reports/second 
05h 100 reports/second 
06h 200 reports/second 

ah Status returned 
(See Pointing Device Control) 

al 03h Set Resolution 
bh Resolution 

OOh 1 count per millimeter 
01h 2 count per millimeter 
02h 4 count per millimeter 
03h 8 count per millimeter 

ah Status returned 
(See Pointing Device Control) 

al 04h Get Device Type 
bh Device id 
ah Status returned 

(See Pointing Device Control) 

505 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

al 05h Initialize 
bh Data package size in bytes (1-8) 

ah Status returned 
(See Pointing Device Control) 

al 06h Get Status/Set Scaling 
bh Command 

OOh Get Device Status 
01h Set 1:1 scaling 
02h Set 2:1 scaling 

bl Status byte 
01h Right button pressed 
02h reserved 
04h left button pressed 
08h reserved 
10h 2:1 scaling otherwise 1:1 
20h Device enabled otherwise disabled 
40h Remote mode otherwise stream mode 
80h reserved 

cl Resolution 
(See Set Resolution) 

dl Sample Rate 
(See Set Sampling Rate) 

ah Status returned 
(See Pointing Device Control) 

al 07h Set Handler Address 
es:bx Segment:offset address of user handling 

routine 
ah Status returned 

(See Pointing Device Control) 
ah c3h Watchdog Timer Control 
al OOh Disable 
al 01h Enable 
bx Counter (1-255) 

CF Carry Flag status 
clear - successful 
set - error 

ah c4h Programmable Option Select 
al OOh Get base pas adapter register address 

dx Base pas adapter register address 
CF Carry Flag status 

clear - successful 
set - error 

al 01h Enable Slot 
bl Slot number 

506 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

CF Carry Flag status 
clear - successful 
set - error 

al 02h Enable Adapter 
CF Carry Flag status 

clear - successful 
set - error 

16h Keyboard Services 
ah oh Read Next Character 

al ASCII character code returned or 0 
ah Scan code returned 

ah Ih Check For Next Character 
(ZF set = no character available) 
(ZF not set = character in buffer) 

al ASCII character code returned or 0 
ah Scan code returned 

ah 2h Get Shift Status 
al Shift status returned 

(80 = Insert) 
(40 = Caps Lock) 
(20 = Num Lock) 
(10 = Scroll Lock) 
(08 = Alt Key) 
(04 = Ctrl Key) 
(02 = Left Shift Key) 
(01 = Right Shift Key) 

ah 03h Set Repeat Rate 
al 05h 
bh Repeat Delay 

OOh 0.25 second 
01h 0.5 second 
02h 0.75 second 
03h 1 second 

bl Repeat Rate (character/second) 
OOh 30.0 
01h 26.7 
02h 24.0 
03h 21.8 
04h 20.0 
05h 18.5 
06h 17.1 
07h 16.0 
08h 15.0 
09h 13.3 

507 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

Oah 12.0 
Obh 10.9 
Och 10.0 
Odh 9.2 
Oeh S.6 
Ofh S.O 
10h 7.5 
llh 6.7 
I2h 6.0 
I3h 5.5 
14h 5.0 
15h4.6 
16h4.3 
17h4.0 
ISh 3.7 
19h 3.3 
lah 3.0 
Ibh2.7 
lch 2.5 
Idh 2.3 
leh 2.1 
Ifh 2.0 

ah 04h Set Keyclick 
al OOh Keyboard Click Off 
al 01h Keyboard Click On 
ah 05h Keyboard Buffer Write 
ch Scan code 
cl Character 

al o Ih if buffer full 
ah 10h Get Character 

ah Keyboard scan code 
al ASCII character 

ah llh Get Keyboard Status 
ah Scan code 
al Character 

ah 12h Get Keyboard Status Flags 
ah Status Flag 1 

o Ih Right Shift key pressed 
02h Left Shift key pressed 
04h Ctrl key pressed 
OSh Alt key pressed 
10h Scroll Lock enabled 
20h Num Lock enabled 
40h Caps Lock enabled 
SOh Insert key toggled 

508 



BIOS Interrupts 

Interrupt Sets Returns 
Number Register Register Description 

al Status Flag 2 
01h Left Ctrl key pressed 
02h Left Alt key pressed 
04h Right Ctrl key pressed 
08h Right Alt key pressed 
10h Scroll Lock key pressed 
20h Num Lock key pressed 
40h Caps Lock key pressed 
80h SysReq key pressed 

17h Printer Services 
ah Oh Print a Character 
al ASCII character to print 
dx Printer number 

(0-2) 
ah Printer status returned 

(80 = not busy) 
(40 = acknowledge) 
(20 = no paper) 
(10 = printer selected) 
(08 = 110 error) 
(01 = timeout) 

ah 1h Initialize Printer 
dx Printer number 

(0-2) 
ah Printer status returned 

(See Print A Character) 
ah 2h Get Printer Status 
dx Printer Number 

(0-2) 
ah Printer status returned 

(See Print A Character) 
18h Activate ROM-based Basic 
19h Reboot From Disk 
1ah Time of Day Services 

ah Oh Read System Clock 
al N ewday indicator 

(0 = not a new day) 
(not 0 = new day) 

cx High-order word of clock value 
dx Low-order word of clock value 

ah 1h Set System Clock 
cx High-order word of clock value 
dx Low-order word of clock value 
ah 2h Read CMOS Clock (AT only) 

509 



Writing MS-DOS Device Drivers, Second Edition 

Interrupt Sets Returns 
Number Register Register Description 

ch BCD hours 
cl BCD minutes 
dh BCD seconds 

ah 3h Set CMOS Clock (AT only) 
ch BCD hours 
cl BCD minutes 
dh BCD seconds 
dl Day Light Savings Correction 

(1 = adjust) 
(0 = do not adjust) 

ah 4h Read Calendar (AT only) 
ch BCD centuries 
cl BCD years 
dh BCD month 
dl BCD day 

ah 5h Set Calendar (AT only) 
ch BCD centuries 
cl BCD years 
dh BCD month 
dl BCD day 
ah 6h Set Alarm Clock (AT only) 
ch BCD hours elapsed 
cl BCD minutes elapsed 
dh BCD seconds elapsed 
ah 7h Reset Alarm Clock (AT only) 
ah Oah Get Day Count 

cx Number of days since 1/1/1980 
CF Carry Flag status 

set - end of operation 
clear.- continue 

ah Obh Set Day Count 
cx Number of days since 1/1/1980 

CF Carry Flag status 
set - end of operation 
clear - continue 

ah 80h Set Sound Source 
al Sound source 

OOh 8253 timer chip, channel 2 
01h Cassette input 
02h I/O channel audio in 
03h Sound generator chip 

1ch Timer Tick 

510 



APpendiXC 

DOS Initialization 





~~~----.--.... -.- .. ,--.... --.- .. -.... --.-. .. -- -.- .. ,.-.. ,--~-

DOS Initialization

D OS initialization is the process that brings DOS into memory from
the disk. This is commonly known as a bootstrap of the operating system; it is the
process by which DOS brings itself and the rest of the operating system into
memory. Another term used for this process is the Initial Program Load, or IPL.

DOS System Disks
A DOS system disk must be specially built in order for DOS to be booted from
that disk. System disks have the bootstrap routine in the first sector, as well as
the special DOS system files. These files are marked with the "hidden" file
attribute. The first file contains the BIOS code and the system initialization code
(SYSINT) and is generally named IO.SYS for MS-DOS or IBMBIO.COM for
PC-DOS. The second file is the DOS kernel and is generally named MSDOS.SYS
for MS-DOS systems or IBMDOS.COM for PC-DOS systems.

Building a System Disk
A DOS system disk is built using one of two methods. The first method is to use
the FORMAT utility with the /S switch. This formats a disk and places the Boot
Record, the two DOS system files, and the COMMAND.COM program on the
disk. The second method uses the SYS program to transfer the two DOS system
files to the disk. If you use this second method, you will have to format the disk
using the IB switch to allocate space for the two DOS system files. In addition,
the COMMAND.COM file must be explicitly placed on the disk.

513

-----------.----------------

Writing MS-DOS Device Drivers, Second Edition

Initializing DOS

514

When a reset occurs (during power-on), the 8086/8088 starts execution at location
00:0, which contains ROM code to perform diagnostics on the 8086/8088, mem
ory, and peripherals. The ROM BIOS routines will then try to read the diskette.
If the diskette times out (that is, ifno diskette is inserted or the drive door is not
engaged), an attempt is made to read the hard disk if one is present. If this
attempt fails, a jump to the BASIC ROM code is performed.

If a read from either disk is successful, the first sector of the disk is brought
into memory at location 7cO:0, and control is passed there; the bootstrap loader
then takes over.

The bootstrap loader uses the BIOS Parameter Block contained in the first
disk sector to determine where the File Directory resides on the disk. The first
file in the directory must be the file IBMBIO.COM (PC-DOS) or IO.SYS (MS
DOS). If this file exists, it is read into memory and control is passed to it.

System initialization proceeds with checking for attached peripheral devices
and other equipment; standard devices are initialized, the device drivers that are
standard for that version of DOS are loaded, and certain interrupt vectors are set.

The file containing the DOS kernel is then brought into memory. It is during
this phase that CONFIG.SYS is read for the special commands to tailor DOS.
Among the more important commands for the initialization process are DEVICE
and SHELL. Each file named in DEVICE statements is opened and read into
memory and linked in front of the standard DOS drivers after the NUL: device.

These new DEVICEs are linked to the front of the DOS device queue. The
associated device headers contain the new device name; DOS will refer to these
ahead of the standard driver names. This allows new drivers to use the names of
existing device drivers, thus replacing the old drivers. Another function per
formed at this time is initializing the new drivers to allow them to pass back to
DOS certain information concerning the driver. If a certain driver is too large to
fit into memory, it is ignored (the DOS error message is "device is bad or missing").
This can occur when RAM disks are used.

If there is a SHELL command in CONFIG.SYS, it is loaded into memory,
and control is passed to it. If no SHELL command has been specified, COM
MAND.COM is loaded into memory, and control is passed to it.

APpendixD

Special Features of
the Hard Disk

Special Features of the Hard Disk

Beginning with version 2.0, DOS provides special features for the hard
disk that are not available for floppy disks. These include the ability to partition
the hard disk into several drives and to boot from any partition.

Partitions
DOS allows the hard disk to be divided into up to four logical disk drives. These
logical drives are also called partitions of the hard disk. Each partition may be
formatted to use DOS or a different operating system. Partitioning a hard disk
makes it more convenient to manage a large disk for, perhaps, several users.

The FDISK Program
The FDISK program is supplied with DOS and must be used to initialize and set
up a hard disk before the disk may be used. There are four functions within the
FDISK program: a function to create a partition, one to make a partition active,
one to delete a partition, and one to display partition information.

Creating a Partition
This option ofthe FDISK program is used to set up a hard disk. You need to decide
how your hard disk will look: how many partitions of what sizes there should be.
You may also partition the disk into two or more partitions to make it easier to
use several operating systems, DOS and others.

Partitions begin on a cylinder boundary. When a partition is defined, its
starting and ending positions are specified with cylinder numbers. Thus, the
beginning of a partition is surface 0 and sector 1 of the start cylinder. Because

517

Writing MS-DOS Device Drivers, Second Edition

tracks are identically numbered for all surfaces, a partition will contain the set
of tracks corresponding to all the surfaces. For example, for a disk that has four
surfaces with a partition starting at cylinder 200 and ending at cylinder 300, the
partition will contain four sets of tracks, numbered 200 through 300.

Each partition of the hard disk is created by using the create partition option
of the FDISK program. Mter formatting, the partition will contain the four
required sections: the Boot Record, the two FATs, the File Directory, and the user
data area.

Deleting a Partition / Displaying Partition Information
The Delete a Partition option of the FDISK program removes the partition from
use by destroying all the data in it.

The option to Display Partition Information displays information about the
various partitions of a hard disk. The information returned will tell you the size
of each partition, the type of partition (DOS or non-DOS), and whether the
partition is active.

Active Partition
Through the Active Partition option in the FDISK program, one of the partitions
may be selected as the active partition. This allows DOS (or another operating
system) to be booted from this partition.

The first sector of the hard disk contains information on the various parti
tions and is called the partition sector.

The Partition Sector

518

The partition sector is the first sector of the hard disk. Following the partition
sector will be one or more partitions. Figure D-l shows the relationship of the
partition sector to the partitions of a hard disk.

The partition sector contains three parts. The first is the partition program
code, which is responsible for determining the active partition. The second is the
table of partition information. Finally, the last part is a marker for the end ofthe
partition sector. The marker is a hex AA55 that indicates that the partition sector
is valid.

When a PC with a hard disk is booted initially, the partition code is first
brought into memory to determine which of the partitions is active. Then the
boot code from the active partition is read into memory and control is passed
to the bootstrap code. A normal DOS boot of the partition follows.

I
I ,
\
I

'The Partition Sector

Partition code

byte 0

Special Features of the Hard Disk

Partition 2

Partition 1

.....
Partition

~I Table
(4 entries)

446 509 510 511

Figure D·I: The three sections of the partition sector.

The Partition Table
The partition table contains four 16-byte entries and is located at offset 446 from
the beginning of the partition sector. Each entry describes a particular partition.
The format for the partition table entry is described in table D-l.

The active partition indicator is a single byte that describes whether the
partition is an active partition or not. A value of OOh indicates that the partition
is not active, and a value of 80h indicates that the partition is an active partition.
When FDISK sets this value to 80h, all similar fields in other partition table
entries are set to OOh; there is only one active partition at anyone time.

The beginning head, sector, and cylinder values are those that were specified
to FDISK when the partition was defined.

The DOS system indicator contains a value that determines whether the
operating system for the partition is DOS or some other operating system. A value
of 80h indicates the partition is a DOS partition. A value of OOh indicates the
partition is a non-DOS partition.

Ending head, sector, and cylinder numbers are those that were specified to
FDISK when the partition was defined.

519

Writing MS-DOS Device Drivers, Second Edition

520

Start Length Description

0 1 Active Partition Indicator
1 1 Beginning head number
2 1 Beginning sector number
3 1 Beginning cylinder number
4 1 DOS system indicator
5 1 Ending head number
6 1 Ending sector number
7 1 Ending cylinder number
8 4 Relative sector (from beginning of disk)

12 4 Total size of partition in sectors

Table D-l: The ten fields that comprise the partition table entry. Each
entry will describe one partition.

The relative sector is a double word that contains the number of sectors from
the beginning of the disk to the start of the partition. For any partition this is
the sum of the total disk space of all preceding partitions plus 1 for the partition
sector. This number is also known as the number of hidden sectors for a given
partition.

The total size of the partition in sectors is a double word that contains the
count of the number of sectors in the partition. This sum includes the four parts
of the partition: the boot area, the two FATs, the File Directory, and the user
data area. This is numerically equal to all of the sectors between the start cylinder
and the end cylinder, inclusive.

With the widespread popularity of the PC came a demand for larger and
larger disks. DOS' 32Mb partition limit seemed out of touch with reality. Begin
ning with versions 3.3, each new version of DOS addressed more and more of
these limits, removing them one by one.

The original disk partition design permitted up to 4 partitions to be defined,
thus allowing several different operating systems to share the fixed disk. This
also meant that DOS could not use more than one partition even if the other
three partitions were not being used. In addition, each partition was limited in
size to 32Mb due to a number of constraints in the BIOS Parameter Block.

DOS version 3.3 addressed the single DOS partition limit by creating an
extended partition that contained multiple logical drives. The FDISK program
allows the designation of an extended DOS partition (in what normally is a
non-DOS partition) as the second entry in the partition table. Within this
extended partition, one or more logical drives could be defined.

-- ------...... -.-.--~

Primary
Partition

Extended
Partition #1

Special Features of the Hard Disk

Extended
Partition #0

Figure D-2: MS-DOS extended partition structures.

As figure D-2 shows, the original partition has its first entry pointing to the
first disk partition or C:. The second entry, which is normally used to define a
non-DOS partition, is now used to define an extended partition (its system
indicator byte is 05h). This second entry points to the first volume of the extended
partition (D:), and the very first sector contains a new partition table. Additional
volumes in this extended partition will be pointed to by the second entry of this
new partition table.

DOS version 4 extended the disk structures to allow partition sizes of up
to 512Mb. Finally, DOS version 5 further extended the partition limits to
2 gigabytes.

521

APpendixE

CD-ROM Devices

CD-ROM Devices

eper support for CD-ROM devices represents a challenge to operating
systems such as DOS. Unlike most other PC devices, the CD-ROM was developed
after DOS had already been established and was being used by millions ofPCs.
This overview of the structure and capabilities of CD-ROM drives can help you
approach the writing of device drivers for them.

CD-ROM Physical Specifications
The CD-ROM disk is 12 centimeters in diameter (4.72 inches) with a 15-millime
ter (0.6-inch) hole in the center of the disk. The material normally used is
plastic-covered aluminum and is 1.2 millimeters (0.05 inch) in thickness.

Information is recorded on the CD-ROM using a laser-based mechanism
that burns microscopic (1 micron) pits on the CD-ROM's surface. These form a
binary-coded strings that store data.

CD-ROM drives do not spin at a constant velocity. In order to maintain
maximum recording density, CD-ROMs record more data on the longer outer
tracks than on the shorter inner tracks. This means that when the CD-ROM read
head is at the outer edge, the disk spins faster than if the head were near the
spindle. However, most CD-ROMs spin at about 300 RPM on the average.
Because of the precision use of laser technology, the number of tracks per inch
is in the 18,000 tracks per inch range. Track-to-track seek times are about 1
millisecond, with average seek times of about 500 milliseconds. For comparision
purposes, the typical hard disk has seek times of about 20 milliseconds.

525

Writing MS-DOS Device Drivers, Second Edition

Storage Capacities
As originally developed by Philips, the CD-ROM was an analog of the vinyl LP
disk where music was to be recorded on one long track from the outside of the
disk spiraling in towards the middle and end of the disk. The standard calls for
up to 74 minutes of recorded sound per disk (although there have been disks that
stretch this limit to 76 minutes).

The recording method uses a sector of 2352 bytes with 75 sectors per minute
of recorded music.

CD-ROMs used in computer applications need more accuracy in retrieving
the stored binary information. For data applications, sectors consist of2048 bytes
of user information with the balance of the sector (304 bytes) to be used for the
typical sector headers, trailers, and error-correcting information of normal disks.
In addition, the amount of recorded information is limited to the equivalent of
about 60 minutes to provide a conservative limit.

Thus, with a range of 60 to 74 minutes of recorded information available,
CD-ROMs contain from about 540Mb up to 666Mb of formatted capacity. This
works out to about 333,000 sectors of 2048 bytes per sector.

CD-ROM Data Organization

526

CD-ROMs begin with a system area consisting of 16 sectors that is the logical
equivalent of DOS disk's boot sector. Following the system area is a series of
Volume Descriptors. These describe the data on the CD-ROM. Information
contained here includes the size of the volume, creation date, and publisher of
the information in the volume. Alternative Volume Descriptors allow the CD
ROM to access the same data in a different fashion. This allows the indexing of
data by blocks, contents, keys, keywords, and so on. The Volume Descriptors
contain the contents of the first directory block.

Directory entries are similar to their normal DOS disk counterparts but
contain, in addition, information on access privileges, and type of data stored.
Refer to figure E-l.

SYSTEM

SECTOR 0

DATA

Volume
Descriptions

Figure E-1: Layout of a CD-ROM Volume.

CD-ROM Devices

-400,000

File

527

AppendixF

Answers to
Questions

Answers to Questions

Chapter 1
1. No, it does not matter whether you use MS-DOS or PC-DOS. Although

there are minor differences between the two versions, they are essen
tially equivalent, and for the purposes ofthis book, they are functionally
identical. You may switch from one to the other at any time.

2. Any version of DOS will do, provided it is greater than 2.00. You will see
in later chapters that the latest versions of DOS will have more features
for device drivers. For the time being, use the DOS version with which
you are most comfortable.

3. The examples given in this book will work on both PCs and ATs. The
code you will be writing for the SOSS-based PC will also work on the
S02S6-based ATs. There will not be any problems unless the examples
are modified to use the special instructions of the S02S6, in which case
they will not run on the SOSS/SOS6-based machines.

Chapter 2
1. In general, the whole idea of DOS device drivers is that they conform to

a standard format and can be interchanged, not only between PC-DOS
and MS-DOS but also between different versions of DOS. Not all ma
chines are compatible with the IBM PC, however, and when device
drivers take advantage of certain specific features of the IBM machine,
they may not work on other PCs. This will depend a lot on whether the
machine using MS-DOS is compatible to the IBM PC in the areas in
which the device driver has made use ofIBM-specific features.

531

Writing MS-DOS Device Drivers, Second Edition

2. Device drivers can use IN and OUT instructions to control devices or
they can use BIOS routines. Remember that the purpose of a device
driver is to control a device and in many cases there are no BIOS routines
to assist in this task. When there are BIOS assist routines, then it would
be foolish not to take advantage ofthem.

3. DOS version 2.00 or later is required to be able to add user-written device
drivers.

4. DOS normally supports five printers: up to two that use the serial
adapters and up to three that use the parallel adapters.

5. DOS normally supports up to two serial adapters. This is a limitation
imposed by BIOS, because the BIOS supports only two serial adapters
and DOS serial device drivers use the BIOS routines.

6. When a new device driver is added to DOS, it is placed right after the
nul: device driver.

7. The order will be new2: then newl:. Recall that all user-installable
device drivers are added after the nul: device. If newl: is added first, it
would be placed right after nul:. Then, when new2: is added, it would
appear right after nul:. Thus, the last user-installable device driver
added is the first after nul:.

Chapter 3

532

1. Yes. As shown in the initial procedure, you can use function 9 in a DOS
call to print a message to the screen. However, only in processing the
Initialization command are DOS functions allowed and these are re
stricted to 01h through OCh and 30h.

2. By inspecting the COMMON EXIT code, you can see that a ret instruc
tion is used to return to DOS. The corresponding instruction is the call
instruction.

3. The STRATEGY procedure has the task of saving the address of the
Request Header into the device driver's data storage area.

4. The first entry ofthe Device Header. The Device Header can specify to
DOS that there is more than one device driver program in the file. This
allows DOS to be more efficient in processing the several device drivers.
By placing a -1 in the double word entry at the beginning of the Device
Header, you indicate that there is no other device driver program in
the file.

Answers to Questions

5. The device driver is initialized just after it is loaded into memory
by DOS.

6. The name of a device can be up to eight characters in length and must
be upper-case.

Chapter 4

1. No. Only DOS services Olh through OCh and 30h are allowed in the
Initialization command. Caution: DOS service calls cannot be issued
when processing any other device driver command.

2. Yes. DOS is often supplied with an ANSLSYS console driver that allows
DOS to interpret escape sequences as screen-control commands.
ANSLSYS is named after the ANSI standard X3.64 for CRTs. Some
versions of DOS include the ANSI escape sequences in the standard
console device driver.

3. Yes. The console device driver can be customized to display color char
acters. Note that the display of color is normally the task of the program
writing to the screen. It is important to remember that not all monitors
are color; many are monochrome.

4. The console device driver uses the ROM BIOS routines because they are
easy to use and found on many IBM or IBM-compatible PCs. There is no
reason not to use direct I/O instructions. In exchange for speed, however,
the job of programming is much harder.

5. The console device driver uses only the Write Character as TTY service
(Oeh). The reason is that console device drivers do not care about
anything other than writing a character to the screen. The use of this
particular service allows the ROM BIOS to keep track of the end oflines
and scrolling at the bottom of the screen. If we were to use a different
video BIOS service, we would have to manage it ourselves.

6. The reason for this is simple. DOS treats all forms of CON as the device.
The colon is there to make it easier for you to identify CON as a device;
it is not necessary. For example, the following command-level state
ments are identical in function:

copy config.sys con:

copy config.sys con

copy config.sys con.asm

533

Writing MS-DOS Device Drivers, Second Edition

7. Yes. The reason for separating each command is that, as part of the
skeleton, you may want to reuse it for other device drivers. You could
combine the unimplemented commands as follows:

Media_Check:

Get_BPB:

Input_Status:

Output_Status:

Output_Flush:

Open:

Close:

jmp done ;set done bit and exit

IOCTL_Input:

IOCTL_Output:

Removable:

Output_Busy:

jmp unknown ;set error bit/code and exit

Chapter 5

534

1. Yes. Because there are three parallel ports and only two serial ports,
using the serial port for printers can use up all the serial ports quickly.
Mouse devices and modems use serial ports, and they could not both be
added to the PC if a printer already used one of the serial ports. In
addition, printers operate more quickly when using parallel ports, be
cause of the parallel transfer of data.

2. The printer device driver supports only two serial printers because most
serial adapter ROM BIOS routines support only two serial ports. Sup
port for additional serial ports can be added to the printer device driver,
but then the ROM BIOS routines cannot be used. The solution would be
to write direct 110 instructions to these additional serial ports.

3. Yes. Although the PC initializes the serial and parallel adapters during
the Power On Self Test (POST) when the PC is turned on, the code to
initialize the parallel and serial adapters can be added to the printer
device driver. This can be accomplished in two places. During the
Initialization command processing, the driver can issue BIOS interrupts
to initialize the serial and parallel ports. For the serial port, however,
parameters such as baud rate, number of data bits, and type of parity
are required. For this reason, it is better to use the 110 Control function

Answers to Questions

to pass these parameters to the driver. Thus, a special 110 Control
function with these required parameters specified can be added to the
printer device driver.

4. You are correct-DOS can execute only one program at a time. However,
there are popular programs called Terminate but Stay Resident pro
grams, which, after being executed, are not removed from memory.
These programs are activated periodically to perform some task. Be
cause of the possibility that one of these programs will write to the
printer using BIOS interrupts when another program is writing to the
printer using the printer device driver, the printer might be busy.
Therefore, the printer device driver detects this condition and returns
to DOS without wasting time waiting for the printer to become free.

5. Numerous features and functions can be added to the 110 Control
processing. For example, 1/0 Control could be used to print a banner
preceding each print job, indicating the job number, time, and date. This
would allow easy separation of jobs when the print load is heavy. Another
example would be to add code to advance the page, if needed, to provide
page printing on even or odd page boundaries. This would allow each
print job to start on the same facing page, which would make the jobs
easier to find.

I/O Control could also be used to set an indicator within the printer
device driver. The Output command-processing code would count the
number of pages already printed. At the end of a job, the driver could
advance one or two pages to allow the next job to start on the same page
boundary.

6. It was easier to write the IOCTL program that way. In addition, it is
more economical to set the adapter type rather than determining it and
then resetting it.

Chapter 6
1. The clock device driver will not be able to find the clock chip base address,

and the driver will abort loading. In short, you need not worry about not
having a clock chip present in your PC.

2. The MM58167 A clock chip was designed to provide both a clock/calendar
function and a timer function. The chip can be used to signal an interrupt
when a preset date is reached. The RAM locations are used for this
purpose.

535

Writing MS-DOS Device Drivers, Second Edition

3. The reason for the large amount of code for processing and determining
leap years is that the MM58167 A chip does not do it. If the chip were
"smarter," we would not have to write software routines.

4. The easiest way to remove the ability to display the time on the screen
is to remove the code starting at label calc at the end of the clock device
driver. Remove all the instructions beginning with call display through
sti. This eliminates the swapping ofthe timer interrupt with the one in
the clock device driver. Thus, the timer interrupt will no longer pass
control to the driver, and the code to display the time will not be executed.

If you want to make the clock device driver smaller, remove the
procedures clkint, display, and cvt2asc.

Chapter 7

536

1. The proper order on all disks is: Boot Record, F AT(s), File Directory, and
user data area. Every disk must have these four sections, and they must
be in this order.

2. The Boot Record is always written to the disk after it has been formatted
using the FORMAT.COM program.

3. Because the cluster chain uses each FAT entry to point to the next entry,
there is no inherent limit to the length ofthe cluster chain. However, for
any given disk the maximum length is equal to the maximum number
of available clusters for that disk. Note that some clusters may not be
available because they have been marked as bad during the formatting
process.

4. The maximum size of a disk is 32Mb for DOS versions below 4.0. This
assumes 512-byte sectors.

5. The minimum disk size possible is a 4-sector disk with the Boot Record,
one FAT, the File Directory, and the user data area each being allocated
one sector.

6. The Get BPB driver command is used to retrieve the BPB from a disk.
This is typically done when the Media Check command returns an
indication that the disk has changed.

7. An "illegal" file name is one that begins with either an E5 hex or a 00
hex. These are the values that DOS uses in the first byte ofthe file-name
field in the File Directory to indicate that a file has been deleted or that
a directory entry has never been used.

Answers to Questions

Chapter 8
1. The RAM disk device driver simulates a diskette by using memory to

store data normally destined for a magnetic disk.

2. All but k, the size of the user data area, which can be calculated from all
the other fields.

3. One. Two FATs are not needed.

4. The following commands are implemented in the RAM disk device
driver: Initialization (0), Media Check (1), Get BPB (2), Input (3), Output
(8), Output With Verify (9), and Removable Media (15).

5. The number of sectors in the user data area is 400 for a 200K RAM disk
(see the list of steps for modifying the RAM disk device driver). The
sectors per allocation unit do not change. The number of clusters is 400.
At 1.5 bytes per cluster, the size ofthe FAT is 1024, which is rounded
up from 600 bytes. Thus, the number of sectors for the FAT is 2; this
number is stored in the variable bpbJs. Because the number of files in
the File Directory does not change, the variable bpb_ds does not change.
The number of reserved sectors is 6 (1 for the Boot Record, 2 for the newly
enlarged FAT, and 3 for the unchanged File Directory); this number is
stored in the variable res_cnt. The total number of sectors is 406 (6
reserved and 400 for the new user data area), and this number is stored
in the variable bpbJs. Then, the number of paragraphs of memory is
12,992 (406 times 32); this number is stored in the variable ramyar.
Lastly, the variable msgJ is changed to display the fact that the RAM
disk is now 200K.

Chapter 9

1. For DOS version 3.2, this command is requested through the DOS
service for I/O Control (44h). Functions provided are read, write, and
format a logical drive track. This new feature of DOS allows programs
to use DOS services to perform tasks that formerly required BIOS
services.

2. No, you do not have to process the argument. In fact, you can use the
argument as a comment to document the driver in the CONFIG.SYS file.

3. Yes, it does seem contradictory. Available documentation indicates that
the Get/Set Logical Device commands are used for block devices. No
mention is made of its use with character device drivers, such as printer

537

Writing MS-DOS Device Drivers, Second Edition

drivers. It is to be hoped that more information will be released on these
commands.

4. The Output Til Busy command is used to send a string of characters to
a character device driver. Normally, character device drivers are set one
character at a time, which is inefficient and slow.

Chapter 10

538

1. You need only convert the segment address, because the offset address
is O. Device drivers are aligned on paragraph boundaries, which means
the offset address is always O.

2. First, check your device driver against the checklist in figure 10-1. If
your driver looks okay, remove code lines in the Initialization command
processing until it does work.

Hint: display a screen message at the beginning and at the end of
the Initialization command processing. Then, ifthe driver fails between
the first and the last message, keep moving the first message farther
"down" in the code until the driver fails to load. You have just found the
problem!

3. No. You will not need this feature in a custom console driver unless you
have programs that require "raw-mode" output (recall that this feature
is available through the DOS I/O Control service 44h).

4. First use DEBUG to inspect the Device Header. If you have used the
code in listing 10-2, the address displayed is the segment address at
which your device driver sits in memory. Offset 0 points to the Device
Header. Check the Device Header entries to ensure that they have been
set correctly.

Another trick to try is to add the dump routine to your driver at the
entry point (in the Interrupt routine) and after setting the Status word,
just before exiting. This will display the command being sent to the
driver as well as some ofthe Request Header entries. Ifthe dump routine
displays data on entry but not on exit, you have a bug in that particular
command -processing section.

If all else fails, you can try using DEBUG. As we have explained,
DEBUG is not the proper tool to use. However, you can set one break
point in your device driver before DOS crashes. When a breakpoint is
reached, reboot and advance the breakpoint address until the breakpoint
display shows you enough information to make an educated guess as to

.. -.~~----.----------... -... ---~-........ ~~~

Answers to Questions

where the problem is: use the listing of your device driver along with the
results from the breakpoint output. The process of using DEBUG is long
and tedious.

Chapter 11
1. No, the code generated should be identical in both situations. The

DRIVERASM group directive orders the separate code and data seg
ments of the small model into a single segment at link time.

2. The cast passes back the segment in addition to the offset address of the
Break Address. This is because code addresses in the small model are
offsets and the Break Address requires both a segment and an offset
address.

3. The C library code you use may be named in a segment other than
_TEXT. This means your Init code may not specify a Break Address of
itself nor can it even specify a Break Address because it does not know
about any code segments loaded after _TEXT. One solution is to place
the Init routine in its own segment and to specify to the Linker to load
this new segment last. Your C compiler will need to generate different
segment directives either through a compiler keyword or switch. Should
your C compiler not have such provisions, then generate an assembly
language output file and manually change the segment directives.

4. There are several things you could do. First, remove all unused routines
in CDRIVERC, then replace each reference to these routines in
DRIVERASM's CMDTAB jump table with _badcommand. Second, if
your driver supports Output, Output VerifY, and Output Til Busy, then
change DRIVERASM's CMDTAB to reference only the Output routine
for these three commands. This will save space in the driver as well as
run faster. Lastly, you may calculate the exact amount of stack space
required and reduce the size of the new stack accordingly.

539

INDEX

A: device name, 29-30
Absolute addresses, 464
Absolute Disk Read interrupt (25h), 31-33
Absolute Disk Write interrupt (26h), 31, 33,

58
Activate ROM-based Basic ROM BIOS

interrupt(18h),509
Active partitions, 518
Adapters, 15, 141
add instruction, 79
Add-on devices, 14
Addresses, 462

ofBPB tables, 265, 349
ofclocklcalendar chip, 180, 184-185,210,

213-214
of device drivers, 385, 399-401
of devices, 325-326
with Intel microprocessors, 470-471
110,15
paragraph, 463-464
of request headers, 44, 47-49,77
of screen cells, 199
of screen memory, 193
of STRATEGY and INTERRUPT

procedures,68,72-74,107
Advanced Micro Devices (AMD), 474
AH register, 467
AL register, 467
Aligning paragraphs, 70
Allocate memory DOS service (48h), 35
Allocation Unit Size (AU) field in BPB, 256,

278-279,354

Allocation units, 243-244
in FAT, 245-247
maximum number of, 253-254
for RAM Disk Device Driver, 278-279

Alternative Volume Descriptors for
CD-ROMs, 526

ANSI.SYS driver, 38
Archive file attribute, 250-251
ASCII

converting numbers to, 193
keyboard codes for, 22-24,113-115

Assembler directives, 328-335
for Clock Device Driver, 187-190,

215-217,386-388
for Console Device Driver, 102-103,

121-122
for Printer Device Driver, 142, 145-147,

164-166
for RAM Disk Device Driver, 282-285,

305-307
for Simple Device Driver, 67, 69-71, 87

Assemblers and assembly language, 6-7,
321-323

advantages and disadvantages of,
323-325

with C, 425-433
for Console Device Driver, 97-99
knowledge requirements for, 5
for source code, 59

Assembly Language Primer for the IBM PC
and XT (Lafore), 5

assume assembler directive, 71, 383

541

Writing MS-DOS Device Drivers, Second Edition

Attributes
file, 250-251
screen, 485

Attributes field in device headers, 72-74,
335-343

checking, 382
for Clock Device Driver, 190-191
for Console Device Driver, 106-107
for Printer Device Driver, 148
for RAM Disk Device Driver, 286
and versions, 120,411-412

Audio
with CD-ROM, 421
with Console Device Driver, 110-111, 124
with RAM disk driver, 275-276, 288, 298

AUTOEXEC.BAT file, 323
aux: device, 29-30, 342
Auxiliary Flag, 469
Auxiliary Input DOS service (3h), 34
Auxiliary Output DOS service (4h), 34
AX register, 467

B: device name, 29-30
BACKUP.COM utility (DOS), 251
Bad clusters, 244-245
Bad commands, C skeleton function for,

440-442,453
Bad drive request structure length error

code (5), 83, 376
Basic Input-Output System. See ROM

BIOS services
BASIC utility, 28
bcd2hex procedure, 193, 195-196,219-220,

389
Beeping, function for, 80-81
begin label, 71-72, 85-86
bellI procedure, 289, 291-292, 298, 311
bell2 procedure, 289, 291-292, 311
BH register, 467
Binary Coded Decimal (BCD) values

converting, 193, 195-196,207,212-214
in MM58617A chip, 183-184, 186

BIOS. See ROM BIOS services
BIOS Parameter Block, 255-259. See also

Get BIOS Parameter Block command (2)
in boot area, 242-243, 248

542

C header file for, 434-435
information from, 259-260
loading, 514
for RAM Disk Device Driver, 278-280,

288,292
tables for, 349

Bit-bucket device, 30
BL register, 467
Blanks in device names, 74-75, 341
Block devices, 17,48-50,52

and CD-ROM, 418
device header entry for, 68, 72-73,334-336

Boot area and boot record, 241-243, 255
and Get BPB command, 352-353
for RAM Disk Device Driver, 277-278,

286,292,294-295
Boot sectorfor CD-ROMs, 526
Bootstrap program, 243, 278, 513-514
Borders, interrupts for, 487
BP (Base Pointer) register, 467
BPB. See BIOS Parameter Block; Get BIOS

Parameter Block command
Break Addresses, 348-349

for C driver, 442
for Clock Device Driver, 199, 210
for Console Device Driver, 112-113
for disks, 265
for DOS 5, 413-414
for Printer Device Driver, 152
for RAM Disk Device Driver, 292-293

Buffered Keyboard Input DOS service
(Ah),34

Buffers
dirty, 268, 295, 352
filling (See Output Til Busy command (16»
flushing,34,54,95,359-360,363-364
keyboard,23-25,95,113-115,358
printer, 155, 160

BUSY bit, 82,375, 377
Busy printers, 155, 157
BX register, 383, 467
Bytes, 462

C: device name, 29-30
Clanguage, 423-424

assembler language front-end for, 426-433

barriers in, 425-426
compilers in, 447, 455
driver in, 437-442,448-455
header file in, 433-437
linking in, 456
Printer Device Driver in, 442-455
testing drivers in, 456-458

Cache on Intel 80486, 474
Calls, 8, 71

from DOS, 44-46
far and near, 71, 382, 425
handlers for, 56

Capacity of disks, 237, 276
Carry Flag, 469
Case-sensitivity in C, 456
CD-ROM devices, 417

data organization on, 526-527
device headers for, 418-419
drivers for, 418-423
specifications for, 525

CDRIVER.C program, 437-442,
448-458

Centronics port, 16
CH register, 467
Chains

cluster, 245-247
device,38-39,73,106,328,382

Change attributes DOS service (43h), 35
changeline signal, 351
Character devices, 17,48-51

and CD-ROM, 418
device header entry for, 68, 72-74,

334-338
Check for Available Character keyboard

service,25-26,97,507
Check Keyboard Status DOS service (Bh),

34,358
Checklist for device drivers, 381-384
CHKDSK utility, 28
CL register, 467
clkint procedure, 187, 193, 196-199,214,

220-221
Clock cycles, minimizing, 324-325
clock$: device, 29-30

Attribute field in, 342
replacement for (See Clock Device Driver)

Index

Clock device bit in device headers, 74, 339
Clock Device Driver

address of clock for, 180, 184-185,210,
213-214

assembler directives for, 187-190,
215-217,386-388

building, 214, 231
command processing for, 190, 199-208,

221-228
Common Exit section for, 209-210, 228
device header for, 190-191,217
End of Program section for, 210-214,

228-231
Error Exit section for, 208-209, 228
functions for, 179-180
INTERRUPT procedure for, 193-195,

218-219
local procedures for, 193, 195-199,

219-221,388-389
main procedure for, 187, 190,217
programming clock/calendar chip for,

182-184
prototyping program for, 386-399
STRATEGY procedure for, 193-194,

218
timer interrupt for, 185-187
timing signals for, 180-182
using, 231
work space for, 191-193,217-218,388

Clock/calendar chip, 179-180
address of, 180, 184-185,210,213-214
programming, 182-184

Clocks, 180-181
Close File DOS service (10h), 34
Closed devices, tracking, 55, 270, 366-367
Clusters, 243-244

in FAT, 245-247
maximum number of, 253-254
for RAM Disk Device Driver, 278-279
start, 252

code assembler directive, 70
Code Segment register, 71, 383, 465-466,

468
Color, services for, 26, 98, 485-488
Color video adapters, clock for, 181
com: devices, 29-30, 40, 133-134,342

543

Writing MS-DOS Device Drivers, Second Edition

.COM files, 381-382
for drivers, 60-61
segments for, 466

Command processing, 41-42, 50-52, 343,
345-375

for block and character devices, 48-50
for Clock Device Driver, 190, 199-208,

221-228
for Console Device Driver, 100-101,

111-118,124-127
for disks, 265-270
from DOS service calls, 36-37
and INTERRUPT procedure, 78-79
for Printer Device Driver, 144, 151-161,

168-173
for RAM Disk Device Driver, 280-282,

292-302,311-315
and request headers, 43-44
for Simple Device Driver, 69, 81-83,

88-89
tables for, 79-80, 433
and versions, 409-412

COMMAND. COM utility, 28
in initialization, 514
on system disks, 513

Comments, 65-67, 70, 324
Common Exit section, 376

for Clock Device Driver, 209-210, 228
for Console Device Driver, 118-119,

128
for Printer Device Driver, 161-162,

173-174
for RAM Disk Device Driver, 301-302,

315-316
for Simple Device Driver, 69, 84-85, 89

Compact memory model for C, 424
Compilers, C, 447, 455
con: device, 18, 29-30

Attribute field in, 342
replacement driver for (See Console

Device Driver)
CONFIG.8YS files, 59

DEVICE command in, 61, 86, 349
DEVICEHIGH command in, 413-414
in initialization, 514

Connectors, 16

544

Console Device Driver, 95
assembler directives for, 102-103,

121-122
assembly language conventions for, 97-99
command processing for, 100-101,

111-119,124-127
Common Exit section for, 118-119, 128
designing, 96-101
device header for, 106-107, 122
End of Program section for, 119-120, 128
Error Exit section for, 118-119, 128
INTERRUPT procedure for, 108-110,

123-124
local procedures for, 110-111, 124
main procedure code for, 105, 122
quick output with, 406-408
ROM BIOS services for, 97-98
STRATEGY procedure for, 108, 123
work space for, 108, 122-123

console procedure, 102, 121
CONTROL-C Check DOS service (33h), 35
CONTROL-C keys, 31-32, 35, 407
Controller Drive disk service, 496-497
Controller RAM disk service, 496
Controllers, 15-17
Cooked input/output mode, 407
CRC error error code (4), 83, 376
Create File DOS service (16h), 34
Create Sub-directory DOS service (39h), 35
CS register, 71, 383, 465-466, 468
cs segment override, 77
Current Disk DOS service (19h), 34
Cursor, services for, 26, 98, 483-484
cvt2asc procedure, 193, 196, 220
cvt2seg procedure, 289-291, 297-298,

310-311
CX register, 467
Cylinders, disk, 236, 517

Data bus, 15, 461
_DATA segment in DRIVERSYS, 432-433
Data Segment register, 71, 383,465-466,

468
Data storage. See Work space
Date

driver for (See Clock Device Driver)

services for, 35
of update or creation, in file directories;

251
DATE command (DOS), 180, 200
db assembler directives, 72, 102
dd assembler directives, 72, 102
DEBUG utility (DOS), 384-385
Debugging, 90

adding routines for, 399-401
prototyping for, 384-399

define directives
with assemblers, 72, 102
with C, 433-434

Delay system service, 503
Delete a Directory Entry DOS service

(41h),35
Delete File DOS service (13h), 34
Deleted file entries, 249-250
Deleting partitions, 518
Descriptions for device drivers, 67, 325
Designing

Console Device Driver, 96-101
RAM Disk Device Driver, 280-281

Dettmann, Terry, DOS Programmer's
Reference, 5

Device chains, 38-39, 73, 106, 328, 382
Device Close command (14), 51-52, 55,

366-367
C skeleton function for, 440, 453
for CD-ROM, 420
for Clock Device Driver, 208-209, 227
for Console Device Driver, 118, 127
for disks, 270
for Printer Device Driver, 144, 153-154,

173
for RAM Disk Device Driver, 300, 315
request header for, 332-333, 367
unimplemented, status word for, 377

Device Close system service, 503
Device Headers, 41-42, 328

Attribute field in, 335-343, 411-412
with C, 424
for CD-ROM, 418-419
for Clock Device Driver, 190-191,217
for Console Device Driver, 106-107, 122
for DRIVERASM, 427-428, 433, 443

Index

for DRIVERH, 433-434
Name field for, 341
for Printer Device Driver, 142, 144,

148-149,163,174-175
for RAM Disk Device Driver, 280,

285-286,307-308
vs. Request headers, 42-43
for Simple Device Driver, 68, 72-73, 87

DEVICE keyword in CONFIG.SYS file, 61,
86,349

Device Open command (13),51-52,55,
365-366

C skeleton function for, 440, 453
for CD-ROM, 420
for Clock Device Driver, 208-209, 227
for Console Device Driver, 118, 127
for disks, 270
for Printer Device Driver, 144, 153, 173
for RAM Disk Device Driver, 300, 315
request header for, 332, 366
unimplemented, status word for, 377

Device Open system service, 502
Device supports

OPEN/CLOSEIREMOV ABLE MEDIA
bit,74,286,339,357,361,365,367

Device Wait system service, 504
DEVICEHIGH command, 413-414
Deviceless drivers, 41
Devices, 13-15

addresses of, 325-326
block and character, 17,48-52
console, 18
for DOS, 29-30
DOS management of, 33-36
names of, 29-30,74-75,341
ROM BIOS and DOS services for, 18-19
serial and parallel, 16
standard,16

DGROUP group in DRIVERSYS, 433
DH register, 467
DI (Destination Index) register, 467-468
Diagnostics

for devices, 325-326
disk services for, 496-497

DIR command (DOS), 262-264
Direct console input DOS service (7h), 34

545

Writing MS-DOS Device Drivers, Second Edition

Direct console 110 DOS service (6h), 34
Direct Memory Access (DMA), 17, 19,96
Direction Flag, 469
Directives, assembler. See Assembler

. directives
Directories, 249-253

on CD-ROM, 418, 526-527
and Get BPB command, 352-353
index files for, 323
for RAM Disk Device Driver, 277-279,

292,295
Directory Size (DS) field in BPB, 257,

278-279,354
Dirty buffers, 268, 295, 352
Disk Parameter Block (DPB), 105
Disk Reset DOS service (Dh), 34
Disk ROM BIOS services (13h), 58, 492-498
Disk Status disk service, 497
Disks and disk drives, 235-236

Attribute fields for, 343
boot area on, 241-243
changed, detecting, 262, 268, 350-352,

365-367
clusters on, 243-244
command processing for, 265-270
critical parameters for, 255-260
device drivers for, 260-265
device names for, 30
FAT for, 243-249
file directories on, 249-253
formatting, 239-240, 243, 248
organizing data on, 236-240
physical features of, 235-236
removable and nonremovable, 261
size of, 253-255
supported by DOS, 240-241
system, 243, 513
test, 381
types of, 236
writing to, 31, 33, 35-36, 56-58,

360-362,493,495
Display Character DOS service (2h), 34
display procedure, 140, 193, 196,214,220
Display String DOS service (9h), 34
DL register, 467
DMA controllers, 17

546

Documentation, 65-67, 70, 324
Dollar signs ($) for assembler variables, 75
DONE bit, 82, 84, 375, 377
DOS

basics of, 27-29
commands from (See Command

processing)
device management by, 33-36
devices for, 29-30
disks supported by, 240-241
driver calls from, 44-46
initialization of, 513-514
services in, 18-19,31-33

DOS 5, 413-414
DOS-extenders, 478
DOS multiplex interrupt (2Fh), 478
DOS Programmer's Reference (Dettmann), 5
DOS Protected Mode Interface (DPMI), 479
DOS Services interrupt (21h), 18-19,

31-33
inC, 425
for Console Device Driver, 100
with Initialization command, 53, 81
sector numbering by, 238

dos.h header file in C, 425
dos9 procedure, 398
dosver procedure, 410
Double density disks, 236
Double-sided disks, 240
Drive letters for disks, 30

assigning, 374
for CD-ROM, 419
with Initialization command, 349
for RAM disks, 275-276

Drive not ready error code (2), 83, 376
Drive Ready Test disk service, 496
DRIVERASM program, 426-433, 442-447
DRIVERH header file, 433-437
DRIVERMAP file, 60
DRIVERSYS driver, 374
Drives. See Disks and disk drives
DS register, 71, 383, 465-466, 468
dump procedure, 401-406
Duplicate a File Handle DOS service (45h),

35
DVORAK keyboard, 40

dw assembler directives, 102
DX register, 467

Editors, 321-322
8253-5 programmable timer chip, 110,

181-182
EMM386.SYS driver, 413
EMS (Expanded Memory Specification),

477-478
end assembler directive, 70, 72, 85-86
End-of-file indicators, 247
End of Program section

for Clock Device Driver, 210-214,
228-231

for Console Device Driver, 119-120, 128
for DRIVER.ASM, 431
for Printer Device Driver, 161-163,

174-175
for RAM Disk Device Driver, 302-303,

316
for Simple Device Driver, 69, 85-86, 89

endp assembler directive, 71, 85-86, 384
ends assembler directive, 85-86, 328
Equates, 98, 328
Equipment Check ROM BIOS interrupt

(llh), 161, 174,492
ERROR bit, 82, 84, 375, 377
Error Exit section, 376

for Clock Device Driver, 208-209, 228
for Console Device Driver, 118-119, 128
for Printer Device Driver, 160, 173
for RAM Disk Device Driver, 301-302,

315
for Simple Device Driver, 69, 83-84, 89

ERROR_CODE bits, 82, 84, 375-376
Errors

handling, 325-326
interrupt for, 31
status indicator for, 81-83, 376

ES register, 71, 383, 465-466, 468
Escape sequences, 38
Even addresses, 462
Event Wait system service, 503
EXE2BIN utility (DOS), 6-7, 60, 90, 321,

381,455
Expanded memory, 477-478

Index

Extended Communications Port Control
serial port service, 500-501

Extended Initialization serial port service,
500

Extended keys, 114-115
Extended memory, 475-479
Extended Memory ROM BIOS Interrupt

(15h), 475-476
Extended partitions, 521
Extensions in file directories, 250
External references in C, 433, 456
Extra Segment register, 71, 383, 465-466,

468
EXTRN directives in C, 433

Far calls and returns, 71, 382, 425
FAT. See File Allocation Table
FAT Sectors (FS) field in BPB, 257,

278-279,354
Fatal Error interrupt (23h), 31-32
Fault-tolerance, 474
FDISK program, 517-521
File Allocation Table, 241, 243-249

on CD-ROM, 418
and Get BPB command, 352-353
number of, 247-249
for RAM Disk Device Driver, 277-279,

292,294-295
size of entries in, 253-254

File directories, 249-253
and Get BPB command, 352-353
for RAM Disk Device Driver, 277-279,

292,295
File Size DOS service (23h), 34
Files

DOS management of, 27, 33
index, 323
names for, 249-250
size of, 34, 252-253

Find Match File DOS service (4Eh), 35
find procedure, 391-392
Fixed disks. See Hard disks
Flags, 468-469
Flat memory model, 473
Flicker, screen, 198-199
Floppy disks. See Disks and disk drives

547

Writing MS-DOS Device Drivers, Second Edition

Flush Buffer, Read Keyboard DOS service
(Ch), 34, 95

Flushing buffers, 34, 54, 95, 359-360,
363-364

Fonts, services for, 488-489
Force a Duplicate of a Handle DOS service

(46h),35
Format Bad Track disk service, 494
Format Drive disk service, 494
Format ESDI Disk disk service, 498
Format ESDI Periodic Interrupt system

service, 502
Format Tracks disk service, 494
FORMAT.COM utility (DOS), 28, 239-240,

243,248,513
Free Allocated Memory DOS service (49h),

35
Function keys

with editors, 322
with shift keys, 25

Game ports, 16-17
General failure error code (C), 83, 376
General registers, 467
Generic IOCTL bit in device headers, 74,

339
Generic IOCTL command (19), 52, 370-372

C header file structure for, 436
C skeleton function for, 441, 453-454
request header for, 334, 370
unimplemented, status word for, 377

geninterrupt function in C, 425, 447
Get Amount of Available Extended Memory

function, 476
Get BIOS Parameter Block command (2),

52-53,264,352-354
C header file structure for, 435-436
C skeleton function for, 438, 449
for CD-ROM, 419
for Clock Device Driver, 200, 222
for Console Device Driver, 113, 125
for disks, 268
for Printer Device Driver, 153, 169
for RAM Disk Device Driver, 281-282,

286,295-296,313

548

request header for, 329-330, 353
unimplemented, status word for, 377

Get Character keyboard service, 508
Get Country-dependent Information DOS

service (38h), 35
Get Current Video Mode video service, 26,

98,486
Get Date DOS service (2Ah), 35
Get Disk Free Space DOS service (36h), 35
Get Disk Status disk service, 493
Get Disk Transfer Address DOS service

(2Fh),35
Get Disk Type disk service, 497
Get DOS Version Number DOS service

(30h),35
Get Drive Parameters disk service, 494-495
Get Extended BIOS Data Area system

service, 504-505
Get Extended Memory Size system service,

504
Get Interrupt Vector DOS service (35h), 35,

214
Get Keyboard Status Flags keyboard

service, 508-509
Get Keyboard Status keyboard service, 508
Get Logical Device command (23), 51-52,

339,372-373
C skeleton function for, 441, 454
request header for, 334, 373
unimplemented, status word for, 377

Get Parallel Port Status parallel port
service, 20,23, 142, 144, 155

Get Printer Status printer service, 509
Get Serial Port Status serial port service,

20-21,142-143,499
Get Shift Status keyboard service, 25, 97,

507
Get System Configuration system service,

504
Get the Return Code of a Child DOS

service (4Dh), 35
Get Time DOS service (2Ch), 35
Get/set Date/time of File DOS service

(57h),35
group assembler directive, 426

Handles, file, 33-34
Hard disks, 235-236, 261. See also Disks

and disk drives
device names for, 30
as nonremovable disks, 265
partitioning, 30, 255, 258, 353, 361,

517-521
support for, 240

Hardware registers in Intel
microprocessors, 465-468

Hardware requirements, 6-7
hex2asc procedure, 212-214, 230-231,

398-400,405-406
hex2bcd procedure, 193, 195, 219, 388
hex2dec procedure, 392
Hidden file attribute, 250-251
Hidden Sectors (HS) field in BPB, 258-259,

278-279,354
High density disks, 236
High-level languages. See C language
High Memory Area (HMA), 478
High-order bytes, 462
High Sierra Group format, 420
High-speed controllers, 17
Horizontal retrace, writing to screen

during, 198-199
Huge memory model for C, 424
Hummel, Robert L., The Processor and

Coprocessor, 474
Hung devices, 157

IBM-compatible format, device header bit
for, 74, 338-339

IBMBIO.COM file, 335, 513-514
IBMDOS.COM file, 513
in instruction, 16, 182, 185
In-line assembly language, 425
Incompatibilities, 408
Index files for directories, 323
Index registers, 467-468
Indexing with tables, 79-80
Initial allocation unit in file directories, 252
initial procedure, 80, 88
Initialization command (0),51-53,347-349

in C, 426

Index

C header file structure for, 435-436
C skeleton function for, 438, 441-442,

454-455
for CD-ROM, 420
for Clock Device Driver, 190, 199-201,

221-222
for Console Device Driver, 100, 111-113,

125
debugging, 385, 399-401
for disks, 265, 267
DOS services with, 53, 81
for Printer Device Driver, 151-152, 154,

168
for RAM Disk Device Driver, 281-282,

292-295,311-312
request header for, 329, 347
unimplemented, status word for, 377

Initialization of DOS, 513-514
Initialize Drive Characteristics disk

service, 495
Initialize Parallel Port parallel port

service, 20, 23
Initialize Printer printer service, 509
Initialize Serial Port serial port service,

20-21,498-499
Input command (4),51-53,356-357

C header file structure for, 4=35
C skeleton function for, 438, 449
for CD-ROM, 419
for Clock Device Driver, 190, 200-204,

222-224
for Console Device Driver, 100, 113-115,

125-126
for disks, 268-269
for Printer Device Driver, 153, 169
for RAM Disk Device Driver, 281-282,

297,313-314
request header for, 330, 357
unimplemented, status word for, 377

Input Device Check DOS service (OBh), 115
Input devices, 14
Input Flush command (7), 51, 54, 359-360

C skeleton function for, 439, 450
for CD-ROM, 420
for Clock Device Driver, 204, 224

549

I -

Writing MS-DOS Device Drivers, Second Edition

for Console Device Driver, 100, 116-117,
126

for Printer Device Driver, 153, 169
for RAM Disk Device Driver, 297-298,

314
request header for, 331, 360
unimplemented, status word for, 377

input procedure, 140
Input Status command (6),51,54,358-359

C skeleton function for, 439, 449-450
for Clock Device Driver, 204, 224
for Console Device Driver, 115, 126
for Printer Device Driver, 153, 169
for RAM Disk Device Driver, 297-298,

314
request header for, 330-331, 359
unimplemented, status word for, 377

Inside the 80286 (Strauss), 471
Installing device drivers, 61
Instruction Pointer (IP) register, 468
Instructions to assembler sections. See

Assembler directives
int instruction, 31, 470
int29h procedure, 408
int86 function in C, 425, 447
Intel microprocessors, 461

80286,470-471
80386,471-474
80486,474
future of, 474
hardware registers in, 465-468
110 structure of, 468-470
memory structure of, 462-466

Interrupt Enable Flag, 469
INTERRUPT procedure, 41-42, 341,

343-345
address of, 68, 72-74, 107
for Clock Device Driver, 193-195,

218-219
command-checking in, 410-411
for Console Device Driver, 108-110,

123-124
for DRIVER.ASM, 429-431, 444-445
functions of, 47-48
for Printer Device Driver, 149-151,

167-168

550

for RAM Disk Device Driver,288-289,
309-310

for Simple Device Driver, 68, 77-80,
87-88

in two-step calling process, 44-46
Interrupts

DOS, 31-33
incompatibilities in, 408
110,469-470
forkeyboard,22-26,97,358,507-509
for parallel adapters, 20, 22-24, 401, 509
for serial adapters, 19-23, 498-501
for video screen, 26-27, 97-98, 483-492

Invalid disk change error code (F), 83, 357,
361-362,376

110 bus signals, 15
110 Complete system service, 504
110 structure of Intel microprocessors,

468-470
IO.SYS file, 243, 513-514
IOCTL bit in device headers, 74, 338
IOCTL calls

for CD-ROM, 418
for Printer Device Driver, 134-141

IOCTL DOS service (44h), 35, 53,135-136,
355

for change testing, 301, 367
for generic 110 control, 370-371
for Printer Device Driver, 160
for raw-mode output, 407

IOCTL Input command (3),51-53,354-356
C header file structure for, 435
C skeleton function for, 438, 449
for CD-ROM, 420-422
for Clock Device Driver, 200, 222
for Console Device Driver, 113
for disks, 268
for Printer Device Driver, 152, 154-155,

169
for RAM Disk Device Driver, 296-297,

313
request header for, 330, 355
unimplemented, status word for, 377

IOCTL Output command (12), 51-52, 55,
364-365

C skeleton function for, 439, 452-453

for CD-ROM, 420, 422-423
for Clock Device Driver, 208-209, 227
for Console Device Driver, 118, 127
for disks, 269
for Printer Device Driver, 160-161,

172-173
for RAM Disk Device Driver, 300, 315
request header for, 332, 365
unimplemented, status word for, 377

10CTL Queries bit in device headers, 74,
339

10CTL Query command (25),51-52,
374-375

C skeleton function for, 441, 454
request header for, 335, 375
unimplemented, status word for, 377

10CTL Read operation, 135
10CTL Write operation, 136, 160
isetup procedure, 390-391

Jump code instruction in boot area, 242,
278,286,295

Jump tables, 79

Keep Process DOS service (31h), 35,185
Kernel, 27, 58, 514
Keyboard. See Console Device Driver
Keyboard Buffer Write keyboard service,

508
Keyboard Intercept system service, 502
Keyboard Services ROM BIOS interrupt

(9h),23-24,95,483
Keyboard Services ROM BIOS interrupt

(16h),23-26,97,358,507-509

Labels for assembler, 69-70
Lafore, Robert, Assembly Language Primer

for the IBM PC and XT, 5
Large memory model for C, 424
Large Sectors (LS) field in BPB, 259, 354
lea instruction, 325
Leap years for Clock Device Driver, 204,

207-208
Length of request headers, 43-44
Library calls in C, 425
Light pen, interrupt for, 484

Index

LINK linker and linking, 6-7, 60, 86, 90,
321-322,456

Linked lists for drivers, 38-39, 73, 328, 382
Load and Execute a Program DOS service

(4Bh),35
Local procedures, 41-42

for Clock Device Driver, 193, 195-199,
219-221,388-389

for Console Device Driver, 110-111, 124
for Printer Device Driver, 168
for RAM Disk Device Driver, 289-292,

310-311
saving registers in, 78, 383-384
for Simple Device Driver, 68, 80-81, 88

Local variables. See Variables
Logical addresses, 471
Logical devices, getting and setting,

372-375
Logical disk drives, 258, 353, 517-521
Low-order bytes, 462
LPTx devices and adapters, 29-30,

133-134,342

Machine incompatibilities, 408
Machine-independent programming, 96
Macro Assembler, 59, 328
main function in C, 455
Main procedure

for Clock Device Driver, 187, 190,217
for Console Device Driver, 105, 122
for Printer Device Driver, 147-148, 166
for RAM Disk Device Driver, 282, 285,

307
for Simple Device Driver, 67, 71-72, 87

Major function codes for Generic I/O
Control, 370-371

MASM assembler, 6-7, 69-72, 323
Media change status word, 351
Media Check command (1),52-53,261,

264,350-352
for block devices, 48-50
C header file structure for, 435
C skeleton function for, 438, 448
for CD-ROM, 419
for Clock Device Driver, 200, 222
for Console Device Driver, 113, 125

551

Writing MS-DOS Device Drivers, Second Edition

for disks, 266, 268
for Printer Device Driver, 153, 169
for RAM Disk Device Driver, 281-282,

295,312-313
request header for, 329, 350
unimplemented, status word for, 377

Media descriptors, 245-246
in BPB, 257, 266, 278-279, 354
for Console Device Driver, 105
device header bit for, 338-339

Medium memory model for C, 424
Memory

DOS management of, 27
expanded,477-478
extended,475-479
and Intel microprocessors, 462-466
for RAM disks, 275, 277-278, 281

Memory Available ROM BIOS interrupt
(12h),492

Memory-mapping for video controllers,
186-187

Memory models for C, 424-425
Memory segmentation, 461, 463-466
Microprocessors. See Intel microprocessors
Minor function codes for Generic I/O

Control, 370-371, 374-375
MM58167A clock/calendar chip, 179-180

address of, 180, 184-185,210,213-214
programming, 182-184

MODE command (DOS), 133-134
Modify Allocated Memory Blocks DOS

service (4Ah), 35
Months for Clock Device Driver, 191-193,

200-202
mov instruction, 77, 97-100
Move a Directory Entry DOS service (56h),

35
Move a File Pointer DOS service (42h), 35
Move Data to/from Conventional to

Extended Memory function, 476
Move Extended Memory system service,

503-504
MS-DOS Programmer's Reference, 5
MS-DOS vs. PC-DOS, 409
MSDOS.SYS file, 243, 513
Multimedia devices, 417

552

Multiplying by shifting, 325
Multiprocessing, 474
Multitasking, 45-46
Musical keyboard. See Console Device

Driver

Names
for CD-ROM, 418-419
for Console Device Driver, 107
for devices, 29-30, 74-75, 341
for files, 249-250

Near calls, 71, 382, 425
New devices, device drivers for, 36-37
Non-IBM Format bit in device headers, 74,

338-339
Nondestructive Input command (5), 51,

53-54,358-359
C header file structure for, 436
C skeleton function for, 438-439, 449
for Clock Device Driver, 204, 224
for Console Device Driver, 100, 115-116,

126
for Printer Device Driver, 153, 169
for RAM Disk Device Driver, 297-298,

314
request header for, 330, 359
unimplemented, status word for, 377

Nonremovable disks, 261
~L:device,29-30,38-39,342
Null device bit in device headers, 74, 339
Number of FATs (NF) field in BPB, 257,

278-279,354
Number of Heads (NH) field in BPB,

257-258,278-279,354
Numbering sectors, 238-239

Object code, 59, 321-322
Odd addresses, 462
Offset addresses, 464
Open architecture, 15
Open devices, tracking, 55, 270, 365-366
Open File DOS service (Fh), 34
Open File DOS service (3Dh), 33-36
Operating environment, 323
Operating system partitions, 519-520
Options for assembler, 70

org assembler directive, 381
OS/2 operating system, 471
osetup procedure, 391
out instruction, 15-16, 182
Output command (8),51-52,54,360-362

C header file structure for, 436
C skeleton function for, 439, 450-451
for CD-ROM, 419
for Clock Device Driver, 190, 205-208,

224-227
for Console Device Driver, 101, 116-117,

126-127
for disks, 269
for Printer Device Driver, 154-158,

170-171
for RAM Disk Device Driver, 281-282,

298,314
request header for, 331, 361
unimplemented, status word for, 377

Output devices, 14
Output Flush command (11), 51, 55, 364

C skeleton function for, 439, 452
for Clock Device Driver, 208-209, 227
for Console Device Driver, 118, 127
for Printer Device Driver, 153, 172
for RAM Disk Device Driver, 300, 315
request header for, 332, 364
unimplemented, status word for, 377

Output Status command (10), 51, 54, 363
C skeleton function for, 439, 451-452
for Clock Device Driver, 208-209, 227
for Console Device Driver, 118, 127
for Printer Device Driver, 155,158-159,

171-172
for RAM Disk Device Driver, 300, 314
request header for, 332, 363
unimplemented, status word for, 377

Output Til Busy command (16),51,55-56,
368-369

C skeleton function for, 440, 453
for Clock Device Driver, 208-209, 228
for Console Device Driver, 118, 127
device header bit for, 338
for Printer Device Driver, 144, 157-158,

160,173
for RAM Disk Device Driver, 302, 315

Index

request header for, 333, 368
unimplemented, status word for, 377

Output With Verify command (9),51-52,
54-55,362-363

C skeleton function for, 439, 451
for CD-ROM, 419
for Clock Device Driver, 190,208-209,

227
for Console Device Driver, 101, 118, 127
for disks, 269
for Printer Device Driver, 158, 171
for RAM Disk Device Driver, 281-282,

298-300,314
request header for, 331-332, 362
unimplemented, status word for, 377

Overflow Flag, 469
Overhead, disk, 237, 239-240, 254, 275, 278

pack pragma in C, 455
Padding by C compilers, 447, 455
Page frames, 477
Palettes, interrupts for, 485-488
para assembler directive, 70
Paragraphs, 70,463-465
Parallel devices, 16, 30, 133-134
Parallel port ROM BIOS services (17h),

20-23,142-144,155,401,509
Parameters for disks, 255-260
Parity Flag, 469
Park Disk Heads disk service, 498
Parse File Name DOS service (29h), 35
Partition sector, 518-521
Partitions, disk, 30, 255, 258, 353, 361,

517-521
PATH command (DOS), 323
PC-DOS vs. MS-DOS, 409
Periscope product, 384
Pixels, interrupts for, 26, 98, 485-486
Platters, disk, 236
Play command (132) for CD-ROM, 420-421
Pointer registers, 467-468
Pointers

for clusters, 247
for drivers, 38-39, 328

Pointing Device Interface system service,
505-506

553

Writing MS-DOS Device Drivers, Second Edition

pop instruction, 85, 384
Port addresses

for devices, 325-326
for MM58167 A clock/calendar chip, 180,

184-185,210,213-214
Ports

device names for, 30
direct access to, 19
I/O, 468-469
ROM BIOS services for, 19-23, 142-144,

155,401,498-501,509
serial and parallel, 16

Power On Self Test (POST) system service,
502

Pragmas in C, 455
Print a Character printer service, 509
Print Character DOS service (5h), 34
Print Screen ROM BIOS interrupt (5h), 483
PRINT utility (DOS), 28, 134
Printer Device Driver

assembler directives for, 142, 145-147,
164-166

building, 162-163, 175
in C language, 442-455
command processing for, 144, 151-161,

168-173
Common Exit section for, 161-162,

173-174
device header for, 142, 144, 148-149, 163
End of Program section for, 161-163,

174-175
Error Exit section for, 160, 173
INTERRUPT procedure for, 149-151,

167-168
IOCTL calls for, 134-141
local procedures for, 168
main procedure for, 147-148, 166
and printer types, 133-134
ROM BIOS services for, 141-142
STRATEGY procedure for, 149-150, 167
using, 175
work space for, 148-149, 167

Printer out of paper error code (9), 83, 376
Printer Services ROM BIOS interrupt

(17H), 401, 509
Printers, 16, 133-134

554

Priority of devices, 46
PRN: device, 29-30, 342. See also Printer

Device Driver
proc assembler directive, 71
Procedures, 8
Process Termination system service, 503
Processor and Coprocessor, The (Hummel),

474
Processor faults, 470
Program Segment Prefix (PSP) with C, 424
Program structure, 41-42
Programmable Option Select system

service, 506-507
Protected mode, 470-473, 478
Prototyping, 384-399
prtmsg procedure, 406
public assembler directive, 70
push instruction, 78, 383-384

RAM Disk Device Driver
assembler directives for, 282-285,

305-307
building, 303
command processing for, 280-282,

292-302,311-315
Common Exit section for, 301-302,

315-316
designing, 280-281
device header for, 280, 285-286, 307-308
End of Program section for, 302-303, 316
Error Exit section for, 301-302, 315
internal format of, 278-280
INTERRUPT procedure for, 288-289,

309-310
local procedures for, 289-292, 310-311
main procedure for, 282, 285, 307
modifying, 303-304, 315-316
parts of, 277-278
request headers for, 280, 286, 288
STRATEGY procedure for, 288, 308
using, 275-276
work space for, 286-288, 308

RAM disks
as deviceless drivers, 41
as nonremovable disks, 261
operation of, 276

Random access devices, 235
Random Block Read DOS service (27h), 34
Random Block Write DOS service (28h), 34
Random Read DOS service (21h), 34
Random Write DOS service (22h), 34
Raw input/output mode, 407
Read Calendar timer service, 510
Read Cassette Data system service, 501
Read Character and Attribute video

service, 26, 98, 485
Read CMOS Clock timer service, 509-510
Read Cursor Position video service, 26, 98,

484
Read Disk Sectors disk service, 493
Read fault error code (B), 83, 376
Read from FilelDevice DOS service (3Fh),

36-37
Read Joystick system service, 503
Read Keyboard and Echo DOS service (lh),

34
Read Keyboard DOS service (8h), 34
Read Light-pen Position video service, 26,

98,484
Read Long command (128) for CD-ROM,

419-421
Read Long Prefetch command (130) for

CD-ROM, 420-421
Read Next Keyboard Character keyboard

service, 25, 97, 507
Read-only file attribute, 250-251
Read Pixel Dot video service, 26, 98, 486
read procedure, 396-398
Read Sectors disk service, 495
Read System Clock timer service, 509
Read Test Buffer disk service, 496
Read/write heads, 235-236
Real mode, 470-473
Reboot From Disk ROM BIOS interrupt

(19h),509
Recalibrate Disk disk service, 496
Receive One Character serial port service,

20-21,499
Registers

general, 467
instruction pointer, 468
pointer and index, 467-468

Index

restoring, 85, 384
saving, 78,383-384
segment,465-466,468

Relative sector numbers, 361
Removable disks, 261
Removable Media command (15),52,56,

367-368
C skeleton function for, 440, 453
for CD-ROM, 419
for Clock Device Driver, 208-209, 227
for Console Device Driver, 118, 127
for disks, 270
for Printer Device Driver, 144, 154, 173
for RAM Disk Device Driver, 281,

300-302,315
request header for, 333, 368
unimplemented, status word for, 377

Rename File DOS service (17h), 34
Replacement drivers, 38-39
Request Headers, 42-44, 346-347

addresses of, 44, 47-49, 77
for C driver, 442
for CD-ROM, 419-420
for Console Device Driver, 104-105,

121-122
for DRIVER.ASM, 428, 432-433, 442
for DRIVER.H, 433, 436-437
printing information from, 401-406
for RAM Disk Device Driver, 280, 286,

288
registers for, 383
for Simple Device Driver, 76
status word in, 43-44, 81-84, 280,

352-353,375,377
structures for, 99, 328-335

Requirements, hardware and software, 6-7
Reserved area on disks, 241-243, 255, 278
Reserved device names, 29-30
Reserved sectors area, 242
Reserved Sectors (RS) field in BPB,

256-257,278-279,354
Reset Alarm Clock timer service, 510
Reset Disk disk service, 492-493
Resets, system, 514
Restoring registers, 85, 384
ret instruction, 85

555

Writing MS-DOS Device Drivers, Second Edition

Return Current Setting of Verify DOS
service (54h), 35

RETURN instruction, 68
Return Text of Current Directory DOS

service (4 7h), 35
rol instruction, 79
ROM BIOS services, 18-19

for Console Device Driver, 97-98
in design consideration, 96
for displaying output, 400-401
and DOS, 27-28
incompatibilities in, 408
listing of interrupts for, 483-510
for Printer Device Driver, 141-142
sector numbering by, 238

Routines, 8
RS-232-C connector, 16

save procedure, 289-291, 298, 310
Saving registers, 78, 383-384
Scan codes, 22-24, 113-115
Screen

attributes for, 485
memory for, 193
ROM BIOS services for, 26-27, 97-98,

483-492
writing to, 198-199

Scroll Window Down video service, 26, 98,
485

Scroll Window Up video service, 26, 98,
484-485

Search for First Entry DOS service (l1h),
34

Search for Next Entry DOS service (12h),
34

Sector not found errpr code (8),83,376
Sector Size (SS) field in BPB, 256, 278-279,

354
Sectors, 237-239

for CD-ROM, 418, 526-527
for file directories, 249
maximum number of, 254-255
partition, 518-521
for RAM disks, 276, 281
reading, 31-32

556

writing to, 31, 33, 35-36, 56-58,
360-362,493,495

Sectors per Track (ST) field in BPB, 257,
259,278-279,354

Seek command (131) for CD-ROM, 420-421
Seek disk service, 495-496
Seek error error code (6),83,376
Segment registers, 465-466, 468
Segmenting memory, 461, 463-466
Segments

in addresses, 464
assembler directives and labels for,

70-71,383
with C, 424
grouping, 426
overriding, 77, 383

Select Disk DOS service (Eh), 34
select procedure, 390
Send One Character serial port service, 499
Sequential Read DOS service (14h), 34
Sequential Write DOS service (15h), 34,

56-58
Serial devices, 16, 133-134
Serial Port Services ROM BIOS interrupt

(14h), 19-23, 142-143,498-501
Serial ports and adapters

device names for, 30
direct access to, 19

Set Active Display Page video service, 26,
98,484

Set Alarm Clock timer service, 510
Set Calendar timer service, 510
Set CMOS Clock timer service, 510
Set Color Palette video service, 26, 98, 485
Set Cursor Position video service, 26, 98,

484
Set Cursor Size video service, 26, 98, 483
Set Date DOS service (2Bh), 35
Set Disk Transfer Address DOS service

(lAh),34
Set Disk Type disk service, 497
Set Keyclick keyboard service, 508
Set Logical Device command (24),51-52,

339,373-374
C skeleton function for, 441, 454

request header for, 335, 374
unimplemented, status word for, 377

Set Media Type disk service, 497-498
Set Modem Control Register serial port

service, 501
Set Relative Record DOS service (24h), 34
Set Repeat Rate keyboard service, 507-508
Set System Clock timer service, 509
Set Time DOS service (2Dh), 35
Set Vector DOS service (25h), 34, 214
Set Video Mode video service, 26, 98, 483
Set/reset Verify Flag DOS service (2Eh), 35
setatt procedure, 412
SHELL command, 514
Shift instructions, 79, 325
Shift keys, status of, 25, 97, 507
SI (Source Index) register, 467-468
Sign Flag, 469
Simple Device Driver

assembler directives for, 67, 69-71, 87
building, 86
command processing for, 81-83, 88-89
Common Exit procedure for, 84-85, 89
device header for, 72-73,87
End of Program section for, 85-86, 89
Error Exit section for, 83-84, 89
INTERRUPT procedure for, 77-80, 87-88
local procedures for, 80-81, 88
main procedure for, 71-72, 87
sections for, 65-69
STRATEGY procedure for, 77, 87
using, 90
work space for, 75-76, 87

Single-sided disks, 240
Size

of cursor, 26, 98,483
of device drivers in UMB, 413
of disks, 254-255
of FAT entries, 253-254
of files, 34, 252-253
of partitions, 521
of RAM disks, 276
of request readers, 347
of sectors, 238-239

Skeletons, 65-66, 99, 327-328, 437

Index

Small memory model for C, 424-425
Snow, 198-199
Software requirements, 6-7
Sound

with CD-ROM, 421
with Console Device Driver, 110-111, 124
with RAM disk driver, 275-276, 288, 298

Source code, 59
SP (Stack Pointer) register, 401, 467
Speaker, 28

with Console Device Driver, 110-111, 124
with RAM disk driver, 275-276, 288, 298

Special bit in device headers, 74, 339,
406-408

Speed
of assembly language, 323-325, 423
of CD-ROMs, 525
of controllers, 17
of direct I/O calls, 17, 19, 96
of DOS services, 19

Spoolers, command for, 55-56, 368-369
SS (Stack Segment) register, 401, 465-466,

468
Stack Pointer register, 401
STACK segments, 60
Stacks

in C, 425-426, 455
defining, 401, 406-407
in DRlVER.ASM, 428, 433, 443-445
for INTERRUPT procedure, 78

Standard devices, 16
Standard drivers, customizing, 40
Standard input device bit in device

headers,74,339-340
Standard interfaces, device drivers as, 3
Standard output device bit in device

headers,74,339
Start sectors, 252, 259-260
Starting address, 381,455
Static portion of request readers, 347
Status

of clusters, 245
ofl/O (See 10CTL entries)
of parallel ports, 20, 23,142,144,155
of serial ports, 20-21,142-143

557

Writing MS-DOS Device Drivers, Second Edition

Status word of request headers, 43-44, 280,
352-353

for commands, 81-84, 375, 377
registers for, 383

stdio.h header file in C, 425
Step thru Directory Matching Files DOS

service (4Fh), 35
Stop Play command (133) for CD-ROM,

420-421
STRATEGY procedure, 41-42, 341, 343-344

address of, 68, 72-74, 107
for Clock Device Driver, 193-194,218
for Console Device Driver, 108, 123
for DRIVER.ASM, 428-429, 444
functions of, 47-49
for Printer Device Driver, 149-150, 167
for RAM Disk Device Driver, 288, 308
for Simple Device Driver, 68, 77, 87
in two-step calling process, 44-46

Strauss, Ed, Inside the 80286, 471
Strings

IOCTL, 134-136
microprocessor instructions for, 468
services for, 34, 490

struct directives in C, 433
Structures, 99-100

assemblers supporting, 323
checking, 382
for Clock Device Driver, 187-190,

215-217,386-388
for Console Device Driver, 102-103,

121-122
for Printer Device Driver, 142, 145-147,

164-166
for RAM Disk Device Driver, 282-285,

305-307
requestheadersin,99,328-335

Subdirectory file attribute, 250-251
Surfaces, disk, 237
Switch to Protected Mode system service,

504
switch2new procedure, 401, 406-407
switch20ld procedure, 406-407
.SYS extension, 60-61
SYS program, 513
SYSINT code, 513

558

System clock, 181
System disks, 243, 513
System file attribute, 250-251
System Request Key system service, 503
System Services ROM BIOS interrupt

(15h),501-507

Tables
for BPB, 265, 349
for commands, 79-80, 433
for partitions, 519-521

Technical Reference Manual, 5
Templates, 65-66,99,327-328,437
Terminal emulators, 40
Terminate a Process DOS service (4Ch), 35
Terminate Address interrupt (22h), 31
Terminate but Stay Resident DOS service

(31h), 35, 185
Terminate but Stay Resident interrupt

(27h), 31, 33
Terminate-but-Stay-Resident (TSR)

programs, 180,413
Terminate Program DOS service (Oh), 34
Terminate Program interrupt (20h), 31
Test disks, 381
Test instructions, 468
Test programs

for C drivers, 456-458
for devices, 325-326

_TEXT segment in DRIVER.SYS, 432-433
Third-party debuggers, 384
Time

driver for (See Clock Device Driver)
of update or creation, in file directories,

251
TIME command (DOS), 180, 200
Time-of-day counter, 182-183
Time of Day ROM BIOS interrupt (8h),

181-182,483
Time of Day Services ROM BIOS interrupt

(lAh), 182, 509-510
Time outs, 514
time procedure, 392-393
Timer Tick ROM BIOS interrupt (lCh),

182,185-187,197,510
Timing signals, 180-182

Tiny memory model for C, 424-425,
455-456

title assembler directive, 442
TONE procedure, 110-111, 115, 124
Total Sectors (TS) field in BPB, 257, 259,

278-279,354
Tracks, 236-238,525
Transmit One Character parallel port

service, 20, 23, 142, 144, 155, 509
Transmit One Character serial port

service, 20-21, 142-143,499
Trap Flag, 469
Turbo Assembler, 6-7, 323
Turn Cassette Motor Off system service,

501
Turn Cassette Motor On system service,

501
Two-step call process, 45-46
Type-ahead keyboard function, 95
typedef directives in C, 433-436

Unimplemented commands, status words
for, 377

Unit codes for devices, 43-44
UNIX operating systems, 471
Unknown command error code (3), 83, 376
Unknown media error code (7), 83, 376
Unknown unit error code (1), 83, 376
Unused file entries, 249
Upper Memory Blocks (UMB), 413-414

Variables
assembler, 69
in C, 425
for Clock Device Driver, 191-193,

217-218,388
for Console Device Driver, 108, 122-123
for Printer Device Driver, 148-149, 167
for RAM Disk Device Driver, 286-288,

308
for Simple Device Driver, 75-76, 87

VDISKSYS driver, 276, 475
Vectors, interrupt, 470
Vendor identification code, 242-243, 278,

286,295
VERIFY command (DOS), 101, 117,362

Index

Verify Disk Sectors disk service, 493-494
Verifying write commands. See Output

With Verify command (9)
Versions

and attribute bits, 120,411-412
for commands, 345-346
and compatibility, 409-412
for disk support, 240
effects of, 4
for Printer Device Driver, 144, 148-149
test disks for, 381

Video controllers, memory-mapping for,
186-187

Video ROM BIOS services (10h), 26-27,
97-98,483-492

Virtual 8086 Mode, 471
Virtual Control Program Interface (VCPI),

478
Virtual devices, 41, 475-476
Virtual memory, 471
Volume Descriptors for CD-ROMs, 526
Volume IDs, g52, 354
Volume label file attribute, 250-251, 262
Volumes for partitions, 521

Warnings, linker, 90, 456
Watchdog Timer Control system service,

506
Windows with editors, 322
Word pointers, 98-100
Words, 462
Work space, 41-42

for Clock Device Driver, 191-193,
217-218,388

for Console Device Driver, 108, 122-123
for Printer Device Driver, 148-149, 167
for RAM Disk Device Driver, 286-288,

308
for Simple Device Driver, 68, 75-76, 87

Write Cassette Data system service, 501-502
Write Character and Attribute video

service, 26, 98, 485
Write Character as TTY video service, 26,

98,116,486
Write Character String video service,

26-27,98,490

559

Writing MS-DOS Device Drivers, Second Edition

Write Character video service, 26, 98, 485
Write Disk Sectors disk service, 493
Write fault error code (A), 83, 376
Write fault errors, 83, 158, 376
Write-Once-Read-Many (WORM) devices,

418
Write Pixel Dot video service, 26, 98, 485---486
write procedure, 393-396
Write protect violation error code (0), 83,

376
Write Sectors disk service, 495
Write Sequential File Record DOS service

(15h), 34, 56-58
Write Test Buffer disk service, 496

560

Write to File/device DOS service (40h),
35-36

Writing
device driver programs, 59, 381-384
to disks, 31, 33, 35-36, 56-58, 360-362,
. 493,495

XMS (Extended Memory Specification), 478

Years for Clock Device Driver, 201-202,
204,207-208

Zero Flag, 469

r---_

Writing MS-DOS Device Drivers
Program Disk
Order Form

The Program disk for this book includes all the sources shown in listings.

Please enclose a check or money order for U.S. $15.00 for each disk desired.
Foreign orders outside North America, add $2.00 shipping and handling.

Name

Address __ _

City, State, ZIP

Country

Please make your check payable to R. Lai and send it along with this order
form to:

Robert S. Lai
P.O. Box 337
Moss Beach, CA 94038

-- ---~

The Waite Group' is a leading authority on
computer books, with over seventy quality trade
computer titles on the market, including
Master C and the C++ Primer Plus.

11 11 111 1 WI I 11111 11111 1111111

ISB-N-O-201-b0837-5
22 :2:60

~ 06/01/9;2.

ISBN 0-201-60837-5
60837

